
UNIX ~ystelJl M~nager's ,'~4QUaJ,
- (SMM)

4.3 Bf)r~Q.ley Software ,Distributioq,
",' ~90148Rev. E

December .198.8
l .. ' •. • l.~ T. ~ . ,

'"Copyri~t 19119, 1980~ tLl983, h!1r986~~;i1987,'Jn1988,,;~Regen~::; o(~ ... ,tl,1~,;
, Univetsity'<.offdilifotnia.· PermiSSion 'to"'copy -theseQ:oc~edts or ,any:
portion thereof as 'necessary for licensed, use of the,.soft.\Vare..is granted
to licensees of this software, prQvided this copyright notice and
statement of permission are included

Copyright 1979, AT&T Bell Laboratories, Incorpor~e.4.~,·~~ger~Jj(jf
UNIXl'M/32V, System III, or System V softwarelicens.esare permitted
to : ropy these documents, or any portion Q(,; them, ,a~ nece~;~~ tw
licensed use of the:' software, provided this copYIiihtR@f;ipe: ~d'~
statement of permission are included

?fhis- mariual fefl~~~'system·-enhaDCements "made at', Beflceley"r3ruh.!
sponsored in part by tIi~rD<!feHk AdVanced Research Projects Agency"
(DoD), Arpa Order' No. 4871 monitored by the Naval ElectrQIlic~,!

, Sjstems Command under contrc!ct No. NOOO39 .. 84-C-0089 .. ' The· views
, ,~ cpn~lusi9:n~ ~t.I~m~ in ~~se docpm~~ts are tthose .gLthe atith9!S':
and should not be interpreted as representing official policies, either.'
expressed or implied, of the Defense Research Projects Agency or of the
US Government.

, UNIX is a registered trademark of AT&T in the USA and oth~r"
-'tcountries.
4.2BSD'and 4.~~SD ~ere,.d~v~,~o~d by fhe Regents of th~ University
of California (Btrkeley), Elec'trlC3i 'Engineering and Comptiter Sciences
Departments." ., .,
DEC, VAX, and,: LSI-II aretrademwks of Dilital }!Eguipl'Q6ht
COI'P9rati0,l)·n

UNIX System Manager's Manual (SMM)

4.3 Berkeley Software Distribution

December 1987

This volume contains manu~J.p'ages· and 'Sl;Jpplemenf!aJ'Y~ciocul1)epts us~(UJ to J~~~ ...)administrators.
The information in these. -d6c~.~~·:applies. to,~· yjrtualNAS·H-l vejSiQJl..',gf!the sy~t~ as, distributed by
U.C. Berkeley. . ,

(8)
R,eference Manual - Section 8

Section 8 of the UNIX Programmer's Manual contains information related to system operation,
administration, . and:~ilfutenail'ce~, .. , "

System Installation ~itll AiilnUiist~ion

UNI~ 4.3BSD System Administrator Guide S:MM:l

This guide contains instructions PJh:;~e,:insuillJltio~ ,af:l,d .. <?l'eratiQIl .of IJNIX. 4.3ijSD on
Integrated Solutioiis, Inc.' (ISI).comp'~~~ system~~AOd Gr;V:l~'

Building 4.3BSD lJNIXSystems with C'iinfig S:MM:2
. 'In-depth discus~io~~ ofthe'~iise and operanon'bCihe cPl1fig progtarii;~ afitl'h6~1to ·trulld your

very own Unix~~ITIel.

Using ADB to Debug the Kernel SMM:3

Techniques for figuring out after the fact why the kernel crashed.

Disc Quotas in a UNttEnvironment SMM:4

. A light introduotion t<~';the ~hniques for limiting the)~ije ... o.('4isc fxs,ow.:c;es.

Fsck - The UNIX File System Check PrQgram S:MM:5

A reference dottifuent fo~ using'the/sck program during times oflfile system {fiistress:

Line Printer Spooler Manual SMM:6

This document describes the structure and installation procedure for the line printer spooling
system.

Sendmail Installation and Operation Guide SMM:7

The last word in installing and operating the sendmail program.

SMM Contents

Timed Installation and Operation Guide

Describes how to maintain time synphronizatio~ betweeq·;mac.l:Wtes in a local network~

UUCP Implementation Description ·SMM:9

Describes the implementation of uucp; for the installer and administrator.

USENET Version B Installation SMM:I0

How to install and maintain the News system.

Name Server Operations Guide S:M:M:l1

If you have a network this will be of interest

Supporting Docume~tation

Bug Fixes and Chang~s in 4.3BSD SMM:12

This dOcument summarizes changes visible to the user accus~omed to 4.2BSD.
~. ".

Changes to the Kern~l in 4.3BSD SMM:13

A summ~ for the hard-core of changes in the kernel from 4.2BSD to 4~.3BS,D.

A Fast File System for UNIX
• ':~,' It ", ••••• _

SMM:14

A descr,iption of the 4.2BSD file system organization, design and implementation.

4.3BSD Netwo~king It!tplementation Notes SMM:15

A concise description of the system interfaces used within the networking sub~ystem.

Sendmail - An Internetwork Mail Router SMM:16

An overview document on the design and implementation of sendmail.

On the Security of UNIX SMM:17

Hints on how to break UNIX, and how to avoid your system being broken.

Password Sec~ty - A Case History SMM:18

How the bad guys usecf, to be able to break the password algorithm, and why they cannot now
(at least not so easily). . . .

A Tour Through the Portable C Compiler SMM:19

. How the portable C compiler ~or~s: i~side.

Writing NROFF Terminal Descriptions SMM:20

A description of how to add a printer with new characteristics to Version 7 nroff.

A Dial-Up Network of UNIX Systems SMM:21

Describes UUCP, a program for communicating files between UNIX systems.

SMM Contents

The BerkeleyMNIX Time Synchronization Protocol SMM:22

The protocols and algorithms used by timed, the network time synchronization daemon.

T ABLE OF CONTENTS

8. System Maintenance

intro .. introduction to system maintenance and operation commands
XNSrouted .••••••••..•.••••.••• NS Routing Information Protocol daemon
ac •• login accounting
add user ••• procedure for adding new users
admin ... perform routine system administration tasks automatically
arp .. address resolution display and control
badl44 ••• read/write dec standard 144 bad sector information
badsect ••• create files to contain bad sectors
bugfiler ... file bug reports in folders automatically
catman. ••• create tile cat files for th.e manual
chown ... change owner
elri .. clear i-nooe
comsat: .. biff server
config .. build system configuration 'files
crash ... what happens when the system crashes
cron ... clock daemon
dcheck .. file system directory consistency check
diskpart .. ~ ••••••••••••••••••••••••• calculate default disk partition sizes
diskst .. determine an.d print disk geometry
dmesg .. collect system diagnostic messages to form error log
drtest ... stalldalone disk test progrrun
dump .. incremental file system dump
dumpfs ... dump file system information
edquota. .. edit user quota.s
fastboot •• reboot/halt tile system witllout checking tile disks
fingerd ... remote user information server
fsck ••••••••••••••••••.•.•••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••• file system consistency check and interactive repair
ftpd •• DARPA Internet File Transfer Protocol server
gdbad •••.•• lSI test disk for bad sector rand reassign
gettable .. get NIC format host tables from a host
getty .. set terminal mode
halt ... stop tile processor
htable .. convert NIe standard format host tables
icheck .. file system storage consistency check
ifconfig ... configure network interface parameters
imp log .. IMP log interpreter
implogd .. IW logger process
inetd ••••••••••••••.•••••••••••••••••••••.••••••••••••.••• internet "super-server"
init ••• process control initialization
kgmon ••• generate a dump of the operating system's profile buffers
killpg ... terminate all members of a process group
ksymbol ... configures tile kernel debugger symbol table
ltx: ... line printer control progrrun
lpcl .. line printer daemon
makedev ... make system special files
makekey ••• genemte encryption key
mkfs ... construct a file sysrem
mkhosts ... generate hashed host table
mklost+found ... make a lost+found directory for fsck
mknod ... build special file
mkpasswd ••• generate hashed password table
mkproto ••• construct a prototype file system
mount ... mount and dismount filesystems

INTEGRATED SOLUTIONS 4.3 BSD - vii- April 1988

Table of Contents

named. •• Internet domain name server
ncheck .. generate names from i-numbers
newfs ... construct a new file system
nwstat ... nwstat- report Ethernet Packet Transmission Firmware status
pac .. printer/plotter accounting information
ping ••• send IC~ ECHO_REQUEST packets to network hosts
pstat ••.•••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••.•••• print system facts
quot ••••••••••••••••.•••••••••.••• summarize file system ownership
quotacheck ••.•••••••••••••••••••••• check file system quota consistency
quotaon •• turn file system quotas on and off
rc •• command script for auto-reboot and daemons
rdump ••• file system dump across the network
reboot .. UNIX bootstrapping procedures
renice .. _ alter priority of running processes
repquota. •••••••••••••••• 0 •• summarize quota.s for a file system
restore ••• ~ ••••••••••••••••••••••••.••••••••••••••••••••• incremental file system restore
rexecd ... remote execution server
rlogind .. remote login server
rrnt •• remote magta.pe protc:>col module
route ••• _ ... manually manipulate the routing tables
routed •••.••• network routing daemon
rrestore ••• restore a file system dump across the network
rshd ... remote shell server
-rwhod ••••••••••••• ": •• system status server
rx.format ... format floppy disks
sa ... system accounting
savecore •• save a core dump of the operating system
scsimon 0 •••••••••••••• 0 ••• 0 •••••••••••••••• lSI SCSI bus utility
sendrnail ... send mail over the internet
shutdown .. close down the system at a given time
slattach ••• attach serial lines as network interfaces
spconfig ••• build spanned disk configuration files
sticky ••• persistent text and append-only directories
swapon •• _ ••••••••••••••••••••••• specify additional device for paging and swapping
sync ••.•••.•• update the super block
syslogd .. OD ••• log systems messages
talkd ... remote user communication sef'\'er
telnetd ... DAR.P A lELN1!T protocol server
tftpd _ •• DAR.P A Trivial File Transfer Protocol server
timed. .. time server daemon
timed.c ... timed control program
trpt ••• tra.nsliterate protocol trace
trsp ••• transliterate sequenced packet protocol trace
tUllefs .. tune up an existing file system
update ... periodically update the super block
uucico ... _ ... tra.nsfer files queued by uucp or uux
uuclean .. _ .. uucp spool directory clean-up
uUJX>ll ••••••••••••••••••••••••••••••••••••• ., ••• poll a remote WCP site
uusnap .. show snapshot of the WCP system
UllXqt .. WCP 'execution file interpreter
vipw •••. edit the password file
zic ... time zone compiler

April 1988 - viii - INTEGRATED SOLUTIONS 4.3 BSD

INTRO(8) UNIX Programmer's Manual INTRO(8)

NAME
intro - introduction to system maintenance and operation commands

DESCRIPTION
This section contains information related to system operation and maintenance. It describes commands
used to create new file systems, newfs, verify the integrity of the file systems, fsck, control disk usage,
edquota, maintain system backups, dump, and recover files when disks die an untimely death, restore.
The section format should be consulted when formatting disk packs. Network related services are dis­
tinguished as 8C. The section crash should be consulted in understanding how to interpret system crash
dumps.

May 29, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

XNSROUTED (8e) UNIX Programmer's Manual XNSROUTED (8C)

NAME
XNSrouted - NS Routing Information Protocol daemon

SYNOPSIS
letcJXNSrouted [options] [logfile]

DESCRIPTION
XNSrouted is invoked at boot time to manage the Xerox NS routing tables. The NS routing daemon uses
the Xerox NS Routing Infonnation Protocol in maintaining up to date kernel routing table entries.

In normal operation XNSrouted listens for routing information packets. If the host is connected to multi­
ple NS networks, it periodically supplies copies of its routing tables to any directly connected hosts and
networks.

When XNSrouted is started, it uses the SIOCGIFCONF ioctl to find those directly connected interfaces
configured into the system and marked "up" (the software loopback interface is ignored). If multiple
interfaces are present, it is assumed the host will forward packets between networks. XNSrouted then
transmits a request packet on each interface (using a broadcast packet if the interface supports it) and
enters a loop, listening for request and response packets from other hosts.

When a request packet is received, XNSrouted formulates a reply based on the information maintained in
its internal tables. The response packet generated contains a list of known routes, each marked with a
"hop count" metric (a count of 16, or greater, is considered "infinite"). The metric associated with each
route returned provides a metric relative to the sender.

Response packets received by XNSrouted are used to update the routing tables if one of the following con­
ditions is satisfied:

(1) No routing table entry exists for the destination network or host, and the metric indicates the desti­
nation is "reachable" (Le. the hop count is not infinite).

(2) The source host of the packet is the same as the router in the existing routing table entry. That is,
updated information is being received from the very internetwork router through which packets
for the destination are being routed.

(3) The existing entry in the routing table has not been Updated for some time (defined to be 90
seconds) and the route is at least as cost effective as the current route.

(4) The new route describes a shorter route to the destination than the one currently stored in the rout­
ing tables; the metric of the new route is compared against the one stored in the table to decide
this.

When an update is applied, XNSrouted records the change in its internal tables and generates a response
packet to all directly connected hosts and networks. Routed waits a short period of time (no more than 30
seconds) before modifying the kernel's routing tables to allow possible unstable situations to settle.

In addition to processing incoming packets, XNSrouted also periodically checks the routing table entries.
If an entry has not been updated for 3 minutes, the entry's metric is set to infinity and marked for deletion.
Deletions are delayed an additional 60 seconds to insure the invalidation is propagated to other routers.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds to all directly
connected hosts and networks.

OPTIONS
-s Forces XNSrouted to supply routing information whether it is acting as an internetwork router or

not
-q Prevents XNSrouted from supplying routing information whether it is acting as an internetwork

router or not. (The -q option is the opposite of the -s option.)

-t Prints on the standard output all packets sent or received. In addition, XNSrouted will not
divorce itself from the controlling terminal so that interrupts from the keyboard will kill the

June 4, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

XNSROUTED (8C) UNIX Programmer's Manual XNSROUTED (8C)

process.

Any other argument supplied is interpreted as the name of file in which XNSrouted's actions should be
logged This log contains information about any changes to the routing tables and a history of recent mes­
sages sent and received which are related to the changed route.

SEE ALSO
"Internet Transport Protocols", XSIS 028112, Xerox System Integration Standard.
idp(4P)

June 4, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

AC(8) UNIX Programmer's Manual AC(8)

NAME
ac - login accounting

SYNOPSIS
letclac [options] [users] ...

DESCRIPTION
Ac produces a printout giving connect time for each user who has logged in during the life of the current
wtrnp file. Ac also prints out the total of all the connect times. Specifying users limits the printout to those
login names. If you do not specify another wtmp file with the -w option, ac uses lusr/adrnlwtrnp.

The accounting file lusr/adm!wtmp is maintained by in it and login. Neither of these programs creates the
file, so if it does not exist no connect-time accounting is done. To start accounting, this file should be
created with length O. On the other hand if the file is left undisturbed it will grow without bound. The sys­
tem manager should periodically collect any information he or she wants, then truncate the file.

OPTIONS
-d Orders a printout of the accounting for each midnight to midnight period.

-p Prints individual totals.

-wwtmp
Specifies an alternate wtrnp file.

FILES
lusr/admlwtmp

SEE ALSO
init(8), sa(8), Jogin(l), utmp(5).

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

ADDUSER(8) UNIX Programmer's Manual ADDUSER(8)

NAME
adduser - procedure for adding new users

DESCRIPTION

FILES

A new user must choose a login name, which must not already appear in Jetclpasswd. An account can be
added by editing a line into the passwd file; this must be done with the password file locked e.g. by using
vipw(8).

A new user is given a group and user id User id's should be distinct across a system, since they are used
to control access to files. Typically, users working on similar projects will be put in the same group. Thus
at UCB we have groups for system staff, faculty, graduate students, and a few special groups for large pro­
jects. System staff is group "10" for historical reasons, and the super-user is in this group.

A skeletal account for a new user" ernie" would look like:

ernie::235:20:& Kovacs,50SE,7925,642S202:JrnntlgradJernie:Jbinlcsh

The first field is the login name "ernie". The next field is the encrypted password which is not given and
must be initialized using passwd(l). The next two fields are the user and group id's. Traditionally, users
in group 20 are graduate students and have account names with numbers in the 200' s. The next field gives
information about ernie's real name, office and office phone and horne phone. This information is used by
the fioger(l) program. From this information we can tell that ernie's real name is "Ernie Kovacs" (the &
here serves to repeat "ernie" with appropriate capitalization), that his office is 50S Evans Hall, his exten­
sion is x2-7925, and this his home phone number is 642-S202. You can modify the finger(l) program if
necessary to allow different information to be encoded in this field The UCB version of finger knows
several things particular to Berkeley - that phone extensions start "2-", that offices ending in "E" are in
Evans Hall and that offices ending in "C" are in Cory Hall. The chfn(1) program allows users to change
this information.

The final two fields give a login directory and a login shell name. Traditionally, user files live on a file sys­
tem different from Jusr. Typically the user file systems are mounted on a directories in the root named
sequentially starting from from the beginning of the alphabet, eg la, Ib, Ic, etc. On each such file system
there are subdirectories there for each group of users, Le.: "Ialstaff" and "/b/prof' , . This is not strictly
necessary but keeps the number of files in the top level directories reasonably small.

The login shell will default to "Jbin/sh" if none is given. Most users at Berkeley choose" Ibinlcsh" so
this is usually specified here. The chsh(1) program allows users to change their login shell to one of the
shells in the approved list given in letc/shells.

It is useful to give new users some help in getting started, supplying them with a few skeletal files such as
.profile if they use "Jbin/sh", or .cshrc and .login if they use "/binlcsh". The directory "/usrlskel" con­
tains skeletal definitions of such files. New users should be given copies of these files which, for instance,
mange to use tset(1) automatically at each login.

letclpasswd
lusrlskel

password file
skeletal login directory

SEE ALSO
passwd(1), fioger(1), chsh(l), chfn(l), passwd(5), vipw(S)

BUGS
User information should be stored in its own data base separate from the password file.

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

ADMIN(8) UNIX Programmer's Manual ADMIN(8)

NAME
admin - perform routine system administration tasks automatically

SYNOPSIS
admin

DESCRIPTION

FILES

The admin facility uses a menu interface to collect information and execute routine system administration
procedures. The following areas are covered:

• Initializing your system and setting up administrative conditions

• Configuring your system

• Adding or removing user accounts

• Setting up a network

• Setting up uucp facilities

• Installing or maintaining a printer

• Installing cluster andlor diskless nodes

Initially, admin prints a menu of activities. The user selects a choice by entering the associated letter, with
no carriage return. Subsequent prompts request specific information; in most cases, the prompts are self­
explanatory .

The user should boot to single-user UNIX before invoking admin, for tasks other than modifying user or
group status, or archiving/retrieving files and directories. For cluster or diskless nodes, use admin only on
the server node. The other menu choices require quiescent file systems.

The admin facility uses a series of shell scripts to execute procedures. The super user can examine these
scripts in lusr/Hb/admin.scripts to see what happens in each procedure.

See the appropriate entries in Section 5 for formats of entries to admin prompts.

letc/admin
lusr/Hb/admin.scriptsl*

SEE ALSO
aliases(5), disktab(5), fstab(5), gettytab(5), group(5), hosts(5), networks(5), passwd(5), printcap(5),
remote(5), termcap(5), ttys(5), ttytype(5), and Section 3 of the System Administrator Guide contained in
SMM:l.

DIAGNOSTICS
Usage responses to some improper inputs. Boundary checking for most entries.

20 June 1987 INTEGRATED SOLUTIONS 4.3 BSD 1

ARP(8C) UNIX Programmer's Manual ARP(8C)

NAME
arp - address resolution display and control

SYNOPSIS
arp hostname
arp -a [vmunix] [kmem]
arp -d hostname
arp -s hostname ether _ addr T[temp] [pub] [trail]
arp -f filename

DESCRIPTION
The arp program displays and modifies the Internet-to-Ethernet address translation tables used by the
address resolution protocol (arp(4p».

With no llags, the program displays the current ARP entry for hostname. The host may be specified by
name or by number, using Internet dot notation. With the -a llag, the program displays all of the current
ARP entries by reading the table from the file kmem (default Idevlkrnem) based on the kernel file vmunix
(default Ivmunix).

With the -d llag, a super-user may delete an entry for the host called hostname.

The -s llag is given to create an ARP entry for the host called hostname with the Ethernet address
ether _addr. The Ethernet address is given as six hex bytes separated by colons. The entry will be per­
manent unless the word temp is given in the command. If the word pub is given, the entry will be "pub­
lished"; i.e., this system will act as an ARP server, responding to requests for hostname even though the
host address is not its own. The word trail indicates that trailer encapsulations may be sent to this host.

The -f llag causes the file filename to be read and multiple entries to be set in the ARP tables. Entries in the
file should be of the form

hostname ether _ addr [temp] [pub] [trail]

with argument meanings as given above.

SEE ALSO
inet(3N), arp(4P), ifconfig(8C)

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

BAD144(8) UNIX Programmer's Manual BADI44(8)

NAME
bad144 - read/write dec standard 144 bad sector information

SYNOPSIS
letclbad144 [options] disktype disk [sno [bad ...]]
letclbad144 -a [options] disktype disk [bad ...]

DESCRIPTION
Bad144 can be used to inspect the information stored on a disk that is used by the disk drivers to imple­
ment bad sector forwarding. The format of the information is specified by DEC standard 144, as follows.

The bad sector information is located in the first 5 even numbered sectors of the last track of the disk pack.
There are five identical copies of the information, described by the dkbad structure.

Replacement sectors are allocated starting with the first sector before the bad sector information and work­
ing backwards towards the beginning of the disk. A maximum of 126 bad sectors are supported. The posi­
tion of the bad sector in the bad sector table determines the replacement sector to which it corresponds.
The bad sectors must be listed in ascending order.

The bad sector information and replacement sectors are conventionally only accessible through the "c"
file system partition of the disk. If that partition is used for a file system, the user is responsible for making
sure that it does not overlap the bad sector information or any replacement sectors. Thus, one track plus
126 sectors must be reserved to allow use of all of the possible bad sector replacements.

The bad sector structure is as follows:

struct dkbad {

};

long bt_csn;
u short bt_ mbz;
u _short bt_ Bag;
struct bt_ bad {

u_short bt_cyl;
u _short bt_ trksec;

} bt_bad[126];

'* cartridge serial number *' '* unused; should be 0 *1 '* -1 => alignment cartridge *1

'* cylinder number of bad sector *1 '* track and sector number *1

Unused slots in the bt _bad array are filled with all bits set, a putatively illegal value.

Bad144 is invoked by giving a device type (e.g. rk07, rm03, rmOS, etc.), and a device name (e.g. hkO, hpl,
etc.). With no optional arguments it reads the first sector of the last track of the corresponding disk and
prints out the bad sector information. It issues a warning if the bad sectors are out of order. Bad144 may
also be invoked with a serial number for the pack and a list of bad sectors. It will write the supplied infor­
mation into all copies of the bad-sector file, replacing any previous information. Note, however, that
bad144 does not arrange for the specified sectors to be marked bad in this case. This procedure should
only be used to restore known bad sector information which was destroyed. It is necessary to reboot before
any change will take effect

With the -8 Hag, the argument list consists of new bad sectors to be added to an existing list. The new sec­
tors are sorted into the list, which must have been in order. Replacement sectors are moved to accommo­
date the additions ; the new replacement sectors are cleared.

OPTIONS
-c Attempts to copy the old sector to the replacement This option can be useful when replacing an

unreliable sector.

-r If the disk is an RP06, RM03, RMOS, Fujitsu Eagle, or SMD disk on a Massbus, marks the new
bad sectors as "bad" by reformatting them as unusable sectors. NOTE: this can be done safely
only when there is no other disk activity, preferably while running single-user. This option is
required unless the sectors have already been marked bad, or the system will not be notified that it
should use the replacement sector.

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

BADI44(8) UNIX Programmer's Manual BADI44(8)

-v Causes badl44 to describe in detail what it is doing. The v stands for verbose.

SEE ALSO

BUGS

badsect(8), format(8V)

It should be possible to format disks on-line under UNIX.

It should be possible to mark bad sectors on drives of all type.

On an 111750, the standard bootstrap drivers used to boot the system do not understand bad sectors, handle
ECC errors, or the special SSE (skip sector) errors of RM80-type disks. This means that none of these
errors can occur when reading the file /vmunix to boot. Sectors 0-15 of the disk drive must also not have
any of these errors.

The drivers which write a system core image on disk after a crash do not handle errors; thus the crash
dump area must be free of errors and bad sectors.

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

BADSECf(8) UNIX Programmer's Manual BADSECT(8)

NAME
badsect - create files to contain bad sectors

SYNOPSIS
letclbadsect bbdir sector ...

DESCRIPTION
Badsect makes a file to contain a bad sector. Normally, bad sectors are made inaccessible by the standard
formatter, which provides a forwarding table for bad sectors to the driver; see bad144(8) for details. If a
driver supports the bad blocking standard it is much preferable to use that method to isolate bad blocks,
since the bad block forwarding makes the pack appear perfect, and such packs can then be copied with
dd(I). The technique used by this program is also less general than bad block forwarding, as badsect can't
make amends for bad blocks in the i-list of file systems or in swap areas.

On some disks, adding a sector which is suddenly bad to the bad sector table currently requires the running
of the standard DEC formatter. Thus to deal with a newly bad block or on disks where the drivers do not
support the bad-blocking standard badsect may be used to good effect

Badsect is used on a quiet file system in the following way: First mount the file system, and change to its
root directory. Make a directory BAD there. Run badsect giving as argument the BAD directory followed
by all the bad sectors you wish to add. (The sector numbers must be relative to the beginning of the file
system, but this is not hard as the system reports relative sector numbers in its console error messages.)
Then change back to the root directory, unmount the file system and run fsck(8) on the file system. The
bad sectors should show up in two files or in the bad sector files and the free list Have fsck remove files
containing the offending bad sectors, but do not have it remove the BADlnnnnn files. This will leave the
bad sectors in only the BAD files.

Badsect works by giving the specified sector numbers in a mknod(2) system call, creating an illegal file
whose first block address is the block containing bad sector and whose name is the bad sector number.
When it is discovered by fsck it will ask "HOLD BAD BLOCK"? A positive response will cause fsck to
convert the inode to a regular file containing the bad block.

SEE ALSO
bad144(8), fsck(8), format(8V)

DIAGNOSTICS

BUGS

Badsect refuses to attach a block that resides in a critical area or is out of range of the file system. A warn­
ing is issued if the block is already in use.

If more than one sector which comprise a file system fragment are bad, you should specify only one of
them to badsect, as the blocks in the bad sector files actually cover all the sectors in a file system fragment

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

BUGFILER (8) UNIX Programmer's Manual BUGFILER (8)

NAME
bugfiler - file bug reports in folders automatically

SYNOPSIS
bugfiler [mail directory]

DESCRIPTION

FILES

Bugfiler is a program to automatically intercept bug reports, summarize them and store them in the
appropriate sub directories of the mail directory specified on the command line or the (system dependent)
default. It is designed to be compatible with the Rand MH mail system. Bugfiler is normally invoked by
the mail delivery program through aliases(5) with a line such as the following in lusr/lib/mailJaliases.

bugs:"lbugfiler lusr/bugs/mail"

It reads the message from the standard input or the named file, checks the format and returns mail ack­
nowledging receipt or a message indicating the proper fonnat. Valid reports are then summarized and filed
in the appropriate folder; improperly fonnatted messages are filed in a folder named "errors." Program
maintainers can then log onto the system and check the summary file for bugs that pertain to them. Bug
reports should be submitted in RFC822 fonnat and aremust contain the following header lines to be prop­
erly indexed:

Date: <date the report is received>
From: <valid return address>
Subject: <short summary of the problem>
Index: <source directory>l<source file> <version> [Fix]

In addition, the body of the message must contain a line which begins with "Description:" followed by
zero or more lines describing the problem in detail and a line beginning with "Repeat-By:" followed by
zero or more lines describing how to repeat the problem. If the keyword 'Fix' is specified in the 'Index'
line, then there must also be a line beginning with "Fix:" followed by a diff of the old and new source files
or a description of what was done to fix the problem.

The 'Index' line is the key to the filing mechanism. The source directory name must match one of the
folder names in the mail directory. The message is then filed in this folder and a line appended to the sum­
mary file in the following format:

<folder name>1 <message number> <Index info>
<Subject info>

The bug report may also be redistributed according to the index. If the filemaildirl.redistexists.itis exam­
ined for a line beginning with the index name followed with a tab. The remainder of this line contains a
comma-separated list of mail addresses which should receive copies of bugs with this index. The list may
be continued onto multiple lines by ending each but the last with a backslash ('\').

lusr/libl sendmail
lusr/lib/unixtomh
maildir/.ack
maildir/.format
maildir/.redist
maildir/summary
maildir/Bf??????
maildir/Rp??????

mail delivery program
converts unix mail fonnat to mh format
the message sent in acknowledgement
the message sent when format errors are detected
the redistribution list
the summary file
temporary copy of the input message
temporary file for the reply message.

SEE ALSO
mh(l), newaliases(l), aliases(5)

BUGS

October 26, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1

BUGFILER(8) UNIX Programmer's Manual BUGFILER (8)

Since mail can be forwarded in a number of different ways, bugfiler does not recognize forwarded mail
and will reply/complain to the forwarder instead of the original sender unless there is a 'Reply-To' field in
the header.

Duplicate messages should be discarded or recognized and put somewhere else.

October 26, 1987 INTEGRATED SOLUTIONS 4.3 BSD 2

CATMAN(8) UNIX Programmer's Manual CATMAN(8)

NAME
catman - create the cat files for the manual

SYNOPSIS
letc/catman [options] [sections]

DESCRIPTION
Catman creates the preformatted versions of the on-line manual from the nrotT input files. Each manual
page is examined and those whose preformatted versions are missing or out of date are recreated. If any
changes are made, catman will recreate the whatis database.

If there is one parameter not starting with a '-', it is taken to be a list of manual sections to look in. For
example

catman 123

will cause the updating to only happen to manual sections 1,2, and 3.

If the nroff source file contains only a line of the form '.so manx/yyy.x', a symbolic link is made in the
catx directory to the appropriate preformatted manual page. This feature allows easy distribution of the
preformatted manual pages among a group of associated machines with rdist(I). The nroff sources need
not be distributed to all machines, thus saving the associated disk space. As an example, consider a local
network with 5 machines, called machl through machS. Suppose mach3 has the manual page nroff
sources. Every night, mach3 runs catman via cron(8) and later runs rdist with a distfile that looks like:

MANSLA VES = (machl mach2 mach4 machS)

MANUALS = (/usr/man/cat[1-8no] lusr/man/whatis)

${MANUALS} -> ${MANSLA VES}
install-R;
notify root;

OPTIONS

FILES

-Mpath
Updates manual pages located in the set of directories specified by path (/usr/man by default).
Path has the form of a colon (':') separated list of directory names, for example
'/usr/locallman:/usr/man'. If the environment variable 'MANPATH' is set, its value is used for
the default path.

-n Prevents creations of the whatis database.

-p Prints what would be done instead of doing it.

-w Causes only the whatis database to be created. No manual reformatting is done.

lusr/man
lusr/man/man?I*. *
lusr/man/cat?I*. *
lusr/man/whatis
lusrllib/makewhatis

default manual directory location
raw (nroff input) manual sections
preformatted manual pages
whatis database
command script to make whatis database

SEE ALSO
man(l), cron(8), rdist(l)

May 28, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

CHOWN(8)

NAME
chown - change owner

SYNOPSIS

UNIX Programmer's Manual

letclchown [options] owner [.group]file ...

DESCRIPTION

CHOWN(8)

Chown changes the owner of the files to owner. The owner may be either a decimal UID or a login name
found in the password file. An optional group may also be specified. The group may be either a decimal
OID or a group name found in the group-ID file.

Only the super-user can change owner, in order to simplify accounting procedures.

OPTIONS
-I

-R

FlLES

Forces chown to run without reporting errors.

Makes chown recursively descend its directory arguments and set the specified owner. When
chown encounters symbolic links, it changes their ownership, but does not traverse them.

/etclpasswd

SEE ALSO
chgrp(l), chown(2), passwd(5), group(5)

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD

CLRI(8) UNIX Programmer's Manual CLRI(8)

NAME
clri - clear i-node

SYNOPSIS
letc/clrifile system i-number ...

DESCRIPTION
N.B.: Clri is obsoleted for normal file system repair work by fsck(8).

Clri writes zeros on the i-nodes with the decimal i-numbers on the file system. After cIri, any blocks in the
affected file will show up as 'missing' in an icheck(8) of thefile system.

Read and write permission is required on the specified file system device. The i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no directory. If it
is used to zap an i-node which does appear in a directory, care should be taken to track down the entry and
remove it. Otherwise, when the i-node is reallocated to some new file, the old entry will still point to that
file. At that point removing the old entry will destroy the new file. The new entry will again point to an
unallocated i-node, so the whole cycle is likely to be repeated again and again.

SEE ALSO
Bcheck(8)

BUGS
If the file is open, cIri is likely to be ineffective.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

COMSAT(8C) UNIX Programmer's Manual COMSAT(8C)

NAME
comsat - biff server

SYNOPSIS
letclcomsat

DESCRIPTION

FILES

Comsat is the server process which receives reports of incoming mail and notifies users if they have
requested this service. Comsat receives messages on a datagram port associated with the "biff' service
specification (see services(5) and inetd(8». The one line messages are of the form

user@mailbox-offset

If the user specified is logged in to the system and the associated terminal has the owner execute bit turned
on (by a "biff y"), the offset is used as a seek offset into the appropriate mailbox file and the first 7 lines or
560 characters of the message are printed on the user's terminal. Lines which appear to be part of the mes­
sage header other than the "From", "To", "Date", or "Subject" lines are not included in the displayed
message.

letclutmp to find out who's logged on and on what tenninals

SEE ALSO

BUGS

biff(1), inetd(8)

The message header filtering is prone to error. The density of the infonnation presented is near the theoret­
ical minimum.

Users should be notified of mail which arrives on other machines than the one to which they are currently
logged in.

The notification should appear in a separate window so it does not mess up the screen.

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

CONFIG(8) UNIX Programmer's Manual CONFIG(8)

NAME
config - build system configuration files

SYNOPSIS
/etc/config [options] SYSTEM_NAME

DESCRIPTION
Config builds a set of system configuration files from a short file which describes the sort of system that is
being configured. It also takes as input a file which tells config what files are needed to generate a system.
This can be augmented by a configuration specific set of files that give alternate files for a specific machine.
(see the FILES section below) If the -p option is supplied, con fig will configure a system for profiling; c.f.
kgmon(8) and gprof(l).

Config should be run from the conf subdirectory of the system source (usually Isys/cont). Its argument is
the name of a system configuration file containing device specifications, configuration options and other
system parameters for one system configuration. Config assumes that there is already a directory
.JSYSTEM _NAME created and it places all its output files in there. The output of config consists of a
number of files; for the V AX, they are: ioconf.c contains a description of what I/O devices are attached to
the system,; ubglue.s contains a set of interrupt service routines for devices attached to the UNIBUS;
ubvec.s contains offsets into a structure used for counting per-device interrupts; Makefile is a file used by
make(l) in building the system; a set of header files contain definitions of the number of various devices
that will be compiled into the system; and a set of swap configuration files contain definitions for the disk
areas to be used for swapping, the root file system, argument processing, and system dumps.

After running config, it is necessary to run "make depend" in the directory where the new makefile was
created. Config prints a reminder of this when it completes.

If any other error messages are produced by config, the problems in the configuration file should be
corrected and config should be run again. Attempts to compile a system that had configuration errors are
likely to meet with failure.

OPTIONS

FILES

-0 Configures a system for creating a kernel from the object files included in a binary release.

-p Configures a system for profiling; c.f. kgmon(8) and gprof(1).

Isys/conf/Makefile.is68k
Isys/conf/files
Isys/conf/files.is68k
Isys/confl devices.is68k
Isys/conf/files.ERNIE

generic makefile for the is68k
list of common files system is built from
list of is68k specific files
name to major device mapping file for the is68k
list of files specific to ERNIE system

SEE ALSO

BUGS

"Building 4.3BSD UNIX System with Config"
The SYNOPSIS portion of each device in section 4.

The line numbers reported in error messages are usually off by one.

October 27, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1

CRASH(8V) UNIX Programmer's Manual CRASH(8V)

NAME
crash - what happens when the system crashes

DESCRIPTION
This section explains what happens when the system crashes and (very briefly) how to analyze crash
dumps.

When the system crashes voluntarily it prints a message of the form

panic: why i gave up the ghost

on the console, takes a dump on a mass storage peripheral, and then invokes an automatic reboot procedure
as described in reboot(8). (If auto-reboot is disabled on the front panel of the machine the system will sim­
ply halt at this point) Unless some unexpected inconsistency is encountered in the state of the file systems
due to hardware or software failure, the system will then resume multi-user operations.

The system has a large number of internal consistency checks; if one of these fails, then it will panic with a
very short message indicating which one failed. In many instances, this will be the name of the routine
which detected the error, or a two-word description of the inconsistency. A full understanding of most
panic messages requires perusal of the source code for the system.

The most common cause of system failures is hardware failure, which can reflect itself in different ways.
Here are the messages which are most likely, with some hints as to causes. Left unstated in all cases is the
possibility that hardware or software error produced the message in some unexpected way.

iinit This cryptic panic message results from a failure to mount the root file system during the bootstrap
process. Either the root file system has been corrupted, or the system is attempting to use the
wrong device as root file system. Usually, an alternate copy of the system binary or an alternate
root file system can be used to bring up the system to investigate.

Can't exec letc/init
This is not a panic message, as reboots are likely to be futile. Late in the bootstrap procedure, the
system was unable to locate and execute the initialization process, init(8). The root file system is
incorrect or has been corrupted, or the mode or type of letc/init forbids execution.

10 err in push
hard 10 err in swap

The system encountered an error trying to write to the paging device or an error in reading critical
information from a disk drive. The offending disk should be fixed if it is broken or unreliable.

reaUoccg: bad optim
ialloc: dup alloc
aUoccgblk: cyl groups corrupted
ialloccg: map corrupted
free: freeing free block
free: freeing free frag
ifree: freeing free inode
aUoccg: map corrupted

These panic messages are among those that may be produced when file system inconsistencies are
detected. The problem generally results from a failure to repair damaged file systems after a
crash, hardware failures, or other condition that should not normally occur. A file system check
will normally correct the problem.

timeout table overflow
This really shouldn't be a panic, but until the data structure involved is made to be extensible, run­
ning out of entries causes a crash. If this happens, make the timeout table bigger.

KSP not valid
SBI fault
CHM? in kernel

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

CRASH(8V) UNIX Programmer's Manual CRASH(8V)

These indicate either a serious bug in the system or, more often, a glitch or failing hardware. If
SBI faults recur, check out the hardware or call field service. If the other faults recur, there is
likely a bug somewhere in the system, although these can be caused by a flakey processor. Run
processor rnicrodiagnostics.

machine check 'fox:
description

machine dependent machine-check information
Machine checks are different on each type of CPU. Most of the internal processor registers are
saved at the time of the fault and are printed on the console. For most processors, there is one line
that summarizes the type of machine check. Often, the nature of the problem is apparent from this
messaage and/or the contents of key registers.

trap type %d, code=%x, pc=%x

init died

A unexpected trap has occurred within the system; the trap types are:

o reserved addressing fault
1 privileged instruction fault
2 reserved operand fault
3 bpt instruction fault
4 xfc instruction fault
5 system call trap
6 arithmetic trap
7 ast delivery trap
8 segmentation fault
9 protection fault
10 trace trap
11 compatibility mode fault
12 page fault
13 page table fault

The favorite trap types in system crashes are trap types 8 and 9, indicating a wild reference. The
code is the referenced address, and the pc at the time of the fault is printed. These problems tend
to be easy to track down if they are kernel bugs since the processor stops cold, but random flaki­
ness seems to cause this sometimes. The debugger can be used to locate the instruction and sub­
routine corresponding to the PC value. If that is insufficient to suggest the nature of the problem,
more detailed examination of the system status at the time of the trap usually can produce an
explanation.

The system initialization process has exited. This is bad news, as no new users will then be able
to log in. Rebooting is the only fix, so the system just does it right away.

out of mbufs: map full
The network has exhausted its private page map for network buffers. This usually indicates that
buffers are being lost, and rather than allow the system to slowly degrade, it reboots immediately.
The map may be made larger if necessary.

That completes the list of panic types you are likely to see.

When the system crashes it writes (or at least attempts to write) an image of memory into the back end of
the dump device, usually the same as the primary swap area. After the system is rebooted, the program
savecore(8) runs and preserves a copy of this core image and the current system in a specified directory for
later perusal. See savecore(8) for details.

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

CRASH(8V) UNIX Programmer's Manual CRASH(8V)

To analyze a dump you should begin by running adb(l) with the -k flag on the system load image and core
dump. If the core image is the result of a panic, the panic message is printed. Normally the command
"$c" will provide a stack trace from the point of the crash and this will provide a clue as to what went
wrong. A more complete discussion of system debugging is impossible here. See, however, "Using ADB
to Debug the UNIX Kernel" .

SEE ALSO
adb(l), reboot(8)
Using ADB to Debug the UNIX Kernel

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 3

CRON(8) UNIX Programmer's Manual CRON(8)

NAME
crOB - clock daemon

SYNOPSIS
fete/croB

DESCRIPTION

FILES

CroB executes commands at specified dates and times according to the instructions in the files
lusr/lib/crontab and lusr/lib/crontab.local. None, either one, or both of these files may be present. Since
crOB never exits, it should only be executed once. This is best done by running cron from the initialization
process through the file letc/rc; see init(8).

The crontab files consist of lines of seven fields each. The fields are separated by spaces or tabs. The first
five are integer patterns to specify:

• minute (0-59)
• hour (0-23)
• day of the month (1-31)
• month of the year (1-12)
• day of the week (1-7 with 1 = Monday)

Each of these patterns may contain:

• a number in the range above
• two numbers separated by a minus meaning a range inclusive
• a list of numbers separated by commas meaning any of the numbers
• an asterisk meaning all legal values

The sixth field is a user name: the command will be run with that user's uid and permissions. The seventh
field consists of all the text on a line following the sixth field, including spaces and tabs; this text is treated
as a command which is executed by the Shell at the specified times. A percent character ("%") in this
field is translated to a new-line character.

Both crontab files are checked by crOB every minute, on the minute.

lusr/lib/crontab
lusr/lib/crontab.local

May 16,1986 INTEGRATED SOLUTIONS 4.3 BSD 1

DCHECK(8) UNIX Programmer's Manual DCHECK(8)

NAME
deheck - file system directory consistency check

SYNOPSIS ,
letcldeheek [-i numbers 1 [file system]

DESCRIPTION

FILES

N.B.: Deheek is obsoleted for normal consistency checking by Isck(8).

Deheek reads the directories in a file system and compares the link-count in each i-node with the number
of directory entries by which it is referenced. If the file system is not specified, a set of default file systems
is checked.

The -i flag is followed by a list of i-numbers; when one of those i-numbers turns up in a directory, the
number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in large chunks.

Default file systems vary with installation.

SEE ALSO
fsek(8), ieheek(8), Is(5), elri(8), nebeek(8)

DIAGNOSTICS

BUGS

When a file turns up for which the link-count and the number of directory entries disagree, the relevant
facts are reported. Allocated files which have 0 link-count and no entries are also listed. The only
dangerous situation occurs when there are more entries than links; if entries are removed, so the link-count
drops to 0, the remaining entries point to thin air. They should be removed. When there are more links
than entries, or there is an allocated file with neither links nor entries, some disk space may be lost but the
situation will not degenerate.

Since deheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied to active
file systems.

Dcheek is obsoleted by fsek and remains for historical reasons.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

DISKP ART (8) UNIX Programmer's Manual DISKPART(8)

NAME
diskpart - calculate default disk partition sizes

SYNOPSIS
letcldiskpart [options] disk-type

DESCRIPTION
Diskpart is used to calculate the disk partition sizes based on the default rules used at Berkeley. On disks
that use badl44 -style bad-sector forwarding, space is left in the last partition on the disk for a bad sector
forwarding table. The space reserved is one track for the replicated copies of the table and sufficient tracks
to hold a pool of 126 sectors to which bad sectors are mapped. For more information, see bad144(8).

The disk partition sizes are based on the total amount of space on the disk as given in the table below (all
values are supplied in units of 512 byte sectors). The 'c' partition is, by convention, used to access the
entire physical disk. The device driver tables include the space reserved for the bad sector forwarding table
in the 'c' partition; those used in the disktab and default formats exclude reserved tracks. In normal opera­
tion, either the 'g' partition is used, or the 'd', 'e', and 'f partitions are used. The 'g' and 'f partitions are
variable-sized, occupying whatever space remains after allocation of the fixed sized partitions. If the disk
is smaller than 20 Megabytes, then diskpart aborts with the message "disk too small, calculate by hand".

Partition 20-60 MB 61-205 MB 206-355 MB 356+ MB
a 15884 15884 15884 15884
b 10032 33440 33440 66880
d 15884 15884 15884 15884
e unused 55936 55936 307200
h unused unused 291346 291346

If an unknown disk type is specified, disk part will prompt for the required disk geometry information.

OPTIONS
-p Produceds tables suitable for inclusion in a device driver.

-d Generates an entry suitable for inclusion in the disk description file /etcldisktab; c.f. disktab(5).

SEE ALSO

BUGS

disktab(5), bad144(8)

Certain default partition sizes are based on historical artifacts (e.g. RP06), and may result in unsatisfactory
layouts.

When using the -d flag, alternate disk names are not included in the output.

May 30, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

DISKST(8) UNIX Programmer's Manual

NAME
diskst - detennine and print disk geometry

SYNOPSIS
. diskst [option] diskname

DESCRIPTION

DISKST(8)

diskst uses ioctls to detennine the geometry of the specified disk. When invoked in the C-shell, diskst
prints the disk geometry on the standard output.

diskname is a disk name, such as smO.

OPTIONS
-nc Prints the number of cylinders for the specified disk.

-os Prints the number of sectors per track for the specified disk.

-nt Prints the number of tracks (heads) per cylinder for the specified disk.

-o[a-h] Prints the cylinder offset of the specified partition.

-p[a-h] Prints the size in blocks of the specified partition.

-q Returns exit status of 0 if specified disk device is present. This quiet flag is very useful for
checking for a disk from within a shell script.

-t Prints terse output (nt=15 instead of ntracks=15).

EXAMPLES
diskst smO
ntracks =24
nsectors =48
ncylinders =710
partition a: size=15884, offset=O
partition b: size=66880,offset=14
partition c: size=817920, offset=O
partition d: size=15884, offset=326
partition e: size=307200, offset=340
partition f: size=118464, offset=607
partition g: size=442176, offset=326
partition h: size=291346, offset=73

if(diskst -q sdO) echo SDO not online

20 December 1988 INTEGRATED SOLUTIONS 4.3 BSD

DMESG(8) UNIX Programmer's Manual

NAME
dmesg - collect system diagnostic messages to form error log

SYNOPSIS
letcldmesg [option]

DESCRIPTION
N.B.: Dmesg is obsoleted by syslogd(8) for maintenance of the system error log.

DMESG(8)

Dmesg looks in a system buffer for recently printed diagnostic messages and prints them on the standard
output. The messages are those printed or logged by the system when errors occur.

OPTIONS
Computes (incrementally) the new messages since the last time it was run and places these on the
standard output.

FILES
/usr/admlmsgbuf

SEE ALSO
syslogd(8)

May 19,1986

scratch file for memory of - option

INTEGRATED SOLUTIONS 4.3 BSD 1

DRTEST(8) UNIX Programmer's Manual DRTEST(8)

NAME
drtest - standalone disk test program

DESCRIPTION
Drtest is a standalone program used to read a disk track by track. It was primarily intended as a test pro­
gram for new standalone drivers, but has shown useful in other contexts as well, such as verifying disks
and running speed tests. For example, when a disk has been formatted (by format(8», you can check that
hard errors has been taken care of by running drtest. No hard errors should be found, but in many cases
quite a few soft ECC errors will be reported.

While drtest is running, the cylinder number is printed on the console for every 10th cylinder read.

EXAMPLE
A sample run of drtest is shown below. In this example (using a 750), drtest is loaded from the root file
system; usually it will be loaded from the machine's console storage device. Boldface means user input.
As usual, "#" and "@" may be used to edit input.

DIAGNOSTICS

»>B/3
%%
loading hk(O,O)boot
Boot
: hk(O,O)drtest
Test program for stand-alone up and hp driver

Debugging level (l=bse, 2=ecc, 3=bse+ecc)?
Enter disk name [type(adapter,unit)t e.g. hp(1,3)]? hp(O,O)
Device data: #cylinders= 1024, #tracks= 16, #sectors=32
Testing hP(O,O), chunk size is 16384 bytes.
(chunk size is the number of bytes read per disk access)
Start •.• Make sure hp(O,O) is online

(errors are reported as they occur)

(... program restarts to allow checking other disks)
(... to abort halt machine with "P)

The diagnostics are intended to be self explanatory. Note, however, that the device number in the diagnos­
tic messages is identified as typeX instead of type(a,u) where X = a*8+u, e.g., hp(l,3) becomes hpll.

SEE ALSO
format(8V), bad144(8)

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

DUMP(8) UNIX Programmer's Manual DUMP(8)

NAME
dump - incremental file system dump

SYNOPSIS
letcldump [key [argument ...] file system]

DESCRIPTION
Dump copies to magnetic tape all files changed after a certain date in the file system. The key specifies the
date and other options about the dump. Key consists of characters from the set 0123456789bcdfnsuW.

0-9 Sets the dump level to this number. Dumps all files modified since the last date stored in the file
letcldumpdates for the same file system at lesser levels. If no date is determined by the level, the
beginning of time is assumed; thus the option 0 causes the entire file system to be dumped.

b Tells dump to use the next argument as the blocking factor for tape records. The default blocking
factor is 20 (the maximum). Use this option only with raw magnetic tape archives. The block size is
determined automatically when reading tapes.

c Identifies the dump tape as an lSI cartridge-by default, a Scotch 300XLTM cartridge. Note that you
can use the s key to set the tape length in feet.

d Specifies the density of the tape, expressed in BPI, as the next argument. The density is used to cal­
culate the amount of tape used per reel. The default tape density is 1600 BPI.

f Places the dump on the next argument file instead of the tape. If the name of the file is "-", dump
writes to standard output.

n Whenever dump requires operator attention, notifies by means similar to a wall(l) all of the opera­
tors in the group "operator".

s Specifies the size of the dump tape in feet. The number of feet is taken from the next argument.
When the specified size is reached, dump waits for reels to be changed. The default tape size is
2300 feet.

u If the dump completes successfully, writes the date of the beginning of the dump on file
letc/dumpdates. This file records a separate date for each file system and each dump level. Users
can read letc/dumpdates. The file consists of one free format record per line: file system name,
increment level, and ctime(3) format dump date. letc/dumpdates may be edited to change any of the
fields, if necessary.

W Tells the operator which file systems need to be dumped. With this option, dump reads the files
letcldumpdates and letc/fstab, then, for each file system in letc/dumpdates, it prints the most recent
dump date and level and indicates which file systems should be dumped. Setting the W option
invalidates all other options. Once dump has printed the dump history, it exits.

w Gathers dump information like W, but prints only those file systems which need to be dumped.

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to the default
tape.

Dump requires operator intervention when any of the following occur:

• dump reaches the end of a tape
• dump completes its copy
• dump encounters a tape write error
• dump encounters a tape open error
• dump encounters more than 32 disk read errors

If the operator invoked dump with the n key, dump will notify all users in the group "operator" when any
of these errors occur. An operator must use the control terminal (the terminal used to begin the dump) to
interact with dump. The operator should type "yes" or "no," to answer the questions dump prints on the
screen.

October 27, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1

DUMP(8) UNIX Programmer's Manual DUMP(8)

FILES

Since perfonning a full dump involves a lot of time and effort, dump checkpoints itself at the start of each
tape volume. If for any reason dump fails while writing that volume, dump will, with operator permis­
sion, restart itself from the checkpoint after the old tape has been rewound and removed and a new tape has
been mounted.

At periodic intervals, dump prints messages that include low estimates of the number of blocks to write,
the number of tapes the dump will need, and the time remaining until dump complete. It also tells the
operator when to change the tape. By printing verbose messages, dump lets other users know that the ter­
minal controlling the dump is busy and that the dump is continuing.

To keep your dump tapes up to date, run the dump program according to this schedule. Start with a full
level 0 dump

dumpOun

Next, run dumps of active file systems on a daily basis using a modified Tower of Hanoi algorithm with
this sequence of dump levels:

3254769899 ...

For the daily dumps, use a set of 10 tapes per dumped file system on a cyclical basis. Each week, perform
a level 1 dump and repeat the daily Hanoi sequence with 3 tapes. For weekly dumps, use a set of 5 tapes
per dumped file system, also on a cyclical basis. Each month, perform a level 0 dump on a set of fresh tapes
for permanent storage.

/dev/rrplg
/dev/rmtB
/etcldumpdates
/etc/fstab

default file system to dump from
default tape unit to dump to
new format dump date record

/etc/group

SEE ALSO

dump table: file systems and frequency
to find group operator

restore(8), dump(5), fstab(5)

DIAGNOSTICS

BUGS

The dump program includes many verbose diagnostic messages. As many of these messages are self­
explanatory, this man page describes only the dump program's exit codes.

If dump successfully completes its copy, it exits with zero status. Dump indicates startup errors with an
exit code of 1 and abnormal tennination with an exit code of 3.

If there are fewer than 32 read errors, dump ignores them and continues its copying.

Each reel requires a new process. Consequently, parent processes for reels already written do not terminate
until the entire tape is written.

Running dump with the \V or w option does not report file systems that have never been recorded in
letc/dumpdates, even if such file system are listed in /etc/fstab.

Unfortunately, the dump program does not know about the dump sequence, does not keep track of scrib­
bled on tapes, and does not tell the operator which tape to mount and when it should be mounted. Also, the
program does not provide enough assistance to the operator running restore.

October 27, 1987 INTEGRATED SOLUTIONS 4.3 nSD 2

DUMPFS(8) UNIX Programmer's Manual

NAME
dumpfs - dump file system information

SYNOPSIS
dumpfs filesys Idevice

DESCRIPTION

DUMPFS(8)

Dumpfs prints out the super block and cylinder group information for the file system or special device
specified. The listing is very long and detailed. This command is useful mostly for finding out certain file
system information such as the file system block size and minimum free space percentage.

SEE ALSO
fs(5), disktab(5), tunefs(8), newfs(8), fsck(8)

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

EDQUOTA(8)

NAME
edquota - edit user quotas

SYNOPSIS
edquota [options] users .•.

DESCRIPTION

UNIX Programmer's Manual EDQUOTA(8)

Edquota is a quota editor. One or more users may be specified on the command line. For each user a tem­
porary file is created with an ASCn representation of the current disc quotas for that user and an editor is
then invoked on the file. The quotas may then be modified, new quotas added, etc. Upon leaving the edi­
tor, edquota reads the temporary file and modifies the binary quota files to reflect the changes made.

The editor invoked is vi(l) unless the environment variable EDITOR specifies otherwise.

Only the super-user may edit quotas.

OPTIONS
-p Edquota will duplicate the quotas of the prototypical user specified for each user specified This

is the normal mechanism used to initialize quotas for groups of users.

FILES
quotas
letclfstab

SEE ALSO

at the root of each file system with quotas
to find file system names and locations

quota(l), quota(2), quotacheck(8), quotaon(8), repquota(8)

DIAGNOSTICS
Various messages about inaccessible files; self-explanatory.

BUGS
The format of the temporary file is inscrutable.

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

FASTBOOT (8) UNIX Programmer's Manual

NAME
fastboot, fastbalt - reboot/halt the system without checking the disks

SYNOPSIS
fetc/fastboot [boot-options]
fetc/fastbalt [halt-options]

DESCRIPTION

FASTBOOT (8)

Fastboot and fastbalt are shell scripts which reboot and halt the system without checking the file systems.
This is done by creating a file ffastboot, then invoking the reboot program. The system startup script,
fetc/re, looks for this file and, if present, skips the normal invocation of fsck(8).

SEE ALSO
balt(8), reboot(8), re(8)

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

FINGERD (8C) UNIX Programmer's Manual FINGERD (8C)

NAME
fingerd - remote user information server

SYNOPSIS
letclfingerd

DESCRIPTION
Fingerd is a simple protocol based on RFC742 that provides an interface to the Name and Finger programs
at several network sites. The program is supposed to return a friendly, human-oriented status report on
either the system at the moment or a particular person in depth. There is no required format and the proto­
col consists mostly of specifying a single "command line".

Fingerd listens for TCP requests at port 79. Once connected it reads a single command line terminated by
a <CRLF> which is passed to finger(I). Fingerd closes its connections as soon as the output is finished.

If the line is null (i.e. just a <CRLF> is sent) then finger returns a "default" report that lists all people
logged into the system at that moment.

If a user name is specified (e.g. eric<CRLF» then the response lists more extended information for only
that particular user, whether logged in or not. Allowable "names" in the command line include both
"login names" and "user names". If a name is ambiguous, all possible derivations are returned.

SEE ALSO
finger(l)

BUGS
Connecting directly to the server from a TIP or an equally narrow-minded TELNET-protocol user program
can result in meaningless attempts at option negotiation being sent to the server, which will foul up the
command line interpretation. Fingerd should be taught to filter out lAC's and perhaps even respond nega­
tively (lAC WON'T) to all option commands received.

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

FSCK(8) UNIX Programmer's Manual FSCK(8)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
letclfsck -p [file system ...]
letclfsek [options] [file system] ...

DESCRIPTION
The first form of fsck preens a standard set of file systems or the specified file systems. It is normally used
in the script letclrc during automatic reboot In this case fsck reads the table /etclfstab to determine which
file systems to check. It uses the information there to inspect groups of disks in parallel taking maximum
advantage of i/o overlap to check the file systems as quickly as possible. Normally, the root file system
will be checked on pass 1, other "root" ("a" partition) file systems on pass 2, other small file systems on
separate passes (e.g. the "d" file systems on pass 3 and the "e" file systems on pass 4), and finally the
large user file systems on the last pass, e.g. pass 5. Only partitions in fstab that are mounted "rw" or "rq"
and that have non-zero pass number are checked.

The system takes care that only a restricted class of innocuous inconsistencies can happen unless hardware
or software failures intervene. These are limited to the following:

• U nreferenced inodes
• Link counts in inodes too large
• Missing blocks in the free list
• Blocks in the free list also in files
• Counts in the super-block wrong

These are the only inconsistencies that fsck with the -p option will correct; if it encounters other incon­
sistencies, it exits with an abnormal return status and an automatic reboot will then fail. For each corrected
inconsistency one or more lines will be printed identifying the file system on which the correction will take
place, and the nature of the correction. After successfully correcting a file system, fsck will print the
number of files on that file system, the number of used and free blocks, and the percentage of fragmenta­
tion.

If sent a QUIT signal, fsek will finish the file system cheeks, then exit with an abnormal return status that
causes the automatic reboot to fail. This is useful when you wish to finish the file system checks, but do
not want the machine to come up multiuser.

Without the -p option, fsek audits and interactively repairs inconsistent conditions for file systems. If the
file system is inconsistent the operator is prompted for concurrence before each correction is attempted. It
should be noted that some of the corrective actions which are not correctable under the -p option will
result in some loss of data. The amount and severity of data lost may be determined from the diagnostic
output. The default action for each consistency correction is to wait for the operator to respond yes or no.
If the operator does not have write permission on the file system fsck will default to a -0 action.

Fsek has more consistency checks than its predecessors check, dcheck, rcheck, and icheck combined.

If no file systems are given to fsek then a default list of file systems is read from the file letclfstab.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list
2. Blocks claimed by an inode or the free list outside the range of the file system.
3. Incorrect link counts.
4. Size checks:

Directory size not of proper format
5. Bad inode format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated inode.

May 21, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

FSCK(8) UNIX Programmer's Manual FSCK(8)

Inode number out of range.
8. Super Block checks:

More blocks for inodes than there are in the file system.
9. Bad free block list format.
10. Total free block and/or free inode count incorrect

Orphaned files and directories (allocated but unreferenced) are, with the operator's concurrence, recon­
nected by placing them in the lost+fonnd directory. The name assigned is the inode number. If the
lost+found directory does not exist, it is created. If there is insufficient space its size is increased.

Checking the raw device is almost always faster.

OPTIONS

FILES

-b block# Uses the block specified immediately after the flag as the super block for the file system.
Block 32 is always an alternate super block.

-D Assumes a no response to all questions asked by fsck. Does not open the file system for writ­
ing.

-p Corrects inconsistencies as described above.

-y Assumes a yes response to all questions asked by fsck • Use this option with great caution as
this is a free license to continue after essentially unlimited trouble has been encountered.

letclfstab

DIAGNOSTICS

contains default list of file systems to check.

The diagnostics produced by fsck are fully enumerated and explained in Appendix A of "Fsck - The
UNIX File System Check Program" (SMM:5).

SEE ALSO
fstab(5), rs(5), newfs(8), mkfs(8), crash(8V), reboot(8)

BUGS
There should be some way to start a fsck -p at pass n.

May 21, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

FTPD(8C) UNIX Programmer's Manual FfPD(8C)

NAME
ftpd - DARPA Internet File Transfer Protocol server

SYNOPSIS
/etdftpd [options]

DESCRIPTION
ftpd is the DARPA Internet File Transfer Prototocol server process. The server uses the TCP protocol and
listens at the port specified in the "ftp" service specification; see services (5).

The ftp server will timeout an inactive session after 15 minutes.

The ftp server currently supports the following ftp requests; case is not distinguished.

Request Description
ABOR abort previous command
ACCT specify account (ignored)
ALLO allocate storage (vacuously)
APPE append to a file
CDUP change to parent of current working directory
CWD change working directory
DELE delete a file
HELP give help information
LIST give list files in a directory ("Is -lg")
MKD make a directory
MODE specify data transfer mode
NLST give name list of files in directory (' 'Is' ')
NOOP do nothing
PASS specify password
PASV prepare for server-to-server transfer
PORT specify data connection port
PWD print the current working directory
QUIT terminate session
RETR retrieve a file
R1vID remove a directory
RNFR specify rename-from filename
RNTO specify rename-to filename
STOR store a file
STOU store a file with a unique name
STRU specify data transfer structure
TYPE specify data transfer type
USER specify user name
XCUP change to parent of current working directory
XCWD change working directory
XMKD make a directory
XPWD print the current working directory
XR1vID remove a directory

The remaining ftp requests specified in Internet RFC 959 are recognized, but not implemented.

The ftp server will abort an active file transfer only when the ABOR command is preceded by a Telnet
"Interrupt Process" (JP) signal and a Telnet "Synch" signal in the command Telnet stream, as described in
Internet RFC 959.

ftpd interprets filenames according to the "globbing" conventions used by csb(1). This allows users to
utilize the metacharacters "*? 0 (} -, , .

October 25, 1988 INTEGRATED SOLUTIONS 4.3 BSD I

FTPD(8C) UNIX Programmer's Manual FTPD(8C)

ftpd authenticates users according to four rules.

1) The user name must be in the password data base, /etc/passwd , and not have a null password. In
this case a password must be provided by the client before any file operations may be performed.

2) The user name must not appear in the file /etc/ftpusers .

3) The user must have a standard shell returned by getusershell(3).

4) If the user name is "anonymous" or "ftp", an anonymous ftp account must be present in the
password file (user "ftp"). In this case the user is allowed to log in by specifying any password
(by convention this is given as the client host's name).

In the last case, ftpd takes special measures to restrict the client's access privileges. The server performs a
cbroot(2) command to the home directory of the "ftp" user. In order that system security is not breached,
it is recommended that the "ftp" subtree be constructed with care; the following rules are recommended.

-ftp) Make the home directory owned by "ftp" and unwritable by anyone.

-ftp/bin)
Make this directory owned by the super-user and unwritable by anyone. The program Is(1) must
be present to support the list commands. This program should have mode 111.

-ftp/etc) Make this directory owned by the super-user and unwritable by anyone. The files passwd(5) and
group(5) must be present for the Is command to work properly. These files should be mode 444.

-ftp/pub)
Make this directory mode 777 and owned by "ftp". Users should then place files which are to be
accessible via the anonymous account in this directory.

OPTIONS
-d Writes debugging information to the syslog.

Logs each ftp session in the syslog. -I

-t timeout Sets the the inactivity timeout period to timeout.

SEE ALSO

BUGS

ftp(lC), getusersbell(3), syslogd(8)

The anonymous account is inherently dangerous and should avoided when possible.

The server must run as the super-user to create sockets with privileged port numbers. It maintains an effec­
tive user id of the logged in user, reverting to the super-user only when binding addresses to sockets. The
possible security holes have been extensively scrutinized, but are possibly incomplete.

October 25, 1988 INTEGRATED SOLUTIONS 4.3 BSD 2

GDBAD(8I) UNIX Programmer's Manual

NAME
gdbad - lSI test disk for bad sector rand reassign

SYNOPSIS
letc/gdbad

DESCRIPTION

GDBAD(8I)

Like baddl44(8), gdbad is a menu-driven, stand-alone utility used to map out bad blocks. Unlike
badl44(8), however, gdbad uses a built-in SCSI block reassignment scheme.

To use gdbad, type gdbad at a shell prompt, then press RETURN. gdbad asks you to answer a series of
questions. Usually a default answer will be displayed after the question. Simply press RETURN to enter
the default answer to a question.

SEE ALSO
badsect(8), format(8V)

15 April 1988 INTEGRATED SOLUTIONS 4.3 BSD 1

GETI ABLE (8C) UNIX Programmer's Manual GETTABLE (8C)

NAME
gettable - get NIC format host tables from a host

SYNOPSIS
/etc/gettable [options] host [outfile]

DESCRIPTION
Gettable is a simple program used to obtain the NIC standard host tables from a "nicname" server. The
indicated host is queried for the tables. The tables, if retrieved, are placed in the file outfile or by default,
hosts.txt.

Gettable operates by opening a TCP connection to the port indicated in the service specification for "nic­
name". A request is then made for "ALL" names and the resultant information is placed in the output
file.

Gettable is best used in conjunction with the htable(8) program which converts the NIC standard file for­
mat to that used by the network library lookup routines.

OPTIONS
-v Gets just the version number instead of the complete host table and put the output in the file outfile

or by default, hosts. ver .

SEE ALSO

BUGS

intro(3N), htable(8), named(8)

If the name-domain system provided network name mapping well as host name mapping, gettable would
no longer be needed.

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

GETIY(8) UNIX Progranuner's Manual GETTY (8)

NAME
getty - set terminal mode

SYNOPSIS
/etc/getty [type [tty]]

DESCRIPTION
Getty is usually invoked by init(8) to open and initialize the tty line, read a login name, and invoke
login(1). getty attempts to adapt the system to the speed and type of terminal being used.

The argument tty is the special device file in /dev to open for the terminal (e.g., "ttyhO"). If there is no
argument or the argument is "-", the tty line is assumed to be open as file descriptor O.

The type argument can be used to make getty treat the terminal line specially. This argument is used as an
index into the gettytab(5) database, to determine the characteristics of the line. If there is no argument, or
there is no such table, the default table is used. If there is no /etc/gettytab a set of system defaults is used.
If indicated by the table located, getty will clear the terminal screen, print a banner heading, and prompt
for a login name. Usually either the banner of the login prompt will include the system hostname. Then
the user's name is read, a character at a time. If a null character is received, it is assumed to be the result of
the user pushing the 'break' ('interrupt') key. The speed is usually then changed and the 'login:' is typed
again; a second 'break' changes the speed again and the 'login:' is typed once more. Successive 'break'
characters cycle through the same standard set of speeds.

The user's name is terminated by a new-line or carriage-return character. The latter results in the system
being set to treat carriage returns appropriately (see tty(4».

The user's name is scanned to see if it contains any lower-case alphabetic characters; if not, and if the
name is nonempty, the system is told to map any future upper-case characters into the corresponding
lower-case characters.

Finally, login is called with the user's name as an argument.

Most of the default actions of getty can be circumvented, or modified, by a suitable gettytab table.

Getty can be set to timeout after some interval, which will cause dial up lines to hang up if the login name
is not entered reasonably quickly.

DIAGNOSTICS

FILES

ttyxx: No such device or address. ttyxx: No such file or address. A terminal which is turned on in the
ttys file cannot be opened, likely because the requisite lines are either not configured into the system, the
associated device was not attached during boot-time system configuration, or the special file in /dev does
not exist

/ etc! getty tab

SEE ALSO
gettytab(5), init(8), login(1), ioctl(2), tty(4), ttys(5)

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

HALT(8)

NAME
halt - stop the processor

SYNOPSIS
letc/halt [options]

DESCRIPTION

UNIX Programmer's Manual HALT(8)

Halt writes out sandbagged information to the disks and then stops the processor. The machine does not
reboot, even if the auto-reboot switch is set on the console.

Halt normally logs the shutdown using syslog(8) and places a shutdown record in the login accounting file
lusr/admlwtmp. These actions are inhibited if the -8 or -q options are present

OPTIONS
-0 Prevents the sync before stopping.

-q Causes a quick halt, no graceful shutdown is attempted.

-y Is needed if you are trying to halt the system from a dialup.

SEE ALSO
reboot(8), shutdown(8), syslogd(8)

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

HTABLE(8) UNIX Programmer's Manual HTABLE(8)

NAME
htable - convert NIC standard format host tables

SYNOPSIS
letc/htable [-c connected-nets] [-I local-nets] file

DESCRIPTION
Htable is used to convert host files in the format specified in Internet RFC 810 to the format used by the
network library routines. Three files are created as a result of running htable: hosts, networks , and gate­
ways. The hosts file may be used by the gethostbyname(3N) routines in mapping host names to addresses
if the nameserver, named(8), is not used. The networks file is used by the getnetent(3N) routines in map­
ping network names to numbers. The gateways file may be used by the routing daemon in identifying
"passive" Internet gateways; see routed(8C) for an explanation.

If any of the files localhosts, localnetworks, or localgateways are present in the current directory, the file's
contents is prepended to the output file. Of these, only the gateways file is interpreted. This allows sites to
maintain local aliases and entries which are not normally present in the master database. Only one gateway
to each network will be placed in the gateways file; a gateway listed in the localgateways file will override
any in the input file.

If the gateways file is to be used, a list of networks to which the host is directly connected is specified with
the -c flag. The networks, separated by commas, may be given by name or in Internet-standard dot nota­
tion, e.g. -c arpanet, 128.32,local-ether-net Htable only includes gateways which are directly connected
to one of the networks specified, or which can be reached from another gateway on a connected net.

If the -I option is given with a list of networks (in the same format as for -c), these networks will be
treated as "local," and information about hosts on local networks is taken only from the localhosts file.
Entries for local hosts from the main database will be omitted. This allows the localhosts file to completely
override any entries in the input file.

Htable is best used in conjunction with the gettable(8C) program which retrieves the NIC database from a
host.

SEE ALSO

BUGS

intro(3N), gettable(8C), named(8)

If the name-domain system provided network name mapping well as host name mapping, htable would no
longer be needed.

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

ICHECK(8) UNIX Programmer's Manual ICHECK(8)

NAME
icheck - file system storage consistency check

SYNOPSIS
letclicheck [options] [file system]

DESCRIPTION
N.B.: Icheck is obsoleted for normal consistency checking by fsck(8).

Icheck examines a file system, builds a bit map of used blocks, and compares this bit map against the free
list maintained on the file system. If the file system is not specified, a set of default file systems is checked.
The normal output of icheck includes a report of

The total number of files and the numbers of regular, directory, block special and character special
files.

The total number of blocks in use and the numbers of single-, double-, and triple-indirect blocks
and directory blocks.

The number of free blocks.

The number of blocks missing; i.e. not in any file nor in the free list.

Icheck is faster if the raw version of the special file is used, since it reads the i-list many blocks at a time.

OPTIONS
-bnumbers

FILES

Produces a diagnostic whenever any of the named blocks turns up in a file.

-s Causes icheck to ignore the actual free list and reconstruct a new one by rewriting the super­
block of the file system. The file system should be dismounted while this is done; if this is not
possible (for example if the root file system has to be salvaged) care should be taken that the
system is quiescent and that it is rebooted immediately afterwards so that the old, bad in-core
copy of the super-block will not continue to be used. Notice also that the words in the super­
block which indicate the size of the free list and of the i-list are believed. If the super-block
has been curdled these words will have to be patched. The -s option causes the normal output
reports to be suppressed

Default file systems vary with installation.

SEE ALSO
(sck(8), dcheck(8), ncheck(8), (s(5), clri(8)

DIAGNOSTICS

BUGS

For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the difficulty, the
i-number, and the kind of block involved. If a read error is encountered, the block number of the bad block
is printed and icheck considers it to contain O. ~Bad freeblock' means that a block number outside the
available space was encountered in the free list. 'n dups in free' means that n blocks were found in the free
list which duplicate blocks either in some file or in the earlier part of the free list.

Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied to active
file systems.

It believes even preposterous super-blocks and consequently can get core images.

The system should be fixed so that the reboot after fixing the root file system is not necessary.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

IFCONFIG (8C) UNIX Programmer's Manual IFCONFIG (8C)

NAME
ifconfig - configure network interface parameters

SYOPNSIS
letC/ifconfig interface address Jamily [address [dest _address]] [parameters]
letC/ifconfig interface [protocolJamily]

DESCRIPTION
Irconfig is used to assign an address to a network interface andlor configure network interface parameters.
Ifconfig must be used at boot time to define the network address of each interface present on a machine; it
may also be used at a later time to redefine an interface's address or other operating parameters. The inter­
face parameter is a string of the form "name unit", e.g. "enO".

Since an interface may receive transmissions in differing protocols, each of which may require separate
naming schemest it is necessary to specify the address Jamily t which may change the interpretation of the
remaining parameters. The address families currently supported are "inet" and "ns".

For the DARPA-Internet family, the address is either a host name present in the host name data base,
hosts(5), or a DARPA Internet address expressed in the Internet standard "dot notation". For the Xerox
Network Systems(tm) family, addresses are net:a.b.c.d.e!, where net is the assigned network number (in
decimal), and each of the six bytes of the host number, a throughf, are specified in hexadecimal. The host
number may be omitted on 10Mb/s Ethernet intenaces, which use the hardware physical address, and on
interfaces other than the first

The following parameters may be set with ifconfig:

up Mark an interface "up". This may be used to enable an interface after an "ifconfig
down." It happens automatically when setting the first address on an intenace. If the
interface was reset when previously marked down, the hardware will be re-initialized.

down Mark an interface "down". When an interface is marked "down", the system will not
attempt to transmit messages through that interface. If possible, the interface will be
reset to disable reception as well. This action does not automatically disable routes
using the interface.

trailers Request the use of a "trailer" link level encapsulation when sending (default). If a net­
work intenace supports trailers, the system will, when possible, encapsulate outgoing
messages in a manner which minimizes the number of memory to memory copy opera­
tions performed by the receiver. On networks that support the Address Resolution Pro­
tocol (see arp(4P); currently, only 10 Mb/s Ethernet), this flag indicates that the system
should request that other systems use trailers when sending to this host Similarly, trailer
encapsulations will be sent to other hosts that have made such requests. Currently used
by Internet protocols only.

-trailers Disable the use of a "trailer" link level encapsulation.

arp Enable the use of the Address Resolution Protocol in mapping between network level
addresses and link level addresses (default). This is currently implemented for mapping
between DARPA Internet addresses and 10Mb/s Ethernet addresses.

-arp Disable the use of the Address Resolution Protocol.

metric n Set the routing metric of the interface to n, default O. The routing metric is used by the
routing protocol (routed(8c». Higher metrics have the effect of making a route less
favorable; metrics are counted as addition hops to the destination network or host.

debug Enable driver dependent debugging code; usually, this turns on extra console error log­
ging.

-debug Disable driver dependent debugging code.

netmask mask (Inet only) Specify how much of the address to reserve for subdividing networks into

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

IFCONFIG (8C)

dstaddr

broadcast

ipdst

UNIX Programmer's Manual IFCONFIG (8C)

sub-networks. The mask includes the network part of the local address and the subnet
part, which is taken from the host field of the address. The mask can be specified as a
single hexadecimal number with a leading Ox, with a dot-notation Internet address, or
with a pseudo-network name listed in the network table networks(S). The mask con­
tains l' s for the bit positions in the 32-bit address which are to be used for the network
and subnet parts, and 0' s for the host part. The mask should contain at least the standard
network portion, and the subnet field should be contiguous with the network portion.

Specify the address of the correspondent on the other end of a point to point link.

(!net only) Specify the address to use to represent broadcasts to the network. The
default broadcast address is the address with a host part of all l' s.

(NS only) This is used to specify an Internet host who is willing to receive ip packets
encapsulating NS packets bound for a remote network. In this case, an apparent point to
point link: is constructed, and the address specified will be taken as the NS address and
network of the destinee.

Itconfig displays the current configuration for a network interface when no optional parameters are sup­
plied If a protocol family is specified, Irconfig will report only the details specific to that protocol family.

Only the super-user may modify the configuration of a network interface.

DIAGNOSTICS
Messages indicating the specified interface does not exit, the requested address is unknown, or the user is
not privileged and tried to alter an interface's configuration.

SEE ALSO
netstat(1), intro(4N), rc(8)

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

llv1PLOG (8C) UNIX Programmer's Manual llv1PLOG (8e)

NAME
implog - IMP log interpreter

SYNOPSIS
letcJimplog [options]

DESCRIPTION
Implog is program which interprets the message log produced by implogd(8C).

If no arguments are specified, implog interprets and prints every message present in the message file.

OPTIONS
Options may be specified to force printing only a subset of the logged messages.

-c In addition to printing any data messages logged, show the contents of the data in hexadecimal
bytes.

-D Does not show data messages.

-f Follow the logging process in action. This flags causes implog to print the current contents of the

-b host#

log file, then check for new logged messages every 5 seconds.

Show only those messages received from the specified host (Usually specified in conjunction
with an imp.)

-i imp# Show only those messages received from the specified imp.

-I [link#]
Show only those messages received on the specified "link". If no value is given for the link, the
link number of the IP protocol is assumed.

-r Print the raw imp leader, showing all fields, in addition to the formatted interpretation according to
type.

-t message-type
Show only those messages received of the specified message type.

SEE ALSO

BUGS

imp(4P), implogd(8C)

Can not specify multiple hosts, imps, etc. Can not follow reception of messages without looking at those
currently in the file.

May 5,1986 INTEGRATED SOLUTIONS 4.3 BSD 1

IMPLOGD (8C) UNIX Programmer's Manual IMPLOGD (8C)

NAME
implogd - IMP logger process

SYNOPSIS
letc/implogd [-d]

DESCRIPTION
Implogd is program which logs error messages from the IMP, placing them in the file lusr/adrnJimplog.

Entries in the file are variable length. Each log entry has a fixed length header of the form:

struct sockstamp {

};

short sin_family;
u _short sin .JX>rt;
struct in _ addr sin _ addr;
time _ t sin_time;
int sin_len;

followed, possibly, by the message received from the IMP. Each time the logging process is started up it
places a time stamp entry in the file (a header with sin_len field set to 0).

The logging process will catch only those message from the IMP which are not processed by a protocol
module, e.g. IP. This implies the log should contain only status information such as "IMP going down"
messages, "host down" and other error messages, and, perhaps, stray NCP messages.

SEE ALSO
imp(4P), implog(8C)

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

INETD(8) UNIX Programmer's Manual INETD(8)

NAME
inetd - internet" super-server"

SYNOPSIS
letc/inetd [-d] [configUTationfile]

DESCRIPTION
Inetd should be run at boot time by /etc/rc.1ocal. It then listens for connections on certain internet sockets.
When a connection is found on one of its sockets, it decides what service the socket corresponds to, and
invokes a program to service the request After the program is finished, it continues to listen on the socket
(except in some cases which will be described below). Essentially, inetd allows running one daemon to
invoke several others, reducing load on the system.

Upon execution, inetd reads its configuration information from a configuration file which, by default, is
letclinetd.conf. There must be an entry for each field of the configuration file, with entries for each field
separated by a tab or a space. Comments are denoted by a "~I"~ at the beginning of a line. There must be
an entry for each field. The fields of the configuration file are as follows:

service name
socket type
protocol
waitlnowait
user
server program
server program arguments

The service name entry is the name of a valid service in the file letclservicesl. For "internal" services
(discussed below), the service name must be the official name of the service (that is, the first entry in
I etcl services).

The socket type should be one of "stream", "dgram", "raw", "rdm", or "seqpacket", depending on
whether the socket is a stream, datagram, raw, reliably delivered message, or sequenced packet socket.

The protocol must be a valid protocol as given in letc/protocols. Examples might be "tcp" or "udp" .

The waitlnowait entry is applicable to datagram sockets only (other sockets should have a "nowait" entry
in this space). If a datagram server connects to its peer, freeing the socket so inetd can received further
messages on the socket, it is said to be a "multi-threaded" server, and should use the "nowait" entry. For
datagram servers which process all incoming datagrams on a socket and eventually time out, the server is
said to be "single-threaded" and should use a "wait" entry. "Comsat" ("bifr ') and "talk" are both
examples of the latter type of datagram server. Tftpd is an exception; it is a datagram server that estab­
lishes pseudo-connections. It must be listed as "wait" in order to avoid a race; the server reads the first
packet, creates a new socket, and then forks and exits to allow inetd to check for new service requests to
spawn new servers.

The user entry should contain the user name of the user as whom the server should run. This allows for
servers to be given less permission than root. The server program entry should contain the pathname of
the program which is to be executed by inetd when a request is found on its socket If inetd provides this
service internally, this entry should be "internal".

The arguments to the server program should be just as they normally are, starting with argv[O], which is the
name of the program. If the service is provided internally, the word "internal" should take the place of
this entry.

Inetd provides several "trivial" services internally by use of routines within itself. These services are
"echo", "discard", "chargen" (character generator), "daytime" (human readable time), and "time"
(machine readable time, in the form of the number of seconds since midnight, January 1, 1900). All of
these services are tcp based. For details of these services, consult the appropriate RFC from the Network
Information Center.

May 26, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

INETD(8) UNIX Programmer's Manual INETD(8)

Inetd rereads its configuration file when it receives a hangup signal, SIGHUP. Services may be added,
deleted or modified when the configuration file is reread.

SEE ALSO ,
comsat(8C), ftpd(8C), rexecd(8C), rlogind(8C), rshd(8C), telnetd(8C), tftpd(8C)

May 26, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

INIT(8) UNIX Programmer's Manual INIT (8)

NAME
init - process control initialization

SYNOPSIS
letc/init

DESCRIPTION
Init is invoked inside UNIX as the last step in the boot procedure. It normally then runs the automatic
reboot sequence as described in reboot(8), and if this succeeds, begins multi-user operation. If the reboot
fails, it commences single user operation by giving the super-user a shell on the console. It is possible to
pass parameters from the boot program to init so that single user operation is commenced immediately.
When such single user operation is terminated by killing the single-user shell (Le. by hitting AD), init runs
letc/rc without the reboot parameter. This command file performs housekeeping operations such as remov­
ing temporary files, mounting file systems, and starting daemons.

In multi-user operation, init's role is to create a process for each terminal port on which a user may log in.
To begin such operations, it reads the file letclttys and executes a command for each terminal specified in
the file. This command will usually be letc/getty. Getty opens and initializes the terminal line, reads the
user's name and invokes login to log in the user and execute the Shell.

Ultimately the Shell will terminate because of an end-of-file either typed explicitly or generated as a result
of hanging up. The main path of init, which has been waiting for such an event, wakes up and removes the
appropriate entry from the file utmp, which records current users, and makes an entry in lusr/admlwtmp ,
which maintains a history of logins and logouts. The wtmp entry is made only if a user logged in success­
fully on the line. Then the appropriate terminal is reopened and getty is reinvoked.

Init catches the hangup signal (signal SIGHUP) and interprets it to mean that the file letc/ttys should be
read again. The Shell process on each line which used to be active in ttys but is no longer there is ter­
minated; a new process is created for each added line; lines unchanged in the file are undisturbed. Thus it
is possible to drop or add terminal lines without rebooting the system by changing the ttys file and sending
a hang up signal to the init process: use 'kill-HUP 1.'

Init will terminate multi-user operations and resume single-user mode if sent a terminate (TERM) signal,
i.e. Ukill - TERM 1". If there are processes outstanding which are deadlocked (due to hardware or
software failure), init will not wait for them all to die (which might take forever), but will time out after 30
seconds and print a warning message.

Init will cease creating new getty's and allow the system to slowly die away, if it is sent a terminal stop
(TSTP) signal, Le. "kill - TSTP 1". A later hangup will resume full multi-user operations, or a terminate
will initiate a single user shell. This hook is used by reboot(8) and halt(8).

Init's role is so critical that if it dies, the system will reboot itself automatically. If, at bootstrap time, the
init process cannot be located, the system will loop in user mode at location Ox13.

DIAGNOSTICS

FILES

letc/getty gettyargs railing, sleeping. A process being started to service a line is exiting quickly each time
it is started. This is often caused by a ringing or noisy terminal line. Init will sleep for 30 seconds, then
continue trying to start the process.

WARNING: Something is hung (wont die); ps axl advised. A process is hung and could not be killed
when the system was shutting down. This is usually caused by a process which is stuck in a device driver
due to a persistent device error condition.

/dev/console, ldev/tty*, letc/utmp, lusr/adm!wtmp, /etc/ttys, /etclrc

SEE ALSO
login(l), kill(l), sh(l), ttys(5), crash(8V), getty(8), rc(8), reboot(8), halt(8), shutdown(8)

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

KGMON(8) UNIX Programmer's Manual KGMON(8)

NAME
kgmon - generate a dump of the operating system's profile buffers

SYNOPSIS
letclkgmon [options] [system] [memory]

DESCRIPTION
Kgmon is a tool used when profiling the operating system. When no arguments are supplied, kgmon indi­
cates the state of operating system profiling as running, off, or not configured. (see config(8» If the -p flag
is specified, kgmon extracts profile data from the operating system and produces a gmon.out file suitable
for later analysis by gprof(I).

OPTIONS

FILES

The following options may be specified:

-b Resumes the collection of profile data

-b Stops the collection of profile data

-p Dumps the contents of the profile buffers into a gmon.out file suitable for later analysis by
gprof(l).

-r Resets all the profile buffers. If the -p flag is also specified, the gmon.out file is generated before
the buffers are reset.

If neither -b nor -b is specified, the state of profiling collection remains unchanged For example, if the
-p flag is specified and profile data is being collected, profiling will be momentarily suspended, the operat­
ing system profile buffers will be dumped, and profiling will be immediately resumed.

Ivrnunix - the default system
ldevlkmem - the default memory

SEE ALSO
gprof(1), config(8)

DIAGNOSTICS
Users with only read permission on Idev/krnem cannot change the state of profiling collection. They can
get a gmon.out file with the warning that the data may be inconsistent if profiling is in progress.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

KILLPG(8) UNIX Programmer's Manual

NAME
kilIpg - terminate all members of a process group

SYNOPSIS
kilIpg [-sig] pid

DESCRIPTION
Killpg sends the specified signal to all processes in the process group of the target process.

KILLPG(8)

The signal sig must be represented by a number; the signal names used with kill (1) cannot be used. See
sigvec(2) for the list of signal numbers.

Only one process 10 pid is accepted as an argument.

FILE
lusrllocallkillpg

SEE ALSO
ps(l), kilIpg(2), getpgrp(2), sigvec(2)

DIAGNOSTICS
Usage response to improper input.

15 October 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

KSYMBOL(8) UNIX Programmer's Manual

NAME
ksymbol- configures the kernel debugger symbol table

SYNOPSIS
letclksymbol kernel-name

DESCRIPTION

KSYMBOL(8)

ksymbol configures a symbol table for the kernel debugger program. Without ksymbol, the debugger can
use only numeric addresses, not symbolic addresses.

config (8) puts a call to ksymbol into the kernel makefile, so that ksymbol runs automatically when making
a new kernel. This is ordinarily the only time to run ksymboI.

The default value for kernel-name is Ivmunix.

FILES
lusrlsrclsys/is68k1Makefile config (8) makefile, runs ksymbol

SEE ALSO
config(8)
UNIX Source Release Note for Source Licensees

DIAGNOSTICS
WARNING: symtab too small, %d allocated, %d needed
The symbol table allocated is too small; ksymbol could not enter all of the symbols.

kernel strtab too small, %d aUocated, %d needed
The kernel string table allocated is t~ small; ksymbol could not enter all of the symbols.

successful patch
Successful execution of ksymboI.

15 July 1987 INTEGRATED SOLUTIONS 4.3 BSD 1

LPC(8) UNIX Programmer's Manual LPC(8)

NAME
Ipc - line printer control program

SYNOPSIS
/etcJIpc [command [argument ...]]

DESCRIPTION
Ipc is used by the system administrator to control the operation of the line printer system. For each line
printer configured in /etc/printcap, Ipc may be used to:

• disable or enable a printer,

• disable or enable a printer's spooling queue,

• rearrange the order of jobs in a spooling queue,

• find the status of printers, and their associated spooling queues and printer dameons.

Without any arguments, Ipc will prompt for commands from the standard input. If arguments are supplied,
Ipc interprets the first argument as a command and the remaining arguments as parameters to the com­
mand. The standard input may be redirected causing Ipc to read commands from file. Commands may be
abreviated; the following is the list of recognized commands.

? [command ...]

help [command ...]
Print a short description of each command specified in the argument list, or, if no arguments are
given, a list of the recognized commands.

abort { alII printer ... }
Terminate an active spooling daemon on the local host immediately and then disable printing
(preventing new daemons from being started by Ipr) for the specified printers.

clean { all I printer ... }
Remove any temporary files, data files, and control files that cannot be printed (Le., do not form a
complete printer job) from the specified printer queue(s) on the local machine.

disable { alII printer ... }
Tum the specified printer queues off. This prevents new printer jobs from being entered into the
queue by Ipr.

down { all I printer } message ...
Tum the specified printer queue off, disable printing and put message in the printer status file. The
message doesn't need to be quoted, the remaining arguments are treated like echo(l). This is nor­
mally used to take a printer down and let others know why (lpq will indicate the printer is down
and print the status message).

enable { all I printer ... }

exit

quit

Enable spooling on the local queue for the listed printers. This will allow Ipr to put new jobs in
the spool queue.

Exit from lpc.

restart { all I printer ... }
Attempt to start a new printer daemon. This is useful when some abnormal condition causes the
daemon to die unexpectedly leaving jobs in the queue. Lpq will report that there is no daemon
present when this condition occurs. If the user is the super-user, try to abort the current daemon
first (Le., kill and restart a stuck daemon),

start { alII printer ... }

July 20, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1

LPC(8)

FILES

UNIX Programmer's Manual

Enable printing and start a spooling daemon for the listed printers.

status (printer ... }
Display $e status of daemons and queues on the local machine.

stop { alII printer ... }
Stop a spooling daemon after the current job completes and disable printing.

topq printer [jobnum ...] [user ...]
Place the jobs in the order listed at the top of the printer queue.

up (all I printer ... }
Enable everything and start a new printer daemon. Undoes the effects of down.

/etc/printcap printer description file
/usr/spooV* spool directories
/usr/spooV*/lock lock file for queue control

SEE ALSO
Ipd(8), Ipr(1), Ipq(1), Iprm(1), printcap(5)

DIAGNOSTICS
? Ambiguous command
?Invalid command
?Privileged command

July 20, 1988

abreviation matches more than one command
no match was found
command can be executed by root only

INTEGRATED SOLUTIONS 4.3 BSD

LPC(8)

2

LPD(8) UNIX Programmer's Manual LPD(8)

NAME
Ipd - line printer daemon

SYNOPSIS
/usrlIib/lpd [-I] [port #]

DESCRIPTION
Lpd is the line printer daemon (spool area handler) and is normally invoked at boot time from the rc(8)
file. It makes a single pass through the printcap(5) file to find out about the existing printers and prints any
files left after a crash. It then uses the system calls listen(2) and accept(2) to receive requests to print files
in the queue, transfer files to the spooling area, display the queue, or remove jobs from the queue. In each
case, it forks a child to handle the request so the parent can continue to listen for more requests. The Inter­
net port number used to rendezvous with other processes is normally obtained with getservbyname(3) but
can be changed with the port# argument The -I flag causes Ipd to log valid requests received from the
network. This can be useful for debugging purposes.

Access control is provided by two means. First, All requests must come from one of the machines listed in
the file letclhosts.equiv or letc/hosts.lpd. Second, if the "rs" capability is specified in the printcap entry
for the printer being accessed, Ipr requests will only be honored for those users with accounts on the
machine with the printer.

The file minfree in each spool directory contains the number of disk blocks to leave free so that the line
printer queue won't completely fill the disk. The minfree file can be edited with your favorite text editor.

The file lock in each spool directory is used to prevent multiple daemons from becoming active simultane­
ously, and to store information about the daemon process for Ipr(1), Ipq(l), and Iprm(l). After the dae­
mon has successfully set the lock, it scans the directory for files beginning with cf. Lines in each cf file
specify files to be printed or non-printing actions to be performed. Each such line begins with a key char­
acter to specify what to do with the remainder of the line.

J Job Name. String to be used for the job name on the burst page.

C Classification. String to be used for the classification line on the burst page.

L Literal The line contains identification info from the password file and causes the banner page to
be printed.

T Tide. String to be used as the tide for pr(l).

H HostName. Name of the machine where Ipr was invoked.

P Person. Login name of the person who invoked Ipr. This is used to verify ownership by Iprm.

M Send mail to the specified user when the current print job completes.

f Formatted File. Name of a file to print which is already formatted.

Like "f" but passes control characters and does not make page breaks.

p Name of a file to print using pr(l) as a filter.

t Troff File. The file contains trotT(1) output (cat phototypesetter commands).

n Ditroff File. The file contains device independent troff output.

d DVI File. The file contains Tex(l) output (DVI format from Standford).

g Graph File. The file contains data produced by plot(3X).

c Cifplot File. The file contains data produced by cirplot.

v The file contains a raster image.

r The file contains text data with FORTRAN carriage control characters.

1 Troff Font R. N arne of the font file to use instead of the default

December 8, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

LPD(8) UNIX Programmer's Manual LPD (8)

2 Troff Font I. Name of the font file to use instead of the default.

3 Troff Font B. Name of the font file to use instead of the default

4 Troff Font S. Name of the font file to use instead of the default.

W Width. Changes the page width (in characters) used by pr(l) and the text filters.

I Indent. The number of characters to indent the output by (in ascii).

U Unlink. N arne of file to remove upon completion of printing.

N File name. The name of the file which is being printed, or a blank for the standard input (when lpr
is invoked in a pipeline).

If a file can not be opened, a message will be logged via syslog(3) using the LOG_LPR facility. Lpd will
try up to 20 times to reopen a file it expects to be there, after which it will skip the file to be printed.

Lpd uses ftock(2) to provide exclusive access to the lock file and to prevent multiple deamons from
becoming active simultaneously. If the daemon should be killed or die unexpectedly, the lock file need not
be removed. The lock file is kept in a readable ASCII form and contains two lines. The first is the process
id of the daemon and the second is the control filename of the current job being printed. The second line is
updated to reflect the current status of Ipd for the programs Ipq(l) and Iprm(I).

OPTIONS

FILES

-I Causes Jpd to log valid requests received from the network. This can be useful for debugging pur­
poses.

letclprintcap printer description file
lusrlspooV* spool directories
lusr/spooll*/minfreeminimum free space to leave
ldevllp* line printer devices
ldev/printer socket for local requests
/etclhosts.equiv lists machine names allowed printer access
,/etclhosts.lpd lists machine names allowed printer access,

but not under same administrative control.

SEE ALSO
Ipc(8), pac(l), Ipr(1), lpq(l), lprm(l), syslog(3), printcap(5)
4.2BSD Line Printer Spooler Manual

December 8, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2

MAKEDEV(8) UNIX Programmer's Manual MAKEDEV(8)

NAME
makedev - make system special files

SYNOPSIS
Idev/MAKEDEV devices

DESCRIPTION
MAKEDEV is a shell script normally used to install special files. It resides in the /dev directory, as this is
the normal location of special files. Arguments to MAKEDEV are usually of the form

device-name ?

where device-name is one of the supported devices listed in the Section 4 man pages in the Pro grammer's
Reference Manual, and ? is a logical unit number (0-9).

Two special arguments create assorted collections of devices, as follows:

std Creates the "standard" devices for the system, e.g., ldev/console, /dev/tty.

local Creates those devices specific to the local site. This request executes the shell file
Idev/MAKEDEV.local. Site-specific commands (such as those used to set up dialup lines as
"ttyd?") should be included in this file.

Since all devices are created using mknod(8), this shell script is useful only to the super-user.

DIAGNOSTICS
Messages are either self-explanatory, or are generated by one of the programs called from the script. Enter
sh -x MAKEDEV in case of trouble.

SEE ALSO

BUGS

intro(4), config(8), mknod(8)

When more than one piece of hardware of the same kind is present on a machine (for instance, a dh and a
dmf), naming conflicts arise.

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

MAKE KEY (8) UNIX Programmer's Manual MAKEKEY(8)

NAME
makekey - generate encryption key

SYNOPSIS
IUsrllib/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by increasing the amount of
time required to search the key space. It reads 10 bytes from its standard input, and writes 13 bytes on its
standard output. The output depends on the input in a way intended to be difficult to compute (that is, to
require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the salt) are best
chosen from the set of digits, upper- and lower-case letters, and '.' and 'I'. The salt characters are repeated
as the first two characters of the output. The remaining 11 output characters are chosen from the same set
as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4096 crypto­
graphic machines all based on the National Bureau of Standards DES algorithm, but modified in 4096 dif­
ferent ways. Using the input key as key, a constant string is fed into the machine and recirculated a
number of times. The 64 bits that come out are distributed into the 66 useful key bits in the result.

Makekey is intended for programs that perform encryption (for instance, ed and crypt(l». Usually
makekey's input and output will be pipes.

SEE ALSO
crypt(I), ed(l)

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

MKFS(8) UNIX Programmer's Manual MKFS(8)

NAME
mkrs - construct a file system

SYNOPSIS
letc/mkrs [-N] special size [nsect [ntrack [blksize [/ragsize [ncpg [minfree [rps [nbpi [opt]]]]]]]
]]

DESCRIPTION
N.B.: file systems are nonnally created with the newfs(8) command.

Mkrs constructs a file system by writing on the special file special unless the -N flag has been specified.
The numeric size specifies the number of sectors in the file system. Mkfs builds a file system with a root
directory and a lost+/ound directory. (see fsck(8» The number of i-nodes is calculated as a function of the
file system size.

The optional arguments allow fine tune control over the parameters of the file system. Nsect specify the
number of sectors per track on the disk. Ntrack specify the number of tracks per cylinder on the disk.
Blksize gives the primary block size for files on the file system. It must be a power of two, currently
selected from 4096 or 8192. Fragsize gives the fragment size for files on the file system. The fragsize
represents the smallest amount of disk space that will be allocated to a file. It must be a power of two
currently selected from the range 512 to 8192. Ncpg specifies the number of disk cylinders per cylinder
group. This number must be in the range 1 to 32. Minfree specifies the minimum percentage of free disk
space allowed. Once the file system capacity reaches this threshold, only the super-user is allowed to allo­
cate disk blocks. The default value is 10%. If a disk does not revolve at 60 revolutions per second, the rps
parameter may be specified. If a file system will have more or less than the average number of files the
nbpi (number of bytes per inode) can be specified to increase or decrease the number of inodes that are
created. Space or time optimization preference can be specified with opt values of "s" for space or "t"
for time. Users with special demands for their file systems are referred to the paper cited below for a dis­
cussion of the tradeoffs in using different configurations.

SEE ALSO

BUGS

Is(5), dir(5), Isck(8), newfs(8), tunels(8)

M. McKusick, W. Joy, S. Leffler, R. Fabry, "A Fast File System for UNIX" , ACM Transactions on Com­
puter Systems 2,3. pp 181-197, August 1984. (reprinted in the System Manager's Manual, SMM:14)

There should be some way to specify bad blocks.

May 21, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

MKHOSTS(8) UNIX Programmer's Manual MKHOSTS(8)

NAME
mkhosts - generate hashed host table

SYNOPSIS
letclmkhosts [options] hostfile

DESCRIPTION
Mkhosts is used to generated the hashed host database used by one version of the library routines gethost­
byaddrO and gethostbynameO. It is not used if host name translation is performed by named(8). If the
-v option is supplied, each host will be listed as it is added. The file hostfile is usually lete/hosts, and in
any case must be in the format of letclhosts (see hosts(5».
Mkhosts will generate database files named hostfile.pag and hostfile.dir. The new database is build in a set
of temporary files and only replaces the real database if the new one is built without errors. Mkhosts will
exit with a non-zero exit code if any errors are detected.

OPTIONS

FILES

-v Lists each host as it is added.

hostfile.pag - real database filenames
hostfile.dir
hostfile.new.pag - temporary database filenames
hostfile.new.OO

SEE ALSO
gethostbyname(3), gettable(8), hosts(5), htable(8), named(8)

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

~OST+FO~(8) UNIX Programmer's Manual

NAME
mklost+found - make a lost+found directory for fsck

SYNOPSIS
letc/mklost+found

DESCRIPTION

MKLOST +FOUND (8)

A directory lost+found is created in the current directory and a number of empty files are created therein
and then removed so that there will be empty slots for fsck(8). This command should not normally be
needed since mkfs(8) automatically creates the lost+found directory when a new file system is created.

SEE ALSO
fsck(8), mkfs(8)

Apri127,1985 INTEGRATED SOLUTIONS 4.3 BSD 1

MKNOD(8)

NAME
mknod - build special file

SYNOPSIS

UNIX Programmer's Manual

letclmknod name [c] [b] major minor

DESCRIPTION

MKNOD(8)

Mknod makes a special file. The first argument is the name of the entry. The second is b if the special file
is block-type (disks, tape) or c if it is character-type (other devices). The last two arguments are numbers
specifying the major device type and the minor device (e.g. unit, drive, or line number).

The assignment of major device numbers is specific to each system. They have to be dug out of the system
source file conic.

SEE ALSO
mknod(2), makedev(8)

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

MKPASSWD (8) UNIX Programmer's Manual

NAME
mkpasswd - generate hashed password table

SYNOPSIS
/etc/mkpasswd [options] passwdfile

DESCRIPTION

MKP ASSWD (8)

Mkpasswd generates the hashed password database used by the library routines getpwnamO and
getpwuidO. This database is stored in the files passwd.pag and passwd.dir.

Usually, the passwdfile you invoke on the command line will be /etc/ptmp (the file invoked by the vipw(8)
command). In any case, the passwdfile must be in the format of /etc/passwd. (See the passwd(5) man page
for a description of this format)

Mkpasswd exits with a non-zero exit code if it detects errors.

OPTIONS
-v Lists each entry as it is added.

FILES
passwdfile.pag
passwdfile .dir

SEE ALSO

database file
database file

getpwent(3), vipw(8), passwd(5)

November 23, 1987 INTEGRA TED SOLUTIONS 4.3 BSD 1

MKPROTO(8) UNIX Programmer's Manual MKPROTO(8)

NAME
mkproto - construct a prototype file system

SYNOPSIS
I etc/mkproto special proto

DESCRIPTION
Mkproto is used to bootstrap a new file system. First a new file system is created using newfs(8).
Mkproto is then used to copy files from the old file system into the new file system according to the direc­
tions found in the prototype file proto. The prototype file contains tokens separated by spaces or new lines.
The first tokens comprise the specification for the root directory. File specifications consist of tokens giv­
ing the mode, the user-id, the group id, and the initial contents of the file. The syntax of the contents field
depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the file. (The
characters -bed specify regular, block special, character special and directory files respectively.) The
second character of the type is either u or - to specify set-user-id mode or not. The third is g or - for the
set-group-id mode. The rest of the mode is a three digit octal number giving the owner, group, and other
read, write, execute permissions, see ehmod(I).

Two decimal number tokens come after the mode; they specify the user and group ID's of the owner of the
file.

If the file is a regular file, the next token is a pathname whence the contents and size are copied.

If the file is a block or character special file, two decimal number tokens follow which give the major and
minor device numbers.

If the file is a directory, mkproto makes the entries. and •• and then reads a list of names and (recursively)
file specifications for the entries in the directory. The scan is terminated with the token $.

A sample prototype specification follows:

d-77731
usr d-7773 1

sh -7553 l/binlsh
ken d-75561

$
bO b-6443100
cO c-644 31 00
$

$

SEE ALSO

BUGS

fs(5), dir(5), fsck(8), newfs(8)

There should be some way to specify links.

There should be some way to specify bad blocks.

Mkproto can only be run on virgin file systems. It should be possible to copy files into existent file sys­
tems.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

MOUNT (8) .. UNIX Programmer's Manual MOUNT (8)

NAME
mount, umount - mount and dismount filesystems

SYNOPSIS
letdmount [-p]
letc/mount -a[fv] [-t type]
letc/mount [-frY] [-t type] [-0 options] fsname dir
letdmount [-vf]fsname I dir

letc/umount [-b host]
letc/umount -a[v]
letdumount [-v]

DESCRIPTION
Mount announces to the system that a filesystem fsname is to be attached to the file tree at the directory
dir. The directory dir must already exist. It becomes the name of the newly mounted root. The contents
of dir are hidden until the filesystem is unmounted. If fsname is of the form host:path the filesystem type is
assumed to be nfs(4).

Umount announces to the system that the filesystemfsname previously mounted on directory dir should be
removed. Either the filesystem name or the mounted-on directory may be used.

Mount and umount maintain a table of mounted filesystems in /etc/mtab, described in mtab(5). If
invoked without an argument, mount displays the table. If invoked with only one offsname or dir mount
searches the file /etc/fstab (see fstab(5» for an entry whose dir or fsname field matches the given argu­
ment For example, if this line is in I etc!Jstab:

Idev/xyOg lusr 4.3 rw 11

then the commands mount lusr and mount Idev/xyOg are shorthand for mount Idev/xyOg lusr.

MOUNT OPTIONS
-a Attempt to mount all the filesystems described in /etc/fstab. (In this case,fsname and dir are taken

from /etc/fstab.) If a type is specified all of the filesystems in /etc/fstab with that type is mounted.
Filesystems are not necessarily mounted in the order listed in /etc/fstab.

-f Fake a new /etc/mtab entry, but do not actually mount any filesystems.

--0 Specify options, a list of comma separated words from the list below. Some options are valid for

AprilS, 1988

all filesystem types, while others apply to a specific type only.

options valid on all file systems (the default is rw,suid):

rw read/write.

read-only.

set-uid execution allowed.

set-uid execution not allowed.

ro

suid

nosuid

bide ignore this entry during a mount -a command to allow you to define fstab entries for
commonly used filesystems you don't want to automatically mount.

options specific to 4.3 file systems (the default is noquota).

quota

noquota

usage limits enforced.

usage limits not enforced.

options specific to nfs (NFS) file systems (the defaults are:

fg,retry=l,timeo=7 ,retrans=4,port=NFS _ PO RT ,bard

INTEGRA TED SOLUTIONS 4.3 BSD 1

MOUNT (8) UNIX Programmer's Manual MOUNT (8)

with defaults for rsize and wsize set by the kernel):

bg if the first mount attempt fails, retry in the background.

fg retry in foreground.

retry=n set number of mount failure retries to n.

rsize=n set read buffer size to n bytes.

wsize=n set write buffer size to n bytes.

timeo=n set NFS timeout to n tenths of a second.

retrans=n set number of NFS retransmissions to n.

port=n set server IP port number to n.

soft return error if server doesn't respond.

hard retry request until server responds.

The bg option causes mount to run in the background if the server's mountd(8) does not respond.
mount attempts each request retry=n times before giving up. Once the filesystem is mounted,
each NFS request made in the kernel waits timeo=n tenths of a second for a response. If no
response arrives, the time-out is multiplied by 2 and the request is retransmitted. When retrans=n
retransmissions have been sent with no reply a soft mounted filesystem returns an error on the
request and a hard mounted filesystem retries the request. Filesystems that are mounted rw
(read-write) should use the hard option. The number of bytes in a read or write request can be set
with the rsize and wsize options.

-p Print the list of mounted filesystems in a format suitable for use in /etc/fstab.

-r Mount the specified filesystem read-only. This is a shorthand for:

mount -0 ro fsname dir

Physically write-protected and magnetic tape filesystems must be mounted read-only, or errors
occur when access times are updated, whether or not any explicit write is attempted.

-t The next argument is the filesystem type. The accepted types are: 4.3, and nfs; see fstab(5) for a
description of these filesystem types.

-v Run in verbose mode. mount displays a message indicating the filesystem being mounted.

UMOUNT OPTIONS
-a Attempt to unmount all the filesystems currently mounted (listed in /etc/mtab). In this case,

fsname is taken from /etc/mtab.

-h host Unmount all filesystems listed in /etc/mtab that are remote-mounted from host.

-v Run in verbose mode. umount displays a message indicating the filesystem being unmounted.

EXAMPLES

FILES

mount /dev/xyOg /usr
mount -ft 4.3 /dev/ndO /
mount -at 4.3
mount -t nfs serv:/usr/src /usr/src
mount serv:/usr/src /usr/src
mount -0 hard serv:/usr/src /usr/src
mount -p > /etc/fstab

/etc/mtab
/etc/fstab

mount a local disk
fake an entry for nd root
mount all 4.3 filesystems
mount remote filesystem
same as above
same as above but hard mount
save current mount state

mount table
filesystem table

April 5, 1988 INTEGRA TED SOLUTIONS 4.3 BSD 2

MOUNT(8) UNIX Programmer's Manual MOUNT (8)

SEE ALSO

BUGS

mount(2), nfsmount(2), unmount(2), fstab(5), mountd(8c), nfsd(8c)

Mounting filesystems full of garbage crashes the system.

No more than one NO client should mount an NO disk partition "read-write" or the file system may
become corrupted

If the directory on which a filesystem is to be mounted is a symbolic link, the filesystem is mounted on the
directory to which the symbolic link refers, rather than being mounted on top of the symbolic link itself.

April 5, 1988 INTEGRATED SOLUTIONS 4.3 BSD 3

NAMED(8C) UNIX Programmer's Manual NAMED (8C)

NAME
named - Internet domain name server

SYNOPSIS
/usr/etdin.named [options]

DESCRIPTION
named is the Internet domain name server. With no arguments named reads /etc/named.boot for any initial
~ and listens for queries on the standard Internet port that requires root privilege.

OPTIONS
-b bootfile Uses the specified bootfile rather than /etc/named.boot.

-d level

-pport

EXAMPLE

Prints debugging information. level is a number indicating the level of messages printed.

Uses the specified port number.

boot file for name server

; type

domain
primary
secondary
cache

domain source file or host

berkeley.edu
berkeley.edu named.db
cc.berkeley.edu 10.2.0.78 128.32.0.10

named.ca

The "domain" line specifies that "berkeley.edu" is the domain of the given server.

The "primary" line states that the file "named.db" contains authoritative data for "berkeley.edu". The
file "named.db" contains data in the master file format, except that all domain names are relative to the
origin; in this case, "berkeley.edu" (see below for a more detailed description).

The "secondary" line specifies that all authoritative data under "cc.berkeley.edu" is to be transferred
from the name server at "10.2.0.78". If the ttansfer fails it will try "128.32.0.10", and continue for up to
10 tries at that address. The secondary copy is also authoritative for the domain.

The "cache" line specifies that data in "named.ca" is to be placed in the cache (Le., well known data such
as locations of root domain servers). The file "named.ca" is in the same format as "named.db".

The master file consists of entries of the fonn:
$INCLUDE <filename>
$ORIGIN <domain>
<domain> <opcttI> <opcclass> <type> <resource_record_data>

where domain is "." for root, "@" for the current origin, or a standard domain name. If domain is a stan­
dard domain name that does not end with ".", the current origin is appended to the domain. Domain
names ending with "." are unmodified.

The opt _ttl field is an optional integer number for the time-to-live field. It defaults to zero.

The opt_class field is currently one token, 'IN' for the Internet.

The type field is one of the following tokens; the data expected in the resource_record _data field is in
parentheses.

A a host address (dotted quad)

NS

MX

CNAME

April 11, 1988

an authoritative name server (domain)

a mail exchanger (domain)

the canonical name for an alias (domain)

INTEGRATED SOLUTIONS 4.3 BSD 1

NAMED (8C) UNIX Programmer's Manual NAMED (8C)

NOTES

FILES

SOA

MB

MG

MR

NULL

WKS

PTR

HINFO

MINFO

marks the start of a zone of authority (5 numbers)

a mailbox domain name (domain)

a mail group mem ber (domain)

a mail rename domain name (domain)

a null resource record (no format or data)

a well know service description (not implemented yet)

a domain name pointer (domain)

host information (cpu_type OS_type)

mailbox or mail list information (requescdomain error_domain)

The following signals have the specified effect when sent to the server process using the kill(l) command.

SIGHUP Causes server to read named. boot and reload database.

SIGQUlT

SIGEMT

SIGFPE

/etc/named.boot

/etc/named.pid

/usr/tmp/named.run

/usr/tmp/named_dump.db

Dumps current data base and cache to /usr/tmp/named_dump.db

Turns on debugging and each SIGEMT increments debug level.

Turns off debugging completely

name server configuration boot file

the process id

debug output

dump of the name servers database

SEE ALSO
kiIl(l), gethostbyname(3n), signal(3), resolver(5)

April 11, 1988 INTEGRATED SOLUTIONS 4.3 BSD 2

NCHECK(8) UNIX Programmer's Manual

NAME
ncheck - generate names from i-numbers

SYNOPSIS
letclncheck [options] file systems ...

DESCRIPTION

NCHECK(8)

N.B.: For most normal file system maintenance, the function of ncheck is subsumed by rsck(8).

Ncheck with no options generates a pathname vs. i-number list of all files on every specified file system.
Names of directory files are followed by 'I.'.

The report is in no useful order, and probably should be sorted.

OPTIONS
-inumbers

Reduces the report to only those files whose i-numbers follow.

-a Allows printing of the names'.' and' •• ', which are ordinarily suppressed.

-s Reduces the report to special files and files with set-user-ID mode; it is intended to discover con-
cealed violations of security policy.

SEE ALSO
sort(1), dcheck(8), rsck(8), icheck(8)

DIAGNOSTICS
When the file system structure is improper, '11' denotes the 'parent' of a parentIess file and a pathname
beginning with ' ... ' denotes a loop.

January 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

NEWFS(8) UNIX Programmer's Manual NEWFS(8)

NAME
newfs - construct a new file system

SYNOPSIS
fetc/newfs [options] [mkfs-options] special disk-type

DESCRIPTION
Newfs is a "friendly" front-end to the mkfs(8) program. Newfs will look up the type of disk a file system
is being created on in the disk description file /etc/disktab , calculate the appropriate parameters to use in
calling mkfs, then build the file system by forking mkfs •

OPTIONS

FILES

-N Causes the file system parameters to be printed out without actually creating the file system.

-v Prints out newfs's actions, including the parameters passed to mkfs.

Options which may be used to override default parameters passed to mkfs are:

-b block-size
The block size of the file system in bytes.

-c #cylinders/ group
The number of cylinders per cylinder group in a file system. The default value used is 16.

-r frag-size The fragment size of the file system in bytes.

-i number of bytes per inode
This specifies the density of inodes in the file system. The default is to create an inode for
each 2048 bytes of data space. If fewer inodes are desired, a larger number should be used; to
create more inodes a smaller number should be given.

-mfree space %
The percentage of space reserved from normal users; the minimum free space threshhold. The
default value used is 10%.

-0 optimization preference ("space" or "time")
The file system can either be instructed to try to minimize the time spent allocating blocks, or
to try to minimize the space fragmentation on the disk. If the value of minfree (see above) is
less than 10%, the default is to optimize for space; if the value of minfree greater than or equal
to 10%, the default is to optimize for time.

-r revolutions/minute
The speed of the disk in revolutions per minute (normally 3600).

-s size The size of the file system in sectors.

-S sector-size
The size of a sector in bytes (almost never anything but 512).

-t #tracks/ cylinder

/ etc! disktab
/etc/mkfs

The number of tracks per cylinder.

for disk geometry and file system partition information
to actually build the file system

SEE ALSO
disktab(5), rs(5), diskpart(8), rsck(8), rormat(8), mkrs(8), tuners(8)

M. McKusick, W. Joy, S. LefBer, R. Fabry, "A Fast File System for UNIX" , ACM Transactions on Com­
puter Systems 2,3. pp 181-197, August 1984. (reprinted in the System Manager's Manual, SMM:14)

May 21, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

NEWFS(8) UNIX Programmer's Manual NEWFS(8)

BUGS
Newts should figure out the type of the disk without the user's help.

May 21,1986 INTEGRATED SOLUTIONS 4.3 BSD 2

NWSTAT(8) UNIX Programmer's Manual

NAME
nwstat - report Ethernet Packet Transmission Firmware status

SYNOPSIS
nwstat [-z [dey]] [-g [dev]] [-lfile] [-r [dey]] [-d [file] [dey]]

DESCRIPTION

NWSTAT(8)

Nwstat reports the Ethernet Packet Transmission Firmware status of an Integrated Solutions VME-ECX.
A table of statistics is maintained by the Ethernet Packet Transmission Firmware in dual-ported RAM.
This table may be read at any time. The statistics are reported on stdout. The program uses the device
entry in Idev/nwrO by default when dey is missing.

OPTIONS
NOTE: If no arguments are specified, statistics are automatically printed.

-z [deY] Zeros statistics.

-g [dey] Issues go command.

-lfile [dey] Downloads file.

-r [dey] Resets board.

-d file [dey] Dumps dual-ported memory.

FILES
ldev/nwrn

SEE ALSO

dual-ported RAM of VME Ethernet Card

VME-ECX Hardware Reference Manual

BUGS
The table of statistics is not protected by a semaphore. That means occasionally the statistics will be read
by nwstat while the firmware is updating them. That causes one of the statistics to be corrupted.

6 October 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

PAC(8) UNIX Programmer's Manual PAC(8)

NAME
pac - printer/plotter accounting information

SYNOPSIS
fetc/pac [options] [name ...]

DESCRIPTION
Pac reads the printer/plotter accounting files, accumulating the number of pages (the usual case) or feet
(for raster devices) of paper consumed by each user, and printing out how much each user consumed in
pages or feet and dollars. If any names are specified, then statistics are only printed for those users; usu­
ally, statistics are printed for every user who has used any paper.

OPTIONS

FILES

-c

-m

-pprice

Causes the output to be sorted by cost; usually the output is sorted alphabetically by name.

Causes the host name to be ignored in the accounting file. This allows for a user on multiple
machines to have all of his printing charges grouped together.

Causes the value price to be used for the cost in dollars instead of the default value of 0.02 or
the price specified in /etc/printcap.

-Pprinter 1J.ag causes accounting to be done for the named printer. Normally, accounting is done for the
default printer (site dependent) or the value of the environment variable PRINTER is used.

-r 1J.ag reverses the sorting order.

-s 1J.ag causes the accounting information to be summarized on the summary accounting file; this
summarization is necessary since on a busy system, the accounting file can grow by several
lines per day.

/usr/adml?acct
/usr/adml? _sum
/ etclprintcap

raw accounting files
summary accounting files
printer capability data base

SEE ALSO
printcap(5)

BUGS
The relationship between the computed price and reality is as yet unknown.

October 30, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

PING (8) UNIX Programmer's Manual PING(8)

NAME
ping - send ICMP ECHO_REQUEST packets to network hosts

SYNOPSIS
/etc/ping [options] host [packetsize] [count]

DESCRIPTION
The DARPA Internet is a large and complex aggregation of network hardware, connected together by gate­
ways. Tracking a single-point hardware or software failure can often be difficult. Ping utilizes the ICMP
protocol's mandatory ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE from a host or
gateway. ECHO_REQUEST datagrams ("pings") have an IP and ICMP header, followed by a struct
timeval, and then an arbitrary number of "pad" bytes used to fill out the packet. Default datagram length
is 64 bytes, but this may be changed using the command-line option.

When using ping for fault isolation, it should first be run on the local host, to verify that the local network
interface is up and running. Then, hosts and gateways further and further away should be "pinged". Ping
sends one datagram per second, and prints one line of output for every ECHO_RESPONSE returned. No
output is produced if there is no response. If an optional count is given, only that number of requests is
sent. Round-trip times and packet loss statistics are computed When all responses have been received or
the program times out (with a count specified), or if the program is terminated with a SIGINT, a brief sum­
mary is displayed.

This program is intended for use in network testing, measurement and management. It should be used pri­
marily for manual fault isolation. Because of the load it could impose on the network, it is unwise to use
ping during nonnaI operations or from automated scripts.

OPTIONS
-r Bypass the normal routing tables and send direcdy to a host on an attached network. If the host is

not on a directly-attached network, an error is returned. This option can be used to ping a local
host through an interface that has no route through it (e.g., after the interface was dropped by
routed(8C».

-v Verbose output. ICMP packets other than ECHO RESPONSE that are received are listed.

SEE ALSO
netstat(1), ifconfig(8C)

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

PSTAT(8)

NAME
pstat - print system facts

SYNOPSIS

UNIX Programmer's Manual

letc/pstat [options] [suboptions] [system] [corefile]

DESCRIPTION

PSTAT(8)

Pstat interprets the contents of certain system tables. Normally pstat looks for the tables in Idev/lanem. If
you specify a corefile, though, pstat looks for them in that file. Pstat takes the required namelist from
Ivmunix. If you specify a system, pstat looks for the namelist there, instead.

OPTIONS
-a Under -p, describe all process slots rather than just active ones.

-i Print the inode table with the these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

L locked
U update time (f8(5» must be corrected
A access time must be corrected
M file system is mounted here
W wanted by another process (L flag is on)
T contains a text file
C changed time must be corrected
S shared lock applied
E exclusive lock applied
Z someone waiting for a lock
Number of open file table entries for this inode.
Major and minor device number of file system in which this inode resides.
Reference count of shared locks on the inode.

CNT
DEV
ROC
WRC Reference count of exclusive locks on the inode (this may be > 1 if, for example, a file descriptor

is inherited across a fork).
INO I-number within the device.
MODE Mode bits, see chmod(2).
NLK Number of links to this inode.
UID User ID of owner.
SIZJDEV

-f

LOC

Number of bytes in an ordinary file, or major and minor device of special file.

Print the open file table with these headings:

The core location of this table entry.

TYPE The type of object the file table entry points to.
FLG Miscellaneous state variables encoded thus:

R open for reading
W open for writing
A open for appending
S shared lock present
X exclusive lock present
I signal pgrp when data ready

CNT Number of processes that know this open file.
MSG Number of messages outstanding for this file.
DATA The location of the inode table entry or socket structure for this file.
OFFSET The file offset (see Iseek(2».

-p Print process table for active processes with these headings:

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

PSTAT(8)

LOC
S

F

UNIX Programmer's Manual

The core location of this table entry.
Run state encoded thus:
o no process
1 waiting for some event
3 runnable
4 being created
5 being ternllnated
6 stopped (by signal or under trace)
Miscellaneous state variables, or'ed together (hexadecimal):
0001 loaded
0002 the scheduler process
0004 locked for swap out
0008 swapped out
0010 traced
0020 used in tracing
0080 in page-wait
0100 prevented from swapping during fork(2)
0200 will restore old mask after taking signal
0400 exiting
0800 doing physical I/O (bio.c)
1000 process resulted from a vfork(2) which is not yet complete
2000 another flag for vfork(2)
4000 process has no virtual memory, as it is a parent in the context of vrork(2)
8000 process is demand paging data pages from its text inode.
10000 process using sequential VM patterns
20000 process using random VM patterns
100000 using old 4. I-compatible signal semantics
200000 process needs profiling tick
400000 process is scanning descriptors during select
1000000 process page tables have changed
number of pages currently being pushed out from this process.
Scheduling priority, see setpriority(2).
Signals received (signals 1-32 coded in bits 0-31),
Real user ID.
Amount of time process has been blocked
Time resident in seconds; times over 127 coded as 127.
Weighted integral of CPU time, for scheduler.
Nice level, see setpriority(2).
Process number of root of process group.
The process ID number.
The process ID of parent process.

PSTAT(8)

POIP
PRI
SIG
UID
SLP
TIM
CPU
NI
PGRP
PID
PPID
ADDR If in core, the page frame number of the first page of the 'u-area' of the process. If swapped out,

the position in the swap area measured in multiples of 512 bytes.
RSS Resident set size - the number of physical page frames allocated to this process.
SRSS RSS at last swap (0 if never swapped).
SIZE Virtual size of process image (data+stack) in multiples of 512 bytes.
WCHAN

Wait channel number of a waiting process.
LINK Link pointer in list of runnable processes.
TEXTP If text is pure, pointer to location of text table entry.

-t Print table for terminals with these headings;

RAW Number of characters in raw input queue.

May 24,1986 INTEGRATED SOLUTIONS 4.3 BSD 2

PSTAT(8)

CAN
OUT
MODE
ADDR
DEL
COL
STATE

UNIX Progranuner's Manual

Number of characters in canonicalized input queue.
Number of characters in putput queue.
See tty(4).
Physical device address.
Number of delimiters (newlines) in canonicalized input queue.
Calculated column position of terminal.
Miscellaneous state variables encoded thus:
T delay timeout in progress
W waiting for open to complete
o open
F outq has been fiushed during DMA
C carrier is on
B busy doing output
A process is awaiting output
X open for exclusive use
S output stopped
H hangup on close
Process group for which this is controlling terminal.

PSTAT(8)

PORP
DISC Line discipline; blank is old tty OTTYDISC or "new tty" for NTTYDISC or "net" for NETLD­

ISC (see bk(4».

-u Print infonnation about a user process; the next argument is its address as given by ps(I). The
process must be in main memory, or the file used can be a core image and the address O. Only
the fields located in the first page cluster can be located succesfully if the process is in main
memory.

-s Print information about swap space usage: the number of (lk byte) pages used and free is given
as well as the number of used pages which belong to text images.

-T Print the number of used and free slots in the several system tables and is useful for checking to
see how full system tables have become if the system is under heavy load.

-x Print the text table with these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

T ptrace(2) in effect
W text not yet written on swap device
L loading in progress
K locked
w wanted (L fiag is on)
P resulted from demand-page-from-inode exec format (see execve(2»

DADDR Disk address in swap, measured in multiples of 512 bytes.

CADDR Head of a linked list of loaded processes using this text segment.

RSS Size of resident text, measured in multiples of 512 bytes.

SIZE Size of text segment, measured in multiples of 512 bytes.

IPfR Core location of corresponding inode.

CNT Number of processes using this text segment

CCNT Number of processes in core using this text segment.

FORW Forward link in free list.

BACK Backward link in free list.

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 3

PSTAT(8) UNIX Programmer's Manual

FILES
Ivrnunix namelist
ldevlkmem default source of tables

SEE ALSO

BUGS

iostat(I), ps(l), systat(l), vmstat(l), stat(2), fs(5),
K. Thompson, UNIX Implementation

PSTAT(8)

It would be very useful if the system recorded "maximum occupancy" on the tables reported by -T; even
more useful if these tables were dynamically allocated.

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 4

QUOT(8) UNIX Programmer's Manual QUOT(8)

NAME
quot - summarize file system ownership

SYNOPSIS
lusr/etclquot [options] [filesystem]

DESCRIPTION
Quot displays the number of blocks (1024 bytes) in the namedfilesystem currently owned by each user.

OPTIONS
-a Generates a report for all mounted file systems.

-e Displays three columns giving file size in blocks, number of files of that size, and cumulative total

FILES

of blocks in that size or smaller file.

-f Displays count of number of files as well as space owned by each user.

-h Estimates the number of blocks in the file - this doesn't account for files with holes in them.

-0 Runs the pipeline ncheck fiIesystem I sort +00 I quot -0 fiIesystem to produce a list of all files
and their owners.

-v Displays three columns containing the number of blocks not accessed in the last 30, 60, and 90
days.

/etc/mtab
/etc/passwd

mounted file systems
to get user names

SEE ALSO
15(1), du(l)

28 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

QUOT ACHECK (8) UNIX Programmer's Manual QUOTACHECK (8)

NAME
quotacheck - check file system quota consistency

SYNOPSIS
lusr/etclquotacheck [-v]filesystem ...
lusr/etclquotacheck [-v] -a

DESCRIPTION
Quotacheck examines each file system, builds a table of current disk usage, and compares this table
against that stored in the disk quota file for the file system. If any inconsistencies are detected, both the
quota file and the current system copy of the incorrect quotas are updated (the latter only occurs if an active
file system is checked).

Quotacheck expects each file system to be checked to have a quota file named quotas in the root directory.
If none is present, quotacheck will ignore the file system.

Quotacheck is normally run at boot time from the /etclrc.local file, see rc(8), before enabling disk quotas
with quotaon(8).

Quotacheck accesses the raw device in calculating the actual disk usage for each user. Thus, the file sys­
tems checked should be quiescent while quotacheck is running.

OPTIONS
-a Checks all the file systems indicated in /etclfstab to be read-write with disk quotas.

-v Indicates the calculated disk quotas for each user on a particular file system. Quotacheck Nor-
mally reports only those quotas modified.

FILES
quotas
/etclmtab
letclfstab

SEE ALSO
quotactl(2), quotaon(8)

15 April 1985

quota file at the file system root
mounted file systems
default file systems file at filesystem root"

INTEGRATED SOLUTIONS 4.3 BSD 1

QUOTAON(8) UNIX Programmer's Manual

NAME
quotaon, quotaorr - turn file system quotas on and off

SYNOPSIS
lusr/etc!quotaon [-v]filsys ...

lusr/etc!quotaon [-v]-a

lusr/etc/quotaorr [-v]filsys ...

lusr/etc!quotaorr [-v]-a

DESCRIPTION OF QUOTAON

QUOTAON(8)

Quotaon announces to the system that disk quotas should be enabled on one or more file systems. The file
systems specified must be mounted at the time. The file system quota files must be present in the root
directory of the specified file system and be named quotas .

OPTIONS TO QUOT AON
-v Displays a message for each file system where quotas are turned on.

-a Turns on quotas for all file systems in letclfstab marked read-write with quotas. This option is nor-
mally used at boot time to enable quotas.

DESCRIPTION OF QUOTAOFF
Quotaorr announces to the system that file systems specified should have any disk quotas turned off.

OPTIONS TO QUOTAOFF
-a Disables the quotas for all file systems in letclfstab.

-v Displays a message for each file system affected.

These commands update the status field of devices located in letclmtab to indicate when quotas are on or
off for each file system.

FILES
quotas
letc/mtab
letclfstab

SEE ALSO

quota file at the file system root
mounted file systems
default file systems

quotadl(2), mtab(5), fstab(5)

15 April 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

RC(8) UNIX Programmer's Manual RC(8)

NAME
rc - command script for auto-reboot and daemons

SYNOPSIS
/etc/re
/ etc/re.local

DESCRIPTION
Re is the command script which controls the automatic reboot and rc.Ioeal is the script holding commands
which are pertinent only to a specific site.

When an automatic reboot is in progress, rc is invoked with the argument autoboot and runs a fsck with
option -p to "preen" all the disks of minor inconsistencies resulting from the last system shutdown and to
check for serious inconsistencies caused by hardware or software failure. If this auto-check and repair
succeeds, then the second part of re is run.

