UNIX System Manager’s Manual
- (SMM)

43 Berkeley Software Distribution,
490148 Rev.E

December 1988

SanJos@, CA 95131
(408)- 943 1902 |

*.Copyright 1979, 1980, 111983, ::1986,-11987,,71988 -Regents": of - the:

- Univetsity: of Califorrii4. Pérthission to copy -these documerits or any’
portion thereof as necessary for licensed use of the. software. is granted
to licensees of this software, provided this copyright notice and
statement of permission are included.

Copyright 1979, AT&T Bell Laboratories, Incorporated. Heolders of
UNIX™/32V, System I, or System V software licenses are permitted
to:copy these documents, or any portion of.them, as nece§§ary or
licensed use of the -software, provided this copyright metice, and:
statement of permission are included.

T ’I‘hrs mafiual reflécts” $ystenri- enhancements ‘made at' Berkeley "and:
sponsored in part by thé'Defenise: Advéahced Research Projects Agency -
(DoD), Arpa Order: No. 4871 monitored by the Naval Electrqmcs,

. Systems Command under contract No. N0O0039- 84-C-0089. The views

-angd conclusions contamed in these documents are those of the authors"
and should not be interpreted as representing official pohmes, either”
expressed or implied, of the Defense Research Projects Agency or of the
US Government.

-UNIX is a registered trademark of AT&T in the USA and other.
‘countries.

4.2BSD-and 4.3BSD were developed by t.he Regents of the University
of California (Berkeleir), Electrical’ Engmeermg and Compilter Sciences
Departments. ’

DEC, VAX, and: LSI-II are uademarks of Digital * Equipmént
Corporation.;;

UNIX System Manager’s Manual (SMM)
4.3 Berkeley Software Distribution

December 1987

This volume containis manual,pages- and sypplementary-documents useful to;systom,administrators.
The information in these docume&w applies to-the Vutua} vAxvgl version:pfithe system as distributed by
U.C. Berkeley.

®)
Reference Manual — Section 8

Section 8 of the UNIX Programmer s Manual contains information related to system operation,
administration, and maintenance:

System Installation and Administration

UNIX 4.3BSD System Administrator Guide SMM:1

This guide contains mstrucuons on the.. installation .and operation .of UNIX 4.3BSD on
Integrated Solutions, Inc. (IST) computer systems.and CRUboaJ;ds

Building 4.3BSD UNIX' Systems wnh Config SMM:2

In-depth dlscussmns of thé use and operation-of ‘the config program; afid’ how o Bifild your
very own Unix kemel

Using ADB to Debug the Kernel SMM:3
Techniques for figuring out after the fact why the kernel crashed.

Disc Quotas in a UNIXEnvu'onment SMM:4
A hght introduction to ‘the techmques for hmmng the luse of disc resourcés. '

Fsck — The UNIX File System Check Program SMM:5
- A reference document for using the fsck program durmg times of file systcm distress. ‘

Line Printer Spooler Manual SMM:6
This document describes the structure and installation procedure for the line printer spooling
system.

Sendmail Installation and Operation Guide SMM:7

The last word in installing and operating the sendmail program.

SMM Contents
Timed Installation and Operation Guide SMM:&
Describes how to maintain time synchronization between-machines in a local network,

UUCP Implementation Description - SMM:9
Describes the implementation of uucp; for the installer and administrator.

USENET Version B Installation SMM:10
How to install and maintain the News system.

Name Server Operations Guide SMM:11
If you have a network this will be of interest.

Supporting Documentation

Bug Fixes and Changes in 4.3BSD SMM:12
This document summarizes changes visible to the user accustomed to 4.2BSD.

Changes to the Kernel in 4.3BSD SMM:13
A sumxhary for the hard-core of changes in the kernel from 4.2BSD to 4.3BSD.

A Fast File System for UNIX SMM:14
" A description of the 4.2BSD file system organization, design and implementation.

4.3BSD Networking Implementation Notes ‘ SMM:15
_ A concise descn'ption of the system interfaces used within the networking subsystem.

Sendmail - An Internetwork Mail Router SMM:16
An overview document on the design and implementation of sendmail.

On the Security of UNIX SMM:17
~ Hints on how to break UNIX, and how to avoid your system being broken.

Password Security — A Case History SMM:18
- How the bad guys used to be able to break the password algorithm, and why they cannot now

(at least not so'easily). =
A Tour Through the Portable C Compiler | SMM:19

How the portable C compiler works igside.

Writing NROFF Terminal Descriptions SMM:20
A description of how to add a printer with new characteristics to Version 7 nroff.

A Dial-Up Network of UNIX Systems SMM:21
Describes UUCP, a program for communicating files between UNIX systems.

SMM Contents

The BerkeleyUNIX Time Synchronization Protocol SMM:22
The protocols and algorithms used by timéd, the network tine synchronization daemon.

8. System Maintenance

TABLE OF CONTENTS

intro introduction to system maintenance and operation commands
XNSrouted NS Routing Information Protocol daemon
ac login accounting
adduser procedure for adding new users
admin perform routine system administration tasks automatically
arp address resolution display and control
bad144 read/write dec standard 144 bad sector information
badsect create files to contain bad sectors
bugfiler file bug reports in folders automatically
catman create the cat files for the manual
chown change owner
clri clear i-node
comsat biff server
config build system configuration files
crash what happens when the system crashes
cron clock daemon
dcheck file system directory consistency check
diskpart calculate default disk partition sizes
diskst determine and print disk geometry
dmesg collect system diagnostic messages to form error log
drtest standalone disk test program
dump incremental file system dump
dumpfs dump file system information
edquota edit user quotas
fastboot reboot/halt the system without checking the disks
fingerd remote user information server
fsck file system consistency check and interactive repair
ftpd DARPA Internet File Transfer Protocol server
gdbad IST test disk for bad sector rand reassign
gettable get NIC format host tables from a host
getty set terminal mode
halt stop the processor
htable convert NIC standard format host tables
icheck file system storage consistency check
ifconfig configure network interface parameters
implog IMP log interpreter
implogd IMP logger process
inetd internet ‘‘super—server’’
init process control initialization
kgmon generate a dump of the operating system’s profile buffers
killpg terminate all members of a process group
ksymbol configures the kernel debugger symbol table
Ipc line printer control program
Ipd line printer daecmon
makedev make system special files
makekey generate encryption key
mkfs construct a file system
mkhosts generate hashed host table
mklost+found make a lost+found directory for fsck
mknod build special file
mkpasswd generate hashed password table
mkproto construct a prototype file system
mount mount and dismount filesystems

INTEGRATED SOLUTIONS 4.3 BSD

-vii - April 1988

Table of Contents

named Internet domain name server
ncheck generate names from i-numbers
newfs construct a new file system
nwstat nwstat— report Ethernet Packet Transmission Firmware status
pac printer/plotter accounting information
ping send ICMP ECHO_REQUEST packets to network hosts
pstat print system facts
quot summarize file system ownership
quotacheck check file system quota consistency
quotaon turn file system quotas on and off
Ic command script for auto-reboot and daemons
rdump file system dump across the network
reboot UNIX bootstrapping procedures
renice alter priority of running processes
repquota summarize quotas for a file system
restore incremental file system restore
rexecd Temote execution server
rlogind remote login server
mt remote magtape protocol module
route manually manipulate the routing tables
routed network routing daemon
rrestore restore a file system dump across the network
rshd remote shell server
rwhod system status server
rxformat format floppy disks
sa system accounting
savecore save a core dump of the operating system
scsimon ISI SCSI bus utility
sendmail send mail over the internet
shutdown close down the system at a given time
slattach attach serial lines as network interfaces
spconfig build spanned disk configuration files
sticky persistent text and append-only directories
swapon specify additional device for paging and swapping
sync update the super block
syslogd log systems messages
talkd remote user communication server
telnetd DARPA TELNET protocol server
tftpd DARPA Trivial File Transfer Protocol server
timed time server daemon
timedc timed control program
trpt transliterate protocol trace
trsp transliterate sequenced packet protocol trace
tunefs tune up an existing file system
update periodically update the super block
uucico transfer files queued by uucp or uux
uuclean uucp spool directory clean-up
uupoll poll a remote UUCP site
uusnap show snapshot of the UUCP system
uuxqt UUCP execution file interpreter
vipw edit the password file

Zic

time zone compiler

April 1988

- viii - INTEGRATED SOLUTIONS 4.3 BSD

INTRO(8) UNIX Programmer’s Manual INTRO(8)

NAME
intro — introduction to system maintenance and operation commands

DESCRIPTION
This section contains information related to system operation and maintenance. It describes commands
used to create new file systems, newfs, verify the integrity of the file systems, fsck, control disk usage,
edquota, maintain system backups, dump, and recover files when disks die an untimely death, restore.
The section format should be consulted when formatting disk packs. Network related services are dis-
tinguished as 8C. The section crash should be consulted in understanding how to interpret system crash
dumps.

May 29, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

XNSROUTED(8C) UNIX Programmer’s Manual XNSROUTED (8C)

NAME

XNSrouted - NS Routing Information Protocol daemon

SYNOPSIS

fetc/XNSrouted [options] [logfile]

DESCRIPTION

XNSrouted is invoked at boot time to manage the Xerox NS routing tables. The NS routing daemon uses
the Xerox NS Routing Information Protocol in maintaining up to date kernel routing table entries.

In normal operation XNSrouted listens for routing information packets. If the host is connected to multi-
ple NS networks, it periodically supplies copies of its routing tables to any directly connected hosts and
networks.

When XNSrouted is started, it uses the SIOCGIFCONF ioctl to find those directly connected interfaces
configured into the system and marked ‘‘up’’ (the software loopback interface is ignored). If multiple
interfaces are present, it is assumed the host will forward packets between networks. XNSrouted then
transmits a request packet on each interface (using a broadcast packet if the interface supports it) and
enters a loop, listening for request and response packets from other hosts.

When a request packet is received, XNSrouted formulates a reply based on the information maintained in
its internal tables. The response packet generated contains a list of known routes, each marked with a
““hop count’’ metric (a count of 16, or greater, is considered “‘infinite’’). The metric associated with each
route returned provides a metric relative to the sender.

Response packets received by XNSrouted are used to update the routing tables if one of the following con-

ditions is satisfied:

1) No routing table entry exists for the destination network or host, and the metric indicates the desti-
nation is ‘‘reachable’’ (i.e. the hop count is not infinite).

) The source host of the packet is the same as the router in the existing routing table entry. That is,
updated information is being received from the very internetwork router through which packets
for the destination are being routed.

3) The existing entry in the routing table has not been updated for some time (defined to be 90
seconds) and the route is at least as cost effective as the current route.

4) The new route describes a shorter route to the destination than the one currently stored in the rout-
ing tables; the metric of the new route is compared against the one stored in the table to decide
this.

When an update is applied, XNSrouted records the change in its internal tables and generates a response

packet to all directly connected hosts and networks. Routed waits a short period of time (no more than 30

seconds) before modifying the kernel’s routing tables to allow possible unstable situations to settle.

In addition to processing incoming packets, XNSrouted also periodically checks the routing table entries.
If an entry has not been updated for 3 minutes, the entry’s metric is set to infinity and marked for deletion.
Deletions are delayed an additional 60 seconds to insure the invalidation is propagated to other routers.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds to all directly
connected hosts and networks.

OPTIONS .
-S Forces XNSrouted to supply routing information whether it is acting as an internetwork router or
not.
—-q Prevents XNSrouted from supplying routing information whether it is acting as an internetwork

router or not. (The —q option is the opposite of the —s option.)

-t Prints on the standard output all packets sent or received. In addition, XNSrouted will not
divorce itself from the controlling terminal so that interrupts from the keyboard will kill the

June 4, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

XNSROUTED (8C) UNIX Programmer’s Manual XNSROUTED (8C)

process.

Any other argument supplied is interpreted as the name of file in which XNSrouted’s actions should be
logged. This log contains information about any changes to the routing tables and a history of recent mes-
sages sent and received which are related to the changed route.

SEE ALSO
‘“Internet Transport Protocols’’, XSIS 028112, Xerox System Integration Standard.
idp(4P)

June 4, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

AC(8) UNIX Programmer’s Manual AC(8)

NAME

ac — login accounting
SYNOPSIS

letc/ac [options] [users] ...

DESCRIPTION
Ac produces a printout giving connect time for each user who has logged in during the life of the current
wtmp file. Aec also prints out the total of all the connect times. Specifying users limits the printout to those
login names. If you do not specify another wtmp file with the —w option, ac uses /usr/adm/wtmp.

The accounting file /usr/adm/wtmp is maintained by init and login. Neither of these programs creates the
file, so if it does not exist no connect-time accounting is done. To start accounting, this file should be
created with length 0. On the other hand if the file is left undisturbed it will grow without bound. The sys-
tem manager should periodically collect any information he or she wants, then truncate the file.

OPTIONS
-d Orders a printout of the accounting for each midnight to midnight period.

~p Prints individual totals.
—w wtmp
Specifies an alternate wtmp file,

FILES
/usr/adm/wtmp

SEE ALSO
init(8), sa(8), login(1), utmp(5).

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD o1

ADDUSER (8) UNIX Programmer’s Manual ADDUSER (8)

NAME

adduser — procedure for adding new users

DESCRIPTION

A new user must choose a login name, which must not zilready appear in /etc/passwd. An account can be
added by editing a line into the passwd file; this must be done with the password file locked e.g. by using
vipw(8).

A new user is given a group and user id. User id’s should be distinct across a system, since they are used
to control access to files. Typically, users working on similar projects will be put in the same group. Thus
at UCB we have groups for system staff, faculty, graduate students, and a few special groups for large pro-
jects. System staff is group ‘10"’ for historical reasons, and the super-user is in this group.

A skeletal account for a new user ‘‘ernie’’ would look like:
ernie::235:20:& Kovacs,508E,7925,6428202:/mnt/grad/ernie:/bin/csh

The first field is the login name ‘‘ernie’’. The next field is the encrypted password which is not given and
must be initialized using passwd(1). The next two fields are the user and group id’s. Traditionally, users
in group 20 are graduate students and have account names with numbers in the 200’s. The next field gives
information about ernie’s real name, office and office phone and home phone. This information is used by
the finger(1) program. From this information we can tell that ernie’s real name is ‘“Ernie Kovacs’’ (the &
here serves to repeat ‘‘ernie’’ with appropriate capitalization), that his office is 508 Evans Hall, his exten-
sion is x2-7925, and this his home phone number is 642-8202. You can modify the finger(1) program if
necessary to allow different information to be encoded in this field. The UCB version of finger knows
several things particular to Berkeley — that phone extensions start ‘2—, that offices ending in ‘*‘E’’ are in
Evans Hall and that offices ending in ‘“‘C’’ are in Cory Hall. The chfn(1) program allows users to change
this information.

