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PS 1 Contents 

An Advanced 4.3BSD Interprocess Communication Tutorial PS1:8 

The reference document (with some examples) for the Interprocess Communication Facilities 
of4.3BSD. 

Programming Tools 

Lint, A C Program Checker PS1:9 

Checks C programs for syntax errors, type violations, portability problems, and a variety of 
probable errors. 

A Tutorial Introduction to ADB PSl:lO 

How to debug programs using the adb debugger. For hints on the use of ADB for debugging 
the UNIX kernel, see "Using ADB to Debug the Kernel", SMM:3 

Debugging with dbx PSl:ll 

How to debug programs without having to know much about machine language. 

Maire - A Program for Maintaining Computer Programs PS1:12 

Indispensable tool for making sure large programs are properly compiled with minimal effort. 

An Introduction to the Revision Control System PS1:13 

RCS is a user-contributed tool for working together with other people without stepping on 
each other's toes. An alternative to secs for controlling sc:ftware changes. 

An Introduction to the Source Code Control System PS1:14 

A useful introductory article for those users with installations licensed for SCCS. 

YACC: Yet Another Compiler-Compiler PS1:15 

Converts a BNP specification of a language and semantic actions written in C into a compiler 
for that language. 

LEX - A Lexical Analyzer Generator PS1:16 

Creates a recognizer for a set of regular expressions: each regular expression can be followed 
by arbitrary C code to be executed upon finding the regular expression. 

The M4 Macro Processor PS1:17 

M4 is a macro processor useful in its own right and as a front-end for C, Ratfor, and Cobol. 

Programming Libraries 

Screen Updating and Cursor Movement Optimization PS1:18 

Describes the curses package, an aid for writing screen-oriented, terminal-independent pro­
grams. 



The C Programming Language - Reference Manual 

Dennis M. Ritchie 

This manual is a reprint, with updates to the current C standard, from Thi! C Programming 
Language, by Brian W. Kernighan and Dennis M. Richie, Prentice-Hall, Inc., 1978. 

1. Introduction 

This manual describes the C language on the DEC PDP-llt, the DEC VAX-11, and the AT&T 3B 
20;. Where differences exist, it concentrates on the VAX, but tries to point out implementation-dependent 
details. With few execptions, these dependencies follow directly from the underlying properties of the 
hardware; the various compilers are generally quite compatible. 

2. Lexical Conventions 

There are six classes of tokens - identifiers, keywords, constants, strings, operators, and other 
separators. Blanks, tabs, new-lines, and comments (collectively, uwhite space") as described below are 
ignored except as they serve to separate tokens. Some white space is required to separate otherwise adja­
cent identifiers, keywords, and constants. 

H the input stteam has been parsed into tokens up to a given character, the next token is taken to 
include the longest string of characters which could possibly constitute a token. 

2.1. Comments 

The characters J• introduce a comment which terminates with the characters •/. Comments do not 
nest. 

2.2. Identifiers (Names) 

An identifier is a sequence of letters and digits. The first character must be a letter. The underscore 
(_) counts as a letter. Uppercase and lowercase letters are different. Although there is no limit on the 
length of a name, only initial characters are significant: at least eight characters of a non-external name, 
and perhaps fewer for external names. Moreover, some implementations may collapse case distinctions for 
external names. The external name sizes include: 

PDP-11 
VAX-11 
AT&T3B20 

2.3. Keywords 

7 characters, 2 cases 
> 100 characters, 2 cases 
> 100 characters, 2 cases 

The following identifiers are reserved for use as keywords and may not be used otherwise: 

t DEC PDP-11, and DEC V AX-11 are trademarks of Digital Equipment Corporation. 

i 3B 20 is a trademark of AT&T. 
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auto do for return typedef 
break double goto short union 
case else if size of unsigned 
char en um int static void 
continue external long struct while 
default ft oat register switch 

Some imptetiiei1tatioris aiSo'"res'~tf the:.Words fortra'n; asm, gftoat, hftoat and quad 

2.4. Constants 

There are several kinds of constants. Each has a type; an introduction to types is given in 
"NAMES." Hardware" characterlstiiis ?.tflat~affect size8:.c are snnunarized in "Hardware Characteristics" 
under "LEXICAL CONVENTIONS/':· ;·i~x :J : . 

2.4.1.. Integer Com'tants 

An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0 (digit 
zero). An oetiafeonstanfconsiSts.of the digits 0 thrc/ugli i"Otllf. :A sequence of digits preceded by Ox or OX 
(digit zero) is taken to be a hexadecimal integer. The hexadecimal digits include a or A through for F with 
values 10 through 15. Otherwise, the integer constant is taken to be decimal. A decimal constant whose 
value exceeds the largest signed machine integer is taken to be long; an octal or hex constant which 
exceeds the large.slun$igned machine integer is likewise.taken:to be long. Otherwise, integer constants are 
int. 

2.4.2,, Explicit Long Constants 

A decimal, octal, or hexadecimal integer constant immediately followed by I (letter ell) or L is a long 
constant. As discussed below, on some machines integer arid long values may be considered identical. 

2.4.3. Character Constants 

A character constant is a character enclosed in single quotes, as in 'x'. The value of a character con­
stant is the numerical vcilue of the character in the machine's character set. 

Certain nongraphic characters, the single quote(') and the backslash(\), may be represented accord­
ing to the following table of escape sequences: 

new-line NL(LF) \n 
horizontal tab HT \t 
vertical tab VT \v 
backspace BS \b 
carriage return CR \r 
fomifeed FF \f 
backslash :\ \\ 

. :'. ~ ; f •' l'.) l 

sirigle quote 
.. · 

\' 
bit pattern ddd \ddd 

The e,scape · \ddd"consists of the backslash followed -by 1, 2, or 3 octal digits which are taken to 
specify the value of the desired character. A special case of this construction is \0 (not followed by a digit), 
which indicates the character NUL. If the character following a backslash is not one of those specified, the 
behavior is undefined. A new-line character is illegal in a character constant. The type of a character con­
stant is int. 
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2.4.4. Floating Constants 

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an 
optionally signed integer exponent. The integer and fraction parts both consist of a sequence of digits. 
Either the integer part or th~ fraction part (not both) may be missing. Either the decimal point or thee and 
the exponent (not both) may be missing. Every floating constant has type double. 

2.4.S. Enumeration Constants 

Names declared as enumerators (see ''Structure,.· Union, . '1}d.1 ~umeration Declarati9ns' '. under . 
"DECLARATIONS") have type int. 

2.S. Strings · "' , .. v ;!"fi ·· .::' . :Joc.1?.nn::l tc ~· :··"'i'-l' .· ·\ .· 

A string is a sequence of characters surrounded by double. qu{l)te$J..-ilS .iu)' ·~" ~ A string has type . 
"array of char'' and storage class static (see "NAMES") and is initialized with.:the given_ char'!C!ers. The_ .. 
compiler places a null byte (\0) at the end of each string so that programs which scan the string can find its 
end. In a string, the double quote character(") must be preceded by a\; in addition, the same.escapes as .~ --'. ...... ~ .. 
described for character constants may be used. · . ,; :'~1iQ.f.~~-- ~\) ~~~-· ... ~,:·:·(' ~ ~· ·;..- :. ··[-· ~··¥·;·J: ;···-::;~;' : ., -·~~~·Jf ,·~. 

A\ and the immediately following new-line are,igpoi:ed .. Alt.strings, even when written identjc'!Uy_,., .. ·,.,.~'.:1s: 
are distinct. :,1 t m~ ~;~-;;hL· :" , •. • .. · ·· '.l~; c·· . .rb ; : : ~,: . 

2.6. Hardware Characteristics 

The following figure summarize certain hardware properties that vary from machine to machine. 1d ~ · :.J , l J:5::; ·<'.:i 

.J.·.~: 

DECPDP-11 DECVAX-11 AT&T3B 
(ASCII) (ASCII) (ASCII) 

char 8 bits 8 bits 8bits 
int 16 32 32 
short 16 16 16 
long 32 32 32 
float 32 32 32 
double 64 64 64 

float range ±10 ±3
8 ±10 ±38 ±10 ±3

8 . ' /~· -·· ·1: 

double range ±10 ±38 ±10 ±38 ±10 ±308 

3. Syntax Notation 

Syntactic categories are indicated by italic type and literal words and characters in bold type. Aiterl 
native categories are listed on separate lines. An optional terminal or nonterminal symbol is indicated by · 
the subscript ''opt,'' so that 

{ expression } 
opt 

indicates an optional expression enclosed in braces. The syntax is summarized in "SYNTAX SUM­
MARY". 

4. Names 

The C language bases the interpretation of an identifier upon two attributes of the identifier - its 
storage class and its type. The storage class determines the location and lifetime of the storage associated 
with an identifier; the type determines the meaning of the values found in the identifier's storage. 
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4.1. Storage Chm 

There are four declarable storage classes: Automatic Static External Register. 

Automatic variables are local to each invocation of a block (see "Compound Statement or Block" in 
"STATEMENTS") and are discarded upon exit from the block. Static variables are local to a block but 
retain their values upon reentry to a block even after control has left the block. External variables exist and 
retain their values throughout the execution of the entire program and may be used for communication 
between functions, even separately compiled functions. Register variables are (if possible) stored in the 
fast registers of the machine; like automatic variables, they are local to each block and disappear on exit 
from the block. : ., , 

4.2. Type 

The C language supports several fundamental types of objects. Objects declared as characters (char) 
are large enough to store any member of the implementation's character set. If a genuine character from 
that character set is stored in a char variable, its value is equivalent to the integer code for that character. 
Other quantities may be stored into character variables, but the implementation is machine dependent. In 
particular, char may be signed or unsigned by default. 

Up to three sizes of integer, declared short int, int, and long int, are available. Longer integers pro­
vide no less· storage than shorter ones, but the implementation may make either short integers or long 
integers, or both, equivalent to plain integers. ''Plain'' integers have the natural size suggested by the host 
machine architecture. The other sizes are provided to meet special needs. 

The properties of enum types (see "Structure, Union, and Enumeration Declarations" under 
''DECLARATIONS~') are identical to those of some integer types. The implementation may use the range 
of values to determine how to allocate storage. 

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2n where n is the number 
of bits in the representation. (On the PDP-11, unsigned long quantities are not supported.) 

Single-precision floating point (Boat) and double precision floating point (double) may be 
synonymous-~ some implementations. 

Because objects of the foregoing types can usefully be interpreted as numbers, they will be referred 
to as arithmetic types. Char, int of all sizes whether unsigned or not, and en um will collectively be called 
integral types. The float and double types will collectively be called floating types. 

The void type specifies an empty set of values. It is used as the type returned by functions that gen­
erate no value. 

Besides the fundamental arithmetic types, there is a conceptually infinite class of derived types con­
structed from the fundamental types in the following ways: A"ays of objects of most types Functions 
which return objects of a given type Pointers to objects of a given type Structures containing a sequence of 
objectS of various types Unions capable of containing any one of several objects of various types. 

In general these methods of constructing objects can be applied recursively. 

S. Objects and Lvalues 

An object is a manipulatable region of storage. An /value is an expression referring to an object. An 
obvious example of an lvalue expression is an identifier. There are operators which yield lvalues: for 
example, if Eis. an expression of pointer type, then •Eis an lvalue expression referring to the object to 
which E points. ·The name ''lvalue'' comes from the assignment expression El= E2 in which the left 
operand El must be an lvalue expression. The discussion of each operator below indicates whether it 
expects lvalue operands and whether it yields an lvalue. 

6.. Conversions 

A number of operators may, depending on their operands, cause conversion of the value of an 
operand from one type to another. This part explains the result to be expected from such conversions. The 
conversions demanded by most ordinary operators are summarized under "Arithmetic Conversions." The 
summary will be supplemented as required by the discussion of each operator. 
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6.1. Characters and Integers 

A character or a short integer may be used wherever an integer may be used. In all cases the value is 
converted to an integer. Conversion of a shorter integer to a longer preserves sign. Whether or not sign­
extension occurs for characters is machine dependent, but it is guaranteed that a member of the standard 
character set is non-negative. Of the machines treated here, only the PDP-11 and V AX-11 sign-extend. 
On these machines, char variables range in value from -128 to 127. The more explicit type unsigned 
char forces the values to range from 0 to 255. 

On machines that treat characters as signed, the characters of the ASCII s~t are all non-negative. 
However, a character constant specified with an octal escape suffers sign extension and may appear nega­
tive; for example, '\J77' has the value -1. 

When a longer integer is cooverted to a shorter integer or to a char, it is truncated on the left Excess 
bits are simply discarded. ,. 

6.2. Float and Double 

All ft.oating arithmetic in C is carried out in double precision. Whenever a ftoat appears in an 
expression it is lengthened to double by zero padding its fraction. When a double must be converted to 
Boat, for example by an assignment, the double is rounded before tru.ncation to float length. This result is. 
undefined if it cannot be represented as a ft.oat. On the VAX, the compiler can be directed to use single: 
percision for expressions containing only ft.oat and interger operands. 

., . ~· . 

6.3. Floating and Integral 

Conversions of ft.oating values to integral type are rather machine dependent In particular~ the direc­
tion of truncation of negative numbers varies. The result is undefined if it will not fit in the space provided. 

Conversions of integral values to ft.oating type are well behaved. Some loss of accuracy occurs if the· , : _ 
destination lacks sufficient bits. 

6.4. Pointers and Integers 

An expression of integral type may be added to or subtracted from a pointer; in such a case, the first 
is converted as specified in the discussion of the addition operator. Two pointers to objects of the sam~.· 
type may be subtracted; in this case, the result is converted to an integer as specified in the discussion·~{ 
the subtraction operator. 

6.5. Unsigned 

Whenever an unsigned integer and a plain integer are combined, the plain integer is converted to· 
unsigned and the result is unsigned. The value is the least unsigned integer congruent to the signed integer· -
(modulo 2wordsize). In a 2's complement representation, this conversion is conceptual; and there is no 
actual change in the bit pattern. 

When an unsigned short integer is converted to long, the value of the result is the same numerically 
as that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left. 

6.6. Arithmetic Conversions 

A great many operators cause conversions and yield result types in a similar way. This pattern will 
be called the ''usual arithmetic conversions.'' First, any operands of type char or short are converted to 
int, and any operands of type unsigned char or unsigned short are converted to unsigned int Then; if · 
either operand is double, the other is converted to double and that is the type of the result Otherwise, 'if 
either operand is unsigned long, the other is converted to unsigned long and that is the type of the result.· 
Otherwise, if either operand is long, the other is converted to long and that is the type of the result. Other­
wise, if one operand is long, and the other is unsigned int, they are both converted to unsigned long and 
that is the type of the result. Otherwise, if either operand is unsigned, the other is converted to unsigned 
and that is the type of the result. Otherwise, both operands must be int, and that is the type of the result 

' ~ ;.. 
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6.7. Void 

The (nonexistent) value of a void object may not be used in any way, and neither explicit nor implicit 
conversion may be applied Because a void expression denotes a nonexistent value, such an expression 
may be used only as an expression statement (see "Expression Statement" under "STATEMENTS") or 
as the left operand of a comma expression (see "Comma Operator" under "EXPRESSIONS"). 

An expression may be converted to type void by use of a cast For example, this makes explicit the 
discarding of the value of a function call used as an expression statement 

7. Expre~ions 

The precedence of expression operators is the same as the order of the major subsections of this sec­
tion, highest precedence first Thus, for example, the expressions referred to as the operands of+ (see 
''Additive Operators'') are those expressions defined under ''Primary Expressions'', ''Unary Operators'', 
and ''Multiplicative Operators''. Within each subpart, the operators have the same precedence. Left- or 
right-associativity is specified in each subsection for the operators discussed therein. The precedence and 
associativity of all the expression operators are summarized in the grammar of' 'SYNTAX SUMMARY''. 

Otherwise, the order of evaluation of expressions is undefined. In particular, the compiler considers 
itself free to compute subexpressions in the order it believes most efficient even if the subexpressions 
involve side effects. The order in which subexpression evaluation takes place is unspecified. Expressions 
involving a commutative and associative operator ( •, +, &, j, A) may be rearranged arbitrarily even in the 
presence of parentheses; to force a particular order of evaluation, an explicit temporary must be used. 

The handling of overfiow and divide check in expression evaluation is undefined. Most existing 
implementations of C ignore integer overflows; treatment of division by 0 and all fioating-point exceptions 
varies between machines and is usually adjustable by a library function. 

7el. Primary Expre~ions 

Primary expressions involving ., ->, subscripting, and function calls group left to right 

primary-expression: 
identifier 
constant 
string 
( expression ) 
primary-expression [ expression ] 
primary-expression ( expression-list ) 
primary-expression. identifier opt 

primary-expression - > identifier 

expression-list: 
expression 
expression-list • expression 

An identifier is a primary expression provided it has been suitably declared as discussed below. Its 
type is specified by its declaration. If the type of the identifier is ''array of ... '', then the value of the 
identifier expression is a pointer to the first object in the array; and the type of the expression is ''pointer to 
... ". Moreover, an array identifier is not an lvalue expression. Likewise, an identifier which is declared 
''function returning ... '', when used except in the function-name position of a call, is converted to 
''pointer to function returning ... ''. 

A constant is a primary expression. Its type may be int, long, or double depending on its form. 
Character constants have type int and ftoating constants have type double. 

A string is a primary expression. Its type is originally ''array of char'', but following the same rule 
given above for identifiers, this is modified to ''pointer to char'' and the result is a pointer to the first char­
acter in the string. (There is an exception in certain initializers; see "Initialization" under "DECLARA­
TIONS.'') 
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A parenthesized expression is a primary expression whose type and value are identical to those of the 
unadorned expression. The presence of parentheses does not affect whether the expression is an lvalue. 

A primary expression followed by an expression in square brackets is a primary expression. The 
intuitive meaning is that of a subscript Usually, the primary expression has type ''pointer to ... '', the sub­
script expression is int, and the type of the result is '' ... ''. The expression El[E2] is identical (by 
definition) to •((El)+E2)). All the clues needed to understand this notation are contained in this ~bpart 
together with the discussions in "Unary Operators" and "Additive Operators" on identifiers, • and+ 
respectively. The implications are summarized under "Arrays, Pointers, and Subscripting" under 
''TYPES REVISITED.'' 

A function call is a primary expression followed by parentheses containing a possibly empty, 
comma-separated list of expressions which constitute the actual arguments to the function. The primary 
expression must be of type "function returning ... , " and the result of the function call is of type " ..• ". 
As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis is contextually 
declared to represent a function returning an integer; thus in the most common case, integer-valued func­
tions need not be declared 

Any actual arguments of type ftoat are converted to double before the call. Any of type char or 
short are converted to int. Array names are converted to pointers. No other conversions are performed 
automatically; in particular, the compiler does not compare the types of actual arguments with those of for­
mal arguments. If conversion is needed, use a cast; see "Unary Operators" and "Type Names" under 
''DECLARATIONS.'' 

In preparing for the call to a function, a copy is made of each actual parameter. Thus, all argument 
passing in C is strictly by value. A function may change the values of its formal parameters, but these 
changes cannot affect the values of the actual parameters. It is possible to pass a pointer on the understand­
ing that the function may change the value of the object to which the pointer points. An array name is a 
pointer expression. The order of evaluation of arguments is undefined by the language; take note that the 
various compilers differ. Recursive calls to any function are permitted. 

A primary expression followed by a dot followed by an identifier is an expression. The first expres­
sion must be a structure or a union, and the identifier must name a member of the structure or union. The 
value is the named member of the structure or union, and it is an lvalue if the first expression is an lvalue. 

A primary expression followed by an arrow (built from - and > ) followed by an identifier is an 
expression. The first expression must be a pointer to a structure or a union and the identifier must name a 
member of that structure or union. The result is an !value referring to the named member of the structure 
or union to which the pointer expression points. Thus the expression El->MOS is the same as 
(•El).MOS. Structures and unions are discussed in "Structure, Union, and Enumeration Declarations" 
under "DECLARATIONS." 

7.2. Unary Operators 

Expressions with unary operators group right to left. 

unary-expression: 
* expression 
& lvalue 
- expression 
! expression 
- expression 
++ lvalue 
-lvalue 
lvalue ++ 
lvalue-
( type-name ) expression 
sizeof expression 
sizeof ( type-name ) 
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The unary* operator means indirection; the expression must be a pointer, and the result is an lvalue 
referring to the object to which the expression points. If the type of the expression is ''pointer to ... ,'' the 
type of the result is " ... ". 

The result of the unary & operator is a pointer to the object referred to by the lvalue. If the type of 
the lvalue is" o •• ",the type of the result is "pointer to ... ". 

,~l 

The result of the unary - operator is the negative of its operand The usual arithmetic conversions 
are performed. The negative of an unsigned quantity is computed by subtracting its value from 2n where n 
is the number of bits in the corresponding signed type. 

There is no unary + operator. 

The result of the logical negation operator ! is one if the value of its operand is zero, zero if the 
value of its operand is nonzero. The type of the result is int. It is applicable to any arithmetic type or to 
pointers. 

The .. operator yields the one's complement of its operand. The usual arithmetic conversions are 
performed. The type of the operand must be integral.· 

The object referred to by the lvalue operand of prefix -++ is incremented. The value is the new value 
of the operand but is not an I value. The expression -++x is equivalent to x=x+ 1. See the discussions 
''Additive Operators'' and g g Assignment Operators'' for information on conversions. 

The lvalue operand of prefix - is decremented analogously to the prefix ++ operator. 

When postfix ++ is applied to an lvalue, the result is the value of the object referred to by the lvalue. 
After the result is noted, the object is incremented in the same manner as for the prefix ++ operator. The 
type of the result is the same as the type of the lvalue expression. 

When postfix - is applied to an lvalue, the result is the value of the object referred to by the lvalue. 
After the result is noted, the object is decremented in the manner as for the prefix - operator. The type of 
the result is the same as the type of the lvalue expression. 

An expression preceded by the parenthesized name of a data type causes conversion of the value of 
the expression to the named type. This construction is called a cast. Type names are described in ''Type 
Names'' under ''Declarations.'' 

The sizeof operator yields the size in bytes of its operand. (A byte is undefined by the language 
except in terms of the value of sizeof. However, in all existing implementations, a byte is the space 
required to hold a char.) When applied to an array, the result is the total number of bytes in the array. The 
size is determined from the declarations of the objects in the expression. This expression is semantically an 
unsigned constant and may be used anywhere a constant is required. Its major use is in communication 
with routines like storage allocators and I/O systems. 

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the size 
in bytes of an object of the indicated type. 

The construction sizeof(type ) is taken to be a unit, so the expression sizeof(type )·2 is the same as 
(sizeof(type ))-2. 

7.3. Multiplicative Operators 

The multiplicative operators *, /, and % group left to right. The usual arithmetic conversions are 
performed. 

multiplicative expression: 
expression * expression 
expression I expression 
expression % expression 

The binary* operator indicates multiplication. The * operator is associative, and expressions with 
several multiplications at the same level may be rearranged by the compiler. The binary I operator indi­
cates division. 
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The binary % operator yields the remainder from the division of the first expression by the second. 
The operands must be integral. 

When positive integers are divided, truncation is toward O; but the form of truncation is machine­
dependent if either operand is negative. On all machines covered by this manual, the remainder has the 
same sign as the dividend. It is always true that (a/b)•b + a%b is equal to a (if bis not 0). 

7.4. Additive Operators 

The additive operators + and - group left to right. The usual arithmetic conversions are performed. 
There are some additional type possibilities for each operator. 

additive-expression: 
expression + expression 
expression - expression 

The result of the + operator is the sum of the operands. A pointer to an object in an array and a value 
of any integral type may be added. The latter is in all cases converted to an address offset by multiplying it 
by the length of the object to which the pointer points. The result is a pointer of the same type as the origi­
nal pointer which points to another object in the same array, appropriately offset from the original object. 
Thus if Pis a pointer to an object in an array, the expression P+ 1 is a pointer to the next object in the array. 
No further type combinations are allowed for pointers. 

The + operator is associative, and expressions with several additions at the same level may be rear­
ranged by the compiler. 

The result of the - operator is the difference of the operands. The usual arithmetic conversions are 
performed. Additionally, a value of any integral type may be subtracted from a pointer, and then the same 
conversions for addition apply. 

If two pointers to objects of the same type are subtracted, the result is converted (by division by the 
length of the object) to an int representing the number of objects separating the pointed-to objects. This 
conversion will in general give unexpected results unless the pointers point to objects in the same array, 
since pointers, even to objects of the same type, do not necessarily differ by a multiple of the object length. 

7.S. Shift Operators 

The shift operators « and >> group left to right. Both perform the usual arithmetic conversions on 
their operands, each of which must be integral. Then the right operand is converted to int; the type of the 
result is that of the left operand. The result is undefined if the right operand is negative or greater than or 
equal to the length of the object in bits. On the VAX a negative right operand is interpreted as reversing 
the direction of the shift 

shift-expression: 
expression < < expression 
expression > > expression 

The value of El«E2 is El (interpreted as a bit pattern) left-shifted E2 bits. Vacated bits are 0 
filled. The value of El>>E2 is El right-shifted E2 bit positions. The right shift is guaranteed to be logical 
(0 fill) if El is unsigned; otherwise, it may be arithmetic. 

7 .6. Relational Operators 

The relational operators group left to right. 

relational-expression: 
expression < expression 
expression > expression 
expression < = expression 
expression > = expression 
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The operators< (less than),> (greater than),<= (less than or equal to), and>= (greater than or equal 
to) all yield 0 if the specified relation is false and 1 if it is true. The type of the result is int. The usual 
arithmetic conversions are performed. Two pointers may be compared; the result depends on the relative 
locations in the address space of the pointed-to objects. Pointer comparison is portable only when the 
pointers point to objects in the same array. 

7.7. Equality Operators 

equality-expression: 
expression = = expression 
expression ! = expression 

The== (equal to) and the!= (not equal to) operators are exactly analogous to the relational operators 
except for their lower precedence. (Thus a<b == c<d is 1 whenever a<b and c<d have the same truth 
value). 

A pointer may be compared to an integer only if the integer is the constant 0. A pointer to which 0 
has been assigned is guaranteed not to point to any object and will appear to be equal to 0. In conventional 
usage, such a pointer is considered to be null. 

7.8 .. Bitwise AND Operator 

and-expression: 
expression & expression 

The & operator is associative, and expressions involving & may be rearranged. The usual arithmetic 
conversions are performed. The result is the bitwise AND function of the operands. The operator applies 
only to integral operands. 

7.9. Bitwise Exclusive OR Operator 

exclusive-or-expression: 
expression " expression 

The " operator is associative, and expressions involving .. may be rearranged. The usual arithmetic 
conversions are performed; the result is the bitwise exclusive OR function of the operands. The operator 
applies only to integral operands. 

7.10. Bitwise Inclusive OR Operator 

inclusive-or-expression: 
expression/ expression 

The I operator is associative, and expressions involving I may be rearranged. The usual arithmetic 
conversions are performed; the result is the bitwise inclusive OR function of its operands. The operator 
applies only to integral operands. 

7 .11. Logical AND Operator 

lo gical-an.d-expression: 
expression && expression 

The && operator groups left to right It returns 1 if both its operands evaluate to nonzero, 0 other­
wise. Unlike&, && guarantees left to right evaluation; moreover, the second operand is not evaluated if 
the first operand is 0. 

The operands need not have the same type, but each must have one of the fundamental types or be a 
pointer. The result is always int. 
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7.12. Logical OR Operator 

logical-or-expression: 
expression 11 expression 
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The II operator groups left to right. It returns 1 if either of its operands evaluates to nonzero, 0 other­
wise. Unlike I, II guarantees left to right evaluation; moreover, the second operand is not evaluated if the 
value of the first operand is nonzero. 

The operands need not have the same type, but each must have one of the fundamental types or be a 
pointer. The result is always int. 

7 .13. Conditional Operator 

conditional-expression: 
expression ? expression : expression 

Conditional expressions group right to left. The first expression is evaluated; and if it is nonzero, the 
result is the value of the second expression, otherwise that of third expression. If possible, the usual arith­
metic conversions are performed to bring the second and third expressions to a common type. If both are 
structures or unions of the same type, the result has the type of the structure or union. If both pointers are 
of the same type, the result has the common type. Otherwise, one must be a pointer and the other the con­
stant 0, and the result has the type of the pointer. Only one of the second and third expressions is 
evaluated. 

7.14. Assignment Operators 

There are a number of assignment operators, all of which group right to left. All require an lvalue as 
their left operand, and the type of an assignment expression is that of its left operand. The value is the 
value stored in the left operand after the assignment has taken place. The two parts of a compound assign­
ment operator are separate tokens. 

assignment-expression: 
lvalue = expression 
lvalue += expression 
lvalue -= expression 
lvalue * = expression 
lvalue I= expression 
lvalue %=expression 
lvalue > > = expression 
lvalue < < = expression 
lvalue &= expression 
lvalue A= expression 
lvalue I= expression 

In the simple assignment with =, the value of the expression replaces that of the object referred to by 
the lvalue. If both operands have arithmetic type, the right operand is converted to the type of the left 
preparatory to the assignment. Second, both operands may be structures or unions of the same type. 
Finally, if the left operand is a pointer, the right operand must in general be a pointer of the same type. 
However, the constant 0 may be assigned to a pointer; it is guaranteed that this value will produce a null 
pointer distinguishable from a pointer to any object. 

The behavior of an expression of the form El op = E2 may be inferred by taking it as equivalent to 
El= El op (E2); however, El is evaluated only once. In+= and-=, the left operand may be a pointer; in 
which case, the (integral) right operand is converted as explained in ''Additive Operators.'' All right 
operands and all nonpointer left operands must have arithmetic type. 



7.15. Comma Operator 

comma-expression: 
expression , expression 
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A pair of expressions separated by a comma is evaluated left to right, and the value of the left 
expression is discardecL The type and value of the result are the type and value of the right operand. This 
operator groups left to right In contexts where comma is given a special meaning, e.g., in lists of actual 
arguments to functions (see "Primary Expressions") and lists of initializers (see "Initialization" under 
HDECLARATIONS"), the comma operator as described in this subpart can only appear in parentheses. 
For example, 

f(a, (t=3, t+2), c) 

has three arguments, the second of which has the value 5. 

8. Declarations 

Declarations are . used to specify the interpretation which C gives to each identifier; they do not 
necessarily reserve storage associated with the identifier. Declarations have the form 

declaration: 
decl-specifiers declarator-list ; 

opt 

The declarators in the declarator-list contain the identifiers being declared The decl-specifiers con­
sist of a sequence of type and storage class specifiers. 

decl-specifiers: 
type-specifier decl-specifiers 
sc-specifier decl-specifiers opt 

opt 

The list must be self-consistent in a way described below. 

8.1. Storage Class Specifiers 

The sc-specifiers are: 

sc-specifier: 
auto 
static 
extern 
register 
typedef 

The typedef specifier does not reserve storage and is called a "storage class specifier" only for syn­
tactic convenience. See ''Typedef' for more information. The meanings of the various storage classes 
were discussed in "Names." 

The auto, static, and register declarations also serve as definitions in that they cause an appropriate 
amount of storage to be reserved In the extern case, there must be an external definition (see ''External 
Definitions") for the given identifiers somewhere outside the function in which they are declared. 

A register·declaration is best thought of as an auto declaration, together with a hint to the compiler 
that the variables declared will be heavily used. Only the first few such declarations in each function are 
effective. Moreover, only variables of certain types will be stored in registers; on the PDP-11, they are int 
or pointer. One other restriction applies to register variables: the address-of operator & cannot be applied 
to them. Smaller, faster programs can be expected if register declarations are used appropriately, but future 
improvements in code generation may render them unnecessary. 

At most, one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declara­
tion, it is taken to be auto inside a function, extern outside. Exception: functions are never automatic. 
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8.2. Type Specifiers 

The type-specifiers are 

type-specifier: 
struct-or-union-specifier 
typedef-name 
enum-specifier 

basic-type-specifier: 
basic-type 
basic-type basic-type-specifiers 

basic-type: 
char 
short 
int 
long 
unsigned 
float 
double 
void 
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At most one of the words long or short may be specified in conjunction with int; the meaning is the 
same as if int were not mentioned. The word long may be specified in conjunction with float; the meaning 
is the same as double. The word unsigned may be specified alone, or in conjunction with int or any of its 
short or long varieties, or with char. 

Otherwise, at most on type-specifier may be given in a declaration. In particular, adjectival use of 
long, short, or unsigned is not permitted with typedef names. If the type-specifier is missing from a 
declaration, it is taken to be int. 

Specifiers for structures, unions, and enumerations are discussed in ''Structure, Union, and Enumera­
tion Declarations.'' Declarations with typedef names are discussed in ''Typedef.'' 

8.3. Declarators 

The declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of 
which may have an initializer. 

declarator-list: 
init-declarator 
init-declarator , declarator-list 

init-declarator: 
declarator initializer 

opt 

Initializers are discussed in "Initialization". The specifiers in the declaration indicate the type and 
storage class of the objects to which the declarators refer. Declarators have the syntax: 

declarator: 
identifier 
( declarator ) 
* declarator 
declarator () 
declarator [ constant-expression ] 

opt 

The grouping is the same as in expressions. 
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8.4. Meaning of Declarators 

Each declarator is taken to be an assertion that when a construction of the same form as the declara­
tor appears in an expression, it yields an object of the indicat.ed type and storage class. 

Each declarator contains exactly one identifier; it is this identifier that is declared. If an unadorned 
identifier appears as a declarator, then it has the type indicat.ed by the specifier heading the declarationo 

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex 
declarators may be alt.ered by parentheses. See the examples below. 

Now imagine a declaration 

TDl 

where T is a type-specifier (like int, etc.) and Dl is a declarator. Suppose this declaration makes the 
identifier have type '' .•• T ,'' where the ''. o. '' is empty if Dl is just a plain identifier (so that the type of 
x in 'int x" is just int). Then if Dl has the form 

•D 

the type of the contained identifier is '' ... pointer to T . '' 

If Dl has the form 

D() 

then the contained identifier has the type '' ... function returning T.'' 
If Dl has the form 

D [ constant-expression ] 

or 

D[] 

then the contained identifier has type " ••• array of T." In the first case, the constant expression is an 
expression whose value is determinable at compile time ~·whose type is int, and whose value is positive. 
(Constant expressions are defined precisely in "Constant Expressions.") When several "array of'' 
specifications are adjacent, a multidimensional array is creat.ed; the constant expressions which specify the 
bounds of the arrays may be missing. only for the first member of the sequenceo This elision is useful when 
the array is ext.ernal and the actual definition, which allocates storage, is given elsewhereo The first con­
stant expression may also be omitted when the declarator is followed by initialization. In this case the size 
is calculated from the number of initial elements supplied. 

An array may be constructed from one of the basic types, from a point.er, from a structure or union, 
or from another array (to generat.e a multidimensional array). 

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as 
follows: functions may not return arrays or functions although they may return pointers; there are no 
arrays of functions although there may be arrays of point.ers to functions. Likewise, a structure or union 
may not contain a function; but it may contain a pointer to a function. 

As an example, the deelaration 

inti, •ip, ro, •fip(), (*pfi)(); 

declares an int.eger i, a pointer ip to an integer, a function f returning an integer, a function fip returning a 
pointer to an integer, and a point.er pfi to a function which returns an integer. It is especially useful to com­
pare the last two. The binding of •fip() is •(fip()). The declaration suggests, and the same construction in 
an expression requires, the calling of a function fip. Using indirection through the (pointer) result to yield 
an int.eger. In the declarator (*pfi)(), the extra parentheses are necessary, as they are also in an expression, 
to indicate that indirection through a pointer to a function yields a function, which is then called; it returns 
an integer. 
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As another example, 

ftoat fa[17], •afp[17]; 

declares an array of ftoat numbers and an array of pointers to ft oat numbers. Finally, 

static int x3d[3][5][7]; 

PSl:l-15 

declares a static 3-dirnensional array of integers, with rank 3x5x7. In complete detail, x3d is an array of 
three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers. Any 
of the expressions x3d, x3d[i], x3d[i]U], x3d[i]U][k] may reasonably appear in an expression. The first 
three have type "array" and the last has type int. 

8.5. Structure and Union Declarations 

A structure is an object consisting of a sequence of named members. Each member may have any 
type. A union is an object which may, at a given time, contain any one of several members. Structure and 
union specifiers have the same form. 

struct-or-union-specifier: 
struct-or-union { struct-decl-list} 
struct-or-union identifier { struct-decl-list} 
struct-or-union identifier 

struct-or-union: 
struct 
union 

The struct-decl-list is a sequence of declarations for the members of the structure or union: 

struct-decl-list: 
struct-declaration 
struct-declaration struct-decl-list 

struct-declaration: 
type-specifier struct-declarator-list ; 

struct-declarator-list: 
struct-declarator 
struct-declarator , struct-declarator-list 

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A 
structure member may also consist of a specified number of bits. Such a member is also called a field ; its 
length, a non-negative constant expression, is set off from the field name by a colon. 

struct-declarator: 
declarator 
declarator : constant-expression 
: constant-expression 

Within a structure, the objects declared have addresses which increase as the declarations are read 
left to right. Each nonfield member of a structure begins on an addressing boundary appropriate to its type; 
therefore, there may be unnamed holes in a structure. Field ·members are packed into machine integers; 
they do not straddle words. A field which does not fit into the space remaining in a word is put into the 
next word. No field may be wider than a word 

Fields are assigned right to left on the PDP-11 and V AX-11, left to right on the 3B 20. 

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field useful 
for padding to conform to externally-imposed layouts. As a special case, a field with a width of 0 specifies 
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alignment of the next field at an implementation dependant boundary. 

The language does not restrict the types of things that are declared as fields, but implementations are 
not required to support any but integer fields. Moreover, even int fields may be considered to be unsigned. 
On the PDP-11, fields are not signed and have only integer values; on the V AX-11, fields declared with int 
are treated as containing a sign. For these reasons, it is strongly recommended that fields be declared as 
unsigned. In all implementations, there are no arrays of fields, and the address-of operator & may not be 
applied to them, so that there are no pointers to fields. 

A union may be thought of as a structure all of whose members begin at offset 0 and whose size is 
sufficient to contain any of its members. At most, one of the members can be stored in a union at any time. 

A structure or union specifier of the second form, that is, one of 

struct identifier { struct-decl-list } 
union identifier { struct-decl-list} 

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A subse­
quent declaration may then use the third form of specifier, one of 

struct identifier 
union identifier 

Structure tags allow definition of self-referential structures. Structure tags also permit the long part of 
the declaration to be given once and used· several times. It is illegal to declare a structure or union which 
contains an instance of itself, but a structure or union may contain a pointer to an instance of itself. 

The third form of a structure or union specifier may be used prior to a declaration which gives the 
complete specification of the structure or union in situations in which the size of the structure or union is 
unnecessary. The size is unnecessary in two situations: when a pointer to a structure or union is being 
declared and when a typedef name is declared to be a synonym for a structure or union. This, for example, 
allows the declaration of a pair of structures which contain pointers to each other. 

The names of members and tags do not conflict with each other or with ordinary variables. A partic­
ular name may not be used twice in the same structure, but the same name may be used in several different 
structures in the same scope. 

A simple but important example of a structure declaration is the following binary tree structure: 

struct tnode 
{ 

}; 

char tword[20]; 
int count; 
struct tnode *left; 
struct tnode •right; 

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this 
declaration has been given, the declaration 

struct tnode s, •sp; 

declares s to be a structure of the given sort and sp to be a pointer to a structure of the given sort. With 
these declarations, the expression 

sp->count 

refers to the count field of the structure to which sp points; 

s.left 

refers to the left subtree pointer of the structure s; and 
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s.right->tword[O] 

refers to the first character of the tword member of the right subtree of s. 

8.6. Enumeration Declarations 

Enumeration variables and constants have integral type. 

enum-specifier: 
enum { enum-list } 
enum identifier { enum-list } 
enum identifier 

enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier = constant-expression 

PSl:l-17 

The identifiers in an enum-list are declared as constants and may appear wherever constants are 
required. If no enumerators with· = appear, then the values of the corresponding constants begin at 0 and 
increase by 1 as the declaration is read from left to right. An enumerator with = gives the associated 
identifier the value indicated; subsequent identifiers continue the progression from the assigned value. 

The names of enumerators in the same scope must all be distinct from each other and from those of 
ordinary variables. 

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a 
struct-specifier; it names a particular enumeration. For example, 

enum color {chartreuse, burgundy, claret=20, winedark }; 

enum color ••cp, col; 

col = claret; 
cp =&col; 

if (**Cp ==burgundy)·-

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer to an 
object of that type, and col as an object of that type. The possible values are drawn from the set 
{0,1,20,21}. 

8.7. Initialization 

A declarator may specify an initial value for the identifier being declared. The initializer is preceded 
by = and consists of an expression or a list of values nested in braces. 

initializer: 
= expression 
= { initializer-list} 
= { initializer-list , } 
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initializer-list: 
expression 
initializer-list , initi.alizer-list 
{ initi.alizer-list } 
{ initi.alizer-list , } 
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All the expressions in an initializer for a static or external variable must be constant expressions, 
which are described in "CONST ANT EXPRESSIONS", or expressions which reduce to the address of a 
previously declared variable, possibly offset by a constant expression. Automatic or register variables may 
be initialized by arbitrary expressions involving constants and previously declared variables and functions. 

Static and external variables that are not initialized are guaranteed to start off as zero. Automatic and 
register variables that are not initialized are guaranteed to start off as garbage. 

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of a sin­
gle expression, perhaps in braces. The initial value of the object is taken from the expression; the same 
conversions as for assignment are performed. 

When the declared variable is an aggregate (a structure or array), the initializer consists of a brace­
enclosed, comma-separated list of initializers for the members of the aggregate written in increasing sub­
script or member order. If the aggregate contains subaggregates, this rule applies recursively to the 
members of the aggregate. If there are fewer initializers in the list than there are members of the aggregate, 
then the aggregate is padded with zeros. It is not pennitted to initialize unions or automatic aggregates. 

Braces may in some cases be omitted. If the initializer begins with a left brace, then the succeeding 
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to be 
more initializers than members. If, however, the initializer does not begin with a left brace, then only 
enough elements from the list are taken to account for the members of the aggregate; any remaining 
members are left to initialize the next member of the aggregate of which the current aggregate is a part. 

A final abbreviation allows a char array to be initialized by a string. In this case successive charac­
ters of the string initialize the members of the array. 

For example, 

int x[] = { 1, 3, 5 } ; 

declares and initializes x as a one-dimensional array which has three members, since no size was specified 
and there are three initializers. 

ftoat y[ 4][3) = 
{ 

}; 

{ 1, 3, 5 }, 
{ 2, 4, 6 }, 
{ 3, 5, 7 }, 

is a completely-bracketed initialization: l, 3, and 5 initialize the first row of the array y[O), namely y[O][O), 
y[O)[l), and y[0)[2). Likewise, the next two lines initialize y[l] and y[2). The initializer ends early and 
therefore y[3) is initialized with 0. Precisely, the same effect could have been achieved by 

ftoat y[ 4)(3] = 
{ 

1, 3, 5, 2, 4, 6, 3, S, 7 
}; 

The initializer for y begins with a left brace but that for y[O] does not; therefore, three elements from 
the list are used. Likewise, the next three are taken successively for y[l] and y[2]. Also, 
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Boat y[4](3] = 
{ . 

{ 1 }, { 2 }, { 3 }, { 4} 
}; 

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0. 
Finally, 

char msg[] ="Syntax error on line %s\n"; 

shows a character array whose members are initialized with a string. 

8.8. Type Names 
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In two contexts (to specify type conversions explicitly by means of a cast and as an argument of 
sizeof), it is desired to supply the name of a data type. This is accomplished using a ''type name'', which 
in essence is a declaration for an object of that type which omits the name of the object 

type-name: 
type-specifier abstract-declarator 

abstract-declarator: 
empty 
( abstract-declarator ) 
* abstract-declarator 
abstract-declarator() 
abstract-declarator [ constant-expression ] 

opt 

To avoid ambiguity, in the construction 

( abstract-declarator ) 

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to identify uniquely 
the location in the abstract-declarator where the identifier would appear if the construction were a declara­
tor in a declaration. The named type is then the same as the type of the hypothetical identifier. For exam­
ple, 

int 
int* 
int •[3) 
int (*)[3] 
int •O 
int (*)0 
int (*[3])0 

name respectively the types "integer," "pointer to integer," "array of three pointers to integers," 
''pointer to an array of three integers,'' ''function returning pointer to integer,'' ''pointer to function 
returning an integer," and "array of three pointers to functions returning an integer." 

8.9. Typedef 

Declarations whose ''storage class'' is typedef do not define storage but instead define identifiers 
which can be used later as if they were type keywords naming fundamental or derived types. 

typedef-name: 
identifier 

Within the scope of a declaration involving typedef, each identifier appearing as part of any declara­
tor therein becomes syntactically equivalent to the type keyword naming the type associated with the 



PSl:l-20 The C Programming Language - Reference Manual 

identifier in the way described in ''Meaning of Declarators.'' For example, after 

typedef int MILES, •KUCKSP; 
typedef struct { double re, im; } complex; 

the constructions 

MILES distance; 
extern KLICKSP metricp; 
complex z, •zp; 

are all legal declarations; the type of distance is int, that of metricp is ''pointer to int, '' and that of z is 
the specified structure. The zp is a pointer to such a structure. 

The typedef does not introduce brand-new types, only synonyms for types which could be specified 
in another way. Thus in the example above distance is considered to have exactly the same type as any 
other int object 

9. Statements 

Except as indicated, statements are executed in sequence. 

9.1. Expression Statement 

Most statements are expression statements, which have the form 

expression ; 

Usually expression statements are assignments or function calls. 

9.2. Compound Statement or Block 

So that several statements can be used where one is expected, the compound statement (also, and 
equivalently, called ''block'') is provided: 

compound-statement: 
{ declaration-list statement-list } 

opt opt 

declaration-list: 
declaration 
declaration declaration-list 

statement-list: 
statement 
statement statement-list 

If any of the identifiers in the declaration-list were previously declared, the outer declaration is 
pushed down for the duration of the block, after which it resumes its force. 

Any initializations of auto or register variables are performed each time the block is entered at the 
top. It is currently possible (but a bad practice) to transfer into a block; in that case the initializations are 
not performed. Initializations of static variables are performed only once when the program begins execu­
tion. Inside a block, extern declarations do not reserve storage so initialization is not permitted. 

9.3. Conditional Statement 

The two forms of the conditional statement are 

if ( expression ) statement 
if ( expression ) statement else statement 
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In both cases, the expression is evaluated; and if it is nonzero, the first substatement is executed In 
the second case, the second substatement is executed if the expression is 0. The "else" ambiguity is 
resolved by connecting an else with the last encountered else-less if. 

9.4. While Statement 

The while statement has the form 

while (expression) statement 

The substatement is executed repeatedly so long as the value of the expression remains nonzero. The 
test takes place before each execution of the statement 

9.S. Do Statement 

The do statement has the form 

do statement while ( expression ) ; 

The substatement is executed repeatedly until the value of the expression becomes 0. The test takes 
place after each execution of the statement 

9.6. For Statement 

The for statement has the form: 

for ( exp-1 ; exp-2 ; exp-3 ) statement 
opt opt opt 

Except for the behavior of continue, this statement is equivalent to 

exp-1; 
while ( exp-2 ) 
{ 

} 

statement 
exp-3; 

Thus the first expression specifies initialization for the loop; the second specifies a test, made before 
each iteration, such that the loop is exited when the expression becomes 0. The third expression often 
specifies an incrementing that is performed after each iteration. 

Any or all of the expressions may be dropped. A missing exp-2 makes the implied while clause 
equivalent to while(l); other missing expressions are simply dropped from the expansion above. 

9.7. Switch Statement 

The switch statement causes control to be transferred to one of several statements depending on the 
value of an expression. It has the form 

switch (expression) statement 

The usual arithmetic conversion is performed on the expression, but the result must be int. The 
statement is typically compound. Any statement within the statement may be labeled with one or more 
case prefixes as follows: 

case constant-expression : 

where the constant expression must be int. No two of the case constants in the same switch may have the 
same value. Constant expressions are precisely defined in ''CONST ANT EXPRESSIONS.'' 

There may also be at most one statement prefix of the form 
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default: 

When the switch statement is executed, its expression is evaluated and compared with each case 
constant. If one of the case constants is equal to the value of the expression, control is passed to the state­
ment following the matched case prefix. If no case constant matches the expression and if there is a 
default, prefix, control passes to the prefixed statement. If no case matches and if there is no default, then 
none of the statements in the switch is executed. 

The prefixes case and default do not alter the flow of control, which continues unimpeded across 
such prefixes. To exit from a switch, see ''Break Statement.'' 

Usually, the statement that is the subject of a switch is compound. Declarations may appear at the 
head of this statement, but initializations of automatic or register variables are ineffective. 

9 .8. Break Statement 

The statement 

break; 

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to the state­
ment following the terminated statement 

9c9~ Continue Statement 

The statement 

continue; 

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for statement; 
that is to the end of the loop. More precisely, in each of the statements 

while( ••• ){ 
statement; 
contin:; 

} 

do{ 
statement; 
contin: ; 

} while( •.. ); 

for ( ••. ){ 
statement; 
contin: ; 

} 

a continue is equivalent to goto contin. (Following the contin: is a null statement, see "Null State­
ment''.) 

9.10. Return Statement 

A function returns to its caller by means of the return statement which has one of the forms 

return; 
return expression ; 

In the first case, the returned value is undefined. In the second case, the value of the expression is 
returned to the caller of the function. If required, the expression is converted, as if by assignment, to the 
type of function in which it appears. Flowing off the end of a function is equivalent to a return with no 
returned value. The expression may be parenthesized. 

9.lL Goto Statement 

Control may be transferred unconditionally by means of the statement 

goto identifier ; 

The identifier must be a label (see "Labeled Statement") located in the current function. 
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9.12. Labeled Statement 

Any statement may be preceded by label prefixes of the form 

identifier : 

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The scope 
of a label is the current function, excluding any subblocks in which the same identifier has been redeclared. 
See "SCOPE RULES." 

9.13. Null Statement 

The null statement has the form 

A null statement is useful to carry a label just before the } of a compound statement or to supply a 
null body to a looping statement such as while. 

10. External Definitions 

A C program consists of a sequence of external definitions. An external definition declares an 
identifier to have storage class extern (by default) or perhaps static, and a specified type. The type­
specifier (see "Type Specifiers" in "DECLARATIONS") may also be empty, in which case the type is 
taken to be int. The scope of external definitions persists to the end of the file in which they are declared 
just as the effect of declarations persists to the end of a block. The syntax of external definitions is the 
same as that of all declarations except that only at this level may the code for functions be given. 

10.1. External Function Definitions 

Function definitions have the form 

June tion-definition: 
decl-specifters function-declarator function-body 

opt 

The only sc-specifiers allowed among the decl-specifiers are extern or static; see "Scope of Exter­
nals'' in ''SCOPE RULES'' for the distinction between them. A function declarator is similar to a declara­
tor for a ''function returning ... '' except that it lists the formal parameters of the function being defined. 

function-declarator: 
declarator (parameter-list ) 

opt 

parameter-list: 
identifier 
identifier , parameter-list 

The function-body has the form 

function-body: 
declaration-list compound-statement 

opt 

The identifiers in the parameter list, and only those identifiers, may be declared in the declaration list. 
Any identifiers whose type is not given are taken to be int. The only storage class which may be specified 
is register; if it is specified, the corresponding actual parameter will be copied, if possible, into a register at 
the outset of the function. 

0 

A simple example of a complete function definition is 
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int max(a, b, c) 
int a, b, c; 

{ 

} 

intm; 

m =(a> b) ? a : b; 
return((m > c) ? m : c); 
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Here int is the type-specifier; max(a, b, c) is the function-declarator; int a, b, c; is the declaration­
list for the fonnal parameters; { - } is the block giving the code for the statement 

The C program converts all float actual parameters to double, so formal parameters declared float 
have their declaration adjusted to read double. All char and short formal parameter declarations are simi­
larly adjusted to read int. Also, since a reference to an array in any context (in particular as an actual 
parameter) is taken to mean a pointer to the first element of the array, declarations of formal parameters 
declared "array of ... " are adjusted to read "pointer to .... " 

10.2. External Data Definitions 

An external data definition has the form 

data-definition: 
declaration 

The storage class of such data may be extern (which is the default) or static but not auto or register. 

11. Scope Rules 

A C program need not all be compiled at the same time. The source text of the program may be kept 
in several files, and precompiled routines may be loaded from libraries. Communication among the func­
tions of a program may be carried out both through explicit calls and through manipulation of external data. 

Therefore, there are two kinds of scopes to consider: first, what may be called the lexical score of an 
identifier, which is essentially the region of a program during which it may be used without drawing 
"undefined identifier" diagnostics; and second, the scope associated with external identifiers, which is 
characterized by the rule that references to the same external identifier are references to the same object 

11.1. Lexical Scope 

The lexical scope of identifiers declared in external definitions persists from the definition through 
the end of the source file in which they appear. The lexical scope of identifiers which are formal parame­
ters persists through the function with which they are associated The lexical scope of identifiers declared 
at the head of a block persists until the end of the block. The lexical scope of labels is the whole of the 
function in which they appear. 

In all cases, however, if an identifier is explicitly declared at the head of a block, including the block 
constituting a function, any declaration of that identifier outside the block is suspended until the end of the 
block. 

Remember also (see "Structure, Union, and Enumeration Declarations" in "DECLARATIONS") 
that tags, identifiers associated with ordinary variables, and identities associated with structure and union 
members form three disjoint classes which do not conflict. Members and tags follow the same scope rules 
as other identifiers. The enum constants are in the same class as ordinary variables and follow the same 
scope rules. The typedef names are in the same class as ordinary identifiers. They may be redeclared in 
inner blocks, but an explicit type must be given in the inner declaration: 
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typedef Boat distance; 

{ 

auto int distance; 

} 

The int must be present in the second declaration, or it would be taken to be a declaration with no 
declarators and type distance. 

11.2. Scope of Externals 

If a function refers to an identifier declared to be extern, then somewhere among the files or libraries 
constituting the complete program there must be at least one external definition for the identifier. All func­
tions in a given program which refer to the same external identifier refer to the same object, so care must be 
taken that the type and size specified in the definition are compatible with those specified by each function 
which references the data. 

It is illegal to explicitly initialize any external identifier more than once in the set of files and libraries 
comprising a multi-file program. It is legal to have more than one data definition for any external non­
function identifier; explicit use of extern does not change the meaning of an external declaration. 

In restricted environments, the use of the extern storage class takes on an additional meaning. In 
these environments, the explicit appearance of the extern keyword in external data declarations of identi­
ties without initialization indicates that the storage for the identifiers is allocated elsewhere, either in this 
file or another file. It is required that there be exactly one definition of each external identifier (without 
extern) in the set of files and libraries comprising a mult-file program. 

Identifiers declared static at the top level in external definitions are not visible in other files. Func­
tions may be declared static. 

12. Compiler Control Lines 

The C compiler contains a preprocessor capable of macro substitution, conditional compilation, and 
inclusion of named files. Lines beginning with # communicate with this preprocessor. There may be any 
number of blanks and horizontal tabs between the # and the directive. These lines have syntax independent 
of the rest of the language; they may appear anywhere and have effect which lasts (independent of scope) 
until the end of the source program file. 

12.1. Token Replacement 

A compiler-control line of the form 

#define identifier token-string 
opt 

causes the preprocessor to replace subsequent instances of the identifier with the given string of tokens. 
Semicolons in or at the end of the token-string are part of that string. A line of the form 

#define identifier(identifier, ... )token-string 
opt 

where there is no space between the first identifier and the(, is a macro definition with arguments. There 
may be zero or more formal parameters. Subsequent instances of the first identifier followed by a (, a 
sequence of tokens delimited by commas, and a ) are replaced by the token string in the definition. Each 
occurrence of an identifier mentioned in the formal parameter list of the definition is replaced by the 
corresponding token string from the call. The actual arguments in the call are token strings separated by 
commas; however, commas in quoted strings or protected by parentheses do not separate arguments. The 
number of formal and actual parameters must be the same. Strings and character constants in the token­
string are scanned for formal parameters, but strings and character constants in the rest of the program are 
not scanned for defined identifiers to replacement. 
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In both forms the replacement string is rescanned for more defined identifiers. In both forms a long 
definition may be continued on another line by writing \ at the end of the line to be continued 

This facility is most valuable for definition of "manifest constants," as in 

#define T ABSIZE 100 

int table [ T ABSIZE] ; 

A control line of the form 

#undef identifier 

causes the identifier's preprocessor definition (if any) to be forgotten. 

If a #defined identifier is the subject of a subsequent #define with no intervening #undef, then the 
two token-strings are compared textually. If the two token-strings are not identical (all white space is con­
sidered as equivalent), then the identifier is considered to be redefined. 

12.2. File Inclusion 

A compiler control line of the form 

#include "filenam.e " 

causes the replacement of that line by the entire contents of the file filename. The named file is searched 
for first in the directory of the file containing the #include, and then in a sequence of specified or standard 
places. Alternatively, a control line of the form 

#include <filename > 

searches only the specified or standard places and not the directory of the #include. (How the places are 
specified is not part of the language.) 

#includes may be nested. 

12.3. Conditional Compilation 

A compiler control line of the form 

#ii restricted-constant-expression 

checks whether the restricted-constant expression evaluates to nonzero. (Constant expressions are dis­
cussed in ''CONSTANT EXPRESSIONS''; the following additional restrictions apply here: the constant 
expression may not contain sizeof casts, or an enumeration constant.) 

or 

A restricted constant expression may also contain the additional unary expression 

defined identifier 

defined( identifier ) 

which evaluates to one if the identifier is currently defined in the preprocessor and zero if it is not. 

All currently defined identifiers in restricted-constant-expressions are replaced by their token-strings 
(except those identifiers modified by defined) just as in normal text. The restricted constant expression will 
be evaluated only after all expressions have· finished. During this evaluation, all undefined (to the pro­
cedure) identifiers evaluate to zero. 

A control line of the form 

#if def identifier 

checks whether the identifier is currently defined in the preprocessor; i.e., whether it has been the subject of 
a #define control line. It is equivalent to #ifdef(identifier). A control line of the form 
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#irndef identifier 

checks whether the identifier is currently undefined in the preprocessor. It is equivalent to 

#ii ! defined(identifier). 
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All three forms are followed by an arbitrary number of lines, possibly containing a control line 

#else 

and then by a control line 

#endit 

If the checked condition is true, then any lines between #else and #endif are ignored If the checked 
condition is false, then any lines between the test and a #else or, lacking a #else, the #endif are ignored. 

These constructions may be nested. 

12.4. Line Control 

For the benefit of other preprocessors which generate C programs, a line of the form 

#line constant ''filename" 

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next source 
line is given by the constant and the current input file is named by "filename". If ''filename" is absent, the 
remembered file name does not change. 

13. Implicit Declarations 

It is not always necessary to specify both the storage class and the type of identifiers in a declaration. 
The storage class is supplied by the context in external definitions and in declarations of formal parameters 
and structure members. In a declaration inside a function, if a storage class but no type is given, the 
identifier is assumed to be int; if a type but no storage class is indicated, the identifier is assumed to be 
auto. An exception to the latter rule is made for functions because auto functions do not exist. If the type 
of an identifier is "function returning ... ," it is implicitly declared to be extern. 

In an expression, an identifier followed by ( and not already declared is contextually declared to be 
"function returning int." 

14. Types Revisited 

This part summarizes the operations which can be performed on objects of certain types. 

14.1. Structures and Unions 

Structures and unions may be assigned, passed as arguments to functions, and returned by functions. 
Other plausible operators, such as equality comparison and structure casts, are not implemented. 

In a reference to a structure or union member, the name on the right of the -> or the • must specify a 
member of the aggregate named or pointed to by the expression on the left In general, a member of a 

· union may not be inspected unless the value of the union has been assigned using that same member. 
However, one special guarantee is made by the language in order to simplify the use of unions: if a union 
contains several structures that share a common initial sequence and if the union currently contains one of 
these structures, it is permitted to inspect the common initial part of any of the contained structures. For 
example, the following is a legal fragment: 
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union 
{ 

} u; 

struct 
{ 

int type; 
} n; 
struct 
{ 

int type; 
int intnode; 

} ni; 
struct 
{ 

int 
float 

} of; 

type; 
floatnode; 

uonUype =FLOAT; 
Uonf Jloatnode = 3.14; 

if(uo0.type ==FLOAT) 
... sin(u.nf.floatnode) ••• 

14.2. Functions 
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There are only two things that can be done with a function m, call it or take its address. If the name 
of a function appears in an expression not in the function-name position of a call, a pointer to the function 
is generated. Thus, to pass one function to another, one might say 

int fO; 

g(f); 

Then the definition of g might read 

g(funcp) 
int (*funcp)Q; 

{ 

(*funcp)Q; 

} 

Notice that f must be declared explicitly in the calling routine since its appearance in g(f) was not 
followed by(. 

14.3. Arrays, Pointers, and Subscripting 

Every time an identifier of array type appears in an expression, it is converted into a pointer to the 
first member of the array. Because of this conversion, arrays are not lvalues. By definition, the subscript 
operator[] is interpreted in such a way that El[E2] is identical to •((El)+E2)). Because of the conversion 
rules which apply to +, if El is an array and E2 an integer, then El[E2] refers to the E2-th member of El. 
Therefore, despite its asymmetric appearance, subscripting is a commutative operation. 

A consistent rule is followed in the case of multidimensional arrays. If E is an n-dimensional array 
of rank ixjx ... xk, then E appearing in an expression is converted to a pointer to an (n-1 )-dimensional array 
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with rank jx ... xk. If the • operator, either explicitly or implicitly as a result of subscripting, is applied to 
this pointer, the result is the pointed-to (n-1)-dimensional array, which itself is immediately converted into 
a pointer. 

For example, consider 

int x[3](5]; 

Here x is a 3x5 array of integers. When x appears in an expression, it is converted to a pointer to 
(the first of three) 5-membered arrays of integers. In the expression x[i], which is equivalent to •(x+i), xis 
first converted to a pointer as described; then i is converted to the type of x, which involves multiplying i 
by the length the object to which the pointer points, namely 5-integer objects. The results are added and 
indirection applied to yield an array (of five integers) which in turn is converted to a pointer to the first of 
the integers. ff there is another subscript, the same argument applies again; this time the result is an 
integer. 

Arrays in C are stored row-wise (last subscript varies fastest) and the first subscript in the declaration 
helps determine the amount of storage consumed by an array. Arrays play no other part in subscript calcu­
lations. 

14.4. Explicit Pointer Conversions 

Certain conversions involving pointers are permitted but have implementation-dependent aspects. 
They are all specified by means of an explicit type-conversion operator, see ''Unary Operators'' 
under"EXPRESSIONS" and "Type Names"under "DECLARATIONS." 

A pointer may be converted to any of the integral types large enough to hold it Whether an int or 
long is required is machine dependent The mapping function is also machine dependent but is intended to 
be unsurprising to those who know the addressing structure of the machine. Details for some particular 
machines are given below. 

An object of integral type may be explicitly converted to a pointer. The mapping always carries an 
integer converted from a pointer back to the same pointer but is otherwise machine dependent 

A pointer to one type may be converted to a pointer to another type. The resulting pointer may cause 
addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in storage. 
It is guaranteed that a pointer to an object of a given size may be converted to a pointer to an object of a 
smaller size and back again without change. 

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate, and 
return a char pointer; it might be used in this way. 

extern char •mallocO; 
double •dp; 

dp =(double•) malloc(sizeof(double)); 
•dp = 22.0 / 7.0; 

The alloc must ensure (in a machine-dependent way) that its return value is suitable for conversion to 
a pointer to double; then the use of the function is portable. 

The pointer representation on the PDP-11 corresponds to a 16-bit integer and measures bytes. The 
char's have no alignment requ~ements; everything else must have an even address. 

On the V AX-11, pointers are 32 bits long and measure bytes. Elementary objects are aligned on a 
boundary equal to their length, except that double quantities need be aligned only on even 4-byte boun­
daries. Aggregates are aligned on the strictest boundary required by any of their constituents. 

The 3B 20 computer has 24-bit pointers placed into 32-bit quantities. Most objects are aligned on 4-
byte boundaries. Shorts are aligned in all cases on 2-byte boundaries. Arrays of characters, all structures, 
ints, longs, floats, and doubles are aligned on 4-byte boundries; but structure members may be packed 
tighter. 
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14.S. CONSTANT EXPRESSIONS 

In several places C requires expressions that evaluate to a constant: after case, as array bounds, and 
in initializers. In the first two cases, the expression can involve only integer constants, character constants, 
casts to integral types, enurn~ration constants, and sizeof expressions, possibly connected by the binary 
operators 

+- *I % & I A << >> == != < > <= >= && II 

or by the unary operators 

or by the ternary operator 

?: 

Parentheses can be used for grouping but not for function calls. 

More latitude is permitted for initializers; besides constant expressions as discussed above, one can 
also use floating constants and arbitrary casts and can also apply the unary & operator to external or static 
objects and to external or static arrays subscripted with a constant expression. The unary & can also be 
applied implicitly by appearance of unsubscripted arrays and functions. The basic rule is that initializers 
must evaluate either to a constant or to the address of a previously declared external or static object plus or 
minus a constant. 

15. Portability Considerations 

Certain parts of C are inherently machine dependent The following list of potential trouble spots is 
not meant to be all-inclusive but to point out the main ones. 

Purely hardware issues like word size and the properties of floating point arithmetic and integer divi­
sion have proven in practice to be not much of a problem. Other facets of the hardware are reflected in 
differing implementations. Some of these, particularly sign extension (converting a negative character into 
a negative integer) and the order in which bytes are placed in a word, are nuisances that must be carefully 
watched. Most of the others are only minor problems. 

The number of register variables that can actually be placed in registers varies from machine to 
machine as does the set of valid types. Nonetheless, the compilers all do things properly for their own 
machine; excess or invalid register declarations are ignored. 

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to 
write programs that depend on any of these properties. 

The order of evaluation of function arguments is not specified by the language. The order in which 
side effects take place is also unspecified. 

Since character constants are really objects of type int, multicharacter character constants may be 
permitted. The specific implementation is very machine dependent because the order in which characters 
are assigned to a word varies from one machine to another. 

Fields are assigned to words and characters to integers right to left on some machines and left to right 
on other machines. These differences are invisible to isolated programs that do not indulge in type punning 
(e.g., by converting an int pointer to a char pointer and inspecting the pointed-to storage) but must be 
accounted for when conforming to externally-imposed storage layouts. 

16. Syntax Summary 

This summary of C syntax is intended more for aiding comprehension than as an exact statement of 
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the language. 

16.1. Expressions 

The basic expressions are: 

expression: 
primary 
• expression 
&lvalue 
- expression 
! expression 
... expression 
+r lvalue 
-lvalue 
lvalue +r 
lvalue-
sizeof expression 
sizeof (type-name) 
( type-name ) expression 
expression binop expression 
expression ? expression : expression 
lvalue asgnop expression 
expression , expression 

primary: 
identifier 
constant 
string 
( expression ) 
primary ( expression-list ) 
primary [ expression ] opt 

primary . identifier 
primary - identifier 

lvalue: 
identifier 
primary [ expression ] 
lvalue . identifier 
primary - identifier 
* expression 
( lvalue) 

The primary-expression operators 

() 0. -

have highest priority and group left to right. The unary operators 

* & - ! ... +f- - sizeof ( type-name ) 
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have priority below the primary operators but higher than any binary operator and group right to left 
Binary operators group left to right; they have priority decreasing as indicated below. 
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binop: 

* I % 
+ 
>> << 
< > <= >= 
== != 
& 

I 
&& 
II 

The conditional operator groups right to left. 
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Assignment operators all have the same priority and all group right to left. 

asgnop: 
= += -= *= I= %= >>= <<= &= "= I= 

The comma operator has the lowest priority and groups left to right. 

16.2e Declarations 

declaration: 
decl-specifiers init-declarator-list ; 

opt 

decl-specifiers: 
type-specifier decl-specifiers 
SC-specifier fkc/-specifiers opt 

opt 

sc-specifier: 
auto 
static 
extern 
register 
typedef 

type-specifier: 
struct-or-union-specifier 
typedef-name 
enum-specifier 

basic-type-specifier: 
basic-type 
basic-type basic-type-specifiers 

basic-type: 
char 
short 
int 
long 
unsigned 
float 
double 
void 
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enum-specifier: 
enum { enum-list} 
enum identifier { enum-list} 
enum identifier 

enum-list: 
enumerator 
enum-list , enumerator 

enumerator: 
identifier 
identifier = constant-expression 

init-declarator-list: 
init-declarator 
init-declarator , init-declarator-list 

init-declarator: 
declarator initializer 

opt 

declarator: 
identifier 
( declarator ) 
* declarator 
declarator() 
declarator [ constant-expression ] 

opt 

struct-or-union-specifier: 
struct { struct-decl-list} 
struct identifier { struct-decl-list} 
struct identifier 
union { struct-decl-list} 
union identifier { struct-decl-list} 
union identifier 

struct-decl-list: 
struct-declaration 
struct-declaration struct-decl-list 

struct-declaration: 
type-specifier struct-declarator-list ; 

struct-declarator-list: 
struct-declarator 
struct-declarator , struct-declarator-list 

struct-declarator: 
declarator 
declarator : constant-expression 
: constant-expression 

PSl:l-33 
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initializer: 
=expression 
= { initializer-list} 
= { initializer-list , } 

initializer-list: 
expression 
initializer-list , initializer-list 
{ initializer-list} 
{ initializer-list , } 

type-name: 
type-specifier abstract-declarator 

abstract-declarator: 
empty 
( abstract-declarator ) 
• abstract-declarator 
abstract-declarator () 
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abstract-declarator [ constant-expression ] 
opt 

typedef-name: 
identifier 

16.3. Statements 

compound-statement: 
{ declaration-list statement-list } 

opt opt 

declaration-list: 
declaration 
declaration declaration-list 

statement-list: 
statement 
statement statement-list 
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statement: 
compound-statement 
expression ; 
if ( expression ) statement 
if ( expression ) statement else statement 
while ( expression ) statement 
do statement while ( expression ) ; 
for (exp opt;exp opJ;exp opt) statement 
switch ( expression ) statement 
case constant-expression : statement 
default : statement 
break; 
continue; 
return; 
return expression ; 
goto identifier ; 
identifier : statement 

16.4. External definitions 

program: 
external-definition 
external-definition pro gram 

external-definition: 
function-definition 
data-definition 

function-definition: 
decl-specifier function-declarator function-body 

opt 

function-declarator: 
declarator (parameter-list ) 

opt 

parameter-list: 
identifier 
identifier , parameter-list 

function-body: 
declaration-list compound-statement 

opt 

data-definition: 
extern declaration ; 
static declaration ; 

17. Preprocessor 

PSl:l-35 
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#define identifier token-stringopt 
#define identifier( identifier, ••• )token-string 
#undef identifier . opt 

#include "filename " 
#include <filename> 
#if restricted-constant-expression 
#if def identifier 
#ifndef identifier 
#eJse 
#endif 
#line constant "filename " 
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ABSTRACT 

The Fortran language has been revised. The new language, known as 
Fortran 77, became an official American National Standard on April 3, 1978. We report 
here on a compiler and run-time system for the new extended language. It is believed to 
be the first complete Fortran 77 system to be implemented This compiler is designed to 
be portable, to be correct and complete, and to generate code compatible with calling 
sequences produced by C compilers. In particular, this Fortran is quite usable on UNIXt 
systems. In this paper, we describe the language compiled, interfaces between pro­
cedures, and file formats assumed by the 110 system. Appendix A describes the Fortran 
77 language extensions. 