The second part of re, which is run after a auto-reboot succeeds and also if re is invoked when a single
user shell terminates (see init(8», starts all the daemons on the system, preserves editor files and clears the
scratch directory Itmp. Rc.local is executed immediately before any other commands after a successful
fsck. Normally, the first commands placed in the re.loeal file define the machine's name, using host­
name(I), and save any possible core image that might have been generated as a result of a system crash,
saveeore(8). The latter command is included in the re.loeal file because the directory in which core dumps
are saved is usually site specific.

SEE ALSO
init(8), reboot(8), savecore(8)

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

RDUMP(8C) UNIX Programmer's Manual

NAME
rdump - file system dump across the network

SYNOPSIS
letc/rdump [key [argument ...] file system]

DESCRIPTION

RDUMP(8C)

Rdump copies to magnetic tape all files changed after a certain date in the file system. The command is
identical in operation to dump(8) except the [key should be specified and the file supplied should be of the
form machine:device.

Rdump creates a remote server, /etc/rmt , on the client machine to access the tape device.

SEE ALSO
dump(8), rmt(8C)

DIAGNOSTICS
Same as dump(8) with a few extra related to the network.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD

REBOOT(8) UNIX Programmer's Manual REBOOT (8)

NAME
reboot - UNIX bootstrapping procedures

SYNOPSIS
/etc/reboot [options]

DESCRIPTION
UNIX is started by placing it in memory at location zero and transferring to zero. Since the system is not
re-enterable, it must be read in from disk or tape each time it is to be bootstrapped

Rebooting a Running System

When UNIX is running and a reboot is desired, shutdown(8) is normally used. If there are no users, then
/etc/reboot can be used Reboot causes the disks to be synchronized, and then a multi-user reboot (as
described below) is initiated. A system is booted and an automatic disk check is performed. If all this
succeeds without incident, the system is then brought up for many users.

OPTIONS
Options to reboot are as follows:

-0 Avoids the sync. Can be used if a disk or the processor is on fire.

-q Reboots quickly and ungracefully, without first shutting down running processes.

Power Fail and Crash Recovery

Normally the system will reboot itself at power-up or after crashes. An automatic consistency check of the
filesystems will be performed then. The system will resume multi-user operations, unless this check fails.

On the IS68K, the code in the boot proms finds the specified file on the given device, loads that file into
memory location zero, and starts the program at the entry address specified in the program header (after
clearing off the high bit of the specified entry address.) Normal line-editing characters can be used in
specifying the pathname. The boot proms will boot automatically after a minute or two if nothing is typed
on the system console.

EXAMPLE
If a user has an hp disk and wishes to boot off a filesystem which starts at cylinder 0 of unit 0, she or he can
type hp(O,O)vmunix to the boot prompt; hk(O,O)vmunix would specify an RK07 disk drive; el(O,O)vmunix
would specify a disk drive connected to an INTEGRATED SOLUTIONS extended rl disk controller.

A device specification has the following form:

device(unit. minor)

in which device is the type of the device to be searched, unit is the unit number of the device, and minor is
the minor device index.

The following list of supported devices may vary from installation to installation:
hp hp disk drive
hk RK07 disk drive
ra storage module on a UDA50
el extended RL02
sd disk drive connected to VME-SCSI disk controller
smd disk drive connected to VME-SMD disk controller
tm TMll emulation tape drives on QBUS
ts TSll on QBUS
nw VME-NW Ethernet board (remote network boots)
ex Excelan Ethernet board (remote network boots)

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

REBOOT(8) UNIX Programmer's Manual REBOOT(8)

For tapes, the minor device number gives a file offset.

FILES
/vmunix system code

SEE ALSO
fsck(8), init(8), rc(8), shutdown(8), halt(8), newfs(8)

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 2

RENICE(8) UNIX Programmer's Manual RENICE(8)

NAME
renice - alter priority of running processes

SYNOPSIS
/ etc/renice priority [[-p] pid ...] [[-g] p grp ...] [[-u] user ...]

DESCRIPTION

FILES

Renice alters the scheduling priority of one or more running processes. The who parameters are inter­
preted as process ID's, process group ID's, or user names. Renice'ing a process group causes all processes
in the process group to have their scheduling priority altered. Renice' ing a user causes all processes owned
by the user to have their scheduling priority altered. By default, the processes to be affected are specified
by their process ID's. To force who parameters to be interpreted as process group ID's, a -g may be
specified. To force the who parameters to be interpreted as user names, a -u may be given. Supplying-p
will reset who interpretation to be (the default) process ID's. For example,

/etc/renice + 1 987 -u daemon root -p 32

would change the priority of process !D's 987 and 32, and all processes owned by users daemon and root.

Users other than the super-user may only alter the priority of processes they own, and can only monotoni­
cally increase their "nice value" within the range 0 to PRIO_MAX (20). (This prevents overriding admin­
istrative fiats.) The super-user may alter the priority of any process and set the priority to any value in the
range PRIO_MIN (-20) to PRIO_MAX. Useful priorities are: 20 (the affected processes will run only
when nothing else in the system wants to), 0 (the "base" scheduling priority), anything negative (to make
things go very fast).

/etc/passwd to map user names to user ID' s

SEE ALSO

BUGS

getpriority(2), setpriority(2)

Non super-users can not increase scheduling priorities of their own processes, even if they were the ones
that decreased the priorities in the first place.

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

REPQUOTA (8) UNIX Programmer's Manual

NAME
repquota - summarize quotas for a file system

SYNOPSIS
repquotajilesys ...

DESCRIPTION

REPQUOTA(8)

Repquota prints a summary of the disc usage and quotas for the specified file systems. For each user the
current number files and amount of space (in kilobytes) is printed, along with any quotas created with
edquota(8).

Only the super-user may view quotas which are not their own.

FILES
quotas at the root of each file system with quotas
letclfstab for file system names and locations

SEE ALSO
quota(I), quota(2), quotacheck(8), quotaon(8), edquota(8)

DIAGNOSTICS
Various messages about inaccessible files; self-explanatory.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

RESTORE(8) UNIX Programmer's Manual RESTORE(8)

NAME
restore - incremental file system restore

SYNOPSIS
letc/restore key [name ..•]

DESCRIPTION
Restore reads tapes dumped with the dump(8) command Its actions are controlled by the key argument
The key is a string of characters containing at most one function letter and possibly one or more function
modifiers. Other arguments to the command are file or directory names specifying the files that are to be
restored Unless the h key is specified (see below), the appearance of a directory name refers to the files
and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The tape is read and loaded into the current directory. This should not be done lightly; the r key
should only be used to restore a complete dump tape onto a clear file system or to restore an incre­
mental dump tape after a full level zero restore. Thus

letdnewfs Idev/rrpOg eagle
letdmount Idev/rpOg Imnt
cd/nutt
restore r

is a typical sequence to restore a complete dump. Another restore can be done to get an incremental
dump in on top of this. Note that restore leaves a file restoresymtab in the root directory to pass
information between incremental restore passes. This file should be removed when the last incre­
.::1ental tape has been restored.
A dump(8) followed by a newfs(8) and a restore is used to change the size of a file system.

R Restore requests a particular tape of a multi volume set on which to restart a full restore (see the r
key above). This allows restore to be interrupted and then restarted.

x The named files are extracted from the tape. If the named file matches a directory whose contents
had been written onto the tape, and the h key is not specified, the directory is recursively extracted.
The owner, modification time, and mode are restored (if possible). If no file argument is given, then
the root directory is extracted, which results in the entire content of the tape being extracted, unless
the h key has been specified.

t The names of the specified files are listed if they occur on the tape. If no file argument is given, then
the root directory is listed, which results in the entire content of the tape being listed, unless the b key
has been specified. Note that the t key replaces the function of the old dumpdir program.

This mode allows interactive restoration of files from a dump tape. After reading in the directory
information from the tape, restore provides a shell like interface that allows the user to move around
the directory tree selecting files to be extracted. The available commands are given below; for those
commands that require an argument, the default is the current directory.

Is [arg] - List the current or specified directory. Entries that are directories are appended with a "I".
Entries that have been marked for extraction are prepended with a "*". If the verbose key is
set the inode number of each entry is also listed.

cd arg - Change the current working directory to the specified argument.

pwd - Print the full pathname of the current working directory.

add [arg] - The current directory or specified argument is added to the list of files to be extracted If
a directory is specified, then it and all its descendents are added to the extraction list (unless

March 27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

RESTORE(8) UNIX Programmer's Manual RESTORE(8)

the h key is specified on the command line). Files that are on the extraction list are prepended
with a "*" when they are listed by Is.

delete [arg] - The current directory or specified argument is deleted from the list of files to be
extracted. If a directory is specified, then it and all its descendents are deleted from the extrac­
tion list (unless the h key is specified on the command line). The most expedient way to
extract most of the files from a directory is to add the directory to the extraction list and then
delete those files that are not needed.

extract - All the files that are on the extraction list are extracted from the dump tape. Restore will
ask which volume the user wishes to mount. The fastest way to extract a few files is to start
with the last volume, and work towards the first volume.

setmocies - All the directories that have been added to the extraction list have their owner, modes,
and times set; nothing is extracted from the tape. This is useful for cleaning up after a restore
has been prematurely aborted.

verbose - The sense of the v key is toggled. When set, the verbose key causes the Is command to
list the inode numbers of all entries. It also causes restore to print out information about each
file as it is extracted.

help - Ust a summary of the available commands.

quit - Restore immediately exits, even if the extraction list is not empty.

The following characters may be used in addition to the letter that selects the function desired.

b The next argument to restore is used as the block size of the tape (in kilobytes). If the ·b option is
not specified, restore tries to determine the tape block size dynamically.

r The next argument to restore is used as the name of the archive instead of Idev/rmt? If the name of
the file is "-", restore reads from standard input. Thus, dump(8) and restore can be used in a
pipeline to dump and restore a file system with the command

dump Of -/usr I (cd Imnt; restore xf -)

v Normally restore does its work silently. The v (verbose) key causes it to type the name of each file
it treats preceded by its file type.

y Restore will not ask whether it should abort the restore if gets a tape error. It will always try to skip
over the bad tape block(s) and continue as best it can.

m Restore will extract by inode numbers rather than by filename. This is useful if only a few files are
being extracted, and one wants to avoid regenerating the complete pathname to the file.

h Restore extracts the actual directory, rather than the files that it references. This prevents hierarchi­
cal restoration of complete subttees from the tape.

s The next argument to restore is a number which selects the file on a multi-file dump tape. File
numbering starts at 1.

DIAGNOSTICS
Complaints about bad key characters.

Complaints if it gets a read error. If y has been specified, or the user responds 4 4y", restore will attempt to
continue the restore.

March 27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

RESTORE(8) UNIX Programmer's Manual RESTORE(8)

FILES

If the dump extends over more than one tape, restore will ask the user to change tapes. If the x or i key
has been specified, restore will also ask which volume the user wishes to mount. The fastest way to
extract a few files is to start with the last volume, and work towards the first volume.

There are numerous consistency checks that can be listed by restore. Most checks are self-explanatory or
can "never happen". Common errors are given below.

Converting to new file system format.
A dump tape created from the old file system has been loaded. It is automatically converted to the
new file system format.

<filename>: not found on tape
The specified filename was listed in the tape directory, but was not found on the tape. This is caused
by tape read errors while looking for the file, and from using a dump tape created on an active file
system.

expected next file <inumber>, got <inumber>
A file that was not listed in the directory showed up. This can occur when using a dump tape created
on an active file system.

Incremental tape too low
When doing incremental restore, a tape that was written before the previous incremental tape, or that
has too Iowan incremental level has been loaded.

Incremental tape too high
When doing incremental restore, a tape that does not begin its coverage where the previous incre­
mental tape left off, or that has too high an incremental level has been loaded.

Tape read error while restoring <filename>
Tape read error while skipping over inode <inumber>
Tape read error while trying to resynchronize

A tape read error has occurred. If a filename is specified, then its contents are probably partially
wrong. If an inode is being skipped or the tape is trying to resynchronize, then no extracted files
have been corrupted, though files may not be found on the tape.

resync restore, skipped <Dum> blocks
After a tape read error, restore may have to resynchronize itself. This message lists the number of
blocks that were skipped over.

ldev/rmt? the default tape drive
Itmplrstdir* file containing directories on the tape.
Itmplrstmode* owner, mode, and time stamps for directories.
Jrestoresymtable information passed between incremental restores.

SEE ALSO

BUGS

rrestore(8C) dump(8), newfs(8), mount(8), mkfs(8)

Restore can get confused when doing incremental restores from dump tapes that were made on active file
systems.

A level zero dump must be done after a full restore. Because restore runs in user code, it has no control
over inode allocation. A full restore must be done to get a new set of directories reflecting the new inode
numbering, even though the contents of the files is unchanged.

March 27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 3

REXECD(8C) UNIX Programmer's Manual REXECD(8C)

NAME
rexecd - remote execution server

SYNOPSIS
letclrexecd

DESCRIPTION
Rexecd is the server for the rexec(3X) routine. The server provides remote execution facilities with
authentication based on user names and passwords.

Rexecd listens for service requests at the port indicated in the "exec" service specification; see ser­
vices(5). When a service request is received the following protocol is initiated:

1) The server reads characters from the socket up to a null ('\0') byte. The resultant string is inter­
preted as an ASCII number, base 10.

2) If the number received in step 1 is non-zero, it is interpreted as the port number of a secondary
stream to be used for the stderr. A second connection is then created to the specified port on the
client's machine.

3) A null terminated user name of at most 16 characters is retrieved on the initial socket.

4) A null terminated, unencrypted password of at most 16 characters is retrieved on the initial socket.

5) A null terminated command to be passed to a shell is retrieved on the initial socket. The length of
the command is limited by the upper bound on the size of the system's argument list.

6) Rexecd then validates the user as is done at login time and, if the authentication was successful,
changes to the user's home directory, and establishes the user and group protections of the user. If
any of these steps fail the connection is aborted with a diagnostic message returned.

7) A null byte is returned on the initial socket and the command line is passed to the normal login
shell of the user. The shell inherits the network connections established by rexecd.

DIAGNOSTICS
Except for the last one listed below, all diagnostic messages are returned on the initial socket, after which
any network connections are closed. An error is indicated by a leading byte with a value of 1 (0 is returned
in step 7 above upon successful completion of all the steps prior to the command execution).

"username too long"
The name is longer than 16 characters.

"password too long"
The password is longer than 16 characters.

"command too long"
The command line passed exceeds the size of the argument list (as configured into the system).

"Login incorrect."
No password file entry for the user name existed.

"Password incorrect."
The wrong was password supplied.

"No remote directory."
The chdir command to the home directory failed

"Try again."
A fork by the server failed.

"<shellname>: ••• "
The user's login shell could not be started. This message is returned on the connection associated with the
stderr, and is not preceded by a flag byte.

May 9, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

REXECD(8C)

SEE ALSO
rexec(3X)

BUGS

UNIX Programmer's Manual REXECD(8C)

Indicating "Login incorrect" as opposed to "Password incorrect" is a security breach which allows peo­
ple to probe a system for users with null passwords.

A facility to allow all data and password exchanges to be encrypted should be present

May 9, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

RLOGIND (8C) UNIX Programmer's Manual RLOGIND (8C)

NAME
rlogind - remote login server

SYNOPSIS
letc/rlogind [-d]

DESCRIPTION
Rlogind is the server for the rlogin(1 C) program. The server provides a remote login facility with authen­
tication based on privileged port numbers from trusted hosts.

Rlogind listens for service requests at the port indicated in the "login" service specification; see ser­
vices(S}. When a service request is received the following protocol is initiated:

1) The server checks the client's source port. If the port is not in the range 0-1023, the server aborts
the connection.

2) The server checks the client's source address and requests the corresponding host name (see
gethostbyaddr(3N), hosts(S} and named(8)}. If the hostname cannot be determined, the dot­
notation representation of the host address is used.

Once the source port and address have been checked, rlogind allocates a pseudo terminal (see pty(4», and
manipulates file descriptors so that the slave half of the pseudo terminal becomes the stdin , stdout , and
stderr for a login process. The login process is an instance of the login(l} program, invoked with the-r
option. The login process then proceeds with the authentication process as described in rshd(8C), but if
automatic authentication fails, it reprompts the user to login as one finds on a standard tenninalline.

The parent of the login process manipulates the master side of the pseduo tenninal, operating as an
intermediary between the login process and the client instance of the rio gin program. In normal operation,
the packet protocol described in pty(4) is invoked to provide "stQ type facilities and propagate interrupt
signals to the remote programs. The login process propagates the client tenninal's baud rate and terminal
type, as found in the environment variable, "TERM"; see environ(7). The screen or window size of the
terminal is requested from the client, and window size changes from the client are propagated to the pseudo
terminal.

DIAGNOSTICS

BUGS

All diagnostic messages are returned on the connection associated with the stderr, after which any network
connections are closed. An error is indicated by a leading byte with a value of 1.

"Try again."
A fork by the server failed.

"lbinlsh: ... "
The user's login shell could not be started.

The authentication procedure used here assumes the integrity of each client machine and the connecting
medium. This is insecure, but is useful in an "open" environment.

A facility to allow all data exchanges to be encrypted should be present.

A more extensible protocol should be used.

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

RMT(8C) UNIX Programmer's Manual RMT(8C)

NAME
rmt - remote magtape protocol module

SYNOPSIS
fete/rmt

DESCRIPTION
Rmt is a program used by the remote dump and restore programs in manipulating a magnetic tape drive
through an interprocess communication connection. Rmt is normally started up with an rexec(3X) or
rcmd(3X) call.

The rmt program accepts requests specific to the manipulation of magnetic tapes, performs the commands,
then responds with a status indication. All responses are in ASCII and in one of two forms. Successful
commands have responses of

Anumber\n

where number is an ASCII representation of a decimal number. Unsuccessful commands are responded to
with

Eerror-numbennerror-message\n,

where error-number is one of the possible error numbers described in intro(2) and error-message is the
corresponding error string as printed from a call to. perror(3). The protocol is comprised of the following
commands (a space is present between each token).

o device mode Open the specified device using the indicated mode. Device is a full pathname and mode'
is an ASCII representation of a decimal number suitable for passing to open(2). If a
device had already been opened, it is closed before a new open is performed.

C device Cose the currently open device. The device specified is ignored

L whence otTset Perform an lseek(2) operation using the specified parameters. The response value is that
returned from the Iseek call.

Wcount

Rcount

I operation count

Write data onto the open device. Rmt reads count bytes from the connection, aborting if
a premature end-of-file is encountered. The response value is that returned from the
write(2) call.

Read count bytes of data from the open device. If count exceeds the size of the data
buffer (10 kilobytes), it is truncated to the data buffer size. Rmt then performs the
requested read(2) and responds with Acount-read\n if the read was successful; other­
wise an error in the standard format is returned. If the read was successful, the data read
is then sent.

Perform a MTIOCOP ioctl(2) command using the specified parameters. The parameters
are interpreted as the ASCII representations of the decimal values to place in the mt_op
and mt _count fields of the structure used in the ioctl call. The return value is the count
parameter when the operation is successful.

S Return the status of the open device, as obtained with a MTIOCGET ioctl call. If the
operation was successful, an "ack" is sent with the size of the status buffer, then the
status buffer is sent (in binary).

Any other command causes rmt to exit.

DIAGNOSTICS
All responses are of the form described above.

SEE ALSO
rcmd(3X), rexec(3X), mtio(4), rdump(8C), rrestore(8C)

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

RMT(8C) UNIX Programmer's Manual . RMT(8C)

BUGS
People tempted to use this for a remote file access protocol are discouraged.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2

ROUTE (8C) UNIX Programmer's Manual ROUTE (8C)

NAME
route - manually manipulate the routing tables

SYNOPSIS
/etc/route [options] [command args]

DESCRIPTION
Route is a program used to manually manipulate the network routing tables. It normally is not needed, as
the system routing table management daemon, routed(8C), should tend to this task.

Route accepts two commands: add, to add a route, and delete, to delete a route.

All commands have the following syntax:

/etc/route command [net I host] destination gateway [metric]

where destination is the destination host or network, gateway is the next-hop gateway to which packets
should be addressed, and metric is a count indicating the number of hops to the destination. The metric is
required for add commands; it must be zero if the destination is on a directly-attached network, and
nonzero if the route utilizes one or more gateways. If adding a route with metric 0, the gateway given is
the address of this host on the common network, indicating the interface to be used for transmission.
Routes to a particular host are distinguished from those to a network by interpreting the Internet address
associated with destination. The optional keywords net and host force the destination to be interpreted as
a network or a host, respectively. Otherwise, if the destination has a "local address part" of
INADDR _ANY, or if the destination is the symbolic name of a network, then the route is assumed to be to
a network; otherwise, it is presumed to be a route to a host. If the route is to a destination connected via a
gateway, the metric should be greater than O. All symbolic names specified for a destination or gateway
are looked up first as a host name using gethostbyname(3N). If this lookup fails, getnetbyname(3N) is
then used to interpret the name as that of a network.

Route uses a raw socket and the SIOCADDRT and SIOCDELRT ioctl's to do its work. As such, only the
super-user may modify the routing tables.

OPTIONS
-f Tells Route to "flush" the routing tables of all gateway entries. If this is used in conjunction with

one of the commands described above, the tables are flushed prior to the command's application.

-n Prevents attempts to print host and network names symbolically when reporting actions.

DIAGNOSTICS
"add [host I network] %s: gateway %s flags %x"
The specified route is being added to the tables. The values printed are from the routing table entry sup­
plied in the ioctl call. If the gateway address used was not the primary address of the gateway (the first one
returned by gethostbyname), the gateway address is printed numerically as well as symbolically.

"delete [host I network] %5: gateway %5 flags %x"
As above, but when deleting an entry.

"%5 %s done"
When the -I flag is specified, each routing table entry deleted is indicated with a message of this form.

"Network is unreachable"
An attempt to add a route failed because the gateway listed was not on a directly-connected network. The
next-hop gateway must be given.

"not in table"
A delete operation was attempted for an entry which wasn't present in the tables.

"routing table overflow"
An add operation was attempted, but the system was low on resources and was unable to allocate memory
to create the new entry.

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

ROUTE(8C) UNIX Programmer's Manual ROUTE(8C)

SEE ALSO
intro(4N), routed(8C), XNSrouted(8C)

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

ROUTED(8C) UNIX Programmer's Manual ROUTED(8C)

NAME
routed - network routing daemon

SYNOPSIS
letc/routed [options] [logfile]

DESCRIPTION
Routed is invoked at boot time to manage the network routing tables. The routing daemon uses a variant
of the Xerox NS Routing Information Protocol in maintaining up to date kernel routing table entries. It
used a generalized protocol capable of use with multiple address types, but is currently used only for Inter­
net routing within a cluster of networks.

In normal operation routed listens on the udp(4P) socket for the route service (see services(5» for routing
information packets. If the host is an internetwork router, it periodically supplies copies of its routing
tables to any directly connected hosts and networks.

When routed is started, it uses the SIOCGIFCONF ioetl to find those directly connected interfaces
configured into the system and marked "up" (the software loopback interface is ignored). If multiple
interfaces are present, it is assumed that the host will forward packets between networks. Routed then
transmits a request packet on each interface (using a broadcast packet if the interface supports it) and
enters a loop, listening for request and response packets from other hosts.

When a request packet is received, routed formulates a reply based on the information maintained in its
internal tables. The response packet generated contains a list of known routes, each marked with a "hop
count" metric (a count of 16, or greater, is considered "infinite"). The metric associated with each route
returned provides a metric relative to the sender.

Response packets received by routed are used to update the routing tables if one of the following condi­
tions is satisfied:

(1) No routing table entry exists for the destination network or host, and the metric indicates the desti­
nation is "reachable" (i.e. the hop count is not infinite).

(2) The source host of the packet is the same as the router in the existing routing table entry. That is,
updated information is being received from the very internetwork router through which packets
for the destination are being routed.

(3) The existing entry in the routing table has not been Updated for some time (defined to be 90
seconds) and the route is at least as cost effective as the current route.

(4) The new route describes a shorter route to the destination than the one currently stored in the rout­
ing tables; the metric of the new route is compared against the one stored in the table to decide
this.

When an update is applied, routed records the change in its internal tables and updates the kernel routing
table. The change is reflected in the next response packet sent

In addition to processing incoming packets, routed also periodically checks the routing table entries. If an
entry has not been updated for 3 minutes, the entry's metric is set to infinity and marked for deletion. Dele­
tions are delayed an additional 60 seconds to insure the invalidation is propagated throughout the local
internet

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds to all directly
connected hosts and networks. The response is sent to the broadcast address on nets capable of that func­
tion, to the destination address on point-to-point links, and to the router's own address on other networks.
The normal routing tables are bypassed when sending gratuitous responses. The reception of responses on
each network is used to determine that the network and interface are functioning correctly. If no response
is received on an interface, another route may be chosen to route around the interface, or the route may be
dropped if no alternative is available.

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

ROUTED(8C) UNIX Programmer's Manual ROUTED(8C)

In addition to the facilities described above in and in the OPTIONS section, routed supports the notion of
"distant" passive and active gateways. When routed is started up, it reads the file fete/gateways to find
gateways which may not be located using only information from the SIOGIFCONF ioctl. Gateways
specified in this manner should be marked passive if they are not expected to exchange routing informa­
tion, while gateways marked active should be willing to exchange routing information (Le. they should
have a routed process running on the machine). Passive gateways are maintained in the routing tables for­
ever and infonnation regarding their existence is included in any routing information transmitted. Active
gateways are treated equally to network interfaces. Routing information is distributed to the gateway and if
no routing information is received for a period of the time, the associated route is deleted. External gate­
ways are also passive, but are not placed in the kernel routing table nor are they included in routing
updates. The function of external entries is to inform routed that another routing process will install such a
route, and that alternate routes to that destination should not be installed. Such entries are only required
when both routers may learn of routes to the same destination.

The fetcfgateways file comprises a series of lines, each in the following format:

< net I host> name} gateway name2 metric value < passive I active I external>

The net or host keyword indicates if the route is to a network or specific host.

N arne} is the name of the destination network or host. This may be a symbolic name located in
fetc/networks or fetc/hosts (or, if started after named(8), known to the name server), or an Internet address
specified in "dot" notation; see inet(3N).

Name2 is the name or address of the gateway to which messages should be forwarded.

Value is a metric indicating the hop count to the destination host or network.

One of the keywords passive, active or external indicates if the gateway should be treated as passive or
active (as described above), or whether the gateway is external to the scope of the routed protocol.

Internetwork: routers that are directly attached to the Arpanet or Milnet should use the Exterior Gateway
Protocol (EGP) to gather routing information rather then using a static routing table of passive gateways.
EGP is required in order to provide routes for local networks to the rest of the Internet system. Sites need­
ing assistance with such configurations should contact the Computer Systems Research Group at Berkeley.

Any argument supplied other than the options listed below is interpreted by routed.8c as the name of a file
in which routed's actions should be logged. This log contains information about any changes to the rout­
ing tables and, if not tracing all packets, a history of recent messages sent and received which are related to
the changed route.

OPTIONS

FILES

-d Enable additional debugging information to be logged, such as bad packets received.

-g Used on internetwork routers to offer a route to the "default" destination. This is typically used
on a gateway to the Internet, or on a gateway that uses another routing protocol whose routes are
not reported to other local routers.

-s Supplying this option forces routed to supply routing information whether it is acting as an inter­
network router or not. This is the default if multiple network interfaces are present, or if a point­
to-point link is in use.

-q Does the opposite of the -s option.

-t Prints on the standard output all packets sent or received. In addition, routed will not divorce
itself from the controlling terminal so that interrupts from the keyboard will kill the process.

fetc/gateways for distant gateways

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

ROUTED(8C) UNIX Programmer's Manual ROUTED(8C)

SEE ALSO

DUGS

"Internet Transport Protocols" , XSIS 028112, Xerox System Integration Standard.
udp(4P), XNSrouted(8C), htable(8)

The kernel's routing tables may not correspond to those of routed when redirects change or add routes.
The only remedy for this is to place the routing process in the kernel.

Routed should incorporate other routing protocols, such as Xerox NS (XNSrouted(8C» and EGP. Using
separate processes for each requires configuration options to avoid redundant or competing routes.

Routed should listen to intelligent interfaces, such as an IMP, and to error protocols, such as ICMP, to
gather more information. It does not always detect unidirectional failures in network interfaces (e.g., when
the output side fails).

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 3

RRESTORE (8C) UNIX Programmer's Manual

NAME
rrestore - restore a file system dump across the network

SYNOPSIS
I etclrrestore [key [name '"]

DESCRIPTION

RRESTORE (8C)

Rrestore obtains from magnetic tape files saved by a previous dump(8), The command is identical in
operation to restore(8) except the f key should be specified and the file supplied should be of the fonn
machine :device .

Rrestore creates a remote server, letclrmt, on the client machine to access the tape device.

SEE ALSO
restore(8), rmt(8C)

DIAGNOSTICS
Same as restore(8) with a few extra related to the network.

June 3, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

RSHD(8C) UNIX Programmer's Manual RSHD(8C)

NAME
rshd - remote shell server

SYNOPSIS
letc/rshd

DESCRIPTION
Rshd is the server for the rcmd(3X) routine and, consequently, for the rsh(1C) program. The server pro­
vides remote execution facilities with authentication based on privileged port numbers from trusted hosts.

Rshd listens for service requests at the port indicated in the "cmd" service specification; see services(5).
When a service request is received the following protocol is initiated:

1) The server checks the client's source port. If the port is not in the range 0-1023, the server aborts
the connection.

2) The server reads characters from the socket up to a null ('\0') byte. The resultant string is inter­
preted as an ASCII number, base 10.

3) If the number received in step 1 is non-zero, it is interpreted as the port number of a secondary
stream to be used for the stderr. A second connection is then created to the specified port on the
client's machine. The source port of this second connection is also in the range 0-1023.

4) The server checks the client's source address and requests the corresponding host name (see
gethostbyaddr(3N), hosts(5) and named(8». If the hostname cannot be determined, the dot­
notation representation of the host address is used.

5) A null terminated user name of at most 16 characters is retrieved on the initial socket. This user
name is interpreted as the user identity on the client's machine.

6) A null terminated user name of at most 16 characters is retrieved on the initial socket. This user
name is interpreted as a user identity to use on the server's machine.

7) A null terminated command to be passed to a shell is retrieved on the initial socket. The length of
the command is limited by the upper bound on the size of the system's argument list.

8) Rshd then validates the user according to the following steps. The local (server-end) user name is
looked up in the password file and a chdir is perfonned to the user's home directory. If either the
lookup or chdir fail, the connection is terminated If the user is not the super-user, (user id 0), the
file letc/hosts.equiv is consulted for a list of hosts considered "equivalent". If the client's host
name is present in this file, the authentication is considered successful. If the lookup fails, or the
user is the super-user, then the file .rhosts in the home directory of the remote user is checked for
the machine name and identity of the user on the client's machine. If this lookup fails, the con­
nection is terminated.

9) A null byte is returned on the initial socket and the command line is passed to the normal login
shell of the user. The shell inherits the network connections established by rshd.

DIAGNOSTICS
Except for the last one listed below, all diagnostic messages are returned on the initial socket, after which
any network connections are closed. An error is indicated by a leading byte with a value of 1 (0 is returned
in step 9 above upon successful completion of all the steps prior to the execution of the login shell).

"Iocuser too long"
The name of the user on the client's machine is longer than 16 characters.

"rem user too long"
The name of the user on the remote machine is longer than 16 characters.

"command too long"
The command line passed exceeds the size of the argument list (as configured into the system).

May 24,1986 INTEGRATED SOLUTIONS 4.3 BSD 1

RSHD(8C) UNIX Programmer's Manual RSHD(8C)

"Login incorrect."
No password file entry for the user name existed.

"No remote directory."
The chdir command to the home directory failed

"Permission denied."
The authentication procedure described above failed.

"Can't make pipe."
The pipe needed for the stderr, wasn't created.

"Try again."
A rork by the server failed.

"<shellname>: ••• "
The user's login shell could not be started. This message is returned on the connection associated with the
stderr, and is not preceded by a flag byte.

SEE ALSO
rsh(IC),rcmd(3X)

BUGS

The authentication procedure used here assumes the integrity of each client machine and the connecting
medium. This is insecure, but is useful in an "open" environment.

A facility to allow all data exchanges to be encrypted should be present.

A more extensible protocol should be used.

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

RWHOD(8C) UNIX Programmer's Manual RWHOD(8C)

NAME
rwhod - system status server

SYNOPSIS
letclrwhod

DESCRIPTION
Rwhod is the server which maintains the database used by the rwho(1C) and ruptime(lC) programs. Its
operation is predicated on the ability to broadcast messages on a network.

Rwhod operates as both a producer and consumer of status information. As a producer of information it
periodically queries the state of the system and constructs status messages which are broadcast on a net­
work. As a consumer of information, it listens for other rwhod servers' status messages, validating them,
then recording them in a collection of files located in the directory /usr/spooVrwho.

The server transmits and receives messages at the port indicated in the "rwho" service specification; see
services(5). The messages sent and received, are of the form:

struct outmp {
char out_line[8];/* tty name */
char out_name[8];/* user id */
long out_ time;/* time on */

};

struct whod {
char wd _ vers;
char wd_type;
char wd _ fill[2];
int wd _sendtime;
int wd _recvtime;
char wd_hostname[32];
int wd_Ioadav[3];
int wd_boottime;
struct whoent {

struct outmp we _ utmp;
int weJdle;

} wd _ we[1024 / sizeof (struct whoent)];
};

All fields are converted to network byte order prior to transmission. The load averages are as calculated by
the w(l) program, and represent load averages over the 5, 10, and 15 minute intervals prior to a server's
transmission; they are multiplied by 100 for representation in an integer. The host name included is that
returned by the gethostname(2) system call, with any trailing domain name omitted. The array at the end
of the message contains information about the users logged in to the sending machine. This information
includes the contents of the utmp(5) entry for each non-idle terminal line and a value indicating the time in
seconds since a character was last received on the terminal line.

Messages received by the rwho server are discarded unless they originated at an rwho server's port In
addition, if the host's name, as specified in the message, contains any unprintable ASCII characters, the
message is discarded. Valid messages received by rwhod are placed in files named whod.hostname in the
directory /usr/spoo1lrwho. These files contain only the most recent message, in the format described
above.

Status messages are generated approximately once every 3 minutes. Rwhod performs an nlist(3) on
Ivrnunix every 30 minutes to guard against the possibility that this file is not the system image currently
operating.

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

RWHOD(8C) UNIX Programmer's Manual RWHOD(8C)

SEE ALSO
rwho(1C), ruptime(1C)

BUGS
There should be a way to relay status information between networks. Status information should be sent
only upon request rather than continuously. People often interpret the server dying or network communti­
cation failures as a machine going down.

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

RXFORMAT(8V) UNIX Programmer's Manual RXFORMAT(8V)

NAME
rxformat - format floppy disks

SYNOPSIS
letc/rxformat [options] special

DESCRIPTION
The rx(ormat program formats a diskette in the specified drive associated with the special device special.
(Special is normally /dev/rxO, for drive 0, or /dev/rxl, for drive 1.) By default, the diskette is formatted
single density; a -d flag may be supplied to force double density formatting. Single density is compatible
with the mM 3740 standard (128 bytes/sector). In double density, each sector contains 256 bytes of data.

Before formatting a diskette rx(ormat prompts for verification if standard input is a tty (this allows a user
to cleanly abort the operation; note that formatting a diskette will destroy any existing data). Formatting is
done by the hardware. All sectors are zero-filled.

OPTIONS
-d Forces double density formatting.

DIAGNOSTICS
'No such device' means that the drive is not ready, usually because no disk is in the drive or the drive door
is open. Other error messages are self explanatory .

FILES
/dev/rx?

SEE ALSO
rx(4V)

BUGS
A lloppy may not be formatted if the header info on sector 1, track 0 has been damaged. Hence, it is not
possible to format a completely degaussed disk. (This is actually a problem in the hardware.)

June 3, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

SA(8) UNIX Programmer's Manual SA(8)

NAl'vIE
sa, aeeton - system accounting

SYNOPSIS
/etc/sa [options] [-S savacctfile] [-U usracctfile] [file]

/ete/aectoD [file]

DESCRIPTION
With an argument naming an existing file, accton causes system accounting information for every process
executed to be placed at the end of the file. If no argument is givent accounting is turned off.

Sa reports Oflt cleans UPt and generally maintains accounting files.

Sa is able to condense the information in lusr/adm/acct into a summary file lusr/admlsavacct which con­
tains a count of the number of times each command was called and the time resources consumed. This
condensation is desirable because on a large system lusr/adrn/acct can grow by 100 blocks per day. The
summary file is normally read before the accounting filet so the reports include all available information.

If a filename is given as the last argumen~ that file will be treated as the accounting file; lusr/admlacct is
the default

Output fields are labeled: "cpu" for the sum of user+system time (in minutes)t "re" for real time (also in
minutes)t "k" for cpu-time averaged core usage (in Ik units)t "avio" for average number of ito operations
per execution. With options fields labeled "tio" for total ito operations, "k*sec" for cpu storage integral
(kilo-core seconds), "u" and "s" for user and system cpu time alone (both in minutes) will sometimes
appear.

OPTIONS
-a Print all command names, even those containing unprintable characters and those used only once.

By defaul~ those are placed under the name '***other.'

-b Sort output by sum of user and system time divided by number of calls. Default sort is by sum of
user and system times.

-c Besides total user, system, and real time for each command print percentage of total time over all
commands.

-d Sort by average number of disk ito operations.

-D Print and sort by total number of disk ito operations.

-r Force no interactive threshold compression with -v flag.

-i Don't read in summary file.

-j Instead of total minutes time for each category, give seconds per call.

-k Sort by cpu-time average memory usage.

-K Print and sort by cpu-storage integral.

-I Separate system and user time; normally they are combined.

-m Print number of processes and number of CPU minutes for each user.

-D Sort by number of calls.

-r Reverse order of sort.

-s Merge accounting file into summary file lusr/admlsavacct when done.

-t For each command report ratio of real time to the sum of user and system times.

-u Superseding all other ftagSt print for each command in the accounting file the user ID and corn-
rnandname.

-v Followed by a number n, types the name of each command used n times or fewer. Await a reply

July 29, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

SA(8)

FILES

UNIX Programmer's Manual SA(8)

from the terminal; if it begins with 'y', add the command to the category '**junk.**.' This is used
to strip out garbage.

-S The following filename is used as the command summary file instead of /usr/adrnlsavacct.

-U The following filename is used instead of /usr/adrn/usracct to accumulate the per-user statistics
printed by the -m option.

/usr/adrnlacct
/usr/adrnlsavacct
/usr/adrnlusracct

raw accounting
summary
per-user summary

SEE ALSO
ac(8), acct(2)

BUGS
This program has too many options.

July 29, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2

SA VECORE (8) UNIX Programmer's Manual SA VECORE (8)

NAME
savecore - save a core dump of the operating system

SYNOPSIS
letc/savecore dirname [system]

DESCRIPTION

FILES

BUGS

Savecore is meant to be called near the end of the /etc/rc file. Its function is to save the core dump of the
system (assuming one was made) and to write a reboot message in the shutdown log.

Savecore checks the core dump to be certain it corresponds with the current running unix. If it does it
saves the core image in the file dirname /vmcore.n and its brother, the namelist, dirname /vmunix.n The
trailing ".n" in the pathnames is replaced by a number which grows every time savecore is run in that direc­
tory.

Before savecore writes out a core image, it reads a number from the file dirname/minfree. If the number of
free kilobytes on the file system which contains dirname is less than the number obtained from the minfree
file, the core dump is not saved. If the minfree file does not exist, savecore always writes out the core file
(assuming that a core dump was taken).

Savecore also logs a reboot message using facility LOG_AUTH (see syslog(3)) If the system crashed as a
result of a panic, savecore logs the panic string too.

If the core dump was from a system other than /vmunix, the name of that system must be supplied as
sysname.

/vmunix current UNIX

Savecore can be fooled into thinking a core dump is the wrong size.

May 24,1986 INTEGRATED SOLUTIONS 4.3 BSD 1

SCSIMON (81)

NAME
scsimon - lSI SCSI bus utility

SYNOPSIS
letc/scsimon

DESCRIPTION

UNIX Programmer's Manual SCSIMON (81)

scsimon is a menu-based, stand-alone SCSI monitor utility for system administration. It allows you to
manipulate or send commands to the SCSI devices. This program is useful in writing device drivers or
testing new SCSI devices.

SEE ALSO
SCSI ANSI Specification
VME-SCSI Hardware Reference Manual

15 April 1988 INTEGRATED SOLUTIONS 4.3 BSD

SENDMAIL (8) UNIX Programmer's Manual SENDMAIL (8)

NAME
sendmail - send mail over the internet

SYNOPSIS
fusrflibfsendmail [flags] [address ...]

newaliases

mailq [-v]

DESCRIPTION
Sendmail sends a message to one or more recipients, routing the message over whatever networks are
necessary. Sendmail does internetwork forwarding as necessary to deliver the message to the correct
place.

Sendmail is not intended as a user interface routine; other programs provide user-friendly front ends; send­
mail is used only to deliver pre-fonnatted messages.

With no flags, sendmail reads its standard input up to an end-of-file or a line consisting only of a single dot
and sends a copy of the message found there to all of the addresses listed. It detennines the network(s) to
use based on the syntax and contents of the addresses.

Local addresses are looked up in a file and aliased appropriately. Aliasing can be prevented by preceding
the address with a backslash. Nonnally the sender is not included in any alias expansions, e.g., if 'john'
sends to 'group', and 'group' includes 'john' in the expansion, then the letter will not be delivered to
'john'.

Flags are:

-ba

-bd

-bi

-bm

-bp

-bs

-bt

-bv

-bz

-Cfile

-<IX

-Ffullname

-fname

-bN

October 26, 1987

Go into ARPANET mode. All input lines must end with a CR-LF, and all messages
will be generated with a CR-LF at the end. Also, the "From:" and "Sender:" fields
are examined for the name of the sender.

Run as a daemon. This requires Berkeley IPC. Sendmail will fork and run in back­
ground listening on socket 25 for incoming SMlP connections. This is normally run
from fete/re.

Initialize the alias database.

Deliver mail in the usual way (default).

Print a listing of the queue.

Use the SMTP protocol as described in RFC821 on standard input and output. This
flag implies all the operations of the -ba flag that are compatible with SMTP.

Run in address test mode. This mode reads addresses and shows the steps in parsing;
it is used for debugging configuration tables.

Verify names only - do not try to collect or deliver a message. Verify mode is nor­
mally used for validating users or mailing lists.

Create the configuration freeze file.

Use alternate configuration file. Sendmail refuses to run as root if an alternate
configuration file is specified. The frozen configuration file is bypassed.

Set debugging value to X.

Set the full name of the sender.

Sets the name of the "from" person (Le., the sender of the mail). -f can only be used
by "trusted" users (normally root, daemon, and network) or if the person you are try­
ing to become is the same as the person you are.

Set the hop count to N. The hop count is incremented every time the mail is

INTEGRATED SOLUTIONS 4.3 BSD 1

SENDMAIL (8)

-0

-ox value

-q[time]

-rname

-t

UNIX Programmer's Manual SENDMAIL (8)

processed. When it reaches a limit, the mail is returned with an error message, the
victim of an aliasing loop. If not specified, "Received:" lines in the message are
counted.

Don't do aliasing.

Set option x to the specified value. Options are described below.

Processed saved messages in the queue at given intervals. If time is omitted, process
the queue once. Time is given as a tagged number, with's' being seconds, 'm' being
minutes, 'h' being hours, 'd' being days, and 'w' being weeks. For example,
"-qlh30m" or "-q90m" would both set the timeout to one hour thirty minutes. If
time is specified, seodmail will run in background. This option can be used safely
with-bd.

An alternate and obsolete form of the -r flag.

Read message for recipients. To:, Cc:, and Bcc: lines will be scanned for recipient
addresses. The Bcc: line will be deleted before transmission. Any addresses in the
argument list will be suppressed, that is, they will not receive copies even if listed in
the message header.

-v Go into verbose mode. Alias expansions will be announced, etc.

There are also a number of processing options that may be set. Normally these will only be used by a sys­
tem administrator. Options may be set either on the command line using the -0 flag or in the configuration
file. These are described in detail in the Sendmail Installation and Operation Guide. The options are:

Afile Use alternate alias file.

c

dx

D

ex

Fmode

f

gN

Hfile

Ln

m

o

October 26, 1987

On mailers that are considered "expensive" to connect to, don't initiate immediate
connection. This requires queueing.

Set the delivery mode to x. Delivery modes are 'i' for interactive (synchronous)
delivery, 'b' for background (asynchronous) delivery, and 'q' for queue only - i.e.,
actual delivery is done the next time the queue is run.

Try to automatically rebuild the alias database if necessary.

Set error processing to mode x. Valid modes are 'm' to mail back the error message,
'w' to "write" back the error message (or mail it back if the sender is not logged in),
'p' to print the errors on the terminal (default), 'q' to throwaway error messages
(only exit status is returned), and 'e' to do special processing for the BerkNet. If the
text of the message is not mailed back by modes 'm' or 'w' and if the sender is local
to this machine, a copy of the message is appended to the file "dead.letter" in the
sender's home directory.

The mode to use when creating temporary files.

Save UNIX-style From lines at the front of messages.

The default group id to use when calling mailers.

The SMTP help file.

Do not take dots on a line by themselves as a message terminator.

The log level.

Send to "me" (the sender) also if I am in an alias expansion.

If set, this message may have old style headers. If not set, this message is guaranteed
to have new style headers (i.e., commas instead of spaces between addresses). If set,
an adaptive algorithm is used that will correctly determine the header format in most
cases.

INTEGRATED SOLUTIONS 4.3 BSD 2

SENDMAIL (8) UNIX Programmer's Manual SENDMAIL (8)

FILES

Qqueuedir

rtimeout

Select the directory in which to queue messages.

The timeout on reads; if none is set, sendmail will wait forever for a mailer. This
option violates the word (if not the intent) of the SMTP specification, show the
timeout should probably be fairly large.

Sfile Save statistics in the named file.

s Always instantiate the queue file, even under circumstances where it is not strictly
necessary. This provides safety against system crashes during delivery.

Ttime Set the timeout on undelivered messages in the queue to the specified time. After
delivery has failed (e.g., because of a host being down) for this amount of time, failed
messages will be returned to the sender. The default is three days.

tstz,dtz

uN

Set the name of the time zone.

Set the default user id for mailers.

In aliases, the first character of a name may be a vertical bar to cause interpretation of the rest of the name
as a command to pipe the mail to. It may be necessary to quote the name to keep sendmail from suppress­
ing the blanks from between arguments. For example, a common alias is:

msgs: "I/usr/ucb/msgs -s"

Aliases may also have the syntax ":includeifilename" to ask sendmail to read the named file for a list of
recipients. For example, an alias such as:

poets: ":include:/usr/local/lib/poets.list"

would read lusrllocalllibipoets.list for the list of addresses making up the group.

Sendmail returns an exit status describing what it did. The codes are defined in <sysexits.h>
EX_OK
EX_NOUSER
EX_UNA V AILABLE
EX_SYNTAX
EX_SOFrW ARE
EX_OSERR
EX_NOHOST
EX_TEMPFAIL

Successful completion on all addresses.
User name not recognized.
Catchall meaning necessary resources were not available.
Syntax error in address.
Internal software error, including bad arguments.
Temporary operating system error, such as "cannot fork".
Host name not recognized.
Message could not be sent immediately, but was queued.

If invoked as newaliases, sendmail will rebuild the alias database. If invoked as mailq, sendmail will
print the contents of the mail queue.

Except for /usr/lib/mail/sendmail.cf, these pathnames are all specified in /usr/lib/mail/sendmail.cf. Thus,
these values are only approximations.

/usr/lib/mail/aliases raw data for alias names
/usr/lib/mail/aliases. pag
/usr/lib/mail/aliases.dir data base of alias names
/usr/lib/mail/sendmaiI.cf configuration file
/usr/lib/maiI/sendmaiI.fc frozen configuration
/usr/lib/mail/sendmail.hf help file
/usr/lib/mail/sendmail.st collected statistics
/usr/spool/mqueue/* temp files

SEE ALSO
binmail(l), mail(1), rmail(l), syslog(3), aliases(5), sendmail.ef(5), mailaddr(7), re(8);
DARPA Internet Request For Comments RFC819, RFC821 , RFC822;
Sendmai/- An Internetwork Mail Router (SMM: 16);

October 26, 1987 INTEGRATED SOLUTIONS 4.3 BSD 3

SENDMAIL (8) UNIX Programmer's Manual SENDMAa(8)

Sendmail Installation and Operation Guide (SMM:7)

October 26, 1987 INTEGRATED SOLUTIONS 4.3 BSD 4

SHUTDOWN (8) UNIX Programmer's Manual SHUTDOWN (8)

NAME
shutdown - close down the system at a given time

SYNOPSIS
letdshutdown [options] time [warning-message ...]

DESCRIPTION
Shutdown provides an automated shutdown procedure which a super-user can use to notify users nicely
when the system is shutting down, saving them from system administrators, hackers, and gurus, who would
otherwise not bother with niceties.

Time is the time at which shutdown will bring the system down and may be the word now (indicating an
immediate shutdown) or specify a future time in one of two formats: +number and hour:min. The first
form brings the system down in number minutes and the second brings the system down at the time of day
indicated (as a 24-hour clock).

At intervals which get closer together as apocalypse approaches, warning messages are displayed at the ter­
minals of all users on the system. Five minutes before shutdown, or immediately if shutdown is in less
than 5 minutes, logins are disabled by creating letc/nologin and writing a message there. If this file exists
when a user attempts to log in, Iogin(l) prints its contents and exits. The file is removed just before shut­
down exits.

At shutdown time a message is written in the system log, containing the time of shutdown, who ran shut­
down and the reason. Then a terminate signal is sent to init to bring the system down to single-user state.

The time of the shutdown and the warning message are placed in letc/nologin and should be used to inform
the users about when the system will be back up and why it is going down (or anything else).

OPTIONS

FILES

-f

-h

Makes shutdown arrange, in the manner of fastboot(8), that when the system is rebooted the file
systems will not be checked.

Tells shutdown to exec haJt(8).

-k Tells shutdown not to shutdown. You can use this option to make users think the system is shut­
ting down.

-n Prevents the normal sync(2) before stopping.

-r Tells shutdown to exec rebooot(8).

letclnologin tells login not to let anyone log in

SEE ALSO

BUGS

login(I), reboot(8), fastboot(8)

Shutdown lets you to kill the system only between now and 23:59 if you use the absolute time for shut­
down.

May 26,1986 INTEGRATED SOLUTIONS 4.3 BSD 1

SLATTACH(8C) UNIX Programmer's Manual SLATIACH(8C)

NAME
slattach - attach serial lines as network intetfaces

SYOPNSIS
letc/slattach ttyname [baudrate]

DESCRIPTION
Slattach is used to assign a tty line to a network interface, and to define the network source and destination
addresses. The ttyname parameter is a string of the form "ttyXX", or "/dev/ttyXX". The optional bau­
drate parameter is used to set the speed of the connection. If not specified, the default of 9600 is used.

Only the super-user may attach a network intetface.

To detach the interface, use 'ifconfig interface-name down' after killing off the slattach process.
interface-name is the name that is shown by netstat(1)

EXAMPLES

DIAGNOSTICS

letc/slattach ttyh8
letc/slattach Idev/ttyOl 4800

Messages indicating the specified intetface does not exit, the requested address is unknown, the user is not
privileged and tried to alter an interface's configuration.

SEE ALSO
rc(8), intro(4N), netstat(1), ifconfig(8C)

February 17, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

SPCONFIG (8) UNIX Programmer's Manual SPCONFIG (8)

NAME
spconfig - build spanned disk configuration files

SYNOPSIS
/etc/spconfig [-a] [-']

DESCRIPTION

FILES

spconfig creates spanned disks (logical disks) from a dynamically specified group of physical disk parti­
tions. The resulting logical disk has the same interface to the kernel and to a user program as any disk par­
tition. sp (41) describes parameters and procedures for defining spanned disks, including the procedure to
define spanned disks statically in the kernel and bypass the need for spconfig.

spconfig without options prints the currently configured spanned disks. The displayed information includes

The name of the spanned disk (sp[O-3]c)

The component physical disk partitions, listed by major and minor device numbers

spconfig -a attempts to create spanned disks with configuration information in the file fetclsptab. See
sptab (5) for the file format.

This command is ordinarily invoked in the fetclrc file, before calls to mount (8) or fsck (8). The spconfig
command should occur in the first few lines of fete/re.

spconfig normally refuses to configure a spanned disk when one or more of the component partitions has
been previously mounted and used. This safeguards against overwriting data by accidentally using the
wrong partition. The·f option forces spconfig to continue and perform the requested configuration even if
the sp device has been previously configured.

fetclsptab
/etclrc

Span disk configuration table
Autoboot command script

SEE ALSO
sp(40, sptab(5), diskpart(8), rnkfs(8)
UNIX 4.2BSD System Administrator Guide

DIAGNOSTICS

BUGS

spconfig complains when it tries to configure an sp device previously configured either statically or dynam­
ically. The -f option suppresses this complaint.

spconfig is the less preferred of the two methods of defining spanned disks. Static definition in the kernel
has many advantages, such as creating a record of autoboot spanned disk configuration information in
dmesg (8). See sp (41) for details on static definition.

15 July 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

STICKY(8) UNIX Programmer's Manual STICKY(8)

NAME
sticky - persistent text and append-only directories

DESCRIPTION
The sticky bit (file mode bit 01000, see chmod(2» is used to indicate special treatment for certain execut­
able files and directories.

STICKY TEXT EXECUTABLE FILES
While the 'sticky bit' is set on a sharable executable file, the text of that file will not be removed from the
system swap area. Thus the file does not have to be fetched from the file system upon each execution.
Shareable text segments are normally placed in a least-frequently-used cache after use, and thus the 'sticky
bit' has little effect on commonly-used text images.

Sharable executable files are made by the -n and -z options ofld(1).

Only the super-user can set the sticky bit on a sharable executable file.

STICKY DIRECTORIES

BUGS

A directory whose 'sticky bit' is set becomes an append-only directory, or, more accurately, a directory in
which the deletion of files is restricted A file in a sticky directory may only be removed or renamed by a
user if the user has write permission for the directory and the user is the owner of the file, the owner of the
directory, or the super-user. This feature is usefully applied to directories such as Itmp which must be pub­
licly writable but should deny users the license to arbitrarily delete or rename each others' files.

Any user may create a sticky directory. See chmod(l) for details about modifying file modes.

Since the text areas of sticky text executables are stashed in the swap area, abuse of the feature can cause a
system to run out of swap.

Neither open(2) nor mkdir(2) will create a file with the sticky bit set.

May 26, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

SWAPON(8) UNIX Programmer's Manual SWAPON(8)

NAME
swapon - specify additional device for paging and swapping

SYNOPSIS
letc/swapon -a
letc/swapon name ...

DESCRIPTION
Swapon is used to specify additional devices on which paging and swapping are to take place. The system
begins by swapping and paging on only a single device so that only one disk is required at bootstrap time.
Calls to swapon normally occur in the system multi-user initialization file letc/rc making all swap devices
available, so that the paging and swapping activity is interleaved across several devices.

Normally, the -a argument is given, causing all devices marked as "sw" swap devices in letclfstab to be
made available.

The second form gives individual block devices as given in the system swap configuration table. The call
makes only this space available to the system for swap allocation.

SEE ALSO

FILES

BUGS

swapon(2), init(8)

ldev/[ru][pk]?b normal paging devices

There is no way to stop paging and swapping on a device. It is therefore not possible to make use of dev­
ices which may be dismounted during system operation.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

SYNC (8)

NAME
sync - update the super block

SYNOPSIS
letclsync

DESCRIPTION

UNIX Programmer's Manual SYNC (8)

Sync executes the sync system primitive. Sync can be called to insure that all disk writes have been com­
pleted before the processor is halted in a way not suitably done by reboot(8) or halt(8). Generally, it is
preferable to use reboot or halt to shut down the system, as they may perform additional actions such as
resynchronizing the hardware clock and flushing internal caches before performing a final sync.

See sync(2) for details on the system primitive.

SEE ALSO
sync(2), fsync(2), haIt(8), reboot(8), update(8)

May 28,1986 INTEGRATED SOLUTIONS 4.3 BSD 1

SYSLOGD(8) UNIX Programmer's Manual SYSLOGD(8)

NAME
syslogd - log systems messages

SYNOPSIS
/etc/syslogd [options]

DESCRIPTION
syslogd reads and logs messages into a set of files described by the configuration file /etc/syslog.conf.
Each message is one line. A message can contain a priority code, marked by a number in angle braces at
the beginning of the line. Priorities are defined in <sysfsyslog.h>. syslogd reads from the UNIX domain
socket fdevflog, from an Internet domain socket specified in fetclservices, and from the special device
fdevfklog (to read kernel messages).

syslogd configures when it starts up and whenever it receives a hangup signal. Lines in the configuration
file have a selector to determine the message priorities to which the line applies and an action. The action
field are separated from the selector by one or more tabs.

Selectors are semicolon separated lists of priority specifiers. Each priority has a/acility describing the part
of the system that generated the message, a dot, and a level indicating the severity of the message. Sym­
bolic names may be used. An asterisk selects all facilities. All messages of the specified level or higher
(greater severity) are selected. More than one facility may be selected using commas to separate them. For
example:

* .emerg;mail,daemon.crit

selects all facilities at the emerg level and the mail and daemon facilities at the critlevel. Priorities should
be listed in descending order, especially if the wild card character * is used to specify facilities; otherwise,
the higher priority will nullify the lower. For example, the line:

auth.notice; * .err

would route only messages of priority err or above, because the wild card character * resets the priority of
auth to err. However, the line:

* .err; auth.notice

which lists priorities in descending order, logs all messages of priority err or higher; additionally, it logs
messages from the authorization facility at priority notice or higher. If you specify a facility more than
once on a line, list the lowest priority specification last.

Known facilities and levels recognized by syslogd are those listed in syslog(3) without the leading
"LOG_". The additional facility "mark" has a message at priority LOG_INFO sent to it every 20
minutes (this may be changed with the -m flag). The' 'mark" facility is not enabled by a facility field con­
taining an asterisk. The level "none" may be used to disable a particular facility. For example,

* .debug;mail.none

Sends all messages except mail messages to the selected file.

The second part of each line describes where the message is to be logged if this line is selected. There are
four forms:

• A filename (beginning with a leading slash). The file will be opened in append mode.

• A hostname preceded by an at sign ("@ "). Selected messages are forwarded to the syslogd on the
named host.

• A comma separated list of users. Selected messages are written to those users if they are logged in.

• An asterisk. Selected messages are written to all logged-in users.

Blank lines and lines beginning with '#' are ignored.

September 6, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1

SYSLOGD(8) UNIX Programmer's Manual SYSLOGD(8)

For example, the configuration file:

kern,mark.debug
* .notice;mai1.info
*.crit
kern.err

/dev /console
/usr/spool/adm/syslog
/usr/adm/critical
@ucbarpa

*.emerg *
* .alert eric,kridle
* .alert;auth. warning ralph

logs all kernel messages and 20 minute marks onto the system console, all notice (or higher) level mes­
sages and all mail system messages except debug messages into the file /usr/spool/adm/syslog, and all criti­
cal messages into /usr/adm/critical; kernel messages of error severity or higher are forwarded to ucbarpa.
All users will be informed of any emergency messages, the users "eric" and "kridle" will be informed of
any alert messages, and the user "ralph" will be informed of any alert message, or any warning message
(or higher) from the authorization system.

To bring syslogd down, it should be sent a terminate signal (e.g. kill 'cat /etc/syslog.pid').

OPTIONS
-f configfile

Specify an alternate configuration file.

-m markinterval
Select the number of minutes between mark messages.

-d Turn on debugging.

syslogd creates the file /etc/syslog.pid, if possible, containing a single line with its process id. This can be
used to kill or reconfigure syslogd.

FILES
/etc/syslog.conf the configuration file
/etc/syslog.pid the process id
/dev/log Name of the UNIX domain datagram log socket
/dev/klog The kernel log device

SEE ALSO
logger(I), syslog(3)

September 6, 1988 INTEGRATED SOLUTIONS 4.3 BSD 2

TALKD(8C) UNIX Programmer's Manual TALKD(8C)

NAME
talkd - remote user communication server

SYNOPSIS
letc/talkd

DESCRIPTION
Talkd is the server that notifies a user that somebody else wants to initiate a conversation. It acts a reposi­
tory of invitations, responding to requests by clients wishing to rendezvous to hold a conversation. In nor­
mal operation, a client, the caller, initiates a rendezvous by sending a CTL _ MSG to the server of type
LOOK_UP (see <protocolsltalkd.h». This causes the server to search its invitation tables to check if an
invitation currently exists for the caller (to speak to the callee specified in the message). If the lookup fails,
the caller then sends an ANNOUNCE message causing the server to broadcast an announcement on the
callee's login ports requesting contact. When the callee responds, the local server uses the recorded invita­
tion to respond with the appropriate rendezvous address and the caller and callee client programs establish
a stream connection through which the conversation takes place.

SEE ALSO
talk(l), write(l)

May 21,1986 INTEGRATED SOLUTIONS 4.3 BSD 1

TELNETD (8C) UNIX Programmer's· Manual TELNETD (8C)

NAME
telnetd - DARPA TELNET protocol server

SYNOPSIS
letc/telnetd

DESCRIPTION
Telnetd is a server which supports the DARPA standard TELNET virtual terminal protocol. Telnetd is
invoked by the internet server (see inetd(8», normally for requests to connect to the TELNET port as indi­
cated by the fetcfservices file (see services(5».

Telnetd operates by allocating a pseudo-terminal device (see pty(4» for a client, then creating a login pro­
cess which has the slave side of the pseudo-terminal as stdin, stdout, and stderr. Telnetd manipulates the
master side of the pseudo-terminal, implementing the TELNET protocol and passing characters between
the remote client and the login process.

When a TELNET session is started up, telnetd sends TELNET options to the client side indicating a wil­
lingness to do remote echo of characters, to suppress go ahead, and to receive terminal type information
from the remote client. If the remote client is willing, the remote tenninal type is propagated in the
environment of the created login process. The pseudo-terminal allocated to the client is configured to
operate in "cooked" mode, and with XTABS and CRMOD enabled (see tty(4».

Telnetd is willing to do: echo, binary, suppress go ahead, and timing mark. Telnetd is willing to have
the remote client do: binary, terminal type, and suppress go ahead.

SEE ALSO
telnet(lC)

BUGS
Some TELNET commands are only partially implemented

The TELNET protocol allows for the exchange of the number of lines and columns on the user's terminal,
but telnetd doesn't make use of them.

Because of bugs in the original 4.2 BSD telnet(lC), telnetd performs some dubious protocol exchanges to
try to discover if the remote client is, in fact, a 4.2 BSD telnet(lC).

Binary mode has no common interpretation except between similar operating systems (Unix in this case).

The terminal type name received from the remote client is converted to lower case.

The packet interface to the pseudo-terminal (see pty(4» should be used for more intelligent flushing of
input and output queues.

Telnetd never sends TELNET go ahead commands.

May 28, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

TFTPD(8C) UNIX Programmer's Manual TFTPD(8C)

NAME
trtpd - DARPA Trivial File Transfer Protocol server

SYNOPSIS
letcltrtpd

DESCRIPTION
Trtpd is a server which supports the DARPA Trivial File Transfer Protocol. The TFfP server operates at
the port indicated in the "tftp" service description; see services(5). The server is normally started by
inetd(8).

The use of trtp does not require an account or password on the remote system. Due to the lack of authenti­
cation information, tftpd will allow only publicly readable files to be accessed. Files may be written only
if they already exist and are publicly writable. Note that this extends the concept of "public" to include all
users on all hosts that can be reached through the network; this may not be appropriate on all systems, and
its implications should be considered before enabling tftp service. The server should have the user ID with
the lowest possible privilege.

SEE ALSO
trtp(1 C), inetd(8)

May 26, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

TIMED(8) UNIX Programmer's Manual TIMED(8)

NAME
timed - time server daemon

SYNOPSIS
letdtimed [options] [-0 network] [-i network]

DESCRIPTION
Timed is the time server daemon and is normally invoked at boot time from the rc(8) file. It synchronizes
the host's time with the time of other machines in a local area network running timed(8). These time
servers will slow down the clocks of some machines and speed up the clocks of others to bring them to the
average network time. The average network time is computed from measurements of clock differences
using the ICMP timestamp request message.

The service provided by timed is based on a master-slave scheme. When timed(8) is started on a
machine, it asks the master for the network time and sets the host's clock to that time. After that, it accepts
synchronization messages periodically sent by the master and calls adjtime(2) to perform the needed
corrections on the host's clock.

It also communicates with date(l) in order to set the date globally, and with timedc(8), a timed control
program. If the machine running the master crashes, then the slaves will elect a new master from among
slaves running with the -M flag. A timed running without the -M flag will remain a slave. Timed nor­
mally checks for a master time server on each network to which it is connected, except as modified by the
options described below. It will request synchronization service from the first master server located.

OPTIONS

FILES

-M Provides synchronization service on any attached networks on which no current master server was
detected. Such a server propagates the time computed by the top-level master.

-t Enables timed to trace the messages it receives in the file lusr/adrnltimedlog. Tracing can be
turned on or off by the program timedc(8).

-0 network
Where network is the name of a network which the host is connected to (see networks(5», over­
rides the default choice of the network addresses made by the program. Each time the -n flag
appears, that network name is added to a list of valid networks. All other networks are ignored.

-inetwork
Where network is the name of a network to which the host is connected (see networks(5», over­
rides the default choice of the network addresses made by the program. Each time the -i flag
appears, that network name is added to a list of networks to ignore. All other networks are used
by the time daemon.

The -0 and -i flags are meaningless if used together.

lusr/admltimedlog tracing file for timed
lusr/admltimedmasterlog log file for master timed

SEE ALSO
date(l), adjtime(2), gettimeorday(2), icmp(4P), timedc(8),
TSP: The Time Synchronization Protocol for UNIX 4.3BSD, R. Gusella and S. Zatti

May 28, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

TIMEDC(8) UNIX Programmer's Manual TIMEDC(8)

NAME
timede - timed control program

SYNOPSIS
letdtimede [command [argument ...]]

DESCRIPTION

FILES

Timede is used to control the operation of the timed program. It may be used to:

• measure the differences between machines' clocks,

• find the location where the master time server is running,

• enable or disable tracing of messages received by timed, and

• perform various debugging actions.

Without any arguments, timede will prompt for commands from the standard input If arguments are sup­
plied, time de interprets the first argument as a command and the remaining arguments as parameters to the
command The standard input may be redirected causing timede to read commands from a file. Com­
mands may be abbreviated; recognized commands are:

? [command ...]

help [command ...]
Print a short description of each command specified in the argument list, or, if no arguments are
given, a list of the recognized commands.

clockdiff host ..•
Compute the differences between the clock of the host machine and the clocks of the machines
given as arguments.

trace { on I off}
Enable or disable the tracing of incoming messages to timed in the file lusr/adrnltimed.log.

quit
Exit from timedc.

Other commands may be included for use in testing and debugging timed; the help command and the pro­
gram source may be consulted for details.

lusr/admltimedlog tracing file for timed
lusr/admltimedmasterloglog file for master timed

SEE ALSO
date(l), adjtime(2), iemp(4P), timed(8),
TSP: The Time Synchronization Protocol for UNIX 4.3BSD, R. Gusella and S. Zatti

DIAGNOSTICS
? Ambiguous command
?Invalid command
?Privileged command

May 28, 1986

abbreviation matches more than one command
no match found
command can be executed by root only

INTEGRATED SOLUTIONS 4.3 BSD 1

TRPT(8C) UNIX Programmer's Manual TRPT(8C)

NAME
trpt - transliterate protocol trace

SYNOPSIS
trpt [options] [-p hex-address] [system []]

DESCRIPTION
Trpt interrogates the buffer of TCP trace records created when a socket is marked for "debugging" (see
setsockopt(2», and prints a readable description of these records. When no options are supplied, trpt
prints all the trace records found in the system grouped according to TCP connection protocol control block
(PCB). The following options may be used to alter this behavior.

The recommended use of trpt is as follows. Isolate the problem and enable debugging on the socket(s)
involved in the connection. Find the address of the protocol control blocks associated with the sockets
using the -A option to netstat(1). Then run trpt with the -p option, supplying the associated protocol
control block addresses. The -f option can be used to follow the trace log once the trace is located. If
there are many sockets using the debugging option, the -j option may be useful in checking to see if any
trace records are present for the socket in question.

If debugging is being performed on a system or core file other than the default, the last two arguments may
be used to supplant the defaults.

OPTIONS

FILES

-a In addition to the nonnal output, prints the values of the source and destination addresses for each
packet recorded.

-s In addition to the normal output, prints a detailed description of the packet sequencing informa­
tion.

-t In addition to the normal output, prints the values for all timers at each point in the trace.

-f Follows the trace as it occurs, waiting a short time for additional records each time the end of the
log is reached.

-j Gives just a list of the protocol control block addresses for which there are trace records.

-p Shows only trace records associated with the protocol control block, the address of which follows.

Ivrnunix
ldevlkmem

SEE ALSO
setsockopt(2), netstat(1), trsp(8C)

DIAGNOSTICS

BUGS

"no namelist" when the system image doesn't contain the proper symbols to find the trace buffer; others
which should be self explanatory.

Should also print the data for each input or output, but this is not saved in the race record.

The output format is inscrutable and should be described here.

May 26, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

TRSP(8c) UNIX Programmer's Manual TRSP(8c)

NAME
trsp - transliterate sequenced packet protocol trace

SYNOPSIS
trsp [options] [-p hex-address] [system [core]]

DESCRIPTION
Trpt interrogates the buffer of SPP trace records created when a socket is marked for "debugging" (see
setsockopt(2», and prints a readable description of these records. When no options are supplied, trsp
prints all the trace records found in the system grouped according to SPP connection protocol control block
(PCB). The following options may be used to alter this behavior.

The recommended use of trsp is as follows. Isolate the problem and enable debugging on the socket(s)
involved in the connection. Find the address of the protocol control blocks associated with the sockets
using the -A option to netstat(I). Then run trsp with the -p option, supplying the associated protocol
control block addresses. If there are many sockets using the debugging option, the -j option may be useful
in checking to see if any trace records are present for the socket in question.

If debugging is being performed on a system or core file other than the default, the last two arguments may
be used to supplant the defaults.

OPTIONS

FILES

-a In addition to the normal output, prints the values of the source and destination addresses for each
packet recorded.

-j GiveS just a list of the protocol control block addresses for which there are trace records,

-p hex-address
Shows only trace records associated with the protocol control block whose address follows.

-s In addition to the normal output, prints a detailed description of the packet sequencing informa­
tion,

-t In addition to the normal output, prints the values for all timers at each point in the trace,

Ivmunix
ldevlkmem

SEE ALSO
setsockopt(2), netstat(1)

DIAGNOSTICS

BUGS

"no namelist" when the system image doesn't contain the proper symbols to find the trace buffer; others
which should be self explanatory.

Trsp should also print the data for each input or output, but this is not saved in the race record.

The output format is inscrutable and should be described here.

October 8, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

TUNEFS(8) UNIX Programmer's Manual TUNEFS(8)

NAME
tuners - tune up an existing file system

SYNOPSIS
I etc/tuners tune up-options speciallfilesys

DESCRIPTION
Tuners is designed to change the dynamic parameters of a file system which affect the layout policies. The
parameters which are to be changed are indicated by the flags given below:

-a maxcontig
This specifies the maximum number of contiguous blocks that will be laid out before forcing a
rotational delay (see -d below). The default value is one, since most device drivers require an
intelTUpt per disk transfer. Device drivers that can chain several buffers together in a single
transfer should set this to the maximum chain length.

-drotdelay
This specifies the expected time (in milliseconds) to service a transfer completion interrupt and
initiate a new transfer on the same disk. It is used to decide how much rotational spacing to place
between successive blocks in a file.

-emaxbpg
This indicates the maximum number of blocks any single file can allocate out of a cylinder group
before it is forced to begin allocating blocks from another cylinder group. Typically this value is
set to about one quarter of the total blocks in a cylinder group. The intent is to prevent any single
file from using up all the blocks in a single cylinder group, thus degrading access times for all files
subsequently allocated in that cylinder group. The effect of this limit is to cause big files to do
long seeks more frequently than if they were allowed to allocate all the blocks in a cylinder group
before seeking elsewhere. For file systems with exclusively large files, this parameter should be
set higher.

-m minfree
This value specifies the percentage of space held back from normal users; the minimum free space
threshold. The default value used is 10%. This value can be set to zero, however up to a factor of
three in throughput will be lost over the performance obtained at a 10% threshold. Note that if the
value is raised above the current usage level, users will be unable to allocate files until enough
files have been deleted to get under the higher threshold.

-0 optimization preference
The file system can either try to minimize the time spent allocating blocks, or it can attempt
minimize the space fragmentation on the disk. If the value of minfree (see above) is less than
10%, then the file system should optimize for space to avoid running out of full sized blocks. For
values of minfree greater than or equal to 10%, fragmentation is unlikely to be problematical, and
the file system can be optimized for time.

SEE ALSO

BUGS

rs(5), newrs(8), mkrs(8)

M. McKusick, W. Joy, S. Leffler, R. Fabry, "A Fast File System for UNIX", ACM Transactions on Com­
puter Systems 2, 3. pp 181-197, August 1984. (reprinted in the System Manager's Manual, SMM:14)

This program should work on mounted and active file systems. Because the super-block is not kept in the
buffer cache, the changes will only take effect if the program is run on dismounted file systems. To change
the root file system, the system must be rebooted after the file system is tuned.

You can tune a file system, but you can't tune a fish .

May 22, 1986 . INTEGRATED SOLUTIONS 4.3 BSD 1

UPDATE(8) UNIX Programmer's Manual UPDATE (8)

NAME
update - periodically update the super block

SYNOPSIS
fetc/update

DESCRIPTION
Update is a program that executes the sync(2) primitive every 30 seconds. This insures that the file system
is fairly up to date in case of a crash. This command should not be executed directly, but should be exe­
cuted out of the initialization shell command file.

SEE ALSO

BUGS

sync(2), sync(8), init(8), rc(8)

With update running, if the CPU is halted just as the sync is executed, a file system can be damaged. This
is partially due to DEC hardware that writes zeros when NPR requests fail. A fix would be to have sync(8)
temporarily increment the system time by at least 30 seconds to trigger the execution of update. This
would give 30 seconds grace to halt the CPU.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

UUCICO(8C) UNIX Programmer's Manual UUCICO(8C)

NAME
uucico, uucpd - transfer files queued by uucp or uux

SYNOPSIS
lusr/lib/uucp/uucico [options]

letc/uucpd

DESCRIPTION
Uucico performs the actual work involved in transferring files between systems. Uucp(IC) and uux(lC)
merely queue requests for data transfer which uucico processes.

If uucico receives a SIGFPE (see kilI(I», it will toggle the debugging on or off.

Uucpd is the server for supporting uucp connections over networks. Uucpd listens for service requests at
the port indicated in the "uucp" service specification; see services (5). The server provides login name
and password authentication before starting up uucico for the rest of the transaction.

Uucico is commonly used either of two ways: as a daemon run periodically by cron(8) to call out to
remote systems, and as a "shell" for remote systems who call in. For calling out periodically, a typical
line in crontab would be:

o * * * * lusr/lib/uucp/uucico -rl

This will run uucico every hour in master role. For each system that has transfer requests queued, uucico
calls the system, logs in, and executes the transfers. The file L.sys(5) is consulted for information about
how to log in, while L-devices(5) specifies available lines and modems for calling.

For remote systems to dial in, an entry in the passwd(5) file must be created, with a login "shell" of
uucico. For example:

nuucp:Password:6: 1: :/usrlspool/uucppublic:/usr/lib/uucp/uucico

The UID for UUCP remote logins is not critical, so long as it differs from the UUCP Administrative login.
The latter owns the UUCP files, and assigning this UID to a remote login would be an extreme security
hazard.

OPTIONS
-dspooldir

Uses spooldir as the spool directory. The default is lusrlspool/uucp.

-ggrade Sends only jobs of grade grade or higher this transfer. The grade of a job is specified when the
job is queued by uucp or UUX.

-L Only call "local" sites. A site is considered local if the device-type field in L.sys is one of
LOCAL, DIR or TCP.

-rrole role is either lor 0; it indicates whether uucico is to start up in master or slave role, respectively.
1 is used when running uucieo by hand or from eron(8). 0 is used when another system calls the
local system. Slave role is the default

-R Reverses roles. When used with the -rl option, this tells the remote system to begin sending its
jobs first, instead of waiting for the local machine to finish.

-ssystem Calls only system system. If -s is not specified, and -rl is specified, uueieo will attempt to call
all systems for which there is work. If -s is specified, a call will be made even if there is no
work for that system. This is useful for polling.

-tturnaround

May 15, 1986

Use turnaround as the line turnaround time (in minutes) instead of the default 30. If turnaround
is missing or 0, line turnaround will be disabled After uucico has been running in slave role for
turnaround minutes, it will attempt to run in master role by negotiating with the remote machine.
In earlier versions of uucico, a transfer of many large files in one direction would hold up mail

INTEGRA TED SOLUTIONS 4.3 BSD 1

UUCICO(8C) UNIX Programmer's Manual UUCICO(8C)

FILES

going in the other direction. With the turnaround code working, the message flow will be more
bidirectional in the short term. This option only works with newer uucico's and is ignored by
older ones.

-xdebug Turns on debugging at level debug. Level 5 is a good start when trying to find out why a call
failed. Level 9 is very detailed Level 99 is absurdly verbose. If role is 1 (master), output is nor­
mally written to the standard message output stderr. If stderr is unavailable, output is written to
lusrlspoo1/uucplAUDITlsystem. When role is 0 (slave), debugging output is always written to
the AUDIT file.

lusrllib/uucpl UUCP internal files/utilities
lusr/lib/uucpIL-devices Local device descriptions
lusrllib/uucplL-dialcodes Phone numbers and prefixes
lusr/lib/uucplL.aliases Hostname aliases
lusr/lib/uucplL.cmds Remote command permissions list
lusrllib/uucplL.sys Host connection specifications
lusrllib/uucplUSERFILE Remote directory tree permissions list

lusrlspoo1/uucpl Spool directory
lusrlspoo1/uucpl AUDITI* Debugging audit trails
lusrlspoo1/uucp/CJ Control files directory
lusrlspoo1/uucp/DJ Incoming data file directory
lusrlspoo1/uucp/D.hoSblame/ Outgoing data file directory
lusrlspoo1/uucplD.hosblameX/ Outgoing execution file directory
lusrlspoo1/uucp/CORRUPTI Place for corrupted C. and D. files
lusrlspoo1/uucp/ERRLOG UUCP internal error log
lusrlspoo1/uucp/LOOFILE UUCP system activity log
lusrlspoo1/uucpILCKlLCK .. * Device lock files
lusrlspoo1/uucp/SYSLOG File transfer statistics log
lusrlspoo1/uucp/STST/* System status files
lusrlspoolluucplTMJ File transfer temp directory
lusrlspoolluucp/XJ Incoming execution file directory

lusrlspoolluucppublic Public access directory

SEE ALSO
uucp(1C), uuq(1C), uux(1C), L-devices(5), L-diaicodes(5), L.aliases(5), L.cmds(5), L.sys(5),
uuclean(8C), uupoll(8C), uusnap(8C), uuxqt(8C)

D. A. Nowitz andM. E. Lesk, A Dial-Up Network ofUNlX Systems.

D. A. Nowitz, Uucp Implementation Description.

May 15, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

UUCLEAN (8e) UNIX Programmer's Manual

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
/usr/lib/uucp/uuclean [options]

DESCRIPTION

UUCLEAN (8e)

Uuclean will scan the spool directory for files with the specified prefix and delete all those which are older
than the specified number of hours.

This program will typically be run daily by cron(8).

OPTIONS
-dsubdirectory

Only the specified subdirectory will be cleaned.

-m Send mail to the owner of the file when it is deleted.

-ntil'11e Files whose age is more than til'11e hours will be deleted if the prefix test is satisfied. (The default
time is 72 hours.)

-ppre Scan for files with pre as the file prefix. Up to 10 -p arguments may be specified.

FILES
lusrlspoolluucp Spool directory

SEE ALSO
uucp(1 e), uux(1 e), uucico(8e)

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

UUPOLL(8C) UNIX Programmer's Manual UUPOLL(8C)

NAME
uupoll- poll a remote UUCP site

SYNOPSIS
uupoll [options] system

DESCRIPTION
Uupoll is used to force a poll of a remote system. It queues a null job for the remote system and then
invokes uucico(8C).

Uupoll is usually run by cron(5) or by a user who wants to hurry a job along. A typical entry in crontab
could be:

o 0,8,16 * * * lusr/binluupoll ihnp4
o 4,12,20 * * * lusr/binluupoll ucbvax

This will poll ihnp4 at midnight, 0800, and 1600, and ucbvax at 0400, noon, and 2000.

If the local machine is already running uucico every hour and has a limited number of outgoing modems, a
more elegant approach might be:

o 0,8,16 * * * lusr/binluupoll-n ihnp4
o 4,12,20 * * * lusrlhinluupoll-n ucbvax
5 * * * * lusr/lib/uucp/uucico -rl

This will queue null jobs for the remote sites at the top of hour; they will be processed by uucico when it
runs five minutes later.

OPTIONS
-g grade Only send jobs of grade grade or higher on this call.

-n Queue the null job, but do not invoke uucico.

FILES
lusr/lib/uucpl UUCP internal files/utilities
lusrlspool/uucpl Spool directory

SEE ALSO
uucp(lC), uux(lC), uucico(8C)

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

UUSNAP(8C) UNIX Programmer's Manual UUSNAP(8C)

NAME
uusnap - show snapshot of the UUCP system

SYNOPSIS
uusnap

DESCRIPTION
Unsnap displays in tabular format a synopsis of the current UUCP situation. The format of each line is as
follows:

site N Cmds N Data N Xqts Message

Where "site" is the name of the site with work, "N" is a count of each of the three possible types of work
(command, data, or remote execute), and "Message" is the current status message for that site as found in
the STST file.

Included in "Message" may be the time left before UUCP can re-try the call, and the count of the number
of times that UUCP has tried (unsuccessfully) to reach the site.

SEE ALSO
uucp(IC), uux(IC), uuq(IC), uucico(8C)
UUCP Implementation Guide

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

UUXQT(8C) UNIX Programmer's Manual UUXQT(8C)

NAME
uuxqt - UUCP execution file interpreter

SYNOPSIS
lusrlIib/uucp/uuxqt [-xdebug]

DESCRIPTION

FILES

Uuxqt interprets execution files created on a remote system via uux(lC) and transferred to the local system
via uucico(8C). When a user uses uux to request remote command execution, it is uuxqt that actually exe­
cutes the command. Normally, uuxqt is forked from uucico to process queued execution files; for debug­
ging, it may also be run manually by the UUCP administrator.

Uuxqt runs in its own subdirectory, lusrlspool/uucp/XTMP. It copies intermediate files to this directory
when necessary.

lusrllib/uucp/L.cmds
lusr/lib/uucp/uSERFILE
lusrlspool/uucp/LOOFU.E
lusrlspool/uucp/LCKlLCK.XQT
lusrlspool/uucp/XJ
lusrlspool/uucp/XTMP

Remote command permissions list
Remote directory tree permissions list
UUCP system activity log
U uxqt lock file
Incoming execution file directory
Uuxqt running directory

SEE ALSO
uucp(1C), uux(IC), L.cmds(S), USERFILE(S), uucico(8C)

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

VIPW(8) UNIX Programmer's Manual VIPW (8)

NAME
vipw - edit the password file

SYNOPSIS
vipw

DESCRIPTION
Vipw edits the password file while setting the appropriate locks, and does any necessary processing after
the password file is unlocked. If the password file is already being edited, then the user will be asked to try
again later. The vi editor will be used unless the environment variable EDITOR indicates an alternate edi­
tor.

Vipw performs a number of consistency checks on the password entry for root, and will not allow a pass­
word file with a "mangled" root entry to be installed.

SEE ALSO
chfn(1), chsh(l), passwd(l), vi(l), passwd(5), adduser(8)

FILES
/etc/ptmp

BUGS
If /etc/passwd is a TRFS link to /etc/passwd on another node, vipw will not work. Use vi instead.

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD

ZIC (8) UNIX Programmer's Manual ZIC (8)

NAME
zic - time zone compiler

SYNOPSIS
zic [-v] [-d directory] [-Ilocaltime] [filename ...]

DESCRIPTION
Zic reads text from the file or files named on the command line, then creates the time conversion informa­
tion files the command line specified. If you list afilename as -, zic reads text from the standard input.

OPTIONS
-d directory

Creates time conversion information files in the named directory rather than in the standard direc­
tory, /etc/zoneinfo.

-I timezone
Uses the given time zone as local time. Zic will act as if the file contained a link line of the form

Link timezone local time

-v Complains if a year that appears in a data file is outside the range of years representable by
time(2) values.

INPUT LINES
Input lines are made up of fields. Fields are separated from one another by any number of white space
characters. Leading and trailing white space on input lines is ignored. An unquoted sharp character (#) in
the input introduces a comment which extends to the end of the line the sharp character appears on. White
space characters and sharp characters may be enclosed in double quotes (") if they're to be used as part of a
field. Any line that is blank (after comment stripping) is ignored. Non-blank lines are expected to be of
one of three types: rule lines, zone lines, and link lines.

Rule Lines
A rule line has the form

Rule name from to type in on at save letter(s)

For example:

Rule USA 1969 1973 - Apr lastS un 2:00 1:00 D

The fields that make up a rule line are:

name

from

to

type

Gives the (arbitrary) name of the set of rules this rule is part of.

Gives the first year in which the rule applies. The word minimum (or an abbreviation) means
the minimum year with a representable time value. The word maximum (or an abbreviation)
means the maximum year with a representable time value.

Gives the final year in which the ruleapplies. In addition to minimum and maximum (as
above), the word only (or an abbreviation) may be used to repeat the value of the from field.

Gives the type of year in which the year applies. If type is - then the rule applies in all years
between from and to inclusive; if type is uspres, the rule applies in U.S. Presidential election
years; if type is non pres, the rule applies in years other than U.S. Presidential election years. If
type is something else, then zic executes the command

yearistype year type

to check the type of a year: an exit status of zero is taken to mean that the year is of the given
type; an exit status of one is taken to mean that the year is not of the given type.

in Names the month in which the rule takes effect. Month names may be abbreviated.

November 23, 1987 INTEGRATED SOLUTIONS 4.3 BSD

ZIC (8) UNIX Programmer's Manual ZIC (8)

on Gives the day on which the rule takes effect Recognized forms include:

5 the fifth of the month
lastS un the last Sunday in the month
lastMon the last Monday in the month
Sun>=8 first Sunday on or after the eighth
Sun<=25 last Sunday on or before the 25th

Names of days of the week may be abbreviated or spelled out in full. Note that there must be
no spaces within the on field.

at Gives the time of day at which the rule takes affect. Recognized forms include:

2 time in hours
2:00 time in hours and minutes
15:00 24-hour format time (for times after noon)
1:28:14 time in hours, minutes, and seconds

Any of these forms may be followed by the letter w if the given time is local "wall clock" time
or s if the given time is local "standard" time; in the absence of w or s, wall clock time is
assumed.

save Gives the amount of time to be added to local standard time when the rule is in effect. This
field has the same format as the at field (although, of cow'se, the wand s suffixes are not used).

Letterts Gives the "variable part" (for example, the "S" or "D" in "EST" or "EDT") of time zone
abbreviations to be used when this rule is in effect If this field is -, the variable part is null.

Zone Lines
A zone line has the form

Zone name gmtoff

For example:

Zone Australia/South-west 9:30

The fields that make up a zone line are:

rules/save format [until]

Aus CST 1987 Mar 15 2:00

name The name of the time zone. This is the name used in creating the time conversion information
file for the zone.

gmtofJ The amount of time to add to GMT to get standard time in this zone. This field has the same for­
mat as the at and save fields of rule lines; begin the field with a minus sign if time must be sub­
tracted from GMT.

rules/save
The name of the rule(s) that apply in the time zone or, alternately, an amount of time to add to
local standard time. If this field is - then standard time always applies in the time zone.

format The format for time zone abbreviations in this time zone. The pair of characters % S is used to
show where the "variable part" of the time zone abbreviation goes. until The time at which the
GMT offset or the rule(s) change for a location. It is specified as a year, a month, a day, and a
time of day. If this is specified, the time zone information is generated from the given GMT
offset and rule change until the time specified

The next line must be a "continuation" line; this has the same form as a zone line except that the
string "Zone" and the name are omitted, as the continuation line will place information starting
at the time specified as the until field in the previous line in the file used by the previous line.
Continuation lines may contain an until field, just as zone lines do, indicating that the next line is
a further continuation.

November 23, 1987 INTEGRATED SOLUTIONS 4.3 BSD 2

ZIe (8) UNIX Programmer's Manual ZIe (8)

Link Lines

~OTE

FILES

A link line has the form

Link link-from

For example:

Link US/Eastem

link-to

EST5EDT

The link1rom field should appear as the name field in some zone line; the link-to field is used as an alter­
nate name for that zone.

Except for continuation lines, lines may appear in any order in the input

For areas with more than two types of local time, you may need to use local standard time in the at field of
the earliest transition time's rule to ensure that the earliest transition time recorded in the compiled file is
correct.

/etc/zoneinfo

SEE ALSO

standard directory used for created files

ctime(3), tzfile(5)

November 239 1987 INTEGRATED SOLUTIONS 4.3 BSD 3

NOTICE

The System Administrator's Guide, Release 4.1 (4.3BSD) is packaged as a separate document. Please
remove this page and insert the System Administrator's Guide in its place.

Building Berkeley UNIXt Kernels with Config

Samuel J. Leffler and Michael J. Karels

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This document describes the use of config (8) to configure and create bootable
4.3BSD system images. It discusses the structure of system configuration files and how
to configure systems with non-standard hardware configurations. Sections describing the
preferred way to add new code to the system and how the system's autoconfiguration
process operates are included. An appendix contains a summary of the rules used by the
system in calculating the size of system data structures, and also indicates some of the
standard system size limitations (and how to change them). Other configuration options
are also listed.

Revised June 3, 1986

1. INTRODUCTION

Config is a tool used in building 4.3BSD system images (the UNIX kernel). It takes a file describing
a system's tunable parameters and hardware support, and generates a collection of files which are then used
to build a copy of UNIX appropriate to that configuration. Config simplifies system maintenance by isolat­
ing system dependencies in a single, easy to understand, file.

This document describes the content and format of system configuration files and the rules which
must be followed when creating these files. Example configuration files are constructed and discussed.

Later sections suggest guidelines to be used in modifying system source and explain some of the
inner workings of the autoconfiguration process. Appendix D summarizes the rules used in calculating the
most important system data structures and indicates some inherent system data structure size limitations

tUNIX is a Trademark of Bell Laboratories.

SMM:2-2 Building Kernels with Config

(and how to go about modifying them).

2. CONFIGURATION FILE CONTENTS

A system configuration must include at least the following pieces of information:

• machine type

• cputype
• system identification

• timezone

• maximum number of users

• location of the root file system

• available hardware

Config allows multiple system images to be generated from a single configuration description. Each
system image is configured for identical hardware, but may have different locations for the root file system
and, possibly, other system devices.

2.1. Machine type

The machine type indicates if the system is going to operate on a DEC V AX-II t computer, or some
other machine on which 4.3BSD operates. The machine type is used to locate certain data files which are
machine specific, and also to select rules used in constructing the resultant configuration files.

2.2. Cpu type

The cpu type indicates which, of possibly many, cpu's the system is to operate on. For example, if
the system is being configured for a V AX-II, it could be running on a VAX 8600, V AX-I 11780, V AX-
111750, VAX-111730 or MicroVAX II. (Other VAX cpu types, including the 8650, 785 and 725, are
configured using the cpu designation for compatible machines introduced earlier.) Specifying more than
one cpu type implies that the system should be configured to run on any of the cpu's specified. For some
types of machines this is not possible and config will print a diagnostic indicating such.

2.3. System identification

The system identification is a moniker attached to the system, and often the machine on which the
system is to run. For example, at Berkeley we have machines named Ernie (Co-VAX), Kim (No-VAX),
and so on. The system identifier selected is used to create a global C "#define" which may be used to iso­
late system dependent pieces of code in the kernel. For example, Ernie's Varian driver used to be special
cased because its interrupt vectors were wired together. The code in the driver which understood how to
handle this non-standard hardware configuration was conditionally compiled in only if the system was for
Ernie.

The system identifier "GENERIC" is given to a system which will run on any cpu of a particular
machine type; it should not otherwise be used for a system identifier.

2.4. Timezone

The timezone in which the system is to run is used to define the information returned by the get­
timeofday (2) system calL This value is specified as the number of hours east or west of GMT. Negative
numbers indicate a value east of GMT. The timezone specification may also indicate the type of daylight
savings time rules to be applied.

t DEC, VAX, UNmus, MASSBUS and MicroV AX are trademarks of Digital Equipment Corporation.

Building Kernels with Config SMM:2-3

2.S. Maximum number or users

The system allocates many system data structures at boot time based on the maximum number of
users the system will support. This number is normally between 8 and 40, depending on the hardware and
expected job mix. The rules used to calculate system data structures are discussed in Appendix D.

2.6. Root file system location

When the system boots it must know the location of the root of the file system tree. This location
and the part(s) of the disk(s) to be used for paging and swapping must be specified in order to create a com­
plete configuration description. Config uses many rules to calculate default locations for these items; these
are described in Appendix B.

When a generic system is configured, the root file system is left undefined until the system is booted.
In this case, the root file system need not be specified, only that the system is a generic system.

2.7. Hardware devices

When the system boots it goes through an autoconfiguration phase. During this period, the system
searches for all those hardware devices which the system builder has indicated might be present. This
probing sequence requires certain pieces of information such as register addresses, bus interconnects, etc.
A system's hardware may be configured in a very flexible manner or be specified without any flexibility
whatsoever. Most people do not configure hardware devices into the system unless they are currently
present on the machine, expect them to be present in the near future, or are simply guarding against a
hardware failure somewhere else at the site (it is often wise to configure in extra disks in case an emer­
gency requires moving one off a machine which has hardware problems).

The specification of hardware devices usually occupies the majority of the configuration file. As
such, a large portion of this document will be spent understanding it. Section 6.3 contains a description of
the autoconfiguration process, as it applies to those planning to write, or modify existing, device drivers.

2.8. Pseudo devices

Several system facilities are configured in a manner like that used for hardware devices although
they are not associated with specific hardware. These system options are configured as pseudo-devices.
Some pseudo devices allow an optional parameter that sets the limit on the number of instances of the dev­
ice that are active simultaneously.

2.9. System options

Other than the mandatory pieces of information described above, it is also possible to include various
optional system facilities or to modify system behavior and/or limits. For example, 4.3BSD can be
configured to support binary compatibility for programs built under 4.1BSD. Also, optional support is pro­
vided for disk quotas and tracing the performance of the virtual memory subsystem. Any optional facilities
to be· configured into the system are specified in the configuration file. The resultant files generated by
config will automatically include the necessary pieces of the system.

3. SYSTEM BUILDING PROCESS

In this section we consider the steps necessary to build a bootable system image. We assume the
system source is located in the "/sys" directory and that, initially, the system is being configured from
source code.

Under normal circumstances there are 5 steps in building a system.

1) Create a configuration file for the system.

2) Make a directory for the system to be constructed in.

3) Run config on the configuration file to generate the files required to compile and load the system image.

4) Construct the source code interdependency rules for the configured system with make depend using
make(1).

SMM:2-4 Building Kernels with Config

5) Compile and load the system with make.

Steps 1 and 2 are usually done only once. When a system configuration changes it usually suffices to
just run config on the modified configuration file, rebuild the source code dependencies, and remake the
system. Sometimes, however, configuration dependencies may not be noticed in which case it is necessary
to clean out the relocatable object files saved in the system's directory; this will be discussed later.

3.1. Creating a configuration file

Configuration files normally reside in the directory "/sys/conf". A configuration file is most easily
constructed by copying an existing configuration file and modifying it. The 4.3BSD distribution contains a
number of configuration files for machines at Berkeley; one may be suitable or, in worst case, a copy of the
generic configuration file may be edited

The configuration file must have the same name as the directory in which the configured system is to
be buill Further, config assumes this directory is located in the parent directory of the directory in which it
is run. For example, the generic system has a configuration file "/syslconf/GENERIC" and an accom­
panying directory named "/syslGENERIC". Although it is not required that the system sources and
configuration files reside in "/sys," the configuration and compilation procedure depends on the relative
locations of directories within that hierarchy, as most of the system code and the files created by config use
pathnames of the form" . ./". If the system files are not located in "/sys," it is desirable to make a sym­
bolic link there for use in installation of other parts of the system that share files with the kernel.

When building the configuration file, be sure to include the items described in section 2. In particu­
lar, the machine type, cpu type, timezone, system identifier, maximum users, and root device must be
specified. The specification of the hardware present may take a bit of work; particularly if your hardware
is configured at non-standard places (e.g. device registers located at funny places or devices not supported
by the system). Section 4 of this document gives a detailed description of the configuration file syntax, sec­
tion 5 explains some sample configuration files, and section 6 discusses how to add new devices to the sys­
tem. If the devices to be configured are not already described in one of the existing configuration files you
should check the manual pages in section 4 of the UNIX Programmers Manual. For each supported device, .
the manual page synopsis entry gives a sample configuration line.

Once the configuration file is complete, run it through config and look for any errors. Never try and
use a system which config has complained about; the results are unpredictable. For the most part, config's
error diagnostics are self explanatory. It may be the case that the line numbers given with the error mes­
sages are off by one.

A successful run of config on your configuration file will generate a number of files in the
configuration directory. These files are:

• A file to be used by moJce (1) in compiling and loading the system, Makefile.

• One file for each possible system image for this machine, swapxxx.c, where xxx is the name of the sys­
tem image, which describes where swapping, the root file system, and other miscellaneous system dev­
ices are located

• A collection of header files, one per possible device the system supports, which define the hardware
configured.

• A file containing the I/O configuration tables used by the system during its autoconfiguration phase,
ioconf.c.

• An assembly language file of intemIpt vectors which connect interrupts from the machine's external
buses to the main system path for handling interrupts, and a file that contains counters and names for
the interrupt vectors.

Unless you have reason to doubt config, or are curious how the system's autoconfiguration scheme
works, you should never have to look at any of these files.

Building Kernels with Config SM:M::2-5

3.2. Constructing source code dependencies

When config is done generating the files needed to compile and link: your system it will terminate
with a message of the form "Don't forget to run make depend". This is a reminder that you should change
over to the configuration directory for the system just configured and type "make depend" to build the
rules used by make to recognize interdependencies in the system source code. This will insure that any
changes to a piece of the system source code will result in the proper modules being recompiled the next
time make is run.

This step is particularly important if your site makes changes to the system include files. The rules
generated specify which source code files are dependent on which include files. Without these rules, make
will not recognize when it must rebuild modules due to the modification of a system header file. The
dependency rules are generated by a pass of the C preprocessor and reflect the global system options. This
step must be repeated when the configuration file is changed and config is used to regenerate the system
makefile.

3.3. Building the system

The makefile constructed by config should allow a new system to be rebuilt by simply typing "make
image-name". For example, if you have named your bootable system image "vmunix", then "make
vmunix" will generate a bootable image named "vmunix". Alternate system image names are used when
the root file system location and/or swapping configuration is done in more than one way. The makefile
which config creates has entry points for each system image defined in the configuration file. Thus, if you
have configured "vmunix" to be a system with the root file system on an "hp" device and "hkvmunix"
to be a system with the root file system on an "bk" device, then "make vmunix hkvmunix" will generate
binary images for each. As the system will generally use the disk from which it is loaded as the root
filesystem, separate system images are only required to support different swap configurations.

Note that the name of a bootable image is different from the system identifier. All bootable images
are configured for the same system; only the information about the root file system and paging devices
differ. (This is described in more detail in section 4.)

The last step in the system building process is to rearrange certain commonly used symbols in the
symbol table of the system image; the makefile generated by config does this automatically for you. This
is advantageous for programs such as netstat(l) and vmstat(l), which run much faster when the symbols
they need are located at the front of the symbol table. Remember also that many programs expect the
currently executing system to be named "/vmunix". If you install a new system and name it something
other than "/vmunix", many programs are likely to give strange results.

3.4. Sharing object modules

If you have many systems which are all built on a single machine there are at least two approaches to
saving time in building system images. The best way is to have a single system image which is run on all
machines. This is attractive since it minimizes disk space used and time required to rebuild systems after
making changes. However, it is often the case that one or more systems will require a separately
configured system image. This may be due to limited memory (building a system with many unused device
drivers can be expensive), or to configuration requirements (one machine may be a development machine
where disk quotas are not needed, while another is a production machine where they are), etc. In these
cases it is possible for common systems to share relocatable object modules which are not configuration
dependent; most of the modules in the directory" Isys/sys" are of this sort.

To share object modules, a generic system should be built Then, for each system configure the sys­
tem as before, but before recompiling and linking the system, type "make links" in the system compilation
directory. This will cause the system to be searched for source modules which are safe to share between
systems and generate symbolic links in the current directory to the appropriate object modules in the direc­
tory ".JGENERIC". A shell script, "makelinks" is generated with this request and may be checked for
correctness. The file "/sys/conf/defines" contains a list of symbols which we believe are safe to ignore
when checking the source code for modules which may be shared. Note that this list includes the
definitions used to conditionally compile in the virtual memory tracing facilities, and the trace point support

SMM:2-6 Building Kernels with Config

used only rarely (even at Berkeley). It may be necessary to modify this file to reflect local needs. Note
further that interdependencies which are not directly visible in the source code are not caught This means
that if you place per-system dependencies in an include file, they will not be recognized and the shared
code may be selected in an unexpected fashion.

3.5. Building profiled systems

It is simple to configure a system which will automatically collect profiling infonnation as it
operates. The profiling data may be collected with kgmon (8) and processed with gprof(l) to obtain infor­
mation regarding the system's operation. Profiled systems maintain histograms of the program counter as
well as the number of invocations of each routine. The gprof command will also generate a dynamic call
graph of the executing system and propagate time spent in each routine along the arcs of the call graph
(consult the gprof documentation for elaboration). The program counter sampling can be driven by the
system clock, or if you have an alternate real time clock, this can be used. The latter is highly recom­
mended, as use of the system clock will result in statistical anomalies, and time spent in the clock routine
will not be accurately attributed.

To configure a profiled system, the -p option should be supplied to config. A profiled system is
about 5-10% larger in its text space due to the calls to count the subroutine invocations. When the system
executes, the profiling data is stored in a buffer which is 1.2 times the size of the text space. The overhead
for running a profiled system varies; under nonnalload we see anywhere from 5-25% of the system time
spent in the profiling code.

Note that systems configured for profiling should not be shared as described above unless all the
other shared systems are also to be profiled.

4. CONFIGURATION FILE SYNTAX

In this section we consider the specific rules used in writing a configuration file. A complete gram­
mar for the input language can be found in Appendix A and may be of use if you should have problems
with syntax errors.

A configuration file is broken up into three logical pieces:

• configuration parameters global to all system images specified in the configuration file,

• parameters specific to each system image to be generated, and

• device specifications.

4.1. Global configuration parameters

The global configuration parameters are the type of machine, cpu types, options, timezone, system
identifier, and maximum users. Each is specified with a separate line in the configuration file.

machine type
The system is to run on the machine type specified. No more than one machine type can appear in
the configuration file. Legal values are vax and sun.

cpu "type"
This system is to run on the cpu type specified. More than one cpu type specification can appear in a
configuration file. Legal types for a vax machine are VAX8600, V AX780, VAX750, VAX730 and
V AX630 (MicroV AX II). The 8650 is listed as an 8600, the 785 as a 780, and a 725 as a 730.

options optionlist
Compile the listed optional code into the system. Options in this list are separated by commas. Possi­
ble options are listed at the top of the generic makefile. A line of the fonn "options
FUNNY,HARA" generates global H#define"s -DFUNNY -DHAHA in the resultant makefile. An
option may be given a value by following its name with "=", then the value enclosed in (double)
quotes. The following are major options are currently in use: COMP AT (include code for compati­
bility with 4.1BSD binaries), INET (Internet communication protocols), NS (Xerox NS communica­
tion protocols), and QUOTA (enable disk quotas). Other kernel options controlling system sizes and
limits are listed in Appendix D; options for the network are found in Appendix E. There are

Building Kernels with Config S:MM:2-7

additional options which are associated with certain peripheral devices; those are listed in the
Synopsis section of the manual page for the device.

makeoptioDS optionlist
Options that are used within the system makefile and evaluated by make are listed as makeoptions.
Options are listed with their values with the form "makeoptions name=value,name2=value2." The
values must be enclosed in double quotes if they include numerals or begin with a dash.

timezone number [dst [number]]
Specifies the timezone used by the system. This is measured in the number of hours your timezone is
west of GMT. EST is 5 hours west of GMT, PST is 8. Negative numbers indicate hours east of
GMT. If you specify dst, the system will operate under daylight savings time. An optional integer or
floating point number may be included to specify a particular daylight saving time correction algo­
rithm; the default value is 1, indicating the United States. Other values are: 2 (Australian style), 3
(Western European), 4 (Middle European), and 5 (Eastern European). See gettimeofdo.y (2) and
ctime (3) for more information.

ident name
This system is to be known as name. This is usually a cute name like ERNIE (short for Ernie Co­
Vax) or V AXWELL (for Vaxwell Smart). This value is defined for use in conditional compilation,
and is also used to locate an optional list of source files specific to this system.

maxusers number
The maximum expected number of simultaneously active user on this system is number. This
number is used to size several system data structures.

4.2. System image parameters

Multiple bootable images may be specified in a single configuration file. The systems will have the
same global configuration parameters and devices, but the location of the root file system and other system
specific devices may be different. A system image is specified with a "config" line:

config sysname con fig-clauses

The sysname field is the name given to the loaded system image; almost everyone names their standard
system image "vmunix". The configuration clauses are one or more specifications indicating where the
root file system is located and the number and location of paging devices. The device used by the system
to process argument lists during execve(2) calls may also be specified, though in practice this is almost
always selected by config using one of its rules for selecting default locations for system devices.

A configuration clause is one of the following

root [on] root-device
swap [on] swap-device [and swap-device] ...
dumps [on] dump-device
args [on] arg-device

(the "on" is optional.) Multiple configuration clauses are separated by white space; config allows
specifications to be continued across multiple lines by beginning the continuation line with a tab character.
The "root" clause specifies where the root file system is located, the "swap" clause indicates swapping
and paging area(s), the "dumps" clause can be used to force system dumps to be taken on a particular dev­
ice, and the "args" clause can be used to specify that argument list processing for execve should be done
on a particular device.

The device names supplied in the clauses may be fully specified as a device, unit, and file system
partition; or underspecified in which case config will use builtin rules to select default unit numbers and file
system partitions. The defaulting rules are a bit complicated as they are dependent on the overall system
configuration. For example, the swap area need not be specified at all if the root device is specified; in this
case the swap area is placed in the "b" partition of the same disk where the root file system is located.
Appendix B contains a complete list of the defaulting rules used in selecting system configuration devices.

The device names are translated to the appropriate major and minor device numbers on a per­
machine basis. A file, "/sys/conf/devices.machine" (where "machine" is the machine type specified in

SMM:2-8 Building Kernels with Config

the configuration file), is used to map a device name to its major block device number. The minor device
number is calculated using the standard disk partitioning rules: on unit 0, partition "a" is minor device 0,
partition "b" is minor device 1, and so on; for units other than 0, add 8 times the unit number to get the
minor device.

If the default mapping of device name to major/minor device number is incorrect for your
configuration, it can be replaced by an explicit specification of the major/minor device. This is done by
substituting

major x minor y

where the device name would normally be found. For example,

config vmunix root on major 99 minor 1

Normally, the areas configured for swap space are sized by the system at boot time. If a non­
standard size is to be used for one or more swap areas (less than the full partition), this can also be
specified. To do this, the device name specified for a swap area should have a "size" specification
appended. For example,

config vmunix root on hpO swap on hpOb size 1200

would force swapping to be done in partition "b" of "hpO" and the swap partition size would be set to
1200 sectors. A swap area sized larger than the associated disk partition is trimmed to the partition size.

To create a generic configuration, only the clause "swap generic" should be specified; any extra
clauses will cause an error.

4.3. Device specifications

Each device attached to a machine must be specified to config so that the system generated will
know to probe for it during the autoconfiguration process carried out at boot time. Hardware specified in
the configuration need not actually be present on the machine where the generated system is to be run.
Only the hardware actually found at boot time will be used by the system.

The specification of hardware devices in the configuration file parallels the interconnection hierarchy
of the machine to be configured. On the V AX, this means that a configuration file must indicate what
MASSBUS and UNIBUS adapters are present, and to which nexi they might be connected. * Similarly,
devices and controllers must be indicated as possibly being connected to one or more adapters. A device
description may provide a complete definition of the possible configuration parameters or it may leave cer­
tain parameters undefined and make the system probe for all the possible values. The latter allows a single
device configuration list to match many possible physical configurations. For example, a disk may be indi­
cated as present at UNIBUS adapter 0, or at any UNIBUS adapter which the system locates at boot time.
The latter scheme, termed wildcarding, allows more flexibility in the physical configuration of a system; if
a disk must be moved around for some reason, the system will still locate it at the alternate location.

A device specification takes one of the following forms:

master device-name device-info
controller device-name tkvice-info [inte"upt-spec]
device device-name device-info interrupt-spec
disk device-name device-info
tape device-name device-info

A "master" is a MASSBUS tape controller; a "controller" is a disk controller, a UNIBUS tape controller,
a MASSBUS adapter, or a UNIBUS adapter. A "device" is an autonomous device which connects
directly to a UNIBUS adapter (as opposed to something like a disk which connects through a disk con­
troller). "Disk" and "tape" identify disk drives and tape drives connected to a "controller" or "mas­
ter."

• While VAX-UnSO's and VAX-Un30 do not actually have nw, the system treats them as having simulated nexi to
simplify device configuration.

Building Kernels with Config S:MM::2-9

The device-name is one of the standard device names, as indicated in section 4 of the UNIX Pro­
grammers Manual, concatenated with the logical unit number to be assigned the device (the logical unit
number may be different than the physical unit number indicated on the front of something like a disk; the
logical unit number is used to refer to the UNIX device, not the physical unit number). For example,
"hpO" is logical unit 0 of a MASSBUS storage device, even though it might be physical unit 3 on
MASSBUS adapter 1.

The device-info clause specifies how the hardware is connected in the interconnection hierarchy. On
the V AX, UNffiUS and MASSBUS adapters are connected to the internal system bus through a nexus.
Thus, one of the following specifications would be used:

controller mbaO at nexus x
controller ubaO at nexus x

To tie a controller to a specific nexus, "x" would be supplied as the number of that nexus; otherwise "x"
may be specified as "?", in which case the system will probe all nexi present looking for the specified con­
troller.

The remaining interconnections on the V AX are:

• a controller may be connected to another controller (e.g. a disk controller attached to a UNIBUS
adapter),

• a master is always attached to a controller (a MASSBUS adapter),

• a tape is always attached to a master (for MASSBUS tape drives),

• a disk is always attached to a controller, and

• devices are always attached to controllers (e.g. UNIBUS controllers attached to UNIBUS adapters).

The following lines give an example of each of these interconnections:

controller hkO at ubaO ...
master htO at mbaO ..•
disk hpO at mbaO ...
tape tuO at htO ..•
disk rkl at hkO .. .
device dzO at ubaO .. .

Any piece of hardware which may be connected to a specific controller may also be wildcarded across
multiple controllers.

The final piece of information needed by the system to configure devices is some indication of where
or how a device will interrupt. For tapes and disks, simply specifying the slave or drive number is
sufficient to locate the control status register for the device. Drive numbers may be wildcarded on
MASS BUS devices, but not on disks on a UNmUS controller. For controllers, the control status register
must be given explicitly, as well the number of interrupt vectors used and the names of the routines to
which they should be bound. Thus the example lines given above might be completed as:

controller hkO at ubaO csr 0177440 vector rkintr
master htO at mbaO drive 0
disk hpO at mbaO drive?
tape tuO at htO slave 0
disk rkl at hkO drive 1
device dzO at ubaO csr 0160100 vector dzrint dzxint

Certain device drivers require extra information passed to them at boot time to tailor their operation
to the actual hardware present. The line printer driver, for example, needs to know how many columns are
present on each non-standard line printer (Le. a line printer with other than 80 columns). The drivers for
the terminal multiplexors need to know which lines are attached to modem lines so that no one will be
allowed to use them unless a connection is present. For this reason, one last parameter may be specified to
a device, ajlags field. It has the syntax

flags number

SMM:2-10 Building Kernels with Config

and is usually placed after the csr specification. The nwnber is passed directly to the associated driver.
The manual pages in section 4 should be consulted to determine how each driver uses this value (if at all).
Communications interface drivers commonly use the flags to indicate whether modem control signals are in
use.

The exact syntax for each specific device is given in the Synopsis section of its manual page in sec­
tion 4 of the manual.

4.4. Pseudo-devices

A number of drivers and software subsystems are treated like device drivers without any associated
hardware. To include any of these pieces, a "pseudo-device" specification must be used. A specification
for a pseudo device takes the form

pseudo-device device-name [howmany]

Examples of pseudo devices are pty, the pseudo terminal driver (where the optional howmany value
indicates the number of pseudo terminals to configure, 32 default), and loop, the software loopback net­
work pseudo-interface. Other pseudo devices for the network include imp (required when a CSS or ACC
imp is configured) and ether (used by the Address Resolution Protocol on 10Mb/sec Ethernets). More
information on configuring each of these can also be found in section 4 of the manual.

So SAMPLE CONFIGURATION FILES

In this section we will consider how to configure a sample V AX-I 1/780 system on which the
hardware can be reconfigured to guard against various hardware mishaps. We then study the rules needed
to configure a V AX-Il/7S0 to run in a networking environment

5.1. VAX-111780 System

Our V AX-I 1/780 is configured with hardware recommended in the document "Hints on Configuring
a VAX for 4.2BSD" (this is one of the high-end configurations). Table I lists the pertinent hardware to be
configured.

Item Vendor Connection Name Reference
cpu DEC VAX780
MASSBUS controller Emulex nexus? mbaO hp(4)
disk Fujitsu mbaO hpO
disk Fujitsu mbaO hpi
MASSBUS controller Emulex nexus? mbal
disk Fujitsu mba! hp2
disk Fujitsu mba! hp3
UNmUS adapter DEC nexus?
tape controller Emulex ubaO tInO tm(4)
tape drive Kennedy tmO teO
tape drive Kennedy tmO tel
terminal multiplexor Emulex ubaO dbO dh(4)
terminal multiplexor Emulex ubaO dbi
terminal multiplexor Emulex ubaO dh2

Table 1. V AX-I 11780 Hardware support.

We will call this machine ANSEL and construct a configuration file one step at a time.

The first step is to fill in the global configuration parameters. The machine is a V AX, so the machine
type is "vax". We will assume this system will run only on this one processor, so the cpu type is
"V AX780". The options are empty since this is going to be a "vanilla" V AX. The system identifier, as
mentioned before, is "ANSEL," and the maximum number of users we plan to support is about 40. Thus
the beginning of the configuration file looks like this:

Building Kernels with Config S:MM:2-ll

ANSEL VAX (a picture perfect machine)

machine
cpu
tirnezone
ident
maxusers

vax
VAX780
8 dst
ANSEL
40

To this we must then add the specifications for three system images. The first will be our standard
system with the root on "hpO" and swapping on the same drive as the root The second will have the root
file system in the same location, but swap space interleaved among drives on each controller. Finally, the
third will be a generic system, to allow us to boot off any of the four disk drives.

config vmunix root on hpO
config hpvmunix root on hpO swap on hpO and hp2
config genvmunix swap generic

Finally, the hardware must be specified. Let us first just try transcribing the information from Table
1.

controller mbaO at nexus?
disk hpO at mbaO disk 0
disk hpl at mbaO disk 1
controller mbal at nexus ?
disk hp2 at mbal disk 2
disk hp3 at mbal disk 3
controller ubaO at nexus ?
controller tmO at ubaO csr 0172520 vector tmintr
tape teO at tmO drive 0
tape tel at tmO drive 1
device dbO at ubaO csr 0160020 vector dhrint dhxint
device dmO at ubaO csr 0170500 vector dmintr
device dbl at ubaO csr 0160040 vector dhrint dhxint
device db2 at ubaO csr 0160060 vector dhrint dhxint

(Oh, I forgot to mention one panel of the terminal multiplexor has modem control, thus the "dmO" dev­
ice.)

This will suffice, but leaves us with little llexibility. Suppose our first disk controller were to break.
We would like to recable the drives normally on the second controller so that all our disks could still be
used without reconfiguring the system. To do this we wildcard the MASSBUS adapter connections and
also the slave numbers. Further, we wildcard the UNIBUS adapter connections in case we decide some
time in the future to purchase another adapter to oflload the single UNmUS we currently have. The
revised device specifications would then be:

SMM:2-12 Building Kernels with Config

controller mbaO at nexus ?
disk hpO at mba? disk?
disk hp1 at mba? disk?
controller mba1 at nexus ?
disk hp2 at mba? disk ?
disk hp3 at mba? disk ?
controller ubaO at nexus ?
controller tmO at uba? csr 0172520 vector tmintr
tape teO at tmO drive 0
tape tel at tmO drive 1
device dhO at uba? csr 0160020 vector dhrint dhxint
device dmO at uba? csr 0170500 vector dmintr
device dbl at uba? csr 0160040 vector dhrint dhxint
device dh2 at uba? csr 0160060 vector dhrint dbxint

The completed configuration file for ANSEL is shown in Appendix C.

5.20 VAX-11l7SO with network support

Our V AX-ll1750 system will be located on two 10Mb/s Ethernet local area networks and also the
DARPA Internet. The system will have a MASSBUS drive for the root file system and two UNIBUS
drives. Paging is interleaved among all three drives. We have sold our standard DEC terminal multiplex­
ors since this machine will be accessed solely through the network. This machine is not intended to have a
large user community, it does not have a great deal of memory. First the global parameters:

UCBV AX (Gateway to the world)

machine
cpu
cpu
ident
timezone
maxusers
options
options

vax
"VAX780"
"VAX750"
UCBVAX
8 dst
32
!NET
NS

The multiple cpu types allow us to replace UCBV AX with a more powerful cpu without
reconfiguring the system. The value of 32 given for the maximum number of users is done to force the sys­
tem data structures to be over-allocated. That is desirable on this machine because, while it is not expected
to support many users, it is expected to perform a great deal of work. The "INET" indicates that we plan
to use the DARPA standard Internet protocols on this machine, and "NS" also includes support for Xerox
NS protocols. Note that unlike 4.2BSD configuration files, the network protocol options do not require
corresponding pseudo devices.

The system images and disks are configured next.

Building Kernels with Config S:MM::2-13

config vmunix root on hp swap on hp and rkO and rkl
config upvmunix root on up
config hkvmunix root on hk swap on rkO and rkl

controller mbaO at nexus?
controller ubaO at nexus?
disk hpO at mba? drive 0
disk hpl at mba? drive I
controller scO at uba? csr 0176700 vector upintr
disk upO at scO drive 0
disk upl at scO drive 1
controller hkO at uba? csr 0177440 vector rkintr
disk rkO at hkO drive 0
disk rkl at hkO drive I

UCBV AX requires heavy interleaving of its paging area to keep up with all the mail traffic it han­
dles. The limiting factor on this system's performance is usually the number of disk arms, as opposed to
memory or cpu cycles. The extra UNIBUS controller, "scO", is in case the MASSBUS controller breaks
and a spare controller must be installed (most of our old UNIBUS controllers have been replaced with the
newer MASSBUS controllers, so we have a number of these around as spares).

Finally, we add in the network devices. Pseudo terminals are needed to allow users to log in across
the network (remember the only hardwired terminal is the console). The software loopback device is used
for on-machine communications. The connection to the Internet is through an IMP, this requires yet
another pseudo-device (in addition to the actual hardware device used by the IMP software). And, finally,
there are the two Ethernet devices. These use a special protocol, the Address Resolution Protocol (ARP),
to map between Internet and Ethernet addresses. Thus, yet another pseudo-device is needed. The addi­
tional device specifications are show below.

pseudo-device pty
pseudo-device loop
pseudo-device imp
device accO
pseudo-device ether
device ecO
device ilO

at uba? csr 0167600

at uba? csr 0164330
at uba? csr 0164000

The completed configuration file for UCBV AX is shown in Appendix C.

5.3. Miscellaneous comments

vector accrint accxint

vector ecrint eccollide ecxint
vector ilrint ilcint

It should be noted in these examples that neither system was configured to use disk quotas or the
4.1BSD compatibility mode. To use these optional facilities, and others, we would probably clean out our
current configuration, reconfigure the system, then recompile and relink the system image(s). This could,
of course, be avoided by figuring out which relocatable object files are affected by the reconfiguration, then
reconfiguring and recompiling only those files affected by the configuration change. This technique should

SMM:2-14 Building Kernels with Config

be used carefully.

6. ADDING NEW SYSTEM SOFI'WARE

This section is not for the novice, it describes some of the inner workings of the configuration pro­
cess as well as the pertinent parts of the system autoconfiguration process. It is intended to give those peo­
ple who intend to install new device drivers and/or other system facilities sufficient information to do so in
the manner which will allow others to easily share the changes.

This section is broken into four parts:

• general guidelines to be followed in modifying system code,

• how to add non-standard system facilities to 4.3BSD,

• how to add a device driver to 4.3BSD, and
• how UNIBUS device drivers are autoconfigured under 4.3BSD on the VAX.

6.1. Modifying system code

If you wish to make site-specific modifications to the system it is best to bracket them with

#ifdefSITENAME

#endif

to allow your source to be easily distributed to others, and also to simplify diff(l) listings. If you choose
not to use a source code control system (e.g. sees, ReS), and perhaps even if you do, it is recommended
that you save the old code with something of the form:

#ifndef SITENAME

#endif

We try to isolate our site-dependent code in individual files which may be configured with pseudo-device
specifications.

Indicate machine-specific code with "#ifdef vax" (or other machine, as appropriate). 4.2BSD
underwent extensive work to make it extremely portable to machines with similar architectures- you may
someday find yourself trying to use a single copy of the source code on multiple machines.

Use lint periodically if you malee changes to the system. The 4.3BSD kernel has only two lines of
lint in it. It is very simple to lint the kernel. Use the LINT configuration file, designed to pull in as much
of the kernel source code as possible, in the following manner.

$ cd Isys/conf
$ mkdir .JLINT
$ config LINT
$cd.JLINT
$ make depend
$ malee assym.s
$ make -k lint> linterrs 2>&1 &
(or for users of csh (1»
% make -k >& linterrs

This takes about an hour on a lightly loaded V AX-III7S0, but is well worth it.

6.2. Adding non-standard system facilities

This section considers the work needed to augment config's data base files for non-standard system
facilities. Config uses a set of files that list the source modules that may be required when building a sys­
tem. The data bases· are taken from the directory in which config is run, normally Isys/conf. Three such
files may be used: files,files.machine, andfiles.ident. The first is common to all systems, the second con­
tains files unique to a single machine type, and the third is an optional list of modules for use on a specific

Building Kernels with Config SMM:2-15

machine. This last file may override specifications in the first two. The format of the files file has grown
somewhat complex over time. Entries are normally of the form

dirlsource.c type option-list modifiers

for example,

vaxubalfoo. c optional foo device-driver

The type is one of standard or Files marked as standard are included in all system configurations.
Optional file specifications include a list of one or more system options that together require the inclusion
of this module. The options in the list may be either names of devices that may be in the configuration file,
or the names of system options that may be defined An optional file may be listed multiple times with dif­
ferent options; if all of the options for any of the entries are satisfied, the module is included.

If a file is specified as a device-driver, any special compilation options for device drivers will be
invoked. On the V AX this results in the use of the -i option for the C optimizer. This is required when
pointer references are made to memory locations in the V AX I/O address space.

Two other optional keywords modify the usage of the file. Config understands that certain files are
used especially for kernel profiling. These files are indicated in the files files with a profiling-routine key­
word. For example, the current profiling subroutines are sequestered off in a separate file with the follow­
ing entry:

syslsubr _ mcount.coptional profiling-routine

The profiling-routine keyword forces config not to compile the source file with the -pg option.

The second keyword which can be of use is the con fig-dependent keyword. This causes config to
compile the indicated module with the global configuration parameters. This allows certain modules, such
as machdep.c to size system data structures based on the maximum number of users configured for the sys­
tem.

6.3. Adding device drivers to 4.3BSD

The I/O system and config have been designed to easily allow new device support to be added. The
system source directories are organized as follows:

Isyslh
Isyslsys
Isyslconf
Isyslnet
Isyslnetinet
Isyslnetimp
Isyslnetns
Isyslvax
Isys/vaxif
Isys/vaxmba
Isyslvaxuba

machine independent include files
machine-independent system source files
site configuration files and basic templates
network-protocol-independent, but network-related code
DARPA Internet code
IMP support code
Xerox NS code
V AX-specific mainline code
V AX network interface code
VAX MASSBUS device drivers and related code
V AX UNIBUS device drivers and related code

Existing block and character device drivers for the V AX reside in "/syslvax", "/sys/vaxmba", and
"/sys/vaxuba". Network interface drivers reside in "/sys/vaxif'. Any new device drivers should be
placed in the appropriate source code directory and named so as not to conflict with existing devices. Nor­
mally, definitions for things like device registers are placed in a separate file in the same directory. For
example, the "db" device driver is named "db.c" and its associated include file is named "dhreg.h".

Once the source for the device driver has been placed in a directory, the file
"/sys/conf/files.machine", and possibly "/sys/conf/devices.machine" should be modified. The files files
in the conf directory contain a line for each C source or binary-only file in the system. Those files which
are machine independent are located in "/sys/conf/files," while machine specific files are in
"/sys/conf/files.machine." The "devices.machine" file is used to map device names to major block dev­
ice numbers. If the device driver being added provides support for a new disk you will want to modify this

SMM:2-16 Building Kernels with Config

file (the format is obvious).

In addition to including the driver in the files file, it must also be added to the device configuration
tables. These are located in "/sys/vax/conf.c", or similar for machines other than the V AX. If you don't
understand what to add to this file, you should study an entry for an existing driver. Remember that the
position in the device table specifies the major device number. The block major number is needed in the
"devices.machine" file if the device is a disk.

With the configuration information in place, your configuration file appropriately modified, and a
system reconfigured and rebooted you should incorporate the shell commands needed to install the special
files in the file system to the file "/devIMAKEDEV" or H/dev/MAKEDEV.local". This is discussed in
the document "Installing and Operating 4.3BSD on the V AX" .

6.4. Autoconfiguration on the VAX

4.3BSD requires all device drivers to conform to a set of rules which allow the system to:

1) support multiple UNIBUS and MASSBUS adapters,

2) support system configuration at boot time, and

3) manage resources so as not to crash when devices request resources which are unavailable.

In addition, devices such as the RK07 which require everyone else to get off the UNmUS when they are
running need cooperation from other DMA devices if they are to work. Since it is unlikely that you will be
writing a device driver for a MASSBUS device, this section is devoted exclusively to describing the I/O
system and autoconfiguration process as it applies to UNIBUS devices.

Each UNmUS on a VAX has a set of resources:

• 496 map registers which are used to convert from the 18-bit UNmUS addresses into the much larger
VAX memory address space.

• Some number of buffered data paths (3 on an 111750, 15 on an 111780, 0 on an 111730) which are
used by high speed devices to transfer data using fewer bus cycles.

There is a structure of type struet uba _ hd in the system per UNmUS adapter used to manage these
resources. This structure also contains a linked list where devices waiting for resources to complete DMA
UNmUS activity have requests waiting.

There are three central structures in the writing of drivers for UNmUS controllers; devices which do
not do DMA I/O can often use only two of these structures. The structures are struet uba _ etlr, the
UNIBUS controller structure, struet uba deviee the UNmUS device structure, and struet uba driver, the
UNmUS driver structure. The uba _ etlr and uba _ deviee structures are in one-to-one correspondence with
the definitions of controllers and devices in the system configuration. Each driver has a struet uba _driver
structure specifying an internal interface to the rest of the system.

Thus a specification

controller scO at ubaO csr 0176700 vector upintr

would cause a struet uba _ etlr to be declared and initialized in the file ioeonf.e for the system configured
from this description. Similarly specifying

disk upO at scO drive 0

would declare a related uba deviee in the same file. The up.e driver which implements this driver specifies
in its declarations: -

int upprobeO, upslaveO, upattach()? updgoO, upintr();
struct uba _ ctlr *upminfo[NSC];
struct uba _device *updinfo[NUP];
u_short upstd[] = {07767oo, 0774400, 0776300, O};
struct uba _driver sedriver =

{upprobe, ups lave, upattach, updgo, upstd, "up", updinfo, lise", upminfo };

initializing the uba _driver structure. The driver will support some number of controllers named seD, sei,

Building Kernels with Config S:MM::2-17

etc, and some number of drives named upO, up1, etc. where the drives may be on any of the controllers
(that is there is a single linear name space for devices, separate from the controllers.)

We now explain the fields in the various structures. It may help to look at a copy of
vaxuba/ubareg.h, vaxubalubavar.h and drivers such as up.c and dz.c while reading the descriptions of the
various structure fields.

uba _driver structure

One of these structures exists per driver. It is initialized in the driver and contains functions used by
the configuration program and by the UNIBUS resource routines. The fields of the structure are:

udJrobe
A routine which, given a caddr _t address as argument, should attempt to determine that the device is
present at that address in virtual memory, and should cause an interrupt from the device. When
probing controllers, two additional arguments are supplied: the controller index, and a pointer to the
uba _ ctlr structure. Device probe routines receive a pointer to the uba _device structure as second
argument. Both of these structures are described below. Neither is normally used, but devices that
must record status or device type information from the probe routine may require them.

The autoconfiguration routine attempts to verify that the specified address responds before calling the
probe routine. However, the device may not actually exist or may be of a different type, and therefore the
probe routine should use delays (via the DELAY(n) macro which delays for n microseconds) rather than
waiting for specific events to occur. The routine must not declare its argument as a register parameter, but
must declare

register int br, cvec;

as local variables. At boot time the system takes special measures that these variables are "value-result"
parameters. The br is the IPL of the device when it interrupts, and the cvec is the interrupt vector address
on the UNIBUS. These registers are actually filled in in the interrupt handler when an interrupt occurs.

As an example, here is the up.c probe routine:

upprobe(reg)
caddr_t reg;

{
register int br, cvec;

#ifdeflint
br = 0; cvec = br; br = cvec; upintr(O);

#endif

}

«struct updevice *)reg)->upcsl = UP _IEIUP _RDY;
DELAY(lO);
«struct updevice *)reg)->upcsl = 0;
return (sizeof (struct updevice»;

The definitions for lint serve to indicate to it that the br and cvec variables are value-result The call
to the interrupt routine satisfies lint that the interrupt handler is used. The cod here enable interrupts
on the device and write the ready bit UP _RDY. The 10 microsecond delay insures that the interrupt
enable will not be canceled before the interrupt can be posted. The return of "sizeof (struct updev­
ice)" here indicates that the probe routine is satisfied that the device is present (the value returned is
not currently used, but future plans dictate that you should return the amount of space in the device's
register bank). A probe routine may use the function "badaddr" to see if certain other addresses are
accessible on the UNIBUS (without generating a machine check), or look at the contents of locations
where certain registers should be. If the registers contents are not acceptable or the addresses don't
respond, the probe routine can return 0 and the device will not be considered to be there.