The final two fields give a login directory and a login shell name. Traditionally, user files live on a file sys-
tem different from /usr. Typically the user file systems are mounted on a directories in the root named
sequentially starting from from the beginning of the alphabet, eg /a, /b, /c, etc. On each such file system
there are subdirectories there for each group of users, i.e.: ‘‘/a/staff”’ and “‘/b/prof’’. This is not strictly
necessary but keeps the number of files in the top level directories reasonably small.

The login shell will default to “*/bin/sh’’ if none is given. Most users at Berkeley choose *‘/bin/csh’’ so
this is usually specified here. The chsh(1) program allows users to change their login shell to one of the
shells in the approved list given in /etc/shells.

It is useful to give new users some help in getting started, supplying them with a few skeletal files such as
.profile if they use *‘/bin/sh’’, or .cshrc and .login if they use ‘‘/bin/csh’’. The directory ‘‘/usr/skel’’ con-
tains skeletal definitions of such files. New users should be given copies of these files which, for instance,
arrange to use tset(1) automatically at each login.

FILES

letc/passwd password file

/ust/skel skeletal login directory
SEE ALSO

BUGS

passwd(1), finger(1), chsh(1), chfn(1), passwd(5), vipw(8)

User information should be stored in its own data base separate from the password file.

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

ADMIN (8) UNIX Programmer’s Manual ADMIN (8)

NAME

admin - perform routine system administration tasks automatically

SYNOPSIS

admin

DESCRIPTION

FILES

The admin facility uses a menu interface to collect information and execute routine system administration
procedures. The following areas are covered:

o Initializing your system and setting up administrative conditions
o Configuring your system

e Adding or removing user accounts

o Setting up a network

e Setting up uucp facilities

o Installing or maintaining a printer

o Installing cluster and/or diskless nodes

Initially, admin prints a menu of activities. The user selects a choice by entering the associated letter, with
no carriage return. Subsequent prompts request specific information; in most cases, the prompts are self-
explanatory.

The user should boot to single-user UNIX before invoking admin, for tasks other than modifying user or
group status, or archiving/retrieving files and directories. For cluster or diskless nodes, use admin only on
the server node. The other menu choices require quiescent file systems.

The admin facility uses a series of shell scripts to execute procedures. The super user can examine these
scripts in /usr/lib/admin.scripts to see what happens in each procedure.

See the appropriate entries in Section 5 for formats of entries to admin prompts.

/etc/admin
{usr/lib/admin.scripts/*

SEE ALSO

aliases(5), disktab(5), fstab(5), gettytab(5), group(5), hosts(5), networks(5), passwd(5), printcap(5),
remote(5), termcap(5), ttys(5), ttytype(5), and Section 3 of the System Administrator Guide contained in
SMM:1.

DIAGNOSTICS

Usage responses to some improper inputs. Boundary checking for most entries.

20 June 1987 INTEGRATED SOLUTIONS 4.3 BSD 1

ARP(8C) UNIX Programmer’s Manual ARP (8C)

NAME
arp — address resolution display and control

SYNOPSIS
arp hostname
arp -a [vimunix] [kmem]
arp -d hostname
arp -s hostname ether_addr T[temp] [pub] [trail]
arp -f filename
DESCRIPTION

The arp program displays and modifies the Internet-to-Ethernet address translation tables used by the
address resolution protocol (arp(4p)).

With no flags, the program displays the current ARP entry for hostname. The host may be specified by
name or by number, using Internet dot notation. With the -a flag, the program displays all of the current

ARP entries by reading the table from the file kmem (default /dev/kmem) based on the kernel file vmunix
(default /vmunix).

With the -d flag, a super-user may delete an entry for the host called #ostname.

The -s flag is given to create an ARP entry for the host called hostname with the Ethernet address
ether_addr. The Ethernet address is given as six hex bytes separated by colons. The entry will be per-
manent unless the word temp is given in the command. If the word pub is given, the entry will be "pub-
lished"; i.e., this system will act as an ARP server, responding to requests for hostname even though the
host address is not its own. The word trail indicates that trailer encapsulations may be sent to this host.

The -f flag causes the file filename to be read and multiple entries to be set in the ARP tables. Entries in the
file should be of the form

hostname ether_addr [temp] [pub][trail]
with argument meanings as given above.

SEE ALSO
inet(3N), arp(4P), ifconfig(8C)

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

BAD144(8) UNIX Programmer’s Manual BAD144(8)

NAME

bad144 — read/write dec standard 144 bad sector information

SYNOPSIS

letc/bad144 [options] disktype disk [sno [bad ... 1]
letc/bad144 —a [options 1 disktype disk [bad ...]

DESCRIPTION

Bad144 can be used to inspect the information stored on a disk that is used by the disk drivers to imple-
ment bad sector forwarding. The format of the information is specified by DEC standard 144, as follows.

The bad sector information is located in the first 5 even numbered sectors of the last track of the disk pack.
There are five identical copies of the information, described by the dkbad structure.

Replacement sectors are allocated starting with the first sector before the bad sector information and work-
ing backwards towards the beginning of the disk. A maximum of 126 bad sectors are supported. The posi-
tion of the bad sector in the bad sector table determines the replacement sector to which it corresponds.
The bad sectors must be listed in ascending order.

The bad sector information and replacement sectors are conventionally only accessible through the ‘‘c”’
file system partition of the disk. If that partition is used for a file system, the user is responsible for making
sure that it does not overlap the bad sector information or any replacement sectors. Thus, one track plus
126 sectors must be reserved to allow use of all of the possible bad sector replacements.

The bad sector structure is as follows:

struct dkbad {
long bt_csn; /* cartridge serial number */
u_short bt_mbz; /* unused; should be 0 */
u_short bt_flag; /* -1 => alignment cartridge */
struct bt_bad {
u_short bt_cyl; /* cylinder number of bad sector */
u_short bt_trksec; /* track and sector number */
} bt_bad[126];
IH
Unused slots in the bt_bad array are filled with all bits set, a putatively illegal value.

Bad144 is invoked by giving a device type (e.g. rk07, rm03, rm05, etc.), and a device name (e.g. hkO, hpl,
etc.). With no optional arguments it reads the first sector of the last track of the corresponding disk and
prints out the bad sector information. It issues a warning if the bad sectors are out of order. Bad144 may
also be invoked with a serial number for the pack and a list of bad sectors. It will write the supplied infor-
mation into all copies of the bad-sector file, replacing any previous information. Note, however, that
bad144 does not arrange for the specified sectors to be marked bad in this case. This procedure should
only be used to restore known bad sector information which was destroyed. It is necessary to reboot before
any change will take effect.

With the —a flag, the argument list consists of new bad sectors to be added to an existing list. The new sec-
tors are sorted into the list, which must have been in order. Replacement sectors are moved to accommo-
date the additions; the new replacement sectors are cleared.

OPTIONS

- Attempts to copy the old sector to the replacement. This option can be useful when replacing an
unreliable sector.

-f If the disk is an RP06, RM03, RMOS, Fujitsu Eagle, or SMD disk on a Massbus, marks the new
bad sectors as ‘‘bad’’ by reformatting them as unusable sectors. NOTE: this can be done safely
only when there is no other disk activity, preferably while running single-user. This option is
required unless the sectors have already been marked bad, or the system will not be notified that it
should use the replacement sector.

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

BAD144(8) UNIX Programmer’s Manual BAD144 (8)

-V Causes bad144 to describe in detail what it is doing. The v stands for verbose.

SEE ALSO
badsect(8), format(8V)

BUGS
It should be possible to format disks on-line under UNIX.

It should be possible to mark bad sectors on drives of all type.

On an 11/750, the standard bootstrap drivers used to boot the system do not understand bad sectors, handle
ECC errors, or the special SSE (skip sector) errors of RM80-type disks. This means that none of these
errors can occur when reading the file /vmunix to boot. Sectors 0-15 of the disk drive must also not have
any of these errors.

The drivers which write a system core image on disk after a crash do not handle errors; thus the crash
dump area must be free of errors and bad sectors.

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

BADSECT (8) UNIX Programmer’s Manual BADSECT (8)

NAME
badsect — create files to contain bad sectors

SYNOPSIS
letc/badsect bbdir sector ...

DESCRIPTION
Badsect makes a file to contain a bad sector. Normally, bad sectors are made inaccessible by the standard
formatter, which provides a forwarding table for bad sectors to the driver; see bad144(8) for details. If a
driver supports the bad blocking standard it is much preferable to use that method to isolate bad blocks,
since the bad block forwarding makes the pack appear perfect, and such packs can then be copied with
dd(1). The technique used by this program is also less general than bad block forwarding, as badsect can’t
make amends for bad blocks in the i-list of file systems or in swap areas.

On some disks, adding a sector which is suddenly bad to the bad sector table currently requires the running
of the standard DEC formatter. Thus to deal with a newly bad block or on disks where the drivers do not
support the bad-blocking standard badsect may be used to good effect.

Badsect is used on a quiet file system in the following way: First mount the file system, and change to its
root directory. Make a directory BAD there. Run badsect giving as argument the BAD directory followed
by all the bad sectors you wish to add. (The sector numbers must be relative to the beginning of the file
system, but this is not hard as the system reports relative sector numbers in its console error messages.)
Then change back to the root directory, unmount the file system and run fsck(8) on the file system. The
bad sectors should show up in two files or in the bad sector files and the free list. Have fsck remove files
containing the offending bad sectors, but do not have it remove the BAD/nnnnn files. This will leave the
bad sectors in only the BAD files.

Badsect works by giving the specified sector numbers in a mknod(2) system call, creating an illegal file
whose first block address is the block containing bad sector and whose name is the bad sector number.
When it is discovered by fsck it will ask ‘““HOLD BAD BLOCK™’? A positive response will cause fsck to
convert the inode to a regular file containing the bad block.

SEE ALSO
bad144(8), fsck(8), format(8V)

DIAGNOSTICS
Badsect refuses to attach a block that resides in a critical area or is out of range of the file system. A warn-
ing is issued if the block is already in use.

BUGS
If more than one sector which comprise a file system fragment are bad, you should specify only one of
them to badsect, as the blocks in the bad sector files actually cover all the sectors in a file system fragment.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

BUGFILER (8) UNIX Programmer’s Manual BUGFILER (8)

NAME

bugfiler — file bug reports in folders automatically

SYNOPSIS

bugfiler [mail directory]

DESCRIPTION

Bugfiler is a program to automatically intercept bug reports, summarize them and store them in the
appropriate sub directories of the mail directory specified on the command line or the (system dependent)
default. It is designed to be compatible with the Rand MH mail system. Bugfiler is normally invoked by
the mail delivery program through aliases(5) with a line such as the following in /usr/lib/mail/aliases.

bugs:"|bugfiler /usr/bugs/mail"

It reads the message from the standard input or the named file, checks the format and returns mail ack-
nowledging receipt or a message indicating the proper format. Valid reports are then summarized and filed
in the appropriate folder; improperly formatted messages are filed in a folder named ‘‘errors.”” Program
maintainers can then log onto the system and check the summary file for bugs that pertain to them. Bug
reports should be submitted in RFC822 format and aremust contain the following header lines to be prop-
erly indexed:

Date: <date the report is received>

From: <valid return address>

Subject: <short summary of the problem>

Index: <source directory>/<source file> <version> [Fix]

In addition, the body of the message must contain a line which begins with ‘‘Description:’’ followed by
zero or more lines describing the problem in detail and a line beginning with ‘‘Repeat-By:’’ followed by
zero or more lines describing how to repeat the problem. If the keyword ‘Fix’ is specified in the ‘Index’
line, then there must also be a line beginning with *“Fix:*’ followed by a diff of the old and new source files
or a description of what was done to fix the problem.

The ‘Index’ line is the key to the filing mechanism. The source directory name must match one of the
folder names in the mail directory. The message is then filed in this folder and a line appended to the sum-
mary file in the following format:

<folder name>/<message number> <Index info>
<Subject info>

The bug report may also be redistributed according to the index. If the file maildir/ redist exists, it is exam-
ined for a line beginning with the index name followed with a tab. The remainder of this line contains a
comma-separated list of mail addresses which should receive copies of bugs with this index. The list may
be continued onto multiple lines by ending each but the last with a backslash (*\).

FILES
/usr/lib/sendmail mail delivery program
/ust/lib/unixtomh converts unix mail format to mh format
maildir/.ack the message sent in acknowledgement
maildir/ format the message sent when format errors are detected
maildir/ redist the redistribution list
maildir'summary ‘ the summary file
maildiBf??777? temporary copy of the input message
maildi/Rp??777? temporary file for the reply message.
SEE ALSO
mh(1), newaliases(1), aliases(5)
BUGS

October 26, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1

BUGFILER(8) UNIX Programmer’s Manual BUGFILER (8)

Since mail can be forwarded in a number of different ways, bugfiler does not recognize forwarded mail
and will reply/complain to the forwarder instead of the original sender unless there is a ‘Reply-To’ field in

the header.
Duplicate messages should be discarded or recognized and put somewhere else.

October 26, 1987 INTEGRATED SOLUTIONS 4.3 BSD

CATMAN (8) UNIX Programmer’s Manual CATMAN (8)

NAME

catman — create the cat files for the manual

SYNOPSIS

letc/catman [options] [sections]

DESCRIPTION

Catman creates the preformatted versions of the on-line manual from the nroff input files. Each manual
page is examined and those whose preformatted versions are missing or out of date are recreated. If any
changes are made, catman will recreate the whatis database.

If there is one parameter not starting with a ‘-, it is taken to be a list of manual sections to look in. For
example

catman 123
will cause the updating to only happen to manual sections 1, 2, and 3.

If the nroff source file contains only a line of the form ‘.s0 manx/yyy.x’, a symbolic link is made in the
catx directory to the appropriate preformatted manual page. This feature allows easy distribution of the
preformatted manual pages among a group of associated machines with rdist(1). The nroff sources need
not be distributed to all machines, thus saving the associated disk space. As an example, consider a local
network with S machines, called machl through mach5. Suppose mach3 has the manual page nroff
sources. Every night, mach3 runs catman via cron(8) and later runs rdist with a distfile that looks like:

MANSLAVES = (machl mach2 mach4 mach5)
MANUALS = (/usr/man/cat{1-8no] /usr/man/whatis)

${MANUALS} -> ${MANSLAVES}

install -R;
notify root;
OPTIONS
-M path
Updates manual pages located in the set of directories specified by path (fusr/man by default).
Path has the form of a colon (“’) separated list of directory names, for example
‘fusr/local/man:/usr/man’. If the environment variable ‘MANPATH’ is set, its value is used for
the default path.
-n Prevents creations of the whatis database.

-p Prints what would be done instead of doing it.
-w Causes only the whatis database to be created. No manual reformatting is done.