This is a standard Bell Laboratories document reproduced with minor 
modifications to the text The Bell Laboratory's appendix on ''Differences Between For­
tran 66 and Fortran 77'' has been changed to Appendix A; and a local appendix has been 
added. Appendix B contains a list of Fortran 77 references (some from the original Bell 
document and some added at Berkeley). 

Revised September, 1985 

NOTE: This article includes some comments on the standard Berkeley Fortran 77 com­
piler. Note all of these comments apply to the Integrated Solutions Fortran 77 compiler. 
For more information on the IS compiler, please see the UNIX Compiler Guide: C, Pas­
cal, FORTRAN 77. 

t UNIX is a trademark of Bell Laboratories. 
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L INTRODUCTION 

The Fortran language has been revised. The new language, known as Fortran 77, became an official Amer­
ican National Standard [1] on April 3, 1978. Fortran 77 supplants 1966 Standard Fortran [2]. We report 
here on a compiler and run-time system for the new extended language. The compiler and computation 
library were written by S.I.F., the 110 system by P.J.W. We believe ours to be the first complete Fortran 77 
system to be implemented. This compiler is designed to be portable to a number of different machines, to 
be correct and complete, and to generate code compatible with calling sequences produced by compilers 
for the C language [3]. In particular, it is in use on UNIX systems. Two families of C compilers are in use 
at Bell Laboratories, those based on D. M. Ritchie's PDP-11 compiler [4] and those based on S. C. 
Johnson's portable C compiler [5]. This Fortran compiler can drive the second passes of either family. In 
this paper, we describe the language compiled, interfaces between procedures, and file formats assumed by 
the l/O system. We will describe implementation details in companion papers. 

1.1. Usage 

At present, versions of the compiler run on and compile for the PDP-11, the VAX-111780, and the 
Interdata 8132 UNIX systems. The command to run the compiler is 

f 77 flags file ... 

f 77 is a general-purpose command for compiling and loading Fortran and Fortran-related files. EFL 
[6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran compiler. 
C and assembler source files will be compiled by the appropriate programs. Object files will be 
loaded. (The f77 and cc commands cause slightly different loading sequences to be generated, since 
Fortran programs need a few extra libraries and a different startup routine than do C programs.) The 
following file name suffixes are understood: 

.f Fortran source file 

.F Fortran source file 

.e EFL source file 

.r Ratfor source file 

.c C source file 

.s Assembler source file 

.o Object file 

Arguments whose names end with.fare taken to be Fortran 77 source programs; they are compiled, 
and each object program is left on the file in the current directory whose name is that of the source 
with .o substituted for .f. 

Arguments whose names end with.Fare also taken to be Fortran 77 source programs; these are first 
processed by the c preprocessor before being compiled by n1. 
Arguments whose names end with .r or .e are taken to be Ratfor or EFL source programs, respec­
tively; these are first transformed by the appropriate preprocessor, then compiled by n1. 
In the same way, arguments whose names end with .c or .s are taken to be C or assembly source pro­
grams and are compiled or assembled, producing a .o file. 

The following flags are understood: 

-c Compile but do not load Output for x.r, x.F, x.e, x.r, x.c, or x.s is put on file x.o. 

-d Used in debugging the compiler. 

-g Have the compiler produce additional symbol table information for dbx( 1 ). This flag 
is incompatible with -0. See section 1.4 for more details. 

-i2 On machines which support short integers, make the default integer constants and vari­
ables short (see section 2.14). (-i4 is the standard value of this option). All logical 
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-m 

-ofile 

quantities will be short. 

Apply the M4 macro preprocessor to each EFL or Ratfor source file before using the 
appropriate compiler. 

Put executable module on file file • (Default is a.out). 

-onetrip or -1 
Compile code that performs every do loop at least once (see section 2.12). 

-p Generate code to produce usage profiles. 

-pg Generate code in the manner of -p, but invoke a run-time recording mechanism that 
keeps more extensive statistics. See gprof(l). 

-q Suppress printing of file names and program unit names during compilation. 

-r8 Treat all floating point variables, constants, functions and intrinsics as double precision 
and all complex quantities as double complex. See section 2.17. 

-u Make the default type of a variable undefined (see section 2.3). 

-v Print the version number of the compiler and the name of each pass. 

-w Suppress all warning messages. 

-w66 Suppress warnings about Fortran 66 features used 

-C Compile code that checks that subscripts are within array bounds. For multi-

-Dname=def 

-Dname 

-Estr 

-F 

-Idir 

dimensional arrays, only the equivalent linear subscript is checked. 

Define the name to the C preprocessor, as if by '#define'. If no definition is given, the 
name is defined as "1". (.F files only). 

Use the string str as an EFL option in processing .e files. 

Ratfor, EFL, and .F source files are pre-processed into .r files, and those .r files are left 
on the disk without being compiled. 

'#include' files whose names do not begin with'/' are always sought first in the direc­
tory of the file argument, then in directories named in -I options, then in directories on 
a standard list. (.F files only). 

-N[qxscn]nnn 

-0 

-Rs tr 

Make static tables in the compiler bigger. The compiler will complain if it overflows 
its tables and suggest you apply one or more of these flags. These flags have the fol­
lowing meanings: 

q Maximum number of equivalenced variables. Default is 150. 

x Maximum number of external names (common block names, subroutine and 
function names). Default is 200. 

s Maximum number of statement numbers. Default is 401. 

c Maximum depth of nesting for control statements (e.g. DO loops). Default is 20. 

n Maximum number of identifiers. Default is 1009. 

Invoke the object code optimizer. Incompatible with -g. 

Use the string str as a Ratfor option in processing .r files. 

-U Do not convert upper case letters to lower case. The default is to convert Fortran pro­
grams to lower case except within character string constants. 

-S Generate assembler output for each source file, but do not assemble it Assembler out­
put for a source file x.r, x.F, x.e, x.r, or x.c is put on file x.s. 

Other flags, all library names (arguments beginning -1), and any names not ending with one of the 
understood suffixes are passed to the loader. 
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1.2. Documentation Conventions 

In running text, we write Fortran keywords and other literal strings in boldface lower caseo Exam­
ples will be presented in lightface lower case. Names representing a class of values will be printed in 
italics. 

lo3. Implementation Strategy 

The compiler and library are written entirely in C. The compiler generates C compiler intermediate 
code. Since there are C compilers running on a variety of machines, relatively small changes will 
make this Fortran compiler generate code for any of them. Furthermore, this approach guarantees 
that the resulting programs are compatible with C usage. The runtime computational library is com­
plete. The runtime 110 library makes use of D. M. Ritchie's Standard C 110 package [8] for transfer­
ring data. With the few exceptions described below, only documented calls are used, so it should be 
relatively easy to modify to run on other operating systems. 

1.4. Debugging Aids 

A memory image is sometimes written to a file core in the current directory upon abnormal termina­
tion for errors caught by the n1 libraries, user calls to abort, and certain signals (see sigvec (2) in 
the UNIX Programmer's Manual). Core is normally created only if the -g flag was specified to f77 
during loading.t The source-level debugger dbx(l) may be used with the executable and the core 
file to examine the image and determine what went wrong. 

In the event that it is necessary to override this default behavior, the user may set the environment 
variable f77 _dump_flago If f77 _dump_flag is set to a value beginning with n, a core file is not pro­
duced regardless of whether-g was specified at compile time, and if the value begins with y, dumps 
are produced even if -g was not specified. 

2e LANGUAGE EXTENSIONS 

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences briefly in Appendix 
A. The most important additions are a character string data type, file-oriented input/output statements, and 
random access 110. Also, the language has been cleaned up considerably. 

In addition to implementing the language specified in the new Standard, our compiler implements a few 
extensions described in this section. Most are useful additions to the language. The remainder are exten­
sions to make it easier to communicate with C procedures or to permit compilation of old (1966 Standard) 
programs. 

2.1. Double Complex Data Type 

The new type double complex is defined. Each datum is represented by a pair of double precision 
real values. The statements 

zl = ( O.ldO, Oo2d0) 
z2 = dcmplx( dx, dy ) 

assign double complex values to zl and z2. The double precision values which constitute the double 
complex value may be isolated by using dreal or dble for the real part and imag or dimag for the 
imaginary part. To compute the double complex conjugate of a double complex value, use conjg or 
dconjg. The other double complex intrinsic functions may be accessed using their generic names or 
specific names. The generic names are: abs, sqrt, exp, log, sin, and cos. The specific names are the 
same as the generic names preceded by either cd or z, e.g. you may code sqrt, ~qrt or cdsqrt to 
compute the square root of a double complex value. 

tSpecify-g when loading with cc or m; specify -lg as a library when using Id directly. 
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2.2. Internal Files 

The Fortran 77 standard introduces "internal files" (memory arrays}, but restricts their use to for­
matted sequential 110 statements. Our 110 system also permits internal files to be used in formatted 
direct reads and writes and list directed sequential read and writes. 

2.3. Implicit Undefined Statement 

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type statement is 
integer if its first letter is i, j, k, I, morn, and real otherwise. Fortran 77 has an implicit statement 
for overriding this rule. As an aid to good programming practice, we permit an additional type, 
undefined. The statement 

implicit undefined(a-z) 

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for each vari­
able that is used but does not appear in a type statement. Specifying the -u compiler flag is 
equivalent to beginning each procedure with this statement 

2.4. Recursion 

Procedures may call themselves, directly or through a chain of other procedures. Since Fortran vari­
ables are by default static, it is often necessary to use the automatic storage extension to prevent 
unexpected results from recursive functions. 

2.S. Automatic Storage 

Two new keywords are recognized, static and automatic. These keywords may appear as ''types'' 
in type statements and in implicit statements. Local variables are static by default; there is only one 
instance of the variable. For variables declared automatic, there is a separate instance of the vari­
able for each invocation of the procedure. Automatic variables may not appear in equivalence, 
data, or save statements. Neither type of variable is guaranteed to retain its value between calls to a 
subprogram (see the save statement in Appendix A). 

2.6. Source Input Format 

The Standard expects input to the compiler to be in 72-column format: except in comment lines, the 
first five characters are the statement number, the next is the continuation character, and the next 66 
are the body of the line. (If there are fewer than 72 characters on a line, the compiler pads it with 
blanks; characters after the seventy-second are ignored.) 

In order to make it easier to type Fortran programs, our compiler also accepts input in variable length 
lines. An ampersand "&" in the first position of a line indicates a continuation line; the remaining 
characters form the body of the line. A tab character in one of the first six positions of a lirte signals 
the end of the statement number and continuation part of the line; the remaining characters form the 
body of the line. A tab elsewhere on the line is treated as another kind of blank by the compiler. 

In the Standard, there are only 26 letters - Fortran is a one-case language. Consistent with ordinary 
UNIX system usage, our compiler expects lower case input. By default, the compiler converts all 
upper case characters to lower case except those inside character constants. However, if the -U 
compiler flag is specified, upper case letters are not transformed. In this mode, it is possible to 
specify external names with upper case letters in them, and to have distinct variables differing only 
in case. If -U is speeified, keywords will only be recognized in lower case. 

2.7. Include Statement 

The statement 

include 'stuff' 

is replaced by the contents of the file stutT; include statements may be nested to a reasonable depth, 
currently ten. 
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2.8. Binary Initialization Constants 

A variable may be initialized in a data statement by a binary constant, denoted by a letter followed 
by a quoted string. If the letter is b, the string is binary, and only zeroes and ones are permitted If 
the letter is o, the string is octal, with digits 0-7. If the letter is z or x, the string is hexadecimal, with 
digits 0-9, a-r. Thus, the statements 

integer a(3) 
data a I b'1010 ', o'12 ', z'a' I 

initialize all three elements of a to ten. 

2.9. Character Strings 

For compatibility with C usage, the following backslash escapes are recognized: 

\n newline 
\t tab 
\b backspace 
\t formfeed 
\0 null 
\' apostrophe (does not terminate a string) 
\" quotation mark (does not terminate a string) 
\\ \ 
\x x, where x is any other character 

Fortran 77 only has one quoting character, the apostrophe. Our compiler and 1/0 system recognize 
both the apostrophe 6

' ' ' ' and the double-quote '' " ''. If a string begins with one variety of quote 
mark, the other may be embedded within it without using the repeated quote or backslash escapes. 

Each character string constant appearing outside a data statement is followed by a null character to 
ease communication with C routines. 

2.10. Hollerith 

Fortran 77 does not have the old Hollerith '' n h'' notation, though the new Standard recommends 
implementing the old Hollerith feature in order to improve compatibility with old programs. In our 
compiler, Hollerith data may be used in place of character string constants, and may also be used to 
initialize non-character variables in data statements. 

2.11. Equivalence Statements 

As a very special and peculiar case, Fortran 66 permits an element of a multiply-dimensioned array 
to be represented by a singly-subscripted reference in equivalence statements. Fortran 77 does not 
pennit this usage, since subscript lower bounds may now be different from 1. Our compiler permits 
single subscripts in equivalence statements, under the interpretation that all missing subscripts are 
equal to 1. A warning message is printed for each such incomplete subscript. 

2.12. One-Trip DO Loops 

The Fortran 77 Standard requires that the range of a do loop not be performed if the initial value is 
already past the limit value, as in 

do 10i=2, 1 

The 1966 Standard stated that the effect of such a statement was undefined, but it was common prac­
tice that the range of a do loop would be performed at least once. In order to accommodate old pro­
grams, though they were in violation of the 1966 Standard, the -onetrip or -1 compiler flags causes 
non-standard loops to be generated. 
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2.13. Commas in Formatted Input 

The 110 system attempts to be more lenient than the Standard when it seems worthwhile. When 
doing a formatted read of non-character variables, commas may be used as value separators in the 
input record, overriding the field lengths given in the format statement. Thus, the format 

(ilO, f20.10, i4) 

will read the record 

-345,.0Se-3,12 

correctly. 

2.14. Short Integers 

On machines that support halfword integers, the compiler accepts declarations of type integer•2. 
(Ordinary integers follow the Fortran rules about occupying the same space as a real variable; they 
are assumed to be of C type long int; halfword integers are of C type short int.) An expression 
involving only objects of type integer•2 is of that type. Generic functions return short or long 
integers depending on the actual types of their arguments. If a procedure is compiled using the -i2 
flag, all small integer constants will be of type integer•2. If the precision of an integer-valued intrin­
sic function is not determined by the generic function rules, one will be chosen that returns the pre­
vailing length (integer•2 when the -i2 command flag is in effect). When the -i2 option is in effect, 
all quantities of type logical will be short. Note that these short integer and logical quantities do not 
obey the standard rules for storage association. 

2.15. Additional Intrinsic Functions 

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard. In addition, 
there are built-in functions for performing bitwise logical and boolean operations on integer and logi­
cal values (or, and, xor, not, lshift, and rshift), and intrinsic functions for double complex values 
(see section 2.1). The 177 library contains many other functions, such as accessing the UNIX com­
mand arguments (getarg and iargc) and environment (getenv). See intro(3t) and bit(3t) in the UNIX 
Programmer's Manual for more information. 

2.16. Namelist 1/0 

Namelist 110 provides an easy way to input and output information without formats. Although not 
part of the standard, namelist 110 was part of many Fortran 66 systems and is a common extension to 
Fortran 77 systems. 

Variables and arrays to be used in namelist 110 are declared as part of a namelist in a namelist state­
ment, e.g.: 

character str* 12 
logical flags(20) 
complex c(2) 
real arr1(2,3), arr2(0:3,4) 
namelist /basic/ arrl, arr2, key, str, c /flglst/ key, flags 

This defines two namelists: list basic consists of variables key and strand arrays arrl, arr2, and c; 
list Oglst consists of variable key and array Bags. A namelist can include variables and arrays of any 
type, and a variable or array may be in several different namelists. However dummy arguments and 
array elements may not be in a namelist A namelist name may be used in external sequential read, 
write and print statements wherever a format could be used. 

In a narnelist read, column one of each data record is ignored. The data begins with an ampersand in 
column 2 followed by the namelist name and a blank. Then there is a sequence of value assignments 
separated by commas and finally an ''&end''. A simple example of input data corresponding to 
namelist basic is: 
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&basic key=5, str='hi there' &end 

For compatibility with other systems, dollar signs may be used instead of the ampersands: 

$basic key=5, stt='hi there' $end 

A value assignment in the data record must be one of three forms. The simplest is a variable name 
followed by an equal sign followed by a data value which is assigned to that variable, e.g. & 'key=5' '. 
The second fonn consists of an array name followed by"=" followed by one or more values to be 
assigned to the array, e.g.: 

C=(l.1,-2.9),(-1.8e+10,14.0e-3) 

assigns values to c(l) and c(2) in the complex array c. 

As in other read statements, values are assigned in the order of the array in memory, i.e. column­
major order for two dimensional arrays. Multiple copies of a value may be represented by a repeti­
tion count followed by an asterisk followed by the value; e.g. ''3*55.4'' is the same as ''55.4, 55.4, 
55.4". It is an error to specify more values than the array can hold; if less are specified, only that 
number of elements of the array are changed The third fonn of a value assignment is a subscripted 
variable name followed by"=" followed by a value or values, e.g.: Harr2(0,4)=15.2". Only integer 
constant subscripts may be used. The correct number of subscripts must be used and the subscripts 
must be legal. This form is the same as the form with an array name except the array is filled starting 
at the named element. · 

In all three forms, the variable or array name must be declared in the namelist. The form of the data 
values is the same as in list directed input except that in namelist 110, character strings in the data 
must be enclosed in apostrophes or double quotes, and repetition counts must be followed by data 
values. 

One use of namelist input is to read in a list of options or ftags. For example: 

logical ftags(14) 
namelist /pars/ ftags, iters, xlow, xhigh, xinc 
data ftags/ 14 *.false./ 

10 read(5,pars,end=900) 
print pars 
call calc( xlow, xhigh, xinc, ftags, iters ) 
go to 10 

900 continue 
end 

could be run with the following data (each record begins with a space): 

&pars iters=lO, xlow=O.O, xhigh=l.0, xinc=0.1 &end 
&pars xinc=0.2, 
ftags(2)=2*.true., ftags(8)=.true. &end 

&pars xlow=2.0, xhigh=8.0 &end 

The program reads parameters for the run from the first data set and computes using them. Then it 
loops and each successive set of namelist input data specifies only those data items which need to be 
changed. Note the second data set sets the 2nd, 3"', and gt1a elements in the array flags to .true •. 

When a namelist name is used in a write or print statement, all the values in the namelist are output 
together with their names. For example the print in the program above prints the following: 
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&pars flags= f, f, f, f, f, f, f, f, f, f, f, f, f, f, iters= 
10, xlow= 0., xhigh= 1.00000, xinc= 0.100000 

&end 
&pars flags= f, t, t, f, f, f, f, t, f, f, f, f, f, f, iters= 

10, xlow= 0., xhigh= 1.00000, xinc= 0.200000 
&end 
&pars flags= f, t, t, f, f, f, f, t, f, f, f, f, f, f, iters= 

10, xlow= 2.00000, xhigh= 8.00000, xinc= 0.200000 
&end 
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Each line begins with a space so that namelist output can be used as input to a namelist read. The 
default is to use ampersands in namelist print and write. However, dollar signs will be used if the 
last preceding namelist read data set used dollar signs. The character to be used is stored as the first 
character of the common block namelistkey. 

2.17. Automatic Precision Increase 

The -r8 flag allows a user to run a program with increased precision without changing any of the 
program source, i.e. it allows a user to take a program coded in single precision and compile and exe­
cute it as if it had been coded in double precision. The option extends the precision of all single pre­
cision real and complex constants, variables, external functions, and intrinsic functions. For exam­
ple, the source: 

implicit complex( c) 
real last 
intrinsic sin, csin 
data last/0.3/ 

X=0.1 
y = sqrt(x)+sqrt(last) 
cl= (0.1,0.2) 
c2 = sqrt(cl) 
x = real(i) 
y = aimag(cl) 
call fun(sin,csin) 

is compiled under this flag as if it had been written as: 

implicit double precision (a-b,d-h,o-z), double complex(c) 
double precision last 
intrinsic dsin, cdsin 
data last/0.3d0/ 

x = O.ldO 
y = sqrt(x)+sqrt(last) 
cl= (0.ld0,0.2d0) 
c2 = sqrt(cl) 
x = dreal(i) 
y = dimag(cl) 
call fun(dsin,cdsin) 

When the -r8 flag is invoked, the calls using the generic name sqrt will refer to a different specific 
function since the types of the arguments have changed. This option extends the precision of all sin­
gle precision real and complex variables and functions, including those declared real•4 and com­
plex•8. 

In order to successfully use this flag to increase precision, the entire program including all the sub­
routines and functions it calls must be recompiled. Programs which use dynamic memory allocation 
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or use equivalence or common statements to associate variables of different types may have to be 
changed by hand. Similar caveats apply to the sizes of records in unformatted 1/0. 

2.18. Characters and Integers 

A character constant of integer length or less may be assigned to an integer variableo Individual 
bytes are packed into the integer in the native byte order. The character constant is padded with 
blanks to the width of the integer during the assignment Use of this feature is deprecated; it is 
intended only as a porting aid for extended Fortran 66 programs. Note that the intrinsic ichar func­
tion behaves as the standard requires, converting only single bytes to integers. 

3e VIOLATIONS OF THE STANDARD 

We know only a few ways in which our Fortran system violates the new standard: 

3.1. Double Precision Alignment 

The Fortran Standards (both 1966 and 1977) permit common or equivalence statements to force a 
double precision quantity onto an odd word boundary, as in the following example: 

real a(4) 
double precision b,c 

equivalence (a(l),b), (a(4),c) 

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities be on dou­
ble word boundaries; other machines (e.g., IBM 370), run inefficiently if this alignment rule is not 
observed. It is possible to tell which equivalenced and common variables suffer from a forced odd 
alignment, but every double precision argument would have to be assumed on a bad boundary. To 
load such a quantity on some machines, it would be necessary to use separate operations to move the 
upper and lower halves into the halves of an aligned temporary, then to load that double precision 
temporary; the reverse would be needed to store a result. We have chosen to require that all double 
precision real and complex quantities fall on even word boundaries on machines with corresponding 
hardware requirements, and to issue a diagnostic if the source code demands a violation of the rule. 

3.2. Dummy Procedure Arguments 

If any argument of a procedure is of type character, all dummy procedure arguments of that pro­
cedure must be declared in an external statement This requirement arises as a subtle corollary of 
the way we represent character string arguments and of the one-pass nature of the compiler. A warn­
ing is printed if a dummy procedure is not declared external. Code is correct if there are no charac­
ter arguments. 

3.3. T and TL Formats 

The implementation of the t (absolute tab) and ti (leftward tab) format codes is defective. These 
codes allow rereading or rewriting part of the record which has already been processed (section 6.3.2 
in Appendix A). The implementation uses seeks, so if the unit is not one which allows seeks, such as 
a terminal, the program is in error. A benefit of the implementation chosen is that there is no upper 
limit on the length of a record, nor is it necessary to predeclare any record lengths except where 
specifically required by Fortran or the operating system. 

3.4. Carriage Control 

The Standard leaves as implementation dependent which logical unit(s) are treated as "printer" files. 
In this implementation there is no printer file and thus by default, no carriage control is recognized 
on formatted output. This can be changed using form= 'print' in the open statement for a unit, or 
by using the fpr(l) filter for output; see [9]. 
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3.5. Assigned Goto 

The optional list associated with an assigned goto statement is not checked against the actual 
assigned value during execution. 

4. INTER-PROCEDURE INTERFACE 

To be able to write C procedures that call or are called by Fortran procedures, it is necessary to know the 
conventions for procedure names, data representation, return values, and argument lists that the compiled 
code obeys. 

4.1. Procedure Names 

On UNIX systems, the name of a common block or a Fortran procedure has an underscore appended 
to it by the compiler to distinguish it from a C procedure or external variable with the same user­
assigned name. Fortran built-in procedure names have embedded underscores to avoid clashes with 
user-assigned subroutine names. 

4.2. Data Representations 

The following is a table of corresponding Fortran and C declarations: 

Fortran 

integer•2 x 
integer x 
logical x 
real x 
double precision x 
complex x 
double complex x 
character•6 x 

c 
short intx; 
long intx; 
long intx; 
fl.oat x; 
double x; 
struct { fl.oat r, i; } x; 
struct { double dr, di; } x; 
char x[6]; 

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory.) 

4.3e Arrays 

The first element of a C array always has subscript zero, while Fortran arrays begin at 1 by default 
Fortran arrays are stored in column-major order in contiguous storage, C arrays are stored in row­
major order. Many mathematical libraries have subroutines which transpose a two dimensional 
matrix, e.g. fOlcrf in the NAG library and vtran in the IMSL library. These may be used to tran­
spose a two-dimensional array stored in C in row-major order to Fortran column-major order or 
vice-versa. 

4.4. Return Values 

A function of type integer, logical, real, or double precision declared as a C function returns the 
corresponding type. A complex or double complex function is equivalent to a C routine with an 
additional initial argument that points to the place where the return value is to be stored Thus, 

complex function f( ... ) 

is equivalent to 

f_(temp, ... ) 
struct { fl.oat r, i; } •temp; 

A character-valued function is equivalent to a C routine with two extra initial arguments: a data 
address and a length. Thus, 

character• 15 function g( ... ) 
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is equivalent to 

g_(result, length, •.. ) 
char result[]; 
long int length; 

and could be invoked in C by 

char chars[lS]; 

g_(chars, 15L, •.. ); 
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Subroutines are invoked as if they were integer-valued functions whose value specifies which alter­
nate return to use. Alternate return arguments (statement labels) are not passed to the function, but 
are used to do an indexed branch in the calling procedure. (If the subroutine has no entry points with 
alternate return arguments, the returned value is undefined.) The statement 

call nret(•l, •2, •3) 

is treated exactly as if it were the computed goto 

goto (1, 2, 3), nret( ) 

4.Se Argument Lists 

All Fortran arguments are passed by address. In addition, for every argument that is of type charac­
ter or that is a dummy procedure, an argument giving the length of the value is passed. (The string 
lengths are long int quantities passed by value.) The order of arguments is then: 

Extra arguments for complex and character functions 
Address for each datum or function 
A long int for each character or procedure argument 

Thus, the call in 

external f 
character•7 s 
integer b(3) 

call sam(f, b(2), s) 

is equivalent to that in 

intf(); 
char s[7]; 
long int b[3]; 

sam _(f, &b[l], Sil OL, 7L); 

4.6. System Interface 

To run a Fortran program, the system invokes a small C program which first initializes signal han­
dling, then calls f_init to initialize the Fortran 110 library, then calls your Fortran main program, and 
then calls f_exit to close any Fortran files opened. 

f _ init initializes Fortran units 0, 5, and 6 to standard error, standard input, and standard output 
respectively. It also calls setlinebuf to initiate line buffering of standard error. If you are using For­
tran subroutines which may do 110 and you have a C main program, call r_init before calling the For­
tran subroutines. Otherwise, Fortran units 0, 5, and 6 will be connected to files fort.O, rort.S, and 
fort.6, and error messages from the 177 libraries will be written to rort.O instead of to standard error. 
If your C program terminates by calling the C function exit, all files are automatically closed. If 
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there are Fortran scratch files to be deleted, first call r_exit. F _init and r_exit do not have any argu­
ments. 

The -d :flag will show what libraries are used in loading Fortran programs. 

S. FILEFORMATS 

S.1. Structure of Fortran Files 

Fortran requires four kinds of external files: sequential formatted and unformatted, and direct for­
matted and unformatted. On UNIX systems, these are all implemented as ordinary files which are 
assumed to have the proper internal structure. 

Fortran 110 is based on records. When a direct file is opened in a Fortran program, the record length 
of the records must be given, and this is used by the Fortran 110 system to make the file look as if it is 
made up of records of the given length. In the special case that the record length is given as 1, the 
files are not considered to be divided into records, but are treated as byte-addressable byte strings; 
that is, as ordinary UNIX file system files. (A read or write request on such a file keeps consuming 
bytes until satisfied, rather than being restricted to a single record) 

The peculiar requirements on sequential unformatted files make it unlikely that they will ever be read 
or written by any means except Fortran 110 statements. Each record is preceded and followed by an 
integer containing the record's length in bytes. 

The Fortran 110 system breaks sequential formatted files into records while reading by using each 
newline as a record separator. The result of reading off the end of a record is undefined according to 
the Standard. The 110 system is permissive and treats the record as being extended by blanks. On 
output, the 110 system will write a newline at the end of each record. It is also possible for programs 
to write newlines for themselves. This is an error, but the only effect will be that the single record 
the user thought he wrote will be treated as more than one record when being read or backspaced 
over. 

S.2. Portability Considerations 

The Fortran 110 system uses only the facilities of the standard C 110 library, a widely available and 
fairly portable package, with the following two nonstandard features: the 1/0 system needs to know 
whether a file can be used for direct 110, and whether or not it is possible to backspace. Both of these 
facilities are implemented using the fseek routine, so there is a routine canseek which determines if 
fseek will have the desired effect. Also, the inquire statement provides the user with the ability to 
find out if two files are the same, and to get the name of an already opened file in a form which 
would enable the program to reopen it Therefore there are two routines which depend on facilities 
of the operating system to provide these two services. In any case, the 110 system runs on the PDP-
11, v AX-11nso, and Interdata 8/32 UNIX systems. 

5.3. Logical Units and Files 

Fortran logical unit numbers may be any integer between 0 and 99. The number of simultaneously 
open files is currently limited to 48. 

Units 5, 6, and 0 are connected before the program begins to standard input, standard output, and 
standard error respectively. 

If an unit is opened explicitly by an open statement with a file= keyword, then the file name is the 
name from the open statement Otherwise, the default file name corresponding to unit n is f ort.n. If 
there is an environment variable whose name is the same as the tail of the file name after periods are 
deleted, then the contents of that environment variable are used as the name of the file. See [9] for 
details. 

The default connection for all units is for sequential formatted 110. The Standard does not specify 
where a file which has been explicitly opened for sequential 110 is initially positioned. The 110 sys­
tem will position the file at the beginning. Therefore a write will destroy any data already in the file, 
but a read will work reasonably. To position a file to its end, use a read loop, or the system 
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dependent function fseek. The preconnected units 0, 5, and 6 are positioned as they come from the 
program's parent process. 
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APPENDIX A: Differences Between Fortran 66 and Fortran 77 

The following is a very brief description of the differences between the 1966 [2] and the 1977 [1] Standard 
languages. We assume that the reader is familiar with Fortran 66. We do not pretend to be complete, pre­
cise, or unbiased, but plan to describe what we feel are the most important aspects of the new language. 
The best current information on the 1977 Standard is in publications of the X3J3 Subcommittee of the 
American National Standards Institute, and the ANSI X3.9-1978 document, the official description of the 
language. The Standard is written in English rather than a meta-language, but it is forbidding and legalis­
tic. A number of tutorials and textbooks are available (see Appendix B). 

1. Features Deleted from Fortran 66 

1.1. Hollerith 

All notions of "Hollerith" (n h) as data have been officially removed, although our compiler, like 
almost all in the foreseeable future, will continue to support this archaism. 

1.2. Extended Range of DO 

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is permissible to 
jump out of the range of a do loop, then jump back into it. Extended range has been removed in the 
Fortran 77 language. The restrictions are so special, and the implementation of extended range is so 
umeliable in many compilers, that this change really counts as no loss. 

2. Program Form 

2.1. Blank Lines 

Completely blank lines are now legal comment lines. 

2.2. Program and Block Data Statements 

A main program may now begin with a statement that gives that program an external name: 

program work 

Block data procedures may also have names. 

block data stuff 

There is now a rule that only one unnamed block data procedure may appear in a program. (This 
rule is not enforced by our system.) The Standard does not specify the effect of the program and 
block data names, but they are clearly intended to aid conventional loaders. 

2.3. ENTRY Statement 

Multiple entry points are now legal. Subroutine and function subprograms may have additional entry 
points, declared by an entry statement with an optional argument list. 

entry extra(a, b, c) 

Execution begins at the first statement following the entry line. All variable declarations must pre­
cede all executable statements in the procedure. If the procedure begins with a subroutine state­
ment, all entry points are subroutine names. If it begins with a function statement, each entry is a 
function entry point, with type determined by the type declared for the entry name. If any entry is a 
character-valued function, then all entries must be. In a function, an entry name of the same type as 
that where control entered must be assigned a value. Arguments do not retain their values between 
calls. (The ancient trick of calling one entry point with a large number of arguments to cause the 
procedure to ''remember'' the locations of those arguments, then invoking an entry with just a few 
arguments for later calculation, is still illegal. Furthermore, the trick doesn't work in our implemen­
tation, since arguments are not kept in static storage.) 
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2.4. DO Loops 

do variables and range parameters may now be of integer, real, or double precision types. (The use 
of fioating point do variables is very dangerous because of the possibility of unexpected roundoff, 
and we strongly recommend against their use.) The action of the do statement is now defined for all 
values of the do parameters. The statement 

do 10 i = 1, u, d 

performs max(O, L<u-l+d)!dJ) iterations. The do variable has a predictable value when exiting a 
loop: the value at the time a goto or return terminates the loop; otherwise the value that failed the 
limit test. 

2.S. Alternate Returns 

In a subroutine or subroutine entry statement, some of the arguments may be noted by an asterisk, 
as in 

subroutine s( a, *, b, *) 

The meaning of the ''alternate returns'' is described in section 5.2 of Appendix A. 

3. Declarations 

3.1. CHARACTER Data Type 

One of the biggest improvements to the language is the addition of a character-string data type. 
Local and common character variables must have a length denoted by a constant expression: 

character• 17 a, b(3,4) 
character•(6+3) c 

If the length is omitted entirely, it is assumed equal to 1. A character string argument may have a 
constant length, or the length may be declared to be the same as that of the corresponding actual 
argument at run time by a statement like 

character*(*) a 

(There is an intrinsic function Jen that returns the actual length of a character string.) Character 
arrays and common blocks containing character variables must be packed: in an array of character 
variables, the first character of one element must follow the last character of the preceding element, 
without holes. 

3.2. IMPLICIT Statement 

The traditional implied declaration rules still hold: a variable whose name begins with i, j, k, I, m, or 
n is of type integer; other variables are of type real, unless otherwise declared. This general rule 
may be overridden with an implicit statement: 

implicit real(a-c,g), complex(w-z), character*(l 7) (s) 

declares that variables whose name begins with an a ,b, c, or g are real, those beginning with w, x, y, 
or z are assumed complex, and so on. It is still poor practice to depend on implicit typing, but this 
statement is an industry standard. 

3.3. PARAMETER Statement 

It is now possible to give a constant a symbolic name, as in 

character str* ( *) 
parameter (x=l7, y=x/3, pi=3.14159d0, str='hello') 

The type of each parameter name is governed by the same implicit and explicit rules as for a vari­
able. Symbolic names for character constants may be declared with an implied length"(*)". The 
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right side of each equal sign must be a constant expression (an expression made up of constants, 
operators, and already defined parameters). 

3.4. Array Declarations 

Arrays may now have as many as seven dimensions. (Only three were permitted in 1966.) The 
lower bound of each dimension may be declared to be other than 1 by using a colon. Furthermore, 
an adjustable array bound may be an integer expression involving constants, arguments, and vari­
ables in common. 

real a(-5:3, 7, m:n), b(n+1:2•n) 

The upper bound on the last dimension of an array argument may be denoted by an asterisk to indi­
cate that the upper bound is not specified: 

integer a(S, •), b(•), c(O:l, -2:•) 

3.S. SA VE Statement 

A little known rule of Fortran 66 is that variables in a procedure do not necessarily retain their values 
between invocations of that procedure. This rule permits overlay and stack implementations for the 
affected variables. In Fortran 77, three types of variables automatically keep there values: variables 
in blank common, variables defined in data statements and never changed, and variables in named 
common blocks which have not become undefined At any instant in the execution of a program, if a 
named common block is declared neither in the currently executing procedure nor in any of the pro­
cedures in the chain of callers, all of the variables in that common block become undefined. Fortran 
77 permits one to specify that certain variables and common blocks are to retain their values between 
invocations. The declaration 

save a, lb/, c 

leaves the values of the variables a and c and all of the contents of common block b unaffected by an 
exit from the procedure. The simple declaration 

save 

has this effect on all variables and common blocks in the procedure. A common block must be 
saved in every procedure in which it is declared if the desired effect is to occur. 

3.6. INTRINSIC Statement 

All of the functions specified in the Standard are in a single category, ''intrinsic functions'', rather 
than being divided into "intrinsic" and "basic external" functions. If an intrinsic function is to be 
passed to another procedure, it must be declared intrinsic. Declaring it external (as in Fortran 66) 
causes a function other than the built-in one to be passed. 

4. Expressions 

4.1. Character Constants 

Character string constants are marked by strings surrounded by apostrophes. If an apostrophe is to 
be included in a constant, it is repeated: 

'abc' 
'ain"t' 

Although null (zero-length) character strings are not allowed in the standard Fortran, they may be 
used with n1. Our compiler has two different quotation marks, '''''and··" ''. (See section 2.9 in 
the main text.) 
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4.2. Concatenation 

One new operator has been added, character string concatenation, marked by a double slash ''II''. 
The result of a concatenation is the string containing the characters of the left operand followed by 
the characters of the right operand The character expressions 

'ab' /1 'cd' 
'abed' 

are equal. 

Dummy arguments of type character may be declared with implied lengths: 

subroutine s ( a, b ) 
character a•(•), b•(•) 

Such dummy arguments may be used in concatenations in assign statements: 

S=allb 

but not in other contexts. For example: 

if( a II b .eq. 'abc') key= 1 
call sub( a II b ) 

are legal statements if ua" and "b" are dummy arguments declared with explicit lengths, or if they 
are not arguments. These are illegal if they are declared with implied lengths. 

4.3. Character String Assignment 

The left and right sides of a character assignment may not share storage. (The assumed implementa­
tion of character assignment is to copy characters from the right to the left side.) If the left side is 
longer than the right, it is padded with blanks. If the left side is shorter than the right, trailing charac­
ters are discarded. Since the two sides of a character assignment must be disjoint, the following are 
illegal: 

str = " II str 
str = str(2:) 

These are not fiagged as errors during compilation or execution, however the result is undefined. 

4.4. Substrings 

It is possible to extract a substring of a character variable or character array element, using the colon 
notation: 

a(i,j) (m:n) 

is the string of (n-m+l) characters beginning at the mth character of the character array element aii· 
Results are undefined unless m ~ . Substrings may be used on the left sides of assignments and as 
procedure actual arguments. 

4.5. Exponentiation 

It is now permissible to raise real quantities to complex powers, or complex quantities to real or com­
plex powers. (The principal part of the logarithm is used.) Also, multiple exponentiation is now 
defined: 

a••b••c is equivalent to a** (b••c) 

4.6. Relaxation of Restrictions 

Mixed mode expressions are now permitted. (For instance, it is permissible to combine integer and 
complex quantities in an expression.) 
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Constant expressions are permitted where a constant is allowed, except in data statements and for­
mat statements. (A constant expression is made up of explicit constants and parameters and the 
Fortran operators, except for exponentiation to a ftoating-point power.) An adjustable dimension 
may now be an integer expression involving constants, arguments, and variables in common. 

Subscripts may now be general integer expressions; the old cv ±c' rules have been removed. do loop 
bounds may be general integer, real, or double precision expressions. Computed goto expressions 
and 110 unit numbers may be general integer expressions. 

S. Executable Statements 

5.1. IF-THEN-ELSE 

At last, the if-then-else branching structure has been added to Fortran. It is called a "Block If". A 
Block If begins with a statement of the form 

if ( ... )then 

and ends with an 

endif 

statement. Two other new statements may appear in a Block If. There may be several 

else if ( ... ) then 

statements, followed by at most one 

else 

statement. If the logical expression in the Block If statement is true, the statements following it up to 
the next else if, else, or end if are executed. Otherwise, the next else if statement in the group is exe­
cuted. If none of the else if conditions are true, control passes to the statements following the else 
statement, if any. (The else block must follow all else if blocks in a Block If. Of course, there may 
be Block Ifs embedded inside of other Block If structures.) A case construct may be rendered: 

if (s .eq. 'ab') then 

else if (s .eq. 'cd') then 

else 

endif 

5.2. Alternate Returns 

Some of the arguments of a subroutine call may be statement labels preceded by an asterisk, as in: 

call joe(j, * 10, m, •2) 

A return statement may have an integer expression, such as: 

return k 

If the entry point has n alternate return (asterisk) arguments and if lSk~, the return is followed by 
a branch to the corresponding statement label; otherwise the usual return to the statement following 
the call is executed. 

6. Input/Output 
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6.1. Format Variables 

A format may be the value of a character expression (constant or otherwise), or be stored in a charac­
ter array, as in: 

write(6, '(i5)') x 

6.2. END=, ERR=, and IOST AT= Clauses 

A read or write statement may contain end=, err=, and iostat= clauses, as in: 

write(6, 101, err=20, iostat=a(4)) 
read(5, 101, err=20, end=30, iostat=x) 

Here 5 and 6 are the units on which the 110 is clone, 101 is the statement number of the associated 
format, 20 and 30 are statement numbers, and a and x are integer variables. If an error occurs during 
110, control returns to the program at statement 20. If the end of the file is reached, control returns to 
the program at statement 30. In any case, the variable referred to in the iostat= clause is given a 
value when the 110 statement finishes. (Yes, the value is assigned to the name on the right side of the 
equal sign.) This value is zero if all went well, negative for end of file, and some positive value for 
errors. 

6.3. Formatted 110 

6.3.1. Character Constants 

Character constants in formats are copied literally to the output. 

A format may be specified as a character constant within the read or write statement. 

write(6, '(i2," isn "" t ",il) ') 7, 4 

produces 

7 isn't4 

In the example above, the format is the character constant 

(i2,' isn "t ',il) 

and the embedded character constant 

isn't 

is copied into the output. 

The example could have been written more legibly by taking advantage of the two types of quote 
m~ -

write(6, '(i2," isn' 't ",il) ') 7, 4 

However, the double quote is not standard Fortran 77. 

The standard does not allow reading into character constants or Hollerith fields. In order to facilitate 
running older programs, the Fortran 110 library allows reading into Hollerith fields; however this is a 
practice to be avoided. 

6.3.2. Positional Editing Codes 

t, ti, tr, and x codes control where the next character is in the record. trn or nx specifies that the next 
character is n to the right of the current position. tin specifies that the next character is n to the left 
of the current position, allowing parts of the record to be reconsidered. tn says that the next charac­
ter is to be character number n in the record. (See section 3.3 in the main text) 
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6.3.3o Colon 

A colon in the format terminates the 110 operation if there are no more data items in the 1/0 list, oth­
erwise it has no effect In the fragment 

x-'("hello", :, " there", i4)' 
write(6, x) 12 
write(6, x) 

the first write statement prints 

hello there 12 

while the second only prints 

hello 

6.3.4. Optional Plus Signs 

According to the Standard, each implementation has the option of putting plus signs in front of non­
negative numeric output The sp format code may be used to make the optional plus signs actually 
appear for all subsequent items while the format is active. The ss format code guarantees that the 110 
system will not insert the optional plus signs, and the s format code restores the default behavior of 
the 110 system. (Since we never put out optional plus signs, ss and s codes have the same effect in 
our implementation.) 

6.3.S. Blanks on Input 

Blanks in numeric input fields, other than leading blanks, will be ignored following a bn code in a 
format statement, and will be treated as zeros following a bz code in a format statement The default 
for a unit may be changed by using the open statement. (Blanks are ignored by default.) 

6.3.6. Unrepresentable Values 

The Standard requires that if a numeric item cannot be represented in the form required by a format 
code, the output field must be filled with asterisks. (We think this should have been an option.) 

6.3.7. Iw.m 

There is a new integer output code, iw.m. It is the same as iw, except that there will be at least m 
digits in the output field, including, if necessary, leading zeros. The case iw. 0 is special, in that if the 
value being printed is 0, the output field is entirely blank. iw.1 is the same as iw. 

6.3.8. Floating Point 

On input, exponents may start with the letter E, D, e, or d. All have the same meaning. On output 
we always use e or d. The e and d format codes also have identical meanings. A leading zero before 
the decimal point in e output without a scale factor is optional with the implementation. There is a 
gw .d format code which is the same as ew .d and fw .d on input, but which chooses f or e formats for 
output depending on the size of the number and of d. 

6.3.9. "A" Format Code 

The a code is used for character data. aw uses a field width of w, while a plain a uses the length of 
the internal character item. 

6.4. Standard Units 

There are default formatted input and output units. The statement 

read 10, a, b 

reads from the standard unit using format statement 10. The default unit may be explicitly specified 
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by an asterisk, as in 

read(*, 10) a, b 
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Similarly, the standard output unit is specified by a print statement or an asterisk unit: 

print 10 
write(*' 10) 

6.5. List-Directed J/O 

List-directed 110 is a kind of free form input for sequential 110. It is invoked by using an asterisk as 
the format identifier, as in 

read(6, *) a,b,c 

On input, values are separated by strings of blanks and possibly a comma. On UNIX, tabs may be 
used interchangeably with blanks as separators. Values, except for character strings, cannot contain 
blanks. End of record counts as a blank, except in character strings, where it is ignored. Complex 
constants are given as two real constants separated by a comma and enclosed in parentheses. A null 
input field, such as between two consecutive commas, means the corresponding variable in the 110 
list is not changed. Values may be preceded by repetition counts, as in 

4•(3.,2.) 2•~ 4• 'hello' 

which stands for 4 complex constants, 2 null values, and 4 string constants. 

The Fortran standard requires data being read into character variables by a list-directed read to be 
enclosed in quotes. In our system, the quotes are optional for strings which do not start with a digit 
or quote and do not contain separators. 

For output, suitable formats are chosen for each item. The values of character strings are printed; 
they are not enclosed in quotes. According to the standard, they could not be read back using list­
directed input However much of this data could be read back in with list-directed 110 on our system. 

6.6. Direct 1/0 

A file connected for direct access consists of a set of equal-sized records each of which is uniquely 
identified by a positive integer. The records may be written or read in any order, using direct access 
110 statements. 

Direct access read and write statements have an extra argument, rec=, which gives the record 
number to be read or written. 

read(2, rec=13, err=20) (a(i), i=l, 203) 

reads the thirteenth record into the array a. 

The size of the records must be given by an open statement (see below). Direct access files may be 
connected for either formatted or unformatted 110. 

6.7. Internal Files 

Internal files are character string objects, such as variables or substrings, or arrays of type character. 
In the former cases there is only a single record in the file; in the latter case each array element is a 
record. The Standard includes only sequential formatted 110 on internal files. (110 is not a very pre~ 
cise term to use here, but internal files are dealt with using read and write.) Internal files are used 
by giving the name of the character object in place of the unit number, as in 

character•80 x 
read(5,'(a)') x 
read(x,'(i3,i4)') nl,n2 

which reads a character string into x and then reads two integers from the front of it. A sequential 
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read or write always starts at the beginning of an internal file. 

We also support two extensions of the standard. The first is direct 110 on internal files. This is like 
direct 110 on external files, except that the number of records in the file cannot be changed. In this 
case a record is a single element of an array of character strings. The second extension is list­
directed IJO on internal files. 

6.8. OPEN, CLOSE, and INQUIRE Statements 

These statements are used to connect and disconnect units and files, and to gather information about 
units and files. 

6.8.1. OPEN 

The open statement is used to connect a file with a unit, or to alter some properties of the connection. 
The following is a minimal example. 

open( 1, file= 'fort.junk:') 

open takes a variety of arguments with meanings described below. 

unit= an integer between 0 and 99 inclusive which is the unit to which the file is to be connected (see 
section 5.3 in the text). If this parameter is the first one in the open statement, the unit= can be 
omitted. 

iostat= is the same as in read or write. 

err= is the same as in read or write. 

file= a character expression, which when stripped of trailing blanks, is the name of the file to be con­
nected to the unit The file name should not be given if the status=' scratch'. 

status= one of 'old', 'new', 'scratch', or 'unknown'. If this parameter is not given, 
'unknown' is assumed. The meaning of 'unknown' is processor dependent; our system will 
create the file if it doesn't exist If 'scratch' is given, a temporary file will be created. Tem­
porary files are destroyed at the end of execution. If 'new' is given, the file must not exist. It 
will be created for both reading and writing. If 'old' is given, it is an error for the file not to 
exist 

access: 'sequential' or 'direct', depending on whether the file is to be opened for sequential or 
directlJO. 

form= 'formatted' or 'unformatted'. On UNIX systems, form='print' implies 'formatted' with 
vertical format control. (See section 3.4 of the text). 

reel= a positive integer specifying the record length of the direct access file being opened. We meas­
ure all record lengths in bytes. On UNIX systems a record length of 1 has the special meaning 
explained in section 5.1 of the text 

blank= 'null' or 'zero'. This parameter has meaning only for formatted 110. The default value is 
'null'. 'zero' means that blanks, other than leading blanks, in numeric input fields are to be 
treated as zeros. 

Opening a new file on a unit which is already connected has the effect of first closing the old file. 

6.8.2. CLOSE 

close severs the connection between a unit and a file. The unit number must be given. The optional 
parameters are iostat= and err= with their usual meanings, and status= either 'keep' or' delete'. For 
scratch files the default is 'delete'; otherwise 'keep' is the default 'delete' means the file will be 
removed. A simple example is 

close(3, err= 17) 
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6.8.3. INQUIRE 

The inquire statement gives information about a unit ("inquire by unit") or a file ("inquire by 
file''). Simple examples are: 

inquire(unit=3, name=xx) 
inquire(file=' junk', number=n, exist=l) 

file= a character variable specifies the file the inquire is about. Trailing blanks in the file name are 
ignored. 

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or unit= must 
be used. 

iostat=, err= are as before. 

exist= a logical variable. The logical variable is set to .true. if the file or unit exists and is set to 
.false. otherwise. 

opened= a logical variable. The logical variable is set to .true. if the file is connected to a unit or if 
the unit is connected to a file, and it is set to .false. otherwise. 

number= an integer variable to which is assigned the number of the unit connected to the file, if any. 

named= a logical variable to which is assigned .trueo if the file has a name, or .false. otherwise. 

name= a character variable to which is assigned the name of the file (inquire by file) or the name of 
the file connected to the unit (inquire by unit). 

acce~= a character variable to which will be assigned the value 'sequential' if the connection is for 
sequential 110, 'direct' if the connection is for direct 110, 'unknown' if not connected. 

sequential= a character variable to which is assigned the value 'yes' if the file could be connected for 
sequential 110, 'no' if the file could not be connected for sequential 110, and 'unknown' if we 
can't tell. 

direct= a character variable to which is assigned the value 'yes' if the file could be connected for 
direct 110, 'no' if the file could not be connected for direct 110, and 'unknown' if we can't tell. 

form= a character variable to which is assigned the value 'unformatted' if the file is connected for 
unformatted 110, 'formatted' if the file is connected for formatted 110, 'print' for formatted 110 
with vertical format control, or 'unknown' if not connected. 

formatted= a character variable to which is assigned the value 'yes' if the file could be connected for 
formatted 110, 'no' if the file could not be connected for formatted 110, and 'unknown' if we 
can't tell. 

unformatted= a character variable to which is assigned the value 'yes' if the file could be connected 
for unformatted 110, 'no' if the file could not be connected for unformatted 110, and 'unknown' 
if we can't tell. 

reel= an integer variable to which is assigned the record length of the records in the file if the file is 
connected for direct access. 

nextrec= an integer variable to which is assigned one more than the number of the the last record 
read from a file connected for direct access. 

blank= a character variable to which is assigned the value 'nulY if null blank control is in effect for 
the file connected for formatted 110, 'zero' if blanks are being converted to zeros and the file is 
connected for formatted 110. 

For information on file permissions, ownership, etc., use the Fortran library routines stat and access. 

For further discussion of the UNIX Fortran 110 system see "Introduction to the f77 1/0 Library'' [9]. 
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ABSTRACT 

The f77 1/0 library, libl77 .a, includes routines to perform all of the standard types 
of Fortran input and output specified in the ANSI 1978 Fortran standard. The 1/0 Library 
was written originally by Peter J. Weinberger at Bell Labs. Where the original imple­
mentation was incomplete, it has been rewritten to more closely implement the standard. 
Where the standard is vague, we have tried to provide flexibility within the constraints of 
the UNIXt operating system. A number of logical extensions and enhancements have 
been provided such as the use of the C stdio library routines to provide efficient buffering 
for file 1/0. 
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t UNIX is a trademark of Bell Laboratories. 
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1. Fortran VO 

The requirements of the ANSI standard impose significant overhead on programs that do large 
amounts of 110. Formatted 1/0 can be very "expensive" while direct access binary 1/0 is usually very 
efficient. Because of the complexity of Fortran 110, some general concepts deserve clarification. 

1.1. Types of VO and logical records 

There are four forms of 1/0: formatted, unformatted, list directed, and namelist. The last two are 
related to formatted but do not obey all the rules for formatted 1/0. There are two types of "files": exter­
nal and internal and two modes of access to files: direct and sequential. The definition of a logical 
record depends upon the combination of I/O form, file type, and access mode specified by the Fortran 1/0 
statement. 

1.1.1. Direct access external VO 

A logical record in a direct access external file is a string of bytes of a length specified when the file 
is opened. Read and write statements must not specify logical records longer than the original record size 
definition. Shorter logical records are allowed Unformatted direct writes leave the unfilled part of the 
record undefined. Formatted direct writes cause the unfilled record to be padded with blanks. 

1.1.2. Sequential access external VO 

Logical records in sequentially accessed external files may be of arbitrary and variable length. 
Logical record length for unformatted sequential files is determined by the size of items in the iolist The 
requirements of this form of 1/0 cause the external physical record size to be somewhat larger than the log­
ical record size. For formatted write statements, logical record length is determined by the format state­
ment interacting with the iolist at execution time. The "newline" character is the logical record delimiter. 
Formatted sequential access causes one or more logical records ending with "newline" characters to be 
read or written. 

1.1.3. List directed and namelist sequential external VO 

Logical record length for list directed and namelist 110 is relatively meaningless. On output, the 
record length is dependent ·on the magnitude of the data items. On input, the record length is determined 
by the data types and the file contents. By ANSI definition, a slash, "/", terminates execution of a list 
directed input operation. Namelist input is terminated by "&end" or "$end" (depending on whether the 
character before the namelist name was '' &'' or ''$' '). 

1.1.4. Internal VO 

· The logical record length for an internal read or write is the length of the character variable or array 
element. Thus a simple character variable is a single logical record. A character variable array is similar to 

a fixed length direct access file, and obeys the same rules. Unformatted and namelist I/Oare not allowed 
on "internal" files. 

1.2. VO execution 

Note that each execution of a Fortran unformatted 1/0 statement causes a single logical record to be 
read or written. Each execution of a Fortran formatted I/O statement causes one or more logical records to 
be read or written. 

A slash, "I", will terminate assignment of values to the input list during list directed input and the 
remainder of the current input line is skipped. The standard is rather vague on this point but seems to 
require that a new external logical record be found at the start of any formatted input. Therefore data fol­
lowing the slash is ignored and may be used to comment the data file. 

Direct acce~ list directed 1/0 is not allowed. Unformatted internal I/O is not allowed. Namelist 
I/O is allowed only with external sequential files. All other ftavors of 1/0 are allowed, although some are 
not part of the ANSI standard. 
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Any 110 statement may include an err= clause to specify an alternative branch to be taken on errors 
and/or an iostat= clause to return the specific error code. Any error detected during 1/0 processing will 
cause the program to abort unless either err= or iostat= has been specificed in the program. Read state­
ments may include end= to branch on end-of-file. The end-of-file indication for that logical unit may be 
reset with a backspace statement. File position and the value of 1/0 list items is undefined following an 
error. 

2. Implementation details 

Some details of the current implementation may be useful in understanding constraints on Fortran 
1/0. 

2.1. Number of logical units 

Unit numbers must be in the range 0 - 99. The maximum number of logical units that a program 
may have open at one time is the same as the UNIX system limit, currently 48. 

2.2. Standard logical units 

By default, logical units 0, 5, and 6 are opened to "stderr", "stdin", and "stdout" respectively. 
However they can be re 0 defined with an open statement. To preserve error reporting, it is an error to close 
logical unit 0 although it may be reopened to another file. 

If you want to open the default file name for any preconnected logical unit, remember to close the 
unit first. Redefining the standard units may impair normal console J/O. An alternative is to use shell re­
direction to externally re-define the above units. To re-define default blank control or format of the stan­
dard input or output files, use the open statement specifying the unit number and no file name (see § 2.4). 

The standard units, 0, 5, and 6, are named internally "stderr", "stdin", and "stdout" respectively. 
These are not actual file names and can not be used for opening these units. Inquire will not return these 
names and will indicate that the above units are not named unless they have been opened to real files. The 
names are meant to make error reporting more meaningful. 

2.3. Vertical format control 

Simple vertical format control is implemented. The logical unit must be opened for sequential access 
with form = 'print' (see § 3.2). Control codes "O" and "1" are replaced in the output file with "\n" and 
''\f'' respectively. The control character''+'' is not implemented and, like any other character· in the first 
position of a record written to a "printn file, is dropped. The form = 'print' mode does not recognize vert­
ical fonnat control for direct formatted, list directed, or namelist output 

An alternative is to use the filter /pr(l) for vertical format control. It replaces "O" and "1" by "\n" 
and "\r' respectively, and implements the"+" control code. Unlike form= 'print' which drops unrecog­
nized form control characters, /pr copies those characters to the output file. 

2.4. File names and the open statement 

A file name may be specified in an open statement for the logical unit If a logical unit is opened by 
an open statement which does not specify a file name, or it is opened implicitly by the execution of a read, 
write, or endfile statement, then the default file name is fort N where N is the logical unit number. Before 
opening the file, the library checks for an environment variable with a name identical to the tail of the file 
name with periods removed t If it finds such an environment variable, it uses its value as the actual name 
of the file. For example, a program containing: 

tPeriods are deleted because they can not be part of environment variable names in the Bourne shell. 
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open(32,file='/usr/guest/census/data.d') 
read(32, 100) vec 
write(44) vec 
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normally will read from lusrlguestlcensusldata.d and write to fort.44 in the current directory. If the 
environment variables datad and fort44 are set, e.g.: 

% setenv datad mydata 
% setenv fort44 myout 

in the C shell or: 

$ datad=mydata 
$ fort44=myout 
$ export datad fort44 

in the Bourne shell, then the program will read from mydata and write to myout. 

An open statement need not specify a file name. If it refers to a logical unit that is already open, the 
blank= and form= specifiers may be redefined without affecting the current file position. Otherwise, if 
status= 'scratch' is specified, a temporary file with a name of the form tmp.FXXXXXX will be opened, 
and, by default, will be deleted when closed or during termination of program execution. 

It is an error to try to open an existing file with status= 'new'. It is an error to try to open a nonex­
istent file with status = 'old' . By default, status = 'unknown' will be assumed, and a file will be created if 
necessary. 

By default, files are positioned at their beginning upon opening, but see fseek(3f) and ioinit(3f) for 
alternatives. Existing files are never truncated on opening. Sequentially accessed external files are trun­
cated to the current file position on close, backspace, or rewind only if the last access to the file was a 
write. An endfile always causes such files to be truncated to the current file position. 

2.S. Format interpretation 

Formats which are in format statements are parsed by the compiler; formats in read, write, and print 
statements are parsed during execution by the 1/0 library. Upper as well as lower case characters are 
recognized in format statements and all the alphabetic arguments to the 1/0 library routines. 

If the external representation of a datum is too large for the field width specified, the specified field is 
filled with asterisks ( * ). On Ew .dEe output, the exponent field will be filled with asterisks if the exponent 
representation is too large. This will only happen if "e" is zero (see appendix B). 

On output, a real value that is truly zero will display as ''O.'' to distinguish it from a very small non­
zero value. If this causes problems for other input systems, the BZ edit descriptor may be used to cause the 
field following the decimal point to be filled with zero's. 

Non-destructive tabbing is implemented for both internal and external formatted 1/0. Tabbing left or 
right on output does not affect previously written portions of a record. Tabbing right on output causes 
unwritten portions of a record to be filled with blanks. Tabbing right off the end of an input logical record 
is an error. Tabbing left beyond the beginning of an input logical record leaves the input pointer at the 
beginning of the record. The format specifier T must be followed by a positive non-zero numper. If it is 
not, it will have a different meaning (see§ 3.1). 

Tabbing left requires seek ability OJ;t the logical unit. Therefore it is not allowed in 1/0 to a terminal 
or pipe. Likewise, nondestructive tabbing in either direction is possible only on a unit that can seek. Other­
wise tabbing right or spacing with X will write blanks on the output. 

2.6. List directed output 

In formatting list directed output, the 1/0 system tries to prevent output lines longer than 80 charac­
ters. Each external datum will be separated by two spaces. List directed output of complex values 
includes an appropriate comma. List directed output distinguishes between real and double precision 
values and formats them differently. Output of a character string that includes ''\n'' is interpreted 
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reasonably by the output system. 

2.7. 1/0 errors 

If 1/0 errors are not trapped by the user's program an appropriate error message will be written to 
''stderr'' before aborting. An error number will be printed in''[]'' along with a brief error message show­
ing the logical unit and 1/0 state. Error numbers < 100 refer to UNIX errors, and are described in the intro­
duction to chapter 2 of the UNIX Programmer's Manual. Error numbers ~ 100 come from the 1/0 library, 
and are described further in the appendix to this writeup:(:. For internal 1/0, part of the string will be 
printed with ''I'' at the current position in the string. For external 1/0, part of the current record will be 
displayed if the error was caused during reading from a file that can backspace. 

3. Non-" ANSI Standard" extensions 

Several extensions have been added to the 1/0 system to provide for functions omitted or poorly 
defined in the standard. Programmers should be aware that these are non-portable. 

3.1. Format specifiers 

Bis an acceptable edit control specifier. It causes return to the logical unit's default mode of blank: 
interpretation. This is consistent with S which returns to default sign control. 

P by itself is equivalent to OP . It resets the scale factor to the default value, 0. 

The form of the Ew .dEe format specifier has been extended to D also. The form Ew .d.e is allowed 
but is not standard. The ''e'' field specifies the minimum number of digits or spaces in the exponent field 
on output. If the value of the exponent is too large, the exponent notation e or d will be dropped from the 
output to allow one more character position. If this is still not adequate, the '' e'' field will be filled with 
asterisks(•). The default value for "e" is 2. 

An additional fonn of tab control specification has been added. The ANSI standard forms TRn, TLn, 
and Tn are supported where n is a positive non-zero number. If Tor nT is specified, tabbing will be to the 
next (or n-th) 8-column tab stop. Thus columns of alphanumerics can be lined up without counting. 

A format control specifier has been added to suppress the newline at the end of the last record of a 
formatted sequential write. The specifier is a dollar sign ($). It is constrained by the same rules as the colon 
(:).It is used typically for console prompts. For example: 

write{*, "('enter value for x: ',$)") 
read{•,•) x 

Radices other than 10 can be specified for formatted integer 110 conversion. The specifier is pat­
terned after P, the scale factor for floating point conversion. It remains in effect until another radix is 
specified or format interpretation is complete. The specifier is defined as [n]R where 2 S n S 36. If n is 
omitted, the default decimal radix is restored. 

The format specifier Om.n may be used for an octal conversion; it is equivalent to 8R,Im.n,10R. 
Similarly, Zm.n is equivalent to 16R~m.n,10R and may be used for an hexadecimal conversion; 

In conjunction with the above, a sign control specifier has been added to cause integer values to be 
interpreted as unsigned during output conversion. The specifier is SU and remains in effect until another 
sign control specifier is encountered, or format interpretation is complete. t Radix and ''unsigned'' 
specifiers could be used to format a hexadecimal dump, as follows: 

t On many systems, these are also available in help fTl io _e" _ msgs. 
tNote: Unsigned integer values greater than (2••31 - 1), can be read and written using SU. However they can not be used 
in computations because Fortran uses signed arithmetic and such values appear to the arithmetic unit as negative numbers. 



Introduction to the f77 1/0 Library PS1:3-7 

2000 format ( SU, 8Z 10.8 ) 

3e2. Print files 

The ANSI standard is ambiguous regarding the definition of a ''print'' file. Since UNIX has no 
default ''print'' file, an additional form= specifier is now recognized in the open statement Specifying 
form= 'print' implies formatted and enables vertical format control for that logical unit (see§ 2.3). Vert­
ical fonnat control is interpreted only on sequential formatted writes to a "print'' file. 

The inquire statement will return print in the form= string variable for logical units opened as 
''print'' files. It will return -1 for the unit number of an unconnected file. 

If a logical unit is already open, an open statement including the form= option or the blank= option 
will do nothing but re-define those options. This instance of the open statement need not include the file 
name, and must not include a file name if unit= refers to a standard input or output. Therefore, to re-define 
the standard output as a ''print'' file, use: 

open (unit=6, form='prin() 

3.3. Scratch files 

A close statement with status = 'keep' may be specified for temporary files. This is the default for 
all other files. Remember to get the scratch file's real name, using inquire, if you want to re-open it later. 

3.4. List directed 110 

List directed read has been modified to allow tab characters wherever blanks are allowed. It also 
allows input of a string not enclosed in quotes. The string must not start with a digit or quote, and can not 
contain any separators ( '',' ', ''I'', blank or tab ). A newline will terminate the string unless escaped with \. 
Any string not meeting the above restrictions must be enclosed in quotes("" "or"'"). 

Internal list directed 1/0 has been implemented. During internal list reads, bytes are consumed until 
the iolist is satisfied, or the "end-of-file" is reached. During internal list writes, records are filled until the 
iolist is satisfied. The length of an internal array element should be at least 20 bytes to avoid logical record 
overflow when writing double precision values. Internal list read was implemented to make command line 
decoding easier. Internal list write should be avoided. 

3.5. Namelist 1/0 

N amelist 1/0 is a common extension in Fortran systems. The r77 version was designed to be compa­
tible with other vendors versions; it is described in "A Portable Fortran 77 Compiler", by Feldman and 
Weinberger, August, 1985. 

4. Running older programs 

Traditional Fortran environments usually assume carriage control on all logical units, usually inter­
pret blank spaces· on input as ''O' 's, and often provide attachment of global file names to logical units at run 
time. There are several routines in the I/O library to provide these functions. 

4.1. Traditional unit control parameters 

If a program reads and writes only units 5 and 6, then including -1166 in the f77 command will cause 
carriage control to be interpreted on output and cause blanks to be zeros on input without further 
modification of the program. If this is not adequate, the routine ioinit(3f) can be called to specify control 
parameters separately, including whether files should be positioned at their beginning or end upon opening. 
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4.2. IoinitO 

Ioinit(3f) can be used to attach logical units to specific files at run time, and to set global parameters 
for the 1/0 system. It will look for names of a user specified form in the environment and open the 
corresponding logical unit for sequential formatted I/O. Names must be of the form PREFIXnn where 
PREFIX is specified in the call to ioinit and nn is the logical unit to be opened Unit numbers< 10 must 
include the leading ''O''. 

Ioinit should prove adequate for most programs as written. However, it is written in Fortran-77 
specifically so that it may serve as an example for similar user-supplied routines. A copy may be retrieved 
by "ar x /usr/lib/libU77.a ioinitf'. See § 2.4 for another way to override program file names through 
environment variables. 

S. Magnetic tape 1/0 

Because the I/O library uses stdio buffering, reading or writing magnetic tapes should be done with 
great caution, or avoided if possible. A set of routines has been provided to read and write arbitrary sized 
buffers to or from tape directly. The buffer must be a character object Internal I/O can be used to fill or 
interpret the buffer. These routines do not use normal Fortran I/O processing and do not obey Fortran I/O 
rules. See topen(3f). 

60 Caveat Programmer 

The I/O library is extremely complex yet we believe there are few bugs left We've tried to make the 
system as correct as possible according to the ANSI X3.9-1978 document and keep it compatible with the 
UNIX file system. Exceptions to the standard are noted in appendix B. 
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Appendix A 

1/0 Library Error Me~ges 

The following error messages are generated by the 1/0 library. The error numbers are returned in the 
iostat= variable. Error numbers < 100 are generated by the UNIX kernel. See the introduction to chapter 2 
of the UNIX Programmers Manual for their description. 

100 e"or in format 
See error message output for the location of the error in the format. Can be caused by more 
than 10 levels of nested parentheses, or an extremely long format statement 

101 illegal unit number 
Itis illegal to close logical unit 0. Unit numbers must be between 0 and 99 inclusive. 

102 formatted ilo not allowed 
The logical unit was opened for unformatted 1/0. 

103 unformatted ilo not allowed 
The logical unit was opened for formatted I/O. 