One other thing to note is that the action of different V AXen when illegal addresses are accessed on
the UNIBUS may differ. Some of the machines may generate machine checks and some may cause

Sl\1M::2-18 Building Kernels with Config

UNIBUS errors. Such considerations are handled by the configuration program and the driver writer
need not be concerned with them.

It is also possible to write a very simple probe routine for a one-of-a-kind device if probing is
difficult or impossible. Such a routine would include statements of the form:

br = Ox15;
cvec =0200;

for instance, to declare that the device ran at UNIBUS br5 and interrupted through vector 0200 on
theUNmUS.

ud_slave
This routine is called with a uba _device structure (yet to be described) and the address of the device
controller. It should determine whether a particular slave device of a controller is present, returning
I if it is and 0 if it is not As an example here is the slave routine for up.c.

upslave(ui, reg)

{

}

struct uba _device *ui;
caddr _ t reg;

register struct updevice *upaddr = (struet updevice *)reg;

upaddr->upcsl = 0; 1* conservative *1
upaddr->upcs2 = ui->ui slave;
if (upaddr->upcs2 & uPCS2 NED) {

upaddr->upcsl = UP _DCLR I UP_GO;
return (0);

}
return (1);

Here the code fetches the slave (disk unit) number from the ui_slave field of the uba_device struc­
ture, and sees if the controller responds that that is a non-existent driver (NED). If the drive is not
present, a drive clear is issued to clean the state of the controller, and 0 is returned indicating that the
slave is not there. Otherwise a I is returned.

ud_attach
The attach routine is called after the autoconfigure code and the driver concur that a peripheral exists
attached to a controller. This is the routine where internal driver state about the peripheral can be
initialized. Here is the attach routine from the up.c driver:

upattach(ui)

{

}

register steuct uba _device *ui;

register struct updevice *upaddr;

if (upwstart == 0) {

}

timeout(upwatch, (caddr_t)O, hz);
upwstart++;

if (ui->ui_dk >= 0)
dk _ mspw[ui->ui _ dk]= .0000020345;

upip[ui->ui_ctlr][ui->ui_slave] = ui;
up softc[ui->ui ctlr].sc ndrive++;

ul->ui type = upmaptYPe(ui);

The attach routine here performs a number of functions. The first time any drive is attached to the
controller it starts the timeout routine which watches the disk drives to make sure that interrupts

Building Kernels with Config SMM:2-19

aren't lost. It also initializes, for devices which have been assigned iostat numbers (when ui->ui_dk
>= 0), the transfer rate of the device in the array dk _ mspw, the fraction of a second it takes to transfer
16 bit word. It then initializes an inverting pointer in the array upip which will be used later to deter­
mine, for a particular up controller and slave number, the corresponding uba_device. It increments
the count of the number of devices on this controller, so that search commands can later be avoided
if the count is exactly 1. It then attempts to decipher the actual type of drive attached to the con­
troller in a controller-specific way. On the EMULEX SC-21 it may ask for the number of tracks on
the device and use this to decide what the drive type is. The drive type is used to setup disk partition
mapping tables and other device specific information.

ud_dgo
This is the routine which is called by the UNIBUS resource management routines when an operation
is ready to be started (because the required resources have been allocated). The routine in up.c is:

updgo(um)
struct uba _ ctlr *um;

{
register struct updevice *upaddr = (struct updevice *)um->um _ addr;

upaddr->upba = um->um _ ubinfo;
upaddr->upcsl = um->um _ cmdl«um->um _ ubinfo»8)&Ox300);

}

This routine uses the field um ubinfo of the uba ctlr structure which is where the UNIBUS routines
store the UNIBUS map allocation information. In particular, the low 18 bits of this word give the
UNIBUS address assigned to the transfer. The assignment to upba in the go routine places the low
16 bits of the UNffiUS address in the disk UNIBUS address register. The next assignment places the
disk operation command and the extended (high 2) address bits in the device control-status register,
starting the I/O operation. The field um cmd was initialized with the command to be stuffed here in
the driver code itself before the call to-the ubago routine which eventually resulted in the call to
updgo.

ud_addr
This is a zero-terminated list of the conventional addresses for the device control registers in
UNIBUS space. This information is used by the system to look for instances of the device supported
by the driver. When the system probes for the device it first checks for a control-status register
located at the address indicated in the configuration file (if supplied), then uses the list of conven­
tional addresses pointed to be ud _ addr.

ud_dname
This is the name of a device supported by this controller; thus the disks on a SC-21 controller are
called upO, upI, etc. That is because this field contains up.

ud_dinfo
This is an array of back pointers to the uba device structures for each device attached to the con­
troller. Each driver defines a set of controliers and a set of devices. The device address space is
always one-dimensional, so that the presence of extra controllers may be masked away (e.g. by pat­
tern matching) to take advantage of hardware redundancy. This field is filled in by the configuration
program, and used by the driver.

ud_mname
The name of a controller, e.g. sc for the up.c driver. The first SC-21 is called scO, etc.

ud_minfo
The backpointer array to the structures for the controllers.

ud_xclu
If non-zero specifies that the controller requires exclusive use of the UNIBUS when it is running.
This is non-zero currently only for the RK611 controller for the RK07 disks to map around a
hardware problem. It could also be used if 6250bpi tape drives are to be used on the UNIBUS to

SMM:2-20 Building Kernels with Config

insure that they get the bandwidth that they need (basically the whole bus).

ud_ubamem
This is an optional entry point to the driver to configure UNIBUS memory associated with a device.
If this field in the driver structure is null, it is ignored. Otherwise, it is called before beginning to
probe for devices when configuration of a UNIBUS is begun. The driver must probe for the
existence of its memory, and is then responsible for allocating the map registers corresponding to the
device memory addresses so that the registers are not used for other purposes. The ud _ ubamem
returns 0 on success and -Ion failure. A return value of 1 indicates that the memory exists, and that
there is no further configuration required for the device.

uba _cdr structure

One of these structures exists per-controller. The fields link the controller to its UNmUS adapter
and contain the state information about the devices on the controller. The fields are:

um_driver
A pointer to the struct uba _device for this driver, which has fields as defined above.

um_ctlr
The controller number for this controller, e.g. the 0 in scO.

urn_alive
Set to 1 if the controller is considered alive; currently, always set for any structure encountered dur­
ing normal operation. That is, the driver will have a handle on a uba _ ctlr structure only if the
configuration routines set this field to a 1 and entered it into the driver tables.

umJntr
The interrupt vector routines for this device. These are generated by config and this field is initial­
ized in the ioconf.c file.

um_bd
A back-pointer to the UNmUS adapter to which this controller is attached.

um_cmd
A place for the driver to store the command which is to be given to the device before calling the rou­
tine ubago with the devices uba _device structure. This information is then retrieved when the device
go routine is called and stuffed in the device control status register to start the I/O operation.

um_ubinfo
Information about the UNmUS resources allocated to the device. This is normally only used in dev­
ice driver go routine (as updgo above) and occasionally in exceptional condition handling such as
ECe correction.

um_tab
This buffer structure is a place where the driver hangs the device structures which are ready to
transfer. Each driver allocates a buf structure for each device (e.g. updtab in the up.c driver) for this
purpose. You can think of this structure as a device-control-block, and the buf structures linked to it
as the unit-control-blocks. The code for dealing with this structure is stylized; see the rk.c or up.c
driver for the details. If the ubago routine is to be used, the structure attached to this buf structure
must be:

• A chain of buf structures for each waiting device on this controller.

• On each waiting buf structure another buf structure which is the one containing the parameters of
the I/O operation.

uba_ device structure

One of these structures exist for each device attached to a UNIBUS controller. Devices which are
not attached to controllers or which perform no buffered data path DMA I/O may have only a device struc­
ture. Thus dz and dh devices have only uba _device structures. The fields are:

Building Kernels with Config S:MM:2-21

ui_driver
A pointer to the struct uba _driver structure for this device type.

ui_unit
The unit number of this device, e.g. 0 in upO, or 1 in db!.

utctlr
The number of the controller on which this device is attached, or -1 if this device is not on a con­
troller.

ui_ubanum
The number of the UNIBUS on which this device is attached.

ui_slave
The slave number of this device on the controller which it is attached to, or -1 if the device is not a
slave. Thus a disk which was unit 2 on a SC-21 would have ui _slave 2; it might or might not be up2,
that depends on the system configuration specification.

ui_intr
The interrupt vector entries for this device, copied into the UNIBUS interrupt vector at boot time.
The values of these fields are filled in by config to small code segments which it generates in the file
ubglue.s.

ui_addr

ui_dk

The control-status register address of this device.

The iostat number assigned to this device. Numbers are assigned to disks only, and are small nonne­
gative integers which index the various dk _ * arrays in <sysldk.h>.

ui_8ags
The optional "flags xxx" parameter from the configuration specification was copied to this field, to
be interpreted by the driver. Ifflags was not specified, then this field will contain a O.

ui_alive
The device is really there. Presently set to 1 when a device is determined to be alive, and left 1.

ui_type
The device type, to be used by the driver internally.

uiJbysaddr

ui_mi

ui_hd

The physical memory address of the device control-status register. This is typically used in the dev­
ice dump routines.

A struct uba_ctlr pointer to the controller (if any) on which this device resides.

A struct uba _ hd pointer to the UNIBUS on which this device resides.

UNIBUS resource management routines

UNIBUS drivers are supported by a collection of utility routines which manage UNIBUS resources.
If a driver attempts to bypass the UNIBUS routines, other drivers may not operate properly. The major
routines are: uballoc to allocate UNIBUS resources, ubarelse to release previously allocated resources, and
ubago to initiate DMA. When allocating UNmUS resources you may request that you

NEEDBDP
if you need a buffered data path,

HAVEBDP
if you already have a buffered data path and just want new mapping registers (and access to the
UNIBUS),

CAN1WAIT
if you are calling (potentially) from interrupt level, and

S:MM:2-22 Building Kernels with Config

NEED 16
if the device uses only 16 address bits, and thus requires map registers from the first 64K of UNIBUS
address space.

If the presentation here does not answer all the questions you may have, consult the file /sys/vaxuba/uba.c

Autoconfiguration requirements

Basically all you have to do is write a ud yrobe and a ud _attach routine for the controller. It suffices
to have a ud yrobe routine which just initializes br and cvec, and a ud _attach routine which does nothing.
Making the device fully configurable requires, of course, more work, but is worth it if you expect the dev­
ice to be in common usage and want to share it with others.

If you managed to create all the needed hooks, then make sure you include the necessary header
files; the ones included by vaxubalct.c are nearly minimal. Order is important here, don't be surprised at
undefined structure complaints if you order the includes incorrectly. Finally, if you get the device
configured in, you can try bootstrapping and see if configuration messages print out about your device. It is
a good idea to have some messages in the probe routine so that you can see that it is being called and what
is going on. If it is not called, then you probably have the control-status register address wrong in the sys­
tem configuration. The autoconfigure code notices that the device doesn't exist in this case, and the probe
will never be called.

Assuming that your probe routine works and you manage to generate an interrupt, then you are basi­
cally back to where you would have been under older versions of UNIX. Just be sure to use the ui_ctlr
field of the uba _device structures to address the device; compiling in funny constants will make your driver
only work on the CPU type you have (780, 750, or 730).

Other bad things that might happen while you are setting up the configuration stuff:

• You get "nexus zero vector" errors from the system. This will happen if you cause a device to inter­
rupt, but take away the interrupt enable so fast that the UNIBUS adapter cancels the interrupt and con­
fuses the processor. The best thing to do it to put a modest delay in the probe code between the instruc­
tions which should cause and interrupt and the clearing of the interrupt enable. (You should clear inter­
rupt enable before you leave the probe routine so the device doesn't interrupt more and confuse the sys­
tem while it is configuring other devices.)

• The device refuses to interrupt or interrupts with a "zero vector". This typically indicates a problem
with the hardware or, for devices which emulate other devices, that the emulation is incomplete. Dev­
ices may fail to present interrupt vectors because they have configuration switches set wrong, or
because they are being accessed in inappropriate ways. Incomplete emulation can cause "maintenance
mode" features to not work properly, and these features are often needed to force device interrupts.

Building Kernels with Config SMM::2-23

APPENDIX A. CONFIGURATION FILE GRAMMAR

The following grammar is a compressed form of the actual yacc (1) grammar used by config to parse
configuration files. Terminal symbols are shown all in upper case, literals are emboldened; optional
clauses are enclosed in brackets, "[" and "]"; zero or more instantiations are denoted with "*".

Configuration ::= [Spec;]*

Spec ::= Config_spec
I Device_spec
I trace
1/* lambda *1

1* configuration specifications *1

Config_spec ::= machine 10
I cpu 10
I options Opt_list
I ident 10
I System_spec
I timezone [-] NUMBER [clst [NUMBER]]
I timezone [-] FPNUMBER [clst [NUMBER]]
I maxusers NUMBER

1* system configuration specifications *1

System_spec ::= config 10 System-parameter [System-parameter]*

major_minor ::= major NUMBER minor NUMBER

dev _name ::= 10 [NUMBER [10]]

1* option specifications *1

Opt_list ::= Option [, Option]*

Option ::= 10 [= Opt_value]

Opt_value ::= 10 I NUMBER

Sl'v1M:2-24

Mkopt_list ::= Mkoption [, Mkoption]*

Mkoption ::= 10 = Opt value

1* device specifications *1

Device_spec ::= device Dev_name DevJnfo Int_spec
I master Dev _name Dev Jnfo
I disk Dev _name Dev _info
I tape Dev_name Dev_info
I controller Dev _name Dev Jnfo [Int_spec]
I pseudo-device Dev [NUMBER]

Dev _name ::= Dev NUMBER

Dev ::= uba I mba I 10

DevJnfo ::= Con_info [Info]*

Con_info ::= at Dev NUMBER
I at nexus NUMBER

Info ::= csr NUMBER
I drive NUMBER
I slave NUMBER
I Hags NUMBER

Int_spec ::= vector ID [10]*
I priority NUMBER

Lexical Conventions

The terminal symbols are loosely defined as:

10

Building Kernels with Config

One or more alphabetics, either upper or lower case, and underscore, "_".

NUMBER
Approximately the C language specification for an integer number. That is, a leading "Ox" indicates
a hexadecimal value, a leading "0" indicates an octal value, otherwise the number is expected to be
a decimal value. Hexadecimal numbers may use either upper or lower case alphabetics.

FPNUMBER
A fioating point number without exponent. That is a number of the form "nnn.ddd", where the frac­
tional component is optional.

In special instances a question mark, "1", can be substituted for a "NUMBER" token. This is used to
effect wildcarding in device interconnection specifications.

Comments in configuration files are indicated by a H#" character at the beginning of the line; the
remainder of the line is discarded.

A specification is intetpreted as a continuation of the previous line if the first character of the line is tab.

Building Kernels with Config SMM::2-25

APPENDIX B. RULES FOR DEFAULTING SYSTEM DEVICES

When config processes a "config" rule which does not fully specify the location of the root file sys­
tem, paging area(s), device for system dumps, and device for argument list processing it applies a set of
rules to define those values left unspecified. The following list of rules are used in defaulting system dev­
ices.

1) If a root device is not specified, the swap specification must indicate a "generic" system is to be built.

2) If the root device does not specify a unit number, it defaults to unit O.

3) If the root device does not include a partition specification, it defaults to the "a" partition.

4) If no swap area is specified, it defaults to the "b" partition of the root device.

5) If no device is specified for processing argument lists, the first swap partition is selected.

6) If no device is chosen for system dumps, the first swap partition is selected (see below to find out where
dumps are placed within the partition).

The following table summarizes the default partitions selected when a device specification is incom­
plete, e.g. "hpO".

Type Partition
root "a"
swap "b"
args "b"
dumps "b"

Multiple swap/paging areas

When multiple swap partitions are specified, the system treats the first specified as a "primary"
swap area which is always used. The remaining partitions are then interleaved into the paging system at
the time a swapon(2) system call is made. This is normally done at boot time with a call to swapon(8) from
the letr;/rc file.

System dumps

System dumps are automatically taken after a system crash, provided the device driver for the
"dumps" device supports this. The dump contains the contents of memory, but not the swap areas. Nor­
mally the dump device is a disk in which case the information is copied to a location at the back of the par­
tition. The dump is placed in the back of the partition because the primary swap and dump device are com­
monly the same device and this allows the system to be rebooted without immediately overwriting the
saved infonnation. When a dump has occurred, the system variable dumpsize is set to a non-zero value
indicating the size (in bytes) of the dump. The savecore (8) program then copies the information from the
dump partition to a file in a "crash" directory and also makes a copy of the system which was running at
the time of the crash (usually "/vmunix"). The offset to the system dump is defined in the system variable
dumplo (a sector offset from the front of the dump partition). The save core program operates by reading
the contents of dumplo, dumpdev, and dumpmagic from Idevlkmem, then comparing the value of dump­
magic read from Idevlkmem to that located in corresponding location in the dump area of the dump parti­
tion. If a match is found, savecore assumes a crash occurred and reads dumpsize from the dump area of
the dump partition. This value is then used in copying the system dump. Refer to savecore (8) for more
information about its operation.

The value dumplo is calculated to be

dumpdev-size - memsize

where dumpdev-size is the size of the disk partition where system dumps are to be placed, and memsize is
the size of physical memory. If the disk partition is not large enough to hold a full dump, dumplo is set to 0
(the start of the partition).

SMM:2-26 Building Kernels with Config

APPENDIX C. SAMPLE CONFIGURATION FILES

The following configuration files are developed in section 5; they are included here for completeness.

ANSEL VAX (a picture perfect machine)

machine vax
cpu VAX780
timezone 8 dst
ident ANSEL
maxusers 40

config vmunix
config hpvmunix
config genvmunix

controller mbaO
disk hpO
disk hpl
controller mbal
disk hp2
disk hp3
controller ubaO
controller tmO
tape teO
tape tel
device dhO
device dmO
device dh!
device dh2

root on hpO
root on hpO swap on hpO and hp2
swap generic

at nexus ?
at mba? disk?
at mba? disk?
at nexus ?
at mba? disk?
at mba? disk ?
at nexus ?
at uba? csr 0172520 vector tmintr
at tmO drive 0
at tmO drive 1
at uba? csr 0160020 vector dhrint dhxint
at uba? csr 0170500 vector dmintr
at uba? csr 0160040 vector dhrint dhxint
at uba? csr 0160060 vector dhrint dhxint

Building Kernels with Config

UCBV AX - Gateway to the world

machine vax
cpu "VAX780"
cpu "VAX750"
ident UCBVAX
timezone 8 dst
maxusers 32
options INET
options NS

config vmunix
config upvmunix
config hkvmunix

controller mbaO
controller ubaO
disk hpO
disk hpl
controller scO
disk upO
disk upl
controller hkO
disk rkO
disk rkl
pseudo-device pty
pseudo-device loop
pseudo-device imp
device accO
pseudo-device ether
device ecO
device ilO

root on hp swap on hp and rkO and rk1
root on up
root on hk swap on rkO and rk1

at nexus ?
at nexus ?
at mba? drive 0
at mba? drive 1
at uba? csr 0176700
at scO drive 0
at scO drive 1
at uba? csr 0177440
at hkO drive 0
at hkO drive 1

at uba? csr 0167600

vector upintr

vector rkintr

vector accrint accxint

SMM:2-27

at uba? csr 0164330
at uba? csr 0164000

vector ecrint eccollide ecxint
vector ilrint Heint

S:MM:2-28 Building Kernels with Config

APPENDIX D. VAX KERNEL DATA STRUCTURE SIZING RULES

Certain system data structures are sized at compile time according to the maximum number of simul­
taneous users expected, while others are calculated at boot time based on the physical resources present,
e.g. memory. This appendix lists both sets of rules and also includes some hints on changing built-in limi­
tations on certain data structures.

Compile time rules

The file Isyslconflparam.c contains the definitions of almost all data structures sized at compile time.
This file is copied into the directory of each configured system to allow configuration-dependent rules and
values to be maintained. (Each copy normally depends on the copy in Isys/conf, and global modifications
cause the file to be recopied unless the makefile is modified.) The rules implied by its contents are sum­
marized below (here MAXUSERS refers to the value defined in the configuration file in the "maxusers"
rule). Most limits are computed at compile time and stored in global variables for use by other modules;
they may generally be patched in the system binary image before rebooting to test new values.

nproc

ntext

The maximum number of processes which may be running at any time. It is referred to in other cal­
culations as NPROC and is defined to be

20 + 8 * MAXUSERS

The maximum number of active shared text segments. The constant is intended to allow for network
servers and common commands that remain in the table. It is defined as

36 + MAXUSERS.

ninode

nfiIe

The maximum number of files in the file system which may be active at any time. This includes files
in use by users, as well as directory files being read or written by the system and files associated with
bound sockets in the UNIX !PC domain. It is defined as

(NPROC + 16 + MAXUSERS) + 32

The number of "file table" structures. One file table structure is used for each open, unshared, file
descriptor. Multiple file descriptors may reference a single file table entry when they are created
through a dup call, or as the result of afork. This is defined to be

16 * (NPROC + 16 + MAXUSERS) I 10 + 32

neaHout

nelist

The number of "callout" structures. One callout structure is used per internal system event handled
with a timeout Timeouts are used for tenninal delays, watchdog routines in device drivers, protocol
timeout processing, etc. This is defined as

16+NPROC

The number of "c-list" structures. C-list structures are used in terminal 110, and currently each
holds 60 characters. Their number is defined as

60 + 12 * MAXUSERS

nmbcIusters
The maximum number of pages which may be allocated by the network. This is defined as 256 (a
quarter megabyte of memory) in Isyslhlmbuf.h. In practice, the network rarely uses this much
memory. It starts off by allocating 8 kilobytes of memory, then requesting more as required. This

Building Kernels with Config

value represents an upper bound.

nquota

SMM::2-29

The number of "quota" structures allocated. Quota structures are present only when disc quotas are
configured in the system. One quota structure is kept per user. This is defined to be

(MAXUSERS * 9) I 7 + 3

ndquot
The number of "dquot" structures allocated. Dquot structures are present only when disc quotas are
configured in the system. One dquot structure is required per user, per active file system quota. That
is, when a user manipulates a file on a file system on which quotas are enabled, the information
regarding the user's quotas on that file system must be in-core. This information is cached, so that
not all information must be present in-core all the time. This is defined as

NINODE + (MAXUSERS * NMOUNT) I 4

where NMOUNT is the maximum number of mountable file systems.

In addition to the above values, the system page tables (used to map virtual memory in the kernel's address
space) are sized at compile time by the SYSPTSIZE definition in the file Isys/vaxlvmparam.h. This is
defined to be

20 + MAXUSERS

pages of page tables. Its definition affects the size of many data structures allocated at boot time because it
constrains the amount of virtual memory which may be addressed by the running system. This is often the
limiting factor in the size of the buffer cache, in which case a message is printed when the system
configures at boot time.

Run-time calculations

The most important data structures sized at run-time are those used in the buffer cache. Allocation is
done by allocating physical memory (and system virtual memory) immediately after the system has been
started up; look in the file Isys/vaxlmachdep.c. The amount of physical memory which may be allocated to
the buffer cache is constrained by the size of the system page tables, among other things. While the system
may calculate a large amount of memory to be allocated to the buffer cache, if the system page table is too
small to map this physical memory into the virtual address space of the system, only as much as can be
mapped will be used.

The buffer cache is comprised of a number of "buffer headers" and a pool of pages attached to
these headers. Buffer headers are divided into two categories: those used for swapping and paging, and
those used for normal file I/O. The system tries to allocate 10% of the first two megabytes and 5% of the
remaining available physical memory for the buffer cache (where available does not count that space occu­
pied by the system's text and data segments). If this results in fewer than 16 pages of memory allocated,
then 16 pages are allocated. This value is kept in the initialized variable bufpages so that it may be patched
in the binary image (to allow tuning without recompiling the system), or the default may be overridden
with a configuration-file option. For example, the option options BUFPAGES="3200" causes 3200 pages
(3.2M bytes) to be used by the buffer cache. A sufficient number of file I/O buffer headers are then allo­
cated to allow each to hold 2 pages each. Each buffer maps 8K bytes. If the number of buffer pages is
larger than can be mapped by the buffer headers, the number of pages is reduced. The number of buffer
headers allocated is stored in the global variable nbuf, which may be patched before the system is booted.
The system option options NBUF="lOOO" forces the allocation of 1000 buffer headers. Half as many
swap I/O buffer headers as file I/O buffers are allocated, but no more than 256.

System size limitations

As distributed, the sum of the virtual sizes of the core-resident processes is limited to 256M bytes.
The size of the text segment of a single process is currently limited to 6M bytes. It may be increased to no
greater than the data segment size limit (see below) by redefining MAXTSIZ. This may be done with a
configuration file option, e.g. options MAXTSIZ="(lO*1024*1024)" to set the limit to 10 million bytes.

SMM:2-30 Building Kernels with Config

Other per-process limits discussed here may be changed with similar options with names given in
parentheses. Soft, user-changeable limits are set to 512K bytes for stack (DFLSSIZ) and 6M bytes for the
data segment (DFLDSIZ) by default; these may be increased up to the hard limit with the setrlimit (2) sys­
tem call. The data and stack segment size hard limits are set by a system configuration option to one of
17M, 33M or 64M bytes. One of these sizes is chosen based on the definition of MAXDSIZ; with no
option, the limit is 17M bytes; with an option options MAXDSIZ="(32*1024*1024)" (or any value
between 17M and 33M), the limit is increased to 33M bytes, and values larger than 33M result in a limit of
64M bytes. You must be careful in doing this that you have adequate paging space. As normally
configured, the system has 16M or 32M bytes per paging area, depending on disk size. The best way to
get more space is to provide multiple, thereby interleaved, paging areas. Increasing the virtual memory
limits results in interleaving of swap space in larger sections (from 500K bytes to 1M or 2M bytes).

By default, the virtual memory system allocates enough memory for system page tables mapping
user page tables to allow 256 megabytes of simultaneous active virtual memory. That is, the sum of the
virtual memory sizes of all (completely- or partially-) resident processes can not exceed this limit. If the
limit is exceeded, some process(es) must be swapped out. To increase the amount of resident virtual space
possible, you can alter the constant USRPTSIZE (in Isys/vaxlvmparam.h). Each page of system page
tables allows 8 megabytes of user virtual memory.

Because the file system block numbers are stored in page table P8_ blkno entries, the maximum size
of a file system is limited to 2"24 1024 byte blocks. Thus no file system can be larger than 8 gigabytes.

The number of mountable file systems is set at 20 by the definition of NMOUNT in Isys/h/param.h.
This should be sufficient; if not, the value can be increased up to 255. If you have many disks, it makes
sense to make some of them single file systems, and the paging areas don't count in this total.

The limit to the number of files that a process may have open simultaneously is set to 64. This limit
is set by the NOFILE definition in Isys/h/param.h. It may be increased arbitrarily, with the caveat that the
user structure expands by 5 bytes for each file, and thus UPAGES (/sys/vaxlmachparam.h) must be
increased accordingly.

The amount of physical memory is currently limited to 64 Mb by the size of the index fields in the
core-map (/syslhlcmap.h). The limit may be increased by following instructions in that file to enlarge those
fields.

Building Kernels with Config S:MM::2-31

APPENDIX E. NETWORK CONFIGURATION OPTIONS

The network support in the kernel is self-configuring according to the protocol support options
(!NET and NS) and the network hardware discovered during autoconfiguration. There are several changes
that may be made to customize network behavior due to local restrictions. Within the Internet protocol
routines, the following options set in the system configuration file are supported:

GATEWAY
The machine is to be used as a gateway. This option currently makes only minor changes. First, the
size of the network routing hash table is increased. Secondly, machines that have only a single
hardware network interface will not forward IP packets; without this option, they will also refrain
from sending any error indication to the source of unforwardable packets. Gateways with only a sin­
gle interface are assumed to have missing or broken interfaces, and will return ICMP unreachable
errors to hosts sending them packets to be forwarded.

TCP _COMPAT_ 42
This option forces the system to limit its initial TCP sequence numbers to positive numbers. Without
this option, 4.3BSD systems may have problems with TCP connections to 4.2BSD systems that con­
nect but never transfer data. The problem is a bug in the 4.2BSD TCP; this option should be used
during the period of conversion to 4.3BSD.

IPFORWARDING
Normally, 4.3BSD machines with multiple network interfaces will forward IP packets received that
should be resent to another host If the line "options IPFORW ARDING="O'''' is in the system
configuration file, IP packet forwarding will be disabled

IPSENDREDIRECTS
When forwarding IP packets, 4.3BSD IP will note when a packet is forwarded using the same inter­
face on which it arrived When this is noted, if the source machine is on the direcdy-attached net­
work, an ICMP redirect is sent to the source host. If the packet was forwarded using a route to a host
or to a subnet, a host redirect is sent, otherwise a network redirect is sent. The generation of
redirects may be inhibited with the configuration option "options IPSENDREDIRECTS="O"."

SUBNETSARELOCAL
TCP calculates a maximum segment size to use for each connection, and sends no datagrams larger
than that size. This size will be no larger than that supported on the outgoing interface. Further­
more, if the destination is not on the local network, the size will be no larger than 576 bytes. For this
test, other subnets of a direcdy-connected subnetted network are considered to be local unless the
line "options SUBNETSARELOCAL= "0"" is used in the system configuration file.

COMPAT 42
This option, intended as a catchall for 4.2BSD compatibility options, has only a single function thus
far. It disables the checking of UDP input packet checksums. As the calculation of UDP packet
checksums was incorrect in 4.2BSD, this option allows a 4.3BSD system to receive UDP packets
from a 4.2BSD system.

The following options are supported by the Xerox NS protocols:

NSIP
This option allows NS lOP datagrams to be encapsulated in Internet IP packets for transmission to a
collaborating NSIP host. This may be used to pass lOP packets through IP-only link layer networks.
See nsiP(4P) for details.

THREEWAYSHAKE
The NS Sequenced Packet Protocol does not require a three-way handshake before considering a
connection to be in the established state. (A three-way handshake consists of a connection request,
an acknowledgement of the request along with a symmetrical opening indication, and then an ack­
nowledgement of the reciprocal opening packet.) This option forces a three-way handshake before
data may be transmitted on Sequenced Packet sockets.

Using ADB to Debug the UNIXt Kernel

Samuel J. Leffler and William N. Joy

Computer Systems Research Group
Departtnent of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

This document describes the facilities found in the 4.3BSD version of the V AX*
UNIX debugger adb which may be used to debug the UNIX kernel. It discusses how
standard adb commands may be used in examining the kernel and introduces the basics
necessary for users to write adb command scripts which can augment the standard adb
command set. The examination techniques described here may be applied both to run­
ning systems and the post-mortem dumps automatically created by the savecore(8) pro­
gram after a system crash. The reader is expected to have at least a passing familiarity
with the debugger command language.

Revised June 3, 1986

1. Introduction

Modifications have been made to the standard V AX UNIX debugger adb to simplify examination of
post-mortem dumps automatically generated following a system crash. These changes may also be used
when examining UNIX in its normal operation. This document serves as an introduction to the use of these
facilities, and should not be construed as a description of how to debug the kernel.

1.1. Invocation

When examining post-mortem dumps of the UNIX kernel the -k option should be used, e.g.

% adb -k vrnunix.? vrncore.?

where the appropriate version of the saved operating system image and core dump are supplied in place of
"?". This flag causes adb to partially simulate the V AX virtual memory hardware when accessing the
core file. In addition the internal state maintained by the debugger is initialized from data structures main­
tained by the kernel explicitly for debugging;' A running kernel may be examined in a similar fashion,

% adb -k /vrnunix /dev/mem

1.2. Establishing Context

During initialization adb attempts to establish the context of the "currently active process" byexa­
mining the value of the kernel variable masterpaddr. This variable contains the virtual address of the pro­
cess context block of the last process which was set executing by the Swtch routine. Masterpaddr normally

tUNIX is a Trademark of Bell Laboratories.
*DEC and V AX are trademarks of Digital Equipment Corporation.
:\: If the -k flag is not used when invoking adb the user must explicitly calculate virtual addresses. With the -k option adb
interprets page tables to automatically perform virtual to physical address translation.

S:MM:3-2 Using ADB to Debug the Kernel

provides sufficient information to locate the current stack frame (via the stack pointers found in the context
block). By locating the process context block for the process adb may then perform virtual to physical
address translation using that process's in-core page tables.

When examining post-mortem dumps locating the most recent stack frame of the last currently active
process can be nontrivial. This is due to the different ways in which state may be saved after a nonrecover­
able error. Crashes mayor may not be "clean" (Le. the top of the interrupt stack contains a pointer to the
process's kernel mode stack pointer and program counter); an "unclean" crash will occur, for instance, if
the interrupt stack overflows. When adb is invoked on a post-mortem crash dump it tries to automatically
establish the proper stack frame. This is done by first checking the stack pointer normally saved in the res­
tart parameter block at rpb+lfc (or scb-4). If this value does not point to a valid stack frame, adb searches
the interrupt stack looking for a valid stack frame. Should this also fail adb then searches the kernel stack
located in the user structure associated with the last executing process. If adb is able to locate a valid stack
frame using this procedure the command

$c

will generate a stack trace from the last point at which the kernel was executing on behalf of the user pro­
cess all the way to the top of the user process's stack (e.g. to the main routine in the user process). Should
adb be unable to locate a valid stack frame it prints a message and the current state is left undefined
When a stack trace of a particular process (other than that which was currently executing) is desired, an
alternate method, described in §2.4, should be used.

Additional information may be obtained from the kernel stack. Discussion of that subject is post­
poned until command scripts have been introduced; see §2.2.

2. Command Scripts

2.1. Extending the Formatting Facilities

Once the process context has been established, the complete adb command set is available for inter­
preting data structures. In addition, a number of adb scripts have been created to simplify the structured
printing of commonly referenced kernel data structures. The scripts normally reside in the directory
lusrllibladb, and are invoked with the "$<" operator. (A later table lists the standard scripts distributed
with the system.) ,

As an example, consider the following listing which contains a dump of a faulty process's state (our
typing is shown emboldened).

% adb -k vmunix.17S vmcore.17S
sbr 5868 slr 2770
pObr 5aOO pOlr 236 plbr 6600 pl1r fffO
panic: dup biodone
$c
_boot() from _boot+f3
_boot (0,0) from -panic+3a
-panic (800413dO) from _biodone+17
_biodone(800791e8) from _rxpurge+23
_rxpurge(80044754) from _rxstart+Sa
_rxstart(80044754) from 80031df8
_rxintr(O) from _XrxintrO+ll
_XrxintrO(45bOl,3aaf4) from 457f
_Syssize(3aaf4) from 365a
_Syssize() from 19a8
'?() from 2ff3
_Syssize(4,7fffe834) from 9cf3
_Syssize(4,7fffe834,7fffe848) from 37
'?O
u$<u

Using ADB to Debug the Kernel SMM:3-3

u: -
u: ksp usp

7fffff94 7fffe24c
1'0 r1 r2 r3
12eOOO 80044e60 800661bc 15fdl
r4 r5 r6 r7
13 4 80065114 16544
r8 r9 rIO rll
aO 80066de8 15a08 80000000
ap fp pc psi
7fffffe8 7fffffa4 8002ged2 180000
pObr pOIr plbr plIr
802f5aOO 4000236 7faf6600 lfffro
szpt cmap2 sswap
6 94OOOe59 0

_u+80: procp arO comm
8oo66de8 80000000 ccomA~A~A~A~A~A~A~A~A~A~A~A~

u+9c: argO argl arg2
46bfc 3aefc 0

_u+bc: uap qsave
7fffec9c 7fffffa4 8oo2alla

u+f8: rvl rv2 error eosys
0 3aafa 0 03

7fffed02: uid ruid gid rgid
2025 2025 10 10

7fffedOa: groups
10 0 2 3 11 79 -I -1
-I -I -I -1 -I -I -I -1

7fffed2c: tsize dsize ssize
aa 18c 6

7fffeffO: odsize ossize outime
52 40 0

7fffeffc: signal
0 0 0 0
0 0 0 0
7al0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
sigmask
0 4000 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

7ffffOfc: onstack sigintr oldmask
0 0 80002

7ffffl08: code sigstack onsigstack

SMM:3-4 Using ADB to Debug the Kernel

0 0 0
7ffff114: ofile

80063e40 80063e58 80064eeO 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

pofile
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

7ffffl54: lastfile
2

7ffff258: edit rdir ttyp ttyd emask
80060fSO 0 80056be8 106 02

ru
7ffffl68: utime stime

1 15f90 1 ef850
7ffff278: maxrss ixrss idrss isrss

432 28250 79590 0
7ffffl88: mintlt majtlt nswap

64 7 0
7ffffl94: inblock oublock msgsnd msgrev

12 19 0 0
7ffffla4: nsignals nvesw nivesw

0 12 22
7fffflbO: eru
7fffflbO: utime stime

0 0 0 0
7ffffleO: maxrss ixrss idrss isrss

0 0 0 0
7ffffldO: mintlt majflt nswap

0 0 0
7ffffldc: inblock oublock msgsnd msgrev

0 0 0 0
7ffff2ee: nsignals nvesw nivesw

Using ADB to Debug the Kernel SMM::3-5

0 0 0
7fffflf8: itimers

0 0 0 0
0 0 0 0
0 0 0 0

7ffff328: XXX
0 0 0

7ffff334: start acllag
1985 Nov 1 21:27:18 0

7ffff340: pr_base pr size pr_off scale
0 0 0 0

7ffff350: limits
7fffffff 7fffffff 7fffffff 7fffffff
600000 1000000 80000 1000000
7fffffff 7fffffff 123000 123000

7ffff380: quota qllags
80074a18 0

7ffff388: nc off nc inum nc _ dev nc _time
284 2 8 1985 Nov 1 21:27:19

7ffff398: ni_dirp nameiop ni _ errni.JX1ir ntbp
7 fffe8a8 41 0 200 8oo606c4

7ffff3a8: ni base ni count ni iovec ni iovcnt
0 92 7ffff3a8 1

7ffff3b8: ni_offset ntsegllg ni_resid
284 0 0

7ffff3c4: ni dentd inum rec1ennamlen name - -
19 72 9 ctmll0435"@c"@"@"@

80066de8$<proc
80066de8: link rlink next prev

80044e50 0 80067dec 8004e198

80066df8: addr upri pri cpu stat time
802f65d8 0150 0150 0330 03 04

8oo66eOl: nice sIp cursig sig
0 0 0 0

8oo66e08: mask ignore catch
0 0 80

8oo66e14: llag uid pgrp pid ppid
1008001 2025 11019 11045 11043

8oo66e20: xstat ru poip szpt tsize
0 0 0 6 aa

8oo66e30: dsize ssize rssize maxrss
18c 6 13c 918

8oo66e40: swrss swaddr wchan textp
0 6d8 0 8oo6b400

80066e50: pObr xlink ticks
802f5aoo 0 0

8oo66e5c: %cpu ndx idhash pptr
+0.000000000000000+00 3ea4 106a 2e

8oo66e68: cptr osptr ysptr
8oo67dec 0 0

8oo66e74: real itimer
0 0 0 0

8oo66e84: quota 0

SMM:3-6

8006b400$<text
8006b400: forw

If30
daddr
o
o
o

back
o

o
o
o

ptdaddr size

o
o
2c2

80066de8 8005f4aO 74

rssize swrss count ccount
22 0 0100 031 0

o
o
aa

caddr iptr
10001

Bag slptiJnpoip
o 0

Using ADB to Debug the Kernel

The cause of the crash was a "panic" (see the stack trace) due to an inconsistency recognized inside
the biodone routine. The majority of the dump was done to illustrate the use of two command scripts
used to format kernel data structures. The "u" script, invoked with the command "u$<u", is a
lengthy series of commands which pretty-prints the user structure. Likewise, "proc" and "text"
are scripts used to format the obvious data structures. Let's quickly examine the "text" script (the
script has been broken into a number of lines for convenience here; in actuality it is a single line of
text).

./"forw"16t"back"n2Xn\
"daddr"n12Xn\
"ptdaddr"16t"size"16t"caddr"16t"iptr"n4Xn\
"rssize"St"swrss"St"count"St"ccount"St"flaq"St"slptim"St"poip"n2x4bx++n

The first line displays the pointers associated with the doubly linked list used in managing text seg­
ments. The second line produces the list of disk block addresses associated with a swapped out text
segment. The "n" format forces a new-line character, with 12 hexadecimal integers printed
immediately after. Likewise, the remaining two lines of the command format the remainder of the
text structure. The expression "16t" causes adb to tab to the next column which is a multiple of 16.
The last two plus operators are present to round "." to the end of the text structure. This allows the
user to reinvoke the format on consecutive text structures without baving to be concerned about
proper alignment of "." •

The majority of the scripts provided are of this nature. When possible, the formatting scripts print a
data structure with a single format to allow subsequent reuse when interrogating arrays of structures. That
is, the previous script could have been written

./"forw"16t"back"n2Xn
+/"daddr"n12Xn
+/"ptdaddr"16t"size"16t"caddr"16t"iptr"n4Xn
+/"rssize"St"swrss"St"count"St"ccount"St"flaq"St"slptim"St"poip"n2x4bx++n

but then reuse of the format would have invoked only the last line of the format

2.2. Locating stack frames

It is frequently desirable to locate stack frames in order to examine local and register variables. In
particular, frames created by a trap include saved values of all registers and the trap context, and all regis­
ters are saved upon a panic as well. Two scripts are provided for tracing stack frames. The first is capable
of tracing through multiple frames~ printing the information common to each. The second prints all of the
information available in the stack frame after a trap. The following example illustrates their use.

% adb -k vmunix.188 vmcore.188
sbr 7068 sIr 2770
pObr SaOO pOlr 74 plbr SeOO pllr fffO
panic: Segmentation fault

Using ADB to Debug the Kernel SMM:3-7

$c
_bootO from 8oo29ddb
_ boot(O,O) from ...,panic+3a
...,panic(800447 a8) from _ trap+ac
_ trapO from _ Xtransflt+ 1 d
_ XtransfltO from _ Xsyscall+c
_Xsyscall(7fffe7ac,lb6) from 514
1(7fffe7ac) from 4ac
10 from 196
1(2,7fffe810,7fffe81c) from 3d
10
1000$s
*(rpb+ Ire),4$<rrame
7ffffe74: handler psr mask

0 0 2101
ap fp pc
7ffffecO 7ffffe9c 8oo29ddb boot+103

7ffffe9c: handler psr mask
0 0 2fOO
ap fp pc
7fffff14 7ffffedO 800 12de2 ...,panic+3a

7ffffedO: handler psr mask
0 0 2fff
ap fp pc
7fffftiO 7fffff2c 8oo2a408 _trap+ac

7fffff2c: handler psr mask
0 0 2fff
ap fp pc
7fffffe8 7fffffa4 80001031 _ Xtransflt+ Id

<l$<traprrame
7fffff2c: handler psr mask

0 0 2fff
ap fp pc
7fffffeS 7fffffa4 80001031 Xtransflt+ Id
rO rl r2 r3
0 80046988 80046aoo 8oo728db
r4 r5 r6 r7
8oo728bO 80054158 8oo63a6O 80066ee0
r8 r9 rIO r11
80041b80 8 7fffe578 80000000

7fffmO: nargs sp type code
0 7fffe560 8 2a50b6ca
pc (pc) ps
80001651 Swtch+2b d80008

8000l65l?i
_ Swtch+2b: remque *O(rl),r2
800469881X
_qs:
_qs: 2a50b6ca

SMM:3-8 Using ADB to Debug the Kernel

The example shows a panic due to a segmentation fault. The command "1000$s" expands the range
over which addresses will be displayed symbolically. The back trace indicates that the trap occurred four
frames from the end; as the frame pointer is stored at rpb+lfc, the command "*(rpb+lfc),4$<frame"
prints the last four stack frames; "*(rpb+lfc)" is the initial frame pointer, and the count detennines the
number of frames to print. Having located the stack frame after the trap (the frame with a return PC of
Xtransfit+ld), that frame may be displayed again using the script for a trap frame. The previous frame
pointer was left in register 1 by the previous script, and thus "<l$<trapframe" displays the state at the
time of the trap. The PC at the time of the fault is shown on the last line from the script, with the faulting
address listed as the code in the previous line. The instruction that caused the fault can then be examined.
In this example, the instruction was a remque that used a displacement addressing mode indirecting
through Rl. The location to which the register points is the first of the process run queues, and its first ele­
ment can be seen to be corrupted; its forward pointer, 2aSOb6ca, is invalid and is the address that caused
the fault.

2.3. Traversing Data Structures

The adb command language can be used to traverse complex data structures. One data structure, a
linked list, occurs quite often in the kernel. By using adb variables and the normal expression operators it
is a simple matter to construct a script which chains down a list printing each element along the way.

For instance, the queue of processes awaiting timer events, the callout queue, is printed with the fol­
lowing two scripts:

callout:
ca11todo/"time"16t"arg"16t"func"12+
*+$<ca11out.next

callout.next :
o/Dpp
*+>1
,#<1$<
<1$<ca11out.next

The first line of the script caUout starts the traversal at the global symbol calltodo and prints a set of
headings. It then skips the empty portion of the structure used as the head of the queue. The second
line then invokes the script caUout.next moving" e" to the top of the queue ("*+" performs the
indirection through the link entry of the structure at the head of the queue).

callout.next prints values for each column, then performs a conditional test on the link to the next
entry. This test is performed as follows,

*+>1

,#<1$<

Place the value of the "link" in the adb variable "<1".

If the value stored in H <1" is non-zero, then the current input stream (i.e. the script
callout.next) is terminated. Otherwise, the expression "#<1" will be zero, and the "$<" will
be ignored. That is, the combination of the logical negation operator "#", the adb variable
"<I", and the "$<" operator creates a statement of the form,

if (!1ink) exit;

The remaining line of callout.next simply reapplies the script on the next element in the linked
list.

A sample callout dump is shown below.

% adb -k Ivmunix Idev/mem
sbr 8001f864 s1r d9c
pObr 800efaOO p01r 8e p1br 7f8efeOO p11r 1ffff2
$<callout
_ca11todo:
_ca11todo: time arg func

Using ADB to Debug the Kernel SMM:3-9

8004ecfc: 26 0 dzscan
8004edOc: 8 0 _upwatch
8004edlc: 0 0 _ip_timeo
8004edSc: 0 0 _tcp_timeo
8004ed6c: 0 0 rkwatch
8004ecfc: 52 0 dzscan
8004ed2c: 68 _ Syssize+ 70 _tmtimer
8004ed3c: 2920 0 memenable

2.4. Supplying Parameters

If one is clever, a command script may use the address and count portions of an adb command as
parameters. An example of this is the setproc script used to switch to the context of a process with a
known process-id;

Ot99$<setproc

The body of setproc is

.>4
*nproc>l
*proc>f
$<setproc.nxt

while setproc.nxt is

(*«f+Ot52»&Oxffff="pid "D
,1«*«f+Ot52)&Oxffff)-<4)$<setproc.done
<1-1>1
<f+Ot164>f
,1<1$<
$<setproc.nxt

The process-id, supplied as the parameter, is stored in the variable" <4" , the number of processes is placed
in "<1", and the base of the array of process structures in "<F'. setproc.nxt then performs a linear search
through the array until it matches the process-id requested, or until it runs out of process structures to
check. The script setproc.done simply establishes the context of the process, then exits.

2.S. Standard Scripts

The following table summarizes the command scripts supplied with 4.3BSD; these scripts are found
in the directory lusrllibladb.

Standard Command Scripts

Name Use Description

buf addr$<buf format block I/O buffer
callout $<callout print timer queue
c1ist addr$<clist format character I/O linked list
dino addr$<dino format directory inode
dir addr$<dir format directory entry
dirblk addr$<dirblk scan directory entries
dmap addr$<dmap format a disk-map structure
dmcstats $<dmcstats dump statistics for dmcO
file addr$<fiIe format open file structure
filsys addr$<filsys format in-core super block structure
findinode inum$<findinode find an inode in the in-core inode table
findproc pid$<findproc find process by process id
frame addr,count$<frame trace count stack frames starting at addr

SMM:3-10 Using ADB to Debug the Kernel

Standard Command Scripts
Name Use Description
bosts addr$<bosts format IMP host table entries
bosttable addr$<bosttable show all IMP host table entries
ifaddr addr$<ifaddr format a network interface address structure
ifnet addr$<ifnet format network interface structure
ifuba addr$<ifuba format UNIBUS resource structure
imp addr$<imp format an IMP interface state structure
inJfaddr addr$<in _ ifaddr format internet network addresses for an interface
inode addr$<inode format in-core inode structure
in pcb addr$<inpcb format internet protocol control block
iovec addr$<iovec format a list of iov structures
ipreass addr$<ipreass format an ip reassembly queue
mact addr$<mact show "active" list of mbufs
mba_device addr$<mba_ device format an MBA device structure
mba_bd addr$<mba_bd format an MBA queue head
mbstat $<mbstat show mbuf statistics
mbuf addr$<mbuf show' 'next" list of mbuf s
mbufcbain addr$<mbufcbain display a chain of mbufs queued at a socket
mbufs addr$<mbufs show a number of mbuf s
mount addr$<mount format mount structure
nameidata addr$<nameidata format a namei parameter block
packetchain addr$<packetcbain format a chain of packets
pcb addr$<pcb format process context block
proc addr$<proc format process table entry
protosw addr$<protosw format a protocol switch entry
quota addr$<quota format a disk quota structure
rawcb addr$<rawcb format a raw protocol control block
rtentry addr$<rtentry format a routing table entry
rusage addr$<rusage format a resource usage structure
setproc pid$<setproc switch process context to pid
socket addr$<socket format socket structure
stat addr$<stat format a stat structure
tcpcb addr$<tcpcb format TCP control block
tcpip addr$<tcpip format a TCP/IP packet header
tcpreass addr$<tcpreass show a TCP reassembly queue
text addr$<text format text structure
traceaU $<traceaU show stack trace for all processes
trapframe addr$<trapframe format a stack frame generated by a trap
tty addr$<tty format tty structure
u addr$<u format user vector, including pcb
ubadev addr$<ubadev format a UBA device structure
ubabd addr$<ubabd format a UNIBUS header structure
unpcb addr$<unpcb format a UNIX domain protocol control block

3. Summary

The extensions made to adb provide basic support for debugging the UNIX kernel by eliminating the
need for a user to carry out virtual to physical address translation and by automatically locating the stack
frame after a system crash. A collection of scripts have been written to format the major kernel data struc­
tures and aid in switching between process contexts. These facilities have been implemented with only
minimal changes to the debugger. While the symbolic debugger dbx provides facilities similar to those
described here it is not yet a viable alternative to adb because dbx takes too long to read in the symbol
table. As soon as this problem is corrected there will be only limited need for the facilities provided by
adb.

Disc Quotas in a UNIX· Environment

Robert Elz

Department of Computer Science
Uni versity of Melbourne,

Parkville,
Victoria,
Australia.

ABSTRACT

In most computing environments, disc space is not infinite. The disc quota system
provides a mechanism to control usage of disc space, on an individual basis.

Quotas may be set for each individual user, on any, or all filesystems.

The quota system will warn users when they exceed their allotted limit, but allow
some extra space for current worlc. Repeatedly remaining over quota at logout, will
cause a fatal over quota condition eventually.

The quota system is an optional part of VMUNIX that may be included when the sys­
tem is configured.

1. Users' view of disc quotas

To most users, disc quotas will either be of no concern, or a fact of life that cannot be avoided. The
quota (1) command will provide information on any disc quotas that may have been imposed upon a user.

There are two individual possible quotas that may be imposed, usually if one is, both will be. A limit
can be set on the amount of space a user can occupy, and there may be a limit on the number of files
(inodes) he can own.

Quota provides information on the quotas that have been set by the system administrators, in each of
these areas, and current usage.

There are four numbers for each limit, the current usage, soft limit (quota), hard limit, and number of
remaining login warnings. The soft limit is the number of lK blocks (or files) that the user is expected to
remain below. Each time the user's usage goes past this limit, he will be warned. The hard limit cannot be
exceeded. If a user's usage reaches this number, further requests for space (or attempts to create a file) will
fail with an EDQUOT error, and the first time this occurs, a message will be written to the user's terminal.
Only one message will be output, until space occupied is reduced below the limit, and reaches it again, in
order to avoid continual noise from those programs that ignore write errors.

Whenever a user logs in with a usage greater than his soft limit, he will be warned, and his login
warning count decremented. When he logs in under quota, the counter is reset to its maximum value
(which is a system configuration parameter, that is typically 3). If the warning count should ever reach
zero (caused by three successive logins over quota), the particular limit that has been exceeded will be
treated as if the hard limit has been reached, and no more resources will be allocated to the user. The only
way to reset this condition is to reduce usage below quota, then log in again .

... UNIX is a trademark of Bell Laboratories.

SMM:4-2 Disc Quotas in a UNIX Environment

1.1. Surviving when quota limit is reached

In most cases, the only way to recover from over quota conditions, is to abort whatever activity was
in progress on the filesystem that has reached its limit, remove sufficient files to bring the limit back below
quota, and retry the failed program.

However, if you are in the editor and a write fails because of an over quota situation, that is not a
suitable course of action, as it is most likely that initially attempting to write the file will have truncated its
previous contents, so should the editor be aborted without correctly writing the file not only will the recent
changes be lost, but possibly much, or even all, of the data that previously existed.

There are several possible safe exits for a user caught in this situation. He may use the editor! shell
escape command to examine his file space, and remove surplus files. Alternatively, using csh, he may
suspend the editor, remove some files, then resume it A third possibility, is to write the file to some other
filesystem (perhaps to a file on Itmp) where the user's quota has not been exceeded. Then after rectifying
the quota situation, the file can be moved back to the filesystem it belongs on.

2. Administering the quota system

To set up and establish the disc quota system, there are several steps necessary to be performed by
the system administrator.

First, the system must be configured to include the disc quota sub-system. This is done by including
the line:

options QUOTA

in the system configuration file, then running config (8) followed by a system configuration·.

Second, a decision as to what filesystems need to have quotas applied needs to be made. Usually,
only filesystems that house users' home directories, or other user files, will need to be subjected to the
quota system, though it may also prove useful to also include lusr. If possible, Itmp should usually be free
of quotas.

Having decided on which filesystems quotas need to be set upon, the administrator should then allo­
cate the available space amongst the competing needs. How this should be done is (way) beyond the scope
of this document.

Then, the edquota (8) command can be used to actually set the limits desired upon each user. Where
a number of users are to be given the same quotas (a common occurrence) the -p switch to edquota will
allow this to be easily accomplished.

Once the quotas are set, ready to operate, the system must be informed to enforce quotas on the
desired filesystems. This is accomplished with the quotaon (8) command. Quotaon will either enable quo­
tas for a particular filesystem, or with the -a switch, will enable quotas for each filesystem indicated in
letc/rstab as using quotas. Seefstab(S) for details. Most sites using the quota system, will include the line

letclquotaon -a

in letc/re.local.

Should quotas need to be disabled, the quotaoff(8) command will do that, however, should the
filesystem be about to be dismounted, the umount (8) command will disable quotas immediately before the
filesystem is unmounted. This is actually an effect of the umount (2) system call, and it guarantees that the
quota system will not be disabled if the umount would fail because the filesystem is not idle.

Periodically (certainly after each reboot, and when quotas are first enabled for a filesystem), the
records retained in the quota file should be checked for consistency with the actual number of blocks and
fiies allocated to the user. The quotachk(8) command can be used to accomplish this. It is not necessary to

dismount the filesystem, or disable the quota system to run this command, though on active filesystems
inaccurate results may occur. This does no real harm in most cases, another run of quotachk when the
filesystem is idle will certainly correct any inaccuracy.

* See also the document"Building 4.2BSD UNIX Systems with CoDfig".

Disc Quotas in a UNIX Environment S:MM::4-3

The super-user may use the quota (1) command to examine the usage and quotas of any user, and the
repquota (8) command may be used to check the usages and limits for all users on a filesystem.

3. Some implementation detail.

Disc quota usage and information is stored in a file on the filesystem that the quotas are to be applied
to. Conventionally, this file is quotas in the root of the filesystem. While this name is not known to the
system in any way, several of the user level utilities "know" it, and choosing any other name would not be
wise.

The data in the file comprises an array of structures, indexed by uid, one structure for each user on
the system (whether the user has a quota on this filesystem or not). If the uid space is sparse, then the file
may have holes in it, which would be lost by copying, so it is best to avoid this.

The system is informed of the existence of the quota file by the setquota (2) system call. It then reads
the quota entries for each user currently active, then for any files open owned by users who are not
currently active. Each subsequent open of a file on the filesystem, will be accompanied by a pairing with
its quota information. In most cases this information will be retained in core, either because the user who
owns the file is running some process, because other files are open owned by the same user, or because
some file (perhaps this one) was recently accessed. In memory, the quota information is kept hashed by
user-id and filesystem, and retained in an LRU chain so recently released data can be easily reclaimed.
Information about those users whose last process has recently terminated is also retained in this way.

Each time a block is accessed or released, and each time an inode is allocated or freed, the quota sys­
tem gets told about it, and in the case of allocations, gets the opportunity to object

Measurements have shown that the quota code uses a very small percentage of the system cpu time
consumed in writing a new block to disc.

4. Acknowledgments

The current disc quota system is loosely based upon a very early scheme implemented at the Univer­
sity of New South Wales, and Sydney University in the mid 70's. That system implemented a single com­
bined limit for both files and blocks on all filesystems.

A later system was implemented at the University of Melbourne by the author, but was not kept
highly accurately, eg: chown's (etc) did not affect quotas, nor did i/o to a file other than one owned by the
instigator.

The current system has been running (with only minor modifications) since January 82 at Melbourne.
It is actually just a small part of a much broader resource control scheme, which is capable of controlling
almost anything that is usually uncontrolled in unix. The rest of this is, as yet, still in a state where it is far
too subject to change to be considered for distribution.

For the 4.2BSD release, much work has been done to clean up and sanely incorporate the quota code
by Sam Leffler and Kirk McKusick at The University of California at Berkeley.

Fsck - The UNIX t File System Check Program

Marshall Kirk McKusick

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

T. J. Kowalski

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This document reflects the use of fsck with the 4.2BSD and 4.3BSD file system
organization. This is a revision of the original paper written by T. J. Kowalski.

File System Check Program (jsck) is an interactive file system check and repair
program. Fsck uses the redundant structural information in the UNIX file system to per­
form several consistency checks. If an inconsistency is detected, it is reported to the
operator, who may elect to fix or ignore each inconsistency. These inconsistencies result
from the permanent interruption of the file system updates, which are performed every
time a file is modified. Unless there has been a hardware failure, fsck is able to repair
corrupted file systems using procedures based upon the order in which UNIX honors
these file system update requests.

The purpose of this document is to describe the normal updating of the file system,
to discuss the possible causes of file system corruption, and to present the corrective
actions implemented by fsck. Both the program and the interaction between the program
and the operator are described.

Revised July 16, 1985

tUNIX is a trademark of Bell Laboratories.
This work was done under grants from the National Science Foundation under grant MCS80-05144. and the Defense
Advance Research Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval Electronic System Command
under Contract No. NOOO39-82-C-0235.

SMM:5-2

1. Introduction

2. Overview of the file system
2.1. Superblock
2.2. Summary Information
2.3. Cylinder groups
2.4. Fragments
2.5. Updates to the file system

3. Fixing corrupted file systems

TABLE OF CONTENTS

3.1. Detecting and correcting corruption
3.2. Super block checking
3.3. Free block checking
3.4. Checking the inode state
3.5. Inode links
3.6. !node data size
3.7. Checking the data associated with an inode
3.8. File system connectivity

Acknowledgements

References

4. Appendix A
4.1. Conventions
4.2. Initialization
4.3. Phase 1 - Check Blocks and Sizes
4.4. Phase Ib - Rescan for more Dups
4.5. Phase 2 - Check Pathnames
4.6. Phase 3 - Check Connectivity
4.7. Phase 4 - Check Reference Counts
4.8. Phase 5 - Check Cyl groups
4.9. Oeanup

The UNIX File System Check Program

The UNIX File System Check Program SMM:5-3

1. Introduction

This document reflects the use of fsck with the 4.2BSD and 4.3BSD file system organization. This is
a revision of the original paper written by T. J. Kowalski.

When a UNIX operating system is brought up, a consistency check of the file systems should always
be performed. This precautionary measure helps to insure a reliable environment for file storage on disk.
If an inconsistency is discovered, corrective action must be taken. Fsck runs in two modes. Normally it is
run non-interactively by the system after a normal boot. When running in this mode, it will only make
changes to the file system that are known to always be correct If an unexpected inconsistency is found
fsck will exit with a non-zero exit status, leaving the system running single-user. Typically the operator
then runs fsck interactively. When running in this mode, each problem is listed followed by a suggested
corrective action. The operator must decide whether or not the suggested correction should be made.

The purpose of this memo is to dispel the mystique surrounding file system inconsistencies. It first
describes the updating of the file system (the calm before the storm) and then describes file system corrup­
tion (the storm). Finally, the set of deterministic corrective actions used by fsck (the Coast Guard to the
rescue) is presented.

2. Overview of the file system

The file system is discussed in detail in [Mckusick84]; this section gives a brief overview.

2.1. Superblock

A file system is described by its super-block. The super-block is built when the file system is created
(newfs (8» and never changes. The super-block contains the basic parameters of the file system, such as
the number of data blocks it contains and a count of the maximum number of files. Because the super­
block contains critical data, newfs replicates it to protect against catastrophic loss. The default super block
always resides at a fixed offset from the beginning of the file system's disk partition. The redundant super
blocks are not referenced unless a head crash or other hard disk error causes the default super-block to be
unusable. The redundant blocks are sprinkled throughout the disk partition.

Within the file system are files. Certain files are distinguished as directories and contain collections
of pointers to files that may themselves be directories. Every file has a descriptor associated with it called
an inode. The inode contains information describing ownership of the file, time stamps indicating
modification and access times for the file, and an array of indices pointing to the data blocks for the file. In
this section, we assume that the first 12 blocks of the file are directly referenced by values stored in the
inode structure itselft. The inode structure may also contain references to indirect blocks containing
further data block indices. In a file system with a 4096 byte block size, a singly indirect block contains
1024 further block addresses, a doubly indirect block contains 1024 addresses of further single indirect
blocks, and a triply indirect block contains 1024 addresses of further doubly indirect blocks (the triple
indirect block is never needed in practice).

In order to create files with up to 2i32 bytes, using only two levels of indirection, the minimum size
of a file system block is 4096 bytes. The size of file system blocks can be any power of two greater than or
equal to 4096. The block size of the file system is maintained in the super-block, so it is possible for file
systems of different block sizes to be accessible simultaneously on the same system. The block size must
be decided when newfs creates the file system; the block size cannot be subsequently changed without
rebuilding the file system.

2.2. Summary information

Associated with the super block is non replicated summary information. The summary information
changes as the file system is modified. The summary information contains the number of blocks, frag­
ments, inodes and directories in the file system.

tThe actual number may vary from system to system, but is usually in the range 5-13.

SMM:5-4 The UNIX File System Check Program

2.3. Cylinder groups

The file system partitions the disk into one or more areas called cylinder groups. A cylinder group is
comprised of one or more consecutive cylinders on a disk. Each cylinder group includes inode slots for
files, a block map describing available blocks in the cylinder group, and summary information describing
the usage of data blocks within the cylinder group. A fixed number of inodes is allocated for each cylinder
group when the file system is created. The current policy is to allocate one inode for each 2048 bytes of
disk space; this is expected to be far more inodes than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each cylinder
group. However if this approach were used, all the redundant information would be on the top platter. A
single hardware failure that destroyed the top platter could cause the loss of all copies of the redundant
super-blocks. Thus the cylinder group bookkeeping information begins at a floating offset from the begin­
ning of the cylinder group. The offset for the i+l st cylinder group is about one track further from the
beginning of the cylinder group than it was for the i th cylinder group. In this way, the redundant informa­
tion spirals down into the pack; any single track, cylinder, or platter can be lost without losing all copies of
the super-blocks. Except for the first cylinder group, the space between the beginning of the cylinder group
and the beginning of the cylinder group information stores data.

2.4. Fragments

To avoid waste in storing small files, the file system space allocator divides a single file system block
into one or more fragments. The fragmentation of the file system is specified when the file system is
created; each file system block can be optionally broken into 2,4, or 8 addressable fragments. The lower
bound on the size of these fragments is constrained by the disk sector size; typically 512 bytes is the lower
bound on fragment size. The block map associated with each cylinder group records the space availability
at the fragment level. Aligned fragments are examined to determine block availability.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is
represented by zero or more 4096 byte blocks of data, and possibly a single fragmented block. If a file sys­
tem block must be fragmented to obtain space for a small amount of data, the remainder of the block is
made available for allocation to other files. For example, consider an 11000 byte file stored on a
409611024 byte file system. This file uses two full size blocks and a 3072 byte fragment If no fragments
with at least 3072 bytes are available when the file is created, a full size block is split yielding the neces­
sary 3072 byte fragment and an unused 1024 byte fragment. This remaining fragment can be allocated to
another file, as needed.

2.S. Updates to the file system

Every working day hundreds of files are created, modified, and removed. Every time a file is
modified, the operating system performs a series of file system updates. These updates, when written on
disk, yield a consistent file system. The file system stages all modifications of critical information;
modification can either be completed or cleanly backed out after a crash. Knowing the information that is
first written to the file system, deterministic procedures can be developed to repair a corrupted file system.
To understand this process, the order that the update requests were being honored must first be understood.

When a user program does an operation to change the file system, such as a write, the data to be
written is copied into an internal in-core buffer in the kernel. Normally, the disk update is handled asyn­
chronously; the user process is allowed to proceed even though the data has not yet been written to the
disk. The data, along with the inode information reflecting the change, is eventually written out to disk.
The real disk write may not happen until long after the write system call has returned. Thus at any given
time, the file system, as it resides on the disk, lags the state of the file system represented by the in-core
information.

The disk information is updated to reflect the in-core information when the buffer is required for
another use, when a sync (2) is done (at 30 second intervals) by fetclupdate (8), or by manual operator inter­
vention with the sync (8) command If the system is halted without writing out the in-core information, the
file system on the disk will be in an inconsistent state.

The UNIX File System Check Program S:M:M:5-5

If all updates are done asynchronously, several serious inconsistencies can arise. One inconsistency
is that a block may be claimed by two inodes. Such an inconsistency can occur when the system is halted
before the pointer to the block in the old inode has been cleared in the copy of the old inode on the disk,
and after the pointer to the block in the new inode has been written out to the copy of the new inode on the
disk. Here, there is no deterministic method for deciding which inode should really claim the block. A
similar problem can arise with a multiply claimed inode.

The problem with asynchronous inode updates can be avoided by doing all inode deallocations syn­
chronously. Consequently, inodes and indirect blocks are written to the disk synchronously (i.e. the process
blocks until the information is really written to disk) when they are being deallocated. Similarly inodes are
kept consistent by synchronously deleting, adding, or changing directory entries.

3. Fixing corrupted file systems

A file system can become corrupted in several ways. The most common of these ways are improper
shutdown procedures and hardware failures.

File systems may become corrupted during an unclean halt. This happens when proper shutdown
procedures are not observed, physically write-protecting a mounted file system, or a mounted file system is
taken off-line. The most common operator procedural failure is forgetting to sync the system before halt­
ing the CPU.

File systems may become further corrupted if proper startup procedures are not observed, e.g., not
checking a file system for inconsistencies, and not repairing inconsistencies. Allowing a corrupted file sys­
tem to be used (and, thus, to be modified further) can be disastrous.

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block on a disk pack,
or as blatant as a non-functional disk-controller.

3.1. Detecting and correcting corruption

Normally fsck is run non-interactively. In this mode it will only fix corruptions that are expected to
occur from an unclean halt. These actions are a proper subset of the actions that fsck will take when it is
running interactively. Throughout this paper we assume thatfsck is being run interactively, and all possi­
ble errors can be encountered. When an inconsistency is discovered in this mode, fsck reports the incon­
sistency for the operator to chose a corrective action.

A quiescent:t: file system may be checked for structural integrity by performing consistency checks
on the redundant data intrinsic to a file system. The redundant data is either read from the file system, or
computed from other known values. The file system must be in a quiescent state when fsck is run, since
fsck is a multi -pass program.

In the following sections, we discuss methods to discover inconsistencies and possible corrective
actions for the cylinder group blocks, the inodes, the indirect blocks, and the data blocks containing direc­
tory entries.

3.2. Super-block checking

The most commonly corrupted item in a file system is the summary information associated with the
super-block. The summary information is prone to corruption because it is modified with every change to
the file system's blocks or inodes, and is usually corrupted after an unclean halt

The super-block is checked for inconsistencies involving file-system size, number of inodes, free­
block count, and the free-inode count The file-system size must be larger than the number of blocks used
by the super-block and the number of blocks used by the list of inodes. The file-system size and layout
information are the most critical pieces of information for fsck. While there is no way to actually check
these sizes, since they are statically detennined by newfs ,fsck can check that these sizes are within reason­
able bounds. All other file system checks require that these sizes be correct Iffsck detects corruption in
the static parameters of the default super-block, fsck requests the operator to specify the location of an

* I.e., unmounted and not being written on.

SMM:5-6 The UNIX File System Check Program

alternate super-block.

3.3. Free block checking

Fsck checks that all the blocks marked as free in the cylinder group block maps are not claimed by
any files. When all the blocks have been initially accounted for, [sck checks that the number of free blocks
plus the number of blocks claimed by the inodes equals the total number of blocks in the file system.

If anything is wrong with the block allocation maps, [sck will rebuild them, based on the list it has
computed of allocated blocks.

The summary information associated with the super-block counts the total number of free blocks
within the file system. Fsck compares this count to the number of free blocks it found within the file sys­
tem. If the two counts do not agree, then fsck replaces the incorrect count in the summary information by
the actual free-block count

The summary information counts the total number of free inodes within the file system. Fsck com­
pares this count to the number of free inodes it found within the file system. If the two counts do not agree,
thenfsck replaces the incorrect count in the summary information by the actual free-inode count.

3.4. Checking the inode state

An individual inode is not as likely to be corrupted as the allocation information. However, because
of the great number of active inodes, a few of the inodes are usually corrupted.

The list of inodes in the file system is checked sequentially starting with inode 2 (inode 0 marks
unused inodes; inode 1 is saved for future generations) and progressing through the last inode in the file
system. The state of each inode is checked for inconsistencies involving format and type, link count, dupli­
cate blocks, bad blocks, and inode size.

Each inode contains a mode word. This mode word describes the type and state of the inode. Inodes
must be one of six types: regular inode, directory inode, symbolic link inode, special block inode, special
character inode, or socket inode. Inodes may be found in one of three allocation states: unallocated, allo­
cated, and neither unallocated nor allocated. This last state suggests an incorrectly formated inode. An
inode can get in this state if bad data is written into the inode list. The only possible corrective action is for
fsck is to clear the inode.

3.5. Inode links

Each inode counts the total number of directory entries linked to the inode. F sck verifies the link
count of each inode by starting at the root of the file system, and descending through the directory struc­
ture. The actual link count for each inode is calculated during the descent

If the stored link count is non-zero and the actual link count is zero, then no directory entry appears
for the inode. If this happens, fsck will place the disconnected file in the lost+found directory. If the
stored and actual link counts are non-zero and unequal, a directory entry may have been added or removed
without the inode being updated. If this happens, [sck replaces the incorrect stored link count by the actual
link count.

Each inode contains a list, or pointers to lists (indirect blocks), of all the blocks claimed by the inode.
Since indirect blocks are owned by an inode, inconsistencies in indirect blocks directly affect the inode that
owns it.

Fsck compares each block number claimed by an inode against a list of already allocated blocks. If
another inode already claims a block number, then the block number is added to a list of duplicate blocks .
Otherwise, the list of allocated blocks is updated to include the block number.

If there are any duplicate blocks, fsck will perform a partial second pass over the inode list to find the
inode of the duplicated block. The second pass is needed, since without examining the files associated with
these inodes for correct content, not enough information is available to determine which inode is corrupted
and should be cleared. If this condition does arise (only hardware failure will cause it), then the inode with
the earliest modify time is usually incorrect, and should be cleared. If this happens, fsck prompts the
operator to clear both inodes. The operator must decide which one should be kept and which one should be

The UNIX File System Check Program SMM:5-7

cleared

F sck checks the range of each block number claimed by an inode. If the block number is lower than
the first data block in the file system, or greater than the last data block, then the block number is a bad
block number. Many bad blocks in an inode are usually caused by an indirect block that was not written to
the file system, a condition which can only occur if there has been a hardware failure. If an inode contains
bad block numbers,fsck prompts the operator to clear it

3.6. Inode data size

Each inode contains a count of the number of data blocks that it contains. The number of actual data
blocks is the sum of the allocated data blocks and the indirect blocks. Fsck computes the actual number of
data blocks and compares that block count against the actual number of blocks the inode claims. If an
inode contains an incorrect countfsck prompts the operator to fix it.

Each inode contains a thirty-two bit size field. The size is the number of data bytes in the file associ­
ated with the inode. The consistency of the byte size field is roughly checked by computing from the size
field the maximum number of blocks that should be associated with the inode, and comparing that expected
block count against the actual number of blocks the inode claims.

3.7. Checking the data associated with an inode

An inode can directly or indirectly reference three kinds of data blocks. All referenced blocks must
be the same kind. The three types of data blocks are: plain data blocks, symbolic link data blocks, and
directory data blocks. Plain data blocks contain the information stored in a file; symbolic link data blocks
contain the path name stored in a link. Directory data blocks contain directory entries. Fsck can only
check the validity of directory data blocks.

Each directory data block is checked for several types of inconsistencies. These inconsistencies
include directory inode numbers pointing to unallocated inodes, directory inode numbers that are greater
than the number of inodes in the file system, incorrect directory inode numbers for "." and " •• ", and
directories that are not attached to the file system. If the inode number in a directory data block references
an unallocated inode, thenfsck will remove that directory entry. Again, this condition can only arise when
there has been a hardware failure.

If a directory entry inode number references outside the inode list, then fsck will remove that direc­
tory entry. This condition occurs if bad data is written into a directory data block.

The directory inode number entry for "." must be the first entry in the directory data block. The
inode number for "." must reference itself; e.g., it must equal the inode number for the directory data
block. The directory inode number entry for " •• " must be the second entry in the directory data block. Its
value must equal the inode number for the parent of the directory entry (or the inode number of the direc­
tory data block if the directory is the root directory). If the directory inode numbers are incorrect, fsck will
replace them with the correct values. If there are multiple hard links to a directory, the first one encoun­
tered is considered the real parent to which " •• " should point; fsckP recommends deletion for the subse­
quently discovered names.

3.8. File system connectivity

F sck checks the general connectivity of the file system. If directories are not linked into the file sys­
tem, thenfsck links the directory back into the file system in the IOsl+found directory. This condition only
occurs when there has been a hardware failure.

Acknowledgements
I thank Bill Joy, Sam Leffler, Robert Elz and Dennis Ritchie for their suggestions and help in imple­

menting the new file system. Thanks also to Robert Henry for his editorial input to get this document
together. Finally we thank our sponsors, the National Science Foundation under grant MCS80-05144, and
the Defense Advance Research Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval
Electronic System Command under Contract No. NOOO39-82-C-0235. (Kirk McKusick, July 1983)

SMM:5-8 The UNIX File System Check Program

I would like to thank Larry A. Wehr for advice that lead to the first version of fsck and Rick B.
Brandt for adaptingfsck to UNIXITS. (T. Kowalski, July 1979)

References

[Dolotta78]

[Joy83]

[McKusick84]

[Ritchie78]

[Thompson78]

Dolotta, T. A., and Olsson, S. B. eds., UNIX User's Manual, Edition 1.1 ,January
1978.

Joy, W., Cooper, E., Fabry, R., Leffler, S., McKusick, M., and Mosher, D.
4.2BSD System Manual, University of California at Berkeley, Computer Systems
Research Group Technical Report #4,1982.

McKusick, M., Joy, W., Leffler, S., and Fabry, R. A Fast File System for UNIX,
ACM Transactions on Computer Systems 2,3. pp. 181-197, August 1984.

Ritchie, D. M., and Thompson, K., The UNIX Time-Sharing System, The Bell
System Technical Journal 57,6 (July-August 1978, Part 2), pp. 1905-29.

Thompson, K., UNIX Implementation, The Bell System Technical Journal 57, 6
(July-August 1978, Part 2), pp. 1931-46.

The UNIX File System Check Program SMM:5-9

4. Appendix A - Fsck Error Conditions

4.1. Conventions

Fsck is a multi-pass file system check program. Each file system pass invokes a different Phase of
the fsck program. After the initial setup, fsck performs successive Phases over each file system, checking
blocks and sizes, path-names, connectivity, reference counts, and the map of free blocks, (possibly rebuild­
ing it), and performs some cleanup.

Normally fsck is run non-interactively to preen the file systems after an unclean halt While preen'ing a
file system, it will only fix corruptions that are expected to occur from an unclean halt. These actions are a
proper subset of the actions thatfsck will take when it is running interactively. Throughout this appendix
many elTOrs have several options that the operator can take. When an inconsistency is detected, fsck
reports the error condition to the operator. If a response is required, fsck prints a prompt message and
waits for a response. When preen'ing most errors are fatal. For those that are expected, the response taken
is noted. This appendix explains the meaning of each error condition, the possible responses, and the
related error conditions.

The error conditions are organized by the Phase of thefsck program in which they can occur. The error
conditions that may occur in more than one Phase will be discussed in initialization.

4.2. Initialization

Before a file system check can be performed, certain tables have to be set up and certain files opened.
This section concerns itself with the opening of files and the initialization of tables. This section lists error
conditions resulting from command line options, memory requests, opening of files, status of files, file sys­
tem size checks, and creation of the scratch file. All the initialization errors are fatal when the file system
is being preen' ed.

C option?
C is not a legal option to fsck; legal options are -b, -y, -n, and -po Fsck terminates on this error condi­
tion. See the fsck (8) manual entry for further detail.

cannot alloc NNN bytes for blockmap
cannot alloc NNN bytes for freemap
cannot alloc NNN bytes for statemap
cannot alloc NNN bytes for Incntp
Fsck's request for memory for its virtual memory tables failed. This should never happen. Fsck ter­
minates on this error condition. See a guru.

Can't open checklist file: F
The file system checklist file F (usually letc/fstab) can not be opened for reading. Fsck terminates on this
error condition. Check access modes of F.

Can't stat root
Fsck's request for statistics about the root directory "I" failed. This should never happen. Fsck ter­
minates on this error condition. See a guru.

Can't statF
Can't make sense out of name F
Fsck 's request for statistics about the file system F failed. When running manually, it ignores this file sys­
tem and continues checking the next file system given. Check access modes of F.

Can'topenF
Fsck 's request attempt to open the file system F failed. When running manually, it ignores this file system
and continues checking the next file system given. Check access modes of F.

SMM:5-10 The UNIX File System Check Program

F: (NO WRITE)
Either the -n flag was specified or fsck 's attempt to open the file system F for writing failed. When run­
ning manually, all the diagnostics are printed out, but no modifications are attempted to fix them.

file is not a block or character device; OK
You have givenfsck a regular file name by mistake. Check the type of the file specified.

Possible responses to the OK prompt are:

YES ignore this error condition.

NO ignore this file system and continues checking the next file system given.

UNDEFINED OPTIMIZATION IN SUPERBLOCK (SET TO DEFAULT)
The superblock optimization parameter is neither OPT_TIME nor OPT _ SPACE.

Possible responses to the SET TO DEF AUL T prompt are:

YES The superblock is set to request optimization to minimize running time of the system. (If optimiza­
tion to minimize disk space utilization is desired, it can be set using tunefs(8).)

NO ignore this error condition.

IMPOSSIBLE MINFREE=D IN SUPERBLOCK (SET TO DEFAULT)
The superblock minimum space percentage is greater than 99% or less then 0%.

Possible responses to the SET TO DEF AUL T prompt are:

YES The minfree parameter is set to 10%. (If some other percentage is desired, it can be set using
tunefs(8).)

NO ignore this error condition.

One of the following messages will appear:
MAGIC NUMBER WRONG
NCG OUT OF RANGE
CPG OUT OF RANGE
NCYL DOES NOT JIVE WITH NCG*CPG
SIZE PREPOSTEROUSLY LARGE
TRASHED VALUES IN SUPER BLOCK
and will be followed by the message:
F: BAD SUPER BLOCK: B
USE ·b OPTION TO FSCK TO SPECIFY LOCATION OF AN ALTERNATE
SUPER.BLOCK TO SUPPLY NEEDED INFORMATION; SEE fsck(8).
The super block has been corrupted. An alternative super block must be selected from among those listed
by newfs (8) when the file system was created. For file systems with a blocksize less than 32K, specifying
-b 32 is a good first choice.

INTERNAL INCONSISTENCY: M
Fsck 's has had an internal panic, whose message is specified as M. This should never happen. See a guru.

CAN NOT SEEK: BLKB (CONTINUE)
Fsck 's request for moving to a specified block number B in the file system failed. This should never hap­
pen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however the problem will persist. This error
condition will not allow a complete check of the file system. A second run of fsck should be made to
re-check this file system. If the block was part of the virtual memory buffer cache, fsck will ter­
minate with the message "Fatal 110 error".

The UNIX File System Check Program S1vI11:5-11

NO terminate the program.

CAN NOT READ: BLK B (CONTINUE)
F sck 's request for reading a specified block number B in the file system failed. This should never happen.
See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. It will retry the read and print out the message:
THE FOLLOWING SECTORS COULD NOT BE READ: N
where N indicates the sectors that could not be read. If fsck ever tries to write back one of the blocks
on which the read failed it will print the message:
WRITING ZERO'ED BLOCK N TO DISK
where N indicates the sector that was written with zero's. If the disk is experiencing hardware prob­
lems, the problem will persist This error condition will not allow a complete check of the file sys­
tem. A second run of fsck should be made to re-check this file system. If the block was part of the
virtual memory buffer cache, fsck will terminate with the message' 'Fatal 110 error" .

NO terminate the program.

CAN NOT WRITE: BLK B (CONTINUE)
F sck 's request for writing a specified block number B in the file system failed. The disk is write-protected;
check the write protect lock on the drive. If that is not the problem, see a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. The write operation will be retried with the failed
blocks indicated by the message:
THE FOLLOWING SECTORS COULD NOT BE WRITTEN: N
where N indicates the sectors that could not be written. If the disk is experiencing hardware prob­
lems, the problem will persist This error condition will not allow a complete check of the file sys­
tem. A second run of fsck should be made to re-check this file system. If the block was part of the
virtual memory buffer cache,fsck will terminate with the message "Fatal 110 error".

NO terminate the program.

bad inode number DDD to ginode
An internal error has attempted to read non-existent inode DDD. This error causes fsck to exit. See a
guru.

4.3. Phase 1 - Check Blocks and Sizes

This phase concerns itself with the inode list This section lists error conditions resulting from
checking inode types, setting up the zero-link-count table, examining inode block numbers for bad or
duplicate blocks, checking inode size, and checking inode format. All errors in this phase except
INCORRECT BLOCK COUNT and PARTIALLY TRUNCATED INODE are fatal if the file system is
being preen'ed.

UNKNOWN FILE TYPE 1=[(CLEAR)
The mode word of the inode [indicates that the inode is not a special block inode, special character inode,
socket inode, regular inode, symbolic link, or directory inode.

Possible responses to the CLEAR prompt are:

YES de-allocate inode [by zeroing its contents. This will always invoke the UNALLOCATED error con­
dition in Phase 2 for each directory entry pointing to this inode.

NO ignore this error condition.

SMM:5-12 The UNIX File System Check Program

PARTIALLY TRUNCATED INODE 1=[(SALVAGE)
F sck has found inode [whose size is shorter than the number of blocks allocated to it. This condition
should only occur if the system crashes while in the midst of truncating a file. When preen' ing the file sys­
tem,fsck completes the truncation to the specified size.

Possible responses to SALVAGE are:

YES complete the truncation to the size specified in the inode.

NO ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)
An internal table for fsck containing allocated inodes with a link count of zero cannot allocate more
memory. Increase the virtual memory for fsck .

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the file system.
A second run of fsck should be made to re-check this file system. If another allocated inode with a
zero link count is found, this error condition is repeated.

NO terminate the program.

BBADI=[
Inode [contains block number B with a number lower than the number of the first data block in the file sys­
tem or greater than the number of the last block in the file system. This error condition may invoke the
EXCESSIVE BAD BLKS error condition in Phase 1 (see next paragraph) if inode [has too many block
numbers outside the file system range. This error condition will always invoke the BAD/DUP error condi­
tion in Phase 2 and Phase 4.

EXCESSIVE BAD BLKS 1=[(CONTINUE)
There is more than a tolerable number (usually 10) of blocks with a number lower than the number of the
first data block in the file system or greater than the number of last block in the file system associated with
inodeI.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode in the file sys­
tem. This error condition will not allow a complete check of the file system. A second run of fsck
should be made to re-check this file system.

NO terminate the program.

BAD STATE DDD TO BLKERR
An internal error has scrarnbledfsck 's state map to have the impossible value DDD. Fsck exits immedi­
ately. See a guru.

BDUPI=I
Inode I contains block number B that is already claimed by another inode. This error condition may invoke
the EXCESSIVE DUP BLKS error condition in Phase 1 if inode [has too many block numbers claimed
by other inodes. This error condition will always invoke Phase Ib and the BAD/DUP error condition in
Phase 2 and Phase 4.

EXCESSIVE DUP BLKS 1=[(CONTINUE)
There is more than a tolerable number (usually 10) of blocks claimed by other inodes.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode in the file sys­
tem. This error condition will not allow a complete check of the file system. A second run of fsck
should be made to re-check this file system.

The UNIX File System Check Program S:MM::5-13

NO terminate the program.

DUP TABLE OVERFLOW (CONTINUE)
An internal table in Isck containing duplicate block numbers cannot allocate any more space. Increase the
amount of virtual memory available to Isck .

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the file system.
A second run of Isck should be made to re-check this file system. If another duplicate block is
found, this error condition will repeat

NO terminate the program.

PARTIALLY ALLOCATED INODE 1=[(CLEAR)
Inode I is neither allocated nor unallocated.

Possible responses to the CLEAR prompt are:

YES de-allocate inode [by zeroing its contents.

NO ignore this error condition.

INCORRECT BLOCK COUNT 1=[(X should be Y) (CORRECT)
The block count for inode [is X blocks, but should be Y blocks. When preen'ing the count is corrected.

Possible responses to the CORRECT prompt are:

YES replace the block count of inode I with Y.

NO ignore this error condition.

4.4. Phase IB: Rescan for More Dups

When a duplicate block is found in the file system, the file system is rescanned to find the inode that
previously claimed that block. This section lists the error condition when the duplicate block is found.

B DUPI=[
Inode [contains block number B that is already claimed by another inode. This error condition will always
invoke the BADIDUP error condition in Phase 2. You can determine which inodes have overlapping
blocks by examining this error condition and the DUP error condition in Phase 1.

4.5. Phase 2 - Check Pathnames

This phase concerns itself with removing directory entries pointing to error conditioned inodes from
Phase 1 and Phase lb. This section lists error conditions resulting from root inode mode and status, direc­
tory inode pointers in range, and directory entries pointing to bad inodes, and directory integrity checks.
All errors in this phase are fatal if the file system is being preen'ed, except for directories not being a multi­
ple of the blocks size and extraneous hard links.

ROOT INODE UNALLOCATED (ALLOCATE)
The root inode (usually inode number 2) has no allocate mode bits. This should never happen.

Possible responses to the ALLOCATE prompt are:

YES allocate inode 2 as the root inode. The files and directories usually found in the root will be
recovered in Phase 3 and put into lost+lound. If the attempt to allocate the root fails,lsck will exit
with the message:
CANNOT ALLOCATE ROOT INODE.

NO Isck will exit.

SMM:5-14 The UNIX File System Check Program

ROOT INODE NOT DIRECTORY (REALLOCATE)
The root inode (usually inod.e number 2) is not directory inode type.

Possible responses to the REALLOCATE prompt are:

YES clear the existing contents of the root inode and reallocate it The files and directories usually found
in the root will be recovered in Phase 3 and put into lost +found. If the attempt to allocate the root
fails, fsck will exit with the message:
CANNOT ALLOCATE ROOT INODE.

NO fsck will then prompt with FIX

Possible responses to the FIX prompt are:

YES replace the root inode's type to be a directory. If the root inode's data blocks are not directory
blocks, many error conditions will be produced.

NO terminate the program.

DUPSIBAD IN ROOT INODE (REALLOCATE)
Phase 1 or Phase Ib have found duplicate blocks or bad blocks in the root inode (usually inode number 2)
for the file system.

Possible responses to the REALLOCATE prompt are:

YES clear the existing contents of the root inode and reallocate it The files and directories usually found
in the root·will be recovered in Phase 3 and put into lost+found. If the attempt to allocate the root
fails, fsck will exit with the message:
CANNOT ALLOCATE ROOT INODE.

NO fsck will then prompt with CONTINUE.

Possible responses to the CONTINUE prompt are:

YES ignore the DUPSIBAD error condition in the root inode and attempt to continue to run the file system
check. If the root inode is not correct, then this may result in many other error conditions.

NO terminate the program.

NAME TOO LONG F
An excessively long path name has been found. This usually indicates loops in the file system name space.
This can occur if the super user has made circular links to directories. The offending links must be
removed (by a guru).

I OUT OF RANGE 1=[NAME=F (REMOVE)
A directory entry F has an inode number [that is greater than the end of the inode list.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

UNALLOCATED 1=[OWNER=O MODE=M SIZE=S MTIME=T type=F (REMOVE)
A directory or file entry F points to an unallocated inode I. The owner 0, mode M, size S, modify time T,
and name F are printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

DUPIBAD 1=[OWNER=O MODE=M SIZE:S MTIME=T type=F (REMOVE)
Phase 1 or Phase Ib have found duplicate blocks or bad blocks associated with directory or file entry F,
inode I. The owner 0, mode M, size S, modify time T, and directory name F are printed.

The UNIX File System Check Program

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

SMM:5-15

ZERO LENGTH DIRECTORY 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F (REMOVE)
A directory entry F has a size S that is zero. The owner 0, mode M, size S, modify time T, and directory
name F are printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed; this will always invoke the BAD/DUP error condition in Phase 4.

NO ignore this error condition.

DIRECTORY TOO SHORT 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory F has been found whose size S is less than the minimum size directory. The owner 0, mode M,
size S, modify time T, and directory name F are printed.

Possible responses to the FIX prompt are:

YES increase the size of the directory to the minimum directory size.

NO ignore this directory.

DIRECTORY F LENGTH S NOT MULTIPLE OF B (ADJUST)
A directory F has been found with size S that is not a multiple of the directory blocksize B.

Possible responses to the ADJUST prompt are:

YES the length is rounded up to the appropriate block size. This error can occur on 4.2BSD file systems.
Thus when preen'ing the file system only a warning is printed and the directory is adjusted.

NO ignore the error condition.

DIRECTORY CORRUPTED 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F (SAL V AGE)
A directory with an inconsistent internal state has been found.

Possible responses to the FIX prompt are:

YES throwaway all entries up to the next directory boundary (usually 512-byte) boundary. This drastic
action can throwaway up to 42 entries, and should be taken only after other recovery efforts have
failed.

NO skip up to the next directory boundary and resume reading, but do not modify the directory.

BAD INODE NUMBER FOR'.' 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found whose inode number for'.' does does not equal I.

Possible responses to the FIX prompt are:

YES change the inode number for'.' to be equal to I.

NO leave the inode number for'.' unchanged.

MISSING'.' 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found whose first entry is unallocated.

Possible responses to the FIX prompt are:

YES build an entry for' .' with inode number equal to I.

NO leave the directory unchanged.

MISSING'.' 1=1 OWNER=O MODE=M SIZE=S MTIME=T Dffi=F
CANNOT FIX, FIRST ENTRY IN DIRECTORY CONTAINS F

SMM:5-16 The UNIX File System Check Program

A directory I has been found whose first entry is F. Fsck cannot resolve this problem. The file system
should be mounted and the offending entry F moved elsewhere. The file system should then be unmounted
and fsck should be run again.

MISSING'.' 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F
CANNOT FIX, INSUFFICIENT SPACE TO ADD '.'
A directory I has been found whose first entry is not'.'. Fsck cannot resolve this problem as it should
never happen. See a guru.

EXTRA'.' ENTRY 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found that has more than one entry for' .' .

Possible responses to the FIX prompt are:

YES remove the extra entry for' .' .

NO leave the directory unchanged.

BAD INODE NUMBER FOR' •• ' 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found whose inode number for' .. ' does does not equal the parent of I.

Possible responses to the FIX prompt are:

YES change the inode number for ' .. ' to be equal to the parent of 1(" .• " in the root inode points to itself).

NO leave the inode number for' .. ' unchanged.

MISSING' •• ' 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found whose second entry is unallocated

Possible responses to the FIX prompt are:

YES build an entry for ' .. ' with inode number equal to the parent of 1(" .. " in the root inode points to
itself).

NO leave the directory unchanged.

MISSING' •• ' 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F
CANNOT FIX, SECOND ENTRY IN DIRECTORY CONTAINS F
A directory I has been found whose second entry is F. Fsck cannot resolve this problem. The file system
should be mounted and the offending entry F moved elsewhere. The file system should then be unmounted
andfsck should be run again.

MISSING' .. ' 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F
CANNOT FIX, INSUFFICIENT SPACE TO ADD' •• '
A directory I has been found whose second entry is not ' .. '. Fsck cannot resolve this problem. The file
system should be mounted and the second entry in the directory moved elsewhere. The file system should
then be unmounted and fsck should be run again.

EXTRA' •• ' ENTRY 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found that has more than one entry for' .. ' .

Possible responses to the FIX prompt are:

YES remove the extra entry for' .. ' .

NO leave the directory unchanged.

NIS AN EXTRANEOUS HARD LINK TO A DIRECTORY D (REMOVE)
Fsck has found a hard link, N, to a directory, D. When preen'ing the extraneous links are ignored.

The UNIX File System Check Program

Possible responses to the REMOVE prompt are:

YES delete the extraneous entry, N.

NO ignore the error condition.

BAD INODE S TO DESCEND

S~:5-17

An internal error has caused an impossible state S to be passed to the routine that descends the file system
directory structure. F sek exits. See a guru.

BAD RETURN STATE S FROM DESCEND
An internal error has caused an impossible state S to be returned from the routine that descends the file sys­
tem directory structure. Fsek exits. See a guru.

BAD STATES FOR ROOT INODE
An internal error has caused an impossible state S to be assigned to the root inode. Fsek exits. See a guru.

4.6. Phase 3 - Check Connectivity

This phase concerns itself with the directory connectivity seen in Phase 2. This section lists error
conditions resulting from unreferenced directories, and missing or full lost +/ound directories.

UNREF DIR 1=[OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT)
The directory inode [was not connected to a directory entry when the file system was traversed. The
owner 0, mode M, size S, and modify time T of directory inode [are printed. When preen'ing, the direc­
tory is reconnected if its size is non-zero, otherwise it is cleared.

Possible responses to the RECONNECT prompt are:

YES reconnect directory inode [to the file system in the directory for lost files (usually lost+/ound). This
may invoke the lost+/ound error condition in Phase 3 if there are problems connecting directory
inode [to lost+/ound. This may also invoke the CONNECTED error condition in Phase 3 if the link
was successful.

NO ignore this error condition. This will always invoke the UNREF error condition in Phase 4.

NO lost+round DIRECTORY (CREATE)
There is no lost+/ound directory in the root directory of the file system; When preen'ing/sek tries to create
a lost+/ound directory.

Possible responses to the CREATE prompt are:

YES create a lost+/ound directory in the root of the file system. This may raise the message:
NO SPACE LEFT IN I (EXPAND)
See below for the possible responses. Inability to create a lost+/ound directory generates the mes­
sage:
SORRY. CANNOT CREATE lost+round DIRECTORY
and aborts the attempt to linkup the lost inode. This will always invoke the UNREF error condition
in Phase 4.

NO abort the attempt to linkup the lost inode. This will always invoke the UNREF error condition in
Phase 4.

lost+round IS NOT A DIRECTORY (REALLOCATE)
The entry for lost+/ound is not a directory.

Possible responses to the REALLOCATE prompt are:

YES allocate a directory inode, and change lost+/ound to reference it The previous inode reference by
the lost+/ound name is not cleared. Thus it will either be reclaimed as an UNREF'ed inode or have
its link count ADJUST'ed later in this Phase. Inability to create a lost+/ound directory generates the

SMM:5-18 The UNIX File System Check Program

message:
SORRY. CANNOT CREATE lost+round DIRECTORY
and aborts the attempt to linkup the lost inode. This will always invoke the UNREF error condition
in Phase 4.

NO abort the attempt to linkup the lost inode. This will always invoke the UNREF error condition in
Phase 4.

NO SPACE LEFT IN Ilost+found (EXPAND)
There is no space to add another entry to the lost+/ound directory in the root directory of the file system.
When preen'ing the lost+/ound directory is expanded.

Possible responses to the EXPAND prompt are:

YES the lost+/ound directory is expanded to make room for the new entry. If the attempted expansion
fails /sck prints the message:
SORRY. NO SPACE IN lost+found DIRECTORY
and aborts the attempt to linkup the lost inode. This will always invoke the UNREF error condition
in Phase 4. Clean out unnecessary entries in lost+/ound. This error is fatal if the file system is being
preen'ed.

NO abort the attempt to linkup the lost inode. This will always invoke the UNREF error condition in
Phase 4.

DIRI=I1 CONNECTED. PARENT WAS 1=12
This is an advisory message indicating a directory inode 11 was successfully connected to the lost+/ound
directory. The parent inode 12 of the directory inode I1 is replaced by the inode number of the lost+/ound
directory.

DIRECTORY F LENGTH S NOT MUL TIPLE OF B (ADJUST)
A directory F has been found with size S that is not a multiple of the directory blocksize B (this can reoccur
in Phase 3 if it is not adjusted in Phase 2).

Possible responses to the ADJUST prompt are:

YES the length is rounded up to the appropriate block size. This error can occur on 4.2BSD file systems.
Thus when preen'ing the file system only a warning is printed and the directory is adjusted.

NO ignore the error condition.

BAD INODE S TO DESCEND
An internal error has caused an impossible state S to be passed to the routine that descends the file system
directory structure. F sck exits. See a guru.

4.7. Phase 4- Check Reference Counts

This phase concerns itself with the link count infonnation seen in Phase 2 and Phase 3. This section
lists error conditions resulting from unreferenced files, missing or fulilost+/ound directory, incorrect link
counts for files, directories, symbolic links, or special files, unreferenced files, symbolic links, and direc­
tories, and bad or duplicate blocks in files, symbolic links, and directories. All errors in this phase are
correctable if the file system is being preen'ed except running out of space in the lost+/ound directory.

UNREF FILE I=/OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT)
Inode I was not connected to a directory entry when the file system was traversed. The owner 0, mode M,
size S, and modify time T of inode I are printed When preen'ing the file is cleared if either its size or its
link count is zero, otherwise it is reconnected.

Possible responses to the RECONNECT prompt are:

The UNIX File System Check Program S:MM:5-19

YES reconnect inode I to the file system in the directory for lost files (usually lost+found). This may
invoke the lost+found error condition in Phase 4 if there are problems connecting inode I to
lost+found.

NO ignore this error condition. This will always invoke the CLEAR error condition in Phase 4.

(CLEAR)
The inode mentioned in the immediately previous error condition can not be reconnected. This cannot
occur if the file system is being preen'ed, since lack of space to reconnect files is a fatal error.

Possible responses to the CLEAR prompt are:

YES de-allocate the inode mentioned in the immediately previous error condition by zeroing its contents.

NO ignore this error condition.

NO lost+round DIRECTORY (CREATE)
There is no lost+found directory in the root directory of the file system; When preen'ingfsck tries to create
a lost + found directory.

Possible responses to the CREATE prompt are:

YES create a lost+found directory in the root of the file system. This may raise the message:
NO SPACE LEFT IN I (EXPAND)
See below for the possible responses. Inability to create a lost+found directory generates the mes­
sage:
SORRY. CANNOT CREATE lost+round DIRECTORY
and aborts the attempt to linkup the lost inode. This will always invoke the UNREF error condition
in Phase 4.

NO abort the attempt to linkup the lost inode. This will always invoke the UNREF error condition in
Phase 4.

lost+round IS NOT A DIRECTORY (REALLOCATE)
The entry for lost+found is not a directory.

Possible responses to the REALLOCATE prompt are:

YES allocate a directory inode, and change lost+found to reference it The previous inode reference by
the lost +/ound name is not cleared. Thus it will either be reclaimed as an UNREF' ed inode or have
its link count ADJUST'ed later in this Phase. Inability to create a lost+/ound directory generates the
message:
SORRY. CANNOT CREATE lost+round DIRECTORY
and aborts the attempt to linkup the lost inode. This will always invoke the UNREF error condition
in Phase 4.

NO abort the attempt to linkup the lost inode. This will always invoke the UNREF error condition in
Phase 4.

NO SPACE LEFT IN Ilost+round (EXPAND)
There is no space to add another entry to the lost+found directory in the root directory of the file system.
When preen'ing the lost+/ound directory is expanded.

Possible responses to the EXPAND prompt are:

YES the lost+/ound directory is expanded to make room for the new entry. If the attempted expansion
fails /sck prints the message:
SORRY. NO SPACE IN lost+round DIRECTORY
and aborts the attempt to linkup the lost inode. This will always invoke the UNREF error condition
in Phase 4. Clean out unnecessary entries in lost+found. This error is fatal if the file system is being
preen'ed.

SMM:5-20 The UNIX File System Check Program

NO abort the attempt to linkup the lost inode. This will always invoke the UNREF error condition in
Phase 4.

LINK COUNT type 1=1 OWNER=O MODE=M SIZE=S MTIME=T COUNT=X SHOULD BE Y
(ADJUST)
The link count for inode I, is X but should be Y. The owner 0, mode M, size S, and modify time Tare
printed. When preen'ing the link count is adjusted unless the number of references is increasing, a condi­
tion that should never occur unless precipitated by a hardware failure. When the number of references is
increasing under preen mode, fsck exits with the message:
LINK COUNT INCREASING

Possible responses to the ADJUST prompt are:

YES replace the link count of file inode I with Y.

NO ignore this error condition.

UNREF type 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR)
Inode I, was not connected to a directory entry when the file system was traversed. The owner 0, mode M,
size S, and modify time T of inode I are printed. When preen'ing, this is a file that was not connected
because its size or link count was zero, hence it is cleared

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

BADIDUP type 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR)
Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with inode I. The owner 0,
mode M, size St and modify time T of inode I are printed. This error cannot arise when the file system is
being preen'ed, as it would have caused a fatal error earlier.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

4.8. Phase 5 .. Check Cyl groups

This phase concerns itself with the free-block and used-inode maps. This section lists error condi­
tions resulting from allocated blocks in the free-block maps, free blocks missing from free-block maps, and
the total free-block count incorrect It also lists error conditions resulting from free inodes in the used­
inode maps, allocated inodes missing from used-inode maps, and the total used-inode count incorrect

CG C: BAD MAGIC NUMBER
The magic number of cylinder group C is wrong. This usually indicates that the cylinder group maps have
been destroyed. When running manually the cylinder group is marked as needing to be reconstructed.
This error is fatal if the file system is being preen' ed.

BLK(S) MISSING IN BIT MAPS (SALVAGE)
A cylinder group block map is missing some free blocks. During preen'ing the maps are reconstructed.

Possible responses to the SAL V AGE prompt are:

YES reconstruct the free block map.

NO ignore this error condition.

SUMMARY INFORMATION BAD (SALVAGE)
The summary information was found to be incorrect When preen' ing, the summary information is

The UNIX File System Check Program

recomputed.

Possible responses to the SAL V AGE prompt are:
YES reconstruct the summary information.

NO ignore this error condition.

FREE BLK COUNT(S) WRONG IN SUPERBLOCK (SALVAGE)

S:MM::5-21

The superblock free block information was found to be incorrect When preen'ing, the superblock free
block information is recomputed.

Possible responses to the SAL V AGE prompt are:
YES reconstruct the superblock free block information.

NO ignore this error condition.

4.9. Cleanup

Once a file system has been checked, a few cleanup functions are performed. This section lists
advisory messages about the file system and modify status of the file system.

V files, W used, X free (Y rrags, Z blocks)
This is an advisory message indicating that the file system checked contained V files using W fragment
sized blocks leaving X fragment sized blocks free in the file system. The numbers in parenthesis breaks the
free count down into Y free fragments and Z free full sized blocks .

••••• REBOOT UNIX •••••
This is an advisory message indicating that the root file system has been modified by fsck. If UNIX is not
rebooted immediately, the wode done by fsck may be undone by the in-core copies of tables UNIX keeps.
When preen'ing,fsck will exit with a code of 4. The standard auto-reboot script distributed with 4.3BSD
interprets an exit code of 4 by issuing a reboot system call.

••••• FILE SYSTEM WAS MODIFIED •••••
This is an advisory message indicating that the current file system was modified by fsck. If this file system
is mounted or is the current root file system, fsck should be halted and UNIX rebooted. If UNIX is not
rebooted immediately, the work done by fsck may be undone by the in-core copies of tables UNIX keeps.

4.3BSD Line Printer Spooler Manual

Ralph Campbell

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

This document describes the structure and installation procedure for the line printer
spooling system developed for the 4.3BSD version of the UNIX· operating system.

Revised May 14, 1986

1. Overview

The line printer system supports:

• multiple printers,

• multiple spooling queues,

• both local and remote printers, and

• printers attached via serial lines that require line initialization such as the baud rate.

Raster output devices such as a Varian or Versatec, and laser printers such as an Imagen, are also supported
by the line printer system.

The line printer system consists mainly of the following files and commands:

/ etclprintcap
/usrllib/lpd
/usr/ucb/lpr
/usr/ucb/lpq
/usr/ucb/lprm
/etcllpc
/dev/printer

printer configuration and capability data base
line printer daemon, does all the real work
program to enter a job in a printer queue
spooling queue examination program
program to delete jobs from a queue
program to administer printers and spooling queues
socket on which lpd listens

The file /etclprintcap is a master data base describing line printers directly attached to a machine and, also,
printers accessible across a network. The manual page entry printcap(5) provides the authoritative
definition of the format of this data base, as well as specifying default values for important items such as
the directory in which spooling is performed. This document introduces some of the information that may
be placed printcap.

* UNIX is a trademark of Bell Laboratories.

S:MM::6-2 4.3BSD Line Printer Spooler Manual

2. Commands

2.1. Ipd - line printer daemon

The program lpd(8), usually invoked at boot time from the letc/rc file, acts as a master server for
coordinating and controlling the spooling queues configured in the printcap file. When lpd is started it
makes a single pass through the printcap database restarting any printers that have jobs. In normal opera­
tion lpd listens for service requests on multiple sockets, one in the UNIX domain (named "/dev/printer' ')
for local requests, and one in the Internet domain (under the "printer" service specification) for requests
for printer access from off machine; see socket (2) and services (5) for more information on sockets and
service specifications, respectively. Lpd spawns a copy of itself to process the request; the master daemon
continues to listen for new requests.

Clients communicate with lpd using a simple transaction oriented protocol. Authentication of
remote clients is done based on the "privilege port" scheme employed by rshd (8e) and rcmd (3X). The
following table shows the requests understood by lpd. In each request the first byte indicates the "mean­
ing" of the request, followed by the name of the printer to which it should be applied. Additional qualifiers
may follow, depending on the request

Request
AAprinter\n
ABprinter\n
ACprinter [users ... J [jobs ... J\n
ADprinter [users ... J [jobs ... J\n
AEprinter person [users ... J [jobs ... J\n

Interpretation
check the queue for jobs and print any found
receive and queue a job from another machine
return short list of current queue state
return long list of current queue state
remove jobs from a queue

The lpr(l) command is used by users to enter a print job in a local queue and to notify the locallpd
that there are new jobs in the spooling area. Lpd either schedules the job to be printed locally, or if print­
ing remotely, attempts to forward the job to the appropriate machine. If the printer cannot be opened or the
destination machine is unreachable, the job will remain queued until it is possible to complete the work.

2.2. Ipq - show line printer queue

The lpq(l) program works recursively backwards displaying the queue of the machine with the
printer and then the queue(s) of the machine(s) that lead to it. Lpq has two forms of output: in the default,
short, format it gives a single line of output per queued job; in the long format it shows the list of files, and
their sizes, that comprise a job.

2.3. Iprm - remove jobs from a queue

The lprm (1) command deletes jobs from a spooling queue. If necessary, Iprm will first kill off a run­
ning daemon that is servicing the queue and restart it after the required files are removed. When removing
jobs destined for a remote printer, Iprm acts similarly to lpq except it first checks locally for jobs to remove
and then tries to remove files in queues off-machine.

2.4. Ipc - line printer control program

The Ipc(8) program is used by the system administrator to control the operation of the line printer
system. For each line printer configured in letc/printcap, Ipc may be used to:

• disable or enable a printer,

• disable or enable a printer's spooling queue,

• rearrange the order of jobs in a spooling queue,
• find the status of printers, and their associated spooling queues and printer daemons.

4.3BSD Line Printer Spooler Manual S:MM:6-3

3. Access control

The printer system maintains protected spooling areas so that users cannot circumvent printer
accounting or remove files other than their own. The strategy used to maintain protected spooling areas is
as follows:

• The spooling area is writable only by a daemon user and daemon group.

• The lpr program runs set-user-id to root and set-group-id to group daemon. The root access permits
reading any file required. Accessibility is verified with an access (2) call. The group ID is used in set­
ting up proper ownership of files in the spooling area for lprm.

• Control files in a spooling area are made with daemon ownership and group ownership daemon. Their
mode is 0660. This insures control files are not modified by a user and that no user can remove files
except through lprm.

• The spooling programs, lpd, lpq, and lprm run set-user-id to root and set-group-id to group daemon to
access spool files and printers.

• The printer server, lpd, uses the same verification procedures as rshd (SC) in authenticating remote
clients. The host on which a client resides must be present in the file letc/hosts.equiv or letc/hosts.lpd
and the request message must come from a reserved port number.

In practice, none of lpd, lpq, or lprm would have to run as user root if remote spooling were not sup­
ported. In previous incarnations of the printer system lpd ran set-user-id to daemon, set-group-id to group
spooling, and lpq and lprm ran set-group-id to group spooling.

4. Setting up

The 4.3BSD release comes with the necessary programs installed and with the default line printer
queue created If the system must be modified, the makefile in the directory lusrlsrc/usr.lib/lpr should be
used in recompiling and reinstalling the necessary programs.

The real work in setting up is to create the printcap file and any printer filters for printers not sup­
ported in the distribution system.

4.1. Creating a printcap file

The printcap database contains one or more entries per printer. A printer should have a separate
spooling directory; otherwise, jobs will be printed on different printers depending on which printer daemon
starts first This section describes how to create entries for printers that do not conform to the default
printer description (an LP-ll style interface to a standard, band printer).

4.1.1. Printers on serial lines

When a printer is connected via a serial communication line it must have the proper baud rate and
terminal modes set. The following example is for a DecWriter III printer connected locally via a 1200
baud serial line.

IpILA-1S0 DecWriter 111:\
:lp=/dev/lp: br#1200:fs#06320:\
:tr=\f:of=/usr/lib/lpf:lf=/usr/adm!lpd-errs:

The Ip entry specifies the file name to open for output Here it could be left out since "/dev/lp" is the
default. The br entry sets the baud rate for the tty line and the fs entry sets CRMOD, no parity, and
XTABS (see tty (4». The tr entry indicates that a form-feed should be printed when the queue empties so
the paper can be tom off without turning the printer off-line and pressing form feed. The of entry specifies
the filter program lpi should be used for printing the files; more will be said about filters later. The last
entry causes errors to be written to the file "/usr/adm/lpd-errs" instead of the console. Most errors from
lpd are logged using syslogd(S) and will not be logged in the specified file. The filters should use syslogd
to report errors; only those that write to standard error output will end up with errors in the If file. (Occa­
sionallyerrors sent to standard error output have not appeared in the log file; the use of syslogd is highly
recommended.)

SMM:6-4 4.3BSD Line Printer Spooler Manual

4.1.2. Remote printers

Printers that reside on remote hosts should have an empty Jp entry. For example, the following
printcap entry would send output to the printer named "lp" on the machine "ucbvax".

lpldefault line printer:\
:lp=:rm=ucbvax:rp=lp:sd=/usrlspoollvaxlpd:

The rm entry is the name of the remote machine to connect to; this name must be a known host name for a
machine on the network. The rp capability indicates the name of the printer on the remote machine is
"lp"; here it could be left out since this is the default value. The sd entry specifies "/usrlspoollvaxlpd" as
the spooling directory instead of the default value of "/usrlspoolllpd".

4.2. Output filters

Filters are used to handle device dependencies and to do accounting functions. The output filtering
of of is used when accounting is not being done or when all text data must be passed through a filter. It is
not intended to do accounting since it is started only once, all text files are filtered through it, and no provi­
sion is made for passing owners' login name, identifying the beginning and ending of jobs, etc. The other
filters (if specified) are started for each file printed and do accounting if there is an af entry. If entries for
both of and other filters are specified, the output filter is used only to print the banner page; it is then
stopped to allow other filters access to the printer. An example of a printer that requires output filters is the
Benson-Varian.

vaivarianlBenson-V arlan:\
:lp=/dev/vaO:sd=/usrlspoollvad:of=/usr/lib/vpf:\
:tf=/usr/lib/rvcat:mx#2000:pl#58:px=2112:py= 1700:tr=\f:

The tf entry specifies "/usr/lib/rvcat" as the filter to be used in printing troff(l) output. This filter is
needed to set the device into print mode for text, and plot mode for printing troff files and raster images
(see va (4V». Note that the page length is set to 58 lines by the pi entry for 8.5" by 11" fan-fold paper. To
enable accounting, the varian entry would be augmented with an af filter as shown below.

vaivarianlBenson-V arlan:\
:lp=/dev/vaO:sd=/usrlspoollvad:of=/usr/lib/vpf:\
:if=/usr/lib/vpf:tf=/usr/lib/rvcataf=/usr/adm!vaacct:\
:mx#2000:pl#58:px=2112:py= 1700:tr=\f:

4.3. Access Control

Local access to printer queues is controlled with the rg printcap entry.

:rg=lprgroup:

Users must be in the group lprgroup to submit jobs to the specified printer. The default is to allow all users
access. Note that once the files are in the local queue, they can be printed locally or forwarded to another
host depending on the configuration.

Remote access is controlled by listing the hosts in either the file letc/hosts.equiv or letclhosts.Ipd, one
host per line. Note that rsh(l) and rlogin(l) use letclhosts.equiv to determine which hosts are equivalent for
allowing logins without passwords. The file letclhosts.lpd is only used to control which hosts have line
printer access. Remote access can be further restricted to only allow remote users with accounts on the
local host to print jobs by using the rs printcap entry.

:rs:

s. Output filter specifications

The filters supplied with 4.3BSD handle printing and accounting for most common line printers, the
Benson-Varian, the wide (36") and narrow (11") Versatec printer/plotters. For other devices or accounting
methods, it may be necessary to create a new filter.

4.3BSD Line Printer Spooler Manual S1W:6-5

Filters are spawned by lpd with their standard input the data to be printed, and standard output the
printer. The standard error is attached to the If file for logging errors or syslogd may be used for logging
errors. A filter must return a 0 exit code if there were no errors, 1 if the job should be reprinted, and 2 if
the job should be thrown away. When lprm sends a kill signal to the lpd process controlling printing, it
sends a SIGINT signal to all filters and descendents of filters. This signal can be trapped by filters that
need to do cleanup operations such as deleting temporary files.

Arguments passed to a filter depend on its type. The of filter is called with the following arguments.

filter -wwidth -Ilength

The width and length values come from the pw and pi entries in the printcap database. The if filter is
passed the following parameters.

filter [-c] -wwidth -Ilength -iindent -n login -b host accounting_file

The -c fiag is optional, and only supplied when control characters are to be passed uninterpreted to the
printer (when using the -I option of Ipr to print the file). The -wand -I parameters are the same as for the
of filter. The -n and -b parameters specify the login name and host name of the job owner. The last argu­
ment is the name of the accounting file from printcap.

All other filters are called with the following arguments:

filter -xwidth -ylength -n login -b host accounting_file

The -x and -y options specify the horizontal and vertical page size in pixels (from the px and py entries in
the printcap file). The rest of the arguments are the same as for the if filter.

6. Line printer Administration

The lpc program provides local control over line printer activity. The major commands and their
intended use will be described. The command format and remaining commands are described in lpc(8).

abort and start

Abort terminates an active spooling daemon on the local host immediately and then disables printing
(preventing new daemons from being started by Ipr). This is normally used to forcibly restart a hung
line printer daemon (Le., Ipq reports that there is a daemon present but nothing is happening). It does
not remove any jobs from the queue (use the lprm command instead). Start enables printing and
requests Ipd to start printing jobs.

enable and disable

Enable and disable allow spooling in the local queue to be turned on/off. This will allow/prevent Ipr
from putting new jobs in the spool queue. It is frequently convenient to turn spooling off while test­
ing new line printer filters since the root user can still use lpr to put jobs in the queue but no one else
can. The other main use is to prevent users from putting jobs in the queue when the printer is
expected to be unavailable for a long time.

restart

stop

topq

Restart allows ordinary users to restart printer daemons when lpq reports that there is no daemon
present.

Stop halts a spooling daemon after the current job completes; this also disables printing. This is a
clean way to shutdown a printer to do maintenance, etc. Note that users can still enter jobs in a spool
queue while a printer is stopped.

Topq places jobs at the top of a printer queue. This can be used to reorder high priority jobs since
lpr only provides first-come-first-serve ordering of jobs.

SMM:6-6 4.3BSD Line Printer Spooler Manual

7. Troubleshooting

There are several messages that may be generated by the the line printer system. This section
categorizes the most common and explains the cause for their generation. Where the message implies a
failure, directions are given to remedy the problem.

In the examples below, the name printer is the name of the printer from the printcap database.

7.1. LPR

Ipr: printer: unknown printer

The printer was not found in the printcap database. Usually this is a typing mistake; however, it
may indicate a missing or incorrect entry in the letc/printcap file.

Ipr: printer: jobs queued, but cannot start daemon.

The connection to Ipd on the local machine failed. This usually means the printer server started at
boot time has died or is hung. Check the local socket ldev/printer to be sure it still exists (if it does
not exist, there is no Ipd process running). Usually it is enough to get a super-user to type the follow­
ing to restart Ipd.

% lusr/lib/lpd

You can also check the state of the master printer daemon with the following.

% ps I 'cat /usrlspool/lpd.lock'

Another possibility is that the Ipr program is not set-user-id to root, set-group-id to group daemon.
This can be checked with

% Is -Ig lusr/ucb/lpr

Ipr: printer: printer queue is disabled

This means the queue was turned off with

% lpc disable printer

to prevent Ipr from putting files in the queue. This is normally done by the system manager when a
printer is going to be down for a long time. The printer can be turned back on by a super-user with
Ipc.

7.2. LPQ

waiting for printer to become ready (offline ?)

The printer device could not be opened by the daemon. This can happen for several reasons, the most
common is that the printer is turned off-line. This message can also be generated if the printer is out
of paper, the paper is jammed, etc. The actual reason is dependent on the meaning of error codes
returned by system device driver. Not all printers supply enough information to distinguish when a
printer is off-line or having trouble (e.g. a printer connected through a serial line). Another possible
cause of this message is some other process, such as an output filter, has an exclusive open on the
device. Your only recourse here is to kill off the offending prograrn(s) and restart the printer with
Ipc.

printer is ready and printing

The lpq program checks to see if a daemon process exists for printer and prints the file status
located in the spooling directory. If the daemon is hung, a super user can use [pc to abort the current
daemon and start a new one.

4.3BSD Line Printer Spooler Manual SMM:6-7

waiting for host to come up

This implies there is a daemon trying to connect to the remote machine named host to send the files
in the local queue. If the remote machine is up, lpd on the remote machine is probably dead or hung
and should be restarted as mentioned for [pro

sending to host

The files should be in the process of being transferred to the remote host. If not, the local daemon
should be aborted and started with lpc.

Warning: printer is down

The printer has been marked as being unavailable with lpc.

Warning: no daemon present

The lpd process overseeing the spooling queue, as specified in the "lock" file in that directory, does
not exist. This normally occurs only when the daemon has unexpectedly died. The error log file for
the printer and the syslo gd logs should be checked for a diagnostic from the deceased process. To
restart an lpd, use

% lpc restart printer

no space on remote; waiting for queue to drain

This implies that there is insufficient disk space on the remote. If the file is large enough, there will
never be cnough space on the remote (even after the queue on the remote is empty). The solution
here is to move the spooling queue or make more free space on the remote.

7.3. LPRM

Iprm: printer: cannot restart printer daemon

This case is the same as when lpr prints that the daemon cannot be started.

7.4. LPD

The lpd program can log many different messages using syslogd(8). Most of these messages are
about files that can not be opened and usually imply that the printcap file or the protection modes of the
files are incorrect. Files may also be inaccessible if people manually manipulate the line printer system
(i.e. they bypass the lpr program).

In addition to messages generated by lpd, any of the filters that lpd spawns may log messages using
syslogd or to the error log file (the file specified in the If entry in printcap).

7.5. LPC

couldn't start printer

This case is the same as when lpr reports that the daemon cannot be started.

cannot examine spool directory

Error messages beginning with "cannot ... " are usually because of incorrect ownership or protection
mode of the lock file, spooling directory or the lpc program.

SENDMAIL

INSTALLATION AND OPERATION GUIDE

Eric Allman
Britton-Lee, Inc.

Version 5.8

Sendmail implements a general purpose internetwork mail routing facility under the UNIX* operat­
ing system. It is not tied to anyone transport protocol- its function may be likened to a crossbar switch,
relaying messages from one domain into another. In the process, it can do a limited amount of message
header editing to put the message into a format that is appropriate for the receiving domain. All of this is
done under the control of a configuration file.

Due to the requirements of flexibility for sendmail, the configuration file can seem somewhat unap­
proachable. However, there are only a few basic configurations for most sites, for which standard
configuration files have been supplied. Most other configurations can be built by adjusting. an existing
configuration files incrementally.

Although sendmail is intended to run without the need for monitoring, it has a number of features
that may be used to monitor or adjust the operation under unusual circumstances. These features are
described.

Section one describes how to do a basic sendmail installation. Section two explains the day-to-day
information you should know to maintain your mail system. If you have a relatively normal site, these two
sections should contain sufficient information for you to install sendmail and keep it happy. Section three
describes some parameters that may be safely tweaked. Section four has information regarding the com­
mand line arguments. Section five contains the nitty-gritty information about the configuration file. This
section is for masochists and people who must write their own configuration file. The appendixes give a
brief but detailed explanation of a number of features not described in the rest of the paper.

The references in this paper are actually found in the companion paper Sendmail- An Internetwork
Mail Router. This other paper should be read before this manual to gain a basic understanding of how the
pieces fit together.

*UNIX is a trademark of Bell Laboratories.

Sendmail Installation and Operation Guide SMM:07-1

SMM:07·2 Sendmail Installation and Operation Guide

TABLE OF CONTENTS

1. BASIC IN"ST AlLATION .. 4
1.1. Off-TIle-Shelf Configurations ... 4
1.2. Installation Using the Makefile ... 4
1.3. Installation by Hand .. 5

1.3.1. libllibsys.a ... 5
1.3.2. /usr/lib/sendmail ... 5
1.3.3. /usr/lib/sendmail.cf ... 5
1.3.4. /usr/ucb/newaliases ... 5
1.3.5. /usr/spoo1/mqueue .. 6
1.3.6. /usr/lib/aliases* ... 6
1.3.7. /usr/lib/sendmail.fc ... 6
1.3.8. /etc/rc .. 6
1.3.9. /usr/lib/sendmail.hf ... 6
1.3.10. /usr/lib/sendmail.st ... 7
1.3.11. /usr/ucb/newaliases ... 7
1.3.12. /usr/ucb/mailq ... 7

2. NORMAL OPERATIONS ... 7
21. Quick Configuration Startup ... 7
2.2. The System Log .. 7

2.2.1. Format .. 7

2.2.2. I..evels ... 7

2.3. TheMail Queue 0... 7
2.3.1. Printing tile queue ... 0... 8
2.3.2 Format of queue files .. 8
2.3.3. Forcing tile queue ... 9

2.4. The Alias Database ... 9

2.4.1. Rebuilding the alias database ... 10
2.4.2. Potential problems ... 10
2.4.3. List owners .. 10

2.5. Per-User Forwarding (.forward Files) ... 11
2.6. Special Header Lines ... 11

2.6.1. Return-Receipt-To: .. 11
2.6.2 Errors-To: .. 11
2.6.3. Apparently-To: .. 00........ 11

3. ARGUMENTS ... 11
3.1. Queue Interval ... 11
3.2. Daemon Mode ... 11
3.3. Forcing the Queue ... ,.................................... 11
3.4. Debugging ... 12
3.5. Trying a DiffereJlt Configuration File ... 12
3.6. Changing the Values of Options ... 12

4. TUNING ... 12
4.1. l1tneOuts .. 12

4.1.1. Queue interval .. 13
4.1.2 Read. timetJuts ... 13

Sendmail Installation and Operation Guide SMM:07-3

4.1.3. Message timeouts ... 13
4.2. Forking During Queue Runs 13
4.3. Queue Priorities ... 13

4.4. l..oad Limiting .. 14

4.5. Delivery Mode ... 14
4.6. l..og Level .. 14
4.7. File Modes ... 14

4.7.1. To suid or not to suid? ... 14

4.7.2. Temporary file modes ... 15
4.7.3. Should my alias database be writable? .. 15

5. THE WHOLE SCOOP ON THE CONFIGURATION FILE .. 15
5.1. The Syntax•.. 15

5.1.1. Rand S - rewriting rules .. 15

5.1.2. D - define macro .. 16
5.1.3. C and F - define classes ... 16
5.1.4. M - define mailer•.. 16
5.1.5. H - define header ..•.. 16

5.1.6. 0 - set option•... 17
5.1.7. T - define trusted users .. 17
5.1.8. P- precedence definitions .. 17

5.2. The Semantics ... 17

5.2.1. Special macros, conditionals .. 17

5.2.2. Special classes .. 19
5.2.3. The left hand side•..•.. 19
5.2.4. The right hand side ... 19

5.2.5. Semantics of rewriting rule sets ... 20

5.2.6. Mailer flags etc. ... 21
5.2.7. The" error" mailer 21

5.3. Building a Configuration File From Scratch ... 21

5.3.1. What you are trying to do ... 21

5.3.2. Philosophy .. 22
5.3.2.1. Large site, many hosts - minimum information ... 22

5.3.2.2. Small site - complete information ..•... 22
5.3.2.3. Single host ... 22

5.3.3. Relevant issues•......................................•... 23
5.3.4. How to proceed ..•... 23
5.3.5. Testing the rewriting rules - the -bt flag ... 23
5.3.6. Building mailer descriptions .. 24

Appendix A. COMMAND LINE FLAGS•.. 26
Appendix B. CONFIGURATION OmONS .. 27

Appendix C. MAIlER FLAGS ... 29
Appendix D. OTIIER CONFIGURATION ... 31
Appendix E. SUMMARY OF SUPPORT FILES .. 35

SMM:07-4 Sendmail Installation and Operation Guide

1. BASIC INSTALLATION

There are two basic steps to installing sendmail. The hard part is to build the configuration table.
This is a file that sendmail reads when it starts up that describes the mailers it knows about, how to
parse addresses, how to rewrite the message header, and the settings of various options. Although the
configuration table is quite complex, a configuration can usually be built by adjusting an existing off­
the-shelf configuration. The second part is actually doing the installation, i.e., creating the necessary
files, etc.

The remainder of this section will describe the installation of sendmail assuming you can use one
of the existing configurations and that the standard installation parameters are acceptable. All path­
names and examples are given from the root of the send mail subtree, normally lusrlsrc!usr.liblsendmail
on4.3BSD.

1.1. Off· The-Shelf Configurations

The configuration files are all in the subdirectories cf.named and cf.hosttable of the sendmail
directory. The directory cf.named contains configuration files that have been tailored for the name
server named (8). These are the configuration files currently being used at Berkeley. The
configuration files in cf.hosttable are some typical ones and the old Berkeley versions from before
the name server was being used You should create a symbolic link from cf to the directory that
you are going to use. For example, to use the name server:

In -s cf.named cf

The ones used at Berkeley are in m4 (1) format; files with names ending ".m4" are m4 include
files, while files with names ending ".mc" are the master files. Files with names ending ".cf' are
the m4 processed versions of the corresponding ".me" file.

Three off the shelf configurations are supplied to handle the basic cases:

(1) Arpanet (TCP) sites not running the name server can use cf.hosttablelarpaproto.cf. For sim­
ple sites, you should be able to use this file without modification. This file is not in m4 for­
mat.

(2) UUCP sites can use cf.hosttableluucpproto.cf. If your UUCP node name is not the same as
your system name (as printed by the hostname(1) command) you may have to modify the U
macro. This file is not in m4 format.

(3) A group of machines at a single site connected by an ethemet with (only) one host connected
to the outside world via UUCP is represented by two configuration files:
cf.hosttablellanroot.mc should be installed on the host with outside connections and
cf.hosttablellanleafmc should be installed on all other hosts. These will require slightly more
configuration. First, in both files the D macro and D class must be adjusted to indicate your
local domain. For example, if your company is known as "Muse" you will want to change
both of those accordingly. (As distributed, they are called XXX.) Second, in lanleaf.mc you
will have to change the R macro to the name of the root host, that is, the host that runs
lanroot.mc. For example, they might appear as:

DDMuse
CDLOCAL Muse

DRErato

Internally, the root host will be known as "Erato.Muse" and other hosts will be known as
"Thalia.Muse", "Clio.Muse", etc.

The file you need should be copied to a file with the same name as your system, e.g.,

cp uucpproto.cf ucsfcgl.cf

This file is now ready for installation as lusrlliblsendmail.cf.

1.2. Installation Using the Makefile

A makefile exists in the root of the sendmail directory that will do all of these steps for a
4.3BSD system. It may have to be slightly tailored for use on other systems.

Sendmail Installation and Operation Guide SMM:07-S

Before using this makefile, you should create a symbolic link from cf to the directory contain­
ing your configuration files. You should also have created your configuration file and left it in the
file "cflsystem.cf' , where system is the name of your system (Le., what is returned by host­
name (1». If you do not have hostname you can use the declaration "HOST=system" on the
make (1) command line. You should also examine the file mdlconfig.m4 and change the m4 macros
there to reflect any libraries and compilation flags you may need.

The basic installation procedure is to type:

make
make install
make installcf

in the root directory of the sendmail distribution. This will make all binaries and install them in the
standard places. The second and third make commands must be executed as the superuser (root).

1.3. Installation by Hand

Along with building a configuration file, you will have to install the sendmail startup into
your UNIX system. If you are doing this installation in conjunction with a regular Berkeley UNIX
install, these steps will already be complete. Many of these steps will have to be executed as the
superuser (root).

1.3.1. lib/libsys.a

The library in lib/libsys.a contains some routines that should in some sense be part of the
system library. These are the system logging routines and the new directory access routines (if
required). If you are not running the 4.3BSD directory code and do not have the compatibility
routines installed in your system library, you should execute the command:

(cd lib; make ndir)

This will compile and install the 4.3 compatibility routines in the library. You should then type:

(cd lib; make)

This will recompile and fill the library.