FILES
/usr/man default manual directory location
/ust/man/man?/*.* raw (nroff input) manual sections
/usr/man/cat?/*.* preformatted manual pages
/usr/man/whatis whatis database
/usr/lib/makewhatis command script to make whatis database
SEE ALSO

man(1), cron(8), rdist(1)

May 28, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

CHOWN (8) UNIX Programmer’s Manual CHOWN (8)

NAME
chown — change owner
SYNOPSIS
letc/chown [options] owner [.group] file ...
DESCRIPTION
Chown changes the owner of the files to owner. The owner may be either a decimal UID or a login name
found in the password file. An optional group may also be specified. The group may be either a decimal
GID or a group name found in the group-ID file.
Only the super-user can change owner, in order to simplify accounting procedures.
OPTIONS
-f Forces chown to run without reporting errors.
-R Makes chown recursively descend its directory arguments and set the specified owner. When
chown encounters symbolic links, it changes their ownership, but does not traverse them.
FILES
/etc/passwd
SEE ALSO

chgrp(1), chown(2), passwd(5), group(5)

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

CLRI(8) UNIX Programmer’s Manual CLRI(8)

NAME
clri — clear i-node

SYNOPSIS
letc/clri file system i-number ...

DESCRIPTION
N.B.: Clri is obsoleted for normal file system repair work by fsck(8).

Clri writes zeros on the i-nodes with the decimal i-numbers on the file system. After clri, any blocks in the
affected file will show up as ‘missing’ in an icheck(8) of the file system.

Read and write permission is required on the specified file system device. The i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no directory. If it
is used to zap an i-node which does appear in a directory, care should be taken to track down the entry and
remove it. Otherwise, when the i-node is reallocated to some new file, the old entry will still point to that
file. At that point removing the old entry will destroy the new file. The new entry will again point to an
unallocated i-node, so the whole cycle is likely to be repeated again and again.

SEE ALSO
Bcheck(8)

BUGS
If the file is open, clri is likely to be ineffective.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

COMSAT(8C) UNIX Programmer’s Manual COMSAT(8C)

NAME
comsat — biff server

SYNOPSIS
/etc/comsat

DESCRIPTION
Comsat is the server process which receives reports of incoming mail and notifies users if they have
requested this service. Comsat receives messages on a datagram port associated with the ‘‘biff”’ service
specification (see services(5) and inetd(8)). The one line messages are of the form

user@mailbox-offset

If the user specified is logged in to the system and the associated terminal has the owner execute bit turned
on (by a ‘“biff y’’), the offset is used as a seek offset into the appropriate mailbox file and the first 7 lines or
560 characters of the message are printed on the user’s terminal. Lines which appear to be part of the mes-
sage header other than the ‘“‘From”’, ‘“To”’, ‘‘Date’’, or ‘‘Subject’’ lines are not included in the displayed
message.

FILES
/etc/utmp to find out who’s logged on and on what terminals

SEE ALSO
biff(1), inetd(8)

BUGS

The message header filtering is prone to error. The density of the information presented is near the theoret-
ical minimum,

Users should be notified of mail which arrives on other machines than the one to which they are currently
logged in.

The notification should appear in a separate window so it does not mess up the screen.

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

CONFIG(8) UNIX Programmer’s Manual CONFIG (8)

NAME

config — build system configuration files

SYNOPSIS

letc/config [options 1 SYSTEM_NAME

DESCRIPTION

Config builds a set of system configuration files from a short file which describes the sort of system that is
being configured. It also takes as input a file which tells config what files are needed to generate a system.
This can be augmented by a configuration specific set of files that give alternate files for a specific machine.
(see the FILES section below) If the —p option is supplied, config will configure a system for profiling; c.f.
kgmon(8) and gprof(1).

Config should be run from the conf subdirectory of the system source (usually /sys/conf). Its argument is
the name of a system configuration file containing device specifications, configuration options and other
system parameters for one system configuration. Config assumes that there is already a directory
./SYSTEM_NAME created and it places all its output files in there. The output of config consists of a
number of files; for the VAX, they are: ioconf.c contains a description of what I/O devices are attached to
the system,; ubglue.s contains a set of interrupt service routines for devices attached to the UNIBUS;
ubvec.s contains offsets into a structure used for counting per-device interrupts; Makefile is a file used by
make(1) in building the system; a set of header files contain definitions of the number of various devices
that will be compiled into the system; and a set of swap configuration files contain definitions for the disk
areas to be used for swapping, the root file system, argument processing, and system dumps.

After running config, it is necessary to run ‘‘make depend’’ in the directory where the new makefile was
created. Config prints a reminder of this when it completes.

If any other error messages are produced by config, the problems in the configuration file should be
corrected and config should be run again. Attempts to compile a system that had configuration errors are
likely to meet with failure.

OPTIONS

-0 Configures a system for creating a kernel from the object files included in a binary release.

-p Configures a system for profiling; c.f. kgmon(8) and gprof(1).

FILES
/sys/iconf/Makefile.is68k generic makefile for the is68k
/sys/conf/files list of common files system is built from
/sys/conf/files.is68k list of is68k specific files
/sys/conf/devices.is68k name to major device mapping file for the is68k
/sys/conf/files ERNIE list of files specific to ERNIE system

SEE ALSO
*‘Building 4.3BSD UNIX System with Config’’
The SYNOPSIS portion of each device in section 4.

BUGS

The line numbers reported in error messages are usually off by one.

October 27, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1

CRASH(8V) UNIX Programmer’s Manual CRASH(8V)

NAME
crash — what happens when the system crashes

DESCRIPTION
This section explains what happens when the system crashes and (very briefly) how to analyze crash
dumps.

When the system crashes voluntarily it prints a message of the form
panic: why i gave up the ghost

on the console, takes a dump on a mass storage peripheral, and then invokes an automatic reboot procedure
as described in reboot(8). (If auto-reboot is disabled on the front panel of the machine the system will sim-
ply halt at this point.) Unless some unexpected inconsistency is encountered in the state of the file systems
due to hardware or software failure, the system will then resume multi-user operations.

The system has a large number of internal consistency checks; if one of these fails, then it will panic with a
very short message indicating which one failed. In many instances, this will be the name of the routine
which detected the error, or a two-word description of the inconsistency. A full understanding of most
panic messages requires perusal of the source code for the system.

The most common cause of system failures is hardware failure, which can reflect itself in different ways.
Here are the messages which are most likely, with some hints as to causes. Left unstated in all cases is the
possibility that hardware or software error produced the message in some unexpected way.

iinit This cryptic panic message results from a failure to mount the root file system during the bootstrap
process. Either the root file system has been corrupted, or the system is attempting to use the
wrong device as root file system. Usually, an alternate copy of the system binary or an alternate
root file system can be used to bring up the system to investigate.

Can’t exec /etc/init
This is not a panic message, as reboots are likely to be futile. Late in the bootstrap procedure, the
system was unable to locate and execute the initialization process, init(8). The root file system is
incorrect or has been corrupted, or the mode or type of /etc/init forbids execution.

10 err in push

hard IO err in swap
The system encountered an error trying to write to the paging device or an error in reading critical
information from a disk drive. The offending disk should be fixed if it is broken or unreliable.

realloccg: bad optim

ialloc: dup alloc

alloccgblk: cyl groups corrupted

ialloccg: map corrupted

free: freeing free block

free: freeing free frag

ifree: freeing free inode

alloccg: map corrupted
These panic messages are among those that may be produced when file system inconsistencies are
detected. The problem generally results from a failure to repair damaged file systems after a
crash, hardware failures, or other condition that should not normally occur. A file system check
will normally correct the problem.

timeout table overflow
This really shouldn’t be a panic, but until the data structure involved is made to be extensible, run-
ning out of entries causes a crash. If this happens, make the timeout table bigger.

KSP not valid
SBI fault
CHM? in kernel

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

CRASH(8V) UNIX Programmer’s Manual CRASH (8V)

These indicate either a serious bug in the system or, more often, a glitch or failing hardware. If
SBI faults recur, check out the hardware or call field service. If the other faults recur, there is
likely a bug somewhere in the system, although these can be caused by a flakey processor. Run
processor microdiagnostics.

machine check %x:
description

machine dependent machine-check information
Machine checks are different on each type of CPU. Most of the internal processor registers are
saved at the time of the fault and are printed on the console. For most processors, there is one line
that summarizes the type of machine check. Often, the nature of the problem is apparent from this
messaage and/or the contents of key registers.

trap type %d, code=%x, pc=%x
A unexpected trap has occurred within the system; the trap types are:

reserved addressing fault
privileged instruction fault
reserved operand fault
bpt instruction fault

xfc instruction fault
system call trap
arithmetic trap

ast delivery trap
segmentation fault
protection fault

10 trace trap

11 compatibility mode fault
12 page fault

13 page table fault

Lol REN B NV B S I S R -

The favorite trap types in system crashes are trap types 8 and 9, indicating a wild reference. The
code is the referenced address, and the pc at the time of the fault is printed. These problems tend
to be easy to track down if they are kernel bugs since the processor stops cold, but random flaki-
ness seems to cause this sometimes. The debugger can be used to locate the instruction and sub-
routine corresponding to the PC value. If that is insufficient to suggest the nature of the problem,
more detailed examination of the system status at the time of the trap usually can produce an
explanation.
init died

The system initialization process has exited. This is bad news, as no new users will then be able
to log in. Rebooting is the only fix, so the system just does it right away.

out of mbufs: map full
The network has exhausted its private page map for network buffers. This usually indicates that
buffers are being lost, and rather than allow the system to slowly degrade, it reboots immediately.
The map may be made larger if necessary.

That completes the list of panic types you are likely to see.

When the system crashes it writes (or at least attempts to write) an image of memory into the back end of
the dump device, usually the same as the primary swap area. After the system is rebooted, the program
savecore(8) runs and preserves a copy of this core image and the current system in a specified directory for
later perusal. See savecore(8) for details.

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

CRASH(8V) UNIX Programmer’s Manual CRASH (8V)

To analyze a dump you should begin by running adb(1) with the —k flag on the system load image and core
dump. If the core image is the result of a panic, the panic message is printed. Normally the command
““$¢’” will provide a stack trace from the point of the crash and this will provide a clue as to what went
wrong. A more complete discussion of system debugging is impossible here. See, however, ‘‘Using ADB
to Debug the UNIX Kernel”’.

SEE ALSO
adb(1), reboot(8)
Using ADB to Debug the UNIX Kernel

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 3

CRON(8) UNIX Programmer’s Manual CRON(8)

NAME

cron — clock daemon

SYNOPSIS

/etc/cron

DESCRIPTION

FILES

Cron executes commands at specified dates and times according to the instructions in the files
/usr/lib/crontab and /ust/lib/crontab.local. None, either one, or both of these files may be present. Since
cron never exits, it should only be executed once. This is best done by running cron from the initialization
process through the file /etc/rc; see init(8).

The crontab files consist of lines of seven fields each. The fields are separated by spaces or tabs. The first
five are integer patterns to specify:

minute (0-59)

hour (0-23)

day of the month (1-31)

month of the year (1-12)

day of the week (1-7 with 1 = Monday)

Each of these patterns may contain;

a number in the range above

two numbers separated by a minus meaning a range inclusive

a list of numbers separated by commas meaning any of the numbers
an asterisk meaning all legal values

The sixth field is a user name: the command will be run with that user’s uid and permissions. The seventh
field consists of all the text on a line following the sixth field, including spaces and tabs; this text is treated
as a command which is executed by the Shell at the specified times. A percent character (‘‘%’’) in this
field is translated to a new-line character.

Both crontab files are checked by cron every minute, on the minute.

/usr/lib/crontab
fusr/lib/crontab.local

May 16, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

DCHECK (8) UNIX Programmer’s Manual DCHECK (8)

NAME

dcheck — file system directory consistency check

SYNOPSIS

Jetc/dcheck [—i numbers] [file system]

DESCRIPTION

FILES

N.B.: Dcheck is obsoleted for normal consistency checking by fsck(8).

Dcheck reads the directories in a file system and compares the link-count in each i-node with the number
of directory entries by which it is referenced. If the file system is not specified, a set of default file systems
is checked.

The —i flag is followed by a list of i-numbers; when one of those i-numbers turns up in a directory, the
number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in large chunks.

Default file systems vary with installation.

SEE ALSO

fsck(8), icheck(8), fs(5), clri(8), ncheck(8)

DIAGNOSTICS

BUGS

When a file turns up for which the link-count and the number of directory entries disagree, the relevant
facts are reported. Allocated files which have 0 link-count and no entries are also listed. The only
dangerous situation occurs when there are more entries than links; if entries are removed, so the link-count
drops to 0, the remaining entries point to thin air. They should be removed. When there are more links
than entries, or there is an allocated file with neither links nor entries, some disk space may be lost but the
situation will not degenerate.

Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied to active
file systems.

Dcheck is obsoleted by fsck and remains for historical reasons.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

DISKPART (8) UNIX Programmer’s Manual DISKPART (8)

NAME

diskpart — calculate default disk partition sizes

SYNOPSIS

lete/diskpart [options] disk-type

DESCRIPTION

Diskpart is used to calculate the disk partition sizes based on the default rules used at Berkeley. On disks
that use bad144 -style bad-sector forwarding, space is left in the last partition on the disk for a bad sector
forwarding table. The space reserved is one track for the replicated copies of the table and sufficient tracks
to hold a pool of 126 sectors to which bad sectors are mapped. For more information, see bad144(8).

The disk partition sizes are based on the total amount of space on the disk as given in the table below (all
values are supplied in units of 512 byte sectors). The ‘c’ partition is, by convention, used to access the
entire physical disk. The device driver tables include the space reserved for the bad sector forwarding table
in the ‘c’ partition; those used in the disktab and default formats exclude reserved tracks. In normal opera-
tion, either the ‘g’ partition is used, or the ‘d’, ‘¢’, and ‘f’ partitions are used. The ‘g’ and ‘f* partitions are
variable-sized, occupying whatever space remains after allocation of the fixed sized partitions. If the disk
is smaller than 20 Megabytes, then diskpart aborts with the message ‘‘disk too small, calculate by hand”’.

Partition 20-60 MB 61-205 MB 206-355 MB 356+ MB

15884 15884 15884 15884
10032 33440 33440 66880
15884 15884 15884 15884

unused 55936 55936 307200
unused unused 291346 291346

0 Qo

If an unknown disk type is specified, diskpart will prompt for the required disk geometry information.

OPTIONS

-p Produceds tables suitable for inclusion in a device driver.
~d Generates an entry suitable for inclusion in the disk description file /etc/disktab; c.f. disktab(5).

SEE ALSO

BUGS

disktab(5), bad144(8)

Certain default partition sizes are based on historical artifacts (e.g. RP06), and may result in unsatisfactory
layouts.

When using the —d flag, alternate disk names are not included in the output.