104 direct ilo not allowed 
The logical unit was opened for sequential access, or the logical record length was specified as 
0. 

105 sequential ilo not allowed 
The logical unit was opened for direct access 1/0. 

106 can't backspace file 
The file associated with the logical unit can't seek. May be a device or a pipe. 

107 off beginning of record 
The format specified a left tab beyond the beginning of an internal input record. 

108 can't stat file 
The system can't return status information about the file. Perhaps the directory is unreadable. 

109 no* after repeat count 
Repeat counts in list directed 110 must be followed by an * with no blank spaces. 

110 off end of record 
A formatted write tried to go beyond the logical end-of-record. An unformatted read or write 
will also cause this. 

111 truncation failed 
The truncation of an external sequential file on close, backspace, rewind, or endfile failed. 

112 incomprehensible list input 
List input has to be just right 
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113 out of free space 
The library dynamically creates buffers for internal use. You ran out of memory for this. Your 
program is too big! 

114 unit not connected 
The logical unit was not open. 

115 invalid data/or integer format term 
Only spaces, a leading sign and digits are allowed. 

116 invalid data/or logicalformat term 
Legal input consists of spaces (optional), a period (optional), and then a "e ', "T", "r ', or 
''F''. 

117 'new' file exists 
You tried to open an existing file with "status= 'new"'. 

118 can'tfind 'old' file 
You tried to open a non-existent file with ''status= 'old'''. 

119 opening too many files or unknown system e"or 
Either you are trying to open too many files simultaneously or there has been an undetected 
system error. 

120 requires seek ability 
Direct access requires seek ability. Sequential unformatted I/O requires seek ability on the file 
due to the special data structure required. Tabbing left also requires seek ability. 

121 illegal argument 
Certain arguments to open, etc. will be checked for legitimacy. Often only non-default forms 
are looked for. 

122 negative repeat count 
The repeat count for list directed input must be a positive integer. 

123 illegal operation/or unit 
An operation was requested for a device associated with the logical unit which was not possi­
ble. This error is returned by the tape I/O routines if attempting to read past end-of-tape, etc. 

124 invalid data/or d, e,f or gformat term 
Input data must be legal. 

125 illegal input for namelist 
Column one of input is ignored, the namelist name must match, the variables must be in the 
namelist, and the data must be of the right type. 
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AppendixB 

Exceptions to the ANSI Standard 

A few exceptions to the ANSI standard remain. 

Vertical format control 

The "+" carriage control specifier is not fully implemented (see § 2.3). It would be difficult to 
implement it correctly and still provide UNIX-like file 1/0. 

Furthermore, the carriage control implementation is asymmetrical. A file written with carriage con­
trol interpretation can not be read again with the same characters in column 1. 

An alternative to interpreting carriage control internally is to run the output file through a ''Fortran 
output filter'' before printing. This filter could recognize a much broader range of carriage control and 
include terminal dependent processing. One such filter is/pr(l). 

Default files 

Files created by default use of endfile statements are opened for sequential formatted access. There 
is no way to redefine such a file to allow direct or unformatted access. 

Lower case strings 

It is not clear if the ANSI standard requires internally generated strings to be upper case or not. As 
currently written, the inquire statement will return lower case strings for any alphanumeric data. 

Exponent representation on Ew.dEe output 

If the field width for the exponent is too small, the standard allows dropping the exponent character 
but only if the exponent is> 99. This system does not enforce that restriction. Further, the standard implies 
that the entire field, ''w' ', should be filled with asterisks if the exponent can not be displayed. This system 
fills only the exponent field in the above case since that is more diagnostic. 

Pre-connection of files 

The standard says units must be pre-connected to files before the program starts or must be explicitly 
opened. Instead, the I/O library connects the unit to a file on its first use in a read, write, print, or endfile 
statement. Thus inquire by unit can not tell prior to a unit number use the characteristics or name of the 
file corresponding to a unit. 
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ABSTRACT 

Berkeley Pascal is designed for interactive instructional use and runs on the PDP/ 11 
and v AX/11 computers. Interpretive code is produced, providing fast translation at the 
expense of slower execution speed There is also a fully compatible compiler for the 
VAX/11. An execution profiler and Wirth's cross reference program are also available 
with the system. 

The system supports full Pascal. The language accepted is 'standard' Pascal, and a 
small number of extensions. There is an option to suppress the extensions. The exten­
sions include a separate compilation facility and the ability to link to object modules pro­
duced from other source languages. 

The User's Manual gives a list of sources relating to the UNIXt system, the Pascal 
language, and the Berkeley Pascal system. Basic usage examples are provided for the 
Pascal components pi, px, pix, pc , and pxp. Errors commonly encountered in these pro­
grams are discussed. Details are given of special considerations due to the interactive 
implementation. A number of examples are provided including many dealing with 
input/output. An appendix supplements Wirth's Pascal Report to form the full definition 
of the Berkeley implementation of the language. 

Introduction 

The Berkeley Pascal User's Manual consists of five major sections and an appendix. In section 1 we 
give sources of information about UNIX, about the programming language Pascal, and about the Berkeley 
implementation of the language. Section 2 introduces the Berkeley implementation and provides a number 
of tutorial examples. Section 3 discusses the error diagnostics produced by the translators pc and pi, and 
the runtime interpreter px. Section 4 describes input/output with special attention given to features of the 
interactive implementation and to features unique to UNIX. Section 5 gives details on the components of 
the system and explanation of all relevant options. The User's Manual concludes with an appendix to 
Wirth's Pascal Report with which it forms a precise definition of the implementation. 
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History of the implementation 

The first Berkeley system was written by Ken Thompson in early 1976. The main features of the 
present system were implemented by Charles Haley and William Joy during the latter half of 1976. Earlier 
versions of this system have been in use since January, 1977. 

The system was moved to the VAX-11 by Peter Kessler and Kirk McKusick with the porting of the 
interpreter in the spring of 1979, and the implementation of the compiler in the summer of 1980. 

1. Sources of information 

This section lists the resources available for information about general features of UNIX, text editing, 
the Pascal language, and the Berkeley Pascal implementation, concluding with a list of references. The 
available documents include both so-called standard documents - those distributed with all UNIX system -
and documents (such as this one) written at Berkeley. 

1.1. Where to get documentation 

Current documentation for most of the UNIX system is available ''on line'' at your terminal. Details 
on getting such documentation interactively are given in section 1.3. 

1.2. Documentation describing UNIX 

The following documents are those recommended as tutorial and reference material about the UNIX 
system. We give the documents with the introductory and tutorial materials first, the reference materials 
last. 

UNIX For Beginners - Second Edition 

This document is the basic tutorial for UNIX available with the standard system. 

Communicating with UNIX 

This is also a basic tutorial on the system and assumes no previous familiarity with computers; it was 
written at Berlceley. 

An introduction to the C shell 

This document introduces csh. the shell in common use at Berkeley, and provides a good deal of 
general description about the way in which the system functions. It provides a useful glossary of terms 
used in discussing the system. 

UNIX Programmer's Manual 

This manual is the major source of details on the components of the UNIX system. It consists of an 
Introduction, a permuted index, and eight command sections. Section 1 consists of descriptions of most of 
the ''commands'' of UNIX. Most of the other sections have limited relevance to the user of Berkeley Pas­
cal, being of interest mainly to system programmers. 

UNIX documentation often refers the reader to sections of the manual. Such a reference consists of a 
command name and a section number or name. An example of such a reference would be: ed (1). Here 
ed is a command name - the standard UNIX text editor, and '(l)' indicates that its documentation is in sec­
tion 1 of the manual. 

The pieces of the Berkeley Pascal system are pi (1), px (1), the combined Pascal translator and inter­
pretive executor pix (1), the Pascal compiler pc (1), the Pascal execution profiler pxp (1), and the Pascal 
cross-reference generator pxref (1). 

It is possible to obtain a copy of a manual section by using the man (1) command. To get the Pascal 
documentation just described one could issue the command: 

%manpi 
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to the shell. The user input here is shown in bold face; the '% ', which was printed by the shell as a 
prompt, is not. Similarly the command: 

%manman 

asks the man command to describe itself. 

1.3. Text editing documents 

The following documents introduce the various UNIX text editors. Most Berkeley users use a version 
of the text editor ex; either edit, which is a version of ex for new and casual users, ex itself, or vi (visual) 
which focuses on the display editing portion of ex. 

A Tutorial Introduction to the UNIX Text Editor 

This document, written by Brian Kernighan of Bell Laboratories, is a tutorial for the standard UNIX 
text editor ed. It introduces you to the basics of text editing, and provides enough information to meet 
day-to-day editing needs, for ed users. 

Edit: A tutorial 

This introduces the use of edit, an editor similar toed which provides a more hospitable environ­
ment for beginning users. 

Ex/edit Command Summary 

This summarizes the features of the editors ex and edit in a concise form. If you have used a line 
oriented editor before this summary alone may be enough to get you started. 

Ex Reference Manual - Version 3.7 

A complete reference on the features of ex and edit. 

An Introduction to Display Editing with Vi 

Vi is a display oriented text editor. It can be used on most any CRT terminal, and uses the screen as a 
window into the file you are editing. Changes you make to the file are reflected in what you see. This 
manual serves both as an introduction to editing with vi and a reference manual. 

Vi Quick Reference 

This reference card is a handy quick guide to vi; you should get one when you get the introduction to 
vi. 

1.4. Pascal documents - The language 

This section describes the documents on the Pascal language which are likely to be most useful to the 
Berkeley Pascal user. Complete references for these documents are given in section 1.7. 

Pascal User Manual 

By Kathleen Jensen and Niklaus Wirth, the User Manual provides a tutorial introduction to the 
features of the language Pascal, and serves as an excellent quick-reference to the language. The reader 
with no familiarity with Algol-like languages may prefer one of the Pascal text books listed below, as they 
provide more examples and explanation. Particularly important here are pages 116-118 which define the 
syntax of the language. Sections 13 and 14 and Appendix F pertain only to the 6000-3.4 implementation of 
Pascal. 
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Pascal Report 

By Nildaus Wirth, this document is bound with the User Manual. It is the guiding reference for 
implementors and the fundamental definition of the language. Some programmers find this report too con­
cise to be of practical use, preferring the User Manual as a reference. 

Books on Pascal 

Several good books which teach Pascal or use it as a medium are available. The books by Wirth Sys­
tematic Programming and Algorithms+ Data Structures= Programs use Pascal as a vehicle for teaching 
programming and data structure concepts respectively. They are both recommended. Other books on Pas­
cal are listed in the references below. 

1.S. Pascal documents - The Berkeley Implementation 

This section describes the documentation which is available describing the Berkeley implementation 
of Pascal. 

User's Manual 

The document you are reading is the User's Manual for Berkeley Pascal. We often refer the reader 
to the Jensen-Wirth User Manu.al mentioned above, a different document with a similar name. 

Manual sections 

The sections relating to Pascal in the UNIX Programmer's Manual are pix (1), pi (1), pc (1), px (1), 
pxp (1), and pxref (1). These sections give a description of each program, summarize the available 
options, indicate files used by the program, give basic information on the diagnostics produced and include 
a list of known bugs. 

Implementation notes 

For those interested in the internal organization of the Berkeley Pascal system there are a series of 
Implementation Notes describing these details. The Berkeley Pascal PXP Implementation Notes describe 
the Pascal interpreter px; and the Berkeley Pascal PX Implementation Notes describe the structure of the 
execution profiler pxp. 

1.6. References 

UNIX Documents 

Communicating With UNIX 
Computer Center 
University of California, Berkeley 
January, 1978. 

Ricki Blau and James Joyce 
Edit: a tutorial 
UNIX User's Supplementary Documents (USD), 14 
University of California, Berkeley, CA. 94720 
April, 1986. 

Ex/edit Command Summary 
Computer Center 
University of California, Berkeley 
August, 1978. 
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William Joy 
Ex Reference Manual- Version 3.7 
UNIX User's Supplementary Documents (USO), 16 
University of California, Berkeley, CA. 94720 
April, 1986. 

William Joy 
An Introduction to Display Editing with Vi 
UNIX User's Supplementary Documents (USD), 15 
University of California, Berkeley, CA. 94720 
April, 1986. 

William Joy 
An Introduction to the C shell (Revised) 
UNIX User's Supplementary Documents (USD), 4 
University of California, Berkeley, CA. 94720 
April, 1986. 

Brian W. Kernighan 
UNIX/or Beginners- Second Edition 
UNIX User's Supplementary Documents (USD), 1 
University of California, Berkeley, CA. 94720 
April, 1986. 

Brian W. Kernighan 
A Tutorial Introduction to the UNIX Text Editor 
UNIX User's Supplementary Documents (USO), 12 
University of California, Berkeley, CA. 94720 
April, 1986. 

Dennis M. Ritchie and Ken Thompson 
The UNIX Time Sharing System 
Reprinted from Communications of the ACM July 1974 in 
UNIX Programmer's Supplementary Documents, Volume 2 (PS2), 1 
University of California, Berkeley, CA. 94720 
April, 1986. 

Pascal Language Documents 

Cooper and Clancy 
Oh! Pascal!, 2nd Edition 
W. W.Norton &Company, Inc. 
500 Fifth Ave., NY, NY. 10110 
1985, 475 pp. 

Cooper 
Standard Pascal User Reference Manual 
W.W. Norton & Company, Inc. 
500 Fifth Ave., NY, NY. 10110 
1983, 176 pp. 
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Kathleen Jensen and Niklaus Wirth 
Pascal- User Manual and Report 
Springer-Verlag, New York. 
1975, 167 pp. 

Niklaus Wirth 
Algorithms+ Data structures= Programs 
Prentice-Hall, New York. 
1976, 366 pp. 

Berkeley Pascal documents 

Berkeley Pascal User's Manual 

The following documents are available from the Computer Center Library at the University of Cali­
fornia, Berkeley. 

William N. Joy 
Berkeley Pascal PX Implementation Notes 
Version 1.1, April 1979. 
(V ax-11 Version 2.0 By Kirk McKusick~ December, 1979) 

William N. Joy 
Berkeley Pascal PXP Implementation Notes 
Version 1.1, April 1979. 

2. Basic UNIX Pascal 

The following sections explain the basics of using Berkeley Pascal. In examples here we use the text 
editor ex (1). Users of the text editor ed should have little trouble. following these examples, as ex is simi­
lar toed. We use ex because it allows us to make clearer examples.t The new UNIX user will find it help­
ful to read one of the text editor documents described in section 1.4 before continuing with this section. 

2.1. A first program 

To prepare a program for Berkeley Pascal we first need to have an account on UNIX and to 'login' to 
the system on this account. These procedures are described in the documents Communicating with UNIX 
and UNIX/or Beginners. 

Once we are logged in we need to choose a name for our program; let us call it 'first' as this is the 
first example. We must also choose a name for the file in which the program will be stored. The Berkeley 
Pascal system requires that programs reside in files which have names ending with the sequence '.p' so we 
will call our file 'firstp'. 

A sample editing session to create this file would begin: 

% ex first.p 
"first.p" [New file] 

We didn't expect the file to exist, so the error diagnostic doesn't bother us. The editor now knows the 
name of the file we are creating. The ':' prompt indicates that it is ready for command input. We can add 
the text for our program using the 'append' command as follows. 

:append 
program first(output) 

t Users with CR.T tenninals should find the editor vi more pleasant to use; we do not show its use here because its display 
oriented nature makes it difficult to illustrate. 
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begin 
writeln('Hello, world!') 

end. 

The line containing the single '.' character here indicated the end of the appended text. The ':' prompt 
indicates that ex is ready for another command As the editor operates in a temporary work space we must 
now store the contents of this work space in the file 'first.p' so we can use the Pascal translator and execu­
tor pix on it 

:write 
"first.p" [New file] 4 lines, 59 characters 
:quit 
% 

We wrote out the file from the edit buffer here with the 'write' command, and ex indicated the number of 
lines and characters written. We then quit the editor, and now have a prompt from the shell.+ 

:t: Our examples here assume you are using csh. 





Assembler Reference Manual 

Integrated Solutions 
1140 Ringwood Court 
San Jose, CA 95131 

( 408) 943-1902 



PSl:Smii ISi Assembler Reference Manual 

490110 Rev. B 

July 1986 

Copyright 1984, 1985, 1986 by Integrated Solutions. All rights reserved. No part of this publication may 
be reproduced, stored in a retrieval system, or transmitted in any form or by any means (e.g., electronic, 
mechanical, photocopying, recording) without the prior permission of Integrated Solutions. 

The information in this publication is subject to change without notice. 



ISi Assembler Reference Manual PSl:S-iii 

PREFACE 

This manual describes the UNIX 4.2BSD assembler, as{l), for the IS-68K processor (based on the 
MC68010) and the VME-68K10 and 68K20 processors (based on the MC68010 and MC68020 with 
MC68881). It is written for the experienced assembly language programmer and describes the assembler 
in detail so the programmer can develop programs. This manual is organized in reference format into the 
following sections: 

Section 1 - Introduction 
This section describes the notation conventions used in this manual; summarizes how to 
format assembly language program statements and how to invoke the assembler and 
presents comments about the diagnostics. 

Section 2 - Lexical Conventions 
This section describes the lexical conventions of aso 

Section 3 - Expressions 
This section discusses rules for expressions. 

Section 4 - Assembler Directives 
This section discusses assembler directives. 

Section 5 - Instructions/ Addressing Modes 
This section comments on the assembler's instructions and addressing modes. 

Appendix A - Instruction Mnemonics 
This appendix lists the assembler's instruction mnemonics. 
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SECTION 1: INTRODUCTION 

As is the UNIX 4.2BSD assembler for the IS-68K processor (based on the MC68010) and the VME-68K10 
and 68K20 processors (based on the MC68010 and MC68020 with MC68881). Its primary function is to 
assemble code produced by the C compiler, but it can also be used to assemble programs written in 
assembly language. Users who intend to write assembly language programs should use this manual in 
conjunction with the following publications which fully describe the 68000/68010/68020/68881 instruction 
set and addressing modes: 

•Motorola's 16-Bit Microprocessor User's Manual. Prentice Hall. 

• Motorola's MC6801016-Bit Virtual Memory Microprocessor. Motorola, 1983. (ADI-942-Rl) 

• Motorola's MC68020 32-Bit Microprocessor User's Manual. Prentice Hall, 1984. 
(ISBN 0-13-541418-0) 

•Motorola's MC68881 Floating-Point Coprocessor User's Manual. Motorola, 1985. (First Edition) 

1.1 Notation Conventions 

The conventions used to describe formats in this manual are as follows: 

Table 1-1. Notation Convention Definitions 
Convention Definition 
[ ] Denotes an optional element. 
N ... Denotes one or more occurrences of N. 
italic Denotes a user-substitutable element. 
bold Denotes a keyword or character that must be entered exactly as shown. 

1.2 Assembly Language Program Statements 

An assembly language source program is composed of a sequence of statements. Statements are separated 
either by new-lines or by semicolons. With a few exceptions, the format of an assembly language 
statement is 

[label field] opcode [operand field] [comment] 

One exception is the statement consisting of a label only. Another is the statement consisting of a comment 
only. Blank lines are also allowed. 

1.2.1 Label Field . 

A label is a user-defined symbol. It is a symbolic means of referring to a specific location within a 
program. If present, a label always occurs first in a statement and must be terminated with a colon. 

The value of a label is either absolute or relocatable, depending on whether the location counter value is 
currently absolute or relocatable. In the latter case, the absolute value of the symbol is assigned when the 
program is linked with ld. 

1.2.2 Opcode Field 

The opcode field identifies the statement as either a machine instruction or an assembler directive, also 
called a pseudo opcode. Instruction statements and assembler directives are known as keyword statements. 
One or more blanks or tabs must separate an opcode from the operand field. 
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A machine instruction is indicated by an instruction mnemonic (see Appendix A). Note that instruction 
mnemonics and register names are lower-case. 

An assembler directive, unlike an instruction, does not result in executable code. Rather, it simply directs 
the. assembly process. The directives are discussed in Section 4. 

lo2.3 Operand Field 

The operand field consists of one or more operands, depending on the requirements of the opcode field. 
When more than one operand appears in a statement, they must be separated by commas. Appendices B 
and C, a functional breakdown of the machine instruction mnemonics, summarizes single and double 
operand machine instructions. 

1.2.4 Comment Field 

The preferred method of commenting a statement is with the C language-style comment delimiters: "/* ... 
*I". C style comments can extend across multiple lines. 

A comment field can also be introduced with the"#" character, provided that the"#" starts in column 1 and 
does not contain the newline character. Any other character can appear in the comment. See Section 2.4 
for more details. 

1.3 Invoking The Assembler 

After the assembly language program is written, it is assembled by as and loaded by the link editor, ld, for 
execution. 

To invoke the assembler, enter the following command line: 

as [-L] [-W] [ -R] [ -20] [ -o objfile] [name ... ] 

The available fiags are 

-L Save defined labels beginning with an "L", which are normally discarded to save space in the 
resultant symbol table. The compilers generate such temporary labels. 

-W Do not complain about warnings. 

-R Make initialized data segments read-only by concatenating them to the text segments. This obviates 
the need to run editor scripts on assembly code to make initialized data read-only and shared. 

-20 Allow the use of 68020 addressing modes and 68020/68881 instructions. 

All undefined symbols in the assembly are treated as global. 

The output of the assembly is left on the file objfile; if that is omitted, a.out is used. 

1.4 Diagnostics 

Diagnostics are intended to be self-explanatory and appear on the standard output. Diagnostics either 
report an error or a warning. Error diagnostics complain about lexical, syntactic, or semantic errors, and 
suppress the creation of ob.ifile for the assembly. 
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SECTION 2: LEXICAL CONVENTIONS 

This section describes the lexical conventions of as. These conventions govern the use of identifiers 
(alternatively, symbols or names) and constants. 

2.1 Identifiers 

An identifier consists of a sequence of alphanumeric characters (including period ".",underscore"_", and 
dollar"$"). Identifiers can be arbitrarily long {practically). The first character in an identifier may not be 
numeric. All characters are significant 

2.1.1 Named Labels 

A named label consists of a name followed by a colon. The effect of a named label is to assign the current 
value and type of the location counter to the name. An error is indicated in pass one if the name is already 
defined; an error is indicated in pass two if the value assigned chat}ges the definition of the label. 

A label is referenced by its name. 

Labels beginning with an "L" are discarded from the symbol table unless as is invoked with the -L option 
(see Section 1-3, "Invoking the Assembler"). 

2.1.2 Named Numeric Labels 

A numeric label consists of a digit 0 to 9 followed by a colon (e.g., 0:, 2:, 5:). Such a label serves to define 
temporary symbols of the form "nb" and "nf', where n is the digit of the label. As in the case of named 
labels, a numeric label assigns the current value and type of the location counter to the temporary symbol. 
However, several numeric labels with the same digit may be used within the same assembly. References to 
symbols of the form "nb" refer to the first numeric label "n:" backwards from the reference; "nf' symbols 
refer to the first numeric label "n:" forwards from the reference. Such numeric labels conserve the 
inventive powers of the programmer. 

As turns local labels into labels of the form Ln.m. Programmer-defined labels of this form should, 
therefore, be avoided. 

2.2 Constants 

There are three forms of constants: numeric, floating point, and string constants. All constants are 
considered absolute quantities when they appear in an expression. 

2.2.1 Numeric Constants 

Numeric constants can represent quantities up to 32 bits wide. 

The digits are "0123456789abcdefABCDEF" with the obvious values. 

An octal constant consists of a sequence of digits with a leading zero. 

A decimal constant consists of a sequence of digits without a leading zero. 

A hexadecimal constant consists of the characters "Ox" (or "OX" ) followed by a sequence of digits. 

A single-character constant consists of a single quote " '" followed by any ASCII character, even the 
ASCII newline. The constant's value is the code for the given character. 

2.2.2 Floating Point Constants 

The lexical form of a floating point constant is specified with the following metanotation: 

Lexical Conventions 
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O[expt]([+-])[dec]+(.)([dec]*)([expe]([+-])(dec]+)) 

where: 

[expt] is a type specification character ( "tFdD") 
[dee] is a decimal digit ( "0123456789" ) 
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[expel is an exponent delimiter and type specification character ( "eEdD") 

and 

x * means 0 or more occurrences of x 

x + means 1 or more occurrences of x 

The standard semantic interpretation is used for the signed integer, fraction and signed power of 10 
exponent. If the exponent delimiter is specified, it should agree with the initial type specification character 
that is used (i.e., "e" for type "f' and "d" for type "d"). The type specification character specifies the type 
and representation of the constructed number as follows: 

Table 2-1. Floating Point Type Characters 
Type Floating Size 

Character Re_Qresentation (Bits) 
f, F F format floating 32 
d,D D format floating 64 

The assembler uses the library routine atof(3) to convert F and D numbers. 

Collectively, all floating point numbers together with the quad scalar, are called Bignums. When as 
requires a Bignum, a 32-bit scalar quantity can also be used. 

Floating point constants are generated in IEEE format. (A separate version, decas, is available to generate 
DEC format floating point constants.) 

2.2.3 String Constants 

A string constant is defined by using the same syntax and semantics as used by the C language. Strings 
begin and end with a double quote ("). Most C backslash conventions are observed. Strings are known by 
their value and their length; the assembler does not implicitly end strings with a null byte. 

2.3 Blanks 

Blank and tab characters may be interspersed freely between tokens, but may not be used within tokens 
(except string constants). A blank or tab is required to separate adjacent identifiers or constants not 
otherwise separated. 

2.4 Comments 

Comments are available in two varieties: C style and scratch mark comments. 

2.4.1 C Style Comments 

The assembler recognizes C style comments, introduced with "/•" and ending with"•/". C style comments 
can extend across multiple lines, and are the preferred comment style. 
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2.4.2 Scratch Mark Comments 

The character "#" introduces a scratch mark comment, that extends through the end of the line on which it 
appears. Comments starting in column 1 and having the format "# expression string", are interpreted as an 
indication that the assembler is now assembling file string at line expression. Thus, one can use the C 
preprocessor on an assembly language source file, and use the #include and #define preprocessor directives. 
(Note that there may not be a scratch mark starting in column 1 if the assembler source is given to the C 
preprocessor, as it is interpreted by the preprocessor in a way not intended.) Comments are otherwise 
ignored by the assembler. 

2.5 Segments and Location Counters 

Assembled code and data fall into three segments: the text segment, the data segment, and the bss 
segment. The operating system makes some assumptions about the content of these segments, the 
assembler does not. Within the text and data segments, there are a number of subsegments, distinguished 
by number ("text O", "text l", ... "data O", "data l", ... ). Currently, there are four subsegments each in text 
and data. The subsegments are for programming convenience only. 

Before writing the output file, the assembler zero-pads each text subsegment to a multiple of four bytes and 
then concatenates the subsegments to form the text segment; an analogous operation is done for the data 
segment. Requesting that the loader define symbols and storage regions is the only action allowed by the 
assembler with respect to the bss segment. Assembly begins in "text O". 

Associated with each (sub)segment is an implicit location counter which begins at zero and is incremented 
by one for each byte assembled into the (sub )segment. There is no way to explicitly reference a location 
counter. Note that the location counters of subsegments other than "text O" and "data O" behave 
peculiarly due to the concatenation used to form the text and data segments. 
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SECTION 3: EXPRESSIONS 

This section discusses the rules for expressions. An expression is a sequence of symbols representing a 
value. Its constituents are identifiers, constants, operators, and parentheses. 

3.1 Expression Operators 

All operators in expressions are fundamentally binary in nature. Arithmetic is two's complement and has 
32 bits of precision. As can not do assembly-time arithmetic on either floating point numbers or quad 
precision scalar numbers. The operators are: 

Table 3-1. Expression Operators 
~rator Meanin_g_ 

+ addition 
- (binary) subtraction 
• multiplication 
I division 
% modulo 
- (unary) 2's complement 
& bitwise and 
I bitwise or 

A 

bitwise exclusive or (carrot) 
! bitwise or not .. 

bitwise l's complement (tilde) 
> logical right shift 

>> logical right shift 
< logical left shift 

<< logical left shift 

Expressions may be grouped by use of parentheses, "("and")". 

There are four levels of precedence. They are listed here from lowest precedence level to highest: 

Table 3-2. Operator Precedence 
Precedence O_Qerators 

binary +,-
binary I,&,",! 
binary *,I, %, >, >>, <, << 
unary - ' 

All operators of the same precedence are evaluated strictly left to right, except for the evaluation order 
enforced by parentheses. 
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3.2 Expression Data Types 

The assembler manipulates several different types of expressions. The types likely to be met explicitly are: 

Table 3-3. Descriptions of Expressions 
E~ression Descri~ion 

undefined Upon first encounter, each symbol is undefined. (A symbol becomes defined 
when a value is associated with it via the .set, .comm, .lcomm or .globl 
directives, as described in the next section.) It may become undefined if it is 
assigned an undefined expression. If it is undefined in pass two, an error occurs. 
If it is undefined in pass one, an error does not occur unless the opcode requires 
a defined symbol. 

undefined external A symbol declared with .globl, but not defined in the current assembly, is an 
undefined external. If such a symbol is declared, the link editor ld(l) must be 
used to load the assembler's output with another routine that defines the 
undefined reference. 

absolute An absolute symbol is one that has been defined with the value of a constant. 
The value of an absolute symbol is unaffected by any possible future 
applications of the link-editor to the output file. 

text The value of a text symbol is measured with respect to the beginning of the text 
segment of the program. If the assembler output is link-edited, its text symbols 
may change in value since the program need not be the first in the link editor's 
output. Most text symbols are defined by appearing as labels. At the start of an 
assembly, the value of the location counter is "text O". 

data The value of a data symbol is measured with respect to the origin of the data 
segment of a program. Like text symbols, the value of a data symbol may 
change during a subsequent link-editor run since previously loaded programs 
may have data segments. After the first .data statement, the value of the 
location counter is "data O". 

bss The value of a bss symbol is measured from the beginning of the bss segment of 
a program. Like text and data symbols, the value of a bss symbol may change 
during a subsequent link-editor run, since previously loaded programs may have 
bss segments. 

(continued on next page) 
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Table 3-3. Descriptions of Expressions (Continued) 
Ex_1?fession Descri__p_tion 

external absolute 
text, data, or bss Symbols declared with the directive .globl, but defined within an assembly as 

absolute, text, data, or bss symbols, can be used exactly as if they were not 
declared .globl; however, their value and type are available to the link editor so 
that the program may be loaded with others that reference these symbols. 

registers The following symbols are predefined as register symbols. 

d0-d7 data 
a0-a7 address 
fp frame pointer (equivalent to a6) 
sp stack pointer (equivalent to a7) 
pc program counter 
cc condition codes 
sr status {privileged mode only) 
usp user stack pointer (privileged mode only) 
vb vector base (privileged mode only) (68010, 68020) 
sfc source function code {privileged mode only) (68010, 68020) 
dfc destination function code (privileged mode only) (68010, 68020) 
cac cache control (privileged mode only) (68020 only) 
caa cache address (privileged mode only) (68020 only) 
msp master stack (privileged mode only) (68020 only) 
isp interrupt stack (privileged mode only) (68020 only) 
fO-ti floating point data (68881) 
fpcr floating point control (68881) 
fpsr floating point status ( 68881) 
fpiar floating point instruction address (68881) 

other types Each keyword known to the assembler has a type that is used to select the 
routine which processes the associated keyword statement. The behavior of 
such symbols when not used as keywords is the same as if they were absolute. 

3.3 Type Propagation in Expressions 

When operands are combined by expression operators, the result has a type which depends on the types of 
the operands and on the operator. The rules involved are complex to state, but are intended to be sensible 
and predictable. For purposes of expression evaluation, the important result types are 

undefined 
absolute 
text 
data 
bss 
undefined external 
other 

The combination rules are 

1. If one of the operands is undefined, the result is undefined. 
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2. If both operands are absolute, the result is absolute. 

3. If an absolute is combined with one of the "other types", described in Table 3-3, the result has the 
other type. An "other type" combined with an explicitly discussed type other than absolute acts like 
an absolute. 

Further rules applying to particular operators are 

+ If one operand is text-, data-, bss-segment relocatable, or is an undefined external, the other 
operand must be absolute. The result has the postulated type. 

If the first operand is a relocatable text-, data-, or bss-segment symbol, the second operand may 
either be absolute or have the same type as the firsl If the second operand is absolute, the result 
has the type of the first operand. If the second operand is the same type as the first, the result is 
absolute. If the first operand is external undefined, the second must be absolute. All other 
combinations are illegal. 

others It is illegal to apply these operators to any but absolute symbols. 
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SECTION 4: ASSEMBLER DIRECTIVES 

Assembler directives, also called pseudo ops, direct the operation of the assembler, but do not result in 
executable code. The keywords listed in this section are the directives, grouped functionally, supported by 
as. 

4.1 Interface to a Previous Pass Directives 

These directives are mainly of interest to those charged with maintaining the assembler. 

4.1.1 Abort 

The ABORT directive causes the assembler to ignore further input and aborts the assembly . 

.ABORT 

It does read to the end of file. No files are created. This directive is intended for use in a pipe 
interconnected version of a compiler, where the first major syntax error would cause the compiler to issue 
this directive, saving unnecessary work in assembling code that would have to be discarded anyway. 

4.1.2 File 

The file directive causes the assembler to think it is in file string, so error messages reflect the proper 
source file . 

• file string 

4ol.3 Line 

The line directive causes the assembler to think it is on line expression, so error messages reflect the proper 
source file . 

. line expression 

The only effect of assembling multiple files specified in the command string is to insert the file and line 
directives, with the appropriate values, at the beginning of the source from each file. 

# expression string 
# expression 

This is the only instance where a comment is meaningful to the assembler. The "#" must be in the first 
column. This meta comment causes the assembler to believe it is on line expression. The second 
argument, if included, causes the assembler to believe it is in file string, otherwise the current file name 
does not change. 

4.2 Location Counter Control Directives 

There are two types of location counter control directives: data and text. 

4.2.1 Data and Text 

The two directives 

.data [ expression ] 

.text [expression] 

cause the assembler to begin assembling into the indicated text or data subsegment. If specified, the 
expression must be defined and absolute; an omitted expression is treated as zero. The effect of a .data 
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directive is treated as a .text directive if the -R assembly flag is set Assembly starts in the .text 0 
subsegment. The directives .align and .org also control the placement of the location counter. 

4.3 Filled Data Directives 

The directives align, org, space, and fill are discussed in this subsection. 

4.3$1 Align 

The 

.align align_expr 

directive causes the location counter to be adjusted so that the align_expr lowest bits of the location 
counter become zero. This is done by assembling from 0 to 2 align_expr - 1 null bytes. Thus .align 2 pads 
by null bytes to make the location counter evenly divisible by 4. Note that .align 1 and .align 2 are the 
only acceptable fonns _of this directive. 

4.3.2 Org 

With the 

.org org_expr [ ,fill_expr] 

directive, the location counter is set equal to the value of org_expr, which must be defined and absolute. 
The value of the org_expr must be greater than the current value of the location counter. Space between 
the current value of the location counter and the desired value are filled with bytes taken from the low order 
byte of fill_expr, which must be absolute and defaults to 0. 

4.3.3 Space 

With the space directive, 

.space space_expr [ ,fill_expr] 

the location counter is advanced by space_expr bytes. Space_expr must be defined and absolute. The 
space is filled in with bytes taken from the low order byte offill_expr, which must be defined and absolute. 
Fill_expr defaults to 0. The .fill directive is a more general way to accomplish the .space directive. 

4.3A Fill 

With the 

.fill rep_expr, size_expr,fill_expr 

all three expressions must be absolute. Fill_expr, treated as an expression of size size_expr bytes, is 
assembled and replicated rep_expr times. The effect is to advance the current location counter rep_expr * 
size_expr bytes and fill the resulting space withfill_expr. Size_expr must be between 1and8. 

4.4 Initialized Data Directives 

With these directives 

.byte expr [ , expr ] .. . 

. word expr [ , expr ] .. . 

. int expr [, expr] ... 

.long expr [ , expr ] ... 

the expressions in the comma-separated list are truncated to the size indicated by the key word, (see Table 
4-1) and assembled in successive locations: 
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Table 4-1. Expression Truncation 
Ke~ord Length (Bits) 
.byte 8 
.word 16 
oiot 32 
.long 32 

The expressions must be absolute. 

Each expression may optionally be of the form: 

expression 1 : expression2 

In this case, the value of expression2 is truncated to expression 1 bits, and assembled in the next expression 1 
bit field which fits in the natural data size being assembled. Bits which are skipped because a field does not 
fit are filled with zeros. Thus, ".byte 123" is equivalent to ".byte 8:123", and ".byte 3:1,2:1,5:1" assembles 
two bytes, containing the values 9 and 1. 

4o5 Floating Point Initialization Directives 

These floating point initialization directives initialize Bignums in successive locations whose size is a 
function of the key word . 

• quad 
.float 
• double 

number [ , number ] .. . 
number [ , number ] .. . 
number [ , number] .. . 

The type of the Bignums (determined by the exponent field, or lack thereat) may not agree with type 
implied by the key word. Table 4-2 shows the key words, their size, and the data types for the Bignums 
they expect 

Table 4-2. Operand Format and Size 
K~~ord Format Len_g_th (Bits) ValidNumber(sl 
.quad quad scalar 64 scalar 
.float F float 32 F, D and scalar 
.double D float 64 F, D and scalar 

NOTE 

As does not currently support a floating point initialization to match the 68881 's extended 
precision type. 

4.6 String Initialization Directives 

Two string initialization directives, ascii and asciz, are discussed in this subsection. 

4.6.1 Ascii, Asciz 

These two directives handle ascii strings: 

.ascii string [, string] .. . 

.asciz string [, string] .. . 

Each string in the list is assembled into successive locations, with the first letter in the string being placed 
into the :first location, etc. The .ascii directive does not null pad the string; the .asciz directive will null pad 
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the string. (Recall that strings are known by their length, and need not be terminated with a null, and that 
the C conventions for escaping are understOod.) The .ascii directive is identical to: 

.byte string0, string 1, ••• 

4c7 External Symbol Definition Directives 

The comm, lcomm, globl, set, and lsym external symbol definition directives are discussed in this 
subsection. 

4.7.1 Comm 

The comm directive causes as to declare name as a common symbol with a value equal to expression . 

• comm name,expression 

Provided the name is not defined elsewhere, its type is made "undefined external", and its value is 
expression. In fact the name behaves in the current assembly just like an undefined external. However, the 
link editor Id has been speciaJ.cased so that all external symbols, which are not otherwise defined and have 
a non-zero value, are defined to lie in the bss segment, and enough space is left after the symbol to hold 
expression bytes. 

4 .. 7..2 Lcomm 

Lcomm causes as to declare name with a value of expression . 

• Icomm name, expression 

Expression bytes are allocated in the bss segment and name assigned the location of the first byte, but the 
name is not declared as global and hence is unknown to the link editor, Id. 

4.7.3 Globl 

The globl directive causes as to declare the names as global symbols . 

• globl name [, name ] ... 

This statement makes each name external. If it is otherwise defined (by .set or by appearance as a label) it 
acts within the assembly exactly as if the .globl statement were not given; however, the link editor Id can 
be used to combine this object module with other modules referring to this symbol. 

Conversely, if the given symbol is not defined within the current assembly, Id can combine the output of 
this assembly with that of others which define the symbol. The assembler makes all otherwise undefined 
symbols external. 

4.7.4 Set 

The set directive causes as to enter the symbol name with value expression into the symbol table . 

.set name, expression 

Multiple .set statements with the same name are legal; the most recent value replaces all previous values. 

4.7.S Lsym 

Jsym name, expression 

A unique instance that cannot otherwise be referenced, of the (name, expression) pair is created in the 
symbol table. The Fortran 77 (n7(1) compiler uses this mechanism to pass local symbol definitions to the 
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link editor and debugger. 

4.8 Debugger Directives 

This subsection discusses three debugger directives: stabs, stabn, and stabd. 

4.8.1 Stabs, Stabn, Stabd 

.stabs string, expr1, expr2, expr3, exp4 

.stabn expr 1, expr 2, expr 3' expr 4 

.stabd expr 1, expr 2, expr 3 

The stab directives place symbols in the symbol table for the symbolic debugger, dbx(l). A "stab" is a 
symbol table entry. The .stabs is a string stab; the .stabn is a stab not having a string; and the location 
counter. 

The string in the .stabs directive is the name of a symbol. If the symbol name is zero, the .stabn directive 
may be used instead. 

The other expressions are stored in the name list structure of the symbol table and preserved by the loader 
for reference by dbx; the value of the expressions are peculiar to formats required by dbx. 

expr1 is used as a symbol table tag (nlist field n_type). 

expr2 seems to always be zero (nlist field n_other). 

expr3 is used for either the source line number, or for a nesting level (nlist field n_desc). 

expr4 is used as tag specific information (nlist field n_value). In the case of the .stabd directive, this 
expression is nonexistent, and is taken to be the value of the location counter at the following 
instruction. Since there is no associated name for a .stabd directive, it can only be used in 
circumstances where the name is zero. The effect of a .stabd directive can be achieved by one of 
the other .stabx directives in the following manner: 

.stabn expr 1, expr 2, expr 3, LLn 
LLn: 

The .stabd directive is preferred, because it does not clog the symbol table with labels used only 
for the stab symbol entries. 
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SECTION 5: INSTRUCTIONS/ADDRESSING MODES 

As supports the MC68000/68010/68020/68881 instruction set as described in the following documents 

• Motorola's 16-Bit Microprocessor User's Manual. Prentice Hall. 

• Motorola's MC6801016-Bit Virtual Memory Microprocessor. Motorola, 1983. (ADI-942-Rl) 

• Motorola's MC68020 32-Bit Microprocessor User's Manual. Prentice Hall, 1984. 
(ISBN 0-13-541418-0) 

• Motorola's MC68881 Floating-Point Coprocessor User's Manual. Motorola, 1985. (First Edition) 

with a few exceptions as described in this section. Appendix A of this manual lists instruction mnemonics; 
note they are lower-case. 

5.1 Instructions 

Most of the MC68010/68020 instructions can apply to byte, word, or long operands. Instead of using a 
qualifier of .b, .w, .I for byte, long, and word as in the Motorola assembler, ~places a suffix after the 
normal instruction mnemonic, thereby creating a separate mnemonic for each length operand. For example, 
the three mnemonics for the or instruction are orb, orw, and orl. 

Instruction mnemonics for instructions with unusual opcodes can have additional suffixes. Thus, in addition 
to the normal add variations, there is addqb, addqw, addql for the add quick instruction. 

Some instructions have two acceptable mnemonics. For example, the move long instruction uses either the 
movel or movl mnemonic. 

When as encounters an instruction mnemonic, two actions occur. 

1. It maps the mnemonic to the instruction type. 

2. It attempts to generate the most appropriate instruction possible. 
For example, it automatically generates an addqb instruction for an addb instruction if possible. Similarly, 
it generates a cmpmb (compare memory byte) for a cmpb (compare byte) if it determines that the cmpb 
operands are two memory bytes. Thus, the programmer can generally use the "simpler" instruction and as 
optimizes it if possible. 

For the MC68881, instructions can apply to byte, word, long, single precision, double precision, extended 
precision, and packed decimal operands. As uses the suffixes b, w, I, s, d, x, and p for the respective types. 

5.1.1 Branch Instructions 

Branch instructions come in two flavors: byte (or short) and word. Each instruction appends an s to the 
basic mnemonic to specify the short version of the instruction. For example, beq refers to the word version 
of the Branch If Equal instruction, while beqs refers to the short version of the instruction. The 68020 also 
has a long flavor of branch instructions with beql referring to the long version. 

For the MC68881, branch instructions come in only two flavors, word and long. For example, tbeqw refers 
to the word version of the Floating Branch If Equal instruction, while tbeql refers to the long version of the 
instruction. 

5.1.2 Extended Branch Instructions 

The extended branch instruction mnemonics are formed by substituting a "j" for the initial "b" of the 
standard opcodes. These instructions take the name of a label in the current subsegment as branch 
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destinations. If the destination is in a different subsegment, an error results. If the destination is not 
defined within the object module being assembled, a warning results. 

If the operand of the extended branch instruction is a simple address in the current segment, and the offset 
to that address is sufficiently small, as automatically generates the corresponding short branch instruction. 
If the offset is too large for a short branch, but small enough for a branch, the corresponding branch 
instruction is generated. If the operand references an external address or is complex, the extended branch 
instruction is implemented either by a jmp or jsr (for jra or jbsr) or by a conditional branch (with the 
sense of conditional inverted) around a jmp for the extended conditional branches. In this context, a 
complex address is either an address which specifies other than normal mode addressing, or relocatable 
expressions containing more than one relocatable symbol (i.e. if a, b, and c are symbols in the current 
segment, then the expression a+b-c is relocatable, but not simple). 

On the 68020, the long conditional branches are used where possible, in place of the short branch around a 
jmp. 

Table 5-1 lists the extended branch instruction mnemonics as recognizes: 

Table 5-1. Extended Branch Instructions 
Instruction Definition 
jbr jump/branch always 
jbsr jump/branch to subroutine 
jcc jump/branch on carry clear 
jcs jump/branch on carry set 
jeq jump/branch on equal 
jge jump/branch on greater than or equal 
jgt jump/branch on greater than 
jhi jump/branch on high 
jhs jump/branch on high or same 
jle jump/branch on less than or equal 
jlo jump/branch on low 
jls jump/branch on low or same 
jlt jump/branch on less than 
jrni jump/branch on minus 
jne jump/branch on not equal 
jpl jump/branch on plus 
jra jump/branch always 
jvc jump/branch on overflow clear 
jvs jump/branch on overflow set 

Note that jbr turns into bras if its target is close enough; otherwise a bra is used. On the 68020, a bral is 
used if the target is too far away for a bra to be used 

For the MC68881, the extended branch instruction mnemonics are formed by substituting a "fj" for the "tb" 
of the standard floating branch opcodes. As generates the word branch instruction if the destination is close 
enough. Otherwise the long branch instruction is used, unless the destination is complex, in which case a 
word branch around a jmp is necessary. Table 5-2 lists floating extended branch instruction mnemonics as 
recognizes. 
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Table S-2. Floating Extended Branch Instructions 
Instruction Definition 
tjeq fioating jump/branch on equal 
tjf floating jump/branch always false 
tjge fioating jump/branch on greater than or equal 
tjgl fioating jump/branch on greater than or less than 
tjgle fioating jump/branch on greater than or less than or equal 
tjgt floating jump/branch on greater than 
tjle floating jump/branch on less than or equal 
tjlt fioating jump/branch on less than 
tjne floating jump/branch on not equal 
tjnge floating jump/branch on not (greater than or equal) 
tjngl floating jump/branch on not (greater than or less than) 
tjngle floating jump/branch on not (greater than or less than or equal) 
tjngt floating jump/branch on not (greater than) 
tjnle floating jump/branch on not (less than or equal) 
tjnlt floating jump/branch on not (less than) 
fjoge floating jump/branch on ordered greater than or equal 
tjogl floating jump/branch on ordered greater than or less than 
fjogt floating jump/branch on ordered greater than 
tjole floating jump/branch on ordered less than or equal 
tjolt floating jump/branch on ordered less than 
tjor floating jump/branch on ordered 
tjra floating jump/branch always 
tjseq floating jump/branch on signaling equal 
tjsf floating jump/branch on signaling always false 
tjsne floating jump/branch on signaling not equal 
tjst floating jump/branch on signaling always true 
fjt floating jump/branch always true 
tjueq floating jump/branch on unordered or equal 
tjuge fioating jump/branch on unordered or greater than or equal 
fjugt floating jump/branch on unordered or greater than 
fjule floating jump/branch on unordered or less than or equal 
fjult floating jump/branch on unordered or less than 
fjun floating jump/branch on unordered 

S.2 Addressing Modes 

In Table 5-3 descriptions of the applicable addressing modes are listed. The notations in the table have 
these meanings: 

an 
dn 
ri 
pc 
d,bd,od 
XU 

f n 
s 

refer to an address register 
refers to a data register 
refers to either a data or an address register 
refers to the program counter 
refer to a displacement, which is a constant expression in as 
refers to a constant expression 
refers to a floating point register 
refers to a scale factor (1,2,4,8) 

Certain instructions, particularly move accept a variety of special registers including: 
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sp 
fp 
cc 
sr 
usp 
vb 
sf c 
dfc 
cac 
caa 
msp 
isp 

5-4 

the stack pointer, equivalent to a7 
frame pointer, equivalent to a6 
the condition codes of the status register 
the status register (privileged mode only) 
user stack pointer (privileged mode only) 
vector base (privileged mode only) (68010, 68020) 
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the source function code register (privileged mode only) (68010, 68020) 
the destination function code register (privileged mode only) (68010, 68020) 
cache control (privileged mode only) (68020 only) 
cache address (privileged mode only) (68020 only) 
master stack (privileged mode only) (68020 only) 
interrupt stack (privileged mode only) (68020 only) 

The 68010/68020 tends to be restrictive; most instructions accept only a limited subset of the address 
modes. For example, the add address instruction does not accept a data register as a destination. As tries to 
check all these restrictions and generate an illegal operand error code for instructions that do not satisfy the 
address mode restrictions. 

Table 5-3. Addressing Modes 
Mode Notation Exam~le 

Register an,dn,fn,sp,fp movwa4,d3 
Register Indirect an@ movw a4@,d3 
Postincrement an@+ movw a4@+,d3 
Predecrement an@- movw a4@-,d3 
Displacement an@(d) movw a4@(25),d3 
Word Index an@( d,ri: W) movw a4@(16,d2:W),d4 
Long Index an@( d,ri:L) movw a4@(16,d2:L),d4 
Absolute xxx movwfoo,d3 
PC Displacement pc@(d) movw pc@(20),d3 
PC Word Index pc@( d,ri: W) movw pc@(l4,d2:W),d3 
PC Long Index pc@(d,ri:L) movw pc@(l4,d2:L),d3 
Immediate #xxx movw #27 +3,d4 
Word Displacement an@(d:W) movw a4@(25:W),d3 
Long Displacement an@(d:L) movw a4@(25:L),d3 
PC Word Displacement pc@(d:W) movw pc@(20:W),d3 
PC Long Displacement pc@(d:L) movw pc@(20:L),d3 
Mem. Indirect an@(bd)[od] movw d3,a2@(8)[12] 
PC Indirect pc@(bd)[od] movw d3,pc@(8)[12] 
Mem. Pre-indexed Word an@(bd,ri: W* S)[ od] movw d3,a2@(8,dO:W*l)[l2] 
Mem. Pre-indexed Long an@(bd,ri:L *S)[od] movw d3,a2@(8,dO:L*l)[l2] 
Mem. Post-indexed Word an@(bd)[ri:W*S, od] movw d3,a2@(8)[a0:W*2,12] 
Mem. Post-indexed Long an@(bd)[ri:L *S, od] movw d3,a2@(8)[a0:W*2, 12] 
PC Pre-indexed Word pc@(bd,ri: W* S)[ od] movw pc@(8,aO:W*2)[12],d3 
PC Pre-indexed Long pc@(bd,ri:L *S)[ od] movw pc@(8,aO:L *2)[12],d3 
PC Post-indexed Word pc@(bd)[ri:W*S, od] movw pc@(8)[d0: W*4, 12],d3 
PC Post-indexed Long pc@(bd)[ri:L *S, od] movw pc@(8)[dO:W*4,12],d3 

The Long Displacement mode forces the use of the 68020's 32 bit displacement mode, a variant of its 
extended memory addressing modes. The Word Displacement mode is the same as the 68000/68010's 16 
bit displacement mode. It is provided to complement the notation for the Long Displacement mode. 
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In Table 5-3, the notation for the Memory and PC pre- and post-indexed modes were defined to give a 
relatively mnemonic relationship to the placement of the square brackets as well as to fit in with the other 
previously defined modes. In addition, the special symbols za and zpc can be used to replace an and pc 
respectively in these modes to indicate that the an or pc reference is to be omitted (e.g., taken to be zero). 

The long displacement, memory indirect, PC indirect, pre-indexed and post-indexed addressing modes are 
restricted to the 68020 (and 68881). 

5.3 Special Addressing Modes 

Several instructions take operands that have unique addressing modes. 

5.3.1 Move Multiple Register Mask 

The movem and fmovem instructions take a mask that specifies which registers are to be moved. To make 
this more mnemonic for the programmer, a notation to allow the registers to be given by name was 
implemented. This is specified as a "constant" of the form #<register list>. Where a register list is a list of 
register names separated by commas, or a register range which is specified by rm-rn. Where register m to 
register n of the data, address, or floating data registers are to be moved, and m must be less than n. It is 
also possible to mix data and address registers as in "#<d0-a5>". 

The 68881 special registers, fpcr, fpsr, and fpiar may also be used in the fmoveml instruction's mask. 
The only reasonable register range for this instructions is "#<fpcr-fpiar>". 

5.3.2 Register Pairs 

The notation used to describe the register pairs taken by the cas2, divsl, mulsl, fsincos, etc. instructions is: 
rm:rn. Where the order of the registers is the same as that specified in the appropriate Motorola manual. 
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APPENDIX A: INSTRUCTION MNEMONICS 

This appendix lists the assembler's instruction mnemonics. The instructions are described in the following 
documents: 

•Motorola's 16-Bit Microprocessor User's Manual. Prentice Hall. 

• Motorola's MC6801016-Bit Virtual Memory Microprocessor. Motorola, 1983. (ADI-942-Rl) 

•Motorola's MC68020 32-Bit Microprocessor User's Manual. Prentice Hall, 1984. 
(ISBN 0-13-541418-0) 

• Motorola's MC68881 Floating-Point Coprocessor User's Manual. Motorola, 1985. (First Edition) 

abed 
addb 
addl 
addqb 
addql 
addqw 
addw 
addxb 
addxl 
addxw 
andb 
andl 
andw 
as lb 
asll 
aslw 
asrb 
asrl 
asrw 
bee 
bccl 
bees 
bchg 
bclr 
bes 
bcsl 
bcss 
beq 
beql 
beqs 
bf chg 
bfclr 
bfexts 
bf ex tu 
bfffo 
bfins 
bf set 
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add decimal with extend 
add, byte 
add, long 
add quick, byte 
add quick, long 
add quick, word 
add, word 
add extended, byte 
add extended, long 
add extended, word 
and, byte 
and, long 
and, word 
arithmetic shift left, byte 
arithmetic shift left, long 
arithmetic shift left, word 
arithmetic shift right, byte 
arithmetic shift right, byte 
arithmetic shift right, byte 
branch on carry clear 
branch on carry clear, long ( 68020) 
branch on carry clear, short 
test a bit and change 
test a bit and clear 
branch on carry set 
branch on carry set, long ( 68020) 
branch on carry set, short 
branch on equal 
branch on equal, long ( 68020) 
branch on equal, short 
test bit field and change (68020) 
test bit field and clear (68020) 
extract bit field (68020) 
extract unsigned bit field (68020) 
first find one in bit field (68020) 
insert bit field ( 68020) 
set bit field (68020) 
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bftst 
bge 
bgel 
bges 
bgt 
bgtl 
bgts 
bhi 
bhil 
bhis 
bhs 
bhsl 
bhss 
bkpt 
ble 
blel 
bles 
blo 
biol 
blos 
bis 
blsl 
blss 
bit 
bltl 
bits 
bmi 
bmil 
bmis 
bne 
bnel 
bnes 
bpi 
bpll 
bpls 
bra 
bral 
bras 
bset 
bsr 
bsrl 
bsrs 
btst 
bvc 
bvcl 
bvcs 
bvs 
bvsl 
bvss 
callrn 
cas2b 
cas21 
cas2w 
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test bit fielf ( 68020) 
branch on greater than or equal 
branch on greater than or equal, long (68020) 
branch on greater than or equal, short 
branch on greater than 
branch on greater than, long (68020) 
branch on greater than, short 
branch on high 
branch on high, long ( 68020) 
branch on high, short 
branch on high or same 
branch on high or same, long ( 68020) 
branch on high or same, short 
breakpoint trap (68020) 
branch on less than or equal 
branch on less than or equal, long (68020) 
branch on less than or equal, short 
branch on low 
branch on low, long (68020) 
branch on low, short 
branch on low or same 
branch on low or same, long ( 68020) 
branch on low or same, short 
branch on less than 
branch on less than, long ( 68020) 
branch on less than, short 
branch on minus 
branch on minus, long ( 68020) 
branch on minus, short 
branch on not equal 
branch on not equal, long (68020) 
branch on not equal, short 
branch on plus 
branch on plus, long ( 68020) 
branch on plus, short 
branch always 
branch always, long (68020) 
branch always, short 
test a bit and set 
branch to subroutine 
branch to subroutine, long ( 68020) 
branch to subroutine, short 
test a bit 
branch on overflow clear 
branch on overflow clear, long (68020) 
branch on overflow clear, short 
branch on overflow set 
branch on overflow set, long ( 68020) 
branch on overflow set, short 
call module ( 68020) 
compare and swap with double operand, byte (68020) 
compare and swap with double operand, long (68020) 
compare and swap with double operand, word (68020) 
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cash 
casl 
casw 
chk 
chk2b 
chk21 
chk2w 
chkl 
chkw 
clrb 
clrl 
clrw 
cmp2b 
cmp21 
cmp2w 
cmpb 
cmpl 
cmpmb 
cmpml 
cmpmw 
cmpw 
dbcc 
dbcs 
dbeq 
dbf 
dbge 
db gt 
db hi 
dbhs 
db le 
db lo 
db ls 
dblt 
db mi 
dbne 
db pl 
dbra 
dbt 
dbvc 
db vs 
divs 
divsl 
divsll 
di vu 
divul 
divull 
eorb 
eorl 
eorw 
exg 
extbl 
extl 
extw 
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compare and swap with operand, byte ( 68020) 
compare and swap with operand, long (68020) 
compare and swap with operand, word ( 68020) 
check register against bounds 
check register against bounds, byte ( 68020) 
check register against bounds, long (68020) 
check register against bounds, word (68020) 
check register against bounds, long ( 68020) 
check register against bounds, word (alternate mnemonic for 68020) 
clear, byte 
clear, long 
clear, word 
compare register against bounds, byte ( 68020) 
compare register against bounds, long (68020) 
compare register against bounds, word ( 68020) 
compare, byte 
compare, long 
compare memory, byte 
compare memory, long 
compare memory, word 
compare, word 
test carry clear, decrement and branch 
test carry set, decrement and branch 
test equal, decrement and branch 
test false, decrement and branch 
test greater than or equal, decrement and branch 
test greater than,-decrement and branch 
test high, decrement and branch 
test high of the same, decrement and branch 
test less than or equal, decrement and branch 
test low, decrement and branch 
test less than or same, decrement and branch 
test less than, decrement and branch 
test minus, decrement and branch 
test not equal, decrement and branch 
test plus, decrement and branch 
test false, decrement and branch 
test true, decrement and branch 
test overflow clear, decrement and branch 
test overflow set, decrement and branch 
signed divide 
signed divide, long (68020) 
signed divide extended, long (68020) 
unsigned divide 
unsigned divide, long ( 68020) 
unsigned divide extended, long (68020) 
exclusive or, byte 
exclusive or, long 
exclusive or, word 
exchange registers 
sign extend, byte to long ( 68020) 
sign extend, word to long 
sign extend, byte to word 
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fabsb 
fabsd 
fabsl 
fabsp 
fabss 
fabsw 
fabsx 
facosb 
facosd 
facosl 
facosp 
facoss 
facosw 
facosx 
faddb 
faddd 
faddl 
faddp 
fadds 
faddw 
faddx 
fasinb 
fas ind 
fasinl 
fasinp 
fas ins 
fasinw 
fasinx 
fatanb 
fatand 
fatanhb 
fatanhd 
fatanhl 
fatanhp 
fatanhs 
fatanhw 
fatanhx 
fatanl 
fatanp 
fatans 
fatanw 
fatanx 
tbeql 
tbeqw 
tbfl 
tbfw 
tbgel 
tbgew 
tbglel 
tbglew 
tbgll 
tbglw 
tbgtl 

A-4 

Integrated Solutions 

floating absolute value, byte 
floating absolute value, double precision 
floating absolute value, long 
floating absolute value, packed decimal 
floating absolute value, single precision 
ftoating absolute value, word 
ftoating absolute value, extended precision 
ftoating arc cosine, byte 
floating arc cosine, double precision 
floating arc cosine, long 
floating arc cosine, packed decimal 
floating arc cosine, single precision 
:floating arc cosine, word 
ftoating arc cosine, extended precision 
floating add, byte 
floating add, double precision 
floating add, long 
floating add, packed decimal 
floating add, single precision 
floating add, word 
ftoating add, extended precision 
floating arc sine, byte 
fioating arc sine, double precision 
fioating arc sine, long 
fioating arc sine, packed decimal 
floating arc sine, single precision 
ftoating arc sine, word 
fioating arc sine, extended precision 
fioating arc tangent, byte 
floating arc tangent, double precision 
floating hyperbolic arctan, byte 
fioating hyperbolic arctan, double precision 
fioating hyperbolic arctan, long 
fioating hyperbolic arctan, packed decimal 
floating hyperbolic arctan, single precision 
fioating hyperbolic arctan, word 
floating hyperbolic arctan, extended precision 
fioating arc tangent, long 
fioating arc tangent, packed decimal 
fioating arc tangent, single precision 
floating arc tangent, word 
fioating arc tangent, extended precision 
fioating branch on equal, long 
fioating branch on equal, word 
fioating branch always false, long 
floating branch always false, word 
fioating branch on greater than or equal, long 
fioating branch on greater than or equal, word 
floating branch on greater than or less than or equal, long 
fioating branch on greater than or less than or equal, word 
fioating branch on greater than or less than, long 
fioating branch on greater than or less than, word 
floating branch on greater than, long 
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tbgtw 
tblel 
tblew 
tbltl 
tbltw 
tbnel 
tbnew 
tbngel 
tbngew 
tbnglel 
tbnglew 
tbngll 
tbnglw 
tbngtl 
tbngtw 
tbnlel 
tbnlew 
tbnltl 
tbnltw 
tbogel 
tbogew 
tbogll 
tboglw 
tbogtl 
tbogtw 
tbolel 
tbolew 
tboltl 
tboltw 
tborl 
tborw 
tbseql 
tbseqw 
tbs fl 
tbsfw 
tbsnel 
tbsnew 
tbstl 
tbstw 
tbtl 
tbtw 
tbueql 
tbueqw 
tbugel 
tbugew 
tbugtl 
tbugtw 
tbulel 
tbulew 
tbultl 
tbultw 
tbunl 
tbunw 
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floating branch on greater than, word 
floating branch on less than or equal, long 
floating branch on less than or equal, word 
floating branch on less than, long 
floating branch on less than, word 
floating branch on not equal, long 
floating branch on not equal, word 
floating branch on not (greater than or less than or equal), long 
floating branch on not (greater than or less than or equal), word 
floating branch on not (greater than or less than or equal), long 
floating branch on not (greater than or less than or equal), word 
floating branch on not (greater than or less than), long 
floating branch on not (greater than or less than), word 
floating branch on not (greater than), long 
floating branch on not (greater than), word 
floating branch on not (less than or equal), long 
floating branch on not (less than or equal), word 
floating branch on not (less than), long 
floating branch on not (less than), word 
floating branch on ordered greater than or equal, long 
floating branch on ordered greater than or equal, word 
floating branch on ordered greater than or less than, long 
floating branch on ordered greater than or less than, word 
floating branch on ordered greater than, long 
floating branch on ordered greater than, word 
floating branch on ordered less than or equal, long 
floating branch on ordered less than or equal, word 
floating branch on ordered less than, long 
tloating branch on ordered less than, word 
floating branch on ordered, long 
floating branch on ordered, word 
floating branch on signalling equal, long 
floating branch on signalling equal, word 
floating branch on signalling always false, long 
floating branch on signalling always false, word 
floating branch on signalling not equal, long 
floating branch on signalling not equal, word 
floating branch on signalling always true, long 
floating branch on signalling always true, word 
floating branch always true, long 
floating branch always true, word 
floating branch on unordered or equal, long 
floating branch on unordered or equal, word 
floating branch on unordered or greater than or equal, long 
floating branch on unordered or greater than or equal, word 
floating branch on unordered or greater than, long 
floating branch on unordered or greater than, word 
floating branch on unordered or less than or equal, long 
floating branch on unordered or less than or equal, word 
floating branch on unordered or less than, long 
floating branch on unordered or less than, word 
floating branch on unordered, long 
floating branch on unordered, word 
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fcmpb 
fcmpd 
fcmpl 
fem pp 
fcmps 
fcmpw 
fcmpx 
fcosb 
fcosd 
fcoshb 
fcoshd 
fcoshl 
fcoshp 
fcoshs 
fcoshw 
fcoshx 
fcosl 
fcosp 
fcoss 
fcosw 
fcosx 
fdbeq 
fdbf 
fdbge 
fdbgl 
fdbgle 
fdbgt 
fdble 
fdblt 
fdbne 
fdbnge 
fdbngl 
fdbngle 
fdbngt 
fdbnle 
fdbnlt 
fdboge 
fdbogl 
fdbogt 
fdbole 
fdbolt 
fdbor 
fdbra 
fdbseq 
fdbsf 
fdbsne 
fdbst 
fdbt 
fdbueq 
fdbuge 
fdbugt 
fdbule 
fdbult 
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floating compare, byte 
floating compare, double precision 
floating compare, long 
floating compare, packed decimal 
floating compare, single precision 
floating compare, word 
floating compare, extended precision 
floating cosine, byte 
floating cosine, double precision 
floating hyperbolic cosine, byte 
floating hyperbolic cosine, double precision 
floating hyperbolic cosine, long 
floating hyperbolic cosine, packed decimal 
floating hyperbolic cosine, single precision 
floating hyperbolic cosine, word 
floating hyperbolic cosine, extended precision 
floating cosine, long 
floating cosine, packed decimal 
floating cosine, single precision 
fioating cosine, word 
fioating cosine, extended precision 
fioating deer/branch on equal 
fioating deer/branch always false 
fioating deer/branch on greater than or equal 
fioating deer/branch on greater than or less than 
fioating deer/branch on greater than or less than or equal 
fioating deer/branch on greater than 
fioating deer/branch on less than or equal 
fioating deer/branch on less than 
fioating deer/branch on not equal 
fioating deer/branch on not (greater than or less than or equal) 
floating deer/branch on not (greater than or less than) 
floating deer/branch on not (greater than or less than or equal) 
floating deer/branch on not (greater than) 
floating deer/branch on not (less than or equal) 
floating deer/branch on not (less than) 
floating deer/branch on ordered greater than or equal 
floating deer/branch on ordered greater than or less than 
floating deer/branch on ordered greater than 
floating deer/branch on ordered less than or equal 
floating deer/branch on ordered less than 
floating deer/branch on ordered 
floating deer/branch always false 
floating deer/branch on signalling equal 
floating deer/branch on signalling always false 
floating deer/branch on signalling not equal 
floating deer/branch on signalling al ways true 
floating deer/branch always true 
floating deer/branch on unordered or equal 
fioating deer/branch on unordered or greater than or equal 
floating deer/branch on unordered or greater than 
floating deer/branch on unordered or less than or equal 
floating deer/branch on unordered or less than 
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fdbun 
fdivb 
fdivd 
fdivl 
fdivp 
fdivs 
fdivw 
fdivx 
fetoxb 
fetoxd 
fetoxl 
fetoxmlb 
fetoxmld 
fetoxmll 
fetoxmlp 
fetoxmls 
fetoxmlw 
fetoxmlx 
fetoxp 
fetoxs 
fetoxw 
fetoxx 
fgetexpb 
fgetexpd 
fgetexpl 
fgetexpp 
fgetexps 
fgetexpw 
fgetexpx 
fgetmanb 
fgetmand 
fgetmanl 
fgetmanp 
fgetmans 
fgetmanw 
fgetmanx 
fintb 
fintd 
fintl 
fintp 
fintrzb 
fintrzd 
fintrzl 
fintrzp 
fintrzs 
fintrzw 
fintrzx 
fin ts 
fintw 
fintx 
fjeq 
fjf 
fjge 
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floating deer/branch on unordered 
floating divide, byte 
floating divide, double precision 
floating divide, long 
floating divide, packed decimal 
floating divide, single precision 
floating divide, word 
floating divide, extended precision 
floating e to the x power, byte 
floating e to the x power, double precision 
floating e to the x power, long 
floating e to the x power - 1, byte 
floating e to the x power - 1, double precision 
floating e to the x power - 1, long 
floating e to the x power - 1, packed decimal 
floating e to the x power - 1, single precision 
floating e to the x power - 1, word 
floating e to the x power - 1, extended precision 
floating e to the x power, packed decimal 
floating e to the x power, single precision 
floating e to the x power, word 
floating e to the x power, extended precision 
floating get exponent, byte 
floating get exponent, double precision 
floating get exponent, long 
floating get exponent, packed decimal 
floating get exponent, single precision 
floating get exponent, word 
floating get exponent, extended precision 
floating get mantissa, byte 
floating get mantissa, double precision 
floating get mantissa, long 
floating get mantissa, packed decimal 
floating get mantissa, single precision 
floating get mantissa, word 
floating get mantissa, extended precision 
floating integer part, byte 
floating integer part, double precision 
floating integer part, long 
floating integer part, packed decimal 
floating integer part (truncated), byte 
floating integer part (truncated), double precision 
floating integer part (truncated), long 
floating integer part (truncated), packed decimal 
floating integer part (truncated), single precision 
floating integer part (truncated), word 
floating integer part (truncated), extended precision 
floating integer part, single precision 
floating integer part, word 
floating integer part, extended precision 
floating jump/branch on equal 
floating jump/branch always false 
floating jump/branch on greater than or equal 
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fjgl 
fjgle 
fjgt 
fjle 
fjlt 
fjne 
fjnge 
fjngl 
fjngle 
fjngt 
fjnle 
fjnlt 
fjoge 
fjogl 
fjogt 
fjole 
fjolt 
fjor 
fjra 
fjseq 
fjsf 
fjsne 
fjst 
fjt 
tjueq 
fjuge 
fjugt 
fjule 
fjult 
tjun 
flog I Ob 
floglOd 
floglOl 
floglOp 
floglOs 
flog I Ow 
flog I Ox 
flog2b 
flog2d 
flog21 
flog2p 
flog2s 
fiog2w 
flog2x 
fiognb 
flognd 
flognl 
flognp 
flognplb 
flognpld 
flognpll 
flognplp 
flognpls 
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floating jump/branch on greater than or less than ,. 
floating jump/branch on greater than or less than or equal 
floating jump/branch on greater than 
floating jump/branch on less than or equal 
floating jump/branch on less than 
floating jump/branch on not equal 
floating jump/branch on not (greater than or equal) 
floating jump/branch on not (greater than or less than) 
floating jump/branch on not (greater than or less than or equal) 
floating jump/branch on not (greater than) 
floating jump/branch on not (less than or equal) 
floating jump/branch on not (less than) 
floating jump/branch on ordered greater than or equal 
floating jump/branch on ordered greater than or less than 
floating jump/branch on ordered greater than 
floating jump/branch on ordered less than or equal 
floating jump/branch on ordered less than 
floating jump/branch on ordered 
floating jump/branch always 
floating jump/branch on signalling equal 
floating jump/branch on signalling always false 
floating jump/branch on signalling not equal 
floating jump/branch on signalling always true 
floating jump/branch always true 
floating jump/branch on unordered or equal 
floating jump/branch on unordered or greater than or equal 
floating jump/branch on unordered or greater than 
floating jump/branch on unordered or less than or equal 
floating jump/branch on unordered or less than 
floating jump/branch on unordered 
floating log base 10, byte 
floating log base 10, double precision 
floating log base 10, long 
floating log base 10, packed decimal 
floating log base 10, single precision 
floating log base 10, word 
floating log base 10, extended precision 
floating log base 2, byte 
floating log base 2, double precision 
floating log base 2, long 
floating log base 2, packed decimal 
floating log base 2, single precision 
floating log base 2, word 
floating log base 2, extended precision 
floating log base e, byte 
floating log base e, double precision 
floating log base e, long 
floating log base e, packed decimal 
floating log base e of (x+l), byte 
floating log base e of (x+l), double precision 
floating log base e of (x+l), long 
floating log base e of (x+l), packed decimal 
floating log base e of (x+l), single precision 
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flognplw 
flognplx 
flogns 
flognw 
flognx 
fmodb 
fmodb 
fmodd 
fmodl 
fmodp 
fmods 
fmodw 
fmovb 
fmovcr 
fmovd 
fmoveml 
fmovemx 
fmovl 
fmovp 
fmovs 
fmovw 
fmovx 
fmulb 
fmuld 
fmull 
fmulp 
fmuls 
fmulw 
fmulx 
fnegb 
fnegd 
fnegl 
fnegp 
fnegs 
fnegw 
fnegx 
fnop 
fremb 
fremd 
freml 
fremp 
frems 
fremw 
fremx 
frestore 
fsave 
fscaleb 
fscaled 
fscalel 
fscalep 
fscales 
fscalew 
fscalex 
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floating log base e of (x+l), word 
floating log base e of (x+l), extended precision 
floating log base e, single precision 
floating log base e, word 
floating log base e, extended precision 
floating module, byte 
floating module, extended precision 
floating module, double precision 
floating module, long 
floating module, packed decimal 
floating module, single precision 
floating module, word 
floating move, byte 
floating move from constant rom 
floating move, double precision 
floating move multiple, long 
floating move multiple, extented 
floating move, long 
floating move, packed decimal 
floating move, single precision 
floating move, word 
floating move, extended precision 
floating multiply, byte 
floating multiply, double precision 
floating multiply, long 
floating multiply, packed decimal 
floating multiply, single precision 
floating multiply, word 
floating multiply, extended precision 
floating negate, byte 
floating negate, double precision 
floating negate, long 
floating negate, packed decimal 
floating negate, single precision 
floating negate, word 
floating negate, extended precision 
floating no operation 
floating remainder, byte 
floating remainder, double precision 
floating remainder, long 
floating remainder, packed decimal 
floating remainder, single precision 
floating remainder, word 
floating remainder, extended precision 
floating state restore 
floating state save 
floating scale, byte 
floating scale, double precision 
floating scale, long 
floating scale, packed decimal 
floating scale, single precision 
floating scale, word 
floating scale, extended precision 
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fseq 
f sf 
fsge 
fsgl 
fsgldivb 
fsgldivd 
fsgldivl 
fsgldivp 
fsgldivs 
fsgldivw 
fsgldivx 
fsgle 
fsglmulb 
fsglmuld 
fsglmull 
fsglmulp 
fsglmuls 
fsglmulw 
fsglmulx 
fsgt 
fsinb 
fsincosb 
fsincosd 
fsincosl 
fsincosp 
fsincoss 
fsincosw 
fsincosx 
fsind 
fsinhb 
fsinhd 
fsinhl 
fsinhp 
fsinhs 
fsinhw 
fsinhx 
fsinl 
fsinp 
fsins 
fsinw 
fsinx 
fsle 
fslt 
fsne 
fsnge 
fsngl 
fsngle 
fsngt 
fsnle 
fsnlt 
fsoge 
fsogl 
fsogt 
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floating set on equal 
floating set on always false 