1.3.2. lusr/lib/sendmail

The binary for sendmail is located in lusr/lib. There is a version available in the source
directory that is probably inadequate for your system. You should plan on recompiling and
installing the entire system:

cd src
make clean
make
cp sendmail/usr/lib
chgrp kmem lusr/lib/sendmail

1.3.3. lusr/lib/sendmail.cf

The configuration file that you created earlier should be installed in lusr/lib/sendmail.cf:

cp cfl system.cf lusrllib/sendmail.cf

1.3.4. lusr/ucb/newaliases

If you are running delivermail, it is critical that the newaliases command be replaced.
This can just be a link to sendmail:

rm -f lusr/ucb/newaliases
In lusr/lib/sendmail/usr/ucb/newaliases

SMM:07-6 Sendmail Installation and Operation Guide

1.3.5. lusrlspoollmqueue

The directory lusrlspoollmqueue should be created to hold the mail queue. This directory
should be mode 777 unless sendmail is run setuid, when mqueue should be owned by the send­
mail owner and mode 755.

1.3.6. lusr/lib/aliases*

The system aliases are held in three files. The file "/usr/lib/aliases" is the master copy.
A sample is given in "lib/aliases" which includes some aliases which must be defined:

cp lib/aliases lusr/lib/aliases

You should extend this file with any aliases that are apropos to your system.

Normally sendmaillooks at a version of these files maintained by the dbm (3) routines.
These are stored in "/usrllib/aliases.dir" and "/usrllib/aliases.pag." These can initially be
created as empty files, but they will have to be initialized promptly. These should be mode 666
if you are running a reasonably relaxed system:

cp ldev/null/usr/lib/aliases.dir
cp Idev/null lusr/lib/aliases.pag
chmod 666/usr/lib/aliases. *
newaliases

1.3.7. lusr/lib/sendmaiI.fc

If you intend to install the frozen version of the configuration file (for quick startup) you
should create the file lusr/lib/sendmail.fc and initialize it This step may be safely skipped.

cp Idev/null lusr/lib/sendmail.fc
lusr/lib/sendmail-bz

1.3.8. letclrc

It will be necessary to start up the sendmail daemon when your system reboots. This dae­
mon perfonns two functions: it listens on the SMTP socket for connections (to receive mail
from a remote system) and it processes the queue periodically to insure that mail gets delivered
when hosts come up.

Add the following lines to "/etc/rc" (or "/etc/rc.local" as appropriate) in the area where
it is starting up the daemons:

if [-f lusr/lib/sendmail]; then

fi

(cd lusrlspoo)Jmqueue; rm -f [lnx]f*)
lusr/lib/sendmail-bd -q30Ii1 &
echo -n ' sendmail' >/dev/console

The "cd" and "rm" commands insure that all lock files have been removed; extraneous lock
files may be left around if the system goes down in the middle of processing a message. The
line that actually invokes sendmail has two flags: "-bd" causes it to listen on the SMTP port,
and "-q30m" causes it to run the queue every half hour.

If you are not running a version of UNIX that supports Berkeley TCP/IP, do not include
the -bd flag.

1.3.9. lusr/lib/sendmail.hf

This is the help file used by the SMTP HELP command. It should be copied from
"lib/sendmail.hf' :

cp lib/sendmail.hf lusr/lib

Sendmail Installation and Operation Guide SMM:07-7

1.3.10. lusr/lib/sendmail.st

If you wish to collect statistics about your mail traffic, you should create the file
" lusr/libl sendmail.st' ':

cp Idev/nul1 lusr/lib/sendmail.st
chmod 666 lusr/lib/sendmail.st

This file does not grow. It is printed with the program "auxlmailstats."

1.3.11. lusr/ucb/newaliases

If sendmail is invoked as "newaliases," it will simulate the -bi flag (Le., will rebuild the
alias database; see below). This should be a link to lusr/lib/sendmail.

1.3.12. lusr/ucb/mailq

If sendmail is invoked as "mailq," it will simulate the -bp flag (Le., sendmail will print
the contents of the mail queue; see below). This should be a link to lusr/lib/sendmail.

2. NORMAL OPERATIONS

2.1. Quick Configuration Startup

A fast version of the configuration file may be set up by using the -bz flag:

lusrllib/sendmail-bz

This creates the file lusrlliblsendmail!c ("frozen configuration"). This file is an image of
sendmail's data space after reading in the configuration file. If this file exists, it is used instead of
lusrlliblsendmail.cf sendmail!c must be rebuilt manually every time sendmail.cfis changed.

The frozen configuration file will be ignored if a -C flag is specified or if sendmail detects
that it is out of date. However, the heuristics are not strong so this should not be trusted.

2.2. The System Log

The system log is supported by the syslo gd (8) program.

2.2.1. Format

Each line in the system log consists of a timestamp, the name of the machine that gen­
erated it (for logging from several machines over the ethernet), the word "sendmail:", and a
message.

2.2.2. Levels

If you have syslogd (8) or an equivalent installed, you will be able to do logging. There is
a large amount of information that can be logged The log is arranged as a succession of levels.
At the lowest level only extremely strange situations are logged. At the highest level, even the
most mundane and uninteresting events are recorded for posterity. As a convention, log levels
under ten are considered "useful;" log levels above ten are usually for debugging purposes.

A complete description of the log levels is given in section 4.6.

2.3. The MaD Queue

The mail queue should be processed transparently. However, you may find that manual inter­
vention is sometimes necessary. For example, if a major host is down for a period of time the
queue may become clogged. Although sendmail ought to recover gracefully when the host comes
up, you may find performance unacceptably bad in the meantime.

SMM:07-8 Sendmail Installation and Operation Guide

2.3.1. Printing the queue

The contents of the queue can be printed using the mailq command (or by specifying the
-bp :flag to sendmail):

mailq

This will produce a listing of the queue id's, the size of the message, the date the message
entered the queue, and the sender and recipients.

2.3.2. Format of queue files

All queue files have the form x fAA99999 where AA99999 is the id for this file and the x is
a type. The types are:

d The data file. The message body (excluding the header) is kept in this file.

The lock file. If this file exists, the job is currently being processed, and a queue run will
not process the file. For that reason, an extraneous If file can cause a job to apparently
disappear (it will not even time out!).

n This file is created when an id is being created It is a separate file to insure that no mail
can ever be destroyed due to a race condition. It should exist for no more than a few mil­
liseconds at any given time.

q The queue control file. This file contains the information necessary to process the job.

t A temporary file. These are an image of the qf file when it is being rebuilt It should be
renamed to a qf file very quickly.

x A transcript file, existing during the life of a session showing everything that happens dur­
ing that session.

The qf file is structured as a series of lines each beginning with a code letter. The lines
are as follows:

D The name of the data file. There may only be one of these lines.

H A header definition. There may be any number of these lines. The order is important:
they represent the order in the final message. These use the same syntax as header
definitions in the configuration file.

R A recipient address. This will normally be completely aliased, but is actually realiased
when the job is processed. There will be one line for each recipient.

S The sender address. There may only be one of these lines.

E An error address. If any such lines exist, they represent the addresses that should receive
error messages.

T The job creation time. This is used to compute when to time out the job.

P The current message priority. This is used to order the queue. Higher numbers mean
lower priorities. The priority changes as the message sits in the queue. The initial prior­
ity depends on the message class and the size of the message.

M A message. This line is printed by the mailq command, and is generally used to store
status information. It can contain any text

As an example, the following is a queue file sent to "mckusick@calder" and "wnj":

Sendmail Installation and Operation Guide

DdfA13557
Serlc
T404261372
P132
Rmckusick@calder
Rwnj
H?D?date: 23-Oct-82 15:49:32-PDT (Sat)
H?F?from: eric (Eric Allman)
H?x?full-name: Eric Allman
Hsubject: this is an example message
Hmessage-id: <8209232249.13557@UCBARPA.BERKELEY.ARPA>
Hreceived: by UCBARPA.BERKELEY.ARPA (3.227 [10/22182])

id A13557; 23-Oct-82 15:49:32-PDT (Sat)
HTo: mckusick@calder, wnj

SMM:07-9

This shows the name of the data file, the person who sent the message, the submission time (in
seconds since January 1, 1970), the message priority, the message class, the recipients, and the
headers for the message.

2.3.3. Forcing the queue

Sendmail should run the queue automatically at intervals. The algorithm is to read and
sort the queue, and then to attempt to process all jobs in order. When it attempts to run the job,
sendmail first checks to see if the job is locked. If so, it ignores the job.

There is no attempt to insure that only one queue processor exists at any time, since there
is no guarantee that a job cannot take forever to process. Due to the locking algorithm, it is
impossible for one job to freeze the queue. However, an uncooperative recipient host or a pro­
gram recipient that never returns can accumulate many processes in your system. Unfor­
tunately, there is no way to resolve this without violating the protocol.

In some cases, you may find that a major host going down for a couple of days may create
a prohibitively large queue. This will result in send mail spending an inordinate amount of time
sorting the queue. This situation can be fixed by moving the queue to a temporary place and
creating a new queue. The old queue can be run later when the offending host returns to ser­
vice.

To do this, it is acceptable to move the entire queue directory:

cd /usr/spool
mv mqueue omqueue; mkdir mqueue; chmod 777 mqueue

You should then kill the existing daemon (since it will still be processing in the old queue direc­
tory) and create a new daemon.

To run the old mail queue, run the following command:

/usr/lib/sendmail--oQ/usr/spool/omqueue --q

The -oQ llag specifies an alternate queue directory and the -q llag says to just run every job in
the queue. If you have a tendency toward voyeurism, you can use the -v llag to watch what is
going on.

When the queue is finally emptied, you can remove the directory:

rmdir/usvspool/omqueue

2.4. The Alias Database

The alias database exists in two forms. One is a text form, maintained in the file
/usr/lib/aliases. The aliases are of the form

name: namel, name2, ...

Only local names may be aliased; e.g.,

SMM:07-10 Sendmail Installation and Operation Guide

eric@mit-xx: eric@berkeley.EDU

will not have the desired effect Aliases may be continued by starting any continuation lines with a
space or a tab. Blank lines and lines beginning with a sharp sign ("#") are comments.

The second form is processed by the dbm(3) library. This form is in the files
lusrlliblaliases.dir and lusr/liblaliases.pag. This is the form that sendmail actually uses to resolve
aliases. This technique is used to improve performance.

2.4.1. Rebuilding the alias database

The DBM version of the database may be rebuilt explicitly by executing the command

newaliases

This is equivalent to giving send mail the -bi flag:

lusr/lib/sendmail-bi

If the "D" option is specified in the configuration, sendmail will rebuild the alias data­
base automatically if possible when it is out of date. The conditions under which it will do this
are:
(1) The DBM version of the database is mode 666. -or­

(2) Sendmail is running setuid to root

Auto-rebuild can be dangerous on heavily loaded machines with large alias files; if it might take
more than five minutes to rebuild the database, there is a chance that several processes will start
the rebuild process simultaneously.

2.4.2. Potential problems

There are a number of problems that can occur with the alias database. They all result
from a send mail process accessing the DBM version while it is only partially built This can
happen under two circumstances: One process accesses the database while another process is
rebuilding it, or the process rebuilding the database dies (due to being killed or a system crash)
before completing the rebuild.

Sendmail has two techniques to try to relieve these problems. First, it ignores interrupts
while rebuilding the database; this avoids the problem of someone aborting the process leaving
a partially rebuilt database. Second, at the end of the rebuild it adds an alias of the form

@:@

(which is not normally legal). Before sendmail will access the database, it checks to insure that
this entry exists 1. Sendmail will wait for this entry to appear, at which point it will force a
rebuild itseIf2.

2.4.3. List owners

If an error occurs on sending to a certain address, say" x" , sendmail will look for an alias
of the form "owner-x" to receive the errors. This is typically useful for a mailing list where the
submitter of the list has no control over the maintenance of the list itself; in this case the list
maintainer would be the owner of the list For example:

unix-wizards: eric@ucbarpa, wnj@monet, nosuchuser,
sam@matisse

owner-unix-wizards: eric@ucbarpa

would cause "eric@ucbarpa" to get the error that will occur when someone sends to unix­
wizards due to the inclusion of "nosuchuser" on the list.

l1be "a" option is required in the configuration for this action to occur. This should nonnally be specified unless you are
running deliver mail in parallel with sendmail.

2Note: the' '0" option must be specified in the configuration file for this operation to occur. If the "0" option is not specified.

Sendmail Installation and Operation Guide SMM:07-11

2.S. Per-User Forwarding (.rorward Files)

As an alternative to the alias database, any user may put a file with the name ".forward" in
his or her home directory. If this file exists, sendmail redirects mail for that user to the list of
addresses listed in" the .forward file. For example, if the home directory for user "mckusick" has a
.forward file with contents:

mckusick@ernie
kirk@calder

then any mail arriving for "mckusick', will be redirected to the specified accounts.

2.6. Special Header Lines

Several header lines have special interpretations defined by the configuration file. Others
have interpretations built into sendmail that cannot be changed without changing the code. These
bulltins are described here.

2.6.1. Return-Receipt-To:

If this header is sent, a message will be sent to any specified addresses when the final
delivery is complete, that is, when successfully delivered to a mailer with the I flag (local
delivery) set in the mailer descriptor.

2.6.2. Errors-To:

If errors occur anywhere during processing, this header will cause error messages to go to
the listed addresses rather than to the sender. This is intended for mailing lists.

2.6.3. Apparently-To:

If a message comes in with no recipients listed in the message (in a To:, Cc:, or Bcc: line)
then sendmail will add an "Apparently-To:" header line for any recipients it is aware of. This
is not put in as a standard recipient line to warn any recipients that the list is not complete.

At least one recipient line is required under RFC 822.

3. ARGUMENTS

The complete list of arguments to sendmail is described in detail in Appendix A. Some impor­
tant arguments are described here.

3.1. Queue Interval

The amount of time between forking a process to run through the queue is defined by the -q
flag. If you run in mode r or a this can be relatively large, since it will only be relevant when a host
that was down comes back up. If you run in q mode it should be relatively short, since it defines the
maximum amount of time that a message may sit in the queue.

3.2. Daemon Mode

If you allow incoming mail over an !PC connection, you should have a daemon running.
This should be set by your letclre file using the -bd flag. The -bd flag and the -q flag may be
combined in one call:

lusrllib/sendmail-bd -q30m

3.3. Forcing the Queue

In some cases you may find that the queue has gotten clogged for some reason. You can
force a queue run using the -q flag (with no value). It is entertaining to use the -v flag (verbose)
when this is done to watch what happens:

a warning message is generated and sendmail continues.

SMM:07·12 Sendmail Installation and Operation Guide

lusrllib/sendmail-q -v

3.4. Debugging

There are a fairly large number of debug flags built into sendmail. Each debug flag has a
number and a level, where higher levels means to print out more information. The convention is
that levels greater than nine are "absurd," Le., they print out so much information that you
wouldn't normally want to see them except for debugging that particular piece of code. Debug
flags are set using the -d option; the syntax is:

debug-flag: -d debug-list
debug-list: debug-option [, debug-option]
debug-option: debug-range [. debug-level]
debug-range: integer I integer - integer
debug-level: integer

where spaces are for reading ease only. For example,

--d12 Set 1lag 12 to level 1
--d12.3 Set flag 12 to level 3
--d3-17 Set flags 3 through 17 to level 1
--d3-17.4 Set flags 3 through 17 to level 4

For a complete list of the available debug flags you will have to look at the code (they are too
dynamic to keep this documentation up to date).

3.S. Trying a DitTerent Configuration File

An alternative configuration file can be specified using the -C flag; for example,

lusrllib/sendmail-Ctest.cf

uses the configuration file test.cf instead of the default lusrlliblsendmail.cf. If the -C flag has no
value it defaults to sendmail.cfin the current directory.

3.6. Changing the Values of Options

Options can be overridden using the --0 flag. For example,

lusrllib/sendmail-oT2m

sets the T (timeout) option to two minutes for this run only.

4. TUNING

There are a number of configuration parameters you may want to change, depending on the
requirements of your site. Most of these are set using an option in the configuration file. For example,
the line "Ond" sets option "T" to the value "3d" (three days).

Most of these options default appropriately for most sites. However, sites having very high mail
loads may find they need to tune them as appropriate for their mail load. In particular, sites experienc­
ing a large number of small messages, many of which are delivered to many recipients, may find that
they need to adjust the parameters dealing with queue priorities.

4.1. Timeouts

All time intervals are set using a scaled syntax. For example, "10m" represents ten minutes,
whereas "2h30m" represents two and a half hours. The full set of scales is:

s seconds
m minutes
h hours
d days
w weeks

Sendmail Installation and Operation Guide SMM:07-13

4.1.1. Queue interval

The argument to the -q flag specifies how often a subdaemon will run the queue. This is
typically set to between fifteen minutes and one hour.

4.1.2. Read timeouts

It is possible to time out when reading the standard input or when reading from a remote
SMTP server. Technically, this is not acceptable within the published protocols. However, it
might be appropriate to set it to something large in certain environments (such as an hour). This
will reduce the chance of large numbers of idle daemons piling up on your system. This
timeout is set using the r option in the configuration file.

4.1.3. Message timeouts

After sitting in the queue for a few days, a message will time out. This is to insure that at
least the sender is aware of the inability to send a message. The timeout is typically set to three
days. This timeout is set using the T option in the configuration file.

The time of submission is set in the queue, rather than the amount of time left until
timeout. As a result, you can flush messages that have been hanging for a short period by run­
ning the queue with a short message timeout. For example,

lusr/lib/sendrnail-oT1d -q

will run the queue and flush anything that is one day old.

4.2. Forking During Queue Runs

By setting the Y option, sendmail will fork before each individual message while running the
queue. This will prevent sendmail from consuming large amounts of memory, so it may be useful
in memory-poor environments. However, if the Y option is not set, sendmail will keep track of
hosts that are down during a queue run, which can improve performance dramatically.

4.3. Queue Priorities

Every message is assigned a priority when it is first instantiated, consisting of the message
size (in bytes) offset by the message class times the "work class factor" and the number of reci­
pients times the "work recipient factor." The priority plus the creation time of the message (in
seconds since January 1, 1970) are used to order the queue. Higher numbers for the priority mean
that the message will be processed later when running the queue.

The message size is included so that large messages are penalized relative to small messages.
The message class allows users to send "high priority" messages by including a "Precedence:"
field in their message; the value of this field is looked up in the P lines of the configuration file.
Since the number of recipients affects the amount of load a message presents to the system, this is
also included into the priority.

The recipient and class factors can be set in the configuration file using the y and z options
respectively. They default to 1000 (for the recipient factor) and 1800 (for the class factor). The ini­
tial priority is:

pri = size - (class * z) + (nrcpt * y)

(Remember, higher values for this parameter actually mean that the job will be treated with lower
priority.)

The priority of a job can also be adjusted each time it is processed (that is, each time an
attempt is made to deliver it) using the "work time factor," set by the Z option. This is added to
the priority, so it normally decreases the precedence of the job, on the grounds, that jobs that have
failed many times will tend to fail again in the future.

SMM:07-14 Sendmail Installation and Operatio~ Guide

4.4. Load Limiting

Sendmail can be asked to queue (but not deliver) mail if the system load average gets too
high using the x option. When the load average exceeds the value of the x option, the delivery
mode is set to q (queue only) if the Queue Factor (q option) divided by the difference in the current
load average and the x option plus one exceeds the priority of the message - that is, the message is
queued iff:

. QF
prz> LA-x+l

The q option defaults to 10000, so each point of load average is worth 10000 priority points (as
described above, that is, bytes + seconds + offsets).

For drastic cases, the X option defines a load average at which sendmail will refuse to accept
network connections. Locally generated mail (including incoming UUCP mail) is still accepted.

4.5. Delivery Mode

There are a number of delivery modes that sendmail can operate in, set by the "d"
configuration option. These modes specify how quickly mail will be delivered Legal modes are:

i deliver interactively (synchronously)
b deliver in background (asynchronously)
q queue only (don't deliver)

There are tradeoffs. Mode "i" passes the maximum amount of infonnation to the sender, but is
hardly ever necessary. Mode "q" puts the minimum load on your machine, but means that
delivery may be delayed for up to the queue interval. Mode "b" is probably a good compromise.
However, this mode can cause large numbers of processes if you have a mailer that takes a long
time to deliver a message.

4.6. Log Level

The level of logging can be set for sendmail. The default using a standard configuration table
is level 9. The levels are as follows:

o No logging.

1 Major problems only.

2 Message collections and failed deliveries.

3 Successful deliveries.

4 Messages being deferred (due to a host being down, etc.).

5 Normal message queueups.

6 Unusual but benign incidents, e.g., trying to process a locked queue file.

9 Log internal queue id to external message id mappings. This can be useful for tracing a mes­
sage as it travels between several hosts.

12 Several messages that are basically only of interest when debugging.

16 Verbose information regarding the queue.

4.7. File Modes

There are a number of files that may have a number of modes. The modes depend on what
functionality you want and the level of security you require.

4.7.1. To suid or not to suid?

Sendmail can safely be made setuid to root At the point where it is about to exec (2) a
mailer, it checks to see if the userid is zero; if so, it resets the userid and groupid to a default (set
by the u and g options). (This can be overridden by setting the S flag to the mailer for mailers
that are trusted and must be called as root.) However, this will cause mail processing to be

Sendmail Installation and Operation Guide SMM:07-1S

accounted (using sa (8» to root rather than to the user sending the mail.

4.7.2. Temporary file modes

The mode of all temporary files that sendmail creates is determined by the "F" option.
Reasonable values for this option are 0600 and 0644. If the more permissive mode is selected,
it will not be necessary to run sendmail as root at all (even when running the queue).

4.7.3. Should my alias database be writable?

At Berkeley we have the alias database (/usr/lib/aliases*) mode 666. There are some
dangers inherent in this approach: any user can add him-/her-self to any list, or can "steal" any
other user's mail. However, we have found users to be basically trustworthy, and the cost of
having a read-only database greater than the expense of finding and eradicating the rare nasty
person.

The database that sendmail actually used is represented by the two files aliases.dir and
aliases.pag (both in lusr/lib). The mode on these files should match the mode on lusr/lib/aliases.
If aliases is writable and the DBM files (aliases.dir and aliases.pag) are not, users will be
unable to rellect their desired changes through to the actual database. However, if aliases is
read-only and the DBM files are writable, a slightly sophisticated user can arrange to steal mail
anyway.

If your DBM files are not writable by the world or you do not have auto-rebuild enabled
(with the "D" option), then you must be careful to reconstruct the alias database each time you
change the text version:

newaliases

If this step is ignored or forgotten any intended changes will also be ignored or forgotten.

S. THE WHOLE SCOOP ON THE CONFIGURATION FILE

This section describes the configuration file in detail, including hints on how to write one of your
own if you have to.

There is one point that should be made clear immediately: the syntax of the configuration file is
designed to be reasonably easy to parse, since this is done every time sendmail starts up, rather than
easy for a human to read or write. On the "future project" list is a configuration-file compiler.

An overview of the configuration file is given first, followed by details of the semantics.

5.1. The Syntax

The configuration file is organized as a series of lines, each of which begins with a single
character defining the semantics for the rest of the line. Lines beginning with a space or a tab are
continuation lines (although the semantics are not well defined in many places). Blank lines and
lines beginning with a sharp symbol ('#') are comments.

5.1.1. Rand S - rewriting rules

The core of address parsing are the rewriting rules. These are an ordered production sys­
tem. Sendmail scans through the set of rewriting rules looking for a match on the left hand side
(LHS) of the rule. When a rule matches, the address is replaced by the right hand side (RHS) of
the rule.

There are several sets of rewriting rules. Some of the rewriting sets are used internally
and must have specific semantics. Other rewriting sets do not have specifically assigned seman­
tics, and may be referenced by the mailer definitions or by other rewriting sets.

The syntax of these two commands are:

Sn
Sets the current ruleset being collected to n. If you begin a ruleset more than once it deletes the
old definition.

SMM:07·16 SendmaiI Installation and Operation Guide

Rlhs rhs comments

The fields must be separated by at least one tab character; there may be embedded spaces in the
fields. The lhs is a pattern that is applied to the input. If it matches, the input is rewritten to the
rhs. The comments are ignored.

5.1.2. D - define macro

Macros are named with a single character. These may be selected from the entire ASCII
set, but user-defined macros should be selected from the set of upper case letters only. Lower
case letters and special symbols are used internally.

The syntax for macro definitions is:

Dxval

where x is the name of the macro and val is the value it should have. Macros can be interpo­
lated in most places using the escape sequence $x.

5.1.3. C and F - define classes

Classes of words may be defined to match on the left hand side of rewriting rules. For
example a class of all local names for this site might be created so that attempts to send to one­
self can be eliminated. These can either be defined directly in the configuration file or read in
from another file. Classes may be given names from the set of upper case letters. Lower case
letters and special characters are reserved for system use.

The syntax is:

Cc wordl word2".
Fcfile

The first form defines the class c to match any of the named words. It is permissible to split
them among multiple lines; for example, the two forms:

CHmonet ucbmonet

and

CHmonet
CHucbmonet

are equivalent The second form reads the elements of the class c from the named file.

5.1.4.. M - define mailer

Programs and interfaces to mailers are defined in this line. The format is:

Mname, {field=value}*

where name is the name of themailer(usedinternallyonly)andthe •• field=name •• pairs define
attributes of the mailer. Fields are:

Path The pathname of the mailer
Flags Special flags for this mailer
Sender A rewriting set for sender addresses
Recipient A rewriting set for recipient addresses
Argv An argument vector to pass to this mailer
Eol The end-of-line string for this mailer
Maxsize The maximum message length to this mailer

Only the first character of the field name is checked.

5.1.5. H - define header

The format of the header lines that sendmail inserts into the message are defined by the H
line. The syntax of this line is:

Sendmail Installation and Operation Guide SMM:07-17

H[?mflags?]hname: htemplate

Continuation lines in this spec are reflected directly into the outgoing message. The htemplate
is macro expanded before insertion into the message. If the mflags (surrounded by question
marks) are specified, at least one of the specified flags must be stated in the mailer definition for
this header to be automatically output. If one of these headers is in the input it is reflected to the
output regardless of these flags.

Some headers have special semantics that will be described below.

5.1.6. 0 - set option

There are a number of "random" options that can be set from a configuration file.
Options are represented by single characters. The syntax of this line is:

00 value

This sets option 0 to be value. Depending on the option, value may be a string, an integer, a
boolean (with legal values "t", "T", "f', or "F"; the default is TRUE), or a time interval.

5.1.7. T - define trusted users

Trusted users are those users who are permitted to override the sender address using the
-f flag. These typically are "root," "uucp," and "network," but on some users it may be con­
venient to extend this list to include other users, perhaps to support a separate UUCP login for
each host. The syntax of this line is:

Tuserl user2 ...

There may be more than one of these lines.

5.1.8. P - precedence definitions

Values for the "Precedence:" field may be defined using the P control line. The syntax
of this field is:

Pname=num

When the name is found in a "Precedence:" field, the message class is set to num. Higher
numbers mean higher precedence. Numbers less than zero have the special property that error
messages will not be returned The default precedence is zero. For example, our list of pre­
cedences is:

Pflrst-class=O
Pspecial-delivery= 100
Pjunk=--loo

S.20 The Semantics

This section describes the semantics of the configuration file.

S.2.1. Special macros, conditionals

. Macros are interpolated using the construct $x, where x is the name of the macro to be .
interpolated. In particular, lower case letters are reserved to have special semantics, used to
pass information in or out of sendmail, and some special characters are reserved to provide con­
ditionals, etc.

Conditionals can be specified using the syntax:

$?x textl $1 text2 $.

This interpolates textl if the macro $x is set, and tut2 otherwise. The' 'else" ($1) clause may
be omitted.

The following macros must be defined to transmit information into sendmail:

SMM:07·18 Sendmail Installation and Operation Guide

e The SMTP entry message
j The "official" domain name for this site
I The format of the UNIX from line
n The name of the daemon (for error messages)
o The set of "operators" in addresses
q default format of sender address

The $e macro is printed out when SMTP starts up. The first word must be the $j macro. The $j
macro should be in RFC821 format. The $1 and $0 macros can be considered constants except
under terribly unusual circumstances. The $0 macro consists of a list of characters which will
be considered tokens and which will separate tokens when doing parsing. For example, if "@' ,
were in the $0 macro, then the input "a@b" would be scanned as three tokens: "a," "@,"
and "b." Finally, the $q macro specifies how an address should appear in a message when it is
defaulted. For example, on our system these definitions are:

De$j Sendmail $v ready at $b
DnMAll...ER-DAEMON
DlFrom$g $d
DO.:%@!"=1
Dqg?x ($x)$.
Dj$H.$D

An acceptable alternative for the $q macro is "$?x$x $.<$g>". These correspond to the fol­
lowing two formats:

eric@Berkeley (Eric Allman)
Eric Allman <eric@Berkeley>

Some macros are defined by sendmail for interpolation into argv's for mailers or for other
contexts. These macros are:

a The origination date in Arpanet format
b The current date in Arpanet format
c The hop count
d The date in UNIX (ctime) format
f The sender (from) address
g The sender address relative to the recipient
h The recipient host

Thequeueid
p Sendmail's pid
r Protocol used
s Sender's host name
t A numeric representation of the current time
u The recipient user
v The version number of sendmail
w The hostname of this site
x The full name of the sender
z The home directory of the recipient

There are three types of dates that can be used. The $a and $b macros are in Arpanet for­
mat; $a is the time as extracted from the "Date:" line of the message (if there was one), and $b
is the current date and time (used for postmarks). If no "Date:" line is found in the incoming
message, $a is set to the current time also. The $d macro is equivalent to the $a macro in UNIX
(ctime) format.

The $r macro is the id of the sender as originally determined; when mailing to a specific
host the $g macro is set to the address of the sender relative to the recipient. For example, if I
send to "bollard@matisse" from the machine "ucbarpa" the $f macro will be "eric" and the
$g macro will be "eric@ucbarpa."

Sendmail Installation and Operation Guide SMM:07·19

The $x macro is set to the full name of the sender. This can be determined in several
ways. It can be passed as flag to sendmail. The second choice is the value of the "Full-name:"
line in the header if it exists, and the third choice is the comment field of a "From:" line. If all
of these fail, and if the message is being originated locally, the full name is looked up in the
!etc!l'asSlVdfile.

When sending, the $h, $u, and $z macros get set to the host, user, and home directory (if
local) of the recipient The first two are set from the $@ and $: part of the rewriting rules,
respectively. .

The $p and $t macros are used to create unique strings (e.g., for the "Message-Id:"
field). The $i macro is set to the queue id on this host; if put into the timestamp line it can be
extremely useful for tracking messages. The $v macro is set to be the version number of send­
mail; this is normally put in timestamps and has been proven extremely useful for debugging.
The $w macro is set to the name of this host if it can be determined. The $c field is set to the
"hop count," i.e., the number of times this message has been processed. This can be deter·
mined by the -h flag on the command line or by counting the timestamps in the message.

The $r and $s fields are set to the protocol used to communicate with sendmail and the
sending hostnarne; these are not supported in the current version.

5.2.2. Special classes

The class $=w is set to be the set of all names this host is known by. This can be used to
delete local hostnarnes.

5.2.3. The left hand side

The left hand side of rewriting rules contains a pattern. Normal words are simply
matched directly. Metasyntax is introduced using a dollar sign. The metasymbols are:

$* Match zero or more tokens
$+ Match one or more tokens
$- Match exactly one token
$=x Match any token in class x
$-x Match any token not in class x

If any of these match, they are assigned to the symbol $n for replacement on the right hand side,
where n is the index in the LHS. For example, if the LHS:

$-:$+

is applied to the input:

UCBARP A:eric

the rule will match, and the values passed to the RHS will be:

$1 UCBARPA
$2 eric

5.2.4. The right hand side

When the left hand side of a rewriting rule matches, the input is deleted and replaced by
the right hand side. Tokens are copied directly from the RHS unless they begin with a dollar
sign. Metasymbols are:

$n Substitute indefinite token n from LHS
$[name$] Canonicalize name
$>n "Call" ruleset n
$#mailer Resolve to mailer
$@host Specify host
$: user Specify user

SMM:07-20 Sendmail Installation and Operation Guide

addr

The $n syntax substitutes the corresponding value from a $+, $-, $*, $=, or $- match on
the LHS. It may be used anywhere.

A host name enclosed between $[and $] is looked up using the gethostent (3) routines and
replaced by the canonical name. For example, "$[csarn$]" would become "lbl-csam.arpa"
and "$[[128.32.130.2]$]" would become "vangogh.berkeley.edu."

The $>n syntax causes the remainder of the line to be substituted as usual and then passed
as the argument to ruleset n. The final value of ruleset n then becomes the substitution for this
rule.

The $# syntax should only be used in ruleset zero. It causes evaluation of the ruleset to
terminate immediately, and signals to sendmail that the address has completely resolved. The
complete syntax is:

$#mailer$@host$:user

This specifies the {mailer, host, user} 3-tuple necessary to direct the mailer. If the mailer is
local the host part may be omitted. The mailer and host must be a single word, but the user may
be multi -part.

A RHS may also be preceded by a $@ or a $: to control evaluation. A $@ prefix causes
the ruleset to return with the remainder of the RHS as the value. A $: prefix causes the rule to
terminate immediately, but the ruleset to continue; this can be used to avoid continued applica­
tion of a rule. The prefix is stripped before continuing.

The $@ and $: prefixes may precede a $> spec; for example:

R$+ $:$>7$1

matches anything, passes that to ruleset seven, and continues; the $: is necessary to avoid an
infinite loop.

Substitution occurs in the order described, that is, parameters from the LHS are substi­
tuted, hostnames are canonicalized, "subroutines" are called, and finally $#, $@, and $: are
processed.

5.2.5. Semantics of rewriting rule sets

There are five rewriting sets that have specific semantics. These are related as depicted
by figure 2.

resolved address

Figure 2 - Rewriting set semantics
D - sender domain addition
S - mailer-specific sender rewriting
R - mailer-specific recipient rewriting

msg

Sendmail Installation and Operation Guide SMM:07·21

Ruleset three should tum the address into "canonical form." This form should have the
basic syntax:

local-part@host-domain-spec

If no "@" sign is specified, then the host-domain-spec may be appended from the sender
address (if the C flag is set in the mailer definition corresponding to the sending mailer).
Ruleset three is applied by sendmail before doing anything with any address.

Ruleset zero is applied after ruleset three to addresses that are going to actually specify
recipients. It must resolve to a {mailer. host. user} triple. The mailer must be defined in the
mailer definitions from the configuration file. The host is defined into the $h macro for use in
the argv expansion of the specified mailer.

Rulesets one and two are applied to all sender and recipient addresses respectively. They
are applied before any specification in the mailer definition. They must never resolve.

Ruleset four is applied to all addresses in the message. It is typically used to translate
internal to external form.

5.2.6. Mailer flags etc.

There are a number of flags that may be associated with each mailert each identified by a
letter of the alphabet. Many of them are assigned semantics internally. These are detailed in
Appendix C. Any other flags may be used freely to conditionally assign headers to messages
destined for particular mailers.

5.2.7. The "error" mailer

The mailer with the special name "error" can be used to generate a user error. The
(optional) host field is a numeric exit status to be returned, and the user field is a message to be
printed. For examplet the entry:

$#error$:Host unknown in this domain

on the RHS of a rule will cause the specified error to be generated if the LHS matches. This
mailer is only functional in ruleset zero.

5.3. Building a Configuration File From Scratch

Building a configuration table from scratch is an extremely difficult job. Fortunately, it is
almost never necessary to do so; nearly every situation that may come up may be resolved by
changing an existing table. In any caset it is critical that you understand what it is that you are try­
ing to do and come up with a philosophy for the configuration table. This section is intended to
explain what the real purpose of a configuration table is and to give you some ideas for what your
philosophy might be.

5.3.1. What you are trying to do

The configuration table has three major purposes. The first and simplest is to set up the
environment for sendmail. This involves setting the options, defining a few critical macros, etc.
Since these are described in other places, we will not go into more detail here.

The second purpose is to rewrite addresses in the message. This should typically be done
in two phases. The first phase maps addresses in any format into a canonical form. This should
be done in ruleset three. The second phase maps this canonical form into the syntax appropriate
for the receiving mailer. Sendmail does this in three subphases. Rulesets one and two are
applied to all sender and recipient addresses respectively. After this, you may specify per­
mailer rulesets for both sender and recipient addresses; this allows mailer-specific customiza­
tion. Finally, ruleset four is applied to do any default conversion to external form.

The third purpose is to map addresses into the actual set of instructions necessary to get
the message delivered. Ruleset zero must resolve to the internal form, which is in tum used as a
pointer to a mailer descriptor. The mailer descriptor describes the interface requirements of the

SMM:07·22 Sendmail Installation and Operation Guide

mailer.

5.3.2. Philosophy

The particular philosophy you choose 'will depend heavily on the size and structure of
your organization. I will present a few possible philosophies here.

One general point applies to all of these philosophies: it is almost always a mistake to try
to do full name resolution. For example, if you are trying to get names of the form
"user@host" to the Arpanet, it does not pay to route them to
"xyzvax!decvax!ucbvax!c70:user@host" since you then depend on several links not under
your control. The best approach to this problem is to simply forward to "xyzvax!user@host"
and let xyzvax worry about it from there. In summary, just get the message closer to the desti­
nation, rather than determining the full path.

5.3.2.1.. Large site, many hosts - minimum information

Berkeley is an example of a large site, i.e., more than two or three hosts and multiple
mail connections. We have decided that the only reasonable philosophy in our environment
is to designate one host as the guru for our site. It must be able to resolve any piece of mail
it receives. The other sites should have the minimum amount of information they can get
away with. In addition, any information they do have should be hints rather than solid infor­
mation.

For example, a typical site on our local ether network is "monet" When monet
receives mail for delivery, it checks whether it knows that the destination host is directly
reachable; if so, mail is sent to that host. If it receives mail for any unknown host, it just
passes it directly to "ucbvax," our master host U cbvax may determine that the host name
is illegal and reject the message, or may be able to do delivery. However, it is important to
note that when a new mail connection is added, the only host that must have its tables
updated is ucbvax; the others may be updated if convenient, but this is not critical.

This picture is slightly muddied due to network connections that are not actually
located on ucbvax. For example, some UUCP connections are currently on "ucbarpa."
However, monet does not know about this; the information is hidden totally between ucbvax
and ucbarpa. Mail going from monet to a UUCP host is transferred via the ethernet from
monet to ucbvax, then via the ethernet from ucbvax to ucbarpa, and then is submitted to
UUCP. Although this involves some extra hops, we feel this is an acceptable tradeoff.

An interesting point is that it would be possible to update monet to send appropriate
UUCP mail directly to ucbarpa if the load got too high; if monet failed to note a host as con­
nected to ucbarpa it would go via ucbvax as before, and if monet incorrectly sent a message
to ucbarpa it would still be sent by ucbarpa to ucbvax as before. The only problem that can
occur is loops, for example, if ucbarpa thought that ucbvax had the UUCP connection and
vice versa. For this reason, updates should always happen to the master host first.

This philosophy results as much from the need to have a single source for the
configuration files (typically built using m4 (1) or some similar tool) as any logical need.
Maintaining more than three separate tables by hand is essentially an impossible job.

5.3.2.2. Small site - complete information

A small site (two or three hosts and few external connections) may find it more rea­
sonable to have complete information at each host. This would require that each host know
exactly where each network connection is, possibly including the names of each host on that
network. As long as the site remains small and the the configuration remains relatively
static, the update problem will probably not be too great.

5.3.2.3. Single host

This is in some sense the trivial case. The only major issue is trying to insure that you
don't have to know too much about your environment For example, if you have a UUCP

Sendmail Installation and Operation Guide SMM:07·23

connection you might find it useful to know about the names of hosts connected directly to
you, but this is really not necessary since this may be determined from the syntax.

5.3.3. Relevant issues

The canonical form you use should almost certainly be as specified in the Arpanet proto­
cols RFC819 and RFC822. Copies of these RFC's are included on the sendmail tape as
doclrfc819.lpr and doclrfc822.lpr.

RFC822 describes the format of the mail message itself. Sendmail follows this RFC
closely, to the extent that many of the standards described in this document can not be changed
without changing the code. In particular, the following characters have special interpretations:

<>()"\

Any attempt to use these characters for other than their RFC822 purpose in addresses is prob­
ably doomed to disaster.

RFC819 describes the specifics of the domain-based addressing. This is touched on in
RFC822 as well. Essentially each host is given a name which is a right-to-Ieft dot qualified
pseudo-path from a distinguished root The elements of the path need not be physical hosts; the
domain is logical rather than physical. For example, at Berkeley one legal host might be
"a.CC.BeJkeley.EDU"; reading from right to left, "EDU" is a top level domain comprising
educational institutions, "Berkeley" is a logical domain name, "CC" represents the Computer
Center, (in this case a strictly logical entity), and "a" is a host in the Computer Center.

Beware when reading RFC819 that there are a number of errors in it

5.3.4. How to proceed

Once you have decided on a philosophy, it is worth examining the available configuration
tables to decide if any of them are close enough to steal major parts of. Even under the worst of
conditions, there is a fair amount of boiler plate that can be collected safely.

The next step is to build ruleset three. This will be the hardest part of the job. Beware of
doing too much to the address in this ruleset, since anything you do will refiect through to the
message. In particular, stripping of local domains is best deferred, since this can leave you with
addresses with no domain spec at all. Since send mail likes to append the sending domain to
addresses with no domain, this can change the semantics of addresses. Also try to avoid fully
quaIifying domains in this ruleset Although technically legal, this can lead to unpleasantly and
unnecessarily long addresses refiected into messages. The Berkeley configuration files define
ruleset nine to qualify domain names and strip local domains. This is called from ruleset zero to
get all addresses into a cleaner form.

Once you have ruleset three finished, the other rulesets should be relatively trivial. If you
need hints, examine the supplied configuration tables.

5.3.5. Testing the rewriting rules - the -bt flag

When you build a configuration table, you can do a certain amount of testing using the
"test mode" of sendmail. For example, you could invoke sendmail as:

sendmail-bt -Ctestcf

which would read the configuration file "testcr' and enter test mode. In this mode, you enter
lines of the form:

rwset address

where rwset is the rewriting set you want to use and address is an address to apply the set to.
Test mode shows you the steps it takes as it proceeds, finally showing you the address it ends up
with. You may use a comma separated list of rwsets for sequential application of rules to an
input; ruleset three is always applied first. For example:

1,21,4 monet:bollard

SMM:07-24 Sendmail Installation and Operation Guide

first applies ruleset three to the input "monet:bollard." Ruleset one is then applied to the output
of ruleset three, followed similarly by rulesets twenty-one and four.

If you need more detail, you can also use the "-d21" flag to turn on more debugging.
For example,

sendmail-bt -<121.99

turns on an incredible amount of information; a single word address is probably going to print
out several pages worth of information.

5.3.6. Building mailer descriptions

To add an outgoing mailer to your mail system, you will have to define the characteristics
of the mailer.

Each mailer must have an internal name. This can be arbitrary, except that the names
"local" and "prog" must be defined.

The pathname of the mailer must be given in the P field. If this mailer should be accessed
via an IPC connection, use the string "[IPC]" instead.

The F field defines the mailer flags. You should specify an "f' or "r" flag to pass the
name of the sender as a -f or -r flag respectively. These flags are only passed if they were
passed to sendmail. so that mailers that give errors under some circumstances can be placated.
If the mailer is not picky you can just specify "-f $g" in the argv template. If the mailer must
be called as root the "S" flag should be given; this will not reset the userid before calling the
maile.-3. If this mailer is local (i.e., will perform final delivery rather than another network hop)
the "1" flag should be given. Quote characters (backslashes and tI marks) can be stripped from
addresses if the "s" flag is specified; if this is not given they are passed through. If the mailer
is capable of sending to more than one user on the same host in a single transaction the "rn"
flag should be stated. If this flag is on, then the argv template containing $u will be repeated for
each unique user on a given host The "e" flag will mark the mailer as being "expensive,"
which will cause sendmail to defer connection until a queue run4•

An unusual case is the "c" flag. This flag applies to the mailer that the message is
received from, rather than the mailer being sent to; if set, the domain spec of the sender (Le., the
"@hostdomain" part) is saved and is appended to any addresses in the message that do not
already contain a domain spec. For example, a message of the form:

From: eric@ucbarpa
To: wnj@monet, mckusick

will be modified to:

From: eric@ucbarpa
To: wnj@monet, mckusick@ucbarpa

if and only if the "c" flag is defined in the mailer corresponding to "eric@ucbarpa."

Other flags are described in Appendix C.

The S and R fields in the mailer description are per-mailer rewriting sets to be applied to
sender and recipient addresses respectively. These are applied after the sending domain is
appended and the general rewriting sets (numbers one and two) are applied, but before the out­
put rewrite (ruleset four) is applied. A typical use is to append the current domain to addresses
that do not already have a domain. For example, a header of the form:

From: eric

might be changed to be:

From:eric@ucbarpa

3SendmaiJ must be running setuid to root for this to work.

"'The "c" configuration option must be given for this to be effective.

Sendmail Installation and Operation Guide SMM:07-25

or

From: ucbvax.!eric

depending on the domain it is being shipped into. These sets can also be used to do special pur­
pose output rewriting in cooperation with ruleset four.

The E field defines the string to use as an end-of-line indication. A string containing only
newline is the default The usual backslash escapes C,r, \n, \f, \b) may be used.

Finally, an argv template is given as the E field. It may have embedded spaces. If there is
no argv with a $u macro in it, sendmail will speak SMIP to the mailer. If the pathname for this
mailer is "[IPC]," the argv should be

!PC $h [port]

where port is the optional port number to connect to.

For example, the specifications:

Mlocal, P=/binimail, F=rlsm S=10, R=20, A=mail-d $u
Mether, P=[lPC], F=meC,S=II, R=21, A=!PC $h, M=100000

specifies a mailer to do local delivery and a mailer for ethemet delivery. The first is called
"local," is located in the file "tbin/mail," takes a picky -r flag, does local delivery, quotes
should be stripped from addresses, and multiple users can be delivered at once; ruleset ten
should be applied to sender addresses in the message and ruleset twenty should be applied to
recipient addresses; the argv to send to a message will be the word "mail," the word "-d," and
words containing the name of the receiving user. If a -r flag is inserted it will be between the
words "mail" and "-d." The second mailer is called "ether," it should be connected to via an
IPC connection, it can handle multiple users at once, connections should be deferred, and any
domain from the sender address should be appended to any receiver name without a domain;
sender addresses should be processed by ruleset eleven and recipient addresses by ruleset
twenty-one. There is a 100,000 byte limit on messages passed through this mailer.

APPENDIX A

COMMAND LINE FLAGS

Arguments must be presented with flags before addresses. The flags are:

-f addr The sender's machine address is addr. This flag is ignored unless the real user is listed as
a "trusted user" or if addr contains an exclamation point (because of certain restrictions
in UUCP).

-raddr

-hent

-Fname

-n
-t

-bx

-qtime

-Cfile

-dlevel

-ox value

An obsolete form of -f.

Sets the "hop count" to ent. This represents the number of times this message has been
processed by sendmail (to the extent that it is supported by the underlying networks).
ent is incremented during processing, and if it reaches MAXHOP (currently 30) send­
mail throws away the message with an error.

Sets the full name of this user to name.

Don't do aliasing or forwarding.

Read the header for "To:", "Cc:", and "Bcc:" lines, and send to everyone listed in
those lists. The "Bcc:" line will be deleted before sending. Any addresses in the argu­
ment vector will be deleted from the send list

Set operation mode to x. Operation modes are:

m Deliver mail (default)
a Run in arpanet mode (see below)
s Speak: SMTP on input side
d Run as a daemon
t Run in test mode
v Just verify addresses, don't collect or deliver

Initialize the alias database
p Print the mail queue
z Freeze the configuration file

The special processing for the ARPANET includes reading the "From:" line from the
header to find the sender, printing ARPANET style messages (preceded by three digit
reply codes for compatibility with the FIP protocol [Neigus73, Postel74, Postel77]), and
ending lines of error messages with <CRLF>.

Try to process the queued up mail. If the time is given, a sendmail will run through the
queue at the specified interval to deliver queued mail; otherwise, it only runs once.

Use a different configuration file. Sendmail runs as the invoking user (rather than root)
when this flag is specified

Set debugging level.

Set option x to the specified value. These options are described in Appendix B.

There are a number of options that may be specified as primitive flags (provided for compatibility
with delivermail). These are the e, i, m, and voptions. Also, the f option may be specified as the -s flag.

SMM:07·26 Sendmail Installation and Operation Guide

APPENDIX B

CONFIGURATION OPTIONS

The following options may be set using the -0 flag on the command line or the 0 line in the
configuration file. Many of them cannot be specified unless the invoking user is trusted.

Afile Use the named file as the alias file. If no file is specified, use aliases in the current direc­
tory.

aN

Bc

c

dx

D

ex

Fn
f

gn

Hfile

Ln

Mxvalue

m

Nnetname

o

If set, wait up to N minutes for an "@:@" entry to exist in the alias database before
starting up. If it does not appear in N minutes, rebuild the database (if the D option is
also set) or issue a warning.

Set the blank. substitution character to c. Unquoted spaces in addresses are replaced by
this character.

If an outgoing mailer is marked as being expensive, don't connect immediately. This
requires that queueing be compiled in, since it will depend on a queue run process to
actually send the mail.

Deliver in mode x. Legal modes are:

i Deliver interactively (synchronously)
b Deliver in background (asynchronously)
q Just queue the message (deliver during queue run)

If set, rebuild the alias database if necessary and possible. If this option is not set, send­
mail will never rebuild the alias database unless explicitly requested using -bi.

Dispose of errors using mode x. The values for x are:

p Print error messages (default)
q No messages, just give exit status
m Mail back errors
w Write back errors (mail if user not logged in)
eMail back errors and give zero exit stat always

The temporary file mode, in octal. 644 and 600 are good choices.

Save Unix-style "From" lines at the front of headers. Normally they are assumed
redundant and discarded.

Set the default group id for mailers to run in to n.

Specify the help file for SMTP.

Ignore dots in incoming messages.

Set the default log level to n.

Set the macro x to value. This is intended only for use from the command line.

Send to me too, even if I am in an alias expansion.

The name of the home network; "ARPA" by default The the argument of an SMTP
"HELO" command is checked against "hostname.neblame" where hostname is
requested from the kernel for the current connection. If they do not match, "Received:"
lines are augmented by the name that is detennined in this manner so that messages can
be traced accurately.

Assume that the headers may be in old format, i.e., spaces delimit names. This actually
turns on an adaptive algorithm: if any recipient address contains a comma, parenthesis,

Sendmall Installation and Operation Guide SMM:07-27

SMM:07-28

Qdir

qfactor

rtime

Sfile

s

Ttime

tS,D

un

v

xLA

XLA

yfact

y

zfact

Zfact

Sendmail Installation and Operation Guide

or angle bracket, it will be assumed that commas already exist If this flag is not on, only
commas delimit names. Headers are always output with commas between the names.

Use the named dir as the queue directory.

Use factor as the multiplier in the map function to decide when to just queue up jobs
rather than run them. This value is divided by the difference between the current load
average and the load average limit (x flag) to determine the maximum message priority
that will be sent Defaults to 10000.

Timeout reads after time interval.

Log statistics in the namedftle.

Be super-safe when running things, i.e., always instantiate the queue file, even if you are
going to attempt immediate delivery. Sendmail always instantiates the queue file before
returning control the the client under any circumstances.

Set the queue timeout to time. After this interval, messages that have not been success­
fully sent will be returned to the sender.

Set the local time zone name to S for standard time and D for daylight time; this is only
used under version six.

Set the default userid for mailers to n. Mailers without the S flag in the mailer definition
will run as this user.

Run in verbose mode.

When the system load average exceeds LA, just queue messages (Le., don't try to send
them).

When the system load average exceeds LA, refuse incoming SMTP connections.

The indicated factor is added to the priority (thus lowering the priority of the job) for
each recipient, i.e., this value penalizes jobs with large numbers of recipients.

If set, deliver each job that is run from the queue in a separate process. Use this option if
you are short of memory, since the default tends to consume considerable amounts of
memory while the queue is being processed.

The indicated factor is multiplied by the message class (determined by the Precedence:
field in the user header and the P lines in the configuration file) and subtracted from the
priority. Thus, messages with a higher Priority: will be favored.

The factor is added to the priority every time a job is processed. Thus, each time a job is
processed, its priority will be decreased by the indicated value. In most environments
this should be positive, since hosts that are down are all too often down for a long time.

APPENDIX C

MAILER FLAGS

The following flags may be set in the mailer description.

f The mailer wants a -f from flag, but only if this is a network forward operation (i.e., the mailer will
give an error if the executing user does not have special permissions).

r Same as f, but sends a -r flag.

S Don't reset the userid before calling the mailer. This would be used in a secure environment where
sendmail ran as root This could be used to avoid forged addresses. This flag is suppressed if given
from an "unsafe" environment (e.g, a user's mail.cf file).

n Do not insert a UNIX-style "From" line on the front of the message.

This mailer is local (i.e., final delivery will be performed).

s Strip quote characters off of the address before calling the mailer.

m This mailer can send to multiple users on the same host in one transaction. When a $u macro occurs
in the argv part of the mailer definition, that field will be repeated as necessary for all qualifying users.

F This mailer wants a "From:" header line.

D This mailer wants a "Date:" header line.

M This mailer wants a "Message-Id:" header line.

x This mailer wants a "Full-Name:" header line.

P This mailer wants a "Return-Path:" line.

u Upper case should be preserved in user names for this mailer.

h Upper case should be preserved in host names for this mailer.

A This is an Arpanet-compatible mailer, and all appropriate modes should be set.

U This mailer wants Unix-style "From" lines with the ugly UUCP-style "remote from <host>" on the
end.

e This mailer is expensive to connect to, so try to avoid connecting normally; any necessary connection
will occur during a queue run.

X This mailer want to use the hidden dot algorithm as specified in RFC821; basically, any line beginning
with a dot will have an extra dot prepended (to be stripped at the other end). This insures that lines in
the message containing a dot will not terminate the message prematurely.

L Limit the line lengths as specified in RFC821.

P Use the return-path in the SMTP "MAIL FROM:" command rather than just the return address;
although this is required in RFC821, many hosts do not process return paths properly.

I This mailer will be speaking SMTP to another sendmail- as such it can use special protocol features.
This option is not required (i.e., if this option is omitted the transmission will still operate successfully,
although perhaps not as efficiently as possible).

C If mail is received from a mailer with this llag set, any addresses in the header that do not have an at
sign ("@") after being rewritten by ruleset three will have the "@domain" clause from the sender
tacked on. This allows mail with headers of the form:

From: usera@hosta
To: userb@hostb, userc

to be rewritten as:

Sendmail Installation and Operation Guide SMM:07-29

SMM:07·30 Sendmail Installation and Operation Guide

From: usera@hosta
To: userb@hostb, userc@hosta

automatically.

E Escape lines beginning with "From" in the message with a '>' sign.

APPENDIX D

OTHER CONFIGURATION

There are some configuration changes that can be made by recompiling sendmail. These are located
in three places:

md/config.m4

src/conf.h

src/conf.c

These contain operating-system dependent descriptions. They are interpolated into the
Makefiles in the src and aux directories. This includes information about what version of
UNIX you are running, what libraries you have to include, etc.

Configuration parameters that may be tweaked by the installer are included in conf.h.

Some special routines and a few variables may be defined in conf.c. For the most part
these are selected from the settings in conf.h.

Parameters in mdlconfig.m4

The following compilation flags may be defined in the m4CONFIG macro in md/config.m4 to define
the environment in which you are operating.

V6 If set, this will compile a version 6 system, with 8-bit user id's, single character tty id's,
etc.

VMUNIX If set, you will be assumed to have a Berkeley 4BSD or 4.1BSD, including the vfork(2)
system call, special types defined in <sys/types.h> (e.g, u _char), etc.

If none of these flags are set, a version 7 system is assumed

You will also have to specify what libraries to link with sendmail in the m4UBS macro. Most not­
ably, you will have to include if you are running a4.1BSD system.

Parameters in src/conf.h

Parameters and compilation options are defined in conf.h. Most of these need not normally be
tweaked; common parameters are all in sendmail.cf. However, the sizes of certain primitive vectors, etc.,
are included in this file. The numbers following the parameters are their default value.

MAXLINE [1024] The maximum line length of any input line. If message lines exceed this length they
will still be processed correctly; however, header lines, configuration file lines, alias
lines, etc., must fit within this limit

MAXNAME [256] The maximum length of any name, such as a host or a user name.

MAXFIELD [2500] The maximum total length of any header field, including continuation lines.

MAXPV [40] The maximum number of parameters to any mailer. This limits the number of reci­
pients that may be passed in one· transaction.

MAXHOP [17] When a message has been processed more than this number of times, sendmail rejects
the message on the assumption that there has been an aliasing loop. This can be
determined from the -h flag or by counting the number of trace fields (i.e,
"Received:" lines) in the message header.

MAXATOM [100] The maximum number of atoms (tokens) in a single address. For example, the
address "eric@Berkeley" is three atoms.

MAXMAILERS [25]
The maximum number of mailers that may be defined in the configuration file.

MAXR WSETS [30] The maximum number of rewriting sets that may be defined.

Sendmail Installation and Operation Guide SMM:07-31

SMM:07-32 Sendmail Installation and Operation Guide

MAXPRIORITIES [25]
The maximum number of values for the "Precedence:" field that may be defined
(using the P line in sendmail.ct).

MAXTRUST [30] The maximum number of trusted users that may be defined (using the T line in
sendmail.ct).

MAXUSERENVIRON [40]
The maximum number of items in the user environment that will be passed to subor­
dinate mailers.

QUEUESIZE [600] The maximum number of entries that will be processed in a single queue run.

A number of other compilation options exist. These specify whether or not specific code should be com­
piled in.

DBM

NDBM

DEBUG

LOG

QUEUE

SMTP

DAEMON

UGLYUUCP

NOTUNIX

If set, the "DBM" package in UNIX is used (see dbm(3X) in [UNIX80]). If not set, a
much less efficient algorithm for processing aliases is used.

If set, the new version of the DBM library that allows multiple databases will be used
"DBM" must also be set.

If set, debugging information is compiled in. To actually get the debugging output, the
-d flag must be used.

If set, the syslo g routine in use at some sites is used. This makes an informational log
record for each message processed, and makes a higher priority log record for internal
system errors.

This flag should be set to compile in the queueing code. If this is not set, mailers must
accept the mail immediately or it will be returned to the sender.

If set, the code to handle user and server SMTP will be compiled in. This is only neces­
sary if your machine has some mailer that speaks SMTP.

If set, code to run a daemon is compiled in. This code is for 4.2 or 4.3BSD.

If you have a UUCP host adjacent to you which is not running a reasonable version of
rmail, you will have to set this flag to include the "remote from sysname" info on the
from line. Otherwise, UUCP gets confused about where the mail came from.

If you are using a non-UNIX mail format, you can set this flag to turn off special process­
ing of UNIX-style "From" lines.

Configuration in src/conr.c

Not all header semantics are defined in the configuration file. Header lines that should only be
included by certain mailers (as well as other more obscure semantics) must be specified in the Hdrlnfo
table in conf.c. This table contains the header name (which should be in all lower case) and a set of header
control flags (described below), The Hags are:

H _ACHECK Normally when the check is made to see if a header line is compatible with a mailer,
sendmail will not delete an existing line. If this flag is set, sendmail will delete even
existing header lines. That is, if this bit is set and the mailer does not have Hag bits set
that intersect with the required mailer Hags in the header definition in sendmail.cf, the
header line is always deleted.

H _ EOH If this header field is set, treat it like a blank line, i.e., it will signal the end of the header
and the beginning of the message text.

Add this header entry even if one existed in the message before. If a header entry does
not have this bit set, send mail will not add. another header line if a header line of this
name already existed. This would normally be used to stamp the message by everyone
who handled it

If set, this is a timestamp (trace) field. If the number of trace fields in a message exceeds
a preset amount the message is returned on the assumption that it has an aliasing loop.

Sendmail Installation and Operation Guide SMM:07-33

H RCPT If set, this field contains recipient addresses. This is used by the -t flag to determine who
to send to when it is collecting recipients from the message.

H FROM This flag indicates that this field specifies a sender. The order of these fields in the
HdrInfo table specifies sendmail's preference for which field to return error messages to.

Let's look at a sample HdrInfo specification:

struct hdrinfo HdrInfoD =
{

1* originator fields, most to least significant *1
"resent-sender" , H FROM,
"resent-from", H-FROM,
"sender", H-FROM,
"from", H-FROM,
"full-name", H-ACHECK,

1* destination fields-*1
"to", H RCPT,
"resent-to", H-RCPT,
"ce", H-RCPT,

1* message identification and control *1
"message", H EOH,
"text", H-EOH,

1* trace fields *1 -
"received", H _ TRACEIH _FORCE,

NUlL, 0,
};

This structure indicates that the "To:" , "Resent-To:", and "Cc:" fields all specify recipient addresses.
Any "Full-Name:" field will be deleted unless the required mailer flag (indicated in the configuration file)
is specified. The "Message:" and "Text:" fields will terminate the header; these are specified in new
protocols [NBS80] or used by random dissenters around the network world. The "Received:" field will
always be added, and can be used to trace messages.

There are a number of important points here. First, header fields are not added automatically just
because they are in the HdrInfo structure; they must be specified in the configuration file in order to be
added to the message. Any header fields mentioned in the configuration file but not mentioned in the
HdrInfo structure have default processing performed; that is, they are added unless they were in the mes­
sage already. Second, the HdrInfo structure only specifies cliched processing; certain headers are pro­
cessed specially by ad hoc code regardless of the status specified in HdrInfo. For example, the "Sender:"
and "From:" fields are always scanned on ARPANET mail to determine the sender; this is used to per­
form the "return to sender" function. The "From:" and "Full-Name:" fields are used to determine the
full name of the sender if possible; this is stored in the macro $x and used in a number of ways.

The file conf.c also contains the specification of ARPANET reply codes. There are four
classifications these fall into:

char ArpaJnfoO = "050"; '* arbitrary info *'
char Arpa_TSyserr(] = "455"; '* some (transient) system error *'
char Arpa_PSyserr(] = "554"; '* some (permanent) system error *1
char Arpa _ Usrerr[] = "554"; '* some (fatal) user error *'

The class Arpa _Info is for any information that is not required by the protocol, such as forwarding informa­
tion. Arpa_TSyserr and Arpa_PSyserr is printed by the syse" routine. TSyserr is printed out for transient
errors, that is, errors that are likely to go away without explicit action on the part of a systems administra­
tor. PSyserr is printed for permanent errors. The distinction is made based on the value of errno. Finally,
Arpa_Usre" is the result of a user error and is generated by the usrerr routine; these are generated when
the user has specified something wrong, and hence the error is permanent, i.e., it will not work simply by
resubmitting the request.

If it is necessary to restrict mail through a relay, the checkcompat routine can be modified. This rou­
tine is called for every recipient address. It can return TRUE to indicate that the address is acceptable and

SMM:07-34 Sendmail Installation and Operation Guide

mail processing will continue, or it can return FALSE to reject the recipient If it returns false, it is up to
checkcompat to print an error message (using usrerr) saying why the message is rejected. For example,
checkcompat could read:

bool
checkcompat(to)

{

}

register ADDRESS *to;

if (MsgSize > 50000 && to-><Lmailer!= LocalMailer)
{

}

usrerr("Message too large for non-local delivery");
NoReturn = TRUE;
return (FALSE);

return (TRUE);

This would reject messages greater than 50000 bytes unless they were local. The NoReturn flag can be
sent to suppress the return of the actual body of the message in the error return. The actual use of this rou­
tine is highly dependent on the implementation, and use should be limited.

Configuration in src/daemon.c

The file src/daemon.c contains a number of routines that are dependent on the local networking
environment. The version supplied is specific to 4.3 BSD.

The routine maphostname is called to convert strings within $[... $] symbols. It can be modified if
you wish to provide a more sophisticated service, e.g., mapping UUCP host names to full paths.

APPENDIX E

SUMMARY OF SUPPORT FILES

This is a summary of the support files that send mail creates or generates.

lusr/lib/sendmail The binary of sendmail.

lusr/binlnewaliases
A link to /usr/lib/sendmail; causes the alias database to be rebuilt. Running this program
is completely equivalent to giving sendmail the -bi flag.

lusr/binlmailq Prints a listing of the mail queue. This program is equivalent to using the -bp flag to
sendmail.

lusr/lib/sendmail.cf
The configuration file, in textual form.

lusr/lib/sendmail.fc
The configuration file represented as a memory image.

lusr/lib/sendmail.hf
The SMTPhelp file.

lusr/lib/ sendmail.st
A statistics file; need not be present.

lusr/lib/ aliases The textual version of the alias file.

lusr/libl aliases. {pag,dir}
The alias file in dbm (3) format.

lusr/spoollmqueue
The directory in which the mail queue and temporary files reside.

lusr/spoollmqueue/qf*
Control (queue) files for messages.

lusrlspoollmqueue/df*
Data files.

lusrlspoollmqueue/lf*
Lock files

lusrlspoollmqueue/tf*
Temporary versions of the qf files, used during queue file rebuild.

lusr/spoollmqueue/nf*
A file used when creating a unique ide

lusrlspoollmqueue/xf*
A transcript of the current session.

Sendmail Installation and Operation Guide SMM:07-35

Introduction

Timed Installation and Operation Guide

Riccardo Gusella, Stefano Zatti, James M. Bloom

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

Kirk Smith

Engineering Computer Network
Department of Electrical Engineering

Purdue University
West Lafayette, IN 47906

The clock synchronization service for the UNIX 4.3BSD operating system is composed of a collec­
tion of time daemons (timed) running on the machines in a local area network. The algorithms imple­
mented by the service is based on a master-slave scheme. The time daemons communicate with each other
using the Time Synchronization Protocol (TSP) which is built on the DARPA UDP protocol and described
in detail in [4].

A time daemon has a twofold function. First, it supports the synchronization of the clocks of the
various hosts in a local area network. Second, it starts (or takes part in) the election that occurs among
slave time daemons when, for any reason, the master disappears. The synchronization mechanism and the
election procedure employed by the program timed are described in other documents [1,2,3]. The next
paragraphs are a brief overview of how the time daemon works. This document is mainly concerned with
the administrative and technical issues of running timed at a particular site.

A master time daemon measures the time differences between the clock of the machine on which it is
running and those of all other machines. The master computes the network time as the average of the times
provided by nonfaulty clocks.1 It then sends to each slave time daemon the correction that should be per­
formed on the clock of its machine. This process is repeated periodically. Since the correction is
expressed as a time difference rather than an absolute time, transmission delays do not interfere with the
accuracy of the synchronization. When a machine comes up and joins the network, it starts a slave time
daemon which will ask the master for the correct time and will reset the machine's clock before any user
activity can begin. The time daemons are able to maintain a single network time in spite of the drift of
clocks away from each other. The present implementation keeps processor clocks synchronized within 20
milliseconds.

To ensure that the service provided is continuous and reliable, it is necessary to implement an elec­
tion algorithm to elect a new master should the machine running the current master crash, the master

This work: was sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by the Naval Electronics
Systems Command under contract No. NOOO39-84-C-0089, and by the CSELT Corporation of Italy. The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing official
policies. either expressed or implied. of the Defense Research Projects Agency. of the US Government, or of CSEL T.

1 A clock is considered to be faulty when its value is more than a small specified interval apart from the majority of the
clocks of the other machines [1,2].

S:MM:8-2 Timed Installation and Operation

terminate (for example, because of a run-time error), or the network be partitioned. Under our algorithm,
slaves are able to realize when the master has stopped functioning and to elect a new master from among
themselves. It is important to note that, since the failure of the master results only in a gradual divergence
of clock values, the election need not occur immediately.

The machines that are gateways between distinct local area networks require particular care. A time
daemon on such machines may act as a submaster. This artifact depends on the current inability of
transmission protocols to broadcast a message on a network other than the one to which the broadcasting
machine is connected. The submaster appears as a slave on one network, and as a master on one or more
of the other networks to which it is connected.

A submaster classifies each network as one of three types. A slave network is a network on which
the submaster acts as a slave. There can only be one slave network. A master network is a network on
which the submaster acts as a master. An ignored network is any other network which already has a valid
master. The submaster tries periodically to become master on an ignored network, but gives up immedi­
ately if a master already exists.

Guidelines

While the synchronization algorithm is quite general, the election one, requiring a broadcast mechan­
ism, puts constraints on the kind of network on which time daemons can run. The time daemon will only
work on networlcs with broadcast capability augmented with point-to-point links. Machines that are only
connected to point-to-point, non-broadcast networks may not use the time daemon.

If we exclude submasters, there will normally be, at most, one master time daemon in a local area
internetwork. During an election, only one of the slave time daemons will become the new master. How­
ever, because of the characteristics of its machine, a slave can be prevented from becoming the master.
Therefore, a subset of machines must be designated as potential master time daemons. A master time dae­
mon will require CPU resources proportional to the number of slaves, in general, more than a slave time
daemon, so it may be advisable to limit master time daemons to machines with more powerful processors
or lighter loads. Also, machines with inaccurate clocks should not be used as masters. This is a purely
administrative decision: an organization may well allow all of its machines to run master time daemons.

At the administrative level, a time daemon on a machine with multiple network interfaces, may be
told to ignore all but one network or to ignore one network. This is done with the -n network and -i net­
work options respectively at start-up time. Typically, the time daemon would be instructed to ignore all but
the networks belonging to the local administrative control.

There are some limitations to the current implementation of the time daemon. It is expected that
these limitations will be removed in future releases. The constant NHOSTS in lusrlsrc/etc/timedJglobals.h
limits the maximum number of machines that may be directly controlled by one master time daemon. The
current maximum is 29 (NHOSTS - 1). The constant must be changed and the program recompiled if a
site wishes to run timed on a larger (inter)network.

In addition, there is a pathological situation to be avoided at all costs, that might occur when time
daemons run on multiply-connected local area networks. In this case, as we have seen, time daemons run­
ning on gateway machines will be submasters and they will act on some of those networks as master time
daemons. Consider machines A and B that are both gateways between networks X and Y. If time dae­
mons were started on both A and B without constraints, it would be possible for sub master time daemon A
to be a slave on network X and the master on network Y, while submaster time daemon B is a slave on net­
work Y and the master on network X. This loop of master time daemons will not function properly or
guarantee a unique time on both networks, and will cause the submasters to use large amounts of system
resources in the form of network bandwidth and CPU time. In fact, this kind of loop can also be generated
with more than two master time daemons, when several local area networks are interconnected.

Installation

In order to start the time daemon on a given machine, the following lines should be added to the
local daemons section in the file letclrc.local:

Timed Installation and Operation

if [-f /etc/timed]; then
/etc/timedjlags & echo -n ' timed' >/dev/console

fi

In any case, they must appear after the network is configured via ifconfig(8).

Also, the file /etc/services should contain the following line:

The jlags are:

-n network

-i network

-t

timed 525/udp

to consider the named network.

to ignore the named network.

timeserver

to place tracing information in /usr/admltimed.log.

SMM:8-3

/

-M to allow this time daemon to become a master. A time daemon run without this option will
be forced in the state of slave during an election.

Daily Operation

Timedc(8) is used to control the operation of the time daemon. It may be used to:

• measure the differences between machines' clocks,

• find the location where the master timed is running,

• cause election timers on several machines to expire at the same time,

• enable or disable tracing of messages received by timed.

See the manual page on timed (8) and timedc (8) for more detailed information.

The date(1) command can be used to set the network date. In order to set the time on a single
machine, the -n flag can be given to date(l).

SMNI:8-4 Timed Installation and Operation

References

1. R. Gusella and S. Zatti, TEMPO: A Network Time Controller for Distributed Berkeley UNIX System,
USENIX Summer Conference Proceedings, Salt Lake City, June 1984.

2. R. Gusella and S. Zatti, Clock Synchronization in a Local Area Network, University of California,
Berkeley, Technical Report, to appear.

3. R. Gusella and S. Zatti, An Election Algorithm for a Distributed Clock Synchronization Program,
University of California, Berkeley, CS T,;chnical Report #275, Dec. 1985.

4. R. Gusella and S. Zatti, The Berkeley UNIX 4.3BSD Time Synchronization Protocol, UNIX
Programmer's Manual, 4.3 Berkeley Software Distribution, Volume 2c.

Installation and Operation of UUCP
4.3BSD Edition

D.A.Nowitz

Ross Green

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

Uucp is a collection of programs designed to permit communication between
UNIXt systems using either dial-up or hardwired communication lines. It is used for file
transfers and remote command execution. The first version of the system was designed
and implemented by M. E. Lesk (SMM:21).

There have been many changes to the implementation of UUCP since the release
of 4.2BSD. Many problems been fixed, and several improvements to provide greater
throughput have been incorporated. A number of new features and facilities have been
added. These include:

• Improved administration.

• Extended modem support.

• New transfer protocols

• Security enhancements.

The first part of this document gives a detailed description of the use of UUCP.
The command descriptions do not describe all the options available; see the manual
pages for complete descriptions. The rest of the document indicates the changes that
have been made to UUCP, and provides an update on the installation and implementation
details. It is for use by an administrator or installer of the system; it is not meant as a
user's guide.

Revised May 1986

1. Uucp Implementation Description

Uucp is a batch type operation. Files are created in a spool directory for processing by the uucp
demons. For efficiency, the files are separated by type into subdirectories of this directory. The subdirec­
tories will be described in section 9. There are three types of files used for the execution of work.
Data files contain data for transfer to remote systems. Work files contain instructions for file transfers
between systems. Execution files are instructions for UNIX command executions which involve the
resources of one or more systems.

t UNIX is a trademark of Bell Laboratories.

SMM:9-2 Installation and Operation of UUCP

The uucp system consists of ten primary (i.e. invoked by users) and four secondary programs. These pro­
grams are summarized in section 9. The three most important primary programs are:

uucp

uux

uusnap

This program creates work and gathers data files in the spool directories for the
transmission of files.

This program creates work files, execute files and gathers data files for the remote exe-
cution of UNIX commands.

This program provides a snapshot of the current queue including transfers queued and
commands to be executed locally.

The three most important secondary programs are:

uucico This program actually performs the data transmission.

uuxqt This program executes the execution files for UNIX command execution.

uuclean This program removes old files from the spool directories.

The next six sections of this paper will describe the operation of each program. The remainder of this
paper describes the installation of the system, the security aspects of the system, the files required for exe­
cution, and the administration of the system.

2. Uucp - UNIX to UNIX File Copy

The uucp command is the user's primary interface with the system. The uucp command was designed to
look like cp to the user. The syntax is

uucp [option] ... source ... destination

where the source and destination may contain the prefix system-name! which indicates the system on
which the file or files reside or where they will be copied.

The options interpreted by uucp are:

-f Don't make directories when copying the file. The default is to make the necessary
directories.

-c

-gletter

-m

Copy source files to the spool directory. The default is to use the specified source when
the actual transfer takes place.

Put letter in as the grade in the name of the work file. (This can be used to change the
order of work for a particular machine.)

Send mail on completion of the work.

-nuser Notify user on the destination system that a file was sent

The following options are used primarily for debugging:

-r

-sdir

-xnum

Queue the job but do not start uucico program.

Use directory dir for the top level spool directory.

Num is the level of debugging output desired.

The destination may be a directory name, in which case the file name is taken from the last part of the
source's name. The source name may contain special shell characters such as "?*[]". If a source argu­
ment has a system-name! prefix for a remote system, the file name expansion will be done on the remote
system. Quote or escape characters that have special meaning to your shell, for example, '!' in csh.

The command

uucp *.c usg!lusr/dan

will set up the transfer of all files whose names end with" .c" to the "/usr/dan" directory on the "usg"
machine.
The source and/or destination names may also contain a ·user prefix. This translates to the login directory
on the specified system. For names with partial path-names, the current directory is prepended to the file
name. File names with . .1 are not permitted.

Installation and Operation of UUCP SMM::9-3

The command

uucp usgrdanl*.h -dan

will set up the transfer of files whose names end with" .h" in dan's login directory on system "usg" to
dan's local login directory.

For each source file, the program will check the source and destination file-names and the system-part of
each to classify the work into one of five types:

[1] Copy source to destination on local system.

[2] Receive files from a remote system.

[3] Send files to a remote system.

[4] Send files from remote system to another remote system.

[5] Receive files from remote system when the source pathname contains special shell characters
as mentioned above.

After the work has been set up in the spool directories, the uucico program is started to try to contact the
other machine to execute the work (unless the -r option was specified).

Type 1

U ucp makes a copy of the file. The -m option is not honored in this case.

Type 2

A one line work file is created for each file requested and put in the appropriate spool directory with the
following fields, each separated by a blank. (All work files and execute files use a blank as the field
separator.)

[1] R

[2] The full path-name of the source or a -user/path-name. The -user part will be expanded on the
remote system.

[3] The full path-name of the local destination file. If the -user notation is used, it will be immedi­
ately expanded to be the login directory for the user.

[4] The user's login name.

[5] A "-" followed by an option list

Type 3

For each source file, a work file is created A" -C" option on the uucp command will cause the data file
to be copied into the spool directory and the file to be transmitted from the copy. The fields of each entry
are given below.

[1] S
[2] The full-path name of the source file.

[3] The full-path name of the destination or -user/file-name.

[4] The user's login name.

[5] A "-" followed by an option list

[6] The name of the data file in the spool directory.

[7] The file mode bits of the source file in octal print format (e.g. 0666).

[8] The user to notify on the remote system that the transfer has completed.

Type 4 and Type 5

Uucp generates a uucp command and sends it to the remote machine; the remote uucico executes the
uucp command.

SMM::9-4 Installation and Operation of UUCP

3. Uux· UNIX To UNIX Execution

The uux command is used to set up the execution of a UNIX command where the execution machine and/or
some of the files are remote. The syntax of the uux command is

uux [-] [option] ... command-string

where the command-string is made up of one or more arguments. All special shell characters such as
"<>I*?!" must be quoted either by quoting the entire command-string or quoting the character as a
separate argument Within the command-string, the command and file names may contain a system-name!
prefix. All arguments which do not contain a "!" will not be treated as files. (They will not be copied to
the execution machine.) The "-" is used to indicate that the standard input for command-string should be
inherited from the standard input of the uux command. The options, essentially for debugging, are:

-r

-xnum

The command

Don't start uuGico or uuxqt after queuing the job;

N urn is the level of debugging output desired.

pr abc I uux - usg !lpr

will set up the output of "pr abc" as standard input to an Ipr command to be executed on system "usg".

Uux generates an execute file which contains the names of the files required for execution (including stan­
dard input), the user's login name, the destination of the standard output, and the command to be executed.
This file is either put in the appropriate spool directory for local execution or sent to the remote system
using a generated send command (type 3 above).

For required files which are not on the execution machine, uux will generate receive command files (type 2
above). These command-files will be put on the execution machine and executed by the uuGico program.
(This will work only if the local system has permission to put files in the remote spool directory as con­
trolled by the remote "USERFllE".)

The execute file will be processed by the uuxqt program on the execution machine. It is made up of
several lines, each of which contains an identification character and one or more arguments. The order of
the lines in the file is not relevant and some of the lines may not be present Each line is described below.

User Line

U user system

where the user and system are the requester's login name and system.

Required File Line

F file-name real-name

where thefile-name is the generated name of a file for the execute machine and real-name is the last
part of the actual file name (contains no path information). Zero or more of these lines may be
present in the execute file. The uuxqt program will check for the existence of all required files
before the command is executed

Standard Input Line

I file-name

The standard input is either specified by a "<" in the command-string or inherited from the standard
input of the uux command if the "-" option is used. If a standard input is not specified, "/dev/null"
is used.

Standard Output Line

o file-name system-name

The standard output is specified by a ">" within the command-string. If a standard output is not
specified, "/dev/null" is used (Note - the use of "»" is not implemented.)

Installation and Operation of UUCP SMM:9-5

Command Line

C command [arguments 1 ...
The arguments are those specified in the command-string. The standard input and standard output
will not appear on this line. All required files will be moved to the execution directory (a subdirec­
tory of the spool directory) and the UNIX command is executed using the Shell specified in the
uucp.h header file. In addition, a shell "P A TIl" statement is prepended to the command line.

After execution, the temporary standard output file is copied to or set up to be sent to the proper
place.

4. Uusnap. Uucp Queue Snapshot

This program displays a synopsis of the current uucp situation. For each site that has work queued or that
had an abnormal tennination on the last connection, a line summarizing the work to be done is output The
line will indicate how many commands there are to be sent, how many data files have been received and
not processed, and how many jobs received from the site there are to be executed. A status message
describing the last connection will be included if the connection terminated abnormally.

5. Uucico - Copy In, Copy Out

The uucico program will perform the following major functions:

Scan the spool directory for work.

- Place a call to a remote system.

- Negotiate a line protocol to be used.

- Execute all requests from both systems.

- Log work requests and work completions.

Uucico may be started in several ways;

a) by a system daemon,

b) by one of the uucp, uux, uuxqt or uupoll programs,

c) directly by the user (this is usually for testing),

d) by a remote system. (The uucico program should be specified as the "shell" field in the
"/etclpasswd" file for the "uucp" logins.)

When started by method a, b or c, the program is considered to be in MASTER mode. In this mode, a con­
nection will be made to a remote system. If started by a remote system (method d), the program is con­
sidered to be in SLAVE mode.

The MASTER mode will operate in one of two ways. If no system name is specified (-s option not
specified) the program will scan the spool directory for systems to call. If a system name is specified, that
system will be called, and work will only be done for that system.

The uucico program is generally started by another program. There are several options used for execution:

-rl Start the program in MASTER mode. This is used when uucico is started by a program
or "cron" shell.

-ssys Do work only for system sys. If -s is specified, a call to the specified system will be
made even if there is no work for system sys in the spool directory. This is useful for
polling systems which do not have the hardware to initiate a connection.

The following options are used primarily for debugging:

-ddir

-xnum

Use directory dir for the top level spool directory.

Num is the level of debugging output desired.

The next part of this section will describe the major steps within the uucico program.

SMM:9-6

Scan For Work
The names of the work related files in a spool subdirectory have format

type. system-name grade number

where:

Installation and Operation of UUCP

Type is an upper case letter, (C - copy command file, D - data file, X - execute file);

System-name is the remote system;

Grade is a character;

Number is a four digit, padded sequence number.

The file

C.res4SnOO31

would be a work file for a file transfer between the local machine and the "res4S" machine.

The scan for work is done by looking through the appropriate spool directory for work files (files with
prefix "C."). A list is made of all systems to be called. Uucico will then call each system and process all
work files .

Call Remote System

The call is made using information from several files which reside in the uucp system directory (usually
lusr/lib/uucp). At the start of the call process, a lock is set to forbid multiple conversations between the
same two systems.

The system name is found in the "L.sys" file. The precise format of the "L.sys" file is described in sec­
tion 10, "System File Details". The information contained for each system is;

[1] system name,

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

[S] phone number if field [3] is ACU or the device name (same as field [3]) if not ACU,

[6] login information (multiple fields),

The time field is checked against the present time to see if the call should be made.

The phone number may contain abbreviations (e.g. mh, py, boston) which get translated into dial sequences
using the L-dialcodes file.

The L-devices file is scanned using fields [3] and [4] from the "L.sys" file to find an available device for
the call. The program will try all devices which satisfy [3] and [4] until the call is made or no more devices
can be tried. If a device is successfully opened, a lock file is created so that another copy of uucico will
not try to use it If the call is complete, the login information (field [6] of "L.sys") is used to login.

The conversation between the two uucico programs begins with a handshake started by the called, SLAVE,
system. The SLAVE sends a message to let the MASTER know it is ready to receive the system
identification and conversation sequence number. The response from the MASTER is verified by the
SLAVE and if acceptable, protocol selection begins. The SLAVE can also reply with a "call-back
required" message in which case, the current conversation is terminated.

Line Protocol Selection
The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol.

The calling program checks the proto-list for a letter corresponding to an available line protocol and returns
a use-protocol message. The use-protocol message is

Installation and Operation of UUCP SMM:9-7

Ucode

where code is either a one character protocol letter or N which means there is no common protocol.

Work Processing

The initial roles (MASTER or SLAVE) for the work processing are the mode in which each program
starts. (The MASTER has been specified by the "-rl" uucico option.) The MASTER program does a
work search similar to the one used in the "Scan For Work" section.

There are five messages used during the work processing, each specified by the first character of the mes­
sage. They are;

S send a file,

R receive a file,

C copy complete,

X execute a uucp command, and

H hangup.

The MASTER will send R ,S or X messages until all work from the spool directory is complete, at which
point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, BY, HN, XY, XN,
corresponding to yes or no for each request

The send and receive replies are based on permission to access the requested file/directory using the
"USERFILE" and read/write permissions of the file/directory. After each file is copied into the spool
directory of the receiving system, a copy-complete message is sent by the receiver of the file. The message
CY will be sent if the file has successfully been moved from the temporary spool file to the actual destina­
tion. Otherwise, a CN message is sent. (In the case of CN, the transferred file will be in a spool subdirec­
tory with a name beginning with' 'TM'.) The requests and results are logged on both systems.

The hangup response is determined by the SLAVE program by a work scan of its spool directory. If work
for the MASTER's system exists in the SLAVE's spool directory, an HN message is sent and the programs
switch roles. If no work exists, an HY response is sent.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and the protocols are
turned off. Each program sends a final "00" message to the other. The original SLAVE program will
clean up and terminate. The MASTER will proceed to call other systems and process work: as long as pos­
sible or terminate if a -s option was specified.

6. Uuxqt. Uucp Command Execution

The uuxqt program is used to execute execute files generated by uwe. The uuxqt program may be started
by either the uucico or uwe programs. The program scans the appropriate spool directory for execute files
(prefix "X. "). Each one is checked to see if all the required files are available and if so, the command line
or send line is executed

The execute file is described in the "Uux" section above.

Command Execution

The execution is accomplished by executing a sh -c of the command line after appropriate standard input
and standard output have been opened. If a standard output is specified, the program will create a send
command or copy the output file as appropriate.

SMM:9-8 Installation and Operation of UUCP

7. Uuclean· Uucp Spool Directory Cleanup

This program is typically started by the daemon, once a day. Its function is to remove files from the spool
directories which are more than 3 days old. These are usually files for work which can not be completed.

The options available are:

-ddir The directory to be scanned is dir .

-m Send mail to the owner of each file being removed (Note that most files put into the
spool directory will be owned by the owner of the uucp programs since the setuid bit
will be set on these programs. The mail will therefore most often go to the owner of the
uucp programs.)

-nhows Change the aging time from 72 hours to hours hours.

-ppre Examine files with prefix pre for deletion. (Up to 10 file prefixes may be specified.)

-1mum This is the level of debugging output desired.

8. Changes to the UUCP Implementation

The demands placed on UUCP networking and new technology have prompted several changes and
improvements to the UUCP software. Such things as low cost, autodial, autoanswer, high speed modems,
and the availability of X.25 and TCP/IP as carriers, have encouraged new facilities to be developed for
UUCP.

The following areas have been changed between the 4.2 and 4.3 BSD releases:

• General fixes and performance improvements.

• Administration control facilities.

• Modem and autodialer support has been extended.

• New protocols for different transport media.

• Security enhancements.

Fixes and performance improvements.

These include many fixes related to portability and general improvements as provided by the
USENET community. In particular, the sitename truncation length has been extended to 14 characters
from the original 7. This makes it compatible with the current System V version of UUCP.

An effort has been made to improve the overall performance of the UUCP system by organizing its
workload in a more sensible way. For example the program uucico will not resend files it has already sent
when the files are specified in one "C." file.

Administration and control facilities.

There is a new program, uuq, to give more descriptive information on status of jobs in the UUCP
spool queue. It also allows users to delete requests that are still in the queue.

In the past, on large UUCP sites, the spool directory could grow large with many files within the
"/usrlspoo1/uucp" directory. To help the UUCP administrator control the system, a number of subdirec­
tories have been created to ease this congestion.

The system status "STST" files are kept in a subdirectory.

Corrupted "C." and "X." files that could not be processed are placed in the "CORRUPT" sub­
directory, instead of terminating the connection.

Lock files may be kept in a subdirectory, "LCK", if desired.

If an "X." request fails, the notification is returned to the originator of the request, not to "uucp" on
the previous system.

There is a new system file, "L.aliases", that may be used when a site changes its name. Most of the
utilities check "L.aliases" for correct mapping.

Installation and Operation of UUCP SMM:9-9

Modem and autodialer support

In a short period of time, there has been an increase in the transfer rates and capabilities that are
being provided with modem modems. Most modems allow several combinations of baud rate, and provide
autodial and autoanswer facilities as well.

Most sites will have but a few modems; they are therefore a precious resource, and an effort has been
made to use them to maximum potential. The uucico program now has code to place and receive calls on
the same device, if that modem has both autodial and autoanswer support. There is a new dialing facility
acucntrl that has been designed to handle some of the changes in modem technology. There are a number
of new modems and autodialers that are now supported. Here is a list of some of the new devices:

Racal-Vadic 212
Racal-Vadic 811 dialer with 831 adapter
Racal-Vadic 820 dialer with 831 adapter
Racal-Vadic MACS 811 dialer with 831 adapter
Racal-Vadic MACS 820 dialer with 831 adapter
DECDFl12
Novation
Penril
Hayes 2400 Smartmodem
Concord Data Systems CDS 224
AT&T 2224 2400 baud modem

New protocols for different transportation mediums

The UUCP software has had provision for different protocols to be used for sending and receiving
data, but originally only one was implemented and this is the one that is largely used throughout the UUCP
community. It has a maximum throughput of around 9000 baud, regardless of the physical medium. The
use of checksums and short data packets are of little use when the protocol is layered above another reli­
able protocol such as TCP or X.2S. The UUCP system did not utilize LAN's and high speed carriers well.
Two new protocols have been added to provide for this. The protocols now available to UUCP are:

't' protocol, optimized for use on TCP/IP carriers.
'f protocol, optimized for use on X.25 PAD carriers.
'g' protocol, standard UUCP protocol used for dialup or hardwired lines.

The existing 'g' protocol code has been cleaned up in this version. The 't' protocol is essentially the
'g' protocol except that the channel is assumed to be free from errors. As such, no checksums are used and
files are transferred without packetizing. The 'f protocol relies on the flow control of the data stream. It is
meant for use over links that can be guaranteed to be free from errors, specifically X.2S/P AD links. The
checksum is calculated over whole files only. If a transport fails the receiver can request retransmissions.
This protocol uses a 7 -bit data path only, so it may be used on carriers that do not handle 8-bit data paths
transparently.

Cbanges to uucico

Uucico used to attempt to place a call using every dialer on the system. Since this could take a long
time at large sites, the defined constant TR YCALLS now limits the number of attempts.

You can specify a maximum grade to send either on the command line using -gX option or by speci­
fying the time to call in the "L.sys" file as follows:

Any/C,Evening

This will only send grade C or higher transfers, usually mail, during the day and will send any grades in the
evening.

The code for the closing hangup sequence has been fixed

SMM:9-10 Installation and Operation of UUCP

Some new options were added to uucico. These include:

-R This flag reverses uucico 's initial role (lets the remote system be master first rather than slave).

-L uucico will only call "local" sites. Local sites are those sites having one of LOCAL, TCP or
DIR in the CALLER field of "L.sys".

If "/etc/nologin" is present, usually created by shutdown (8), uucico and uuxqt will exit gracefully,
instead of getting killed off when the system goes down.

Uucico now uses an exponential back off on the retry time if consecutive calls fail instead of always
waiting 5 minutes. The default may be overridden by adding ";time" to the time field in "L.sys".

ucbvax Any;2

The preceding fragment indicates that a default retry time of 2 minutes will be used.

If uucico receives a SIGFPE while running, it will toggle debugging.

It will not send files to a remote system returning an out of temporary file space error.

More functionality has been added to the expect/send sequences. The ABORT command was added
to the expect/send sequence so it does not have to wait for timeout if cannot get through a port selector.
You can specify a time for the expect/send sequences with - to override the default timeout. The
expect/send sequences now allow escape sequences to specify characters that could not be specified before.

The time field in the "L.sys" file now handles "Evening", "Night", and "NonPeak" in addition to
Any, Mo, Tu, We, Th, Fr, Sa, Su, and Wk.

The file L-devices now handles "chat" scripts, to help get through local port selectors and smart
modems. This helps keep "L.sys" readable while using the increased functionality.

For compatibility with the System V UUCP, the following changes were made in the date fields of
"L.sys":

'I' changed to ',' ('I' is supported, but not encouraged)
',' changed to ';' (to allow',' to be the date separator)

For Honey DanBer compatibility, uucico now passes the maximum grade to the remote system as
" -vgrade=X" instead of the old -pX

Support has been added for GTE's PC Pursuit service. It is mainly the handling of the call back
method they use.

Users must now have read access to "L.sys" in order to run uucico with debugging turned on.

9. The UUCP system.

Names

The name of a site is important since it provides a means of identifying a machine, and consequently,
that machine's users. There are two kinds of names used within the UUCP system; loginnames and
sitenames.

It is important that the loginnames used by a remote machine to call into a local machine is not the
same as that of a normal user of the local machine. Each 10 ginname corresponds with a line in
"/etc/passwd". It is the administrator's decision whether each remote site should use the same login name
or different ones.

Each machine in a UUCP network is given a unique sitename. The sitename identifies the calling
machine to the called machine. A sitename can be up to 14 characters in length. It is useful to have a
sitename that is unique in the first 7 characters, to be compatible with earlier implementations of UUCP. It
is desirable that the sitename will convey this uniqueness and perhaps a real world identity to the rest of the
network.

Installation and Operation of UUCP S~:9-11

The UUCP system organization.

There are several directories that are used by the UUCP system as distributed. These are:

src (/usr/src/usr.bin/uucp) This directory contains the source files for the UUCP system.

system (/usr/lib/uucp) This directory contains the system binaries and system control files.

spool (/usr/spoolluucp) This spool directory is used to store transfer requests and data.

command (/usr/bin) This directory contains the user-level programs.

The system directory

The following files are required for execution, and should reside in the system directory,
/usr/lib/uucp.

L-devices

L-dialcodes

L.aliases

L.cmds

L.sys

SEQF

USERFILE

acucntrl

uucico

uuclean

uuxqt

Contains entries for all devices that are to be used by UUCP.

Contains dialing abbreviations.

Contains site name aliases.

Contains the list of commands that can be used by a remote site.

Contains site connection information for each system that can be called

The sequence numbering and check file.

Remote system access rights.

The program used to control calling remote systems.

The actual transfer program.

A utility to clean up after UUCP.

Executes commands received from remote systems.

The command directory

The command directory, /usr/bin, contains the following user available commands:

uucp Spools a UNIX to UNIX file-copy request

uux

uusend

uuencode

uudecode

uulog

uusnap

uupoll

uuname

uuq

The spool directory

Spools a request for remote execution.

Provides a facility to transfer binary files using mail.

Binary file encoder (for uusend)

Binary file decoder (for uusend)

Reports from log files.

Provides a snapshot of uucp activity.

Polls a remote system.

Prints a list of known remote UUCP hosts.

Reports information from the UUCP spool queue.

The spool directory, /usr/spoolluucp, contains the following files and directories:

C. A directory for command ("C.") files.

D. A directory for data ("D.") files.

X.

D.machine

D.machineX

CORRUPT

A directory for command execution ("X.") files.

A directory for local "D." files.

A directory for local "X." files.

A directory for corrupted "C." and "X." files.

SMM:9-12

ERRLOG

LCK

LOG

LOOFILE

STST

SYSLOO

TM.

Installation and Operation of UUCP

A file where internal error messages are collected.

A directory for device and site lock files (optional).

A directory for individual site LOOFll...E's (optional).

The log file ofUUCP activity (optional).

A directory for per site system status files ("STST").

The log file of UUCP file transfers.

A directory for temporary ("TM.") files.

This version has broken the spool directory into the above list of directories leaving only a few sys­
tem files in the top level directory. The logs from each system may be kept together or in separate files in a
subdirectory (LOG). This decision is made when the system is compiled.

There is an additional directory, lusrlspool/uucppublic, that is used as a general public access direc­
tory for UUCP. It is not used by UUCP directly but it is normally the home directory for the UUCP system
owner. Most importantly this directory is owned by uucp, and the access permissions are 0777. This usu­
ally guarantees a place that files can be copied to, and retrieved from, on any site.

10. System file details.

The system files in the "/usrllib/uucp" directory can contain comments, by putting a 'I' as the first
character on a line. Lines may be continued by placing a '\' as the last character of a line. This is helpful
in making the files more readable.

L-devices

This file contains entries for the call-unit devices and hardwired connections which are to be used by
UUCP. The special device files are assumed to be in the ldev directory.

The format for each entry is:

Type Device Useful Class Dialer [Chat ...]

where;

Type Is the type of connection to use.

ACU

LOCAL

DIR
DK
MICOM

PAD
PCP
SYTEK
TCP

Indicates that a dialing device is used.

Indicates an ACU with a "preferred" connection.

Indicates that a direct connection is used.

Indicates that an AT&T Datakit is used

Indicates that a Micom terminal switch is used.

Indicates that a X.2S PAD connection is used.

Indicates that GlE Telenet PC Pursuit is used.

Indicates that a Sytek high-speed dedicated modern port is used.

Indicates that a TCP/IP connection is used.

Device Is the entry in "/dev" corresponding to a real device. UUCP should be able to access this
device.

Call Unit Is the device for dialing if different from the device used for the data transfer. This field must
contain a place holder if unused (such as "unused' ').

Class

Dialer

is the line baud rate for dialers and direct lines or the port number for network connections.

is either direct, or from the list of available dialers. The list of available dialers includes:

DF02 DEC DF02 or DF03 modems.

Installation and Operation of UUCP SMM:9-13

DFl12

att
cds224

dnll

hayes

hayes2400

novation

penri)

rvmacs

va212

va811s

va820

vadic

ventel

vmacs

DEC DF112 modems. Use a Dialer field of DFl12T to use tone dialing, or
DFl12P for pulse dialing.

AT&T 2224 2400 baud modem.

Concord Data Systems 224 2400 baud modem.

DEC DNII UNIBUS dialer.

Hayes Smartmodem 1200 and compatible autodialing modems. Use a Dialer
field of hayestone to use tone dialing, or hayespulse for pulse dialing. It is also
permissible to include the letters 'T' and 'P' in the phone number (in "L.sys")
to change to tone or pulse midway through dialing. (Note that a leading 'T' or
'P' will be interpreted as a dialcode!)

Hayes Smartmodem 2400 and compatible modems. Use a Dialer field of
hayes2400tone to use tone dialing, or hayes2400pulse for pulse dialing.

Novation "Smart Cat" autodialing modem.

Penril Corp' 'Hayes compatible" modems.

Racal-Vadic 820 dialer with 831 adapter in a MACS configuration.

Racal-Vadic 212 autodialing modem.

Racal-Vadic 811s dialer with 831 adapter.

Racal-Vadic 820 dialer with 831 adapter.

Racal-Vadic 3450 and 3451 series autodialing modems.

Vente1212+ autodialing modem.

Racal-Vadic 811 dialer with 831 adapter in a MACS configuration.

Chat is a send/expect sequence that can be used to talk through dataswitches, or issue special com­
mands to a device such as a modem. The syntax is identical to that of the Expect/Send script
of "L.sys" and will be described later. The difference is that, the L-devices script is used
before the connection is made, while the "L.sys" script is used after.

L-dialcodes

This file contains entries with location abbreviations used in the "L.sys" file (e.g. py, mh, boston).
The entry format is:

abb dial-seq

where;

abb

dial-seq

The line

is the abbreviation,

is the dial sequence to call that location.

py 165-

would be set up so that entry py7777 in "L.sys" would send 165-7777 to the dial-unit

L.aliases.

The L.aliases file provides a mapping facility for sitenames. This facility is useful when a sitename
is changed temporarily, or until a permanent change becomes widely known by the users of the net. The
format of the file is:

real_name alias_name

The "L.aliases" file may be used to map hosts with longer names in "L.sys" to 7 character names that
some hosts send. This provides a mechanism to handle those sites, entries should be:

S~:9-14 Installation and Operation of UUCP

fullname 7 -char-name

L.cmds

The L.cmds file contains a list of commands that are permitted for remote execution with uux. The
commands are listed one per line. Most sites L.cmds will be something like:

rmail
mews
ruusend

A line of the form:

P A TH=/bin:/usr/bin:/usr/ucb:/usr/locallbin

can be used to set a search path.

L.sys

Each entry in this file represents one system that communicates with the local system and has the
form:

Sitename Times Caller Class Device [Expect SendJ ..•.

Sitename is the name of the remote system. Every machine with which this system communicates via
UUCP should be listed, regardless of who calls whom. Systems not listed in "L.sys" will not
be permitted a connection.

Times is a comma-separated list of the times of the day and week that calls are permitted to this site.
This can be used to restrict long distance telephone calls to those times when rates are lower.
List items are constructed as:

keywordhhmm-hhmrnl grade;retry _time

Keyword is required, and must be one of:

Any Any time, any day of the week.

Wk Any weekday. In addition, Mo, Tu, We, Th, Fr, Sa, and Su can be used.

Evening When evening telephone rates are in effect, from 1700 to 0800 Monday through
Friday, and all day Saturday and Sunday. Evening is the same as Wk1700-
0800,Sa,Su.

Night When nighttime telephone rates are in effect, from 2300 to 0800 Monday through
Friday, all day Saturday, and from 2300 to 1700 Sunday. Night is the same as
Any2300-0800,Sa,Su0800-1700.

NonPeak This is a slight modification of Evening. It matches when the USA X.25 carriers
have their lower rate period. This is 1800 to 0700 Monday through Friday, and all
day Saturday and Sunday. NonPeak is the same as Any1800-0700,Sa,8u.

Never Calling this site is forbidden or impossible. This is intended for polled connec­
tions, where the remote system calls into the local machine periodically.

The optional hhmm-hhmm subfield provides a time range that modifies the keyword.
hhmm refers to hours and minutes in 24-hour time (from 0000 to 2359). The time range is
permitted to "wrap" around midnight, and will behave in the obvious way. It is invalid to fol­
low the Evening, NonPeak, and Night keywords with a time range.

The grade sub field is optional; if present, it is composed of a 'I' (slash) and single char­
acter denoting the grade of the connection. Grades are in the range [0-9A-Za-zl. This
specifies that only requests of grade grade or better will be transferred during this time. (The
grade of a request or job is specified when it is queued by uucp or uux). By convention, mail is
sent at grade C, news is sent at grade d, and uucp copies are sent at grade D. Unfortunately,

Installation and Operation of UUCP SM:M::9-15

some sites do not follow these conventions consistently.

The retry_time subfield is optional; it must be preceded by a ';' (semicolon) and
specifies the minimum time, in minutes, before a failed connection will be tried again. By
default, the retry time starts at 10 minutes and gradually increases at each failure, until after 26
tries uucico gives up completely (MAX RETRIES). If the retry time is too small, uucico may
run into MAX RETRIES too soon.

Caller is the type of device used. It may be one of the following:

ACU DIR LOCAL MICOM PAD PCP SYTEK TCP

The descriptions are the same as listed in "L-devices" above. If several alternate ports
or network connections should be tried, use multiple "L.sys" entries.

Class is usually the speed (baud) of the device, typically 300, 1200, or 2400 for ACU devices
and 9600 for direct lines. Valid values are device dependent, and are specified in the
"L-devices" file.

On some devices, the speed may be preceded by a non-numeric prefix. This is used in "L­
devices" to distinguish among devices that have identical Caller and baud, but yet are distinctly dif­
ferent For example, 1200 could refer to all Bell 212-compatible moderns, V1200 to Racal-Vadic
moderns, and C1200 to CCITT modems, all at 1200 baud.

On TCP connections, Class is the port number (an integer) or a port name from
"/etc/services" that is used to make the connection. For standard Berkeley TCP/IP, UUCP normally
uses port number 540.

Device varies based on the Caller field. For ACU devices, this is the phone number to dial.
The number may include: digits 0 through 9; # and * for dialing those symbols on tone
telephone lines; - (hyphen) to pause for a moment, typically two to four seconds; =
(equal sign) to wait for a second dial tone (implemented as a pause on many moderns).
Other characters are modern dependent; generally standard telephone punctuation char­
acters (such as the slash and parentheses) are ignored, although uucico does not guaran­
tee this.

The phone number can be preceded by an alphabetic string; the string is indexed and converted
through the "L-dialcodes" file.

For DIR devices, the Device field contains the name of the device in /dev that is used to make
the connection. There must be a corresponding line in "L-devices" with identical Caller, Class, and
Device fields.

For TCP and other network devices, Device holds the network name for establishing a con­
nection to the remote system, which may be different from its UUCP name.

The Expect and Send refer to an arbitrarily long set of strings that alternately specify what to
expect and what to send to login to the remote system once a physical connection has been esta­
blished. A complete set of expect/send strings is referred to as an "expect/send script". The same
syntax is used in the L-devices file to interact with the dialer prior to making a connection; there it is
referred to as a chat script. The complete format for one expect/send pair is:

expect-timeout-failsend-expec(timeout send

Expect, failsend, and send are character strings. Expect is compared against incoming text
from the remote host; send is sent back when expect is matched. By default, the send is followed by
a '\r' (carriage return). If the expect string is not matched within timeout seconds (default 45), then it
is assumed that the match failed. The 'expect{ailsend-expect' notation provides a limited loop
mechanism; if the first expect string fails to match, then the failsend string between the hyphens is
transmitted, and uucico waits for the second expect string. This can be repeated indefinitely. When
the last expect string fails, uucico hangs up and logs that the connection failed

The timeout can (optionally) be specified by appending the parameter '-nn' to the expect
string, when nn is the timeout time in seconds.

S:MM::9-16 Installation and Operation of UUCP

Backslash escapes that may be embedded in the expect or send strings include:

\b Generate a 3/10 second BREAK.
\bn Where n is a single-digit number;

generate an nl10 second BREAK.
\c Suppress the \r at the end of a send string.
\d Delay; pause for 1 second. (Send only.)
\r Carriage Return.
\s Space.
\n Newline.
\xxx Where xxx is an octal constant;

denotes the corresponding ASCII character.

As a special case, an empty pair of double-quotes in the expect string is interpreted as
"expect nothing"; that is, transmit the send string regardless of what is received Empty double­
quotes in the send string cause a lone '\r' (carriage return) to be sent

One of the following keywords may be substituted for the send string:

BREAK
BREAKn
CR
EOT

NL
PAUSE
PAUSEn
P_ODD
PONE
P_EVEN
P_ZERO

Generate a 3/10 second BREAK
Generate an nl10 second BREAK
Send a Carriage Return (same as II II).

Send an End-Of-Transmission character, ASCn \004.
Note that this will cause most hosts to hang up.
Send a Newline.
Pause for 3 seconds.
Pause for n seconds.
Use odd parity on future send strings.
Use parity one on future send strings.
Use even parity on future send strings. (Default)
Use parity zero on future send strings.

Finally, if the expect string consists of the keyword ABORT, the following string is used to
arm an abort trap. If that string is subsequently received any time prior to the completion of the entire
expect/send script, then uucico will abort, just as if the script had timed out This is useful for trap­
ping error messages from port selectors or front-end processors such as "Host Unavailable" or
"System is Down."

An example expect/send sequence might look something like this:

II" \d\r CLASS HOST ABORT Down GO \d\r ogin:-30-\b-ogin: uucp word: password

First, uucico will expect nothing, wait 1 second (\d), and then send a carriage return. The next
expected message is "CLASS", in response to which uucico sends "HOST". From then on, if it
sees the word "Down" before finishing logging in, it will hang up immediately. In the mean time, it
looks for "GO". After this is received, it delays 1 second and then sends a CR. Uucico resets the
timeout to 30 seconds while whating to receive "ogin:". If there is no response, a break: will be sent
and the program will wait for 45 seconds for "ogin:" again. When this is received, "uucp" will be
sent The sequence ends by waiting for "word:" and responding with "password". At this point,
UUCP has completed the login and continues with the protocol for establishing the connection ..

USERFILE

This file contains user accessibility information. It specifies the file system directory trees that
are accessible to local users and to remote systems via UUCP

Each line in "USERFILE" is of the form:

Installation and Operation of UUCP SMM:9-17

[loginname],[sitename] [c] pathname [pathname] [pathname]

The first two items are separated by a comma; any number of spaces or tabs may separate the
remaining items.

The loginname is a user name (from "/etclpasswd") on the local machine.

The sitename is the name of a remote machine. This is the same name used in "L.sys" .

The c denotes the optional cai/back field. If a c appears here, a remote machine that calls in
will be told that callback is requested, and the conversation will be terminated. The local system will
then immediately call the remote host back.

The pathname is a pathname prefix that is permissible for this loginname andlor sitename.

When uucico runs in master role or uucp or uux are run by local users, the permitted path­
names are those on the first line with a loginname that matches the name of the user who executed
the command. If no such line exists, then the first line with a null (missing) loginname field is used.
(Beware: uucico is often run by the superuser or the UUCP administrator through cron.

When uucico runs in slave role, the permitted pathnames are those on the first line with a
sitename field that matches the hostname of the remote machine. If no such line exists, then the first
line with 1 null (missing) sitename field is used.

Uuxqt works differently; it knows neither a login name nor a hostname. It accepts the path­
names on the first line that has a null sitentJ11U! field. (This is the same line that is used by uucico
when it cannot match the remote machine's hostname.)

A line with both 10 gi1UUU1le and sitentJ11U! null, for example

, lusrlspool/uucppublic

can be used to conveniently specify the paths for both "no match" cases if lines earlier in "USER­
FILE" did not define them.

11. Installing the UUCP system.

There are several source modifications that may be required before the system programs are
compiled.

Two files which may require modification, the "Makefile" file and the "uucp.h" file. The
following paragraphs describe some of the options available at build time.

Uucp.h modifications

The installer of UUCP may wish to change some of the defines in "uucp.h". Some of the
interesting defines are mentioned below.

ifDIAUNOUT is defined then acucntrl will allow modems to be used in both directions.

If DONTCOPY is defined in "uucp.h", uucp will not make a copy of the source file by
default

if LOCKDIR is defined then lock files will be stored in the "/usrlspoolluucpILCK" directory.

If LOGBYSITE is defined, uucp logging is done with a log file per site, instead of one LOG­
FILE.

If NOSTRANGERS is defined in "uucp.h", the remote site must be in your "L.sys" or the
call will be rejected.

Makefile modification

There are several maJce variable definitions which may need modification.

LmDIR the directory where low level binaries, site information, and dialing infor­
mation are stored

S:M:M::9-18

BIN

PUBDIR

SPOOL

XQIDIR

CORRUPT

AUDIT

LCK

LOG

STST

HOSTNAME

Building the system

The command

make

Installation and Operation of UUCP

The directory in which the user utilities reside.

A directory where files can almost always be sent. This should be UUCP's
home directory and writable by everyone.

The top level spool directory.

The directory where temporary files will be stored by uuxqt.

The directory where corrupted "C." and "D." files end up.

The directory where debugging traces are stored by uucico when debugging
is remotely enabled or enabled by a signal.

The directory where lock files are kept Tip (1) and other programs may
need to be modified if this is changed as the lock files are shared.

The directory where the log files are placed if "LOGBYSITE" is defined in
"uucp.h" .

The directory where the remote system status files (' 'STST' ') are stored.

The machine's name.

will compile the entire system.

The command

make mkdirs

will build all the directories needed for the system, giving them appropriate owners and permissions.

The command

make install

will install the commands in the correct directories, setting ownership and pennissions.

12. Connecting new systems to the network.

When first connecting a new machine to a UUCP network, it is advisable to try and establish a
connection with tip or cu first. The administrator should then be aware of any special facilities that
are going to be required, things like; What lines and modems are to be used? Is the connection
through different hardware and carriers? Does the remote system care about parity? What speed
lines are being used and do they cycle through several speeds? Is there a line switch front end that
will require special Chat dialogue in "L.sys"?

Once a login connection can be completed the administrator should have enough information
to allow the correct setup of the system files in lusr/lib/uucp.

The UUCP administrator should then negotiate with the remote site's UUCP administrator as
to who will do polling and when. Both administrators must set up the relevant accounts and pass­
words. The UUCP administrator should decide on what permissions and security precautions are to
be observed. Testing time and facilities will need to be arranged to complete initial connection test­
ing between the systems.

13. Security

The uucp system, left unrestricted, will let any outside user execute any commands and copy
any files that are accessible to the uucp login user. It is up to the individual sites to be aware of this
and apply the protections that they feel are necessary.

Installation and Operation of UUCP SMM::9-19

There are several security features available aside from the normal file mode protections.
These must be set up by the installer of the uucp system.

The login for uucp does not get a standard shell. Instea~ the uucico program is started. There­
fore, the only work that can be done is through uucico.

A path check is done on file names that are to be sent or received. The "USERFILE" supplies
the information for these checks. The "USERFILE" can also be set up to require call-back for
certain login-ids. (See the description of "USERFILE" above.)

A conversation sequence count can be set up so that the called system can be more confident that
the caller is who he says he is.

The uuxqt program comes with a list of commands that it will execute. A "P A TIl" shell state­
ment is prepended to the command line as specified in the uuxqt program. The installer may
modify the list or remove the restrictions as desired.

The "L.sys" file should be owned by uucp and only readable by uucp to protect the phone
numbers and login information for remote sites. (Programs uucp, uucico, uux, uuxqt should be
also owned by uucp and have the set user id bit set.)

14. Administration

This section indicates some events and files which must be administered for the uucp system.
Some administration can be accomplished by shell files which can be initiated by cron (8). Others
will require manual intervention .

. SQFILE - sequence check file

This file is set up in the library directory and contains an entry for each remote system with
which you agree to perform conversation sequence checks. The initial entry is just the system name
of the remote system. The first conversation will add two items to the line, the conversation count,
and the date/time of the most resent conversation. These items will be updated with each conversa­
tion. If a sequence check fails, which could indicate that an unauthorized connection has been
attempted, the entry will have to be adjusted.

TM - temporary data files

These files are created in the spool directory while files are being copied from a remote
machine. Their names have the form

TM.pid.ddd

where pid is a process-id and ddd is a sequential three digit number starting at zero for each
invocation of uucico and incremented for each file received. After the entire remote file is received,
the TM file is moved to the requested destination. If processing is abnormally terminated or the
move fails, the file will remain in the spool directory.

The leftover files should be periodically removed; the uuclean program is useful in this regard.
The command

uuclean -pTM

will remove all TM files older than three days.

STST - system status files

These files are created in the spool directory by the uucico program. They contain information
of failures such as login, dialup or sequence check and will contain a TALKING status when two
machines are conversing. The file name is the remote system name in the "STST" directory.

For ordinary failures (dialup, login), the file will prevent repeated tries too frequently. For
sequence check failures, the file must be removed before any future attempts to converse with that
remote system.

S:MM::9-20 Installation and Operation of UUCP

If the file is left due to an aborted run, it may contain a TALKING status. In this case, the file
must be removed before a conversation is attempted.

LCK - lock files

Lock files are created for each device in use (e.g. automatic calling unit) and each system convers­
ing. This prevents duplicate conversations and multiple attempts to use the same devices. The form
of the lock file name is

LCK •• str

where str is either a device or system name. The files may be left in the spool directory if runs abort.
They will be ignored (reused) after a time of about 24 hours. When runs abort and calls are desired
before the time limit expires, the lock files should be removed.

Shell Files

The uucp program will spool work and attempt to start the uucico program, but the starting of
uucico will sometimes fail. (No devices available, login failures etc.). Therefore, the uucico pro­
gram should be periodically started The command to start uucico can be put in a "shell" file and
started by cron on an hourly basis. The file could contain the command:

uucico -rl

Note that the "-rl" option is required to start the uucico program in MASTER mode.

Another shell file may be set up on a daily basis to remove TM, ST and LCK files and C. or
D. files for work which can not be accomplished for reasons like bad phone number, login changes
etc. A shell file containing commands like

uuclean -pTM -pC. -pD.
uuclean -pST -pLCK -n12

can be used Note the "-nI2" option causes the ST andLCK files older than 12 hours to be deleted.
The absence of the "-n" option will use a three day time limit

A daily or weekly shell should also be created to remove or save old LOGFILE s. One can use
a command like

mv spool/LOGFIT..E spool/o.LOGFILE

Login Entry

One or more log ins should be set up for uucp. Each of the "I etc/passwd" entries should have
the uucico as the shell to be executed. The login directory is normally "/usrlspool/uucppublic".
The various logins are used in conjunction with the "USERFILE" to restrict file access. Specifying
the shell argument limits the login to the use ofUUCP (uucico) only.

File Modes

It is suggested that the owner and file modes of various programs and files be set as follows.

The programs uucp, UUX, uucico and uuxqt should be owned by the uucp login with the
"setuid" bit set and only execute permissions (e.g. mode 04111). This will prevent outsiders from
modifying the programs to get at a standard shell for the uucp logins.

"L.sys", "SQFILE", and the "USERFILE" which are put in the program directory should
be owned by the uucp login and set so that they can only be read by the uucp login and are writable
by no one.

1. Introduction

USENET Version B Installation

Matt Glickman
Computer Science Division

Department 0/ Electrical Engineering and Computer Sciences
University o/California

Berkeley, California 94720

Revised by Mark Horton/or version 2.10
Revised by Rick Adams/or version 2.10.3

This document is intended to help a USENET site install and maintain the network news software. Please ask
questions of Rick Adamst; such questions will help to point out areas that need to be addressed here.

The overall order of things to do is:

(a) Find somebody to link up with. You need a network: connection of some kind, for example, ARPANET or
UUCP. If you must use UUCP and have no connections, you must have at least a dialup and preferably a di­
aler, and find someone willing to call your machine. The USENET directory may be helpful in finding some
other site geographically near yours to hook up to.

(b) Create a localize.sh script to make local changes to the make file and de/s.h files. (Section 2 gives more details
about creating localize.sh.) Once you're finished editing localize.sh, create a de/s.h and Makefile tailored for
your site with the command

sh localize.sh
Inspect de/s.h and Makefile to ensure that all your local customizations got into your final versions. If you saw
a "?" when you ran localize.sh, one or both of the files is certainly wrong. It's a good idea to anchor the pat­
terns in localize.sh's ed(1) scripts, especially in its Makefile-editing lines. For instance, use rUUXFLAGS/
instead of IUUXFLAGS/.

(c) Compile.the software using the make(1) command.

(d) Su(1) and type "make install". This will copy the files out to the right place and make directories containing
most of the important files. It will configure you in with a connection to oopsvax via UUCP links. This is un­
doubtedly wrong, so you will have to configure links as needed. If you are upgrading from a version older
than 2.10.3, do "make update". This will cause various checks to be performed on important files in LIB­
DIR. The results will be reported to you. If you are not sure if you should do "make update", do it It will
not hurt anything if you have already done it.

(e) After editing the configuration table, get your contact at the other end of the link to add you to their netnews
sys file.

(0 Post a message to the to.sysname news group which should be set up to go only to the site you are linked to, as
a test. Have the other person send a message to your system using the same mechanism. If this doesn't work,
find the problem and fix it (please don't use net.test unless there is no alternative. It is almost always possi­
ble to use test, or to.sysname or some local. test group, instead of net.test.)

t ARPANET: rick@seismo.CSS.GOV, UUCP: seismo!rick

USENET Version B Installation SMM:IO-l

SMM:I0-2 USENET Version B Installation

(g) Fill out a USENET directory form (the file dirform in the mise directory). Post a copy to the USENET news­
group net.news.newsite and mail a copy to cbosgd!uucpmap.

(h) Format the document "How to Read the Network News" (the file howto.mn in the doc directory), the docu­
ment "How to Use USENET Effectively" (the file manner.mn in the doc directory) and the document "Copy­
right Law" (the file copyright.mn in the doc directory) and post them to your general newsgroup with a long
expiration date. You can use inews(1) or postnews(1) to do this.

(i) It will probably be necessary to fix your uucp commands to allow rnews and to support the -z and -n options
(if you are lucky enought to have the source).

2. Installation

2.1. Configuration

Local configuration of the USENET version B software requires you to edit a few files. Most importantly, the
de/s.h and Makefile files must be created from their templates de/s.dist and Makefile.dst. You should create a shell
script called localize.sh which copies the files and makes local changes to the copies. Even for a completely vanilla
site, some changes will be necessary. For example, your script should start with localize.v7 or localize.usg. You
should include the name of the local organization (MYORG) and the uid of the local news super user (ROOTID).
You should also choose how your hostname will be determined. If you are a USG site, define UNAME in de/s.h. If
you are running 4.[23] BSD, define GHNAME in de/s.h. If you have your UUCP name in letcluucpname, define
UUNAME in de/s.h. Otherwise, news will look in the file lusrlincludelwhoami.h for a line of the form

#define sysname your-sysname

If you are running System 3 or System 5, you are a USG site. Otherwise, unless you are in AT&T, you are
probably a V7 site. The previously mentioned defines are the only modifications that are necessary to install news
at your site. However, you will probably want to change some of the ones listed below. If your compiler does not
accept "(void)", the simplest thing to do is add "-Dvoid=int" to the CFLAGS line in the Makefile.

A sample localize shell script can be found in localize.sample. The most important parameters are:

2.1.1. ROOTID

The numerical uid of the person who is the news super user. This should not be set to O. Normally it is set to
the uid of the news contact person for the site. If it is not defined, the uid of NOTIFY will be looked up in
letclpasswd and used instead.

2.1.2. N _ UMASK

Mask for umask(2) system call. Set it to something like 022 for a secure system. Un secure systems might
want 002 or 000. This mask controls the mode of news files created by the software. Insecure modes would allow
people to edit the files directly.

2.1.3. DFLTEXP

The default number of seconds after which an article will expire. Two weeks (1,209,600 seconds) is the de­
fault choice. If you wish to expire articles faster than two weeks, it is recommended that you use the -e flag to ex­
pire instead of decreasing DFL TEXP.

2.1.4. mSTEXP
Articles which were posted more than HISTEXP ago are considered too old and are moved into the junk

directory. This is because they are too old to be in the history file, so it is impossible to tell if they really should be
accepted or are endlessly looping around the network. (This was theoretically possible before this feature was ad­
ded.) The articles are removed after DFL TEXP seconds, but a copy of their "Message-ID" is kept in the history
file for mSTEXP seconds (the default is 4 weeks).

USENET Version B Installation SMM:I0-3

2.1.5. DFL TSUB

The default subscription list. If a user does not specify any list of newsgroups, this will be used. Popular
choices are aU and general,all.general.

2.1.6. TMAIL

This is the version of the Berkeley Mail(l) program that has the -T option. If left undefined, the -M option
to readnews(l) will be disabled.

2.1. 7. ADMSUB

This newsgroup (or newsgroup list) will always be selected unless the user specifies a news group list that
doesn't include ADM SUB on the command line. That is, as long as the user doesn't use the -n flag to readnews on
the command line, ADMSUB will always be selected. This is usually set to general. (The intent of this parameter
is to have certain news groups which users are required to subscribe to. A typical site might require general.)

2.1.8. PAGE

The default program to which articles should be piped for paging. This can be disabled or changed by the en­
vironment variable PAGER. If you have it, the Berkeley more(l) command should be used, since the + option al­
lows the headers to be skipped.

2.1.9. NOTIFY

If defined, this character string will be used as a user name to send mail to in the event of certain control mes­
sages of interest (Currently these are newgroup, rmgroup, sendsys, checkgroups, and senduuname.) As distri­
buted, mail will be sent to user usenet. It is recommended you create such a mailbox (have it forwarded to yourself)
if possible, since this makes it easier for another site to contact the site administrator for your site. If you are unable
to do this (e.g., you are not the super user) you should change this name to yourself. Also, messages about missing
or extra newsgroups are mailed to this user by the checkgroups control message.

2.1.10. DFTXMIT

This is the default command to use to transmit news if no explicit command is given in the fourth field of the
sys file. It normally includes uux(l) with the -z option. You should install this modification to UUCP at once; oth­
erwise your users will start being bombarded with annoying uux completion messages. However, you can turn this
off to get news installed.

2.1.11. UXMIT

This is the default command used if the U flag is present in the flags portion of a sys file line. In this case, the
second "%s" refers to the name of a file in the news spool area, not a temporary file. It can usually only be used
when local modifications are made to the uucp system, such as the -c option to uux.

2.1.12. DFTEDITOR

This is the full path name of the default editor to use during followups and replies. It should be set to the most
popular text editor on your system. As distributed, vi(l) is used.

2.1.13. UUPROG

If this is defined, it will be used as a command to run when the senduuname control message is sent around.
Otherwise the command uuname(l) will be run. Normally, this program should be placed in LIBDIR.

2.1.14. MANUALLY

If this is defined, incoming rmgroup messages will not automatically remove the group. News will instead
mail a message to NOTIFY advising that the group should be removed. If you define MANUALLY, you should
have NOTIFY defined. MANUALLY is defined by default to protect you against accidental or malicious removal
of an important newsgroup.

SMM:I0-4 USENET Version B Installation

2.1.15. NONEWGROUPS

If this is defined, incoming newgroup messages will not automatically create the group. News will instead
mail a message to NOTIFY advising that the group should be created. If you define NONEWGROUPS, you
should have NOTIFY defined. NONEWGROUPS is undefined by default to make it easier to automatically main­
tain the news system.

2.1.16. BATCH

If set, this is the name of a program that will be used to unpack batched articles (those beginning with the
character "#".) Batched articles normally are files reading

#! mews 1234
article containing 1234 characters
#! mews 4321
article containing 4321 characters

Batching is strongly recommended for increased efficiency on both sides.

2.1.17. LOCALNAME

Most systems have a full name database on line somewhere, showing for each user what their full name is.
Most often this is in the gecos field of letclpasswd. If your system has such a database, LOCALNAME should be
left undefined. If not, define LOCALNAME, and articles posted will only receive full names from local user infor­
mation specified in NAME or $HOMEI.name by the user. If you have a nonstandard gcos format (notfinger(l) or
RJE) it will be necessary to make local changes to fullname.c as appropriate on your system.

2.1.18. INTERNET

If your system has a mailer that understands ARPA Internet syntax addresses ("user@site.domain") turn this
on, and replies will use the "From" or "Reply-To" headers. Otherwise, leave it disabled and replies will use the
"Path" header.

2.1.19. MYDOMAIN

When generating internet addresses, this domain will be appended to the local site name to form mailing ad­
dress domains. For example, on system ucbvax with user root, if MYDO MAIN is set to " .UU CP' " addresses gen­
erated will read "root@ucbvax.UUCP". If MYDOMAIN is ".Berkeley.EDU", the address would be
"root@ucbvax.Berkeley.EDU". If your site is in more than one domain, use your primary domain. The domain al­
ways begins with a period, unless the local site name contains the domain; in this case MYDOMAIN should be the
null string.

2.1.20. CHEAP

Do not chown(l) spool files to news. This will cause the owner of the file to be the person that started the
inews process. This is used for obscure accounting reasons on some systems.

2.1.21. OLD

Define this if any of your USENET neighbors run 2.9 or earlier versions of B news. It will cause all headers
written to contain two extra lines, "Article-J.D." and "Posted", for downward compatibility. Once all your neigh­
bors have converted, you can save disk space and transmission costs by turning this off. It is strongly encouraged
that they convert. 2.10.3 is much faster than 2.9. The performance difference is dramatic.

2.1.22. UNAME

Define this if the uname(2) system call is available locally, even though you are not a usa system. USG sys­
tems always have uname(2) available and ignore this setting.

USENET Version B Installation S:MM:IO-5

2.1.23. GHNAME

Define this if the 4.[23] BSD gethostname(2) system call is available. If neither UNAME or GHNAME is
defined, inews will determine the name of the local system by reading /usr/include/whoami.h.

2.1.24. UUNAME

Define this if you keep your UUCP name in /etc/uucpname.

2.1.2S. V7MAIL

Define this if your system uses V7 mail conventions. The V7 mail convention is that a mailbox contains
several messages concatenated, each message beginning with a line reading "From user date" and ending in a
blank line. If this is defined, articles saved will have these lines added so that mail can be used to look at saved
news.

2.1.26. SORT ACTIVE

Define this if you want the news groups presented in the order of each person's .newsrc(5) instead of the ac­
tive file.

2.1.27. ZAPNOTES

Define this if you want old style notes file id's in the body of the article to be converted into "Nf-Id" fields in
the header.

2.1.28. DIGPAGE

If this is defined, vnews(l) will attempt to process the subarticles of a digest instead of treating the article as
one big file.

2.1.29. DOXREFS

Define this if you are using rn(1). Rn uses this option to keep from showing the same article twice.

2.1.30. MULTICAST

If your transport mechanism supports multi-casting of messages, define this. Currently ACSNET is the only
network that can handle this.

2.1.31. BSD4_2

Define this if you are running 4.2 or 4.3 BSD UNIXt.

2.1.32. BSD4_1C

Define this if you are running 4.1C BSD UNIX.

2.1.33. SENDMAIL

Use this program instead of recmail(8) for sending mail.

2.1.34. MMDF

Use :MMDF instead of recmail for sending mail.

tUNIX is a trademark of AT&T Bell Laboratories.

SMM:10-6 USENET Version B Installation

2.1.35. MYORG

This should be set to the name of your organization. Please keep the name short, because it will be printed,
along with the electronic address and full name of the author of each message. Forty characters is probably a good
upper bound on the length. If the city and state or country of your organization are not obvious, please try to in­
clude them. If the organization name begins with a "I", it will be taken as the name of a file. The first line in that
file will be used as the organization. This permits the same binary to be used on many different machines. A good
file name would be lusrlliblnewslorganization. For example, an organization might read" AT&T Bell Labs, Murray
Hill", "U.C. Berkeley", "MIT", or "Computer Corp. of America, Cambridge, Mass".

2.1.36. HIDDENNET

If you want all your news to look like it came from a single machine instead of from every machine on your
local network, define HIDDENNET to be the name of the machine you wish to pretend to be. Make sure that you
have you own machine defined as ME in the sysfile or you may get some unnecessary article retransmission.

2.1.37. NICENESS

If NICENESS is defined, rnews does a nice(2) to priority NICENESS before processing news.

2.1.38. FASCIST

If this is defined, inews checks to see if the posting user is allowed to post to the given newsgroup. If the
usemame is not in the file LIBDIR/authorized then the default newsgroup pattern in the symbol FASCIST is used.

The format of the file authorized is:
user:allowed groups

For example:

root:net.all,mod.all
naughty J'erson:junk,net politics
operator: !netall,general,test,mod. unix

An open environment could have FASCIST set to all and then individual entries could be made in the author­
ized file to prevent certain individuals from posting to such a wide area.

Note that a distribution of all does not mean to allow postings only to local groups - all includes all.all. Use
all,!all.all to get that behavior

2.1.39. SMALL_AD DRESS_SPACE

Define this if your machine has 16 bit (or smaller) pointers. If you are on a PDP-ll t, this is automatically
defined.

2.2. Makefile

There are also a few parameters in the Makefile as well. These are:

2.2.1. OSTYPE

This is the type of UNIX system you are using. It should be either v7 or USG. Any BSD system is v7. Any
System 3 or System 5 system is USG. This is normally set by localize.sh.

2.2.2. NEWSUSR

This is the owner (user name) of inews. If you are a superuser, you should probably create a new user id
(traditionally news) and use this ide If you are not a superuser, you can use your own user id. If you are able to, you
should create a mail alias usenet and have mail to this alias forwarded to you. This will make it easier for other sites
to find the right person in the presence of changing jobs and out of date or nonexistent directory pages. NEWSUSR
and ROOTID do not need to represent the same user.

tPDP-ll is a trademark of Digital Equipment Corporation.