May 30, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

DISKST(8) UNIX Programmer’s Manual DISKST(8)

NAME
diskst — determine and print disk geometry

SYNOPSIS
" diskst [option] diskname

- DESCRIPTION

diskst uses ioctls to determine the geometry of the specified disk. When invoked in the C-shell, diskst
prints the disk geometry on the standard output.

diskname is a disk name, such as smQ.

OPTIONS
-nc Prints the number of cylinders for the specified disk.
-ns Prints the number of sectors per track for the specified disk.

-nt Prints the number of tracks (heads) per cylinder for the specified disk.
-o[a-h] Prints the cylinder offset of the specified partition.
-pla-h] Prints the size in blocks of the specified partition.

-q Returns exit status of 0 if specified disk device is present. This quiet flag is very useful for
checking for a disk from within a shell script.

-t Prints terse output (nt=15 instead of ntracks=15).

EXAMPLES
diskst sm0
ntracks =24
nsectors =48
ncylinders =710
partition a: size=15884, offset=0
partition b: size=66880, offset=14
partition c: size=817920, offset=0
partition d: size=15884, offset=326
partition e: size=307200, offset=340
partition f: size=118464, offset=607
partition g: size=442176, offset=326
partition h: size=291346, offset=73

if(diskst -q sd0) echo SDO not online

20 December 1988 INTEGRATED SOLUTIONS 4.3 BSD 1

DMESG (8) UNIX Programmer’s Manual DMESG (8)

NAME
dmesg — collect system diagnostic messages to form error log

SYNOPSIS
/etc/dmesg [option]
DESCRIPTION
N.B.: Dmesg is obsoleted by syslogd(8) for maintenance of the system error log.
Dmesg looks in a system buffer for recently printed diagnostic messages and prints them on the standard
output. The messages are those printed or logged by the system when errors occur.

OPTIONS
- Computes (incrementally) the new messages since the last time it was run and places these on the
standard output.

FILES
/usr/adm/msgbuf scratch file for memory of — option

SEE ALSO
syslogd(8)

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

DRTEST(8)

NAME

UNIX Programmer’s Manual

drtest — standalone disk test program

DESCRIPTION

Drtest is a standalone program used to read a disk track by track. It was primarily intended as a test pro-
gram for new standalone drivers, but has shown useful in other contexts as well, such as verifying disks
and running speed tests. For example, when a disk has been formatted (by format(8)), you can check that
hard errors has been taken care of by running drtest. No hard errors should be found, but in many cases

quite a few soft ECC errors will be reported.

While drtest is running, the cylinder number is printed on the console for every 10th cylinder read.

EXAMPLE

A sample run of drtest is shown below. In this example (using a 750), drtest is loaded from the root file
system; usually it will be loaded from the machine’s console storage device. Boldface means user input.

As usual, “‘#”’ and *‘@’’ may be used to edit input.

DIAGNOSTICS

The diagnostics are intended to be self explanatory. Note, however, that the device number in the diagnos-
tic messages is identified as typeX instead of type(a,u) where X = a*8+u, e.g., hp(1,3) becomes hp11.

SEE ALSO

>>>B/3

%%

loading hk(0,0)boot

Boot

: hk(0,0)drtest

Test program for stand-alone up and hp driver

Debugging level (1=bse, 2=ecc, 3=bse+ecc)?

Enter disk name [type(adapter,unit), e.g. hp(1,3)]1? hp(0,0)
Device data: #cylinders=1024, #tracks=16, #sectors=32
Testing hp(0,0), chunk size is 16384 bytes.

(chunk size is the number of bytes read per disk access)
Start ...Make sure hp(0,0) is online

(errors are reported as they occur)

(...program restarts to allow checking other disks)
(...to abort halt machine with "P)

format(8V), bad144(8)

May 19, 1986

INTEGRATED SOLUTIONS 4.3 BSD

DRTEST(8)

DUMP(8) UNIX Programmer’s Manual DUMP(8)

NAME O/Uw,r »-« @ UC S 540 A(Jv’ /,/ifh-'x
dump - incremental file system dump

SYNOPSIS
letc/dump [key [argument ...] file system]

DESCRIPTION

Dump copies to magnetic tape all files changed after a certain date in the file system. The key specifies the
date and other options about the dump. Key consists of characters from the set 0123456789bcdfnsuW.

0-9 Sets the dump level to this number. Dumps all files modified since the last date stored in the file
/etc/dumpdates for the same file system at lesser levels. If no date is determined by the level, the
beginning of time is assumed; thus the option 0 causes the entire file system to be dumped.

b Tells dump to use the next argument as the blocking factor for tape records. The default blocking
factor is 20 (the maximum). Use this option only with raw magnetic tape archives. The block size is
determined automatically when reading tapes.

c Identifies the dump tape as an ISI cartridge—by default, a Scotch 300XL™ cartridge. Note that you
can use the s key to set the tape length in feet.

d Specifies the density of the tape, expressed in BPI, as the next argument. The density is used to cal-
culate the amount of tape used per reel. The default tape density is 1600 BPI.

f Places the dump on the next argument file instead of the tape. If the name of the file is ‘", dump
writes to standard output.

n Whenever dump requires operator attention, notifies by means similar to a wall(1) all of the opera-
tors in the group ‘‘operator’’.

s Specifies the size of the dump tape in feet. The number of feet is taken from the next argument.
When the specified size is reached, dump waits for reels to be changed. The default tape size is
2300 feet.

u If the dump completes successfully, writes the date of the beginning of the dump on file
/etc/dumpdates. This file records a separate date for each file system and each dump level. Users
can read /etc/dumpdates. The file consists of one free format record per line: file system name,
increment level, and ctime(3) format dump date. /etc/dumpdates may be edited to change any of the
fields, if necessary.

W Tells the operator which file systems need to be dumped. With this option, dump reads the files
/etc/dumpdates and /etc/fstab, then, for each file system in /etc/dumpdates, it prints the most recent
dump date and level and indicates which file systems should be dumped. Setting the W option
invalidates all other options. Once dump has printed the dump history, it exits.

w Gathers dump information like W, but prints only those file systems which need to be dumped.

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to the default
tape.

Dump requires operator intervention when any of the following occur:

o dump reaches the end of a tape

o dump completes its copy

o dump encounters a tape write error

o dump encounters a tape open error

o dump encounters more than 32 disk read errors

If the operator invoked dump with the » key, dump will notify all users in the group "operator” when any
of these errors occur. An operator must use the control terminal (the terminal used to begin the dump) to
interact with dump. The operator should type ‘‘yes’’ or ‘‘no,’’ to answer the questions dump prints on the
screen.

October 27, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1

DUMP(8) UNIX Programmer’s Manual DUMP(8)

Since performing a full dump involves a lot of time and effort, dump checkpoints itself at the start of each
tape volume. If for any reason dump fails while writing that volume, dump will, with operator permis-
sion, restart itself from the checkpoint after the old tape has been rewound and removed and a new tape has
been mounted.

At periodic intervals, dump prints messages that include low estimates of the number of blocks to write,
the number of tapes the dump will need, and the time remaining until dump complete. It also tells the
operator when to change the tape. By printing verbose messages, dump lets other users know that the ter-
minal controlling the dump is busy and that the dump is continuing.

To keep your dump tapes up to date, run the dump program according to this schedule. Start with a full
level O dump

dump Oun

Next, run dumps of active file systems on a daily basis using a modified Tower of Hanoi algorithm with
this sequence of dump levels:

3254769899..

For the daily dumps, use a set of 10 tapes per dumped file system on a cyclical basis. Each week, perform
a level 1 dump and repeat the daily Hanoi sequence with 3 tapes. For weekly dumps, use a set of 5 tapes
per dumped file system, also on a cyclical basis. Each month, perform a level 0 dump on a set of fresh tapes
for permanent storage.

FILES
/devirrplg default file system to dump from
/dev/rmt8 default tape unit to dump to
/etc/dumpdates new format dump date record
letc/fstab dump table: file systems and frequency
letc/group to find group operator
SEE ALSO
restore(8), dump(5), fstab(5)
DIAGNOSTICS
The dump program includes many verbose diagnostic messages. As many of these messages are self-
explanatory, this man page describes only the dump program’s exit codes.
If dump successfully completes its copy, it exits with zero status. Dump indicates startup errors with an
exit code of 1 and abnormal termination with an exit code of 3.
BUGS

If there are fewer than 32 read errors, dump ignores them and continues its copying.

Each reel requires a new process. Consequently, parent processes for reels already written do not terminate
until the entire tape is written,

Running dump with the W or w option does not report file systems that have never been recorded in
fetc/dumpdates, even if such file system are listed in /etc/fstab.

Unfortunately, the dump program does not know about the dump sequence, does not keep track of scrib-
bled on tapes, and does not tell the operator which tape to mount and when it should be mounted. Also, the
program does not provide enough assistance to the operator running restore.

October 27, 1987 INTEGRATED SOLUTIONS 4.3 BSD 2

DUMPES(8) UNIX Programmer’s Manual DUMPFS (8)

NAME
dumpfs — dump file system information
SYNOPSIS
dumpfs filesys|device
DESCRIPTION
Dumpfs prints out the super block and cylinder group information for the file system or special device

specified. The listing is very long and detailed. This command is useful mostly for finding out certain file
system information such as the file system block size and minimum free space percentage.

SEE ALSO
fs(5), disktab(5), tunefs(8), newfs(8), fsck(8)

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

EDQUOTA (8) UNIX Programmer’s Manual EDQUOTA (8)

NAME
edquota — edit user quotas

SYNOPSIS
edquota [options] users...

DESCRIPTION
Edquota is a quota editor. One or more users may be specified on the command line. For each user a tem-
porary file is created with an ASCII representation of the current disc quotas for that user and an editor is
then invoked on the file. The quotas may then be modified, new quotas added, etc. Upon leaving the edi-
tor, edquota reads the temporary file and modifies the binary quota files to reflect the changes made.

The editor invoked is vi(1) unless the environment variable EDITOR specifies otherwise.
Only the super-user may edit quotas.

OPTIONS
-p Edquota will duplicate the quotas of the prototypical user specified for each user specified. This
is the normal mechanism used to initialize quotas for groups of users.

FILES
quotas at the root of each file system with quotas
fetc/fstab to find file system names and locations
SEE ALSO
quota(l), quota(2), quotacheck(8), quotaon(8), repquota(8)
DIAGNOSTICS
Various messages about inaccessible files; self-explanatory.
BUGS

The format of the temporary file is inscrutable.

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

FASTBOOT(8) UNIX Programmer’s Manual FASTBOOT (8)

NAME
fastboot, fasthalt — reboot/halt the system without checking the disks
SYNOPSIS
letc/fastboot [boot-options]
letc/fasthalt [halt-options]
DESCRIPTION
Fastboot and fasthalt are shell scripts which reboot and halt the system without checking the file systems.
This is done by creating a file /fastboot, then invoking the reboot program. The system startup script,
letc/re, looks for this file and, if present, skips the normal invocation of fsck(8).
SEE ALSO
halt(8), reboot(8), rc(8)

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

FINGERD (8C) UNIX Programmer’s Manual FINGERD (8C)

NAME

fingerd — remote user information server

SYNOPSIS

letc/fingerd

DESCRIPTION

Fingerd is a simple protocol based on RFC742 that provides an interface to the Name and Finger programs
at several network sites. The program is supposed to return a friendly, human-oriented status report on
either the system at the moment or a particular person in depth. There is no required format and the proto-
col consists mostly of specifying a single ‘‘command line’’,

Fingerd listens for TCP requests at port 79. Once connected it reads a single command line terminated by
a <CRLF> which is passed to finger(1). Fingerd closes its connections as soon as the output is finished.

If the line is null (i.e. just a <CRLF> is sent) then finger returns a ‘‘default’” report that lists all people
logged into the system at that moment.

If a user name is specified (e.g. eric<CRLF>) then the response lists more extended information for only
that particular user, whether logged in or not. Allowable ‘‘names’’ in the command line include both
““login names’’ and ‘‘user names’’. If a name is ambiguous, all possible derivations are returned.

SEE ALSO

BUGS

finger(1)

Connecting directly to the server from a TIP or an equally narrow-minded TELNET-protocol user program
can result in meaningless attempts at option negotiation being sent to the server, which will foul up the
command line interpretation. Fingerd should be taught to filter out IAC’s and perhaps even respond nega-
tively (IAC WON"’T) to all option commands received.

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

FSCK(8) UNIX Programmer’s Manual FSCK (8)

NAME

fsck — file system consistency check and interactive repair

SYNOPSIS

letc/fsck —p [file system ...]
letc/fsck [options] [file system] ...

DESCRIPTION

The first form of fsck preens a standard set of file systems or the specified file systems. It is normally used
in the script /ete/rc during automatic reboot. In this case fsck reads the table /etc/fstab to determine which
file systems to check. It uses the information there to inspect groups of disks in parallel taking maximum
advantage of /o overlap to check the file systems as quickly as possible. Normally, the root file system
will be checked on pass 1, other ‘‘root’’ (‘‘a’’ partition) file systems on pass 2, other small file systems on
separate passes (e.g. the ‘‘d”’ file systems on pass 3 and the ‘‘e’’ file systems on pass 4), and finally the
large user file systems on the last pass, e.g. pass 5. Only partitions in fstab that are mounted *‘rw’’ or *‘rq”’
and that have non-zero pass number are checked.

The system takes care that only a restricted class of innocuous inconsistencies can happen unless hardware
or software failures intervene. These are limited to the following:

» Unreferenced inodes

» Link counts in inodes too large

» Missing blocks in the free list

» Blocks in the free list also in files
» Counts in the super-block wrong

These are the only inconsistencies that fsck with the —p option will correct; if it encounters other incon-
sistencies, it exits with an abnormal return status and an automatic reboot will then fail. For each corrected
inconsistency one or more lines will be printed identifying the file system on which the correction will take
place, and the nature of the correction. After successfully correcting a file system, fsck will print the
number of files on that filé system, the number of used and free blocks, and the percentage of fragmenta-
tion.

If sent a QUIT signal, fsck will finish the file system checks, then exit with an abnormal return status that
causes the automatic reboot to fail, This is useful when you wish to finish the file system checks, but do
not want the machine to come up multiuser.

Without the —p option, fsck audits and interactively repairs inconsistent conditions for file systems. If the
file system is inconsistent the operator is prompted for concurrence before each correction is attempted. It
should be noted that some of the corrective actions which are not correctable under the —p option will
result in some loss of data. The amount and severity of data lost may be determined from the diagnostic
output. The default action for each consistency correction is to wait for the operator to respond yes or no.
If the operator does not have write permission on the file system fsck will default to a —n action.

Fsck has more consistency checks than its predecessors check, dcheck, fcheck, and icheck combined.
If no file systems are given to fsck then a default list of file systems is read from the file /etc/fstab.
Inconsistencies checked are as follows:

Blocks claimed by more than one inode or the free list.
Blocks claimed by an inode or the free list outside the range of the file system.
Incorrect link counts.
Size checks:
Directory size not of proper format.
Bad inode format.
Blocks not accounted for anywhere.
Directory checks:
File pointing to unallocated inode.