Integrated Solutions 

floating set on greater than or equal 
floating set on greater than or less than 
floating (single) divide, byte 
floating (single) divide, double precision 
floating (single) divide, long 
floating (single) divide, packed decimal 
floating (single) divide, single precision 
floating (single) divide, word 
floating (single) divide, extended precision 
floating set on greater than or less than or equal 
floating (single) multiply, byte 
floating (single) multiply, double precision 
floating (single) multiply, long 
floating (single) multiply, packed decimal 
floating (single) multiply, single precision 
floating (single) multiply, word 
floating (single) multiply, extended precision 
floating set on greater than 
floating sine, byte 
floating sine/cosine, byte 
floating sine/cosine, double precision 
floating sine/cosine, long 
floating sine/cosine, packed decimal 
floating sine/cosine, single precision 
floating sine/cosine, word 
floating sine/cosine, extended precision 
floating sine, double precision 
floating hyperbolic sine, byte 
floating hyperbolic sine, double precision 
floating hyperbolic sine, long 
floating hyperbolic sine, packed decimal 
floating hyperbolic sine, single precision 
floating hyperbolic sine, word 
floating hyperbolic sine, extended precision 
floating sine, long 
floating sine, packed decimal 
floating sine, single precision 
floating sine, word 
floating sine, extended precision 
floating set on less than or equal 
floating set on less than 
floating set on not equal 
floating set on not (greater than or less than or equal) 
floating set on not (greater than or less than) 
floating set on not (greater than or less than or equal) 
floating set on not (greater than) 
floating set on not (less than or equal) 
floating set on not (less than) 
floating set on ordered greater than or equal 
floating set on ordered greater than or less than 
floating set on ordered greater than 
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fsole 
fsolt 
fsor 
fsqrtb 
fsqrtd 
fsqrtl 
fsqrtp 
fsqrts 
fsqrtw 
fsqrtx 
fsseq 
fssf 
fssne 
fsst 
fst 
fsubb 
fsubd 
fsubl 
fsubp 
fsubs 
fsubw 
fsubx 
fsueq 
fsuge 
fsugt 
fsule 
fsult 
fsun 
ftanb 
ftand 
ftanhb 
ftanhd 
ftanhl 
ftanhp 
ftanhs 
ftanhw 
ftanhx 
ftanl 
ftanp 
f tans 
ftanw 
ftanx 
ftentoxb 
ftentoxd 
ftentoxl 
ftentoxp 
ftentoxs 
ftentoxw 
ftentoxx 
f trapeq 
ftrapeql 
ftrapeqw 
f trapf 
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floating set on ordered less than or equal 
floating set on ordered less than 
floating set on ordered 
floating square root, byte 
floating square root, double precision 
floating square root, long 
floating square root, packed decimal 
floating square root, single precision 
floating square root, word 
floating square root, extended precision 
floating set on signalling equal 
floating set on signalling always false 
floating set on signalling not equal 
floating set on signalling always true 
floating set on always true 
floating subtract, byte 
floating subtract, double precision 
floating subtract, long 
floating subtract, packed decimal 
floating subtract, single precision 
floating subtract, word 
floating subtract, extended precision 
floating set on unordered or equal 
floating set on unordered or greater than or equal 
floating set on unordered or greater than 
floating set on unordered or less than or equal 
floating set on unordered or less than 
floating set on unordered 
floating tangent, byte 
floating tangent, double precision 
floating hyperbolic tangent, byte 
floating hyperbolic tangent, double precision 
floating hyperbolic tangent, long 
floating hyperbolic tangent, packed decimal 
floating hyperbolic tangent, single precision 
floating hyperbolic tangent, word 
floating hyperbolic tangent, extended precision 
floating tangent, long 
floating tangent, packed decimal 
floating tangent, single precision 
floating tangent, word 
floating tangent, extended precision 
floating 10 to the x power, byte 
floating 10 to the x power, double precision 
floating 10 to the x power, long 
floating 10 to the x power, packed decimal 
floating 10 to the x power, single precision 
floating 10 to the x power, word 
floating 10 to the x power, extended precision 
floating trap on equal 
floating trap on equal, long 
floating trap on equal, word 
floating trap on always false 
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ftrapfl floating trap on always false, long 
ftrapfw floating trap on always false, word 
ftrapge floating trap on greater than or equal 
ftrapgel floating trap on greater than or equal, long 
ftrapgew floating trap on greater than or equal, word 
ftrapgl floating trap on greater than or less than 
ftrapgle floating trap on1greater than or less than or equal 
ftrapglel floating trap on greater than or less than or equal, long 
ftrapglew floating trap on greater than or less than or equal, word 
ftrapgll floating trap on greater than or less than, long 
ftrapglw floating trap on greater than or less than, word 
ftrapgt floating trap on greater than 
ftrapgtl floating trap on greater than, long 
ftrapgtw floating trap on greater than, word 
ftraple floating trap on less than or equal 
ftraplel floating trap on less than or equal, long 
ftraplew floating trap on less than or equal, word 
ftraplt floating trap on less than 
ftrapltl floating trap on less than, long 
ftrapltw floating trap on less than, word 
ftrapne floating trap on not equal 
ftrapnel floating trap on not equal, long 
ftrapnew floating trap on not equal, word 
ftrapnge floating trap on not (greater than or less than or equal) 
ftrapngel floating trap on not (greater than or less than or equal}, long 
ftrapngew floating trap on not (greater than or less than or equal}, word 
ftrapngl floating trap on not (greater than or less than) 
ftrapngle floating trap on not (greater than or less than or equal) 
ftrapnglel floating trap on not (greater than or less than or equal}, long 
ftrapnglew floating trap on not (greater than or less than or equal), word 
ftrapngll floating trap on not (greater than or less than}, long 
ftrapnglw floating trap on not (greater than or less than), word 
ftrapngt floating trap on not (greater than) 
ftrapngtl floating trap on not (greater than}, long 
ftrapngtw floating trap on not (greater than), word 
ftrapnle floating trap on not (less than or equal) 
ftrapnlel floating trap on not (less than or equal), long 
ftrapnlew floating trap on not (less than or equal), word 
ftrapnlt floating trap on not (less than) 
ftrapnltl floating trap on not (less than), long 
ftrapnltw floating trap on not (less than), word 
ftrapoge floating trap on ordered greater than or equal 
ftrapogel floating trap on ordered greater than or equal, long 
ftrapogew floating trap on ordered greater than or equal, word 
ftrapogl floating trap on ordered greater than or less than 
ftrapogll floating trap on ordered greater than or less than, long 
ftrapoglw floating trap on ordered greater than or less than, word 
ftrapogt floating trap on ordered greater than 
ftrapogtl floating trap on ordered greater than, long 
ftrapogtw floating trap on ordered greater than, word 
ftrapole floating trap on ordered less than or equal 
ftrapolel · floating trap on ordered less than or equal, long 
ftrapolew floating trap on ordered less than or equal, word 
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ftrapolt 
ftrapoltl 
ftrapoltw 
ftrapor 
ftraporl 
ftraporw 
ftrapseq 
ftrapseql 
ftrapseqw 
ftrapsf 
ftrapsfl 
ftrapsfw 
ftrapsne 
ftrapsnel 
ftrapsnew 
ftrapst 
ftrapstl 
ftrapstw 
ftrapt 
ftraptl 
ftraptw 
f trapueq 
ftrapueql 
ftrapueqw 
ftrapuge 
ftrapugel 
ftrapugew 
ftrapugt 
ftrapugtl 
ftrapugtw 
ftrapule 
ftrapulel 
ftrapulew 
ftrapult 
ftrapultl 
ftrapultw 
f trapun 
ftrapunl 
ftrapunw 
ftstb 
ftstd 
ftstl 
ftstp 
ftsts 
ftstw 
ftstx 
ftwotoxb 
ftwotoxd 
ftwotoxl 
ftwotoxp 
ftwotoxs 
ftwotoxw 
ftwotoxx 
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floating trap on ordered less than 
floating trap on ordered less than, long 
floating trap on ordered less than, word 
floating trap on ordered 
floating trap on ordered, long 
floating trap on ordered, word 
floating trap on signalling equal 
floating trap on signalling equal, long 
floating trap on signalling equal, word 
floating trap on signalling always false 
floating trap on signalling always false, long 
floating trap on signalling always false, word 
floating trap on signalling not equal 
floating trap on signalling not equal, long 
floating trap on signalling not equal, word 
floating trap on signalling always true 
floating trap on signalling always true, long 
floating trap on signalling always true, word 
floating trap on always true 
floating trap on always true, long 
floating trap on always true, word 
floating trap on unordered or equal 
floating trap on unordered or equal, long 
floating trap on unordered or equal, word 
floating trap on unordered or greater than or equal 
floating trap on unordered or greater than or equal, long 
floating trap on unordered or greater than or equal, word 
floating trap on unordered or greater than 
floating trap on unordered or greater than, long 
floating trap on unordered or greater than, word 
floating trap on unordered or less than or equal 
floating trap on unordered or less than or equal, long 
floating trap on unordered or less than or equal, word 
floating trap on unordered or less than 
floating trap on unordered or less than, long 
floating trap on unordered or less than, word 
floating trap on unordered 
floating trap on unordered, long 
floating trap on unordered, word 
floating test, byte 
floating test, double precision 
floating test, long 
floating test, packed decimal 
floating test, single precision 
floating test, word 
floating test, extended precision 
floating 2 to the x poser, byte 
floating 2 to the x poser, double precision 
floating 2 to the x poser, long 
floating 2 to the x poser, packed decimal 
floating 2 to the x poser, single precision 
floating 2 to the x poser, word 
floating 2 to the x poser, extended precision 
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jbr jump/branch always 
jbsr jump/branch to subroutine 
jcc jump/branch on carry clear 
jcs jump/branch on carry set 
jeq jump/branch on equal 
jge jump/branch on greater than or equal 
jgt jump/branch on greater than 
jhi jump/branch on high 
jhs jump/branch on high or same 
jle jump/branch on less than or equal 
jlo jump/branch on low 
jls jump/branch on low or same 
jlt jump/branch on less than 
jmi jump/branch on minus 
jmp jump 
jne jump/branch on not equal 
jpl jump/branch on plus 
jra jump/branch always 
jsr jump to subroutine 
jvc jump/branch on overflow clear 
jvs jump/branch on overflow set 
link: link and allocate 
lslb logical shift left, byte 
lsll logical shift left, long 
lslw logical shift left, word 
lsrb logical shift right, byte 
lsrl logical shift right, long 
lsrw logical shift right, word 
mo vb move, byte 
moveb move, byte 
movel move, long 
moveml move multiple registers, long 
movemw move multiple registers, word 
movepl move peripheral, long 
movepw move peripheral, word 
moveq move quick 
movesb move from address space, byte (68010) 
movesl move from address space, long (68010) 
movesw move from address space, word (68010) 
movew move, word 
movl move, long 
movml move multiple registers, long 
movmw move multiple registers, word 
movpl move peripheral, long 
movpw move peripheral, word 
movq move quick 
movsb move from address space, byte (68010) 
movsl move from address space, long ( 68010) 
movsw move from address space, word ( 68010) 
movw move, word 
muls signed multiply 
mulsl signed multiply, long (68020) 
mulu unsigned multiply 

A-14 Instruction Mnemonics A-14 



AS 

mulul 
nbcd 
negb 
negl 
negw 
negxb 
negxl 
negxw 
nop 
notb 
notl 
notw 
orb 
orl 
orw 
pack 
pea 
reset 
rolb 
roll 
rolw 
rorb 
rorl 
rorw 
roxlb 
roxll 
roxlw 
roxrb 
roxrl 
roxrw 
rtd 
rte 
rtrn 
rtr 
rts 
shed 
sec 
scs 
seq 
sf 
sge 
sgt 
shi 
shs 
sle 
slo 
sis 
sit 
smi 
sne 
spl 
st 
stop 
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unsigned multiply, long ( 68020) 
negate decimal with extend 
negate, byte 
negate, long 
negate, word 
negate with extend, byte 
negate with extend, long 
negate with extend, word 
no operation 
logical complement, byte 
logical complement, long 
logical complement, word 
inclusive or, byte 
inclusive or, byte 
inclusive or, word 
pack into BCD (68020) 
push effective address 
reset machine 
rotate left, byte 
rotate left, long 
rotate left, word 
rotate right, byte 
rotate right, long 
rotate right, word 
rotate left with extend, byte 
rotate left with extend, long 
rotate left with extend, word 
rotate right with extend, byte 
rotate right with extend, long 
rotate right with extend, word 
return and deallocate parameters (68010/68020) 
return from exception 
return from module ( 68020) 
return and restore codes 
return from subroutine 
subtract decimal with extend 
set on carry clear 
set on carry set 
set on equal 
set all zeros 
set on greater or equal 
set on greater than 
set on high 
set on high or same 
set on less than or equal 
set on low 
set on low or same 
set on less than 
set on minus 
set on not equal 
set on plus 
set all ones 
halt machine 
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subb 
sub I 
subqb 
subql 
subqw 
subw 
subxb 
sub xi 
subxw 
SVC 
svs 
swap 
tas 
trap 
trapcc 
trapccl 
trapccw 
trapcs 
trapcsl 
trapcsw 
trapeq 
trapeql 
trapeqw 
trapf 
trap fl 
trapfw 
trapge 
trapgel 
trapgew 
trapgt 
trapgtl 
trapgtw 
traphi 
traphil 
traphiw 
trap le 
trap lei 
traplew 
trap ls 
trap Isl 
traplsw 
traplt 
trapltl 
trapltw 
trap mi 
trap mil 
trapmiw 
trapne 
trapnel 
trapnew 
trappl 
trappll 
trapplw 
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subtract, byte 
subtract, long 
subtract quick, byte 
subtract quick, long 
subtract quick, word 
subtract, word 
subtract extended, byte 
subtract extended, long 
subtract extended, word 
set overflow clear 
set overflow set 
swap register halves 
test and set operand 
trap 
trap on carry clear ( 68020) 

Integrated Solutions 

trap on carry clear, long ( 68020) 
trap on carry clear, word ( 68020) 
trap on carry set (68020) 
trap on carry set, long (68020) 
trap on carry set, word ( 68020) 
trap on equal ( 68020) 
trap on equal, long ( 68020) 
trap on equal, word ( 68020) 
trap false (68020) 
trap false, long ( 68020) 
trap false, word ( 68020) 
trap greater or equal (68020) 
trap greater or equal, long (68020) 
trap greater or equal, word (68020) 
trap greater than ( 68020) 
trap greater than, long ( 68020) 
trap greater than, word (68020) 
trap high ( 68020) 
trap high, long ( 68020) 
trap high, word ( 68020) 
trap less than or equal (68020) 
trap less than or equal, long (68020) 
trap less than or equal, word (68020) 
trap low or same ( 68020) 
trap low or same, long ( 68020) 
trap low or same, word (68020) 
trap less than ( 68020) 
trap less than, long (68020) 
trap less than, word (68020) 
trap minus ( 68020) 
trap minus, long ( 68020) 
trap minus, word (68020) 
trap not equal (68020) 
trap not equal, long (68020) 
trap not equal, word (68020) 
trap plus (68020) 
trap plus, long ( 68020) 
trap plus, word ( 68020) 
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trapt 
trap ti 
traptw 
trapvc 
trapvcl 
trapvcw 
trap vs 
trapvsl 
trapvsw 
tstb 
tstl 
tstw 
unlk 
unpk 
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trap true ( 68020) 
trap true, long ( 68020) 
trap true, word ( 68020) 

Integrated Solutions 

trap on overflow clear ( 68020) 
trap on overflow clear, long (68020) 
trap on overflow clear, word (68020) 
trap on overflow set (68020) 
trap on overflow set, long ( 68020) 
trap on overflow set, word ( 68020) 
test, byte 
test, long 
test, word 
unlink 
unpack from BCD ( 68020) 
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APPENDIX B: SUMMARY OF MC680x0 INSTRUCTION MNEMONICS 

This appendix gives a functional summary of the MC68000/68010/68020 instruction mnemonics. 

B.1 Double Operand Instructions 

abed 
addb 
addl 
addqb 
addql 
addqw 
addw 
addxb 
addxl 
addxw 
andb 
andl 
andw 
cmpb 
cmpl 
cmpmb 
cmpml 
cmpmw 
cmpw 
divs 
divsl 
divsll 
di vu 
divul 
divull 
eorb 
eorl 
eorw 
movb 
moveb 
movel 
moveml · 
movemw 
movepl 
movepw 
moveq 
movesb 
movesl 
movesw 
movew 
movl 
movml 

add decimal with extend 
add binary, byte 
add binary, long 
add quick binary, byte 
add quick binary, long 
add quick binary, word 
add binary, word 
add extended binary, byte 
add extended binary, long 
add extended binary, word 
and, byte 
and, long 
and, word 
compare, byte 
compare, long 
compare memory, byte 
compare memory, long 
compare memory, word 
compare, word 
signed divide 
signed divide, long ( 68020) 
signed divide extended, long ( 68020) 
unsigned divide 
unsigned divide, long (68020) 
unsigned divide extended, long ( 68020) 
exclusive or, byte 
exclusive or, long 
exclusive or, word 
move, byte 
move, byte 
move, long 
move multiple registers, long 
move multiple registers, word 
move peripheral, long 
move peripheral, word 
move quick 
move from address space (68010/68020) 
move from address space (68010/68020) 
move from address space (68010/68020) 
move, word 
move, long 
move multiple registers, long 
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movmw 
movpl 
movpw 
movq 
movsb 
movsl 
movsw 
movw 
muls 
mulsl 
mulu 
mulul 
orb 
orl 
orw 
sbcd 
subb 
subl 
subqb 
subql 
subqw 
subw 
subxb 
subxl 
subxw 

move multiple registers, word 
move peripheral, long 
move peripheral, word 
move quick 

Integrated Solutions 

move from address space (68010/68020), byte 
move from address space (68010/68020), long 
move from address space (68010/68020), word 
move, word 
signed multiply 
signed multiply, long (68020) 
unsigned multiply 
unsigned multiply, long (68020) 
inclusive or, byte 
inclusive or, byte 
inclusive or, word 
subtract decimal with extend 
subtract, byte 
subtract, long 
subtract quick, byte 
subtract quick, long 
subtract quick, word 
subtract, word 
subtract extended, byte 
subtract extended, long 
subtract extended, word 

B.2 Single Operand Instructions 

clrb 
clrl 
clrw 
nbcd 
negb 
negl 
negw 
negxb 
negxl 
negxw 
notb 
nod 
notw 
sec 
scs 
seq 
sf 
sge 
sgt 
shi 
shs 
sle 
slo 
sis 
sit 

B-2 

clear, byte 
clear, long 
clear, word 
negate decimal with extend 
negate, byte 
negate, long 
negate, word 
negate with extend, byte 
negate with extend, long 
negate with extend, word 
logical complement, byte 
logical complement, long 
logical complement, word 
set on carry clear 
set on carry set 
set on equal 
set all zeroes 
set on greater or equal 
set on greater than 
set on high 
set on high or same 
set on less than or equal 
set on low 
set on low or same 
set on less than 

Summary MC680x0 Mnemonics 

AS 

B-2 



AS Integrated Solutions AS 

smi set on minus 
sne set on not equal 
spl set on plus 
st set all ones 
SVC set on overflow clear 
svs set on overflow set 
tas test and set operand 
tstb test, byte 
tstl test, long 
tstw test, word 

B.3 Branch Instructions 

bee branch on carry clear 
beel branch on carry clear, long ( 68020) 
bees branch on carry clear, short 
bes branch on carry set 
bcsl branch on carry set, long ( 68020) 
bcss branch on carry set, short 
beq branch on equal 
beql branch on equal, long (68020) 
beqs branch on equal, short 
bge branch on greater than or equal 
bgel branch on greater than or equal, long (68020) 
bges branch on greater than or equal, short 
bgt branch on greater than 
bgtl branch on greater than, long ( 68020) 
bgts branch on greater than, short 
bhi branch on high 
bhil branch on high, long ( 68020) 
bhis branch on high, short 
bhs branch on high or same 
bhsl branch on high or same, long ( 68020) 
bhss branch on high or same, short 
ble branch on less than or equal 
blel branch on less than or equal, long (68020) 
bles branch on less than or equal, short 
blo branch on low 
biol branch on low, long (68020) 
blos branch on low, short 
bis branch on low or same 
blsl branch on low or same, long (68020) 
blss branch on low or same, short 
bit branch on less than 
bltl branch on less than, long (68020) 
bits branch on less than, short 
bmi branch on minus 
bmil branch on minus, long (68020) 
bmis branch on minus, short 
bne branch on not equal 
bnel branch on not equal, long (68020) 
bnes branch on not equal, short 
bpi branch on plus 
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bpll branch on plus, long ( 68020) 
bpls branch on plus, short 
bra branch always 
bral branch always, long (68020) 
bras branch always, short 
bsr branch to subroutine 
bsrl branch to subroutine, long (68020) 
bsrs branch to subroutine, short 
bvc branch on overflow clear 
bvcl branch on overflow clear, long (68020) 
bvcs branch on overflow clear, short 
bvs branch on overflow set 
bvsl branch on overflow set, long ( 68020) 
bvss branch on overflow set, short 

B.4 Extended Branch Instructions 

jbr jump/branch always 
jbsr jump/branch to subroutine 
jcc jump/branch on carry clear 
jcs jump/branch on carry set 
jeq jump/branch on equal 
jge jump/branch on greater than or equal 
jgt jump/branch on greater than 
jhi jump/branch on high 
jhs jump/branch on high or same 
jle jump/branch on less than or equal 
jlo jump/branch on low 
jls jump/branch on low or same 
jlt jump/branch on less than 
jmi jump/branch on minus 
jne jump/branch on not equal 
jpl jump/branch on plus 
jra jump/branch always 
jvc jump/branch on overflow clear 
jvs jump/branch on overflow set 

B.S Test Conditions Instructions 

dbcc test carry clear, decrement and branch 
dbcs test carry set, decrement and branch 
dbeq test equal, decrement and branch 
dbf test false, decrement and branch 
dbge test greater than or equal, decrement and branch 
dbgt test greater than, decrement and branch 
dbhi test high, decrement and branch 
dbhs test high or same, decrement and branch 
dble test less than or equal, decrement and branch 
dblo test low, decrement and branch 
dbls test low or same, decrement and branch 
dblt test less than, decrement and branch 
dbmi test ntinus, decrement and branch 
dbne test not equal, decrement and branch 
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dbpl test plus, decrement and branch 
d6ra test false, decrement and branch 
dbt test true, decrement and branch 
dbvc test overflow clear, decrement and branch 
dbvs test overflow set, decrement and branch 

B.6 Shift Instructions 

aslb arithmetic shift left, byte 
asll arithmetic shift left, long 
aslw arithmetic shift left, word 
asrb arithmetic shift right, byte 
asrl arithmetic shift right, byte 
asrw arithmetic shift right, byte 
lslb logical shift left, byte 
lsll logical shift left, long 
lslw logical shift left, word 
lsrb logical shift right, byte 
lsrl logical shift right, long 
lsrw logical shift right , word 
rolb rotate left, byte 
roll rotate left, long 
rolw rotate left, word 
rorb rotate right, byte 
rorl rotate right, long 
rorw rotate right, word 
roxlb rotate left with extend, byte 
roxll rotate left with extend, long 
roxlw rotate left with extend, word 
roxrb rotate right with extend, byte 
roxrl rotate right with extend, long 
roxrw rotate right with extend, word 

B. 7 Trap Instructions 

bkpt 
trap 
trapcc 
trapccl 
trapccw 
trapcs 
trapcsl 
trapcsw 
trapeq 
trapeql 
trapeqw 
trapf 
trap ft 
trapfw 
trapge 
trapgel 
trapgew 
trapgt 

B-5 

breakpoint trap ( 68020) 
trap 
trap carry clear ( 68020) 
trap carry clear, long ( 68020) 
trap carry clear, word (68020) 
trap carry set ( 68020) 
trap carry set, long ( 68020) 
trap carry set, word ( 68020) 
trap on equal ( 68020) 
trap on equal, long (68020) 
trap on equal, word ( 68020) 
trap false ( 68020) 
trap false, long ( 68020) 
trap false, word ( 68020) 
trap greater or equal (68020) 
trap greater or equal, long (68020) 
trap greater or equal, word (68020) 
trap greater than ( 68020) 
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trap greater than, long ( 68020) 
trap greater than, word ( 68020) 
trap high (68020) 
trap high, long (68020) 
trap high, word (68020) 
trap less than or equal ( 68020) 

Integrated Solutions 

trapgtl 
trapgtw 
trap hi 
traphil 
traphiw 
trap le 
traplel 
traplew 
trap ls 
trap Isl 
traplsw 
traplt 
trapltl 
trapltw 
trap mi 
trapinil 
trapmiw 
trapne 
trapnel 
trapnew 
trappl 
trappll 
trapplw 
trapt 
traptl 
traptw 
trapvc 
trapvcl 
trapvcw 
trapvs 
trapvsl 
trapvsw 

trap less than or equal, long (68020) 
trap less than or equal, word (68020) 
trap low or same ( 68020) 
trap low or same, long ( 68020) 
trap low or same, word ( 68020) 
trap less than ( 68020) 
trap less than, long ( 68020) 
trap less than, word ( 68020) 
trap minus (68020) 
trap minus, long (68020) 
trap minus, word (68020) 
trap not equal (68020) 
trap not equal, long (68020) 
trap not equal, word (68020) 
trap plus ( 68020) 
trap plus, long (68020) 
trap plus, word (68020) 
trap true (68020) 
trap true, long (68020) 
trap true, word ( 68020) 
trap on overflow clear ( 68020) 
trap on overflow clear, long (68020) 
trap on overflow clear, word (68020) 
trap on over.flow set ( 68020) 
trap on overflow set, long (68020) 
trap on over.flow set, word (68020) 

B.8 Miscellaneous 

bchg test a bit and change 
bclr test a bit and clear 
bfchg test bit field and change (68020) 
bfclr test bit field and clear (68020) 
bfexts extract bit field and clear (68020) 
bfextu extract unsigned bit field (68020) 
bfffo first find one in bit field (68020) 
bfins insert bit field ( 68020) 
bfset set bit field (68020) 
bftst test bit field (68020) 
bset test a bit and set 
btst test a bit 
callm call module (68020) 
cash compare and swap with operand, byte (68020) 
casl compare and swap with operand, long (68020) 
casw compare and swap with operand, word (68020) 
cas2b compare and swap with double operand, byte (68020) 
cas21 compare and swap with double operand, long ( 68020) 
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cas2w 
chk 
chkl 
chkw 
chk2b 
chk21 
chk2w 
cmp2b 
cmp21 
cmp2w 
exg 
extbl 
extl 
extw 
link 
jmp 
jsr 
nop 
pack 
pea 
reset 
rtd 
rte 
rtm 
rtr 
rts 
stop 
swap 
unlk 
unpk 

B-7 
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compare and swap with double operand, word ( 68020) 
check register against bounds 
check register against bounds, long ( 68020) 
check register against bounds, word (alternate mnemonic for 68020) 
check register against bounds, byte ( 68020) 
check register against bounds, long ( 68020) 
check register against bounds, word ( 68020) 
compare register against bounds, byte ( 68020) 
compare register against bounds, long ( 68020) 
compare register against bounds, word ( 68020) 
exchange registers 
sign extend, byte to long ( 68020) 
sign extend, word to long 
sign extend, byte to word 
link: and allocate 
jump 
jump to subroutine 
no operation 
pack into BCD (68020) 
push effective address 
reset machine 
return and deallocate parameters ( 68010/68020) 
return from exception 
return from module ( 68020) 
return and restore codes 
return from subroutine 
halt machine 
swap register halves 
unlink 
unpack from BCD (68020) 
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APPENDIX C: SUMMARY OF MC68881 INSTRUCTION MNEMONICS 

This appendix gives a functional summary of the MC68881 instruction mnemonics. 

C.1 Double Operand Instructions 

fabsb 
fabsd 
fabsl 
fabsp 
fabss 
fabsw 
fabsx 
facosb 
facosd 
facosl 
facosp 
facoss 
facosw 
facosx 
faddb 
faddd 
faddl 
faddp 
fadds 
faddw 
faddx 
fasinb 
fas ind 
fasinl 
fasinp 
fas ins 
fasinw 
fasinx 
fatanb 
fatand 
fatanl 
fatanp 
fatans 
fatanw 
fatanx 
fatanhb 
fatanhd 
fatanhl 
fatanhp 
fatanhs 
fatanhw 

C-1 

:floating absolute value, byte 
:floating absolute value, double precision 
:floating absolute value, long 
:floating absolute value, packed decimal 
:floating absolute value, single precision 
:floating absolute value, word 
:floating absolute value, extended precision 
:floating arc cosine, byte 
:floating arc cosine, double precision 
:floating arc cosine, long 
:floating arc cosine, packed decimal 
ftoating arc cosine, single precision 
:floating arc cosine, word 
:floating arc cosine, extended precision 
:floating add, byte 
:floating add, double precision 
:floating add, long 
ftoating add, packed decimal 
:floating add, single precision 
:floating add, word 
:floating add, extended precision 
:floating arc sine, byte 
:floating arc sine, double precision 
:floating arc sine, long 
:floating arc sine, packed decimal 
:floating arc sine, single precision 
:floating arc sine, word 
:floating arc sine, extended precision 
:floating arc tangent, byte 
:floating arc tangent, double precision 
:floating arc tangent, long 
ftoating arc tangent, packed decimal 
ftoating arc tangent, single precision 
:floating ~c tangent, word 
:floating arc tangent, extended precision 
:floating hyperbolic arctan, byte 
:floating hyperbolic arctan, double precision 
:floating hyperbolic arctan, long 
:floating hyperbolic arctan, packed decimal 
:floating hyperbolic arctan, single precision 
:floating hyperbolic arctan, word 
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fatanhx 
fcmpb 
fcmpd 
fcmpl 
fcmpp 
fcmps 
fcmpw 
fcmpx 
fcosb 
fcosd 
fcosl 
fcosp 
fcoss 
fcosw 
fcosx 
fcoshb 
fcoshd 
fcoshl 
fcoshp 
fcoshs 
fcoshw 
fcoshx 
fdivb 
fdivd 
fdivl 
fdivp 
fdivs 
fdivw 
fdivx 
fetoxb 
fetoxd 
fetoxl 
fetoxp 
fetoxs 
fetoxw 
fetoxx 
fetoxmlb 
fetoxmld 
fetoxmll 
fetoxmlp 
fetoxmls 
fetoxmlw 
fetoxmlx 
fgetexpb 
fgetexpd 
fgetexpl 
fgetexpp 
fgetexps 
fgetexpw 
fgetexpx 
fgetrnanb 
fgetrnand 
fgetrnanl 
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ftoating hyperbolic arctan, extended precision 
ftoating compare, byte 
ftoating compare, double precision 
ftoating compare, long 
ftoating compare, packed decimal 
ftoating compare, single precision 
ftoating compare, word 
floating compare, extended precision 
ftoating cosine, byte 
ftoating cosine, double precision 
ftoating cosine, long 
ftoating cosine, packed decimal 
ftoating cosine, single precision 
ftoating cosine, word 
ftoating cosine, extended precision 
ftoating hyperbolic cosine, byte 
ftoating hyperbolic cosine, double precision 
ftoating hyperbolic cosine, long 
ftoating hyperbolic cosine, packed decimal 
ftoating hyperbolic cosine, single precision 
floating hyperbolic cosine, word 
floating hyperbolic cosine, extended precision 
floating divide, byte 
ftoating divide, double precision 
ftoating divide, long 
floating divide, packed decimal 
floating divide, single precision 
ftoating divide, word 
ftoating divide, extended precision 
ftoating e to the x power, byte 
ftoating e to the x power, double precision 
ftoating e to the x power, long 
ftoating e to the x power, packed decimal 
ftoating e to the x power, single precision 
floating e to the x power, word 
ftoating e to the x power, extended precision 
ftoating e to the x power - 1, byte 
floating e to the x power - l, double precision 
floating e to the x power - 1, long 
floating e to the x power - 1, packed decimal 
floating e to the x power - 1, single precision 
ftoating e to the x power - 1, word 
floating e to the x power - 1, extended precision 
ftoating get exponent, byte 
floating get exponent, double precision 
fioating get exponent, long 
ftoating get exponent, packed decimal 
ftoating get exponent, single precision 
ftoating get exponent, word 
ftoating get exponent, extended precision 
floating get mantissa, byte 
ftoating get mantissa, double precision 
ftoating get mantissa, long 

Summary ofMC68881 Mnemonics 

AS 

C-2 



AS 

fgetmanp 
fgetmans 
fgetmanw 
fgetmanx 
fintb 
fintd 
fintl 
fintp 
fin ts 
fintw 
fintx 
fintrzb 
fintrzd 
fintrzl 
fintrzp 
fintrzs 
fintrzw 
fintrzx 
flognb 
flognd 
flognl 
flognp 
flogns 
flognw 
flognx 
flognplb 
flognpld 
flognpll 
flognplp 
flognpls 
tlognplw 
flognplx 
floglOb 
floglOd 
floglOl 
floglOp 
floglOs 
floglOw 
floglOx 
flog2b 
flog2d 
flog21 
flog2p 
flog2s 
flog2w 
flog2x 
fmodb 
fmodd 
fmodl 
fmodp 
fmods 
fmodw 
fmodx 
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floating get mantissa, packed decimal 
floating get mantissa, single precision 
tloating get mantissa, word 
floating get mantissa, extended precision 
floating integer part, byte 
floating integer part, double precision 
floating integer part, long 
floating integer part, packed decimal 
floating integer part, single precision 
floating integer part, word 
floating integer part, extended precision 
floating integer part (truncated), byte 
floating integer part (truncated), double precision 
floating integer part (truncated), long 
floating integer part (truncated), packed decimal 
floating integer part (truncated), single precision 
floating integer part (truncated), word 
floating integer part (truncated), extended precision 
floating log base e, byte 
floating log base e, double precision 
floating log base e, long 
floating log base e, packed decimal 
floating log base e, single precision 
floating log base e, word 
floating log base e, extended precision 
floating log base e of (x+l), byte 
floating log base e of (x+l), double precision 
floating log base e of (x+l), long 
floating log base e of (x+l), packed decimal 
floating log base e of (x+l), single precision 
tloating log base e of (x+l), word 
floating log base e of (x+l), extended precision 
floating log base 10, byte 
floating log base 10, double precision 
floating log base 10, long 
floating log base 10, packed decimal 
floating log base 10, single precision 
floating log base 10, word 
floating log base 10, extended precision 
floating log base 2, byte 
floating log base 2, double precision 
floating log base 2, long 
tloating log base 2, packed decimal 
floating log base 2, single precision 
floating log base 2, word 
floating log base 2, extended precision 
floating module, byte 
floating module, double precision 
floating module, long 
floating module, packed decimal 
floating module, single precision 
floating module, word 
floating module, extended precision 
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fmovb 
fmovd 
fmovl 
fmovp 
fmovs 
fmovw 
fmovx 
fmovcr 
fmoveml 
fmovemx 
fmulb 
fmuld 
fmull 
fmulp 
fmuls 
fmulw 
fmulx 
fnegb 
fnegd 
fnegl 
fnegp 
fnegs 
fnegw 
fnegx 
fremb 
fremd 
freml 
fremp 
frems 
fremw 
fremx 
fscaleb 
fscaled 
fscalel 
fscalep 
fscales 
fscalew 
fscalex 
fsgldivb 
fsgldivd 
fsgldivl 
fsgldivp 
fsgldivs 
fsgldivw 
fsgldivx 
fsglmulb 
fsglmuld 
fsglmull 
fsglmulp 
fsglmuls 
fsglmulw 
fsglmulx 
fsinb 
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floating move, byte 
floating move, double precision 
floating move, long 
floating move, packed decimal 
floating move, single precision 
floating move, word 
floating move, extended precision 
floating move from constant rom 
floating move multiple, long 
floating move multiple, extented 
floating multiply, byte 
floating multiply, double precision 
floating multiply, long 
floating multiply, packed decimal 
floating multiply, single precision 
floating multiply, word 
floating multiply, extended precision 
floating negate, byte 
floating negate, double precision 
floating negate, long 
floating negate, packed decimal 
floating negate, single precision 
floating negate, word 
floating negate, extended precision 
fioating remainder, byte 
floating remainder, double precision 
floating remainder, long 
floating remainder, packed decimal 
floating remainder, single precision 
floating remainder, word 
floating remainder, extended precision 
floating scale, byte 
floating scale, double precision 
:O.oating scale, long 
floating scale, packed decimal 
floating scale, single precision 
floating scale, word 
floating scale, extended precision 
floating (single) divide, byte 
floating (single) divide, double precision 
floating (single) divide, long 
floating (single) divide, packed decimal 
floating (single) divide, single precision 
floating (single) divide, word 
floating (single) divide, extended precision 
:0.oating (single) multiply, byte 
floating (single) multiply, double precision 
:0.oating (single) multiply, long 
floating (single) multiply, packed decimal 
floating (single) multiply, single precision 
floating (single) multiply, word 
floating (single) multiply, extended precision 
floating sine, byte 
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fsind 
fsinl 
fsinp 
fsins 
f sinw 
fsinx 
fsincosb 
fsincosd 
fsincosl 
fsincosp 
fsincoss 
fsincosw 
fsincosx 
fsinhb 
fsinhd 
fsinhl 
fsinhp 
fsinhs 
fsinhw 
fsinhx 
fsqrtb 
fsqrtd 
fsqrtl 
fsqrtp 
fsqrts 
fsqrtw 
fsqrtx 
fsubb 
fsubd 
fsubl 
fsubp 
fsubs 
fsubw 
fsubx 
ftanb 
ftand 
ftanl 
ftanp 
ftans 
ftanw 
ftanx 
ftanhb 
ftanhd 
ftanhl 
f tanhp 
ftanhs 
ftanhw 
ftanhx 
ftentoxb 
ftentoxd 
ftentoxl 
ftentoxp 
ftentoxs 
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floating sine, double precision 
floating sine, long 
floating sine, packed decimal 
floating sine, single precision 
floating sine, word 
floating sine, extended precision 
floating sine/cosine, byte 
floating sine/cosine, double precision 
floating sine/cosine, long 
floating sine/cosine, packed decimal 
floating sine/cosine, single precision 
floating sine/cosine, word 
floating sine/cosine, extended precision 
floating hyperbolic sine, byte 
floating hyperbolic sine, double precision 
floating hyperbolic sine, long 
floating hyperbolic sine, packed decimal 
floating hyperbolic sine, single precision 
floating hyperbolic sine, word 
floating hyperbolic sine, extended precision 
floatingsquareroot,byte 
floating square root, double precision 
floating square root, long 
floating square root, packed decimal 
floating square root, single precision 
floating square root, word 
floating square root, extended precision 
floating subtract, byte 
floating subtract, double precision 
floating subtract, long 
floating subtract, packed decimal 
floating subtract, single precision 
floating subtract, word 
floating subtract, extended precision 
floating tangent, byte 
floating tangent, double precision 
floating tangent, long 
floating tangent, packed decimal 
floating tangent, single precision 
floating tangent, word 
floating tangent, extended precision 
floating hyperbolic tangent, byte 
floating hyperbolic tangent, double precision 
floating hyperbolic tangent, long 
floating hyperbolic tangent, packed decimal 
floating hyperbolic tangent, single precision 
floating hyperbolic tangent, word 
floating hyperbolic tangent, extended precision 
floating 10 to the x power, byte 
floating 10 to the x power, double precision 
floating 10 to the x power, long 
floating 10 to the x power, packed decimal 
floating 10 to the x power, single precision 
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ftentoxw 
ftentoxx 
ftwotoxb 
ftwotoxd 
ftwotoxl 
ftwotoxp 
ftwotoxs 
ftwotoxw 
ftwotoxx 
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floating 10 to the x power, word 
floating 10 to the x power, extended precision 
floating 2 to the x poser, byte 
floating 2 to the x poser, double precision 
floating 2 to the x poser, long 
floating 2 to the x poser, packed decimal 
floating 2 to the x poser, single precision 
floating 2 to the x poser, word 
floating 2 to the x poser, extended precision 

C.2 Single Operand Instructions 

fseq 
fsf 
fsge 
fsgt 
fsgl 
fsgle 
fsle 
fslt 
fsne 
fsnge 
fsngle 
fsngl 
fsngt 
fsnle 
fsnlt 
fsogt 
fsoge 
fsole 
fsolt 
fsogl 
fsor 
fsseq 
fssf 
fssne 
fsst 
fst 
fsueq 
fsuge 
fsugt 
fsule 
fsult 
fsun 
ftstb 
ftstd 
ftstl 
ftstp 
ftsts 
ftstw 
ftstx 

C-6 

floating set on equal 
floating set all zeroes 
floating set on greater than or equal 
floating set on greater than 
floating set on greater than or less than 
floating set on greater than or less than or equal 
floating set on less than or equal 
floating set on less than 
floating set on not equal 
floating set on not(greater than or less than or equal) 
floating set on not(greater than or less than or equal) 
floating set on not(greater than or less than) 
floating set on not(greater than) 
floating set on not(less than or equal) 
floating set on not(less than) 
floating set on ordered greater than 
floating set on ordered greater than or equal 
floating set on ordered less than or equal 
floating set on ordered less than 
floating set on ordered greater than or less than 
floating set on ordered 
floating set on signalling equal 
floating set on signalling always false 
floating set on signalling not equal 
floating set on signalling always true 
floating set all ones 
floating set on unordered or equal 
floating set on unordered or greater than or equal 
floating set on unordered or greater than 
floating set on unordered or less than or equal 
floating set on unordered or less than 
floating set on unordered 
floating test, byte 
floating test, double precision 
floating test, long 
floating test, packed decimal 
floating test, single precision 
floating test, word 
floating test, extended precision 
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C.3 Branch Instructions 

tbeql 
tbeqw 
tbfl 
tbfw 
tbgel 
tbgew 
tbgll 
tbglw 
tbglel 
tbglew 
tbgtl 
tbgtw 
tblel 
tblew 
tbltl 
tbltw 
tbnel 
tbnew 
tbngel 
tbngew 
tbnglel 
tbnglew 
tbngll 
tbnglw 
tbngtl 
tbngtw 
tbnlel 
fPnlew 
tbnltl 
tbnltw 
tbogel 
tbogew 
tbogll 
tboglw 
tbogtl 
tbogtw 
tbolel 
tbolew 
tboltl 
tboltw 
tborl 
tborw 
tbseql 
tbseqw 
tbs fl 
tbsfw 
tbsnel 
tbsnew 
tbstl 
tbstw 
tbtl 
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floating branch on equal, long 
floating branch on equal, word 
floating branch always false, long 
floating branch always false, word 
floating branch on greater than or equal, long 
floating branch on greater than or equal, word 
floating branch on greater than or less than, long 
floating branch on greater than or less than, word 
floating branch on greater than or less than or equal, long 
floating branch on greater than or less than or equal, word 
floating branch on greater than, long 
floating branch on greater than, word 
floating branch on less than or equal, long 
floating branch on less than or equal, word 
floating branch on less than, long 
floating branch on less than, word 
floating branch on not equal, long 
floating branch on not equal, word 
floating branch on not (greater than or less than or equal), long 
:floating branch on not (greater than or less than or equal), word 
:floating branch on not (greater than or less than or equal), long 
:floating branch on not (greater than or less than or equal), word 
floating branch on not (greater than or less than), long 
floating branch on not (greater than or less than), word 
:floating branch on not (greater than), long 
floating branch on not (greater than), word 
floating branch on not (less than or equal), long 
:floating branch on not (less than or equal), word 
floating branch on not (less than), long 
:floating branch on not (less than), word 
:floating branch on ordered greater than or equal, long 
floating branch on ordered greater than or equal, word 
:floating branch on ordered greater than or less than, long 
:floating branch on ordered greater than or less than, word 
:floating branch on ordered greater than, long 
floating branch on ordered greater than, word 
floating branch on ordered less than or equal, long 
floating branch on ordered less than or equal, word 
floating branch on ordered less than, long 
floating branch on ordered less than, word 
floating branch on ordered, long 
floating branch on ordered, word 
:floating branch on signalling equal, long 
floating branch on signalling equal, word 
:floating branch on signalling always false, long 
:floating branch on signalling always false, word 
floating branch on signalling not equal, long 
floating branch on signalling not equal, word 
floating branch on signalling always true, long 
floating branch on signalling always true, word 
:floating branch always true, long 
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fbtw 
fbueql 
fbueqw 
fbugel 
fbugew 
fbugtl 
fbugtw 
fbulel 
fbulew 
fbultl 
fbultw 
fbunl 
fbunw 

Integrated Solutions 

floating branch always true, word 
floating branch on unordered or equal, long 
floating branch on unordered or equal, word 
floating branch on unordered or greater than or equal, long 
floating branch on unordered or greater than or equal, word 
floating branch on unordered or greater than, long 
floating branch on unordered or greater than, word 
floating branch on unordered or less than or equal, long 
floating branch on unordered or less than or equal, word 
floating branch on unordered or less than, long 
floating branch on unordered or less than, word 
floating branch on unordered, long 
floating branch on unordered, word 

C.4 Extended Branch Instructions 

fjeq floating jump/branch on equal 
fjf floating jump/branch always false 
fjge floating jump/braneh on greater than or equal 
fjgl floating jump/branch on greater than or less than 
fjgle . floating jump/branch on greater than or less than or equal 
fjgt floating jump/branch on greater than 
fjle floating jump/branch on less than or equal 
fjlt floating jump/branch on less than 
fjne floating jump/branch on not equal 
fjnge ftoating jump/branch on not (greater than or equal) 
fjngl floating jump/branch on not (greater than or less than) 
fjngle floating jump/branch on not (greater than or less than or equal) 
fjngt floating jump/branch on not (greater than) 
fjnle floating jump/branch on not (less than or equal) 
fjnlt floating jump/branch on not (less than) 
fjoge floating jump/branch on ordered greater than or equal 
fjogl floating jump/branch on ordered greater than or less than 
fjogt floating jump/branch on ordered greater than 
fjole floating jump/branch on ordered less than or equal 
fjolt floating jump/branch on ordered less than 
fjor floating jump/branch on ordered 
fjra floating jump/branch always 
fjseq floating jump/branch on signalling equal 
fjsf floating jump/branch on signalling always false 
fjsne floating jump/branch on signalling not equal 
fjst floating jump/branch on signalling always true 
fjt floatingjump/branch always true 
fjueq floating jump/branch on unordered or equal 
fjuge floating jump/branch on unordered or greater than or equal 
fjugt floating jump/branch on unordered or greater than 
fjule floating jump/branch on unordered or less than or equal 
fjult floating jump/branch on unordered or less than 
fjun floatingjump/branch on unordered 
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C.S Test Condition Instructions 

fdbeq 
fdbf 
fdbge 
fdbgl 
fdbgle 
fdbgt 
fdble 
fdblt 
fdbne 
fdbngl 
fdbngle 
fdbnge 
fdbngt 
fdbnle 
fdbnlt 
fdboge 
fdbogl 
fdbogt 
fdbole 
fdbolt 
fdbor 
fdbra 
fdbsf 
fdbseq 
fdbsne 
fdbst 
fdbt 
fdbueq 
fdbuge 
fdbugt 
fdbule 
fdbult 
fdbun 

floating deer/branch on equal 
floating deer/branch always false 
floating deer/branch on greater than or equal 
floating deer/branch on greater than or less than 
floating deer/branch on greater than or less than or equal 
floating deer/branch on greater than 
floating deer/branch on less than or equal 
floating deer/branch on less than 
floating deer/branch on not equal 
floating deer/branch on not (greater than or less than) 
floating deer/branch on not (greater than or less than or equal) 
floating deer/branch on not (greater than or less than or equal) 
floating deer/branch on not (greater than) 
floating deer/branch on not (less than or equal) 
floating deer/branch on not (less than) 
floating deer/branch on ordered greater than or equal 
floating deer/branch on ordered greater than or less than 
floating deer/branch on ordered greater than 
floating deer/branch on ordered less than or equal 
floating deer/branch on ordered less than 
floating deer/branch on ordered 
floating deer/branch always false 
floating deer/branch on signalling always false 
floating deer/branch on signalling equal 
floating deer/branch on signalling not equal 
floating deer/branch on signalling always true 
floating deer/branch always true 
floating deer/branch on unordered or equal 
floating deer/branch on unordered or greater than or equal 
floating deer/branch on unordered or greater than 
floating deer/branch on unordered or less than or equal 
floating deer/branch on unordered or less than 
floating deer/branch on unordered 

C.6 Trap Instructions 

ftrapeq 
ftrapeql 
ftrapeqw 
f trapf 
ftrapfl 
f trapf w 
ftrapge 
ftrapgel 
ftrapgew 
ftrapgl 
ftrapgll 
ftrapglw 
ftrapgle 
ftrapglel 
ftrapglew 

C-9 

floating trap on equal 
floating trap on equal, long 
floating trap on equal, word 
floating trap on always false 
floating trap on always false, long 
floating trap on always false, word 
floating trap on greater than or equal 
floating trap on greater than or equal, long 
floating trap on greater than or equal, word 
floating trap on greater than or less than 
floating trap on greater than or less than, long 
floating trap on greater than or less than, word 
floating trap on greater than or less than or equal 
floating trap on greater than or less than or equal, long 
floating trap on greater than or less than or equal, word 
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ftrapgt 
ftrapgtl 
f trapgtw 
ftraple 
ftraplel 
ftraplew 
ftraplt 
ftrapltl 
ftrapltw 
ftrapne 
ftrapnel 
ftrapnew 
f trapnge 
ftrapngel 
ftrapngew 
ftrapngle 
ftrapnglel 
ftrapnglew 
ftrapngl 
ftrapngll 
ftrapnglw 
ftrapngt 
ftrapngtl 
ftrapngtw 
ftrapnle 
ftrapnlel 
ftrapnlew 
ftrapnlt 
ftrapnltl 
ftrapnltw 
ftrapoge 
ftrapogel 
ftrapogew 
ftrapogl 
ftrapogll 
ftrapoglw 
ftrapogt 
ftrapogtl 
ftrapogtw 
ftrapole 
ftrapolel 
ftrapolew 
ftrapolt 
ftrapoltl 
ftrapoltw 
ftrapor 
ftraporl 
ftraporw 
ftrapseq 
ftrapseql 
ftrapseqw 
ftrapsf 
ftrapsfl 
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floating trap on greater than 
floating trap on greater than, long 
floating trap on greater than, word 
floating trap on less than or equal 
floating trap on less than or equal, long 
floating trap on less than or equal, word 
floating trap on less than 
floating trap on less than, long 
floating trap on less than, word 
floating trap on not equal 
floating trap on not equal, long 
floating trap on not equal, word 
floating trap on not (greater than or less than or equal) 
floating trap on not (greater than or less than or equal), long 
floating trap on not (greater than or less than or equal), word 
floating trap on not (greater than or less than or equal) 
floating trap on not (greater than or less than or equal), long 
floating trap on not (greater than or less than or equal), word 
floating trap on not (greater than or less than) 
floating trap on not (greater than or less than), long 
floating trap on not (greater than or less than), word 
floating trap on not (greater than) 
floating trap on not (greater than), long 
floating trap on not (greater than), word 
floating trap on not (less than or equal) 
floating trap on not (less than or equal), long 
floating trap on not (less than or equal), word 
floating trap on not (less than) 
floating trap on not (less than), long 
floating trap on not (less than), word 
floating trap on ordered greater than or equal 
floating trap on ordered greater than or equal, long 
floating trap on ordered greater than or equal, word 
floating trap on ordered greater than or less than 
floating trap on ordered greater than or less than, long 
floating trap on ordered greater than or less than, word 
floating trap on ordered greater than 
floating trap on ordered greater than, long 
floating trap on ordered greater than, word 
floating trap on ordered less than or equal 
floating trap on ordered less than or equal, long 
floating trap on ordered less than or equal, word 
floating trap on ordered less than 
floating trap on ordered less than, long 
floating trap on ordered less than, word 
floating trap on ordered 
floating trap on ordered, long 
floating trap on ordered, word 
floating trap on signalling equal 
floating trap on signalling equal, long 
floating trap on signalling equal, word 
floating trap on signalling always false 
floating trap on signalling always false, long 

Summary of MC68881 Mnemonics 

AS 

C-10 



AS 

ftrapsfw 
ftrapsne 
ftrapsnel 
ftrapsnew 
ftrapst 
ftrapstl 
ftrapstw 
ftrapt 
ftraptl 
f traptw 
ftrapueq 
ftrapueql 
ftrapueqw 
ftrapuge 
ftrapugel 
ftrapugew 
ftrapugt 
ftrapugtl 
ftrapugtw 
ftrapule 
ftrapulel 
ftrapulew 
ftrapult 
ftrapultl 
ftrapultw 
ftrapun 
ftrapunl 
ftrapunw 

Integrated Solutions 

floating trap on signalling always false, word 
floating trap on signalling not equal 
floating trap on signalling not equal, long 
floating trap on signalling not equal, word 
floating trap on signalling always true 
floating trap on signalling always true, long 
floating trap on signalling always true, word 
floating trap on always true 
floating trap on always true, long 
floating trap on always true, word 
floating trap on unordered or equal 
floating trap on unordered or equal, long 
floating trap on unordered or equal, word 
floating trap on unordered or greater than or equal 
floating trap on unordered or greater than or equal, long 
floating trap on unordered or greater than or equal, word 
floating trap on unordered or greater than 
floating trap on unordered or greater than, long 
floating trap on unordered or greater than, word 
floating trap on unordered or less than or equal 
floating trap on unordered or less than or equal, long 
floating trap on unordered or less than or equal, word 
floating trap on unordered or less than 
floating trap on unordered or less than, long 
floating trap on unordered or less than, word 
floating trap on unordered 
floating trap on unordered, long 
floating trap on unordered, word 

C.7 Miscellaneous Instructions 

fnop 
frestore 
fsave 
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floating no operation 
floating state restore 
floating state save 
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AB SI' RA CT 

This document summarizes the facilities provided by the 4.3BSD version of the 
UNIX * operating system. It does not attempt to act as a tutorial for use of the system 
nor does it attempt to explain or justify the design of the system facilities. It gives neither 
motivation nor implementation details, in favor of brevity. 

The first section describes the basic kernel functions provided to a UNIX process: 
process naming and protection, memory management, software interrupts, object refer­
ences (descriptors), time and statistics functions, and resource controls. These facilities, 
as well as facilities for bootstrap, shutdown and process accounting, are provided solely 
by the kernel. 

The second section describes the standard system abstractions for files and file sys­
tems, communication, terminal handling, and process control and debugging. These 
facilities are implemented by the operating system or by network server processes. 

* UNIX is a trademark of Bell Laboratories. 
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o. Notation and types 

The notation used to describe system calls is a variant of a C language call, consisting of a prototype 
call followed by declaration of parameters and results. An additional keyword result, not part of the nor­
mal C language, is used to indicate which of the declared entities receive results. As an example, consider 
the read call, as described in section 2.1: 

cc= read(fd, buf, nbytes); 
result int cc; int fd; result char *buf; int nbytes; 

The first line shows how the read routine is called, with three parameters. As shown on the second line cc 
is an integer and read also returns information in the parameter buf. 

Description of all error conditions arising from each system call is not provided here; they appear in 
the programmer's. manual. In particular, when accessed from the C language, many calls return a charac­
teristic -1 value when an error occurs, returning the error code in the global variable e"no. Other 
languages may present errors in different ways. 

A number of system standard types are defined in the include file <sysltypes.h> and used in the 
specifications here and in many C programs. These include caddr_t giving a memory address (typically as 
a character pointer), otT_t giving a file offset (typically as a long integer), and a set of unsigned types 
u_char, u_short, u_int and u_long, shorthand names for unsigned char, unsigned short, etc. 
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1. Kernel primitives 

The facilities available to a UNIX user process are logically divided into two parts: kernel facilities 
directly implemented by UNIX code running in the operating system, and system facilities implemented 
either by the system, or in cooperation with a server process. These kernel facilities are described in this 
section 1. 

The facilities implemented in the kernel are those which define the UNIX virtual machine in which 
each process runs. Like many real machines, this virtual machine has memory management hardware, an 
interrupt facility, timers and counters. The UNIX virtual machine also allows access to files and other 
objects through a set of descriptors. Each descriptor resembles a device controller, and supports a set of 
operations. Like devices on real machines, some of which are internal to the machine and some of which 
are external, parts of the descriptor machinery are built-in to the operating system, while other parts are 
often implemented in server processes on other machines. The facilities provided through the descriptor 
machinery are described in section 2. 
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1.1. Processes and protection 

1.1.1. Host and proce~ identifiers 

Each UNIX host has associated with it a 32-bit host id, and a host name of up to 64 characters (as 
defined by MAXHOSTNAMELEN in <syslparam.h>). These are set (by a privileged user) and returned 
by the calls: 

sethostid(hostid) 
long hostid; 

hostid = gethostid(); 
result long hostid; 

sethostnarne(narne, len) 
char *name; int len; 

len = gethostnarne(buf, buften) 
result int len; result char *buf; int buften; 

On each host runs a set of processes. Each process is largely independent of other processes, having its 
own protection domain, address space, timers, and an independent set of references to system or user 
implemented objects. 

Each process in a host is named by an integer called the process id. This number is in the range 1-
30000 and is returned by the getpid routine: 

pid = getpid(); 
result int pid; 

On each UNIX host this identifier is guaranteed to be unique; in a multi-host environment, the (hostid, pro­
cess id) pairs are guaranteed unique. 

1.1.2. Process creation and termination 

A new process is created by making a logical duplicate of an existing process: 

pid =fork(); 
result int pid; 

The fork call returns twice, once in the parent process, where pid is the process identifier of the child, and 
once in the child process where pid is 0. The parent-child relationship induces a hierarchical structure on 
the set of processes in the system. 

A process may terminate by executing an exit call: 

exit(status) 
int status; 

returning 8 bits of exit status to its parent. 

When a child process exits or terminates abnormally, the parent process receives information about 
any event which caused termination of the child process. A second call provides a non-blocking interface 
and may also be used to retrieve information about resources consumed by the process during its lifetime. 
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#include <sys/waith> 

pid = wait(astatus); 
result int pid; result union wait *astatus; 

pid = wait3(astatus, options, arusage); 
result int pid; result union waitstatus *astatus; 
int options; result struct rusage *arusage; 

4.3BSD Architecture Manual 

A process can overlay itself with the memory image of another process, passing the newly created 
process a set of parameters, using the call: 

execve(name, argv, envp) 
char *name, **argv, **envp; 

The specified name must be a file which is in a format recognized by the system, either a binary executable 
file or a file which causes the execution of a specified interpreter program to process its contents. 

1.1.3. User and group ids 

Each process in the system has associated with it two user-id's: a real user id and a effective user id, 
both 16 bit unsigned integers (type uid _ t). Each process has an real accounting group id and an effective 
accounting group id and a set of access group id's. The group id's are 16 bit unsigned integers (type 
gid _t). Each process may be in several different access groups, with the maximum concurrent number of 
access groups a system compilation parameter, the constant NGROUPS in the file <syslparam.h>, 
guaranteed to be at least 8. 

The real and effective user ids associated with a process are returned by: 

ruid = getuid(); 
result uid _ t ruid; 

euid = geteuid(); 
result uid _ t euid; 

the real and effective accounting group ids by: 

rgid = getgid(); 
result gid _t rgid; 

egid = getegid(); 
result gid _t egid; 

The access group id set is returned by a getgroups call*: 

ngroups = getgroups(gidsetsize, gidset); 
result int ngroups; int gidsetsize; result int gidset[gidsetsize]; 

The user and group id's are assigned at login time using the setreuid, setregid, and setgroups calls: 

* The type of the gidset array in getgroups and setgroups remains integer for compatibility with 4.2BSD. It may change to 
gld _t in future releases. 
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setteuid(ruid, euid); 
int ruid, euid; 

settegid(rgid, egid); 
int rgid, egid; 

setgroups{gidsetsize, gidset) 
int gidsetsize; int gidset[gidsetsize]; 
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The setreuid call sets both the real and effective user-id's, while the setregid call sets both the real and 
effective accounting group id's. Unless the caller is the super-user, ruid must be equal to either the current 
real or effective user-id, and rgid equal to either the current real or effective accounting group id. The set­
groups call is restricted to the super-user. 

1.1.4. Process groups 

Each process in the system is also normally associated with a process group. The group of processes 
in a process group is sometimes referred to as a job and manipulated by high-level system software (such 
as the shell). The current process group of a process is returned by the getpgrp call: 

pgrp = getpgrp(pid); 
result int pgrp; int pid; 

When a process is in a specific process group it may receive software interrupts affecting the group, caus­
ing the group to suspend or resume execution or to be interrupted or terminated. In particular, a system ter­
minal has a process group and only processes which are in the process group of the terminal may read from 
the terminal, allowing arbitration of terminals among several different jobs. 

The process group associated with a process may be changed by the setpgrp call: 

setpgrp{pid, pgrp); 
int pid, pgrp; 

Newly created processes are assigned process id's distinct from all processes and process groups, and the 
same process group as their parent A normal (unprivileged) process may set its process group equal to its 
process id. A privileged process may set the process group of any process to any value. 
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1.2. Memory managementt 

1.2.1. Text, data and stack 

Each process begins execution with three logical areas of memory called text, data and stack. The 
text area is read-only and shared, while the data and stack areas are private to the process. Both the data 
and stack areas may be extended and contracted on program request The call 

addr = sbrk(incr); 
result caddr_t addr; int incr; 

changes the size of the data area by incr bytes and returns the new end of the data area, while 

addr = sstk(incr); 
result caddr _ t addr; int incr; 

changes the size of the stack area. The stack area is also automatically extended as needed. On the VAX 
the text and data areas are adjacent in the PO region, while the stack section is in the Pl region, and grows 
downward. 

1.2.2. Mapping pages 

The system supports sharing of data between processes by allowing pages to be mapped into 
memory. These mapped pages may be shared with other processes or private to the process. Protection 
and sharing options are defined in < syslmmo.n.h> as: 

I* protections are chosen from these bits, or-ed together*/ 
#define PROT READ 
#define PROT _WRITE 
#define PROT _EXEC 

Ox04 
Ox02 
OxOl 

I* pages can be read */ 
/* pages can be written */ 
/*pages can be executed*/ 

I* ftags contain mapping type, sharing type and options *I 
I* mapping type; choose one */ 
#define MAP FILE 
#define MAP_ ANON 
#define MAP TYPE 

I* sharing types; choose one*/ 
#define MAP SHARED 
#define MAP PRIVATE 

I* other ftags */ 
#define MAP FIXED 
#define MAP NOEXTEND 
#define MAP HASSEMPHORE 
#define MAP INHERIT 

OxOOOl /*mapped from a file or device*/ 
Ox0002 /*allocated from memory, swap space*/ 
OxOOOf /* mask for type field *I 

Ox0010 /*share changes */ 
OxOOOO /*changes are private*/ 

Ox0020 /*map addr must be exactly as requested*/ 
Ox0040 /* for MAP_ FILE, don't change file size */ 
Ox0080 /*region may contain semaphores*/ 
Ox0100 /*region is retained after exec*/ 

The cpu-dependent size of a page is returned by the getpagesize system call: 

pagesize = getpagesize(); 
result int pagesize; 

The call: 

t This section represents the interface planned for later releases of the system. Of the calls described in this section, only 
sbrk and getpagesize are included in 4.3BSD. 
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maddr = mmap(addr, len, prot, flags, fd, pos); 
result caddr_t maddr; caddr_t addr; int *len, prot, flags, fd; off_t pos; 

causes the pages starting at addr and continuing for at most len bytes to be mapped from the object 
represented by descriptor fd, starting at byte offset pos. The starting address of the region is returned; for 
the convenience of the system, it may be different than that supplied unless the MAP_ FIXED flag is given, 
in which case the exact address will be used or the call will fail. The actual amount mapped is returned in 
len. The addr, len, and pos parameters must all be multiples of the pagesize. The parameter prot specifies 
the accessibility of the mapped pages. The parameter flags specifies the type of object to be mapped, map­
ping options, and whether modifications made to this mapped copy of the page are to be kept private, or are 
to be shared with other references. Possible types include MAP_ FILE, mapping a regular file or 
character-special device memory, and MAP ANON, which maps memory not associated with any specific 
file. The file descriptor used for creating MAP ANON regions is used only for naming, and may be given 
as -1 if no name is associated with the region+. The MAP _NOEXTEND flag prevents the mapped file 
from being extended despite rounding due to the granularity of mapping. The MAP _HASSEMAPHORE 
flag allows special handling for regions that may contain semaphores. The MAP_ INHERIT flag allows a 
region to be inherited after an exec. 

A facility is provided to synchronize a mapped region with the file it maps; the call 

msync(addr, len); 
caddr _ t addr; int len; 

writes any modified pages back to the filesystem and updates the file modification time. If len is 0, all 
modified pages within the region containing addr will be flushed; if len is non-zero, only the pages contain­
ing addr and len succeeding locations will be examined. Any required invalidation of memory caches will 
also take place at this time. Filesystem operations on a file which is mapped for shared modifications are 
unpredictable except after an msync. 