USENET Version B Installation SM11:10-7

2.2.3. NEWSGRP

This is the group (name) to which inews belongs. The same considerations as NEWSUSR apply.

2.2.4. SPOOLDIR

This directory contains subdirectories in which news articles will be stored. It is normally lusrlspool/news.

Briefly, for each news group (say net.general) there will be a subdirectory lusrlspool!newslnetlgeneral con­
taining articles, whose file names are sequential numbers, e.g., lusrlspool/newslnetl general! 1, etc.

Each article file is in a mail-compatible format. It begins with a number of header lines, followed by a blank
line, followed by the body of the article. The format has deliberately been chosen to be compatible with the AR­
P ANET standard for mail documented in RFC 822.

You should place news in an area of the disk with enough free space to hold the news you intend to keep on
line. The total volume of news in net. all currently runs about 1 Mbyte per day. If you expire news after the default
2 weeks, you will need about 14 Mbytes of disk space (plus some extra as a safety margin and to allow for increased
traffic in the future.) If you only receive some of the news groups , or expire news after a different interval, these
figures can be adjusted accordingly.

2.2.5. BA TCHDIR

This directory will contain the list of articles to send to each system. It is normally lusrlspool/batch.

2.2.6. LIBDIR

This directory will contain various system files. It is normally lusrlliblnews.

2.2.7. BINDIR

This is the directory in which readnews, postnews, vnews, and checknews(1) are to be installed. This is nor­
mally lusr/bin. If you decide to set BINDIR to a local binary directory, you should consider that the rnews and cun­
batch commands must be in a directory that can be found by uuxqt, which normally only searches Ibin and lusrlbin.

2.2.8. UUXFLAGS

These are the flags uux will be called with.

2.2.9. LNRNEWS

This is the program used to link rnews and inews. If you have symbolic links, you can replace the "In" with
"In -s".

2.2.10. SCCSID

If this is defined, sccs ids will be included in each file. If you are short on address space, don't define this.

3. FILES

This section lists the files in LIBDIR and comments briefly what they do.

3.1. active

A list of active newsgroups. It is automatically updated as new news groups come in. The order here is the
order news is initially presented by readnews, so you can edit this file to put important newsgroups first. If you have
SORTACTIVE defined, after the first time the user invokes readnews, it will be presented in the order of his
.newsrc. Each line of the active file contains four fields, separated by a space: the news group name, the highest lo­
cal article number (for the most recently received article), the lowest local article number that has not yet expired,
and a single character used to determine if the user can post to that newsgroup. If the character is "y" the user is
permitted to post articles to that group. If the character is "n" the user is not permitted to post articles to that
groups. (This field takes the place of the ngfile in earlier versions of news. Local article numbers begin at 1 and
count sequentially within the newsgroup as articles are received. They do not usually correspond to local article

S"MM:I0-8 USENET Version B Installation

numbers on other sites. The article numbers are always stored as a five digit number (with leading zeros) to allow
updating of the file in place.

The active file should contain all active net-wide active news groups (net.alland mod.all). It is important that
they all be present, as they are used as a check for valid newsgroup names and invalid news group names are re­
moved from any articles processed by inews. You should use the sys file to keep out unwanted newsgroups.

3.2. aliases

This file is used to map bad newsgroup names to the correct ones. (For example, net.unix.wizards is mapped
into net.unix-wizards). Each line consists of two fields separated by a space. If the first field is found in the news­
group list of the incoming article, it is changed to the second field. This change takes place in the article before it is
passed on to other systems, not just locally.

3.3. batch

This program reads a list of filenames of articles and outputs the articles themselves. It is typically used by
the shell script sendbatch.

3.4. c7unbatch

This is used to decompress news that has been encoded for transmission over a network that only supports 7-
bit transfers (e.g X.25.)

3.5. caesar

This is a program to do Caesar decoding of rotated text, on a line by line basis. The standard input is copied
to the standard output, rotating each line according to a static single letter frequency table. If an integer argument is
given (e.g., 13), every line is rotated by that argument, without regard to letter frequencies. This program is invoked
by the D readnews command. It is also used by postnews with the "13" argument to encode selected material for
posting.

3.6. checkgroups

Checkgroups is a shell file to aid in automatically checking the accuracy of your active file. It is executed by
the checkgroups control message and mails a list of out of date news groups to the person defined by NOTIFY It
also updates the newsgroups file that is used by postnews as a helpfile for newsgroup selection.

3.7. compress

This program does a modified Lempel-Ziv data compression. It is used by the compressed batching scheme.
It averages 50% compression on a typical batch of news.

3.8. distributions

This is a list of distributions that are valid for your site. Each line has two fields separated by the first space
on the line. The first field is the name of the distribution (e.g., usa, na, etc.). The second field is text describing the
distribution. As distributed, this file is only correct for sites in the USA. You should examine this file and add or
delete the appropriate distributions.

3.9. encode

This program transforms an 8-bit binary file into a file suitable for sending over a link that only allows 7 -bit
characters. It is used by sendbatch -c7.

3.10. errlog

This file contains the "important" error messages found in the log file. These errors usually indicate that
something was wrong with an article. This file should be watched closely. The log file contains much more verbose
information and it is often difficult to detect errors in it

USENET Version B Installation S1111:10-9

3.11. expire

This program expires old articles and archives them if archiving is selected. It is typically run once a day
from cron(8).

3.12. help

This contains a list of commands printed when an illegal command is typed to readnews.

3.13. history

A list of every article that has come in to your system. It is used to reject articles that come in for the second
time (presumably via a different path). This file will grow but is cleaned out by the expire(8) command.

3.14. history.d

On usa systems, this directory contains 10 files (history.[0-9]) which are used as part of a simple hashing al­
gorithm to speed up history searches. Since V7 systems have DBM, this is not used on V7 systems.

3.1S. history .dir ,history .pag

These two files are used on V7 systems as a hashed version of history, containing the message id's of all arti­
cles in history. They are only used if -DDBM and -Idbm appear in Makefile.

3.16. inews

This is the program that actually sends and receives news. All other programs interface eventually with it. It
is not intended to be used directly by a human, so it is no longer in lusrlbin.

3.17. log

If present, a log of articles processed and error conditions is kept here. This file grows without limit unless
cleaned out periodically. The trimlib script in misc can be invoked from cron daily or weekly to keep the log short.

3.1S. moderators

This file contains a list of the moderators and their mailing addresses for each moderated newsgroup. Each
line consists of two fields. the first is the name of the moderated group. The second is the mailing address of the
group's moderator. As distributed, they are almost certainly wrong. You will need to modify the paths so they
work from your site.

3.19. newsgroups

This file is displayed by postnews when a user hits? in response to its request for newsgroups. It is also used
by vnews when it displays the newsgroup name. It is updated automatically by the check groups control message.

3.20. notify

If this file is present, its contents will be taken as the name of the user to notify in case of a problem. If the
file is empty, nobody will be notified. (This overrides the NOTIFY option in de/s.h). Having a null file is useful if
one person administers several systems and does not want multiple copies of control message notifications.

3.21. oactive, ohistory, ohistory.dir, ohistory.pag

These are copies of the corresponding active, history, history.dir, and history.pag files before expire ran.
They are kept in case something happens to the originals.

3.22. recmail

This program can serve as a link between news and your local mailer. If you have sendmail(8), don't use rec­
mail. Sendmail is much more useful.

S:M::M: 10-10 USENET Version B Installation

3.23. reenews

A program which allows you to send mail to get news posted. You usually need to run sendmail or deliver­
mai/(8) to be able to use this.

3.24. recording

A list of newsgroup classes and filenames to display recordings for. The recording feature is analogous to the
recordings played in some areas when you dial directory assistance, trying to be annoying and make you think
twice. Recordings on certain news groups are intended to remind the user of the rules for the news group, or, in the
case of a company worried about letting proprietary information out, reminding authors that anything they say is
seen outside the company and so proprietary information should not be included.

The file contains one line per recording. The line contains two fields, separated by a space. The first field is
the newsgroup class (e.g., net.all), the second field is the name of the file containing the recorded message. If the
file name does not begin with a slash, it will be searched for in LIBDIR. Sample recording files can be found in the
mise directory.

3.25. rmgroup

This shell file should be used to remove any groups that are no longer used

3.26. sendbateh

This shell file is used to send batched articles to other systems. It is typically run from cron. See the manual
page for more details.

3.27. sendnews

A program to send news internally from one computer to another. It is useful if you must use mail links to
transmit articles.

3.28. seq

This file contains the current sequence number for your system. It is used to generate unique article id's.

3.29. sys

This file contains a list of all your neighbors, which news groups they get, and how to send news to them. The
format is documented below.

3.30. unbateh

This program is used to unbatch the incoming batched news and feed each article to inews. It's horrible and
will go away in the future.

3.31. users

A list of users that have read news on your system.

3.32. uuree

A program to receive news sent by sendnews(8).

3.33. vnews.help

This is the helpfile used by vnews.

4. Setting Up Links

There are two basic types of links for exchanging news: those that use mail and those that don't. The ones
that use mail are more indirect, yet more versatile, while the ones that don't are simpler. The default method does
not use mail, so that is discussed first.

USENET Version B Installation SMM:I0-ll

4.1. Non-mail Links

The basic theory behind a non-mail link is that the rnews program is invoked on the remote system with the
article being transmitted as the standard input This is possible on several networks, but the most common imple­
mentation is via the UUCP network. Using the uux command, the command which is forked to the shell looks like:

uux - -r -z remotesys !mews < article

This is the default transmission method. In order to set up such a link, obviously a UUCP link with the remote sys­
tem must be in effect In addition, rnews must be available and executable by uuxqton the remote machine. In
most cases, this means that rnews must be in lusrlbin so uux can find it. Also, the list of allowed UUCP commands
(in lusrlsrclusr.binluucpluuxqt.e or lusrllibluuepIL.cmds, depending on the version of UUCP) should be checked to
make sure that rnews is an allowed command.

Other networks that allow remote execution include the BERKNET, BLICN (usend(1», many Ethemets, and
the NSC hyperchannel (nusend(1». It is important, however, that a spooling mechanism be available. Otherwise, if
system A tries to send an article to system B via a remote execution command, and B is down, the article could be
lost Spooling arranges that the system will try again when B comes back up.

4.2. Mail Links

When using mail to transmit articles, two intermediary programs are necessary. These are sendnews and
uurec(8). The idea is that when system A wants to send an article to system B, the sys file on system A has an entry
for systemB such as:

lusr/lib/news/sendnews -a mews@B

which runs sendnews on the article. The -a option specifies that the mail should be formatted for the ARPANET.
Sendnews packages the article and mails it to "mews@B". Somehow, the B system is expected to make sure that
all mail to user "mews" is fed as input to the program uurec. This program unpackages it and invokes rnews.

The best way to get mail to "mews" fed into uuree is to use sendmail or delivermail, if you are on a system
running them. Create an alias in lusrlliblaliases as follows:

mews: "l/usr/lib/news/uurec"

and sendmail will handle it If you do not have a facility for forwarding mail to a program, you can gimmick your
mailer to watch for it (using popen(3S), this is easy) or, if you don't want to do any programming, you can have
cron invoke uuree every hour with lusrlspoollmaillrnews as standard input This solution is messier because uurec
must potentially deal with multiple messages, something that has never been tested.

s. Format of the sys file

To set up a link to another site, edit the sys file in LIBDIR. This file is similar to the L.sys file of UUCP.
Each line contains four fields, separated by colons:

(1) The system name of a site to which you forward news. Normally all systems you have links to will be includ­
ed. You should also have a line for your own system. If this field is ME, it will be used as if it were your lo­
cal system name. If the system name is followed by a "I", the article will not be fOlwarded to this system if
it has already passwd through any of the (comma separated) list of sites immediately following the "I". For
example, if the sysline was:

yoursitelsitea,siteb,sitec:net,mod,na,usa,to.yoursite::

the incoming article would only be forwarded to yoursite if it had not already been to any of sitea, siteb, or
sitee. This is normally used to reduce the number of duplicate articles received at a site that has multiple main
newsfeeds.

(2) The news groups to be forwarded to them. This is a pattern of the same kind as a subscription list. Generally,
you will list classes of newsgroups, that is, using all for everything. A typical forwarding list for a new site
would be

net,mod,na,usa,to.sysname

where sysname is the name of the remote system. (Of course, if you are not in the USA or North America,
you would remove those distributions and replace them with the ones appropriate for you). In particular, you

SMM:I0-12 USENET Version B Installation

don't want to forward all since local newsgroups (those without dots) should not be sent. For the line describ­
ing your own system, this field describes the newsgroups your site will accept from remote sites. Thus, if
another site insists on sending you a newsgroup you don't want, for example net.jokes, include !net.jokes
here.

(3) This field contains Bags describing the connection. An A will indicate that the other site is running an A ver­
sion of netnews. A B indicates a B version. Leaving it empty defaults to B. If you are reading this docu­
ment, you have a B version. Some existing sites run A versions. If you aren't sure, ask your contact at the
other site, with whom you should be talking to set this up anyway. The F Bag indicates that the fourth field is
the name of a file. The full path name of a file containing the article in SPOOL will be appended to this file.
The L Bag prevents transmission unless the article was created on this site. If a number follows the L (e.g.,
L3), sites less than that number of hops away will be considered local. (It is recommended that you feed an L
link to a backbone site, to ensure that your submissions will be more likely to get to the entire network, even
in the event of a local problem. Please make sure that a mail link exists too, so you can get replies.) The N
Bag can also be included here, indicating that mail should be sent using the ihavel sendme protocol described
below. The H Bag can be used to interpolate the history file into the command. The S Bags says to execute
the transmission command directly instead of forking a shell. The U field arranges that the parameter to the
optional "%s" in the command field to be filled in with a permanent file name from SPOOL instead of a
temporary customized file name. The M Bag says to use multi-casting. Multi-casting is described in an ap­
pendix.

(4) This field is the command to be run to send news to the remote site. The article will be on the standard input.
Leaving this field blank means an ordinary UUCP link is being used, that is, the command defaults to

uux - -r -z sysname!mews

The - option tells uux to expect input from the standard input. The -z option is nonstandard - you should add
it (see the minus.z* files in the uucp source directory.) It shuts off the annoying message you would otherwise
get mailed to you telling you that your article was broadcast successfully. To avoid using the -z option,
change the source or put the uux command in the fourth field. The -r option tells uux not to call the other
system once the job is queued. This turns out to ease the load on the system, at the expense of making news
be transmitted a bit slower. The news will be sent when the next call is made; usually this means the next
time mail is sent to or from your system. If this turns out to be unreasonably long, put a line in crontab to run

lusr/lib/uucp/uucico -rl -ssystem

every hour or so.

Here is a sample sys file for a site myvax with connections to yourvax where myvax also passes news on to
downstream. We assume that myvax and downstream exchange a local newsgroup class Ing.all as well as the net­
work wide newsgroups. News to downstream is batched. We also assume that myvax and yourvax are in the USA,
while downstream is in Canada.

myvax:net,mod,na,usa,lng,to::
yourvax:net,mod,na,usa,to.yourvax: :
downstream:net,mod,na,lng,to.downstream:F:/usr/spoollbatchldownstream

6. Posting Methods

The basic method is postnews. This program will prompt you for the title, newsgroups, and distribution, then
place you in the editor. (The system default EDITOR is used unless the environment variable EDITOR is set,
overriding the system default.) The text should be typed after the blank line. The title and news groups are available
for editing at the top of the buffer. Other header lines can be added, such as an expiration date or a distribution.
When you write out the file and exit from the editor, you will be prompted for what to do next. Your choices are:
write the message to a file, send the message, list the message or edit it again.

Another method is to use mail. This can only be done on systems that allow mail to a given name to be fed
into an arbitrary program as input This is easily done with the Berkeley deIivermail or sendmail program, and not
with any other mailer the author is familiar with. (It may be possible to painfully set this up with MMDF, provided
the newsgroup name is no more than 8 characters long.) To use mail, set up an alias such as the following:

USENET Version B Installation . SMM:I0-13

net.general: "l/usr/lib/news/recnews net.general"

Whenever a user sends mail to net.general, this starts up the given shell command which calls recnews with one ar­
gument, the name of the newsgroup. You need to create one alias for each news group, and to keep the list up to
date as new newsgroups are created. Recnews(8) will in turn invoke inews.

Note that there are problems with recnews. There is no way to use it to post to multiple news groups without
creating separate articles (something frowned upon because it forces people to read the same thing more than once.)
Also, there is no way to make the recording feature (to remind people to not accidently divulge proprietary informa­
tion) work when recnews is used.

7. Various considerations

7.1. Setuid bits

The current intended state of affairs is that inews runs setuid to NEWSUSR. The readnews program does not
need to be setuid. This makes it possible to write your own interface to read news instead of using readnews. (As
distributed, inews is also setgid. I know of no good reason for this.)

7.2. Modes of Spool Directories

All the files should be writable by NEWSUSR. However, due to a glitch, you will probably have to make the
SPOOLDIR and its subdirectories mode 777. It could be 755 except for one problem. When a new news group
comes in, inews will attempt to mkdir(l) a new subdirectory of SPOOLDIR for the newsgroup. Since both inews
and mkdir are setuid, mkdir will use the uid of the person who ran inews instead of NEWSUSR when checking for
permissions. If the directory mode isn't 777 the check will fail. Here are several alternatives if you don't want a
777 directory around:

7.2.1. Fix Real Uid

If inews is always run by cron or as root, the real uid can be arranged to be root or NEWSUSR. This is a
poor solution since it makes the local creation of new news groups require super user permissions, and is a potential
security hole. If this approach is taken, care must be taken to insure that the owner of the created directory is
NEWSUSR.

7.2.2. Change the Kernel

[news will do: setuid(geteuidO) (see setuid(2) and geteuid(2» before it forks the mkdir. If your system per­
mits this call, there will be no problem. In particular, Berkeley 4.0 UNIX and later systems allow this. An alterna­
tive change to the kernel is to automatically stack uids: when a setuid program is run, set the new real uid to the old
effective uid.

7.2.3. Groups

You could have inews be setgid to NEWSGRP and all files writable by the group. This approach has been
tested and the problem turns out to be that the mkdir command uses the access(2) system call to check permissions.
Since access uses the real gid, you run into the same problem.

7.2.4. Another Mkdir

You could create a version of mkdir that does less checking and put it in a directory that can only be accessed
by NEWSUSR (mode 700, owned by NEWSUSR). Have inews fork this mkdir.

7.3. Expiration dates

To get articles to expire automatically, put a line in crontab to run

lusr/lib/news/expire

every night. This command deletes all expired news. The -a newsgroups option causes all expired news to be ar­
chived under lusrlspoolloldnews depending on which news groups are selected. (See expire(8) for details.)

SMM:10-14 USENET Version B Installation

Sometimes news is not expired when it should be. Be sure to check that expire has permissions to unlink
files, and that it is properly setuid to NEWSUSR. You can manually invoke expire with the -v (verbose) option to
find out what it's doing. Adding levels of verbosity (e.g., -v6) will get more and more output.

7.4. Version to Version

Version B will understand incoming news in either version A or B format, automatically (presuming OLD is
defined in defs.h.) Version B will generate either format, depending on the flag in the third field of the sys line.
Version A will not understand version B format. Thus, it is possible for two version B sites to communicate using
version A format. This will work but is not a good idea, since the translation from B to A loses information (such as
the expiration date) which will not be there when translated back to version B.

News from versions A and 2.9 B do not conform to the USENET interchange standard. 2.10 B supports the
standard and will communicate with either A or 2.9 B news. A news is written (losing other header information) if
A is in the flags for the system. If OLD is defined, 2.10 will write out headers with both standard ("Date"
"Message-ID") and 2.9 ("Posted" "Article-LD.") lines so that either B system will properly handle the article.
Incoming news is recognized by the first letter (A for A news), or the lack of an "@" in the "From" line (2.9).
Missing fields are constructed as well as possible from the available information.

7.5. Presentation Order

The order of the news groups listed in UBDIRlactive is the order the newsgroups will be presented in initially.
If SORTACTIVE is defined in de/s.h, after the first time news will be presented in the order of the person's
.newsrc. Initially this will be directory order, but you can edit important newsgroups like general to the top.

A recommended order to maintain your active file in is this:

netannounce.newusers
general
local. general
net.announce
local newsgroups in alphabetical order
mod.all newsgroups in alphabetical order
net.all newsgroups in alphabetical order
test .
all.test
to.all
control
junk

8. Control Messages

Some news systems will send you articles that are not for human consumption. They are messages to your
news system called control messages. Such messages contain the "Control" header. Older systems use news­
groups matching all.all.ctl, and this will still work, although the "Control" header is preferred. Since the news­
group name is used for distribution only, and is not checked to ensure it's in the active file, such news group names
can still be used. This makes it possible to post network wide control messages with net.msg.ctl (or restricted
broadcast such as btl.msg.ctl) or messages for a particular system: to.ucbvax.ctl. Messages are canceled, however,
with a "Control" line in a message to the same newsgroup(s) as the original message.

A control message contains a command and zero or more arguments (much like a UNIX program). The sub­
ject of the article contains the command and arguments. The body of the article is usually ignored, although some
messages can use it for additional text information. Control messages are not stored in SPOOL; rather, they are act­
ed on and discarded at once.

8.1. ihavelsendme

Two control messages are ibave and sendme. These messages allow two participating sites to set up a link so
that one site will tell the other site it has a given article and wait for a request before it actually sends it. The normal
case is to send an entire article to a system, which consults the history file to see if the article has already been seen,

USENET Version B Installation SMM:I0-15

and then throws it away if it has been seen before.

Note that, since most messages are short anyway, experience has indicated that for ordinary UUCP unbatched
communication, all ihavelsendme does is triple the load and slow down forwarding. We hope future code will allow
ihave's with multiple message id's in the body, and existing code in 2.10 understands such messages, but does not
generate them. So we advise that you don't use ihavelsendme for now.

Use of these control messages can cut down on this wasted transmission, but if you have a polled UUCP con­
nection, they can slow down receipt of news due to polling delays. It is up to each connected pair of sites whether
they want to use this protocol. The choice is controlled by the N flag in the sys file. In the case of a leaf node' (one
with only one neighbor) there is no advantage to this protocol. Even if both sites are able to initiate a connection
(have dialers or the link is hardwired) the -r option on the uux can cause 2 hour or more delays in propagating
news. Since this protocol can triple the number of messages generated, you should carefully evaluate your situation
when deciding whether to use it. If transmission time and phone bills dominate your costs, and you are sending
news to several sites, and large article bodies dominate the costs (rather than the headers and the time spent by
UUCP negotiating transmission) it is probably worthwhile to use ihavelsendme. If your costs are dominated by
CPU load from UUCP, or if you send news to a site that cannot get it from anywhere else, you probably do not want
to use this protocol. The decision can be made independently for each site in your sys file.

This pair works as follows: Site mysite receives article "<123@abc.UUCP>". It enters it locally and then
broadcasts it to its neighbors. One of its neighbors is site yoursite which has the N flag in the sys file. So mysite
sends an article on newsgroup to.yoursite.ctl with title "ihave <123@abc.UUCP> mysite". This control message
has two arguments - the first ("<123@abc.UUCP>") is the article id of the article in question, the second
("my site") is the name of the site sending the article. The name of the newsgroup and the sys file control transmis­
sion of the article. Normally the sys file will read something like

yoursite:netall,fa.all,to.yoursite:BN:

which will cause an article on to.yoursite.ctl to be transmitted.

Yoursite receives the message and looks to see if it has seen it before. If it has, it throws the message away
and stops. If it hasn't, it sends a message on to.mysite.ctl with title "sendme <123@abc.UUCP> yoursite" which is
transmitted to mysite. (The two arguments to sendme are the article id requested and the site to send it to.) Then
mysite gets this message and actually transmits the article to yoursite.

8.2. newgroup

This message has one argument, the name of a news group to be created This allows special action to be tak­
en locally when a new newsgroup is created It is generated by the -C option to inews. By default, the newsgroup
is added to the active file, and mail is sent to the local contact advising that this has happened. The directory will be
created when a message for that news group arrives. See the routine "c _ newgroup" in control.c if you want some­
thing different to happen. (Note that, although the body of the message contains a brief description of the purpose
of the group, this body is usually thrown away by existing software.)

8.3. rmgroup

This message has one argument, the name of a news group to be removed. It is used for network-wide cancel­
lation of a newsgroup. If MANUALLY is not defined, it will remove the articles, directory, and active file line for
the group. There is a shell script rmgroup that does essentially the same thing as this message, but the shell script
only removes the group locally. We recommend that you leave MANUALLY defined, and when you receive mail
advising you of the demise of the newsgroup, you rull rmgroup by hand. This will prevent accidental or malicious
removal of a good newsgroup.

8.4. cancel

This message cancels a given article. It takes one argument, the message id of the article to cancel. It should
be broadcast to the same newsgroup as the original article. If the article to be canceled is not present, the control
message will not be propagated to downstream sites.

SMM:I0-16 USENET Version B Installation

8.5. sendsys

The sys file is mailed to the originator of the message. There are no arguments. This is used for making
maps. Since your sys file is public information, you should not remove or change this control message.

8.6. senduuname

The uuname program is run and the output is mailed to the originator of the message. There are no argu­
ments. This is used for making UUCP maps. If you do not run UUCP or have sites in your L.sys which are a secret,
you may wish to edit this. Note that only the output of uuname is mailed, not the contents of L.sys (which news
does not have access to anyway). If you do make a change, you should arrange that some mail still is sent out to the
originator of the message, so he will know your site received it. See the code in routine "c_senduuname" in
control.c.

8.7. version

The local version name/number of the netnews software is mailed back to the author of the control message.

8.8. checkgroups

This control message is an attempt at semi-automatic maintenance of the list of active news groups. This con­
trol messages takes the body of the article and pipes it into UB/checkgroups. As mentioned previously,
UB/checkgroups will update the news groups file, add any missing newsgroups, and mail a message to NOTIFY
about any old newsgroups that should be removed. It is expected that the person who maintains the list of active
news groups will broadcast this control message on a regular basis.

8.9. Other Messages

Any unrecognized message will cause an error message to be mailed to the local site administrator. Addition­
al messages may be defined as time goes on, such as messages to automatically update directories or maps. You
should be willing to go into the code (control.c) and add messages as they become standardized.

9. Maintenance

There are some things you should do periodically to keep your news system running smoothly. We hope to
eventually automate all or most of this, but right now some of it must be done by hand.

The history and log files in your LIB directory will grow. You should make sure that they are cleaned up
periodically. The UB/expire program will remove lines from history corresponding to deleted articles, but it is a
good idea to check the file every few months to make sure it is not going wild. Be sure not to completely lose your
history file when you clean it up, in case another neighbor tries to send you an article you recently got. (If you only
get news from one site it is safe to clean it out completely.)

The log file is not automatically cleaned out by any netnews software, and will grow quickly. The
miscltrimIib script can be installed in UB/trimlib, and invoked weekly by cron.

You should also clean out old news groups that are no longer active. To remove a newsgroup net.foo, you
should run the shell script rmgroup with net.foo as the argument That is,

/usr/lib/news/rmgroup net.foo

Note that clearing up UUCP constipation is another thing you'll have to do if you have flaky hardware or
phone lines. If you have more than one connection, chances are that UUCP will get clogged up when one of your
neighbors goes down for more than a few hours. Various spooling schemes are being worked on to help make the
news/uucp system more robust, but one thing you can and should do, if you find your lusrlspoolluucp directory get­
ting too big, is to install a subdirectory fix to UUCP. A quick and dirty version of this is available from Duke, which
traps the file-oriented system calls at the assembly language level and maps, for example, D.fooA1234 into
D.foolD.fooA1234. Since the C. and D.local directories still get big, in practice this can still create some big direc­
tories, but the directories tend to be a factor of 5 smaller, resulting in a factor of 25 improvement to speed (since a
directory traversal for all files is quadratic on UNIX). Right now, UUCP is the weak link in netnews distribution,
and you should certainly keep an eye on it

USENET Version B Installation SMM:I0-17

10. Creating New Newsgroups

As system news administrator, you are able to create news groups. To create a news group, first make sure this
is the right thing to do. Normally a suggestion is first posted to net.news.group,net.relatedgroup for a net news­
group net.relatedgroup(should be the group which you are proposing to sub-divide. For instance, to propose
creating net.tv.soaps, post the original article to net.tv,net.news.group). Followups are made to net.news.group
only. (You can force this by putting the line:

Followup-To: netnews.group

in the headers of your original posting). If it is established that there is general interest in such a group, and a name
is agreed on, then someone creates it by typing the command

inews -C newsgroup

This will create the active entry locally. The directory will be created automatically when the first article for that
news group is received. It will also prompt you for a paragraph describing the group and start up an inews to post a
newgroup control message announcing the group. This control message will be sent out on net.msg.ctl and other
sites may have configured their systems to do something with these messages. A human readable announcement is
not made - you can post this to net.news.group if necessary.

You must be the super user to use the -C option to inews. (That is, your uid must match ROOTID. It is
recommended that you change ROOTID to your own uid so you don't have to su to create newsgroups.)

11. Conversion from A to B

If you are currently running version A on your system, note that B is incompatible with A. The files are
stored in a different format (headers have mail like field names now). The directory organization is different (each
news group has a subdirectory of its own, and the file names are numbers rather than site.id pairs). There are no bit­
map, uindex, or nindex files to be trashed (which articles have been read is stored in each users .newsrc file). The
user interface is slightly different (newslnetnews(1) is now called readnews, news is posted using inews, subscrip­
tion is done by editing .newsrc, the sense of the -c option is reversed, news is presented in news group order, the -a
and -t options now probably need -x as well, and there are many minor changes).

We decided not to provide a program to convert from version A to version B. Rather, the following strategy
was adopted for conversion:

(1) Install the new news in a different spool directory from the old one. For example, you can use
lusrlspoollnewnews. You can change to the standard name later if you want Get it to work for local mes­
sages.

(2) Post an article to news group general with the old news announcing the change. Make available documenta­
tion such as the accompanying paper How to Read the Network News to the users. This article will be the last
one in the old news.

(3) Chmod the old news directory to 555 to prevent any more news from being posted. (Actually, this will
prevent the bitfile from being updated, so it may not be a good idea.)

(4) Replace the old rnews program with the new rnews program.

(5) Test it by having your neighbor send you a message.

(6) Wait a reasonable period for everyone to have read the final article with the old news. Perhaps a few weeks is
right.

(7) Uninstall the old news.

Users will have to invoke readnews instead of netnews to read news. Depending on your old method of post­
ing, this could be changed too. (If you were using mail, it does not need to be changed.) They will also have to fix
their subscriptions. In general, they can type

netnews -s

to see what they subscribe to on the old system, and then create a file in their home directory called .newsrc contain­
ing

S:MM:IO-I8 USENET Version B Installation

options -n their subscription

The format of the subscription pattern matching is the same as in A except that ALL is replaced by all (change to
lower case). Something along the lines of this could be used to automate this:

(echo -n "options _sit; netnews -s I sed s/ALUall/) > .newsrc

12. Conversion from 2.9 to 2.10

Conversion from 2.9 to 2.10 is not nearly as involved as an A to B conversion. The user interface does not
change much, and the user .newsrc files are not affected. However, it is recommended that you do the conversion
during a time when no news is received, so that incoming news will not get lost. One way to ensure this is to make
lusrlbinlrnews be a shell script which saves the article in lusrlspool/innewsl$$ ($$ is the process id of the particular
shell and will be unique for each article).

The first step to conversion is to customize the sources. In the past, you had to take a fresh distribution and
edit the de/s.h file and Makefile to suit local preferences. If you had many local changes, or didn't record the local
changes, upgrading could be annoying. 2.10 provides a mechanism to automate these changes. Create a shell script
in the src directory called localize.sh. (You can use localize.sample as a template.) This shell script should copy
de/s.dist to de/s.h, and copy either Makefile.v7 or Makefile.usg to Makefile. It should chmod any files that need to be
changed (often Makefile and de/s.h) to a writable mode. Then it should invoke ed(1) on the files, making any neces­
sary local changes.

The next step is to compile the software, with make(I). It may be necessary to update the localize.sh file until
you are satisfied with the compilation. Note that after any change to the Makefile in localize.sh, you should run
localize.sh by hand. Otherwise, although make will run it for you, it will then continue to do the make with the old
Makefile.

When the software is compiled, you should run the cvt.active.sh shell script, with the lib and spool directories
as parameters. This will create a new active file in UBlactive. Then run cvt.links.sh with the lib and spool direc­
tories as parameters. Then run cvt.names.sh with the lib and spool directories as parameters. Old news will be
linked into the new hierarchy while leaving links in the old hierarchy. If you were using the default library and
spool directories, you would do the following:

sh cvt.active.sh lusr/lib/news lusr/spool/news
sh cvt.links.sh /usr/lib/news lusr/spool/news
sh cvt.names.sh /usr/lib/news /usrlspool/news

The next step is to back up the old binaries:

mv /usr/bin/mews /usr/bin/omews

and to install 2.10 with

make install

Once it is installed, any incoming news will he placed into the new hierarchy but not the old one. The critical time
window is between running the three shell files and installing the new software - any incoming news between these
two points will appear in only the old hierarchy and be lost to the new software. If any significant time elapses here,
you should divert rnews into a separate spool directory as described above.

It is crucial that you run expire before any new news arrives. Expire will update several key files automatic al-
lye

Finally, test things by posting articles to to.neighbor news groups and watching some incoming news, and an­
nounce the change to your users.

When you are satisfied that the conversion was successful, run the shell file cvt.clean.sh which will remove
the old 2.9 news hierarchy.

USENET Version B Installation SMM:I0-19

Appendix A: Setting up a Compressed, Batched Newsfeed

First, BATCH must have been #define'd when you built the news system. To check, look in the file de/s.h in
the news source directory. BATCH should be defined as a program name (by default, unbatch). If it's undefined or
commented out, define it, re-make the news system, and install the new software.

You'll also need a working compress program. Use the one shipped with this news distribution, which is
based on version 4.0. Your news neighbors should be running a compatible version of compress. Versions 3.0 and
4.0 are compatible with each other, but both are incompatible with versions 2.0 and before.

Update your sys file. First, add the F flag to the other news system's line. For instance, if your compressed­
and-batched news feed is named Jrobozz, and its sys file entry looks like: frobozz:net,mod,na,usa,ca,toJrobozz::
then add the F flag as the third (colon-separated) field: frobozz:net,mod,na,usa,ca,toJrobozz:F: Now the pathnames
of articles to be sent will be stashed in a file. This file is named in the fourth field of the sys entry; add it now. Use
an entry of the form BATCHDIRlsystem, where BATCHDIR is usually lusrlspool/batch (the actual value is defined
in the news Makefile), and system is the name of the remote system, in this exampleJrobozz. A name of that form is
necessary: the sendbatch script, which sends the batched news, looks for a file name of this form to decide if there's
news for the remote system.

Your completed sys file line should look something like:

frobozz:net,mod,na,usa,ca,to.frobozz:F:/usrlspooVbatchlfrobozz

In lusrlliblcrontab, find or create at least two news lines: one that runs nightly, and one that runs every hour
or so. The nightly-run script should run expire, trim log files, and perhaps compile weekly statistics that you post to
a local-area news group one day a week. The hourly-run script should complete the transmitting task with a line
like:

sendbatch -c frobozz

Make sure the script knows how to get to the directory in which sendbatch lives. You can either mention the direc­
tory in the script's PATH-setting line, or replace sendbatch with its full pathname. Sendbatch reads the files men­
tioned in lusrlspool/batch/frobozz, batches them, optionally compresses them, sends them to the remote system, and
arranges for remote processing.

This remote processing is directed by another file in BATCHDIR. Make a file with a name of the form
BATCHDIRlsystem.cmd (for this example, lusrlspoollbatchljrobozz.cmd). Put a line in it specifying the command
that the remote system should execute to unpack the news batches that your system will send. An example
Jrobozz.cmd would be:

uux - -r -z -n -gd frobozz!mews

Now your system will transmit compressed batches. The receiving side of the business is handled largely by
a program called rnews, which will call other programs in LIBDIR to do additional processing on the incoming
batches.

Make sure there is an executable file called rnews in the BINDIR directory (check the Makefile for its actual
location). It must be reachable by UUCP or by whatever transport you'll use to transfer the netnews. If you defined
BINDIR as lusrlbin, you should have no problems because uuxqt can already get there. If you defined it as a dif­
ferent directory, you may have to teach uuxqt to look in that directory; accomplishing this varies from system to sys­
tem. On 4.2BSD, add the directory to the P A TH= line of your UUCP L.cmds file. On System V, on the rnews line
of your L.cmds file, add a comma followed by the remote system's name on that line. If yours is in
lusrlbinlnewslrnews, your L.cmds file will look like:

[For 4.2BSD]
P A TH=/bin:/usr/bin:/usr/binlnews
mews

[For System V]
lusr/binlnews/mews,frobozz

Other systems have a similar file in the lusrllibluucp directory by which you can specify added programs and paths
different from the defaults. HP-UX, for example, has a lusrllibluucplCOMMANDS file which expands uuxqt's hor­
izons. In more restrictive cases, paths are compiled into uuxqt. If you can't modify any UUCP files, just put rnews

SMM:I0-20 USENET Version B Installation

in /usr/bin.

You must also have a cunbatch in LIBDIR (wherever your Makefile defines it), because rnews will eventually
try to exec that copy.

Tell the person at the other end of your newsfeed to use sendbatch -c to send you news. Once that's in place,
watch your UUCP LOGFlLE and your news log and errlog files to ensure that news is being correctly received and
unpacked on your system.

Older compressed batching systems will try to exec cunbatch instead of rnews. If you are still communicating
with these, leave cunbatch in BINDIR until they have upgraded their software.

USENET Version B Installation SMM::I0-21

Appendix B: MULTICAST

If this is defined (in de/s.h) then two new flag characters become defined in the sys file. The first, and most
important, of these is the M flag.

If the M flag is set on some line in the sys file, then the fourth field (transfer command) is redefined to become
a multicast name. That is simply another system name, expected to be found in the first field of some line in the sys
file (textually following the line containing the M flag).

When a news item is being retransmitted, if it should (according to the subscription list) be sent to a system
that has the M flag set, then instead of a command being run immediately to transmit the news, the news system
remembers the system name, along with the multicast name (fourth field).

Eventually the multicast system name is found in first field of a sys file line. If its subscription list allows
transmission of this news item, then its command will be executed. This command may have up to two "%s" sub­
stitutions in it. The second of those is replaced by the name of a file containing the news item (used with the U
flag). The first is subjected to rather special treatment. The whole "word" (delimited by white space) containing
that "%s" is duplicated as many times as there were systems with the M flag set that referenced this multicast name
(which might be 0 times, causing that "word" to be omitted). In each of these duplicates, the "%s" is replaced by
the name of a system. Note the multicast system name itself is not included in this process. Then the command is
executed as usual.

The second flag available if the news system is built with MULTICAST defined is O. If this flag is set, then
the sys file line will be ignored unless the system name is a multicast name from some earlier line with the M flag,
and the news item is to be sent to that (earlier) system. This allows the subscription list for the multicast system
name (which is likely to be a fake system name, invented just for this purpose) to be given a very wide subscription
list (like aU) without any unusual effects.

Here is an example. Assume that you wish to forward net.unix to four people by mail. You could do this as

fred:net.unix: :mail fred
harry:net.unix::mail harry
jane:net.unix::mail jane
tony:net.unix::mail tony

however this causes the mail program to be started 4 times, once for each recipient On some systems starting the
mail program is a very expensive operation. If MUL TICAST is defined, an alternative method is

fred:net.unix:M:tony
harry:net.unix:M:tony
j ane:net.unix:M: tony
tony:net.unix::mail tony %s

This would cause just one command to be run: "mail tony fred harry jane". Note that "tony" must still be expli­
citly included in the argument list to the mail command; the "%s" does not expand to include the multicast "sys­
tem name" itself.

A more useful way of doing this, which does not assume that all the mail readers will want to read the same
news groups is as follows.

fred:net.unix:M:Mail
harry:net.physics,netastro:M:Mail
jane:net.unix-wizards,net. women:M:Mail
tony:net.unix,netunix-wizards,net.jokes:M:Mail
Mail:all:O:mail %s

Now, if a news item in group net. unix was received, the command

mail fred tony

would be executed. If the news were in both net.unix and net.unix-wizards then the command would be

mail fred jane tony

SMM:10-22 USENET Version B Installation

If a news item in net.med (which no-one gets by mail) arrives, then the "Mail" line will be ignored, because
of the 0 flag. "Mail" is a fake system invented just so its "transfer command" can be used to send news to the
other recipients.

The same kind of technique can be used for normal transfer of news to other systems if your transport net­
work supports a facility to send to many other systems in one command. (That is, if it has a multicast facility.)
SunII! (the network used in Australia) has this ability, so a typical Australian sys file looks like

emuvax:aus,net,mod,fa:M:FakeN ame
kremlin:aus,net,mod:M:FakeN ame
kanga: aus,net, !net.all,net.unix:M:FakeN ame
FakeName:all:OUS:/binlsendfile -NRSareporter -d%s -x%s

A news item in aos.general causes the following command

Ibinlsendfile -NRSareporter -demuvax -dkremlin -dkanga -xlusrlspool/ ...

to be executed. Just one command is run to send the news to three remote systems.

If a multicast system has the F flag set, then the name of a file containing the news is appended to the file
whose name is in the fourth field, as usual. But on the same line, separated by spaces, will be appended the names
of all the systems that referenced this multicast system.

For example, if the Australian site wanted to batch news, instead of sending it directly, it would simply
change the last line of its sys file to

FakeName:all:F:/usrlspool/batchedJallsites

Then a news item in netJobs would cause the following line to be appended to lusrlspool/batched/allsites

lusrlspool/news/net/jobsI5542 emuvax kremlin

This can then be processed later, in something like the normal manner. (Unfortunately no commands to do
this processing are yet available).

Caution: when MULTICAST is defined, the first "%s" in all transfer commands is used for multicast, re­
gardless of whether or not the system name is ever used as the last field of some line with the M flag set. To use the
U flag in such a case, a dummy "%s" should be used, it will simply be omitted from the command that is executed.

As an example, if a sys file line were

foovax:net,na,usa:U:uux - foovax!foonews <%s

without MULTICAST, it would need to be changed to

foovax:net,na,usa:U:uux - foovax!foonews %s <%s

if MULTICAST were defined.

Additional caution: The numbers of system names that may be used in this way are quite severly restricted.
Typically there may only be about 10 multicast system names, and each of those is restricted to sending to no more
than about 20 systems. These limits are dynamic (that is, the numbers counted are the number of multicast systems
receiving any single news item, and the number of systems that each of those will actually cause this particular news
item to be sent to). These limits should easily suffice for real news sending to remote systems; however they are not
likely to suffice if you want to mail news to everyone on your host.

1. Introduction

Name Server Operations Guide
for BIND

Release 4.3

Kevin J. Dunlap*

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley CA 94720

The Berkeley Internet Name Domain (BIND) Server implements the DARPA Internet name
server for the UNIXt operating system. A name server is a network service that enables clients to
name resources or objects and share this information with other objects in the network. This in effect is
a distributed data base system for objects in a computer network. BIND is fully intergrated into
4.3BSD network programs for use in storing and retrieving host names and address. The system
administrator can configure the system to use BIND as a replacement to the original host table lookup
of information in the network hosts file I etcl hosts. The default configuration for 4.3BSD uses BIND.

2. Building A System with a Name Server

BIND comprises two parts. One is the user interface called the resolver which consists of a
group of routines that reside in the C library llibllibc.a. Second is the actual server called named. This
is a daemon that runs in the background and services queries on a given network port. The standard
port for UDP and TCP is specified in I etc! services.

2.1. Resolver Routines in libc

When building your 4.3BSD system you may either build the C library to use the name server
resolver routines or use the host table lookup routines to do host name and address resolution. The
default resolver for 4.3BSD uses the name server.

Building the C library to use the name server changes the way gethostbyname (3N),
gethostbyaddr (3N), and sethostent (3N) do their functions. The name server renders
gethostent (3N) obsolete, since it has no concept of a next line in the database. These library calls
are built with the resolver routines needed to query the name server.

The resolver comprises a few routines that build query packets and exchange them with the
name server.

Before building the C library, set the variable HOSTLOOKUP equal to named in
I usrl src!libl libel Makeftle. You then make and install the C library and compiler and then compile
the rest of the 4.3BSD system. For more information see section 6.6 of "Installing and Operating

* The author is an employee of Digital EqUipment Corporation's U1trix Engineering Advanced Development Group and is on
loan to CSRG. Ultrix is a trademark of Digital Equipment Corporation.

tUNIX is a Trademark of AT&T Bell Laboratories

SMM:11-2 Name Server Operations Guide for BIND

4.3BSD on the V AX:j:".

2.2. The Name Service

The basic function of the name server is to provide information about network objects by
answering queries. The specifications for this name server are defined in RFC882, RFC883,
RFC973 and RFC974. These documents can be found in lusrlsrcletclnamedldoc in 4.3BSD or ftped
from sri-nic.arpa. It is also recornrneded that you read the related manual pages, named (8),
resolver (3), and resolver (5).

The advantage of using a name server over the host table lookup for host name resolution is
to avoid the need for a single centralized clearinghouse for all names. The authority for this infor­
mation can be delegated to the different organizations on the network responsible for it.

The host table lookup routines require that the master file for the entire network be main­
tained at a central location by a few people. This works fine for small networks where there are
only a few machines and the different organizations responsible for them cooperate. But this does
not work well for large networks where machines cross organizational boundaries.

With the name server, the network can be broken into a hierarchy of domains. The name
space is organized as a tree according to organizational or administrative boundaries. Each node,
called a domain, is given a label, and the name of the domain is the concatenation of all the labels
of the domains from the root to the current domain, listed from right to left separated by dots. A
label need only be unique within its domain. The whole space is partitioned into several areas
called zones, each starting at a domain and extending down to the leaf domains or to domains where
other zones start. Zones usually represent administrative boundaries. An example of a host address
for a host at the University of California, Berkeley would look as follows:

monet • Berkeley .EDU

The top level domain for educational organizations is EDU; Berkeley is a subdomain of EDU and
monet is the name of the host

3. Types of Servers

There are three types of servers, Master, Caching and Remote.

3.1. Master Servers

A Master Server for a domain is the authority for that domain. This server maintains all the
data corresponding to its domain. Each domain should have at least two master servers, a primary
master and some secondary masters to provide backup service if the primary is unavailable or over­
loaded. A server may be a master for multiple domains, being primary for some domains and
secondary for others.

3.1.1. Primary

A Primary Master Server is a server that loads its data from a file on disk. This server
may also delegate authority to other servers in its domain.

3.1.2. Secondary

A Secondary Master Server is a server that is delegated authority and receives its data for
a domain from a primary master server. At boot time, the secondary server requests all the data
for the given zone from the primary master server. This server then periodically checks with
the primary server to see if it needs to update its data.

tv AX is a Trademark of Digital Equipment Corporation

Name Server Operations Guide for BIND SMM:11-3

3.2. Caching Only Server

All servers are caching servers. This means that the server caches the information that it
receives for use until the data expires. A Caching Only Server is a server that is not authoritative for
any domain. This server services queries and asks other servers, who have the authority, for the
information needed All servers keep data in their cache until the data expires, based on a time to
live field attached to the data when it is received from another server.

3.3. Remote Server

A Remote Server is an option given to people who would like to use a name server on their
workstation or on a machine that has a limited amount of memory and CPU cycles. With this
option you can run all of the networking programs that use the name server without the name server
running on the local machine. All of the queries are serviced by a name server that is running on
another machine on the network.

4. Setting up Your Own Domain

When setting up a domain that is going to be on a public network the site administrator should
contact the organization in charge of the network and request the appropriate domain registration form.
An organization that belongs to multiple networks (such as CSNET, DARPA Internet and BITNED
should register with only one network.

The contacts are as follows:

4.1. DARPA Internet

Sites that are already on the DARPA Internet and need information on setting up a domain
should contact HOSTMASTER@SRI-NIC.ARPA. You may also want to be placed on the BIND
mailing list, which is a mail group for people on the DARPA Internet running BIND. The group
discusses future design decisions, operational problems, and other related topic. The address to
request being placed on this mailing list is:

bind-request @ ucbarpa • Berkeley .EDU.

4.2. CSNET

A CSNET member organization that has not registered its domain name should contact the
CSNET Coordination and Information Center (CIC) for an application and information about setting
up a domain.

An organization that already has a registered domain name should keep the CI C informed
about how it would like its mail routed. In general, the CSNET relay will prefer to send mail via
CSNET (as opposed to BITNET or the Internet) if possible. For an organization on multiple net­
works, this may not always be the preferred behavior. The CIC can be reached via electronic mail
at cic@sh.cs.net, or by phone at (617) 497-2777.

4.3. BITNET

If you are on the BITNET and need to set up a domain, contact INFO@BITNIC.

5. Files

The name server uses several files to load its data base. This section covers the files and their
formats needed for named.

5.1. Boot File

This is the file that is first read when named starts up. This tells the server what type of server
it is, which zones it has authority over and where to get its initial data. The default location for this

SMM:II-4 Name Server Operations Guide for BIND

file is I etc I named. boot. However this can be changed by setting the BOOTFILE variable when
you compile named or by specifying the location on the command line when named is started up.

5.1.1. Domain

The line in the boot file that designates the default domain for the server looks as follows:

domain Berkeley.Edu

The name server uses this information when it receives a query for a name without a ".".
When it receives one of these queries, it appends the name in the second field to the query
name.

5.1.2. Primary Master

The line in the boot file that designates the server as a primary server for a zone looks as
follows:

primary Berkeley. Edu I etclucbhosts

The first field specifies that the server is a primary one for the zone stated in the second field.
The third field is the name of the file from which the data is read.

5.1.3. Secondary Master

The line for a secondary server is similar to the primary except for the word secondary
and the third field.

secondary Berkeley.Edu128.32.0.10 128.32.0.4

The first field specifies that the server is a secondary master server for the zone stated in the
second field. The rest of the line, lists the network addresses for the name servers that are pri­
mary for the zone. The secondary server gets its data across the network from the listed servers.
Each server is tried in the order listed until it successfully receives the data from a listed server.

5.1.4. Caching Only Server

You do not need a special line to designate that a server is a caching server. What
denotes a caching only server is the absence of authority lines, such as secondary or primary in
the boot file.

All servers should have a line as follows in the boot file to prime the name servers cache:

cache I etclnamed.ca

For information on cache file see section on Cache Initialization.

5.1.5. Remote Server

To set up a host that will use a remote server instead of a local server to answer queries,
the file I etc! resolv . con! needs to be created. This file designates the name servers on the net­
work that should be sent queries. It is not advisable to create this file if you have a local server
running. If this file exists it is read almost every time gethostbyname () or gethostbyaddr () is
called.

S.2. Cache Initialization

S.2.1. named.ca

The name server needs to know the server that is the authoritative name server for the
network. To do this we have to prime the name server's cache with the address of these higher
authorities. The location of this file is specified in the boot file. This file uses the Standard
Resource Record Format covered further on in this paper.

Name Server Operations Guide for BIND SMM:ll-S

5.3. Domain Data Files

There are three standard files for specifying the data for a domain. These are named. local,
hosts and host. rev. These files use the Standard Resource Record Fonnat covered later in this
paper.

5.3.1. named • local

This file specifies the address for the local loopback interface, better known as localhost
with the network address 127.0.0.1. The location of this file is specified in the boot file.

5.3.2. hosts

This file contains all the data about the machines in this zone. The location of this file is
specified in the boot file.

5.3.3. hosts. rev

This file specifies the IN-ADDR. ARPA domain. This is a special domain for allowing
address to name mapping. As internet host addresses do not fall within domain boundaries, this
special domain was formed to allow inverse mapping. The IN-ADDR. ARPA domain has four
labels preceding it These labels correspond to the 4 octets of an Internet address. All four octets
must be specified even if an octets is zero. The Internet address 128.32.0.4 is located in the
domain 4 .0.32. 128 . IN-ADDR . ARPA. This reversal of the address is awkward to read but
allows for the natural grouping of hosts in a network.

5.4. Standard Resource Record Format

The records in the name server data files are called resource records. The Standard Resource
Record Format (RR) is specified in RFC882 and RFC973. The following is a general description of
these records:

{name} {ttl} addr-class Record Type Record Specific data

Resource records have a standard format shown above. The first field is always the name of the
domain record For some RR's the name may be left blank; in that case it takes on the name of the

. previous RR. The second field is an optional time to live field. This specifies how long this data
will be stored in the data base. By leaving this field blank the default time to live is specified in the
Start Of Authority resource record (see below). The third field is the address class; there are
currently two classes: IN for internet addresses and ANY for all address classes. The fourth field
states the type of the resource record. The fields after that are dependent on the type of the RR.
Case is preserved in names and data fields when loaded into the name server. All comparisons and
lookups in the name server data base are case insensitive.

The following characters have special meanings:

A free standing dot in the name field refers to the current domain.

@ A free standing @ in the name field denotes the current origin.

Two free standing dots represent the null domain name of the root when used in the name
field.

\X Where X is any character other than a digit (0-9), quotes that character so that its special
meaning does not apply. For example, "\." can be used to place a dot character in a label.

\DDDWhere each D is a digit, is the octet corresponding to the decimal number described by DDD.

()

*

The resulting octet is assumed to be text and is not checked for special meaning.

Parentheses are used to group data that crosses a line. In effect, line terminations are not
recognized within parentheses.

Semicolon starts a comment; the remainder of the line is ignored.

An asterisk signifies wildcarding.

SMM:11-6 Name Server OperatIOns Guide for BIND

Most resource records will have the current origin appended to names if they are not ter­
minated by a ".". This is useful for appending the current domain name to the data, such as
machine names, but may cause problems where you do not want this to happen. A good rule of
thumb is that, if the name is not in of the domain for which you are creating the data file, end the
name with a".".

5.4.1. $INCLUDE

An include line begins with $INCLUDE, starting in column 1, and is followed by a file
name. This feature is particularly useful for separating different types of data into multiple files.
An example would be:

$INCLUDE lusr/nameclldatalmailboxs

The line would be interpreted as a request to load the file /usr/named/data/mailbo:xes. The
$INCLUDE command does not cause data to be loaded into a different zone or tree. This is sim­
ply a way to allow data for a given zone to be organized in separate file3. For example, mailbox
data might be kept separately from host data using this mechanism.

5.4.2. $ORIGIN

The origin is a way of changing the origin in a data file. The line starts in column 1. and is
followed by a domain origin. This is useful for putting more then one domain in a data file.

5.4.3. SOA· Start Of Authority

name
@

{ttl} addr-class
IN

SOA
SOA
1.1
3600
300
3600000
3600)

Origin
ucbvax.Berkeley.Edu.
; Serial
; Refresh
; Retry
; Expire
; Minimum

Person in charge
kjd.ucbvax.Berkeley.Edu. (

The Start of Authority, SOA, record designates the start of a zone. The name is the name of the
zone. Origin is the name of the host on which this data file resides. Person in charge is the mail­
ing address for the person responsible for the name server. The serial number is the version
number of this data file, this number should be incremented whenever a change is made to the
data. The name server cannot handle numbers over 9999 after the decimal point. The refresh
indicates how often, in seconds, a secondary name servers is to check with the primary name
server to see if an update is needed. The retry indicates how long, in seconds, a secondary
server is to retry after a failure to check for a refresh. Expire is the upper limit, in seconds, that
a secondary name server is to use the data before it expires for lack of getting a refresh.
Minimum is the default number of seconds to be used for the time to live field on resource
records. There should only be one SOA record per zone.

5.4.4. NS· Name Server

{name} {ttl} addr-class NS
IN NS

Name servers name
ucbarpa. Berkeley. Edu.

The Name Server record, NS, lists a name server responsible for a given domain. The first name
field lists the domain that is serviced by the listed name server. There should be one NS record
for each Primary Master server for the domain.

5.4.5. A· Address

{1UJ1fU!} {ttl}
ucbarpa

addr-class A
IN A
IN A

address
128.32.0.4
10.0.0.78

Name Server Operations Guide for BIND SMM:II-7

The Address record, A, lists the address for a given machine. The name field is the machine
name and the address is the network address. There should be one A record for each address of
the machine.

5.4.6. mNFO· Host Information

{name} {ttl} addr-class HINFO
ANY HINFO

Hardware
VAX-111780

OS
UNIX

Host Information resource record, HINFO, is for host specific data. This lists the hardware and
operating system that are running at the listed host. It should be noted that only a single space
separates the hardware info and the operating system info. If you want to include a space in the
machine name you must quote the name. Host information is not specific to any address class,
so ANY may be used for the address class. There should be one HINFO record for each host.

5.4.7.
WKS • Well Known Services

{name} {ttl} addr-class
IN
IN

WKS
WKS
WKS

The Well Known Services record, WKS,
describes the well known services

address
128.32.0.10
128.32.0.10

supported by a particular protocol at a specified address.

protocol
UDP
TCP

The list of services and port numbers come from the list of services
specified in fetclservices.
There should be only one WKS record per protocol per address.

5.4.8. CNAME· Canonical Name

aliases {ttl} addr-class
ucbmonet IN

CNAME
CNAME

Canonical name
monet

list of services
who route timed domain
(echo telnet
discard sunrpc sftp
uucp-path systat daytime
netstat qotd nntp
link chargen ftp
auth time whois mtp
pop rje finger smtp
supdup hostnames
domain
nameserver)

Canonical Name resource record, CNAME, specifies an alias for a canonical name. An alias
should be unique and all other resource records should be associated with the canonical name
and not with the alias. Do not create an alias and then use it in other resource records.

5.4.9. PfR· Domain Name Pointer

name
7.0

{ttl} addr-class
IN

PTR
PTR

real name
monet. Berkeley. Edu •

A Domain Name Pointer record, PTR, allows special names to point to some other location in
the domain. The above example of a PTR record is used in setting up reverse pointers for the
special IN-ADDR .ARPA domain. This line is from the example hosts. rev file. PTR names
should be unique to the zone.

5.4.10. MB· Mailbox

name {ttl} addr-class MB Machine

SMM:11-8 Name Server Operations Guide for BIND

miriam IN MB vineyd.DEC.COM.

MB is the Mailbox record. This lists the machine where a user wants to receive mail. The name
field is the users login; the machine field denotes the machine to which mail is to be delivered.
Mail Box names should be unique to the zone.

5.4.11. MR - Mail Rename Name

name {ttl} addr-class MR corresponding MB
Postmistress IN MR miriam

Main Rename, MR, can be used to list aliases for a user. The name field lists the alias for the
name listed in the fourth field, which should have a corresponding MB record.

5.4.12. MINFO· Mailbox Information

name {ttl} addr-class MINFO requests
BIND-REQUEST

maintainer
BIND IN MINFO kjd • Berkeley. Edu •

Mail Information record, MINFO, creates a mail group for a mailing list. This resource record
is usually associated with a mail group Mail Group, but may be used with a Mail Box record.
The name specifies the name of the mailbox. The requests field is where mail such as requests
to be added to a mail group should be sent The maintainer is a mailbox that should receive
error messages. This is particularly appropriate for mailing lists when errors in members names
should be reported to a person other than the sender.

5.4.13. MG· Mail Group Member

{mail group name} {ttl} addr-class MG
IN MG

Mail Group, MG lists members of a mail group.

member name
Bloom

An example for setting up a mailing list is as follows:

Bind IN MINFO Bind-Request kjd. Berkeley. Edu .
IN MG Ralph. Berkeley .Edu.
IN MG Zhou.Berkeley.Edu.
IN MG Painter. Berkeley. Edu •
IN MG Riggle. Berkeley. Edu •
IN MG Terry .pa.Xerox.Com.

5.4.14. MX· Mail Exchanger

name {ttl}
Munnari .OZ • AU •
* .IL.

addr-class MX
IN MX
IN MX

preference value
o
o

mailer exchanger
Seismo . CSS • GOY.
RELAY .CS.NET.

Main Exchanger records, MX, are used to specify a machine that knows how to deliver mail to a
machine that is not directly connected to the network. In the first example, above,
Seismo. CSS • GOY. is a mail gateway that knows how to deliver mail to Munnari. OZ. AU •
but other machines on the network can not deliver mail directly to Munnari. These two
machines may have a private connection or use a different transport medium. The preference
value is the order that a mailer should follow when there is more then one way to deliver mail to
a single machine. See RFC974 for more detailed information.

Wildcard names containing the character "*,, may be used for mail routing with MX
records. There are likely to be servers on the network that simply state that any mail to a
domain is to be routed through a relay. Second example, above, all mail to hosts in the domain
IT.. is routed through RELAY.CS.NET. This is done by creating a wildcard resource record,
which states that *.IL has an MX of RELAY .CS.NET.

Name Server Operations Guide for BIND SMM:11-9

5.5. Sample Files

The following section contains sample files for the name server. This covers example boot
files for the different types of servers and example domain data base files.

5.5.1. Boot File

5.5.1.1. Primary Master Server

; Boot file for Primary Master Name Server

; type domain source file or host

domain Berkeley.Edu
primary Berkeley.Edu /etc/ucbhosts
cache /etc/named.ca
primary 32. 128.in-addr .arpa /etc/ucbhosts.rev
primary 0.0. 127.in-addr.arpa /etc/named.Iocal

5.5.1.2. Secondary Master Server

; Boot file for Primary Master Name Server

; type

domain
secondary
cache
secondary
primary

domain

Berkeley.Edu
Berkeley.Edu

32. 128.in-addr.arpa
0.0.127 .in-addr .arpa

source file or host

128.32.0.4 128.32.0.10 128.32.136.22
/etc/named.ca
128.32.0.4 128.32.0.10 128.32.136.22
/etclnamed.local

5.5.1.3. Caching Only Server

; Boot file for Primary Master Name Server

; type

domain
cache
primary

domain source file or host

Berkeley.Edu
/etc/named.ca

0.0. 127.in-addr.arpa /etc/named.local

SMM:II-I0

5.5.2. Remote Server

5.5.2.1. I etc/resolv .cont

domain Berkeley.Edu
nameserver 128.32.0.4
nameserver 128.32.0.10

5.5.3. named.ca

,
; Initial cache data for root domain servers.

99999999 IN NS
99999999 IN NS
99999999 IN NS
99999999 IN NS

; Prep the cache (hotwire the addresses).
SRI-NIC.ARP A. 99999999 IN A
USC-ISm.ARP A. 99999999 IN A
USC-ISIC.ARP A. 99999999 IN A
BRL-AOS.ARP A. 99999999 IN A
BRL-AOS.ARP A. 99999999 IN A

5.5.4. named.local

Name Server Operations Guide for BIND

USC-ISIC.ARP A.
USC-ISIB.ARP A.
BRL-AOS.ARP A.
SRI-NIC.ARPA.

10.0.0.51
10.3.0.52
10.0.0.52
128.20.1.2
192.5.22.82

@ IN SOA ucbvax.Berkeley.Edu. kjd.ucbvax.Berkeley.Edu. (
1 ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600) ; Minimum

IN NS ucbvax.Berkeley.Edu.
1 IN P1R localhost.

Name Server Operations Guide for BIND SMM:ll·ll

5.5.5. Hosts

; @(#)ucb-hosts 1.1 (berkeley) 86/02/05

@

localhost
ucbarpa

arpa
ernie

ucbernie
monet

ucbmonet
ucbvax

vax
toybox

toybox
miriam
postmistress
Bind

IN

IN
IN
IN
IN
IN
ANY
IN
IN
ANY
IN
IN
IN
ANY
IN
IN
IN
ANY
IN
IN

IN
IN
ANY
IN
ANY
ANY
ANY
ANY
ANY
ANY
ANY
ANY

SOA

NS
NS
A
A
A
HINFO
CNAME
A
HINFO
CNAME
A
A
HINFO
CNAME
A
A
HINFO
WKS
WKS

CNAME
A
HINFO
MX
MB
MR
MINFO
MG
MG
MG
MG
MG

ucbvax.Berkeley.Edu. kj d.monetBerkeley .Edu. (
1.1 ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
36(0) ; Minimum
ucbarpa.Berkeley.Edu.
ucbvax.Berkeley.Edu.
127.1
128.32.4
10.0.0.78
V AX-111780 UNIX
ucbarpa
128.32.6
V AX-111780 UNIX
ernie
128.32.7
128.32.130.6
V AX-111750 UNIX
monet
10.2.0.78
128.32.10
V AX-111750 UNIX
128.32.0.10 UDP syslog route timed domain
128.32.0.10 TCP (echo teinet
discard sunrpc sftp
uucp-path systat daytime
nets tat qotd nntp
link chargen ftp
auth time whois mtp
pop rje finger smtp
supdup hostnames
domain
nameserver)
ucbvax
128.32.131.119
Pro350 RTII
o monet.Berkeley.Edu
vineydDEC.COM.
Miriam
Bind-Request kjd. Berkeley. Edu.
Ralph. Berkeley. Edu •
Zhou • Berkeley. Edu •
Painter. Berkeley. Edu •
Riggle. Berkeley. Edu •
Terry. pa. Xerox. Com.

SMM:ll·12 Name Server Operations Guide for BIND

5.5.6. host.rev

@(#)ucb-hosts.rev 1.1 (Berkeley) 86/02105

@ IN SOA ucbvax.Berkeley.Edu. kjd.monet.Berkeley.Edu. (
1.1 ; Serial
3600 ; Refresh
300 ; Retry
3600000 ; Expire
3600) ; Minimum

IN NS ucbarpa.Berkeley.Edu.
IN NS ucbvax.Berkeley.Edu.

4.0 IN PTR ucbarpa.Berkeley.Edu.
6.0 IN PTR ernie.Berkeley.Edu.
7.0 IN PTR monet.Berkeley.Edu.
10.0 IN PTR ucbvax.Berkeley.Edu.
6.130 IN PTR monet.Berkeley.Edu.

6. Domain Management

This section contains information for starting, controlling and debugging named.

6.1. fetdre.local

The hostname should be set to the full domain style name in 1 etc/rc . local using hostname (1).
The following entry should be added to /etc/rc.local to start up named at system boot time:

if [1/etc/named]; then
/etc/named [options] & echo -n ' named' >/dev/console

fi
This usually directly follows the lines that start syslogd. Do Not attempt to run named from inetd.
This will continuously restart the name server and defeat the purpose of having a cache.

6.2. fetdnamed.pid

When named is successfully started up it writes its process id into the file /etc/named.pid.
This is useful to programs that want to send signals to named. The name of this file may be changed
by defining PIDFILE to the new name when compiling named.

6.3. fetc/hosts

The gethostbyname () library call can detect if named is running. If it is determined that
named is not running it will look in fetcfhosts to resolve an address. This option was added to allow
ifconfg(8C) to configure the machines local interfaces and to enable a system manager to access the
network while the system is in single user mode. It is advisable to put the local machines interface
addresses and a couple of machine names and address in tetc/hosts so the system manager can rcp
files from another machine when the system is in single user mode. The format of fetc/host has not
changed. See hosts(5) for more information. Since the process of reading fetc/hosts is slow, it is
not advised to use this option when the system is in multi user mode.

Name Server Operations Guide for BIND SMM:ll·13

6.4. Signals

There are several signals that can be sent to the named process to have it do tasks without res­
tarting the process.

6.4.1. Reload

SIGHUP - Causes named to read named. boot and reload the database. All previously
cached data is lost. This is useful when you have made a change to a data file and you want
named's internal database to reflect the change.

6.4.2. Debugging

When named is running incorrectly, look first in lusrladm/messages and check for any
messages logged by syslog. Next send it a signal to see what is happening.

SIGINT - Dumps the current data base and cache to lusr/ tmp/ named dump. db This
should give you an indication to whether the data base was loaded correctly. The name of the
dump file may be changed by defining DUMPFILE to the new name when compiling named.

Note: the following two signals only work when named is built with DEBUG defined.

SIGUSRl - Turns on debugging. Each following USRl increments the debug level. The
output goes to /usr/tmp/named.run The name of this debug file may be changed by defining
DEBUGFlLE to the new name before compiling named.

SIGUSR2 - Turns off debugging completely.

For more detailed debugging, define DEBUG when compiling the resolver routines into
lIibllibc.a.

ACKNOWLEDGEMENTS

Many thanks to the users at U .C. Berkeley for falling into many of the holes involved with integrat­
ing BIND into the system so that others would be spared the trauma. I would also like to extend gratitude
to Jim McGinness and Digital Equipment Corporation for permitting me to spend most of my time on this
project.

Ralph Campbell, Doug Kingston, Craig Partridge, Smoot Carl-Mitchell, Mike Muuss and everyone
else on the DARPA Internet who has contributed to the development of BIND. To the members of the ori­
ginal BIND project, Douglas Terry, Mark Painter, David Riggle and Songnian Zhou.

Anne Hughes, Jim Bloom and Kirk McKusick and the many others who have reviewed this paper
giving considerable advice.

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), Arpa Order
No. 4871 monitored by the Naval Electronics Systems Command under contract No. NOOO39-84-C-0089.
The views and conclusions contained in this document are those of the authors and should not be inter­
preted as representing official policies, either expressed or implied, of the Defense Research Projects
Agency, of the US Government, or of Digital Equipment Corporation.

SMM:11-14

[Birrell]

[RFC819]

[RFC882]

[RFC883]

[RFC973]

[RFC974]

[Terry]

[Zhou]

Name Server Operations Guide for BIND

REFERENCES

Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M.D., "Grapevine: An Exer­
cise in Distributed Computing." In Comm. A.C.M. 25, 4:260-274 April 1982.

Su, Z. Postel, J., "The Domain Naming Convention for Internet User Applications."
Internet Request For Comment 819 Network Information Center, SRI International,
Menlo Park, California. August 1982.

Mockapetris, P., "Domain Names - Concept and Facilities." Internet Request For Com­
ment 882 Network Information Center, SRI International, Menlo Park, California.
November 1983.

Mockapetris, P., "Domain Names - Implementation and Specification." Internet
Request For Comment 883 Network Information Center, SRI International, Menlo Park,
California November 1983.

Mockapetris, P., "Domain System Changes and Observations." Internet Request For
Comment 973 Network Information Center, SRI International, Menlo Park, California.
February 1986.

Partridge, C., "Mail Routing and The Domain System." Internet Request For Comment
974 Network Information Center, SRI International, Menlo Park, California. February
1986.

Terry, D. B., Painter, M., Riggle, D. W., and Zhou, S., The Berkeley Internet Name
Domain Server. Proceedings USENIX Summer Conference, Salt Lake City, Utah. June
1984, pages 23-31.

Zhou, S., The Design and Implementation of the Berkeley Internet Name Domain (BIND)
Servers. UCBICSD 84/177. University of California, Berkeley, Computer Science Divi­
sion. May 1984.

Bug Fixes and Changes in 4.3BSD

April 15, 1986

Marshall Kirk McKusick
James M. Bloom
Michael J. Karels

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

ABSTRACT

This document briefly describes the changes in the Berkeley version of UNIXt for
the V AX:\: between the 4.2BSD distribution of July 1983 and this, its revision of March
1986. It attempts only to summarize the changes that have been made.

Notable improvements

• The performance of the system has been improved to be at least as good as that of 4.1BSD, and in
many instances is better. This was accomplished by improving the performance of kernel operations,
rewriting C library routines for efficiency, and optimization of heavily used utilities.

• Many programs were rewritten to do I/O in optimal blocks for the filesystem. Most of these pro­
grams were doing their own I/O and not using the standard I/O library.

• The system now supports the Xerox Network System network communication protocols. Most of
the remaining Internet dependencies in shared common code have been removed or generalized.

• The signal mechanism has been extended to allow selected signals to interrupt pending system calls.

• The C and Fortran 77 compilers have been modified so that they can generate single precision float­
ing point operations.

• The Fortran 77 compiler and associated I/O library have undergone extensive changes to improve
reliability and performance. Compilation may, optionally, include optimization phases to improve
code density and decrease execution time. Many minor bugs in the C compiler have been fixed.

• The math library has been completely rewritten by a group of numerical analysts to improve both its
speed and accuracy.

• Password lookup functions now use a hashed database rather than linear search of the password file.

• C library string routines and several standard I/O functions were recoded in V AX assembler for
greater speed. The C versions are available for portability. Standard error is now buffered within a
single call to perform output

• The symbolic debugger, dbx, has been dramatically improved. Dbx works on C, Pascal and Fortran
77 programs and allows users to set break points and trace execution by source code line numbers,

t UNIX is a trademark of Bell Laboratories.
:j: DEC, V AX, PDP, MASSBUS, UNIBUS, Q-bul and ULTRIX are trademarks of Digital Equipment Corporation.

SMM:12-2 Bug Fixes and Changes in 4.3BSD

references to memory locations, procedure entry, etc. Dbx allows users to reference structured and
local variables using the program's programming language syntax.

• A new internet name domain server has been added to allow sites to administer their name space
locally and export it to the rest of the Internet. Sites not using the name server may use a static host
table with a hashed lookup mechanism.

• A new time synchronization server has been added to allow a set of machines to keep their clocks
within tens of milliseconds of each other.

adb

arcv

as

at

awk

be

calendar

cat

cb

cc

Bug fixes and changes

Section 1

Locates the stack frame when debugging the kernel. Slight changes were made to output
formats.

Has been retired to lusrlold.

The default data alignment may now be specified on the command line with a -a flag. A
problem in handling filled data was fixed. Some bugs in the handling of dbx stab infor­
mation were fixed.

The user may now choose to run sh or esh. Mail can now be sent to the user after the job
has run; mail is always sent if there were any errors during execution. At now runs with
the user's full permissions. All spool files are now owned by "daemon". The last update
time is in seconds instead of hours. The problems with day and year increments have
been fixed.

Problems when writing to pipes have been corrected.

Be will continue reading from standard input, after failing to open a file specified from
the command line.

Now allows tabs as separators. A subject line with the date of the reminder is added to
each message.

Problems opening standard input multiple times have been fixed. Cat now runs much
faster in the default (optionless) case.

No longer dumps core for unterminated comments or large block comments. For most
purposes, indent (1) is far superior to eb .

The C compiler has some new features as well as numerous bug fixes. The principal new
feature is a -f flag that tells the compiler to compute expressions of type float in single
precision, following the ANSI C standard proposals. The C preprocessor has been
extended to generate the dependency list for source files. The output is designed for
inclusion in a makefile without modification.

The bug fixes are many and varied. Several fixes deal with type coercion and sign exten­
sion. Signed char and short values are now properly sign-extended in comparisons with
unsigned values of the same length. Conversion of a signed char value to unsigned
short now correctly sign-extends to 16 bits (on the VAX). N on-integer switch expres­
sions now elicit warnings and the appropriate conversions are emitted. Unsigned longs
were being treated as signed for the purpose of conversion to floating types; the compiler
now produces the appropriate complicated instruction sequence to do this right. An
ancient misunderstanding that caused i *= d to be treated as i = i * (int) d instead of i =
(double) i * d for int i and double d has been corrected. If a signed integer division or
modulus is cast to unsigned, the unsigned division or modulus routine is no longer used to
compute the operation.

Bug Fixes and Changes in 4.3BSD S~:12-3

checknr

chfn

chgrp

chmod

chsh

clear

Some problems with bogus input and bogus output are now handled better; more syntax
errors are caught and fewer code errors are emitted. Many declarations and expressions
involving type void that used to be disallowed now work; some expressions that were not
supposed to work are now caught. A pointer to a structure no longer stands a chance of
being incremented by the size of its first element instead of the size of the structure when
the value of the element is used at the same time the pointer is postincremented. Side
effects in the left hand side of an unsigned assignment operator expression are now per­
formed only once. Hex constants of the form 01234x56789 are now illegal. External
declarations of functions may now possess arguments only if they are also definitions of
functions. Declarations or initializations for objects of type structure where the particular
structure was not previously defined used to result in confusing messages or even com­
piler errors; it's now possible to deduce one's mistake.

Some effort has been put into making the compiler more robust. Initializers containing
casts sometimes would draw complaints about compiler loops or other problems; these
now work properly. The register resource calculation now takes into account implicit
conversions from float to double type, so that the code generator will not block by run­
ning out of registers. The compiler is more diligent about reducing structure type argu­
ments to functions and no longer gives up when it cannot reduce the address to an offset
from a register in only two tries. Programs that end in "\ n # " no longer cause compiler
core dumps. The compiler no longer dumps core for floating point exceptions that occur
during reduction of constant expressions. The compiler expression tree table was
enlarged so that it does not run out of space as quickly when processing complex expres­
sions such as putchar(c). The C preprocessor no longer uses a statically allocated space
for strings. The preprocessor also now handles # line directives properly and correctly
treats standard input from a terminal or a pipe. Two fencepost errors in the C peephole
optimizer were adjusted and it now dumps core less often.

Some minor code efficiency changes were made. An important change is that the com­
piler now recognizes unsigned division and modulus operations that can be done with
masking and shifting; this avoids the usual subroutine call overhead associated with these
operations. The computation of register resources has improved so that the number of
registers required for an expression is not overestimated as often. Register storage
declarations for float variables now cause them to be put in registers if the -f flag is used.
The compiler itself is somewhat faster, thanks primarily to a change that considerably
reduces symbol table searches when entering and leaving blocks.

The compiler sources have been rearranged to make maintenance easier. The names of
some source files have been changed to protect the innocent; header files now end in .h,
and names of files reflect their functions. Configuration control has been simplified, so
that only a simple configuration include file and the makefile flags variable should have to
be considered when putting the compiler together. Redundant information has been elim­
inated from include files and the make file, to reduce the chance of introducing changes
that will make data structures or defines inconsistent. Values for opcodes are now taken
from an include file pcc.h that is common to all the compilers that use the C compiler
back end The peephole optimizer can now be compiled without -w.

The .T & thl directive was added to the list of known commands.

Has been merged into passwd(l).

An option has been added for recursively changing the group of a directory tree.

Can now recursively modify the permissions on a directory tree. The mode string was
extended to tum on the execute bit conditionally if the file is executable or is a directory.

Has been merged into passwd(l).

Now has a proper exit status.

Sl'vfM:12-4

colrm

compact

compress

cp

crypt

csh

ctags

date

dbx

dd

deroff

diff

diff3

echo

error

ex

eyacc

r77

Line length limitations have been removed.

Has been retired to I usrlold.

Bug Fixes and Changes in 4.3BSD

Replaces compact as the preferred method to use in saving file system space.

No longer suffers problems when copying a directory to a nonexistent name or when
some directories are not writable in a recursive copy. The -p flag was added to preserve
modes and times when copying files.

Waits for makekey to finish before reading from its pipe.

Has a new flag to stop argument processing so set user id shell scripts are more secure.
File name completion may be optionally enabled. Csh keeps better track of the current
directory when traversing symbolic links. Some major work was done on performance.

Ctags was modified to recognize LEX and Y ACC input files. Files ending in .y are
presumed to be Y ACC input, and a tag is generated for each non-terminal define~ plus a
tag yyparse for the first %% line in the file. Files ending in .1 are checked to see if they
are LEX or Lisp files. A tag yyJex is generated for the first %% line in a LEX file. In
addition, for both kinds of files, any C source after a second %% is scanned for tags.

The date command can now be used to set the date on all machines in a network using
the timed (8) program. More information is logged regarding the setting of time.

Major improvements have been made to dbx since the 4.2BSD release. Large numbers of
bug fixes have made dbx much more pleasant to use; in particular many pointer errors
that used to cause dbx to crash have been caught. Some new features have been installed;
for instance it is now possible to search for source lines with regular expressions. The
Fortran and Pascal language support is much improve~ and the DEC Western Research
Labs Modula-2 compiler is now supported.

Exit codes have been changed to correspond with normal conventions.

Deroff no longer throws out two letter words.

Context diffs merge nearby changes. New flags were added for ignoring white space
differences and for insensitivity to case.

The RCS version of diff3 has been merged into the standard diff3 under two new flags, -E
and-X.

No longer accepts -nanything in place of -no

Support for the DEC Western Research Labs Modula-2 compiler has been added. Error
will now be able to run when there is no associated tty, so it may now be driven from
at(1), etc. If the -n and -t options are selected, error will not touch files.

Support for changing window size has been added, and terminals with many lines, such as
the WE5620, are now handled. Several small bug fixes were installed and various facili­
ties have been made faster. Ex only reads the file .exrc if it is owned by the user, unless
the sourceany option is set. It only looks for "mode lines" if the mode line option is set.
If Lisp mode is set, it allows "-" to be used in "words". Expreserve now provides a
better description of what happened to a user's buffer when disaster struck.

eyacc is no longer a standard utility. It has been moved to the Pascal source directory.

The Fortran compiler has been substantially improved Many serious bugs have been
fixed since the last release; the compiler now passes several widely used tests such as the
Navy Fortran Compiler Validation System and the IMSL and NAG mathematical
libraries. The optimizer is now trustworthy and robust; the many gruesome bugs that it
used to inflict on programs, such as resolving different variables in the same common
block into the same temporary for purposes of common subexpression elimination, have
been fixed. Do loops, which used to suffer from deadly problems where loop variables,
limit values and tests all managed to misfire even without the help of the optimizer, now
produce proper results. Many severe bugs with character variables and expressions have
been fixed; it is now possible to have variable length character variables on either side of

Bug Fixes and Changes in 4.3BSD SMM:12-5

an assignmen~ and the lengths of concatenations are properly computed. Several register
allocation bugs have been fixed, among them the awful bug that a = ira) where a is in a
register would not alter the value of a. Register allocation, though significantly improved,
is still pitifully naive compared with the methods found in production Fortran compilers.
Save statements cause variables to be retained, even if a subroutine returns from inside a
loop. It is no longer possible to modify constants that are passed as parameters to subrou­
tines and thus change all future uses of the constant when it is used as a subroutine
parameter. Multi-level equivalences are no longer scrambled, and the cmplx intrinsic
conversion function no longer garbles its result. The compiler now generates integer
move instructions where it used to produce floating point move instructions, even when
not optimizing, so that non-standard use of equivalences between real and integer types
work as on most other systems. Assign statements now work with format statements.
The "first character" parameter of a substring is now evaluated only once instead of
twice. Restrictions on parameter variables are now enforced, and the compiler no longer
aborts while trying to make sense of impossible parameter variables. The restrictions on
array dimension declarators are much closer to the standard and much more stringent.
Statement ordering used to be much more flexible, and wrong; it is now strictly enforced,
leading to fewer compiler errors. The compiler now chides the user for declaring adju­
stable length character variables that are not dummy arguments. The compiler under­
stands that subroutines and functions are different and prevents them from being used
interchangeably. The parser is no longer fooled by excess "positional 110 control"
parameters in 110 statements.

Several changes have been made to prevent the compiler itself from aborting; in particu­
lar, computed gotos do not elicit compiler core dumps, nor do multiplications by zero, nor
do unusual statement numbers. The compiler now recognizes and complains about vari­
ous kinds of hardware errors that can result from evaluating constant expressions, such as
integer and floating overflow; it no longer dies when it receives a SIGFPE. Several
memory management bugs that caused the compiler to dump core for seemingly random
things have met their demise. Some conversion operations used to cause the code genera­
tor to emit impossible assembly language instructions that in tum caused the assembler
some indigestion; these are now fixed. Some symbol table modifications were made to
help out dbx(l), so that values of common and parameter storage classes and logical
types are now accessible from dbx. When the compiler does abo~ the error messages
produced are now comprehensible to human beings and messy core dumps are no longer
left behind. Some effort has been made to improve error reporting for program errors and
to handle exceptional conditions in which the old compiler used to punt

Some improvements in optimization were added to the compiler. Offsets to static data are
now shorter than before; the compiler used to produce 32-bit offsets for all local vari­
ables. Real variables may now be allocated to registers. Format strings in format state­
ments are compiled for considerable runtime savings; for various reasons, format strings
in character constants and variables in 110 statements are not. Common subexpression
elimination now reduces the re-evaluation of exponentiations in polynomial expressions.
Some problems with alignment of data that caused ghastly performance degradation have
been repaired.

Some changes have been made in the way the compiler is put together. The compiler
front end now uses the common intermediate code format established in the include file
pcc.h to communicate with the back end. The back end has been re-merged with the C
compiler sources, so that bug fixes to the C compiler are automatically propagated to the
Fortran back end. Similarly, the Fortran and C peephole optimizers were re-merged.

Some new features were added to the compiler. There is now a -r8 flag to coerce real
and complex variables and constants to double precision and double complex types for
extended precision. There is a -q flag to suppress listing of file and entry names during
compilation. Some foolproofing was added to the compiler driver; it is no longer possible

SMM:12-6

fed

find

Bug Fixes and Changes in 4.3BSD

to wipe out a source file by entering "f77 -0 foo.f", and it now complains about incom­
patible combinations of options.

Many I/O library bugs were fixed. Auxiliary 110 has been fixed to be closer to the stan­
dard: close is a no-op on a non-existent or unconnected unit; rewind and backspace are
no-ops on an unconnected unit; endfile opens an unconnected unit Inquire returns true
when asked if units O-MAXUNIT exist, false for other integers; it used to return false for
legal but unconnected file numbers and errors for illegal numbers. Inquire now fills in all
requested fields, .even if the file or unit does not exist or is unconnected. Inquire by unit
now correctly returns the unit number. Most of the formatted 110 input scanning has been
rewritten to check for invalid input. For example, with anj10.0 format term, the follow­
ing all used to read as 12.345: "1+2.345", "12.3abc45", "12.3.45", "12345el-"; they
now generate errors. Conversely, the legal datum "12345-2" for 12.345 used to be
misread as -1234.52. The b format term is now fixed, and bz now works for short
records. Reads of short logical variables no longer overwrite neighboring data in
memory. Infinite loops in formatted output (an 110 list but no conversion terms in the for­
mat) are now caught, printing multiple records after the list is exhausted. In list directed
reads, a repeat count, r, followed by an asterisk and a space (and no comma) now follows
the standard and skips r list items. Repeat counts for complex constants now work. Tabs
are now fully equivalent to spaces in list directed input. There are two new formatting
terms, x for hex and 0 for octal. The library now attempts to get to the next record if
doing an err= branch on error; the standard does not require this, but it is undesirable to
leave the system hanging in mid record. After input errors, the 110 library now tries to
skip to the next line if there is another read. This functionality is not required by the stan­
dard and is still not guaranteed to work.

The Fortran runtime and I/O libraries have several new features. Many routines and vari­
ables have been made static, cutting the number of symbols defined by the library almost
in half. Many source files have been reorganized to eliminate the loading of extraneous
routines; for example, the formatted read routines are not loaded if a program only per­
forms formatted writes. Standard error is now buffered. All error processing is now cen­
tralized in a single routine, f17 _abort. The f17 _abort routine has been separated from the
normal Fortran main routine so that C code can call Fortran subroutines. Fortran pro­
grams that abort normally get a core file only if they are loaded with -g; the environment
variable t77 _dump Jlag may be used to override this by setting it to y or n. The rindex
routine now works as documented. The C library malloc and random routines may now
be accessed from Fortran.

The new V AX math library has been incorporated and some bugs in calling math library
routines have been fixed. The routine d _ dpTod was added for use with the -r8 flag. The
sinh and tanh routines have been deleted as they are loaded directly from the math library.
The logJO routine from the math library is now used by r)gJO and d_lgJO. The pow rou­
tines now divide by zero when zero is raised to a negative power so as to generate an
exception. Complex division by zero now generates an error message.

Appropriately named environment variables now override default file names and names
in open statements; see "Introduction to the f77 I/O Library" for details. Unit numbers
may vary from 0 to 99; the maximum number that can be open simultaneously depends
on the system configuration limit (the library does not check this value). Namelist 110
similar to that in VMS Fortran has been added to the compiler, and library routines to
implement it have been added to the 110 library. The documents "A Portable Fortran 77
Compiler" and "Introduction to the f77 JiO Library" have been revised to describe these
changes. The new help system on the distribution tape in the user contributed software
section contains a large set of help files for f77.

Has been retired to lusTlold.

Some new options have been added. It is now possible to choose users or groups that
have no names by using the -Douser and -nogroup options. The -Is option provides a

Bug Fixes and Changes in 4.3BSD SMM:12-7

finger

file

from

ftp

gprof

groups

help

hostid

indent

install

iostat

kill

lastcomm

ld

learn

leave

lex

lint

built in ls facility to allow the printing of various file attributes; it is identical to "Is
-lgids". It is now possible to restrict find to the file system of the initial path name with
the -xdev option. A new type, -type s, for sockets has been added. Symbolic links are
now handled better. Globbing is now faster. Find supports an abbreviated notation,
"find pattern/' which searches for a pattern in a database of the system's path names;
this is much faster than the standard method.

Despite numerous changes, finger still has Berkeley parochialisms. It has been modified
to provide finger information over the network. Control characters are mapped to their
printable equivalents (e.g. AX) to avoid trojan horses in .plan and .profile files.

File has been extended to recognize sockets, compressed files (.2), and shell scripts.
When it determines that a file is a shell script, it tries to discover whether it is a Bourne
shell script or a C shell script. The special bits set user id, sticky, and append-only are
also noted. The value of a symbolic link is now printed.

An error message is printed if the requested mailbox cannot be opened.

Many bugs have been fixed. New features are: support for new RFC959 FrP features
(such as "store unique"), new commands that manipulate local and remote file names to
better support connections to non-UNIX systems, support for third party file transfers
between two simultaneously connected remote hosts, transfer abort support, expanded
and documented initialization procedures (the .netrc file), and a simple command macro
facility.

Uses setitimer to discover the clock frequency instead of looking it up in ldevlkmem. An
alphabetical index printing routine has been added. A few changes were made to the out­
put format; a new column indicates milliseconds per call.

Now prints out the group listed in the password file in addition to the groups listed in the
groups file.

Has been superseded by the help facility included in the User Contributed Software.

Has been extended to take an Internet address or hostname.

Has been completely rewritten; its default mode now produces programs somewhat more
closely reflecting the local Berkeley style.

The chmod in the install script uses -f so that it does not complain if it fails. When
mv'ing and strip'ing a binary (-s and not -c), the strip is done before the mv to avoid
fragmentation on the destination file system.

Disk statistics are collected by an alternate clock, if it exists. Overflow detection has been
added to avoid printing negative times. A call to fflush was added so that iostat works
through pipes and sockets. Code to handle additional disks was added in the same way as
in vmstat. The header is reprinted when iostat is restarted.

Signal 0 may now be used as documented.

Several bug fixes were installed. Lastcomm now understands the revised accounting
units.

A list of directories to search for libraries may now be specified on the command line.

The "files" lesson has been updated to reflect the default system tty conventions for erase
and kill characters. Learn now uses directory access routines so that trash files can be
removed properly between lessons.

Now ignores SIGTIOU and properly handles the +hhmm option.

The error messages have been made more informative.

Tests for negative or excessively large constant shifts were added. For -a, warnings for
expressions of type long that are cast to type void are no longer emitted. A bug which
caused lint to incorrectly report clashes for the return types of functions has been fixed.
Lint now understands that enums are not ints. The lint description for the C library was

SMM:12-8

lisp

In

lock

logger

login

Ipr

mail

make

man

mesg

mkdir

more

msgs

mv

netstat

Bug Fixes and Changes in 4.3BSD

updated to reflect sections two and three of the Programmers Manual more accurately.
Several more libraries in lusrllib now have lint libraries. Changes were made to accom­
modate the restructuring of the C compiler for common header files.

The Berkeley version of Franz Lisp has not been changed much since the 4.2BSD release.
It has been updated to reflect changes in the C library.

Now prints a more accurate error message when asked to make a symbolic link into an
unwritable directory.

Lock now has a default fifteen minute timeout. The root password may be used to over­
ride the lock. If an EOF is typed, it is now cleared instead of spinning in a tight loop until
the timeout period.

A new program that logs its standard input using syslog(3).

The environment may be set up by another process that calls login. It now uses the new
getttyent (3) routines to read letclttys.

Now supports "restricted access" to a printer- printer use may be restricted to only those
users in a specific group-id

Mail now expects RFC822 headers instead of the obsolete RFC733 headers. A retain
command has been added. If the PAGER variable is set in the environment, it is used to
page messages instead of more (I). The write command now deletes the entire header
instead of only the first line. An unread/Unread command (to mark messages as not
read) was added. If Replyall is set, the senses of reply and Reply are reversed. When
editing a different file, mail always prints the headers of the first few messages. Flock(2)
is used for mailbox locking. Commands "-" and "+" skip over deleted messages;
type user now does a substring match instead of a literal comparison. A -I flag was
added which causes mail to assume that input is a terminal.

A bug which caused ma~ to run out of file descriptors because too many files and direc­
tories were left open has been fixed. Long path names should not be a problem now. A
VP A TH macro has been added to allow the user to specify a path of directories to search
for source files.

Support for alternate manual directories for man, apropos and whatis was added. A side
effect of this is that the whatis database was moved to the man directory. If the source for
a manual page is not available, man will display the formatted version. This allows
machines to avoid storing both formatted and unformatted versions of the manual pages.
The environment variable MANPATH overrides the default directory lusr/man. The-t
option is no longer supported. The printing process has been streamlined by using "more
-s catfile" instead of "cat -s catfile I ull more -f'. Searches of lusrlman/mano are more
lenient about file name extensions. The· source for man was considerably cleaned up; the
magic search lists and commands were put at the top of the source file and the private
copy of system was deleted

So that terminals need not be writable to the world, mesg only changes the group
"write" permission. (Terminals are now placed in group tty so that users may restrict
terminal write permission to programs which are set-group-id tty.)

Prints a "usage" error message instead of an uninformative "arg count" message.

Now allows backward scanning. It will also handle window size changes. It simulates
"crt" style erase and kill processing if the terminal mode includes those options.

Will no longer update .msgsrc if the saved message number is out of bounds.

No longer runs cp (I) to copy a file; instead it does the copy itself.

Routes and interfaces for Xerox NS networks are now shown. The -I option has been
added to specify a particular interface for the default display. The -u option has been
added to show UNIX domain information. Several new mbuf types and statistics are now
displayed; subnetting is now understood.

Bug Fixes and Changes in 4.3BSD SMM:12-9

nice

nrolT

Pascal

passwd

plot

pr

print

prmail

prof

ps

pti

ptx

quota

ran lib

rcp

rdist

refer

rIogin

rm

Is relative as documented, not absolute.

No longer replaces single spaces with tabs when using the -b option.

The Pascal compiler and interpreter have been extensively rewritten so that they will
(nearly) pass through lint. In theory they have not changed from a semantic point of
view. A few bugs have been fixed, and undoubtedly some new ones introduced. The
Pascal runtime support has improved error diagnostics. Real number input scanning now
corresponds to standard Pascal conventions rather than those of scanf(3S).

The passwd program incorporates the functions of chfn and chsh under -f and -s flags.
Whenever information is changed passwd also updates the associated ndbm(3X) database
used by getpwnam and getpwuid. Office room and phone numbers are less dependent on
Berkeley's usage. Checks are made for write errors before renaming the password file.

The output device resolution can now be specified using the -r option. Support has been
added for the Imagen laser printer and the Tektronix 4013.

The buffer is now large enough for 66 x 132 output

Has been retired to lusrlold; use "lpr -p" instead.

Has been retired to lusrlold; use "Mail-u user" instead

Uses setitimer to determine the clock frequency instead of assuming 60 hertz.

Saves static information for faster startup. It now prints symbolic values for wait chan­
nels.

Has been retired to lusrlold.

Cleans up after itself and exits with a zero status on successful completion.

Verifies that the system supports quotas before trying to interpret the quota files.

The -t option updates a library's internal time stamp without rebuilding the table of con­
tents. "Old format" and umangled string table" are now warnings rather than fatal
errors. Memory allocation is done dynamically.

For the convenience of system managers, rep has moved from lusrlucb to Ibin, hence it
can be used without mounting lusr. Remote user names are now specified as user@host
instead of host. user to support Internet domain hostnames that contain periods ("."). A
-p option has been added that preserves file and directory modes, access time, and
modify time. It now uses getservbyname instead of compile time constants.

A new program that keeps files on multiple machines consistent with those on a master
machine.

The key letter code was fixed so that control characters are not generated. Several prob­
lems that caused the generation of duplicate citations, particularly with the -e and -s
options, have been fixed. EOF on standard input is now properly handled. Refer folds
upper and lower case when sorting.

Rlogin negotiates with rlogind to determine whether window size changes should be
passed through. If the remote end is running a 4.3BSD rlogind, it will agree to accept and
pass through SIGWINCH signals to user processes under its control. The -8 flag allows
an 8-bit path on input The -L flag allows an 8-bit path on output. The escape character
is now echoed as soon as a second non-command character is typed. A new command
character "Y has been added to suspend only the input end of the session without stopping
output from the remote end (unless tostop has been set). The ioctl TIOCSPGRP has been
changed to fentl F SETOWN. Several changes have been made to reduce the amount of
data sent after an -interrupt has been typed, and to avoid flushing data when changing
modes.

The -f option produces no error messages and exits with status O. The problem of run­
ning out of file descriptors when doing a recursive remove have been fixed.

SMM:12-10

rmdir

rsh

ruptime

rwho

script

sed

sendbug

sh

size

sort

spell

stty

su
symorder

sysline

systat

tail

talk

tar

tbl

tcopy

tee

telnet

trtp

Bug Fixes and Changes in 4.3BSD

Improved error messages t in the same fashion as mkdir.

The -L, -W, and -8 flags are ignored so that they may be passed along with -e to rlogin.

The -r flag has been added to reverse sort order.

Now allows hosts with long names (greater than 16 characters).

Now propagates window size changes.

No longer loops when the first regular expression is null.

Allows command line -D arguments to override built in defaults for name and host
address of the bugs mailing list. The "Repeat-By" field is now optional. Sendbug now
checks the EDITOR environment variable instead of assuming vi.

"#" is no longer considered a comment character when sh is interactive. The IFS vari­
able is not imported when sh runs as root or if the effective user id differs from the real
user id.

Now exits with the number of errors encountered.

Checks for and exits on write errors.

A couple of trouble-causing words have been removed from spell's stoplist; e.g. "reus"
that caused "reused" to be flagged. A few words that spell would not derive have been
removed from the stoplist. Several hundred words that spell derives without difficulty
from existing words (e.g. "getting" from "get"), or that spell would accept anyway, e.g.
"1st, 2nd" etc., have been removed from lusr/diet/words.

Has been extended to handle window sizes and 8-bit input data paths. "stty size" prints
only the size of the associated terminal.

Only members of group 0 may become root

Now reorders the string table as well as the name list.

Now understands how to run in one-line windows and how to adjust to window size
changes. Numerous small changes have been made in the output format

A new program that provides a cursed form of vmstat, as well as several other status
displays.

Makes use of a much larger buffer.

The new version of talk has an incompatible but well-defined protocol that works across a
much broader range of architectures. The new talk rendezvouses at a new port so that the
old version can still be used during the conversion. Talkd looks for a writable terminal
instead of giving up if a user's first entry in /etclutmp is not writable. Root may always
interrupt Talk now runs set-group-id to group tty so that it is no longer necessary to
make terminals world writable.

Preserves modified times of extracted directories. The -8 option is turned on when read­
ing from standard input. Some sections were rewritten for efficiency.

The hardwired line length has been removed

A new program for doing tape to tape copy of multifile, arbitrarily blocked magnetic
tapes.

Tee's buffer size was increased.

Telnet first tries to interpret the destination as an address; if that fails, it is then passed off
to gethostbyname. If multiple addresses are returned, each is tried in turn until one
succeeds, or the list is exhausted If a non-standard port is specified, the initial "Suppress
Go Ahead" option is not sent. Commands were added to escape the escape character,
send an interrupt command, and send "Are You There". Carriage return is now mapped
to carriage return, newline.

Has many bug fixes. It no longer loops upon reading EOF from standard input. Re­
transmission to send was added, as well as an input buffer flush to both send and receive.

Bug Fixes and Changes in 4.3BSD SMM:12-11

tip

tn3270

tp

tr

trman

tset

users

uucp

vacation

vgrind

vIp

vmstat

vpr

w

wall

where is

which

whoami

window

write

xsend

xstr

Lock files are no longer left lying about after tip exits, and the uucp spool directory does
not need to be world writable. A new "-$" command sends output from a local program
to a remote host Alternate phone numbers are separated only by ","; thus several dialer
characters that were previously illegal may now be used. Tip now arranges to copy a
phone number argument to a safe place, then zero out the original version. This narrows
the window in which the phone number is visible to miscreants using ps or w. Also fixed
was a bug that caused the phone number to be written in place of the connection message.
Carrier loss is recognized and an appropriate disconnect action is taken. Bugs in calculat­
ing time and fielding signals have been fixed. Several new dialers were added'

A new program for emulating an IBM 3270 over a telnet connection.

Memory allocation was changed to avoid real/oc.

Checks for and exits on write errors.

Has been retired to lusrlold.

Can now set the interrupt character. The defaults have been changed when the interrupt,
kill, or erase characters are NULL. Reset is now part of tset. The window size is set if it
has not already been set. Tset continues to prompt as long as the terminal type is unk­
nown.

Now much quieter if there are no users logged on.

Several fixes and changes from the Usenet have been incorporated. The maximum length
of a sitename has been increased from 7 to 14 characters. Uucp has been changed to
understand the new format of letclttys. Support for more dialers has been added.

A new program that answers mail while you are on vacation.

Has been extended to handle the DEC Western Research Labs Modula-2 compiler and
yacc.

Now properly handles indented lines.

The -i flag was added to summarize interrupt activity. The -s listing was expanded to
include cache hit rates for the name cache and the text cache. The standard display has
been generalized to allow command line selection of the disks to be displayed. A new
header is printed after the program is restarted. If an alternative clock is being used to
gather statistics, it is properly taken into account.

Has been retired to lusrlold.

Users logged in for more than one day have login day and hour listed; users idle for more
than one day have their idle time listed in days.

Will now notify all users on large systems.

Now also checks manl, mann, and mano.

Now sets prompt before sourcing the user's .cshrc file to ensure that initialization for
interactive shells is done.

Uses the effective user id instead of the real user id.

A new program that provides multiple windows on ASCII terminals.

Looks for a writable terminal instead of giving up if a user's first entry in letclutmp is not
writable. Root may always interrupt. Non-printable escape sequences can no longer be
sent to an unsuspecting user's terminal. Write now runs set-group-id to group tty so that
it is no longer necessary to make tenninals world writable.

Notice of secret mail is now sent with a subject line showing who sent the mail. The
body of the message includes the name of the machine on which the mail can be read.

Now handles multiple-line strings.

SM:M:12-12 Bug Fixes and Changes in 4.3BSD

Section 2

The error codes for Section 2 entries have been carefully scrutinized to insure that the documentation
properly refiects the source code. User-visible changes in this section lie mostly in the area of the interpro­
cess communication facilities; the Xerox Network System communication procotocols have been added
and the existing communication facilities have been extended and made more robust.

adjtime

fend

kiD

lseek

opeD

ptrace

readlink

rename

select

setsockopt

setpriority

setreuid

sigreturn

sigvec

socket

A new system call which skews the system clock to correct the time of day.

The FASYNC option to enable the SIGIO signal now works with sockets as well as with
ttyS. The interpretation of process groups set with F _ SETOWN is the same for sockets
and for ttyS: negative values refer to process groups, positive values to processes. This is
the reverse of the previous interpretation of socket process groups set using ioctl to enable
SIGURG.

The error returned when trying to signal one's own process group when no process group
is set was changed to ESRCH. Signal 0 can now be used as documented.

Returns an ESPIPE error when seeking on sockets (including pipes) for backward compa­
tibility.

When doing an open with Hags O_CREAT and O_EXCL (create only if the file did not
exist), it is now considered to be an error if the target exists and is a symbolic link. even if
the symbolic link refers to a nonexistent file. This behavior was added for the security of
programs that need to create files with predictable names.

A new header file, <sys1ptrace.h>, defines the request types. When the process being
ttaced stops, the parent now receives a SIGCHlD.

Returns EINV AL instead of ENXIO when trying to read something other than a symbolic
link.

If the ISVTX (sticky text) bit is set in the mode of a directory, files in that directory may
not be the source or target of a rename except by the owner of the file, the owner of the
directory, or the superuser.

Now handles more descriptors. The mask arguments to select are now treated as pointers
to arrays of integers, with the first argument detennining the size of the array. A set of
macros in <sys1types.h> is provided for manipulating the file descriptor sets. The descrip­
tor masks are only modified when no error is returned.

Options that could only be set in 4.2BSD (e.g. SO_DEBUG, SO_REUSEADDR) can now
be set or reset. To implement this change all options must now supply an option value
which specifies if the option is to be turned on or off. The SO_LINGER option takes a
structure as its option value, including both a boolean and an interval. New options have
been added: to get or set the amount of buffering allocated for the socket. to get the type
of the socket, and to check on error status. Options can be set in any protocol layer that
supports them; IP, TCP and SPP all use this mechanism.

The error returned on an attempt to change another user's priority was changed from
EACCES to EPERM.

Now sets the process p _ uid to the new effective user ID instead of the real ID for con­
sistency with usage elsewhere. This avoids problems with processes that are not able to
signal themselves.

Is a new system call designed for restoring a process' context to a previously saved one
(see setjmpllongjmp).

Three new signals have been added, SIGWINCH, SIGUSRl, and SIGUSR2. The first is
for notification of window size changes and the other two have been reserved for users.

The usage of the (undocumented) SIOCSPGRP ioctl has changed. For consistency with
fent", the argument is treated as a process if positive and as a process group if negative.
Asynchronous I/O using SIGIO is now possible on sockets.

Bug Fixes and Changes in 4.3BSD SMM:12-13

swap on

unlink

The error returned for when requesting a device which was not configured as a swap dev­
ice was changed from ENODEV to ElNV AL. In addition, swapon now searches the
swap device tables from from the beginning instead of the second entry.

If the ISVTX (sticky text) bit is set in the mode of a directory, files may only be removed
from that directory by the owner of the file, the owner of the directory, or the superuser.

Section 3

The Section 3 documentation has been reorganized into just two sections. The first section contains
everything previously in Section 3 except the Fortran library routines. The second section contains the
Fortran library routines.

The routines memccpy. memchr, memcmp, memcpy, memset, strchr, strcspn, strpbrk, strrchr, strspn,
and strtok have been added for compatibility with System V. These routines are similar to the string and
block handling ones described in the bstring and string manual pages. The 4.3BSD string and bstring ver­
sions should be faster than these compatibility routines on the V AX.

abort

ctime

ctype

curses

dbm

disktab

encrypt

execvp

frexp

gethost*

getopt

getpw*

Sets SIGILL signal action to the default to avoid looping if SIGILL had been ignored or
blocked.

Daylight savings time calculations have been fixed for Europe and Canada. Programs
making multiple calls to ctime will make fewer system calls. The include file has moved
from <sys/time.h> to <time.h>.

iscntrl has been fixed to correspond to the manual page. Space is a printing character.
isgraph is a new function that returns true for characters that leave a mark on the paper.
to upper. tolower, and toascii have all been documented.

The library handles larger termcap definitions and handles more of the "funny" termcap
capabilities. The old crmode and nocrmode macros have been renamed cbreak and noc­
break respectively; backwards compatible definitions for these macros are provided The
erase and kill characters and the terminal's baudrate may be accessed via erase char,
killchar, and baudrate macros defined in <curses.h>. A touchoverlap function has been
provided, and bugs in overlay and overwrite have been fixed.

Has been rewritten to use the multiple-database version of the library, ndbm.

Has added support for two new fields indicating the use of bad144-style bad sector for­
warding and filesystem offsets specified in sectors.

Now works correctly when called directly.

No longer recognizes" -" as a path separator.

Now handles 0 and powers of 2 correctly. This routine is now written in assembly
language for the V AX.

gethostbyaddr and gethostbyname have been modified to make calls to the name server.
If the name server is not running, a linear scan of the host table is made. With an optional
C library configuration, these routines may instead use an ndbm database for the host
table. One of these lookup mechanisms must be specified when compiling the C library.
The default is to use the name server. gethostent has no equivalent when using the rou­
tines calling the name server. The hostent structure has been modified to support the
return of multiple addresses. The external variable h _errno has been added for returning
error status information from the name server, such as whether a transient error was
encountered

A new routine for parsing command line arguments. It is compatible with the System V
routine by the same name.

getpwnam and getpwuid use a hashed database using ndbm for faster lookups by user
name and ide

SMM:12-14

gettty*

Bug Fixes and Changes in 4.3BSD

getttyent and getttynam are new routines for looking up entries in the new version of
/etc/ttys. The new header file <ttyent.h> describes the associated structures.

getusershell A new routine for retrieving shell names from a file listing the standard interactive shells,
fetc/shells, for the use of passwd (1) and servers providing remote host access.

getwd Getwd no longer changes directories in calculating the working directory; this eliminates
problems with return to the current directory, and results in fewer stat calls.

inet_makeaddr Properly handles INADDR_BROADCAST.

longjmp

maUoc

math

mkstemp

ndbm

nUst

perror

plot

popen

psignal

random

rcmd

ruserok

scandir

setjmp

siginterrupt

signal

sleep

stdio

On errors, longjmp calls the routine longjmperror. The default routine still prints
"longjmp botch" and exits; this may be replaced if a program wants to provide its own
error handler.

Malloc underwent a major rework. Memory requests of page size or larger are always
page aligned, and are now optimized for sizes that are a power of two. The debugging
code has been improved.

The math library has been rewritten to improve the speed and accuracy of the routines on
V AXen with D-format floating point support and machines that conform to the IEEE
standard 754 for double precision floating point arithmetic. The library also has improved
error detection and handling; for the V AX, the library generates reserved operand faults
for invalid operands. Many new functions have been added Two functions have
changed their names; gamma is now 19amma andJmod is now modf. The old math library
is available as -10m.

Is a new routine similar to mktemp except that it returns an open file descriptor for a tem­
porary file. It is intended to replace mktemp in programs (run as root or setuid) that must
be concerned with atomic creation of temporary files without the possibility of having the
temporary file relocated to an unexpected location by a symbolic link.

A new version of dbm that allows multiple databases to be open simultaneously.

Now returns -Ion error or the number of unfound items.

A few of the error messages have been made more accurate.

Supports many new devices: Tektronix 4013, AED graphics terminal, BBN Bitgraph ter­
minal, terminals using the DEC GiGi protocol, HP 2648 terminals and 7221 plotters, and
Imagen laser printers (240 or 300 dots per inch). Libraries also exist for generating plot
files from Fortran programs and for plotting on "dumb" devices such as a standard line
printer.

Dynamically allocates an array for file descriptors. The new signal interface is now used.

New signals have been added to the list.

An initialization bug that messed up default generation was fixed.

Cleans up properly. A problem with doing multiple calls within one program was fixed.

Now is more flexible about the format of .rhosts. Domain style hostnames do not need
full specification if they are a part of the local domain, as determined by hostname (1).
Ruserok is more paranoid about ownership of .rhosts.

Handling of overflow has been fixed.

The signal stack status is now set correctly.

A new routine to set the signals for which system calls are not restarted after signal
delivery.

Keeps track of new features when changing signal handlers.

A couple of races have been fixed.

Has been modified to dynamically allocate slots for file pointers. Output on unbuffered
files is now buffered within a call to printf or Jputs for efficiency. F seek now returns zero
if it was successful. Fread andfwrite have been rewritten to improve performance. On

Bug Fixes and Changes in 4.3BSD SMM:12-15

string

syslog

ttyslot

ualarm

usleep

the V AX, !gets, gets, !puts and puts were rewritten to take advantage of V AX string
instructions and thus improve performance. Line buffering now works on any file
descriptor, not just stdout and stderr. Pute is implemented completely within a macro
except when the buffer is full or when a newline is output on a line-buffered file. Some
sign extension bugs with the return value of pute have been fixed.

The routines index, rindex, streat, stremp, strepy, strlen, strneat, and strnepy have been
rewritten in V AX assembly language for efficiency. The C routines are included for use
on other machines. Only Make/ties need to be modified to select the version to be used.

The third parameter to openlog is a ''facility eode" used to classify messages. Refer­
ences to <syslog.h> should be replaced with references to <sys/syslog.h>.

Uses the new getttyent routine.

A simplified interface to setitimer, similar to alarm but with its argument in
microseconds.

A new routine which resembles sleep but takes an argument in microseconds.

Section 4

The system now supports the 64Kbit and 256Kbit RAM memory controllers for the V AX-111780
and VAX-111785, the second UNIBUS adapter for the VAX-111750, and the new VAX 8600 with
UNIBUS and/or MASSBUS peripherals. The Unibus management routines for network interfaces have
been generalized in 4.3BSD; this change requires stylized changes within most of the network drivers. A
number of changes were made to each terminal multiplexor driver as well. See sections 9 and 11 of the
"Changes to the Kernel in 4.3BSD" document for details.

New manual entries in Section 4 have been created to describe the new communications protocols
and network architectures that are supported. The most recent addition in 4.3BSD is the Xerox Network
System protocols.

arp

ddn

de

dhu

dmc

dmz

ec

ex

hdh

idp

il

ip

ix

Ioetls have been added to enter and delete entries in the Internet-to-Ethernett address
translation tables. Entries may be made permanent, and may be "published" to allow a
host to act as an ARP server.

A new DDN Standard Mode X.25 IMP interface driver.

A new DEC DEUNA 10 Mb/s Ethernet interface driver.

A new DEC DHU-ll communications multiplexor driver.

The configuration flags may be used to specify how to set up the device. Multiple out­
standing DMA requests can now be handled. A new encapsulation is used that allows
multiple protocols to be supported, but is incompatible with that used by 4.2BSD and ear­
lier Ultrix releases.

A new DEC DMZ-32 communications multiplexor driver.

Has a corrected backoff algorithm. Multiple units are supported by placing the Unibus
memory address in the device flags field.

A new Excelan 204 10 Mb/s Ethernet interface driver.

A new ACC IF-Il1HDH IMP interface driver.

A description of the new Xerox Internet Datagram Protocol.

The driver has additional diagnostics and now supports Xerox NS.

Support for IP options was added.

A new Interlan NPl00 10 Mb/s Ethernet interface driver.

t Ethernet is a trademark of Xerox Corporation.

S:M1vf: 12-16

np

ns

nsip

ps

pty

spp

tcp

tty

Bug Fixes and Changes in 4.3BSD

A new device for downloading microcode into the InterIan NP100 10 Mb/s Ethernet
interface driver.

A description of the new Xerox Network Systems protocol family.

A description of the new software network interface encapsulating NS packets in IP pack­
ets.

The driver for the Picture System 2 has a small change in interrupt handling.

A new mode was added to allow a small set of commands to be passed to the pty master
from the slave as a rudimentary type of ioctl, analogous to that of PKT mode. Using this
mode or PKT mode, a select for exceptional conditions on the master side of a pty returns
true when a command operation is available to be read. Select for writing on the master
side has been fixed

A description of the new Xerox Sequenced Packet Protocol.

An option was added to disable small-packet avoidance under certain circumstances.

PASS8 mode has been added to pass all 8 bits of input. New ioctls were added to support
the getting and setting of window size information for the terminal. A signal was added
to notify processes when the window size changes.

Section 5

A new subdirectory, /usrlincludelprotocols, has been created to keep header files that are shared
between user programs and daemons. Several header files have been moved here, including those for
rwhod, routed, timed, dump, talk, and restore.

Two new header files, <String.h> and <memory.h>, have been added for System V compatibility.

disktab Two new fields have been added to specify that the disk supports bad144-style bad sector
forwarding, and that offsets should be specified by sectors rather than cylinders.

dump

gettytab

termcap

ttys

aardvark

battlestar

canfield

fortune

hunt

mille

The header file <dumprestor.h> has moved to <.protocols/dumprestore.h>.

New entries have been added, including a 2400 baud dial-in rotation for modems, a 19200
baud standard line, and an entry for the xterm terminal emulator of the X window system.
New capabilities for automatic speed selection and setting strict xoff/xon flow control
(decctlq) were added.

Many new entries were added and older entries fixed.

The format of the ttys file, /etc/ttys, reflects the merger of information previously kept in
/etc/ttys, letclsecuretty, and /etclttytype. The new format permits arbitrary programs, not
just fetclgetty, to be spawned by init. A special window field can be used to set up a win­
dow server before spawning a terminal emulator program.

Section 6

The "Dungeon Definition Language" processor has been updated to run on 4.3BSD, so
that games such as aardvark now work again.

A third generation adventure game.

The user interface has been improved so that one need not type so many carriage returns
between games. Players are charged a maximum of three minutes of think time between
moves should they put a game on hold for an extended period of time.

Has yet more adages (not better ones, just more).

The latest addition, a maze battle game for multiple players.

Now plays slightly more intelligently, and prevents discarding of safeties.

Bug Fixes and Changes in 4.3BSD SMM:12-17

robots

rogue

hier

me

words

Much like the old game of chase, except different.

Has been made more of a scoundrel.

Section 7

Has been updated to reflect the reorganization to the user and system source.

Some new macros were added: .sm (smaller) and .bu (bulleted paragraph). The pic,
ideal, and gremlin preprocessors are now supported.

Two new word lists have been add to lusrldict. The 1935 Webster's word list is available
as web2 with a supplemental list in web2a.

Several hundred words have been added to lusrldictlwords, both general words ("abacus,
capsize, goodbye, Hispanic, ... ") and important technical terms (all the amino acids,
many mathematical terms, a few dinosaurs, ...). About 10 spelling errors in
lusrldictlwords have been corrected.

Several hundred words that spell derives without difficulty from existing words (e.g.
"getting" from "get"), or that spell would accept anyway, e.g. "1st, 2nd" etc., have
been removed from lusrldictJwords.

Section 8

Major changes affecting system operations include:

• The format of the ttys file, Jete/ttys, has been changed to include information about terminal type.

• The crontab file used by cron has a new field in each line to specify the user ID to be used.

• A new Internet server-server, inetd, listens for service requests on a number of ports and spawns the
appropriate server upon demand. Fewer of the Internet services now require long-lived daemon
processes.

• The bad144 program can now be used to add new bad sectors to the bad sector file. Replacement sec­
tors are rearranged as needed to sort the new sectors into the bad sector list. Reformat operations to
mark bad sectors to the bad sector table should still be done only with the system running single user.

• Getty's description file, letclgettytab, now describes what program should be run in addition to the other
information that it used to include.

arff

arp

bad144

catman

checkquota

chown

comsat

Has been extended to understand multiple directory segments. This allows it to handle the
console RL02 pack on the V AX 8600.

A new program for examining and modifying the kernel Address Resolution Protocol
tables.

Bad144 has new options to add sectors to the bad sector table and to attempt to copy sec­
tors to their replacements before marking them bad. It verifies that the file is properly
sorted. Verbose and no-write options allow dry runs.

Now allows a list of manual directories. Links are properly set up so that the manual
source need not be kept on line on all machines.

Runs multiple filesystems in parallel. Quotas for users with zero blocks are left around
but they are deleted if the user-id no longer exists.

Was modified to be recursive. Chown accepts an owner. group syntax to change owner
and group simultaneously. The group-id will be set correctly when dealing with symbolic
links.

Comsat is now invoked by inetd. It reaps its child processes correctly. Large systems
with many terminal lines are now handled.

SMM:12-18

config

cron

diskpart

dump

edquota

fingerd

fsck

ftpd

gettable

getty

htable

ifconfig

imp log

inetd

init

Ipc

Ipd

Bug Fixes and Changes in 4.3BSD

Swap size may be specified. Maxusers is no longer truncated. The name of the gen­
erated Makeftle is now capitalized. Object files may now be listed for inclusion in the
files file and will be added to the compilation properly. Optional files may be listed multi­
ple times if· different options require their inclusion. Swapconf supports larger unit
numbers. Config builds a new file containing definitions for counting device interrupts.

lusrlliblcrontab has a new format to specify the user-id under which the process should
be ron.

Handles disks with either cylinder or sector offsets and that do not use bad144 bad block
forwarding.

When dumping at 6250 bpi, the tape is written in 32Kb records instead of 10Kb records.
Efforts have been made to improve the consistency of dumps made on active file systems
(though the practice is still NOT recommended). The Caltech streaming dump
modifications using a ring of slave processes have been incorporated Dump makes a
better estimate of the size of the dump by attempting to account for files with holes. The
error messages have been made less condescending.

Can edit quotas on filesystems where a user does not have any usage.

A new daemon to return user information; it runs under inetd.

Fsck has been sped up considerably by eliminating one of the two passes across the
inodes. It has also been taught to create and grow directories so that it can now rebuild
the root of a file system as well as create and enlarge the lost+found directory as neces­
sary.

Among the new facilities supported by the FfP server are: the ABOR command for
transfer abort, the PASV command for third party transfers, and the new RFC959 FTP
commands (such as STOU, "store unique"). Ftpd now uses syslog to log errors, and is
invoked by inetd.

Now has a flag for checking the version without retrieving the whole host table.

Getty supports automatic baud rate detection based on carriage return. Support for win­
dow system startup has been added. The login banner can now include the terminal name.
The environment is set up now and passed to login.

Some byte ordering problems have been fixed. It is more intelligent about gateway han­
dling. A looping problem with single character host names has been fixed.

Ifconfig has been augmented to allow different address families. The current families
understood are inet and ns. Ifconfig has additions to set up subnets of Internet networks,
change Internet broadcast addresses, and set destination addresses of point-to-point links.

Handles class B and class C networks.

A new program to spawn network servers on demand. lnetd listens on each port listed in
its configuration file letclinetd.conj. When service requests arrive, it passes the original
socket or a newly accepted socket to the designated server for the service. Several trivial
services are implemented internally.

May run commands other than getty. Large systems are no longer a problem. Window
systems may be started.

A new command, down, disables queueing and printing, and, optionally, creates a status
message displayed by the Ipq program. The up command reverses the effect of the down
command. The status command now displays the contents of the print queue in addition
to the status of the daemon process. The clean command does a better job of removing
incomplete queue entries.

A new capability, hi, may be used to print a job's banner after the contents of the job.
Error logging is now done with syslog(3). Hosts permitting remote access may now be
specified in the file letclhosts.lpd (in addition to letclhosts.equiv). A master lock file is
now used so that Idevlprinter can be automatically removed. Symbolic links to spool files

Bug Fixes and Changes in 4.3BSD SMM:12-19

mkfs

mkhosts

mkpasswd

mount

named

newfs

pac

ping

pstat

repquota

restore

rexecd

rlogind

rmt

route

routed

rshd

rwhod

rxformat

sa

savecore

sendmail

are now checked carefully to close a security hole. All printing parameters are now prop­
erly reset for each job. Remote spooling connections now time out if the server crashes.
Errors in spooling filters are now reported to users via mail. When servicing a remote
job, files are not transferred unless enough disk space is available.

Will print the filesystem information without creating the filesystem. Filesystem optimi­
zation may be specified.

A new program to rebuild the letclhosts dbm database. Note that this database is not used
with the default name server configuration.

A new program to rebuild the letclpasswd dbm database.

Better error messages are returned when mount fails. When checking I etc/fstab to find the
device name of a file system when only the mount point is specified, it also checks the
type field to insure that the entry is rw, ro, or rq.

Is a new program implementing the Internet domain naming system. It is used to perform
hostname and address mapping functions for the standard C library functions, gethost­
byname and gethostbyaddr if named is running.

Supports new options to mkfs.

Has a new option, -m, to cause machine names to be disregarded in merging accounting
information. The per-page cost is now taken from the printer description if it is not
specified on the command line with the -p option.

Is a new program for sending ICMP echo requests.

Can handle kernel crash dumps and new terminal multiplexers. Core dumps should be
less frequent

Only prints entries for users that have files (or blocks) allocated.

The interactive mode of restore now understands globbing. Interrupting interactive mode
returns to the prompt. A new input path name may be specified on each volume change.
The tape block size is calculated dynamically unless it is specified with the -b flag on the
command line.

Now runs under inetd.

Propagates window size changes in a backward compatible way. This is negotiated at
startup time. [netd now starts up the server.

Uses large network buffers for better performance.

Will handle subnets. Flags were added to specify whether a name is a host or a network.
Multiple addresses are tried until an operation is successful or there are no more
addresses to try.

Is more strict about received packets' formats and values. Subnet routing is handled.
Point to point links are handled. Gateways to external networks advertise a default route
instead of all networks. The loopback network number is no longer compiled in. When a
process is terminated, it tells its peers that its routes are no longer valid.

Is started by inetd. The address is passed through if the host name for the address cannot
be determined.

Should be less expensive to run. Broadcasts are done less frequently and path lookups are
shorter. Large systems are handled better.

Will now operate if the standard input is not a terminal.

Supports alternate accounting files. The units of CPU time have changed.

Works correctly when given an alternate system name. Dump partitions smaller than the
memory size are handled more gracefully.

Several bugs have been fixed. Upper case letters are allowed in file names and program
arguments in the alias file. Multiple recipients sharing a receive program are not

SMM:12-20

shutdown

swapon

syslogd

talkd

telnetd

tftpd

timed

trpt

tunefs

uucpd

vipw

XNSrouted

Bug Fixes and Changes in 4.3BSD

collapsed into one delivery. List owners on queued jobs have been fixed. Commas in
quoted aliases work. Dollar signs in headers are no longer interpreted as macro expan­
sions. Underscores are allowed in login names.

Substantial performance enhancements have been made for large queues. If the Y option
is not set, all jobs in the queue will be run in one process, with host statuses cached; this
uses more memory but generally improves performance. The job priority now includes
creation time and number of recipients (the yoption) as well as the message size (the q
option) and the job precedence (the z option); this priority is modified by the Z option
whenever it fails to complete. No attempt is made to run large jobs if the load average is
too high.

The $[... $] syntax can be used on the RHS of a rewriting rule to canonicalize a host
name using gethostbyname. This is especially useful when running the version of
gethostbyname that calls the name server.

Error reporting has been improved. Some limits have been increased. Security holes
have been plugged. Syslogd and vacation are now part of the standard system.

Minor changes have been made to the configuration file. The RHS. of aliases are no
longer checked while the alias file is rebuilt unless the n option is set to improve perfor­
mance. The character substituted for blanks in addresses is settable by the B option. The
default network name (formerly hardwired "ARPA") is settable with the N option. The
E mailer option escapes "From" lines with a '>' on delivery (formerly the default to the
local mailer).

Has flags to specify that it should not sync the disks and that it should skip the disk checks
after rebooting.

Error messages have been cleaned up and now specify the device to which they
correspond.

Formerly syslog, allows the classification of messages based on facilities. The
configuration file has been restructured.

Now runs under inetd. New version, new protocol.

Handles pty allocation better. [netd now starts the server. Interpretation of carriage
return-newline now conforms with the standard, but is compatible with the 4.2BSD telnet
client

Now works with other clients and is started by inetd.

A new program for maintaining time synchronization between machines on a local net­
work.

The trpt program to examine TCP traces now prints the traces in the correct order. It has
been extended to follow traces as a connection runs.

Supports the new filesystem optimization preferences.

A new server, invoked by inetd, for running uucp over network connections.

Builds the new hashed lookup table. letclpasswd will not be left unreadable if root has a
restrictive umask.

A new daemon, similar to routed, that implements the Xerox NS routing protocol.

Appendix A - User Contributed Software

Several new programs have been contributed to the Berkeley distribution.

ansitape

B

Is a new program for handling tapes in ANSI format and for transferring files between
UNIX and VMS.

Yet another new language.

Bug Fixes and Changes in 4.3BSD SMM:12-21

cpm

dipress

emacs

help

hyper

icon

jove

kermit

mh

mkmf

mmdf

news

nplOO
patch

pathalias

pup

rn

sumacc

sunrpc

tac

umodem

X

xns

Is a file transfer protocol between UNIX and CP/M.

A new program to convert ditroff output to Xerox Interpress format.

Is a public domain version of emacs.

An extensive new UNIX help facility.

A router and log program for the Hyperchannel.

The latest and greatest version from Arizona.

Is a simplified emacs-style editor.

A file transfer protocol between UNIX and microcomputers.

This release includes MH Version 6.3, with Berkeley modifications. It has been rewritten
numerous times since the original version release with 4.2BSD. Each utility is now
infinitely programmable.

Has been separated from SPMS.

Is a new set of mail reading and transport programs.

The latest revision of the Usenet news programs, B news 2.10.3 beta.

Utilities to download the Interlan NPIOO Ethernet board.

Is a new program designed for taking diffs and applying them to the source file. If you
only look at one new program, this is the one!

A new program that attempts to discover uucp path routing.

An implementation of the Xerox PUP protocols and several useful programs that use
them.

A new interface for reading (or ignoring) news.

A C compiler set of programs for doing MacIntosh software development.

Yet another RPC protocol.

Is a program that displays a file in reverse line order.

Another file transfer protocol between UNIX and microcomputers.

A new window system that was developed at MIT. This distribution supports the DEC
VS100, the Sun and the DEC b/w V AXStation II (QVSS).

A courier RPC mechanism that runs on Xerox NS, and many useful applications
developed at Cornell University.

Changes to the Kernel in 4.3BSD

April 16, 1986

Michael J. Karels

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

This document summarizes the changes to the kernel between the September 1983 4.2BSD distribu­
tion ofUNIXt for the VAX; and the March 1986 4.3BSD release. It is intended to provide sufficient infor­
mation that those who maintain the kernel, have local modifications to install, or who have versions of
4.2BSD modified to run on other hardware should be able to determine how to integrate this version of the
system into their environment As always, the source code is the final source of information, and this docu­
ment is intended primarily to point out those areas that have changed.

Most of the changes between 4.2BSD and 4.3BSD fall into one of several categories. These are:

• bug fixes,

• performance improvements,

• completion of skeletal facilities,

• generalizations of the framework to accommodate new hardware and software systems, or to
remove hardware- or protocol-specific code from common facilities, and

• new protocol and hardware support.

The major changes to the kernel are:

• the use of caching to decrease the overhead of filesystem name translation,

• a new interface to the namei name lookup function that encapsulates the arguments, return infor­
mation and side effects of this call,

• removal of most of the Internet dependencies from common parts of the network, and greater
allowance for the use of multiple address families on the same network hardware,

• support for the Xerox NS network protocols,

• support for the VAX 8600 and 8650 processors (with UNIBUS and MASSBUS peripherals, but
not with CI bus or HSC50 disk controllers),

• new drivers for the DHUll and DMZ32 terminal multiplexors, the TU81 and other TMSCP tape
drives, the VS 100 display, the DEUNA, Excelan 204, and Interlan NPloo Ethemet* interfaces,
and the ACe HDH and DDN X.25 ThtfP interfaces, and

• full support for the MS780-E memory controller on the V AX 111780 and 111785, using 64K and
256K memory chips.

This document is not intended to be an introduction to the kernel, but assumes familiarity with prior
versions of the kernel. Other documents may be consulted for more complete discussions of the kernel and
its other subsystems. For more complete information on the internal structure and interfaces of the network

t UNIX is a trademark of Ben Laboratories.
:\: DEC, VAX, PDP, MASSBUS, uNmus. Q-bus and UL TR.IX are trademarks of Digital Equipment Corporation.
• Ethernet is a trademark of Xerox Corporation.

SMM:13-2 Changes to the Kernel in 4.3BSD

subsystem, refer to "4.3BSD Networking Implementation Notes."

The author gratefully acknowledges the contributions of the other members of the Computer Systems
Research Group at Berkeley and the other contributors to the work described here. Major contributors
include Kirk McKusick, Sam Leffier, Jim Bloom, Keith Sklower, Robert Elz, and Jay Lepreau. Sam
Leffler and Anne Hughes made numerous suggestions and corrections during the preparation of the
manuscript

1. General changes in the kernel

This section details some of the changes that affect multiple sections of the kernel.

1.1. Header files

The kernel is now compiled with an include path that specifies the standard location of the common
header files, generally /sys/h or .Jb, and all kernel sources have had pathname prefixes removed from the
#include directives for files in .Jb or the source directory. This makes it possible to substitute replace­
ments for individual header files by placing them in the system compilation directory or in another direc­
tory in the include path.