UM

Now

May 21, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

FSCK(8) UNIX Programmer’s Manual FSCK (8)

Inode number out of range.
8. Super Block checks:

More blocks for inodes than there are in the file system.
9. Bad free block list format.
10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator’s concurrence, recon-
nected by placing them in the lost+found directory. The name assigned is the inode number. If the
lost+found directory does not exist, it is created. If there is insufficient space its size is increased.

Checking the raw device is almost always faster.

OPTIONS _
=b block# Uses the block specified immediately after the flag as the super block for the file system.
Block 32 is always an alternate super block.

-n Assumes a no response to all questions asked by fsck. Does not open the file system for writ-
ing.
-p Corrects inconsistencies as described above.
-y Assumes a yes response to all questions asked by fsck . Use this option with great caution as
this is a free license to continue after essentially unlimited trouble has been encountered.
FILES
letc/fstab contains default list of file systems to check.
DIAGNOSTICS

The diagnostics produced by fsck are fully enumerated and explained in Appendix A of ‘‘Fsck — The
UNIX File System Check Program’’ (SMM:5).

SEE ALSO
fstab(5), fs(5), newfs(8), mkfs(8), crash(8V), reboot(8)

BUGS
There should be some way to start a fsck —p at pass ».

May 21, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

FTPD(8C) UNIX Programmer’s Manual FTPD (8C)

NAME
ftpd — DARPA Internet File Transfer Protocol server

SYNOPSIS
letc/ftpd [options]

DESCRIPTION
ftpd is the DARPA Internet File Transfer Prototocol server process. The server uses the TCP protocol and

listens at the port specified in the *‘ftp’’ service specification; see services(5).
The ftp server will timeout an inactive session after 15 minutes.
The ftp server currently supports the following ftp requests; case is not distinguished.

Request Description

ABOR abort previous command

ACCT specify account (ignored)

ALLO allocate storage (vacuously)

APPE append to a file

CDUP change to parent of current working directory
CWD change working directory

DELE delete a file

HELP give help information

LIST give list files in a directory (*‘Is -1g””)
MKD make a directory

MODE specify data transfer mode

NLST give name list of files in directory (“‘Is’”)
NOOP do nothing

PASS specify password

PASV prepare for server-to-server transfer
PORT specify data connection port

PWD print the current working directory
QUIT terminate session

RETR retrieve a file

RMD remove a directory

RNFR specify rename-from filename
RNTO specify rename-to filename

STOR store a file

STOU store a file with a unique name
STRU specify data transfer structure
TYPE specify data transfer type

USER specify user name

XCup change to parent of current working directory
XCWD change working directory

XMKD make a directory

XPWD print the current working directory
XRMD remove a directory

The remaining ftp requests specified in Internet RFC 959 are recognized, but not implemented.

The ftp server will abort an active file transfer only when the ABOR command is preceded by a Telnet
"Interrupt Process" (IP) signal and a Telnet "Synch” signal in the command Telnet stream, as described in
Internet RFC 959.

ftpd interprets filenames according to the ‘‘globbing’’ conventions used by csh(1). This allows users to
utilize the metacharacters “‘*?[]{}~"".

October 25, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1

FTPD(8C) UNIX Programmer’s Manual FTPD (8C)

ftpd authenticates users according to four rules.

1) The user name must be in the password data base, /etc/passwd , and not have a null password. In
this case a password must be provided by the client before any file operations may be performed.

2) The user name must not appear in the file /etc/ftpusers .
3) The user must have a standard shell returned by getusershell(3).
4) If the user name is ‘‘anonymous’ or ““‘ftp’’, an anonymous ftp account must be present in the

password file (user “*ftp’’). In this case the user is allowed to log in by specifying any password
(by convention this is given as the client host’s name).

In the last case, ftpd takes special measures to restrict the client’s access privileges. The server performs a
chroot(2) command to the home directory of the “‘ftp’’ user. In order that system security is not breached,
it is recommended that the “‘ftp’” subtree be constructed with care; the following rules are recommended.

“ftp) Make the home directory owned by ‘‘ftp’* and unwritable by anyone.

“ftp/bin)
Make this directory owned by the super-user and unwritable by anyone. The program lIs(1) must
be present to support the list commands. This program should have mode 111.

“ftp/etc) Make this directory owned by the super-user and unwritable by anyone. The files passwd(5) and
group(5) must be present for the Is command to work properly. These files should be mode 444,
“ftp/pub)
Make this directory mode 777 and owned by “‘ftp’’. Users should then place files which are to be
accessible via the anonymous account in this directory.

OPTIONS

—d Writes debugging information to the syslog.
-1 Logs each ftp session in the syslog.
—t timeout Sets the the inactivity timeout period to timeout.

SEE ALSO

BUGS

ftp(1C), getusershell(3), syslogd(8)

The anonymous account is inherently dangerous and should avoided when possible.

The server must run as the super-user to create sockets with privileged port numbers. It maintains an effec-
tive user id of the logged in user, reverting to the super-user only when binding addresses to sockets. The
possible security holes have been extensively scrutinized, but are possibly incomplete.

October 25, 1988 INTEGRATED SOLUTIONS 4.3 BSD 2

GDBAD (8I) UNIX Programmer’s Manual GDBAD (81)

NAME
gdbad — ISI test disk for bad sector rand reassign

SYNOPSIS
/etc/gdbad

DESCRIPTION
Like badd144(8), gdbad is a menu-driven, stand-alone utility used to map out bad blocks. Unlike
bad144(8), however, gdbad uses a built-in SCSI block reassignment scheme,

To use gdbad, type gdbad at a shell prompt, then press RETURN. gdbad asks you to answer a series of
questions. Usually a default answer will be displayed after the question. Simply press RETURN to enter
the default answer to a question.

SEE ALSO
badsect(8), format(8V)

15 April 1988 INTEGRATED SOLUTIONS 4.3 BSD 1

GETTABLE(8C) UNIX Programmer’s Manual GETTABLE (8C)

NAME
gettable — get NIC format host tables from a host

SYNOPSIS
/etc/gettable [options] host [outfile]

DESCRIPTION
Gettable is a simple program used to obtain the NIC standard host tables from a ‘‘nicname’’ server. The
indicated host is queried for the tables. The tables, if retrieved, are placed in the file outfile or by default,
hosts.txt.

Gettable operates by opening a TCP connection to the port indicated in the service specification for ‘‘nic-
name’’. A request is then made for ““ALL" names and the resultant information is placed in the output
file.

Gettable is best used in conjunction with the htable(8) program which converts the NIC standard file for-
mat to that used by the network library lookup routines.
OPTIONS
-v Gets just the version number instead of the complete host table and put the output in the file outfile
or by default, hosts.ver.
SEE ALSO
intro(3N), htable(8), named(8)
BUGS

If the name-domain system provided network name mapping well as host name mapping, gettable would
no longer be needed.

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

GETTY (8) UNIX Programmer’s Manual GETTY (8)

NAME

getty — set terminal mode

SYNOPSIS

letc/getty [type [1ty 1]

DESCRIPTION

Getty is usually invoked by init(8) to open and initialize the tty line, read a login name, and invoke
login(1). getty attempts to adapt the system to the speed and type of terminal being used.

The argument #ty is the special device file in /dev to open for the terminal (e.g., ‘“ttyh0’’). If there is no
argument or the argument is “‘~"’, the tty line is assumed to be open as file descriptor 0.

The type argument can be used to make getty treat the terminal line specially. This argument is used as an
index into the gettytab(5) database, to determine the characteristics of the line. If there is no argument, or
there is no such table, the default table is used. If there is no /etc/gettytab a set of system defaults is used.
If indicated by the table located, getty will clear the terminal screen, print a banner heading, and prompt
for a login name. Usually either the banner of the login prompt will include the system hostname. Then
the user’s name is read, a character at a time. If a null character is received, it is assumed to be the result of
the user pushing the ‘break’ (‘interrupt’) key. The speed is usually then changed and the ‘login:’ is typed
again; a second ‘break’ changes the speed again and the ‘login:’ is typed once more. Successive ‘break’
characters cycle through the same standard set of speeds.

The user’s name is terminated by a new-line or carriage-return character. The latter results in the system
being set to treat carriage returns appropriately (see tty(4)).

The user’s name is scanned to see if it contains any lower-case alphabetic characters; if not, and if the
name is nonempty, the system is told to map any future upper-case characters into the corresponding
lower-case characters.

Finally, login is called with the user’s name as an argument.
Most of the default actions of getty can be circumvented, or modified, by a suitable gettytab table.

Getty can be set to timeout after some interval, which will cause dial up lines to hang up if the login name
is not entered reasonably quickly.

DIAGNOSTICS

FILES

ttyxx: No such device or address. #yxx: No such file or address. A terminal which is turned on in the
ttys file cannot be opened, likely because the requisite lines are either not configured into the system, the
associated device was not attached during boot-time system configuration, or the special file in /dev does
not exist.

letc/gettytab

SEE ALSO

gettytab(5), init(8), login(1), ioctl(2), tty(4), ttys(5)

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

HALT(8) UNIX Programmer’s Manual HALT(8)

NAME
halt - stop the processor

SYNOPSIS
letc/halt [options]

DESCRIPTION
Halt writes out sandbagged information to the disks and then stops the processor. The machine does not
reboot, even if the auto-reboot switch is set on the console.

Halt normally logs the shutdown using syslog(8) and places a shutdown record in the login accounting file
/usr/adm/wtmp. These actions are inhibited if the —n or —q options are present.

OPTIONS
-n Prevents the sync before stopping.

—-q Causes a quick halt, no graceful shutdown is attempted.
-y Is needed if you are trying to halt the system from a dialup.

SEE ALSO
reboot(8), shutdown(8), syslogd(8)

May 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

HTABLE(8) UNIX Programmer’s Manual HTABLE (8)

NAME

htable ~ convert NIC standard format host tables

SYNOPSIS

letc/htable [—¢ connected-nets 1 { -1 local-nets 1 file

DESCRIPTION

Htable is used to convert host files in the format specified in Internet RFC 810 to the format used by the
network library routines. Three files are created as a result of running htable: hosts, networks , and gate-
ways. The hosts file may be used by the gethostbyname(3N) routines in mapping host names to addresses
if the nameserver, named(8), is not used. The networks file is used by the getnetent(3N) routines in map-
ping network names to numbers. The gateways file may be used by the routing daemon in identifying
‘‘passive’’ Internet gateways; see routed(8C) for an explanation.

If any of the files localhosts, localnetworks, or localgateways are present in the current directory, the file’s
contents is prepended to the output file. Of these, only the gateways file is interpreted. This allows sites to
maintain local aliases and entries which are not normally present in the master database. Only one gateway
to each network will be placed in the gateways file; a gateway listed in the localgateways file will override
any in the input file.

If the gateways file is to be used, a list of networks to which the host is directly connected is specified with
the —c flag. The networks, separated by commas, may be given by name or in Internet-standard dot nota-
tion, e.g. —c arpanet,128.32,local-ether-net. Htable only includes gateways which are directly connected
to one of the networks specified, or which can be reached from another gateway on a connected net.

If the -1 option is given with a list of networks (in the same format as for —c), these networks will be
treated as ‘‘local,’”” and information about hosts on local networks is taken only from the localhosts file.
Entries for local hosts from the main database will be omitted. This allows the localhosts file to completely
override any entries in the input file.

Htable is best used in conjunction with the gettable(8C) program which retrieves the NIC database from a
host.

SEE ALSO

BUGS

intro(3N), gettable(8C), named(8)

If the name-domain system provided network name mapping well as host name mapping, htable would no
longer be needed.

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

ICHECK (8) UNIX Programmer’s Manual ICHECK (8)

NAME
icheck — file system storage consistency check

SYNOPSIS
letcficheck [options 1 [file system]

DESCRIPTION
N.B.: Icheck is obsoleted for normal consistency checking by fsck(8).

Icheck examines a file system, builds a bit map of used blocks, and compares this bit map against the free
list maintained on the file system. If the file system is not specified, a set of default file systems is checked.
The normal output of icheck includes a report of

The total number of files and the numbers of regular, directory, block special and character special
files.

The total number of blocks in use and the numbers of single-, double-, and triple-indirect blocks
and directory blocks.

The number of free blocks.
The number of blocks missing; i.e. not in any file nor in the free list.
Icheck is faster if the raw version of the special file is used, since it reads the i-list many blocks at a time.
OPTIONS

~b numbers
Produces a diagnostic whenever any of the named blocks turns up in a file.

-s Causes icheck to ignore the actual free list and reconstruct a new one by rewriting the super-
block of the file system. The file system should be dismounted while this is done; if this is not
possible (for example if the root file system has to be salvaged) care should be taken that the
system is quiescent and that it is rebooted immediately afterwards so that the old, bad in-core
copy of the super-block will not continue to be used. Notice also that the words in the super-
block which indicate the size of the free list and of the i-list are believed. If the super-block
has been curdled these words will have to be patched. The —s option causes the normal output
reports to be suppressed.

FILES
Default file systems vary with installation.

SEE ALSO
fsck(8), dcheck(8), ncheck(8), fs(5), clri(8)

DIAGNOSTICS
For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the difficulty, the
i-number, and the kind of block involved. If a read error is encountered, the block number of the bad block
is printed and icheck considers it to contain 0. ‘Bad freeblock’ means that a block number outside the
available space was encountered in the free list. ‘z dups in free’ means that n blocks were found in the free
list which duplicate blocks either in some file or in the earlier part of the free list.

BUGS
Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied to active
file systems.
It believes even preposterous super-blocks and consequently can get core images.

The system should be fixed so that the reboot after fixing the root file system is not necessary.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

IFCONFIG (8C) UNIX Programmer’s Manual IFCONFIG (8C)

NAME

ifconfig — configure network interface parameters

SYOPNSIS

letc/ifconfig interface address_family [address [dest_address 1] [parameters]
letc/ifconfig interface [protocol_family]

DESCRIPTION

Ifconfig is used to assign an address to a network interface and/or configure network interface parameters.
Ifconfig must be used at boot time to define the network address of each interface present on a machine; it
may also be used at a later time to redefine an interface’s address or other operating parameters. The inter-
face parameter is a string of the form ‘‘name unit’’, e.g. “‘en0’’.

Since an interface may receive transmissions in differing protocols, each of which may require separate
naming schemes, it is necessary to specify the address_family, which may change the interpretation of the
remaining parameters. The address families currently supported are “‘inet’’ and ‘‘ns’’.