A mapping can be removed by the call 

munmap(addr); 
caddr _t addr; 

This call deletes the region containing the address given, and causes further references to addresses within 
the region to generate invalid memory references. 

1.2.3. Page protection control 

A process can control the protection of pages using the call 

mprotect(addr, len, prot); 
caddr _t addr; int len, prot; 

This call changes the specified pages to have protection prot. Not all implementations will guarantee pro­
tection on a page basis; the granularity of protection changes may be as large as an entire region. 

1.2.4. Giving and getting advice 

A process that has knowledge of its memory behavior may use the madvise call: 

madvise(addr, len, behav); 
caddr_t addr; int len, behav; 

Behav describes expected behavior, as given in <syslmma.n.h>: 

i The current design does not allow a process to specify the location of swap space. In the future we may define an 
additional mapping type, MAP_ SW AP, in which the file descriptor argument specifies a file or device to which swapping 
should be done. 
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#define MADY NORMAL 0 
#define MADY _RANDOM 1 
#define MADY_SEQUENTIAL 2 
#define MADY_ Wil.LNEED 3 
#define MADV_OONTNEED 4 
#define MADY _SPACEA Y AIL S 
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!*no further special treatment*/ 
/* expect random page references *I 
I* expect sequential references*/ 
!*will need these pages*/ 
!*don't need these pages*/ 
/* insure that resources are reserved */ 

Finally, a process may obtain information about whether pages are core resident by using the call 

mincore(addr, len, vec) 
caddr_t addr; int len; result char *vec; 

Here the current core residency of the pages is returned in the chara~ter array vec, with a value of 1 mean­
ing that the page is in-core. 

1.2.5. Synchronization primitives 

Primitives are provided for synchronization using semaphores in shared memory. Semaphores must 
lie within a MAP_ SHARED region with at least modes PROT _READ and PROT _WRITE. The 
MAP_ HASSEMAPHORE flag must have been specified when the region was created. To acquire a lock a 
process calls: 

value = mset(sem, wait) 
result int value; semaphore *sem; int wait; 

Mset indivisibly tests and sets the semaphore sem. If the the previous value is zero, the process has 
acquired the lock and mset returns true immediately. Otherwise, if the wait fiag is zero, failure is returned. 
If wait is true and the previous value is non-zero, the "want" flag is set and the test-and-set is retried; if the 
lock is still unavailable mset relinquishes the processor until notified that it should retry. 

To release a lock a process calls: 

mclear(sem) 
semaphore *sem; 

Mclear indivisibly tests and clears the semaphore sem. If the "want'' flag is zero in the previous value, 
mclear returns immediately. If the 6 iwant'' flag is non-zero in the previous value, mclear arranges for 
waiting processes to retry before returning. 

Two routines provide services analogous to the kernel sleep and wakeup functions interpreted in the 
domain of shared memory. A process may relinquish the processor by calling msleep: 

msleep(sem) 
semaphore *sem; 

The process will remain in a sleeping state until some other process issues an mwakeup for the same sema­
phore within the region using the call: 

mwakeup(sem) 
semaphore *sem; 

An mwakeup may awaken all sleepers on the semaphore, or may awaken only the next sleeper on a queue. 
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1.3. Signals 

1.3.1. Overview 

The system defines a set of signals that may be delivered to a process. Signal delivery resembles the 
occurrence of a hardware interrupt the signal is blocked from further occurrence, the current process con­
text is saved, and a new one is built A process may specify the handler to which a signal is delivered, or 
specify that the signal is to be blocked or ignored. A process may also specify that a def a ult action is to be 
taken when signals occur. 

Some signals will cause a process to exit when they are not caught. This may be accompanied by 
creation of a core image file, containing the current memory image of the process for use in post-mortem 
debugging. A process may choose to have signals delivered on a special stack, so that sophisticated 
software stack manipulations are possible. 

All signals have the same priority. If multiple signals are pending simultaneously, the order in which 
they are delivered to a process is implementation specific. Signal routines execute with the signal that 
caused their invocation blocked, but other signals may yet occur. Mechanisms are provided whereby criti­
cal sections of code may protect themselves against the occurrence of specified signals. 

1.3.2. Signal types 

The signals defined by the system fall into one of five classes: hardware conditions, software condi­
tions, input/output notification, process control, or resource control. The set of signals is defined in the file 
<signal.h>. 

Hardware signals are derived from exceptional conditions which may occur during execution. Such 
signals include SIGFPE representing floating point and other arithmetic exceptions, SIGILL for illegal 
instruction execution, SIGSEGV for addresses outside the currently assigned area of memory, and 
SIGBUS for accesses that violate memory protection constraints. Other, more cpu-specific hardware sig­
nals exist, such as those for the various customer-reserved instructions on the VAX (SIGIOT, SIGEMT, 
and SIGTRAP). 

Software signals reflect interrupts generated by user request SIGINT for the normal interrupt signal; 
SIGQUIT for the more powerful quit signal, that normally causes a core image to be generated; SIGHUP 
and SIGTERM that cause graceful process termination, either because a user has "hung up", or by user or 
program request; and SIGKil.L, a more powerful termination signal which a process cannot catch or 
ignore. Programs may define their own asynchronous events using SIGUSRl and SIGUSR2. Other 
software signals (SIGALRM, SIGVT ALRM, SIGPROF) indicate the expiration of interval timers. 

A process can request notification via a SIGIO signal when input or output is possible on a descrip­
tor, or when a non-blocking operation completes. A process may request to receive a SIGURG signal 
when an urgent condition arises. 

A process may be stopped by a signal sent to it or the members of its process group. The SIGSTOP 
signal is a powerful stop signal, because it cannot be caught. Other stop signals SIGTSTP, SIGTIIN, and 
SIGTIOU are used when a user request, input request, or output request respectively is the reason for stop­
ping the process. A SIGCONT signal is sent to a process when it is continued from a stopped state. 
Processes may receive notification with a SIGCHLD signal when a child process changes state, either by 
stopping or by terminating. 

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a process 
nears its CPU time limit and SIGXFSZ warns that the limit on file size creation has been reached. 

1.3.3. Signal handlers 

A process has a handler associated with each signal. The handler controls the way the signal is 
delivered. The call 
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#include <signal.h> 

struct sigvec { 
int 
int 
int 

}; 

sigvec(signo, sv, osv) 

(*sv _handler)(); 
sv_mask; 
sv_ftags; 

int signo; struct sigvec •sv; result struct sigvec *osv; 
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assigns interrupt handler address sv _handler to signal signo. Each handler address specifies either an inter­
rupt routine for the signal, that the signal is to be ignored, or that a default action (usually process termina­
tion) is to occur if the signal occurs. The constants SIG_IGN and SIG_DEF used as values for sv _handler 
cause ignoring or defaulting of a condition. The sv _mask value specifies the signal mask to be used when 
the handler is invoked; it implicitly includes the signal which invoked the handler. Signal masks include 
one bit for each signal; the mask for a signal signo is provided by the macro sigmask(signo ), from 
<signal.h>. Sv _flags specifies whether system calls should be restarted if the signal handler returns and 
whether the handler should operate on the normal run-time stack or a special signal stack (see below). If 
osv is non-zero, the previous signal vector is returned 

When a signal condition arises for a process, the signal is added to a set of signals pending for the 
process. If the signal is not currently blocked by the process then it will be delivered. The process of sig­
nal delivery adds the signal to be delivered and those signals specified in the associated signal handler's 
sv _mask to a set of those masked for the process, saves the current process context, and places the process 
in the context of the signal handling routine. The call is arranged so that if the signal handling routine exits 
normally the signal mask will be restored and the process will resume execution in the original context If 
the process wishes to resume in a different context, then it must arrange to restore the signal mask itself. 

The mask of blocked signals is independent of handlers for signals. It delays signals from being 
delivered much as a raised hardware interrupt priority level delays hardware interrupts. Preventing an 
interrupt from occurring by changing the handler is analogous to disabling a device from further interrupts. 

The signal handling routine sv _handler is called by a C call of the form 

(*sv _ handler)(signo, code, scp ); 
int signo; long code; struct sigcontext *scp; 

The signo gives the number of the signal that occurred, and the code, a word of information supplied by the 
hardware. The scp parameter is a pointer to a machine-dependent structure containing the information for 
restoring the context before the signal. 

1.3.4. Sending signals 

A process can send a signal to another process or group of processes with the calls: 

kill(pid, signo) 
int pid, signo; 

killpgrp(pgrp, signo) 
int pgrp, signo; 

Unless the process sending the signal is privileged, it must have the same effective user id as the process 
receiving the signal. 

Signals are also sent implicitly from a terminal device to the process group associated with the termi­
nal when certain input characters are typed. 
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1.3.S. Protecting critical sections 

To block a section of code against one or more signals, a sigblock call may be used to add a set of 
signals to the existing mask, returning the old mask: 

oldmask = sigblock(mask); 
result long oldmask; long mask; 

The old mask can then be restored later with sigsetmask, 

oldmask = sigsetmask(mask); 
result long old.mask; long mask; 

The sigblock call can be used to read the current mask by specifying an empty mask . 

It is possible to check conditions with some signals blocked, and then to pause waiting for a signal 
and restoring the mask, by using: 

sigpause(mask); 
long mask; 

1.3.6. Signal stacks 

Applications that maintain complex or fixed size stacks can use the call 

struct sigstack { 
caddr_t 
int 

}; 

sigstack(ss, oss) 

ss_sp; 
ss _ onstack; 

struct sigstack *ss; result struct sigstack *oss; 

to provide the system with a stack based at ss _sp for delivery of signals. The value ss _ onstack indicates 
whether the process is currently on the signal stack, a notion maintained in software by the system. 

When a signal is to be delivered, the system checks whether the process is on a signal stack. If not, 
then the process is switched to the signal stack for delivery, with the return from the signal arranged to 
restore the previous stack. 

If the process wishes to take a non-local exit from the signal routine, or run code from the signal 
stack that uses a different stack, a sigstack call should be used to reset the signal stack. 
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1.4. Timers 

1.4.1. Real time 

The system's notion of the current Greenwich time and the current time zone is set and returned by 
the call by the calls: 

#include <Sys/time.h> 

settimeofday(tvp, tzp ); 
struct timeval *tp; 
struct timezone *tzp; 

gettimeofday(tp, tzp); 
result struct timeval *tp; 
result struct timezone *tzp; 

where the structures are defined in <sys/time .h> as: 

struct timeval { 
long tv_sec; 
long tv _ usec; 

}; 

struct timezone { 
int 
int 

}; 

tz _ minuteswest; 
tz _ dsttime; 

!* seconds since Jan 1, 1970 */ 
/*and microseconds*/ 

/*of Greenwich*/ 
/*type of dst correction to apply*/ 

The precision of the system clock is hardware dependent Earlier versions of UNIX contained only a 1-
second resolution version of this call, which remains as a library routine: 

time( tvsec) 
result long *tvsec; 

returning only the tv _sec field from the gettimeofday call. 

1A2. Interval time 

The system provides each process with three interval timers, defined in <sysltime.h>: 

#define 
#define 
#define 

!TIMER REAL 
!TIMER_ VIRTUAL 
ITIMER PROF 

0 
1 
2 

I* real time intervals *I 
I* virtual time intervals *I 
I* user and system virtual time*/ 

The !TIMER_ REAL timer decrements in real time. It could be used by a library routine to maintain a 
wakeup service queue. A SIGALRM signal is delivered when this timer expires .. 

The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs only when the process is 
executing. A SIG VT ALRM signal is delivered when it expires. 

The ITIMER_PROF timer decrements both in process virtual time and when the system is running 
on behalf of the process. It is designed to be used by processes to statistically profile their execution. A 
SIGPROF signal is delivered when it expires. 

A timer value is defined by the itimerval structure: 

struct itimerval { 

}; 

struct 
struct 

timeval it_interval; 
timeval it_ value; 

I* timer interval *I 
!* current value *I 
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and a timer is set or read by the call: 

getitimer(which, value); 
int which; result struct itimerval *value; 

setitimer(which, value, ovalue); 
int which; struct itimerval *value; result struct itimerval *ovalue; 

PS1:6-17 

The third argument to setitimer specifies an optional structure to receive the previous contents of the inter­
val timer. A timer can be disabled by specifying a timer value of 0. 

The system rounds argument timer intervals to be not less than the resolution of its clock. This clock 
resolution can be determined by loading a very small value into a timer and reading the timer back to see 
what value resulted. 

The alarm system call of earlier versions of UNIX is provided as a library routine using the 
ITIMER _REAL timer. The process profiling facilities of earlier versions of UNIX remain because it is not 
always possible to guarantee the automatic restart of system calls after receipt of a signal. The profil call 
arranges for the kernel to begin gathering execution statistics for a process: 

profil(buf, bufsize, offset, scale); 
result char *buf; int bufsize, offset, scale; 

This begins sampling of the program counter; with statistics maintained in the user-provided buffer. 
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1.5. Descriptors 

1.5.1. The reference table 

Each process has access to resources through descriptors. Each descriptor is a handle allowing the 
process to reference objects such as files, devices and communications links. 

Rather than allowing processes direct access to descriptors, the system introduces a level of indirec­
tion, so that descriptors may be shared between processes. Each process has a descriptor reference table, 
containing pointers to the actual descriptors. The descriptors themselves thus have multiple references, and 
are reference counted by the system. 

Each process has a fixed size descriptor reference table, where the size is returned by the getdta­
blesize call: 

nds = getdtablesize(); 
result int nds; 

and guaranteed to be at least 20. The entries in the descriptor reference table are referred to by small 
integers; for example if there are 20 slots they are numbered 0 to 19. 

1..5.20 Descriptor propertieso 

Each descriptor has a logical set of properties maintained by the system and defined by its type. 
Each type supports a set of operations; some operations, such as reading and writing, are common to 
several abstractions, while others are unique. The generic operations applying to many of these types are 
described in section 2.1. Naming contexts, files and directories are described in section 2.2. Section 2.3 
describes communications domains and sockets. Terminals and (structured and unstructured) devices are 
described in section 2.4. 

1.5.3. Managing descriptor references 

A duplicate of a descriptor reference may be made by doing 

new= dup(old); 
result int new; int old; 

returning a copy of descriptor reference old indistinguishable from the original. The new chosen by the 
system will be the smallest unused descriptor reference slot. A copy of a descriptor reference may be made 
in a specific slot by doing 

dup2(old, new); 
int old, new; 

The dup2 call causes the system to deallocate the descriptor reference current occupying slot new, if any, 
replacing it with a reference to the same descriptor as old. This deallocation is also performed by: 

close( old); 
int old; 

1.5.4. Multiplexing requests 

The system provides a standard way to do synchronous and asynchronous multiplexing of opera­
tions. 

Synchronous multiplexing is performed by using the select call to examine the state of multiple 
descriptors simultaneously, and to wait for state changes on those descriptors. Sets of descriptors of 
interest are specified as bit masks, as follows: 
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#include <sys/types.h> 

nds = select(nd, in, out, except, tvp ); 
result int nds; int nd; result fd _set *in, *out, *except; 
struct timeval *tvp; 

FD_ ZERO(&fdset); 
FD _SET(fd, &fdset); 
FD_ CLR(fd, &fdset); 
FD_ ISSET(fd, &fdset); 
int fs; fs_set fdset; 
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The select call examines the descriptors specified by the sets in, out and except, replacing the specified bit 
masks by the subsets that select true for input, output, and exceptional conditions respectively (nd indicates 
the number of file descriptors specified by the bit masks). If any descriptors meet the following criteria, 
then the number of such descriptors is returned in nds and the bit masks are updated. 

• A descriptor selects for input if an input oriented operation such as read or receive is possible, or if a 
connection request may be accepted (see section 2.3.1.4). 

• A descriptor selects for output if an output oriented operation such as write or send is possible, or if 
an operation that was "in progress", such as connection establishment, has completed (see section 
2.1.3). 

• A descriptor selects for an exceptional condition if a condition that would cause a SIGURG signal to 
be generated exists (see section 1.3.2), or other device-specific events have occurred. 

If none of the specified conditions is true, the operation waits for one of the conditions to arise, blocking at 
most the amount of time specified by tvp. If tvp is given as 0, the select waits indefinitely. 

Options affecting 1/0 on a descriptor may be read and set by the call: 

dopt = fcntl( d, cmd, arg) 
result int dopt; int d, cmd, arg; 

I* interesting values for cmd */ 
#define 
#define 
#define 
#define 

F SETFL 
F GETFL 
F SETOWN 
F GETOWN 

3 
4 
5 
6 

I* set descriptor options*/ 
I* get descriptor options *I 
I* set descriptor owner (pid/pgrp) */ 
I* get descriptor owner (pid/pgrp) *I 

The F _ SETFL cmd may be used to set a descriptor in non-blocking 110 mode and/or enable signaling when 
1/0 is possible. F _ SETOWN may be used to specify a process or process group to be signaled when using 
the latter mode of operation or when urgent indications arise. 

Operations on non-blocking descriptors will either complete immediately, note an error EWOULD­
BLOCK, partially complete an input or output operation returning a partial count, or return an error 
EINPROGRESS noting that the requested operation is in progress. A descriptor which has signalling 
enabled will cause the specified process and/or process group be signaled, with a SIGIO for input, output, 
or in-progress operation complete, or a SIGURG for exceptional conditions. 

For example, when writing to a terminal using non-blocking output, the system will accept only as 
much data as there is buffer space for and return; when making a connection on a socket, the operation may 
return indicating that the connection establishment is "in progress". The select facility can be used to 
determine when further output is possible on the terminal, or when the connection establishment attempt is 
complete. 
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1.S.S. Descriptor wrapping. t 
A user process may build descriptors of a specified type by wrapping a communications channel with 

a system supplied protocol translator: 

new = wrap( old, proto) 
result int new; int old; struct dprop *proto; 

Operations on the descriptor old are then translated by the system provided protocol translator into requests 
on the underlying object old in a way defined by the protocol. The protocols supported by the. kernel may 
vary from system to system and are described in the programmers manual. ' 

Protocols may be based on communications multiplexing or a rights-passing style of handling multi­
ple requests made on the same object For instance, a protocol for implementing a file abstraction may or 
may not include locally generated ''read-ahead'' requests. A protocol that provides for read-ahead may 
provide higher performance but have a more difficult implementation. 

Another example is the terminal driving facilities. Normally a terminal is associated with a com­
munications line, and the terminal type and standard terminal access protocol are wrapped around a syn­
chronous communications line and given to the user. If a virtual terminal is required, the terminal driver 
can be wrapped around a communications link, the other end of which is held by a virtual terminal protocol 
inteipreter. 

t The facilities described in this section are not included in 4.3BSD. 
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1.6. Resource controls 

1.6.1. Process priorities 

The system gives CPU scheduling priority to processes that have not used CPU time recently. This 
tends to favor interactive processes and processes that execute only for short periods. It is possible to 
determine the priority currently assigned to a process, process group, or the processes of a specified user, or 
to alter this priority using the calls: 

#define 
#define 
#define 

PRIO PROCESS 
PRIO_PGRP 
PRIO_USER 

prio = getpriority(which, who); 
result int prio; int which, who; 

setpriority(which, who, prio); 
int which, who, prio; 

0 
1 
2 

I* process *I 
/* process group *I 
/*user id*/ 

The value prio is in the range -20 to 20. The default priority is O; lower priorities cause more favorable 
execution. The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the 
specified processes. The setpriority call sets the priorities of all of the specified processes to the specified 
value. Only the super-user may lower priorities. 

1.6.2. Resource utilimtion 

The resources used by a process are returned by a getrusage call, returning information in a structure 
defined in <syslresource.h>: 

#define 
#define 

RUSAGE_SELF 0 
RUSAGE_CHILDREN -1 

getrusage(who, rusage) 
int who; result struct rusage *rusage; 

struct rusage { 
struct timeval ru _ utime; 
struct timeval ru _stime; 
int ru_maxrss; 
int ru_ixrss; 
int ru_idrss; 
int ru_isrss; 
int ru_minfit; 
int ru_majflt; 
int ru_nswap; 
int ru _ inblock; 
int ru _ oublock; 
int ru_msgsnd; 
int · ru_msgrcv; 
int ru _ nsignals; 
int ru_nvcsw; 
int ru_nivcsw; 

}; 

!*usage by this process*/ 
!*usage by all children*/ 

I* user time used *I 
I* system time used*/ 
I* maximum core resident set size: kbytes */ 
I* integral shared memory size (kbytes*sec) */ 
I* unshared data memory size*/ 
!*unshared stack memory size*/ 
!*page-reclaims */ 
I* page faults */ 
!*swaps*/ 
I* block input operations*/ 
!*block output operations*/ 
I* messages sent*/ 
!* messages received */ 
/*signals received*/ 
I* voluntary context switches */ 
I* involuntary context switches */ 

The who parameter specifies whose resource usage is to be returned. The resources used by the current 
process, or by all the terminated children of the current process may be requested. 
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1.6.3. Resource limits 

The resources of a process for which limits are controlled by the kernel are defined in 
< syslresource.h>, and controlled by the getrlimit and setrlimit calls: 

#define RLIMIT _CPU 0 !* cpu time in milliseconds */ 
#define RLIMIT _FSIZE 1 /* maximum file size */ 
#define RLIMIT DATA 2 /*maximum data segment size*/ 
#define RLIMIT _STACK 3 /* maximum stack segment size */ 
#define RLIMIT _CORE 4 !* maximum core file size */ 
#define RLIMIT _ RSS 5 /* maximum resident set size */ 

#define RLIM NLIMITS 

#define RLIM INFINITY 

struct rlimit { 
int 
int 

}; 

rlim_cur; 
rlim_max; 

getrlimit(resource, rip) 
int resource; result sttuct rlirnit *rip; 

setrlimit(resource, rip) 
int resource; struct rlimit *rip; 

6 

Ox7fffffff 

I* current (soft) limit */ 
!*hard limit*/ 

Only the super-user can raise the maximum limits. Other users may only alter rlim_cur within the 
range from 0 to rlim_max or (irreversibly) lower rlim_max. 
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1.7. System operation support 

Unless noted otherwise, the calls in this section are permitted only to a privileged user. 

1.7.1. Boots~ap operations 

The call 

mount(blkdev, dir, ronly); 
char *blk.dev, *dir; int ronly; 
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extends the UNIX name space. The mount call specifies a block device blkdev containing a UNIX file sys­
tem to be made available starting at dir. If ronly is set then the file system is read-only; writes to the file 
system will not be permitted and access times will not be updated when files are referenced. Dir is nor­
mally a name in the root directory. 

The call 

swapon(blkdev, size); 
char *blk.dev; int size; 

specifies a device to be made available for paging and swapping. 

1. 7 .2. Shutdown operations 

The call 

unmount( dir); 
char *dir; 

unmounts the file system mounted on dir. This call will succeed only if the file system is not currently 
being used. 

The call 

sync(); 

schedules input/output to clean all system buffer caches. (This call does not require privileged status.) 

The call 

reboot(how) 
int how; 

causes a machine halt or reboot. The call may request a reboot by specifying how as RB _AUTOBOOT, or 
that the machine be halted with RB _HALT. These constants are defined in <syslreboot.h>. 

1. 7 .3. Accounting 

The system optionally keeps an accounting record in a file for each process that exits on the system. 
The format of this record is beyond the scope of this document. The accounting may be enabled to a file 
name by doing 

acct(path); 
char *path; 

If path is null, then accounting is disabled. Otherwise, the named file becomes the accounting file. 
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2. System facilities 

This section discusses the system facilities that are not considered part of the kernel. 

The system abstractions described are: 
Directory contexts 

Files 

A directory context is a position in the UNIX file system name space. Operations on files and other 
named objects in a file system are always specified relative to such a context. 

Files are used to store uninterpreted sequence of bytes on which random access reads and writes may 
occur. Pages from files may also be mapped into process address space. t A directory may be read as 
a file. 

Communications domains 
A communications domain represents an interprocess communications environment, such as the 
communications facilities of the UNIX system, communications in the INTERNET, or the resource 
sharing protocols and access rights of a resource sharing system on a local network. 

Sockets 
A socket is an endpoint of communication and the focal point for IPC in a communications domain. 
Sockets may be created in pairs, or given names and used to rendezvous with other sockets in a com­
munications domain, accepting connections from these sockets or exchanging messages with them. 
These operations model a labeled or unlabeled communications graph, and can be used in a wide 
variety of communications domains. Sockets can have different types to provide different semantics 
of communication, increasing the flexibility of the model. 

Terminals and other devices 
Devices include terminals, providing input editing and interrupt generation and output fl.ow control 
and editing, magnetic tapes, disks and other peripherals. They often support the generic read and 
write operations as well as a number of ioctl s. 

Processes 
Process descriptors provide facilities for control and debugging of other processes. 

t Support for mapping files is not included in the 4.3 release. 
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2.1. Generic operations 

Many system abstractions support the operations read, write and ioctl. We describe the basics of 
these common primitives here. Similarly, the mechanisms whereby normally synchronous operations may 
occur in a non-blocking or asynchronous fashion are common to all system-defined abstractions and are 
described here. 

2.1.1. Read and write 

The read and write system calls can be applied to communications channels, files, terminals and dev­
ices. They have the form: 

cc= read(fd, buf, nbytes); 
result int cc; int fd; result caddr _ t buf; int nbytes; 

cc = write(fd, buf, nbytes); 
result int cc; int fd; caddr _ t buf; int nbytes; 

The read call transfers as much data as possible from the object defined by f d to the buffer at address bu/ of 
size nbytes. The number of bytes transferred is returned in cc, which is -1 if a return occurred before any 
data was transferred because of an error or use of non-blocking operations. 

The write call transfers data from the buffer to the object defined by f d. Depending on the type off d, 
it is possible that the write call will accept some portion of the provided bytes; the user should resubmit the 
other bytes in a later request in this case. Error returns because of interrupted or otherwise incomplete 
operations are possible. 

Scattering of data on input or gathering of data for output is also possible using an array of 
input/output vector descriptors. The type for the descriptors is defined in <sysluio.h> as: 

struct iovec { 
caddr_t 
int 

}; 

iov_msg; 
iov_len; 

The calls using an array of descriptors are: 

cc = readv(fd, iov, iovlen); 

I* base of a component *I 
I* length of a component*/ 

result int cc; int fd; struct iovec *iov; int iovlen; 

cc = writev(fd, iov, iovlen); 
result int cc; int fd; struct iovec *iov; int iovlen; 

Here iovlen is the count of elements in the iov array. 

2.1.2. Input/output control 

Control operations on an object are performed by the ioctl operation: 

ioctl(fd, request, buffer); 
int fd, request; caddr_t buffer; 

This operation causes the specified request to be performed on the object f d. The request parameter 
specifies whether the argument buffer is to be read, written, read and written, or is not needed, and also the 
size of the buffer, as well as the request. Different descriptor types and subtypes within descriptor types 
may use distinct ioctl requests. For example, operations on terminals control flushing of input and output 
queues and setting of terminal parameters; operations on disks cause formatting operations to occur; opera­
tions on tapes control tape positioning. 

The names for basic control operations are defined in <syslioctl.h>. 
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2.1.3. Non-blocking and asynchronous operations 

A process that wishes to do non-blocking operations on one of its descriptors sets the descriptor in 
non-blocking mode as described in section 1.5.4. Thereafter the read call will return a specific EWOULD­
BLOCK error indication if there is no data to be read. The process may select the associated descriptor to 
determine when a read is possible. 

Output attempted when a descriptor can accept less than is requested will either accept some of the 
provided data, returning a shorter than normal length, or return an error indicating that the operation would 
block. More output can be performed as soon as a select call indicates the object is writeable. 

Operations other than data input or output may be performed on a descriptor in a non-blocking 
fashion. These operations will return with a characteristic error indicating that they are in progress if they 
cannot complete immediately. The descriptor may then be selected for write to find out when the operation 
has been completed. When select indicates the descriptor is writeable, the operation has completed. 
Depending on the nature of the descriptor and the operation, additional activity may be started or the new 
state may be tested. 
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2.2. File system 

2.2.1. Overview 

The file system abstraction provides access to a hierarchical file system structure. The file system 
contains directories (each of which may contain other sub-directories) as well as files and references to 
other objects such as devices and inter-process communications sockets. 

Each file is organized as a linear array of bytes. No record boundaries or system related information 
is present in a file. Files may be read and written in a random-access fashion. The user may read the data 
in a directory as though it were an ordinary file to determine the names of the contained files, but only the 
system may write into the directories. The file system stores only a small amount of ownership, protection 
and usage information with a file. 

2.2.2. Naming 

The file system calls take path name arguments. These consist of a zero or more component file 
· names separated by ''I'' characters, where each file name is up to 255 ASCII characters excluding null and 
''I''. 

Each process always has two naming contexts: one for the root directory of the file system and one 
for the current working directory. These are used by the system in the filename translation process. If a 
path name begins with a ''I'', it is called a full path name and interpreted relative to the root directory con­
text. If the path name does not begin with a''/'' it is called a relative path name and interpreted relative to 
the current directory contexL 

The system limits the total length of a path name to 1024 characters. 

The file name '' .. '' in each directory refers to the parent directory of that directory. The parent direc­
tory of the root of the file system is always that directory. 

The calls 

chdir(path); 
char *path; 

chroot(path) 
char *path; 

change the current working directory and root directory context of a process. Only the super-user can 
change the root directory context of a process. 

2.2.3. Creation and removal 

The file system allows directories, files, special devices, and ''portals'' to be created and removed 
from the file system. 

2.2.3.1. Directory creation and removal 

A directory is created with the mkdir system call: 

mkdir(path, mode); 
char *path; int mode; 

where the mode is defined as for files (see below). Directories are removed with the rmdir system call: 

rmdir(path); 
char *path; 

A directory must be empty if it is to be deleted. 
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2.2.3.2. File creation 

Files are created with the open system call, 

fd = open(path, ofiag, mode); 
result int fd; char *path; int ofiag, mode; 

The path parameter specifies the name of the file to be created. The ojlag parameter must include 
O_CREAT from below to cause the file to be created Bits forojlag are defined in <sys!file.h>: 

#define O _ RDONL Y 000 I* open for reading */ 
#define O _ WRONL Y 001 /* open for writing */ 
#define O _ RDWR 002 /* open for read & write */ 
#define O_NDELAY 004 /*non-blocking open*/ 
#define O _APPEND 010 /* append on each write */ 
#define O_CREAT 01000 /*open with file create*/ 
#define 0_1RUNC 02000 /*open with truncation*/ 
#define O_EXCL 04000 /*error on create if file exists*/ 

One of O_RDONLY, O_WRONLY and O_RDWR should be specified, indicating what types of 
operations are desired to be performed on the open file. The operations will be checked against the user's 
access rights to the file before allowing the open to succeed. Specifying 0 _APPEND causes writes to 
automatically append to the file. The fiag 0 CREAT causes the file to be created if it does not exist, 
owned by the current user and the group of die containing directory. The protection for the new file is 
specified in mode. The file mode is used as a three digit octal number. Each digit encodes read access a8 4, 
write access as 2 and execute access as 1, or'ed together. The 0700 bits describe owner access, the 070 bits 
describe the access rights for processes in the same group as the file, and the 07 bits describe the access 
rights for other processes. 

If the open specifies to create the file with 0 EXCL and the file already exists, then the open will fail 
without affecting the file in any way. This provides a simple exclusive access facility. If the file exists but 
is a symbolic link, the open will fail regardless of the existence of the file specified by the link. 

2.2.3.3c Creating references to devices 

The file system allows entries which reference peripheral devices. Peripherals are distinguished as 
block or character devices according by their ability to support block-oriented operations. Devices are 
identified by their ''major'' and ''minor'' device numbers. The major device number determines the kind 
of peripheral it is, while the minor device number indicates one of possibly many peripherals of that kind. 
Structured devices have all operations performed internally in "block" quantities while unstructured dev­
ices often have a number of special ioctl operations, and may have input and output performed in varying 
units. The mknod call creates special entries: 

mknod(path, mode, dev); 
char *path; int mode, dev; 

where mode is formed from the object type and access permissions. The parameter dev is a configuration 
dependent parameter used to identify specific character or block I/O devices. 

2.2.3.4. Portal creationt 

The call 

fd = portal(name, server, param, dtype, protocol, domain, socktype) 
result int fd; char *name, *server, *param; int dtype, protocol; 
int domain, socktype; 

places a name in the file system name space that causes connection to a server process when the name is 

t The portal call is not implemented in 4.3BSD. 
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used The portal call returns an active portal in/d as though an access had occurred to activate an inactive 
portal, as now described. 

When an inactive portal is accessed, the system sets up a socket of the specified socktype in the 
specified communications domain (see section 2.3), and creates the server process, giving it the specified 
param as argument to help it identify the portal, and also giving it the newly created socket as descriptor 
number 0. The accessor of the portal will create a ~ocket in the same domain and connect to the server. 
The user will then wrap the socket in the specified protocol to create an object of the required descriptor 
type dtype and proceed with the operation which was in progress before the portal was encountered 

While the server process holds the socket (which it received asfd from the portal call on descriptor 0 
at activation) further references will result in connections being made to the same socket 

2.2.3.S. File, device, and portal removal 

A reference to a file, special device or portal may be removed with the unlink call, 

unlink(path); 
char *path; 

The caller must have write access to the directory in which the file is located for this call to be successful. 

2.2.4. Reading and modifying file attributes 

Detailed information about the attributes of a file may be obtained with the calls: 

#include <sys/stath> 

stat(path, stb); 
char *path; result struct stat *stb; 

fstat(fd, stb); 
int fd; result struct stat *stb; 

The stat structure includes the file type, protection, ownership, access times, size, and a count of hard links. 
If the file is a symbolic link, then the status of the link itself (rather than the file the link references) may be 
found using the lstat call: 

lstat(path, stb); 
char *path; result struct stat *stb; 

Newly created files are assigned the user id of the process that created it and the group id of the 
directory in which it was created. The ownership of a file may be changed by either of the calls 

chown(path, owner, group); 
char *path; int owner, group; 

fchown(fd, owner, group); 
int fd, owner, group; 

In addition to ownership, each file has three levels of access protection associated with it. These lev­
els are owner relative, group relative, and global (all users and groups). Each level of access has separate 
indicators for read permission, write permission, and execute permission. The protection bits associated 
with a file may be set by either of the calls: 

chmod(path, mode); 
char *path; int mode; 

fchmod(fd, mode); 
int fd, mode; 

where mode is a value indicating the new protection of the file, as listed in section 2.2.3.2. 
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Finally, the access and modify times on a file may be set by the call: 

utimes(path, tvp) 
char *path; struct timeval *tvp[2]; 
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This is particularly useful when moving files between media, to preserve relationships between the times 
the file was modified. 

2.2.S. Links and renaming 

Links allow multiple names for a file to exist Links exist independently of the file linked to. 

Two types of links exist, hard links and symbolic links. A hard link is a reference counting mechan­
ism that allows a file to have multiple names within the same file system. Symbolic links cause string sub­
stitution during the pathname interpretation process. 

Hard links and symbolic links have different properties. A hard link insures the target file will 
always be accessible, even after its original directory entry is removed; no such guarantee exists for a sym­
bolic link. Symbolic links can span file systems boundaries. 

The following calls create a new link, namedpath2, to pathl: 

link(pathl, path2); 
char •pathl, *path2; 

symlink(path 1, path2); 
char *pathl, •path2; 

The unlink primitive may be used to remove either type of link. 

If a file is a symbolic link, the "value" of the link may be read with the readlink call, 

len = readlink(path, buf, bufsize); 
result int len; result char *path, *buf; int bufsize; 

This call returns, in buf, the null-terminated string substituted into pathnames passing through path. 

Atomic renaming of file system resident objects is possible with the rename call: 

rename(oldname, newname); 
char *oldname, •newname; 

where both oldname and newname must be in the same file system. If newname exists and is a directory, 
then it must be empty. 

2.2.6. Extension and truncation 

Files are created with zero length and may be extended simply by writing or appending to them. 
While a file is open the system maintains a pointer into the file indicating the current location in the file 
associated with the descriptor. This pointer may be moved about in the file in a random access fashion. To 
set the current offset into a file, the /seek call may be used, 

oldoffset = lseek(fd, offset, type); 
result off _t oldoffset; int fd; off_t offset; int type; 

where type is given in <sys!file.h> as one of: 

#define 
#define 
#define 

L SET 
L INCR 
L XTND 

0 
1 
2 

I* set absolute file offset *I 
/*set file offset relative to current position*/ 
/*set offset relative to end-of-file */ 

The call ''lseek(fd, 0, L_INCR)'' returns the current offset into the file. 

Files may have "holes" in them. Holes are void areas in the linear extent of the file where data has 
never been written. These may be created by seeking to a location in a file past the current end-of-file and 
writing. Holes are treated by the system as zero valued bytes. 
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A file may be truncated with either of the calls: 

truncate(path, length); 
char *path; int length; 

ftnincate(fd, length); 
int fd, length; 

reducing the size of the specified file to length bytes. 

2.2.7. Checking acc~ibility 
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A process running with different real and effective user ids may interrogate the accessibility of a file 
to the real user by using the access call: 

accessible= access{path, how); 
result int accessible; char *path; int how; 

Here how is constructed by or' ing the following bits, defined in <sys/file .h>: 

#define 
#define 
#define 
#define 

FOK 
XOK 
WOK 
R OK 

0 
1 
2 
4 

I* file exists */ 
I* file is executable*/ 
/*file is writable*/ 
I* file is readable */ 

The presence or absence of advisory locks does not affect the result of access. 

2.2.8. Locking 

The file system provides basic facilities that allow cooperating processes to synchronize their access 
to shared files. A process may place an advisory read or write lock on a file, so that other cooperating 
processes may avoid interfering with the process' access. This simple mechanism provides locking with 
file granularity. More granular locking can be built using the IPC facilities to provide a lock manager. The 
system does not force processes to obey the locks; they are of an advisory nature only. 

Locking is performed after ~ open call by applying the flock primitive, 

ftock(fd, how); 
intfd, how; 

where the how parameter is formed from bits defined in < sys!file.h>: 

#define LOCK SH 1 /* shared lock */ 
#define LOCK_EX 2 /*exclusive lock*/ 
#define LOCK NB 4 /* don't block when locking */ 
#define LOCK UN 8 /* unlock */ 

Successive lock calls may be used to increase or decrease the level of locking. If an object is currently 
locked by another process when ajlock call is made, the caller will be blocked until the current lock owner 
releases the lock; this may be avoided by including LOCK _NB in the how parameter. Specifying 
LOCK_ UN removes all locks associated with the descriptor. Advisory locks held by a process are 
automatically deleted when the process terminates. 

2.2.9. Disk quotas 

As an optional facility, each file system may be requested to impose limits on a user's disk usage. 
Two quantities are limited: the total amount of disk space which a user may allocate in a file system and the 
total number of files a user may create in a file system. Quotas are expressed as hard limits and soft limits. 
A hard limit is always imposed; if a user would exceed a hard limit, the operation which caused the 
resource request will fail. A soft limit results in the user receiving a warning message, but with allocation 
succeeding. Facilities are provided to turn soft limits into hard limits if a user has exceeded a soft limit for 
an unreasonable period of time. 
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To enable disk quotas on a file system the setquota call is used: 

setquota(special, file) 
char *special, *file; 
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where special refers to a structured device file where a mounted file system exists, and file refers to a disk 
quota file (residing on the file system associated with special) from which user quotas should be obtained 
The format of the disk quota file is implementation dependent. 

To manipulate disk quotas the quota call is provided: 

#include <sys/quota.h> 

quota(cmd, uid, arg, addr) 
int cmd, uid, arg; caddr_t addr; 

The indicated cmd is applied to the user ID uid. The parameters arg and addr are command specific. The 
file <syslquota.h> contains definitions pertinent to the use of this call. 
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2.3. Interprocess communications 

2.3.1. Interprocess communication primitives 

2.3.1.1. Communication domains 

The system provides access to an extensible set of communication domains. A communication 
domain is identified by a manifest constant defined in the file <syslsocket.h>. Important standard domains 
supported by the system are the "unix" domain, AF_ UNIX, for communication within the system, the 
''Internet'' domain for communication in the DARPA Internet, AF INET, and the ''NS'' domain, AF NS, 
for communication using the Xerox Network Systems protocols. Other domains can be added to the-sys­
tem. 

2.3.1.2.. Socket types and protocols 

Within a domain, communication takes place between communication endpoints known as sockets. 
Each socket has the potential to exchange information with other sockets of an appropriate type within the 
domain. 

Each socket has an associated abstract type, which describes the semantics of communication using 
that socket Properties such as reliability, ordering, and prevention of duplication of messages are deter­
mined by the type. The basic set of socket types is defined in <syslsocket.h>: 

1• Standard socket types*/ 
#define SOCK OGRAM 
#define SOCK_ STREAM 
#define SOCK _RAW 
#define SOCK RDM 
#define SOCK _SEQPACKET 

1 
2 
3 
4 
5 

I* datagram*/ 
I* virtual circuit *I 
/* raw socket *I 
t• reliably-delivered message */ 
/*sequenced packets*/ 

The SOCK_ OGRAM type models the semantics of datagrams in network communication: messages may 
be lost or duplicated and may arrive out-of-order. A datagram socket may send messages to and receive 
messages from multiple peers. The SOCK_RDM type models the semantics of reliable datagrams: mes­
sages arrive unduplicated and in-order, the sender is notified if messages are lost. The send and receive 
operations (described below) generate reliable/unreliable datagrams. The SOCK_STREAM type models 
connection-based virtual circuits: two-way byte streams with no record boundaries. Connection setup is 
required before data communication may begin. The SOCK_ SEQP ACK.ET type models a connection­
based, full-duplex, reliable, sequenced packet exchange; the sender is notified if messages are lost, and 
messages are never duplicated or presented out-of-order. Users of the last two abstractions may use the 
facilities for out-of-band transmission to send out-of-band data. 

SOCK _RAW is used for unprocessed access to internal network layers and interfaces; it has no 
specific semantics. 

Other socket types can be defined. 

Each socket may have a specific protocol associated with it This protocol is used within the domain 
to provide the semantics required by the socket type. Not all socket types are supported by each domain; 
support depends on the existence and the implementation of a suitable protocol within the domain. For 
example, within the ''Internet'' domain, the SOCK OGRAM type may be implemented by the UDP user 
datagram protocol, and the SOCK_ STREAM type' may be implemented by the TCP transmission control 
protocol, while no standard protocols to provide SOCK_RDM or SOCK_SEQPACKETsockets exist. 

2.3.1.3. Socket creation, naming and service establishment 

Sockets may be connected or unconnected. An unconnected socket descriptor is obtained by the 
socket call: 
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s = socket(domain, type, protocol); 
result int s; int domain, type, protocol; 
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The socket domain and type are as described above, and are specified using the definitions from 
<syslsocket.h>. The protocol may be given as 0, meaning any suitable protocol. One of several possible 
protocols may be selected using identifiers obtained from a library routine, getprotobyname. 

An unconnected socket descriptor of a connection-oriented type may yield a connected socket 
descriptor in one of two ways: either by actively connecting to another socket, or by becoming associated 
with a name in the communications domain and accepting a connection from another socket Datagram 
sockets need not establish connections before use. 

To accept connections or to receive datagrams, a socket must first have a binding to a name (or 
address) within the communications domain. Such a binding may be established by a bind call: 

bind(s, name, namelen); 
· int s; struct sockaddr *name; int namelen; 

Datagram sockets may have default bindings established when first sending data if not explicitly bound 
earlier. In either case, a socket's bound name may be retrieved with a getsockname call: 

getsockname(s, name, namelen); 
int s; result struct sockaddr *name; result int *namelen; 

while the peer's name can be retrieved with getpeername: 

getpeemame(s, name, namelen); 
int s; result struct sockaddr *name; result int *namelen; 

Domains may support sockets with several names. 

2.3.1.4. Accepting connections 

Once a binding is made to a connection-oriented socket, it is possible to listen for connections: 

listen(s, backlog); 
int s, backlog; 

The backlog specifies the maximum count of connections that can be simultaneously queued awaiting 
acceptance. 

An accept call: 

t = accept(s, name, anamelen); 
result int t; int s; result struct sockaddr *name; result int *anarnelen; 

returns a descriptor for a new, connected, socket from the queue of pending connections on s. If no new 
connections are queued for acceptance, the call will wait for a connection unless non-blocking J/O has been 
enabled. 

2.3.1.5. Making connections 

An active connection to a named socket is made by the connect call: 

connect(s, name, namelen); 
int s; struct sockaddr *name; int namelen; 

Although datagram sockets do not establish connections, the connect call may be used with such sockets to 
create an association with the foreign address. The address is recorded for use in future send calls, which 
then need not supply destination addresses. Datagrams will be received only from that peer, and asynchro­
nous error reports may be received. 

It is also possible to create connected pairs of sockets without using the domain's name space to ren­
dezvous; this is done with the socketpair callt: 

t 4.3BSD supports socutpair creation only in the "unix" communication domain. 
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socketpair(domain, type, protocol, sv); 
int domain, type, protocol; result int sv[2]; 

Here the returned sv descriptors correspond to those obtained with accept and connect. 

The call 

pipe(pv) 
result int pv[2]; 

creates a pair of SOCK_ STREAM sockets in the UNIX domain, with pv[O] only writable and pv[l] only 
readable. 

2.3.1.6. Sending and receiving data 

Messages may be sent from a socket by: 

cc= sendto(s, buf, len, flags, to, tolen); 
result irit cc; int s; caddr _t buf; int len, flags; caddr _t to; int tolen; 

if the socket is not connected or: 

cc = send(s, buf, len, flags); 
result int cc; int s; caddr _ t buf; int len, flags; 

if the socket is connected. The corresponding receive primitives are: 

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr); 
result int msglen; int s; result caddr _ t buf; int len, flags; 
result caddr _ t from; result int *fromlenaddr; 

and 

msglen = recv(s, buf, len, flags); 
result int msglen; int s; result caddr _ t buf; int len, flags; 

In the unconnected case, the parameters to and tolen specify the destination or source of the message, 
while the from parameter stores the source of the message, and *fromlenaddr initially gives the size of the 
from buffer and is updated to reflect the true length of the from address. 

All calls cause the message to be received in or sent from the message buffer of length Zen bytes, 
starting at address buf. The jla,gs specify peeking at a message without reading it or sending or receiving 
high-priority out-of-band messages, as follows: 

#define MSG PEEK Oxl 
#define MSG OOB Ox2 

2.3.1.7. Scatter/gather and exchanging access rights 

I* peek at incoming message*/ 
/*process out-of-band data*/ 

It is possible scatter and gather data and to exchange access rights with messages. When either of 
these operations is involved, the number of parameters to the call becomes large. Thus the system defines a 
message header structure, in <syslsocket.h>, which can be used to conveniently contain the parameters to 
the calls: 

struct msghdr { 
caddr t 
int 
struct 
int 
caddr_t 
int 

}; 

msg_narne; 
msg_ narnelen; 
iov *msg_iov; 
msg_iovlen; 
msg_accrights; 
msg_ accrightslen; 

I* optional address */ 
I* size of address *I 
I* scatter/gather array*/ 
I* # elements in msg_ iov */ 
I* access rights sent/received */ 
/*size of msg_accrights */ 
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Here msg_ name and msg_ namelen specify the source or destination address if the socket is unconnected; 
msg_name may be given as a null pointer if no names are desired or required. The msg_iov and 
msg_iovlen describe the scatter/gather locations, as described in section 2.1.3. Access rights to be sent 
along with'the message are specified in msg_accrights, which has length msg_accrightslen. In the ••unix'' 
domain these are an array of integer descriptors, taken from the sending process and duplicated in the 
receiver. 

This structure is used in the operations sendmsg and recvmsg: 

sendmsg(s, msg, flags); 
int s; struct msghdr *msg; int flags; 

msglen = recvmsg(s, msg, flags); 
result int msglen; int s; result struct msghdr *msg; int flags; 

2.3.1.8. Using read and write with sockets 

The normal UNIX read and write calls may be applied to connected sockets and translated into send 
and receive calls from or to a single area of memory and discarding any rights received. A process may 
operate on a virtual circuit socket, a terminal or a file with blocking or non-blocking input/output opera­
tions without distinguishing the descriptor type. 

2.3.1o9. Shutting down halves of full-duplex connections 

A process that has a full-duplex socket such as a virtual circuit and no longer wishes to read from or 
write to this socket can give the call: 

shutdown(s, direction); 
int s, direction; 

where direction is 0 to not read furth~, 1 to not write further, or 2 to completely shut the connection down. 
If the underlying protocol supports unidirectional or bidirectional shutdown, this indication will be passed 
to the peer. For example, a shutdown for writing might produce an end-of-file condition at the remote end 

2.3.1.10. Socket and protocol options 

Sockets, and their underlying communication protocols, may support options. These options may be 
used to manipulate implementation- or protocol-specific facilities. The getsockopt and setsockopt calls are 
used to control options: 

getsockopt(s, level, optname, optval, optlen) 
int s, level, optname; result caddr_t optval; result int *optlen; 

setsockopt(s, level, optname, optval, optlen) 
int s, level, optname; caddr_t optval; int optlen; 

The option optname is interpreted at the indicated protocol level for socket s. If a value is specified with 
optval and optlen, it is interpreted by the software operating at the specified level. The level 
SOL_ SOCKET is reserved to indicate options maintained by the socket facilities. Other level values indi­
cate a particular protocol which is to act on the option request; these values are normally interpreted as a 
"protocol number". 

2.3.2. UNIX domain 

This section describes briefly the properties of the UNIX communications domain. 

2.3.2.1. Types of sockets 

In the UNIX domain, the SOCK_ STREAM abstraction provides pipe-like facilities, while 
SOCK_ DGRAM provides (usually) reliable message-style communications. 
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2.3.2.2. Naming 

Socket names are strings and may appear in the UNIX file system name space through portalst. 

2.3.2.3. Access rights transmi~ion 

The ability to pass UNIX descriptors with messages in this domain allows migration of service 
within the system and allows user processes to be used in building system facilities. 

2.3.3. INTERNET domain 

This section describes briefly how the Internet domain is mapped to the model described in this sec­
tion. More information will be found in the document describing the network implementation in 4.3BSD. 

2.3.3.1. Socket types and protocols 

SOCK_ STREAM is supported by the Internet TCP protocol; SOCK_ DGRAM by the UDP protocol. 
Each is layered atop the transport-level Internet Protocol (IP). The Internet Control Message Protocol is 
implemented atop/beside IP and is accessible via a raw socket. The SOCK_ SEQP ACKET has no direct 
Internet family analogue; a protocol based on one from the XEROX NS family and layered on top of IP 
could be implemented to fill this gap. 

2.3.3.2. Socket naming 

Sockets in the Internet domain have names composed of the 32 bit Internet address, and a 16 bit port 
number. Options may be used to provide IP source routing or security options. The 32-bit address is com­
posed of network and host parts; the network part is variable in size and is frequency encoded. The host 
part may optionally be interpreted as a subnet field plus the host on subnet; this is is enabled by setting a 
network address mask at boot time. 

2.3.3.3. Access rights transmi~ion 

No access rights transmission facilities are provided in the Internet domain. 

2.3.3.4. Raw acce~ 

The Internet domain allows the super-user access to the raw facilities of IP. These interfaces are 
modeled as SOCK_RAW sockets. Each raw socket is associated with one IP protocol number, and 
receives all traffic received for that protocol. This allows administrative and debugging functions to occur, 
and enables user-level implementations of special-purpose protocols such as inter-gateway routing proto­
cols. 

t The 4.3BSD implementation of the UNIX domain embeds bound sockets in the UNIX file system name space; this may 
change in future releases. 
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2.4. Terminals and Devices 

2.4.1. Terminals 

Terminals support read and write IIO operations, as well as a collection of terminal specific ioctl 
operations, to control input character interpretation and editing, and output format and delays. 

2.4.1.1. Terminal input 

Terminals are handled according to the underlying communication characteristics such as baud rate 
and required delays, and a set of software parameters. 

2.4.1.1.1. Input modes 

A terminal is in one of three possible modes: raw, cbreak, or cooked. In raw mode all input is passed 
through to the reading process immediately and without interpretation. In cbreak mode, the handler inter­
prets input only by looking for characters that cause interrupts or output ftow control; all other characters 
are made available as in raw mode. In cooked mode, input is processed to provide standard line-oriented 
local editing functions, and input is presented on a line-by-line basis. 

2.4.1.1.2. Interrupt characters 

Interrupt characters are interpreted by the terminal handler only in cbreak and cooked modes, and 
cause a software interrupt to be sent to all processes in the process group associated with the terminal. 
Interrupt characters exist to send SIGINT and SIGQUIT signals, and to stop a process group with the 
SIGTS1P signal either immediately, or when all input up to the stop character has been read. 

2.4.1.1.3. Line editing 

When the terminal is in cooked mode, editing of an input line is performed. Editing facilities allow 
deletion of the previous character or word, or deletion of the current input line. In addition, a special char­
acter may be used to reprint the current input line after some number of editing operations have been 
applied. 

Certain other characters are interpreted specially when a process is in cooked mode. The end of line 
character determines the end of an input record. The end of file character simulates an end of file 
occurrence on terminal input. Flow control is provided by stop output and start output control characters. 
Output may be ft.ushed with the flush output character; and a literal character may be used to force literal 
input of the immediately following character in the input line. 

Input characters may be echoed to the terminal as they are received. Non-graphic ASCII input char­
acters may be echoed as a two-character printable representation, "A character.'' 

2.4.1.2. Terminal output 

On output, the terminal handler provides some simple formatting services. These include converting 
the carriage return character to the two character return-linefeed sequence, inserting delays after certain 
standard control characters, expanding tabs, and providing translations for upper-case only terminals. 

2.4.1.3. Terminal control operations 

When a terminal is first opened it is initialized to a standard state and configured with a set of stan­
dard control, editing, and interrupt characters. A process may alter this configuration with certain control 
operations, specifying parameters in a standard structure:t 

t The control interface described here is an internal interface only in 4.3BSD. Future releases will probably use a modified 
interface based on currently-proposed standards. 
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struct ttyrnode { 
short 
int 
short 
int 

}; 

tt_ispeed; 
tt_iflags; 
tt_ospeed; 
tt_oflags; 

I* input speed */ 
/*input flags*/ 
I* output speed */ 
I* output flags */ 

and "special characters" are specified with the ttychars structure, 

struct ttychars { 
char 
char 
char 
char 
char 
char 
char 
char 
char 
char 
char 
char 
char 
char 

}; 

tc_erasec; 
tc_killc; 
tc_intrc; 
tc_quitc; 
tc_startc; 
tc_stopc; 
tc_eofc; 
tc_brkc; 
tc_suspc; 
tc_dsuspc; 
tc_rprntc; 
tc_flushc; 
tc_werasc; 
tc_lnextc; 

2.4.1.4. Terminal hardware support 

I* erase char*/ 
I* erase line*/ 
/*interrupt*/ 
I* quit*/ 
/* start output */ 
I* stop output */ 
I* end-of-file*/ 
/* input delimiter (like nl) */ 
I* stop process signal *I 
I* delayed stop process signal*/ 
/* reprint line */ 
/*flush output (toggles)*/ 
I* word erase */ 
I* literal next character *I 
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The terminal handler allows a user to access basic hardware related functions; e.g. line speed, 
modern control, parity, and stop bits. A special signal, SIGHUP, is automatically sent to processes in a 
terminal's process group when a carrier transition is detected. This is normally associated with a user 
hanging up on a modem controlled terminal line. 

2.4.2. Structured devices 

Structures devices are typified by disks and magnetic tapes, but may represent any random-access 
device. The system performs read-modify-write type buffering actions on block devices to allow them to 
be read and written in a totally random access fashion like ordinary files. File systems are normally created 
in block devices. 

2.4.3. Unstructured devices 

Unstructured devices are those devices which do not support block structure. Familiar unstructured 
devices are raw communications lines (with no terminal handler), raster plotters, magnetic tape and disks 
unfettered by buffering and permitting large block input/output and positioning and formatting commands. 
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2.s. Process and kernel descriptors 

The status of the facilities in this section is still under discussion. The ptrace facility of earlier UNIX 
systems remains in 4.3BSD. Planned enhancements would allow a descriptor-based process control facile 
ity. 
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I. Summary of facilities 

1. Kernel primitives 

1.1. Process naming and protection 

sethostid 
gethostid 
sethostname 
gethostname 
getpid 
fork 
exit 
execve 
getuid 
geteuid 
setreuid 
getgid 
getegid 
getgroups 
setregid 
setgroups 
getpgrp 
setpgrp 

1.2 Memory management 

<sys/mman.h> 
sbrk 

1.3 Signals 

sstkt 
getpagesize 
mmapt 
msynct 
munmapt 
mprotectt 
madviset 
mincoret 
msleept 
mwakeupt 

<signal.h> 
sigvec 
kill 

. killpgrp 
sigblock 
sigsetmask 
sigpause 
sigstack 

1.4 Timing and statistics 

<sys/time.h> 
gettimeof day 
settimeofday 

t Not supported in 4.3BSD. 

set UNIX host id 
get UNIX host id 
set UNIX host name 
get UNIX host name 
get process id 
create new process 
terminate a process 
execute a different process 
get user id 
get effective user id 
set real and effective user id's 
get accounting group id 
get effective accounting group id 
get access group set 
set real and effective group id's 
set access group set 
get process group 
set process group 

memory management definitions 
change data section size 
change stack section size 
get memory page size 
map pages of memory 
ft.ush modified mapped pages to filesystem 
unmap memory 
change protection of pages 
give memory management advice 
determine core residency of pages 
sleep on a lock 
wakeup process sleeping on a lock 

signal definitions 
set handler for signal 
send signal to process 
send signal to process group 
block set of signals 
restore set of blocked signals 
wait for signals 
set software stack for signals 

time-related definitions 
get current time and timezone 
set current time and timezone 
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getitimer 
setitimer 
profil 

loS Descriptors 

getdtablesize 
dup 
dup2 
close 
select 
fcntl 
wrapt 

1.6 Resource controls 

<Sys/resource.h> 
getpriority 
setpriority 
getrusage 
getrlimit 
setrlimit 

1.7 System operation support 

mount 
swapon 
umount 
sync 
reboot 
acct 

2. System facilities 

2.1 Generic operations 

read 
write 
<Sys/uio.h> 
re adv 
writev 
<Sys/ioctl.h> 
ioctl 

2.2 File system 

read an interval timer 
get and set an interval timer 
profile process 

descriptor reference table size 
duplicate descriptor 
duplicate to specified index 
close descriptor 
multiplex input/output 
control descriptor options 
wrap descriptor with protocol 

resource-related definitions 
get process priority 
set process priority 
get resource usage 
get resource limitations 
set resource limitations 

mount a device file system 
add a swap device 
umount a file system 
flush system caches 
reboot a machine 
specify accounting file 

read data 
write data 
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scatter-gather related definitions 
scattered data input 
gathered data output 
standard control operations 
device control operation 

Operations marked with a * exist in two forms: as shown, operating on a file name, and operating on 
a file descriptor, when the name is preceded with a ''r'. 

<Sys/file.h> file system definitions 
chdir change directory 
chroot change root directory 
mkdir make a directory 
rmdir remove a directory 
open open a new or existing file 
mknod make a special file 
portal t make a portal entry 

t Not supported in 4.3BSD. 
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unlink 
stat• 
ls tat 
chown• 
chmod* 
utimes 
link 
symlink 
readlink 
rename 
lseek 
truncate• 
access 
fiock 

2.3 Communications 

<sys/socketl1> 
socket 
bind 
getsockname 
listen 
accept 
connect 
socketpair 
sendto 
send 
recvfrom 

remove a link 
return status for a file 
returned status of link 
change owner 
change mode 
change access/modify times 
make a hard link 
make a symbolic link 
read contents of symbolic link 
change name of file 
reposition within file 
truncate file 
detennine accessibility 
lock a file 

standard definitions 
create socket 
bind socket to name 
get socket name 
allow queuing of connections 
accept a connection 
connect to peer socket 
create pair of connected sockets 
send data to named socket 
send data to connected socket 
receive data on unconnected socket 

recv receive data on connected socket 
sendmsg send gathered data and/ or rights 
recvmsg receive scattered data and/or rights 
shutdown partially close full-duplex connection 
getsockopt get socket option 
setsockopt set socket option 

2.4 Terminals, block and character devices 

2.5 Processes and kernel hooks 
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Berkeley UNIXt 4.3BSD offers several choices for interprocess communication. To aid the pro­
grammer in developing programs which are comprised of cooperating processes, the different choices are 
discussed and a series of example programs are presented. These programs demonstrate in a simple way 
the use of pipes, socketpairs, sockets and the use of datagram and stream communication. The intent of 
this document is to present a few simple example programs, not to describe the networking system in full. 

1. Goals 
Facilities for interprocess communication (IPC) and networking were a major addition to UNIX in 

the Berkeley UNIX 4.2BSD release. These facilities required major additions and some changes to the 
system interface. The basic idea of this interface is to make IPC similar to file I/O. In UNIX a process has 
a set of 110 descriptors, from which one reads and to which one writes. Descriptors may refer to normal 
files, to devices (including tenninals), or to communication channels. The use of a descriptor has three 
phases: its creation, its use for reading and writing, and its destruction. By using descriptors to write files, 
rather than simply naming the target file in the write call, one gains a surprising amount of flexibility. 
Often, the program that creates a descriptor will be different from the program that uses the descriptor. For 
example the shell can create a descriptor for the output of the 'ls' command that will cause the listing to 
appear in a file rather than on a terminal. Pipes are another form of descriptor that have been used in UNIX 
for some time. Pipes allow one-way data transmission from one process to another; the two processes and 
the pipe must be set up by a common ancestor. 

The use. of descriptors is not the only communication interface provided by UNIX. The signal 
mechanism sends a tiny amount of information from one process to another. The signaled process receives 
only the signal type, not the identity of the sender, and the number of possible signals is small. The signal 
semantics limit the flexibility of the signaling mechanism as a means of interprocess communication. 

The identification of IPC with I/O is quite longstanding in UNIX and has proved quite successful. At 
first, however, IPC was limited to processes communicating within a single machine. With Berkeley 
UNIX 4.2BSD this expanded to include IPC between machines. This expansion has necessitated some 
change in the way that descriptors are created. Additionally, new possibilities for the meaning of read and 
write have been admitted. Originally the meanings, or semantics, of these terms were fairly simple. When 
you wrote something it was delivered. When you read something, you were blocked until the data arrived. 
Other possibilities exist, however. One can write without full assurance of delivery if one can check later 
to catch occasional failures. Messages can be kept as discrete units or merged into a stream. One can ask 
to read, but insist on not waiting if nothing is immediately available. These new possibilities are allowed in 
the Berkeley UNIX IPC interface. 

Thus Berkeley UNIX 4.3BSD offers several choices for IPC. This paper presents simple examples 
that illustrate some of the choices. The reader is presumed to be familiar with the C programming 
language [Kernighan & Ritchie 1978], but not necessarily with the system calls of the UNIX system or 

t UNIX is a trademark of AT&T Bell Laboratories. 
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with processes and interprocess communication. The paper reviews the notion of a process and the types 
of communication that are supported by Berkeley UNIX 4.3BSD. A series of examples are presented that 
create processes that communicate with one another. The programs show different ways of establishing 
channels of communication. Finally, the calls that actually transfer data are reviewed. To clearly present 
how communication can take place~ the example programs have been cleared of anything that might be 
construed as useful work. They can~ therefore, serve as models for the programmer trying to construct pro­
grams which are comprised of cooperating processes. 

2. Processes 

A program is both a sequence of statements and a rough way of referring to the computation that 
occurs when the compiled statements are run. A process can be thought of as a single line of control in a 
program. Most programs execute some statements, go through a few loops, branch in various directions 
and then end These are single process programs. Programs can also have a point where control splits into 
two independent lines, an action called forking. In UNIX these lines can never join again. A call to the 
system routine fork(), causes a process to split in this way. The result of this call is that two independent 
processes will be running, executing exactly the same code. Memory values will be the same for all values 
set before the fork, but, subsequently, each version will be able to change only the value of its own copy of 
each variable. Initially, the only difference between the two will be the value returned by fork(). The 
parent will receive a process id for the child, the child will receive a zero. Calls to fork(), therefore, typi­
cally precede, or are included in, an if-statement. 

A process views the rest of the system through a private table of descriptors. The descriptors can 
represent open files or sockets (sockets are communication objects that will be discussed below). Descrip­
tors are referred to by their index numbers in the table. The first three descriptors are often known by spe­
cial names, stdin, stdout and stde". These are the standard input, output and error. When a process forks, 
its descriptor table is copied to the child. Thus, if the parent's standard input is being taken from a terminal 
(devices are also treated as files in UNIX), the child's input will be taken from the same terminal. Who­
ever reads first will get the input. If, before forking, the parent changes its standard input so that it is read-

- ing from a new file, the child will take its input from the new file. It is also possible to take input from a 
socket, rather than from a file. 

3. Pipes 

Most users of UNIX know that they can pipe the output of a program "prog 1" to the input of 
another, "prog2," by typing the command "progl / prog2." This is called "piping" the output of one 
program to another because the mechanism used to transfer the output is called a pipe. When the user 
types a command, the command is read by the shell, which decides how to execute it. If the command is 
simple, for example, "progl ," the shell forks a process, which executes the program, progl, and then dies . 
. The shell waits for this termination and then prompts for the next command If the command is a com­
pound command, "progl / prog2," the shell creates two processes connected by a pipe. One process runs 
the program, prog l, the other runs prog2. The pipe is an 110 mechanism with two ends, or sockets. Data 
that is written into one socket can be read from the other. 

Since a program specifies its input and output only by the descriptor table indices, which appear as 
variables or constants, the input source and output destination can be changed without changing the text of 
the program. It is in this way that the shell is able to set up pipes. Before executing progl, the process can 
close whatever is at stdout and replace it with one end of a pipe. Similarly, the process that will execute 
prog2 can substitute the opposite end of the pipe for stdin. 

Let us now examine a program that creates a pipe for communication between its child and itself 
(Figure 1). A pipe is created by a parent process, which then forks. When a process forks, the parent's 
descriptor table is copied into the child's. 

In Figure 1, the parent process makes a call to the system routine pipe(). This routine creates a pipe 
and places descriptors for the sockets for the two ends of the pipe in the process's descriptor table. Pipe() 
is passed an array into which it places the index numbers of the sockets it created. The two ends are not 
equivalent. The socket whose index is returned in the low word of the array is opened for reading only, 
while the socket in the high end is opened only for writing. This corresponds to the fact that the standard 
input is the first descriptor of a process's descriptor table and the standard output is the second. After 
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*include <stdio.h> 

*define DATA "Bright star, would I were steadfast as thou art . . " 

I* 
* This program creates a pipe, then forks. The child communicates to the 
* parent over the pipe. Notice that a pipe is a one-way communications 
*device. I can write to the output socket (sockets[l], the second socket 
*of the array returned by pipe()) and read from the input socket 
* (sockets[O]), but not vice versa. 
*I 

main() 
{ 

int sockets[2], child; 

/* Create a pipe */ 
if (pipe(sockets) < 0) { 

perror("opening stream socket pair"); 
exit(lO); 

if ((child= fork()) == -1) 
perror("fork"); 

else if (child) { 
char buf[1024]; 

/* This is still the parent. It reads the child's message. */ 
close(sockets[l]); 
if (read(sockets[O], buf, 1024) < 0) 

perror("reading message"); 
printf("-->%s\n", buf); 
close(sockets[O]); 

else { 
I* This is the child. It writes a message to its parent. */ 
close(sockets[O]); 
if (write(sockets[l], DATA, sizeof(DATA)) < 0) 

perror("writing message"); 
close(sockets[l]); 

Figure 1 Use of a pipe 

creating the pipe, the parent creates the child with which it will share the pipe by calling fork(). Figure 2 
illustrates the effect of a fork. The parent process's descriptor table points to both ends of the pipe. After 
the fork, both parent's and child's descriptor tables point to the pipe. The child can then use the pipe to 
send a message to the parent. 

Just what is a pipe? It is a one-way communication mechanism, with one end opened for reading 
and the other end for writing. Therefore, parent and child need to agree on which way to turn the pipe, 
from parent to child or the other way around. Using the same pipe for communication both from parent to 
child and from child to parent would be possible (since both processes have references to both ends), but 
very complicated. If the parent and child are to have a two-way conversation, the parent creates two pipes, 
one for use in each direction. (In accordance with their plans, both parent and child in the example above 
close the socket that they will not use. It is not required that unused descriptors be closed, but it is good 
practice.) A pipe is also a stream communication mechanism; that is, all messages sent through the pipe 
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parent 

................ c:o••··············································································· 
parent child 

----..-0 .__ ___ -4 

---o 11-----... 

Figure 2 Sharing a pipe between parent and child 

are placed in order and reliably delivered. When the reader asks for a certain number of bytes from this 
stream, he is given as many bytes as are available, up to the amount of the request Note that these bytes 
may have come from the same call to write() or from several calls to write() which were concatenated. 

4. Socketpairs 

Berkeley UNIX 4.3BSD provides a slight generalization of pipes. A pipe is a pair of connected 
sockets for one-way stteam communication. One may obtain a pair of connected sockets for two-way 
stream communication by calling the routine socketpair(). The program in Figure 3 calls socketpair() to 
create such a connection. The program uses the link for communication in both directions. Since socket­
pairs are an extension of pipes, their use resembles that of pipes. Figure 4 illustrates the result of a fork fol­
lowing a call to socketpair(). 
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Socketpair() takes as arguments a specification of a domain, a style of communication, and a proto­
col. These are the parameters shown in the example. Domains and protocols will be discussed in the next 
section. Briefly, a domain is a space of names that may be bound to sockets and implies certain other con­
ventions. Currently, socketpairs have only been implemented for one domain, called the UNIX domain. 
The UNIX domain uses UNIX path names for naming sockets. It only allows communication between 
sockets on the same machine. 

Note that the header files <syslsocket.h> and <sysltypes.h>. are required in this program. The con­
stants AF _UNIX and SOCK_STREAM are defined in <syslsocket.h>, which in turn requires the file 
<sysltypes.h> for some of its definitions. 