1.2. Types

There have been relatively few changes in the types defined and used by the system. One significant
exception is that new typedefs have been added for user 10' s and group ID's in the kernel and common
data structures. These typedefs, uid _I and gid _t, are both of type u _short. This change from the previous
usage (explicit short ints) allows user and group lO's greater than 32767 to work reasonably.

1.3. Inline

The inline expansion of calls to various trivial or hardware-dependent operations has been a useful
technique in the kernel. In prior releases this substitution was done by editing the assembly language out­
put of the compiler with the sed script asm.sed. This technique has been refined in 4.3BSD by using a new
program, inline, to perform the in-line code expansion and also optimize the code used to push the
subroutine's operands; where possible, inline will merge stack pushes and pops into direct register loads.
Also, this program performs the in-line code expansion significantly faster than the general-purpose stream
editor it replaces.

1.4. Processor priorities

Functions to set the processor interrupt priority to block classes of interrupts have been used in UNIX
on all processors, but the names of these routines have always been derived from the priority levels of the
PDP11 and the UNIBUS. In order to clarify both the intent of elevated processor priority and the assump­
tions about their dependencies, all of the functions spiN, where N is a small nonzero integer, have been
renamed. In each case, the new name indicates the group of devices that are to be blocked from interrupts.
The following table indicates the old and new names of these functions.

new name devices blocked old name VAXIPL

splO none splO 0
splsoftclock software clock interrupts none Ox08
spinet software network interrupts spInet OxOc
spltty terminal multiplexors splS OxlS
splhio disk and tape controllers splS OxlS
splimp all network interfaces splimp Ox16
splclock interval timer spl6 Ox18
splhigh all devices and state transitions spl7 Ox31

For use in device drivers only, UNIBUS priorities BR4 through BR7 may be set using the functions spl4,
spl5, sp16 and sp17. Note that the latter two now correspond to V AX priorities Ox16 and Ox17 respectively,
rather than the previous OxI8 and Oxlf priorities.

Changes to the Kernel in 4.3BSD SMM:13-3

2. Header files

This section details changes in the header files in Isyslh.
acct.h

buf.h

cmap.h

dmap.h

domain.h

errno.h

fs.h

inode.h

ioctl.h

mbuf.h

mtio.h

namei.h

param.h

proc.h

protosw.h

signal.h

Process accounting is now done in units of 1/ AHZ (64) seconds rather than seconds.

The size of the buffer hash table has been increased substantially.

The core map has had a number of fields enlarged to support larger memories and filesys­
tems. The limits imposed by this structure are now commented. The current limits are 64
Mb of physical memory, 255 filesystems, 1 Gb process segments, 8 Gb per filesystem,
and 65535 processes and text entries. The machine-language support now derives its
definitions of these limits and the cmap structure from this file.

The swap map per process segment was enlarged to allow images up to 64Mb.

New entry points to each domain have been added, for initialization, externalization of
access rights, and disposal of access rights.

A definition of EDEADLK was added for System V compatibility.

One spare field in the superblock was allocated to store an option for the fragment alloca­
tion policy.

New fields were added to the in-core inode to hold a cache key and a pointer to any text
image mapping the file. A new macro, ITIMES, is provided for updating the timestamps
in an inode without writing the inode back to the disk. The inode is marked as modified
with the IMOD :flag. A:fIag has been added to allow serialization of directory renames.

New ioctl operations have been added to get and set a terminal or window's size. The
size is stored in a winsize structure defined here. Other new ioetls have been defined to
pass a small set of special commands from pseudo-terminals to their controllers. A new
terminal option, LP ASS8, allows a full 8-bit data path on input. The two tablet line dis­
ciplines have been merged. A new line discipline is provided for use with IP over serial
data lines.

The handling of mbuf page clusters has been broken into macros separate from those that
handle mbufs. MCLALLOC(m, I) is used to allocate i mbuf clusters (where i is currently
restricted to 1) and MCLFREE(m) frees them. MCLGET(m) adds a page cluster to the
already-allocated mbuf m, setting the mbuf length to CLBYTES if successful. The new
macro M_HASCL(m) returns true if the mbuf m has an associated cluster, and
MTOCL(m) returns a pointer to such a cluster.

Definitions have been added for the TMSCP tape controllers and to enable or disable the
use of an on-board tape buffer.

This header file was renamed, completed and put into use.

Several limits have been increased Old values are listed in parentheses after each item.
The new limits are: 255 mounted filesystems (15), 40 processes per user (25), 64 open
files (20), 20480 characters per argument list (10240), and 16 groups per user (8). The
maximum length of a host name supported by the kernel is defined here as MAXHOST­
NAMELEN. The default creation mask is now set to 022 by the kernel; previously that
value was set by login, with the effect that remote shell processes used a different default.
Clist blocks were doubled in size to 64 bytes.

Pointers were added to the proe structure to allow process entries to be linked onto lists of
active, zombie or free processes.

The address family field in the protosw structure was replaced with a pointer to the
domain structure for the address family. Definitions were added for the arguments to the
protocol etloutput routines.

New signals have been defined for window size changes (SIGWINCH) and for user­
defined functions (SIGUSRI and SIGUSR2). The sv _ onstaek field in the sigvee structure
has been redefined as a flags field, with flags defined for use of the signal stack and for
signals to interrupt pending systems calls rather than restarting them. The sigeontext

SMM:13-4

socket.h

socketvar .h

sysJog.h

tabJet.h

text.h

time.h

tty.h

types.h

uio.h

un.h

unpcb.h

user.h

vmmac.h

vmmeter.h

Changes to the Kernel in 4.3BSD

structure now includes the frame and argument pointers for the V AX so that the complete
return sequence can be done by the kernel. A new macro, sigmask, is provided to sim­
plify the use of sigsetmask. sigblock, and sigpause.

Definitions were added for new options set with setsockopt. SO_BROADCAST requests
permission to send to the broadcast address, formerly a privileged operation, while
SO_SNDBUF and SO_RCVBUF may be used to examine or change the amount of buffer
space allocated for a socket. Two new options are used only with getsockopt:
SO_ERROR obtains any current error status and clears it, and SO_TYPE returns the type
of the socket. A new structure was added for use with SO_LINGER. Several new
address families were defined.

The character and mbuf counts and limits in the sockbuf structure were changed from
short to u_short. SB_MAX defines the limit to the amount that can be placed in a sock­
buf. The sosendallatonce macro was corrected; it previously returned true for sockets
using non-blocking I/O. Soreadable and sowriteable now return true if there is error
status to report.

The system logging facility has been extended to allow kernel use, and the header file has
thus been moved from lusr/include.

A new file that contains the definitions for use of the tablet line discipline.

Linkage fields have been added to the text structure for use in constructing a text table
free list. The structure used in recording text table usage statistics is defined here.

The time.h header file has been split. Those definitions relating to the gettimeofday sys­
tem call remain in this file, included as <sysltime.h>. The original <time.h> file has
returned and contains the definitions for the C library time routines.

The per-terminal data structure now contains the terminal size so that it can be changed
dynamically. Files that include <sysltty.h> now require <syslioctl.h> as well for the win­
size structure definition.

The new typedefs for user and group ID's are located here. For compatibility and sensi­
bility, the size _t, time _t and off_t types have all been changed from int to long. New
definitions have been added for integer masks and bit operators for use with the select
system call.

The offset field in the uio structure was changed from int to off_to Manifest constants for
the uio segment values are now provided.

The path in the Unix-domain version of a sockaddr was reduced so that use of the entire
pathname array would still allow space for a null after the structure when stored in an
mbuf.

A Unix-domain socket's own address is now stored in the protocol control block rather
than that of the socket to which it is connected. Fields have been added for fiow control
on stream connections. If a stat has caused the assignment of a dummy inode number to
the socket, that number is stored here.

The user lO's, group ID's and groups array are declared using the new types for these
ID's. A new field was added to handle the new signal flag avoiding system call restarts.
The index of the last used file descriptor for the process is maintained in u.u)astfile. The
global fields u base. u count, and u offset have been eliminated, with the new nameidata
structure replacing their remaining function. The a.out header is no longer kept in the
user structure.

Several macros have been rewritten to improve the code generated by the compiler. New
macros were added to lock and unlock cmap entries, substituting for mlock and munlock.

All counters are now uniformly declared as long. Software interrupts are now counted.

Changes to the Kernel in 4.3BSD SMM:13-5

3. Changes in the kernel proper

The next several sections describe changes in the parts of the kernel that reside in /syslsys. This sec­
tion summarizes several of the changes that impact several different areas.

3.1. Process table management

Although the process table has grown considerably since its original design, its use was largely the
same as in its first incarnation. Several parts of the system used a linear search of the entire table to locate
a process, a group of processes, or group of processes in a certain state. 4.2BSD maintained linkages
between the children of each parent process, but made no use of these pointers. In order to reduce the time
spent examining the process table, several changes have been made. The first is to place all process table
entries onto one of three doubly-linked lists, one each for entries in use by existing processes (allproc),
entries for zombie processes (zombproc), and free entries (freeproc). This allows the scheduler and other
facilities that must examine all existing processes to limit their search to those entries actually in use.
Other searches are avoided by using the linkage among the children of each process and by noting a range
of usable process ID's when searching for a new unique ID.

3.2. Signals

One of the major incompatibilities introduced in 4.2BSD was that system calls interrupted by a
caught signal were restarted. This facility, while necessary for many programs that use signals to drive
background activities without disrupting the foreground processing, caused problems for other, more naive,
programs. In order to resolve this difficulty, the 4.2BSD signal model has been extended to allow signal
handlers to specify whether or not the signal is to abort or to resume interrupted system calls. This option
is specified with the sigvec call used to specify the handler. The sv _onstack field has been usurped for a
flag field, with flags available to indicate whether the handler should be invoked on the signal stack and
whether it should interrupt pending system calls on its return. As a result of this change, those system calls
that may be restarted and that therefore take control over system call interruptions must be modified to sup­
port this new behavior. The calls affected in 4.3BSD are open, read/write, ioctl,jlock and wait.

Another change in signal usage in 4.3BSD affects fewer programs and less kernel code. In 4.2BSD,
invocation of a signal handler on the signal stack caused some of the saved status to be pushed onto the
normal stack before switching to the signal stack to build the call frame. The status information on the nor­
mal stack included the saved PC and PSL; this allowed a user-mode rei instruction to be used in imple­
menting the return to the interrupted context. In order to avoid changes to the normal runtime stack when
switching to the signal stack, the return procedure has been changed. As the return mechanism requires a
special system call for restoring the signal state, that system call was replaced with a new call, sigreturn,
that implements the complete return to the previous context The old call, number 139, remains in 4.3BSD
for binary compatibility with the 4.2BSD version of longjmp.

3.3. Open file handling

Previous versions of UNIX have traditionally limited each process to at most 20 files open simultane­
ously. In 4.2BSD, that limit could not be increased past 30, as a S-bit field in the page table entry was used
to specify either a file number or the reserved values PGTEXT or PGZERO (fill from text file or zero fill).
However, the file mapping facility that previously used this field no longer existed, and its replacement is
unlikely to require this low limit Accordingly, the internal virtual memory system support for mapped
files has been removed and the number of open files increased. The standard limit is 64, but this may easily
be increased if sufficient memory for the user structure is provided In order to avoid searching through
this longer list of open files when the actual number in use is small, the index of the last used open file slot
is maintained in the field u.u_lastfile. The routines that implement open and close or implicit close (exit
and exec) maintain this field, and it is used whenever the open file array u.u _ofile is scanned.

3.4. Niceness

The values for nice used in 4.2BSD and previous systems ranged from 0 though 39. Each use of this
scheduling parameter offset the actual value by the default, NZERO (20). This has been changed in
4.3BSD to use a range of -20 to 20, with NZERO redefined as zero.

SMM:13-6 Changes to the Kernel in 4.3BSD

3.S. Software interrupts and terminal multiplexors

The DHll and DZl1 terminal multiplexor handlers had been modified to use the hardware's
received-character silo when those devices were used by the Berknet network. In order to avoid stagnation
of input characters and slow response to input during periods of reduced input, the low-level software clock
interrupt handler had been made to call the terminal drivers to drain input When the clock rate was
increased in 4.2BSD, the overhead of checking the input silos with each clock tick was increased, and the
use of specialized network hardware reduced the need for this optimization. Therefore, the terminal multi­
plexors in 4.3BSD use per-character interrupts during periods of low input rate, and enable the silos only
during periods of high-speed input. While the silo is enabled, the routine to drain it runs less frequently
than every clock tick; it is scheduled using the standard timeout mechanism. As a result, the software clock
service routine need not to be invoked on every clock tick, but only when timeouts or profiling require ser­
vice.

3.6. Changes in initialization and kernel-level support

This section describes changes in the kernel files in Isyslsys with prefixes init _ or kern_.

init _ main.c Several subsystems have new or renamed initialization routines that are called by main.
These include pqinit for process queues, xinit for the text table handling routines, and
nchinit for the name translation cache. The virtual memory startup setupclock has been
replaced by vminit, that also sets the initial virtual memory limits for process 0 and its
descendants. Process 1, init, is now created before process 2, pagedaemon.

init_sysent.c In addition to entries for the two system calls new in 4.3BSD, the system call table
specifies a range of system call numbers that are reserved for redistributors of 4.3BSD.
Other unused slots in earlier parts of the table should be reserved for future Berkeley use.
Syscall 63 is no longer special.

kern_acct.c The process time accounting file in 4.2BSD stored times in seconds rather than clock
ticks. This made accounting independent of the clock rate, but was too large a granularity
to be useful. Therefore, 4.3BSD uses a smaller but unvarying unit for accounting times,
1/64 second, specified in acct.h as its reciprocal AHZ. The compress function converts
seconds and microseconds to these new units, expressed as before in 16-bit pseudo­
floating point numbers.

kern _ clock.c The hardware clock handler implements the new time-correction primitive adjtime by
skewing the rate at which time increases until a specified correction has been achieved.
The bumptime routine used to increment the time has been changed into a macro. The
overhead of software interrupts used to schedule the soltclock handler has been reduced
by noting whether any profiling or timeout activity requires it to run, and by calling
softclock directly from hardclock (with reduced processor priority) if the previous priority
was sufficiently low.

kern _ descrip.c Most uses of the getf() function have been replaced by the GETF macro form. The dup
calls (including that from Icntl) no longer copy the close-on-exec flag from the original
file descriptor. Most of the changes to support the open file descriptor high-water mark,
u.u _lastfile, are in this file. The flock system call has had several bugs fixed. Unix­
domain file descriptor garbage collection is no longer triggered from close/, but when a
socket is tom down.

kern_exec.c The a.out header used in the course of euc is no longer in the user structure, but is local
to exec. Argument and environment strings are copied to and from the user address space
a string at a time using the new copyinstr and copyoutstr primitives. When invoking an
executable script, the first argument is now the name of the interpreter rather than the file
name; the file name appears only after the interpreter name and optional argument An
iput was moved to avoid a deadlock when the executable image had been opened and
marked close-on-exec. The setregs routine has been split; machine-independent parts
such as signal action modification are done in execve directly, and the remaining
machine-dependent routine was moved to machdep.c. Image size verification using

Changes to the Kernel in 4.3BSD S:M::M:: 13-7

chksize checks data and bss sizes separately to avoid overflow on their addition.

kern_exit.c Instead of looping at location Ox13 in user mode if letC/init cannot be executed, the sys­
tem now prints a message and pauses. This is done by exit if process 1 could not run.
The search for child processes in exit uses the child and sibling linkage in the proc entry
instead of a linear search of the proc table. Failures when copying out resource usage
information from wait are now reflected to the caller.

kern_fork.c One of the two linear searches of the proc table during process creation has been elim­
inated, the other looks only at active processes. As the first scan is needed only to count
the number of processes for this user, it is bypassed for root A comment dating to ver­
sion 7 (' 'Partially simulate the environment so that when it is actually created (by copy­
ing) it will look right.' ') has finally been removed; it relates only to PDP-11 code.

kern_mman.c Chksize takes an extra argument so that data and bss expansion can be checked separately
to avoid problems with overflow.

kernj>roc.c The spgrp routine has been corrected. An attempt to optimize its 0 (n 2) algorithm (multi­
ple scans of the process table) did so incorrectly; it now uses the child and sibling pointers
in the proc table to find all descendents in linear time. Pqinit is called at initialization
time to set up the process queues and free all process slots.

kernj>rot.c A number of changes were needed to reflect the type changes of the user and group ID's.
The getgroups and setgroups routines pass groups as arrays of integers and thus must
convert. All scans of the groups array look for an explicit NOGROUP terminator rather
than any negative group. For consistency, the setreuid call sets the process p _uid to the
new effective user ID instead of the real ID as before. This prevents the anomaly of a
process not being allowed to send signals to itself.

kern _ resource.c Attempts to change resource limits for process sizes are checked against the maximum
segment size that the swap map supports, maxdmap. The error returned when attempting
to change another user's priority was changed from EACCESS to EPERM.

kern _ sig.c The sigmask macro is now used throughout the kernel. The treatment of the sigvec flag
has been expanded to include the SV _INTERRUPT option. Kill and killpg have been
rewritten, and the errors returned are now closer to those of System V. In particular,
unprivileged users may broadcast signals with no error if they managed to kill something,
and an attempt to signal process group 0 (one's own group) when no group is set receives
an ESRCH instead of an EINV AL. SIGWINCH joins the class of signals whose default
action is to ignore. When a process stops under ptrace, its parent now receives a
SIGCHLD.

kern_synch.c The CPU overhead of schedcpu has been reduced as much as possible by removing loop
invariants and by ignoring processes that have not run since the last calculation. When
long-sleeping processes are awakened, their priority is recomputed to consider their sleep
time. Schedcpu need not remove processes with new priorities from their run queues and
reinsert them unless they are moving to a new queue. The sleep queues are now treated
as circular (FIFO) lists, as the old LIFO behavior caused problems for some programs
queued for locks. Sleep no longer allows context switches after a panic, but simply drops
the processor priority momentarily then returns; this converts sleeps during the filesystem
update into busy-waits.

kern _ time.c Gettimeofday returns the microsecond time on hardware supporting it, including the
V AX. It is now possible to set the timezone as well as the time with settimeofday. A sys­
tem call, adjtime, has been added to correct the time by a small amount using gradual
skew rather than discontinuous jumps forward or backward.

kern_xxx.c The 4.1-compatible signal entry sets the signal SV _INTERRUPT option as well as the
per-process SOUSIG, which now controls only the resetting of signal action to default
upon invocation of a caught signal.

SMM:13-8 Changes to the Kernel in 4.3BSD

This new file contains routines that implement a kernel error log device. Kernel messages
are placed in the message buffer as before, and can be read from there through the log
device Idevlklog.

subr _ mcount.c The kernel profiling buffers are allocated with calloc instead of wmemall to avoid the
dramatic decrease in user virtual memory that could be supported after allocation of a
large section of usrpt.

subrJrf.c Support was added for the kernel error log. The log routine is similar to print[but does
not print on the console, thereby suspending system operation. Log takes a priority as
well as a format, both of which are read from the log device by the system error logger
syslogd. Uprint[was modified to check its terminal output queue and to block rather than
to use all of the system clists; it is now even less appropriate for use from interrupt level.
Tprint/is similar to uprint/but prints to the tty specified as an argument rather than to that
of the current user. Tprint[does not block if the output queue is overfull, but logs only to
the error log; it may thus be used from interrupt level. Because of these changes, putchar
and printn require an additional argument specifying the destination(s) of the character.
The tablefull error routine was changed to use log rather than print/.

subr _rmap.c An off-by-one error in rmget was corrected.

sys _generic.c The select call may now be used with more than 32 file descriptors, requiring that the
masks be treated as arrays. The result masks are returned to the user if and only if no
error (including EINTR) occurs. A select bug that caused processes to disappear was
fixed; selwakeup needed to handle stopped processes differently than sleeping processes.

sys Jnode.c Problems occurring after an interrupted close were corrected by forcing ina _close to
return to closef even after an interrupt; otherwise, f count could be cleared too early or
twice. The code to unhash text pages being ovetWritten needed to be protected from
memory allocations at interrupt level to avoid a bogus "panic: munhash." The internal
routine implementing flock was reworked to avoid several bad assumptions and to allow
restarts after an interruption.

sysJrocess.c Procxmt uses the new ptrace.h header file; hopefully, the next release will have neither
ptrace nor procxmt. The text XTRC flag is set when modifying a pure text image, pro­
tecting it from sharing and overwriting.

sys _ socket.c The socket involved in an interface ioctl is passed to ifioctl so that it can call the protocol
if necessary, as when setting the interface address for the protocol. It is now possible to
be notified of pending out-of-band data by selecting for exceptional conditions.

syscalls.c The system call names here have been made to agree with reality.

3.7. Changes in the terminal line disciplines

tty.c The kernel maintains the terminal or window size in the tty structure and provides ioetl s
to set and get these values. The window size is cleared on final close. The sizes include
rows and columns in characters and may include X and Y dimensions in pixels where that
is meaningful. The kernel makes no use of these values, but they are stored here to pro­
vide a consistent way to determine the current size. When a new value is set, a
SIGWINCH signal is sent to the process group associated with the terminal.

The notions of line discipline exit and final close have been separated. Ttyclose is used
only at final close, while ttylclose is provided for closing down a discipline. Modem con­
trol transitions are handled more cleanly by moving the common code from the terminal
hardware drivers into the line disciplines; the I_modem entry in the linesw is now used for
this purpose. Ttymodem handles carrier transitions for the standard disciplines; nullmo­
dem is provided for disciplines with minimal requirements.

A new mode, LP ASS8, was added to support 8-bit input in normal modes; it is the input
analog of LLITOUT. An entry point, checkoutq, has been added to enable internal output
operations (uprint/, tprintj) to check for output overflow and optionally to block to wait

Changes to the Kernel in 4.3BSD SMM:13-9

ttYJ>ty.c

for space. Certain operations are handled more carefully than before: the use of the
TIOCSTI ioctl requires read permission on the terminal, and SPGRP is disallowed if the
group corresponds with another user's process. Ttread and ttwrite both check for carrier
drop when restarting after a sleep. An off-by-one consistency check of uio _iovcnt in
ttwrite was corrected. A bug was fixed that caused data to be flushed when opening a ter­
minal that was already open when using the "old" line discipline. Select now returns
true for reading if carrier has been lost. While changing line disciplines, interrupts must
be disabled until the change is complete or is backed out. If changing to the same discip­
line, the close and reopen (and probable data flush) are avoided. The t _ delct field in the
tty structure was not used and has been deleted.

The line discipline close entries that used ttyclose now use ttylclose. The two tablet dis­
ciplines have been combined. A new entry was added for a Serial-Line link-layer encap­
sulation for the Internet Protocol, SLIPDISC.

Large sections of the pseudo-tty driver have been reworked to improve performance and
to avoid races when one side closed, which subsequently hung pseudo-terminals. The
line-discipline modem control routine is called to clean up when the master closes. Prob­
lems with REMOTE mode and non-blocking I/O were fixed by using the raw queue
rather than the cannonicalized queue. A new mode was added to allow a small set of
commands to be passed to the pty master from the slave as a rudimentary type of ioctl, in
a manner analogous to that of PKT mode. Using this mode or PKT mode, a select for
exceptional conditions on the master side of a pty returns true when a command operation
is available to be read. Select for writing on the master side has been corrected, and now
uses the same criteria as ptcwrite. As the pty driver depends on normal operation of the
tty queues, it no longer permits changes to non-tty line disciplines.

The clist support routines have been modified to use block moves instead of getclputc
wherever possible.

The two line disciplines have been merged and a number of new tablet types are sup­
ported. Tablet type and operating mode are now set by ioctl s. Tablets that continuously
stream data are now told to stop sending on last close.

4. Changes in the filesystem

The major change in the filesystem was the addition of a name translation cache. A table of recent
name-to-inode translations is maintained by namei, and used as a lookaside cache when translating each
component of each file pathname. Each namecache entry contains the parent directory's device and inode,
the length of the name, and the name itself, and is hashed on the name. It also contains a pointer to the
inode for the file whose name it contains. Unlike most inode pointers, which hold a "hard" reference by
incrementing the reference count, the name cache holds a "soft" reference, a pointer to an inode that may
be reused. In order to validate the inode from a name cache reference, each inode is assigned a unique
"capability" when it is brought into memory. When the inode entry is reused for another file, or when the
name of the file is changed, this capability is changed. This allows the inode cache to be handled normally,
releasing inodes at the head of the LRU list without regard for name cache references, and allows multiple
names for the same inode to be in the cache simultaneously without complicating the invalidation pro­
cedure. An additional feature of this scheme is that when opening a file, it is possible to determine whether
the file was previously open. This is useful when beginning execution of a file, to check whether the file
might be open for writing, and for similar situations.

Other changes that are visible throughout the filesystem include greater use of the ILOCK and IUN­
LOCK macros rather than the subroutine equivalents. The inode times are updated on each irele, not only
when the reference count reaches zero, if the lACC, IUPD or ICHG flags are set This is accomplished
with the ITIMES macro; the inode is marked as modified with the new !MOD flag, that causes it to be writ­
ten to disk when released, or on the next sync.

The remainder of this section describes the filesystem changes that are localized to individual files.

S11M::13-10 Changes to the Kernel in 4.3BSD

urs _ alloc.c The algorithm for extending file fragments was changed to take advantage of the observa­
tion that fragments that were once extended were frequently extended again, that is, that
the file was being written in fragments. Therefore, the first time a given fragment is allo­
cated, a best-fit strategy is used. Thereafter, when this fragment is to be extended, a fu11-
sized block is allocated, the fragment removed from it, and the remainder freed for use in
subsequent expansion. As this policy may result in increased fragmentation, it is not used
when the filesystem becomes excessively fragmented (i.e. when the number of free frag­
ments falls to 2% of the minfree value); the policy is stored in the superblock and may be
changed with tune[s. The [serr routine was converted to use log rather than print[.

urs _ bio.c I/O operations traced now include the size where relevant.

ursJnode.c The size of the buffer hash table was increased substantially and changed to a power of
two to allow the modulus to be computed with a mask operation. I get invalidates the
capability in each inode that is flushed from the inode cache for reuse. The new igrab
routine is used instead of iget when fetching an inode from a name cache reference; it
waits for the inode to be unlocked if necessary, and removes it from the free list if it was
free. The caller must check that the inode is still valid after the igrab. A bug was fixed in
itrunc that allowed old contents to creep back into a file. When truncating to a location
within a block, itrunc must clear the remainder of the block. Otherwise, if the file is
extended by seeking past the end of file and then writing, the old contents reappear.

urs _ mount.c The mount system call was modified to return different error numbers for different types
of errors. Mount now examines the superblock more carefully before using size field it
contains as the amount to copy into a new buffer. If a mount fails for a reason other than
the device already being mounted, the device is closed again. When performing the name
lookup for the mount point, mount must prevent the name translation from being left in
the name cache; umount must flush all name translations for the device. A bug in
getmdev caused an inode to remain locked if the specified device was not a block special
file; this has been fixed.

urs _ namei.c This file was previously called ufs _ nami.c. The namei function has a new calling conven­
tion with its arguments, associated context, and side effects encapsulated in a single struc­
ture. It has been extensively modified to implement the name cache and to cache direc­
tory offsets for each process. It may now return ENAMETOOLONG when appropriate,
and returns EINV AL if the 8th bit is set on one of the pathname characters. Directories
may be foreshortened if the last one or more blocks contain no entries; this is done when
files are being created, as the entire directory must already be searched. An entry is pro­
vided for invalidating the entire name cache when the 32-bit prototype for capabilities
wraps around. This is expected to happen after 13 months of operation, assuming 100
name lookups per second, all of which miss the cache.

urs _ syscalls.c

A change in filesystem semantics is the introduction of "sticky" directories. If the
ISVTX (sticky text) bit is set in the mode of a directory, files may only be removed from
that directory by the owner of the file, the owner of the directory, or the superuser. This
is enforced by namei when the lookup operation is DELETE.

The strategy for syncip, the internal routine implementing [sync, has been modified for
large files (those larger than half of the buffer cache). For large files all modified buffers
for the device are written out. The old algorithm could run for a very long time on a very
large file, that might not actually have many data blocks. The update routine now saves
some work by calling iupdate only for modified inodes. The C replacements for the spe­
cial V AX instructions have been collected in this file.

When doing an open with flags 0 CREAT and 0 EXCL (create only if the file did not
exist), it is now considered to be aD error if the target exists and is a symbolic link, even if
the symbolic link refers to a nonexistent file. This behavior is desirable for reasons of
security in programs that create files with predictable names. Rename follows the policy
of namei in disallowing removal of the target of a rename if the target directory is

Changes to the Kernel in 4.3BSD SMM:13-11

ufs_xxx.c

quota _ kern.c

"sticky" and the user is not the owner of the target or the target directory. A serious bug
in the open code which allowed directories and other unwritable files to be truncated has
been corrected. Interrupted opens no longer lose file descriptors. The lseek call returns
an ESPIPE error when seeking on sockets (including pipes) for backward compatibility.
The error returned from readlink when reading something other than a symbolic link was
changed from ENXIO to EINV AL. Several calls that previously failed silently on read­
only filesystems (chmod, chown, fchmod, fchown and utimes) now return EROFS. The
rename code was reworked to avoid several races and to invalidate the name cache. It
marks a directory being renamed with !RENAME to avoid races due to concurrent
renames of the same directory. Mkdir now sets the size of all new directories to
DIRBLKSIZE. Rmdir purges the name cache of entries for the removed directory.

The routines uchar and schar are no longer used and have been removed.

The quota hash size was changed to a power of 2 so that the modulus could be computed
with a mask.

If a user has run out of warnings and had the hard limit enforced while logged in, but has
then brought his allocation below the hard limit, the quota system reverts to enforcing the
soft limit, and resets the warning count; users previously were required to log out and in
again to get this affect.

4.1. Changes in Interprocess Communication support

uipc _ domain.c The skeletal support for the PUP-l protocol has been removed. A domain for Xerox NS
is now in use. The per-domain data structure allows a per-domain initialization routine to
be called at boot time.

The pffindproto routine, used in creating a socket to support a specified protocol, takes an
additional argument, the type of the socket. It checks both the protocol and type, useful
when the same protocol implements multiple socket types. If the type is SOCK_RAW
and no exact match is found, a protosw entry for raw support and a wildcard protocol
(number zero) will be used. This allows for a generic raw socket that passes through
packets for any given protocol.

The second argument to pfctlinput, the generic error-reporting routine, is now declared as
a sockaddr pointer.

uipc _ mbuf.c The mbuf support routines now use the wait flag passed to m _get or MGET. If M _WAlT
is specified, the allocator may wait for free memory, and the allocation is guaranteed to
return an mbuf if it returns. In order to prevent the system from slowly going to sleep
after exhausting the mbuf pool by losing the mbufs to a leak, the allocator will panic after
creating the maximum allocation of mbufs (by default, 256K). Redundant spl's have
been removed; most internal routines must be called at splimp, the highest priority at
which mbuf and memory allocation occur.

When copying mbuf chains m _copy now preserves the type of each mbuf. There were
problems in m _adj, in particular assumptions that there would be no zero-length mbufs
within the chain; this was corrected by changing its n-pass algorithm for trimming from
the tail of the chain to either one- or two-pass, depending on whether the correction was
entirely within the last mbuf. In order to avoid return business, m yullup was changed to
pull additional data (MPULL_EXTRA, defined in mbufh) into the contiguous area in the
first mbuf, if convenient. m yullup will use the first mbuf of the chain rather then a new
one if it can avoid copying.

uipcJlipe.c This "temporary" file has been removed; pipe now uses socketpair.

uipc Jlroto.c New entries in the protocol switch for externalization and disposal of access rights are ini­
tialized for the Unix domain protocols.

uipc_socket.c The socreate function uses the new interface to pfftndproto described above if the proto­
col is specified by the caller. The soconnect routine will now try to disconnect a

SMM:13-12 Changes to the Kernel in 4.3BSD

connected socket before reconnecting. This. is only allowed if the protocol itself is not
connection oriented. Datagram sockets may connect to specify a default destination, then
later connect to another destination or to a null destination to disconnect. The sodiscon­
neet routine never used its second argument, and it has been removed.

The sosend routine, which implements write and send on sockets, has been restructured
for clarity. The old routine had the main loop upside down, first emptying and then filling
the buffers. The new implementation also makes it possible to send zero-length
datagrams. The maximum length calculation was simplified to avoid problems trying to
account for both mbufs and characters of buffer space used. Because of the large
improvement in speed of data handling when large buffers are used, sosend will use page
clusters if it can use at least half of the cluster. Also, if not using non blocking I/O, it will
wait for output to drain if it has enough data to fill an mbuf cluster but not enough space
in the output queue for one, instead of fragmenting the write into small mbufs. A bug
allowing access rights to be sent more than once when using scatter-gather I/O (sendmsg)
was fixed. A race that occurred when uiomove blocked during a page fault was corrected
by allowing the protocol send routines to report disconnection errors; as with disconnec­
tion detected earlier, sosend returns EPIPE and sends a SIGPIPE signal to the process.

The receive side of socket operations, soreceive, has also been reworked. The major
changes are a reflection of the way that datagrams are now queued; see uipc _ socket2.c for
further information. The MSG PEEK flag is passed to the protocol's usrreq routine
when requesting out-of-band data so that the protocol may know when the out-of-band
data has been consumed. Another bug in access-rights passing was corrected here; the
protocol is not called to externalize the data when PEEKing.

The sosetopt and sogetopt functions have been expanded considerably. The options that
existed in 4.2BSD all set some flag at the socket level. The corresponding options in
4.3BSD use the value argument as a boolean, turning the flag off or on as appropriate.
There are a number of additional options at the socket level. Most importantly, it is possi­
ble to adjust the send or receive buffer allocation so that higher throughput may be
achieved, or that temporary peaks in datagram arrival are less likely to result in datagram
loss. The linger option is now set with a structure including a boolean (whether or not to
linger) and a time to linger if the boolean is true. Other options have been added to deter­
mine the type of a socket (eg, SOCK_STREAM, SOCK_DGRAM), and to collect any
outstanding error status. If an option is not destined for the socket level itself, the option
is passed to the protocol using the etloutput entry. Getopt's last argument was changed
from mbuf * to mbuf ** for consistency with setopt and the new ctloutput calling conven­
tion.

Select for exceptional conditions on sockets is now possible, and this returns true when
out-of-band data is pending. This is true from the time that the socket layer is notified
that the OOB data is on its way until the OOB data has been consumed. The interpreta­
tion of socket process groups in 4.2BSD was inconsistent with that of ttys and with the
fcntl documentation. This was corrected; positive numbers refer to processes, negative
numbers to process groups. The socket process group is used when posting a SIGURG to
notify processes of pending out-of-band data.

uipc_socket2.c Signal-driven I/O now works with sockets as well as with ttys; sorwakeup and
sowwakeup call the new routine sowakeup which calls sbwakeup as before and also sends
SIGIO as appropriate. Process groups are interpreted in the same manner as for
SIGURG.

Larger socket buffers may be used with 4.3BSD than with 4.2BSD; socket buffers (sock­
bufs) have been modified to use unsigned short rather than short integers for character
counts and mbuf counts. This increases the maximum buffer size to 64K-l. These fields
should really be unsigned longs, but a socket would no longer fit in an mbuf. So that as
much as possible of the allotment may be used, sbreserve allows the high-water mark for
data to be set as high as 80% of the maximum value (64K), and sets the high-water mark

Changes to the Kernel in 4.3BSD SMM:13-13

on mbuf allocation to the smaller of twice the character limit and 64K.

In 4.2BSD, datagrams queued in sockbufs were linked through the mbuf m _next field,
with m _act set to 1 in the last mbuf of each datagram. Also, each datagram was required
to have one mbuf to contain an address, another to contain access rights, and at least one
additional mbuf of data. In 4.3BSD, the mbufs comprising a datagram are linked through
m _next, and different datagrams are linked through the m _act field of the first mbuf in
each. No mbuf is used to represent missing components of a datagram, but the ordering
of the mbufs remains important. The components are distinguished by the mbuf type.
Any address must be in the first mbuf. Access rights follow the address if present, other­
wise they may be first Data mbufs follow; at least one data buffer will be present if there
is no address or access rights. The routines sbappend, sbappendaddr, sbappendrights and
sbappendrecord are used to add new data to a sockbuf. The first of these appends to an
existing record, and is commonly used for stream sockets. The other three begin new
records with address, optional rights, and data (sbappendaddr) , with rights and data
(sbappendrights), or data only (sbappendrecord). A new internal routine, sbcompress, is
used by these functions to compress and append data mbufs to a record. These changes
improve the functionality of this layer and in addition make it faster to find the end of a
queue.

An occasional "panic: sbdrop" was due to zero-length mbufs at the end of a chain.
Although these should no longer be found in a sockbuf queue, sbdrop was fixed to free
empty buffers at the end of the last record. Similarly, sbfree continues to empty a sockbuf
as long as mbufs remain, as zero-length packets might be present Sbdroprecord was
added to free exactly one record from the front of a sockbuf queue.

uipc_syscaUs.c Errors reported during an accept call are cleared so that subsequent accept calls may
succeed. A failed attempt to connect returns the error once only, and SOISCONNECT­
INO is cleared, so that additional connect calls may be attempted. (Lower level protocols
mayor may not allow this, depending on the nature of the failure.) The socketpair system
call has been fixed to work with datagram sockets as well as with streams, and to clean up
properly upon failure. Pipes are now created using connect2. An additional argument,
the type of the data to be fetched, is passed to sockargs.

uipc _ usrreq.c The binding and connection of Unix domain sockets has been cleaned up so that recvfrom
and accept get the address of the peer (if bound) rather than their own. The Unix-domain
connection block records the bound address of a socket, not the address of the socket to
which it is connected. For stream sockets, back pressure to implement flow control is
now handled by adjusting the limits in the send buffer without overloading the normal
count fields; the flow control information was moved to the connection block. Access
rights are checked now when connecting; the connected-to socket must be writable by the
caller, or the connection request is denied. In order to test one previously unused routine,
the Unix domain stream support was modified to support the passage of access rights.
Problems with access-rights garbage collection were also noted and fixed, and a count is
kept of rights outstanding so that garbage collection is done only when needed. Garbage
collection is triggered by socket shutdown now rather than file close; in 4.2BSD, it hap­
pened prematurely. The PRU_SENSE usrreq entry, used by stat, has been added. It
returns the write buffer size as the "blocksize," and generates a fake inode number and
device for the benefit of those programs that use Istat information to determine whether
file descriptors refer to the same file. Unimplemented requests have been carefully
checked to see that they properly free mbufs when required and never otherwise. Larger
buffers are allocated for both stream and datagram sockets. A number of minor bugs
have been corrected: the back pointer from an inode to a socket needed to be cleared
before release of the inode when detaching; sockets can only be bound once, rather than
losing inodes; datagram sockets are correctly marked as connected and disconnected;
several mbuf leaks were plugged. A serious problem was corrected in unp _drop: it did
not properly abort pending connections, with the result that closing a socket with

SMM:13-14 Changes to the Kernel in 4.3BSD

unaccepted connections would cause an infinite loop trying to drop them.

4.2. Changes in the virtual memory system

The virtual memory system in 4.3BSD is largely unchanged from 4.2BSD. The changes that have
been made were in two areas: adapting the VM substem to larger physical memories, and optimization by
simplifying many of the macros.

Many of the intemallimits on the virtual memory system were imposed by the cmap structure. This
structure was enlarged to increase those limits. The limit on physical memory has been changed from 8
megabytes to 64 megabytes, with expansion space provided for larger limits, and the limit of 15 mounted
file systems has been changed to 255. The maximum file system size has been increased to 8 gigabytes,
number of processes to 65536, and per-process size to 64 megabytes of data and 64 megabytes of stack.
Configuration parameters and other segment size limits were converted from pages to bytes. Note that most
of these are upper bounds; the default limits for these quantities are tuned for systems with 4-8 megabytes
of physical memory. The process region sizes may be adjusted with kernel configuration file options; for
example,

options MAJaDSLl=33554432

increases the data segment to 32 megabytes. With no option, data segments receive a hard limit of roughly
17Mb and a soft limit of 6Mb (that may be increased with the csh limit command).

The global clock page replacement algorithm used to have a single hand that was used both to mark
and to reclaim memory. The first time that it encountered a page it would clear its reference bit. If the
reference bit was still clear on its next pass across the page, it would reclaim the page. (On the V AX, the
reference bit was simulated using the valid bit) The use of a single hand does not work well with large
physical memories as the time to complete a single revolution of the hand can take up to a minute or more.
By the time the hand gets around to the marked pages, the information is usually no longer pertinent. Dur­
ing periods of sudden shortages, the page daemon will not be able to find any reclaimable pages until it has
completed a full revolution. To alleviate this problem, the clock hand has been split into two separate
hands. The front hand clears the reference bits, and the back hand follows a constant number of pages
behind, reclaiming pages that have have not been referenced since the front hand passed. While the code
has been written in such a way as to allow the distance between the hands to be varied, we have not yet
found any algorithms suitable for determining how to dynamically adjust this distance. The parameters
determining the rate of page scan have also been updated to reflect larger configurations. The free memory
threshold at which pageout begins was reduced from one-fourth of memory to 512K for machines with
more than 2 megabytes of user memory. The scan rate is now independent of memory size instead of pro­
portional to memory size.

The text table is now managed differently. Unused entries are treated as a cache, similar to the usage
of the inode table. Entries with reference counts of 0 are placed in an LRU cache for potential reuse. In
effect, all texts are "sticky," except that they are flushed after a period of disuse or overflow of the table.
The sticky bit works as before, preventing entries from being freed and locking text files into the cache.
The code to prevent modification of running texts was cleaned up by keeping a pointer to the text entry in
the inode, allowing texts to be freed when unlinking files without linear searches.

The swap code was changed to handle errors a bit better (swapout doesn't do swkills, it just reflects
errors to the caller for action there). During swapouts, interrupts are now blocked for less time after free­
ing the pages of the user structure and page tables (as explained by the old comment from swapout, "XXX
hack memory interlock"), and this is now done only when swapping out the current process. The same
situation existed in exit, but had not yet been protected by raised priority.

Various routines that took page numbers as arguments now take cmap pointers instead to reduce the
number of conversions. These include mlink, munlink, mlock, munlock, and mwait. Mlock and munlock
are generally used in their macro forms.

The remainder of the section details the other changes according to source file.

Changes to the Kernel in 4.3BSD SMM:13-15

vrn rnem.c

vrnyage.c

vmyroc.c

vmyt.c

vm sched.c

vm_sw.c

vrn_swap.c

vm_swp.c

vm_text.c

Low-level support for mapped files was remove~ as the descriptor field in the page table
entry was too small. Callers of munhash must block interrupts with splimp between
checking for the presence of a block in the hash list and removing it with munhash in
order to avoid reallocation of the page and a subsequent panic.

When filling a page from the text file, pagein uses a new routine, !odkluster, to bring in
additional pages that are contiguous in the filesystem. If errors occur while reading in
text pages, no page-table change is propagated to other users of the shared image, allow­
ing them to retry and notice the error if they attempt to use the same page. Virtual
memory initialization code has been collected into vminit, which adjusts swap interleav­
ing to allow the configured size limits, set up the parameters for the clock algorithm, and
set the initial virtual memory-related resource limits. The limit to resident-set size is set
to the size of the available user memory. This change causes a single large process occu­
pying most of memory to begin random page replacement as memory resources run short.
Several races in pagein have been detected and fixed. Most of the pageout code was
moved to check page in implementing the two-handed clock algorithm.

The setjmp in procdup was changed to savectx, which saves all registers, not just those
needed to locate the others on the stack.

The setjmp call in ptexpand was changed to savectx to save all registers before initiating a
swapout. Vrelu does an splimp before freeing user-structure pages if running on behalf of
the current process. This had been done by swapout before, but not by exit.

The swap scheduler looks through the allproc list for processes to swap in or out. A call
to remrq when swapping sleeping processes was unnecessary and was removed. If
swapouts fail upon exhaustion of swap space, sched does not continue to attempt
swapouts.

The ptetov function and the unused vtopte function were recoded without using the usual
macros in order to fold the similar cases together.

The error returned by swapon when the device is not one of those configured was
changed from ENODEV to EINV AL for accuracy. The search for the specified device
begins with the first entry so that the error is correct (EBUSY) when attempting to enable
the primary swap area.

The swapout routine now leaves any swkill to its caller. This avoids killing processes in a
few situations. It uses xdetach instead of xccdec. Several unneeded spi's were deleted.

The swap routine now consistently returns error status. Physio was modified to do
scatter-gather I/O correctly.

The text routines use a text free list as a cache of text images, resulting in numerous
changes throughout this file. Xccdec now works only on locked text entries, and is
replaced by xdetach for external callers. Xumount frees unused swap images from all
devices when called with NODEV as argument. It is no longer necessary to search the
text table to find any text associated with an inode in xrele, as the inode stores a pointer to
any text entry mapping it Statistics are gathered on the hit rate of the cache and its cost.

S. Machine specific support

The next several sections describe changes to the V AX-specific portion of the kernel whose sources
reside in /sys/vax.

5.1. AutoconfiguratioD

The data structures and top level of autoconfiguration have been generalized to support the V AX
8600 and machines whose main I/O busses are not similar to an SBI. The percpu structure has been broken
into three structures. The percpu structure itself contains only the CPU type, an approximate value for the
speed of the cpu, and a pointer to an array of I/O bus descriptions. Each of these, in turn, contain general
information about one I/O bus that must be configured and a pointer to the private data for its configuration

SMM:13-16 Changes to the Kernel in 4.3BSD

routine. The third new structure that has been defined describes the SBr and the other interconnects that
emulate it. At boot time, configure calls probeio to configure the 110 bus(ses). Probeio looks through the
array of bus descriptions, indirecting to the correct routine to configure each bus. For the V AXen currently
supported, the main bus is configured by either probe_Abus (on the 8600 and 8650) or by probenexi, that is
used on anything resembling an SBI. Multiple SBr adaptors on the 8600 are handled by multiple calls to
probenexi. (Although the code has been tested with a second SBI, there were no adaptors installed on the
second SBI.) This structure is easily extensible to other architectures using the BI bus, Q bus, or any com­
bination of busses.

The CPU speed value is used to scale the DELAY macro so that autoconfiguration of old devices on
faster CPU's will continue to work. The units are roughly millions of instructions per second (MIPS), with
a value of 1 for the 780, although fractional values are not used When multiple CPU's share the same
CPU type, the largest value for any of them is used.

UNIBUS autoconfiguration has been modified to accommodate UNIBUS memory devices correctly.
A new routine, ubameminit, is used to configure UNIBUS memory before probing other devices, and is
also used after a UNmUS reset to remap these memory areas. The device probe or attach routines may
then allocate and hold UNIBUS map registers without interfering with these devices.

S.2. Memory controller support

The introduction of the MS780-E memory controller for the V AX 780 made it necessary to configure
the memory controller(s) on a V AX separately from the CPU. During autoconfiguration, the types of the
memory controllers are recorded in an array. Memory error routines that must know the type of controller
then use this information rather than the CPU type. The MS780-E controller is listed as two controllers, as
each half reports errors independently. Both 1Mb and 4Mb boards using 64K and 256K dRAM chips are
supported

Locore.c

autoconr.c

conr.c

cons.h

crl.h,crl.c

flp.c

genassym.c

iD_cksum.c

inline

locore.s

For lint's sake, Locore.c has been updated to include the functions provided by inline and
the new functions in locore.s.

Most of the changes to autoconfiguration are described above. Other minor changes:
UNIBUS controller probe routines are now passed an additional argument, a pointer to
the uba _ ctlr structure, and similarly device probe routines are passed a pointer to the
uba _device structure. Ubaaccess and nxaccess were combined into a single routine to
map I/O register areas. A logic error was corrected so that swap device sizes that were
initialized from information in the machine configuration file are used unmodified. Dum­
plo is set at configuration time according to the sizes of the dump device and memory.

Several new devices have been added and old entries have been deleted. A number of
devices incorrectly set unused UNffiUS reset entries to nodev; these were changed to
nulldev. An entry was added for the new error log device. Additional device numbers
have been reserved for local use.

New definitions have been added for the 8600 console.

New files for the VAX 8600 console RL02 (our third RL02 driver!).

It was discovered that not all V AXen that are not 780's are 750's; the console floppy
driver for the 780 now checks for cpu == 780, not cpu != 750. An error causing the
floppy to be locked in the busy state was corrected.

Several new structure offsets were needed by the assembly language routines.

It was discovered that the instruction used to clear the carry in the checksum loops did not
actually clear carry. As the carry bit was always· off when entering the checksum loop,
this was never noticed.

This directory contains the new inline program used to edit the assembly language output
by the compiler.

The assembly language support for the kernel has a number of changes, some of which
are V AX specific and some of which are needed on all machines. They are simply
enumerated here without distinction.

Changes to the Kernel in 4.3BSD SMM:13-17

machdep.c

The doadump routine sometimes faulted because it changed the page table entry for the
rpb without flushing the translation buffer. In order to reconfigure UNIBUS memory
devices again after UNIBUS resets, badaddr was reimplemented without the need to
modify the system control block. The machine check handler catches faults predicted by
badaddr, cleans up and then returns to the error handler. The interrupt vectors have each
been modified to count the number of interrupts from their respective devices, so that it is
possible to account for software interrupts and UBA interrupts, and to determine which of
several similar devices is generating unexpected interrupt loads. The config program gen­
erates the definitions for the indices into this interrupt count table. Software clock inter­
rupts no longer call timer entries in the dz and db drivers. The processing of network
software interrupts has been reordered so that new interrupts requested during the proto­
col interrupt routine are likely to be handled before return from the software interrupt.
Additional map entries were added to the network buffer and user page table page maps,
as both use origin-l indexing. The memory size limit and the offsets into the coremap
are both obtained from cmap.h instead of inline constants. The signal trampoline code is
all new and uses the sigreturn system call to reset signal masks and perform the rei to
user mode. The initialization code for process 1, icode, was moved to this file to avoid
hand assembly; it has been changed to exit instead of looping if /etC/init cannot be exe­
cuted, and to allow arguments to be passed to init. The routines that are called with jsb
rather than calls use a new entry macro that allows them to be profiled if profiling is
enabled.

Several new routines were added to move data from address space to address space a
character string at a time; they are copyinstr, copyoutstr, and copystr. Copyin and copy­
out now receive their arguments in registers. Setjmp and longjmp are now similar to the
user-level routines; setjmp saves the stack and frame pointers and PC only (all imple­
mented in line), and longjmp unwinds the stack to recover the other registers. This optim­
izes the common case, setjmp, and allows the same semantics for register variables as for
stack variables. For swaps and alternate returns using u.u _save, however, all registers
must be saved as in a context switch, and savectx is provided for that purpose.

Redundant context switches were caused by two bugs in swtch. First, swtch cleared run­
run before entering the idle loop. Once an interrupt caused a wakeup, runrun would be
set, requesting another context switch at system call exit Also, the use of the VAX AST
mechanism caused a similar problem, posting AST's to one process that would then swtch
(or might already be in the idle loop), only to catch the AST after being rescheduled and
completing its system service. The AST is no longer marked in the process control block
and is cancelled during the context switch. The idle loop has been separated from swtch
for profiling. .

The startup code to calculate the core map size and the limit to the buffer cache's virtual
memory allocation was corrected and reworked. The number of buffer pages was
reduced for larger memories (10% of the first 2 Mb of physical memory is used for
buffers, as before, and 5% thereafter). The default number of buffers or buffer pages may
be overridden with configuration-file options. If the number of buffers must be reduced
to fit the system page table, a warning message is printed. Buffers are allocated after all
of the fully dense data structures, allowing the other tables allocated at boot time to be
mapped by the identity map once again. The new signal stack call and return mechanisms
are implemented here by sendsig and sigreturn; sigcleanup remains for compatibility with
4.2BSD's longjmp. There are a number of modifications for the V AX 8600, particularly
in the machine check and memory error handlers and in the use of the console flags. On
the V AX-1l1750 more translation-buffer parity faults are considered recoverable. The
reboot routine flushes the text cache before initiating the filesystem update, and may wait
longer for the update to complete. The time-of-day register is set, as any earlier time
adjustments are not reflected there yet The micro time function was completed and is
now used; it is careful not to allow time to appear to reverse during time corrections. An
initcpu routine was added to enable caches, floating point accelerators, etc.

S:M:M::13-18 Changes to the Kernel in 4.3BSD

machparam.h The file vaxlparam.h was renamed to avoid ambiguity when including "param.h".

ns _ cksum.c . This new file contains the checksum code for the Xerox NS network protocols.

pcb.h The aston() and astoff() macros no longer set an AST in the process control block (see
locore.s).

pte.h The pg_blkno field was increased to 24 bits to correspond with the cmap structure; the
pg..fileno field was reduced to a single bit, as it no longer contains a file descriptor.

swapgeneric.c Dumpdev and argdev are initialized to NODEV, preventing accidents should they be used
before configuration completes. DEL is now recognized as an erase character by the ker­
nel gets.

tmscp.h A new file which contains definitions for the Tape Mass Storage Control Protocol.

trap.c Syscall 63 is no longer reserved by syscall for out-of-range calls. In order to make wait3
restartable, syscall must not clear the carry bit in the program status long word before
beginning a system call, but only after successful completion.

tu.c There were several important fixes in the console TU58 driver.

vrn _ machdep.c The chksize routine requires an additional argument, allowing it to check data size and bss
growth separately without overflow.

vmparam.h

6. Network

The limits to user process virtual memory allow nondefault values to be defined by
configuration file options. The definition of D:M:M:AX here now defines only the max­
imum value; it will be reduced according to the definition of MAXDSIZ. The space allo­
cated to user page tables was increased substantially. The free-memory threshold at
which pageout begins was changed to be at most 512K.

There have been many changes in the kernel network support. A major change is the addition of the
Xerox NS protocols. During the course of the integration of a second major protocol family to the kernel, a
number of Internet dependencies were removed from common network code, and structural changes were
made to accommodate multiple protocol and address families simultaneously. In addition, there were a
large number of bug fixes and other cleanups in the general networking code and in the Internet protocols.
The skeletal support for PUP that was in 4.2BSD has been removed.

The link layer drivers were changed to save an indication of the incoming interface with each packet
received, and this information was made available to the protocol layer. There were several problems that
could be corrected by taking advantage of this change. The IMP code needed to save error packets for
software interrupt-level processing in order to fix a race condition, but it needed to know which interface
had received the packet when decoding the addresses. ICMP needed this information to support informa­
tion requests and (newly added) network mask requests properly, as these request information about a
specific network. IP was able to take advantage of this change to implement redirect generation when the
incoming and outgoing interfaces are the same.

6.1. Network common code

The changes in the common support routines for networking, located in Isyslnet, are described here.

if_arp.h This new file contains the definitions for the Address Resolution Protocol (ARP) that are
independent of the protocols using ARP.

if.c Most of the if_ifwith* functions that returned pointers to ifnet structures were converted to
ifa _ with* equivalents that return pointers to ifaddr structures. The old if_ifonnetoJ func­
tion is no longer provided, as there is no concept of network number that is independent
of address family. A new routine, ifa _i/withdstaddr, is provided for use with point-to­
point interfaces. Interface ioctls that set interface addresses are now passed to the
appropriate protocol using the PRU _CONTROL request of the pr _ usrreq entry. Addi­
tional ioctl operations were added to get and set interface metrics and to manipulate the
ARP table (see netinetlif_ether.c).

Changes to the Kernel in 4.3BSD SMM:13-19

if.h In 4.2BSD, the per-interface structure ifnet held the address of the interface, as well as the
host and network numbers. These have all been moved into a new structure, ifaddr, that
is managed by the address family. The ifnet structure for an interface includes a pointer
to a linked list of addresses for the interface. The IFF_ROUTE flag was also removed.
The software loopback interface is distinguished with a new flag. Each interface now has
a routing metric that is stored by the kernel but only interpreted by user-level routing
processes. Additional interface ioctl operations allow the metric or the broadcast address
to be read or set When received packets are passed to the receiving protocol, they
include a reference to the incoming interface; a variant of the IF_DEQUEUE macro,
IF _ DEQUEUEIFP, dequeues a packet and extracts the information about the receiving
interface.

if Joop.c The software loopback driver now supports Xerox NS and Internet protocols. It was
modified to provide information on the incoming interface to the receiving protocol. The
loopback driver's address(es) must now be set with ifconfig.

if sl.c This file was added to support a customized line discipline for the use of an asynchronous
serial line as a network interface. Until the encapsulation is changed the interface sup­
ports only IP traffic.

raw cb.c Raw sockets record the socket's protocol number and address family in a sockproto struc­
ture in the raw connection block. This allows a wildcard raw protocol entry to support
raw sockets using any single protocol.

raw _ cb.h A sockproto description and a hook for protocol-specific options were added to the raw
protocol control block.

raw _ usrreq.c A bug was fixed that caused received packet return addresses to be corrupted periodically;
an mbuf was being used after it was freed. Routing is no longer done here, although the
raw socket protocol control block includes a routing entry for use by the transport proto­
col. The SO _ OONTROUTE flag now works correctly with raw sockets.

route.c The routing algorithm was changed to use the first route found in the table instead of the
one with the lowest use count This reduces routing overhead and makes response more
predictable. The load-sharing effect of the old algorithm was minimal under most cir­
cumstances. Several races were fixed. The hash indexes have been declared as unsigned;
negative indices worked for the network route hash table but not for the host hash table.
(This fix was included on most 4.2BSD tapes.) New routes are placed at the front of the
hash chains instead of at the end The redirect handling is more robust; redirects are only
accepted from the current router, and are not used if the new gateway is the local host.
The route allocated while checking a redirect is freed even if the redirect is disbelieved.
Host redirects cause a new route to be created if the previous route was to the network.
Routes created dynamically by redirects are marked as such. When adding new routes,
the gateway address is checked against the addresses of point-ta-point links for exact
matches before using another interface on the appropriate network. Rtinit takes argu­
ments for flags and operation separately, allowing point-to-point interfaces to delete old
routes.

route.h The size of the routing hash table has been changed to a power of two, allowing unsigned
modulus operations to be performed with a mask. The size of the table is expanded if the
GATEWAY option is configured

7. Internet network protocols

There are numerous bug fixes and extensions in the Internet protocol support (/syslnetinet). This
section describes some of the more important changes with very little detail. As many of the changes span
several source files, and as it is very difficult to merge this code with earlier versions of these protocols, it
is strongly recommended that the 4.3BSD network be adopted intact, with local hacks merged into it only if
necessary.

SMM:13-20 Changes to the Kernel in 4.3BSD

7.1. Internet common code

By far, the most important change in IP and the shared Internet support layer is the addition of sub­
network addressing. This facility is used (and required) by a number of large university and other net­
works that include multiple physical networks as well as connections with the DARPA Internet Subnet
support allows a collection of interconnected local networks to share a single network number, hiding the
complexity of the local environment and routing from external hosts and gateways. The subnet support in
4.3BSD conforms with the Internet standard for subnet addressing, RFC-950. For each network interface,
a network mask is set along with the address. This mask determines which portion of the address is the
network number, including the subnet, and by default is set according to the network class (A, B, or C, with
8, 16, or 24 bits of network part, respectively). Within a subnetted network each subnet appears as a dis­
tinct network; externally, the entire network appears to be a single entity.

Another important change in IP addressing is a change to the default IP broadcast address. The
default broadcast address is the address with a host part of all ones (using the definition
INADDR _BROADCAST), in conformance with RFC-919. In 4.2BSD, the broadcast address was the
address with a host part of all zeros (INADDR ANY). To facilitate the conversion process, and to help
avoid breaking networks with fOlWarded broadCasts, 4.3BSD allows the broadcast address to be set for
each interface. IP recognizes and accepts network broadcasts as well as subnet broadcasts when subnets
are enabled. Such broadcasts normally originate from hosts that do not know about subnets. IP also
accepts old-style (4.2) broadcasts using a host part of all zeros, either as a network or subnet broadcast. An
address of all ones is recognized as "broadcast on this network," and an address of all zeros is accepted as
well. The latter two are sometimes used in broadcast information requests or network mask requests in the
course of starting a diskless workstation. ICMP includes support for the Network Mask Request and
Response. A new routine, in_broadcast, was added for the use of link layer output routines to determine
whether an IP packet should be broadcast.

Network numbers are now stored and used unshifted to minimize conversions and reduce the over­
head associated with comparisons. 4.2BSD shifted network numbers to the low-order part of the word.
The structure defining Internet addresses no longer includes the old IMP-host fields, but only a featureless
32-bit address.

in.h

iOJcb.h

io.c

iOJcb.c

The definitions of Internet port numbers in this file were deleted, as they have been super­
ceded by the getservicebyname interface. A definition was added for the single option at
the IP level accessible through setsockopt, IP _OPTIONS.

The Internet protocol control block includes a pointer to an optional mbuf containing IP
options.

This new header file contains the declaration of the Internet variety of the per-interface
address information. The in ifaddr structure includes the network, subnet, network mask
and broadcast information.

The if_ * routines which manipulate Internet addresses were renamed to in _ *. in _ netoJ
and in _lnaoJ check whether the address is for a directly-connected network, and if so they
use the local network mask to return the subnet/net and host portions, respectively.
in)ocaladdr determines whether an address corresponds to a directly-connected network.
By default, this includes any subnet of a local network; a configuration option,
SUBNETSARELOCAL=O, changes this to return true only for a directly-connected sub­
net or non-subnetted network. Interface ioctls that get or set addresses or related status
information are forwarded to in_control, which implements them. in _iaonnetoJ replaces
if_ifonnetoJfor Internet addresses only.

The destination address of a connect may be given as IN ADDR _ANY (0) as a shorthand
notation for "this host." This simplifies the process of connecting to local servers such
as the name-domain server that translates host names to addresses. Also, the short-hand
address INADDR· BROADCAST is converted to the broadcast address for the primary
local network; it fails if that network is incapable of broadcast. The source address for a
connection or datagram is selected according to the outgoing interface; the initial route is
allocated at this time and stored in the protocol control block, so that it may be used again

Changes to the Kernel in 4.3BSD SMM:13-21

inyroto.c

7.2. IP

when actually sending the packet(s). The in ycbnotify routine was generalized to apply
any function andlor report an error to all connections to a destination; it is used to notify
connections of routing changes and other non-error situations as well as errors. New
entries have been added to this level to invalidate cached routes when routing changes
occur, as well as to report possible routing failures detected by higher levels.

The protocol switch table for Internet protocols includes entries for the ctloutput routines.
ICMP may be used with raw sockets. A raw wildcard entry allows raw sockets to use any
protocol not already implemented in the kernel (e.g., EOP).

Support was added for IP source routing and other IP options (partly derived from BBN's implemen­
tation). On output, IP options such as strict or loose source route and record may be set by a client process
using TCP, UDP or raw IP sockets. IP properly updates source-route and record-route options when for­
warding (and leaves them in the packet, unlike 4.2 which stripped them out after updating). IP input
preserves any source-routing information in an incoming packet and passes it up to the receiving protocol
upon request, reversing it and arranging it in the same way as user-supplied options. Both TCP and ICMP
retrieve incoming source routes for use in replies. Most of the option-handling code has been converted to
use bcopy instead of structure assignments when copying addresses, as the alignment in the incoming
packet may not be correct for the host. This is not required on the V AX, but is needed on most other
machines running 4.2BSD.

ip.h The IP time-ta-live field is decremented by one when forwarding; in 4.2BSD this value
was five.

ip_var.h

ipJnput.c

ip_output.c

Data structures and definitions were added for storing IP options. New fields have been
added to the structure containing IP statistics.

The changes to save and present incoming IP source-routing information to higher level
protocols are in this file. The identity of the interface that received the packet is also
determined by ip _input and passed to the next protocol receiving the packet To avoid
using uninitialized data structures, IP must not begin receiving packets until at least one
Internet address has been set A bug in the reassembly of IP packets with options has
been corrected Machines with only a single network interface (in addition to the loop­
back interface) no longer attempt to forward received IP packets that are not destined for
them; they also do not respond with ICMP errors unless configured with the OA TEW A Y
option. This change prevents large increases in network activity which used to result
when an IP packet that was broadcast was not understood as a broadcast. A one-element
route cache was added to the IP forwarding routine. When a packet is forwarded using
the same interface on which it arrived, if the source host is on the directly-attached net­
work, an ICMP redirect is sent to the source. If the route used for forwarding was a route
to a host or a route to a subnet, a host redirect is used, otherwise a network redirect is
sent. The generation of redirects may be disabled by a configuration option, IPSEN­
DREDIRECTS=O. More statistics are collected, in particular on traffic and fragmenta­
tion. The ip _ ctlinput routine was moved to each of the upper-level protocols, as they
each have somewhat different requirements.

The IP output routine manages a cached route in the protocol control block for each TCP,
UDP or raw IP socket If the destination has changed, the route has been marked down,
or the route was freed because of a routing change, a new route is obtained The route is
not used if the IP _ ROUTETOIF (aka SO _ DONTROUTE or MSO _ DONTROUTE)
option is present Preformed IP options passed to ip _output are inserted, changing the
destination address as required. The ip _ ctloutput routine allows options to be set for an
individual socket, validating and internalizing them as appropriate.

The type-of-service and offset fields in the IP header are set to zero on output The
SO _ OONTROUTE Bag is handled properly.

SMM:13-22 Changes to the Kernel in 4.3BSD

7.3. ICMP

There have been numerous fixes and corrections to ICMP. Length calculations have been corrected,
allowing most ICMP packet lengths to be received and allowing errors to be sent about smaller input pack­
ets. ICMP now uses information about the interface on which a message was received to determine the
correct source address on returned error packets and replies to information requests. Support was added
for the Network Mask Request Responses to source-routed requests use the reversed source route for the
return trip. Timestamps are created with microtime, allowing I-millisecond resolution. The icmp _error
routine is capable of sending ICMP redirects. When processing network redirects, the returned source
address is converted to a network address before passing it to the routing redirect handler. The translation
of ICMP errors to Unix error returns was updated.

7.4. TCP

In addition to bug fixes, several performance changes have been made to TCP. Several of these
address overall network performance and congestion avoidance, while others address performance of an
individual connection. The most important changes concern the TCP send policy. First, the sender silly­
window syndrome avoidance strategy was fixed. In 4.2BSD, the amount that could be sent was compared
to the offered window, and thus small amounts could still be sent if the receiver offered a silly window.
Once this was fixed, there were problems with peers that never offered windows large enough for a max­
imum segment, or at least 512 bytes (e.g., the peer is a TAC or an IBM PC). Code was then added to main­
tain estimates of the peer's receive and send buffer sizes. The send policy will now send if the offered
window is at least one-half of the receiver's buffer, as well as when the window is at least a full-sized seg­
ment. (When the window is large enough for all data that is queued, the data will also be sent.) The send
buffer size estimate is not yet used, but is desired for a new delayed-acknowledgement scheme that has yet
to be tested. Another problem that was exposed when the silly-window avoidance was fixed was that the
persist code didn't expect to be used with a non-zero window. The persist now lasts only until the first
timeout, at which time a packet is sent of the largest size allowed by the window. If this packet is not ack­
nowledged, the output routine must begin retransmission rather than returning to the persist state.

Another change related to the send policy is a strategy designed to minimize the number of small
packets outstanding on slow links. This is an implementation of an algorithm proposed by John Nagle in
RFC-896. The algorithm is very simple: when there is outstanding, unacknowledged data pending on a
connection, new data are not sent unless they fill a maximum-sized segment. This allows bulk data
transfers to proceed, but causes small-packet traffic such as remote login to bundle together data received
during a single round-trip time. On high-bandwidth, low-delay networks such as a local Ethernet, this
change seldom causes delay, but over slow links or across the Internet, the number of small packets can be
reduced considerably. This algorithm does interact poorly with one type of usage, however, as demon­
strated by the X window system. When small packets are sent in a stream, such as when doing rubber­
banding to position a new window, and when no echo or other acknowledgement is being received from
the other end of the connection, the round-trip delay becomes as large as the delayed-acknowledgement
timer on the remote end. For such clients, a TCP option may be set with setsockopt to defeat this part of
the send policy.

For bulk-data transfers, the largest single change to improve performance is to increase the size of
the send and receive buffers. The default buffer size in 4.3BSD is 4096 bytes, double the value in 4.2BSD.
These values allow more outstanding data and reduce the. amount of time waiting for a window update
from the receiver. They also improve the utility of the delayed-acknowledgement strategy. The delayed
acknowledgment strategy withholds acknowledgements until a window update would uncover at least 35%
of the window; in 4.2BSD, with 1024-byte packets on an Ethernet and 2048-byte windows, this took only a
single packet. With 4096-byte windows, up to 50% of the acknowledgements may be avoided.

The use of larger buffers might cause problems when bulk-data transfers must traverse several net­
works and gateways with limited buffering capacity. The source-quench ICMP message was provided to
allow gateways in such circumstances to cause source hosts to slow their rate of packet injection into the
network. While 4.2BSD ignored such messages, the 4.3BSD TCP includes a mechanism for throttling
back the sender when a source quench is received This is done by creating an artificially small window
(one which is 80% of the outstanding data at the time the quench is received, but no less than one segment).

Changes to the Kernel in 4.3BSD SMM:13-23

This artificial congestion window is slowly opened as acknowledgements are received. The result under
most circumstances is a slow fluctuation around the buffering limit of the intermediate gateways, depend­
ing on the other traffic flowing at the same time.

A final set of changes designed to improve network throughput concerns the retransmission policy.
The retransmission timer is set according to the current round-trip time estimate. Unfortunately, the
round-trip timing code in 4.2BSD had several bugs which caused retransmissions to begin much too early.
These bugs in round trip timing have been corrected. Also, the retransmission code has been tuned, using a
faster backoff after the first retransmission. On an initial connection request where there is no round-trip
time estimate, a much more conservative policy is used. When a slow link intervenes between the sender
and the destination, this policy avoids queuing large numbers of retransmitted connection requests before a
reply can be received. It also avoids saturation when the destination host is down or nonexistent. During a
connection, when the retransmission timer expires, only a single packet is sent When only a single packet
has been lost, this avoids resending data that was successfully received; when a host has gone down or
become unreachable, it avoids sending multiple packets at each timeout. Once another acknowledgement
is received, the transmission policy returns to normal.

4.2BSD offered a maximum receive segment size of 1024 for all connections, and accepted such
offers whenever made. However, that size was especially poor for the Arpanet and other 1822-based IMP
networks (sorry, make that PSN networks) where the maximum packet size is 1007 bytes. This was com­
pounded by a bug in the LHlDH driver that did not allow space for an end-of-packet bit in the receive
buffer, and thus maximum size packets that were received were split across buffers. This, in tum, aggra­
vated a hardware problem causing small packets following a segmented packet to be concatenated with the
previous packet. The result of this set of conditions was that performance across the Arpanet was some­
times abominably slow. The maximum size segment selected by 4.3BSD is chosen according to the desti­
nation and the interface to be used. The segment size chosen is somewhat less than the maximum
transmission unit of the outgoing interface. If the destination is not local, the segment size is a convenient
small size near the default maximum size (512 bytes). This value is both the maximum segment size
offered to the sender by the receive side, and the maximum size segment that will be sent. Of course, the
send size is also limited to be no more than the receiver has indicated it is willing to receive.

The initial sequence number prototype for TCP is now incremented much more quickly; this has
exposed two bugs. Both the window-update receiving code and the urgent data receiving code compared
sequence numbers to 0 the first time they were called on a connection. This fails if the initial sequence
number has wrapped around to negative numbers. Both are now initialized when the connection is set up.
This still remains a problem in maintaining compatibility with 4.2BSD systems; thus an option,
TCP_COMPAT_42, was added to avoid using such sequence numbers until 4.2 systems have been
upgraded.

Additional changes in TCP are listed by source file:

tcpJnput.c The common case of TCP data input, the arrival of the next expected data segment with
an empty reassembly queue, was made into a simplified macro for efficiency. Tep _input
was modified to know when it needed to call the output side, reducing unnecessary tests
for most acknowledgement-only packets. The receive window size calculation on input
was modified to avoid shrinking the offered window; this change was needed due to a
change in input data packaging by the link layer. A bug in handling TCP packets
received with both data and options (that are not supposed to be used) has been corrected.
If data is received on a connection after the process has closed, the other end is sent a
reset, preventing connections from hanging in CLOSE_WAIT on one end and
FIN _ W AIT _ 2 on the other. (4.2BSD contained code to do this, but it was never executed
because such input packets had already been dropped as being outside of the receive win­
dow.) A timer is now started upon entering FIN_WAIT_2 state if the local user has
closed, closing the connection if the final FIN is not received within a reasonable time.
Half-open connections are now reset more reliably; there were circumstances under
which one end could be rebooted, and new connection requests that used the same port
number might not receive a reset. The urgent-data code was modified to remember which
data had already been read by the user, avoiding possible confusion if two urgent-data

SMM:13-24 Changes to tIle Kernel in 4.3BSD

signals were received close together. Another change was made specifically for connec­
tions with a T AC. The T AC doesn't fill in the window field on its initial packet (SYN),
and the apparent window is random. There is some question as to the validity of the win­
dow field if the packet does not have ACK set, and therefore TCP was changed to ignore
the window information on those packets.

tcp _ output.c The advertised window is never allowed to shrink, in correspondence with the earlier
change in the input handler. The retransmit code was changed to check for shrinking
windows, updating the connection state rather than timing out while waiting for ack­
nowledgement. The modifications to the send policy described above are largely within
this file.

tcp _timer.c The timer routines were changed to allow a longer wait for acknowledgements. (TCP
would generally time out before the routing protocol had changed routes.)

7.5. UDP

An error in the checksumming of output UDP packets was corrected. Checksums are now checked
by default, unless the COMP AT _ 42 configuration option is specified; it is provided to allow communica­
tion with the 4.2BSD UDP implementation, which generates incorrect checksums. When UDP datagrams
are received for a port at which no process is listening, ICMP unreachable messages are sent in response
unless the input packet was a broadcast. The size of the receive buffer was increased, as several large
datagrams and their attached addresses could otherwise fill the buffer. The time-ta-live of output
datagrams was reduced from 255 to 30. UDP uses its own etlinput routine for handling of ICMP errors, so
that errors may be reported to the sender without closing the socket.

7.6. Address Resolution Protocol

The address resolution protocol has been generalized somewhat. It was specific for IP on 10 Mb/s
Ethernet; it now handles multiple protocols on 10 Mb/s Ethernet and could easily be adapted to other
hardware as well. This change was made while adding ARP resolution of trailer protocol addresses. Hosts
desiring to receive trailer encapsulations must now indicate that by the use of ARP. This allows trailers to
be used between cooperating 4.3 machines while using non-trailer encapsulations with other hosts. The
negotiation need not be symmetrical: a V AX may request trailers, for example, and a SUN may note this
and send trailer packets to the VAX without itself requesting trailers. This change requires modifications
to the 10 Mb/s Ethernet drivers, which must provide an additional argument to arpresolve, a pointer for the
additional return value indicating whether trailer encapsulations may be sent. With this change, the
IFF _ NOTRAlLERS flag on each interface is interpreted to mean that trailers should not be requested.
Modifications to ARP from SUN Microsystems add ioetl operations to examine and modify entries in the
ARP address translation table, and to allow ARP translations to be "published" When future requests are
received for Ethernet address translations, if the translation is in the table and is marked as published, they
will be answered for that host. Those modifications superceded the "oldmap" algorithmic translation from
IP addresses, which has been removed Packets are not forwarded· to the loopback interface if it is not
marked up, and a bug causing an mbuf to be freed twice if the loopback output fails was corrected. ARP
complains if a host lists the broadcast address as its Ethernet address. The ARP tables were enlarged to
reflect larger network configurations now in use. A new function for use in driver messages, ether _ sprintf,
formats a 48-bit Ethernet address and returns a pointer to the resulting string.

7.7. IMP support

The support facilities for connections to an 1822 (or X.25) IMP port (/sys/netimp) have had several
bug fixes and one extension. Unit numbers are now checked more carefully during autoconfiguration.
Code from BRL was installed to support class B and C networks. Error packets received from the IMP
such as Host Dead are queued in the interrupt handler for reprocessing from a software interrupt, avoiding
state transitions in the protocols at priorities above spinet. The host-dead timer is no longer restarted when
attempting new output, as a persistent sender could otherwise prevent new output from being attempted
once a host was reported down. The network number is always taken from the address configured for the
interface at boot time; network 10 is no longer assumed. A timer is used to prevent blocking if RFNM

Changes to the Kernel in 4.3BSD SMM:13-25

messages from the IMP are lost. A race was fixed when freeing mbufs containing host table entries, as the
mbuf had been used after it was freed.

8. Xerox Network Systems Protocols

4.3BSD now supports some of the Xerox NS protocols. The kernel will allow the user to send or
receive IDP datagrams directly, or establish a Sequenced Packet connection. It will generate Error Proto­
col packets when necessary, and may close user connections if this is the appropriate action on receipt of
such packets. It will respond to Echo Protocol requests. The Routing Information Protocol is executed by
a user level process, and sufficient access has been left for other protocols to be implemented using IDP
datagrams. It would be possible to set the additional fields required for the Packet Exchange format at user
level, to provide a daemon to respond to time-of-day requests, or conduct an expanding ring broadcast to
discover clearinghouses.

Wherever possible, the algorithms and data structures parallel those used in Internet protocol sup­
port, so that little extra effort should be required to maintain the NS protocols. There has not yet been
much effort at tuning.

8.1. Naming

A machine running 4.3 is allowed to have only one six-byte NS host address, but is permitted to be
on several networks. As in the Internet case, an address of all zeros may be used to bind the host address
for an offered service. Unlike the Internet case, an address of all zeros cannot be used to contact a service
on the same machine. (This should be changed)

There is only one name space of port numbers, as opposed to the Internet case where each protocol
has its own port space.

Several point-to-point connections can share the same network number. The destination of a point­
to-point connection can have a different network number from the local end.

The files ns.h, ns ycb.h, ns.c, ns ycb.c and ns yroto.c are direct translations of similarly named files
in the netinet directory. N s ycbnotify differs a little from in ycbnotify in that it takes an extra parameter
which it will pass to the "notification" routine argument indirectly, by stuffing it in each NS control block
selected.

This header file ns _ifh contains the declaration of the NS variety of the per-interface address infor­
mation, like netinet/in _var.h.

8.2. Encapsulations

The stipulation that each host is allowed exactly one 6 byte address implies that each 10 Mb/s Ether­
net interface other than the first will need to reprogram its physical address. All the 10 Mb/s Ethernet
drivers supplied with 4.3BSD perform this. The 3 Mb/s Ethernet driver does not perform any address reso­
lution, but uses the 6th byte of the NS host address as a PUP host number, making it largely incompatible
with altos running XNS. In a system with both 3 Mb/s and 10 Mb/s Ethernets, one should configure the 3
Mb/s network first.

The file ns _ip.c contains code providing a mechanism for sending XNS packets over any medium
supporting IP datagrams. It builds objects that look like point-to-point interfaces from the point of view of
NS, and a protocol from the point of view of IP. Each of these pseudo interface structures has extra IP data
at the end (a route, source and destination), and fits exactly into an mbuf. If the ifnet structure grows any
larger, the extra data will have to be put in a separate mbuf, or the whole scheme will have to be reworked
more rationally.

8.3. Datagrams

The files ns_input.c and ns_output.c contain the base level routines which interact with network
interface drivers. There is a kernel variable idp cksum, which can be used to defeat checksums for all
packets. (There ought to be an option per socket to do this). The NS output routine manages a cached
route in the protocol control block of each socket. If the destination has changed, the route has been
marked down, or the route was freed because of a routing change, a new route is obtained. The route is not

SMM:13-26 Changes to the Kernel in 4.3BSD

used if the NS _ ROUTETOIF (aka SO _ DONTROUTE or MSG _ DONTROUTE) option is present.

The files idp.h, idp _var.h, and idp _usrreq.c are the analogues of udp.h, udp _var.h, and udp _usrreq.c.

8.4. Error and Echo protocols

Routines for processing incoming error protocol packets are in ns error.c. They call ctlinput rou­
tines for IDP and SPP to maintain structural similarity to the Internet implementation. The kernel will gen­
erate error messages indicating lack of a listener at a port, incorrectly received checksum, or that a packet
was thrown away due to insufficient resources at the recipient (buffer full). The echo protocol is handled
as a special case. If there is no listener at port number 2, then the routine that generates the "no listener"
error message will inspect the packet to see if it was an echo request, and if so, will echo it. Thus, the user
is free to construct his own echoing daemon if he so chooses.

8.5. Sequenced Packet Protocol

In general, this code employs the Internet TCP algorithms where possible. By default, a three-way
handshake is used in establishing connections. There is a compile time option to employ the minimal two
way handshake. Incoming connections may multiplexed by source machine and port, as in the Internet
case. It will switch over ports when establishing connec~ons if requested to do so.

The retransmission timing and strategies are much like those of TCP, though recent performance
enhancements have not yet migrated here. There has not yet been much opportunity to tune this implemen­
tation. The code is intended to generate keep-alive packets, though there is some evidence this isn't work­
ing yet. The TCP source-quench strategy hasn't been added either. The default nominal packet size is 576
bytes, and the default amount of buffering is 2048. It is possible to raise both by setting appropriate socket
options.

9. VAX Network Interface drivers

Most of the changes in the network interfaces follow common patterns that are summarized in
categories. In addition, there are a number of bug fixes. The change that was made universally to the inter­
face handlers was to remove the ioctl routines that set the interface address and flags, replacing them by
simpler routines that merely initialize the hardware if this has not already been done. Several of the drivers
notice when the IFF_UP flag is cleared and perform a hardware reset, then reinitialize the interface when
IFF_UP is set again. This allows interfaces to be turned off, and also provides a mechanism to reset dev­
ices that have lost interrupts or otherwise stopped functioning. The handling of the other interface flags has
been made more consistent. IFF_RUNNING is used uniformly to indicate that UNIBUS resources have
been allocated and that the board has been initialized. The reset routines clear this flag before reinitializing
so that both operations will be repeated.

9.1. Interface UNIBUS support

The UNIBUS common support routines for network interfaces have been modified to support multi­
ple transmit and receive buffers per device. A set of macros provide a nearly-compatible interface for dev­
ices using a single buffer of each type. When placing received packets into mbufs, if_ ubaget prepends a
pointer to the receiving interface to the data; this requires that the interface pointer be passed to if_ ubaget
or if_rubaget as an additional argument When removing the trailer header from the front of a packet,
interface receive routines must move the interface pointer which precedes the header; see one of the exist­
ing drivers for an example. When received data is larger than half of an mbuf cluster, the data will be
placed in an mbuf cluster rather than a chain of small mbufs. Similarly, in if_ ubapur, clusters may be
remapped instead of copied if they are at least one-half full and are the last mbuf of the chain. For devices
like the DEC DEUNA that wish to perform receive operations on a transmit buffer, the transmit buffers are
marked. Receive operations from transmit buffers force page mapping to be consistent before attempting
to read data or swap pages from them.

Changes to the Kernel in 4.3BSD SMM:13-27

9.2. 10 Mh/s Ethernet

The 10Mb/s Ethernet handlers have been modified to use the new ARP interfaces. They no longer
use arpattach, and the call to arpresolve contains an additional argument for a second return, a boolean for
the use of trailer encapsulations. Input and output functions were augmented to handle NS IDP packets.
For hosts using Xerox NS with multiple interfaces, the drivers are able to reprogram the physical address
on each board so that all interfaces use the address of the first configured interface. The hardware Ethernet
addresses are printed during autoconfiguration.

9.3. Changes specific to individual drivers

if acc.c

ir_ddn.c

if_de.c

ir_hdh.c

ir_hy.c

ifJI.c

irJx.c

An additional word was added to the input buffer to allow space for the end-of-message
bit on a maximum-sized message without segmentation. This avoids a hardware problem
that sometimes causes the next packet to be concatenated with the end-of-message seg­
ment.

A new driver from ACC for the ACC DDN Standard mode X.25 IMP interface.

A new driver for the DEC DEUNA 10 Mb/s Ethernet controller. The hardware is reset
when ifconfiged down and reinitialized when marked up again.

The DMC-II/DMR-ll driver has been made much more robust. It now uses multiple
transmit and receive buffers. A link-layer encapsulation is used to indicate the type of the
packet; this driver is thus incompatible with the 4.2BSD DMC driver. (The driver is,
however, compatible with current UL TRIX drivers.)

The handler for the 3Com 10 Mb/s Ethernet controller is now able to support mUltiple
units. The address of the UNffiUS memory is taken from the flags in the configuration
file; note that address 0 is still the default The UNffiUS memory is configured in a
separate memory-probe routine that is called during autoconfiguration and after a
UNmUS reset This allows the 3Com interface reset to work correctly. The collision
backoff algorithm was corrected so that the maximum backoff is within the specification,
rather than waiting seconds after numerous collisions. The private ecget and ecput rou­
tines were modified to correspond with the if_ uba routines. The hardware is reset when
ifconfiged down and reinitialized when marked up again.

The 3 Mb/s Experimental Ethernet driver now supports NS IDP packets, using a simple
algorithmic conversion of host to Ethernet addresses. The enswab function was
corrected.

A new driver for the Excelan 204 10 Mb/s Ethernet controller, used as a link-layer inter­
face.

A new driver for the ACC HDH IMP interface.

A new version of the Hyperchannel driver from Tektronix was installed. It is untested
with 4.3BSD.

The InterIan 1010 and 1010A driver now resets the interface and checks the result of
hardware diagnostics when initializing the board. The hardware is reset when ifconfiged
down and reinitialized when marked up again.

A new driver for using the Interlan NPlOO 10 Mb/s Ethernet controller as a link-level
interface.

In addition to the major changes in UNIBUS support functions, there were several bug
fixes made. Interfaces with no link-level header are set up properly. A variable was
reused incorrectly in if_ wubaput, and this has been corrected.

The driver for the Proteon proNET has been reworked in several areas. The elaborate
error handling code had several problems and was simplified considerably. The driver
includes support for both the 10 Mb/s and 80 Mb/s rings. The byte ordering of the trailer
fields was corrected; this makes the trailer format incompatible with the 4.2BSD driver.

SMM:13-28 Changes to the Kernel in 4.3BSD

10. VAX MASSBUS device drivers

This section documents the modifications in the drivers for devices on the V AX MASSBUS, with
sources in Isyslvaxmba, as well as general changes made to all disk and tape drivers.

10.1. General changes in disk drivers

Most of the disk drivers' strategy routines were changed to report an end-of-file when attempting to
read the first block after the end of a partition. Distinct errors are returned for nonexistent drives, blocks
out of range, and hard I/O errors. The dkblock and dkunit macros once used to support disk interleaving
were removed, as interleaving makes no sense with the current file system organization. Messages for
recoverable errors, such as soft ECC's, are now handled by log instead of print/.

10.2. General changes in tape drivers

The open functions in the tape drivers now return sensible errors if a drive is in use. They save a
pointer to the user's terminal when opened, so that error messages from interrupt level may be printed on
the user's terminal using tprint/.

10.3. Modifications to individual MASSBUS device drivers

hp.c Error recovery in the MASSBUS disk driver is considerably better now than it was. The
driver deals with multiple errors in the same transfer much more gracefully. Earlier ver­
sions could go into an endless loop correcting one error, then retrying the transfer from
the beginning when a second error was encountered The driver now restarts with the
first sector not yet successfully transferred. ECC correction is now possible on bad-sector
replacements. The correct sector number is now printed in most error messages. The
code to decide whether to initiate a data transfer or whether to do a search was corrected,
and the sdistlrdist parameters were split into three parameters for each drive: the
minimum and maximum rotational distances from the desired sector between which to
start a transfer, and the number of sectors to allow after a search before the desired sector.
The values chosen for these parameters are probably still not optimal.

mba.c

There were races when doing a retry on one drive that continued with a repositioning
command (recal or seek) and when then beginning a data transfer on another drive.
These were corrected by using a distinguished return value, MBD _REPOSITION, from
hpdtint to change the controller state when reverting to positioning operations during a
recovery. The remaining steps in the recovery are then managed by hpustart. Offset
commands were previously done under interrupt control, but only on the same retries as
recals (every eighth retry starting with the fourth). They are now done on each read retry
after the 16th and are done by busy-waiting to avoid the race described above. The tests
in the error decoding section of the interrupt handler were rearranged for clarity and to
simplify the tests for special conditions such as format operations. The hpdtint times out
if the drive does not become ready after an interrupt rather than hanging at high priority.
When forwarding bad sectors, hpecc correctly handles partial-sector transfers; prior ver­
sions would transfer a full sector, then continue with a negative byte count, encountering
an invalid map register immediately thereafter. Partial-sector transfers are requested by
the virtual memory system when swapping page tables.

The top level MASSBUS driver supports the new return code from data-transfer inter­
rupts that indicate a return to positioning commands before restarting a data transfer. It is
capable of restarting a transfer after partial completion and adjusting the starting address
and byte count according to the amount remaining. It has also been modified to support
data transfers in reverse, required for proper error recovery on the TU78. Mbustart does
not check drives to see that they are present, as dual-ported disks may appear to have a
type of zero if the other port is using the disk; in this case, the disk unit start will return
MBU BUSY.

Changes to the Kernel in 4.3BSD SMM:13-29

mt.c The TU78 driver has been extensively modified and tested to do better error recovery and
to support additional operations.

11. VAX UNIBUS device drivers

This section includes changes in device drivers for UNIBUS peripherals other than network inter­
faces. Modifications common to all of the disk and tape drivers are listed in the previous section on
MASSBUS drivers. Many of the UNmUS drivers were missing null terminations on their lists of standard
addresses; this has been corrected

11.1. Changes in terminal multiplexor handling

There are numerous changes that were made uniformly in each of the drivers for UNIBUS terminal
multiplexors (DHll, DHUll, DMF32, DMZ32, DZII and DZ32). The DMA terminal boards on the same
UNIBUS share map registers to map the clists to UNIBUS address space. The initialization of ttys at open
and changes from ioctls have been made uniform; the default speed is 9600 baud Hardware parameters
are changed when local modes change; these include LLITOUT and the new LP ASS8 options for 8-bit out­
put and input respectively. The code conditional on PORTSELECfOR to accept characters while or
before carrier is recognized is the same in all drivers. The processing done for carrier transitions was line
discipline-specific, and has been moved into the standard tty code; it is called through the previously­
unused 1_1fIl)dem entry to the line discipline. This routine's return is used to decide whether to drop DTR.
DTR is asserted on lines regardless of the state of the software carrier flag. The drivers for hardware
without silo timeouts (DHll, DZll) dynamically switch between use of the silo during periods of high
input and per-character interrupts when input is slow. The timer routines schedule themselves via timeouts
and are no longer called directly from the soltclock interrupt. The timeout runs once per second unless
silos are enabled. Hardware faults such as nonexistent memory errors and silo overflows use log instead of
print! to avoid blocking the system at interrupt level.

11.2. Changes in individual drivers

dmf.c The use of the parallel printer port on the DMF32 is now supported. Autoconfiguration of
the DMF includes a test for the sections of the DMF that are present; if only the asynchro­
nous serial ports or parallel printer ports are present, the number of interrupt vectors used
is reduced to the minimum number. The common code for the DMF and DMZ drivers
was moved to dmjdmz.c. Output is done by DMA. The Emulex DMF emulator should
work with this driver, despite the incorrect update of the bus address register with odd
byte counts. Flow control should work properly with DMA or silo output.

dmfdmz.c

dmz.c

idc.c

kgclock.c

lp.c

ps.c

rk.c

rl.c

rx.c

This file contains common code for the DMF and DMZ drivers.

This is a new device driver for the DMZ32 terminal multiplexor.

The ECC code for the Integral Disk Controller on the VAX 111730 was corrected

The profiling clock using a DLII serial interface can be disabled by patching a global
variable in the load image before booting or in memory while running. It may thus be
used for a profiling run and then turned off. The probe routine returns the correct value
now.

A fix was made so that slow printers complete printing after device close. The spl's were
cleaned up.

The handler for the E & S Picture System 2 has substantial changes to fix refresh prob­
lems and clean up the code.

Missing entries in the RK07 size table were added.

A missing partition was added to the RL02 driver. Drives that aren't spun up during
autoconfiguration are now discovered.

It is no longer possible to leave a floppy drive locked if no floppy is present at open.
Incorrect open counts were corrected.

SMM::13-30

tm.c

tmscp.c

ts.c

uba.c

ubareg.h

ubavar.h

uda.c

up.c

vs.c

Changes to the Kernel in 4.3BSD

Hacks were added for density selection on Aviv triple-density controllers.

This is a new driver for tape controllers using the Tape Mass Storage Control Protocol
such as the TU81.

Adjustment for odd byte addresses when using a buffered data path was incorrect and has
been fixed.

The UBA NEED16 flag is tested, and unusable map registers are not allocated for 16-bit
addressing devices. Optimizations were made to improve code generation in ubasetup.
Zero-vector interrupts on the DW780 now cause resets only when they occur at an unac­
ceptably high rate; this is appreciated by the users who happen to be on the dialups at the
time of the 250000th passive release since boot time. UNIBUS memory is now
configured separately from devices during autoconfiguration by ubameminit, and this pro­
cess is repeated after a UNmUS reset. Devices that consist of UNIBUS memory only
may be configured more easily. On a DW780, any map registers made useless by
UNIBUS memory above or near them are discarded.

Definitions were added to include the V AX8600.

Modifications to the uba hd structure allow zero vectors and UNffiUS memory allocation
to be handled more sensibly. The uba_driver has a new entry for configuration of
UNIBUS memory. This routine may probe for UNIBUS memory, and if no further
configuration is required may signify the completion of device configuration. A macro
was added to extract the UNIBUS address from the value returned by ubasetup and ubal­
loco

This driver is considerably more robust than the one released with 4.2BSD. It configures
the drive types so that each type may use its own partition tables. The partitions in the
tables as distributed are much more useful, but are mostly incompatible with the previ­
ously released driver; a configuration option, RACOMP AT, provides a combination of
new and old filesystems for use during conversion. The buffered-data-path handling has
been fixed. A dump routine was added

Entries were added for the Fujitsu Eagle (2351) in 48-sector mode on an Emulex SC31
controller.

This is a driver for the VS100 display on the UNIBUS.

12. Bootstrap and standalone utilities

The standalone routines in Isys/stand and Isys/mdec have received some work. The bootstrap code
is now capable of booting from drives other than drive O. The device type passed from level to level during
the bootstrap operation now encodes the device type, partition number, unit number, and MASSBUS or
UNIBUS adaptor number (one byte for each field, from least significant to most significant). The bootstrap
is much faster, as the standalone read operation uses raw I/O when possible.

The formatter has been much improved. It deals with skip-sector devices correctly; the previous ver­
sion tested for skip-sector capability incorrectly, and thus never dealt with it. The formatter is capable of
formatting sections of the disk, track by track, and can run a variable number of passes. The error retry
logic in the standalone disk drivers was corrected and parameterized so that the formatter may disable most
corrections.

A Fast File System for UNIX*

Marshall Kirk McKusick, WilliamN. Joyt,
Samuel J. Lefjler:t, Robert S. Fabry

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

A reimplementation of the UNIX file system is described. The reimplementation
provides substantially higher throughput rates by using more flexible allocation policies
that allow better locality of reference and can be adapted to a wide range of peripheral
and processor characteristics. The new file system clusters data that is sequentially
accessed and provides two block sizes to allow fast access to large files while not wasting
large amounts of space for small files. File access rates of up to ten times faster than the
traditional UNIX file system are experienced. Long needed enhancements to the pro­
grammers' interface are discussed. These include a mechanism to place advisory locks
on files, extensions of the name space across file systems, the ability to use long file
names, and provisions for administrative control of resource usage.

Revised February 18, 1984

CR Categories and Subject Descriptors: DA.3 [Operating Systems]: File Systems Management - file
organization, directory structures, access methods; DA.2 [Operating Systems]: Storage Management -
allocationldeallocation strategies, secondary storage devices; D.4.8 [Operating Systems]: Performance­
measurements, operational analysis; H.3.2 [Information Systems]: Information Storage - file organiza­
tion

Additional Keywords and Phrases: UNIX, file system organization, file system performance, file system
design, application program interface.

General Terms: file system, measurement, performance.

* UNIX is a trademark of Bell Laboratories.
t William N. Joy is currently employed by: Sun Microsystems, Inc. 2550 Garcia Avenue. Mountain View. CA 94043
:j: Samuel J. Leffler is currently employed by: Lucasfilm Ltd., PO Box 2009, San Rafael, CA 94912
This work was done under grants from the National Science Foundation under grant MCS80·05144, and the Defense
Advance Research Projects Agency (000) under ARPA Order No. 4031 monitored by Naval Electronic System Command
under Contract No. N00039-82-C·0235.

SMM:14-2

1. Introduction

2. Old file system

3. New file system organization
3.1. Optimizing storage utilization
3.2. File system parameterization
3.3. Layout policies

4. Performance

TABLE OF CONTENTS

5. File system functional enhancements
5.1. Long file names
5.2. File locking
5.3. Symbolic links
5.4. Rename
5.5. Quotas

References

1. Introduction

A Fast File System for UNIX

This paper describes the changes from the original 512 byte UNIX file system to the new one
released with the 4.2 Berkeley Software Distribution. It presents the motivations for the changes, the
methods used to effect these changes, the rationale behind the design decisions, and a description of the
new implementation. This discussion is followed by a summary of the results that have been obtained,
directions for future work, and the additions and changes that have been made to the facilities that are
available to programmers.

The original UNIX system that runs on the PDP-II t has simple and elegant file system facilities.
File system input/output is buffered by the kernel; there are no alignment constraints on data transfers and
all operations are made to appear synchronous. All transfers to the disk are in 512 byte blocks, which can
be placed arbitrarily within the data area of the file system. Virtually no constraints other than available
disk space are placed on file growth [Ritchie74], [Thompson78].*

When used on the VAX-II together with other UNIX enhancements, the original 512 byte UNIX file
system is incapable of providing the data throughput rates that many applications require. For example,
applications such as VLSI design and image processing do a small amount of processing on a large quanti­
ties of data and need to have a high throughput from the file system. High throughput rates are also needed
by programs that map files from the file system into large virtual address spaces. Paging data in and out of
the file system is likely to occur frequently [Ferrin82b]. This requires a file system providing higher
bandwidth than the original 512 byte UNIX one that provides only about two percent of the maximum disk
bandwidth or about 20 kilobytes per second per arm [White80], [Smith81b].

Modifications have been made to the UNIX file system to improve its performance. Since the UNIX
file system interface is well understood and not inherently slow, this development retained the abstraction
and simply changed the underlying implementation to increase its throughput. Consequently, users of the
system have not been faced with massive software conversion.

Problems with file system performance have been dealt with extensively in the literature; see
[Smith81a] for a survey. Previous work to improve the UNIX file system performance has been done by
[Ferrin82a]. The UNIX operating system drew many of its ideas from Multics, a large, high performance
operating system [Feiertag71]. Other work includes Hydra [Almes78], Spice [Thompson80], and a file

t DEC, PDP, V AX, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation .
... In practice, a file's size is constrained to be less than about one gigabyte.

A Fast File System for UNIX SMM:14-3

system for a LISP environment [Symbolics81]. A good introduction to the physical latencies of disks is
described in [pechura83].

2. Old File System

In the file system developed at Bell Laboratories (the "traditional" file system), each disk drive is
divided into one or more partitions. Each of these disk partitions may contain one file system. A file sys­
tem never spans multiple partitions. t A file system is described by its super-block. which contains the basic
parameters of the file system. These include the number of data blocks in the file system, a count of the
maximum number of files, and a pointer to the free list, a linked list of all the free blocks in the file system.

Within the file system are files. Certain files are distinguished as directories and contain pointers to
files that may themselves be directories. Every file has a descriptor associated with it called an inode. An
inode contains information describing ownership of the file, time stamps marking last modification and
access times for the file, and an array of indices that point to the data blocks for the file. For the purposes
of this section, we assume that the first 8 blocks of the file are directly referenced by values stored in an
inode itself*. An inode may also contain references to indirect blocks containing further data block
indices. In a file system with a 512 byte block size, a singly indirect block contains 128 further block
addresses, a doubly indirect block contains 128 addresses of further singly indirect blocks, and a triply
indirect block contains 128 addresses of further doubly indirect blocks.

A 150 megabyte traditional UNIX file system consists of 4 megabytes of inodes followed by 146
megabytes of data This organization segregates the inode information from the data; thus accessing a file
normally incurs a long seek from the file's inode to its data Files in a single directory are not typically
allocated consecutive slots in the 4 megabytes of inodes, causing many non-consecutive blocks of inodes to
be accessed when executing operations on the inodes of several files in a directory.

The allocation of data blocks to files is also suboptimum. The traditional file system never transfers
more than 512 bytes per disk transaction and often finds that the next sequential data block is not on the
same cylinder, forcing seeks between 512 byte transfers. The combination of the small block size, limited
read-ahead in the system, and many seeks severely limits file system throughput.

The first work at Berkeley on the UNIX file system attempted to improve both reliability and
throughput. The reliability was improved by staging modifications to critical file system information so
that they could either be completed or repaired cleanly by a program after a crash [Kowalski78]. The file
system performance was improved by a factor of more than two by changing the basic block size from 512
to 1024 bytes. The increase was because of two factors: each disk transfer accessed twice as much data,
and most files could be described without need to access indirect blocks since the direct blocks contained
twice as much data The file system with these changes will henceforth be referred to as the old file sys­
tem.

This performance improvement gave a strong indication that increasing the block size was a good
method for improving throughput Although the throughput had doubled, the old file system was still using
only about four percent of the disk bandwidth. The main problem was that although the free list was ini­
tially ordered for optimal access, it quickly became scrambled as files were created and removed. Eventu­
ally the free list became entirely random, causing files to have their blocks allocated randomly over the
disk. This forced a seek before every block access. Although old file systems provided transfer rates of up
to 175 kilobytes per second when they were first created, this rate deteriorated to 30 kilobytes per second
after a few weeks of moderate use because of this randomization of data block placement. There was no
way of restoring the performance of an old file system except to dump, rebuild, and restore the file system.
Another possibility, as suggested by [Maruyama76], would be to have a process that periodically reorgan­
ized the data on the disk to restore locality.

t By • 'partition" here we refer to the subdivision of phy·sical space on a disk drive. In the traditional file system. as in the
new file system, file systems are really located in logical disk partitions that may overlap. This overlapping is made
available, for example, to allow programs to copy entire disk drives containing multiple file systems.
• The actual number may vary from system to system, but is usually in the range 5-13.

SMM:14-4 A Fast File System for UNIX

3. New file system organization

In the new file system organization (as in the old file system organization), each disk drive contains
one or more file systems. A file system is described by its super-block, located at the beginning of the file
system's disk partition. Because the super-block contains critical data, it is replicated to protect against
catastrophic loss. This is done when the file system is created; since the super-block data does not change,
the copies need not be referenced unless a head crash or other hard disk error causes the default super­
block to be unusable.

To insure that it is possible to create files as large as 232 bytes with only two levels of indirection, the
minimum size of a file system block is 4096 bytes. The size of file system blocks can be any power of two
greater than or equal to 4096. The block size of a file system is recorded in the file system's super-block so
it is possible for file systems with different block sizes to be simultaneously accessible on the same system.
The block size must be decided at the time that the file system is created; it cannot be subsequently
changed without rebuilding the file system.

The new file system organization divides a disk partition into one or more areas called cylinder
groups. A cylinder group is comprised of one or more consecutive cylinders on a disk. Associated with
each cylinder group is some bookkeeping information that includes a redundant copy of the super-block,
space for inodes, a bit map describing available blocks in the cylinder group, and summary information
describing the usage of data blocks within the cylinder group. The bit map of available blocks in the
cylinder group replaces the traditional file system's free list. For each cylinder group a static number of
inodes is allocated at file system creation time. The default policy is to allocate one inode for each 2048
bytes of space in the cylinder group, expecting this to be far more than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each cylinder
group. However if this approach were used, all the redundant information would be on the top platter. A
single hardware failure that destroyed the top platter could cause the loss of all redundant copies of the
super-block. Thus the cylinder group bookkeeping information begins at a varying offset from the begin­
ning of the cylinder group. The offset for each successive cylinder group is calculated to be about one
track further from the beginning of the cylinder group than the preceding cylinder group. In this way the
redundant information spirals down into the pack so that any single track, cylinder, or platter can be lost
without losing all copies of the super-block. Except for the first cylinder group, the space between the
beginning of the cylinder group and the beginning of the cylinder group information is used for data
blocks.t

3.1. Optimizing storage utilization

Data is laid out so that larger blocks can be transferred in a single disk transaction, greatly increasing
file system throughput. As an example, consider a file in the new file system composed of 4096 byte data
blocks. In the old file system this file would be composed of 1024 byte blocks. By increasing the block
size, disk accesses in the new file system may transfer up to four times as much information per disk tran­
saction. In large files, several 4096 byte blocks may be allocated from the same cylinder so that even
larger data transfers are possible before requiring a seek.

The main problem with larger blocks is that most UNIX file systems are composed of many small
files. A uniformly large block size wastes space. Table 1 shows the effect of file system block size on the
amount of wasted space in the file system. The files measured to obtain these figures reside on one of our
time sharing systems that has roughly 1.2 gigabytes of on-line storage. The measurements are based on the
active user file systems containing about 920 megabytes of formatted space. The space wasted is calcu­
lated to be the percentage of space on the disk not containing user data. As the block size on the disk

t While it appears that the first cylinder group could be laid out with its super-block at the "known" location, this would
not work for file systems with blocks sizes of 16 kilobytes or greater. This is because of a requirement that the first 8
kilobytes of the disk be reserved for a bootstrap program and a separate requirement that the cylinder group information
begin on a file system block boundary. To start the' cylinder group on a file system block boundary, file systems with block
sizes larger than 8 kilobytes would have to leave an empty space between the end of the boot block and the beginning of the
cylinder group. Without knowing the size of the file system blocks. the system would not know what roundup function to
use to find the beginning of the first cylinder group.

A Fast File System for UNIX S11M:14-5

Space used % waste Organization

775.2Mb 0.0 Data only, no separation between files
807.8 Mb 4.2 Data only, each file starts on 512 byte boundary
828.7 Mb 6.9 Data + inodes, 512 byte block UNIX file system
866.5 Mb 11.8 Data + inodes, 1024 byte block UNIX file system
948.5 Mb 22.4 Data + inodes, 2048 byte block UNIX file system
1128.3 Mb 45.6 Data + inodes, 4096 byte block UNIX file system

Table 1 - Amount of wasted space as a function of block size.

increases, the waste rises quickly, to an intolerable 45.6% waste with 4096 byte file system blocks.

To be able to use large blocks without undue waste, small files must be stored in a more efficient
way. The new file system accomplishes this goal by allowing the division of a single file system block into
one or more fragments. The file system fragment size is specified at the time that the file system is created;
each file system block can optionally be broken into 2, 4, or 8 fragments, each of which is addressable.
The lower bound on the size of these fragments is constrained by the disk sector size, typically 512 bytes.
The block map associated with each cylinder group records the space available in a cylinder group at the
fragment level; to determine if a block is available, aligned fragments are examined. Figure 1 shows a
piece of a map from a 409611024 file system.

Bits in map
Fragment numbers
Block numbers

xxxx
0-3
o

XXOO
4-7
1

OOXX
8-11

2

0000
12-15

3

Figure 1 - Example layout of blocks and fragments in a 409611024 file system.

Each bit in the map records the status of a fragment; an "X" shows that the fragment is in use, while a
"0" shows that the fragment is available for allocation. In this example, fragments 0-5, 10, and 11 are in
use, while fragments 6-9, and 12-15 are free. Fragments of adjoining blocks cannot be used as a full
block, even if they are large enough. In this example, fragments 6-9 cannot be allocated as a full block;
only fragments 12-15 can be coalesced into a full block.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is
represented by zero or more 4096 byte blocks of data, and possibly a single fragmented block. If a file sys­
tem block must be fragmented to obtain space for a small amount of data, the remaining fragments of the
block are made available for allocation to other files. As an example consider an 11000 byte file stored on
a 4096/1024 byte file system. This file would uses two full size blocks and one three fragment portion of
another block. If no block with three aligned fragments is available at the time the file is created, a full size
block is split yielding the necessary fragments and a single unused fragment This remaining fragment can
be allocated to another file as needed.

Space is allocated to a file when a program does a write system call. Each time data is written to a
file, the system checks to see if the size of the file has increased·. If the file needs to be expanded to hold
the new data, one of three conditions exists:

1) There is enough space left in an already allocated block or fragment to hold the new data. The new
data is written into the available space.

2) The file contains no fragmented blocks (and the last block in the file contains insufficient space to
hold the new data). If space exists in a block already allocated, the space is filled with new data. If
the remainder of the new data contains more than a full block of data, a full block is allocated and the
first full block of new data is written there. This process is repeated until less than a full block of
new data remains. If the remaining new data to be written will fit in less than a full block, a block
with the necessary fragments is located, otherwise a full block is located The remaining new data is

• A program may be overwriting data in the middle of an existing file in which case space would already have been
allocated.

SMM:14-6 A Fast File System for UNIX

written into the located space.

3) The file contains one or more fragments (and the fragments contain insufficient space to hold the new
data). If the size of the new data plus the size of the data already in the fragments exceeds the size of
a full block, a new block is allocated. The contents of the fragments are copied to the beginning of
the block and the remainder of the block is filled with new data. The process then continues as in (2)
above. Otherwise, if the new data to be written will fit in less than a full block, a block with the
necessary fragments is located, otherwise a full block is located. The contents of the existing frag­
ments appended with the new data are written into the allocated space.

The problem with expanding a file one fragment at a a time is that data may be copied many times as
a fragmented block expands to a full block. Fragment reallocation can be minimized if the user program
writes a full block at a time, except for a partial block at the end of the file. Since file systems with dif­
ferent block sizes may reside on the same system, the file system interface has been extended to provide
application programs the optimal size for a read or write. For files the optimal size is the block size of the
file system on which the file is being accessed. For other objects, such as pipes and sockets, the optimal
size is the underlying buffer size. This feature is used by the Standard Input/Output Library, a package
used by most user programs. This feature is also used by certain system utilities such as archivers and
loaders that do their own input and output management and need the highest possible file system
bandwidth.

The amount of wasted space in the 409611024 byte new file system organization is empirically
observed to be about the same as in the 1024 byte old file system organization. A file system with 4096
byte blocks and 512 byte fragments has about the same amount of wasted space as the 512 byte block
UNIX file system. The new file system uses less space than the 512 byte or 1024 byte file systems for
indexing information for large files and the same amount of space for small files. These savings are offset
by the need to use more space for keeping track of available free blocks. The net result is about the same
disk utilization when a new file system's fragment size equals an old file system's block size.

In order for the layout policies to be effective, a file system cannot be kept completely full. For each
file system there is a parameter, termed the free space reserve, that gives the minimum acceptable percen­
tage of file system blocks that should be free. If the number of free blocks drops below this level only the
system administrator can continue to allocate blocks. The value of this parameter may be changed at any
time, even when the file system is mounted and active. The transfer rates that appear in section 4 were
measured on file systems kept less than 90% full (a reserve of 10%). If the number of free blocks falls to

zero, the file system throughput tends to be cut in half, because of the inability of the file system to localize
blocks in a file. If a file system's performance degrades because of overfilling, it may be restored by
removing files until the amount of free space once again reaches the minimum acceptable level. Access
rates for files created during periods of little free space may be restored by moving their data once enough
space is available. The free space reserve must be added to the percentage of waste when comparing the
organizations given in Table l. Thus, the percentage of waste in an old 1024 byte UNIX file system is
roughly comparable to a new 40961512 byte file system with the free space reserve set at 5%. (Compare
1l.8% wasted with the old file system to 6.9% waste + 5% reserved space in the new file system.)

3.2. File system parameterization

Except for the initial creation of the free list, the old file system ignores the parameters of the under­
lying hardware. It has no information about either the physical characteristics of the mass storage device,
or the hardware that interacts with it. A goal of the new file system is to parameterize the processor capa­
bilitiesand mass storage characteristics so that blocks can be allocated in an optimum configuration­
dependent way. Parameters used include the speed of the processor, the hardware support for mass storage
transfers, and the characteristics of the mass storage devices. Disk technology is constantly improving and
a given installation can have several different disk technologies running on a single processor. Each file
system is parameterized so that it can be adapted to the characteristics of the disk on which it is placed.

For mass storage devices such as disks, the new file system tries to allocate new blocks on the same
cylinder as the previous block in the same file. Optimally, these new blocks will also be rotationally well
positioned. The distance between "rotationally optimal" blocks varies greatly; it can be a consecutive
block or a rotationally delayed block depending on system characteristics. On a processor with an

A Fast File System for UNIX SMM:14-7

input/output channel that does not require any processor intervention between mass storage transfer
requests, two consecutive disk blocks can often be accessed without suffering lost time because of an inter­
vening disk revolution. For processors without input/output channels, the main processor must field an
interrupt and prepare for a new disk transfer. The expected time to service this interrupt and schedule a
new disk transfer depends on the speed of the main processor.

The physical characteristics of each disk include the number of blocks per track and the rate at which
the disk spins. The allocation routines use this information to calculate the number of milliseconds
required to skip over a block. The characteristics of the processor include the expected time to service an
interrupt and schedule a new disk transfer. Given a block allocated to a file, the allocation routines calcu­
late the number of blocks to skip over so that the next block in the file will come into position under the
disk head in the expected amount of time that it takes to start a new disk transfer operation. For programs
that sequentially access large amounts of data, this strategy minimizes the amount of time spent waiting for
the disk to position itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group summary informa­
tion includes a count of the available blocks in a cylinder group at different rotational positions. Eight rota­
tional positions are distinguished, so the resolution of the summary information is 2 milliseconds for a typi­
cal 3600 revolution per minute drive. The super-block contains a vector of lists called rotational layout
tables. The vector is indexed by rotational position. Each component of the vector lists the index into the
block map for every data block contained in its rotational position. When looking for an allocatable block,
the system first looks through the summary counts for a rotational position with a non-zero block count. It
then uses the index of the rotational position to find the appropriate list to use to index through only the
relevant parts of the block map to find a free block.

The parameter that defines the minimum number of milliseconds between the completion of a data
transfer and the initiation of another data transfer on the same cylinder can be changed at any time, even
when the file system is mounted and active. If a file system is parameterized to layout blocks with a rota­
tional separation of 2 milliseconds, and the disk pack is then moved to a system that has a processor requir­
ing 4 milliseconds to schedule a disk operation, the throughput will drop precipitously because of lost disk
revolutions on nearly every block. If the eventual target machine is known, the file system can be
parameterized for it even though it is initially created on a different processor. Even if the move is not
known in advance, the rotational layout delay can be reconfigured after the disk is moved so that all further
allocation is done based on the characteristics of the new host

3.3. Layout policies

The file system layout policies are divided into two distinct parts. At the top level are global policies
that use file system wide summary information to make decisions regarding the placement of new inodes
and data blocks. These routines are responsible for deciding the placement of new directories and files.
They also calculate rotationally optimal block layouts, and decide when to force a long seek to a new
cylinder group because there are insufficient blocks left in the current cylinder group to do reasonable lay­
outs. Below the global policy routines are the local allocation routines that use a locally optimal scheme to
layout data blocks.

Two methods for improving file system performance are to increase the locality of reference to
minimize seek latency as described by [Trivedi80], and to improve the layout of data to make larger
transfers possible as described by [Nevalainen77]. The global layout policies try to improve performance
by clustering related information. They cannot attempt to localize all data references, but must also try to
spread unrelated data among different cylinder groups. If too much localization is attempted, the local
cylinder group may run out of space forcing the data to be scattered to non-local cylinder groups. Taken to
an extreme, total localization can result in a single huge cluster of data resembling the old file system. The
global policies try to balance the two conflicting goals of localizing data that is concurrently accessed while
spreading out unrelated data.

One allocatable resource is inodes. Inodes are used to describe both files and directories. Inodes of
files in the same directory are frequently accessed together. For example, the "list directory" command
often accesses the inode for each file in a directory. The layout policy tries to place all the inodes of files in
a directory in the same cylinder group. To ensure that files are distributed throughout the disk, a different

SMM:14-8 A Fast File System for UNIX

policy is used for directory allocation. A new directory is placed in a cylinder group that has a greater than
average number of free inodes, and the smallest number of directories already in it. The intent of this pol­
icy is to allow the inode clustering policy to succeed most of the time. The allocation of inodes within a
cylinder group is done using a next free strategy. Although this allocates the inodes randomly within a
cylinder group, all the inodes for a particular cylinder group can be read with 8 to 16 disk transfers. (At
most 16 disk transfers are required because a cylinder group may have no more than 2048 inodes.) This
puts a small and constant upper bound on the number of disk transfers required to access the inodes for all
the files in a directory. In contrast, the old file system typically requires one disk transfer to fetch the inode
for each file in a directory.

The other major resource is data blocks. Since data blocks for a file are typically accessed together,
the policy routines try to place all data blocks for a file in the same cylinder group, preferably at rotation­
ally optimal positions in the same cylinder. The problem with allocating all the data blocks in the same
cylinder group is that large files will quickly use up available space in the cylinder group, forcing a spill
over to other areas. Further, using all the space in a cylinder group causes future allocations for any file in
the cylinder group to also spill to other areas. Ideally none of the cylinder groups should ever become
completely full. The heuristic solution chosen is to redirect block allocation to a different cylinder group
when a file exceeds 48 kilobytes, and at every megabyte thereafter.· The newly chosen cylinder group is
selected from those cylinder groups that have a greater than average number of free blocks left. Although
big files tend to be spread out over the disk, a megabyte of data is typically accessible before a long seek
must be performed, and the cost of one long seek per megabyte is small.

The global policy routines call local allocation routines with requests for specific blocks. The local
allocation routines will always allocate the requested block if it is free, otherwise it allocates a free block of
the requested size that is rotationally closest to the requested block. If the global layout policies had com­
plete information, they could always request unused blocks and the allocation routines would be reduced to
simple bookkeeping. However, maintaining complete information is costly; thus the implementation of the
global layout policy uses heuristics that employ only partial information.

If a requested block is not available, the local allocator uses a four level allocation strategy:

1) Use the next available block rotationally closest to the requested block on the same cylinder. It is
assumed here that head switching time is zero. On disk controllers where this is not the case, it may
be possible to incorporate the time required to switch between disk platters when constructing the
rotational layout tables. This, however, has not yet been tried.

2) If there are no blocks available on the same cylinder, use a block within the same cy linder group.

3) If that cylinder group is entirely full, quadratically hash the cylinder group number to choose another
cylinder group to look for a free block.

4) Finally if the hash fails, apply an exhaustive search to all cylinder groups.

Quadratic hash is used because of its speed in finding unused slots in nearly full hash tables
[Knuth75]. File systems that are parameterized to maintain at least 10% free space rarely use this strategy.
File systems that are run without maintaining any free space typically have so few free blocks that almost
any allocation is random; the most important characteristic of the strategy used under such conditions is
that the strategy be fast.

• The first spill over point at 48 kilobytes is the point at which a file on a 4096 byte block file system first requires a single
indirect block. This appears to be a natural first point at which to redirect block allocation. The other spillover points are
chosen with the intent of forcing block allocation to be redirected when a file has used about 25% of the data blocks in a
cylinder group. In observing the new file system in day to day use, the heuristics appear to work well in minimizing the
number of completely filled cylinder groups.

A Fast File System for UNIX SMM:14-9

4. Performance

Ultimately, the proof of the effectiveness of the algorithms described in the previous section is the
long tenn performance of the new file system.

Our empirical studies have shown that the inode layout policy has been effective. When running the
"list directory" command on a large directory that itself contains many directories (to force the system to
access inodes in multiple cylinder groups), the number of disk accesses for inodes is cut by a factor of two.
The improvements are even more dramatic for large directories containing only files, disk accesses for
inodes being cut by a factor of eight. This is most encouraging for programs such as spooling daemons that
access many small files, since these programs tend to flood the disk request queue on the old file system.

Table 2 summarizes the measured throughput of the new file system. Several comments need to be
made about the conditions under which these tests were run. The test programs measure the rate at which
user programs can transfer data to or from a file without performing any processing on it. These programs
must read and write enough data to insure that buffering in the operating system does not affect the results.
They are also run at least three times in succession; the first to get the system into a known state and the
second two to insure that the experiment has stabilized and is repeatable. The tests used and their results
are discussed in detail in [Krldle83]t. The systems were running multi-user but were otherwise quiescent.
There was no contention for either the CPU or the disk arm. The only difference between the UNIBUS
and MASSBUS tests was the controller. All tests used an AMPEX Capricorn 330 megabyte Winchester
disk. As Table 2 shows, all file system test runs were on a V AX 111750. All file systems had been in pro­
duction use for at least a month before being measured. The same number of system calls were performed
in all tests; the basic system call overhead was a negligible portion of the total running time of the tests.

Type of Processor and Read
File System Bus Measured Speed Bandwidth % CPU

old 1024 750lUNffiUS 29 Kbyteslsec 29/9833% 11%
new 4096/1024 750lUNffiUS 221 Kbyteslsec 221198322% 43%
new 819211024 750lUNffiUS 233 Kbyteslsec 233/98324% 29%
new 40961 1 024 750/MASSBUS 466 Kbytes/sec 466198347% 73%
new 819211024 750IMASSBUS 466 Kbyteslsec 466198347% 54%

Table 2a - Reading rates of the old and new UNIX file systems.

Type of Processor and Write
File System Bus Measured Speed Bandwidth % CPU

old 1024 750lUNffiUS 48 Kbyteslsec 48/9835% 29%
new 409611024 750lUNffiUS 142 Kbyteslsec 142/983 14% 43%
new 819211024 750lUNffiUS 215 Kbyteslsec 215198322% 46%
new 4096/1024 750IMASSBUS 323 Kbyteslsec 323/98333% 94%
new 819211024 750IMASSBUS 466 Kbyteslsec 466198347% 95%

Table 2b - Writing rates of the old and new UNIX file systems.

Unlike the old file system, the transfer rates for the new file system do not appear to change over
time. The throughput rate is tied much more strongly to the amount of free space that is maintained. The
measurements in Table 2 were based on a file system with a 10% free space reserve. Synthetic work loads
suggest that throughput deteriorates to about half the rates given in Table 2 when the file systems are full.

The percentage of bandwidth given in Table 2 is a measure of the effective utilization of the disk by
the file system. An upper bound on the transfer rate from the disk is calculated by multiplying the number
of bytes on a track by the number of revolutions of the disk per second. The bandwidth is calculated by
comparing the data rates the file system is able to achieve as a percentage of this rate. Using this metric,
the old file system is only able to use about 3-5% of the disk bandwidth, while the new file system uses up

t A UNIX command that is similar to Ihe reading test that we used is "cp file Idev/null" , where "file" is eight megabytes
long.

SMM:14-10 A Fast File System for UNIX

to 47% of the bandwidth.

Both reads and writes are faster in the new system than in the old system. The biggest factor in this
speedup is because of the larger block size used by the new file system. The overhead of allocating blocks
in the new system is greater than the overhead of allocating blocks in the old system, however fewer blocks
need to be allocated in the new system because they are bigger. The net effect is that the cost per byte allo­
cated is about the same for both systems.

In the new file system, the reading rate is always at least as fast as the writing rate. This is to be
expected since the kernel must do more work when allocating blocks than when simply reading them.
Note that the write rates are about the same as the read rates in the 8192 byte block file system; the write
rates are slower than the read rates in the 4096 byte block file system. The slower write rates occur
because the kernel has to do twice as many disk allocations per second, making the processor unable to
keep up with the disk transfer rate.

In contrast the old file system is about 50% faster at writing files than reading them. This is because
the write system call is asynchronous and the kernel can generate disk transfer requests much faster than
they can be serviced, hence disk transfers queue up in the disk buffer cache. Because the disk buffer cache
is sorted by minimum seek distance, the average seek between the scheduled disk writes is much less than
it would be if the data blocks were written out in the random disk order in which they are generated. How­
ever when the file is read, the read system call is processed synchronously so the disk blocks must be
retrieved from the disk in the non-optimal seek order in which they are requested. This forces the disk
scheduler to do long seeks resulting in a lower throughput rate.

In the new system the blocks of a file are more optimally ordered on the disk. Even though reads are
still synchronous, the requests are presented to the disk in a much better order. Even though the writes are
still asynchronous, they are already presented to the disk in minimum seek order so there is no gain to be
had by reordering them. Hence the disk seek latencies that limited the old file system have little effect in
the new file system. The cost of allocation is the factor in the new system that causes writes to be slower
than reads.

The performance of the new file system is currently limited by memory to memory copy operations
required to move data from disk buffers in the system's address space to data buffers in the user's address
space. These copy operations account for about 40% of the time spent performing an input/output opera­
tion. If the buffers in both address spaces were properly aligned, this transfer could be performed without
copying by using the V AX virtual memory management hardware. This would be especially desirable
when transferring large amounts of data. We did not implement this because it would change the user
interface to the file system in two major ways: user programs would be required to allocate buffers on page
boundaries, and data would disappear from buffers after being written.

Greater disk throughput could be achieved by rewriting the disk drivers to chain together kernel
buffers. This would allow contiguous disk blocks to be read in a single disk transaction. Many disks used
with UNIX systems contain either 32 or 48 512 byte sectors per track. Each track holds exactly two or
three 8192 byte file system blocks, or four or six 4096 byte file system blocks. The inability to use contigu­
ous disk blocks effectively limits the performance on these disks to less than 50% of the available
bandwidth. If the next block for a file cannot be laid out contiguously, then the minimum spacing to the
next allocatable block on any platter is between a sixth and a half a revolution. The implication of this is
that the best possible layout without contiguous blocks uses only half of the bandwidth of any given track.
If each track contains an odd number of sectors, then it is possible to resolve the rotational delay to any
number of sectors by finding a block that begins at the desired rotational position on another track. The
reason that block chaining has not been implemented is because it would require rewriting all the disk
drivers in the system, and the current throughput rates are already limited by the speed of the available pro­
cessors.

Currently only one block is allocated to a file at a time. A technique used by the DEMOS file system
when it finds that a file is growing rapidly, is to preallocate several blocks at once, releasing them when the
file is closed if they remain unused. By batching up allocations, the system can reduce the overhead of
allocating at each write, and it can cut down on the number of disk writes needed to keep the block pointers
on the disk synchronized with the block allocation [powe1l79]. This technique was not included because

A Fast File System for UNIX SMM:14-11

block allocation currently accounts for less than 10% of the time spent in a write system call an~ once
again, the current throughput rates are already limited by the speed of the available processors.

5. File system functional enhancements

The performance enhancements to the UNIX file system did not require any changes to the semantics
or data structures visible to application programs. However, several changes had been generally desired
for some time but had not been introduced because they would require users to dump and restore all their
file systems. Since the new file system already required all existing file systems to be dumped and restored,
these functional enhancements were introduced at this time.

5.1. Long file names

File names can now be of nearly arbitrary length. Only programs that read directories are affected
by this change. To promote portability to UNIX systems that are not running the new file system, a set of
directory access routines have been introduced to provide a consistent interface to directories on both old
and new systems.

Directories are allocated in 512 byte units called chunks. This size is chosen so that each allocation
can be transferred to disk in a single operation. Chunks are broken up into variable length records termed
directory entries. A directory entry contains the information necessary to map the name of a file to its asso­
ciated inode. No directory entry is allowed to span multiple chunks. The first three fields of a directory
entry are fixed length and contain: an inode number, the size of the entry, and the length of the file name
contained in the entry. The remainder of an entry is variable length and contains a null terminated file
name, padded to a 4 byte boundary. The maximum length of a file name in a directory is currently 255
characters.

Available space in a directory is recorded by having one or more entries accumulate the free space in
their entry size fields. This results in directory entries that are larger than required to hold the entry name
plus fixed length fields. Space allocated to a directory should always be completely accounted for by total­
ing up the sizes of its entries. When an entry is deleted from a directory, its space is returned to a previous
entry in the same directory chunk by increasing the size of the previous entry by the size of the deleted
entry. If the first entry of a directory chunk is free, then the entry's inode number is set to zero to indicate
that it is unallocated.

5.2. File locking

The old file system had no provision for locking files. Processes that needed to synchronize the
updates of a file had to use a separate "lock" file. A process would try to create a "lock" file. If the crea­
tion succeede~ then the process could proceed with its update; if the creation faile~ then the process
would wait and try again. This mechanism had three drawbacks. Processes consumed CPU time by loop­
ing over attempts to create locks. Locks left lying around because of system crashes had to be manually
removed (normally in a system startup command script). Finally, processes running as system administra­
tor are always permitted to create files, so were forced to use a different mechanism. While it is possible to

get around all these problems, the solutions are not straight forward, so a mechanism for locking files has
been added.

The most general schemes allow multiple processes to concurrently update a file. Several of these
techniques are discussed in [Peterson83]. A simpler technique is to serialize access to a file with locks. To
attain reasonable efficiency, certain applications require the ability to lock pieces of a file. Locking down
to the byte level has been implemented in the Onyx file system by [Bass8l]. However, for the standard
system applications, a mechanism that locks at the granularity of a file is sufficient.

Locking schemes fall into two classes, those using hard locks and those using advisory locks. The
primary difference between advisory locks and hard locks is the extent of enforcement. A hard lock is
always enforced when a program tries to access a file; an advisory lock is only applied when it is requested
by a program. Thus advisory locks are only effective when all programs accessing a file use the locking

SMM:14-12 A Fast File System for UNIX

scheme. With hard locks there must be some override policy implemented in the kernel. With advisory
locks the policy is left to the user programs. In the UNIX system, programs with system administrator
privilege are allowed override any protection scheme. Because many of the programs that need to use
locks must also run as the system administrator, we chose to implement advisory locks rather than create an
additional protection scheme that was inconsistent with the UNIX philosophy or could not be used by sys­
tem administration programs.

The file locking facilities allow cooperating programs to apply advisory shared or exclusive locks on
files. Only one process may have an exclusive lock on a file while multiple shared locks may be present.
Both shared and exclusive locks cannot be present on a file at the same time. If any lock is requested when
another process holds an exclusive lock, or an exclusive lock is requested when another process holds any
lock, the lock request will block until the lock can be obtained. Because shared and exclusive locks are
advisory only, even if a process has obtained a lock on a file, another process may access the file.

Locks are applied or removed only on open files. This means that locks can be manipulated without
needing to close and reopen a file. This is useful, for example, when a process wishes to apply a shared
lock, read some information and determine whether an update is required, then apply an exclusive lock and
update the file.

A request for a lock will cause a process to block if the lock can not be immediately obtained. In
certain instances this is unsatisfactory. For example, a process that wants only to check if a lock is present
would require a separate mechanism to find out this information. Consequently, a process may specify that
its locking request should return with an error if a lock can not be immediately obtained. Being able to
conditionally request a lock is useful to "daemon" processes that wish to service a spooling area. If the
first instance of the daemon locks the directory where spooling takes place, later daemon processes can
easily check to see if an active daemon exists. Since locks exist only while the locking processes exist,
lock files can never be left active after the processes exit or if the system crashes.

Almost no deadlock detection is attempted. The only deadlock detection done by the system is that
the file to which a lock is applied must not already have a lock of the same type (Le. the second of two suc­
cessive calls to apply a lock of the same type will fail),

5.3. Symbolic links

The traditional UNIX file system allows multiple directory entries in the same file system to refer­
ence a single file. Each directory entry "links" a file's name to an inode and its contents. The link con­
cept is fundamental; inodes do not reside in directories, but exist separately and are referenced by links.
When all the links to an inode are removed, the inode is deallocated. This style of referencing an inode
does not allow references across physical file systems, nor does it support inter-machine linkage. To avoid
these limitations symbolic links similar to the scheme used by Multics [Feiertag71] have been added.