For the DARPA-Internet family, the address is either a host name present in the host name data base,
hosts(5), or a DARPA Internet address expressed in the Internet standard ‘‘dot notation”’. For the Xerox
Network Systems(tm) family, addresses are net:a.b.c.d.e.f, where net is the assigned network number (in
decimal), and each of the six bytes of the host number, a through £, are specified in hexadecimal. The host
number may be omitted on 10Mb/s Ethernet interfaces, which use the hardware physical address, and on
interfaces other than the first.

The following parameters may be set with ifconfig:

up Mark an interface ‘‘up’’. This may be used to enable an interface after an ‘‘ifconfig
down.” It happens automatically when setting the first address on an interface. If the
interface was reset when previously marked down, the hardware will be re-initialized.

down Mark an interface ‘‘down’’. When an interface is marked ‘‘down’’, the system will not
attempt to transmit messages through that interface. If possible, the interface will be
reset to disable reception as well. This action does not automatically disable routes
using the interface.

trailers Request the use of a ‘“‘trailer’’ link level encapsulation when sending (default). If a net-
work interface supports trailers, the system will, when possible, encapsulate outgoing
messages in a manner which minimizes the number of memory to memory copy opera-
tions performed by the receiver. On networks that support the Address Resolution Pro-
tocol (see arp(4P); currently, only 10 Mb/s Ethernet), this flag indicates that the system
should request that other systems use trailers when sending to this host. Similarly, trailer
encapsulations will be sent to other hosts that have made such requests. Currently used

by Internet protocols only.
—trailers Disable the use of a ‘“trailer’’ link level encapsulation.
arp Enable the use of the Address Resolution Protocol in mapping between network level

addresses and link level addresses (default). This is currently implemented for mapping
between DARPA Internet addresses and 10Mb/s Ethernet addresses.

—arp Disable the use of the Address Resolution Protocol.

metric n Set the routing metric of the interface to n, default 0. The routing metric is used by the
routing protocol (routed(8c)). Higher metrics have the effect of making a route less
favorable; metrics are counted as addition hops to the destination network or host.

debug Enable driver dependent debugging code; usually, this turns on extra console error log-
ging.
—debug Disable driver dependent debugging code.

netmask mask (Inet only) Specify how much of the address to reserve for subdividing networks into

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

IFCONFIG (8C)

dstaddr
broadcast

ipdst

UNIX Programmer’s Manual IFCONFIG (8C)

sub-networks. The mask includes the network part of the local address and the subnet
part, which is taken from the host field of the address. The mask can be specified as a
single hexadecimal number with a leading Ox, with a dot-notation Internet address, or
with a pseudo-network name listed in the network table networks(5). The mask con-
tains 1’s for the bit positions in the 32-bit address which are to be used for the network
and subnet parts, and 0’s for the host part. The mask should contain at least the standard
network portion, and the subnet field should be contiguous with the network portion.

Specify the address of the correspondent on the other end of a point to point link.

(Inet only) Specify the address to use to represent broadcasts to the network. The
default broadcast address is the address with a host part of all 1’s.

(NS only) This is used to specify an Internet host who is willing to receive ip packets
encapsulating NS packets bound for a remote network. In this case, an apparent point to
point link is constructed, and the address specified will be taken as the NS address and
network of the destinee. ‘

Ifconfig displays the current configuration for a network interface when no optional parameters are sup-
plied. If a protocol family is specified, Ifconfig will report only the details specific to that protocol family.

Only the super-user may modify the configuration of a network interface.

DIAGNOSTICS

. Messages indicating the specified interface does not exit, the requested address is. unknown, or the user is
not privileged and tried to alter an interface’s configuration.

SEE ALSO

netstat(1), intro(4N), rc(8)

May 22, 1986

INTEGRATED SOLUTIONS 4.3 BSD 2

IMPLOG (8C) UNIX Programmer’s Manual IMPLOG (8C)

NAME
implog — IMP log interpreter
SYNOPSIS
letc/implog [options]
DESCRIPTION
Implog is program which interprets the message log produced by implogd(8C).
If no arguments are specified, implog interprets and prints every message present in the message file.

OPTIONS
Options may be specified to force printing only a subset of the logged messages.

- In addition to printing any data messages logged, show the contents of the data in hexadecimal
bytes.

-D Does not show data messages.

—f Follow the logging process in action. This flags causes implog to print the current contents of the
log file, then check for new logged messages every 5 seconds.

—h host#
Show only those messages received from the specified host. (Usually specified in conjunction
with an imp.)

—i imp# Show only those messages received from the specified imp.

=L [link#]
Show only those messages received on the specified ‘‘link”’. If no value is given for the link, the
link number of the IP protocol is assumed.

-r Print the raw imp leader, showing all fields, in addition to the formatted interpretation according to
type.

—t message-type
Show only those messages received of the specified message type.

SEE ALSO
imp(4P), implogd(8C)

BUGS
Can not specify multiple hosts, imps, etc. Can not follow reception of messages without looking at those
currently in the file.

May §, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

IMPLOGD (8C) UNIX Programmer’s Manual IMPLOGD (8C)

NAME
implogd — IMP logger process
SYNOPSIS
/etc/implogd [—d]
DESCRIPTION
Implogd is program which logs error messages from the IMP, placing them in the file /ust/adm/implog .
Entries in the file are variable length. Each log entry has a fixed length header of the form:
struct sockstamp {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
time t sin_time;
int sin_len;
b
followed, possibly, by the message received from the IMP. Each time the logging process is started up it
places a time stamp entry in the file (a header with sin_len field set to 0).
The logging process will catch only those message from the IMP which are not processed by a protocol
module, e.g. IP. This implies the log should contain only status information such as ‘‘IMP going down”’
messages, ‘‘host down’’ and other error messages, and, perhaps, stray NCP messages.
SEE ALSO

imp(4P), implog(8C)

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

INETD(8) UNIX Programmer’s Manual INETD (8)

NAME
inetd — internet *‘super—server’’

SYNOPSIS
letc/inetd [—d] [configuration file]

DESCRIPTION
Inetd should be run at boot time by /etc/rc.local . It then listens for connections on certain internet sockets.
When a connection is found on one of its sockets, it decides what service the socket corresponds to, and
invokes a program to service the request. After the program is finished, it continues to listen on the socket
(except in some cases which will be described below). Essentially, inetd allows running one daemon to
invoke several others, reducing load on the system.

Upon execution, inetd reads its configuration information from a configuration file which, by default, is
/etc/inetd.conf . There must be an entry for each field of the configuration file, with entries for each field
separated by a tab or a space. Comments are denoted by a “*#’’ at the beginning of a line. There must be
an entry for each field. The fields of the configuration file are as follows:

service name

socket type

protocol

wait/nowait

user

server program

server program arguments

The service name entry is the name of a valid service in the file /etc/services/. For ‘‘internal’’ services
(discussed below), the service name must be the official name of the service (that is, the first entry in
letc/services).

The socket type should be one of ‘‘stream’’, “*‘dgram’, “‘raw’’, ‘‘rdm’’, or ‘‘seqpacket’’, depending on
whether the socket is a stream, datagram, raw, reliably delivered message, or sequenced packet socket.

The protocol must be a valid protocol as given in /etc/protocols . Examples might be ‘“tcp’” or ‘‘udp’’.

The wait/nowait entry is applicable to datagram sockets only (other sockets should have a ‘‘nowait’” entry
in this space). If a datagram server connects to its peer, freeing the socket so inetd can received further
messages on the socket, it is said to be a ‘‘multi-threaded’’ server, and should use the ‘‘nowait’’ entry. For
datagram servers which process all incoming datagrams on a socket and eventually time out, the server is
said to be “‘single-threaded’’ and should use a ‘‘wait’’ entry. ‘‘Comsat’’ (‘‘biff’’) and ‘‘talk’’ are both
examples of the latter type of datagram server. Tjftpd is an exception; it is a datagram server that estab-
lishes pseudo-connections. It must be listed as ‘‘waif’’ in order to avoid a race; the server reads the first
packet, creates a new socket, and then forks and exits to allow inetd to check for new service requests to
Spawn new servers.

The user entry should contain the user name of the user as whom the server should run. This allows for
servers to be given less permission than root. The server program entry should contain the pathname of
the program which is to be executed by inetd when a request is found on its socket. If inetd provides this
service internally, this entry should be “‘internal’’.

The arguments to the server program should be just as they normally are, starting with argv[0], which is the
name of the program. If the service is provided internally, the word ‘‘internal’’ should take the place of
this entry.

Inetd provides several ‘“‘trivial’’ services internally by use of routines within itself. These services are
““echo’’, “‘discard’’, “‘chargen’’ (character generator), ‘‘daytime’’ (human readable time), and ‘‘time’’
(machine readable time, in the form of the number of seconds since midnight, January 1, 1900). All of
these services are tcp based. For details of these services, consult the appropriate RFC from the Network
Information Center.

May 26, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

INETD(8) UNIX Programmer’s Manual INETD (8)

Inetd rereads its configuration file when it receives a hangup signal, SIGHUP. Services may be added,
deleted or modified when the configuration file is reread.

SEE ALSO ‘
comsat(8C), ftpd(8C), rexecd(8C), rlogind(8C), rshd(8C), telnetd(8C), tftpd(8C)

May 26, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

INIT(8) UNIX Programmer’s Manual INIT (8)

NAME

init — process control initialization

SYNOPSIS

/etc/init

DESCRIPTION

Init is invoked inside UNIX as the last step in the boot procedure. It normally then runs the automatic
reboot sequence as described in reboot(8), and if this succeeds, begins multi-user operation. If the reboot
fails, it commences single user operation by giving the super-user a shell on the console. It is possible to
pass parameters from the boot program to init so that single user operation is commenced immediately.
When such single user operation is terminated by killing the single-user shell (i.e. by hitting “D), init runs
/etc/rc without the reboot parameter. This command file performs housekeeping operations such as remov-
ing temporary files, mounting file systems, and starting daemons.

In multi-user operation, init’s role is to create a process for each terminal port on which a user may log in.
To begin such operations, it reads the file /etc/ttys and executes a command for each terminal specified in
the file. This command will usually be /etc/getty. Getty opens and initializes the terminal line, reads the
user’s name and invokes login to log in the user and execute the Shell.

Ultimately the Shell will terminate because of an end-of-file either typed explicitly or generated as a result
of hanging up. The main path of init, which has been waiting for such an event, wakes up and removes the
appropriate entry from the file utmp, which records current users, and makes an entry in /usr/adm/wtmp ,
which maintains a history of logins and logouts. The wtmp entry is made only if a user logged in success-
fully on the line. Then the appropriate terminal is reopened and getty is reinvoked.

Init catches the hangup signal (signal SIGHUP) and interprets it to mean that the file /etc/ttys should be
read again. The Shell process on each line which used to be active in ttys but is no longer there is ter-
minated; a new process is created for each added line; lines unchanged in the file are undisturbed. Thus it
is possible to drop or add terminal lines without rebooting the system by changing the ttys file and sending
a hangup signal to the init process: use ‘kill -HUP 1.’

Init will terminate multi-user operations and resume single-user mode if sent a terminate (TERM) signal,
ie. “kill -TERM 1. If there are processes outstanding which are deadlocked (due to hardware or
software failure), init will not wait for them all to die (which might take forever), but will time out after 30
seconds and print a warning message.

Init will cease creating new getty’s and allow the system to slowly die away, if it is sent a terminal stop
(TSTP) signal, i.e. ‘’kill ~-TSTP 1”’. A later hangup will resume full multi-user operations, or a terminate
will initiate a single user shell. This hook is used by reboot(8) and halt(8).

Init’s role is so critical that if it dies, the system will reboot itself automatically. If, at bootstrap time, the
init process cannot be located, the system will loop in user mode at location 0x13.

DIAGNOSTICS

FILES

letc/getty gettyargs failing, sleeping. A process being started to service a line is exiting quickly each time
it is started. This is often caused by a ringing or n01sy terminal line. Init will sleep for 30 seconds, then
continue trying to start the process.

WARNING: Something is hung (wont die); ps axl advised. A process is hung and could not be killed
when the system was shutting down. This is usually caused by a process which is stuck in a device driver
due to a persistent device error condition.

/dev/console, /dev/tty*, /etc/utmp, /ust/adm/wtmp, /etc/ttys, /etc/rc

SEE ALSO

login(1), kill(1), sh(1), ttys(S), crash(8V), getty(8), rc(8), reboot(8), hait(8), shutdown(8)

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

KGMON(8) UNIX Programmer’s Manual KGMON (8)

NAME
kgmon - generate a dump of the operating system’s profile buffers

SYNOPSIS :
letc/kgmon [options] [system] [memory]

DESCRIPTION
Kgmon is a tool used when profiling the operating system. When no arguments are supplied, kgmon indi-
cates the state of operating system profiling as running, off, or not configured. (see config(8)) If the —p flag
is specified, kgmon extracts profile data from the operating system and produces a gmon.out file suitable
for later analysis by gprof(1).

OPTIONS
The following options may be specified:

-b Resumes the collection of profile data.

~h Stops the collection of profile data.

-p Dumps the contents of the profile buffers into a gmon.out file suitable for later analysis by
gprof(1).

-r Resets all the profile buffers. If the —p flag is also specified, the gmon.out file is generated before
the buffers are reset.

If neither —b nor —h is specified, the state of profiling collection remains unchanged. For example, if the
—p flag is specified and profile data is being collected, profiling will be momentarily suspended, the operat-
ing system profile buffers will be dumped, and profiling will be immediately resumed.

FILES
/vmunix — the default system
/dev/kmem — the default memory

SEE ALSO
gprof(1), config(8)

DIAGNOSTICS ‘

Users with only read permission on /dev/kmem cannot change the state of profiling collection. They can
get a gmon.out file with the warning that the data may be inconsistent if profiling is in progress.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

KILLPG(8) UNIX Programmer’s Manual KILLPG(8)

NAME
killpg — terminate all members of a process group
SYNOPSIS
killpg [~sig] pid
DESCRIPTION
Killpg sends the specified signal to all processes in the process group of the target process.
The signal sig must be represented by a number; the signal names used with kill (1) cannot be used. See
sigvec(2) for the list of signal numbers.
Only one process ID pid is accepted as an argument.
FILE
/usr/local/killpg
SEE ALSO
ps(1), killpg(2), getpgrp(2), sigvec(2)
DIAGNOSTICS

Usage response to improper input.

15 October 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

KSYMBOL(8) UNIX Programmer’s Manual KSYMBOL (8)

NAME
ksymbol — configures the kernel debugger symbol table

SYNOPSIS
fete/ksymbol kernel-name

DESCRIPTION
ksymbol configures a symbol table for the kernel debugger program. Without ksymbol, the debugger can
use only numeric addresses, not symbolic addresses.

config (8) puts a call to ksymbol into the kernel makefile, so that ksymbol runs automatically when making
anew kernel. This is ordinarily the only time to run ksymbol.

The default value for kernel-name is /vmunix.