#include <sys/types.h> 
tinclude <sys/socket.h> 
tinclude <stdio.h> 

tdef ine DATAl "In Xanadu, did Kublai Khan . . 
tdef ine DATA2 "A stately pleasure dome decree 

" 
" 

I* 
* This program creates a pair of connected sockets then forks and 
* communicates over them. This is very similar to communication with pipes, 
* however, socketpairs are two-way communications objects. Therefore I can 
* send messages in both directions. 
*I 

main() 
{ 

int sockets[2], child; 
char buf[l024]; 

if (socketpair(AF UNIX, SOCK STREAM, O, sockets) < 0) { 
perror("opening stream-socket pair"); 
exit(l); 

if ((child= fork()) == -1) 
perror("fork"); 

else if (child) { /* This is the parent. */ 
close(sockets[O]); 
if (read(sockets[l], buf, 1024, 0) < 0) 

perror("reading stream message"); 
printf("-->%s\n", buf); 
if (write(sockets[l], DATA2, sizeof(DATA2)) < 0) 

perror("writing stream message"); 
close(sockets[l]); 

else { /* This is the child. */ 
close(sockets[l]); 
if (write(sockets[O], DATAl, sizeof(DATAl)) < 0) 

perror("writing stream message"); 
if (read(sockets[O], buf, 1024, 0) < 0) 

perror("reading stream message"); 
printf("-->%s\n", buf); 
close(sockets[O]); 

Figure 3 Use of a socketpair 
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parent 
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Figure 4 Sharing a socketpair between parent and child 

S. Domains and Protocols 

Pipes and socketpairs are a simple solution for communicating between a parent and child or 
between child processes. What if we wanted to have processes that have no common ancestor with whom 
to set up communication? Neither standard UNIX pipes nor socketpairs are the answer here, since both 
mechanisms require a common ancestor to set up the communication. We would like to have two 
processes separately create sockets and then have messages sent between them. This is often the case 
when providing or using a service in the system. This is also the case when the communicating processes 
are on separate machines. In Berkeley UNIX 4.3BSD one can create individual sockets, give them names 
and send messages between them. 

Sockets created by different programs use names to refer to one another; names generally must be 
translated into addresses for use. The space from which an address is drawn is referred to as a domain. 
There are several domains for sockets. Two that will be used in the examples here are the UNIX domain 
(or AF_ UNIX, for Address Format UNIX) and the Internet domain (or AF_ INET). UNIX domain IPC is 



Introductory 4.3BSD IPC PS1:7-7 

an experimental facility in 4.2BSD and 4.3BSD. In the UNIX domain, a socket is given a path name 
within the file system name space. A file system node is created for the socket and other processes may 
then refer to the socket by giving the proper pathname. UNIX domain names, therefore, allow communica­
tion between any two processes that work in the same file system. The Internet domain is the UNIX imple­
mentation of the DARPA Internet standard protocols IP/TCP/UDP. Addresses in the Internet domain con­
sist of a machine network address and an identifying number, called a port. Internet domain names allow 
communication between machines. 

Communication follows some particular ''style.'' Currently, communication is either through a 
stream or by datagram. Stream communication implies several things. Communication takes place across 
a connection between two sockets. The communication is reliable, error-free, and, as in pipes, no message 
boundaries are kept. Reading from a stream may result in reading the data sent from one or several calls to 
write() or only part of the data from a single call, if there is not enough room for the entire message, or if 
not all the data from a large message has been transferred The protocol implementing such a style will 
retransmit messages received with errors. It will also return error messages if one tries to send a message 
after the connection has been broken. Datagram communication does not use connections. Each message 
is addressed individually. If the address is correct, it will generally be received, although this is not 
guaranteed Often datagrams are used for requests that require a response from the recipient If no 
response arrives in a reasonable amount of time, the request is repeated The individual datagrams will be 
kept separate when they are read, that is, message boundaries are preserved. 

The difference in performance between the two styles of communication is generally less important 
than the difference in semantics. The performance gain that one might find in using datagrams must be 
weighed against the increased complexity of the program, which must now concern itself with lost or out of 
order messages. If lost messages may simply be ignored, the quantity of traffic may be a consideration. 
The expense of setting up a connection is best justified by frequent use of the connection. Since the perfor­
mance of a protocol changes as it is tuned for different situations, it is best to seek the most up-to-date 
information when making choices for a program in which performance is crucial. 

A protocol is a set of rules, data formats and conventions that regulate the transfer of data between 
participants in the communication. In general, there is one protocol for each socket type (stream, 
datagram, etc.) within each domain. The code that implements a protocol keeps track of the names that are 
bound to sockets, sets up connections and transfers data between sockets, perhaps sending the data 
across a network. This code also keeps track of the names that are bound to sockets. It is possible for 
several protocols, differing only in low level details, to implement the same style of communication within 
a particular domain. Although it is possible to select which protocol should be used, for nearly all uses it is 
sufficient to request the default protocol. This has been done in all of the example programs. 

One specifies the domain, style and protocol of a socket when it is created. For example, in Figure 
Sa the call to socket() causes the creation of a datagram socket with the default protocol in the UNIX 
domain. 

6. Datagrams in the UNIX Domain 

Let us now look at two programs that create sockets separately. The programs in Figures Sa and Sb 
use datagram communication rather than a stream. The structure used to name UNIX domain sockets is 
defined in the file <syslun.h>. The definition has also been included in the example for clarity. 

Each program creates a socket with a call to socket(). These sockets are in the UNIX domain. Once 
a name has been decided upon it is attached to a socket by· the system call bind(). The program in Figure 
Sa uses the name ''socket'', which it binds to its socket. This name will appear in the working directory of 
the program. The routines in Figure Sb use its socket only for sending messages. It does not create a name 
for the socket because no other process has to refer to it. 

Names in the UNIX domain are path names. Like file path names they may be either absolute (e.g. 
"/dev/imaginary") or relative (e.g. "socket"). Because these names are used to allow processes to ren­
dezvous, relative path names can pose difficulties and should be used with care. When a name is bound 
into the name space, a file (inode) is allocated in the file system. If the inode is not deallocated, the name 
will continue to exist even after the bound socket is closed. This can cause subsequent runs of a program 
to find that a name is unavailable, and can cause directories to fill up with these objects. The names are 
removed by calling unlink() or using the rm(l) co~d. Names in the UNIX domain are only used for 
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#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/unch> 

I* 
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* In the included file <sys/un.h> a sockaddr_un is defined as follows 
* struct sockaddr_un { 
* short sun_family; 
* char sun_path[l08]; 
* } ; 
*I 

#include <stdio.h> 

#define NAME "socket" 

I* 
* This program creates a UNIX domain datagram socket, binds a name to it, 
* then reads from the socket. 
*I 

main() 
{ 

int sock, length; 
struct sockaddr un name; 
char buf[l024];-

I* Create socket from which to read. */ 
sock= socket(AF UNIX, SOCK OGRAM, 0); 
if (sock < 0) { - -

perror("opening datagram socket"); 
exit(l); 

} 

I* Create name. */ 
name.sun_family = AF_UNIX; 
strcpy(namecsun_path, NAME); 
if (bind(sock, &name, sizeof(struct sockaddr_un))) 

perror("binding name to datagram socket"); 
exit(l); 

printf("socket -->%s\n", NAME); 
I* Read from the socket */ 
if (read(sock, buf, 1024) < 0) 

perror("receiving datagram packet"); 
printf("-->%s\n", buf); 
close(sock); 
unlink(NAME); 

Figure 5a Reading UNIX domain datagrams 
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iinclude <sys/types.h> 
iinclude <sys/socket.h> 
tinclude <sys/un.h> 
iinclude <stdio.h> 

idefine DATA "The sea is calm tonight, the tide is full . . 

I* 
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" 

* Here I send a datagram to a receiver whose name I get from the command 
* line arguments. The form of the command line is udgramsend pathname 
*I 

main(argc, argv) 
int argc; 
char *argv[]; 

int sock; 
struct sockaddr_un name; 

I* Create socket on which to send. */ 
sock - socket(AF UNIX, SOCK OGRAM, 0); 
if (sock < 0) { - -

} 

perror("opening datagram socket"); 
exit(l); 

/* Construct name of socket to send to. */ 
name.sun_family = AF_UNIX; 
strcpy(name.sun_path, argv[l]); 
/* Send message. */ 
if (sendto(sock, DATA, sizeof(DATA), O, 

&name, sizeof(struct sockaddr_un)) < 0) 
perror("sending datagram message"); 

close(sock); 

Figure Sb Sending a UNIX domain datagrams 

rendezvous. They are not used for message delivery once a connection is established. Therefore, in con­
trast with the Internet domain, unbound sockets need not be (and are not) automatically given addresses 
when they are connected. 

There is no established means of communicating names to interested parties. In the example, the 
program in Figure Sb gets the name of the socket to which it will send its message through its command 
line arguments. Once a line of communication has been created, one can send the names of additional, 
perhaps new, sockets over the link. Facilities will have to be built that will make the distribution of names 
less of a problem than it now is. 

7. Datagrams in the Internet Domain 

The examples in Figure 6a and 6b are very close to the previous example except that the socket is in 
the Internet domain. The structure of Internet domain addresses is defined in the file <netinetlin.h>. Inter­
net addresses specify a host address (a 32-bit number) and a delivery slot, or port, on that machine. These 
ports are managed by the system routines that implement a particular protocol. Unlike UNIX domain 
names, Internet socket names are not entered into the file system and, therefore, they do not have to be 
unlinked after the socket has been closed. When a message must be sent between machines it is sent to the 
protocol routine on the destination machine, which interprets the address to determine to which socket the 
message should be delivered. Several different protocols may be active on the same machine, but, in gen­
eral, they will not communicate with one another. As a result, different protocols are allowed to use the 
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#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <stdio.h> 

I* 
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* In the included file <netinet/in.h> a sockaddr_in is defined as follows: 
* struct sockaddr in { 
* short sin family; 
* u_short - sin_port; 
* struct in_addr sin_addr; 
* char sin_zero[8]; 
* } ; 
* * This program creates a datagram socket, binds a name to it,. then reads 
* from the socket. 
*I 

main() 
{ 

int sock, length; 
struct sockaddr_in name; 
char buf[l024]; 

I* Create socket from which to read. */ 
sock= socket(AF !NET, SOCK OGRAM, 0); 
if (sock < 0) { - -

} 

perror("opening datagram socket"); 
exit(l); 

I* Create name with wildcards. */ 
name.sin_family = AF_INET; 
name.sin_addr.s_addr = INADDR_ANY; 
name.sin_port = O; 
if (bind(sock, &name, sizeof(name))) 

perror("binding datagram socket"); 
exit(l); 

} 
I* Find assigned port value and print it out. */ 
length= sizeof(name); 
if (getsockname(sock, &name, &length)) 

perror("getting socket name"); 
exit(l); 

printf("Socket has port #%d\n", ntohs(name.sin_port)); 
/* Read from the socket */ 
if (read(sock, buf, 1024) < 0) 

perror("receiving datagram packet"); 
printf("-->%s\n", buf); 
close(sock); 

Figure 6a Reading Internet domain datagrams 

same port numbers. Thus, implicitly, an Internet address is a triple including a protocol as well as the port 
and machine address. An association is a temporary or permanent specification of a pair of communicating 
sockets. An association is thus identified by the tuple <.protocol, local machine address, local port, remote 
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machine address, remote port>. An association may be transient when using datagram sockets; the associ­
ation actually exists during a send operation. 

The protocol for a socket is chosen when the socket is created. The local machine address for a 
socket can be any valid network address of the machine, if it has more than one, or it can be the wildcard 
value INADDR_ANY. The wildcard value is used in the program in Figure 6a. If a machine has several 
network addresses, it is likely that messages sent to any of the addresses should be deliverable to a socket 

finclude <sys/types.h> 
finclude <sys/socket.h> 
finclude <netinet/in.h> 
finclude <netdb.h> 
finclude <stdio.h> 

fdefine DATA "The sea is calm tonight, the tide is full . . 

I* 

" 

* Here I send a datagram to a receiver whose name I get from the command 
* line arguments. The form of the command line is dgramsend hostname 
* portnumber 
*I 

~ain(argc, argv) 
int argc; 
char *argv[]; 

int sock; 
struct sockaddr in name; 
struct hostent *hp, *gethostbyname(); 

I* Create socket on which to send. */ 
sock= socket(AF_INET, SOCK_DGRAM, 0); 
if (sock < 0) { 

} 

I* 

perror("opening datagram socket"); 
exit(l); 

* Construct name, with no wildcards, of the socket to send to. 
* Getnostbyname() returns a structure including the network address 
* of the specified host. The port number is taken from the command 
* line. 
*I 

hp= gethostbyname(argv[l]); 
if (hp == 0) { 

fprintf(stderr, "%s: unknown hostO, argv[l]); 
exit(2); 

bcopy(hp->h_addr, &name.sin_addr, hp->h_length); 
name.sin_family = AF_INET; 
name.sin_port = htons(atoi(argv[2])); 
I* Send message. */ 
if (sendto(sock, DATA, sizeof(DATA), O, &name, sizeof(name)) < 0) 

perror("sending datagram message"); 
close(sock); 

Figure 6b Sending an Internet domain datagram 
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This will be the case if the wilclcard value has been chosen. Note that even if the wildcard value is chosen, 
a program sending messages to the named socket must specify a valid network address. One can be willing 
to receive from "anywhere," but one cannot send a message "anywhere." The program in Figure 6b is 
given the destination host name as a command line argument To determine a network address to which it 
can send the message, it looks up the host address by the call to gethostbyname(). The returned structure 
includes the host's network address, which is copied into the structure specifying the destination of the 
message. 

The port number can be thought of as the number of a mailbox, into which the protocol places one's 
messages. Certain daemons, offering certain advertised services, have reserved or "well-known" port 
numbers. These fall in the range from 1 to 1023. Higher numbers are available to general users. Only 
servers need to ask for a particular number. The system will assign an unused port number when an 
address is bound to a socket This may happen when an explicit bind call is made with a port number of 0, 
or when a connect or send is performed on an unbound socket Note that port numbers are not automati­
cally reported back to the user. After calling bind(), asking for port 0, one may call getsockname() to dis­
cover what port was actually assigned. The routine getsockname() will not work for names in the UNIX 
domain. 

The format of the socket address is specified in part by standards within the Internet domain. The 
specification includes the order of the bytes in the address. Because machines differ in the internal 
repre~entation they ordinarily use to represent integers, printing out the port number as returned by get­
sockname() may result in a misinterpretation. To print out the number, it is necessary to use the routine 
ntohs() (for network to host: short) to convert the number from the network representation to the host's 
representation. On some machines, such as 68000-based machines, this is a null operation. On others, 
such as VAXes, this results in a swapping of bytes. Another routine exists to convert a short integer from 
the host format to the network format, called htons(); similar routines exist for long integers. For further 
information, refer to the entry for byteorder in section 3 of the manual. 

8. Connections 

To send data between stream sockets (having communication style SOCK STREAM), the sockets 
must be connected .. Figures 7a and 7b show two programs that create such a connection. The program in 
7a is relatively simple. To initiate a connection, this program simply creates a stream socket, then calls 
connect(), specifying the address of the socket to which it wishes its socket connected. Provided that the 
target socket exists and is prepared to handle a connection, connection will be complete, and the program 
can begin to send messages. Messages will be delivered in order without message boundaries, as with 
pipes. The connection is destroyed when either socket is closed (or soon thereafter). If a process persists 
in sending messages after the connection is closed, a SIGPIPE signal is sent to the process by the operating 
system. Unless explicit action is taken to handle the signal (see the manual page for signal or sigvec ), the 
process will terminate and the shell will print the message ''broken pipe.'' 

Forming a connection is asymmetrical; one process, such as the program in Figure 7 a, requests a 
connection with a particular socket, the other process accepts connection requests. Before a connection 
can be accepted a socket must be created and an address bound to it This situation is illustrated in the top 
half of Figure 8. Process 2 has created a socket and bound a port number to it Process 1 has created an 
unnamed socket. The address bound to process 2' s socket is then made known to process 1 and, perhaps to 
several other potential communicants as well. If there are several possible communicants, this one socket 
might receive several requests for connections. As a result, a new socket is created for each connection. 
This new socket is the endpoint for communication within this process for this connection. A connection 
may be destroyed by closing the corresponding socket 

The program in Figure 7b is a rather trivial example of a server. It creates a socket to which it binds 
·a name, which it then advertises. (In this case it prints out the socket number.) The program then calls 
listen() for this socket Since several clients may attempt to connect more or less simultaneously, a queue 
of pending connections is maintained in the system address space. Listen() marks the socket as willing to 
accept connections and initializes the queue. When a connection is requested, it is listed in the queue. If 
the queue is full, an error status may be returned to the requester. The maximum length of this queue is 
specified by the second argument of listen(); the maximum length is limited by the system. Once the listen 
call has been completed, the program enters an in.finite loop. On each pass through the loop, a new connec­
tion is accepted and removed from the queue, and, hence, a new socket for the ·connection is created. The 
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#include <sys/types.h> 
#include <sys/socket.h> 
iinclude <netinet/in.h> 
iinclude <netdb.h> 
#include <stdio.h> 

=lf:define DATA "Half a league, half a league . . 

I* 
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" 

* This program creates a socket and initiates a connection with the socket 
* given in the command line. One message is sent over the connection and 
* then the socket is closed, ending the connection. The form of the command 
* line is streamwrite hostname portnumber 
*I 

main(argc, argv) 
int argc; 
char *argv []; 

int sock; 
struct sockaddr_in server; 
struct hostent *hp, *gethostbyname(); 
char buf[1024]; 

I* Create socket */ 
sock= socket(AF INET, SOCK_STREAM, 0); 
if (sock < 0) { -

} 

perror("opening stream socket"); 
exit(l); 

I* Connect socket using name specified by command line. */ 
server.sin_family = AF_INET; 
hp= gethostbyname(argv[l]); 
if (hp == 0) { 

fprintf(stderr, "%s: unknown hostO, argv[l]); 
exit(2); 

bcopy(hp->h_addr, &server.sin_addr, hp->h_length); 
server.sin_port = htons(atoi(argv[2])); 

if (connect(sock, &server, sizeof(server)) < 0) { 
perro:i::("connecting stream socket"); 
exit(l); 

} 
if (write(sock, DATA, sizeof(DATA)) < 0) 

perror("writing on stream socket"); 
close(sock); 

Figure 7 a Initiating an Internet domain stream connection 
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#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netdb.h> 
#include <stdiooh> 
tdef ine TRUE 1 

I* 
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* This program creates a socket and then begins an infinite loop. Each time 
* through the loop it accepts a connection and prints out messages from it. 
* When the connection breaks, or a termination message comes through, the 
* program accepts a new connection. 
*I 

main() 
{ 

int sock, length; 
struct sockaddr_in server; 
int msgsock; 
char buf[l024]; 
int rval; 
int i; 

I* Create socket */ 
sock= socket(AF INET, SOCK_STREAM, 0); 
if (sock < 0) { -

} 

perror("opening stream socket"); 
exit(l); 

I* Name socket using wildcards */ 
server.sin_family = AF_INET; 
server.sin addr.s addr = INADDR ANY; 
server.sin~ort =-0; -
if (bind(sock, &server, sizeof(server))) 

perror("binding stream socket"); 
exit(l); 

} 

I* Find out assigned port number and print it out */ 
length= sizeof(server); 
if (getsockname(sock, &server, &length)) 

perror("getting socket name"); 
exit(l); 

printf("Socket has port #"%d\n", ntohs(server.sin_port)); 

I* Start accepting connections */ 
listen(sock, 5); 
do { 

msgsock = accept(sock, O, 0); 
if (msgsock == -1) 

perror("accept"); 
else do { 

bzero(buf, sizeof(buf)); 
if ((rval = read(msgsock, buf, 1024)) < 0) 

perror("reading stream message"); 
i = 0; 
if (rval == 0) 
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printf("Ending connection\n"); 
else 

printf("-->%s\n", buf); 
while (rval != 0); 

close(msgsock); 
} while (TRUE); 
I* 
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* Since this program has an infinite loop, the socket "sock" is 
* never explicitly closed. However, all sockets will be closed 
* automatically when a process is killed or terminates normally. 
*I 

Figure 7b Accepting an Internet domain stream connection 

#include <sys/types.h> 
#include <sys/socket.h> 
iinclude <sys/time.h> 
#include <netinet/in.h> 
#include <netdb.h> 
#include <stdio.h> 
#define TRUE 1 

I* 
* This program uses select() to check that someone is trying to connect 
* before calling accept(). 
*I 

main() 
{ 

int sock, length; 
struct sockaddr in server; 
int msgsock; 
char buf[l024]; 
int rval; 
fd_set ready; 
struct timeval to; 

I* Create socket */ 
sock= socket(AF_INET, SOCK_STREAM, 0); 
if (sock < 0) { 

} 

perror("opening stream socket"); 
exit(l); 

I* Name socket using wildcards */ 
server.sin_family = AF_INET; 
server.sin_addr.s_addr = INADDR_ANY; 
server.sin_port = 0; 
if (bind(sock, &server, sizeof(server))) 

perror("binding stream socket"); 
exit(l); 

} 
I* Find out assigned port number and print it out */ 
length= sizeof(server); 
if (getsockname(sock, &server, &length)) 

perror("getting socket name"); 
exit(l); 
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printf("Socket has port #%d\n", ntohs(server.sin_port)); 

I* Start accepting connections */ 
listen(sock, 5); 
do { 

FD_ZERO (&ready); 
FD_SET(sock, &ready); 
tootV sec = 5; 
if (select(sock + 1, &ready, o, O, &to) < 0) { 

perror("select"); 
continue; 

} 

if (FD_ISSET(sock, &ready)) { 

else 

msgsock = accept(sock, (struct sockaddr *)0, (int *)0); 
if (msgsock =- -1) 

perror("accept"); 
else do { 

bzero(buf, sizeof(buf)); 
if ((rval = read(msgsock, buf, 1024)) < 0) 

perror("reading stream message"); 
else if (rval == 0) 

printf("Ending connection\n"); 
else 

printf("-->%s\n", buf); 
while (rval > 0); 

close(msgsock); 

printf("Do something else\n"); 
while (TRUE); 

Figure 7c Using select() to check for pending connections 
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Process 1 Process 2 

0 

0 
Process 1 Process 2 

0 
0 

Figure 8 Establishing a stream connection 

bottom half of Figure 8 shows the result of Process 1 connecting with the named socket of Process 2, and 
Process 2 ~cepting the connection. After the connection is created, the service, in this case printing out 
the messages, is performed and the connection socket closed. The accept() call will take a pending con­
nection request from the queue if one is available, or block waiting for a request Messages are read from 
the connection socket. Reads from an active connection will normally block until data is available. The 
number of bytes read is returned. When a connection is destroyed, the read call returns immediately. The 
number of bytes returned will be zero. 

The program in Figure 7c is a slight variation on the server in Figure 7b. It avoids blocking when 
there are no pending connection requests by calling select() to check for pending requests before calling 
accept(). This strategy is useful when connections may be received on more than one socket, or when data 
may arrive on other connected sockets before another connection request. 

The programs in Figures 9a and 9b show a program using stream communication in the UNIX 
domain. Streams in the UNIX domain can be used for this sort of program in exactly the same way as 
Internet domain streams, except for the form of the names and the restriction of the connections to a single 
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file system. There are some differences, however, in the functionality of streams in the two domains, not­
ably in the handling of out-of-band data (discussed briefly below). These differences are beyond the scope 
of this paper. 

9. Reads, Writes, Recvs, etc. 

UNIX 4.3BSD has several system calls for reading and writing information. The simplest calls are 
read() and write(). Write() takes as arguments the index of a descriptor, a pointer to a buffer containing the 
data and the size of the data The descriptor may indicate either a file or a connected socket "Connected" 
can mean either a connected stream socket (as described in Section 8) or a datagram socket for which a 
connect() call has provided a default destination (see the connect() manual page). Read() also takes a 
descriptor that indicates either a file or a socket. Write() requires a connected socket since no destination is 
specified in the parameters of the system call. Read() can be used for either a connected or an unconnected 
socket. These calls are, therefore, quite flexible and may be used to write applications that require no 
assumptions about the source of their input or the destination of their output. There are variations on 
read() and write() that allow the source and destination of the input and output to use several separate 
buffers, while retaining the flexibility to handle both files and sockets. These are readv() and writev(), for 
read and write vector. 

It is sometimes necessary to send high priority data over a connection that may have unread low 
priority data at the other end. For example, a user interface process may be interpreting commands and 
sending them on to another process through a stream connection. The user interface may have filled the 
stream with as yet unprocessed requests when the user types a command to cancel all outstanding requests. 
Rather than have the high priority data wait to be processed after the low priority data, it is possible to send 
it as out-of-band (OOB) data The notification of pending OOB data results in the generation of a SIGURG 
signal, if this signal has been enabled (see the manual page for signal or sigvec). See [Leffler 1986] for a 
more complete description of the OOB mechanism. There are a pair of calls similar to read and write that 
allow options, including sending and receiving OOB information; these are send() and recv(). These calls 
are used only with sockets; specifying a descriptor for a file will result in the return of an error status. 
These calls also allow peeking at data in a stream. That is, they allow a process to read data without 
removing the data from the stream. One use of this facility is to read ahead in a stream to determine the 
size of the next item to be read. When not using these options, these calls have the same functions as 
read() and write(). 

To send datagrams, one must be allowed to specify the destination. The call sendto() takes a destina­
tion address as an argument and is therefore used for sending datagrams. The call recvfrom.() is often used 
to read datagrams, since this call returns the address of the sender, if it is available, along with the data. If 
the identity of the sender does not matter, one may use read() or recv(). 

Finally, there are a pair of calls that allow the sending and receiving of messages from multiple 
buffers, when the address of the recipient must be specified. These are sendmsg() and recvmsg(). These 
calls are actually quite general and have other uses, including, in the UNIX domain, the transmission of a 
file descriptor from one process to another. 

The various options for reading and writing are shown in Figure 10, together with their parameters. 
The parameters for each system call reflect the differences in function of the different calls. In the exam­
ples given in this paper, the calls read() and write() have been used whenever possible. 

10. Choices 

This paper has presented examples of some of the forms of communication supported by Berkeley 
UNIX 4.3BSD. These have been presented in an order chosen for ease of presentation. It is useful to 
review these options emphasizing the factors that make each attractive. 

Pipes have the advantage of portability, in that they are supported in all UNIX systems. They also 
are relatively simple to use. Socketpairs share this simplicity and have the additional advantage of allow­
ing bidirectional communication. The major shortcoming of these mechanisms is that they require com­
municating processes to be descendants of a common process. They do not allow intermachine communi­
cation. 



Introductory 4.3BSD IPC 

iinclude <sys/types.h> 
iinclude <sys/socket.h> 
iinclude <sys/un.h> 
#include <stdio.h> 

tdef ine DATA "Half a league, half a league . . 

I* 
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" 

* This program connects to the socket named in the command line and sends a 
* one line message to that socket. The form of the command line is 
* ustreamwrite pathname 
*I 

main(argc, argv) 
int argc; 
char *argv[]; 

int sock; 
struct sockaddr_un server; 
char buf[l024]; 

/* Create socket */ 
sock= socket(AF UNIX, SOCK_STREAM, 0); 
if (sock < 0) { -

} 

perror("opening stream socket"); 
exit(l); 

I* Connect socket using name specified by command line. */ 
server.sun family = AF UNIX; 
strcpy(server.sun_path~ argv[l]); 

if (connect(sock, &server, sizeof(struct sockaddr_un)) < 0) { 
close(sock); 
perror("connecting stream socket"); 
exit(l); 

if (write(sock, DATA, sizeof(DATA)) < 0) 
perror("writing on stream socket"); 

Figure 9a Initiating a UNIX domain stream connection 

iinclude <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <stdio.h> 

#define NAME "socket" 

I* 
* This program creates a socket in the UNIX domain and binds a name to it. 
* After printing the socket's name it begins a loop. Each time through the 
* loop it accepts a connection and prints out messages from it. When the 
* connection breaks, or a termination message comes through, the program 
* accepts a new connection. 
*I 
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main() 
{ 

int sock, msgsock, rval; 
struct sockaddr un server; 
char buf[1024];-

I* Create socket */ 
sock - socket(AF_UNIX, SOCK_STREAM, 0); 
if (sock < 0) { 

} 

perror("opening stream socket"); 
exit(l); 

I* Name socket using file system name */ 
server.sun_family = AF_UNIX; 
strcpy(server.sun_path, NAME); 
if (bind(sock, &server, sizeof(struct sockaddr_un))) 

perror("binding stream socket"); 
exit(l); 

} 
printf("Socket has name %s\n", server.sun_path); 
I* Start accepting connections */ 
listen(sock, 5); 
for (;;) { 

} 

I* 

msgsock = accept(sock, O, 0); 
if (msgsock == -1) 

perror("accept"); 
else do { 

bzero(buf, sizeof(buf)); 
if ((rval = read(msgsock, buf, 1024)) < 0) 

perror("reading stream message"); 
else if (rval =- 0) 

printf("Ending connection\n"); 
else 

printf("-->%s\n", buf); 
while (rval > 0}; 

close(msgsock); 

* The following statements are not executed, because they follow an 
* infinite loop. However, most ordinary programs will not run 
* forever~ In the UNIX domain it is necessary to tell the file 
* system that one is through using NAME. In most programs one uses 
* the call unlink() as below. Since the user will have to kill this 
* program, it will be necessary to remove the name by a command from 
* the shell. 
*/ 

close(sock); 
unlink (NAME) ; 

Figure 9b Accepting a UNIX domain stream connection 
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I* 
* The variable descriptor may be the descriptor of either a file 
* or of a socket. 
*I 

cc = read(descriptor, buf, nbytes) 
int cc, descriptor; char *buf; int nbytes; 

I* 
* An iovec can include several source buffers. 
*I 

cc = readv(descriptor, iov, iovcnt) 
int cc, descriptor; struct iovec *iov; int iovcnt; 

cc = write(descriptor, buf, nbytes) 
int cc, descriptor; char *buf; int nbytes; 

cc = writev(descriptor, iovec, ioveclen) 
int cc, descriptor; struct iovec *iovec; int ioveclen; 

I* 
* The variable ''sock'' must be the descriptor of a socket. 
* Flags may include MSG_OOB and MSG_PEEK. 
*I 

cc = send(sock, msg, len, flags) 
int cc, sock; char *msg; int len, flags; 

cc= sendto(sock, msg, len, flags, to, tolen) 
int cc, sock; char *msg; int len, flags; 
struct sockaddr *to; int tolen; 

cc = sendmsg(sock, msg, flags) 
int cc, sock; struct msghdr msg[]; int flags; 

cc = recv(sock, buf, len, flags) 
int cc, sock; char *buf; int len, flags; 

cc = recvfrom(sock, buf, len, flags, from, fromlen) 
int cc, sock; char *buf; int len, flags; 
struct sockaddr *from; int *fromlen; 

cc = recvmsg(sock, msg, flags) 
int cc, socket; struct msghdr msg[]; int flags; 

Figure 10 Varieties of read and write commands 

The two communication domains, UNIX and Internet, allow processes,;,with no common ancestor to 
communicate. Of the two, only the Internet domain allows communication between machines. This makes 
the Internet domain a necessary choice for processes running on separate machines. 

The choice between datagrams and stream communication is best made by carefully considering the 
semantic and performance requirements of the application. Streams can be both advantageous and disad­
vantageous. One disadvantage is that a process is only allowed a limited number of open streams, as there 
are usually only 64 entries available in the open descriptor table. This can cause problems if a single server 
must talk with a large number of clients. Another is that for delivering a short message the stream setup and 
teardown time can be unnecessarily long. Weighed against this are the reliability built into the streams. 
This will often be the deciding factor in favor of streams. 
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11. What to do Next 

Many of the examples presented here can serve as models for multiprocess programs and for pro~ 
grams distributed across several machines. In developing a new multiprocess program, it is often easiest to 
first write the code to create the processes and communication paths. After this code is debugged, the code 
specific to the application can be added. 

An introduction to the UNIX system and programming usin~ UNIX system calls can be found in 
[Kernighan and Pike 1984]. Further documentation of the Berkeley UNIX 4.3BSD IPC mechanisms can 
be found in [Leffler et al. 1986]. More detailed information about particular calls and protocols is provided 
in sections 2, 3 and 4 of the UNIX Programmer's Manual [CSRG 1986]. In particular the following 
manual pages are relevant: 

creating and naming sockets 
establishing connections 
transferring data 
addresses 
protocols 

Acknowledgements 

socket(2), bind(2) 
listen(2), accept(2), connect(2) 
read(2), write(2), send(2), recv(2) 
inet(4F) 
tcp(4P), udp(4P). 

I would like to thank Sam Leffler and Mike Karels for their help in understanding the IPC 
mechanisms and all the people whose comments have helped in writing and improving this report. 

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), ARP A 
Order No. 4031, monitored by the Naval Electronics Systems Command under contract No. N00039-
C-0235. The views and conclusions contained in this document are those of the author and should not 
be interpreted as representing official policies, either expressed or implied, of the Defense Research 
Projects Agency or of the US Government 

References 

B.W. Kernighan & R. Pike, 1984, 
T~ UNIX Programming Environment. 
Englewood Cliffs, NJ.: Prentice-Hall. 

B.W. Kernighan & DM. Ritchie, 1978, 
T~ C Programming Language, 
Englewood Cliffs, NJ.: Prentice-Hall. 

SJ. Leffler, R.S. Fabry, W .N. Joy, P. Lapsley, S. Miller & C. Torek, 1986, 
An Advanced 4.3BSD Interprocess Communication Tutorial. 
Computer Systems Research Group, 
Department of Electrical Engineering and Computer Science, 
University of California, Berkeley. 

Computer Systems Research Group, 1986, 
UNIX Programmer's Manual, 43 Berkeley Software Distribution. 
Computer Systems Research Group, 
Department of Electrical Engineering and Computer Science, 
University of California, Berkeley. 



An Advanced 4.3BSD Interprocess Communication Tutorial 

Samuel J. Leffler 

Robert S. Fabry 

William N. Joy 

Phil Lapsley 

Computer Systems Research Group 
Department of Electrical Engineering and Computer Science 

University of California, Berkeley 
Berkeley, California 94720 

Steve Miller 

Chris Torek 

Heterogeneous Systems Laboratory 
Department of Computer Science 

University of Maryland, College Park 
College Park, Maryland 20742 

ABSTRACT 

This document provides an introduction to the interprocess communication facili­
ties included in the 4.3BSD release of the UNIX* system. 

It discusses the overall model for interprocess communication and introduces the 
interprocess communication primitives which have been added to the system. The 
majority of the document considers the use of these primitives in developing applica­
tions. The reader is expected to be familiar with the C programming language as all 
examples are written in C. 

* UNIX is a Trademark of Bell Laboratories. 
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1. INTRODUCTION 

One of the most important additions to UNIX in 4.2BSD was interprocess communication. These facilities 
were the result of more than two years of discussion and research. The facilities provided in 4.2BSD incor­
porated many of the ideas from current research, while trying to maintain the UNIX philosophy of simpli­
city and conciseness. The current release of Berkeley UNIX, 4.3BSD, completes some of the IPC facilities 
and provides an upward-compatible interface. It is hoped that the interprocess communication facilities 
included in 4.3BSD will establish a standard for UNIX. From the response to the design, it appears many 
organizations carrying out work with UNIX are adopting it 

UNIX has previously been very weak in the area of interprocess communication. Prior to the 4BSD 
facilities, the only standard mechanism which allowed two processes to communicate were pipes (the mpx 
files which were part of Version 7 were experimental). Unfortunately, pipes are very restrictive in that the 
two communicating processes must be related through a common ancestor. Further, the semantics of pipes 
makes them almost impossible to maintain in a distributed environment. 

Earlier attempts at extending the IPC facilities of UNIX have met with mixed reaction. The majority 
of the problems have been related to the fact that these facilities have been tied to the UNIX file system, 
either through naming or implementation. Consequently, the IPC facilities provided in 4.3BSD have been 
designed as a totally independent subsystem. The 4.3BSD IPC allows processes to rendezvous in many 
ways. Processes may rendezvous through a UNIX file system-like name space (a space where all names are 
path names) as well as through a network name space .. In fact, new name spaces may be added at a future 
time with only minor changes visible to users. Further, the communication facilities have been extended to 
include more than the simple byte stream provided by a pipe. These extensions have resulted in a com­
pletely new part of the system which users will need time to familiarize themselves with. It is likely that as 
more use is made of these facilities they will be refined; only time will tell. 

This document provides a high-level description of the IPC facilities in 4.3BSD and their use. It is 
designed to complement the manual pages for the IPC primitives by examples of their use. The remainder 
of this document is organized in four sections. Section 2 introduces the !PC-related system calls and the 
basic model of communication. Section 3 describes some of the supporting library routines users may find 
useful in constructing distributed applications. Section 4 is concerned with the client/server model used in 
developing applications and includes examples of the two major types of servers. Section 5 delves into 
advanced topics which sophisticated users are likely to encounter when using the IPC facilities. 
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2. BASICS 

The basic building block for communication is the socket. A socket is an endpoint of communication 
to which a name may be bound. Each socket in use has a type and one or more associated processes. 
Sockets exist within communication domains. A communication domain is an abstraction introduced to 
bundle common properties of processes communicating through sockets. One such property is the scheme 
used to name sockets. For example, in the UNIX communication domain sockets are named with UNIX 
path names; e.g. a socket may be named "/dev/foo''. Sockets normally exchange data only with sockets in 
the same domain (it may be possible to cross domain boundaries, but only if some translation process is 
performed). The 4.3BSD IPC facilities support three separate communication domains: the UNIX 
domain, for on-system communication; the Internet domain, which is used by processes which communi­
cate using the the DARPA standard communication protocols; and the NS domain, which is used by 
processes which communicate using the Xerox standard communication protocols*. The underlying com­
munication facilities provided by these domains have a significant influence on the internal system imple­
mentation as well as the interface to socket facilities available to a user. An example of the latter is that a 
socket "operating" in the UNIX domain sees a subset of the error conditions which are possible when 
operating in the Internet (or NS) domain. 

2.1. Socket types 

Sockets are typed according to the communication properties visible to a user. Processes are 
presumed to communicate only between sockets of the same type, although there is nothing that prevents 
communication between sockets of different types should the underlying communication protocols support 
this. 

Four types of sockets currently are available to a user. A stream socket provides for the bidirec­
tional, reliable, sequenced, and unduplicated fl.ow of data without record boundaries. Aside from the 
bidirectionality of data fl.ow, a pair of connected stream sockets provides an interface nearly identical to 
that of pipest. 

A datagram socket supports bidirectional fl.ow of data which is not promised to be sequenced, reli­
able, or unduplicated. That is, a process receiving messages on a datagram socket may find messages dupli­
cated, and, possibly, in an order different from the order in which it was sent. An important characteristic 
of a datagram socket is that record boundaries in data are preserved. Datagram sockets closely model the 
facilities found in many contemporary packet switched networks such as the Ethernet. 

A raw socket provides users access to the underlying communication protocols which support socket 
abstractions. These sockets are normally datagram oriented, though their exact characteristics are depen­
dent on the interface provided by the protocol. Raw sockets are not intended for the general user; they 
have been provided mainly for those interested in developing new communication protocols, or for gaining 
access to some of the more esoteric facilities of an existing protocol. The use of raw sockets is considered 
in section 5. 

A sequenced packet socket is similar to a stream socket, with the exception that record boundaries 
are preserved. This interface is provided only as part of the NS socket abstraction, and is very important in 
most serious NS applications. Sequenced-packet sockets allow the user to manipulate the SPP or IDP 
headers on a packet or a group of packets either by writing a prototype header along with whatever data is 
to be sent, or by specifying a default header to be used with all outgoing data, and allows the user to 
receive the headers on incoming packets. The use of these options is considered in section 5. 

Another potential socket type which has interesting properties is the reliably delivered message 
socket. The reliably delivered message socket has similar properties to a datagram socket, but with reliable 

* See Internet Transport Protocols, Xerox System Integration Standard (XSIS)028112 for more information. This 
document is almost a necessity for one trying to write NS applications. 
t In the UNIX domain, in fact, the semantics are identical and, as one might expect, pipes have been implemented 
internally as simply a pair of connected stream sockets. 
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delivery. There is currently no support for this type of socket, but a reliably delivered message protocol 
similar to Xerox's Packet Exchange Protocol (PEX) may be simulated at the user level. More information 
on this topic can be found in section 5. 

2.2. Socket creation 

To create a socket the socket system call is used: 

s =socket( domain, type, protocol); 

This call requests that the system create a socket in the specified domain and of the specified type. A par­
ticular protocol may also be requested. If the protocol is left unspecified (a value of 0), the system will 
select an appropriate protocol from those protocols which comprise the communication domain and which 
may be used to support the requested socket type. The user is returned a descriptor (a small integer 
number) which may be used in later system calls which operate on sockets. The domain is specified as one 
of the manifest constants defined in the file <SJSlsocket.h>. For the UNIX domain the constant is 
AF_ UNIX*; for the Internet domain AF_ INET; and for the NS domain, AF_ NS. The socket types are also 
defined in this file and one of SOCK_ STREAM, SOCK_ OGRAM, SOCK_ RAW, or SOCK_ SEQPACKET 
must be specified. To create a stream socket in the Internet domain the following call might be used: 

s = socket(AF_INET, SOCK_STREAM, 0); 

This call would result in a stream socket being created with the TCP protocol providing the underlying 
communication support. To create a datagram socket for on-machine use the call might be: 

s = socket(AF_UNIX, SOCK_DGRAM, 0); 

The default protocol (used when the protocol argument to the socket call is 0) should be correct for 
most every situation. However, it is possible to specify a protocol other than the default; this will be 
covered in section 5. 

There are several reasons a socket call may fail. Aside from the rare occurrence of lack of memory 
(ENOBUFS), a socket request may fail due to a request for an unknown protocol (EPROTONOSUP­
PORT), or a request for a type of socket for which there is no supporting .protocol (EPROTOTYPE). 

2.3. Binding local names 

A socket is created without a name. Until a name is bound to a socket, processes have no way to 
reference it and, consequently, no messages may be received on it. Communicating processes are bound 
by an association. In the Internet and NS domains, an association is composed of local and foreign 
addresses, and local and foreign ports, while in the UNIX domain, an association is composed of local and 
foreign path names (the phrase "foreign pathname" means a pathname created by a foreign process, not a 
pathname on ·a foreign system). In most domains, associations must be unique. In the Internet domain 
there may never be duplicate <protocol, local address, local port, foreign address, foreign port> tuples. 
UNIX domain sockets need not always be bound to a name, but when bound there may never be duplicate 
<protocol, local pathname, foreign pathname> tuples. The pathnames may not refer to files already exist­
ing on the system in 4.3; the situation may change in future releases. 

The bind system call allows a process to specify half of an association, <local address, local port> (or 
<local pathname>), while the connect and accept primitives are used to complete a socket's association. 

In the Internet domain, binding names to sockets can be fairly complex. Fortunately, it is usually not 
necessary to specifically bind an address and port number to a socket, because the connect and send calls 
will automatically bind an appropriate address if they are used with an unbound socket The process of 
binding names to NS sockets is similar in most ways to that of binding names to Internet sockets. 

The bind system call is used as follows: 

• The manifest constants are named AF_ whatever as they indicate the ''address format'' to use in interpreting names. 
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bind(s, name, namelen); 

The bound name is a variable length byte string which is interpreted by the supporting protocol(s). Its 
intexpretation may vary from communication domain to communication domain (this is one of the proper­
ties which comprise the "domain"). As mentioned, in the Internet domain names contain an Internet 
address and port number. NS domain names contain an NS address and port number. In the UNIX 
domain, names contain a path name and a family, which is always AF_ UNIX. If one wanted to bind the 
name '' /trnp/foo'' to a UNIX domain socket, the following code would be used*: 

#include <sys/un.h> 

struct sockaddr _ un addr; 

strcpy(addr.sun _path, "/tmp/foo"); 
addr.sun _family = AF_ UNIX; 
bind(s, (struct sockaddr *) &addr, strlen(addr.sun _path) + 

sizeof (addr.sun _family)); 

Note that in determining the size of a UNIX domain address null bytes are not counted, which is why strlen 
is used. In the current implementation of UNIX domain IPC under 4.3BSD, the file name referred to in 
addr.sun _path is created as a socket in the system file space. The caller must, therefore, have write pennis­
sion in the directory where addr .sun _path is to reside, and this file should be deleted by the caller when it is 
no longer needed. Future versions of 4BSD may not create this file. 

In binding an Internet address things become more complicated. The actual call is similar, 

#include <sys/types.h> 
#include <netinet/in.h> 

struct sockaddr _in sin; 

bind(s, (struct sockaddr *)&sin, sizeof (sin)); 

but the selection of what to place in the address sin requires some discussion. We will come back to the 
problem of formulating Internet addresses in section 3 when the library routines used in name resolution 
are discussed. 

Binding an NS address to a socket is even more difficult, especially since the Internet library routines 
do not work with NS hostnames. The actual call is again similar: 

#include <sys/types.h> 
#include <netns/ns.h> 

struct sockaddr _ ns sns; 

bind(s, (struct sockaddr *) &sns, sizeof (sns)); 

Again, discussion of what to place in a "struct sockaddr _ns" will be deferred to section 3. 

2.4. Connection establishment 

Connection establishment is usually asymmetric, with one process a "client" and the other a 
''server''. The server, when willing to offer its advertised services, binds a socket to a well-known address 
associated with the service and then passively ''listens'' on its socket. It is then possible for an unrelated 
process to rendezvous with the server. The client requests services from the server by initiating a 6 'connec­
tion" to the server's socket On the client side the connect call is used to initiate a connection. Using the 

* Note that, although the tendency here is to call the ''addr'' structure ''sun'', doing so would cause problems if the code 
were ever ported to a Sun workstation. 
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UNIX domain, this might appear as, 

struct sockaddr _ un server; 

connect(s, (struct sockaddr *)&server, strlen(server.sun _path) + 
sizeof (server.sun _family)); 

while in the Internet domain, 

struct sockaddr _in server; 

connect(s, (struct sockaddr *)&server, sizeof (server)); 

and in the NS domain, 

struct sockaddr _ ns server; 

connect(s, (struct sockaddr *)&server, sizeof (server)); 
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where server in the example above would contain either the UNIX pathname, Internet address and port 
number, or NS address and port number of the server to which the client process wishes to speak. If the 
client process's socket is unbound at the time of the connect call, the system will automatically select and 
bind a name to the socket if necessary; c.f. section 5.4. This is the usual way that local addresses are bound 
to a socket. 

An error is returned if the connection was unsuccessful (any name automatically bound by the sys­
tem, however, remains). Otherwise, the socket is associated with the server and data transfer may begin. 
Some of the more common errors returned when a connection attempt fails are: 

ETIMEDOUT 
After failing to establish a connection for a period of time, the system decided there was no point in 
retrying the connection attempt any more. This usually occurs because the destination host is down, 
or because problems in the network resulted in transmissions being lost. 

ECONNREFUSED 
The host refused service for some reason. This is usually due to a server process not being present at 
the requested name. 

ENETOOWN or EHOSTDOWN 
These operational errors are returned based on status information delivered to the client host by the 
underlying communication services. 

ENETUNREACHorEHOSTUNREACH 
These operational errors can occur either because the network or host is unknown (no route to the 
network or host is present), or because of status information returned by intermediate gateways or 
switching nodes. Many times the status returned is not sufficient to distinguish a network being 
down from a host being down, in which case the system indicates the entire network is unreachable. 

For the server to receive a client's connection it must perform two steps after binding its socket The 
first is to indicate a willingness to listen for incoming connection requests: 

listen(s, 5); 

The second parameter to the listen call specifies the maximum number of outstanding connections which 
may be queued awaiting acceptance by the server process; this number may be limited by the system. 
Should a connection be requested while the queue is full, the connection will not be refused, but rather the 
individual messages which comprise the request will be ignored. This gives a harried server time to make 
room in its pending connection queue while the client retries the connection request. Had the connection 
been returned with the ECONNREFUSED error, the client would be unable to tell if the server was up or 
not. As it is now it is still possible to get the ETIMEOOUT error back, though this is unlikely. The back­
log figure supplied with the listen call is currently limited by the system to a maximum of 5 pending con­
nections on any one queue. This avoids the problem of processes hogging system resources by setting an 
infinite backlog, then ignoring all connection requests. 
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With a socket marked as listening, a server may accept a connection: 

struct sockaddr _in from; 

fromlen = sizeof (from); 
newsock = accept(s, (struct sockaddr *)&from, &fromlen); 
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(For the UNIX domain, from would be declared as a struct sockaddr _un, and for the NS domain, from 
would be declared as a struct sockaddr _ ns, but nothing different would need to be done as far as fromlen is 
concerned. In the examples which follow, only Internet routines will be discussed) A new descriptor is 
returned on receipt of a connection (along with a new socket). If the server wishes to find out who its 
client is, it may supply a buffer for the client socket's name. The value-result parameter fromlen is initial­
ized by the server to indicate how much space is associated with from, then modified on return to reflect the 
true size of the name. If the client's name is not of interest, the second parameter may be a null pointer. 

Accept normally blocks. That is, accept will not return until a connection is available or the system 
call is interrupted by a signal to the process. Further, there is no way for a process to indicate it will accept 
connections from only a specific individual, or individuals. It is up to the user process to consider who the 
connection is from and close down the connection if it does not wish to speak to the process. If the server 
process wants to accept connections on more than one socket, or wants to avoid blocking on the accept 
call, there are alternatives; they will be considered in section 5. 

2.5. Data transfer 

With a connection established, data may begin to flow. To send and receive data there are a number 
of possible calls. With the peer entity at each end of a connection anchored, a user can send or receive a 
message without specifying the peer. As one might expect, in this case, then the normal read and write 
system calls are usable, 

write(s, buf, sizeof (but)); 
read(s, buf, sizeof (but)); 

In addition to read and write, the new calls send and recv may be used: 

send(s, buf, sizeof (but), flags); 
recv(s, buf, sizeof (but), flags); 

While send and recv are virtually identical to read and write, the extra flags argument is important The 
flags, defined in <syslsocket.h>, may be specified as a non-zero value if one or more of the following is 
required: 

MSG OOB 
MSG_PEEK 
MSG_OONTROUTE 

send/receive out of band data 
look at data without reading 
send data without routing packets 

Out of band data is a notion specific to stream sockets, and one which we will not immediately consider. 
The option to have data sent without routing applied to the outgoing packets is currently used only by the 
routing table management process, and is unlikely to be of interest to the casual user. The ability to pre­
view data is, however, of interest When MSG _PEEK is specified with a recv call, any data present is 
returned to the user, but treated as still "unread". That is, the next read or recv call applied to the socket 
will return the data previously previewed. 

2.6. Discarding sockets . 

Once a socket is no longer of interest, it may be discarded by applying a close to the descriptor, 

close(s); 

If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when a close 
takes place, the system will continue to attempt to transfer the data. However, after a fairly long period of 
time, if the data is still undelivered, it will be discarded Should a user have no use for any pending data, it 
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may perform a shutdown on the socket prior to closing it. This call is of the form: 

shutdown{s, how); 

where how is 0 if the user is no longer interested in reading data, 1 if no more data will be sent, or 2 if no 
data is to be sent or received. 

2e7. Connectionless sockets 

To this point we have been concerned mostly with sockets which follow a connection oriented 
model. However, there is also support for connectionless interactions typical of the datagram facilities 
found in contemporary packet switched networks. A datagram socket provides a symmetric interface to 
data exchange. While processes are still likely to be client and server, there is no requirement for connec­
tion establishment Instead, each message includes the destination address. 

Datagram sockets are created as before. If a particular local address is needed, the bind operation 
must precede the first data transmission. Otherwise, the system will set the local address and/or port when 
data is first sent To send data, the send.to primitive is used, 

sendto{s, buf, buften, flags, (struct sockaddr *)&to, tolen); 

The s, buf, buflen, and flags parameters are used as before. The to and tolen values are used to indicate the 
address of the intended recipient of the message. When using an unreliable datagram interface, it is 
unlikely that any errors will be reported to the sender. When information is present locally to recognize a 
message that can not be delivered (for instance when a network is unreachable), the call will return -1 and 
the global value e"no will contain an error number. 

To receive messages on an unconnected datagram socket, the recvfrom primitive is provided: 

recvfrom{s, buf, buften, ftags, (struct sockaddr *)&from, &fromlen); 

Once again, the fromlen parameter is handled in a value-result fashion, initially containing the size of the 
from buffer, and modified on return to indicate the actual size of the address from which the datagram was 
received. 

In addition to the two calls mentioned above, datagram sockets may also use the connect call to asso­
ciate a socket with a specific destination address. In this case, any data sent on .the socket will automati­
cally be addressed to the connected peer, and only data received from that peer will be delivered to the 
user. Only one connected address is permitted for each socket at one time; a second connect will change 
the destination address, and a connect to a null address (family AF_ UNSPEC) will disconnect Connect 
requests on datagram sockets return immediately, as this simply results in the system recording the peer's 
address (as compared to a stream socket, where a connect request initiates establishment of an end to end 
connection). Accept and listen are not used with datagram sockets. 

While a datagram socket socket is connected, errors from recent send calls may be returned asyn­
chronously. These errors may be reported on subsequent operations on the socket, or a special socket 
option used with getsockopt, SO_ ERROR, may be used to interrogate the error status. A select for reading 
or writing will return true when an error indication has been received. The next operation will return the 
error, and the error status is cleared. Other of the less important details of datagram sockets are described 
in section 5. 

2.8. Input/Output multiplexing 

One last facility often used in developing applications is the ability to multiplex i/o requests among 
multiple sockets and/or files. This is done using the select call: 
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#include <sys/time.h> 
#include <sys/types.h> 

fd _set read.mask, writemask, exceptmask; 
struct timeval timeout; 

select(nfds, &read.mask, &writemask, &exceptmask, &timeout); 
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Select takes as arguments pointers to three sets, one for the set of file descriptors for which the caller 
wishes to be able to read data on, one for those descriptors to which data is to be written, and one for which 
exceptional conditions are pending; out-of-band data is the only exceptional condition currently imple­
mented by the socket If the user is not interested in certain conditions (i.e., read, write, or exceptions), the 
corresponding argument to the select should be a null pointer. 

Each set is actually a structure containing an array of long integer bit masks; the size of the array is 
set by the definition FD_ SETSIZE. The array is be long enough to hold one bit for each of FD_ SETSIZE 
file descriptors. 

The macros FD _SET<fd, &mask) and FD_ CLR<fd, &mask) have been provided for adding and 
removing file descriptor fd in the set mask. The set should be zeroed before use, and the macro 
FD _ZERO(&mask) has been provided to clear the set mask. The parameter nfds in the select call specifies 
the range of file descriptors (i.e. one plus the value of the largest descriptor) to be examined in a set. 

A timeout value may be specified if the selection is not to last more than a predetermined period of 
time. If the fields in timeout are set to 0, the selection takes the form of a poll, returning immediately. If 
the last parameter is a null pointer, the selection will block indefinitely*. Select normally returns the 
number of file descriptors selected; if the select call returns due to the timeout expiring, then the value 0 is 
returned. If the select terminates because of an error or interruption, a -1 is returned with the error number 
in errno, and with the file descriptor masks unchanged. 

Assuming a successful return, the three sets will indicate which file descriptors are ready to be read 
from, written to, or have exceptional conditions pending. The status of a file descriptor in a select mask 
may be tested with the FD _ISSEI'(fd, &mask) macro, which returns a non-zero value if fd is a member of 
the set mask, and 0 if it is not. 

To determine if there are connections waiting on a socket to be used with an accept call, select can 
be used, followed by a FD _ISSE/'(fd, &mask) macro to check for read readiness on the appropriate socket 
If FD _ISSEI' returns a non-zero value, indicating permission to read, then a connection is pending on the 
socket. 

As an example, to read data from two sockets, sl and s2 as it is available from each and with a one­
second timeout, the following code might be used: 

* To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received by the caller, 
interrupting the system call. 
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#include <sys/time.h> 
#include <sys/types.h> 

fd _set read_ template; 
struct timeval wait; 

for(;;) { 
wait.tv _sec = 1; 
wait.tv _ usec = O; 

I* one second *I 

FD_ ZERO(&read _template); 

FD_ SET(sl, &read_ template); 
FD_SET(s2, &read_template); 
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nb = select(FD_SETSIZE, &read_template, (fd_set *) 0, (fd_set *) 0, &wait); 
if (nb <= 0) { 

} 

} 

An e"or occurred during the select, or 
the select timed out. 

if (FD_ISSET(sl, &read_template)) { 
Socket# 1 is ready to be read from. 

} 

if (FD _ISSET(s2, &read_template)) { 
Socket #2 is ready to be read from. 

} 

In 4.2, the arguments to select were pointers to integers instead of pointers to fd _sets. This type of 
call will still work as long as the number of file descriptors being examined is less than the number of bits 
in an integer; however, the methods illustrated above should be used in all current programs. 

Select provides. a synchronous multiplexing scheme. Asynchronous notification of output comple­
tion, input availability, and exceptional conditions is possible through use of the SIGIO and SIGURG sig­
nals described in section 5. 
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3. NETWORK LIBRARY ROUTINES 

The discussion in section 2 indicated the possible need to locate and construct network addresses 
when using the interprocess communication facilities in a distributed environment. To aid in this task a 
number of routines have been added to the standard C run-time library. In this section we will consider the 
new routines provided to manipulate network addresses. While the 4.3BSD networking facilities support 
both the DARPA standard Internet protocols and the Xerox NS protocols, most of the routines presented in 
this section do not apply to the NS domain. Unless otherwise stated, it should be assumed that the routines 
presented in this section do not apply to the NS domain. 

Locating a service on a remote host requires many levels of mapping before client and server may 
communicate. A service is assigned a name which is intended for human consumption; e.g. "the login 
server on host monet''. This name, and the name of the peer host, must then be translated into network 
addresses which are not necessarily suitable for human consumption. Finally, the address must then used 
in locating a physical location and route to the service. The specifics of these three mappings are likely to 
vary between network architectures. For instance, it is desirable for a network to not require hosts to be 
named in such a way that their physical location is known by the client host. Instead, underlying services 
in the network may discover the actual location of the host at the time a client host wishes to communicate. 
This ability to have hosts named in a location independent manner may induce overhead in connection 
establishment, as a discovery process must take place, but allows a host to be physically mobile without 
requiring it to notify its clientele of its current location. 

Standard routines are provided for: mapping host names to network addresses, network names to net­
work numbers, protocol names to protocol numbers, and service names to port numbers and the appropriate 
protocol to use in communicating with the server process. The file <netdb.h> must be included when using 
any of these routines. 

3.1. Host names 

An Internet host name to address mapping is represented by the hostent structure: 

struct hostent { 
char *h _name; 
char **h _aliases; 
int h _ addrtype; 
int h _length; 
char **h _ addr _list; 

}; 

#define h _ addr h _ addr _ list[O] 

I* official name of host *I 
I* alias list *I 
I* host address type (e.g., AF_ INET) */ 
I* length of address */ 
I* list of addresses, null terminated*/ 

I* first address, network byte order *I 

The routine gethostbyname(3N) takes an Internet host name and returns a hostent structure, while the rou­
tine gethostbyaddr(3N) maps Internet host addresses into a hostent structure. 

The official name of the host and its public aliases are returned by these routines, along with the 
address type (family) and a null terminated list of variable length address. This list of addresses is required 
because it is possible for a host to have many addresses, all having the same name. The h _ addr definition 
is provided for backward compatibility, and is defined to be the first address in the list of addresses in the 
hostent structure. 

The database for these calls is provided either by the file !etc/hosts (hosts(5)), or by use of a 
nameserver, named (8). Because of the differences in these databases and their access protocols, the infor­
mation returned may differ. When using the host table version of gethostbyname, only one address will be 
returned, but all listed aliases will be included. The nameserver version may return alternate addresses, but 
will not provide any aliases other than one given as argument. 

Unlike Internet names, NS names are always mapped into host addresses by the use of a standard NS 
Clearinghouse service, a distributed name and authentication server. The algorithms for mapping NS 
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names to addresses via a Clearinghouse are rather complicated, and the routines are not part of the standard 
libraries. The user-contributed Courier (Xerox remote procedure call protocol) compiler contains routines 
to accomplish this mapping; see the documentation and examples provided therein for more infonnation. It 
is expected that almost all software that has to communicate using NS will need to use the facilities of the 
Courier compiler. 

An NS host address is represented by the following: 

union ns_host { 
u_char 
u_short 

}; 

union ns _net { 
u_char 
u_short 

}; 

struct ns_addr { 

c_host[6]; 
s_host[3]; 

c_net[4]; 
s_net[2]; 

union ns _net x_ net; 
union ns _host x_ host; 
u _short x _port; 

}; 

The following code fragment inserts a known NS address into a ns _ addr: 
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#include <sys/types.h> 
#include <sys/socket.h> 
#include <netns/ns.h> 

u _long netnum; 
struct sockaddr _ ns dst; 

bzero((char *)&dst, sizeof(dst)); 

/* 
* There is no convenient way to assign a long 
*integer to a "union ns_net" at present; in 
* the future, something will hopefully be provided, 
* but this is the portable way to go for now. 
* The network number below is the one for the NS net 
* that the desired host (gyre) is on. 
*/ 

netnum = htonl(2266); 
dst.sns_~ddr.x_net =*(union ns_net *) &netnum; 
dst.sns_family = AF_NS; 

/* 
* host2.7.1.0.2a.18 == "gyre:Computer Science:UotMaryland" 
*I 

dst.sns_addr.x_host.c_host[O] = Ox02; 
dst.sns_addr.x_host.c_host[l] = Ox07; 
dstsns_addr.x_host.c_host[2] = OxOl; 
dst.sns_addr.x_hostc_host[3] = OxOO; 
dst.sns_addr.x_host.c_host[4] = Ox2a; 
dst.sns_addr.x_host.c_host[S] = Ox18; 
dst.sns _ addr.x _port = htons(7 5); 

3.2. Network names 
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As for host names, routines for mapping network names to numbers, and back, are provided. These 
routines return a netent structure: 

/* 
* Assumption here is that a network number 
* fits in 32 bits -- probably a poor one. 
*I 
struct netent { 

char 

}; 

char 
int 
int 

*n_name; 
**n _aliases; 
n _ addrtype; 
n_net; 

I* official name of net*/ 
!* alias list */ 
I* net address type*/ 
I* network number, host byte order */ 

The routines getnetbyname(3N), getnetbynumber(3N), and getnetent(3N) are the network counterparts to 
the host routines described above. The routines extract their information from /etc/networks. 

NS network numbers are determined either by asking your local Xerox Network Administrator (and 
hardcoding the information into your code), or by querying the Clearinghouse for addresses. The internet­
work router is the only process that needs to manipulate network numbers on a regular basis; if a process 
wishes to communicate with a machine, it should ask the Clearinghouse for that machine's address (which 
will include the net number). 
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3.3. Protocol names 

For protocols, which are defined in /etc/protocols, the protoent structure defines the protocol-name 
mapping used with the routines getprotobyname(3N), getprotobynumber(3N), and getprotoent(3N): 

struct protoent { 
char 
char 
int 

}; 

*p_narne; 
••p _aliases; 
p_proto; 

!*official protocol name*/ 
!* alias list *I 
!* protocol number */ 

In the NS domain, protocols are indicated by the "client type" field of a IDP header. No protocol 
database exists; see section 5 for more information. 

3o4. Service names 

Information regarding services is a bit more complicated. A service is expected to reside at a 
specific ''port'' and employ a particular communication protocol. This view is consistent with the Internet 
domain, but inconsistent with other network architectures. Further, a service may reside on multiple ports. 
If this occurs, the higher level library routines will have to be bypassed or extended. Services available are 
contained in the file /etc/services. A service mapping is described by the servent structure, 

struct servent { 
char 
char 
int 
char 

}; 

*s_name; 
**s_aliases; 
s_port; 
*s_proto; 

!* official service name */ 
!* alias list *I 
I* port number, network byte order*/ 
!* protocol to use *I 

The routine getservbyname(3N) maps service names to a servent structure by specifying a service name 
and, optionally, a qualifying protocol. Thus the call 

sp = getservbyname("telnet", (char*) 0); 

returns the service specification for a telnet server using any protocol, while the call 

sp = getservbyname(" telnet", "tcp" ); 

returns only that telnet server which uses the TCP protocol. The routines getservbyport(3N) and 
getservent(3N) are also provided. The getservbyport routine has an interface similar to that provided by 
getservbyname; an optional protocol name may be specified to qualify lookups. 

In the NS domain, services are handled by a central dispatcher provided as part of the Courier remote 
procedure call facilities. Again, the reader is referred to the Courier compiler documentation and to the 
Xerox standard* for further details. 

3.5. Miscellaneous 

With the support routines described above, an Internet application program should rarely have to 
deal directly with addresses. This allows services to be developed as much as possible in a network 
independent fashion. It is clear, however, that purging all network dependencies is very difficult. So long 
as the user is required to supply network addresses when naming services and sockets there will always 
some network dependency in a program. For example, the normal code included in client programs, such 
as the remote login program, is of the form shown in Figure 1. (This example will be considered in more 
detail in section 4.) 

If we wanted to make the remote login program independent of the Internet protocols and addressing 
scheme we would be forced to add a layer of routines which masked the network dependent aspects from 
the mainstream login code.. For the current facilities available in the system this does not appear to be 

* Courier: The Remote Procedure Call Protocol, XSIS 038112. 
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worthwhile. 

Aside from the address-related data base routines, there are several other routines available in the 
run-time library which are of interest to users. These are intended mostly to simplify manipulation of 
names and addresses. Table 1 summarizes the routines for manipulating variable length byte strings and 
handling byte swapping of network addresses and values. 

Call Synopsis 

bcmp(sl, s2, n) compare byte-strings; 0 if same, not 0 otherwise 
bcopy(s 1, s2, n) copy n bytes from s 1 to s2 
bzero(base, n) zero-fill n bytes starting at base 
htonl(val) convert 32-bit quantity from host to network byte order 
htons(val) convert 16-bit quantity from host to network byte order 
ntohl(val) convert 32-bit quantity from network to host byte order 
ntohs(val) convert 16-bit quantity from network to host byte order 

Table 1. C run-time routines. 

The byte swapping routines are provided because the operating system expects addresses to be sup­
plied in network order. On some architectures, such as the VAX, host byte ordering is different than net­
work byte ordering. Consequently, programs are sometimes required to byte swap quantities. The library 
routines which return network addresses provide them in network order so that they may simply be copied 
into the structures provided to the system. This implies users should encounter the byte swapping problem 
only when interpreting network addresses. For example, if an Internet port is to be printed out the follow­
ing code would be required: 

printf("port number %d\n", ntohs(sp->s _port)); 

On machines where unneeded these routines are defined as null macros. 
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#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinetlin.h> 
#include <stdio.h> 
#include <netdb.h> 

main(argc, argv) 

{ 

} 

int argc; 
char •argvO; 

struct sockaddr _in server; 
struct servent •sp; 
struct hostent *hp; 
int s; 

sp = getservbyname("login", "tcp"); 
if (sp == NULL) { 

} 

fprintf(stderr, "rlogin: tcp/login: unknown service\n"); 
exit(l); 

hp- gethostbyname(argv[l]); 
if (hp== NULL) { 

} 

fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]); 
exit(2); 

bzero((char *)&server, sizeof (server)); . 
bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length); 
server.sin_family = hp->h_addrtype; 
server.sin _port = sp->s _port; 
s = socket(AF _ INET, SOCK_ STREAM, 0); 
if (s < O){ 

} 

perror("rlogin: socket"); 
exit(3); 

I* Connect does the bind() for us*/ 

if (connect(s, (char *)&server, sizeof (server))< 0) { 
perror("rlogin: connect"); 
exit(5); 

} 

Figure 1. Remote login client code. 
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4. CLIENT/SERVER MODEL 

The most commonly used paradigm in constructing distributed applications is the client/server 
model. In this scheme client applications request services from a server process. This implies an asym­
metry in establishing communication between the client and server which has been examined in section 2. 
In this section we will look more closely at the interactions between client and server, and consider some of 
the problems in developing client and server applications. 

The client and server require a well known set of conventions before service may be rendered (and 
accepted). This set of conventions comprises a protocol which must be implemented at both ends of a con­
nection. Depending on the situation, the protocol may be symmetric or asymmetric. In a symmetric proto­
col, either side may play the master or slave roles. In an asymmetric protocol, one side is immutably 
recognized as the master, with the other as the slave. An example of a symmetric protocol is the TELNET 
protocol used in the Internet for remote terminal emulation. An example of an asymmetric protocol is the 
Internet file transfer protocol, FfP. No matter whether the specific protocol used in obtaining a service is 
symmetric or asymmetric, when accessing a service there is a "client process" and a "server process". 
We will first consider the properties of server processes, then client processes. 

A server process normally listens at a well known address for service requests. That is, the server 
process remains dormant until a connection is requested by a client's connection to the server's address. 
At such a time the server process "wakes up" and services the client, performing whatever appropriate 
actions the client requests of iL 

Alternative schemes which use a service server may be used to eliminate a flock of server processes 
clogging the system while remaining dormant most of the time. For Internet servers in 4.3BSD, this 
scheme has been implemented via inetd, the so called "internet super-server." Inetd listens at a variety of 
ports, determined at start-up by reading a configuration file. When a connection is requested to a port on 
which inetd is listening, inetd executes the appropriate server program to handle the client With this 
method, clients are unaware that an intermediary such as inetd has played any part in the connection. I netd 
will be described in more detail in section 5. 

A similar alternative scheme is used by most Xerox services. In general, the Courier dispatch pro­
cess (if used) accepts connections from processes requesting services of some sort or another. The client 
processes request a particular <program number, version number, procedure number> triple. If the 
dispatcher knows of such a program, it is started to handle the request; if not, an error is reported to the 
client. In this way, only one port is required to service a large variety of different requests. Again, the 
Courier facilities are not available without the use and installation of the Courier compiler. The informa­
tion presented in this section applies only to NS clients and services that do not use Courier. 