A symbolic link is implemented as a file that contains a pathname. When the system encounters a
symbolic link while interpreting a component of a pathname, the contents of the symbolic link is prepended
to the rest of the path name, and this name is interpreted to yield the resulting pathname. In UNIX, path­
names are specified relative to the root of the file system hierarchy, or relative to a process's current work­
ing directory, Pathnames specified relative to the root are called absolute pathnames. Pathnames specified
relative to the current working directory are termed relative pathnames. If a symbolic link contains an
absolute pathname, the absolute pathname is used, otherwise the contents of the symbolic link is evaluated
relative to the location of the link in the file hierarchy.

Normally programs do not want to be aware that there is a symbolic link in a pathname that they are
using. However certain system utilities must be able to detect and manipulate symbolic links. Three new
system calls provide the ability to detect, read, and write symbolic links; seven system utilities required
changes to use these calls.

In future Berkeley software distributions it may be possible to reference file systems located on
remote machines using pathnames. When this occurs, it will be possible to create symbolic links that span
machines.

A Fast File System for UNIX SMM:14-13

5.4. Rename

Programs that create a new version of an existing file typically create the new version as a temporary
file and then rename the temporary file with the name of the target file. In the old UNIX file system renam­
ing required three calls to the system. If a program were interrupted or the system crashed between these
calls, the target file could be left with only its temporary name. To eliminate this possibility the rename
system call has been added. The rename call does the rename operation in a fashion that guarantees the
existence of the target name.

Rename works both on data files and directories. When renaming directories, the system must do
special validation checks to insure that the directory tree sttucture is not corrupted by the creation of loops
or inaccessible directories. Such corruption would occur if a parent directory were moved into one of its
descendants. The validation check requires tracing the descendents of the target directory to insure that it
does not include the directory being moved.

5.5. Quotas

The UNIX system has traditionally attempted to share all available resources to the greatest extent
possible. Thus any single user can allocate all the available space in the file system. In certain environ­
ments this is unacceptable. Consequently, a quota mechanism has been added for restricting the amount of
file system resources that a user can obtain. The quota mechanism sets limits on both the number of inodes
and the number of disk blocks that a user may allocate. A separate quota can be set for each user on each
file system. Resources are given both a hard and a soft limit. When a program exceeds a soft limit, a
warning" is printed on the users terminal; the offending program is not terminated unless it exceeds its hard
limit. The idea is that users should stay below their soft limit between login sessions, but they may use
more resources while they are actively working. To encourage this behavior, users are warned when log­
ging in if they are over any of their soft limits. If users fails to correct the problem for too many login ses­
sions, they are eventually reprimanded by having their soft limit enforced as their hard limit.

Acknowledgements
We thank Robert EIz for his ongoing interest in the new file system, and for adding disk quotas in a

rational and efficient manner. We also acknowledge Dennis Ritchie for his suggestions on the appropriate
modifications to the user interface. We appreciate Michael Powell's explanations on how the DEMOS file
system worked; many of his ideas were used in this implementation. Special commendation goes to Peter
Kessler and Robert Henry for acting like real users during the early debugging stage when file systems
were less stable than they should have been. The criticisms and suggestions by the reviews contributed
significantly to the coherence of the paper. Finally we thank our sponsors, the National Science Founda­
tion under grant MCS80-05144, and the Defense Advance Research Projects Agency (DoD) under ARPA
Order No. 4031 monitored by Naval Electronic System Command under Contract No. N00039-82-C-0235.

References

[Almes78]

[Bass81]

[Feiertag71]

[Ferrin82a]

Almes, G., and Robertson, G. "An Extensible File System for Hydra" Proceed­
ings of the Third International Conference on Software Engineering, IEEE, May
1978.

Bass, J. "Implementation Description for File Locking", Onyx Systems Inc, 73 E.
Trimble Rd, San Jose, CA 95131 Jan 1981.

Feiertag, R. J. and Organick, E. 1., "The Multics Input-Output System", Proceed­
ings of the Third Symposium on Operating Systems Principles, ACM, Oct 1971.
pp 35-41

Ferrin, T.E., "Performance and Robustness Improvements in Version 7 UNIX",
Computer Graphics Laboratory Technical Report 2, School of Pharmacy,

SMM:14-14

[Ferrin82b]

[Kridle83]

[Kowalski78]

[Knuth75]

[Maruyama76]

[Nevalainen77]

[pechura83]

[Peterson83]

[Powe1l79]

[Ritchie74]

[Smith81a]

[Smith81b]

[Symbolics81]

[Thompson78]

[Thompson80]

[Trivedi80]

[White80]

A Fast File System for UNIX

University of California, San Francisco, January 1982. Presented at the 1982
Winter Usenix Conference, Santa Monica, California.

Ferrin, T.E., "Performance Issuses of VMUNIX Revisited", ;login: (The Usenix
Association Newsletter), Vol 7, #5, November 1982. pp 3-6

Krldle, R., and McKusick, M., "Performance Effects of Disk Subsystem Choices
for V AX Systems Running 4.2BSD UNIX", Computer Systems Research Group,
Dept ofEECS, Berkeley, CA 94720, Technical Report #8.

Kowalski, T. "FSCK - The UNIX System Check Program", Bell Laboratory,
Murray Hill, NJ 07974. March 1978

Kunth, D. "The Art of Computer Programming", Volume 3 - Sorting and Search­
ing, Addison-Wesley Publishing Company Inc, Reading, Mass, 1975. pp 506-549

Maruyama, K., and Smith, S. "Optimal reorganization of Distributed Space Disk
Files", CACM, 19, 11. Nov 1976. pp 634-642

Nevalainen, 0., Vesterinen, M. "Determining Blocking Factors for Sequential
Files by Heuristic Methods", The Computer Journal, 20,3. Aug 1977. pp 245-247

Pechura, M., and Schoeffler, J. "Estimating File Access Time of Floppy Disks",
CACM, 26, 10. Oct 1983. pp 754-763

Peterson, G. "Concurrent Reading While Writing", ACM Transactions on Pro­
gramming Languages and Systems, ACM, 5, 1. Jan 1983. pp 46-55

Powell, M. "The DEMOS File System", Proceedings of the Sixth Symposium on
Operating Systems Principles, ACM, Nov 1977. pp 33-42

Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing System", CACM 17,
7. July 1974. pp 365-375

Smith, A. "Input/Output Optimization and Disk Architectures: A Survey", Perfor­
mance and Evaluation 1. Jan 1981. pp 104-117

Smith, A. "Bibliography on File and I/O System Optimization and Related
Topics", Operating Systems Review, 15,4. Oct 1981. pp 39-54

"Symbolics File System", Symbolics Inc, 9600 DeSoto Ave, Chatsworth, CA
91311 Aug 1981.

Thompson, K. "UNIX Implementation", Bell System Technical Journal, 57, 6,
part 2. pp 1931-1946 July-August 1978.

Thompson, M. "Spice File System", Carnegie-Mellon University, Department of
Computer Science, Pittsburg, PA 15213 #CMU-CS-80, Sept 1980.

Trivedi, K. "Optimal Selection of CPU Speed, Device Capabilities, and File
Assignments", Journal of the ACM, 27,3. July 1980. pp 457-473

White, R. M. "Disk Storage Technology", Scientific American, 243(2), August
1980.

Networking Implementation Notes
4.3BSD Edition

Samuel J. Leffler, William N. Joy, Robert S. Fabry, and Michael J. Karels

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

This report describes the internal structure of the networking facilities developed
for the 4.3BSD version of the UNIX* operating system for the V AXt. These facilities
are based on several central abstractions which structure the external (user) view of net­
work communication as well as the internal (system) implementation.

The report documents the internal structure of the networking system. The
"Berkeley Software Architecture Manual, 4.3BSD Edition" (PS1:6) provides a descrip­
tion of the user interface to the networking facilities.

Revised June 5, 1986

* UNIX is a trademark of Bell Laboratories.
t DEC, VAX, DECnet, and UNIBUS are trademarks of Digital Equipment Corporation.

SMM:15-2

1. Introduction

2. Overview

3. Goals

4. Internal address representation

5. Memory management

6. Internal layering
6.1. Socket layer
6.1.1. Socket state
6.1.2. Socket data queues
6.1.3. Socket connection queuing
6.2. Protocollayer(s)
6.3. Network-interface layer
6.3.1. UNIBUS interfaces

7. Socket/protocol interface

8. Protocol/protocol interface
8.1. pr _output
8.2. prJnput
8.3. pr_ctlinput
8.4. pr_ctloutput

TABLE OF CONTENTS

9. Protocol/network-interface interface
9.1. Packet transmission
9.2. Packet reception

10. Gateways and routing issues
10.1. Routing tables
10.2. Routing table interface
10.3. User level routing policies

11. Raw sockets
11.1. Control blocks
11.2. Input processing
11.3. Output processing

12. Buffering and congestion control
12.1. Memory management
12.2. Protocol buffering policies
12.3. Queue limiting
12.4. Packet forwarding

13. Out of band data

14. Trailer protocols

Acknowledgements

References

Networking Implementation Notes

Networking Implementation Notes SMM:15-3

1. Introduction
This report describes the internal structure of facilities added to the 4.2BSD version of the UNIX

operating system for the V AX, as modified in the 4.3BSD release. The system facilities provide a uniform
user interface to networking within UNIX. In addition, the implementation introduces a structure for net­
work communications which may be used by system implementors in adding new networking facilities.
The internal structure is not visible to the usert rather it is intended to aid implementors of communication
protocols and network services by providing a framework which promotes code sharing and minimizes
implementation effort.

The reader is expected to be familiar with the C programming language and system in terface t as
described in the Berkeley Software Architecture Manual, 4.3BSD Edition [Joy86]. Basic understanding of
network communication concepts is assumed; where required any additional ideas are introduced.

The remainder of this document provides a description of the system internals t avoiding t when possi­
ble, those portions which are utilized only by the interprocess communication facilities.

2. Overview
If we consider the International Standards Organization's (ISO) Open System Interconnection (OSI)

model of network communication [IS081] [Zimmermann80], the networking facilities described here
correspond to a portion of the session layer (layer 3) and all of the transport and network layers (layers 2
and It respectively).

The network layer provides possibly imperfect data transport services with minimal addressing struc­
ture. Addressing at this level is normally host to hos4 with implicit or explicit routing optionally supported
by the communicating agents.

At the transport layer the notions of reliable transfer, data sequencing, flow con trol t and service
addressing are normally included. Reliability is usually managed by explicit acknowledgement of data
delivered. Failure to acknowledge a transfer results in retransmission of the data. Sequencing may be han­
dled by tagging each message handed to the network layer by a sequence number and maintaining state at
the endpoints of communication to utilize received sequence numbers in reordering data which arrives out
of order.

The session layer facilities may provide forms of addressing which are mapped into formats required
by the transport layert service authentication and client authenticationt etc. Various systems also provide
services such as data encryption and address and protocol translation.

The following sections begin by describing some of the common data structures and utility routines t

then examine the intemallayering. The contents of each layer and its interface are considered. Certain of
the interfaces are protocol implementation specific. For these cases examples have been drawn from the
Internet [Cert78] protocol family. Later sections cover routing issues t the design of the raw socket inter­
face and other miscellaneous topics.

3. Goals
The networking system was designed with the goal of supporting multiple protocol families and

addressing styles. This required information to be "hidden" in common data structures which could be
manipulated by all the pieces of the systemt but which required interpretation only by the protocols which
"controlled" it. The system described here attempts to minimize the use of shared data structures to those
kept by a suite of protocols (a protocol family), and those used for rendezvous between "synchronous"
and "asynchronous" portions of the system (e.g. queues of data packets are filled at interrupt time and
emptied based on user requests).

A major goal of the system was to provide a framework within which new protocols and hardware
could be easily be supported. To this en~ a great deal of effort has been extended to create utility routines
which hide many of the more complex andlor hardware dependent chores of networking. Later sections
describe the utility routines and the underlying data structures they manipulate.

SMM:15-4 Networking Implementation Notes

4. Internal address representation
Common to all portions of the system are two data structures. These structures are used to represent

addresses and various data objects. Addresses, internally are described by the sockaddr structure,

struct sockaddr {
short
char

};

sa_family;
sa_data[14];

1* data format identifier *1
1* address *1

All addresses belong to one or more address families which define their format and interpretation. The
sa Jamily field indicates the address family to which the address belongs, and the sa_data field contains the
actual data value. The size of the data field, 14 bytes, was selected based on a study of current address for­
mats. * Specific address formats use private structure definitions that define the format of the data field.
The system interface supports larger address structures, although address-family-independent support facil­
ities, for example routing and raw socket interfaces, provide only 14 bytes for address storage. Protocols
that do not use those facilities (e.g, the current Unix domain) may use larger data areas.

5. Memory management
A single mechanism is used for data storage: memory buffers, or mbuf s. An mbuf is a structure of

the form:

struct mbuf {

};

struct
u)ong
short
short
u char
struct

mbuf *m _next;
m_off;
m_Ien;
m_type;
m _ dat[MLEN];
mbuf *m_act;

1* next buffer in chain */
1* offset of data *1
/* amount of data in this mbuf *1
1* mbuftype (accounting) *1
1* data storage *1
1* link in higher-level mbuf list *1

The m _next field is used to chain mbufs together on linked lists, while the m _act field allows lists of mbuf
chains to be accumulated. By convention, the mbufs common to a single object (for example, a packet) are
chained together with the m_next field, while groups of objects are linked via the m_act field (possibly
when in a queue).

Each mbuf has a small data area for storing information, m dat. The m len field indicates the
amount of data, while the m_ofJfield is an offset to the beginning of the data from the base of the mbuf.
Thus, for example, the macro mtod, which converts a pointer to an mbuf to a pointer to the data stored in
the mbuf, has the form

#define mtod(x,t) «/)«int)(x) + (x)->m_off»

(note the t parameter, a C type cast, which is used to cast the resultant pointer for proper assignment).

In addition to storing data directly in the mburs data area, data of page size may be also be stored in
a separate area of memory. The mbuf utility routines maintain a pool of pages for this purpose and mani­
pulate a private page map for such pages. An mbuf with an external data area may be recognized by the
larger offset to the data area; this is formalized by the macro M_HASCL(m), which is true if the mbuf
whose address is m has an external page cluster. An array of reference counts on pages is also maintained
so that copies of pages may be made without core to core copying (copies are created simply by duplicat­
ing the reference to the data and incrementing the associated reference counts for the pages). Separate data
pages are currently used only when copying data from a user process into the kernel, and when bringing
data in at the hardware level. Routines which manipulate mbufs are not normally aware whether data is
stored directly in the mbuf data array, or if it is kept in separate pages.

* Later versions of the system may support variable length addresses.

Networking Implementation Notes

The following may be used to allocate and free mbufs:

m = m _get(wait, type);
MGET(m, wait, type);

SMM:lS-S

The subroutine m _get and the macro MGET each allocate an mbuf, placing its address in m. The
argument wait is either M _WAIT or M _ DONTW AIT according to whether allocation should block
or fail if no mbuf is available. The type is one of the predefined mbuf types for use in accounting of
mbuf allocation.

MCLGET(m);
This macro attempts to allocate an mbuf page cluster to associate with the mbuf m. If successful, the
length of the mbuf is set to CLSIZE, the size of the page cluster.

n = m_free(m);
MFREE(m,n);

The routine m Jree and the macro MFREE each free a single mbuf, m, and any associated external
storage area, placing a pointer to its successor in the chain it heads, if any, in n.

m _freem(m);
This routine frees an mbuf chain headed by m.

The following utility routines are available for manipulating mbuf chains:

m = m _ copy(mO, off, len);
The m_copy routine create a copy of all, or part, of a list of the mbufs in mD. Len bytes of data, start­
ing off bytes from the front of the chain, are copied. Where possible, reference counts on pages are
used instead of core to core copies. The original mbuf chain must have at least off + len bytes of
data. If len is specified as M _COpy ALL, all the data present, offset as before, is copied.

m_cat(m, n);
The mbuf chain, n, is appended to the end of m. Where possible, compaction is performed.

m_adj(m, diff);
The mbuf chain, m is adjusted in size by diff bytes. If diff is non-negative, diff bytes are shaved off
the front of the mbuf chain. If diff is negative, the alteration is performed from back to front. No
space is reclaimed in this operation; alterations are accomplished by changing the m _len and m _off
fields of mbufs.

m = myullup(mO, size);
After a successful call to m yullup, the mbuf at the head of the returned list, m, is guaranteed to have
at least size bytes of data in contiguous memory within the data area of the mbuf (allowing access via
a pointer, obtained using the mtod macro, and allowing the mbuf to be located from a pointer to the
data area using dtom, defined below). If the original data was less than size bytes long, len was
greater than the size of an mbuf data area (112 bytes), or required resources were unavailable, m is °
and the original mbuf chain is deallocated.

This routine is particularly useful when verifying packet header lengths on reception. For example,
if a packet is received and only 8 of the necessary 16 bytes required for a valid packet header are
present at the head of the list of mbufs representing the packet, the remaining 8 bytes may be "pulled
up" with a single m yullup call. If the call fails the invalid packet will have been discarded.

By insuring that mbufs always reside on 128 byte boundaries, it is always possible to locate the mbuf
associated with a data area by masking off the low bits of the virtual address. This allows modules to store
data structures in mbufs and pass them around without concern for locating the original mbuf when it
comes time to free the structure. Note that this works only with objects stored in the internal data buffer of
the mbuf. The dtom macro is used to convert a pointer into an mbuf's data area to a pointer to the mbuf,

#define dtom(x) «struct mbuf *)«int)x & -(MSlZE-l»)

Mbufs are used for dynamically allocated data structures such as sockets as well as memory allo­
cated for packets and headers. Statistics are maintained on mbuf usage and can be viewed by users using
the netstat (1) program.

SMM:15-6 Networking Implementation Notes

6. Internal layering
The internal structure of the network system is divided into three layers. These layers correspond to

the services provided by the socket abstraction, those provided by the communication protocols, and those
provided by the hardware interfaces. The communication protocols are normally layered into two or more
individual cooperating layers, though they are collectively viewed in the system as one layer providing ser­
vices supportive of the appropriate socket abstraction.

The following sections describe the properties of each layer in the system and the interfaces to which
each must conform.

6.1. Socket layer

The socket layer deals with the interprocess communication facilities provided by the system. A
socket is a bidirectional endpoint of communication which is "typed" by the semantics of communication
it supports. The system calls described in the Berkeley Software Architecture Manual [Joy86] are used to
manipulate sockets.

A socket consists of the following data structure:

struct socket {
short
short
short
short
caddr t
struct
struct
struct
short
struct
short
short
struct
struct
short
u short
u short
short

};

so_type;
so_options;
so_linger;
so_state;
soycb;
protosw *so yroto;
socket *so _head;
socket *so_qO;
so_qOlen;
socket *so _ q;
so_qlen;
so_qlimit;
sockbuf so_rcv;
sockbuf so_snd;
so_timeo;
so_error;
so_oobmark;
soygrp;

1* generic type *1
1* from socket call *1
1* time to linger while closing *1
1* internal state flags *1
1* protocol control block *1
1* protocol handle *1
1* back pointer to accept socket *1
1* queue of partial connections *1
1* partials on so _ qO *1
1* queue of incoming connections *1
1* number of connections on so_q *1
1* max number queued connections *1
1* receive queue *1
1* send queue *1
1* connection timeout *1
1* error affecting connection *1
1* chars to oob mark *1
1* pgrp for signals *1

Each socket contains two data queues, so _rev and so _snd, and a pointer to routines which provide
supporting services. The type of the socket, so _type is defined at socket creation time and used in selecting
those services which are appropriate to support it. The supporting protocol is selected at socket creation
time and recorded in the socket data structure for later use. Protocols are defined by a table of procedures,
the protosw structure, which will be described in detail later. A pointer to a protocol-specific data struc­
ture, the "protocol control block," is also present in the socket structure. Protocols control this data struc­
ture, which normally includes a back pointer to the parent socket structure to allow easy lookup when
returning information to a user (for example, placing an error number in the so _error field). The other
entries in the socket structure are used in queuing connection requests, validating user requests, storing
socket characteristics (e.g. options supplied at the time a socket is created), and maintaining a socket's
state.

Processes "rendezvous at a socket" in many instances. For instance, when a process wishes to
extract data from a socket's receive queue and it is empty, or lacks sufficient data to satisfy the request, the
process blocks, supplying the address of the receive queue as a "wait channel' to be used in notification.
When data arrives for the process and is placed in the socket's queue, the blocked process is identified by
the fact it is waiting "on the queue."

Networking Implementation Notes

6.1.1. Socket state

A socket's state is defined from the following:

#define SS NOFDREF
#define SS ISCONNECTED
#define SS ISCONNECTING
#define SS ISDISCONNECTING
#define SS CANTSENDMORE
#define SS CANTRCVMORE
#define SS RCV A TMARK

#define SS PRIV
#define SS NBro
#define SS ASYNC

OxOOl
Ox002
Ox004
Ox008
OxOlO
Ox020
Ox040

Ox080
OxlOO
Ox200

1* no file table ref any more *1
1* socket connected to a peer *1
1* in process of connecting to peer *1
1* in process of disconnecting *1
1* can't send more data to peer *1
1* can't receive more data from peer *1
1* at mark on input *1

1* privileged *1
1* non-blocking ops *1
1* async ito notify *1

SMM:15-7

The state of a socket is manipulated both by the protocols and the user (through system calls). When
a socket is created, the state is defined based on the type of socket. It may change as control actions are
performed, for example connection establishment. It may also change according to the type of input/output
the user wishes to perform, as indicated by options set with/entl. "Non-blocking" I/O implies that a pro­
cess should never be blocked to await resources. Instead, any call which would block returns prematurely
with the error EWOULDBLOCK, or the service request may be partially fulfilled, e.g. a request for more
data than is present.

If a process requested "asynchronous" notification of events related to the socket, the SIGIO signal
is posted to the process when such events occur. An event is a change in the socket's state; examples of
such occurrences are: space becoming available in the send queue, new data available in the receive queue,
connection establishment or disestablishment, etc.

A socket may be marked "privileged" if it was created by the super-user. Only privileged sockets
may bind addresses in privileged portions of an address space or use "raw" sockets to access lower levels
of the network.

6.1.2. Socket data queues

A socket's data queue contains a pointer to the data stored in the queue and other entries related to
the management of the data. The following structure defines a data queue:

struct sockbuf {
u short sb_cc; 1* actual chars in buffer *1
u short sb_hiwat; 1* max actual char count *1
u short sb_mbcnt; 1* chars of mbufs used *1
u short sb_mbmax; 1* max chars of mbufs to use *1
u short sb_Iowat; 1* low water mark *1
short sb_timeo; 1* timeout *1
struct mbuf *sb_mb; 1* the mbuf chain *1
struct proc *sb _sel; 1* process selecting read/write *1
short sb_flags; 1* flags, see below *1

};

Data is stored in a queue as a chain of mbufs. The actual count of data characters as well as high and
low water marks are used by the protocols in controlling the flow of data. The amount of buffer space
(characters of mbufs and associated data pages) is also recorded along with the limit on buffer allocation.
The socket routines cooperate in implementing the flow control policy by blocking a process when it
requests to send data and the high water mark has been reached, or when it requests to receive data and less
than the low water mark is present (assuming non-blocking I/O has not been specified).*

... The low-water mark is always presumed to be 0 in the current implementation.

SMM:15-8 Networking Implementation Notes

When a socket is created, the supporting protocol "reserves" space for the send and receive queues
of the socket. The limit on buffer allocation is set somewhat higher than the limit on data characters to
account for the granularity of buffer allocation. The actual storage associated with a socket queue may
fluctuate during a socket's lifetime, but it is assumed that this reservation will always allow a protocol to
acquire enough memory to satisfy the high water marks.

The timeout and select values are manipulated by the socket routines in implementing various por­
tions of the interprocess communications facilities and will not be described here.

Data queued at a socket is stored in one of two styles. Stream-oriented sockets queue data with no
addresses, headers or record boundaries. The data are in mbufs linked through the m _next field. Buffers
containing access rights may be present within the chain if the underlying protocol supports passage of
access rights. Record-oriented sockets, including datagram sockets, queue data as a list of packets; the sec­
tions of packets are distinguished by the types of the mbufs containing them. The mbufs which comprise a
record are linked through the m_ next field; records are linked from the m _act field of the first mbuf of one
packet to the first mbuf of the next. Each packet begins with an mbuf containing the "from" address if the
protocol provides it, then any buffers containing access rights, and finally any buffers containing data. If a
record contains no data, no data buffers are required unless neither address nor access rights are present.

A socket queue has a number of flags used in synchronizing access to the data and in acquiring
resources:

#define
#define
#define
#define
#define

SB LOCK
SB WANT
SB WAIT
SB SEL
SB CaLL

OxOl
Ox02
Ox04
Ox08
OxlO

1* lock on data queue (so_rcv only) *1
1* someone is waiting to lock *1
1* someone is waiting for data/space *1
1* buffer is selected *1
1* collision selecting *1

The last two flags are manipulated by the system in implementing the select mechanism.

6.1.3. Socket connection queuing

In dealing with connection oriented sockets (e.g. SOCK_STREAM) the two ends are considered dis­
tinct. One end is termed active, and generates connection requests. The other end is called passive and
accepts connection requests.

From the passive side, a socket is marked with SO _ ACCEPTCONN when a listen call is made,
creating two queues of sockets: so _ qO for connections in progress and so _ q for connections already made
and awaiting user acceptance. As a protocol is preparing incoming connections, it creates a socket struc­
ture queued on so _qO by calling the routine sonewconnO. When the connection is established, the socket
structure is then transferred to so _q, making it available for an accept.

If an SO _ACCEPTCONN socket is closed with sockets on either so _qO or so _q, these sockets are
dropped, with notification to the peers as appropriate.

6.2. Protocol Jayer(s)

Each socket is created in a communications domain, which usually implies both an addressing struc­
ture (address family) and a set of protocols which implement various socket types within the domain (pro­
tocol family). Each domain is defined by the following structure:

struct domain {

};

int dom_family; 1* PF xxx *1
char *dom_name;
int (*dom Jnit)O; 1* initialize domain data structures */
int (*dom _ externalize)O; /* externalize access rights */
int (*dom_dispose)O; /* dispose of internalized rights */
struct protosw *dom yrotosw, *dom yrotoswNPROTOSW;
struct domain *dom _next;

Networking Implementation Notes SMM:lS-9

At boot time, each domain configured into the kernel is added to a linked list of domain. The initiali­
zation procedure of each domain is then called. After that time, the domain structure is used to locate pro­
tocols within the protocol family. It may also contain procedure references for externalization of access
rights at the receiving socket and the disposal of access rights that are not received.

Protocols are described by a set of entry points and certain socket-visible characteristics, some of
which are used in deciding which socket type(s) they may support.

An entry in the "protocol switch" table exists for each protocol module configured into the system.
It has the following form:

struct protosw {
short pr _type;
struct domain *pr _domain;
short pr j>rotocol;
short pr _flags;

/* protocol-protocol hooks */
int (*pr _ input)O;
int (*pr _ output)O;
int (*pr _ ctlinput)O;
int (*pr_ctloutput)O;

/* user-protocol hook */
int (*pr_usrreq)O;

/* utility hooks */
int (*pr_init)O;
int (*pr_fasttimo)O;
int (*pr_slowtimo)O;
int (*pr_drain)O;

};

/* socket type used for */
/* domain protocol a member of * /
/* protocol number */
/* socket visible attributes */

/* input to protocol (from below) */
/* output to protocol (from above) */
/* control input (from below) */
/* control output (from above) */

/* user request *1

/* initialization routine */
1* fast timeout (200ms) */
/* slow timeout (SOOms) */
/* flush any excess space possible */

A protocol is called through the pr init entry before any other. Thereafter it is called every 200 mil­
liseconds through the pr JasttimJ) entry -and every 500 milliseconds through the pr _slowtimJ) for timer
based actions. The system will call the pr drain entry if it is low on space and this should throwaway any
non-critical data. -

Protocols pass data between themselves as chains of mbufs using the pr input and pr output rou­
tines. Pr _input passes data up (towards the user) and pr _output passes it down (towards the network); con­
trol information passes up and down on pr _ctlinput and pr _ctloutput. The protocol is responsible for the
space occupied by any of the arguments to these entries and must either pass it onward or dispose of it.
(On output, the lowest level reached must free buffers storing the arguments; on input, the highest level is
responsible for freeing buffers.)

The pr _ usrreq routine interfaces protocols to the socket code and is described below.

The pr Jlags field is constructed from the following values:

#define PR ATOMIC
#define PR ADDR
#define PR _ CONNREQUIRED
#define PR W ANTRCVD
#define PR RIGHTS

OxOl
Ox02
Ox04
Ox08
OxlO

/* exchange atomic messages only *1
/* addresses given with messages */
/* connection required by protocol */
/* want PRU RCVD calls */
/* passes capabilities * /

Protocols which are connection-based specify the PR _ CONNREQUIRED flag so that the socket routines
will never attempt to send data before a connection has been established. If the PR _ W ANTRCVD flag is
set, the socket routines will notify the protocol when the user has removed data from the socket's receive
queue. This allows the protocol to implement acknowledgement on user receipt, and also update window­
ing information based on the amount of space available in the receive queue. The PR _ ADDR field indi­
cates that any data placed in the socket's receive queue will be preceded by the address of the sender. The
PR _ATOMIC flag specifies that each user request to send data must be performed in a single protocol send
request; it is the protocol's responsibility to maintain record boundaries on data to be sent. The

SMM:15-10 Networking Implementation Notes

PR _RIGHTS flag indicates that the protocol supports the passing of capabilities; this is currently used only
by the protocols in the UNIX protocol family.

When a socket is created, the socket routines scan the protocol table for the domain looking for an
appropriate protocol to support the type of socket being created. The pr _type field contains one of the pos­
sible socket types (e.g. SOCK_STREAM), while the pr _domain is a back pointer to the domain structure.
The pr yrotocol field contains the protocol number of the protocol, normally a well-known value.

6.3. Network-interface layer

Each network-interface configured into a system defines a path through which packets may be sent
and received. Normally a hardware device is associated with this interface, though there is no requirement
for this (for example, all systems have a software "loopback" interface used for debugging and perfor­
mance analysis). In addition to manipulating the hardware device, an interface module is responsible for
encapsulation and decapsulation of any link-layer header information required to deliver a message to its
destination. The selection of which interface to use in delivering packets is a routing decision carried out at
a higher level than the network-interface layer. An interface may have addresses in one or more address
families. The address is set at boot time using an ioctl on a socket in the appropriate domain; this operation
is implemented by the protocol family, after verifying the operation through the device ioctl entry.

An interface is defined by the following structure,

struct ifnet {
char * if_name; /* name, e.g. "en" or "10" *1
short if_unit; /* sub-unit for lower level driver *1
short if_mtu; /* maximum transmission unit */
short if_flags; 1* up/down, broadcast, etc. *1
short if_timer; 1 * time 'til if_watchdog called * /
struct ifaddr *if _ addrlist; 1* list of addresses of interface */
struct ifqueue if_snd; /* output queue *1
int (*if _init)O; /* init routine *1
int (*if_ output)O; /* output routine *1
int (*if _ioctl)(); /* ioctl routine */
int (*if _reset)O; 1* bus reset routine *1
int (*if _ watchdog)O; /* timer routine *1
int ifJpackets; 1* packets received on interface *1
int ifJerrors; /* input errors on interface *1
int if _ opackets; /* packets sent on interface */
int if _ oerrors; /* output errors on interface */
int if_collisions; /* collisions on csma interfaces *1
struct ifnet *if _ next;

};

Each interface address has the following form:

struct ifaddr {

};

struct sockaddr ifa_addr; 1* address of interface *1
union {

struct sockaddr ifu _ broadaddr;
struct sockaddr ifu_dstaddr;

} ifaJfu;
struct ifnet *ifa_ifp; 1* back-pointer to interface *1
struct ifaddr *ifa_next; 1* next address for interface *1

#define if a _ broadaddr if a _ifu.ifu _ broadaddr /* broadcast address *1
#define if a dstaddr if a ifu.ifu dstaddr - -- /* other end of p-to-p link *1

The protocol generally maintains this structure as part of a larger structure containing additional informa­
tion concerning the address.

Networking Implementation Notes SMM:15-11

Each interface has a send queue and routines used for initialization, if_init, and output, if_output. If
the interface resides on a system bus, the routine if_reset will be called after a bus reset has been per­
formed. An interface may also specify a timer routine, if_watchdog; if if_timer is non-zero, it is decre­
mented once per second until it reaches zero, at which time the watchdog routine is called.

The state of an interface and certain characteristics are stored in the if Jlags field. The following
values are possible:

#define IFF UP Ox1 1* interface is up *1
#define IFF _BROADCAST Ox2 1* broadcast is possible */
#define IFF DEBUG Ox4 1* turn on debugging *1
#define IFF LOOPBACK Ox8 /* is a loopback net *1
#define IFF POINTOPOINT OxlO /* interface is point-to-point link *1
#define IFF NOlRAILERS Ox20 /* avoid use of trailers */
#define IFF RUNNING Ox40 1* resources allocated *1
#define IFF NOARP Ox80 /* no address resolution protocol */

If the interface is connected to a network which supports transmission of broadcast packets, the
IFF_BROADCAST flag will be set and the ifa _broadaddr field will contain the address to be used in send­
ing or accepting a broadcast packet. If the interface is associated with a point-to-point hardware link (for
example, a DEC DMR-ll), the IFF POINTOPOINT flag will be set and ifa dstaddr will contain the
address of the host on the other side of the connection. These addresses and the local address of the inter­
face, if_ addr, are used in filtering incoming packets. The interface sets IFF_RUNNING after it has allo­
cated system resources and posted an initial read on the device it manages. This state bit is used to avoid
multiple allocation requests when an interface's address is changed. The IFF _ NOlRAILERS flag indi­
cates the interface should refrain from using a trailer encapsulation on outgoing packets, or (where per­
host negotiation of trailers is possible) that trailer encapsulations should not be requested; trailer protocols
are described in section 14. The IFF _NOARP flag indicates the interface should not use an "address reso­
lution protocol" in mapping internetwork addresses to local network addresses.

V arious statistics are also stored in the interface structure. These may be viewed by users using the
netstat(1) program.

The interface address and flags may be set with the SIOCSIF ADDR and SIOCSIFFLAGS ioctl s.
SIOCSIFADDR is used initially to define each interface's address; SIOGSIFFLAGS can be used to mark
an interface down and perform site-specific configuration. The destination address of a point-to-point link
is set with SIOCSIFDST ADDR. Corresponding operations exist to read each value. Protocol families may
also support operations to set and read the broadcast address. In addition, the SIOCGIFCONF ioctl
retrieves a list of interface names and addresses for all interfaces and protocols on the host.

6.3.1. UNIBUS interfaces

All hardware related interfaces currently reside on the UNIBUS. Consequently a common set of
utility routines for dealing with the UNIBUS has been developed. Each UNIBUS interface utilizes a struc­
ture of the following form:

struct ifubinfo {
short
short
struct
short

};

iff_uban;
iff_hlen;
uba_regs *iff_ uba;
iftflags;

1* uba number *1
/* local net header length */
1* uba regs, in vm */
1* used during uballoc's *1

Additional structures are associated with each receive and transmit buffer, normally one each per interface;
for read,

SMM:15-12

struct if~ {
caddr t ifrw _ addr;
short ifrw_bdp;
short ifrw _flags;

#define IFR W W OxO 1
int ifrw Jnfo;
int ifrw yroto;
struct pte *ifrw_mr;

};

and for write,

struct ifxmt {
struct
caddr t
struct
struct
short
short

};
#define ifw addr
#define ifw _ bdp
#define ifw _flags
#define ifw _info
#define ifw yroto
#define ifw mr

ifrw ifrw;
ifw_base;
pte ifw _ wmap[IF _ MAXNUBAMR];
mbuf *ifw _ xtofree;
ifw _xswapd;
ifw_nmr;

ifrw .ifrw addr
ifrw .ifrw _ bdp
ifrw .ifrw _flags
ifrw.ifrw _info
ifrw .ifrw -proto
ifrw.ifrw mr

Networking Implementation Notes

1* virt addr of header *1
1* unibus bdp *1
1* type, etc. *1
1* is a transmit buffer *1
1* value from ubaalloc *1
1* map register prototype *1
1* base of map registers *1

1* virt addr of buffer *1
1* base pages for output *1
1* pages being dma'd out *1
1* mask of clusters swapped *1
1* number of entries in wmap *1

One of each of these structures is conveniently packaged for interfaces with single buffers for each direc­
tion, as follows:

struct ifuba {
struct ifubinfo ifu _info;
struct ifrw ifu _r;
struct ifxmt ifu _xmt;

};
#define ifu _ uban ifu Jnfo.iff_ uban
#define ifu hIen ifu info. iff hlen - -
#define ifu _ uba ifu Jnfo.iff _ uba
#define ifu _flags ifu Jnfo.iff _flags
#define ifu w ifu xmt.ifrw
#define ifu _ xtofree ifu _ xmt.ifw _xtofree

The if_ubinJo structure contains the general information needed to characterize the I/O-mapped
buffers for the device. In addition, there is a structure describing each buffer, including UNIBUS resources
held by the interface. Sufficient memory pages and bus map registers are allocated to each buffer upon ini­
tialization according to the maximum packet size and header length. The kernel virtual address of the
buffer is held in iJrw_addr, and the map registers begin at ifrw_mr. UNIBUS map register iJrw_mr[-l]
maps the local network header ending on a page boundary. UNIBUS data paths are reserved for read and
for write, given by iJrw _ bdp. The prototype of the map registers for read and for write is saved in
iJrwy ro to.

When write transfers are not at least half-full pages on page boundaries, the data are just copied into
the pages mapped on the UNIBUS and the transfer is started. If a write transfer is at least half a page long
and on a page boundary, UNIBUS page table entries are swapped to reference the pages, and then the ini­
tial pages are remapped from ifw _ wmap when the transfer completes. The mbufs containing the mapped
pages are placed on the ifw _ xtoJree queue to be freed after transmission.

Networking Implementation Notes SMM:15-13

When read transfers give at least half a page of data to be input, page frames are allocated from a
network page list and traded with the pages already containing the data, mapping the allocated pages to
replace the input pages for the next UNIBUS data input

The following utility routines are available for use in writing network interface drivers; all use the
structures described above.

if _ ubaminit(ifubinfo, uban, hlen, nmr, ifr, nr, ifx, nx);
if _ ubainit(ifuba, uban, hlen, nmr);

if_ ubaminit allocates resources on UNIBUS adapter uban, storing the information in the ifubinfo,
ifrw and ifxmt structures referenced. The ifr and ifx parameters are pointers to arrays of ifrw and
ifxmt structures whose dimensions are nr and nx, respectively. if_ ubainit is a simpler, backwards­
compatible interface used for hardware with single buffers of each type. They are called only at boot
time or after a UNIBUS reset. One data path (buffered or unbuffered, depending on the ifu Jiags
field) is allocated for each buffer. The nmr parameter indicates the number of UNIBUS mapping
registers required to map a maximal sized packet onto the UNmUS, while hlen specifies the size of a
local network header, if any, which should be mapped separately from the data (see the description
of trailer protocols in chapter 14). Sufficient UNmUS mapping registers and pages of memory are
allocated to initialize the input data path for an initial read. For the output data path, mapping regis­
ters and pages of memory are also allocated and mapped onto the UNIBUS. The pages associated
with the output data path are held in reserve in the event a write requires copying non-page-aligned
data (see if_ wubaput below). If if_ ubainit is called with memory pages already allocated, they will
be used instead of allocating new ones (this normally occurs after a UNIBUS reset). A 1 is returned
when allocation and initialization are successful, 0 otherwise.

m = if_ubaget(ifubinfo, ifr, toden, offO, ifp);
m = if_rubaget(ifuba, toden, offO, ifp);

if_ ubaget and if_rubaget pull input data out of an interface receive buffer and into an mbuf chain.
The first interface passes pointers to the ifubinfo structure for the interface and the ifrw structure for
the receive buffer; the second call may be used for single-buffered devices. totlen specifies the
length of data to be obtained, not counting the local network header. If offD is non-zero, it indicates a
byte offset to a trailing local network header which should be copied into a separate mbuf and
prepended to the front of the resultant mbuf chain. When the data amouI1t to at least a half a page,
the previously mapped data pages are remapped into the mbufs and swapped with fresh pages, thus
avoiding any copy. The receiving interface is recorded as ifp, a pointer to an ifnet structure, for the
use of the receiving network protocol. A 0 return value indicates a failure to allocate resources.

if _ wubaput(ifubinfo, ifx, m);
if _ wubaput(ifuba, m);

if_ ubaput and if_wubaput map a chain of mbufs onto a network interface in preparation for output.
The first interface is used by devices with multiple transmit buffers. The chain includes any local
network header, which is copied so that it resides in the mapped and aligned I/O space. Page-aligned
data that are page-aligned in the output buffer are mapped to the UNIBUS in place of the normal
buffer page, and the corresponding mbuf is placed on a queue to be freed after transmission. Any
other mbufs which contained non-page-sized data portions are copied to the I/O space and then
freed. Pages mapped from a previous output operation (no longer needed) are unmapped

SMM:15-14 Networking Implementation Notes

7. Socket/protocol interface
The interface between the socket routines and the communication protocols is through the pr _ usrreq

routine defined in the protocol switch table. The following requests to a protocol module are possible:

#define PRU ATTACH 0 1* attach protocol *1
#define PRU_DETACH 1 1* detach protocol *1
#define PRU BIND 2 1* bind socket to address *1
#define PRU LISTEN 3 1* listen for connection *1
#define PRU_CONNECT 4 1* establish connection to peer *1
#define PRU_ACCEPT 5 1* accept connection from peer *1
#define PRU _DISCONNECT 6 1* disconnect from peer *1
#define PRU SHUTDOWN 7 1* won't send any more data *1
#define PRU RCVD 8 1* have taken data; more room now *1
#define PRU SEND 9 1* send this data *1
#define PRU_ABORT 10 1* abort (fast DISCONNECT, DETATCH) *1
#define PRU _CONTROL 11 1* control operations on protocol *1
#define PRU_SENSE 12 1* return status into m *1
#define PRU_RCVOOB 13 1* retrieve out of band data *1
#define PRU SENDOOB 14 1* send out of band data *1
#define PRU _SOCKADDR 15 1* fetch socket's address *1
#define PRU PEERADDR 16 1* fetch peer's address *1
#define PRU _ CONNECT2 17 1* connect two sockets *1
1* begin for protocols internal use *1
#define PRU FASTTIMO 18 1* 200ms timeout *1
#define PRU SLOWTIMO 19 1* 500ms timeout *1
#define PRU_PROTORCV 20 1* receive from below *1
#define PRU_PROTOSEND 21 1* send to below *1

A call on the user request routine is of the form,

error = (*protosw[].pr_usrreq)(so, req, m, addr, rights);
int error; struct socket *so; int req; struct mbuf *m, *addr, *rights;

The mbuf data chain m is supplied for output operations and for certain other operations where it is to
receive a result. The address addr is supplied for address-oriented requests such as PRU _BIND and
PRU_CONNECT. The rights parameter is an optional pointer to an mbuf chain containing user-specified
capabilities (see the sendmsg and recvmsg system calls). The protocol is responsible for disposal of the
data mbuf chains on output operations. A non-zero return value gives a UNIX error number which should
be passed to higher level software. The following paragraphs describe each of the requests possible.

PRU ATTACH
When a protocol is bound to a socket (with the socket system call) the protocol module is called with
this request. It is the responsibility of the protocol module to allocate any resources necessary. The
"attach" request will always precede any of the other requests, and should not occur more than
once.

PRU DETACH
-This is the antithesis of the attach request, and is used at the time a socket is deleted. The protocol

module may deallocate any resources assigned to the socket.

PRU BIND
When a socket is initially created it has no address bound to it. This request indicates that an address
should be bound to an existing socket. The protocol module must verify that the requested address is
valid and available for use.

PRU_LISTEN
The "listen" request indicates the user wishes to listen for incoming connection requests on the
associated socket. The protocol module should perform any state changes needed to carry out this
request (if possible). A "listen" request always precedes a request to accept a connection.

Networking Implementation Notes SMM:15-15

PRU CONNECT
The' 'connect" request indicates the user wants to a establish an association. The addr parameter
supplied describes the peer to be connected to. The effect of a connect request may vary depending
on the protocol. Virtual circuit protocols, such as TCP [poste181b], use this request to initiate estab­
lishment of a TCP connection. Datagram protocols, such as UDP [posteI80], simply record the
peer's address in a private data structure and use it to tag all outgoing packets. There are no restric­
tions on how many times a connect request may be used after an attach. If a protocol supports the
notion of multi-casting, it is possible to use multiple connects to establish a multi-cast group. Alter­
natively, an association may be broken by a PRU_DISCONNECT reques4 and a new association
created with a subsequent connect request; all without destroying and creating a new socket.

PRU ACCEPT
Following a successful PRU _LISTEN request and the arrival of one or more connections, this
request is made to indicate the user has accepted the first connection on the queue of pending con­
nections. The protocol module should fill in the supplied address buffer with the address of the con­
nected party.

PRU_DISCONNECT
Eliminate an association created with a PRU _CONNECT request.

PRU _SHUTDOWN
This call is used to indicate no more data will be sent andlor received (the addr parameter indicates
the direction of the shutdown, as encoded in the soshutdown system call). The protocol may, at its
discretion, deallocate any data structures related to the shutdown andlor notify a connected peer of
the shutdown.

PRU_RCVD
This request is made only if the protocol entry in the protocol switch table includes the
PR _ W ANTRCVD flag. When a user removes data from the receive queue this request will be sent
to the protocol module. It may be used to trigger acknowledgements, refresh windowing informa­
tion, initiate data transfer, etc.

PRU SEND
Each user request to send data is translated into one or more PRU_SEND requests (a protocol may
indicate that a single user send request must be translated into a single PRU _SEND request by speci­
fying the PR _ATOMIC flag in its protocol description). The data to be sent is presented to the proto­
col as a list of mbufs and an address is, optionally, supplied in the addr parameter. The protocol is
responsible for preserving the data in the socket's send queue if it is not able to send it immediately,
or if it may need it at some later time (e.g. for retransmission).

PRU_ABORT
This request indicates an abnormal termination of service. The protocol should delete any existing
association(s).

PRU_CONTROL
The "control" request is generated when a user performs a UNIX ioctl system calion a socket (and
the ioctl is not intercepted by the socket routines). It allows protocol-specific operations to be pro­
vided outside the scope of the common socket interface. The addr parameter contains a pointer to a
static kernel data area where relevant information may be obtained or returned. The m parameter
contains the actual ioctl request code (note the non-standard calling convention). The rights parame­
ter contains a pointer to an ifnet structure if the ioctl operation pertains to a particular network inter­
face.

PRU_SENSE
The "sense" request is generated when the user makes an istat system call on a socket; it requests
status of the associated socket. This currently returns a standard stat structure. It typically contains
only the optimal transfer size for the connection (based on buffer size, windowing information and
maximum packet size). The m parameter contains a pointer to a static kernel data area where the
status buffer should be placed.

SMM:15-16 Networking Implementation Notes

PRU RCVOOB
Any "out-of-band" data presently available is to be returned. An mbuf is passed to the protocol
module, and the protocol should either place data in the mbuf or attach new mbufs to the one sup­
plied if there is insufficient space in the single mbuf. An error may be returned if out-of-band data is
not (yet) available or has already been consumed. The addr parameter contains any options such as
MSG _PEEK to examine data without consuming it.

PRU SENDOOB
Like PRU _SEND, but for out-of-band data.

PRU SOCKADDR
The local address of the socket is returned, if any is currently bound to it. The address (with protocol
specific format) is returned in the addr parameter.

PRU PEERADDR
The address of the peer to which the socket is connected is returned. The socket must be in a
SS _IS CONNE CTED state for this request to be made to the protocol. The address format (protocol
specific) is returned in the addr parameter.

PRU CONNECT2
The protocol module is supplied two sockets and requested to establish a connection between the two
without binding any addresses, if possible. This call is used in implementing the system call.

The following requests are used internally by the protocol modules and are never generated by the
socket routines. In certain instances, they are handed to the pr _ usrreq routine solely for convenience in
tracing a protocol's operation (e.g. PRU _SLOWTIMO).

PRU FASTTIMO
A "fast timeout" has occurred. This request is made when a timeout occurs in the protocol's
pr Jastimo routine. The addr parameter indicates which timer expired.

PRU SLOWTIMO
A "slow timeout" has occurred. This request is made when a timeout occurs in the protocol's
pr _slowtimo routine. The addr parameter indicates which timer expired.

PRU PROTORCV
This request is used in the protocol-protocol interface, not by the routines. It requests reception of
data destined for the protocol and not the user. No protocols currently use this facility.

PRU PROTO SEND
This request allows a protocol to send data destined for another protocol module, not a user. The
details of how data is marked "addressed to protocol" instead of "addressed to user" are left to the
protocol modules. No protocols currently use this facility.

8. Protocol/protocol interface
The interface between protocol modules is through the pr _ usrreq, pr _input, pr _output, pr _ ctlinput,

and pr ctloutput routines. The calling conventions for all but the pr usrreq routine are expected to be
specific to the protocol modules and are not guaranteed to be consistent across protocol families. We will
examine the conventions used for some of the Internet protocols in this section as an example.

8.1. pr _output

The Internet protocol UDP uses the convention,

error = udp _ output(inp, m);
int error; struct inpcb *inp; struct mbuf *m;

where the inp, "internet protocol control block", passed between modules conveys per connection state
information, and the mbuf chain contains the data to be sent. UDP performs consistency checks, appends
its header, calculates a checksum, etc. before passing the packet on. UDP is based on the Internet Protocol,
IP [posteI81a], as its transport. UDP passes a packet to the IP module for output as follows:

Networking Implementation Notes SMM:15-17

error = ip _ output(m, opt, ro, flags);
int error; struct mbuf *m, *opt; struct route *ro; int flags;

The call to IP's output routine is more complicated than that for UDP, as befits the additional work
the IP module must do. The m parameter is the data to be sent, and the opt parameter is an optional list of
IP options which should be placed in the IP packet header. The ro parameter is is used in making routing
decisions (and passing them back to the caller for use in subsequent calls). The final parameter, flags con­
tains flags indicating whether the user is allowed to transmit a broadcast packet and if routing is to be per­
formed. The broadcast flag may be inconsequential if the underlying hardware does not support the notion
of broadcasting.

All output routines return 0 on success and a UNIX error number if a failure occurred which could
be detected immediately (no buffer space available, no route to destination, etc.).

8.2. pr _input

Both UDP and TCP use the following calling convention,

(void) (*protoswD.pr_input)(m, ifp);
struct mbuf *m; struct ifnet *ifp;

Each mbuf list passed is a single packet to be processed by the protocol module. The interface from which
the packet was received is passed as the second parameter.

The IP input routine is a V AX software interrupt level routine, and so is not called with any parame­
ters. It instead communicates with network interfaces through a queue, ipintrq, which is identical in struc­
ture to the queues used by the network interfaces for storing packets awaiting transmission. The software
interrupt is enabled by the network interfaces when they place input data on the input queue.

8.3. pr_ctlinput

This routine is used to convey "control" information to a protocol module (i.e. information which
might be passed to the user, but is not data).

The common calling convention for this routine is,

(void) (*protoswD.pr_ctlinput)(req, addr);
int req; struct sockaddr *addr;

The req parameter is one of the following,

SMM:15-18

#define PRC IFDOWN 0
#define PRC_ROUTEDEAD 1
#define PRC _QUENCH 4
#define PRC MSGSIZE 5
#define PRC _ HOSTDEAD 6
#define PRC HOSTUNREACH 7
#define PRC _ UNREACH _NET 8
#define PRC_UNREACH_HOST 9
#define PRC UNREACH PROTOCOL 10 - -
#define PRC _ UNREACH _PORT 11
#define PRC _ UNREACH_ NEEDFRAG 12
#define PRC_UNREACH_SRCFAIL 13
#define PRC _REDIRECT_NET 14
#define PRC REDIRECT HOST 15 - -
#define PRC_REDIRECT_TOSNET 14
#define PRC REDIRECT TOSHOST 15 - -
#define PRC TIMXCEED INTRANS 18 - -
#define PRC_TIMXCEED_REASS 19
#define PRC_PARAMPROB 20

Networking Implementation Notes

/* interface transition */
/* select new route if possible */
/* some said to slow down */
/* message size forced drop */
/* normally from IMP */
/* ditto */
/* no route to network */
/* no route to host */
/* dst says bad protocol *1
/* bad port # */
/* IP _DF caused drop */
/* source route failed */
1* net routing redirect */
/* host routing redirect */
1* redirect for type of service & net */
/* redirect for tos & host */
1* packet lifetime expired in transit */
/* lifetime expired on reass q */
/* header incorrect */

while the addr parameter is the address to which the condition applies. Many of the requests have obvi­
ously been derived from ICMP (the Internet Control Message Protocol [PosteI81c]), and from error mes­
sages defined in the 1822 host/IMP convention [BBN78]. Mapping tables exist to convert control requests
to UNIX error codes which are delivered to a user.

8.4. pr _ ctloutput

This is the routine that implements per-socket options at the protocol level for getsockopt and set­
sockopt. The calling convention is,

error = (*protosw[].pr_ctIoutput)(op, so, level, optname, mp);
int op; struct socket *so; int level, optname; struct mbuf **mp;

where op is one of PRCO _ SETOPT or PRCO _ GETOPT, so is the socket from whence the call originated,
and level and optname are the protocol level and option name supplied by the user. The results of a
PRCO _ GETOPT call are returned in an mbuf whose address is placed in mp before return. On a
PReO _ SETOPT call, mp contains the address of an mbuf containing the option data; the mbuf should be
freed before return.

9. Protocol/network-interface interface
The lowest layer in the set of protocols which comprise a protocol family must interface itself to one

or more network interfaces in order to transmit and receive packets. It is assumed that any routing deci­
sions have been made before handing a packet to a network interface, in fact this is absolutely necessary in
order to locate any interface at all (unless, of course, one uses a single "hardwired" interface). There are
two cases with which to be concerned, transmission of a packet and receipt of a packet; each will be con­
sidered separately.

9.1. Packet transmission

Assuming a protocol has a handle on an interface, ifp, a (struct ifnet *), it transmits a fully formatted
packet with the following call,

error = (*ifp->if_ output)(ifp, m, dst)
int error; struct ifnet *ifp; struct mbuf *m; struct sockaddr *dst;

The output routine for the network interface transmits the packet m to the dst address, or returns an error
indication (a UNIX error number). In reality transmission may not be immediate or successful; normally
the output routine simply queues the packet on its send queue and primes an interrupt driven routine to

Networking Implementation Notes SMM:15-19

actually transmit the packet. For unreliable media, such as the Ethernet, "successful" transmission simply
means that the packet has been placed on the cable without a collision. On the other han~ an 1822 inter­
face guarantees proper delivery or an error indication for each message transmitted. The model employed
in the networking system attaches no promises of delivery to the packets handed to a network interface,
and thus corresponds more closely to the Ethernet. Errors returned by the output routine are only those that
can be detected immediately, and are normally trivial in nature (no buffer space, address fonnat not han­
dled, etc.). No indication is received if errors are detected after the call has returned.

9.2. Packet reception

Each protocol family must have one or more "lowest level" protocols. These protocols deal with
internetwork addressing and are responsible for the delivery of incoming packets to the proper protocol
processing modules. In the PUP model [Boggs78] these protocols are termed Levell protocols, in the ISO
model, network layer protocols. In this system each such protocol module has an input packet queue
assigned to it. Incoming packets received by a network interface are queued for the protocol module, and a
V AX software interrupt is posted to initiate processing.

Three macros are available for queuing and dequeuing packets:

IF _ ENQUEUE(ifq, m)
This places the packet m at the tail of the queue ifq.

IF _ DEQUEUE(ifq, m)
This places a pointer to the packet at the head of queue ifq in m and removes the packet from the
queue. A zero value will be returned in m if the queue is empty.

IF _ DEQUEUEIF(ifq, m, ifp)
Like IF_DEQUEUE, this removes the next packet from the head of a queue and returns it in m. A
pointer to the interface on which the packet was received is placed in ifp, a (struct ifnet *).

IF _ PREPEND(ifq, m)
This places the packet m at the head of the queue ifq.

Each queue has a maximum length associated with it as a simple form of congestion control. The
macro IF _ QFVLL(ifq) returns 1 if the queue is filled, in which case the macro IF _ DROP(ifq) should be
used to increment the count of the number of packets dropped, and the offending packet is dropped. For
example, the following code fragment is commonly found in a network interface's input routine,

if (IF _ QFVLL(inq» {
IF _ DROP(inq);
m _freem(m);

} else
IF _ ENQUEUE(inq, m);

10. Gateways and routing issues
The system has been designed with the expectation that it will be used in an internetwork environ­

ment. The "canonical" environment was envisioned to be a collection of local area networks connected at
one or more points through hosts with multiple network interfaces (one on each local area network), and
possibly a connection to a long haul network (for example, the ARPANET). In such an environment,
issues of gatewaying and packet routing become very important. Certain of these issues, such as conges­
tion control, have been handled in a simplistic manner or specifically not addressed. Instead, where possi­
ble, the network system attempts to provide simple mechanisms upon which more involved policies may be
implemented. As some of these problems become better understood, the solutions developed will be incor­
porated into the system.

This section will describe the facilities provided for packet routing. The simplistic mechanisms pro­
vided for congestion control are described in chapter 12.

SMM:15-20 Networking Implementation Notes

10.1. Routing tables

The network system maintains a set of routing tables for selecting a network interface to use in
deli vering a packet to its destination. These tables are of the form:

struct rtentry {
uJong
struct
struct
short
short

rt_hash;
sockaddr rt _ ds t;
sockaddr rt_gateway;
rt_flags;
rt_refcnt;

uJong rt_use;
struct tlnet*rt_i~;

};

1* hash key for lookups *1
1* destination net or host *1
1* forwarding agent *1
1* see below *1
1* no. of references to structure *1
1* packets sent using route *1
1* interface to give packet to *1

The routing information is organized in two separate tables, one for routes to a host and one for
routes to a network. The distinction between hosts and networks is necessary so that a single mechanism
may be used for both broadcast and multi-drop type networks, and also for networks built from point-to­
point links (e.g DECnet [DEC80]).

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calculated by rou­
tines defined for each address family; one based on the destination being a host, and one assuming the tar­
get is the network portion of the address. Each hash value is used to locate a hash chain to search (by tak­
ing the value modulo the hash table size) and the entire 32-bit value is then used as a key in scanning the
list of routes. Lookups are applied first to the routing table for hosts, then to the routing table for networks.
If both lookups fail, a final lookup is made for a "wildcard" route (by convention, network 0). The first
appropriate route discovered is used. By doing this, routes to a specific host on a network may be present
as well as routes to the network. This also allows a "fall back" network route to be defined to a "smart"
gateway which may then perform more intelligent routing.

Each routing table entry contains a destination (the desired final destination), a gateway to which to
send the packet, and various flags which indicate the route's status and type (host or network). A count of
the number of packets sent using the route is kept, along with a count of "held references" to the dynami­
cally allocated structure to insure that memory reclamation occurs only when the route is not in use.
Finally, a pointer to the a network interface is kept; packets sent using the route should be handed to this
interface.

Routes are typed in two ways: either as host or network, and as "direct" or "indirect". The
host/network distinction determines how to compare the rt _ dst field during lookup. If the route is to a net­
work, only a packet's destination network is compared to the rt _ dst entry stored in the table. If the route is
to a host, the addresses must match bit for bit.

The distinction between "direct" and "indirect" routes indicates whether the destination is directly
connected to the source. This is needed when performing local network encapsulation. If a packet is des­
tined for a peer at a host or network which is not directly connected to the source, the internetwork packet
header will contain the address of the eventual destination, while the local network header will address the
intervening gateway. Should the destination be directly connected, these addresses are likely to be identi­
cal, or a mapping between the two exists. The RTF_GATEWAY flag indicates that the route is to an
"indirect" gateway agent, and that the local network header should be filled in from the rt _gateway field
instead of from the final internetwork destination address.

It is assumed that multiple routes to the same destination will not be present; only one of mUltiple
routes, that most recently installed, will be used.

Routing redirect control messages are used to dynamically modify existing routing table entries as
well as dynamically create new routing table entries. On hosts where exhaustive routing information is too
expensive to maintain (e.g. work stations), the combination of wildcard routing entries and routing redirect
messages can be used to provide a simple routing management scheme without the use of a higher level
policy process. Current connections may be rerouted after notification of the protocols by means of their
pr _ ctIinput entries. Statistics are kept by the routing table routines on the use of routing redirect messages

Networking Implementation Notes SMM:15-21

and their affect on the routing tables. These statistics may be viewed using

Status infonnation other than routing redirect control messages may be used in the future, but at
present they are ignored. Likewise, more intelligent "metrics" may be used to describe routes in the
future, possibly based on bandwidth and monetary costs.

10.2. Routing table interface

A protocol accesses the routing tables through three routines, one to allocate a route, one to free a
route, and one to process a routing redirect control message. The routine rtalloc performs route allocation;
it is called with a pointer to the following structure containing the desired destination:

struct route {
struct
struct

};

rtentry *ro _ rt;
sockaddr ro _ dst;

The route returned is assumed "held" by the caller until released with an rtfree call. Protocols which
implement virtual circuits, such as TCP, hold onto routes for the duration of the circuit's lifetime, while
connection-less protocols, such as UDP, allocate and free routes whenever their destination address
changes.

The routine rtredirect is called to process a routing redirect control message. It is called with a desti­
nation address, the new gateway to that destination, and the source of the redirect. Redirects are accepted
only from the current router for the destination. If a non-wildcard route exists to the destination, the gate­
way entry in the route is modified to point at the new gateway supplied. Otherwise, a new routing table
entry is inserted reflecting the information supplied. Routes to interfaces and routes to gateways which are
not directly accessible from the host are ignored.

10.3. User level routing policies

Routing policies implemented in user processes manipulate the kernel routing tables through two
ioctl calls. The commands SIOCADDRT and SIOCDELRT add and delete routing entries, respectively;
the tables are read through the Idevlkmem device. The decision to place policy decisions in a user process
implies that routing table updates may lag a bit behind the identification of new routes, or the failure of
existing routes, but this period of instability is normally very small with proper implementation of the rout­
ing process. Advisory infonnation, such as ICMP error messages and IMP diagnostic messages, may be
read from raw sockets (described in the next section).

Several routing policy processes have already been implemented. The system standard "routing
daemon" uses a variant of the Xerox NS Routing Information Protocol [Xerox82] to maintain up-to-date
routing tables in our local environment. Interaction with other existing routing protocols, such as the Inter­
net EGP (Exterior Gateway Protocol), has been accomplished using a similar process.

11. Raw sockets
A raw socket is an object which allows users direct access to a lower-level protocol. Raw sockets

are intended for knowledgeable processes which wish to take advantage of some protocol feature not
directly accessible through the normal interface, or for the development of new protocols built atop existing
lower level protocols. For example, a new version of TCP might be developed at the user level by utilizing
a raw IP socket for delivery of packets. The raw IP socket interface attempts to provide an identical inter­
face to the one a protocol would have if it were resident in the kernel.

The raw socket support is built around a generic raw socket interface, (possibly) augmented by
protocol-specific processing routines. This section will describe the core of the raw socket interface.

11.1. Control blocks

Every raw socket has a protocol control block of the following form:

SMM:15-22 Networking Implementation Notes

struct rawcb {
struct rawcb *rcb _next; /* doubly linked list */
struct rawcb *rcb yrev;
struct socket *rcb _socket; /* back pointer to socket */
struct sockaddr rcb _faddr; /* destination address */
struct sockaddr rcb Jaddr; /* socket's address */
struct sockproto rcb yroto; /* protocol family, protocol */
caddr_t rcbycb; /* protocol specific stuff */
struct mbuf *rcb_options; /* protocol specific options */
struct route rcb _route; /* routing information */
short rcb_flags;

};

All the control blocks are kept on a doubly linked list for performing lookups during packet dispatch.
Associations may be recorded in the control block and used by the output routine in preparing packets for
transmission. The reb yroto structure contains the protocol family and protocol number with which the
raw socket is associated. The protocol, family and addresses are used to filter packets on input; this will be
described in more detail shortly. If any protocol-specific information is required, it may be attached to the
control block using the reb yeb field. Protocol-specific options for transmission in outgoing packets may
be stored in reb_options.

A raw socket interface is datagram oriented. That is, each send or receive on the socket requires a
destination address. This address may be supplied by the user or stored in the control block and automati­
cally installed in the outgoing packet by the output routine. Since it is not possible to determine whether an
address is present or not in the control block, two flags, RAW LADDR and RAW F ADDR, indicate if a
local and foreign address are present. Routing is expected to be performed by the-underlying protocol if
necessary.

11.2. Input processing

Input packets are "assigned" to raw sockets based on a simple pattern matching scheme. Each net­
work interface or protocol gives unassigned packets to the raw input routine with the call:

raw _input(m, proto, ste, dst)
struct mbuf *m; struct sockproto *proto, struct sockaddr *src, *dst;

The data packet then has a generic header prepended to it of the form

struct raw_header {
struct

};

struct
struct

sockproto raw"'proto;
sockaddr raw _ dst;
sockaddr raw _ src;

and it is placed in a packet queue for the "raw input protocol" module. Packets taken from this queue are
copied into any raw sockets that match the header according to the following rules,

1) The protocol family of the socket and header agree.

2) If the protocol number in the socket is non-zero, then it agrees with that found in the packet header.

3) If a local address is defined for the socket, the address format of the local address is the same as the
destination address's and the two addresses agree bit for bit.

4) The rules of 3) are applied to the socket's foreign address and the packet's source address.

A basic assumption is that addresses present in the control block and packet header (as constructed by the
network interface and any raw input protocol module) are in a canonical form which may be "block com­
pared".

Networking Implementation Notes SMM:15-23

11.3. Output processing

On output the raw pr _ usrreq routine passes the packet and a pointer to the raw control block to the
raw protocol output routine for any processing required before it is delivered to the appropriate network
interface. The output routine is normally the only code required to implement a raw socket interface.

12. Buffering and congestion control
One of the major factors in the performance of a protocol is the buffering policy used. Lack of a

proper buffering policy can force packets to be dropped, cause falsified windowing information to be emit­
ted by protocols, fragment host memory, degrade the overall host performance, etc. Due to problems such
as these, most systems allocate a fixed pool of memory to the networking system and impose a policy
optimized for "normal" network operation.

The networking system developed for UNIX is little different in this respect. At boot time a fixed
amount of memory is allocated by the networking system. At later times more system memory may be
requested as the need arises, but at no time is memory ever returned to the system. It is possible to garbage
collect memory from the network, but difficult. In order to perform this garbage collection properly, some
portion of the network will have to be "turned off' as data structures are updated. The interval over which
this occurs must kept small compared to the average inter-packet arrival time, or too much traffic may be
lost, impacting other hosts on the network, as well as increasing load on the interconnecting mediums. In
our environment we have not experienced a need for such compaction, and thus have left the problem
unresolved.

The mbuf structure was introduced in chapter 5. In this section a brief description will be given of
the allocation mechanisms, and policies used by the protocols in performing connection level buffering.

12.1. Memory management

The basic memory allocation routines manage a private page map, the size of which determines the
maximum amount of memory that may be allocated by the network. A small amount of memory is allo­
cated at boot time to initialize the mbuf and mbuf page cluster free lists. When the free lists are exhausted,
more memory is requested from the system memory allocator if space remains in the map. If memory can­
not be allocated, callers may block awaiting free memory, or the failure may be reflected to the caller
immediately .. The allocator will not block awaiting free map entries, however, as exhaustion of the page
map usually indicates that buffers have been lost due to a "leak." The private page table is used by the
network buffer management routines in remapping pages to be logically contiguous as the need arises. In
addition, an array of reference counts parallels the page table and is used when multiple references to a
page are present.

Mbufs are 128 byte structures, 8 fitting in a lKbyte page of memory. When data is placed in mbufs,
it is copied or remapped into logically contiguous pages of memory from the network page pool if possible.
Data smaller than half of the size of a page is copied into one or more 112 byte mbuf data areas.

12.2. Protocol buffering policies

Protocols reserve fixed amounts of buffering for send and receive queues at socket creation time.
These amounts define the high and low water marks used by the socket routines in deciding when to block
and unblock a process. The reservation of space does not currently result in any action by the memory
management routines.

Protocols which provide connection level flow control do this based on the amount of space in the
associated socket queues. That is, send windows are calculated based on the amount of free space in the
socket's receive queue, while receive windows are adjusted based on the amount of data awaiting transmis­
sion in the send queue. Care has been taken to avoid the "silly window syndrome" described in [Clark82]
at both the sending and receiving ends.

SMM:15-24 Networking Implementation Notes

12.3. Queue limiting

Incoming packets from the network are always received unless memory allocation fails. However,
each Levell protocol input queue has an upper bound on the queue's length, and any packets exceeding
that bound are discarded. It is possible for a host to be overwhelmed by excessive network traffic (for
instance a host acting as a gateway from a high bandwidth network to a low bandwidth network). As a
"defensive" mechanism the queue limits may be adjusted to throttle network traffic load on a host. Con­
sider a host willing to devote some percentage of its machine to handling network traffic. If the cost of han­
dling an incoming packet can be calculated so that an acceptable "packet handling rate" can be deter­
mined, then input queue lengths may be dynamically adjusted based on a host's network load and the
number of packets awaiting processing. Obviously, discarding packets is not a satisfactory solution to a
problem such as this (simply dropping packets is likely to increase the load on a network); the queue
lengths were incorporated mainly as a safeguard mechanism.

12.4. Packet forwarding

When packets can not be forwarded because of memory limitations, the system attempts to generate
a "source quench" message. In addition, any other problems encountered during packet forwarding are
also reflected back to the sender in the form of ICMP packets. This helps hosts avoid unneeded retransmis­
sions.

Broadcast packets are never forwarded due to possible dire consequences. In an early stage of net­
work development, broadcast packets were forwarded and a "routing loop" resulted in network saturation
and every host on the network crashing.

13~ Out of band data
Out of band data is a facility peculiar to the stream socket abstraction defined. Little agreement

appears to exist as to what its semantics should be. TCP defines the notion of "urgent data" as in-line,
while the NBS protocols [Burruss81] and numerous others provide a fully independent logical transmission
channel along which out of band data is to be sent In addition, the amount of the data which may be sent
as an out of band message varies from protocol to protocol; everything from 1 bit to 16 bytes or more.

A stream socket's notion of out of band data has been defined as the lowest reasonable common
denominator (at least reasonable in our minds); clearly this is subject to debate. Out of band data is
expected to be transmitted out of the normal sequencing and flow control constraints of the data stream. A
minimum of 1 byte of out of band data and one outstanding out of band message are expected to be sup­
ported by the protocol supporting a stream socket It is a protocol's prerogative to support larger-sized
messages, or more than one outstanding out of band message at a time.

Out of band data is maintained by the protocol and is usually not stored in the socket's receive
queue. A socket-level option, SO _ OOBINLINE, is provided to force out-of-band data to be placed in the
normal receive queue when urgent data is received; this sometimes amelioriates problems due to loss of
data when multiple out-of-band segments are received before the first has been passed to the user. The
PRU _ SENDOOB and PRU _ RCVOOB requests to the pr _usrreq routine are used in sending and receiving
data.

14. Trailer protocols
Core to core copies can be expensive. Consequently, a great deal of effort was spent in minimizing

such operations. The V AX architecture provides virtual memory hardware organized in page units. To cut
down on copy operations, data is kept in page-sized units on page-aligned boundaries whenever possible.
This allows data to be moved in memory simply by remapping the page instead of copying. The mbuf and
network interface routines perform page table manipulations where needed, hiding the complexities of the
V AX virtual memory hardware from higher level code.

Data enters the system in two ways: from the user, or from the network (hardware interface). When
data is copied from the user's address space into the system it is deposited in pages (if sufficient data is
present). This encourages the user to transmit information in messages which are a multiple of the system
page size.

Networking Implementation Notes SMM:15-25

Unfortunately, performing a similar operation when taking data from the network is very difficult.
Consider the format of an incoming packet A packet usually contains a local network header followed by
one or more headers used by the high level protocols. Finally, the data, if any, follows these headers. Since
the header information may be variable length, DMA'ing the eventual data for the user into a page aligned
area of memory is impossible without a priori knowledge of the format (e.g., by supporting only a single
protocol header format).

To allow variable length header information to be present and still ensure page alignment of data, a
special local network encapsulation may be used. This encapsulation, termed a trailer protocol [Leffler84],
places the variable length header information after the data. A fixed size local network header is then
prepended to the resultant packet The local network header contains the size of the data portion (in units of
512 bytes), and a new trailer protocol header, inserted before the variable length information, contains the
size of the variable length header information. The following trailer protocol header is used to store infor­
mation regarding the variable length protocol header:

struct {

};

short
short

protocol;
length;

1* original protocol no. *1
1* length of trailer *1

The processing of the trailer protocol is very simple. On output, the local network header indicates
that a trailer encapsulation is being used. The header also includes an indication of the number of data
pages present before the trailer protocol header. The trailer protocol header is initialized to contain the
actual protocol identifier and the variable length header size, and is appended to the data along with the
variable length header information.

On input, the interface routines identify the trailer encapsulation by the protocol type stored in the
local network header, then calculate the number of pages of data to find the beginning of the trailer. The
trailing information is copied into a separate mbuf and linked to the front of the resultant packet.

Clearly, trailer protocols require cooperation between source and destination. In addition, they are
normally cost effective only when sizable packets are used. The current scheme works because the local
network encapsulation header is a fixed size, allowing DMA operations to be performed at a known offset
from the first data page being received. Should the local network header be variable length this scheme
fails.

Statistics collected indicate that as much as 200Kb/s can be gained by using a trailer protocol with
lKbyte packets. The average size of the variable length header was 40 bytes (the size of a minimal TCP/IP
packet header). If hardware supports larger sized packets, even greater gains may be realized.

Acknowledgements
The internal structure of the system is patterned after the Xerox PUP architecture [Boggs79], while

in certain places the Internet protocol family has had a great deal of influence in the design. The use of
software interrupts for process invocation is based on similar facilities found in the VMS operating system.
Many of the ideas related to protocol modularity, memory management, and network interfaces are based
on Rob Gurwitz's TCP/IP implementation for the 4.1BSD version of UNIX on the VAX [Gurwitz81].
Greg Chesson explained his use of trailer encapsulations in Datakit, instigating their use in our system.

SMM:15-26

References

[Boggs79]

[BBN78]

[Cert78]

[Clark82]

[DEC80]

[Gurwitz81]

[IS081]

[Joy86]

[Leffler84]

[PosteI80]

[PosteI81a]

[posteI81b]

[posteI81c]

[Xerox81]

[Zimmermann80]

Networking Implementation Notes

Boggs, D. R., J. F. Shoch, E. A. Taft, and R. M. Metcalfe; PUP: An Internetwork
Architecture. Report CSL-79-10. XEROX Palo Alto Research Center, July 1979.

Bolt Beranek and Newman; Specification for the Interconnection of Host and
IMP. BBN Technical Report 1822. May 1978.

Cerf, V. G.; The Catenet Model for Internetworking. Internet Working Group,
lEN 48. July 1978.

Clark, D. D.; Window and Acknowledgement Strategy in TCP, RFC-813. Net­
work Information Center, SRI International. July 1982.

Digital Equipment Corporation; DECnet DIGITAL Network Architecture - Gen­
eral Description. Order No. AA-K179A-TK. October 1980.

Gurwitz, R. F.; VAX-UNIX Networking Support Project - Implementation
Description. Internetwork Working Group, lEN 168. January 1981.

International Organization for Standardization. ISO Open Systems Interconnec­
tion -Basic Reference Model. ISO/TC 97/SC 16 N 719. August 1981.

Joy, W.; Fabry, R.; Leffler, S.; McKusick, M.; and Karels, M.; Berkeley Software
Architecture Manual, 4.3BSD Edition. UNIX Programmer's Supplementary
Documents, Vol. 1 (PS1:6). Computer Systems Research Group, University of
California, Berkeley. May, 1986.

Leffler, S1. and Karels, M.J.; Trailer Encapsulations, RFC-893. Network Infor­
mation Center, SRI International. Apri11984.

Postel, J. User Datagram Protocol, RFC-768. Network Information Center, SRI
International. May 1980.

Postel, J., ed. Internet Protocol, RFC-791. Network Information Center, SRI
International. September 1981.

Postel, J., ed. Transmission Control Protocol, RFC-793. Network Information
Center, SRI International. September 1981.

Postel, J. Internet Control Message Protocol, RFC-792. Network Information
Center, SRI International. September 1981.

Xerox Corporation. Internet Transport Protocols. Xerox System Integration Stan­
dard 028112. December 1981.

Zimmermann, H. OSI Reference Model - The ISO Model of Architecture for
Open Systems Interconnection. IEEE Transactions on Communications. Com-
28(4); 425-432. April 1980.

SENDMAIL - An Internetwork Mail Router

Eric Allman t
Britton-Lee, Inc.

1919 Addison Street, Suite 105.
Berkeley, California 94704.

ABSTRACf

Routing mail through a heterogenous internet presents many new problems. Among the worst of
these is that of address mapping. Historically, this has been handled on an ad hoc basis.
However, this approach has become unmanageable as internets grow.

Sendmail acts a unified "post office" to which all mail can be submitted. Address interpretation
is controlled by a production system, which can parse both domain-based addressing and old­
style ad hoc addresses. The production system is powerful enough to rewrite addresses in the
message header to conform to the standards of a number of common target networks, including
old (NCP/RFC733) Arpanet, new (TCP/RFC822) Arpanet, UUCP, and Phonenet. Sendmail also
implements an SMTP server, message queueing, and aliasing.

Sendmail implements a general internetwork mail routing facility, featuring aliasing and forwarding,
automatic routing to network gateways, and ftexible configuration.

In a simple network, each node has an address, and resources can be identified with a host-resource
pair; in particular, the mail system can refer to users using a host-username pair. Host names and numbers
have to be administered by a central authority, but usernames can be assigned locally to each host.

In an internet, multiple networks with different characters tics and managements must communicate.
In particular, the syntax and semantics of resource identification change. Certain special cases can be han­
dled trivially by ad hoc techniques, such as providing network names that appear local to hosts on other
networks, as with the Ethernet at Xerox P ARC. However, the general case is extremely complex. For
example, some networks require point-to-point routing, which simplifies the database update problem since
only adjacent hosts must be entered into the system tables, while others use end-to-end addressing. Some
networks use a left-associative syntax and others use a right-associative syntax, causing ambiguity in
mixed addresses.

Internet standards seek to eliminate these problems. Initially, these proposed expanding the address
pairs to address triples, consisting of {network, host, resource} triples. Network numbers must be univer­
saUy agreed upon, and hosts can be assigned locally on each network. The user-level presentation was
quickly expanded to address domains, comprised of a local resource identification and a hierarchical
domain specification with a common static root. The domain technique separates the issue of physical
versus logical addressing. For example, an address of the form "eric@a.cc.berkeley.arpa" describes only
the logical organization of the address space.

Sendmail is intended to help bridge the gap between the totally ad hoc world of networks that know
nothing of each other and the clean, tightly-coupled world of unique network numbers. It can accept old
arbitrary address syntaxes, resolving ambiguities using heuristics specified by the system administrator, as
well as domain-based addressing. It helps guide the conversion of message formats between disparate net­
works. In short, sendmail is designed to assist a graceful transition to consistent internetwork addressing
schemes.

tA considerable part of this work was done while under the employ of the INGRES Project at the University of California at
Berkeley. '

SEND MAIL - An Internetwork Mail Router SMM:16·1

SMM:16-2 SENDMAIL - An Internetwork Mail Router

Section 1 discusses the design goals for sendmail. Section 2 gives an overview of the basic functions
of the system. In section 3, details of usage are discussed. Section 4 compares sendmail to other internet
mail routers, and an evaluation of sendmail is given in section 5, including future plans.

1. DESIGN GOALS

Design goals for send mail include:

(1) Compatibility with the existing mail programs, including Bell version 6 mail, Bell version 7 mail
[UNIX83], Berkeley Mail [Shoens79], BerkNet mail [Schmidt79], and hopefully UUCP mail
[Nowitz78a, Nowitz78b]. ARPANET mail [Crocker77a, Postel77] was also required.

(2) Reliability, in the sense of guaranteeing that every message is correctly delivered or at least
brought to the attention of a human for correct disposal; no message should ever be completely
lost. This goal was considered essential because of the emphasis on mail in our environment. It
has turned out to be one of the hardest goals to satisfy, especially in the face of the many
anomalous message formats produced by various ARPANET sites. For example, certain sites
generate improperly formated addresses, occasionally causing error-message loops. Some hosts
use blanks in names, causing problems with UNIX mail programs that assume that an address is
one word. The semantics of some fields are interpreted slightly differently by different sites. In
summary, the obscure features of the ARPANET mail protocol really are used and are difficult to
support, but must be supported.

(3) Existing software to do actual delivery should be used whenever possible. This goal derives as
much from political and practical considerations as technical.

(4) Easy expansion to fairly complex environments, including multiple connections to a single net­
work type (such as with multiple UUCP or Ether nets [Metcalfe76]). This goal requires con­
sideration of the contents of an address as well as its syntax in order to determine which gateway
to use. For example, the ARPANET is bringing up the TCP protocol to replace the old NCP pro­
tocol. No host at Berkeley runs both TCP and NCP, so it is necessary to look at the ARPANET
host name to detennine whether to route mail to an NCP gateway or a TCP gateway.

(5) Configuration should not be compiled into the code. A single compiled program should be able
to run as is at any site (barring such basic changes as the CPU type or the operating system). We
have found this seemingly unimportant goal to be critical in real life. Besides the simple prob­
lems that occur when any program gets recompiled in a different environment, many sites like to
"fiddle" with anything that they will be recompiling anyway.

(6) Sendmail must be able to let various groups maintain their own mailing lists, and let individuals
specify their own forwarding, without modifying the system alias file.

(7) Each user should be able to specify which mailer to execute to process mail being delivered for
him. This feature allows users who are using specialized mailers that use a different format to
build their environment without changing the system, and facilitates specialized functions (such
as returning an "I am on vacation" message).

(8) Network traffic should be minimized by batching addresses to a single host where possible,
without assistance from the user.

These goals motivated the architecture illustrated in figure 1. The user interacts with a mail gen­
erating and sending program. When the mail is created, the generator calls send mail, which routes the
message to the correct mailer(s). Since some of the senders may be network servers and some of the
mailers may be network clients, sendmail may be used as an internet mail gateway.

2. OVERVIEW

2.1. System Organization

Sendmail neither interfaces with the user nor does actual mail delivery. Rather, it collects a
message generated by a user interface program (UIP) such as Berkeley Mail, MS [Crocker77b], or
MH [Borden79], edits the message as required by the destination network, and calls appropriate

SEND MAIL - An Internetwork Mail Router SMM:16-3

senderl sender2 sender3

sendmail

mailerl mailer2 mailer3

Figure 1 - Sendmail System Structure.

mailers to do mail delivery or queueing for network transmission l
. This discipline allows the inser­

tion of new mailers at minimum cost. In this sense sendmail resembles the Message Processing
Module (MPM) of [posteI79b].

2.2. Interfaces to the Outside World

There are three ways sendmail can communicate with the outside world, both in receiving
and in sending mail. These are using the conventional UNIX argument vector/return status, speak­
ing SMTP over a pair of UNIX pipes, and speaking SMTP over an interprocess(or) channel.

2.2.1. Argument vector/exit status

This technique is the standard UNIX method for communicating with the process. A list
of recipients is sent in the argument vector, and the message body is sent on the standard input.
Anything that the mailer prints is simply collected and sent back to the sender if there were any
problems. The exit status from the mailer is collected after the message is sent, and a diagnostic
is printed if appropriate.

2.2.2. SMTP over pipes

The SMTP protocol [posteI82] can be used to run an interactive lock-step interface with
the mailer. A subprocess is still created, but no recipient addresses are passed to the mailer via
the argument list. Instead, they are passed one at a time in commands sent to the processes stan­
dard input. Anything appearing on the standard output must be a reply code in a special format.

lexcept when mailing to a file. when sendmail does the delivery directly.

SMM:16·4 SENDMAIL - An Internetwork Mail Router

2.2.3. SMTP over an IPC connection

This technique is similar to the previous technique, except that it uses a 4.2bsd IPC chan­
nel [UNIX83]. This method is exceptionally flexible in that the mailer need not reside on the
same machine. It is normally used to connect to a sendmail process on another machine.

2.3. Operational Description

When a sender wants to send a message, it issues a request to sendmail using one of the three
methods described above. Sendmail operates in two distinct phases. In the first phase, it collects
and stores the message. In the second phase, message delivery occurs. If there were errors during
processing during the second phase, sendmail creates and returns a new message describing the
error andlor returns an status code telling what went wrong.

2.3.1. Argument processing and address parsing

If sendmail is called using one of the two subprocess techniques, the arguments are first
scanned and option specifications are processed. Recipient addresses are then collected, either
from the command line or from the SMTP RCPT command, and a list of recipients is created.
Aliases are expanded at this step, including mailing lists. As much validation as possible of the
addresses is done at this step: syntax is checked, and local addresses are verified, but detailed
checking of host names and addresses is deferred until delivery. Forwarding is also performed
as the local addresses are verified.

Sendmail appends each address to the recipient list after parsing. When a name is aliased
or forwarded, the old name is retained in the list, and a flag is set that tells the delivery phase to
ignore this recipient. This list is kept free from duplicates, preventing alias loops and duplicate
messages deliverd to the same recipient, as might occur if a person is in two groups.

2.3.2. Message collection

Sendmail then collects the message. The message should have a header at the beginning.
No formatting requirements are imposed on the message except that they must be lines of text
(Le., binary data is not allowed). The header is parsed and stored in memory, and the body of
the message is saved in a temporary file.

To simplify the program interface, the message is collected even if no addresses were
valid. The message will be returned with an error.

2.3.3. Message delivery

For each unique mailer and host in the recipient list, send mail calls the appropriate mailer.
Each mailer invocation sends to all users receiving the message on one host. Mailers that only
accept one recipient at a time are handled properly.

The message is sent to the mailer using one of the same three interfaces used to submit a
message to sendmail. Each copy of the message is prepended by a customized header. The
mailer status code is caught and checked, and a suitable error message given as appropriate.
The exit code must conform to a system standard or a generic message ("Service unavailable")
is given.

2.3.4. Queueing for retransmission

If the mailer returned an status that indicated that it might be able to handle the mail later,
sendmail will queue the mail and try again later.

2.3.5. Return to sender

If errors occur during processing, send mail returns the message to the sender for
retransmission. The letter can be mailed back or written in the file "dead.1etter" in the sender's

SENDMAIL - An Internetwork Mail Router SMM:16-S

home directory2.

2.4. Message Header Editing

Certain editing of the message header occurs automatically. Header lines can be inserted
under control of the configuration file. Some lines can be merged; for example, a "From:" line
and a "Full-name:" line can be merged under certain circumstances.

2.S. Configuration File

Almost all configuration information is read at runtime from an ASCII file, encoding macro
definitions (defining the value of macros used internally), header declarations (telling sendmail the
format of header lines that it will process specially, i.e., lines that it will add or reformat), mailer
definitions (giving information such as the location and characteristics of each mailer), and address
rewriting rules (a limited production system to rewrite addresses which is used to parse and rewrite
the addresses).

To improve performance when reading the configuration file, a memory image can be pro­
vided. This provides a "compiled" form of the configuration file.

3. USAGE AND IMPLEMENTATION

3.1. Arguments

Arguments may be llags and addresses. Flags set various processing options. Following flag
arguments, address arguments may be given, unless we are running in SMTP mode. Addresses fol­
low the syntax in RFC822 [Crocker82] for ARPANET address formats. In brief, the format is:

(1) Anything in parentheses is thrown away (as a comment).

(2) Anything in angle brackets ("< >") is preferred over anything else. This rule implements the
ARPANET standard that addresses of the form

user name <machine-address>

will send to the electronic "machine-address" rather than the human "user name."

(3) Double quotes (tt) quote phrases; backslashes quote characters. Backslashes are more
powerful in that they will cause otherwise equivalent phrases to compare differently - for
example, user and "user" are equivalent, but \user is different from either of them.

Parentheses, angle brackets, and double quotes must be properly balanced and nested. The
rewriting rules control remaining parsing3•

3.2. Mail to Files and Programs

Files and programs are legitimate message recipients. Files provide archival storage of mes­
sages, useful for project administration and history. Programs are useful as recipients in a variety of
situations, for example, to maintain a public repository of systems messages (such as the Berkeley
msgs program, or the MARS system [Sattley78]).

Any address passing through the initial parsing algorithm as a local address (i.e, not appear­
ing to be a valid address for another mailer) is scanned for two special cases. If prefixed by a verti­
cal bar (" I ") the rest of the address is processed as a shell command. If the user name begins with
a slash mark ("I' ') the name is used as a file name, instead of a login name.

Files that have setuid or setgid bits set but no execute bits set have those bits honored if send­
mail is running as root.

2Qbviously. if the site giving the error is not the originating site, the only reasonable option is to mail back to the sender. Also,
there are many more error disposition options, but they only effect the error message - the "return to sender" function is always
handled in one of these two ways.

3Disclaimer: Some special processing is done after rewriting local names; see below.

SMM:16-6 SENDMAIL - An Internetwork Mail Router

3.3. Aliasing, Forwarding, Inclusion

Sendmail reroutes mail three ways. Aliasing applies system wide. Forwarding allows each
user to reroute incoming mail destined for that account Inclusion directs sendmail to read a file for
a list of addresses, and is normally used in conjunction with aliasing.

3.3.1. Aliasing

Aliasing maps names to address lists using a system-wide file. This file is indexed to
speed access. Only names that parse as local are allowed as aliases; this guarantees a unique
key (since there are no nicknames for the local host).

3.3.2. Forwarding

After aliasing, recipients that are local and valid are checked for the existence of a ".for­
ward" file in their home directory. If it exists, the message is not sent to that user, but rather to
the list of users in that file. Often this list will contain only one address, and the feature will be
used for network mail forwarding.

Forwarding also permits a user to specify a private incoming mailer. For example, for­
warding to:

" I/usr/locallnewmail myname"

will use a different incoming mailer.

3.3.3. Inclusion

Inclusion is specified in RFC 733 [Crocker77a] syntax:

:Include: patbname

An address of this form reads the file specified by pathname and sends to all users listed in that
file.

The intent is not to support direct use of this feature, but rather to use this as a subset of
aliasing. For example, an alias of the form:

project: :inc1ude:/usr/projectJuserlist

is a method of letting a project maintain a mailing list without interaction with the system
administration, even if the alias file is protected.

It is not necessary to rebuild the index on the alias database when a :inc1ude: list is
changed

3.4. Message Collection

Once all recipient addresses are parsed and verified, the message is collected. The message
comes in two parts: a message header and a message body, separated by a blank line.

The header is formatted as a series of lines of the form

field-name: field-value

Field-value can be split across lines by starting the following lines with a space or a tab. Some
header fields have special internal meaning, and have appropriate special processing. Other headers
are simply passed through. Some header fields may be added automatically, such as time stamps.

The body is a series of text lines. It is completely uninterpreted and untouched, except that
lines begiMing with a dot have the dot doubled when transmitted over an SMTP channel. This
extra dot is stripped by the receiver.

3.S. Message Delivery

The send. queue is ordered by receiving host before transmission to implement message
batching. Each address is marked as it is sent so rescanning the list is safe. An argument list is
built as the scan proceeds. Mail to files is detected during the scan of the send list. The interface to

SEND MAIL - An Internetwork Mail Router SMM:16-7

the mailer is performed using one of the techniques described in section 2.2.

After a connection is established, sendmail makes the per-mailer changes to the header and
sends the result to the mailer. If any mail is rejected by the mailer, a flag is set to invoke the
return-to-sender function after all delivery completes.

3.6. Queued Messages

If the mailer returns a "temporary failure" exit status, the message is queued. A control file
is used to describe the recipients to be sent to and various other parameters. This control file is for­
matted as a series of lines, each describing a sender, a recipient, the time of submission, or some
other salient parameter of the message. The header of the message is stored in the control file, so
that the associated data file in the queue is just the temporary file that was originally collected.

3.7. Configuration

Configuration is controlled primarily by a configuration file read at startup. Sendmail should
not need to be recomplied except

(1) To change operating systems (V6, V7/32V, 4BSD).

(2) To remove or insert the DBM (UNIX database) library.

(3) To change ARPANET reply codes.

(4) To add headers fields requiring special processing.

Adding mailers or changing parsing (i.e., rewriting) or routing information does not require recom­
pilation.

If the mail is being sent by a local user, and the file ".mailcr' exists in the sender's home
directory, that file is read as a configuration file after the system configuration file. The primary use
of this feature is to add header lines.

The configuration file encodes macro definitions, header definitions, mailer definitions,
rewriting rules, and options.

3.7.1. Macros

Macros can be used in three ways. Certain macros transmit unstructured textual informa­
tion into the mail system, such as the name sendmail will use to identify itself in error messages.
Other macros transmit information from sendmail to the configuration file for use in creating
other fields (such as argument vectors to mailers); e.g., the name of the sender, and the host and
user of the recipient. Other macros are unused internally, and can be used as shorthand in the
configuration file.

3.7.2. Header declarations

Header declarations inform sendmail of the format of known header lines. Knowledge of
a few header lines is built into sendmail, such as the "From:" and "Date:" lines.

Most configured headers will be automatically inserted in the outgoing message if they
don't exist in the incoming message. Certain headers are suppressed by some mailers.

3.7.3. Mailer declarations

Mailer declarations tell sendmail of the various mailers available to it. The definition
specifies the internal name of the mailer, the patbname of the program to call, some flags associ­
ated with the mailer, and an argument vector to be used on the call; this vector is macro­
expanded before use.

3.7.4. Address rewriting rules

The heart of address parsing in sendmail is a set of rewriting rules. These are an ordered
list of pattern-replacement rules, (somewhat like a production system, except that order is criti­
cal), which are applied to each address. The address is rewritten textually until it is either

SMM:16-8 SEND MAIL - An Internetwork Mail Router

rewritten into a special canonical form (Le., a (mailer, host, user) 3-tuple, such as {arpanet,
usc-is if, postel} representing the address "postel@usc-isif"), or it falls off the end. When a
pattern matches, the rule is reapplied until it fails.

The configuration file also supports the editing of addresses into different formats. For
example, an address of the form:

ucsfcgl!tef

might be mapped into:

tef@ucsfcgl.UUCP

to conform to the domain syntax. Translations can also be done in the other direction.

3.7.5. Option setting

There are several options that can be set from the configuration file. These include the
pathnames of various support files, timeouts, default modes, etc.

4. COMPARISON WITH OTHER MAILERS

4.1. Delivermail

Sendmail is an outgrowth of delivermail. The primary differences are:

(1) Configuration information is not compiled in. This change simplifies many of the problems
of moving to other machines. It also allows easy debugging of new mailers.

(2) Address parsing is more flexible. For example, delivermail only supported one gateway to
any network, whereas sendmail can be sensitive to host names and reroute to different gate­
ways.

(3) Forwarding and :include: features eliminate the requirement that the system alias file be writ­
able by any user (or that an update program be written, or that the system administration
make all changes).

(4) Sendmail supports message batching across networks when a message is being sent to multi­
ple recipients.

(5) A mail queue is provided in sendmail. Mail that cannot be delivered immediately but can
potentially be delivered later is stored in this queue for a later retry. The queue also provides
a buffer against system crashes; after the message has been collected it may be reliably
redelivered even if the system crashes during the initial delivery.

(6) Sendmail uses the networking support provided by 4.2BSD to provide a direct interface net­
works such as the ARPANET andlor Ethernet using SMTP (the Simple Mail Transfer Proto­
col) over a TCP/IP connection.

4.2. MMDF

MMDF [Crocker79] spans a wider problem set than sendmail. For example, the domain of
MMDF includes a "phone network" mailer, whereas sendmail calls on preexisting mailers in most
cases.

MMDF and sendmail both support aliasing, customized mailers, message batching, automatic
forwarding to gateways, queueing, and retransmission. MMDF supports two-stage timeout, which
sendmail does not support.

The configuration for MMDF is compiled into the code4
•

Since MMDF does not consider backwards compatibility as a design goal, the address pars­
ing is simpler but much less flexible.

4Dynamic configuration tables are currently being considered for MMDF; allowing the installer to select either compiled or
dynamic tables.

SENDMAIL - An Internetwork Mail Router SMM:16-9

It is somewhat harder to integrate a new channels into MMDF. In particular, MMDF must
know the location and format of host tables for all channels, and the channel must speak a special
protocol. This allows MMDF to do additional verification (such as verifying host names) at sub­
mission time.

MMDF strictly separates the submission and delivery phases. Although sendmail has the
concept of each of these stages, they are integrated into one program, whereas in MMDF they are
split into two programs.

4.3. Message Processing Module

The Message Processing Module (MPM) discussed by Postel [posteI79b] matches sendmail
closely in terms of its basic architecture. However, like MMDF, the MPM includes the network
interface software as part of its domain.

MPM also postulates a duplex channel to the receiver, as does MMDF, thus allowing simpler
handling of errors by the mailer than is possible in sendmail. When a message queued by sendmail
is sent, any errors must be returned to the sender by the mailer itself. Both MPM and MMDF
mailers can return an immediate error response, and a single error processor can create an appropri­
ate response.

MPM prefers passing the message as a structured object, with type-length-value tuples6•

Such a convention requires a much higher degree of cooperation between mailers than is required
by sendmail. MPM also assumes a universally agreed upon internet name space (with each address
in the form of a net-host-user tuple), which sendmail does not.

s. EVALUATIONS AND FUTURE PLANS

Send mail is designed to work in a nonhomogeneous environment. Every attempt is made to
avoid imposing unnecessary constraints on the underlying mailers. This goal has driven much of the
design. One of the major problems has been the lack of a uniform address space, as postulated in
[posteI79a] and [posteI79b].

A nonuniform address space implies that a path will be specified in all addresses, either explicitly
(as part of the address) or implicitly (as with implied forwarding to gateways). This restriction has the
unpleasant effect of making replying to messages exceedingly difficult, since there is no one "address"
for any person, but only a way to get there from wherever you are.

Interfacing to mail programs that were not initially intended to be applied in an internet environ­
ment has been amazingly successful, and has reduced the job to a manageable task.

Send mail has knowledge of a few difficult environments built in. It generates ARPANET
FfP/SMTP compatible error messages (prepended with three-digit numbers [Neigus73, Postel74, Pos­
te182]) as necessary, optionally generates UNIX-style "From" lines on the front of messages for some
mailers, and knows how to parse the same lines on input. Also, error handling has an option custom­
ized for BerkNet

The decision to avoid doing any type of delivery where possible (even, or perhaps especially,
local delivery) has turned out to be a good idea. Even with local delivery, there are issues of the loca­
tion of the mailbox, the format of the mailbox, the locking protocol used, etc., that are best decided by
other programs. One surprisingly major annoyance in many internet mailers is that the location and
format of local mail is built in. The feeling seems to be that local mail is so common that it should be
efficient This feeling is not born out by our experience; on the contrary, the location and format of
mailboxes seems to vary widely from system to system.

The ability to automatically generate a response to incoming mail (by forwarding mail to a pro­
gram) seems useful ("I am on vacation until late August. ... ") but can create problems such as for­
warding loops (two people on vacation whose programs send notes back and forth, for instance) if these
programs are not well written. A program could be written to do standard tasks correctly, but this

'TIte MMDF equivalent of a sendmlJil "mailer."

~is is similar to the NBS standard.

SMM:16·10 SENDMAIL - An Internetwork Mail Router

would solve the general case.

It might be desirable to implement some form of load limiting. I am unaware of any mail system
that addresses this problem, nor am I aware of any reasonable solution at this time.

The configuration file is currently practically inscrutable; considerable convenience could be
realized with a higher-level format.

It seems clear that common protocols will be changing soon to accommodate changing require­
ments and environments. These changes will include modifications to the message header (e.g.,
[NBS80]) or to the body of the message itself (such as for multimedia messages [posteI80D. Experi­
ence indicates that these changes should be relatively trivial to integrate into the existing system.

In tightly coupled environments, it would be nice to have a name server such as Grapvine [Bir­
re1l82] integrated into the mail system. This would allow a site such as "Berkeley" to appear as a sin­
gle host, rather than as a collection of hosts, and would allow people to move transparently among
machines without having to change their addresses. Such a facility would require an automatically
updated database and some method of resolving conflicts. Ideally this would be effective even without
all hosts being under a single management. However, it is not clear whether this feature should be
integrated into the aliasing facility or should be considered a "value added" feature outside sendmail
itself.

As a more interesting case, the CSNET name server [Solomon81] provides an facility that goes
beyond a single tightly-coupled environment Such a facility would normally exist outside of sendmail
however.

ACKNOWLEDGEMENTS

Thanks are due to Kurt Shoens for his continual cheerful assistance and good advice, Bill Joy for
pointing me in the correct direction (over and over), and Mark Horton for more advice, prodding, and
many of the good ideas. Kurt and Eric Schmidt are to be credited for using delivermail as a server for their
programs (Mail and BerkNet respectively) before any sane person should have, and making the necessary
modifications promptly and happily. Eric gave me considerable advice about the perils of network
software which saved me an unknown amount of work and grief. Mark did the original implementation of
the DBM version of aliasing, installed the VFORK code, wrote the current version of rmail, and was the
person who really convinced me to put the work into delivermail to tum it into sendmail. Kurt deserves
accolades for using sendmail when I was myself afraid to take the risk; how a person can continue to be so
enthusiastic in the face of so much bitter reality is beyond me.

Kurt, Mark, Kirk McKusick, Marvin Solomon, and many others have reviewed this paper, giving
considerable useful advice.

Special thanks are reserved for Mike Stonebraker at Berkeley and Bob Epstein at Britton-Lee, who
both knowingly allowed me to put so much work into this project when there were so many other things I
really should have been working on.

[BirreIl82]

[Borden79]

[Crocker77a]

[Crocker77b]

[Crocker79]

. [Crocker82]

[Metcalfe76]

[Feinler78]

[NBS80]

[Neigus73]

[Nowitz78a]

[Nowitz78b]

[posteI74]

[postel77]

[poste179a]

[poste179b]

[PosteI80]

[posteI82]

[Schmidt79]

[Shoens79]

REFERENCES

Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D., "Grapevine:
An Exercise in Distributed Computing." In Comm. A.C.M. 25,4, April 82.

Borden, S., Gaines, R. S., and Shapiro, N. Z., The MH Message Handling Sys­
tem: Users' Manual. R-2367-PAF. Rand Corporation. October 1979.

Crocker, D. H., Vittal, J. J., Pogran, K. T., and Henderson, D. A. Jr., Standard
for the Format of ARPA Network Text Messages. RFC 733, NIC 41952. In
[Feinler78]. November 1977.

Crocker, D. H., Framework and Functions of the MS Personal Message System.
R-2134-ARPA, Rand Corporation, Santa Monica, California. 1977.

Crocker, D. H., Szurkowski, E. S., and Farber, D. J., An Internetwork Memo
Distribution Facility - MMDF. 6th Data Communication Symposium, Asi­
lomar. November 1979 .

Crocker, D. H., Standardfor the Format of Arpa Internet Text Messages. RFC
822. Network Information Center, SRI International, Menlo Park, California.
August 1982.

Metcalfe, R., and Boggs, D., "Ethernet: Distributed Packet Switching for Local
Computer Networks", Communications of the ACM 19, 7. July 1976.

Feinler, E., and Postel, J. (eds.), ARPANEI' Protocol Handbook. NIC 7104,
Network: Information Center, SRI International, Menlo Park, California. 1978.

National Bureau of Standards, Specification of a Draft Message Format Stan­
dard. Report No. ICST/CBOS 80-2. October 1980.

Neigus, N., File Transfer Protocol for the ARPA Network. RFC 542, NIC
17759. In [Feinler78]. August, 1973.

Nowitz, D. A., and Lesk, M. E., A Dial-Up Network of UNIX Systems. Bell
Laboratories. In UNIX Programmer's Manual, Seventh Edition, Volume 2.
August, 1978.

Nowitz, D. A., Uucp Implementation Description. Bell Laboratories. In UNIX
Programmer's Manual, Seventh Edition, Volume 2. October, 1978.

Postel, J., and Neigus, N., Revised FTPReply Codes. RFC 640, NIC 30843. In
[Feinler78]. June, 1974.

Postel, J., Mail Protocol. NIC 29588. In [Feinler78]. November 1977.

Postel, J., Internet Message Protocol. RFC 753, lEN 85. Network Information
Center, SRI International, Menlo Park, California. March 1979.

Postel, J. B., An Internetwork Message Structure. In Proceedings of the Sixth
Data Communications Symposium, IEEE. New York. November 1979.

Postel, J. B., A Structured Formatfor Transmission of Multi-Media Documents.
RFC 767. Network Information Center, SRI International, Menlo Park, Califor­
nia. August 1980.

Postel, J. B., Simple Mail Transfer Protocol. RFC821 (obsoleting RFC788).
Network Information Center, SRI International, Menlo Park, California. August
1982.

Schmidt, E., An Introduction to the Berkeley Network. University of California,
Berkeley California. 1979.

Shoens, K., Mail Reference Manual. University of California, Berkeley. In
UNIX Programmer's Manual, Seventh Edition, Volume 2C. December 1979.

SENDMAIL - An Internetwork Mail Router SMM:16·11

SMM:16-12

[Sluizer81]

[Solomon81]

[Su82]

[UNIX83]

SENDMAIL - An Internetwork Mail Router

Sluizer, S., and Postel, J. B., Mail Transfer Protocol. RFC 780. Network Infor­
mation Center, SRI International, Menlo Park, California. May 1981.

Solomon, M., Landweber, L., and Neuhengen, D., "The Design of the CSNET
Name Server." CS-DN-2, University of Wisconsin, Madison. November 1981.

Su, Zaw-Sing, and Postel, Jon, The Domain Naming Convention for Internet
User Applications. RFC819. Network Information Center, SRI International,
Menlo Park, California. August 1982.

The UNIX Programmer's Manual, Seventh Edition, Virtual V AX-ll Version,
Volume 1. Bell Laboratories, modified by the University of California, Berke­
ley, California. March, 1983.

On the Security of UNIX

Dennis M. Ritchie

Recently there has been much interest in the security aspects of operating systems and software. At
issue is the ability to prevent undesired disclosure of information, destruction of information, and harm to
the functioning of the system. This paper discusses the degree of security which can be provided under the
UNIXt system and offers a number of hints on how to improve security.

The first fact to face is that UNIX was not developed with security, in any realistic sense, in mind;
this fact alone guarantees a vast number of holes. (Actually the same statement can be made with respect
to most systems.) The area of security in which UNIX is theoretically weakest is in protecting against
crashing or at least crippling the operation of the system. The problem here is not mainly in uncritical
acceptance of bad parameters to system calls- there may be bugs in this area, but none are known- but
rather in lack of checks for excessive consumption of resources. Most notably, there is no limit on the
amount of disk storage used, either in total space allocated or in the number of files or directories. Here is
a particularly ghastly shell sequence guaranteed to stop the system:

while:; do
mkdirx
cdx

done

Either a panic will occur because all the i-nodes on the device are used up, or all the disk blocks will be
consumed, thus preventing anyone from writing files on the device.

In this version of the system, users are prevented from creating more than a set number of processes
simultaneously, so unless users are in collusion it is unlikely that anyone can stop the system altogether.
However, creation of 20 or so CPU or disk-bound jobs leaves few resources available for others. Also, if
many large jobs are run simultaneously, swap space may run out, causing a panic.

It should be evident that excessive consumption of disk space, files, swap space, and processes can
easily occur accidentally in malfunctioning programs as well as at command level. In fact UNIX is essen­
tially defenseless against this kind of abuse, nor is there any easy fix. The best that can be said is that it is
generally fairly easy to detect what has happened when disaster strikes, to identify the user responsible, and
take appropriate action. In practice, we have found that difficulties in this area are rather rare, but we have
not been faced with malicious users, and enjoy a fairly generous supply of resources which have served to
cushion us against accidental overconsumption.

The picture is considerably brighter in the area of protection of information from unauthorized
perusal and destruction. Here the degree of security seems (almost) adequate theoretically, and the prob­
lems lie more in the necessity for care in the actual use of the system.

Each UNIX file has associated with it eleven bits of protection information together with a user
identification number and a user-group identification number (UID and OlD). Nine of the protection bits
are used to specify independently permission to read, to write, and to execute the file to the user himself, to
members of the user's group, and to all other users. Each process generated by or for a user has associated
with it an effective UID and a real UID, and an effective and real OID. When an attempt is made to access
the file for reading, writing, or execution, the user process's effective UID is compared against the file's
UID; if a match is obtained, access is granted provided the read, write, or execute bit respectively for the
user himself is present If the UID for the file and for the process fail to match, but the OlD's do match,

t UNIX is a trademark of Bell Laboratories.

SMM:17-2 On the Security of UNIX

the group bits are used; if the GID's do not match, the bits for other users are tested. The last two bits of
each file's protection information, called the set-UID and set-GID bits, are used only when the file is exe­
cuted as a program. If, in this case, the set-UID bit is on for the file, the effective UID for the process is
changed to the UID associated with the file; the change persists until the process terminates or until the
UID changed again by another execution of a set-UID file. Similarly the effective group ID of a process is
changed to the GID associated with a file when that file is executed and has the set-GID bit set. The real
UID and GID of a process do not change when any file is executed, but only as the result of a privileged
system call.

The basic notion of the set-UID and set-GID bits is that one may write a program which is execut­
able by others and which maintains files accessible to others only by that program. The classical example
is the game-playing program which maintains records of the scores of its players. The program itself has to
read and write the score file, but no one but the game's sponsor can be allowed unrestricted access to the
file lest they manipulate the game to their own advantage. The solution is to tum on the set-UID bit of the
game program. When, and only when, it is invoked by players of the game, it may update the score file but
ordinary programs executed by others cannot access the score.

There are a number of special cases involved in determining access permissions. Since executing a
directory as a program is a meaningless operation, the execute-permission bit, for directories, is taken
instead to mean permission to search the directory for a given file during the scanning of a path name; thus
if a directory has execute permission but no read permission for a given user, he may access files with
known names in the directory, but may not read (list) the entire contents of the directory. Write permission
on a directory is interpreted to mean that the user may create and delete files in that directory; it is impossi­
ble for any user to write directly into any directory.

Another, and from the point of view of security, much more serious special case is that there is a
"super user" who is able to read any file and write any non-directory. The super-user is also able to
change the protection mode and the owner UID and GID of any file and to invoke privileged system calls.
It must be recognized that the mere notion of a super-user is a theoretical, and usually practical, blemish on
any protection scheme.

The first necessity for a secure system is of course arranging that all files and directories have the
proper protection modes. Traditionally, UNIX software has been exceedingly permissive in this regard;
essentially all commands create files readable and writable by everyone. In the current version, this policy
may be easily adjusted to suit the needs of the installation or the individual user. Associated with each pro­
cess and its descendants is a mask, which is in effect and -ed with the mode of every file and directory
created by that process. In this way, users can arrange that, by default, all their files are no more accessible
than they wish. The standard mask, set by login, allows all permissions to the user himself and to his
group, but disallows writing by others.

To maintain both data privacy and data integrity, it is necessary, and largely sufficient, to make one's
files inaccessible to others. The lack of sufficiency could follow from the existence of set-UID programs
created by the user and the possibility of total breach of system security in one of the ways discussed below
(or one of the ways not discussed below). For greater protection, an encryption scheme is available. Since
the editor is able to create encrypted documents, and the crypt command can be used to pipe such docu­
ments into the other text-processing programs, the length of time during which cleartext versions need be
available is strictly limited. The encryption scheme used is not one of the strongest known, but it is judged
adequate, in the sense that cryptanalysis is likely to require considerably more effort than more direct
methods of reading the encrypted files. For example, a user who stores data that he regards as truly secret
should be aware that he is implicitly trusting the system administrator not to install a version of the crypt
command that stores every typed password in a file.

Needless to say, the system administrators must be at least as careful as their most demanding user to
place the correct protection mode on the files under their control. In particular, it is necessary that special
files be protected from writing, and probably reading, by ordinary users when they store sensitive files
belonging to other users. It is easy to write programs that examine and change files by accessing the device
on which the files live.

On the Security of UNIX SMM:17-3

On the issue of password security, UNIX is probably better than most systems. Passwords are stored
in an encrypted form which, in the absence of serious attention from specialists in the field, appears reason­
ably secure, provided its limitations are understood. In the current version, it is based on a slightly defec­
tive version of the Federal DES; it is purposely defective so that easily-available hardware is useless for
attempts at exhaustive key-search. Since both the encryption algorithm and the encrypted passwords are
available, exhaustive enumeration of potential passwords is still feasible up to a point We have observed
that users choose passwords that are easy to guess: they are short, or from a limited alphabet, or in a dic­
tionary. Passwords should be at least six characters long and randomly chosen from an alphabet which
includes digits and special characters.

Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For example:
write a program which types out "login: " on the typewriter and copies whatever is typed to a file of your
own. Then invoke the command and go away until the victim arrives.

The set-UID (set-GID) notion must be used carefully if any security is to be maintained. The first
thing to keep in mind is that a writable set-UID file can have another program copied onto it. For example,
if the super-user (su) command is writable, anyone can copy the shell onto it and get a password-free ver­
sion of suo A more subtle problem can come from set-UID programs which are not sufficiently careful of
what is fed into them. To take an obsolete example, the previous version of the mail command was set­
UID and owned by the super-user. This version sent mail to the recipient's own directory. The notion was
that one should be able to send mail to anyone even if they want to protect their directories from writing.
The trouble was that mail was rather dumb: anyone could mail someone else's private file to himself.
Much more serious is the following scenario: make a file with a line like one in the password file which
allows one to log in as the super-user. Then make a link named" .mail" to the password file in some writ­
able directory on the same device as the password file (say Itmp). Finally mail the bogus login line to
Itmp/.mail; You can then login as the super-user, clean up the incriminating evidence, and have your will.

The fact that users can mount their own disks and tapes as file systems can be another way of gaining
super-user status. Once a disk pack is mounted, the system believes what is on it. Thus one can take a
blank disk pack, put on it anything desired, and mount it. There are obvious and unfortunate consequences.
For example: a mounted disk with garbage on it will crash the system; one of the files on the mounted disk
can easily be a password-free version of su; other files can be unprotected entries for special files. The
only easy fix for this problem is to forbid the use of mount to unprivileged users. A partial solution, not so
restrictive, would be to have the mount command examine the special file for bad data, set-UID programs
owned by others, and accessible special files, and balk at unprivileged invokers.

Password Security: A Case History

Robert Morris

Ken Thompson

ABSTRACT

This paper describes the history of the design of the password security scheme on a
remotely accessed time-sharing system. The present design was the result of countering
observed attempts to penetrate the system. The result is a compromise between extreme
security and ease of use.

INTRODUCTION

Password security on the UNIXt time-sharing system [1] is provided by a collection of programs
whose elaborate and strange design is the outgrowth of many years of experience with earlier versions. To
help develop a secure system, we have had a continuing competition to devise new ways to attack the secu­
rity of the system (the bad guy) and, at the same time, to devise new techniques to resist the new attacks
(the good guy). This competition has been in the same vein as the competition of long standing between
manufacturers of armor plate and those of armor-piercing shells. For this reason, the description that fol­
lows will trace the history of the password system rather than simply presenting the program in its current
state. In this way, the reasons for the design will be made clearer, as the design cannot be understood
without also understanding the potential attacks.

An underlying goal has been to provide password security at minimal inconvenience to the users of
the system. For example, those who want to run a completely open system without passwords, or to have
passwords only at the option of the individual users, are able to do so, while those who require all of their
users to have passwords gain a high degree of security against penetration of the system by unauthorized
users.

The password system must be able not only to prevent any access to the system by unauthorized
users (Le. prevent them from logging in at all), but it must also prevent users who are already logged in
from doing things that they are not authorized to do. The so called' 'super-user" password, for example, is
especially critical because the super-user has all sorts of permissions and has essentially unlimited access to
all system resources.

Password security is of course only one component of overall system security, but it is an essential
component Experience has shown that attempts to penetrate remote-access systems have been astonish­
ingly sophisticated

Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are threats at
the remote terminal, along the communications link:, as well as at the computer itself. Although the secu­
rity of a password encryption algorithm is an interesting intellectual and mathematical problem, it is only
one tiny facet of a very large problem. In practice, physical security of the computer, communications
security of the communications link, and physical control of the computer itself loom as far more important
issues. Perhaps most important of all is control over the actions of ex-employees, since they are not under
any direct control and they may have intimate knowledge about the system, its resources, and methods of
access. Good system security involves realistic evaluation of the risks not only of deliberate attacks but
also of casual unauthorized access and accidental disclosure.

t UNIX is a trademark of Bell Laboratories.

SMM:18-2 Password Security: A Case History

PROLOGUE

The UNIX system was first implemented with a password file that contained the actual passwords of
all the users, and for that reason the password file had to be heavily protected against being either read or
written. Although historically, this had been the technique used for remote-access systems, it was com­
pletely unsatisfactory for several reasons.

The technique is excessively vulnerable to lapses in security. Temporary loss of protection can
occur when the password file is being edited or otherwise modified. There is no way to prevent the making
of copies by privileged users. Experience with several earlier remote-access systems showed that such
lapses occur with frightening frequency. Perhaps the most memorable such occasion occurred in the early
60's when a system administrator on the CTSS system at MIT was editing the password file and another
system administrator was editing the daily message that is printed on everyone's terminal on login. Due to
a software design error, the temporary editor files of the two users were interchanged and thus, for a time,
the password file was printed on every terminal when it was logged in.

Once such a lapse in security has been discovered, everyone's password must be changed, usually
simultaneously, at a considerable administrative cost. This is not a great matter, but far more serious is the
high probability of such lapses going unnoticed by the system administrators.

Security against unauthorized disclosure of the passwords was, in the last analysis, impossible with
this system because, for example, if the contents of the file system are put on to magnetic tape for backup,
as they must be, then anyone who has physical access to the tape can read anything on it with no restric­
tion.

Many programs must get information of various kinds about the users of the system, and these pro­
grams in general should have no special permission to read the password file. The information which
should have been in the password file actually was distributed (or replicated) into a number of files, all of
which had to be updated whenever a user was added to or dropped from the system.

THE FIRST SCHEME

The obvious solution is to arrange that the passwords not appear in the system at all, and it is not
difficult to decide that this can be done by encrypting each user's password, putting only the encrypted
form in the password file, and throwing away his original password (the one that he typed in). When the
user later tries to log in to the system, the password that he types is encrypted and compared with the
encrypted version in the password file. If the two match, his login attempt is accepted. Such a scheme was
first described in [3, p.9lff.]. It also seemed advisable to devise a system in which neither the password file
nor the password program itself needed to be protected against being read by anyone.

All that was needed to implement these ideas was to find a means of encryption that was very
difficult to invert, even when the encryption program is available. Most of the standard encryption
methods used (in the past) for encryption of messages are rather easy to invert. A convenient and rather
good encryption program happened to exist on the system at the time; it simulated the M-209 cipher
machine [4] used by the U.S. Army during World War II. It turned out that the M-209 program was
usable, but with a given key, the ciphers produced by this program are trivial to invert. It is a much more
difficult matter to find out the key given the cleartext input and the enciphered output of the program.
Therefore, the password was used not as the text to be encrypted but as the key, and a constant was
encrypted using this key. The encrypted result was entered into the password file.

ATTACKS ON THE FIRST APPROACH

Suppose that the bad guy has available the text of the password encryption program and the complete
password file. Suppose also that he has substantial computing capacity at his disposal.

One obvious approach to penetrating the password mechanism is to attempt to find a general method
of inverting the encryption algorithm. Very possibly this can be done, but few successful results have
come to light, despite substantial efforts extending over a period of more than five years. The results have
not proved to be very useful in penetrating systems.

Password Security: A Case History SMM:18-3

Another approach to penetration is simply to keep trying potential passwords until one succeeds; this
is a general cryptanalytic approach called key search. Human beings being what they are, there is a strong
tendency for people to choose relatively short and simple passwords that they can remember. Given free
choice, most people will choose their passwords from a restricted character set (e.g. all lower-case letters),
and will often choose words or names. This human habit makes the key search job a great deal easier.

The critical factor involved in key search is the amount of time needed to encrypt a potential pass­
word and to check the result against an entry in the password file. The running time to encrypt one trial
password and check the result turned out to be approximately 1.25 milliseconds on a PDP-llnO when the
encryption algorithm was recoded for maximum speed. It is takes essentially no more time to test the
encrypted trial password against all the passwords in an entire password file, or for that matter, against any
collection of encrypted passwords, perhaps collected from many installations.

If we want to check all passwords of length n that consist entirely of lower-case letters, the number
of such passwords is 26". If we suppose that the password consists of printable characters only, then the
number of possible passwords is somewhat less than 95". (The standard system "character erase" and
"line kill" characters are, for example, not prime candidates.) We can immediately estimate the running
time of a program that will test every password of a given length with all of its characters chosen from
some set of characters. The following table gives estimates of the running time required on a PDP-l 1170 to
test all possible character strings of length n chosen from various sets of characters: namely, all lower-case
letters, all lower-case letters plus digits, all alphanumeric characters, all 95 printable ASCII characters, and
finally al1128 ASCII characters.

26 lower-case 36 lower-case letters 62 alphanumeric 95 printable all 128 ASCII
n letters and digits characters characters characters

1 30 rnsec. 40 rnsec. 80 rnsec. 120 msec. 160 rnsec.
2 800 rnsec. 2 sec. 5 sec. 11 sec. 20 sec.
3 22 sec. 58 sec. 5 min. 17 min. 43 min.
4 10 min. 35 min. 5 hrs. 28 hrs. 93 hrs.
5 4 hrs. 21 hrs. 318 hrs.
6 107 hrs.

One has to conclude that it is no great matter for someone with access to a PDP-II to test all lower-case
alphabetic strings up to length five and, given access to the machine for, say, several weekends, to test all
such strings up to six characters in length. By using such a program against a collection of actual
encrypted passwords, a substantial fraction of all the passwords will be found.

Another profitable approach for the bad guy is to use the word list from a dictionary or to use a list of
names. For example, a large commercial dictionary contains typicallly about 250,000 words; these words
can be checked in about five minutes. Again, a noticeable fraction of any collection of passwords will be
found. Improvements and extensions will be (and have been) found by a determined bad guy. Some
"good" things to try are:

The dictionary with the words spelled backwards.

A list of first names (best obtained from some mailing list). Last names, street names, and city
names also work well.

The above with initial upper-case letters.

All valid license plate numbers in your state. (This takes about five hours in New Jersey.)

Room numbers, social security numbers, telephone numbers, and the like.

The authors have conducted experiments to try to determine typical users' habits in the choice of
passwords when no constraint is put on their choice. The results were disappointing, except to the bad guy.
In a collection of 3,289 passwords gathered from many users over a long period of time;

15 were a single ASCII character;

72 were strings of two ASCII characters;

SMM:18-4

464 were strings of three ASCII characters;

477 were string of four alphamerics;

706 were five letters, all upper-case or all lower-case;

605 were six letters, all lower-case.

Password Security: A Case History

An additional 492 passwords appeared in various available dictionaries, name lists, and the like. A total of
2,831, or 86% of this sample of passwords fell into one of these classes.

There was, of course, considerable overlap between the dictionary results and the character string
searches. The dictionary search alone, which required only five minutes to run, produced about one third
of the passwords.

Users could be urged (or forced) to use either longer passwords or passwords chosen from a larger
character set, or the system could itself choose passwords for the users.

AN ANECDOTE

An entertaining and instructive example is the attempt made at one installation to force users to use
less predictable passwords. The users did not choose their own passwords; the system supplied them. The
supplied passwords were eight characters long and were taken from the character set consisting of lower­
case letters and digits. They were generated by a pseudo-random number generator with only 215 starting
values. The time required to search (again on a PDP-llnO) through all character strings of length 8 from a
36-character alphabet is 112 years.

Unfortunately, only 215 of them need be looked at, because that is the number of possible outputs of
the random number generator. The bad guy did, in fact, generate and test each of these strings and found
every one of the system-generated passwords using a total of only about one minute of machine time.

IMPROVEMENTS TO THE FIRST APPROACH

1. Slower Encryption

Obviously, the first algorithm used was far too fast. The announcement of the DES encryption algo­
rithm [2] by the National Bureau of Standards was timely and fortunate. The DES is, by design, hard to
invert, but equally valuable is the fact that it is extremely slow when implemented in software. The DES
was implemented and used in the following way: The first eight characters of the user's password are used
as a key for the DES; then the algorithm is used to encrypt a constant. Although this constant is zero at the
moment, it is easily accessible and can be made installation-dependent Then the DES algorithm is iterated
25 times and the resulting 64 bits are repacked to become a string of 11 printable characters.

2. Less Predictable Passwords

The password entry program was modified so as to urge the user to use more obscure passwords. If
the user enters an alphabetic password (all upper-case or all lower-case) shorter than six characters, or a
password from a larger character set shorter than five characters, then the program asks him to enter a
longer password. This further reduces the efficacy of key search.

These improvements make it exceedingly difficult to find any individual password. The user is
warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he is not prevented
from using his spouse's name if he wants to.

3. Salted Passwords

The key search technique is still likely to tum up a few passwords when it is used on a large collec­
tion of passwords, and it seemed wise to make this task as difficult as possible. To this end, when a pass­
word is first entered, the password program obtains a 12-bit random number (by reading the real-time
clock) and appends this to the password typed in by the user. The concatenated string is encrypted and
both the 12-bit random quantity (called the salt) and the 64-bit result of the encryption are entered into the
password file.

Password Security: A Case History S:M:M:18-5

When the user later logs in to the system, the 12-bit quantity is extracted from the password file and
appended to the typed password. The encrypted result is required, as before, to be the same as the remain­
ing 64 bits in the password file. This modification does not increase the task of finding any individual pass­
word, starting from scratch, but now the work of testing a given character string against a large collection
of encrypted passwords has been multiplied by 4096 (212). The reason for this is that there are 4096
encrypted versions of each password and one of them has been picked more or less at random by the sys­
tem.

With this modification, it is likely that the bad guy can spend days of computer time trying to find a
password on a system with hundreds of passwords, and find none at all. More important is the fact that it
becomes impractical to prepare an encrypted dictionary in advance. Such an encrypted dictionary could be
used to crack new passwords in milliseconds when they appear.

There is a (not inadvertent) side effect of this modification. It becomes nearly impossible to find out
whether a person with passwords on two or more systems has used the same password on all of them,
unless you already know that.

4. The Threat of the DES Chip

Chips to perform the DES encryption are already commercially available and they are very fast The
use of such a chip speeds up the process of password hunting by three orders of magnitude. To avert this
possibility, one of the internal tables of the DES algorithm (in particular, the so-called E-table) is changed
in a way that depends on the 12-bit random number. The E-table is inseparably wired into the DES chip,
so that the commercial chip cannot be used. Obviously, the bad guy could have his own chip designed and
built, but the cost would be unthinkable.

5. A Subtle Point

To login successfully on the UNIX system, it is necessary after dialing in to type a valid user name,
and then the correct password for that user name. It is poor design to write the login command in such a
way that it tells an interloper when he has typed in a invalid user name. The response to an invalid name
should be identical to that for a valid name.

When the slow encryption algorithm was first implemented, the encryption was done only if the user
name was valid, because otherwise there was no encrypted password to compare with the supplied pass­
word. The result was that the response was delayed by about one-half second if the name was valid, but
was immediate if invalid. The bad guy could find out whether a particular user name was valid. The rou­
tine was modified to do the encryption in either case.

CONCLUSIONS

On the issue of password security, UNIX is probably better than most systems. The use of encrypted
passwords appears reasonably secure in the absence of serious attention of experts in the field.

It is also worth some effort to conceal even the encrypted passwords. Some UNIX systems have
instituted what is called an "external security code" that must be typed when dialing into the system, but
before logging in. If this code is changed periodically, then someone with an old password will likely be
prevented from using it.

Whenever any security procedure is instituted that attempts to deny access to unauthorized persons,
it is wise to keep a record of both successful and unsuccessful attempts to get at the secured resource. Just
as an out-of-hours visitor to a computer center normally must not only identify himself, but a record is usu­
ally also kept of his entry. Just so, it is a wise precaution to make and keep a record of all attempts to log
into a remote-access time-sharing system, and certainly all unsuccessful attempts.

Bad guys fallon a spectrum whose one end is someone with ordinary access to a system and whose
goal is to find out a particular password (usually that of the super-user) and, at the other end, someone who
wishes to collect as much password information as possible from as many systems as possible. Most of the
work reported here serves to frustrate the latter type; our experience indicates that the former type of bad
guy never was very successful.

SMM:18-6 Password Security: A Case History

We recognize that a time-sharing system must operate in a hostile environment. We did not attempt
to hide the security aspects of the operating system, thereby playing the customary make-believe game in
which weaknesses of the system are not discussed no matter how apparent. Rather we advertised the pass­
word algorithm and invited attack in the belief that this approach would minimize future trouble. The
approach has been successful.

References

[1] Ritchie, D.M. and Thompson, K. The UNIX Time-Sharing System. Comm. ACM 17 (July 1974),
pp. 365-375.

[2] Proposed Federal Information Processing Data Encryption Standard. Federal Register
(40FR12134), March 17, 1975

[3] Wilkes, M. V. Time-Sharing Computer Systems. American Elsevier, New York, (1968).

[4] U. S. Patent Number 2,089,603.

A Tour Through the Portable C Compiler

S. C. Johnson

AT &T Bell Laboratories

Donn Seeley

Department of Computer Science
University of Utah

ABSTRACT

Since its introduction, the Portable C Compiler has become the standard UNIX C
compiler for many machines. Three quarters or more of the code in the compiler is
machine independent and much of the rest can be generated easily using knowledge of
the target architecture. This paper describes the structure and organization of the com­
piler and tries to further simplify the job of the compiler porter.

This document originally appeared with the Seventh Edition of UNIX, and has been
revised and extended for publication with the Fourth Berkeley Software Distribution.
The new material covers changes which have been made in the compiler since the
Seventh Edition, and includes some discussion of secondary topics which were thought
to be of interest in future ports of the compiler.

Revised April, 1986

Introduction

A C compiler has been implemented that has proved to be quite portable, serving as the basis for C
compilers on roughly a dozen machines, including the DEC v AX, Honerwell 6000, IBM 370, and Interdata
8/32. The compiler is highly compatible with the C language standard.

Among the goals of this compiler are portability, high reliability, and the use of state-of-the-art tech­
niques and tools wherever practical. Although the efficiency of the compiling process is not a primary
goal, the compiler is efficient enough, and produces good enough code, to serve as a production compiler.

The language implemented is highly compatible with the current PDP-II version of C. Moreover,
roughly 75% of the compiler, including nearly all the syntactic and semantic routines, is machine indepen­
dent. The compiler also serves as the major portion of the program lint, described elsewhere. 2

A number of earlier attempts to make portable compilers are worth noting. While on CO-OP assign­
ment to Bell Labs in 1973, Alan Snyder wrote a portable C compiler which was the basis of his Master's
Thesis at M.I. T. 3 This compiler was very slow and complicated, and contained a number of rather serious
implementation difficulties; nevertheless, a number of Snyder's ideas appear in this work.