FILES

/ust/src/sys/is68k/Makefile config (8) makefile, runs ksymbol
SEE ALSO

config(8)

UNIX Source Release Note for Source Licensees
DIAGNOSTICS

WARNING: symtab too small, %d allocated, %d needed
The symbol table allocated is too small; ksymbol could not enter all of the symbols.

kernel strtab too small, %d allocated, %d needed
The kernel string table allocated is too small; ksymbol could not enter all of the symbols.

successful patch
Successful execution of ksymbol.

15 July 1987 INTEGRATED SOLUTIONS 4.3 BSD 1

LPC(8)

NAME

UNIX Programmer’s Manual LPC(8)

Ipc — line printer control program

SYNOPSIS

fetc/lpc [command [argument ...]]

DESCRIPTION

Ipc is used by the system administrator to control the operation of the line printer system. For each line
printer configured in /etc/printcap, Ipc may be used to:

e disable or enable a printer,

e disable or enable a printer’s spooling queue,

o rearrange the order of jobs in a spooling queue,

o find the status of printers, and their associated spooling queues and printer dameons.

Without any arguments, Ipc will prompt for commands from the standard input. If arguments are supplied,
Ipc interprets the first argument as a command and the remaining arguments as parameters to the com-
mand. The standard input may be redirected causing Ipc to read commands from file. Commands may be
abreviated; the following is the list of recognized commands.

? [command ...]

help [command ...]
Print a short description of each command specified in the argument list, or, if no arguments are
given, a list of the recognized commands.

abort { all | printer ... }
Terminate an active spooling daemon on the local host immediately and then disable printing
(preventing new daemons from being started by Ipr) for the specified printers.

clean { all | printer ... }
Remove any temporary files, data files, and control files that cannot be printed (i.e., do not form a
complete printer job) from the specified printer queue(s) on the local machine.

disable { all | printer ... }
Turn the specified printer queues off. This prevents new printer jobs from being entered into the
queue by lpr.

down { all | printer } message ...
Turn the specified printer queue off, disable printing and put message in the printer status file. The
message doesn’t need to be quoted, the remaining arguments are treated like echo(1). This is nor-
mally used to take a printer down and let others know why (Ipq will indicate the printer is down
and print the status message).

enable { all | printer ... }
Enable spooling on the local queue for the listed printers. This will allow Ipr to put new jobs in
the spool queue.

exit

quit
Exit from Ipc.

restart { all | printer ... }
Attempt to start a new printer daemon. This is useful when some abnormal condition causes the
daemon to die unexpectedly leaving jobs in the queue. Lpq will report that there is no daemon

present when this condition occurs. If the user is the super-user, try to abort the current daemon
first (i.e., kill and restart a stuck daemon).

start { all | printer ... }

July 20, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1

LPC(8) UNIX Programmer’s Manual

Enable printing and start a spooling daemon for the listed printers.

status { printer ... }
Display the status of daemons and queues on the local machine.

stop { all | printer ... }
Stop a spooling daemon after the current job completes and disable printing.

topq printer [jobnum ...] [user ...]
Place the jobs in the order listed at the top of the printer queue.

up { all | printer ... }

Enable everything and start a new printer daemon. Undoes the effects of down.

FILES
fetc/printcap printer description file
fusr/spool/* spool directories
fust/spool/*flock lock file for queue control

SEE ALSO
1pd(8), Ipr(1), Ipq(1), Iprm(1), printcap(5)
DIAGNOSTICS
?Ambiguous command abreviation matches more than one command

?Invalid command no match was found
?Privileged command command can be executed by root only

July 20, 1988 INTEGRATED SOLUTIONS 4.3 BSD

LPC(8)

LPD(8) UNIX Programmer’s Manual LPD(8)

NAME
Ipd - line printer daemon

SYNOPSIS
fusr/lib/lpd [1] [port #]

DESCRIPTION

Lpd is the line printer daemon (spool area handler) and is normally invoked at boot time from the rc(8)
file. It makes a single pass through the printcap(5) file to find out about the existing printers and prints any
files left after a crash. It then uses the system calls listen(2) and accept(2) to receive requests to print files
in the queue, transfer files to the spooling area, display the queue, or remove jobs from the queue. In each
case, it forks a child to handle the request so the parent can continue to listen for more requests. The Inter-
net port number used to rendezvous with other processes is normally obtained with getservbyname(3) but
can be changed with the port# argument. The -1 flag causes lpd to log valid requests received from the
network. This can be useful for debugging purposes.

Access control is provided by two means. First, All requests must come from one of the machines listed in
the file /etc/hosts.equiv or /etc/hosts.lpd . Second, if the ‘‘rs’’ capability is specified in the printcap entry
for the printer being accessed, lpr requests will only be honored for those users with accounts on the
machine with the printer.

The file minfree in each spool directory contains the number of disk blocks to leave free so that the line
printer queue won’t completely fill the disk. The minfree file can be edited with your favorite text editor.

The file lock in each spool directory is used to prevent mulitiple daemons from becoming active simuitane-
ously, and to store information about the daemon process for Ipr(1), Ipq(1), and lprm(1). After the dae-
mon has successfully set the lock, it scans the directory for files beginning with ¢f. Lines in each ¢f file
specify files to be printed or non-printing actions to be performed. Each such line begins with a key char-
acter to specify what to do with the remainder of the line.

J Job Name. String to be used for the job name on the burst page.
C Classification. String to be used for the classification line on the burst page.

L Literal. The line contains identification info from the password file and causes the banner page to
be printed.

Tide. String to be used as the title for pr(1).

Host Name. Name of the machine where Ipr was invoked.

Person. Login name of the person who invoked Ipr. This is used to verify ownership by Iprm.
Send mail to the specified user when the current print job completes.

Formatted File. Name of a file to print which is already formatted.

- oz oo o

Like “‘f>’ but passes control characters and does not make page breaks.
Name of a file to print using pr(1) as a filter.

Ladiis - |

Troff File. The file contains troff(1) output (cat phototypesetter commands).
Ditroff File. The file contains device independent troff output.

DVI File. The file contains Tex(l) output (DVI format from Standford).
Graph File. The file contains data produced by plot(3X).

Cifplot File. The file contains data produced by cifplot.

The file contains a raster image.

The file contains text data with FORTRAN carriage control characters.

Troff Font R. Name of the font file to use instead of the default.

e TR - T - B ~ VR]

December 8, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

LPD(8) UNIX Programmer’s Manual LPD(8)

Troff Font I. Name of the font file to use instead of the default.

Troff Font B. Name of the font file to use instead of the default.

Troff Font S. Name of the font file to use instead of the default.

Width. Changes the page width (in characters) used by pr(1) and the text filters.
Indent. The number of characters to indent the output by (in ascii).

Unlink. Name of file to remove upon completion of printing.

Z o~ g s v

File name. The name of the file which is being printed, or a blank for the standard input (when lpr
is invoked in a pipeline).

If a file can not be opened, a message will be logged via syslog(3) using the LOG_LPR facility. Lpd will
try up to 20 times to reopen a file it expects to be there, after which it will skip the file to be printed.

Lpd uses flock(2) to provide exclusive access to the lock file and to prevent multiple deamons from
becoming active simultaneously. If the daemon should be killed or die unexpectedly, the lock file need not
be removed. The lock file is kept in a readable ASCII form and contains two lines. The first is the process
id of the daemon and the second is the control filename of the current job being printed. The second line is
updated to reflect the current status of Ipd for the programs Ipq(1) and Iprm(1).

OPTIONS
-1 Causes Ipd to log valid requests received from the network. This can be useful for debugging pur-
poses.
FILES
/etc/printcap printer description file
/usr/spool/* spool directories
{usr/spool/*/minfreeminimum free space to leave
/dev/lp* line printer devices
/dev/printer socket for local requests
/etc/hosts.equiv lists machine names allowed printer access
letc/hosts.lpd lists machine names allowed printer access,

but not under same administrative control.

SEE ALSO

1pc(8), pac(1), Ipr(1), Ipq(1), Iprm(1), syslog(3), printcap(5)
4.2BSD Line Printer Spooler Manual

December 8, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2

MAKEDEYV (8) UNIX Programmer’s Manual MAKEDEY (8)

NAME

makedev — make system special files

SYNOPSIS

/dev/MAKEDEY devices

DESCRIPTION

MAKEDEY is a shell script normally used to install special files. It resides in the /dev directory, as this is
the normal location of special files. Arguments to MAKEDEY are usually of the form

device-name ?

where device-name is one of the supported devices listed in the Section 4 man pages in the Programmer’s
Reference Manual, and ? is a logical unit number (0-9).

Two special arguments create assorted collections of devices, as follows:
std Creates the ‘‘standard’’ devices for the system, e.g., /dev/console, /dev/tty.

local Creates those devices specific to the local site. This request executes the shell file
/dev/MAKEDEV local. Site-specific commands (such as those used to set up dialup lines as
“‘ttyd?’") should be included in this file.

Since all devices are created using mknod(8), this shell script is useful only to the super-user.

DIAGNOSTICS

Messages are either self-explanatory, or are generated by one of the programs called from the script. Enter
sh -x MAKEDEY in case of trouble.

SEE ALSO

BUGS

intro(4), config(8), mknod(8)

When more than one piece of hardware of the same kind is present on a machine (for instance, a dh and a
dmf), naming conflicts arise.

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

MAKEKEY (8) UNIX Programmer’s Manual MAKEKEY (8)

NAME
makekey — generate encryption key

SYNOPSIS
fusr/lib/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by increasing the amount of
time required to search the key space. It reads 10 bytes from its standard input, and writes 13 bytes on its
standard output. The output depends on the input in a way intended to be difficult to compute (that is, to
require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the salt) are best
chosen from the set of digits, upper- and lower-case letters, and ‘.’ and ‘/°. The salt characters are repeated
as the first two characters of the output. The remaining 11 output characters are chosen from the same set
as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4096 crypto-
graphic machines all based on the National Bureaun of Standards DES algorithm, but modified in 4096 dif-
ferent ways. Using the input key as key, a constant string is fed into the machine and recirculated a
number of times. The 64 bits that come out are distributed into the 66 useful key bits in the result.

Makekey is intended for programs that perform encryption (for instance, ed and crypt(1)). Usually
makekey’s input and output will be pipes.

SEE ALSO
crypt(1), ed(1)

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

MKFS (8) UNIX Programmer’s Manual MKEFS (8)

NAME
mkfs — construct a file system

SYNOPSIS
letc/mkfs [-N 1 special size [nsect [ntrack [blksize [fragsize [ncpg [minfree [rps [nbpi [opt11]11]11]
1]

DESCRIPTION
N.B.: file systems are normally created with the newfs(8) command.

MKfs constructs a file system by writing on the special file special unless the —-N flag has been specified.
The numeric size specifies the number of sectors in the file system. Mkfs builds a file system with a root
directory and a lost+found directory. (see fsck(8)) The number of i-nodes is calculated as a function of the
file system size.

The optional arguments allow fine tune control over the parameters of the file system. Nsect specify the
number of sectors per track on the disk. Ntrack specify the number of tracks per cylinder on the disk.
Blksize gives the primary block size for files on the file system. It must be a power of two, currently
selected from 4096 or 8192. Fragsize gives the fragment size for files on the file system. The fragsize
represents the smallest amount of disk space that will be allocated to a file. It must be a power of two
currently selected from the range 512 to 8192. Ncpg specifies the number of disk cylinders per cylinder
group. This number must be in the range 1 to 32. Minfree specifies the minimum percentage of free disk
space allowed. Once the file system capacity reaches this threshold, only the super-user is allowed to allo-
cate disk blocks. The default value is 10%. If a disk does not revolve at 60 revolutions per second, the rps
parameter may be specified. If a file system will have more or less than the average number of files the
nbpi (number of bytes per inode) can be specified to increase or decrease the number of inodes that are
created. Space or time optimization preference can be specified with opt values of ‘‘s’’ for space or “‘t”’
for time. Users with special demands for their file systems are referred to the paper cited below for a dis-
cussion of the tradeoffs in using different configurations.

SEE ALSO
fs(5), dir(5), fsck(8), newfs(8), tunefs(8)

M. McKusick, W. Joy, S. Leffler, R. Fabry, ‘A Fast File System for UNIX"’, ACM Transactions on Com-
puter Systems 2, 3. pp 181-197, August 1984. (reprinted in the System Manager’s Manual, SMM:14)

BUGS
There should be some way to specify bad blocks.

May 21, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

MKHOSTS (8) UNIX Programmer’s Manual MKHOSTS (8)

NAME
mkhosts — generate hashed host table

SYNOPSIS
letc/mkhosts [options] hostfile

DESCRIPTION

Mkhosts is used to generated the hashed host database used by one version of the library routines gethost-
byaddr() and gethostbyname(). It is not used if host name translation is performed by named(8). If the
—v option is supplied, each host will be listed as it is added. The file hostfile is usually /etc/hosts, and in
any case must be in the format of /etc/hosts (see hosts(5)).

Mkhosts will generate database files named hostfile.pag and hostfile.dir. The new database is build in a set
of temporary files and only replaces the real database if the new one is built without errors. Mkhosts will
exit with a non-zero exit code if any errors are detected.

OPTIONS
-v Lists each host as it is added.

FILES
hostfile.pag - real database filenames
hostfile. dir
hostfilenew.pag - temporary database filenames
hostfile.new.dir
SEE ALSO
gethostbyname(3), gettable(8), hosts(5), htable(8), named(8)

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

MKLOST+FOUND (8) UNIX Programmer’s Manual MKLOST+FOUND (8)

NAME
mklost+found — make a lost+found directory for fsck
SYNOPSIS
/etc/mklost+found
DESCRIPTION
A directory lost+found is created in the current directory and a number of empty files are created therein

and then removed so that there will be empty slots for fsck(8). This command should not normally be
needed since mkfs(8) automatically creates the lost+found directory when a new file system is created.

SEE ALSO
fsck(8), mkfs(8)

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

MKNOD (8) UNIX Programmer’s Manual MKNOD(8)

NAME
mknod — build special file

SYNOPSIS
/etc/mknod name [¢] [b] major minor

DESCRIPTION
Mknod makes a special file. The first argument is the name of the entry. The second is b if the special file
is block-type (disks, tape) or c¢ if it is character-type (other devices). The last two arguments are numbers
specifying the major device type and the minor device (e.g. unit, drive, or line number).

The assignment of major device numbers is specific to each system. They have to be dug out of the system
source file conf.c.

SEE ALSO
mknod(2), makedev(8)

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

MKPASSWD (8) UNIX Programmer’s Manual MKPASSWD (8)

NAME
mkpasswd — generate hashed password table

SYNOPSIS
/etc/mkpasswd [options]| passwdfile

DESCRIPTION
Mkpasswd generates the hashed password database used by the library routines getpwnam() and
getpwuid(). This database is stored in the files passwd.pag and passwd.dir.