4.1. Servers 

In 4.3BSD most servers are accessed at well known Internet addresses or UNIX domain names. For 
example, the remote login server's main loop is of the form shown in Figure 2. 

The first step taken by the server is look up its service definition: 

sp = getservbyname("login", "tcp"); 
if (sp == NULL) { 

} 

fprintf(stderr, "rlogind: tcp/login: unknown service\n"); 
exit(l); 

The result of the getservbyname call is used in later portions of the code to define the Internet port at which 
it listens for service requests (indicated by a connection). 
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main(argc, argv) 

{ 

int argc; 
char *argvO; 

intf; 
struct sockaddr _in from; 
struct servent *sp; 

sp = getservbyname("login", "tcp"); 
if (sp == NULL) { 

} 

fprintf(stderr, "rlogind: tcp/login: unknown service\n"); 
exit(l); 

#ifndef DEBUG 

#end.if 

} 

!* Disassociate server from controlling terminal */ 

sin.sin _port = sp->s _port; /* Restricted port -- see section 5 *I 

f = socket(AF _INET, SOCK_STREAM, 0); 

if (bind(f, (struct sockaddr *) &sin, sizeof (sin)) < 0) { 

} 

listen(f, 5); 
for(;;) { 

} 

int g, len = sizeof (from); 

g = accept(f, (struct sockaddr *)&from, &len); 
if (g < O){ 

if (errno != EINTR) 
syslog(LOG_ERR, "rlogind: accept: %m"); 

continue; 
} 
if (fork() == 0) { 

close(f); 

} 
close(g); 

doit(g, &from); 

Figure 2. Remote login server. 
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Step two is tb disassociate the server from the controlling terminal of its invoker: 

for (i = O; i < 3; ++i) 
close(i); 

open("/", o _ RDONL Y); 
dup2(0, 1); 
dup2(0, 2); 

i = open("/dev/tty", 0 _ RDWR); 
if(i>= O){ 

} 

ioctl(i, TIOCNOTIY, 0); 
close(i); 

PSl:S-19 

This step is important as the server will likely not want to receive signals delivered to the process group of 
the controlling terminal. Note, however, that once a server has disassociated itself it can no longer send 
reports of errors to a terminal, and must log errors via syslo g. 

Once a server has established a pristine environment, it creates a socket and begins accepting service 
requests. The bind call is required to insure the server listens at its expected location. It should be noted 
that the remote login server listens at a restricted port number, and must therefore be run with a user-id of 
root. This concept of a ''restricted port number'' is 4BSD specific, and is covered in section 5. 

The main body of the loop is fairly simple: 

for(;;) { 

} 

int g, len = sizeof (from); 

g = accept(f, (struct sockaddr *)&from, &len); 
if (g < O){ 

if (errno != EINTR) 
syslog(LOG _ERR, "rlogind: accept: %m"); 

continue; 
} 
if (fork() == 0) { /* Child*/ 

close(f); 

} 
close(g); 

doit(g, &from); 

/*Parent*/ 

An accept call blocks the server until a client requests service. This call could return a failure status if the 
call is interrupted by a signal such as SIGCHLD (to be discussed in section 5). Therefore, the return value 
from accept is checked to insure a connection has actually been established, and an error report is logged 
via syslog if an error has occurred. 

With a connection in hand, the server then forks a child process and invokes the main body of the 
remote login protocol processing. Note how the socket used by the parent for queuing connection requests 
is closed in the child, while the socket created as a result of the accept is closed in the parent The address 
of the client is also handed the doit routine because it requires it in authenticating clients. 

4.2. Clients 

The client side of the remote login service was shown earlier in Figure 1. One can see the separate, 
asymmetric roles of the client and server clearly in the code. The server is a passive entity, listening for 
client connections, while the client process is an active entity, initiating a connection when invoked. 

Let us consider more closely the steps taken by the client remote login process. As in the server pro­
cess, the first step is to locate the service definition for a remote login: 



sp = getservbyname("login", "tcp"); 
if (sp == NULL) { 

} 

fprintf(stderr, "rlogin: tcp/login: unknown service\n"); 
exit(l); 

Next the destination host is looked up with a gethostbyname call: 

hp= gethostbyname(argv[l]); 
if (hp ==NULL) { 

} 

fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]); 
exit(2); 
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With this accomplished, all that is required is to establish a connection to the server at the requested host 
and start up the remote login protocol. The address buffer is cleared, then filled in with the Internet address 
of the foreign host and the port number at which the login process resides on the foreign host: 

bzero((char *)&server, sizeof (server)); 
bcopy(hp->h_addr, (char*) &server.sin_addr, hp->h_length); 
server.sin_ family = hp->h_ addrtype; 
server.sin_port = sp->s _port; 

A socket is created, and a connection initiated. Note that connect implicitly performs a bind call, since s is 
unbound. 

s = socket(hp->h _ addrtype, SOCK_ STREAM, 0); 
if (s < O){ 

} 

perror("rlogin: socket"); 
exit(3); 

if (connect(s, (struct sockaddr *)&server, sizeof (server))< 0) { 
perror("rlogin: connect"); 
exit(4); 

} 

The details of the remote login protocol will not be considered here. 

4.3. Connectionless servers 

While connection-based services are the norm, some services are based on the use of datagram sock­
ets. One, in particular, is the "rwho" service which provides users with status information for hosts con­
nected to a local area network. This service, while predicated on the ability to broadcast information to all 
hosts connected to a particular network, is of interest as an example usage of datagram sockets. 

A user on any machine running the rwho server may find out the current status of a machine with the 
ruptime(l) program. The output generated is illustrated in Figure 3. 

Status information for each host is periodically broadcast by rwho server processes on each machine. 
The same server process also receives the status information and uses it to update a database. This data­
base is then interpreted to generate the status information for each host. Servers operate autonomously, 
coupled only by the local network and its broadcast capabilities. 

Note that the use of broadcast for such a task is fairly inefficient, as all hosts must process each mes­
sage, whether or not using an rwho server. Unless such a service is sufficiently universal and is frequently 
used, the expense of periodic broadcasts outweighs the simplicity. 

The rwho server, in a simplified form, is pictured in Figure 4. There are two separate tasks per­
formed by the server. The first task is to act as a receiver of status information broadcast by other hosts on 
the network. This job is carried out in the main loop of the program. Packets received at the rwho port are 
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arpa up 9:45, 5 users, load 1.15, 1.39, 1.31 
cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59 
calder up 10:10, 0 users, load 0.27, 0.15, 0.14 
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65 
degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41 
ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56 
emie down 0:24 
esvax down 17:04 
ingres down 0:26 
kim up 3+09:16, 8 users, load 2.03, 2.46, 3.11 
matisse up 3+06:18, 0 users, load 0.03, 0.03, 0.05 
medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50 
merlin down 19+15:37 
miro up 1+07:20, 7 users, load 4.59, 3.28, 2.12 
mo net up 1+00:43, 2 users, load 0.22, 0.09, 0.07 
oz down 16:09 
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86 
ucbvax up 9:34, 2 users, load 6.08, 5.16, 3.28 

Figure 3. ruptime output. 

interrogated to insure they've been sent by another rwho server process, then are time stamped with their 
arrival time and used to update a file indicating the status of the host. When a host has not been heard from 
for an extended period of time, the database interpretation routines assume the host is down and indicate 
such on the status reports. This algorithm is prone to error as a server may be down while a host is actually 
up, but serves our current needs. 

The second task performed by the server is to supply information regarding the status of its host. 
This involves periodically acquiring system status information, packaging it up in a message and broadcast­
ing it on the local network for other rwho servers to hear. The supply function is triggered by a timer and 
runs off a signal. Locating the system status information is somewhat involved, but uninteresting. Decid­
ing where to transmit the resultant packet is somewhat problematical, however. 

Status information must be broadcast on the local network~ For networks which do not support the 
notion of broadcast another scheme must be used to simulate or replace broadcasting. One possibility is to 
enumerate the known neighbors (based on the status messages received from other rwho servers). This, 
unfortunately, requires some bootstrapping information, for a server will have no idea what machines are 
its neighbors until it receives status messages from them. Therefore, if all machines on a net are freshly 
booted, no machine will have any known neighbors and thus never receive, or send, any status information. 
This is the identical problem faced by the routing table management process in propagating routing status 
information. The standard solution, unsatisfactory as it may be, is to inform one or more servers of known 
neighbors and request that they always communicate with these neighbors. If each server has at least one 
neighbor supplied to it, status information may then propagate through a neighbor to hosts which are not 
(possibly) directly neighbors. If the server is able to support networks which provide a broadcast capabil­
ity, as well as those which do not, then networks with an arbitrary topology may share status information*. 

It is important that software operating in a distributed environment not have any site-dependent 
information compiled into it This would require a separate copy of the server at each host and make 
maintenance a severe headache. 4.3BSD attempts to isolate host-specific information from applications by 
providing system calls which return the necessary information*. A mechanism exists, in the form of an 
ioctl call, for finding the collection of networks to which a host is directly connected. Further, a local 

• One must, however, be concerned about "loops". That is, if a host is connected to multiple networks, it will receive 
status infonnation from itself. This can lead to an endless, wasteful, exchange of infonnation. 
•An example of such a system call is the gethostname(2) call which returns the host's "official" name. 
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main() 
{ 

} 
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sp = getservbyname("who", "udp"); 
net - getnetbyname("localnet" ); 
sin.sin_ addr = inet_ makeaddr(INADDR _ANY, net); 
sin.sin _port = sp->s _port; 

s = socket(AF_INET, SOCK_DGRAM, 0); 

OD= 1; 
if(setsockopt(s, SOL_ SOCKET, SO_BROADCAST, &on, sizeof(on)) < 0) { 

syslog(LOG _ERR, "setsockopt SO_ BROADCAST: %m"); 
exit(l); 

} 
bind(s, (struct sockaddr *) &sin, sizeof (sin)); 

signal(SIGALRM, onalrm); 
onalrm(); 
for(;;) { 

} 

struct whod wd; 
int cc, whod, len = sizeof (from); 

cc = recvfrorn(s, (char *)&wd, sizeof (struct whod), 0, 
(struct sockaddr *)&from, &len); 

if (cc<= 0) { 

} 

if (cc< 0 && errno != EINTR) 
syslog(LOG _ERR, "rwhod: recv: %m"); 

continue; 

if (from.sin _port != sp->s _port) { 

} 

syslog(LOG _ERR, "rwhod: %d: bad from port", 
ntohs(from.sin _port)); 

continue; 

if (!verify(wd.wd _ hostname)) { 

} 

syslog(LOG _ERR, "rwhod: malformed host name from %x", 
ntohl(from.sin _ addr.s _addr)); 

continue; 

(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_hostname); 
whod = open(path, O _ WRONL Y I O _ CREAT I 0 _ TRUNC, 0666); 

(void) tirne(&wd.wd_recvtime); 
(void) write(whod, (char *)&wd, cc); 
(void) close(whod); 

Figure 4. rwho server. 
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network broadcasting mechanism has been implemented at the socket level. Combining these two features 
allows a process to broadcast on any directly connected local network which supports the notion of broad­
casting in a site independent manner. This allows 4.3BSD to solve the problem of deciding how to pro­
pagate status information in the case of rwho, or more generally in broadcasting: Such status information 
is broadcast to connected networks at the socket level, where the connected networks have been obtained 
via the appropriate ioctl calls. The specifics of such broadcastings are complex, however, and will be 
covered in section 5. 
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S. ADVANCED TOPICS 

A number of facilities have yet to be discussed. For most users of the IPC the mechanisms already 
described will suffice in constructing distributed applications. However, others will find the need to utilize 
some of the features which we consider in this section. 

S.1. Out of band data 

The stream socket abstraction includes the notion of ''out of band'' data. Out of band data is a logi­
cally independent transmission channel associated with each pair of connected stream sockets. Out of band 
data is delivered to the user independently of normal data. The abstraction defines that the out of band data 
facilities must support the reliable delivery of at least one out of band message at a time. This message 
may contain at least one byte of data, and at least one message may be pending delivery to the user at any 
one time. For communications protocols which support only in-band signaling (i.e. the urgent data is 
delivered in sequence with the normal data), the system normally extracts the data from the normal data 
stream and stores it separately. This allows users to choose between receiving the urgent data in order and 
receiving it out of sequence without having to buffer all the intervening data. It is possible to ''peek'' (via 
MSG_PEEK) at out of band data. If the socket has a process group, a SIGURG signal is generated when 
the protocol is notified of its existence. A process can set the process group or process id to be in.formed by 
the SIGURG signal via the appropriate fcntl call, as described below for SIGIO. If multiple sockets may 
have out of band data awaiting delivery, a select call for exceptional conditions may be used to determine 
those sockets with such data pending. Neither the signal nor the select indicate the actual arrival of the 
out-of-band data, but only notification that it is pending. 

In addition to the information passed, a logical mark is placed in the data stream to indicate the point 
at which the out of band data was sent. The remote login and remote shell applications use this facility to 
propagate signals between client and server processes. When a signal flushs any pending output from the 
remote process(es), all data up to the mark in the data stream is discarded. 

To send an out of band message the MSG_ OOB flag is supplied to a send or send.to calls, while to 
receive out of band data MSG_ OOB should be indicated when performing a recvfrom or recv call. To find 
out if the read pointer is currently pointing at the mark in the data stream, the SIOCA TMARK ioctl is pro-
vided: · 

ioctl(s, SIOCATMARK, &yes); 

If yes is a 1 on return, the next read will return data after the mark. Otherwise (assuming out of band data 
has arrived), the next read will provide data sent by the client prior to transmission of the out of band sig­
nal. The routine used in the remote login process to flush output on receipt of an interrupt or quit signal is 
shown in Figure 5. It reads the normal data up to the mark (to discard it), then reads the out-of-band byte. 

A process may also read or peek at the out-of-band data without first reading up to the mark. This is 
more difficult when the underlying protocol delivers the urgent data in-band with the normal data, and only 
sends notification of its presence ahead of time (e.g., the TCP protocol used to implement streams in the 
Internet domain). With such protocols, the out-of-band byte may not yet have arrived when a recv is done 
with the MSG_ OOB flag. In that case, the call will return an error of EWOUIDBLOCK. Worse, there 
may be enough in-band data in the input buffer that normal flow control prevents the peer from sending the 
urgent data until the buffer is cleared. The process must then read enough of the queued data that the 
urgent data may be delivered. 

Certain programs that use multiple bytes of urgent data and must handle multiple urgent signals (e.g., 
telnet (lC)) need to retain the position of urgent data within the stream. This treatment is available as a 
socket-level option, SO OOBINLINE; see setsockopt (2) for usage. With this option, the position of 
urgent data (the "mark'i) is retained, but the urgent data immediately follows the mark within the normal 
data stream returned without the MSG OOB flag. Reception of multiple urgent indications causes the 
mark to move, but no out-of-band data are lost 
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#include <sys/ioctl.h> 
#include <sys/file.h> 

ooh() 
{ 

} 

int out= FWRITE; 
char waste[BUFSIZ], mark; 

I* ftush local terminal output*/ 
ioctl(l, TIOCFLUSH, (char *)&out); 
for(;;) { 

if (ioctl(rem, SIOCATMARK, &mark) < 0) { 
perror(" ioctl"); 
break; 

} 
if (mark) 

break; 
(void) read(rem, waste, sizeof (waste)); 

} 
if (recv(rem, &mark, l, MSG_ OOB) < 0) { 

perror("recv"); 

} 

Figure 5. Flushing terminal 1/0 on receipt of out of band data. 

5.2. Non-Blocking Sockets 
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It is occasionally convenient to make use of sockets which do not block; that is, 1/0 requests which 
cannot complete immediately and would therefore cause the process to be suspended awaiting completion 
are not executed, and an error code is returned. Once a socket has been created via the socket call, it may 
be marked as non-blocking by f cntl as follows: 

#include <fcntl.h> 

int s; 

s = socket(AF _INET, SOCK_STREAM, 0); 

if (fcntl(s, F _ SETFL, FNDELA Y) < 0) 
perror("fcntl F _ SE1FL, FNDELA Y"); 
exit(l); 

} 

When performing non-blocking 1/0 on sockets, one must be careful to check for the error 
EWOULDBLOCK (stored in the global variable e"no), which occurs when an operation would normally 
block, but the socket it was performed on is marked as non-blocking. In particular, accept, connect, send, 
recv, read, and write can all return EWOULDBLOCK, and processes should be prepared to deal with such 
return codes. If an operation such as a send cannot be done in its entirety, but partial writes are sensible 
(for example, when using a stream socket), the data that can be sent immediately will be processed, and the 
return value will indicate the amount actually sent. 
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5.3. Interrupt driven socket 1/0 

The SIGIO signal allows a process to be notified via a signal when a socket (or more generally, a file 
descriptor) has data waiting to be read. Use of the SIGIO facility requires three steps: First, the process 
must set up a SIGIO signal handler by use of the signal or sigvec calls. Second, it must set the process id 
or process group id which is to receive notification of pending input to its own process id, or the process 
group id of its process group (note that the default process group of a socket is group zero). This is accom­
plished by use of anfcntl call. Third, it must enable asynchronous notification of pending I/O requests with 
another fcntl call. Sample code to allow a given process to receive information on pending 1/0 requests as 
they occur for a socket s is given in Figure 6. With the addition of a handler for SIGURG, this code can 
also be used to prepare for receipt of SIGURG signals. 

#include <fcntl.h> 

int io _handler(); 

signal(SIGIO, io _handler); 

I* Set the process receiving SIGIO/SIGURG signals to us */ 

if (fcntl(s, F _ SETOWN, getpid()) < 0) { 
perror("fcntl F _ SETOWN"); 
exit(l); 

} 

I* Allow receipt of asynchronous 1/0 signals *I 

if (fcntl(s, F _ SETFL, F ASYNC) < 0) { 
perror("fcntl F _ SETFL, FASYNC"); 
exit(l); 

} 

Figure 6. Use of asynchronous notification of IIO requests. 

5.4. Signals and process groups 

Due to the existence of the SIGURG and SIGIO signals each socket has an associated process 
number, just as is done for terminals. This value is initialized to zero, but may be redefined at a later time 
with the F _SETOWN/cntl, such as was done in the code above for SIGIO. To set the socket's process id 
for signals, positive arguments should be given to thefcntl call. To set the socket's process group for sig­
nals, negative arguments should be passed to fcntl. Note that the process number indicates either the asso­
ciated process id or the associated process group; it is impossible to specify both at the same time. A simi­
lar fcntl, F _ GETOWN, is available for determining the current process number of a socket. 

Another signal which is useful when constructing server processes is SIGCIIl.D. This signal is 
delivered to a process when any child processes have changed state. Normally servers use the signal to 
"reap" child processes that have exited without explicitly awaiting their termination or periodic polling for 
exit status. For example, the remote login server loop shown in Figure 2 may be augmented as shown in 
Figure 7. 

If the parent server process fails to reap its children, a large number of ''zombie'' processes may be 
created. 

S.S. Pseudo terminals 

Many programs will not function properly without a terminal for standard input and output. Since 
sockets do not provide the semantics of terminals, it is often necessary to have a process communicating 
over the network do so through a pseudo-terminal. A pseudo- terminal is actually a pair of devices, master 



Advanced 4.3BSD IPC Tutorial 

int reaper(); 

signal(SIGCHLD, reaper); 
listen(f, 5); 
for(;;) { 

} 

int g, len = sizeof (from); 

g = accept(f, (struct sockaddr *)&from, &len,); 
if (g < 0){ 

} 

if (ermo != EIN'IR) 
syslog(LOG _ERR, "rlogind: accept: %m"); 

continue; 

#include <waith> 
reaper() 
{ 

union wait status; 

while (wait3(&status, WNOHANG, 0) > 0) 

} 

Figure 7. Use of the SIGCHLD signal. 
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and slave, which allow a process to serve as an active agent in communication between processes and 
users. Data written on the slave side of a pseudo-terminal is supplied as input to a process reading from the 
master side, while data written on the master side are processed as terminal input for the slave. In this way, 
the process manipulating the master side of the pseudo-terminal has control over the information read and 
written on the slave side as if it were manipulating the keyboard and reading the screen on a real terminal. 
The purpose of this abstraction is to preserve tenninal semantics over a network connection- that is, the 
slave side appears as a normal terminal to any process reading from or writing to it 

For example, the remote login server uses pseudo-terminals for remote login sessions. A user log­
ging in to a machine across the network is provided a shell with a slave pseudo-terminal as standard input, 
output, and error. The server process then handles the communication between the programs invoked by 
the remote shell and the user's local client process. When a user sends a character that generates an inter­
rupt on the remote machine that flushes terminal output, the pseudo-terminal generates a control message 
for the server process. The server then sends an out of band message to the client process to signal a flush 
of data at the real terminal and on the intervening data buffered in the network. 

Under 4.3BSD, the name of the slave side of a pseudo-terminal is of the form ldevlttyxy, where x is a 
single letter starting at 'p' and continuing to 't'. y is a hexadecimal digit (i.e., a single character in the 
range 0 through 9 or 'a' through 'r). The master side of a pseudo-terminal is ldev!ptyxy, where x and y 
correspond to the slave side of the pseudo-terminal. 

In general, the method of obtaining a pair of master and slave pseudo-terminals is to find a pseudo­
terminal which is not currently in use. The master half of a pseudo-terminal is a single-open device; thus, 
each master may be opened in tum until an open succeeds. The slave side of the pseudo-terminal is then 
opened, and is set to the proper terminal modes if necessary. The process then forks; the child closes the 
master side of the pseudo-terminal, and execs the appropriate program. Meanwhile, the parent closes the 
slave side of the pseudo-tenninal and begins reading and writing from the master side. Sample code mak­
ing use of pseudo-terminals is given in Figure 8; this code assumes that a connection on a socket s exists, 
connected to a peer who wants a service of some kind, and that the process has disassociated itself from 
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any previous controlling terminal. 

gotpty = O; 
for (c = 'p'; !gotpty && c <= 's'; c++) { 

line= "/dev/ptyXX"; 
line[sizeof("/dev/pty")-1] = c; 
line[sizeof("/dev/ptyp")-1] = 'O'; 
if (stat(line, &statbuf) < 0) 

} 

break; 
for (i = O; i < 16; i++) { 

} 

line[sizeof(" /dev/ptyp")-1] = "O 123456789abcdef' [i]; 
master= open(line, O _ RDWR); 
if (master > 0) { 

} 

gotpty = 1; 
break; 

if (!gotpty){ 

} 

syslog(LOG _ERR, "All network ports in use"); 
exit(l); 

line[sizeof("/dev/")-1] = 't'; 
slave= open(line, O_RDWR); /*slave is now slave side*/ 
if (slave< 0) { 

} 

syslog(LOG _ERR, "Cannot open slave pty %s", line); 
exit(l); 

ioctl(slave, TIOCGETP, &b); /*Set slave tty modes*/ 
b.sg_ft.ags = CRMODIXTABSIANYP; 
ioctl(slave, TIOCSETP, &b); 

i =fork(); 
if (i < O){ 

syslog(LOG _ERR, "fork: %m"); 
exit(l); 

} else if (i) { /* Parent */ 
close( slave); 

} else { /* Child *I 

} 

(void) close(s); 
(void) close(master); 
dup2(slave, 0); 
dup2(slave, 1); 
dup2(slave, 2); 
if (slave> 2) 

(void) close(slave); 
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Figure 8. Creation and use of a pseudo terminal 
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5.6. Selecting specific protocols 

H the third argument to the socket call is 0, socket will select a default protocol to use with the 
returned socket of the type requested. The default protocol is usually correct, and alternate choices are not 
usually available. However, when using "raw" sockets to communicate directly with lower-level proto­
cols or hardware interfaces, the protocol argument may be important for setting up demultiplexing. For 
example, raw sockets in the Internet family may be used to implement a new protocol above IP, and the 
socket will receive packets only for the protocol specified To obtain a particular protocol one determines 
the protocol number as defined within the communication domain. For the Internet domain one may use 
one of the library routines discussed in section 3, such as getprotobyname: 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netclb.h> 

pp = getprotobyname("newtcp"); 
s = socket(AF_INET, SOCK_STREAM, pp->p_proto); 

This would result in a socket s using a stream based connection, but with protocol type of ''newtcp'' 
instead of the default ''tcp.'' 

In the NS domain, the available socket protocols are defined in <netnslns.h>. To create a raw socket 
for Xerox Error Protocol messages, one might use: 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netns/ns.h> 

s = socket(AF _NS, SOCK_ RAW, NSPROTO _ERROR); 

5.7. Address binding 

As was mentioned in section 2, binding addresses to sockets in the Internet and NS domains can be 
fairly complex. As a brief reminder, these associations are composed of local and foreign addresses, and 
local and foreign ports. Port numbers are allocated out of separate spaces, one for each system and one for 
each domain on that system. Through the bind system call, a process may specify half of an association, 
the <local address, local port> part, while the connect and accept primitives are used to complete a socket's 
association by specifying the <foreign address, foreign port> part. Since the association is created in two 
steps the association uniqueness requirement indicated previously could be violated unless care is taken. 
Further, it is unrealistic to expect user programs to always know proper values to use for the local address 
and local port since a host may reside on multiple networks and the set of allocated port numbers is not 
directly accessible to a user. 

To simplify local address binding in the Internet domain the notion of a ''wildcard'' address has 
been provided. When an address is specified as INADDR_ANY (a manifest constant defined in 
<netinet/in.h>), the system interprets the address as "any valid address". For example, to bind a specific 
port number to a socket, but leave the local address unspecified, the following code might be used: 
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#include <sys/types.h> 
#include <Jletinetlin.h> 

struct sockaddr _in sin; 

s = socket(AF _INET, SOCK._STREAM, 0); 
sin.sin_family =AF _INET; 
sin.sin_addr.s_addr = htonl(INADDR_ANY); 
sin.sin_port = htons(MYPORT); 
bind(s, (struct sockaddr *) &sin, sizeof (sin)); 
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Sockets with wildcarded local addresses may receive messages directed to the specified port number, and 
sent to any of the possible addresses assigned to a host For example, if a host has addresses 128.32.0.4 
and 10.0.0.78, and a socket is bound as above, the process will be able to accept connection requests which 
are addressed to 128.32.0.4 or 10.0.0.78. If a server process wished to only allow hosts on a given network 
connect to it, it would bind the address of the host on the appropriate network. 

In a similar fashion, a local port may be left unspecified (specified as zero), in which case the system 
will select an appropriate port number for it. This shortcut will work both in the Internet and NS domains. 
For example, to bind a specific local address to a socket, but to leave the local port number unspecified: 

hp= gethostbyname(hostnarne); 
if (hp ==NULL) { 

} 
bcopy(hp->h_addr, (char*) sin.sin_addr, hp->h_length); 
sin.sin_port = htons(O); 
bind(s, (struct sockaddr *) &sin, sizeof (sin)); 

The system selects the local port number based on two criteria The first is that on 4BSD systems, Internet 
ports below IPPORT_RESERVED (1024) (for the Xerox domain, 0 through 3000) are reserved for 
privileged users (i.e., the super user); Internet ports above IPPORT USERRESERVED (50000) are 
reserved for non-privileged servers. The second is that the port number is not currently bound to some 
other socket. In order to find a free Internet port number in the privileged range the rresvport library rou­
tine may be used as follows to return a stream socket in with a privileged port number: 

int lport = IPPORT _RESERVED - 1; 
int s; 
s = rresvport(&lport); 
if (s < 0) { 

if ( errno == EAGAIN) 
fprintf(stderr, "socket: all ports in use\n"); 

else 
perror("rresvport: socket"); 

} 

The restt!ction on allocating ports was done to allow processes executing in a "secure" environment to 
perform authentication based on the originating address and port number. For example, the rlogin(l) com­
mand allows users to log in across a network without being asked for a password, if two conditions hold: 
First, the name of the system the user is logging in from is in the file !etc/hosts.equiv on the system he is 
logging in to (or the system name and the user name are in the user's .rhosts file in the user's home direc­
tory), and second, that the user's rlogin process is coming from a privileged port on the machine from 
which he is logging. The port number and network address of the machine from which the user is logging 
in can be determined either by the from result of the accept call, or from the getpeername call. 

In certain cases the algorithm used by the system in selecting port numbers is unsuitable for an appli­
cation. This is because associations are created in a two step process. For example, the Internet file 
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transfer protocol, FrP, specifies that data connections must always originate from the same local port. 
However, duplicate associations are avoided by connecting to different foreign ports. In this situation the 
system would disallow binding the same local address and port number to a socket if a previous data 
connection's socket still existed. To override the default port selection algorithm, an option call must be 
performed prior to address binding: 

int on= 1; 

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)); 
bind(s, (struct sockaddr *)&sin, sizeof (sin)); 

With the above call, local addresses may be bound which are already in use. This does not violate the 
uniqueness requirement as the system still checks at connect time to be sure any other sockets with the 
same local address and port do not have the same foreign address and port. If the association already 
exists, the error EADDRINUSE is returned. 

S.8. Broadcasting and determining network configuration 

By using a datagram socket, it is possible to send broadcast packets on many networks supported by 
the system. The network itself must support broadcast; the system provides no simulation of broadcast in 
software. Broadcast messages can place a high load on a network since they force every host on the net­
work to service them. Consequently, the ability to send broadcast packets has been limited to sockets 
which are explicitly marked as allowing broadcasting. Broadcast is typically used for one of two reasons: 
it is desired to find a resource on a local network without prior knowledge of its address, or important func­
tions such as routing require that information be sent to all accessible neighbors. 

To send a broadcast message, a datagram socket should be created: 

s = socket(AF _INET, SOCK_DGRAM, 0); 

or 

s = socket(AF_NS, SOCK_DGRAM, 0); 

The socket is marked as allowing broadcasting, 

int on= 1; 

setsockopt(s, SOL SOCKET, SO BROADCAST, &on, sizeof (on)); - -
and at least a port number should be bound to the socket: 

sin.sin_family =AF _!NET; 
sin.sin_ addr.s _addr = htonl(INADDR _ANY); 
sin.sin_port = htons(MYPORT); 
bind(s, (struct sockaddr *)&sin, sizeof (sin)); 

or, for the NS domain, 

sns.sns_farnily =AF _NS; 
netnum = htonl(net); 
sns.sns_addr.x_net =*(union ns_net *) &netnum; /*insert net number*/ 
sns.sns_addr.x_J>Ort = htons(MYPORT); 
bind(s, (struct sockaddr *) &sns, sizeof (sns)); 

The destination address of the message to be broadcast depends on the network(s) on which the message is 
to be broadcast. The Internet domain supports a shorthand notation for broadcast on the local network, the 
address INADDR _BROADCAST (defined in <netinetlin.h>. To determine the list of addresses for all 
reachable neighbors requires knowledge of the networks to which the host is connected Since this infor­
mation should be obtained in a host-independent fashion and may be impossible to derive, 4.3BSD pro­
vides a method of retrieving this information from the system data structures. The SIOCGIFCONF ioctl 
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call returns the interface con.figuration of a host in the form of a single ifconf structure; this structure con­
tains a ''data area'' which is made up of an array of of ifreq structures, one for each network interface to 
which the host is connected. These structures are de.fined in <netlif.h> as follows: 

struct ifconf { 
int ifc_len; /*size of associated buffer*/ 

}; 

union { 
caddr _ t ifcu _ buf; 
struct ifreq *ifcu _req; 

} ifc_ifcu; 

#define ifc _ buf ifc _if cu.if cu_ buf 
#de.fine ifc _ req ifc _if cu.if cu _req 

#define IFNAMSIZ 16 

struct ifreq { 

}; 

char ifr _ name[IFNAMSIZ]; 
union { 

struct sockaddr ifru addr; 
struct sockaddr ifru =dstaddr; 
struct sockaddr ifru _ broadaddr; 
short ifru _ ftags; 
caddr _t ifru _data; 

} ifr_ifru; 

#define ifr addr ifr ifruJfru addr /* address */ 

!* buffer address *I 
I* array of structures returned*/ 

I* if name, e.g. "enO" */ 

#define ifr_dstaddr ifr=ifru.ifru=dstaddr /*other end ofp-to-p link*/ 
#define ifr _ broadaddr ifr _ ifru.ifru _ broadaddr /* broadcast address *I 
#define ifr _ fiags ifr _ ifru.ifru _ ftags /* ftags */ 
#define ifr_data ifr_ifru.ifru_data /*for use by interface*/ 

The actual call which obtains the interface configuration is 

struct ifconf ifc; 
char buf[BUFSIZ]; 

ifc.ifc_len = sizeof (but); 
ifc.ifc _ buf = buf; 
if (ioctl(s, SIOCGIFCONF, (char*) &ifc) < 0) { 

} 

After this call buf will contain one ifreq structure for each network to which the host is connected, and 
ifc.ifc_len will have been modified to reftect the number of bytes used by the ifreq structures. 

For each structure there exists a set of "interface ftags" which tell whether the network correspond­
ing to that interface is up or down, point to point or broadcast, etc. The SIOCGIFFLAGS ioctl retrieves 
these ftags for an interface specified by an ifreq structure as follows: 
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struct ifreq *ifr; 

ifr = ifc.ifc _req; 

for (n = ifc.ifc_len I sizeof (struct ifreq); --n >= O; ifr++) { 
I* 
•We must be careful that we don't use an interface 
• devoted to an address family other than those intended; 
• if we were interested in NS interfaces, the 
* AF INET would be AF NS. - -., 

if (ifr->ifr _ addr.sa _family != AF_ INET) 
continue; 

if (ioctl(s, SIOCGIFFLAGS, (char*) ifr) < 0) { 

} ,. 
• Skip boring cases . . , 

if ((ifr->ifr _flags & IFF _UP) == 0 11 

(ifr->ifr_flags & IFF _LOOPBACK) II 
(ifr->ifr _flags & (IFF _BROADCAST I IFF _ POINTTOPOINT)) == 0) 

continue; 
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Once the flags have been obtained, the broadcast address must be obtained. In the case of broadcast 
networks this is done via the SIOCGIFBRDADDR ioctl, while for point-to-point networks the address of 
the destination host is obtained with SIOCGIFDST ADDR. 

struct sockaddr dst; 

if (ifr->ifr_flags & IFF _POINTTOPOINT) { 
if (ioctl(s, SIOCGIFDSTADDR, (char*) ifr) < 0) { 

} 
bcopy((char *) ifr->ifr_dstaddr, (char*) &dst, sizeof (ifr->ifr_dstaddr)); 

} else if (ifr->ifr _flags & IFF _BROADCAST) { 
if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) { 

} 
bcopy((char *) ifr->ifr _ broadaddr, (char *) &dst, sizeof (ifr->ifr _ broadaddr)); 

} 

After the appropriate ioctl' s have obtained the broadcast or destination address (now in dst), the 
sendto call may be used: 

sendto(s, buf, buflen, 0, (struct sockaddr *)&dSt, sizeof (dst)); 
} 

In the above loop one sendto occurs for every interface to which the host is connected that supports the 
notion of broadcast or point-to-point addressing. If a process only wished to send broadcast messages on a 
given network, code similar to that outlined above would be used, but the loop would need to find the 
correct destination address. 

Received broadcast messages contain the senders address and port, as datagram sockets are bound 
before a message is allowed to go out. 
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S.9. Socket Options 

It is possible to set and get a number of options on sockets via the setsockopt and getsockopt system 
calls. These options include such things as marking a socket for broadcasting, not to route, to linger on 
close, etc. The general forms of the calls are: 

setsockopt(s, level, optname, optval, optlen); 

and 

getsockopt(s, level, optname, optval, optlen); 

The parameters to the calls are as follows: s is the socket on which the option is to be applied Level 
specifies the protocol layer on which the option is to be applied; in most cases this is the ''socket level'', 
indicated by the symbolic constant SOL_SOCKET, defined in <sys!socket.h>. The actual option is 
specified in optname, and is a symbolic constant also defined in <syslsocket.h>. Optval and Optlen point 
to the value of the option (in most cases, whether the option is to be turned on or off), and the length of the 
value of the option, respectively. For getsockopt, optlen is a value-result parameter, initially set to the size 
of the storage area pointed to by optval, and modified upon return to indicate the actual amount of storage 
used 

An example should help clarify things. It is sometimes useful to determine the type (e.g., stream, 
datagram, etc.) of an existing socket; programs under inetd (described below) may need to perform this 
task. This can be accomplished as follows via the SO_ TYPE socket option and the getsockopt call: 

#include <sys/types.h> 
#include <Sys/socket.h> 

int type, size; 

size = sizeof (int); 

if (getsockopt(s, SOL_ SOCKET, SO_ TYPE, (char*) &type, &size)< 0) { 

} 

After the getsockopt call, type will be set to the value of the socket type, as defined in <syslsocket.h>. If, 
for example, the socket were a datagram socket, type would have the value corresponding to 
SOCK _OGRAM. 

S.10. NS Packet Sequences 

The semantics of NS connections demand that the user both be able to look inside the network 
header associated with any incoming packet and be able to specify what should go in certain fields of an 
outgoing packet. Using different calls to setsockopt, it is possible to indicate whether prototype headers 
will be associated by the user with each outgoing packet (SO_ HEADERS_ ON_ OUTPUT), to indicate 
whether the headers received by the system should be delivered to the user (SO_ HEADERS_ ON_ INPUT), 
or to indicate default information that should be associated with all outgoing packets on a given socket 
(SO_DEFAULT_HEADERS). 

The contents of a SPP header (minus the IDP header) are: 
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struct sphdr { 
u char sp_cc; 

#define SP SP Ox80 
#define SP_ SA Ox40 
#define SP_ OB Ox20 
#define SP_~ OxlO 

I* connection control*/ 
I* system packet*/ 
I* send acknowledgement*/ 
I* attention (out of band data) */ 
I* end of message */ 
I* datastream type */ 
/* source connection identifier *I 
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u_char sp_dt; 
u _short sp _sid; 
u _short sp _did; 
u _short sp _seq; 
u _short sp _ ack; 
u_short sp_alo; 

/* destination connection identifier *I 
I* sequence number *I 

}; 

I* acknowledge number */ 
/* allocation number *I 

Here, the items of interest are the datastream type and the connection control fields. The semantics of the 
datastream type are defined by the application(s) in question; the value of this field is, by default, zero, but 
it can be used to indicate things such as Xerox's Bulk Data Transfer Protocol (in which case it is set to 
one). The connection control field is a mask of the flags defined just below it. The user may set or clear 
the end-of-message bit to indicate that a given message is the last of a given substream type, or may 
set/clear the attention bit as an alternate way to indicate that a packet should be sent out-of-band As an 
example, to associate prototype headers with outgoing SPP packets, consider: 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netns/ns.h> 
#include <netns/sp.h> 

struct sockaddr _ ns sns, to; 
int s, on= 1; 
struct databuf { 

} buf; 

struct sphdr proto _ spp; 
char buf[534]; 

I* prototype header */ 
/*max. possible data by Xerox std.*/ 

s = soeket(AF _NS, SOCK_SEQPACKET, 0); 

bind(s, (struct sockaddr *) &sns, sizeof (sns)); 
setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_OUTPUT, &on, sizeof(on)); 

buf.proto_spp.sp_dt = 1; /*bulk data*/ 
buf.proto_spp.sp_cc = SP_EM; /*end-of-message*/ 
strcpy(buf.buf, "hello world\n"); 
sendto(s, (char*) &buf, sizeof(struct sphdr) + strlen("hello world\n"), 

(struct sockaddr *)&to, sizeof(to)); 

Note that one must be careful when writing headers; if the prototype header is not written with the data 
with which it is to be associated, the kernel will treat the first few bytes of the data as the header, with 
unpredictable results. To turn off the above association, and to indicate that packet headers received by the 
system should be passed up to the user, one might use: 
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like: 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <lletns/ns.h> 
#include <netns/sp.h> 

struct sockaddr sns; 
int s, on = 1, off= O; 

s = socket(AF _NS, SOCK_SEQPACKET, 0); 

bind(s, (struct sockaddr *) &sns, sizeof (sns)); 
setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_OUTPUT, &off, sizeof(oft)); 
setsockopt(s, NSPROTO _ SPP, SO_ HEADERS_ ON_ INPUT, &on, sizeof( on)); 

Output is handled somewhat differently in the IDP world. The header of an IDP-level packet looks 

sttuctidp { 

}; 

u_short idp_sum; 
u _short idp Jen; 
u _char idp _ tc; 
u _char idp _pt; 
struct ns _ addr idp _ dna; 
struct ns _ addr idp _ sna; 

/* Checksum *I 
I* Length, in bytes, including header*/ 
!*Transport Control (i.e., hop count)*/ 
I* Packet Type (i.e., level 2 protocol)*/ 
I* Destination Network Address */ 
!*Source Network Address*/ 

The primary field of interest in an IDP header is the packet type field. The standard values for this field are 
(as defined in <netnslns.h>): -

#define NSPROTO RI 1 /*Routing Information*/ 
#define NSPROTO _ECHO 2 /* Echo Protocol */ 
#define NSPROTO ERROR 3 /* Error Protocol *I 
#define NSPROTO _PE 4 I* Packet Exchange */ 
#define NSPROTO SPP 5 /* Sequenced Packet */ 

For SPP connections, the contents of this field are automatically set to NSPROTO _ SPP; for IDP packets, 
this value defaults to zero, which means "unknownn. 

Setting the value of that field with SO_ DEFAULT_ HEADERS is easy: 
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#include <sys/types.h> 
#include <sys/socket.h> 
#include <netns/ns.h> 
#include <netns/idp.h> 

struct sockaddr sns; 
struct idp proto _idp; 
int s, on= 1; 

I* prototype header */ 

s = socket(AF _NS, SOCK_DGRAM, 0); 

bind(s, (struct sockaddr *) &sns, sizeof (sns)); 
proto _ idp.idp _pt= NSPROTO _PE; /* packet exchange */ 
setsockopt(s, NSPROTO_IDP, SO_DEFAULT_HEADERS, (char*) &proto_idp, 

sizeof(proto _idp) ); 
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Using SO_HEADERS_ON_OU'IPUT is somewhat more difficult. When 
SO_ HEADERS_ ON_ OUTPUT is turned on for an IDP socket, the socket becomes (for all intents and pur­
poses) a raw socket In this case, all the fields of the prototype header (except the length and checksum 
fields, which are computed by the kernel) must be filled in correctly in order for the socket to send and 
receive data in a sensible manner. To be more specific, the source address must be set to that of the host 
sending the data; the destination address must be set to that of the host for whom the data is intended; the 
packet type must be set to whatever value is desired; and the hopcount must be set to some reasonable 
value (almost always zero). It should also be noted that simply sending data using write will not work 
unless a connect or sendto call is used, in spite of the fact that it is the destination address in the prototype 
header that is used, not the one given in either of those calls. For almost all IDP applications , using 
SO_ DEFAULT_ HEADERS is easier and more desirable than writing headers. 

S.11. Three-way Handshake 

The semantics of SPP connections indicates that a three-way handshake, involving changes in the 
datastream type, should - but is not absolutely required to - take place before a SPP connection is 
closed. Almost all SPP connections are ''well-behaved'' in this manner; when communicating with any 
process, it is best to assume that the three-way handshake is required unless it is known for certain that it is 
not required. In a three-way close, the closing process indicates that it wishes to close the connection by 
sending a zero-length packet with end-of-message set and with datastream type 254. The other side of the 
connection indicates that it is OK to close by sending a zero-length packet with end-of-message set and 
datastream type 255. Finally, the closing process replies with a zero-length packet with substream type 
255; at this point, the connection is considered closed. The following code fragments are simplified exam­
ples of how one might handle this three-way handshake at the user level; in the future, support for this type 
of close will probably be provided as part of the C library or as part of the kernel. The first code fragment 
below illustrates how a process might handle three-way handshake if it sees that the process it is communi­
cating with wants to close the connection: 
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#include <sys/types.h> 
#include <sys/socket.h> 
#include <netns/ns.h> 
#include <netns/sp.h> 

#ifndef SPPSST END 
#define SPPSST _END 254 
#define SPPSST _ ENDREPLY 255 
#end.if 
struct sphdr proto _ sp; 
int s; 

read(s, buf, BUFSIZE); 
if (((struct sphdr *)but)->sp _ dt == SPPSST _END) { 

/* 
* SPPSST _END indicates that the other side wants to 
*close. 
*I 

proto _sp.sp _ dt = SPPSST _ ENDREPLY; 
proto_sp.sp_cc =SP _EM; 
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setsockopt(s, NSPROTO SPP, SO DEFAULT HEADERS, (char *)&proto sp~ 
sizeof(proto_sp)); - - - -

} 

write(s, buf, 0); 
I* 
* Write a zero-length packet with datastream type = SPPSST _ ENDREPLY 
* to indicate that the close is OK with us. The packet that we 
*don't see (because we don't look for it) is another packet 
* from the other side of the connection, with SPPSST _ ENDREPL Y 
* on it it, too. Once that packet is sent, the connection is 
* considered closed; note that we really ought to retransmit 
* the close for some time if we do not get a reply. 
*! 

close(s); 

To indicate to another process that we would like to close the connection, the following code would suffice: 
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#include <sys/types.h> 
#include <sys/socket.h> 
#include <netns/ns.h> 
#include <netns/sp.h> 

#ifndef SPPSST_END 
#define SPPSST _END 254 
#define SPPSST _ENDREPLY 255 
#endif 
struct sphdr proto _ sp; 
int s; 

proto _sp.sp _ dt = SPPSST _END; 
proto_sp.sp_cc =SP _EM; 
setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp, 

sizeof(proto _ sp) ); 
write(s, buf, 0); /* send the end request */ 
proto _sp.sp _ dt = SPPSST _ ENDREPLY; 
setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp, 

sizeof (proto _ sp )); 
I* 
* We assume (perhaps unwisely) 
* that the other side will send the 
* ENDREPLY, so we'll just send our final ENDREPLY 
* as if we'd seen theirs already. 
*I 

write(s, buf, 0); 
close(s); 

5.12. Packet Exchange 
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The Xerox standard protocols include a protocol that is both reliable and datagram-oriented. This 
protocol is known as Packet Exchange (PEX or PE) and, like SPP, is layered on top of IDP. PEX is impor­
tant for a number of things: Courier remote procedure calls may be expedited through the use of PEX, and 
many Xerox servers are located by doing a PEX "BroadcastForServers" operation. Although there is no 
implementation of PEX in the kernel, it may be simulated at the user level with some clever coding and the 
use of one peculiar getsockopt. APEX packet looks like: 

/* 
* The packet-exchange header shown here is not defined 
* as part of any of the system include files. 
*I 
struct pex { 

}; 

struct idp p _idp; 
u_short ph_id[2]; 
u _short ph _client; 

I* idp header *I 
I* unique transaction ID for pex *I 
/* client type field for pex *I 

The ph _id field is used to hold a ''unique id'' that is used in duplicate suppression; the ph _client field indi­
cates the PEX client type (similar to the packet type field in the IDP header). PEX reliability stems from 
the fact that it is an idempotent (''I send a packet to you, you send a packet to me'') protocol. Processes on 
each side of the connection may use the unique id to determine if they have seen a given packet before (the 
unique id field differs on each packet sent) so that duplicates may be detected, and to indicate which mes­
sage a given packet is in response to. If a packet with a given unique id is sent and no response is received 



PS1:8-40 Advanced 4.3BSD IPC Tutorial 

in a given amount of time, the packet is retransmitted until it is decided that no response will ever be 
received. To simulate PEX, one must be able to generate unique ids -- something that is hard to do at the 
user level with any real guarantee that the id is really unique. Therefore, a means (via getsockopt) has been 
provided for getting unique ids from the kernel. The following code fragment indicates how to get a 
unique id: 

long uniqueid; 
int s, idsize = sizeof(uniqueid); 

s = socket(AF_NS, SOCK_DGRAM, O); 

/* get id from the kernel -- only on IDP sockets */ 
getsockopt(s, NSPROTO_PE, SO_SEQNO, (char *)&uniqueid, &idsize); 

The retransmission and duplicate suppression code required to simulate PEX fully is left as an exercise for 
the reader. 

5.13e lnetd 

One of the daemons provided with 4.3BSD is inetd, the so called "internet super-server." Inetd is 
invoked at boot time~ and determines from the file /etclinetd.confthe servers for which it is to listen. Once 
this information has been read and a pristine environment created, inetd proceeds to create one socket for 
each service it is to listen for, binding the appropriate port number to each socket 

Jnetd then performs a select on all these sockets for read availability, waiting for somebody wishing 
a connection to the service corresponding to that socket Inetd then performs an accept on the socket in 
question, forks, dups the new socket to file descriptors 0 and 1 (stdin and stdout), closes other open file 
descriptors, and execs the appropriate server. 

Servers making use of inetd are considerably simplified, as inetd takes care of the majority of the IPC 
work required in establishing a connection. The server invoked by inetd expects the socket connected to its 
client on file descriptors 0 and 1, and may immediately perform any operations such as read, write, send, or 
recv. Indeed, servers may use buffered 110 as provided by the "stdio" conventions, as long as as they 
remember to use fftush when appropriate. 

One call which may be of interest to individuals writing servers under inetd is the getpeername call, 
which returns the address of the peer (process) connected on the other end of the socket For example, to 
log the Internet address in "dot notation" (e.g., "128.32.0.4") of a client connected to a server under 
inetd, the following code might be used: 

struct sockaddr _in name; 
int namelen = sizeof (name); 

if (getpeername(O, (struct sockaddr *)&name, &namelen) < 0) { 
syslog(LOG _ERR, "getpeername: %m"); 
exit(l); 

} else 
syslog(LOG_INFO, "Connection from %s", inet_ntoa(name.sin_addr)); 

While the getpeername call is especially useful when writing programs to run with inetd, it can be used 
under other circumstances. Be warned, however, that getpeername will fail on UNIX domain sockets. 
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ABSTRACT 

Lint is a command which examines C source programs, detecting a number of 
bugs and obscurities. It enforces the type rules of C more strictly than the C compilers. 
It may also be used to enforce a number of portability restrictions involved in moving 
programs between different machines and/or operating systems. Another option detects a 
number of wasteful, or error prone, constructions which nevertheless are, strictly speak­
ing, legal. 

Lint accepts multiple input files and library specifications, and checks them for 
consistency. 

The separation of function between lint and the C compilers has both historical 
and practical rationale. The compilers turn C programs into executable files rapidly and 
efficiently. This is possible in part because the compilers do not do sophisticated type 
checking, especially between separately compiled programs. Lint takes a more global, 
leisurely view of the program, looking much more carefully at the compatibilities. 

This document discusses the use of lint, gives an overview of the implementation, 
and gives some hints on the writing of machine independent C code. 

Introduction and Usage 

Suppose there are two C Kernighan Ritchie Programming Prentice 1978 source files, ftlel. c and 
ftle2 .c, which are ordinarily compiled and loaded together. Then the command 

lint filel.c file2.c 

produces messages describing inconsistencies and inefficiencies in the programs. The program enforces 
the typing rules of C more strictly than the C compilers (for both historical and practical reasons) enforce 
them. The command 

lint -p file l.c file2.c 

will produce, in addition to the above messages, additional messages which relate to the portability of the 
programs to other operating systems and machines. Replacing the -p by -h will produce messages about 
various error-prone or wasteful constructions which, strictly speaking, are not bugs. Saying -hp gets the 
whole works. 

The next several sections describe the major messages; the document closes with sections discussing 
the implementation and giving suggestions for writing portable C. An appendix gives a summary of the 
lint options. 

A Word About Philosophy 

Many of the facts which lint needs may be impossible to discover. For example, whether a given 
function in a program ever gets called may depend on the input data. Deciding whether exit is ever called 
is equivalent to solving the famous "halting problem," known to be recursively undecidable. 

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it can never be 
called. If a function is mentioned, lint assumes it can be called; this is not necessarily so, but in practice is 
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quite reasonable. 

Lint tries to give information with a high degree of relevance. Messages of the form ".xa might be 
a bug'' are easy to generate, but are acceptable only in proportion to the fraction of real bugs they uncover. 
If this fraction of real bugs is too small, the messages lose their credibility and serve merely to clutter up 
the output, obscuring the more important messages. 

Keeping these issues in mind, we now consider in more 4.etail the classes of messages which lint 
produces. 

Unused Variables and Functions 

As sets of programs evolve and develop, previously used variables and arguments to functions may 
become unused; it is not uncommon for external variables, or even entire functions, to become unneces­
sary, and yet not be removed from the source. These uerrors of commission" rarely cause working pro­
grams to fail, but they are a source of inefficiency, and make programs harder to understand and change. 
Moreover, information about such unused variables and functions can occasionally serve to discover bugs; 
if a function does a necessary job, and is never called, something is wrong! 

Lint complains about variables and functions which are defined but not otherwise mentioned. An 
exception is variables which are declared through explicit extern statements but are never referenced; thus 
the statement 

extern ftoat sin(); 

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C compiler. In 
some cases, these unused external declarations might be of some interest; they can be discovered by adding 
the -x flag to the lini invocation. 

Certain styles of programming require many functions to be written with similar interfaces; fre­
quently, some of the arguments may be unused in many of the calls. The -v option is available to suppress 
the printing of complaints about unused arguments. When -v is in effect, no messages are produced about 
unused arguments except for those argument8 which are unused and also declared as register arguments; 
this can be considered an active (and preventable) waste of the register resources of the machine. 

There is one case where information about unused, or undefined, variables is more distracting than 
helpful. This is when lint is applied to some, but not all, files out of a collection which are to be loaded 
together. In this case, many of the functions and variables defined may not be used, and, conversely, many 
functions and variables defined elsewhere may be used. The -u ftag may be used to suppress the spurious 
messages which might otherwise appear. 

Set/Used Information 

Lint attempts to detect cases where a variable is used before it is set This is very difficult to do well; 
many algorithms take a good deal of time and space, and still produce messages about perfectly valid pro­
grams. Lint detects local variables (automatic and register storage classes) whose first use appears physi­
cally earlier in the input file than the first assignment to the variable. It assumes that taking the address of a 
variable constitutes a "use," since the actual use may occur at any later time, in a data dependent fashion. 

The restriction to the physical appearance of variables in the file makes the algorithm very simple 
and quick to implement, since the true flow of control need not be discovered. It does mean that lint can 
complain about some programs which are legal, but these programs would probably be considered bad on 
stylistic grounds (e.g. might contain at least two goto's). Because static and external variables are initial­
ized to 0, no meaningful information can be discovered about their uses. The algorithm deals correctly, 
however, with initialized automatic variables, and variables which are used in the expression which first 
sets them. 

The set/used information also permits recognition of those local variables which are set and never 
used; these form a frequent source of inefficiencies, and may also be symptomatic of bugs. 
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Flow of Control 

Lint attempts to detect unreachable portions of the programs which it processes. It will complain 
about unlabeled statements immediately following goto, break, continue, or return statements. An 
attempt is made to detect loops which can never be left at the bottom, detecting the special cases while( 1) 
and for(;;) as infinite loops. Lint also complains about loops which cannot be entered at the top; some 
valid programs may have such loops, but at best they are bad style, at worst bugs. 

Lint has an important area of blindness in the ft.ow of control algorithm: it has no way of detecting 
functions which are called and never return. Thus, a call to exit may cause unreachable code which lint 
does not detect; the most serious effects of this are in the determination of returned function values (see the 
next section). 

One form of unreachable statement is not usually complained about by lint; a break statement that 
cannot be reached causes no message. Programs generated by yacc, Johnson Yacc 1975 and especially 
lex, Lesk Lex may have literally hundreds of unreachable break statements. The -0 flag in the C com­
piler will often eliminate the resulting object code inefficiency. Thus, these unreached statements are of lit­
tle importance, there is typically nothing the user can do about them, and the resulting messages would 
clutter up the lint output. If these messages are desired, lint can be invoked with the -b option. 

Function Values 

Sometimes functions return values which are never used; sometimes programs incorrectly use func­
tion ''values'' which have never been returned. Lint addresses this problem in a number of ways. 

Locally, within a function definition, the appearance of both 

return( expr ); 

and 

return; 

statements is cause for alarm; lint will give the message 

function name contains retum(e) and return 

The most serious difficulty with this is detecting when a function return is implied by ft.ow of control reach­
ing the end of the function. This can be seen with a simple example: 

f(a){ 
if ( a ) return ( 3 ); 
g (); 
} 

Notice that, if a tests false,/will call g and then return with no defined return value; this will trigger a com­
plaint from lint. If g, like exit, never returns, the message will still be produced when in fact nothing is 
wrong. 

In practice, some potentially serious bugs have been discovered by this feature; it also accounts for a 
substantial fraction of the ''noise'' messages produced by lint. 

On a global scale, lint detects cases where a function returns a value, but this value is sometimes, or 
always, unused. When the value is always unused, it may constitute an inefficiency in the function 
definition. When the value is sometimes unused, it may represent bad style (e.g., not testing for error con­
ditions). 

The dual problem, using a function value when the function does not return one, is also detected. 
This is a serious problem. Amazingly, this bug has been observed on a couple of occasions in ''working'' 
programs; the desired function value just happened to have been computed in the function return register! 



PS1:9-4 Lint, a C Program Checker 

Type Checking 

Lint enforces the type checking rules of C more strictly than the compilers do. The additional check­
ing is in four major areas: across certain binary operators and implied assignments, at the structure selec­
tion operators, between the definition and uses of functions, and in the use of enumerations. 

There are a number of operators which have an implied balancing between types of the operands. 
The assignment, conditional ( ? : ), and relational operators have this property; the argument of a return 
statement, and expressions used in initialization also suffer similar conversions. In these operations, char, 
short, int, long, unsigned, ftoat, and double types may be freely intermixed. The types of pointers must 
agree exactly, except that arrays of x' s can, of course, be intermixed with pointers to x' s. 

The type checking rules also require that, in structure references, the left operand of the-> be a 
pointer to structure, the left operand of the • be a structure, and the right operand of these operators be a 
member of the structure implied by the left operand Similar checking is done for references to unions. 

Strict rules apply to function argument and return value matching. The types ftoat and double may 
be freely matched, as may the types char, short, int, and unsigned. Also, pointers can be matched with 
the associated arrays. Aside from this, all actual arguments must agree in type with their declared counter­
parts. 

With enumerations, checks are made that enumeration variables or members are not mixed with 
other types, or other enumerations, and that the only operations applied are =, initialization, ==, !=, and 
function arguments and return values. 

Type Casts 

The type cast feature in C was introduced largely as an aid to producing more portable programs. 
Consider the assignment 

p= 1; 

where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment 

p =(char •)1 ; 

in which a cast has been used to convert the integer to a character pointer. The programmer obviously had 
a strong motivation for doing this, and has clearly signaled his intentions. It seems harsh for lint to con­
tinue to complain about this. On the other hand, if this code is moved to another machine, such code 
should be looked at carefully. The --c flag controls the printing of comments about casts. When --c is in 
effect, casts are treated as though they were assignments subject to complaint; otherwise, all legal casts are 
passed without comment, no matter how strange the type mixing seems to be. 

Nonportable Character Use 

On the PDP-11, characters are signed quantities, with a range from -128 to 127. On most of the 
other C implementations, characters take on only positive values. Thus, lint will flag certain comparisons 
and assignments as being illegal or nonportable. For example, the fragment 

char c; 

if( (c = getchar()) < 0) .... 

works on the PDP-11, but will fail on machines where characters always take on positive values. The real 
solution is to declare c an integer, since getchar is actually returning integer values. In any case, lint will 
say ''nonportable character comparison''. 

A similar issue arises with bitfields; when assignments of constant values are made to bitfields, the 
field may be too small to hold the value. This is especially true because on some machines bitfields are 
considered as signed quantities. While it may seem unintuitive to consider that a two bit field declared of 
type int cannot hold the value 3, the problem disappears if the bitfield is declared to have type unsigned. 
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Assignments of longs to ints 

Bugs may arise from the assignment of long to an int, which loses accuracy. This may happen in 
programs which have been incompletely converted to use typedefs. When a typedef variable is changed 
from int to long, the program can stop working because some intermediate results may be assigned to ints, 
losing accuracy. Since there are a number of legitimate reasons for assigning longs to in ts, the detection of 
these assignments is enabled by the -a flag. 

Strange Constructions 

Several perfectly legal, but somewhat strange, constructions are flagged by lint; the messages hope­
fully encourage better code quality, clearer style, and may even point out bugs. The -h flag is used to 
enable these checks. For example, in the statement 

*P++; 

the * does nothing; this provokes the message ''null effect'' from lint. The program fragment 

unsigned x; 
if( x < 0) ... 

is clearly somewhat strange; the test will never succeed. Similarly, the test 

if( x > 0) ... 

is equivalent to 

if( x != 0) 

which may not be the intended action. Lint will say ''degenerate unsigned comparison'' in these cases. If 
one says 

if( 1 != 0) .... 

lint will report "constant in conditional context'', since the comparison of 1 with 0 gives a constant result. 

Another construction detected by lint involves operator precedence. Bugs which arise from 
misunderstandings about the precedence of operators can be accentuated by spacing and formatting, mak­
ing such bugs extremely hard to find. For example, the statements 

if( x&077 == 0 ) ... 

or 

xc:2 +40 

probably do not do what was intended. The best solution is to parenthesize such expressions, and lint 
encourages this by an appropriate message. 

Finally, when the -h flag is in force lint complains about variables which are redeclared in inner 
blocks in a way that conflicts with their use in outer blocks. This is legal, but is considered by many 
(including the author) to be bad style, usually unnecessary, and frequently a bug. 

Ancient History 

There are several forms of older syntax which are being officially discouraged. These fall into two 
classes, assignment operators and initialization. 

The older forms of assignment operators (e.g., =+, =-, ... ) could cause ambiguous expressions, 
such as 

a =-1; 

which could be taken as either 

a=- 1; 

or 
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a= -1; 

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro substitution. 
The newer, and preferred operators ( +==, -=, etc. ) have no such ambiguities. To spur the abandonment of 
the older fonns, lint complains about these old fashioned operators. 

A similar issue arises with initialization. The older language allowed 

int x 1; 

to initialize x to 1. This also caused syntactic difficulties: for example, 

int x ( -1); 

looks somewhat like the beginning of a function declaration: 

int x ( y) { ... 

and the compiler must read a fair ways past x in order to sure what the declaration really is.. Again, the 
problem is even more perplexing when the initializer involves a macro. The current syntax places an 
equals sign between the variable and the initializer: 

int x - -1; 

This is free of any possible syntactic ambiguity. 

Pointer Alignment 
Certain pointer assignments may be reasonabie on some machines, and illegal on others, due entirely 

to alignment restrictions. For example, on the PDP-11, it is reasonable to assign integer pointers to double 
pointers, since double precision values may begin on any integer boundary. On the Honeywell 6000, dou­
ble precision values must begin on even word boundaries; thus, not all such assignments make sense. Lint 
tries to detect cases where pointers are assigned to other pointers, and such alignment problems might arise. 
The message ''possible pointer alignment problem'' results from this situation whenever either the -p or 
-h flags are in effect. 

Multiple Uses and Side Effects 

In complicated expressions, the best order in which to evaluate subexpressions may be highly 
machine dependent. For example, on machines (like the PDP-11) in which the stack runs backwards, func­
tion arguments will probably be best evaluated from right-to-left; on machines with a stack running for­
ward, left-to-right seems most attractive. Function calls embedded as arguments of other functions may or 
may not be treated similarly to ordinary arguments. Similar issues arise with other operators which have 
side effects, such as the assignment operators and the increment and decrement operators. 

In order that the efficiency of Con a particular machine not be unduly compromised, the C language 
leaves the order of evaluation of complicated expressions up to the local compiler, and, in fact, the various 
C compilers have considerable differences in the order in which they will evaluate complicated expres­
sions. In particular, if any variable is changed by a side effect, and also used elsewhere in the same expres­
sion, the result is explicitly undefined. 

Lint checks for the important special case where a simple scalar variable is affected. For example, 
the statement 

a[i] = b[i++]; 

will draw the complaint: 

warning: i evaluation order undefined 
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Implementation 

Lint consists of two programs and a driver. The first program is a version of the Portable C Com­
piler Johnson Ritchie BSTJ Portability Programs System Johnson portable compiler 1978 which is the 
basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C compilers. This compiler does lexical and 
syntax analysis on the input text, constructs and maintains symbol tables, and builds trees for expressions. 
Instead of writing an intermediate file which is passed to a code generator, as the other compilers do, lint 
produces an intermediate file which consists of lines of ascii texl Each line contains an external variable 
name, an encoding of the context in which it was seen (use, definition, declaration, etc.), a type specifier, 
and a source file name and line number. The information about variables local to a function or file is col­
lected by accessing the symbol table, and examining the expression trees. 

Comments about local problems are produced as detected. The information about external names is 
collected onto an intermediate file. After all the source files and library descriptions have been collected, 
the intermediate file is sorted to bring all information collected about a given external name together. The 
second, rather small, program then reads the lines from the intermediate file and compares all of the 
definitions, declarations, and uses for consistency. 

The driver controls this process, and is also responsible for making the options available to both 
passes of lint. 

Portability 

C on the Honeywell and IBM systems is used, in part, to write system code for the host operating 
system. This means that the implementation of C tends to follow local conventions rather than adhere 
strictly to UNIXt system conventions. Despite these differences, many C programs have been successfully 
moved to GCOS and the various IBM installations with little effort. This section describes some of the 
differences between the implementations, and discusses the lint features which encourage portability. 

Uninitialized external variables are treated differently in different implementations of C. Suppose 
two files both contain a declaration without initialization, such as 

inta; 

outside of any function. The UNIX loader will resolve these declarations, and cause only a single word of 
storage to be set aside for a. Under the GCOS and IBM implementations, this is not feasible (for various 
stupid reasons!) so each such declaration causes a word of storage to be set aside and called a. When 
loading or library editing takes place, this causes fatal conflicts which prevent the proper operation of the 
program. If lint is invoked with the -p flag, it will detect such multiple definitions. 

A related difficulty comes from the amount of information retained about external names during the 
loading process. On the UNIX system, externally known names have seven significant characters, with the 
upper/lower case distinction kept On the IBM systems, there are eight significant characters, but the case 
distinction is losl On GCOS, there are only six characters, of a single case. This leads to situations where 
programs run on the UNIX system, but encounter loader problems on the IBM or GCOS systems. Lint -p 
causes all external symbols to be mapped to one case and truncated to six characters, providing a worst­
case analysis. 

A number of differences arise in the area of character handling: characters in the UNIX system are 
eight bit ascii, while they are eight bit ebcdic on the IBM, and nine bit ascii on GCOS. Moreover, charac­
ter strings go from high to low bit positions ("left to right") on GCOS and IBM, and low to high ("right to 
left'') on the PDP-11. This means that code attempting to construct strings out of character constants, or 
attempting to use characters as indices into arrays, must be looked at with great suspicion. Lint is of little 
help here, except to flag multi-character character constants. 

Of course, the word sizes are different! This causes less trouble than might be expected, at least 
when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36 bits). The main 
problems are likely to arise in shifting or masking. C now supports a bit-field facility, which can be used to 

t UNIX is a trademark of Bell Laboratories. 
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write much of this code in a reasonably portable way. Frequently, portability of such code can be 
enhanced by slight rearrangements in coding style. Many of the incompatibilities seem to have the flavor 
of writing 

x &= 0177700; 

to clear the low order six bits of x. This suffices on the PDP-11, but fails badly on GCOS and IBM. If the 
bit field feature cannot be used, the same effect can be obtained by writing 

x&=-077; 

which will work on all these machines. 

The right shift operator is arithmetic shift on the PDP-11, and logical shift on most other machines. 
To obtain a logical shift on all machines, the left operand can be typed unsigned. Characters are con­
sidered signed integers on the PDP-11, and unsigned on the other machines. This persistence of the sign 
bit may be reasonably considered a bug in the PDP-11 hardware which has infiltrated itself into the C 
language. If there were a good way to discover the programs which would be affected, C could be 
changed; in any case, lint is no help here. 

The above discussion may have made the problem of portability seem bigger than it in fact is. The 
issues involved here are rarely subtle or mysterious, at least to the implementor of the program, although 
they can involve some work to straighten out. The most serious bar to the portability of UNIX system utili­
ties has been the inability to mimic essential UNIX system functions on the other systems. The inability to 
seek to a random character position in a text file, or to establish a pipe.between processes, has involved far 
more rewriting and debugging than any of the differences in C compilers. On the other hand, lint has been 
very helpful in moving the UNIX operating system and associated utility progra:rn..s to other machL'les. 

Shutting Lint Up 

There are occasions when the programmer is smarter than lint. There may be valid reasons for 
"illegal" type casts, functions with a variable number of arguments, etc. Moreover, as specified above, the 
flow of control information produced by lint often has blind spots, causing occasional spurious messages 
about petfectly reasonable programs. Thus, some way of communicating with lint, typically to shut it up, 
is desirable. 

The form which this mechanism should take is not at all clear. New keywords would require current 
and old compilers to recognize these keywords, if only to ignore them. This has both philosophical and 
practical problems. New preprocessor syntax suffers from similar problems. 

What was finally done was to cause a number of words to be recognized by lint when they were 
embedded in comments. This required minimal preprocessor changes; the preprocessor just had to agree to 
pass comments through to its output, instead of deleting them as had been previously done. Thus, lint 
directives are invisible to the compilers, and the effect on systems with the older preprocessors is merely 
that the lint directives don't work. 

The first directive is concerned with flow of control information; if a particular place in the program 
cannot be reached, but this is not apparent to lint, this can be asserted by the directive 

!* NOTREACHED *I 

at the appropriate spot in the program. Similarly, if it is desired to tum off strict type checking for the next 
expression, the directive 

/* NOSTRICT */ 

can be used; the situation reverts to the previous default after the next expression. The -v flag can be 
turned on for one function by the directive 

I* ARGSUSED */ 

Complaints about variable number of arguments in calls to a function can be turned off by the directive 
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I* V ARARGS */ 

preceding the function definition. In some cases, it is desirable to check the first several arguments, and 
leave the later arguments unchecked. This can be done by following the V ARARGS keyword immediately 
with a digit giving the number of arguments which should be checked; thus, 

I* V ARARGS2 */ 

will cause the first two arguments to be checked, the others unchecked. Finally, the directive 

I* LINTLIBRARY */ 

at the head of a file identifies this file as a library declaration file; this topic is worth a section by itself. 