Most earlier portable compilers, including Snyder's, have proceeded by defining an intermediate
language, perhaps based on three-address code or code for a stack machine, and writing a machine
independent program to translate from the source code to this intermediate code. The intermediate code is
then read by a second pass, and interpreted or compiled. This approach is elegant, and has a number of
advantages, especially if the target machine is far removed from the host. It suffers from some disadvan­
tages as well. Some constructions, like initialization and subroutine prologs, are difficult or expensive to
express in a machine independent way that still allows them to be easily adapted to the target assemblers.

SMM:19-2 A Tour Through the Portable C Compiler

Most of these approaches require a symbol table to be constructed in the second (machine dependent) pass,
and/or require powerful target assemblers. Also, many conversion operators may be generated that have
no effect on a given machine, but may be needed on others (for example, pointer to pointer conversions
usually do nothing in C, but must be generated because there are some machines where they are
significant).

For these reasons, the first pass of the portable compiler is not entirely machine independent. It con­
tains some machine dependent features, such as initialization, subroutine prolog and epilog, certain storage
allocation functions, code for the switch statement, and code to throw out unneeded conversion operators.

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C compiler has
roughly 600 machine dependent lines of source out of 4600 in Pass 1, and 1000 out of 3400 in Pass 2. In
total, 1600 out of 8000, or 20%, of the total source is machine dependent (12% in Pass 1, 30% in Pass 2).
These percentages can be expected to rise slightly as the compiler is tuned. The percentage of machine­
dependent code for the IBM is 22%, for the Honeywell 25%. If the assembler format and structure were
the same for all these machines, perhaps another 5-10% of the code would become machine independent.

These figures are sufficiently misleading as to be almost meaningless. A large fraction of the
machine dependent code can be converted in a straightforward, almost mechanical way. On the other
hand, a certain amount of the code requires hard intellectual effort to convert, since the algorithms embo­
died in this part of the code are typically complicated and machine dependent.

To summarize, however, if you need a C compiler written for a machine with a reasonable architec­
ture, the compiler is already three quarters finished!

Overview

This paper discusses the structure and organization of the portable compiler. The intent is to give the
big picture, rather than discussing the details of a particular machine implementation. After a brief over­
view and a discussion of the source file structure, the paper describes the major data structures, and then
delves more closely into the two passes. Some of the theoretical work on which the compiler is based, and
its application to the compiler, is discussed elsewhere. 4 One of the major design issues in an? C compiler,
the design of the calling sequence and stack frame, is the subject of a separate memorandum.

The compiler consists of two passes, pass1 and pass2 , that together turn C source code into assem­
bler code for the target machine. The two passes are preceded by a preprocessor, that handles the #define
and #include statements, and related features (e.g., #ifdef, etc.). The two passes may optionally be fol­
lowed by a machine dependent code improver.

The output of the preprocessor is a text file that is read as the standard input of the first pass. This
produces as standard output another text file that becomes the standard input of the second pass. The
second pass produces, as standard output, the desired assembler language source code. The code improver,
if used, converts the assembler code to more effective code, and the result is passed to the assembler. The
preprocessor and the two passes all write error messages on the standard error file. Thus the compiler itself
makes few demands on the I/O library support, aiding in the bootstrapping process.

The division of the compiler into two passes is somewhat artificial. The compiler can optionally be
loaded so that both passes operate in the same program. This "one pass" operation eliminates the over­
head of reading and writing the intermediate file, so the compiler operates about 30% faster in this mode.
It also occupies about 30% more space than the larger of the two component passes. This "one pass"
compiler is the standard version on machines with large address spaces, such as the v AX.

Because the compiler is fundamentally structured as two passes, even when loaded as one, this docu­
ment primarily describes the two pass version.

The first pass does the lexical analysis, parsing, and symbol table maintenance. It also constructs
parse trees for expressions, and keeps track of the types of the nodes in these trees. Additional code is
devoted to initialization. MaChine dependent portions of the first pass serve to generate subroutine prologs
and epilogs, code for switches, and code for branches, label definitions, alignment operations, changes of
location counter, etc.

A Tour Through the Portable C Compiler SMM:19-3

The intermediate file is a text file organized into lines. Lines beginning with a right parenthesis are
copied by the second pass directly to its output file, with the parenthesis stripped off. Thus, when the first
pass produces assembly code, such as subroutine prologs, etc., each line is prefaced with a right
parenthesis; the second pass passes these lines to through to the assembler.

The major job done by the second pass is generation of code for expressions. The expression parse
trees produced in the first pass are written onto the intermediate file in Polish Prefix form: first, there is a
line beginning with a period, followed by the source file line number and name on which the expression
appeared (for debugging purposes). The successive lines represent the nodes of the parse tree, one node
per line. Each line contains the node number, type, and any values (e.g., values of constants) that may
appear in the node. Lines representing nodes with descendants are immediately followed by the left sub­
tree of descendants, then the right Since the number of descendants of any node is completely determined
by the node number, there is no need to mark the end of the tree.

There are only two other line types in the intermediate file. Lines beginning with a left square
bracket ('[') represent the beginning of blocks (delimited by { ... } in the C source); lines beginning with
right square brackets (']') represent the end of blocks. The remainder of these lines tell how much stack
space, and how many register variables, are currently in use.

Thus, the second pass reads the intermediate files, copies the ')' lines, makes note of the information
in the '[' and 'J' lines, and devotes most of its effort to the '.' lines and their associated expression trees,
turning them turns into assembly code to evaluate the expressions.

In the one pass version of the compiler, the expression trees contain information useful to both logi­
cal passes. Instead of writing the trees onto an intermediate file, each tree is transformed in place into an
acceptable form for the code generator. The code generator then writes the result of compiling this tree
onto the standard output Instead of '[' and ']' lines in the intermediate file, the information is passed
directly to the second pass routines. Assembly code produced by the first pass is simply written out,
without the need for')' at the head of each line.

The Source Files

The compiler source consists of 25 source files. Several header files contain information which is
needed across various source modules. Manifest.h has declarations for node types, type manipulation mac­
ros and other macros, and some global data definitions. Macdefs.h has machine-dependent definitions,
such as the size and alignment of the various data representations. Config.h defines symbols which control
the configuration of the compiler, including such things as the sizes of various tables and whether the com­
piler is "one pass". The compiler conditionally includes another file, onepass.h, which contains
definitions which are particular to a "one pass" compiler. Ndu.h defines the basic tree building structure
which is used throughout the compiler to construct expression trees. Manifest.h includes a file of opcode
and type definitions named pcclocal.h ; this file is automatically generated from a header file specific to the
C compiler named localdefs.h and a public header file lusrlinclude/pcc.h. Another file, pcctokens , is gen­
erated in a similar way and contains token definitions for the compiler's Yacc 6 grammar. Two machine
independent header files, passl.h and pass2.h, contain the data structure and manifest definitions for the
first and second passes, respectively. In the second pass, a machine dependent header file, mac2defs.h,
contains declarations of register names, etc.

Common.c contains machine independent routines used in both passes. These include routines for
allocating and freeing trees, walking over trees, printing debugging information, and printing error mes­
sages. This file can be compiled in two flavors, one for pass 1 and one for pass 2, depending on what con­
ditional compilation symbol is used.

Entire sections of this document are devoted to the detailed structure of the passes. For the moment,
we just give a brief description of the files. The first pass is obtained by compiling and loading cgram.y,
code.c, common.c, local.c, optim.c, pftn.c, scan.c, stab.c, trees.c and xdefs.c. Scan.c is the lexical
analyzer, which provides tokens to the bottom-up parser which is defined by the Yacc grammar cgram.y.
Xdefs.c is a short file of external definitions. Pftn.c maintains the symbol table, and does initialization.
Trees.c builds the expression trees, and computes the node types. Optim.c does some machine indepen­
dent optimizations on the expression trees. Common.c contains service routines common to the two passes

SMM:19-4 A Tour Through the Portable C Compiler

of the compiler. All the above files are machine independent. The files local.c and code.c contain
machine dependent code for generating subroutine prologs, switch code, and the like. Stab.c contains
machine dependent code for producing external symbol table information which can drive a symbolic
debugger.

The second pass is produced by compiling and loading allo.c, common.c, local2.c, match.c,
order.c, reader.c and table.c. Reader.c reads the intermediate file, and controls the major logic of the
code generation. Allo.c keeps track of busy and free registers. Match.c controls the matching of code
templates to subtrees of the expression tree to be compiled. Comnwn.c defines certain service routines, as
in the first pass. The above files are machine independent Order.c controls the machine dependent details
of the code generation strategy. Local2.c has many small machine dependent routines, and tables of
opcodes, register types, etc. Table.c has the code template tables, which are also clearly machine depen­
dent.

Data Structure Considerations

This section discusses the node numbers, type words, and expression trees, used throughout both
passes of the compiler.

The file manifest.h defines those symbols used throughout both passes. The intent is to use the same
symbol name (e.g., MINUS) for the given operator throughout the lexical analysis, parsing, tree building,
and code generation phases. Manifest.h obtains some of its definitions from two other header files,
localdefs.h and pcc.h. Localdefs.h contains definitions for operator symbols which are specific to the C
compiler. Pcc.h contains definitions for operators and types which may be used by other compilers to
communicate with a portable code generator based on pass 2; this code generator will be described later.

A token like MINUS may be seen in the lexical analyzer before it is known whether it is a unary or
binary operator; clearly, it is necessary to know this by the time the parse tree is constructed. Thus, an
operator (really a macro) called UNARY is provided, so that MINUS and UNARY MINUS are both dis­
tinct node numbers. Similarly, many binary operators exist in an assignment form (for example, -=), and
the operator ASG may be applied to such node names to generate new ones, e.g. ASG MINUS.

It is frequently desirable to know if a node represents a leaf (no descendants), a unary operator (one
descendant) or a binary operator (two descendants). The macro optype(o) returns one of the manifest con­
stants LTYPE, UTYPE, or BITYPE, respectively, depending on the node number o. Similarly, asgop(o)
returns true if 0 is an assignment operator number (=, +=, etc.), and logop(0) returns true if 0 is a rela­
tional or logical (&&, II, or !) operator.

C has a rich typing structure, with a potentially infinite number of types. To begin with, there are the
basic types: CHAR, SHORT, INT, LONG, the unsigned versions known as UCHAR, USHORT,
UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a structure), UNIONTY, and
ENUMTY. Then, there are three operators that can be applied to types to make others: if t is a type, we
may potentially have types pointer to t, function returning t, and array of t' s generated from t. Thus, an
arbitrary type in C consists of a basic type, and zero or more of these operators.

In the compiler, a type is represented by an unsigned integer; the rightmost four bits hold the basic
type, and the remaining bits are divided into two-bit fields, containing 0 (no operator), or one of the three
operators described above. The modifiers are read right to left in the word, starting with the two-bit field
adjacent to the basic type, until a field with 0 in it is reached. The macros PTR, FTN, and ARY represent
the pointer to, function returning, and array of operators. The macro values are shifted so that they align
with the first two-bit field; thus PTR+INTrepresents the type for an integer pointer, and

ARY + (PTR«2) + (FTN«4) + DOUBLE

represents the type of an array of pointers to functions returning doubles.

The type words are ordinarily manipulated by macros. If t is a type word, BTYPE(t) gives the basic
type. ISPTR(t) , ISARY(t), and ISFTN(t) ask if an object of this type is a pointer, array, or a function,
respectively. MODTYPE(t,b) sets the basic type of t to b. DECREF(t) gives the type resulting from
removing the first operator from t. Thus, if t is a pointer to t' , a function returning t' , or an array of t' ,
then DECREF(t) would equal t'. INCREF(t) gives the type representing a pointer to t. Finally, there are

A Tour Through the Portable C Compiler SMM:19-5

operators for dealing with the unsigned types. ISUNSIGNED(t) returns true if t is one of the four basic
unsigned types; in this case, DEUNSIGN(t) gives the associated 'signed' type. Similarly,
UNSIGNABLE(t) returns true if t is one of the four basic types that could become unsigned, and
ENUNSIGN(t) returns the unsigned analogue of t in this case.

The other important global data structure is that of expression trees. The actual shapes of the nodes
are given in ndu.h. The information stored for each pass is not quite the same; in the first pass, nodes con­
tain dimension and size information, while in the second pass nodes contain register allocation information.
Nevertheless, all nodes contain fields called op, containing the node number, and type, containing the type
word. A function called talloc() returns a pointer to a new tree node. To free a node, its op field need
merely be set to FREE. The other fields in the node will remain intact at least until the next allocation.

Nodes representing binary operators contain fields, left and right, that contain pointers to the left and
right descendants. Unary operator nodes have the left field, and a value field called rval. Leaf nodes, with
no descendants, have two value fields: Ivai and rval.

At appropriate times, the function tcheck() can be called, to check that there are no busy nodes
remaining. This is used as a compiler consistency check. The function tcopy(p) takes a pointer p that
points to an expression tree, and returns a pointer to a disjoint copy of the tree. The function walkf(pf}
performs a postorder walk of the tree pointed to by p, and applies the function f to each node. The func­
tionfwalk(p.f,d) does a preorder walk of the tree pointed to by p. At each node, it calls a function!, pass­
ing to it the node pointer, a value passed down from its ancestor, and two pointers to values to be passed
down to the left and right descendants (if any). The value d is the value passed down to the root. Fwalk is
used for a number of tree labeling and debugging activities.

The other major data structure, the symbol table, exists only in pass one, and will be discussed later.

Pass One

The first pass does lexical analysis, parsing, symbol table maintenance, tree building, optimization,
and a number of machine dependent things. This pass is largely machine independent, and the machine
independent sections can be pretty successfully ignored. Thus, they will be only sketched here.

Lexical Analysis

The lexical analyzer is a conceptually simple routine that reads the input and returns the tokens of the
C language as it encounters them: names, constants, operators, and keywords. The conceptual simplicity
of this job is confounded a bit by several other simple jobs that unfortunately must go on simultaneously.
These include

• Keeping track of the current filename and line number, and occasionally setting this information as
the result of preprocessor control lines.

• Skipping comments.

• Properly dealing with octal, decimal, hex, floating point, and character constants, as well as character
strings.

To achieve speed, the program maintains several tables that are indexed into by character value, to
tell the lexical analyzer what to do next To achieve portability, these tables must be initialized each time
the compiler is run, in order that the table entries reflect the local character set values.

Parsing

As mentioned above, the parser is generated by Yacc from the grammar cgram.y. The grammar is
relatively readable, but contains some unusual features that are worth comment.

Perhaps the strangest feature of the grammar is the treatment of declarations. The problem is to keep
track of the basic type and the storage class while interpreting the various stars, brackets, and parentheses
that may surround a given name. The entire declaration mechanism must be recursive, since declarations
may appear within declarations of structures and unions, or even within a sizeof construction inside a
dimension in another declaration!

SMM:I9-6 A Tour Through the Portable C Compiler

There are some difficulties in using a bottom-up parser, such as produced by Yacc, to handle con­
structions where a lot of left context information must be kept around. The problem is that the original
PDP-II compiler is top-down in implementation, and some of the semantics of C reflect this. In a top­
down parser, the input rules are restricted somewhat, but one can naturally associate temporary storage
with a rule at a very early stage in the recognition of that rule. In a bottom-up parser, there is more free­
dom in the specification of rules, but it is more difficult to know what rule is being matched until the entire
rule is seen. The parser described by cgram.y makes effective use of the bottom-up parsing mechanism in
some places (notably the treatment of expressions), but struggles against the restrictions in others. The
usual result is that it is necessary to run a stack of values "on the side", independent of the Yacc value
stack, in order to be able to store and access information deep within inner constructions, where the rela­
tionship of the rules being recognized to the total picture is not yet clear.

In the case of declarations, the attribute information (type, etc.) for a declaration is carefully kept
immediately to the left of the declarator (that part of the declaration involving the name). In this way,
when it is time to declare the name, the name and the type information can be quickly brought together.
The "$0" mechanism of Yacc is used to accomplish this. The result is not pretty, but it works. The
storage class information changes more slowly, so it is kept in an external variable, and stacked if neces­
sary. Some of the grammar could be considerably cleaned up by using some more recent features of Yacc,
notably actions within rules and the ability to return multiple values for actions.

A stack is also used to keep track of the current location to be branched to when a break or continue
statement is processed.

This use of external stacks dates from the time when Yacc did not pennit values to be structures.
Some, or most, of this use of external stacks could be eliminated by redoing the grammar to use the
mechanisms now provided. There are some areas, however, particularly the processing of structure, union,
and enumeration declarations, function prologs, and switch statement processing, when having all the
affected data together in an array speeds later processing; in this case, use of external storage seems essen­
tial.

The cgram.y file also contains some small functions used as utility functions in the parser. These
include routines for saving case values and labels in processing switches, and stacking and popping values
on the external stack described above.

Storage Classes

C has a finite, but fairly extensive, number of storage classes available. One of the compiler design
decisions was to process the storage class information totally in the first pass; by the second pass, this infor­
mation must have been totally dealt with. This means that all of the storage allocation must take place in
the first pass, so that references to automatics and parameters can be turned into references to cells lying a
certain number of bytes offset from certain machine registers. Much of this transformation is machine
dependent, and strongly depends on the storage class.

The classes include EXTERN (for externally declared, but not defined variables), EXTDEF (for
external definitions), and similar distinctions for USTATIC and STATIC, UFORTRAN and FORTRAN
(for fortran functions) and ULABEL and LABEL. The storage classes REGISTER and AUTO are obvi­
ous, as are STNAME, UNAME, and ENAME (for structure, union, and enumeration tags), and the associ­
ated MOS, MOU, and MOE (for the members). TYPEDEF is treated as a storage class as well. There are
two special storage classes: PARAM and SNULL. SNULL is used to distinguish the·case where no expli­
cit storage class has been given; before an entry is made in the symbol table the true storage class is
discovered. Similarly, PARAM is used for the temporary entry in the symbol table made before the
declaration of function parameters is completed.

The most complexity in the storage class process comes from bit fields. A separate storage class is
kept for each width bit field; a k bit bit field has storage class k plus FIELD. This enables the size to be
quickly recovered from the storage class.

A Tour Through the Portable C Compiler S~:19-7

Symbol Table Maintenance

The symbol table routines do far more than simply enter names into the symbol table; considerable
semantic processing and checking is done as well. For example, if a new declaration comes in, it must be
checked to see if there is a previous declaration of the same symbol. If there is, there are many cases. The
declarations may agree and be compatible (for example, an extern declaration can appear twice) in which
case the new declaration is ignored. The new declaration may add information (such as an explicit array
dimension) to an already present declaration. The new declaration may be different, but still correct (for
example, an extern declaration of something may be entered, and then later the definition may be seen).
The new declaration may be incompatible, but appear in an inner block; in this case, the old declaration is
carefully hidden away, and the new one comes into force until the block is left Finally, the declarations
may be incompatible, and an error message must be produced.

A number of other factors make for additional complexity. The type declared by the user is not
always the type entered into the symbol table (for example, if a formal parameter to a function is declared
to be an array, C requires that this be changed into a pointer before entry in the symbol table). Moreover,
there are various kinds of illegal types that may be declared which are difficult to check for syntactically
(for example, a function returning an array). Finally, there is a strange feature in C that requires structure
tag names and member names for structures and unions to be taken from a different logical symbol table
than ordinary identifiers. Keeping track of which kind of name is involved is a bit of struggle (consider
typedef names used within structure declarations, for example).

The symbol table handling routines have been rewritten a number of times to extend features,
improve performance, and fix bugs. They address the above problems with reasonable effectiveness but a
singular lack of grace.

When a name is read in the input, it is hashed, and the routine lookup is called, together with a flag
which tells which symbol table should be searched (actually, both symbol tables are stored in one, and a
flag is used to distinguish individual entries). If the name is found, lookup returns the index to the entry
found; otherwise, it makes a new entry, marks it UNDEF (undefined), and returns the index of the new
entry. This index is stored in the rval field of a NAME node.

When a declaration is being parsed, this NAME node is made part of a tree with UNARY MUL
nodes for each *, LB nodes for each array descriptor (the right descendant has the dimension), and
UN AR Y CALL nodes for each function descriptor. This tree is passed to the routine tymerge, along with
the attribute type of the whole declaration; this routine collapses the tree to a single node, by calling
tyreduce , and then modifies the type to reflect the overall type of the declaration.

Dimension and size information is stored in a table called dimtab. To properly describe a type in C,
one needs not just the type information but also size information (for structures and enumerations) and
dimension information (for arrays). Sizes and offsets are dealt with in the compiler by giving the associ­
ated indices into dimtab. Tymerge and tyreduce call dstash to put the discovered dimensions away into
the dimtab array. Tymerge returns a pointer to a single node that contains the symbol table index in its
rval field, and the size and dimension indices in fields csi: and cdim, respectively. This information is
properly considered part of the type in the first pass, and is carried around at all times.

To enter an element into the symbol table, the routine defid is called; it is handed a storage class, and
a pointer to the node produced by tymerge. Defid calls fixtype, which adjusts and checks the given type
depending on the storage class, and converts null types appropriately. It then calls fixclass, which does a
similar job for the storage class; it is here, for example, that register declarations are either allowed or
changed to auto.

The new declaration is now compared against an older one, if present, and several pages of validity
checks performed. If the definitions are compatible, with possibly some added information, the processing
is straightforward. If the definitions differ, the block levels of the current and the old declaration are com­
pared. The current block level is kept in blevel, an external variable; the old declaration level is kept in the
symbol table. Block level 0 is for external declarations, 1 is for arguments to functions, and 2 and above
are blocks within a function. If the current block level is the same as the old declaration, an error results.
If the current block level is higher, the new declaration overrides the old. This is done by marking the old
symbol table entry "hidden", and making a new entry, marked "hiding". Lookup will skip over hidden

SMM:19-8 A Tour Through the Portable C Compiler

entries. When a block is left, the symbol table is searched, and any entries defined in that block are des­
troyed; if they hid other entries, the old entries are "unbidden".

This nice block structure is warped a bit because labels do not follow the block structure rules (one
can do a goto into a block, for example); default definitions of functions in inner blocks also persist clear
out to the outermost scope. This implies that cleaning up the symbol table after block exit is more subtle
than it might first seem.

For successful new definitions, defid also initializes a "general purpose" field, offset, in the symbol
table. It contains the stack offset for automatics and parameters, the register number for register variables,
the bit offset into the structure for structure members, and the internal label number for static variables and
labels. The offset field is set by lalloe for bit fields, and dclstruet for structures and unions.

The symbol table entry itself thus contains the name, type word, size and dimension offsets, offset
value, and declaration block level. It also has a field of flags, describing what symbol table the name is in,
and whether the entry is hidden, or hides another. Finally, a field gives the line number of the last use, or
of the definition, of the name. This is used mainly for diagnostics, but is useful to lint as well.

In some special cases, there is more than the above amount of information kept for the use of the
compiler. This is especially true with structures; for use in initialization, structure declarations must have
access to a list of the members of the structure. This list is also kept in dimtab. Because a structure can be
mentioned long before the members are known, it is necessary to have another level of indirection in the
table. The two words following the esiz entry in dimtab are used to hold the alignment of the structure,
and the index in dimtab of the list of members. This list contains the symbol table indices for the structure
members, terminated by a-I.

Tree Building

The portable compiler transforms expressions into expression trees. As the parser recognizes each
rule making up an expression, it calls buildtree which is given an operator number~ and pointers to the left
and right descendants. Buildtree first examines the left and right descendants, and, if they are both con­
stants, and the operator is appropriate, simply does the constant computation at compile time, and returns
the result as a constant Otherwise, buildtree allocates a node for the head of the tree, attaches the descen­
dants to it, and ensures that conversion operators are generated if needed, and that the type of the new node
is consistent with the types of the operands. There is also a considerable amount of semantic complexity
here; many combinations of types are illegal, and the portable compiler makes a strong effort to check the
legality of expression types completely. This is done both for lint purposes, and to prevent such semantic
errors from being passed through to the code generator.

The heart of buildtree is a large table, accessed by the routine opaet. This routine maps the types of
the left and right operands into a rather smaller set of descriptors, and then accesses a table (actually
encoded in a switch statement) which for each operator and pair of types causes an action to be returned.
The actions are logical or's of a number of separate actions, which may be carried out by buildtree. These
component actions may include checking the left side to ensure that it is an lvalue (can be stored into),
applying a type conversion to the left or right operand, setting the type of the new node to the type of the
left or right operand, calling various routines to balance the types of the left and right operands, and
suppressing the ordinary conversion of arrays and function operands to pointers. An important operation is
OTHER, which causes some special code to be invoked in buildtree, to handle issues which are unique to a
particular operator. Examples of this are structure and union reference (actually handled by the routine
stre!), the building of NAME, ICON, STRING and FCON (floating point constant) nodes, unary * and &,
structure assignment, and calls. In the case of unary * and &, buildtree will cancel a * applied to a tree,
the top node of which is &, and conversely.

Another special operation is PUN; this causes the compiler to check for type mismatches, such as
intermixing pointers and integers.

The treatment of conversion operators is a rather strange area of the compiler (and of C!). The intro­
duction of type casts only confounded this situation. Most of the conversion operators are generated by
calls to tymatch and ptmateh, both of which are given a tree, and asked to make the operands agree in
type. Ptmateh treats the case where one of the operands is a pointer; tymateh treats all other cases. Where

A Tour Through the Portable C Compiler SMM::19-9

these routines have decided on the proper type for an operand, they call makety, which is handed a tree,
and a type word, dimension offset, and size offset If necessary, it inserts a conversion operation to make
the types correct. Conversion operations are never inserted on the left side of assignment operators, how­
ever. There are two conversion operators used; PCONV, if the conversion is to a non-basic type (usually a
pointer), and SCONV, if the conversion is to a basic type (scalar).

To allow for maximum flexibility, every node produced by buildtree is given to a machine depen­
dent routine, cloeal, immediately after it is produced. This is to allow more or less immediate rewriting of
those nodes which must be adapted for the local machine. The conversion operations are given to cloeal
as well; on most machines, many of these conversions do nothing, and should be thrown away (being care­
ful to retain the type). If this operation is done too early, however, later calls to buildtree may get con­
fused about correct type of the subtrees; thus cloeal is given the conversion operations only after the entire
tree is built. This topic will be dealt with in more detail later.

Initialization

Initialization is one of the messier areas in the portable compiler. The only consolation is that most
of the mess takes place in the machine independent part, where it is may be safely ignored by the imple­
mentor of the compiler for a particular machine.

The basic problem is that the semantics of initialization really calls for a co-routine structure; one
collection of programs reading constants from the input stream, while another, independent set of programs
places these constants into the appropriate spots in memory. The dramatic differences in the local assem­
blers also come to the fore here. The parsing problems are dealt with by keeping a rather extensive stack
containing the current state of the initialization; the assembler problems are dealt with by having a fair
number of machine dependent routines.

The stack contains the symbol table number, type, dimension index, .and size index for the current
identifier being initialized. Another entry has the offset, in bits, of the beginning of the current identifier.
Another entry keeps track of how many elements have been seen, if the current identifier is an array. Still
another entry keeps track of the current member of a structure being initialized. Finally, there is an entry
containing flags which keep track of the current state of the initialization process (e.g., tell if a '}' has been
seen for the current identifier).

When an initialization begins, the routine beginit is called; it handles the alignment restrictions, if
any, and calls instk to create the stack entry. This is done by first making an entry on the top of the stack
for the item being initialized. If the top entry is an array, another entry is made on the stack for the first
element. If the top entry is a structure, another entry is made on the stack for the first member of the struc­
ture. This continues until the top element of the stack is a scalar. Instk then returns, and the parser begins
collecting initializers.

When a constant is obtained, the routine doinit is called; it examines the stack, and does whatever is
necessary to assign the current constant to the scalar on the top of the stack. gotseal is then called, which
rearranges the stack so that the next scalar to be initialized gets placed on top of the stack. This process
continues until the end of the initializers;endinit cleans up. If a '{' or '}' is encountered in the string of
initializers, it is handled by calling ilbraee or irbraee, respectively.

A central issue is the treatment of the "holes" that arise as a result of alignment restrictions or expli­
cit requests for holes in bit fields. There is a global variable, ina!!, which contains the current offset in the
initialization (all offsets in the first pass of the compiler are in bits). Doinit figures out from the top entry
on the stack the expected bit offset of the next identifier; it calls the machine dependent routine inforee
which, in a machine dependent way, forces the assembler to set aside space if need be so that the next
scalar seen will go into the appropriate bit offset position. The scalar itself is passed to one of the machine
dependent routinesfineode (for floating point initialization), ineode (for fields, and other initializations less
than an int in size), and cinit (for all other initializations). The size is passed to all these routines, and it is
up to the machine dependent routines to ensure that the initializer occupies exactly the right size.

Character strings represent a bit of an exception. If a character string is seen as the initializer for a
pointer, the characters making up the string must be put out under a different location counter. When the
lexical analyzer sees the quote at the head of a character string, it returns the token STRING, but does not

SMM:19-10 A Tour Through the Portable C Compiler

do anything with the contents. The parser calls getstr, which sets up the appropriate location counters and
flags, and calls lxstr to read and process the contents of the string.

If the string. is being used to initialize a character array, lxstr calls putbyte , which in effect simulates
doinit for each character read. If the string is used to initialize a character pointer, lxstr calls a machine
dependent routine, bycode, which stashes away each character. The pointer to this string is then returned,
and processed normally by doinit.

The null at the end of the string is treated as if it were read explicitly by lxstr.

Statements

The first pass addresses four main areas; declarations, expressions, initialization, and statements.
The statement processing is relatively simple; most of it is carried out in the parser directly. Most of the
logic is concerned with allocating label numbers, defining the labels, and branching appropriately. An
external symbol, reached, is 1 if a statement can be reached, 0 otherwise; this is used to do a bit of simple
flow analysis as the program is being parsed, and also to avoid generating the subroutine return sequence if
the subroutine cannot "fall through" the last statement

Conditional branches are handled by generating an expression node, CBRANCH, whose left descen­
dant is the conditional expression and the right descendant is an ICON node containing the internal label
number to be branched to. For efficiency, the semantics are that the label is gone to if the condition is
false.

The switch statement is compiled by collecting the case entries, and an indication as to whether there
is a default case; an internal label number is generated for each of these, and remembered in a big array.
The expression comprising the value to be switched on is compiled when the switch keyword is encoun­
tered, but the expression tree is headed by a special node, FORCE, which tells the code generator to put the
expression value into a special distinguished register (this same mechanism is used for processing the
return statement). When the end of the switch block is reached, the array containing the case values is
sorted, and checked for duplicate entries (an error); if all is correct, the machine dependent routine
genswitch is called, with this array of labels and values in increasing order. Genswitch can assume that the
value to be tested is already in the register which is the usual integer return value register.

Optimization

There is a machine independent file, optim.c, which contains a relatively short optimization routine,
optim. Actually the word optimization is something of a misnomer; the results are not optimum, only
improved, and the routine is in fact not optional; it must be called for proper operation of the compiler.

Optim is called after an expression tree is built, but before the code generator is called. The essential
part of its job is to call clocal on the conversion operators. On most machines, the treatment of & is also
essential: by this time in the processing, the only node which is a legal descendant of & is NAME. (Possi­
ble descendants of * have been eliminated by buildtree.) The address of a static name is, almost by
definition, a constant, and can be represented by an ICON node on most machines (provided that the loader
has enough power). Unfortunately, this is not universally true; on some machine, such as the mM 370, the
issue of address ability rears its ugly head; thus, before turning a NAME node into an ICON node, the
machine dependent function andable is called.

The optimization attempts of optim are quite limited. It is primarily concerned with improving the
behavior of the compiler with operations one of whose arguments is a constant In the simplest case, the
constant is placed on the right if the operation is commutative. The compiler also makes a limited search
for expressions such as

(x+a)+b

where a and b are constants, and attempts to combine a and b at compile time. A number of special cases
are also examined; additions of 0 and multiplications by 1 are removed, although the correct processing of
these cases to get the type of the resulting tree correct is decidedly nontrivial. In some cases, the addition
or multiplication must be replaced by a conversion operator to keep the types from becoming fouled up. In
cases where a relational operation is being done and one operand is a constant, the operands are permuted

A Tour Through the Portable C Compiler SMM:19-11

and the operator altered, if necessary, to put the constant on the right. Finally, multiplications by a power
of 2 are changed to shifts.

Machine Dependent Stuff

A number of the first pass machine dependent routines have been discussed above. In general, the
routines are short, and easy to adapt from machine to machine. The two exceptions to this general rule are
clocal and the function prolog and epilog generation routines, bfcode and efcode .

Clocal has the job of rewriting, if appropriate and desirable, the nodes constructed by buildlree.
There are two major areas where this is important: NAME nodes and conversion operations. In the case of
NAME nodes, clocal must rewrite the NAME node to reflect the actual physical location of the name in
the machine. In effect, the NAME node must be examined, the symbol table entry found (through the rval
field of the node), and, based on the storage class of the node, the tree must be rewritten. Automatic vari­
ables and parameters are typically rewritten by treating the reference to the variable as a structure refer­
ence, off the register which holds the stack or argument pointer; the siref routine is set up to be called in
this way, and to build the appropriate tree. In the most general case, the tree consists of a unary * node,
whose descendant is a + node, with the stack or argument register as left operand, and a constant offset as
right operand. In the case of LABEL and internal static nodes, the rval field is rewritten to be the negative
of the internal label number; a negative rval field is taken to be an internal label number. Finally, a name
of class REGISTER must be converted into a REG node, and the rval field replaced by the register
number. In fact, this part of the clocal routine is nearly machine independent; only for machines with
addressability problems (IBM 370 again!) does it have to be noticeably different.

The conversion operator treatment is rather tricky. It is necessary to handle the application of
conversion operators to constants in clocal, in order that all constant expressions can have their values
known at compile time. In extreme cases, this may mean that some simulation of the arithmetic of the tar­
get machine might have to be done in a cross-compiler. In the most common case, conversions from
pointer to pointer do nothing. For some machines, however, conversion from byte pointer to short or long
pointer might require a shift or rotate operation, which would have to be generated here.

The extension of the portable compiler to machines where the size of a pointer depends on its type
would be straightforward, but has not yet been done.

Another machine dependent issue in the first pass is the generation of external "symbol table" infor­
mation. This sort of symbol table is used by programs such as symbolic debuggers to relate object code
back to source code. Symbol table routines are provided in the file slab.c, which is included in the machine
dependent sources for the first pass. The symbol table routines insert assembly code containing assembly
pseudo-ops directly into the instruction stream generated by the compiler.

There are two basic kinds of symbol table operations. The simplest operation is the generation of a
source line number; this serves to map an address in an executable image into a line in a source file so that
a debugger can find the source code corresponding to the instructions being executed. The routine psline is
called by the scanner to emit source line numbers when a nonempty source line is seen. The other variety
of symbol table operation is the generation of type and address information about C symbols. This is done
through the outstab routine, which is normally called using the FIXDEF macro in the monster defid routine
in pftn.c that enters symbols into the compiler's internal symbol table.

Yet another major machine dependent issue involves function prolog and epilog generation. The
hard part here is the design of the stack frame and calling sequence; this design issue is discussed else­
where. 7 The routine bfcode is called with the number of arguments the function is defined with, and an
array containing the symbol table indices of the declared parameters. Bfcode must generate the code to
establish the new stack frame, save the return address and previous stack pointer value on the stack, and
save whatever registers are to be used for register variables. The stack size and the number of register vari­
ables is not known when bfcode is called, so these numbers must be referred to by assembler constants,
which are defined when they are known (usually in the second pass, after all register variables, automatics,
and temporaries have been seen). The final job is to find those parameters which may have been declared
register, and generate the code to initialize the register with the value passed on the stack. Once again, for
most machines, the general logic of bfcode remains the same, but the contents of the printj calls in it will

SMM:19-I2 A Tour Through the Portable C Compiler

change from machine to machine. efcode is rather simpler, having just to generate the default return at the
end of a function. This may be nontrivial in the case of a function returning a structure or union, however.

There seems to be no really good place to discuss structures and unions, but this is as good a place as
any. The C language now supports structure assignment, and the passing of structures as arguments to
functions, and the receiving of structures back from functions. This was added rather late to C, and thus to
the portable compiler. Consequently, it fits in less well than the older features. Moreover, most of the bur­
den of making these features work is placed on the machine dependent code.

There are both conceptual and practical problems. Conceptually, the compiler is structured around
the idea that to compute something, you put it into a register and work on it. This notion causes a bit of
trouble on some machines (e.g., machines with 3-address opcodes), but matches many machines quite well.
Unfortunately, this notion breaks down with structures. The closest that one can come is to keep the
addresses of the structures in registers. The actual code sequences used to move structures vary from the
trivial (a multiple byte move) to the horrible (a function call), and are very machine dependent.

The practical problem is more painful. When a function returning a structure is called, this function
has to have some place to put the structure value. If it places it on the stack, it has difficulty popping its
stack frame. If it places the value in a static temporary, the routine fails to be reentrant. The most logically
consistent way of implementing this is for the caller to pass in a pointer to a spot where the called function
should put the value before returning. This is relatively straightforward, although a bit tedious, to imple­
ment, but means that the caller must have properly declared the function type, even if the value is never
used. On some machines, such as the Interdata 8/32, the return value simply overlays the argument region
(which on the 8/32 is part of the caller's stack frame). The caller takes care of leaving enough room if the
returned value is larger than the arguments. This also assumes that the caller declares the function prop­
erly.

The PDP-II and the VAX have stack hardware which is used in function calls and returns; this makes
it very inconvenient to use either of the above mechanisms. In these machines, a static area within the
called function is allocated, and the function return value is copied into it on return; the function returns the
address of that region. This is simple to implement, but is non-reentrant. However, the function can now
be called as a subroutine without being properly declared, without the disaster which would otherwise
ensue. No matter what choice is taken, the convention is that the function actually returns the address of
the return structure value.

In building expression trees, the portable compiler takes a bit for granted about structures. It
assumes that functions returning structures actually return a pointer to the structure, and it assumes that a
reference to a structure is actually a reference to its address. The structure assignment operator is rebuilt so
that the left operand is the structure being assigned to, but the right operand is the address of the structure
being assigned; this makes it easier to deal with

a=b==c

and similar constructions.

There are four special tree nodes associated with these operations: ST ASG (structure assignment),
STARG (structure argument to a function call), and STCALL and UNARY STCALL (calls of a function
with nonzero and zero arguments, respectively). These four nodes are unique in that the size and alignment
information, which can be determined by the type for all other objects in C, must be known to carry out
these operations; special fields are set aside in these nodes to contain this information, and special inter­
mediate code is used to transmit this information.

First Pass Summary

There are may other issues which have been ignored here, partly to justify the title' 'tour", and par­
tially because they have seemed to cause little trouble. There are some debugging flags which may be
turned on, by giving the compiler's first pass the argument

-x [flags]

Some of the more interesting flags are - Xd for the defining and freeing of symbols, -Xi for initialization

A Tour Through the Portable C Compiler SMM:19-13

comments, and -Xb for various comments about the building of trees. In many cases, repeating the flag
more than once gives more information; thus, -Xddd gives more information than -Xd. In the two pass
version of the compiler, the flags should not be set when the output is sent to the second pass, since the
debugging output and the intermediate code both go onto the standard output

We turn now to consideration of the second pass.

Pass Two

Code generation is far less well understood than parsing or lexical analysis, and for this reason the
second pass is far harder to discuss in a file by file manner. A great deal of the difficulty is in understand­
ing the issues and the strategies employed to meet them. Any particular function is likely to be reasonably
straightforward.

Thus, this part of the paper will concentrate a good deal on the broader aspects of strategy in the
code generator, and will not get too intimate with the details.

Overview

It is difficult to organize a code generator to be flexible enough to generate code for a large number
of machines, and still be efficient for anyone of them. Flexibility is also important when it comes time to
tune the code generator to improve the output code quality. On the other hand, too much flexibility can
lead to semantically incorrect code, and potentially a combinatorial explosion in the number of cases to be
considered in the compiler.

One goal of the code generator is to have a high degree of correctness. It is very desirable to have
the compiler detect its own inability to generate correct code, rather than to produce incorrect code. This
goal is achieved by having a simple model of the job to be done (e.g., an expression tree) and a simple
model of the machine state (e.g., which registers are free). The act of generating an instruction performs a
transformation on the tree and the machine state; hopefully, the tree eventually gets reduced to a single
node. If each of these instructiOn/transformation pairs is correct, and if the machine state model really
represents the actual machine, and if the transformations reduce the input tree to the desired single node,
then the output code will be correct.

For most real machines, there is no definitive theory of code generation that encompasses all the C
operators. Thus the selection of which instruction/transformations to generate, and in what order, will have
a heuristic flavor. If, for some expression tree, no transformation applies, or, more seriously, if the heuris­
tics select a sequence of instruction/transformations that do not in fact reduce the tree, the compiler will
report its inability to generate code, and abort.

A major part of the code generator is concerned with the model and the transformations. Most of
this is machine independent, or depends only on simple tables. The flexibility comes from the heuristics
that guide the transformations of the trees, the selection of sub goals, and the ordering of the computation.

The Machine Model

The machine is assumed to have a number of registers, of at most two different types: A and B .
Within each register class, there may be scratch (temporary) registers and dedicated registers (e.g., register
variables, the stack pointer, etc.). Requests to allocate and free registers involve only the temporary regis­
ters.

Each of the registers in the machine is given a name and a number in the mac2defs.h file; the
numbers are used as indices into various tables that describe the registers, so they should be kept small.
One such table is the rstatus table on file locaI2.c. This table is indexed by register number, and contains
expressions made up from manifest constants describing the register types: SAREG for dedicated
AREG's, SAREGISTAREG for scratch AREG's, and SBREG and SBREGISTBREG similarly for
BREG's. There are macros that access this information: isbreg(r) returns true if register number r is a
BREG, and istreg(r) returns true if register number r is a temporary AREG or BREG. Another table,
rnames, contains the register names; this is used when putting out assembler code and diagnostics.

SMM:19-14 A Tour Through the Portable C Compiler

The usage of registers is kept track of by an array called busy. Busy[r] is the number of uses of
register r in the current tree being processed. The allocation and freeing of registers will be discussed later
as part of the code generation algorithm.

General Organization

As mentioned above, the second pass reads lines from the intermediate file, copying through to the
output unchanged any lines that begin with a')', and making note of the information about stack usage and
register allocation contained on lines beginning with ']' and '['. The expression trees, whose beginning is
indicated by a line beginning with '.', are read and rebuilt into trees. If the compiler is loaded as one pass,
the expression trees are immediately available to the code generator.

The actual code generation is done by a hierarchy of routines. The routine delay is first given the
tree; it attempts to delay some postfix + + and -- computations that might reasonably be done after the
smoke clears. It also attempts to handle comma (' ,') operators by computing the left side expression first,
and then rewriting the tree to eliminate the operator. Delay calls codgen to control the actual code genera­
tion process. Codgen takes as arguments a pointer to the expression tree, and a second argument that, for
socio-historical reasons, is called a cookie. The cookie describes a set of goals that would be acceptable
for the code generation: these are assigned to individual bits, so they may be logically or'ed together to
form a large number of possible goals. Among the possible goals are FOREFF (compute for side effects
only; don't worry about the value), INTEMP (compute and store value into a temporary location in
memory), INAREG (compute into an A register), INTAREG (compute into a scratch A register), INBREG
and INTBREG similarly, FORCC (compute for condition codes), and FORARG (compute it as a function
argument; e.g., stack it if appropriate).

Codgen first canonicalizes the tree by calling canon. This routine looks for certain transformations
that might now be applicable to the tree. One, which is very common and very powerful, is to fold together
an indirection operator (UNARY MOL) and a register (REG); in most machines, this combination is
addressable directly, and so is similar to a NAME in its behavior. The UNARY MUL and REG are folded
together to make another node type called OREG. In fact, in many machines it is possible to directly
address not just the cell pointed to by a register, but also cells differing by a constant offset from the cell
pointed to by the register. Canon also looks for such cases, calling the machine dependent routine noto!!
to decide if the offset is acceptable (for example, in the IBM 370 the offset must be between 0 and 4095
bytes). Another optimization is to replace bit field operations by shifts and masks if the operation involves
extracting the field. Finally, a machine dependent routine, sucomp, is called that computes the Sethi­
Ullman numbers for the tree (see below),

After the tree is canonicalized, codgen calls the routine store whose job is to select a subtree of the
tree to be computed and (usually) stored before beginning the computation of the full tree. Store must
return a tree that can be computed without need for any temporary storage locations. In effect, the only
store operations generated while processing the subtree must be as a response to explicit assignment opera­
tors in the tree. This division of the job marks one of the more significant, and successful, departures from
most other compilers. It means that the code generator can operate under the assumption that there are
enough registers to do its job, without worrying about temporary storage. If a store into a temporary
appears in the output, it is always as a direct result of logic in the store routine; this makes debugging
easier.

One consequence of this organization is that code is not generated by a treewalk. There are theoreti­
cal results that support this decision. 7 It may be desirable to compute several subtrees and store them
before tackling the whole tree; if a subtree is to be stored, this is known before the code generation for the
subtree is begun, and the subtree is computed when all scratch registers are available.

The store routine decides what subtrees, if any, should be stored by making use of numbers, called
Sethi-Ullman numbers, that give, for each subtree of an expression tree, the minimum number of scratch
registers required to compile the subtree, without any stores into temporaries. 8 These numbers are com­
puted by the machine-dependent routine sucomp, called by canon. The basic notion is that, knowing the
Sethi-Ullman numbers for the descendants of a node, and knowing the operator of the node and some
information about the machine, the Sethi-Ullman number of the node itself can be computed If the Sethi­
Ullman number for a tree exceeds the number of scratch registers available, some subtree must be stored.

A Tour Through the Portable C Compiler SMM:19-15

Unfortunately, the theory behind the Sethi-Ullman numbers applies only to uselessly simple machines and
operators. For the rich set of C operators, and for machines with asymmetric registers, register pairs, dif­
ferent kinds of registers, and exceptional forms of addressing, the theory cannot be applied directly. The
basic idea of estimation is a good one, however, and well worth applying; the application, especially when
the compiler comes to be tuned for high code quality, goes beyond the park of theory into the swamp of
heuristics. This topic will be taken up again later, when more of the compiler structure has been described.

After examining the Sethi-Ullman numbers, store selects a subtree, if any, to be stored, and returns
the subtree and the associated cookie in the external variables stotree and stocook. If a subtree has been
selected, or if the whole tree is ready to be processed, the routine order is called, with a tree and cookie.
Order generates code for trees that do not require temporary locations. Order may make recursive calls
on itself, and, in some cases, on codgen ; for example, when processing the operators &&, II, and comma
(' ,'), that have a left to right evaluation, it is incorrect for store examine the right operand for subtrees to be
stored. In these cases, order will call codgen recursively when it is permissible to work on the right
operand. A similar issue arises with the? : operator.

The order routine works by matching the current tree with a set of code templates. If a template is
discovered that will match the current tree and cookie, the associated assembly language statement or state­
ments are generated. The tree is then rewritten, as specified by the template, to represent the effect of the
output instruction(s). If no template match is found, first an attempt is made to find a match with a dif­
ferent cookie; for example, in order to compute an expression with cookie INTEMP (store into a temporary
storage location), it is usually necessary to compute the expression into a scratch register first If all
attempts to match the tree fail, the heuristic part of the algorithm becomes dominant. Control is typically
given to one of a number of machine-dependent routines that may in turn recursively call order to achieve
a subgoal of the computation (for example, one of the arguments may be computed into a temporary regis­
ter). After thissubgoal has been achieved, the process begins again with the modified tree. If the
machine-dependent heuristics are unable to reduce the tree further, a number of default rewriting rules may
be considered appropriate. For example, if the left operand of a + is a scratch register, the + can be
replaced by a += operator; the tree may then match a template.

To close this introduction, we will discuss the steps in compiling code for the expression

a+=b

where a and b are static variables.

To begin with, the whole expression tree is examined with cookie FOREFF, and no match is found.
Search with other cookies is equally fruitless, so an attempt at rewriting is made. Suppose we are dealing
with the Interdata 8/32 for the moment It is recognized that the left hand and right hand sides of the +=
operator are addressable, and in particular the left hand side has no side effects, so it is permissible to
rewrite this as

a=a+b

and this is done. No match is found on this tree either, so a machine dependent rewrite is done; it is recog­
nized that the left hand side of the assignment is addressable, but the right hand side is not in a register, so
order is called recursively, being asked to put the right hand side of the assignment into a register. This
invocation of order searches the tree for a match, and fails. The machine dependent rule for + notices that
the right hand operand is addressable; it decides to put the left operand into a scratch register. Another
recursive call to order is made, with the tree consisting solely of the leaf a, and the cookie asking that the
value be placed into a scratch register. This now matches a template, and a load instruction is emitted. The
node consisting of a is rewritten in place to represent the register into which a is loaded, and this third call
to order returns. The second call to order now finds that it has the tree

reg+b

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a += operator,
since the left operand is a scratch register. When this is done, there is a match: in fact,

reg += b

SM:M:: 19-16 A Tour Through the Portable C Compiler

simply describes the effect of the add instruction on a typical machine. After the add is emitted, the tree is
rewritten to consist merely of the register node, since the result of the add is now in the register. This
agrees with the cookie passed to the second invocation of order, so this invocation terminates, returning to
the first level. The original tree has now become

a= reg

which matches a template for the store instruction. The store is output, and the tree rewritten to become
just a single register node. At this point, since the top level call to order was interested only in side effects,
the call to order returns, and the code generation is completed; we have generated a load, add, and store, as
might have been expected.

The effect of machine architecture on this is considerable. For example, on the Honeywell 6000, the
machine dependent heuristics recognize that there is an "add to storage" instruction, so the strategy is
quite different; b is loaded in to a register, and then an add to storage instruction generated to add this
register in to a. The transformations, involving as they do the semantics of C, are largely machine
independent. The decisions as to when to use them, however, are almost totally machine dependent

Having given a broad outline of the code generation process, we shall next consider the heart of it:
the templates. This leads naturally into discussions of template matching and register allocation, and
finally a discussion of the machine dependent interfaces and strategies.

The Templates

The templates describe the effect of the target machine instructions on the model of computation
around which the compiler is organized In effect, each template has five logical sections, and represents
an assertion of the form:

If we have a subtree of a given shape (1), and we have a goal (cookie) or goals to achieve (2), and
we have sufficient free resources (3), then we may emit an instruction or instructions (4), and rewrite
the subtree in a particular manner (5), and the rewritten tree will achieve the desired goals.

These five sections will be discussed in more detail later. First, we give an example of a template:

ASGPLUS, INAREG,
SAREG,
SNAME,

TINT,
TINT,
0,
"

RLEFT,
add AL,AR\n",

The top line specifies the operator (+=) and the cookie (compute the value of the subtree into an AREG).
The second and third lines specify the left and right descendants, respectively, of the += operator. The left
descendant must be a REG node, representing an A register, and have integer type, while the right side
must be a NAME node, and also have integer type. The fourth line contains the resource requirements (no
scratch registers or temporaries needed), and the rewriting rule (replace the subtree by the left descendant).
Finally, the quoted string on the last line represents the output to the assembler: lower case letters, tabs,
spaces, etc. are copied verbatim. to the output; upper case letters trigger various macro-like expansions.
Thus, AL would expand into the Address form of the Left operand - presumably the register number.
Similarly, AR would expand into the name of the right operand. The add instruction of the last section
might well be emitted by this template.

In principle, it would be possible to make separate templates for all legal combinations of operators,
cookies, types, and shapes. In practice, the number of combinations is very large. Thus, a considerable
amount of mechanism is present to permit a large number of subtrees to be matched by a single template.
Most of the shape and type specifiers are individual bits, and can be logically or'ed together. There are a
number of special descriptors for matching classes of operators. The cookies can also be combined. As an
example of the kind of template that really arises in practice, the actual template for the Interdata8/32 that
subsumes the above example is:

A Tour Through the Portable C Compiler SMM:19-17

ASG OPSIMP, INAREGIFORCC,
SAREG, TINTITUNSIGNEDITPOINT,
SAREGISNAMEISOREGISCON, TINTITUNSIGNEDITPOINT,

0, RLEFfJRESCC,
01 AL,AR\n",

Here, OPSIMP represents the operators +, -, I, &, and". The 01 macro in the output string expands into
the appropriate Integer Opcode for the operator. The left and right sides can be integers, unsigned, or
pointer types. The right side can be, in addition to a name, a register, a memory location whose address is
given by a register and displacement (OREG), or a constant. Finally, these instructions set the condition
codes, and so can be used in condition contexts: the cookie and rewriting rules reflect this.

The Template Matching Algorithm

The heart of the second pass is the template matching algorithm, in the routine match. Match is
called with a tree and a cookie; it attempts to match the given tree against some template that will
transform it according to one of the goals given in the cookie. If a match is successful, the transformation
is applied; expand is called to generate the assembly code, and then reclaim rewrites the tree, and reclaims
the resources, such as registers, that might have become free as a result of the generated code.

This part of the compiler is among the most time critical. There is a spectrum of implementation
techniques available for doing this matching. The most naive algorithm simply looks at the templates one
by one. This can be considerably improved upon by restricting the search for an acceptable template. It
would be possible to do better than this if the templates were given to a separate program that ate them and
generated a template matching subroutine. This would make maintenance of the compiler much more
complicated, however, so this has not been done.

The matching algorithm is actually carried out by restricting the range in the table that must be
searched for each opcode. This introduces a number of complications, however, and needs a bit of sym­
pathetic help by the person constructing the compiler in order to obtain best results. The exact tuning of
this algorithm continues; it is best to consult the code and comments in match for the latest version.

In order to match a template to a tree, it is necessary to match not only the cookie and the operator of
the root, but also the types and shapes of the left and right descendants (if any) of the tree. A convention is
established here that is carried out throughout the second pass of the compiler. If a node represents a unary
operator, the single descendant is always the "left" descendant. If a node represents a unary operator or a
leaf node (no descendants) the "right" descendant is taken by convention to be the node itself. This
enables templates to easily match leaves and conversion operators, for example, without any additional
mechanism in the matching program.

The type matching is straightforward; it is possible to specify any combination of basic types, gen­
eral pointers, and pointers to one or more of the basic types. The shape matching is somewhat more com­
plicated, but still pretty simple. Templates have a collection of possible operand shapes on which the
opcode might match. In the simplest case, an add operation might be able to add to either a register vari­
able or a scratch register, and might be able (with appropriate help from the assembler) to add an integer
constant (ICON), a static memory cell (NAME), or a stack location (OREG).

It is usually attractive to specify a number of such shapes, and distinguish between them when the
assembler output is produced. It is possible to describe the union of many elementary shapes such as
ICON, NAME, OREG, AREG or BREG (both scratch and register forms), etc. To handle at least the sim­
ple forms of indirection, one can also match some more complicated forms of trees: ST ARNM and ST AR­
REG can match more complicated trees headed by an indirection operator, and SFLD can match certain
trees headed by a FLD operator. These patterns call machine dependent routines that match the patterns of
interest on a given machine. The shape SW ADD may be used to recognize NAME or OREG nodes that lie
on word boundaries: this may be of some importance on word addressed machines. Finally, there are some
special shapes: these may not be used in conjunction with the other shapes, but may be defined and
extended in machine dependent ways. The special shapes SZERO, SONE, and SMONE are predefined and
match constants 0, 1, and -1, respectively; others are easy to add and match by using the machine depen­
dent routine special.

SMM:19-18 A Tour Through· the Portable C Compiler

When a template has been found that matches the root of the tree, the cookie, and the shapes and
types of the descendants, there is still one bar to a total match: the template may call for some resources
(for example, a scratch register). The routine allo is called, and it attempts to allocate the resources. If it
cannot, the match fails; no resources are allocated If successful, the allocated resources are given numbers
1, 2, etc. for later reference when the assembly code is generated The routines expand and reclaim are
then called The match routine then returns a special value, MDONE. If no match was found, the value
MNOPE is returned; this is a signal to the caller to try more cookie values, or attempt a rewriting rule.
Mate h is also used to select rewriting rules, although the way of doing this is pretty straightforward. A
special cookie, FORREW, is used to ask match to search for a rewriting rule. The rewriting rules are
keyed to various opcodes; most are carried out in order. Since the question of when to rewrite is one of
the key issues in code generation, it will be taken up again later.

Register Allocation

The register allocation routines, and the allocation strategy, play a central role in the correctness of
the code generation algorithm. If there are bugs in the Sethi-Ullman computation that cause the number of
needed registers to be underestimated, the compiler may run out of scratch registers; it is essential that the
allocator keep track of those registers that are free and busy, in order to detect such conditions.

Allocation of registers takes place as the result of a template match; the routine aUo is called with a
word describing the number of A registers, B registers, and temporary locations needed. The allocation of
temporary locations on the stack is relatively straightforward, and will not be further covered; the book­
keeping is a bit tricky, but conceptually trivial, and requests for temporary space on the stack will never
fail.

Register allocation is less straightforward. The two major complications are pairing and sharing.
In many machines, some operations (such as multiplication and division), and/or some types (such as longs
or double precision) require even/odd pairs of registers. Operations of the first type are exceptionally
difficult to deal with in the compiler; in fact, their theoretical properties are rather bad as well. 9 The second
issue is dealt with rather more successfully; a machine dependent function called szty(t) is called that
returns 1 or 2, depending on the number of A registers required to hold an object of type t. If szty returns
2, an even/odd pair of A registers is allocated for each request. As part of its duties, the routine usable
finds usable register pairs for various operations. This task is not as easy as it sounds; it does not suffice to
merely use szty on the expression tree, since there are situations in which a register pair temporary is
needed even though the result of the expression requires only one register. This can occur with assignment
operator expressions which have int type but a double right hand side, or with relational expressions where
one operand is 80at and the other double.

The other issue, sharing, is more subtle, but important for good code quality. When registers are
allocated, it is possible to reuse registers that hold address infonnation, and use them to contain the values
computed or accessed. For example, on the IBM 360, if register 2 has a pointer to an integer in it, we may
load the integer into register 2 itself by saying:

L 2,0(2)

If register 2 had a byte pointer, however, the sequence for loading a character involves clearing the target
register first, and then inserting the desired character:

SR 3,3
IC 3,0(2)

In the first case, if register 3 were used as the target, it would lead to a larger number of registers used for
the expression than were required; the compiler would generate inefficient code. On the other hand, if
register 2 were used as the target in the second case, the code would simply be wrong. In the first case,
register 2 can be shared while in the second, it cannot

In the specification of the register needs in the templates, it is possible to indicate whether required
scratch registers may be shared with possible registers on the left or the right of the input tree. In order that
a register be shared, it must be scratch, and it must be used only once, on the appropriate side of the tree
being compiled.

A Tour Through the Portable C Compiler SMM:19-19

The allo routine thus has a bit more to do than meets the eye; it callsfreereg to obtain a free register
for each A and B register request. Freereg makes multiple calls on the routine usable to decide if a given
register can be used to satisfy a given need. Usable calls shareit if the register is busy, but might be
shared. Finally, shareit calls ushare to decide if the desired register is actually in the appropriate subtree,
and can be shared

Just to add additional complexity, on some machines (such as the IBM 370) it is possible to have
"double indexing" forms of addressing; these are represented by OREG's with the base and index regis­
ters encoded into the register field. While the register allocation and deallocation per se is not made more
difficult by this phenomenon, the code itself is somewhat more complex.

Having allocated the registers and expanded the assembly language, it is time to reclaim the
resources; the routine reclaim does this. Many operations produce more than one result. For example,
many arithmetic operations may produce a value in a register, and also set the condition codes. Assign­
ment operations may leave results both in a register and in memory. Reclaim is passed three parameters;
the tree and cookie that were matched, and the rewriting field of the template. The rewriting field allows
the specification of possible results; the tree is rewritten to reflect the results of the operation. If the tree
was computed for side effects only (FOREFF), the tree is freed, and all resources in it reclaimed. If the
tree was computed for condition codes, the resources are also freed, and the tree replaced by a special node
type, FORCC. Otherwise, the value may be found in the left argument of the root, the right argument of
the root, or one of the temporary resources allocated In these cases, first the resources of the tree, and the
newly allocated resources, are freed; then the resources needed by the result are made busy again. The
final result must always match the shape of the input cookie; otherwise, the compiler error "cannot
reclaim" is generated There are some machine dependent ways of preferring results in registers or
memory when there are multiple results matching multiple goals in the cookie.

Reclaim also implements, in a curious way, C's "usual arithmetic conversions". When a value is
generated into a temporary register, reclaim decides what the type and size of the result will be. Unless
automatic conversion is specifically suppressed in the code template with the T macro, reclaim converts
char and short results to int, unsigned char and unsigned short results to unsigned int, and float into
double (for double only floating point arithmetic). This conversion is a simple type pun; no instructions for
converting the value are actually emitted. This implies that registers must always contain a value that is at
least as wide as a register, which greatly restricts the range of possible templates.

The Machine Dependent Interface

The files order.e, loeaI2.e, and table.e, as well as the header file mae2defs, represent the machine
dependent portion of the second pass. The machine dependent portion can be roughly divided into two: the
easy portion and the hard portion. The easy portion tells the compiler the names of the registers, and
arranges that the compiler generate the proper assembler formats, opcode names, location counters, etc.
The hard portion involves the Sethi-Ullman computation, the rewriting rules, and, to some extent, the tem­
plates. It is hard because there are no real algorithms that apply; most of this portion is based on heuristics.
This section discusses the easy portion; the next several sections will discuss the hard portion.

If the compiler is adapted from a compiler for a machine of similar architecture, the easy part is
indeed easy. In mae2defs, the register numbers are defined, as well as various parameters for the stack
frame, and various macros that describe the machine architecture. If double indexing is to be permitted, for
example, the symbol R2REGS is defined. Also, a number of macros that are involved in function call pro­
cessing, especially for unusual function call mechanisms, are defined here.

In loeaI2.e, a large number of simple functions are defined. These do things such as write out
opcodes, register names, and address forms for the assembler. Part of the function call code is defined
here; that is nontrivial to design, but typically rather straightforward to implement. Among the easy rou­
tines in order.e are routines for generating a created label, defining a label, and generating the arguments
of a function call.

These routines tend to have a local effect, and depend on a fairly straightforward way on the target
assembler and the design decisions already made about the compiler. Thus they will not be further treated
here.

S:MM:19-20 A Tour Through the Portable C Compiler

The Rewriting Rules

When a tree fails to match any template, it becomes a candidate for rewriting. Before the tree is
rewritten, the machine dependent routine nexteook is called with the tree and the cookie; it suggests
another cookie that might be a better candidate for the matching of the tree. If all else fails, the templates
are searched with the cookie FORREW, to look for a rewriting rule. The rewriting rules are of two kinds;
for most of the common operators, there are machine dependent rewriting rules that may be applied; these
are handled by machine dependent functions that are called and given the tree to be computed. These rou­
tines may recursively call order or eodgen to cause certain subgoals to be achieved; if they actually call
for some alteration of the tree, they return 1, and the code generation algorithm recanonicalizes and tries
again. If these routines choose not to deal with the tree, the default rewriting rules are applied.

The assignment operators, when rewritten, call the routine setasg. This is assumed to rewrite the
tree at least to the point where there are no side effects in the left hand side. If there is still no template
match, a default rewriting is done that causes an expression such as

a +=b

to be rewritten as

This is a useful default for certain mixtures of strange types (for example, when a is a bit field and b an
character) that otherwise might need separate table entries.

Simple assignment, structure assignment, and all forms of calls are handled completely by the
machine dependent routines. For historical reasons, the routines generating the calls return 1 on failure, 0
on success, unlike the other routines.

The machine dependent routine setbin handles binary operators; it too must do most of the job. In
particular, when it returns 0, it must do so with the left hand side in a temporary register. The default
rewriting rule in this case is to convert the binary operator into the associated assignment operator; since
the left hand side is assumed to be a temporary register, this preserves the semantics and often allows a
considerable saving in the template table.

The increment and decrement operators may be dealt with with the machine dependent routine
senner. If this routine chooses not to deal with the tree, the rewriting rule replaces

x ++

by

((x+=J)-J)

which preserves the semantics. Once again, this is not too attractive for the most common cases, but can
generate close to optimal code when the type of x is unusual.

Finally, the indirection (UNARY MUL) operator is also handled in a special way. The machine
dependent routine offstar is extremely important for the efficient generation of code. Offstar is called with
a tree that is the direct descendant of a UNARY MUL node; its job is to transform this tree so that the com­
bination of UNARY MUL with the transformed tree becomes addressable. On most machines, of/star can
simply compute the tree into an A or B register, depending on the architecture, and then canon will make
the resulting tree into an OREG. On many machines, offstar can profitably choose to do less work than
computing its entire argument into a register. For example, if the target machine supports OREG's with a
constant offset from a register, and of/star is called with a tree of the form

expr + eonst

where eonst is a constant, then offstar need only compute expr into the appropriate form of register. On
machines that support double indexing, offstar may have even more choice as to how to proceed. The
proper tuning of of/star, which is not typically too difficult, should be one of the first tries at optimization
attempted by the compiler writer.

A Tour Through the Portable C Compiler SMM:19-21

The Sethi-Ullman Computation

The heart of the heuristics is the computation of the Sethi-Ullman numbers. This computation is
closely linked with the rewriting rules and the templates. As mentioned before, the Sethi-Ullman numbers
are expected to estimate the number of scratch registers needed to compute the subtrees without using any
stores. However, the original theory does not apply to real machines. For one thing, the theory assumes
that all registers are interchangeable. Real machines have general purpose, floating point, and index regis­
ters, register pairs, etc. The theory also does not account for side effects; this rules out various forms of
pathology that arise from assignment and assignment operators. Condition codes are also undreamed of.
Finally, the influence of types, conversions, and the various addressability restrictions and extensions of
real machines are also ignored.

Nevertheless, for a "useless" theory, the basic insight of Sethi and Ullman is amazingly useful in a
real compiler. The notion that one should attempt to estimate the resource needs of trees before starting the
code generation provides a natural means of splitting the code generation problem, and provides a bit of
redundancy and self checking in the compiler. Moreover, if writing the Sethi-Ullman routines is hard,
describing, writing, and debugging the alternative (routines that attempt to free up registers by stores into
temporaries "on the fly") is even worse. Nevertheless, it should be clearly understood that these routines
exist in a realm where there is no "right" way to write them; it is an art, the realm of heuristics, and, con­
sequently, a major source of bugs in the compiler. Often, the early, crude versions of these routines give
little trouble; only after the compiler is actually working and the code quality is being improved do serious
problem have to be faced. Having a simple, regular machine architecture is worth quite a lot at this time.

The major problems arise from asymmetries in the registers: register pairs, having different kinds of
registers, and the related problem of needing more than one register (frequently a pair) to store certain data
types (such as longs or doubles). There appears to be no general way of treating this problem; solutions
have to be fudged for each machine where the problem arises. On the Honeywell 66, for example, there
are only two general purpose registers, so a need for a pair is the same as the need for two registers. On the
IBM 370, the register pair (0,1) is used to do multiplications and divisions; registers ° and 1 are not gen­
erally considered part of the scratch registers, and so do not require allocation explicitly. On the Interdata
8/32, after much consideration, the decision was made not to try to deal with the register pair issue; opera­
tions such as multiplication and division that required pairs were simply assumed to take all of the scratch
registers. Several weeks of effort had failed to produce an algorithm that seemed to have much chance of
running successfully without inordinate debugging effort. The difficulty of this issue should not be minim­
ized; it represents one of the main intellectual efforts in porting the compiler. Nevertheless, this problem
has been fudged with a degree of success on nearly a dozen machines, so the compiler writer should not
abandon hope.

The Sethi-Ullman computations interact with the rest of the compiler in a number of rather subtle
ways. As already discussed, the store routine uses the Sethi-Ullman numbers to decide which subtrees are
too difficult to compute in registers, and must be stored. There are also subtle interactions between the
rewriting routines and the Sethi-Ullman numbers. Suppose we have a tree such as

A-B

where A and B are expressions; suppose further that B takes two registers, and A one. It is possible to
compute the full expression in two registers by first computing B, and then, using the scratch register used
by B , but not containing the answer, compute A. The subtraction can then be done, computing the expres­
sion. (Note that this assumes a number of things, not the least of which are register-ta-register subtraction
operators and symmetric registers.) If the machine dependent routine setbin, however, is not prepared to
recognize this case and compute the more difficult side of the expression first, the Sethi-Ullman number
must be set to three. Thus, the Sethi-Ullman number for a tree should represent the code that the machine
dependent routines are actually willing to generate.

The interaction can go the other way. If we take an expression such as

*(p+i)

where p is a pointer and i an integer, this can probably be done in one register on most machines. Thus, its
Sethi-Ullman number would probably be set to one. If double indexing is possible in the machine, a

SMM:19-22 A Tour Through the Portable C Compiler

possible way of computing the expression is to load both p and i into registerst and then use double index­
ing. This would use two scratch registers; in such a caset it is possible that the scratch registers might be
unobtainable, or might make some other part of the computation run out of registers. The usual solution is
to cause offstar to ignore opportunities for double indexing that would tie up more scratch registers than
the Sethi-Ullman number had reserved

In summaryt the Sethi-Ullman computation represents much of the craftsmanship and artistry in any
application of the portable compiler. It is also a frequent source of bugs. Algorithms are available that will
produce nearly optimal code for specialized machines, but unfortunately most existing machines are far
removed from these ideals. The best way of proceeding in practice is to start with a compiler for a similar
machine to the target, and proceed very carefully.

Register Allocation

After the Sethi-Ullman numbers are computed, order calls a routine, rallo, that does register alloca­
tion, if appropriate. This routine does relatively little, in general; this is especially true if the target
machine is fairly regular. There are a few cases where it is assumed that the result of a computation takes
place in a particular register; switch and function return are the two major places. The expression tree has
a field, rail, that may be filled with a register number; this is taken to be a preferred register, and the first
temporary register allocated by a template match will be this preferred one, if it is free. If not, no particular
action is taken; this is just a heuristic. If no register preference is present, the field contains NOPREF. In
some cases, the result must be placed in a given register, no matter what. The register number is placed in
rail, and the mask MUSTDO is logically or' ed in with it. In this case, if the subtree is requested in a regis­
ter, and comes back in a register other than the demanded one, it is moved by calling the routine rmove. If
the target register for this move is busy, it is a compiler error.

Note that this mechanism is the only one that will ever cause a register-to-register move between
scratch registers (unless such a move is buried in the depths of some template). This simplifies debugging.
In some cases, there is a rather strange interaction between the register allocation and the Sethi-Ullman
number; if there is an operator or situation requiring a particular register, the allocator and the Sethi­
Ullman computation must conspire to ensure that the target register is not being used by some intermediate
result of some far-removed computation. This is most easily done by making the special operation take all
of the free registers, preventing any other partially-computed results from cluttering up the works.

Template Shortcuts

Some operations are just too hard or too clumsy to be implemented in code templates on a particular
architecture.

One way to handle such operations is to replace them with function calls. The intermediate file read­
ing code in reader.c contains a call to an implementation dependent macro MYREADER; this can be
defined to call various routines which walk the code tree and perform transformations. On the VAX, for
example, unsigned division and remainder operations are far too complex to encode in a template. The
routine hardops is called from a tree walk in myreader to detect these operations and replace them with
calls to the C runtime functions udiv and urem. (There are complementary functions audiv and aurem
which are provided as support for unsigned assignment operator expressions; they are different from udiv
and urem because the left hand side of an assignment operator expression must be evaluated only once.)
Note that arithmetic support routines are always expensive; the compiler makes an effort to notice common
operations such as unsigned division by a constant power of two and generates optimal code for these
inline.

Another escape involves the routine zzzcode. This function is called from expand to process tem­
plate macros which start with the character Z. On the v AX, many complex code generation problems are
swept under the rug into zzzcode. Scalar type conversions are a particularly annoying issue; they are pri­
marily handled using the macro ZA. Rather than creating a template for each possible conversion and
result, which would be tedious and complex given C's many scalar types, this macro allows the compiler to
take shortcuts. Tough conversions such as unsigned into double are easily handled using special code
under ZA. One convention which makes scalar conversions somewhat more difficult than they might oth­
erwise be is the strict requirement that values in registers must have a type that is as wide or wider than a

A Tour Through the Portable C Compiler SMM:19-23

single register. This convention is used primarily to implement the "usual arithmetic conversions" of C,
but it can get in the way when converting between (say) a char value and an unsigned short. A routine
named collapsible is used to determine whether one operation or two is needed to produce a register-width
result.

Another convenient macro is ZP. This macro is used to generate an appropriate conditional test after
a comparison. This makes it possible to avoid a profusion of template entries which essentially duplicate
each other, one entry for each type of test mUltiplied by the number of different comparison conditions. A
related macro, ZN, is used to normalize the result of a relational test by producing an integer 0 or 1.

The macro ZS does the unlovely job of generating code for structure assignments. It tests the size of
the structure to see what VAX instruction can be used to move it, and is capable of emitting a block move
instruction for large structures. On other architectures this macro could be used to generate a function call
to a block copy routine.

The macro ZG was recently introduced to handle the thorny issue of assignment operator expres­
sions which have an integral left hand side and a floating point right hand side. These expressions are
passed to the code generator without the usual type balancing so that good code can be generated for them.
Older versions of the portable compiler computed these expressions with integer arithmetic; with the ZG
operator, the current compiler can convert the left hand side to the appropriate floating type, compute the
expression with floating point arithmetic, convert the result back to integral type and store it in the left hand
side. These operations are performed by recursive calls to zzzcode and other routines related to expand.

An assortment of other macros finish the job of interpreting code templates. Among the more
interesting ones: ZC produces the number of words pushed on the argument stack, which is useful for
function calls; ZD and ZE produce constant increment and decrement operations; ZL and ZR produce the
assembler letter code (I, w or b) corresponding to the size and type of the left and right operand respec­
tively.

Shared Code

The lint utility shares sources with the portable compiler. Lint uses all of the machine independent
pass 1 sources, and adds its own set of "machine dependent" routines, contained mostly in lint.c. Lint
uses a private intermediate file format and a private pass 2 whose source is Ipass2.c. Several modifications
were made to the C scanner in scan.c, conditionally compiled with the symbol LINT, in order to support
lint's convention of passing "pragma" information inside special comments. A few other minor
modifications were also made, e.g. to skip over asm statements.

The [17 and pc compilers use a code generator which shares sources with pass 2 of the portable com­
piler. This code generator is very similar to pass 2 but uses a different intermediate file format Three
source files are needed in addition to the pass 2 sources. fort.c is a machine independent source file which
contains a pass 2 main routine that replaces the equivalent routine in reader.c, together with several rou­
tines for reading the binary intermediate file. fort.c includes the machine dependent file fort.h, which
defines two trivial label generation routines. A header file lusrlincludelpcc.h defines opcode and type sym­
bols which are needed to provide a standard intermediate file format; this file is also included by the For­
tran and Pascal compilers. The creation of this header file made it necessary to make some changes in the
way the portable C compiler is built These changes were made with the aim of minimizing the number of
lines changed in the original sources. Macro symbols in pcc.h are flagged with a unique prefix to avoid
symbol name collisions in the Fortran and Pascal compilers, which have their own internal opcode and type
symbols. A sed (1) script is used to strip these prefixes, producing an include file named pcclocal.h which
is specific to the portable C compiler and contains opcode symbols which are compatible with the original
opcode symbols. A similar sed script is used to produce a file of Yacc tokens for the C grammar.

A number of changes to existing source files were made to accommodate the Fortran-style pass 2.
These changes are conditionally compiled using the symbol FORT. Many changes were needed to imple­
ment single-precision arithmetic; other changes concern such things as the avoidance of floating point
move instructions, which on the VAX can cause floating point faults when a datum is not a normalized float­
ing point value. In earlier implementations of the Fortran-style pass 2 there were a number of stub files
which served only to define the symbol FORT in a particular source file; these files have been removed for

SMM:19-24 A Tour Through the Portable C Compiler

4.3BSD in favor of a new compilation strategy which yields up to three different objects from a single
source file, depending on what compilation control symbols are defined for that file.

The Fortran-style pass 2 uses a Polish Postfix intermediate file. The file is in binary format, and is
logically divided into a stream of 32-bit records. Each record consists of an (opcode, value, type) triple,
possibly followed inline by more descriptive information. The opcode and type are selected from the list
in pcc.h ; the type encodes a basic type, around which may be wrapped type modifiers such as "pointer to"
or "array of' to produce more complex types. The function of the value parameter depends on the
opcode; it may be used for a flag, a register number or the value of a constant, or it may be unused. The
optional inline data is often a null-terminated string, but it may also be a binary offset from a register or
from a symbolic constant; sometimes both a string and an offset appear.

Here are a few samples of intermediate file records and their interpretation:

Opcode

ICON

NAME

OREG

PLUS

FTEXT

Type

int
char

char

80at

Compiler Bugs

Value

flag=O

flag=l

reg=11

size=2

Optional
Data

binary=5

binary=l,
string=ft_foo_1t

offset=l,
string=ltv .2-v .11t

string= It .text 0"

Interpretation

the integer constant 5

a character·1 element in a Fortran common block
/00 at offset 1

the second element of a Fortran character*l array,
expressed as an offset from a static base register

a single precision add

an inline assembler directive of length 2 (32-bit
records)

The portable compiler has an excellent record of generating correct code. The requirement for rea­
sonable cooperation between the register allocation, Sethi-Ullman computation, rewriting rules, and tem­
plates builds quite a bit of redundancy into the compiling process. The effect of this is that, in a surpris­
ingly short time, the compiler will start generating correct code for those programs that it can compile. The
hard part of the job then becomes finding and eliminating those situations where the compiler refuses to
compile a program because it knows it cannot do it right. For example, a template may simply be missing;
this may either give a compiler error of the form "no match for op ... " ,or cause the compiler to go into an
infinite loop applying various rewriting rules. The compiler has a variable, nrecur, that is set to 0 at the
beginning of an expressions, and incremented at key spots in the compilation process; if this parameter gets
too large, the compiler decides that it is in a loop, and aborts. Loops are also characteristic of botches in
the machine-dependent rewriting rules. Bad Sethi-Ullman computations usually cause the scratch registers
to run out; this often means that the Sethi-Ullman number was underestimated, so store did not store some­
thing it should have; alternatively, it can mean that the rewriting rules were not smart enough to find the
sequence that sucomp assumed would be used.

The best approach when a compiler error is detected involves several stages. First, try to get a small
example program that steps on the bug. Second, tum on various debugging flags in the code generator, and
follow the tree through the process of being matched and rewritten. Some flags of interest are -e, which
prints the expression tree, -r, which gives information about the allocation of registers, -a, which gives
information about the performance of rallo, and -0, which gives information about the behavior of order.
This technique should allow most bugs to be found relatively quickly.

Unfortunately, finding the bug is usually not enough; it must also be fixed! The difficulty arises
because a fix to the particular bug of interest tends to break other code that already works. Regression
tests, tests that compare the performance of a new compiler against the performance of an older one, are
very valuable in preventing major catastrophes.

A Tour Through the Portable C Compiler SMM:19-25

Compiler Extensions

The portable C compiler makes a few extensions to the language described by Ritchie.

Single precision arithmetic. "All floating arithmetic in C is carried out in double-precision; when­
ever a float appears in a an expression it is lengthened to double by zero-padding its fraction." -Dennis
Ritchie. 1 Programmers who would like to use C to write numerical applications often shy away from it
because C programs cannot perform single precision arithmetic. On machines such as the v AX which can
cleanly support arithmetic on two (or more) sizes of floating point values, programs which can take advan­
tage of single precision arithmetic will run faster. A very popular proposal for the ANSI C standard states
that implementations may perform single precision computations with single precision arithmetic; some
actual C implementations already do this, and now the Berkeley compiler joins them.

The changes are implemented in the compiler with a set of conditional compilation directives based
on the symbol SPRECC; thus two compilers are generated, one with only double precision arithmetic and
one with both double and single precision arithmetic. The cc program uses a flag -f to select the
single/double version of the compiler (lIiblsccom) instead of the default double only version (lliblccom). It
is expected that at some time in the future the double only compiler will be retired and the single/double
compiler will become the default.

There are a few implementation details of the single/double compiler which will be of interest to
users and compiler porters. To maintain compatibility with functions compiled by the double only com­
piler, single precision actual arguments are still coerced to double precision, and formal arguments which
are declared single precision are still "really" double precision. This may change if function prototypes of
the sort proposed for the ANSI C standard are eventually adopted. Floating point constants are now
classified into single precision and double precision types. The precision of a constant is determined from
context; if a floating constant appears in an arithmetic expression with a single precision value, the constant
is treated as having single precision type and the arithmetic expression is computed using single precision
arithmetic.

Remarkably little code in the compiler needed to be changed to implement the single/double com­
piler. In many cases the changes overlapped with special cases which are used for the Fortran-style pass 2
(lIiblfl). Most of the single precision changes were implemented by Sam Leffler.

Preprocessor extensions. The portable C compiler is normally distributed with a macro preprocessor
written by J. F. Reiser. This preprocessor implements the features described in Ritchie's reference manual;
it removes comments, expands macro definitions and removes or inserts code based on conditional compi­
lation directives. Two interesting extensions are provided by this version of the preprocessor:

• When comments are removed, no white space is necessarily substituted; this has the effect of re­
tokenizing code, since the PCC will reanalyze the input Macros can thus create new tokens by
clever use of comments. For example, the macro definition "#define foo(a,b) a/**/b" creates a
macro [00 which concatenates its two arguments, forming a new token.

• Macro bodies are analyzed for macro arguments without regard to the boundaries of string or charac­
ter constants. The definition "#define bar(a) "a\n'''' creates a macro which returns the literal form of
its argument embedded in a string with a newline appended.

These extensions are not portable to a number of other C preprocessors. They may be replaced in the
future by corresponding ANSI C features, when the ANSI C standard has been formalized.

Summary and Conclusion

The portable compiler has been a useful tool for providing C capability on a large number of diverse
machines, and for testing a number of theoretical constructs in a practical setting. It has many blemishes,
both in style and functionality. It has been applied to many more machines than first anticipated, of a much
wider range than originally dreamed of. Its use has also spread much faster than expected, leaving parts of
the compiler still somewhat raw in shape.

On the theoretical side, there is some hope that the skeleton of the sucomp routine could be gen­
erated for many machines directly from the templates; this would give a considerable boost to the portabil­
ity and correctness of the compiler, but might affect tunability and code quality. There is also room for

SlYIM: 19-26 A Tour Through the Portable C Compiler

more optimization, both within optim and in the form of a portable' 'peephole" optimizer.

On the practical, development side, the compiler could probably be sped up and made smaller
without doing too much violence to its basic structure. Parts of the compiler deserve to be rewritten; the
initialization code, register allocation, and parser are prime candidates. It might be that doing some or all
of the parsing with a recursive descent parser might save enough space and time to be worthwhile; it would
certainly ease the problem of moving the compiler to an environment where Yacc is not already present.

Acknowledgements

I would like to thank the many people who have sympathetically, and even enthusiastically, helped
me grapple with what has been a frustrating program to write, test, and install. D. M. Ritchie and E. N.
Pinson provided needed early encouragement and philosophical guidance; M. E. Lesk, R. Muha, T. G.
Peterson, G. Riddle, L. Rosier, R. W. Mitze, B. R. Rowland, S.1. Feldman, and T. B. London have all con­
tributed ideas, gripes, and all, at one time or another, climbed "into the pits" with me to help debug.
Without their help this effort would have not been possible; with it, it was often kind of fun. -So C. John­
son

Many people have contributed fixes and improvements to the current Berkeley version of the com­
piler. A number of really valuable fixes were contributed by Ralph Campbell, Sam Leffter, Kirk
McKusick, Arthur Olsen, Donn Seeley, Don Speck and Chris Torek, but most of the bugs were spotted by
the legions of virtuous C programmers who were kind enough to let us know that the compiler was broken
and when the heck were we going to get it fixed? Thank you all. -Donn Seeley

References

1. B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs,
New Jersey, 1978.

2. S.C. Johnson, "Lint, a C Program Checker," Compo Sci. Tech. Rep. No. 65, 1978, updated version TM
78-1273-3.

3. A. Snyder, A Portable Colmpiler for the Language C, Master's Thesis, M.I.T., Cambridge, Mass.,
1974.

4. S.C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on Principles of
Programming Languages, pp. 97-104, January 1978.

5. M.E. Lesk, S.C. Johnson, and D.M. Ritchie, The C Language Calling Sequence, 1977.

6. S.C. Johnson, "Yacc - Yet Another Compiler-Compiler," Compo Sci. Tech. Rep. No. 32, Bell Labora­
tories, Murray Hill, New Jersey, July 1975.

7. A.V. Aho and S.C. Johnson, "Optimal Code Generation for Expression Trees," J. Assoc. Compo Mach.,
vo123, no.3, pp. 488-501, 1975. Also in Proc. ACM Symp. on Theory of Computing, pp. 207-217, 1975.

8. R. Sethi and J.D. Ullman, "The Generation of Optimal Code for Arithmetic Expressions," J. Assoc.
Compo Mach., vol 17., no. 4, pp. 715-728, October 1970. Reprinted as pp. 229-247 in Computer Tech­
niques, ed by B.W. Pollack, Auerbach, Princeton, NJ (1972).

9. A.V. Aho, S.C. Johnson, and J.D. Ullman, "Code Generation for Machines with Multiregister Opera­
tions," Proc. 4th ACM Symp. on Principles of Programming Languages, pp. 21-28, January 1977.

Writing NROFF Terminal Descriptions

1. INTRODUCTION

Eric Allman
Britton-Lee, Inc.

As of the Version 7 Phototypesetter release of UNIX, * NROFF has supported terminal description files.
These files describe the characteristics of available hard-copy printers. This document describes some of
the details of how to write terminal description files.

Disclaimer. This document describes the results of my personal experience. The effects of changing
some of the fields from the norms may not be well defined, even if it seems like it "ought" to work given
the descriptions herein. These tables are known to vary slightly for different versions of UNIX. I have not
seen UNIX 3.0 at this time, so this may be irrelevant in that context

2. GENERAL

When NROFF starts up, it looks for a - T flag describing the terminal type. For example, if the com­
mand line is given as

nroff - TIOOs

NROFF prepares output for a DTC300S terminal. This terminal is described in the file lusr/lib/termltab300s
on most systems.

If no -T flag is given, the terminal type 37 (ASR 37 - a relic assumed for historical humor only) is
assumed.

The terminal description table is a stripped" .0" file generated from a data structure, shown in figure
one. This structure can be dealt with in two sections: the terminal capability descriptor (everything to
c ode tab), and the output descriptor.

3. TERMINAL CAPABILITIES

The section of the data structure up to but excluding code tab describes the basic functions and setup
requirements of the terminal. Distances are measured in "units," which are 11240 of an inch in NROFF. In
general, NROFF assumes that there is a "plot mode" on the terminal that allows you to move in small incre­
ments. A terminal has a resolution when in plot mode that is measured in units. This limits how well the
terminal can simulate printing Greek and special characters.

3.1. bset, breset

These fields define bits in a vanilla stty(2) word (sg flags) to set and clear respectively when NROFF
starts. They are normally represented in octal, although you could include <sgtty.h>. [Note: these fields
are presumably different in UNIX 3.0.]

3.2. Hor, Vert

These represent the horizontal and vertical resolution respectively of the terminal when it is in plot
mode. They are given in units.

·UNIX is a trademark of Bell Laboratories.

SMM:20-2

#define INCH 240
struct

1* one inch in units *1

{
int bset; 1* stty bits to set *1
int breset; 1* stty bits to reset *1
int Hor; 1* horizontal resolution in units *1
int Vert; 1* vertical resolution in units *1
int Newline; 1* the distance a newline moves *1
int Char; 1* the distance one char moves *1
intErn; 1* size of an Em *1

Writing NROFF Terminal Descriptions

int Halfline; 1* the distance a hal1line upldown moves *1
int Adj; 1* default adjustment width *1
char *twinit; 1* string to init the terminal *1
char *twrest; 1* string to reset the terminal *1
char *twnl; 1* string to send a newline (CR-LF) *1
char *hlr; 1* half line reverse string *1
char *hlf; 1* half line forward string *1
char *flr; 1* full line reverse string *1
char *bdon; 1* string to turn boldface on *1
char *bdoff; 1* string to turn boldface off *1
char *ploton; 1* string to turn plot on *1
char *plotoff; 1* string to turn plot off *1
char *up; 1* move up in plot mode *1
char *down; 1* move down in plot mode *1
char *right; 1* move right in plot mode *1
char *left; 1* move left in plot mode *1
char *codetab[256-32]; 1* the codes to send for characters *1
int zzz; 1* padding *1

};

Figure 1 - the terminal descriptor data structure

3.3. Newline

This field describes the distance that the twnl field (below) will move the paper; it is literally the size
of a newline.

3.4. Char

This is the distance that a regular character will move the print head to the right

3.5. Em
The "em" is a typesetting unit, approximately equal to the width of the letter "m". In NROFF driver

tables, this must be the distance a space or backspace character will move the carriage.

3.6. Halfline

This is the distance that the hlr or hlfstrings move the print head (reverse or forward respectively).

3.7. Adj

This is the resolution that NROFF will normally adjust your lines to horizontally. Typically this is the
same as Char. If the -e flag is given to NROFF, output resolution will be to the full device resolution.

Writing NROFF Terminal Descriptions SMM:20-3

3.8. twinit, twrest

These strings are output when NROFF starts and finishes respectively.

3.9. twnl

This string is output when NROFF wants to do a carriage return. Typically it will be "\r\n".
Remember, the terminal will normally have CRMOD turned off when this is set.

3.10. hlr, hlf

These strings are sent to move the carriage back or forward one half line respectively. The actual
amount that they moved is defined by Halfiine. The carriage should be left in the same column.

3.11. fir

The string to send to move a full line backwards. This should leave the carriage in the same column.

3.12. bdon, bdotT

These strings are sent to turn boldface mode on and off respectively. Normally this will set the ter­
minal into overstrike mode. If they are not given, some newer versions of NROFF will output the characters
four times to force overstriking.

3.13. ploton, plototT

These strings turn plot mode on and off respectively. In plot mode, the carriage moves a very small
amount, and only under specific control; i.e., characters do not automatically cause any carriage motion.

3.14. up, down, right, left

These strings are only output in plot mode. They should move the carriage up, down, left, and right
respectively; they will move the carriage a distance of Hor or Vert as appropriate.

3.1S. An Example

Consider the following table describing a DTC3OOS:

/*bset*/ 0,
/*breset*/ 0177420,
I*Hor*1 INCH/6O,
I*Vert*! INCH/48 ,
I*Newline*1 INCH/6,
/*Char*/ INCH/1O,
I*Em*! INCH/1O,
1 *Halfline* 1 INCH/12,
1* Adj*! INCH/10,
l*twinit*1 "\033\006" ,
/*twrest*/ "\033\006" ,
l*twnl*1 "\0 1 5\n",
I*hlr*! "\033H",
I*hlf*! "\033h",
!*flr*1 "\032",
!*bdon*/ "" ,
I*bdoff*! "" ,
!*ploton*! "\006",
/*plotoff*1 "\033\006" ,
!*up*1 "\032",
I*down*! "\n" ,
l*right*1 " " ,
I*left*/ "\b",

SMM:20·4 Writing NROFF Terminal Descriptions

This describes a terminal that should have the ALLDELA Y and CRMOD bits turned off, 1/60" horizontal
and 1/48" vertical resolution, six lines per inch and ten characters per inch, including space, halfline takes
1/12" (one half of a full line), should send ESC-control-F to initialize and reset the terminal (to insure that
it is in a normal state), takes <CR><LF> to give a newline, <ESC>H to move back one half line, <ESC>h
to move forward one half line, control-Z to move back one full line, has no bold mode, takes control-F to
enter plot mode and escape-control-F to exit plot mode, and uses control-Z, linefeed, space, and backspace
to move up, down, right, and left respectively when in plot mode.

4. CHARACTER DESCRIPTIONS

There is one character description for each possible character to be output. The easiest way to find
what character corresponds to what position is to edit an existing character table; one is given in the appen­
dix as an example. Character representations are represented as a string per character.

The first character of the string is interpreted as a binary number giving the number of character
spaces taken up by this character. For regular characters this will always be "\001", but Greek and special
characters can take more. If the 0200 bit is set in this character, it indicates that the character should be
underlined if we are in italic (underline) mode. Thus, alphabetic and numeric descriptions will begin
"\201" .

The remainder of the string is output to represent the character. If the first output character (Le., the
second character in the total string) has the 0200 bit set, the character will be output in plot mode so that
fancy characters can be built up from existing characters. If necessary, the "\200" character can be used
as a null character to force NROFF to set the terminal into plot mode. All characters without the 0200 bit are
output literally; characters with the 0200 bit are not output, but are used to indicate local carriage move­
ment The next two bits (0140 bits) represent direction:

0200 right
0240 left
0300 down
0340 up

The bottom five bits represent a distance in terminal resolution units. This is rather confusing, but the
examples should make this much more clear.

4.1. Some Examples

The following examples are from the DTC300S table:

"\001",
"\001=",
"\20 1 A" ,

l*space*1
1*=*1
I*A*I

These entries show that all of these characters take one character width when output. The letter A is under­
lined in italic mode, but neither space nor equal sign is.

"\OOlo\b+", l*bullet*1
"\0020", l*square*1
"\202fi", l*fi*1

The bullet character takes only one character position, but is created by outputing the letter "0" and over­
striking it with a plus sign. The square character is approximated with two brackets; it takes two full char­
acter positions when output. The "fi" ligature is produced using the letters "r' and "i" (surprise!); it is
underlined in italic mode.

"\OOl\241c\202(\241",I*alpha*1
"\00 l\200B\242\3021\202\342" , I*beta* 1

The letters alpha and beta both take a single character position. The alpha is output by entering plot mode,
moving left 1 terminal unit (1/60" if you recall), outputing the letter "c", moving right 2/60", outputing a
left parenthesis, and finally moving left 1/60"; it is critical that the net space moved be zero both horizon­
tally and vertically. The beta first has a dummy 0200 character to enter plot mode but not output anything.
It then outputs a "B", moves left 2/60", moves down 2/48", outputs a vertical bar (which is designed to
particallyoverstrike the left edge of the "B", and finally move right 2/60" and up 2/48" to set us back to

Writing NROFF Terminal Descriptions SMM:20-S

the right place.

5. INSTALLATION

To install a terminal descriptor, make it up by editing an existing terminal descriptor. Assuming your
terminal name is term, call your new descriptor tabterm.c. Then, execute the following commands:

cc -c tabterm.c
strip tabterm.c
cp tabterm.o lusr/lib/termltabterm

The directory lusrlsrc/cmdltroff/term typically has a shell file to do this.

This table describes the DTC 300S.

#define INCH 240
/*
DASI300S
nroff driving tables
width and code tables
*/

struct {
int bset;
int breset;
intHor;
int Vert;
int Newline;
intChar;
intErn;
int Halfiine;
intAdj;
char *twinit;
char *twrest;
char *twnl;
char *hlr;
char *hlf;
char *flr;
char *bdon;
char *bdoff;
char *ploton;
char *plotoff;
char *up;
char *down;
char *right;
char *left;
char *codetab[256-32];
int zzz;
} t= {

/*bset*/ 0,
/*breset*/ 0177420,
/*Hor*/ INCH/60,
/*Vert*/ INCH/48,
/*Newline*/ INCH/6,
/*Char*/INCH/10,
/*Ern*/ INCH/10,
/*Halfiine*/ INCH/12,
/* Adj*/ INCH/10,
/*twinit*/ "\033\006",
/*twrest*/ "\033\006",
/*twnl*/ "\Ol5\n",

SMM:20·6

APPENDIX

A Sample Table

Writing NROFF Terminal Descriptions

Writing NROFF Terminal Descriptions

l*hlr*1
l*hlf*l
l*flr*1
l*bdon*1" " ,
l*bdoff*1
l*ploton*1
l*plotoff*1
l*up*1
l*down*1
l*right*/" ",
1*left*1 "\b",

tI\033HtI ,
tI\033h tl

,

tI\032",

t'" ,
"\006",
"\033\006",
"\032",
"\n",

l*codetab*1
"\001 ", l*space*1
"\001!", I*!*I
"\001\'''',1*''*1
"\001#",1*#*1
"\001$", 1*$*1
"\001%", 1*%*1
"\001&", 1*&*1
"\001''', 1*' close*1
"\001(", 1*(*1
"\001)", 1*)*1
"\001 *",1***1
"\001+",1*+*1
"\001,", 1*,*1
"\001-", 1*- hyphen*1
"\001.", 1*.*1
"\0011", 1*1*1
"\2010",1*0*1
"\2011",1*1*1
"\2012",1*2*1
tI\2013", 1*3*1
"\2014", 1*4*1
tI\2015", 1*5*1
"\2016",1*6*1
tI\2017" , 1*7*1
"\2018",1*8*1
"\2019",1*9*1
tI\OOI:", 1*:*1
"\001;", 1*;*1
"\001<",1*<*1
"\001=",1*=*1
"\001>",/*>*1
tI\OOl 1",1*1*1
"\001@", I*@*I
"\201A",I* A *1
"\201B" ,I*B*I
"\201C",I*C*1
"\2010" ,1*0*1
"\20 IE" ,I*E*I
"\20 IF" , I*F*I
"\201G" ,I*G*I
"\20 1H",I *H*I
"\2011", 1*1*1
"\20 U", 1* J* 1
"\201K" ,I*K*I
n\201L",I*L*1

SMM:20-7

SMM:20·8

"\201M", I*M*I
"\20 IN" ,I*N*I
"\2010" ,1*0*1
"\201P",I*P*1
"\201Q",I*Q*1
"\201R" ,I*R *1
"\2015",1*5*1
"\201T",I*T*1
"\201 U" ,I*U* I
"\201V" ,I*V*I
"\201W", I*W*I
"\201X" ,I*X*I
"\201Y",I*Y*1
"\201Z" ,I*Z*I
"\001[", 1*[*1
"\001\\",1**1
"\001]", 1*]*1
"\001"''', I*A*I
"\001 ",1* dash *1
"\001"\ 1*' open*1
"\201a", l*a*1
"\201b",I*b*1
"\201e", l*e*1
"\201d",I*d*1
"\201e", l*e*1
"\201f', 1*f*1
"\201g", l*g*1
"\201h",I*h*1
"\20li", l*i*1
"\201j", l*j*1
"\201k",I*k*1
"\2011", 1*1*1
"\20 1m" , l*m*1
"\201n",I*n*1
"\2010",1*0*1
"\201p",I*p*1
"\201q",I*q*1
"\201r", 1*r*1
"\2018", 1*8*1
"\20 It'' , l*t*1
"\201u",I*u*1
"\201v",I*v*1
"\201 w" ,I*w* I
"\201x",I*x*1
"\201y", l*y*1
"\201z", l*z*1
"\001 {", I*{*I
"\0011", 1*1*1
"\001}",1*}*1
"\OOr", 1*-*1
"\000\0", I*narrow sp*1
"\001-", l*hyphen*1
"\OOlo\b+", l*bullet*1
"\002(] " , l*square*1
"\001-", 1*3/4 em*1
"\001 ", l*rule*1
"\000\0" , 1* 114 *1

Writing NROFF Terminal Descriptions

Writing NROFF Terminal Descriptions

"\000\0" , 1* 112*1
"\000\0", 1*3/4*1
"\001-", l*minus*1
"\202fi", l*fi*1
"\202fl", I*fl * 1
"\202ff', l*ff*1
"\203ffi", l*ffi*1
"\203ffl", l*ffl*1
"\000\0", l*degree*1
"\000\0" , l*dagger*1
"\000\0", 1* section *1
"\001''', I*foot mark*1
"\001''', I*acute accent*1
"\001 "', I*grave accent*1
"\001 ", l*underrule*1
"\001(', I*slash (longer)*1
"\000\0", I*half narrow space*1
"\001 ", I*unpaddable space*1
"\001\241c\202(\241",I*alpha*1
"\001\2ooB\242\3021\202\342",I*beta*1
"\001\200)\2011\241",I*gamma*1
"\001\2000\342<\302",I*delta*1
"\001 <\b-" , l*epsilon*1
"\001\200c\201\301,\241\343<\302",I*zeta*1
"\001\200n\202\3021\242\342", l*eta*1
"\0010\b-",I*theta*1
"\00 li" , l*iota*1
"\oolk", l*kappa*1
"\001\200\\\304\241 '\301\241 '\345\202", 1*lambda*1
"\001\200u\242,\202",I*mu*1
"\001\241(\2031\242",I*nu*1
"\001\200c\201\301,\241\343c\241\301 '\201\301", l*xi*1
"\0010", l*omicron*1
"\001\341-\303\"\301\"\343",I*pi*1
"\001\2000\242\3021\342\202",I*rho*1
"\001\2000\301\202,341\242",I*sigma*1
"\001\200t\301\202'\243,\201\341",I*tau*1
"\00 1 v", I*upsilon * 1
"\OOlo\b/",I*phi*1
"\00 Ix" , l*chi*1
"\001\2001-\302\202'\244'\202\342",I*psi*1
"\001\241u\203u\242",I*omega*1
"\001\2421\202\343-\303\202'\242", I*Gamma*1
"\001\2421\303-\204-\343\\\242", I*Delta *1
"\0010\b=", I*Theta*1
"\001\2421\204\\\242",I*Lambda*1
"\000\0", I*Xi*1
"\001\2420\204[]\242\343-\303", I*Pi*1
"\001\2oo>\302-\345-\303",I*Sigma*1
"\000\0", 1**1
"\OOIY",I*Upsilon*1
"\oolo\b[\b]",I*Phi*1
"\001\2000-\302\202'\244'\202\342",I*Psi*1
"\001\2000\302\241-\202-\241 \342", I*Omega*1
"\000\0", I*square root*1
"\000\0", I*terminal sigma*1
"\000\0", I*root en*1

SMM:20-9

SMM:20-10

"\OOl>\b ", /*>=*/
"\OOl<\b -It /*<=*/ -' "\00 l=\b_" , /*identicallyequal*/
"\001-", /*equation minus*/
"\OOl=\b-", /*approx =*/
"\000\0", /* approximates */
"\OOl=\b/", /*not equal*/
"\002->", /*right arrow*/
"\002<-", /*left arrow*/
"\OOll\bA

", /*up arrow*/
"\000\0", /*down arrow*/
"\001=", /*equation equal*/
"\OOlx", /*multiply*/
"\00l/", /*divide*/
"\OOl+\b_", /*plus-minus*/
"\OOlU", /*cup (union)*/
"\000\0", /*cap (intersection)*/
"\000\0", /*subset of*/
"\000\0", /*superset of*/
"\000\0", /*improper subset*/
"\000\0", /* improper superset*/
"\00200", /*infinity*/

Writing NROFF Terminal Descriptions

"\00 1\2000\201\301 '\241 \341 '\241\341 '\201\30 I" , /*partial derivati ve* /
"\001\242\\\343-\204-\303/\242", /*gradient*/
"\001\200-\202\341,\301\242" , /*not*/
"\001\200/'\202'\243\306'\241 '\202\346", /*integral sign*/
"\000\0", /*proportional to*/
"\000\0", /*empty set*/
"\000\0", /*member of*/
"\001+", /*equation plus*/
"\00 1r\bO" , /*registered*/
"\00 1c\bO" , /*copyright*/
"\0011", /*box rule */
"\OOlc\b!", /*cent sign*!
"\000\0", /*dbl dagger*!
"\000\0", /*right hand*/
"\001 *", /*left hand*!
"\001 *'\ /*math * */
"\000\0", /*bell system sign*/
"\0011", !*or (was star)*!
"\0010", /*circle*/
"\0011", /*left top (of big curly)*/
"\0011", /*left bottom*/
"\0011", /*right top*!
"\0011", /*right bot*/
"\0011", /*left center of big curly bracket*!
"\0011", /*right center of big curly bracket*!
"\0011", !*bold vertical*!
"\0011", !*left floor (left bot of big sq bract)*!
"\0011", /*right floor (rb of ")*/
"\0011", /*left ceiling (It of ")*/
"\ooll"};/*right ceiling (rt of ")*!

A Dial-Up Network ofUNIXTM Systems

D. A.Nowitz

M.E.Lesk

ABSTRACT

A network of over eighty UNIXt computer systems has been established using the
telephone system as its primary communication medium. The network was designed to
meet the growing demands for software distribution and exchange. Some advantages of
our design are:

1. Purpose

The startup cost is low. A system needs only a dial-up port, but systems with
automatic calling units have much more flexibility.

No operating system changes are required to install or use the system.

The communication is basically over dial-up lines, however, hardwired communi­
cation lines can be used to increase speed.

The command for sending/receiving files is simple to use.

Keywords: networks, communications, software distribution, software mainte­
nance

The widespread use of the UNIX system ritchie thompson bstj 1978 within Bell Laboratories has pro­
duced problems of software distribution and maintenance. A conventional mechanism was set up to distri­
bute the operating system and associated programs from a central site to the various users. However this
mechanism alone does not meet all software distribution needs. Remote sites generate much software and
must transmit it to other sites. Some UNIX systems are themselves central sites for redistribution of a par­
ticular specialized utility, such as the Switching Control Center System. Other sites have particular, often
long-distance needs for software exchange; switching research, for example, is carried on in New Jersey,
illinois, Ohio, and Colorado. In addition, general purpose utility programs are written at all UNIX system
sites. The UNIX system is modified and enhanced by many people in many places and it would be very
constricting to deliver new software in a one-way stream without any alternative for the user sites to
respond with changes of their own.

Straightforward software distribution is only part of the problem. A large project may exceed the
capacity of a single computer and several machines may be used by the one group of people. It then
becomes necessary for them to pass messages, data and other infonnation back an forth between comput­
ers.

Several groups with similar problems, both inside and outside of Bell Laboratories, have constructed
networks built of hardwired connections only. dolotta mas hey 1978 bstj network unix system chesson Our
network, however, uses both dial-up and hardwired connections so that service can be provided to as many
sites as possible.

t UNIX is a trademark of Bell Laboratories.

SMM:21-2 A Dial-Up Network of UNIX Systems

2. Design Goals

Although some of our machines are connected directly, others can only communicate over low-speed
dial-up lines. Since the dial-up lines are often unavailable and file transfers may take considerable time, we
spool all work and transmit in the background. We also had to adapt to a community of systems which are
independently operated and resistant to suggestions that they should all buy particular hardware or install
particular operating system modifications. Therefore, we make minimal demands on the local sites in the
network. Our implementation requires no operating system changes; in fact, the transfer programs look
like any other user entering the system through the normal dial-up login ports, and obeying all local protec­
tion rules.

We distinguish "active" and "passive" systems on the network. Active systems have an automatic
calling unit or a hardwired line to another system, and can initiate a connection. Passive systems do not
have the hardware to initiate a connection. However, an active system can be assigned the job of calling
passive systems and executing work found there; this makes a passive system the functional equivalent of
an active system, except for an additional delay while it waits to be polled. Also, people frequently log into
active systems and request copying from one passive system to another. This requires two telephone calls,
but even so, it is faster than mailing tapes.

Where convenient, we use hardwired communication lines. These permit much faster transmission
and multiplexing of the communications link. Dial-up connections are made at either 300 or 1200 baud;
hardwired connections are asynchronous up to 9600 baud and might run even faster on special-purpose
communications hardware. fraser spider 1974 ieee fraser channel network datamation 1975 Thus, systems
typically join our network first as passive systems and when they find the service more important, they
acquire automatic calling units and become active systems; eventually, they may install high-speed links to
particular machines with which they handle a great deal of traffic. At no point, however, must users
change their programs or procedures.

The basic operation of the network is very simple. Each participating system has a spool directory,
in which work to be done (files to be moved, or commands to be executed remotely) is stored. A standard
program, uucico, performs all transfers. This program starts by identifying a particular communication
channel to a remote system with which it will hold a conversation. Uucico then selects a device and estab­
lishes the connection, logs onto the remote machine and starts the uucico program on the remote machine.
Once two of these programs are connected, they first agree on a line protocol, and then start exchanging
work. Each program in turn, beginning with the calling (active system) program, transmits everything it
needs, and then asks the other what it wants done. Eventually neither has any more work, and both exit

In this way, all services are available from all sites; passive sites, however, must wait until called. A
variety of protocols may be used; this conforms to the real, non-standard world. As long as the caller and
called programs have a protocol in common, they can communicate. Furthermore, each caller knows the
hours when each destination system should be called. If a destination is unavailable, the data intended for
it remain in the spool directory until the destination machine can be reached.

The implementation of this Bell Laboratories network between independent sites, all of which store
proprietary programs and data, illustratives the pervasive need for security and administrative controls over
file access. Each site, in configuring its programs and system files, limits and monitors transmission. In
order to access a file a user needs access permission for the machine that contains the file and access per­
mission for the file itself. This is achieved by first requiring the user to use his password to log into his
local machine and then his local machine logs into the remote machine whose files are to be accessed. In
addition, records are kept identifying all files that are moved into and out of the local system, and how the
requestor of such accesses identified himself. Some sites may arrange to permit users only to call up and
request work to be done; the calling users are then called back before the work is actually done. It is then
possible to verify that the request is legitimate from the standpoint of the target system, as well as the ori­
ginating system. Furthermore, because of the call-back, no site can masquerade as another even if it knows
all the necessary passwords.

Each machine can optionally maintain a sequence count for conversations with other machines and
require a verification of the count at the start of each conversation. Thus, even if call back is not in use, a
successful masquerade requires the calling party to present the correct sequence number. A would-be

Dial-Up Network of UNIX Systems SMM:21-3

impersonator must not just steal the correct phone number, user name, and password, but also the sequence
count, and must call in sufficiently promptly to precede the next legitimate request from either side. Even a
successful masquerade will be detected on the next correct conversation.

3. Processing

The user has two commands which set up communications, uuep to set up file copying, and uux to
set up command execution where some of the required resources (system andlor files) are not on the local
machine. Each of these commands will put work and data files into the spool directory for execution by'
uucp daemons. Figure 1 shows the major blocks of the file transfer process.

File Copy

The uucico program is used to perform all communications between the two systems. It performs
the following functions:

Scan the spool directory for work.

- Place a call to a remote system.

Negotiate a line protocol to be used.

Start program uucico on the remote system.

Execute all requests from both systems.

Log work requests and work completions.

Uucico may be started in several ways;

a) by a system daemon,

b) by one of the uucp or uux programs,

c) by a remote system.

Scan For Work

The file names in the spool directory are constructed to allow the daemon programs (uucieo. uuxqt)
to determine the files they should look at, the remote machines they should call and the order in which the
files for a particular remote machine should be processed.

Call Remote System

The call is made using information from several files which reside in the uucp program directory. At
the start of the call process, a lock is set on the system being called so that another call will not be
attempted at the same time.

The system name is found in a "systems" file. The information contained for each system is:

[1] system name,

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

[5] phone number,

[6] login information (multiple fields).

The time field is checked against the present time to see if the call should be made. The phone
number may contain abbreviations (e.g. "nyc", "boston") which get translated into dial sequences using a
"dial-codes" file. This permits the same "phone number" to be stored at every site, despite local varia­
tions in telephone services and dialing conventions.

A "devices" file is scanned using fields [3] and [4] from the "systems" file to find an available dev­
ice for the connection. The program will try all devices which satisfy [3] and [4] until a connection is
made, or no more devices can be tried. If a non-multiplexable device is successfully opened, a lock file is

S:MM:21-4 A Dial-Up Network of UNIX Systems

created so that another copy of uucico will not try to use it. If the connection is complete, the login infor­
mation is used to log into the remote system. Then a command is sent to the remote system to start the
uucico program. The conversation between the two uucico programs begins with a handshake started by
the called, SLAVE, system. The SLAVE sends a message to let the MASTER know it is ready to receive
the system identification and conversation sequence number. The response from the MASTER is verified
by the SLAVE and if acceptable, protocol selection begins.

Line Protocol Selection

The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol. The calling program checks the
proto-list for a letter corresponding to an available line protocol and returns a use-protocol message. The
use-protocol message is

Ucode

where code is either a one character protocol letter or a N which means there is no common protocol.

Greg Chesson designed and implemented the standard line protocol used by the uucp transmission
program. Other protocols may be added by individual installations.

Work Processing

During processing, one program is the MASTER and the other is SLAVE. Initially, the calling pro­
gram is the MASTER. These roles may switch one or more times during the conversation.

There are four messages used during the work processing, each specified by the first character of the
message. They are

S send a file,
R recei ve a file,
C copy complete,
H hang up.

The MASTER will send R or S messages until all work from the spool directory is complete, at which
point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY, HN, corresponding to
yes or no for each request

The send and receive replies are based on permission to access the requested file/directory. After
each file is copied into the spool directory of the receiving system, a copy-complete message is sent by the
receiver of the file. The message CY will be sent if the UNIX cp command, used to copy from the spool
directory, is successful. Otherwise, a CN message is sent The requests and results are logged on both sys­
tems, and, if requested, mail is sent to the user reporting completion (or the user can request status informa­
tion from the log program at any time).

The hangup response is determined by the SLA VE program by a work scan of the spool directory. If
work for the remote system exists in the SLAVE's spool directory, a HN message is sent and the programs
switch roles. If no work exists, an HY response is sent.

A sample conversation is shown in Figure 2.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and the protocols
are turned off. Each program sends a final "OOtl message to the other.

4. Present Uses

One application of this software is remote mail. Normally, a UNIX system user writes Hmail dan" to
send mail to user "dan". By writing "mail usg!dan" the mail is sent to user "dan" on system "usg".

Dial-Up Network of UNIX Systems SMM:21-5

The primary uses of our network to date have been in software maintenance. Relatively few of the
bytes passed between systems are intended for people to read. Instead, new programs (or new versions of
programs) are sent to users, and potential bugs are returned to authors. Aaron Cohen has implemented a
"stockroom" which allows remote users to call in and request software. He keeps a "stock list" of avail­
able programs, and new bug fixes and utilities are added regularly. In this way, users can always obtain the
latest version of anything without bothering the authors of the programs. Although the stock list is main­
tained on a particular system, the items in the stockroom may be warehoused in many places; typically
each program is' distributed from the home site of its author. Where necessary, uucp does remote-to­
remote copies.

We also routinely retrieve test cases from other systems to determine whether errors on remote sys­
tems are caused by local misconfigurations or old versions of software, or whether they are bugs that must
be fixed at the home site. This helps identify errors rapidly. For one set of test programs maintained by us,
over 70% of the bugs reported from remote sites were due to old software, and were fixed merely by distri­
buting the current version.

Another application of the network for software maintenance is to compare files on two different
machines. A very useful utility on one machine has been Doug McIlroy's "diff" program which compares
two text files and indicates the differences, line by line, between them. hunt mcilroy file Only lines which
are not identical are printed. Similarly, the program "uudiff" compares files (or directories) on two
machines. One of these directories may be on a passive system. The "uudiff" program is set up to work
similarly to the inter-system mail, but it is slightly more complicated.

To avoid moving large numbers of usually identical files, uudiff computes file checksums on each
side, and only moves files that are different for detailed comparison. For large files, this process can be
iterated; checksums can be computed for each line, and only those lines that are different actually moved.

The "uux" command has been useful for providing remote output There are some machines which
do not have hard-copy devices, but which are connected over 9600 baud communication lines to machines
with printers. The uux command allows the formatting of the printout on the local machine and printing on
the remote machine using standard UNIX command programs.

5. Performance

Throughput, of course, is primarily dependent on transmission speed. The table below shows the
real throughput of characters on communication links of different speeds. These numbers represent actual
data transferred; they do not include bytes used by the line protocol for data validation such as checksums
and messages. At the higher speeds, contention for the processors on both ends prevents the network from
driving the line full speed. The range of speeds represents the difference between light and heavy loads on
the two systems. If desired, operating system modifications can be installed that permit full use of even
very fast links.

Nominal speed
300 baud

1200 baud
9600 baud

Characters/sec.
27

100-110
200-850

In addition to the transfer time, there is some overhead for making the connection and logging in ranging
from 15 seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte source program can be
transferred in four minutes instead of the 2 days that might be required to mail a tape.

Traffic between systems is variable. Between two closely related systems, we observed 20 files
moved and 5 remote commands executed in a typical day. A more normal traffic out of a single system
would be around a dozen files per day.

The total number of sites at present in the main network is 82, which includes most of the Bell
Laboratories full-size machines which run the UNIX operating system. Geographically, the machines range
from Andover, Massachusetts to Denver, Colorado.

Uucp has also been used to set up another network which connects a group of systems in operational
sites with the home site. The two networks touch at one Bell Labs computer.

SMM:21-6 A Dial-Up Network of UNIX Systems

6. Further Goals

Eventually, we would like to develop a full system of remote software maintenance. Conventional
maintenance (a support group which mails tapes) has many well-known disadvantages. brooks mythical
man month 1975 There are distribution errors and delays, resulting in old software running at remote sites
and old bugs continually reappearing. These difficulties are aggravated when there are 100 different small
systems, instead of a few large ones.

The availability of file transfer on a network of compatible operating systems makes it possible just
to send programs directly to the end user who wants them. This avoids the bottleneck of negotiation and
packaging in the central support group. The "stockroom" serves this function for new utilities and fixes to
old utilities. However, it is still likely that distributions will not be sent and installed as often as needed.
Users are justifiably suspicious of the "latest version" that has just arrived; all too often it features the
"latest bug." What is needed is to address both problems simultaneously:

1. Send distributions whenever programs change.

2. Have sufficient quality control so that users will install them.

To do this, we recommend systematic regression testing both on the distributing and receiving systems.
Acceptance testing on the receiving systems can be automated and permits the local system to ensure that
its essential work can continue despite the constant installation of changes sent from elsewhere. The work
of writing the test sequences should be recovered in lower counseling and distribution costs.

Some slow-speed network services are also being implemented. We now have inter-system "mail"
and "diff," plus the many implied commands represented by "uux." However, we still need inter-system
"write" (real-time inter-user communication) and "who" (list of people logged in on different systems).
A slow-speed network of this sort may be very useful for speeding up counseling and education, even if not
fast enough for the distributed data base applications that attract many users to networks. Effective use of
remote execution over slow-speed lines, however, must await the general installation of multiplexable
channels so that long file transfers do not lock out short inquiries.

7. Lessons

The following is a summary of the lessons we learned in building these programs.

1. By starting your network in a way that requires no hardware or major operating system changes, you
can get going quickly.

2. Support will follow use. Since the network existed and was being used, system maintainers were
easily persuaded to help keep it operating, including purchasing additional hardware to speed traffic.

3. Make the network commands look like local commands. Our users have a resistance to learning
anything new: all the inter-system commands look very similar to standard UNIX system commands
so that little training cost is involved.

4. An initial error was not coordinating enough with existing communications projects: thus, the first
version of this network was restricted to dial-up, since it did not support the various hardware links
between systems. This has been fixed in the current system.

Acknowledgements

We thank O. L. Chesson for his design and implementation of the packet driver and protocol, and A.
S. Cohen, J. Lions, and P. F. Long for their suggestions and assistance. $LIST$

Introduction

The Berkeley UNIxt
Time Synchronization Protocol

Riccardo Gusella, Stefano Zatti, and James M. Bloom

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

The Time Synchronization Protocol (TSP) has been designed for specific use by the program timed, a
local area network clock synchronizer for the UNIX 4.3BSD operating system. Timed is built on the
DARPA UDP protocol [4] and is based on a master slave scheme.

TSP serves a dual purpose. First, it supports messages for the synchronization of the clocks of the
various hosts in a local area network. Second, it supports messages for the election that occurs among
slave time daemons when, for any reason, the master disappears. The synchronization mechanism and the
election procedure employed by the program timed are described in other documents [1,2,3].

Brieft.y, the synchronization software, which works in a local area network, consists of a collection of
time daemons (one per machine) and is based on a master-slave structure. The present implementation
keeps processor clocks synchronized within 20 milliseconds. A master time daemon measures the time
difference between the clock of the machine on which it is running and those of all other machines. The
current implementation uses ICMP Time Stamp Requests [5] to measure the clock difference between
machines. The master computes the network time as the average of the times provided by nonfaulty
clocks.1 It then sends to each slave time daemon the correction that should be performed on the clock of its
machine. This process is repeated periodically. Since the correction is expressed as a time difference
rather than an absolute time, transmission delays do not interfere with synchronization. When a machine
comes up and joins the network, it starts a slave time daemon, which will ask the master for the correct
time and will reset the machine's clock before any user activity can begin. The time daemons therefore
maintain a single network time in spite of the drift of clocks away from each other.

Additionally, a time daemon on gateway machines may run as a submaster. A submaster time dae­
mon functions as a slave on one network that already has a master and as master on other networks. In
addition, a submaster is responsible for propagating broadcast packets from one network to the other.

To ensure that service provided is continuous and reliable, it is necessary to implement an election
algorithm that will elect a new master should the machine running the current master crash, the master ter­
minate (for example, because of a run-time error), or the network be partitioned. Under our algorithm,
slaves are able to realize when the master has stopped functioning and to elect a new master from among
themselves. It is important to note that since the failure of the master results only in a gradual divergence

t UNIX is a trademark of Bell Laboratories.
This work was sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by the Naval Electronics
Systems Command under contract No. NOOO39-84-C-0089, and by the Italian CSELT Corporation. The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing official
policies, either expressed or implied, of the Defense Research Projects Agency. of the US Government, or of CSEL T.

1 A clock is considered to be faulty when its value is more than a small specified interval apart from the majority of the
clocks of the machines on the same network. See [1,2] for more details.

SMM:22-2 The Berkeley UNIX Time Synchronization Protocol

of clock values, the election need not occur immediately.

All the communication occurring among time daemons uses the TSP protocol. While some mes­
sages need not be sent in a reliable way, most communication in TSP requires reliability not provided by
the underlying protocol. Reliability is achieved by the use of acknowledgements, sequence numbers, and
retransmission when message losses occur. When a message that requires acknowledgment is not ack­
nowledged after multiple attempts, the time daemon that has sent the message will assume that the addres­
see is down. This document will not describe the details of how reliability is implemented, but will only
point out when a message type requires a reliable transport mechanism.

The message format in TSP is the same for all message types; however, in some instances, one or
more fields are not used. The next section describes the message format. The following sections describe
in detail the different message types, their use and the contents of each field. NOTE: The message format
is likely to change in future versions of timed.

Message Format

All fields are based upon 8-bit bytes. Fields should be sent in network byte order if they are more
than one byte long. The structure of a TSP message is the following:

1) A one byte message type.

2) A one byte version number, specifying the protocol version which the message uses.

3) A two byte sequence number to be used for recognizing duplicate messages that occur when mes­
sages are retransmitted.

4) Eight bytes of packet specific data. This field contains two 4 byte time values, a one byte hop count,
or may be unused depending on the type of the packet

5) A zero-terminated string of up to 256 ASCII characters with the name of the machine sending the
message.

The following charts describe the message types t show their fields, and explain their usages. For the
purpose of the following discussion, a time daemon can be considered to be in one of three states: slave,
master, or candidate for election to master. Also, the term broadcast refers to the sending of a message to
all active time daemons.

Adjtime Message

Byte 1 I Byte 2 I B!te 3 1 Byte 4
Type l Version No. 1 Sequence No.

Seconds of Adjustment
Microseconds of Adjustment

Machine Name
...

Type: TSP _ADJTIME (1)

The master sends this message to a slave to communicate the difference between the clock of the
slave and the network time the master has just computed The slave will accordingly adjust the time of its
machine. This message requires an acknowledgment

The Berkeley UNIX Time Synchronization Protocol SMM:22-3

Acknowledgment Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ ACK (2)

Both the master and the slaves use this message for acknowledgment only. It is used in several
different contexts, for example in reply to an Adjtime message.

Master Request Message

Byte 1 I Byte 2 I Byte 3 I Byte 4

Type I Version No. I Sequence No.
(unused)
(unused)

Machine Name

· ..
Type: TSP _MASTERREQ (3)

A newly-started time daemon broadcasts this message to locate a master. No other action is implied
by this packet. It requires a Master Acknowledgment

Master Acknowledgement

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _MASTERACK (4)

The master sends this message to acknowledge the Master Request message and the Conflict
Resolution Message.

SMM:22-4 The Berkeley UNIX Time Synchronization Protocol

Set Network Time Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

Seconds of Time to Set
Microseconds of Time to Set

Machine Name

· ..

The master sends this message to slave time daemons to set their time. This packet is sent to newly
started time daemons and when the network date is changed It contains the master's time as an
approximation of the network time. It requires an acknowledgment. The next synchronization round will
eliminate the small time difference caused by the random delay in the communication channel.

Master Active Message

Byte 1 I Byte 2 I Byte 3 I Bvte4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ MASTERUP (6)

The master broadcasts this message to solicit the names of the active slaves. Slaves will reply with a
Slave Active message.

Slave Active Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ SLA VEUP (7)

A slave sends this message to the master in answer to a Master Active message. This message is also
sent when a new slave starts up to inform the master that it wants to be synchronized.

The Berkeley UNIX Time Synchronization Protocol SMM:22-5

Master Candidature Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ELECTION (8)

A slave eligible to become a master broadcasts this message when its election timer expires. The
message declares that the slave wishes to become the new master.

Candidature Acceptance Message

Byte 1 I Byte 2 J Bxte3 J Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ACCEPT (9)

A slave sends this message to accept the candidature of the time daemon that has broadcast an
Election message. The candidate will add the slave's name to the list of machines that it will control
should it become the master.

Candidature Rejection Message

Byte 1 I Byte 2 J Bj'te 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _REFUSE (10)

After a slave accepts the candidature of a time daemon, it will reply to any election messages from
other slaves with this message. This rejects any candidature other than the first received.

SMM:22-6 The Berkeley UNIX Time Synchronization Protocol

Multiple Master Notification Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type 1 Version No.1 Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _CONFLICT (11)

When two or more masters reply to a Master Request message, the slave uses this message to inform
one of them that more than one master exists.

Conflict Resolution Message

Byte 1 I Byte 2 J Byte 3 1 Byte 4

Type I Version No. I Sequence Noo
(unused)
(unused)

Machine Name

· ..
Type: TSP _RESOLVE (12)

A master which has been informed of the existence of other masters broadcasts this message to
determine who the other masters are.

Quit Message

Byte 1 I Byte 2 I Byte 3 1 Bj'Je 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _QUIT (13)

This message is sent by the master in three different contexts: 1) to a candidate that broadcasts an
Master Candidature message, 2) to another master when notified of its existence, 3) to another master if a
loop is detected. In all cases, the recipient time daemon will become a slave. This message requires an
acknowledgement

The Berkeley UNIX Time Synchronization Protocol SMM:22-7

Set Date Message

Byte 1 I Byte 2 I Byte 3 I Byte 4

Type I Version No. J Sequence No.

Seconds of Time to Set

Microseconds of Time to Set

Machine Name

· ..
Type: TSP _ SETDA TE (22)

The program date (1) sends this message to the local time daemon when a super-user wants to set the
network date. If the local time daemon is the master, it will set the date; if it is a slave, it will communicate
the desired date to the master.

Set Date Request Message

Byte 1 I Byte 2 I Byte 3 I Byte 4

Type I Version No. I Sequence No.

Seconds of Time to Set

Microseconds of Time to Set

Machine Name

· ..
Type: TSP _ SETDATEREQ (23)

A slave that has received a Set Date message will communicate the desired date to the master using
this message.

Set Date Acknowledgment Message

Byte 1 I Byte 2 I Byte 3 I Byte 4

Type I Version No. I Sequence No.

(unused)

(unused)

Machine Name

· ..
Type: TSP _ DATEACK (16)

The master sends this message to a slave in acknowledgment of a Set Date Request Message. The
same message is sent by the local time daemon to the program date(1) to confirm that the network date has
been set by the master.

S:MM:22-8 The Berkeley UNIX Time Synchronization Protocol

Start Tracing Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ TRACEON (17)

The controlling program timedc sends this message to the local time daemon to start the recording in
a system file of all messages received.

Stop Tracing Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _TRACEOFF (18)

Timedc sends this message to the local time daemon to stop the recording of messages received.

Master Site Message

Byte 1 I Byte 2 I Byte 3 I Byte 4
Type I Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _MSITE (19)

Timedc sends this message to the local time daemon to find out where the master is running.

The Berkeley UNIX Time Synchronization Protocol S:M:M:22-9

Remote Master Site Message

Byte 1 J Byte 2 I Byte 3 I Byte 4

Type 1 Version No. I Sequence No.

(unused)
(unused)

Machine Name

· ..
Type: TSP _ MSlTEREQ (20)

A local time daemon broadcasts this message to find the location of the master. It then uses the
Acknowledgement message to communicate this location to timedc.

Test Message

Byte 1 I Byte 2 I Byte 3 I Byte 4

Type I Version No. I Sequence No.
(unused)

(unused)

Machine Name

· ..
Type: TSP _TEST (21)

For testing purposes, timedc sends this message to a slave to cause its election timer to expire.
NOTE: timed is not normally compiled to support this.

Loop Detection Message

Byte 1 Byte 2 I Byte 3 I Byte 4

Type Version No. J Sequence No. I

Hop Count (unused)
(unused)

Machine Name

· ..

This packet is initiated by all masters occasionally to attempt to detect loops. All submasters forward
this packet onto the networks over which they are master. If a master receives a packet it sent out initially,
it knows that a loop exists and tries to correct the problem.

SMM:22-10 The Berkeley UNIX Time Synchronization Protocol

References

1. R. Gusella and S. Zatti, TEMPO: A Network Time Controller for Distributed Berkeley UNIX System,
USENIX Summer Conference Proceedings, Salt Lake City, June 1984.

2. R. Gusella and S. Zatti, Clock Synchronization in a Local Area Network, University of California,
Berkeley, Technical Report, to appear.

3.: . R.Gusella and S. Zatti, An Election Algorithm for a Distributed Clock Synchronization Program,
University of California, Berkeley, CS Technical Report #275, Dec. 1985.

4. Postel, J., User Datagram Protocol, RFC 768. Network Information Center, SRI International,
Menlo Park, California, August 1980 .

•.
5. Postel, J., Internet Control Message Protocol, RFC 792. Network Information Center, SRI Interna-

tional, Menlo Park, California, September 1981.

II lntegrated Solutions

H DOCUMENTATION COMMEN,TS~;;

AN N8I

COMPANV

Please take a minute to comment on the accuracy and completeness of this manual. Your assistance will help us
to better identify and respond to specific documentation issues. If necessary, you may attach. an a4ditionalpage
with comments. Thank you in advance for your cooperation. ;,"/,;;

I Manual Title: UNIX System Manager's Manual (SMM) Part Number: 490148 Rev.E'

Name: Title:
, >,'

Company:. _______________ _ Phone: ()--------------------
Admess: __ __

City:

1. Please rate this manual for the following:

Poor Fair

Clarity
Completeness
Organization
Technical Content! Accuracy
Readability

Please comment:

o
o
o
D
o

o
o
o
o
o

2. Does this manual contain enough examples and figures?
Yes 0 NoD

Please comment:

3. Is any information missing from this manual?
YesD NoD

Please comment:

4. Is this manual adequate for your purposes?
YesD NoD

Please comment on how this manual can be improved:

State: Zip Code: ______ _

Good Excellent

0 0
0 0
0 0
0 0
0 0

Fold Down First --_.

BUSINESS REPLY MAIL
First-Class Mail Permit No. 7628 San Jose, California 95131

Postage will be paid by addressee

• II
AnNSI

Company

Integrated Solutions
A TIN: Technical Publications Manager
1140 Ringwood Court
San Jose, CA 95131

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

------------'----------- - _-------------------
~old Up Second

Staple Here