Usually, the passwdfile you invoke on the command line will be /etc/ptmp (the file invoked by the vipw(8)
command). In any case, the passwdfile must be in the format of /etc/passwd. (See the passwd(S) man page
for a description of this format.)

Mkpasswd exits with a non-zero exit code if it detects errors.

OPTIONS
-V Lists each entry as it is added.

FILES
passwdfile.pag database file
passwdfile.dir database file

SEE ALSO
getpwent(3), vipw(8), passwd(5)

November 23, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1

MKPROTO(8) UNIX Programmer’s Manual MKPROTO(8)

NAME
mkproto ~ construct a prototype file system
SYNOPSIS
/etc/mkproto special proto
DESCRIPTION
Mkproto is used to bootstrap a new file system. First a new file system is created using newfs(8).
Mkproto is then used to copy files from the old file system into the new file system according to the direc-
tions found in the prototype file proto. The prototype file contains tokens separated by spaces or new lines.
The first tokens comprise the specification for the root directory. File specifications consist of tokens giv-
ing the mode, the user-id, the group id, and the initial contents of the file. The syntax of the contents field
depends on the mode.
The mode token for a file is a 6 character string. The first character specifies the type of the file. (The
characters —bed specify regular, block special, character special and directory files respectively.) The
second character of the type is either u or — to specify set-user-id mode or not. The third is g or — for the
set-group-id mode. The rest of the mode is a three digit octal number giving the owner, group, and other
read, write, execute permissions, see chmod(1).
Two decimal number tokens come after the mode; they specify the user and group ID’s of the owner of the
file.
If the file is a regular file, the next token is a pathname whence the contents and size are copied.
If the file is a block or character special file, two decimal number tokens follow which give the major and
minor device numbers.
If the file is a directory, mkproto makes the entries . and .. and then reads a list of names and (recursively)
file specifications for the entries in the directory. The scan is terminated with the token $.
A sample prototype specification follows:
d—77731
usr 477731
sh ——7553 1 /binvsh
ken d—175561
$
b0 b—6443100
c0 ¢c—6443100
$
$
SEE ALSO
fs(5), dir(5), fsck(8), newfs(8)
BUGS

There should be some way to specify links.
There should be some way to specify bad blocks.

Mkproto can only be run on virgin file systems. It should be possible to copy files into existent file sys-
tems.

April 27, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1

MOUNT(8) - - UNIX Programmer’s Manual MOUNT (8)

NAME
mount, umount — mount and dismount filesystems

SYNOPSIS
/etc/mount [—p]
/etc/mount —a[fv] [—t type]
/etc/mount [—frv] [—t type] [—o0 options] fsname dir
/etc/mount [—vf] fsname | dir

/etc/umount [-h host]
/etc/umount —a[v]
/etc/umount [—v]

DESCRIPTION
Mount announces to the system that a filesystem fsname is to be attached to the file tree at the directory
dir. The directory dir must already exist. It becomes the name of the newly mounted root. The contents
of dir are hidden until the filesystem is unmounted. If fsname is of the form host:path the filesystem type is
assumed to be nfs(4).

Umount announces to the system that the filesystem fsname previously mounted on directory dir should be
removed. Either the filesystem name or the mounted-on directory may be used.

Mount and umount maintain a table of mounted filesystems in /etc/mtab, described in mtab(5). If
invoked without an argument, mount displays the table. If invoked with only one of fsname or dir mount
searches the file /etc/fstab (see fstab(5)) for an entry whose dir or fsname field matches the given argu-
ment. For example, if this line is in /etc/fstab:

/dev/xy0g /usr 43rw11l
then the commands mount /usr and mount /dev/xy0g are shorthand for mount /dev/xy0g /usr.

MOUNT OPTIONS
-a Attempt to mount all the filesystems described in /etc/fstab. (In this case, fsname and dir are taken
from /etc/fstab.) If a type is specified all of the filesystems in /etc/fstab with that type is mounted.
Filesystems are not necessarily mounted in the order listed in /etc/fstab.

—f Fake a new /etc/mtab entry, but do not actuaily mount any filesystems.
-0 Specify options, a list of comma separated words from the list below. Some options are valid for
all filesystem types, while others apply to a specific type only.

options valid on all file systems (the default is rw,suid):

rw read/write.

ro read-only.

suid set-uid execution allowed.

nosuid set-uid execution not allowed.

hide ignore this entry during a mount —-a command to allow you to define fstab entries for

commonly used filesystems you don’t want to automatically mount.

options specific to 4.3 file systems (the default is noquota).
quota usage limits enforced.
noquota usage limits not enforced.

options specific to nfs (NFS) file systems (the defaults are:
fg,retry=1,timeo=7,retrans=4,port=NFS_PORT,hard

April 5, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1

MOUNT (8) UNIX Programmer’s Manual MOUNT (8)

with defaults for rsize and wsize set by the kemel):
bg if the first mount attempt fails, retry in the background.
fg retry in foreground.
retry=n set number of mount failure retries to .
rsize=n set read buffer size to n bytes.
wsize=n set write buffer size to n bytes.
timeo=n set NFS timeout to » tenths of a second.
retrans=n set number of NFS retransmissions to n.
port=n set server IP port number to n.
soft return error if server doesn’t respond.
hard retry request until server responds.
The bg option causes mount to run in the background if the server’s mountd(8) does not respond.
mount attempts each request retry=n times before giving up. Once the filesystem is mounted,
each NFS request made in the kernel waits timeo=n tenths of a second for a response. If no
response arrives, the time-out is multiplied by 2 and the request is retransmitted. When retrans=n
retransmissions have been sent with no reply a soft mounted filesystem returns an error on the
request and a hard mounted filesystem retries the request. Filesystems that are mounted rw
(read-write) should use the hard option. The number of bytes in a read or write request can be set
with the rsize and wsize options.

-p Print the list of mounted filesystems in a format suitable for use in /etc/fstab.

-r Mount the specified filesystem read-only. This is a shorthand for:

mount —o ro fsname dir

Physically write-protected and magnetic tape filesystems must be mounted read-only, or errors
occur when access times are updated, whether or not any explicit write is attempted.

-t The next argument is the filesystem type. The accepted types are: 4.3, and nfs; see fstab(5) for a
description of these filesystem types.

-v Run in verbose mode. mount displays a message indicating the filesystem being mounted.

UMOUNT OPTIONS
-a Attempt to unmount all the filesystems currently mounted (listed in /etc/mtab). In this case,

fsname is taken from /etc/mtab.

—h host Unmount all filesystems listed in /etc/mtab that are remote-mounted from host.

~v Run in verbose mode. umount displays a message indicating the filesystem being unmounted.
EXAMPLES

mount /dev/xy0g /usr mount a local disk

mount —ft 4.3 /dev/nd0 / fake an entry for nd root

mount ~-at 4.3 mount all 4.3 filesystems

mount ~t nfs serv:/usr/src /usr/src mount remote filesystem

mount serv:/ust/src /usr/src same as above

mount —o hard serv:/usr/src /usr/src same as above but hard mount

mount —-p > fetc/fstab save current mount state
FILES

fetc/mtab mount table

fetc/fstab filesystem table

April 5, 1988

INTEGRATED SOLUTIONS 4.3 BSD 2

MOUNT (8) UNIX Programmer’s Manual MOUNT (8)

SEE ALSO
mount(2), nfsmount(2), unmount(2), fstab(5), mountd(8c), nfsd(8c)

BUGS
Mounting filesystems full of garbage crashes the system.

No more than one ND client should mount an ND disk partition "read-write" or the file system may
become corrupted.

If the directory on which a filesystem is to be mounted is a symbolic link, the filesystem is mounted on the
directory to which the symbolic link refers, rather than being mounted on top of the symbolic link itself.

April 5, 1988 INTEGRATED SOLUTIONS 4.3 BSD 3

NAMED (8C) UNIX Programmer’s Manual NAMED (8C)

NAME
named — Internet domain name server

SYNOPSIS
/usr/etc/in.named [options |

DESCRIPTION
named is the Internet domain name server. With no arguments named reads /etc/named.boot for any initial
data, and listens for queries on the standard Internet port that requires root privilege.

OPTIONS .
-b bootfile Uses the specified bootfile rather than /etc/named.boot.

—d level Prints debugging information. level is a number indicating the level of messages printed.
—pport Uses the specified port number.
EXAMPLE

H
; boot file for name server

.
»

; type domain source file or host
domain berkeley.edu

primary berkeley.edu named.db

secondary cc.berkeley.edu 10.2.0.78 128.32.0.10
cache . named.ca

The ““‘domain’’ line specifies that ‘‘berkeley.edu’’ is the domain of the given server.

The ““primary’’ line states that the file “‘named.db” contains authoritative data for ‘‘berkeley.edu’’. The
file “‘named.db’’ contains data in the master file format, except that all domain names are relative to the
origin; in this case, ‘‘berkeley.edu’’ (see below for a more detailed description).

The ‘“secondary’’ line specifies that all authoritative data under ‘‘cc.berkeley.edu’’ is to be transferred
from the name server at *‘10.2.0.78°". If the transfer fails it will try ‘*128.32.0.10"’, and continue for up to
10 tries at that address. The secondary copy is also authoritative for the domain.

The ‘‘cache’’ line specifies that data in ‘‘named.ca’’ is to be placed in the cache (i.e., well known data such
as locations of root domain servers). The file ‘‘named.ca’’ is in the same format as ‘‘named.db’’.

The master file consists of entries of the form:

$INCLUDE <filename>

SORIGIN <domain>

<domain> <opt_ttl> <opt_class> <type> <resource_record_data>
where domain is ‘.’ for root, “‘@’’ for the current origin, or a standard domain name. If domain is a stan-
dard domain name that does not end with *‘.”’, the current origin is appended to the domain. Domain
names ending with *‘.’” are unmodified.

The opt_til field is an optional integer number for the time-to-live field. It defaults to zero.
The opt_class field is currently one token, ‘IN’ for the Internet.
The type field is one of the following tokens; the data expected in the resource_record_data field is in

parentheses.

A a host address (dotted quad)

NS an authoritative name server (domain)
MX a mail exchanger (domain)

CNAME the canonical name for an alias (domain)

April 11, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1

NAMED (8C)

SOA
MB
MG
MR
NULL
WKS
PTR
HINFO
MINFO
NOTES

UNIX Programmer’s Manual NAMED (8C)

marks the start of a zone of authority (5 numbers)

a mailbox domain name (domain)

a mail group member (domain)

a mail rename domain name (domain)

a null resource record (no format or data)

a well know service description (not implemented yet)

a domain name pointer (domain)

host information (cpu_type OS_type)

mailbox or mail list information (request_domain error_domain)

The following signals have the specified effect when sent to the server process using the kill(1) command.

SIGHUP
SIGQUIT
SIGEMT
SIGFPE

FILES
fetc/named.boot

fetc/named.pid

/fusr/tmp/named.run

/usr/tmp/named_dump.db
SEE ALSO

Causes server to read named.boot and reload database.

Dumps current data base and cache to /usr/tmp/named_dump.db
Turns on debugging and each SIGEMT increments debug level.
Turns off debugging completely

name server configuration boot file
the process id
debug output
dump of the name servers database

kill(1), gethostbyname(3n), signal(3), resolver(5)

April 11, 1988

INTEGRATED SOLUTIONS 4.3 BSD

NCHECK (8) UNIX Programmer’s Manual NCHECK (8)

NAME
ncheck — generate names from i-numbers

SYNOPSIS
lete/ncheck [options] file systems ...

DESCRIPTION
N.B.: For most normal file system maintenance, the function of ncheck is subsumed by fsck(8).

Ncheck with no options generates a pathname vs. i-number list of all files on every specified file system.
Names of directory files are followed by ‘/.".

The report is in no useful order, and probably should be sorted.
OPTIONS
~i numbers
Reduces the report to only those files whose i-numbers follow.

6

-a Allows printing of the names .’ and °..’, which are ordinarily suppressed.

-S Reduces the report to special files and files with set-user-ID mode; it is intended to discover con-
cealed violations of security policy.
SEE ALSO
sort(1), dcheck(8), fsck(8), icheck(8)

DIAGNOSTICS
When the file system structure is improper, ‘??’ denotes the ‘parent’ of a parentless file and a pathname
beginning with “...” denotes a loop.

January 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

NEWFS (8) ‘ UNIX Programmer’s Manual NEWFS (8)

NAME
newfs — construct a new file system

SYNOPSIS
letc/mewfs [options] [mkfs-options] special disk-type
DESCRIPTION
Newfs is a ‘‘friendly’’ front-end to the mkfs(8) program. Newfs will look up the type of disk a file system

is being created on in the disk description file /etc/disktab , calculate the appropriate parameters to use in
calling mkfs, then build the file system by forking mkfs .

OPTIONS
-N Causes the file system parameters to be printed out without actually creating the file system,

-v Prints out newfs’s actions, including the parameters passed to mkfs.
Options which may be used to override default parameters passed to mkfs are:

=b block-size
The block size of the file system in bytes.

—c #cylinders/group
The number of cylinders per cylinder group in a file system. The default value used is 16.

~f frag-size The fragment size of the file system in bytes.

~i number of bytes per inode
This specifies the density of inodes in the file system. The default is to create an inode for
each 2048 bytes of data space. If fewer inodes are desired, a larger number should be used; to
create more inodes a smaller number should be given.

~m free space %
The percentage of space reserved from normal users; the minimum free space threshhold. The
default value used is 10%.

—0 optimization preference (‘‘space’’ or ‘‘time’’)
The file system can either be instructed to try to minimize the time spent allocating blocks, or
to try to minimize the space fragmentation on the disk. If the value of minfree (see above) is
less than 10%, the default is to optimize for space; if the value of minfree greater than or equal
to 10%, the default is to optimize for time.

—r revolutions/minute
The speed of the disk in revolutions per minute (normally 3600).

—s size The size of the file system in sectors.

-8 sector-size
The size of a sector in bytes (almost never anything but 512).

—t #tracks/cylinder
The number of tracks per cylinder.

FILES
/etc/disktab for disk geometry and file system partition information
/etc/mkfs to actually build the file system

SEE ALSO

disktab(5), fs(5), diskpart(8), fsck(8), format(8), mkfs(8), tunefs(8)

M. McKusick, W. Joy, S. Leffler, R. Fabry, ‘‘A Fast File System for UNIX"’, ACM Transactions on Com-
puter Systems 2, 3. pp 181-197, August 1984. (reprinted in the System Manager’s Manual, SMM: 14)

May 21, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1

NEWFS (8) UNIX Programmer’s Manual NEWFS (8)

BUGS
Newfs should figure out the type of the disk without the user’s help.

May 21, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2

NWSTAT (8) UNIX Programmer’s Manual NWSTAT (8)

NAME

nwstat — report Ethernet Packet Transmission Firmware status
SYNOPSIS

nwstat [-