Library Declaration Files 

Lint accepts certain library directives, such as 

-ly 

and tests the source files for compatibility with these libraries. This is done by accessing library descrip­
tion files whose names are constructed from the library directives. These files all begin with the directive 

I* LINTLIBRARY */ 

which is followed by a series of dummy function definitions. The critical parts of these definitions are the 
declaration of the function return type, whether the dummy function returns a value, and the number and 
types of arguments to the function. The V ARARGS and ARGSUSED directives can be used to specify 
features of the library functions. 

Lint library files are processed almost exactly like ordinary source files. The only difference is that 
functions which are defined on a library file, but are not used on a source file, draw no complaints. Lint 
does not simulate a full library search algorithm, and complains if the source files contain a redefinition of 
a library routine (this is a feature!). 

By default, lint checks the programs it is given against a standard library file, which contains 
descriptions of the programs which are normally loaded when a C program is run. When the -p fiag is in 
effect, another file is checked containing descriptions of the standard I/O library routines which are 
expected to be portable across various machines. The -n fiag can be used to suppress all library checking. 

Bugs, etc. 

Lint was a difficult program to write, partially because it is closely connected with matters of pro­
gramming style, and partially because users usually don't notice bugs which cause lint to miss errors which 
it should have caught. (By contrast, if lint incorrectly complains about something that is correct, the pro­
grammer reports that immediately!) 

A number of areas remain to be further developed. The checking of structures and arrays is rather 
inadequate; size incompatibilities go unchecked, and no attempt is made to match up structure and union 
declarations across files. Some stricter checking of the use of the typedef is clearly desirable, but what 
checking is appropriate, and how to carry it out, is still to be determined. 

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for a special 
version of the preprocessor to be constructed which checks for things such as unused macro definitions, 
macro arguments which have side effects which are not expanded at all, or are expanded more than once, 
etc. 

The central problem with lint is the packaging of the information which it collects. There are many 
options which serve only to turn off, or slightly modify, certain features. There are pressures to add even 
more of these options. 

In conclusion, it appears that the general notion of having two programs is a good one. The compiler 
concentrates on quickly and accurately turning the program text into bits which can be run; lint concen­
trates on issues of portability, style, and efficiency. Lint can afford to be wrong, since incorrectness and 
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over-conservatism are merely annoying, not fatal. The compiler can be fast since it knows that lint will 
cover its flanks. Finally, the programmer can concentrate at one stage of the programming process solely 
on the algorithms, data structures, and correctness of the program, and then later retrofit, with the aid of 
lint, the desirable properties of universality and portability. $LIST$ 
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Appendix: Current Lint Options 

The command currently has the form 

lint [-options] files ... library-descriptors ... 

The options are 

h Perform heuristic checks 

p Perform portability checks 

v Don't report unused arguments 

u Don't report unused or undefined externals 

b Report unreachable break statements. 

x Report unused external declarations 

a Report assignments of long to int or shorter. 

c Complain about questionable casts 

n No library checking is done 

s Sarne ash (for historical reasons) 
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ABSTRACT 

Debugging tools generally provide a wealth of information about the inner work­
ings of programs. These tools have been available on UNIXt to allow users to examine 
"core" files that result from aborted programs. A new debugging program, ADB, pro­
vides enhanced capabilities to examine "core" and other program files in a variety of for­
mats, run programs with embedded breakpoints and patch files. 

ADB is an indispensable but complex tool for debugging crashed systems and/or: 
programs. This document provides an introduction to ADB with examples of its use. It 
explains the various formatting options, techniques for debugging C programs, examples 
of printing file system information and patching. 

1. Introduction 

ADB is a new debugging program that is available on UNIX. It provides capabilities to look at 
''core'' files resulting from aborted programs, print output in a variety of formats, patch files, and run pro­
grams with embedded breakpoints. This document provides examples of the more useful features of ADB. 
The reader is expected to be familiar with the basic commands on UNIX with the C language, and with 
References 1, 2 and 3. 

2. A Quick Survey 

2.1. Invocation 

ADB is invoked as: 

adb objfile corefile 

where objftle is an executable UNIX file and corefile is a core image file. Many times this will look like: 

adb a.out core 

or more simply: 

adb 

where the defaults are a.out and core respectively. The filename minus (-) means ignore this argument as 
in: 

adb-core 

ADB has requests for examining locations in either file. The ? request examines the contents of 
objfile, the I request examines the corefile. The general form of these requests is: 

addreu ? format 

t UNIX is a trademark of Bell Laboratories. 
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or 

addr~ I format 

2.2. Current Address 

ADB maintains a current address, called dot, similar in function to the current pointer in the UNIX 
editor. When an address is entered, the current address is set to that location, so that 

0126?i 

sets dot to octal 126 and prints the instruction at that address. The request: 

x .,10/d 

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the last item printed. 
When used with the ? or I requests, the current address can be advanced by typing newline; it can be decre­
mented by typing ... 

Addresses are represented by expressions. Expressions are made up from decimal, octal, and hexa­
decimal integers, and symbols from the program under test. These may be combined with the operators +, 
-, *, % (integer division), & (bitwise and), I (bitwise inclusive or), # (round up to _the next multiple), and -
(not). (All arithmetic within ADB is 32 bits.) When typing a symbolic address for a C program, the user 
can type name or _name; ADB will recognize both forms. 

2.3. Formats 

To print data, a user specifies a collection of letters and characters that describe the format of the 
printout. Fonnats are "remembered" in the sense that typing a request without one will cause the new prin­
tout to appear in the previous format. The following are the most commonly used format letters. 

b one byte in octal 
c one byte as a character 
o one word in octal 
d one word in decimal 
r two words in floating point 
i PDP 11 instruction 
s a null terminated character string 
a the value or dot 
u one word as unsigned integer 
n print a newline 
r print a blank space 

backup dot 

(Format letters are also available for "long" values, for example, 'D' for long decimal, and 'F' for double 
floating point) For other fonnats see the ADB manual. 

2.4. General Request Meanings 

The general form of a request is: 

addr~,count command modifier 

which sets 'dot' to address and executes the command count times. 

The following table illustrates some general ADB command meanings: 

Command Meaning 
? Print contents from a.out file 
I Print contents from core file 
= Print value or "dot" 

Breakpoint control 
$ Miscellaneous requests 
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Request separator 
Escape to shell 

PSl:l0-3 

ADB catches signals, so a user cannot use a quit signal to exit from ADB. The request $q or $Q (or 
cntl-D) must be used to exit from ADB. 

3 .. Debugging C Programs 

3.1. Debugging A Core Image 

Consider the C program in Figure 1. The program is used to illustrate a common error made by C 
programmers. The object of the program is to change the lower case "t" to upper case in the string pointed 
to by charp and then write the character string to the file indicated by argument 1. The bug shown is that 
the character "T" is stored in the pointer charp instead of the string pointed to by charp. Executing the pro­
gram produces a core file because of an out of bounds memory reference. 

ADB is invoked by: 

adb a.out core 

The first debugging request: 

$c 

is used to give a C backtrace through the subroutines called. As shown in Figure 2 only one function 
(main) was called and the arguments argc and argv have octal values 02 and 0177762 respectively. Both 
of these values look reasonable; 02 = two arguments, 01777 62 = address on stack of parameter vector. 
The next request: 

$C 

is used to give a C backtrace plus an interpretation of all the local variables in each function and their 
values in octal. The value of the variable cc looks incorrect since cc was declared as a character. 

The next request 

$r 

prints out the registers including the program counter and an interpretation of the instruction at that loca­
tion. 

The request: 

$e 

prints out the values of all external variables. 

A map exists for each file handled by ADB. The map for the a.out file is referenced by? whereas 
the map for core file is referenced by/. Furthermore, a good rule of thumb is to use? for instructions and I 
for data when looking at programs. To print out information about the maps type: 

$m 

This produces a report of the contents of the maps. More about these maps later. 

In our example, it is useful to see the contents of the string pointed to by charp. This is done by: 

*charp/s 

which says use charp as a pointer in the core file and print the information as a character string. This prin­
tout clearly shows that the character buffer was incorrectly overwritten and helps identify the error. Print­
ing the locations around charp shows that the buffer is unchanged but that the pointer is destroyed. Using 
ADB similarly, we could print information about the arguments to a function. The request: 

main.argc/d 

prints the decimal core image value of the argument argc in the function ma.in. 
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The request: 

*main.argv .;3/o 

prints the octal values of the three consecutive cells pointed to by argv in the function main. Note that 
these values are the addresses of the arguments to main. Therefore: 

0177770/s 

prints the ASCII value of the first argument. Another way to print this value would have been 

*"Is 

The " means ditto which remembers the last address typed, in this case main.argc ; the * instructs ADB to 
use the address field of the core file as a pointer. 

The request: 

.=o 
prints the current address (not its contents) in octal which has been set to the address of the first argument. 
The current address, dot, is used by ADB to "remember" its current location. It allows the user to reference 
locations relative to the current address, for example: 

.-10/d 

3.2. Multiple Functions 

Consider the C program illustrated in Figure 3. This program calls functions f. g, and h until the 
stack is exhausted and a core image is produced 

Again you can enter the debugger via: 

adb 

which assumes the names a.out and core for the executable file and core image file respectively. The 
request 

$c 

will fill a page of backtrace references to/, g, and h. Figure 4 shows an abbreviated list (typing DEL will 
terminate the output and bring you back to ADB request level). 

The request: 

,S$C 

prints the five most recent activations. 

Notice that each function (f,g,h) has a counter of the number of times it was called. 

· The request: 

rcnt/d 

prints the decimal value of the counter for the function f. Similarly gent and hcnt could be printed. To 
print the value of an automatic variable, for example the decimal value of x in the last call of the function h, 
type: 

h.x/d 

It is currently not possible in the exported version to print stack frames other than the most recent activa­
tion of a function. Therefore, a user can print everything with $C or the occurrence of a variable in the 
most recent call of a function. It is possible with the $C request, however, to print the stack frame starting 
at some address as address$C. 
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3.3. Setting Breakpoints 

Consider the C program in Figure 5. This program, which changes tabs into blanks, is adapted from 
Software Tools by Kernighan and Plauger, pp. 18-27. 

We will run this program under the control of ADB (see Figure 6a) by: 

adb a.out-

Breakpoints are set in the program as: 

The requests: 

addreu:b [request] 

settab+4:b 
fopen+4:b 
getc+4:b 
tabpos+4:b 

set breakpoints at the start of these functions. C does not generate statement labels. Therefore it is 
currently not possible to plant breakpoints at locations other than function entry points without a 
knowledge of the code generated by the C compiler. The above addresses are entered as symbol+4 so that 
they will appear in any C backtrace since the first instruction of each function is a call to the C save routine 
(csv). Note that some of the functions are from the C library. 

To print the location of breakpoints one types: 

$b 

The display indicates a count field. A breakpoint is bypassed count -1 times before causing a stop. The 
command field indicates the ADB requests to be executed each time the breakpoint is encountered. In our 
example no command fields are present 

By displaying the original instructions at the function settab we see that the breakpoint is set after the 
jsr to the C save routine. We can display the instructions using the ADB request: 

settab,S?ia 

This request displays five instructions starting at settab with the addresses of each location displayed 
Another variation is: 

settab,S?i 

which displays the instructions with only the starting address. 

Notice that we accessed the addresses from the a.out file with the ? command In general when ask­
ing for a printout of multiple items, ADB will advance the current address the number of bytes necessary to 
satisfy the request; in the above example five instructions were displayed and the current address was 
advanced 18 (decimal) bytes. 

To run the program one simply types: 

:r 

To delete a breakpoint, for instance the entry to the function settab, one types: 

settab+4:d 

To continue execution of the program from the breakpoint type: 

:c 
Once the program has stopped (in this case at the breakpoint for /open), ADB requests can be used to 

display the contents of memory. For example: 

$C 

to display a stack trace, or: 
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tabs,3/80 

to print three lines of 8 locations each from the array called tabs. By this time (at location/open) in the C 
program, settab has been called and should have set a one in every eighth location of tabs. 

3.4. Advanced Breakpoint Usage 

We continue execution of the program with: 

:c 

See Figure 6b. Getc is called three times and the contents of the variable c in the function main are 
displayed each time. The single character on the left hand edge is the output from the C program. On the 
third occurrence of getc the program stops. We can look at the full buffer of characters by typing: 

ibuf+6/20c 

When we continue the program with: 

:c 

we hit our first breakpoint at tabpos since there is a tab following the "This" word of the data. 

Several breakpoints of tabpos will occur until the program has changed the tab into equivalent 
blanks. Since we feel that tabpos is working, we can remove the breakpoint at that location by: 

tabpos+4:d 

If the program is continued with: 

:c 

it resumes normal execution after ADB prints the message 

a.out: running 

The UNIX quit and interrupt signals act on ADB itself rather than on the program being debugged. 
If such a signal occurs then the program being debugged is stopped and control is returned to ADB. The 
signal is saved by ADB and is passed on to the test program if: 

:c 

is ~ This can be useful when testing interrupt handling routines. The signal is not passed on to the test 
program if: 

:c 0 

is typed. 

Now let us reset the breakpoint at settab and display the instructions located there when we reach the 
breakpoint This is accomplished by: 

settab+4: b settab,S?ia * 
It is also possible to execute the ADB requests for each occurrence of the breakpoint but only stop after the 
third occurrence by typing: 

getc+4,3:b main.c?C * 
This request will print the local variable c in the function main at each occurrence of the breakpoint The 

• Owing to a bug in early versions of ADB (including the version distributed in Generic 3 UNIX) these statements must be 
written as: 

settab+4:b settab,S?la;O 
gete+4,3:bmaln.c?C;O 
settab+4:b settab,S?la; ptab/o;O 

Note that ;O will set dot to zero and stop at the breakpoint. 
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semicolon is used to separate multiple ADB requests on a single line. 

W aming: setting a breakpoint causes the value of dot to be changed; executing the program under 
ADB does not change dot. Therefore: 

settab+4: b .,S?ia 
fopen+4:b 

will print the last thing dot was set to (in the example/open+4) not the current location (settab+4) at which 
the program is executing. 

A breakpoint can be overwritten without first deleting the old breakpoint For example: 

settab+4:b settab,S?ia; ptab/o * 
could be entered after typing the above requests. 

Now the display of breakpoints: 

$b 

shows the above request for the settab breakpoint. When the breakpoint at settab is encountered the ADB 
requests are executed. Note that the location at settab+4 has been changed to plant the breakpoint; all the 
other locations match their original value. 

Using the functions,/, g and h shown in Figure 3, we can follow the execution of each function by 
planting non-stopping breakpoints. We call ADB with the executable program of Figure 3 as follows: 

adbex3-

Suppose we enter the followiJ:ig breakpoints: 

h+4:b hcnt/d; h.hi/; h.hr/ 
g+4:b gcnt/d; g.gi/; g.gr/ 
f +4:b fcnt/d; f.fi/; f.fr/ 
:r 

Each request line indicates that the variables are printed in decimal (by the specification d). Since the for­
mat is not changed, the d can be left off all but the first request 

The output in Figure 7 illustrates two points. First, the ADB requests in the breakpoint line are not 
examined until the program under test is run. That means any errors in those ADB requests is not detected 
until run time. At the location of the error ADB stops running the program. 

The second point is the way ADB handles register variables. ADB uses the symbol table to address 
variables. Register variables, like f fr above, have pointers to uninitialized places on the stack. Therefore 
the message "symbol not found". 

Another way of getting at the data in this example is to print the variables used in the call as: 

f+4:b fcnt/d; f.a/; f.b/; f.fi/ 
g+4:b gcnt/d; g.p/; g.q/; g.gi/ 
:c 

The operator I was used instead of ? to read values from the core file. The output for each function, as 
shown in Figure 7, has the same format. For the function f, for example, it shows the name and value of 
the external variable/cnt. It also shows the address on the stack and value of the variables a, band ft. 

Notice that the addresses on the stack will continue to decrease until no address space is left for pro­
gram execution at which time (after many pages of output) the program under test aborts. A display with 
names would be produced by requests like the following: 

f+4:b fcnt/d; f.a/"a="d; f.b/"b="d; f.fi/"fi="d 

In this format the quoted string is printed literally and the d produces a decimal display of the variables. 
The results are shown in Figure 7. 
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3.5. Other Breakpoint Facilities 

• Arguments and change of standard input and output are passed to a program as: 

:r argl arg2 ••• <infile >outfile 

This request kills any existing program under test and starts the a.out afresh. 

• The program being debugged can be single stepped by: 

:s 

If necessary, this request will start up the program being debugged and stop after executing the first 
instruction. 

• ADB allows a program to be entered at a specific address by typing: 

address:r 

• The count field can be used to skip the first n breakpoints as: 

,n:r 

The request 

,n:.c 

may also be used for skipping the first n breakpoints when continuing a program. 

• A program can be continued at an address different from the breakpoint by: 

address:c 

• The program being debugged runs as a separate process and can be killed by: 

:k 

4. Maps 

UNIX supports several executable file. formats. These are used to tell the loader how to load the 
program file. File type 407 is the most common and is generated by a C compiler invocation such as cc 
pgm.c. A 410 file is produced by a C compiler command of the fonn cc -n pgm.c, whereas a 411 file is 
produced by cc -i pgm.c. ADB interprets these different file fonnats and provides access to the different 
segments through a set of maps (see Figure 8). To print the maps type: 

$m 

In 407 files, both text (instructions) and data are intermixed. This makes it impossible for ADB to 
differentiate data from instructions and some of the printed symbolic addresses look incorrect; for example, 
printing data addresses as offsets from routines. 

In 410 files (shared text), the instructions are separated from data and?• accesses the data part of the 
a.out file. The ?* request tells ADB to use the second part of the map in the a.out file. Accessing data in 
the core file shows the data after it was modified by the execution of the program. Notice also that the data 
segment may have grown during program execution. 

In 411 files (separated I & D space), the instructions and data are also separated However, in this 
case, since data is mapped through a separate set of segmentation registers, the base of the data segment is 
also relative to address zero. In this case since the addresses overlap it is necessary to use the ?* operator 
to access the data space of the a.out file. In both 410 and 411 files the corresponding core file does not con­
tain the program text. 

Figure 9 shows the display of three maps for the same program linked as a 407, 410, 411 respec­
tively. The b, e, and f fields are used by ADB to map addresses into file addresses. The "fl" field is the 
length of the header at the beginning of the file (020 bytes for an a.out file and ·02000 bytes for a core file). 
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The "t'2" field is the displacement from the beginning of the file to the data. For a 407 file with mixed text 
and data this is the same as the length of the header; for 410 and 411 files this is the length of the header 
plus the size of the text portion. 

The "b" and "e" fields are the starting and ending locations for a segment Given an address, A, the 
location in the file (either a.out or core) is calculated as: 

blSASel ;. file addr~ = (A-bl)+fi 
b2~2 ;. file addr~ = (A-b2)+f2 

A user can access locations by using the ADB defined variables. The $v request prints the variables initial­
ized by ADB: 

b base addr~ of data segment 
d length or the data segment 
s length of the stack 
t length or the text 
m execution type (407,410,411) 

In Figure 9 those variables not present are zero. Use can be made of these variables by expressions 
such as: 

<b 

in the address field. Similarly the value of the variable can be changed by an assignment request such as: 

02000>b 

that sets b to octal 2000. These variables are useful to know if the file under examination is an executable 
or core image file. 

ADB reads the header of the core image file to find the values for these variables. If the second file 
specified does not seem to be a core file, or if it is missing then the header of the executable file is used 
instead. 

S. Advanced Usage 

It is possible with ADB to combine formatting requests to provide elaborate displays. Below are 
several examples. 

5.1. Formatted dump 

The line: 

<b,-1/4o4"8Cn 

prints 4 octal words followed by their ASCII interpretation from the data space of the core image file. Bro­
ken down, the various request pieces mean: 

<b The base address of the data segment 

<b,-1 Print from the base address to the end of file. A negative count is used here 
and elsewhere to loop indefinitely or until some error condition (like end of 
file) is detected · 

The format 4o4"8Cn is broken down as follows: 

4o Print 4 octal locations. 

4" Backup the current address 4 locations (to the original start of the field). 

SC Print 8 consecutive characters using an escape convention; each character in 
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the range 0 to 037 is printed as @ followed by the corresponding character 
in the range 0140 to 0177. An @is printed as@@. 

n Print a newline. 

The request: 

<h,«114o4"8Cn 

could have been used instead to allow the printing to stop at the end of the data segment ( <d provides the 
data segment size in bytes). 

The formatting requests can be combined with ADB's ability to read in a script to produce a core 
image dump script ADB is invoked as: 

adb a.out core< dump 

to read in a script file, dump, of requests. An example of such a script is: 

120$w 
409S$s 
$v 
=3n 
$m 
::Jn"C Stack Backtrace" 
$C 
=3n"C External Variables" 
$e 
=3n" Registers" 
$r 
0$s 
=3n "Data Segment" 
<b,-V8ona 

The request 120$w sets the width of the output to 120 characters (normally, the width is 80 charac­
ters). ADB attempts to print addresses as: 

symbol+ offset 

The request 4095$s increases the maximum permissible offset to the nearest symbolic address from 255 
(default) to 4095. The request= can be used to print literal strings. Thus, headings are provided in this 
dump program with requests of the form: 

=3n"C Stack Backtrace" 

that spaces three lines and prints the literal string. The request $v prints all non-zero ADB variables (see 
Figure 8). The request 0$s sets the maximum offset for symbol matches to zero thus suppressing the print­
ing of symbolic labels in favor of octal values. Note that this is only done for the printing of the data seg­
ment The request: 

<b,-V8ona 

prints a dump from the base of the data segment to the end of file with an octal address field and eight octal 
numbers per line. 

Figure 11 shows the results of some formatting requests on the C program of Figure 10. 

5.2. Directory Dump 

As another illustration (Figure 12) consider a set of requests to dump the contents of a directory 
(which is made up of an integer inumber followed by a 14 character name): 

adb dir-



A Tutorial Introduction to ADB 

=n8t"lnum "8t"Name" 
0,-1? u8t14cn 
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In this example, the u prints the inumber as an unsigned decimal integer, the 8t means that ADB will space 
to the next multiple of 8 on the output line, and the 14c prints the 14 character file name. 

5.3. Ilist Dump 

Similarly the contents of the ilist of a file system, (e.g. /dev/src, on UNIX systems distributed by the 
UNIX Support Group; see UNIX Programmer's Manual Section V) could be dumped with the following 
set of requests: 

adb /dev/src -
02000>b 
?m<b 
<b,-1?"8ags"8ton"links,uid,gid"8t3bn" ~ize"8tbrdn"addr"8t8un"times"8t2Y2na 

In this example the value of the base for the map was changed to 02000 (by saying ?m<b) since that is the 
start of an ilist within a file system. An artifice (brd above) was used to print the 24 bit size field as a byte, 
a space, and a decimal integer. The last access time and last modify time are printed with the 2Y operator. 
Figure 12 shows portions of these requests as applied to a directory and file system. 

5.4~ Converting values 

ADB may be used to convert values from one representation to another. For example: 

072=odx 

will print 

072 58 #3a 

which is the octal, decimal and hexadecimal representations of 072 (octal). The format is remembered so 
that typing subsequent numbers will print them in the given formats. Character values may be converted 
similarly, for example: 

'a'= co 
prints 

a 0141 

It may also be used to evaluate expressions but be warned that all binary operators have the same pre­
cedence which is lower than that for unary operators. 

6. Patching 

Patching files with ADB is accomplished with the write, w or W, request (which is not like theed 
editor write command). This is often used in conjunction with the locate, I or L request In general, the 
request syntax for I and ware similar as follows: 

?I value 

The request I is used to match on two bytes, Lis used for four bytes. The request w is used to write two 
bytes, whereas W writes four bytes. The value field in either locate or write requests is an expression. 
Therefore, decimal and octal numbers, or character strings are supported. 

In order to modify a file, ADB must be called as: 

adb -w filel file2 

When called with this option,fileJ andfile2 are created if necessary and opened for both reading and writ­
ing. 
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For example, consider the C program shown in Figure 10. We can change the word "This" to "The" 
in the executable file for this program, ex7, by using the following requests: 

adb-wex7-
?l 'Th' 
?W 'The' 

The request ?I starts at dot and stops at the first match of "Th" having set dot to the address of the location 
found. Note the use of? to write to the a.out file. The form ?* would have been used for a 411 file. 

More frequently the request will be typed as: 

?I 'Th'; ?s 

and locates the first occurrence of "Th" and print the entire string. Execution of this ADB request will set 
dot to the address of the "Th" characters. 

As another example of the utility of the patching facility, consider a C program that has an internal 
logic flag. The flag could be set by the user through ADB and the program run. For example: 

adb a.out-
:s argl arg2 
ftag/w 1 
:c 

The :s request is normally used to single step through a process or start a process in single step mode. In 
this case it starts a.out as· a subprocess with arguments argl and arg2. If there is a subprocess running 
ADB writes to it rather than to the file so the w request causes flag to be changed in the memory of the sub­
process. 

7. Anomalies 

Below is a list of some strange things that users should be aware of. 

1. Function calls and arguments are put on the stack by the C save routine. Putting breakpoints at the 
entry point to routines means that the function appears not to have been called when the breakpoint 
occurs. 

2. When printing addresses, ADB uses either text or data symbols from the a.out file. This sometimes 
causes unexpected symbol names to be printed with data (e.g. savr5 +022). This does not happen if? 
is used for text (instructions) and I for data. 

3. ADB cannot handle C register variables in the most recently activated function. 
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Figure 1: C program with pointer bug 

struct buf { 
int tildes; 
intnleft; 
char *nextp; 
char buff[S12]; 
}bb; 

struct buf *obuf; 

char *charp "this is a sentence."; 

main( argc,argv) 
int argc; 
char ••argv; 

. { 
char cc; 

if(argc < 2) { 

} 

printf("lnput file missing\n "); 
exit(8); 

if((fcreat(argv[l],obut)) < O){ 

} 

printf("%s: notfound\n", argv[l]); 
exit(S); 

charp = "T'; 
printf("debug 1 %s\n",charp); 

while( cc= *charp++). 
putc(cc,obuO; 

ffiush(obuO; 
} 

PSl:l0-13 
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Figure 2: ADD output for C program of Figure 1 

adb a.out core 
$c 
~main(02,0177762) 

$C 
-main(02,0l 77762) 

argc: 02 
argv: 0177762 
cc: 02124 . 

$r 
ps 0170010 
pc 0204 -main+Ol52 
sp 0177740 
rS 0177752 
r4 01 
r3 0 
r2 0 
rl 0 
rO 0124 
-main+Ol52: mov _obuf,(sp) 
$e 
savrS: 0 
_obuf: 0 
_charp: 0124 
_ermo: 0 

fout: 0 
im 
text map 'exl' 
bl =0 el = 02360 
b2=0 e2 = 02360 
data map 'corel' 
bl = 0 el = 03500 
b2 = 0175400 e2 = 0200000 

fl= 020 
f.2 = 020 

fl= 02000 
f.2 = 05500 

A Tutorial Introduction to ADB 

*charp/s 
0124: 1111111111 I 111111111 1111 111 I I 11 11 I I I I I I I.I Lx Nh@x & _ 

charp/s 
_charp: 

_charp+02: 

_ charp+026: 
main.argc/d 
0177756:2 
•main.argv/3o 

T 

this is a sentence. 

Input file missing 

0177762:0177770 0177776 0177777 
0177770/s 
0177770: a.ov.t 
•main.argv/3o 
0177762:0177770 0177776 0177777 
*"/s 
0177770: a.out 
.::o 

.-10/d 
0177756:2 
$q 

0177770 
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Figure 3: Multiple function C program for stack trace lllustratlon 

int fcnt,gcnt,hcnt; 
h(x,y) 
{ 

int hi; register int hr; 
hi ... x+l; 
hr=x-y+l; 
bent++; 
hj: 
f(hr,hi); 

} 

g(p,q) 
{ 

int gi; register int gr; 
gi = q-p; 
gr=q-p+l; 
gent++; 
gj: 
h(gr,gi); 

} 

f(a,b) 
{ 

int fi; register int fr; 
fi = a+2*b; 
fr= a+b; 
fcnt++; 
fj: 
g(fr,fi); 

} 

main() 
{ 

f(l,1); 
} 
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Figure 4: ADB output for C program of Figure 3 

adb 
$c 
-h(04452,04451) 
• g(04453,011124) 
·rc02,04451) 
-h(04450,04447) 
• g(04451,011120) 
·rc02,04447) 
-h(04446,04445) 
·g(04447,011114) 
·t(02,04445) 
-h(04444,04443) 
lllTDELKEY 
adb 
,S$C 
-h(04452,04451) 

x: 04452 
y: 04451 
hi: ? 

·g(04453,011124) 
p: 04453 
q: 011124 
gi: 04451 
gr. ? 

·rc02,04451) 
a: 02 
b: 04451 
fi: 011124 
fr: 04453 

-h(04450,04447) 
x: 04450 
y: 04447 
hi: 04451 
hr: 02 

-g(04451,011120) 
p: 04451 
q: 011120 
gi: 04447 
gr: 04450 

fcnt/d 
fcnt: 1173 

gcnt/d 
_gent: 1173 
hcnt/d 

bent: 1172 
h.x/d 
022004: 2346 
$q 
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Figure 5: C program to decode tabs 

#define MAXUNE 80 
#define YES 1 
#define NO 0 
#define T ABSP 8 

char input[] "data"; 
char ibuf[518]; 
int tabs[MAXUNE]; 

main() 
{ 

int col, *ptab; 
charc; 

ptab =tabs; 
settab(ptab); /*Set initial tab stops*/ 

} 

col= I; 
if(fopen(input,ibuf) < 0) { 

} 

printf("%s : not found\n" ,input); 
exit(S); 

while((c = getc(ibuf)) != -1) { 
switch(c) { 

} 
} 

case '\t': I* TAB *I 
while(tabpos(col) !=YES) { 

putchar(' '); I* put BLANK *I 
col++; 

} 
break; 

case '\n': /*NEWLINE *I 
putchar('\n'); 
col= 1; 

default: 
break; 

putchar(c); 
col++; 

I* Tabpos return YES if col is a tab stop */ 
tabpos(col) 
int col; 
{ 

} 

if( col > MAXLINE) 
retum(YES); 

else 
return( tabs[ col]); 

I* Settab - Set initial tab stops *I 
settab(tabp) 
int *tabp; 
{ 

inti; 

for(i = O; i<= MAXUNE; i++) 
(i%TABSP) ? (tabs[i] =NO) : (tabs[i] = YES); 

} 

PSl:l0-17 
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Figure 6a: ADD output for C program of Figure 5 

adba.out­
settab+4:b 
fopen+4:b 
getc+4:b 
tabpos+4:b 
Sb 
breakpoints 
count bkpt 
1 •tabpos+04 
1 _getc+04 
1 _fopen+04 
1 • settab+04 
settab,S?la 
·settab: jsr 
·settab+04: tst 
·settab+06: clr 
·settab+Ol2: cmp 
·settab+020: blt 
·settab+022: 
settab,S?I 
·settab: jsr 

:r 
a.out: running 

tst 
clr 
cmp 
blt 

command 

rS,csv 
-(sp) 
0177770<.rS) 
$0120,0177770<.rS) 
·settab+076 

r5,csv 
-(sp) 
01 n110<.rS> 
$0120,0177770<.rS) 
·settab+076 

breakpoint ·settab+04: tst 
settab+4:d 
:c 
a.out: running 
breakpoint _fopen+04: mov 
SC 
_ fopen(02302,02472) 
·main(Ol,0177770) 

col: 01 
c: 0 
ptab: 03500 

tabs,3/8o 
03500: 01 0 0 

01 0 0 
01 0 0 

A Tutorial Introduction to ADB 

-(sp) 

04(r5),nulstr+Ol2 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
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Figure 6b: ADD output for C program of Figure 5 

:c 
a.out: running 
breakpoint _getc+04: mov 04(r5),rl 
lbuf+6/20c 
_ cleanu+0202: This is a test of 
:c 
a.out: running 
breakpoint •tabpos+04: cmp $0120,04(r5) 
tabpos+4:d 
settab+4:b settab,S?la 
settab+4:b settab,S?ta; 0 
getc+4,3:b maln.c?C; 0 
settab+4:b settab,S?la; ptab/o; 0 
$b 
breakpoints 
count bkpt command 
1 •tabpos+04 
3 _getc+04 main.c?C;O 
1 _fopen+04 
1 ·settab+04 settab,S?ia;ptab?o;O 
·settab: jsr rS,csv 
·settab+04: bpt 
·settab+06: cir 0177770(r5) 
·settab+012: cmp $0120,0177770(r5) 
·settab+020: bit ·settab+076 
·settab+022: 
0177766:0177770 
0177744:@" 
T0177744: T 
h0177744: h 
i0177744: i 
s0177744: s 

PSl:l0-19 
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Figure 7: ADD output for C program with breakpoints 
adb ex3-
h+4:b hcnt/d; h.hl/; h.hr/ 
g+4:b gcnt/d; g.gl/; g.gr/ 
f +4:b fcnt/d; r.fi/; f.fr/ 
:r 
ex3: running 
fcnt: 0 

0177732: 214 
symbol not found 
f+4:b fcnt/d; f .a/; f .b/; r.8/ 
g+4:b gcnt/d; g.p/; g.q/; g.gl/ 
h+4:b hcnt/d; h.x/; h.y/; h.hi/ 
:c 
ex3: running 
fcnt: 0 

0177746: 1 
0177750: 1 
0177732: 214 
_gent: 0 
0177726: 2 
0177730: 3 
0177712: 214 
bent: 0 

0177706: 2 
0177710: 1 
0177672: 214 
fcnt: 1 

0177666: 2 
0177670: 3 
0177652: 214 
_gent: 1 
0177646: 5 
0177650: 8 
0177632: 214 
HIT DEL 
f+4:b fcnt/d; f.a/"a = "d; f.b/"b = "d; f.fi/''fi = "d 
g+4:b gcnt/d; g.p/"p = "d; g.q/"q = "d; g.gi/"gi = "d 
h+4:b hcnt/d; h.x/"x = "d; h.y/"h = "d; h.hi/"hi = "d 
:r 
ex3:nmning 
fcnt: 0 

0177746: a• 1 
0177750: b - 1 
0177732: fi - 214 

gent: 0 
0177726: p .. 2 
0177730: q - 3 
0177712: gi - 214 
bent: 0 

0177706: x - 2 
0177710: y - 1 
0177672: hi - 214 
fcnt: 1 

0177666: a .. 2 
0177670: b .. 3 
0177652: fi ,. 214 
HIT DEL 
$q 

A Tutorial Introduction to ADB 
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Figure 8: ADD address maps 

407 files 

a.out hdr text+data 

I I 
0 D 

core hdr text+data stack 
I •••••• 1 I 
0 D s E 

410 files (shared text) 

a.out hdr text data 

I I I 
0 T B D 

core hdr data stack 

I •••••• 1 I 
B D s E 

411 files (separated I and D space) 

a.out hdr text data 

I I I 
0 T 0 D 

core hdr data stack 
I •••••• 1 I 

0 D s E 

The following adb variables are set 

407 410 411 

b base of data 0 B 0 
d length of data D D-B D 
s length of stack s s s 
t length of text 0 T T 
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Figure 9: ADD output for maps 

adb map407 core407 
$m 
text map 'map407" 
bl :a 0 el - 0256 fl = 020 
b2 = 0 e2 = 0256 f2 = 020 
data map 'core407" 
bl :a 0 el = 0300 fl = 02000 
b2 = 0175400 e2 = 0200000 f2 = 02300 
$v 
variables 
d:a0300 
m-0407 
s = 02400 
$q 

adb map410 core410 
$m 
textmap 'map410" 
bl = 0 el = 0200 fl = 020 
b2 = 020000 e2 = 020116 f2 = 0220 
data map 'core410" 
bl = 020000 el = 020200 fl = 02000 
b2 = 0175400 e2 = 0200000 f2 = 02200 
$v 
variables 
b = 020000 
d= 0200 
m=0410 
s = 02400 
t= 0200 
$q 

adb map411 core411 
$m 
text map 'map4 ll" 
bl = 0 el = 0200 fl = 020 
b2 = 0 e2 = 0116 f2 = 0220 
data map 'core411"' 
bl = 0 el = 0200 fl = 02000 
b2 = 0175400 e2 = 0200000 f2 = 02200 
$v 
variables 
d = 0200 
m=0411 
s = 02400 
t= 0200 
$q 

A Tutorial Introduction to ADB 
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Figure 10: Simple C program for Illustrating formatting and patching 

char 
int 
int 
long 
float 
char 
mainQ 
{ 

} 

strl[] 
one 
number 
lnum 
fpt 
str2[] 

one=2; 

''This is a character string"; 
1; 
456; 
1234; 
1.25; 
''This is the second character string"; 
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Figure 11: ADB output illustrating fancy formats 

adb map410 core410 
<h,-1/Sona 
020000: 0 064124 071551 064440 020163 020141 064143071141 

_str1+016: 061541 062564 020162 072163 064562 063556 0 02 

_number: 
_number: 0710 0 02322 040240 0 064124 071551 064440 

_str2+06: 020163 064164 020145 062563 067543 062156 

_str2+026: 060562 072143 071145 071440 071164 067151 

savr5+02: 0 0 0 0 0 0 0 0 

<b,20/4o4"8Cn 
020000: 0 064124 071551 064440 @'@'This i 

020163 020141 064143 071141 s a char 
061541 062564 020162 072163 acter st 
064562 063556 0 02 ring@'@'@b@' 

_number: 0710 0 02322 040240 H@a@'@'R@d@@ 
0 064124 071551 064440 @'@'This i 
020163 064164 020145 062563 s these 
067543 062156 061440 060550 condcha 
060562 072143 071145 071440 racter s 
071164 067151 0147 0 tring@'@'@' 
0 0 0 0 @'@'@'@'@'@'@'@' 
0 0 0 0 @'@'@'@'@'@'@'@' 

data address not found 

This i 
<b,20/4o4A8t8cna 
020000: 0 
_str1+06: 020163 
_str1+016: 061541 
_strl+026: 064562 

064124 
020141 
062564 
063556 

071551 
064143 
020162 
0 02 

064440 
071141 
072163 

s a char 
acter st 

ring 
_number: 
_number: 0710 0 02322 040240 HR 
_fpt+02: 0 064124 071551 064440 This i 
_str2+06: 020163 064164 020145 062563 sthese 
_str2+016: 067543 062156 061440 060550 cond cha 
_str2+026: 060562 072143 071145 071440 racter s 
_str2+036: 071164 067151 0147 0 tring 
savr5+02: 0 0 0 0 
savr5+012: 0 0 0 0 
data address not found 
<h,10/2b8t"2cn 
020000: 0 0 

_strl: 0124 0150 Th 
0151 0163 is 
040 0151 i 
0163 040 s 
0141 040 a 
0143 0150 ch 
0141 0162 ar 
0141 0143 ac 
0164 0145 te 

$Q 

061440060550 

0147 0 
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Figure 12: Directory and lnod.e dumps 

adb dlr-
=nt"lnode"t"Name" 
0,-1 ?ut14cn 

InodeName 
0: 652 . 

82 
5971 cap.c 
5323 cap 
0 pp 

adb /dev/src -
02000>b 
?m<b 
new map 
bl= 02000 
b2=0 
$v 
variables 
b=02000 

'/dev/src' 
el = 0100000000 

e2 =0 

<h,-l?"flags"8ton"llnks,uld,gld"8t3bn"sli.e"8tbrdn"addr"8t8un"tlmes"8t2Y2na 
02000: fiags 073145 

links,uid,gid 0163 0164 0141 
size 0162 10356 
addr 28770 8236 25956 27766 25455 8236 25956 25206 
times 1976 Feb 5 08:34:56 1975 Dec 28 10:55:15 

02040: fiags 024555 
links,uid,gid 012 0163 0164 
size 0162 25461 
addr 8308 30050 8294 25130 15216 26890 29806 10784 
times 1976 Aug 17 12:16:51 1976 Aug 17 12:16:51 

02100: fiags 05173 
links,uid,gid 011 0162 0145 
size 0147 29545 
addr 25972 8306 28265 8308 25642 15216 2314 25970 
times 1977 Apr2 08:58:01 1977 Feb 5 10:21:44 
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ADD Summary 

Command Summary 

a) formatted printing 

?format 

/format 

=format 

?wexpr 

/wexpr 

print from a.out file according to format 

print from core file according to format 

print the value of dot 

write expression into a.out file 

write expression into core file 

?I expr locate expression in a.out file 

b) breakpoint and program control 

: b set breakpoint at dot 
:c continue running program 
:d delete breakpoint 
:k kill the program being debugged 
:r run a.out file under ADB control 
:s single step 

c) miscellaneous printing 

$b print current breakpoints 
$c C stack trace 
$e external variables 
$f floating registers 
$m print ADB segment maps 
$q exit from ADB 
$r general registers 
$s set offset for symbol match 
$v print ADB variables 
$w set output line width 

d) calling the shell 

call shell to read rest of line 

e) assignment to variables 

assign dot to variable or register name 

Format Summary 

a 
b 
c 
d 
r· 
I 
0 

D 

r 
s 
nt 
u 
x 
y 

" " 

the value of dot 
one byte in octal 
one byte as a character 
one word in decimal 
two words in floating point 
PDP 11 instruction 
one word in octal 
print a newline 
print a blank space 
a null terminated character string 
move to next n space tab 
one word as unsigned integer 
hexadecimal 
date 
backup dot 
print string 

Expreufon Summary 

a) expression components 

decimal Integer e.g. 256 
octal Integer e.g. 0277 
hexadecimal e.g. #ff 
symbols e.g. fiag _main main.argc 
variables e.g. <b 
registers e.g. <pc <r0 
(expression) expression grouping 

b) dyadic operators 

+ add 
subtract 

• multiply 
% integer division 
& bitwise and 
I bitwise or 
# round up to the next multiple 

c) monadic operators 

• 
not 
contents of location 
integer negate 
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This short paper discusses dbx, a symbolic debugger that is vastly superior to adb. It may be as 
good as the debuggers you remember from those non- UNIXt systems you worked on before. The advan­
tage of symbolic debuggers is that they allow you to work with the same names (symbols) as in your source 
code. 

Like adb, dbx is interactive and line-oriented, but dbx is a source-level rather than an assembly­
level debugger. It allows you to determine where a program crashed, to view the values of variables and 
expressions, to set breakpoints in the code, and to run and trace a program. Source code may be in C, For­
tran, or Pascal. 

Mark Linton wrote dbx as his master's thesis at UC Berkeley. Along with Eric Schmidt's Berknet, 
dbx is among the most successful master's theses done on UNIX. Since dbx required changes to the sym­
bol tables generated by the various compilers, you need to compile programs for debugging with the -g 
flag. ·For example, C programs should be compiled as follows: 

% cc -g program.c -o program 

Programs compiled with the -g option have good symbol tables, while programs compiled without -g 
have old-style symbol tables intended for adb . Stripped programs have no symbol tables at all. Invoke the 
debugger as follows, where pro gram is the pathname of the executable file that dumped core: 

% dbx program 

The core image should be in the working directory; if it isn't, specify its pathname in the argument after the 
program name. Among the great advances of dbx is that it has a help facility; type the help request to see 
a list of possible requests. You can obtain help on any dbx request by giving its name as an argument to 
help. 

t UNIX is a trademark of Bell Laboratories. 
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Examining Core Dumps 

Much of the time, programmers use dbx to find out why a program dumped core. As an example, 
consider the following program dumpcore.c, which dereferences a NULL pointer. This is a legal operation 
on VAX/UNIX, but not on VAX/VMS or on MC68000-based UNIX systems, on one of which this exam­
ple was run: 

tinclude <stdioeh> 

idef ine LIMIT 5 

main() I* print messages and die */ 
{ 

int i; 

for (i • 1; i <• 10 ; i++) { 
printf ("Goodbye world! (%d) \n", i); 
dumpcore(i); 

exit(O); 

int *ip; 

dumpcore(lim) 
int lim; 
{ 

if (lim >- LIMIT) 
*ip - lim; 

/* dereference NULL pointer */ 

The program core dumps because of a segmentation violation or memory fault - on most machines it is 
illegal to assign to address zero. Once the program has produced a core dump, here's how you can find out 
why the program died: 

% dbx dumpcore 
dbx version 3.17 of 4/24/8615:04 (monet.Berkeley.EDU). 
Type 'help' for help. 
reading symbolic information ... 
[using memory image in core] 
(dbx) where 
dumpcore.dumpcore(lim = 5), line 22 in "dumpcore.c" 
main(Oxl, Ox7fffe904, Ox7fffe90c), line 11 in "dumpcore.c" 

The where request yields a stack trace. As you can see, the dumpcore() routine was called from line 11 of 
the program, with the argument lim equal to 5. You can look at the dumpcore() procedure by invoking the 
list request as follows: 

{dbx) list dumpcore 
18 dumpcore(lim) 
19 intlim; 

/*dereference NULL pointer*/ 

20 { 
21 
22 
23 } 

if (lim >= LIMIT) 
*ip = lim; 

We immediately suspect that the program's failure had something to do with *ip, so we use the print 
request to retrieve the value of the pointer and what it points to: 
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(dbx) print * ip 
reference through nil pointer 
(dbx) print ip 
(nil) 

PSl:ll-3 

This tells us the program has dereferenced a null pointer. It is possible to run the program again from 
inside the debugger. The first line tells you name of the running program, and successive lines give output 
from the program: 

(dbx) run 
Goodbye world! ( 1) 
Goodbye world! (2) 
Goodbye world! (3) 
Goodbye world! (4) 
Goodbye world! (5) 

Bus error in dumpcore.dumpcore at line 22 
22 *ip= lim; 

(dbx) quit 

In this example the program dies with a Bus error at line 22. This method of running the program does not 
produce a core dump, but the where request will still behave properly, because the debugger is in the same 
state as if it had just read the core file. 

Setting Breakpoints 

With dbx you can set breakpoints before each line of a program, not just at function and procedure 
boundaries, as with adb . The stop request sets a breakpoint After setting a breakpoint, use the run 
request to execute the program. The cont request continues execution from the current stopping point until 
the program finishes or another breakpoint is encountered. The step request executes one source state­
ment, following any function calls. The next request executes one source statement, but does not stop 
inside any function calls. The status request lists active breakpoints, while the delete request removes 
them if required. 

The stop request can take a conditional expression to avoid needless single-stepping. We will use a 
conditional in our example to make things simpler. Of course you can use print and list requests at any 
time during statement stepping if you want to print the value of variables or list lines of source code. This 
sample session shows a mixture of requests as we verify that the program fails when it tries to assign to 
*ip: 
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(dbx) stop at 10 if (i -- 5) 
[1] if i = S {stop} at 10 
(dbx) run 
Goodbye world! ( 1) 
Goodbye world! (2) 
Goodbye world! (3) 
Goodbye world! (4) 
[1] stopped in main at line 10 

10 printf("Goodbye world! (%d)\n", i); 
(dbx) next 
Goodbye world! (5) 
stopped in main at line 11 

11 dumpcore(i); 
(dbx) step 
stopped in dumpcore at line 21 

21 if (lim >= LIMl1) 
(dbx) step 
stopped in dumpcore at line 22 

22 *ip = fun; 
(dbx) step 
Bus error in dumpcore.dumpcore at line 22 

22 *ip= lim; 

Debugging with dbx 

Running the program with breakpoints assures us that our intuition was correct We shoulcln' t be assigning 
anything to a null pointer - ip should have been initialized to point at an object of the proper type. To 
exit from the debugger, use the quit request 

It is possible to set variables from inside dbx. The previous breakpoint session, for example, could 
have gone like this: 

% dbx dumpcore 
dbx version 3.17 of 4124/86 15:04 (monet.Berkeley.EDU). 
Type 'help' for help. 
reading symbolic information ... 
[using memory image in core] 
(dbx) stop at 10 
[1] stop at 10 
(dbx) run 
Running: dumpcore 
stopped in main at line 10 

10 printf("Goodbye world! (%d)\n", i); 
(dbx) assign i - 5 
(dbx) next 
Goodbye world! (5) 
stopped in main at line 11 

11 dumpcore(i); 
(dbx) next 

Bus error in dumpcore.dumpcore at line 22 
22 *ip = lim; 

It is often useful to assign new values to variables to draw conclusions about alternative conditions. We 
can't fix the bug in this program, however, because there is no declared variable to which ip should point. 
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Conclusion 

Expressions in dbx are similar to those in C, except that there is a distinction between I (fioating­
point division) and div (integer division}, as in Pascal. The table on the following page shows dbx 
requests organized by function: 

Like adb, dbx can disassemble object code. It can also examine object files and print output in vari­
ous formats; but dbx requires the proper symbol tables, so adb is more useful to examine arbitrary binary 
files. The most important thing adb can do that dbx cannot is to patch binary files - dbx has no write 
option. Despite these shortcomings, dbx is much easier to use than adb, so it contributes much more to 
individual programmer productivity. 
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Groups of dbx Requests 
execution and tracing 

run execute object file 
cont continue execution from where it stopped 
trace display tracing infonnation at specified place 
stop stop execution at specified place 
status display active trace and stop requests 
delete delete specific trace or stop requests 
catch start trapping specified signals 
ignore stop trapping specified signals 
step execute the next source line, stepping into functions 
next execute the next source line, even if it's a function 

displaying data 
print print the value of an expression 
what is print the declaration of a given identifier or type 
which print outer block associated with identifier 
whereis print all symbols matching identifier 
assign set the value of a variable 

function and procedure handling 
where display active procedures and functions on stack 
down move down the stack towards stopping point 
up move up the stack towards main 
call call the named function or procedure 
dump display names and values of all local variables 

accessing source files and directories 
edit invoke an editor on current source file 
file change current source file 
func change the current function or procedure 
list display lines of source code 
use set directory list to search for source files 
/ ... / search down in file to match regular expression 
? ••• ? search up in file to match regular expression 

miscellaneous commands 
sh pass command line to the shell 
alias change dbx command name 
help explain commands 
source read commands from external file 
quit exit the debugger 
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S. I. Feldman 

ABSTRACT 

In a programming project, it is easy to lose track of which files need to be repro­
cessed or recompiled after a change is made in some part of the source. Make provides a 
simple mechanism for maintaining up-to-date versions of programs that result from many 
operations on a number of files. It is possible to tell Make the sequence of commands 
that create certain files, and the list of files that require other files to be current before the 
operations can be done. Whenever a change is made in any part of the program, the 
Make command will create the proper files simply, correctly, and with a minimum 
amount of effort. 

The basic operation of Make is to find the name of a needed target in the descrip­
tion, ensure that all of the files on which it depends exist and are up to date, and then 
create the target if it has not been modified since its generators were. The description file 
really defines the graph of dependencies; Make does a depth-first search of this graph to 
determine what work is really necessary. 

Make also provides a simple macro substitution facility and the ability to encapsu­
late commands in a single file for convenient administration. 

Revised April, 1986 

Introduction 

It is common practice to divide large programs into smaller, more manageable pieces. The pieces 
may require quite different treatments: some may need to be run through a macro processor, some may 
need to be processed by a sophisticated program generator (e.g., Yacc[l] or Lex[2]). The outputs of these 
generators may then have to be compiled with special options and with certain definitions and declarations. 
The code resulting from these transformations may then need to be loaded together with certain libraries 
under the control of special options. Related maintenance activities involve running complicated test 
scripts and installing validated modules. Unfortunately, it is very easy for a programmer to forget which 
files depend on which others, which files have been modified recently, and the exact sequence of operations 
needed to make or exercise a new version of the program. After a long editing session, one may easily lose 
track of which files have been changed and which object modules are still valid, since a change to a 
declaration can obsolete a dozen other files. Forgetting to compile a routine that has been changed or that 
uses changed declarations will result in a program that will not work, and a bug that can be very hard to 
track down. On the other hand, recompiling everything in sight just to be safe is very wasteful. 

The program described in this report mechanizes many of the activities of program development and 
maintenance. If the information on inter-file dependences and command sequences is stored in a file, the 
simple command 

make 

is frequently sufficient to update the interesting files, regardless of the number that have been edited since 
the last ''make''. In most cases, the description file is easy to write and changes infrequently. It is usually 
easier to type the make command than to issue even one of the needed operations, so the typical cycle of 



PS1:12-2 

program development operations becomes 

think - edit - make - test ... 

Make -A Program for Maintaining Computer Programs 

Make is most useful for medium-sized programming projects; it does not solve the problems of 
maintaining multiple source versions or of describing huge programs. Make was designed for use on Unix, 
but a version runs on GCOS. 

Basic Features 

The basic operation of make is to update a target file by ensuring that all of the files on which it 
depends exist and are up to date, then creating the target if it has not been modified since its dependents 
were. Make does a depth-first search of the graph of dependences. The operation of the command 
depends on the ability to find the date and time that a file was last modified. 

To illustrate, let us consider a simple example: A program named prog is made by compiling and 
loading three C-language files x.c, y.c, and z.c with the IS library. By convention, the output of the C com­
pilations will be found in files named x.o, y.o, and z.o. Assume that the files x.c and y.c share some 
declarations in a file named defs, but that z.c does not. That is, x.c and y.c have the line 

#include "defs" 

The following text describes the relationships and operations: 

prog: x.o y.o z.o 
cc x.o y .o z.o -IS -o prog 

x.o y .o : defs 

If this information were stored in a file named makefile, the command 

make 

would perform the operations needed to recreate pro g after any changes had been made to any of the four 
source files x.c, y.c, z.c, or defs. 

Make operates using three sources of information: a user-supplied description file (as above), file 
names and ''last-modified'' times from the file system, and built-in rules to bridge some of the gaps. In our 
example, the first line says that prog depends on three ".o" files. Once these object files are current, the 
second line describes how to load them to create prog. The third line says that x.o and y.o depend on the 
file defs. From the file system, make discovers that there are three ''.c'' files corresponding to the needed 
".o" files, and uses built-in information on how to generate an object from a source file (i.e., issue a 
"cc -c" command). 

The following long-winded description file is equivalent to the one above, but takes no advantage of 
make 's innate knowledge: 

prog : x.o y .o z.o 
cc x.o y.o z.o -IS -o prog 

x.o : x.c defs 
cc -c x.c 

y.o: y.c clefs 
cc -c y.c 

z.o: z.c 
cc -c z.c 

If none of the source or object files had changed since the last time prog was made, all of the files 
would be current, and the command 

make 

would just announce this fact and stop. If, however, the defs file had been edited, x.c and y.c (but not z.c) 
would be recompiled, and then prog would be created from the new ".o" files. If only the file y.c had 
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changed, only it would be recompiled, but it would still be necessary to reload prog. 

If no target name is given on the make command line, the first target mentioned in the description is 
created; otherwise the specified targets are made. The command 

makex.o 

would recompile x.o if x.c or defs had changed. 

If the file exists after the commands are executed, its time of last modification is used in further deci­
sions; otherwise the current time is used. It is often quite useful to include rules with mnemonic names and 
commands that do not actually produce a file with that name. These entries can take advantage of make' s 
ability to generate files and substitute macros. Thus, an entry ''save'' might be included to copy a certain 
set of files, or an entry ''cleanup'' might be used to throw away unneeded intermediate files. In other cases 
one may maintain a zero-length file purely to keep track of the time at which certain actions were per­
formed. This technique is useful for maintaining remote archives and listings. 

Make has a simple macro mechanism for substituting in dependency lines and command strings. 
Macros are defined by command arguments or description file lines with embedded equal signs. A macro 
is invoked by preceding the name by a dollar sign; macro names longer than one character must be 
parenthesized. The name of the macro is either the single character after the dollar sign or a name inside 
parentheses. The following are valid macro invocations: 

$(CFLAGS) 
$2 
$(xy) 
$Z 
$(Z) 

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned values during 
input, as shown below. Four special macros change values during the execution of the command: $•, $@, 
$?,and$<. They will be discussed later. The following fragment shows the use: 

OBJECTS = x.o y.o z.o 
LIBES=-lS 
prog: $(OBJECTS) 

The command 

make 

cc $(OBJECTS) $(LIBES) -o prog 

loads the three object files with the IS library. The command 

make "LIBES= -ll -lS" 

loads them with both the Lex ("-11") and the Standard ("-IS") libraries, since macro definitions on the 
command line override definitions in the description. (It is necessary to quote arguments with embedded 
blanks in UNIXt commands.) 

The following sections detail the form of description files and the command line, and discuss options 
and built-in rules in more detail. 

Description Files and Substitutions 

A description file contains three types of information: macro definitions, dependency information, 
and executable commands. There is also a comment convention: all characters after a sharp ( #) are 
ignored, as is the sharp itself. Blank lines and lines beginning with a sharp are totally ignored If a non­
comment line is too long, it can be continued using a backslash. If the last character of a line is a 

t UNIX is a trademark of Bell Laboratories. 
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backslash, the backslash, newline, and following blanks and tabs are replaced by a single blank. 

A macro definition is a line containing an equal sign not preceded by a colon or a tab. The name 
(string of letters and digits) to the left of the equal sign (trailing blanks and tabs are stripped) is assigned the 
string of characters following the equal sign (leading blanks and tabs are stripped) The following are valid 
macro definitions: 

2=xyz 
abc = -ll -ly -IS 
LIBES= 

The last definition assigns LIBES the null string. A macro that is never explicitly defined has the null 
string as value. Macro definitions may also appear on the make command line (see below). 

Other lines give information about target files. The general form of an entry is: 

targetl [target2 ... ] :[:] [dependentl ... ] [;commands] [# ... ] 
[(tab) commands] [# ... ] 

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits, periods, and 
slashes. (Shell metacharacters "•" and "?" are expanded.) A command is any string of characters not 
including a sharp (except in quotes) or newline. Commands may appear either after a semicolon on a 
dependency line or on lines beginning with a tab immediately following a dependency line. 

A dependency line may have either a single or a double colon. A target name may appear on more 
than one dependency line, but all of those lines must be of the same (single or double colon) type. 

1. For the usual single-colon case, at most one of these dependency lines may have a command 
sequence associated with it. If the target is out of date with any of the dependents on any of the 
lines, and a command sequence is specified (even a null one following a semicolon or tab), it is exe­
cuted; otherwise a default creation rule may be invoked. 

2. In the double-colon case, a command sequence may be associated with each dependency line; if the 
target is out of date with any of the files on a particular line, the associated commands are executed. 
A built-in rule may also be executed This detailed form is of particular value in updating archive­
type files. 

If a target must be created, the sequence of commands is executed. Normally, each command line is 
printed and then passed to a separate invocation of the Shell after substituting for macros. (The printing is 
suppressed in silent mode or if the command line begins with an @ sign). Make nonnally stops if any 
command signals an error by returning a non-zero error code. (Errors are ignored if the '' -i'' flags has 
been specified on the molce command line, if the fake target name ".IGNORE'' appears in the description 
file, or if the command string in the description file begins with a hyphen. Some UNIX commands return 
meaningless status). Because each command line is passed to a separate invocation of the Shell, care must 
be taken with certain commands (e.g., cd and Shell control commands) that have meaning only within a 
single Shell process; the results are forgotten before the next line is executed. 

Before issuing any command, certain macros are set. $@ is set to the name of the file to be ''made''. 
$? is set to the string of names that were found to be younger than the target. If the command was gen­
erated by an implicit rule (see below), $< is the name of the related file that caused the action, and $• is the 
prefix shared by the current and the dependent file names. 

If a file must be made but there are no explicit commands or relevant built-in rules, the commands 
associated with the name ''DEFAULT'' are used. If there is no such name, make prints a message and 
stops. 

Command Usage 

The make command takes four kinds of arguments: macro definitions, fiags, description file names, 
and target file names. 
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make [flags] [macro definitions] [targets] 

The following summary of the operation of the command explains how these arguments are interpreted 

First, all macro definition arguments (arguments with embedded equal signs) are analyzed and the 
assignments made. Command-line macros override corresponding definitions found in the description 
files. 

Next, the flag arguments are examined. The permissible flags are 

-i Ignore error codes :returned by invoked commands. This mode is entered if the fake target name 
''.IGNORE'' appears in the description file. 

-s Silent mode. Do not print command lines before executing. This mode is also entered if the fake 
target name ''.SILENT'' appears in the description file. 

-r Do not use the built-in rules. 

-n No execute mode. Print commands, but do not execute them. Even lines beginning with an "@" 
sign are printed. 

-t Touch the target files (causing them to be up to date) rather than issue the usual commands. 

-q Question. The make command returns a zero or non-zero status code depending on whether the tar-
get file is or is not up to date. 

-p Print out the complete set of macro definitions and target descriptions 

-d Debug mode. Print out detailed information on files and times examined. 

-f Description file name. The next argument is assumed to be the name of a description file.· A file 
name of''-'' denotes the standard input. If there are no ''-f'' arguments, the file named makefile or 
Makefile in the ctirrent directory is read. The contents of the description files override the built-in 
rules if they are present). 

Finally, the remaining arguments are assumed to be the names of targets to be made; they are done in 
left to right order. If there are no such arguments, the first name in the description files that does not begin 
with a period is "made". 

Implicit Rules 

The make program uses a table of interesting suffixes and a set of transformation rules to supply 
default dependency information and implied commands. (The Appendix describes these tables and means 
of overriding them.) The default suffix list is: 

.o Object file 

.c C source file 

.e Efl source file 

.r Ratfor source file 
f Fortran source file 
.s Assembler source file 
.y Yacc-C source grammar 
.yr Yacc-Ratfor source grammar 
.ye Yacc-Efl source grammar 
.l Lex source grammar 

The following diagram summarizes the default transformation paths. If there are two paths connecting a 
pair of suffixes, the longer one is used only if the intermediate file exists or is named in the description. 
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.o 

.c .r .e f .s .y .yr .ye .l .d 

.y .l .yr .ye 

If the file x.o were needed and there were an x.c in the description or directory, it would be compiled. 
If there were also an x.l, that grammar would be run through Lex before compiling the result. However, if 
there were no x.c but there were an x.l, make would discard the intermediate C-language file and use the 
direct link in the graph above. 

It is possible to change the names of some of the compilers used in the default, or the flag arguments 
with which they are invoked by knowing the macro names used. The compiler names are the macros AS, 
CC, RC, EC, YACC, YACCR, Y ACCE, and LEX. The command 

make CC=newcc 

will cause the "newcc" command to be used instead of the usual C compiler. The macros CFLAGS, 
RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands to be issued with 
optional flags. Thus, 

make "CFLAGS=-0" 

causes the optimizing C compiler to be used. 

Another special macro is 'VPATH'. The "VPATH" macro should be set to a list of directories 
separated by colons. When make searches for a file as· a result of a dependency relation, it will first search 
the current directory and then each of the directories on the ''VP A TH'' list. If the file is found, the actual 
path to the file will be used, rather than just the filename. If "VPATH" is not defined, then only the 
current directory is searched. Note that "VPATH" is intended to act like the System V "VPATH" sup­
port, but there is no guarantee that it functions identically. 

One use for "VPATH" is when one has several programs that compile from the same source. The 
source can be kept in one directory and each set of object files (along with a separate would be in a 
separate subdirectory. The ''VPATH'' macro would point to the source directory in this case. 

Example 

As an example of the use of make, we will present the description file used to maintain the make 
command itself. The code for make is spread over a number of C source files and a Y ace grammar. The 
description file contains: 
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# Description file for the Make command 

P = und-3 I opr -r2 # send to GCOS to be printed 
FILES - Makefile version.c clefs main.c doname.c misc.c files.c dosys.c gram.y lex.c gcos.c 
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.a 
LIBES=-lS 
LINT = lint-p 
CFLAGS=-0 

make: $(OBJECTS) 
cc $(CFLAGS) $(OBJECTS) $(LIBES) -o make 
size make 

$(OBJECTS): clefs 
gram.o: lex.c 

cleanup: 
-rm * .o gram.c 
-du 

install: 
@size make /usr/bin/make 
cp make /usr/bin/make ; rm make 

print: $(FILES) # print recently changed files 
pr$? 1$P 

test: 

touch print 

make -dp I grep -v TIME > lzap 
/usr/bin/make -dp I grep -v TIME >2zap 
diff lzap 2zap 
rm lzap 2zap 

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c 

arch: 

$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c 
rmgram.c 

ar uv /sys/source/s2/make.a $(FILES) 

Make usually prints out each command before issuing it The following output results from typing the sim­
ple command 

make 

in a directory containing only the source and description file: 

cc -c version.c 
cc -c main.c 
cc -c doname.c 
cc -c misc.c 
cc -c files.c 
cc -c dosys.c 
yacc gram.y 
mv y .tab.c gram.c 
cc -cgram.c 
cc version.o main.o doname.o misc.o files.o dosys.o gram.a -IS -o make 
13188+3348+3044 = 19580b = 046174b 

Although none of the source files or grammars were mentioned by name in the description file, make found 
them using its suffix rules and issued the needed commands. The string of digits results from the ''size 
make'' command; the printing of the command line itself was suppressed by an @ sign. The @ sign on the 
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size command in the description file suppressed the printing of the command, so only the sizes are written. 

The last few entries in the description file are useful maintenance sequences. The ''print'' entry 
prints only the files that have been changed since the last "make print" command. A zero-length file print 
is maintained to keep track of the time of the printing; the$? macro in the command line then picks up only 
the names of the files changed since print was touched. The printed output can be sent to a different 
printer or to a file by changing the definition of the P macro: 

make print "P = opr -sp" 
or 

make print "P= cat >zap" 

Suggestions and Warnings 

The most common difficulties arise from make' s specific meaning of dependency. If file x.c has a 
"#include "defs"" line, then the object file x.o depends on defs; the source file x.c does not. (If defs is 
changed, it is not necessary to do anything to the file x.c, while it is necessary to recreate x.o .) 

To discover what make would do, the ''-n'' option is very useful. The command 

make-n 

orders make to print out the commands it would issue without actually taking the time to execute them. If 
a change to a file is absolutely certain to be benign (e.g., adding a new definition to an include file), the 
"-t" (touch) option can save a lot of time: instead of issuing a large number of superfiuous recompila­
tions, make updates the modification times on the affected file. Thus, the command 

make-ts 

(''touch silently'') causes the relevant files to appear up to date. Obvious care is necessary, since this 
mode of operation subverts the intention of make and destroys all memory of the previous relationships. 

The debugging ftag ("--d") causes make to print out a very detailed description of what it is doing, 
including the file times. The output is verbose, and recommended only as a last resort. 
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Appendix. Suffixes and Transformation Rules 

The make program itself does not know what file name suffixes are interesting or how to transform a 
file with one suffix into a file with another suffix. This information is stored in an internal table that has the 
form of a description file. If the '' -r'' :0.ag is used, this table is not used. 

The list of suffixes is actually the dependency list for the name ''.SUFFIXES''; make looks for a file 
with any of the suffixes on the list. If such a file exists, and if there is a transformation rule for that combi­
nation, make acts as described earlier. The transformation rule names are the concatenation of the two 
suffixes. The name of the rule to transform a ".r" file to a ".o" file is thus ".r.o". If the rule is present 
and no explicit command sequence has been given in the user's description files, the command sequence 
for the rule '' .r.o'' is used. If a command is generated by using one of these suffixing rules, the macro $* 
is given the value of the stem (everything but the suffix) of the name of the file to be made, and the macro 
$< is the name of the dependent that caused the action. 

The order of the suffix list is significant, since it is scanned from left to right, and the first name that 
is formed that has both a file and a rule associated with it is used. If new names are to be appended, the 
user can just add an entry for ''.SUFFIXES'' in his own description file; the dependents will be added to 
the usual list A ".SUFFIXES" line without any dependents deletes the current list. (It is necessary to 
clear the current list if the order of names is to be changed). 

The following is an excerpt from the default rules fi~e: 

.SUFFIXES : .o .c .e .r .f .y .yr .ye .1 .s 
YACC=yacc 
Y ACCR=yacc -r 
Y ACCE=yacc --e 
YFLAGS= 
LEX= lex 
LFLAGS= 
CC=cc 
AS=as­
CFLAGS= 
RC=ec 
RFLAGS= 
EC=ec 
EFLAGS= 
FFLAGS= 
.c.o: 

$(CC) $(CFLAGS) -c $< 
.e.o .r.o .f.o: 

.s.o: 

.y.o: 

.y.c: 

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $< 

$(AS) -o $@ $< 

$(YACC) $(YFLAGS) $< 
$(CC) $(CFLAGS)-c y.tab.c 
rmy.tab.c 
mv y.tab.o $@ 

$(YACC) $(YFLAGS) $< 
mv y.tab.c $@ 
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ABSTRACT 

The Revision Control System (RCS) manages software libraries. It greatly 
increases programmer productivity by centralizing and cataloging changes to a software 
project. This document describes the benefits of using a source code control system. It 
then gives a tutorial introduction to the use of RCS. 

Functions of RCS 
The Revision Control System (RCS) manages multiple revisions of text files. RCS automates the 

storing, retrieval, logging, identification, and merging of revisions. RCS is useful for text that is revised fre­
quently, for example programs, documentation, graphics, papers, form letters, etc. It greatly increases pro­
grammer productivity by providing the following functions. 

1. RCS stores and retrieves multiple revisions of program and other text. Thus, one can maintain one or 
more releases while developing the next release, with a minimum of space overhead. Changes no 
longer destroy the original -- previous revisions remain accessible. 

a. Maintains each module as a tree of revisions. 

b. Project libraries can be organized centrally, decentralized, or any way you like. 

c. RCS works for any type of text programs, documentation, memos, papers, graphics, VLSI 
layouts, form letters, etc. 

2. RCS maintains a complete history of changes. Thus, one can find out what happened to a module 
easily and quickly, without having to compare source listings or having to track down colleagues. 

a. RCS performs automatic record keeping. 

b. RCS logs all changes automatically. 

c. RCS guarantees project continuity. 

3. RCS manages multiple lines of development 

4. RCS can merge multiple lines of development. Thus, when several parallel lines of development 
must be consolidated into one line, the merging of changes is automatic. 

5. RCS ft.ags coding conft.icts. If two or more lines of development modify the same section of code, 
RCS can alert programmers about overlapping changes. 

6. RCS resolves access conflicts. When two or more programmers wish to modify the same revision, 
RCS alerts the programmers and makes sure that one change will not wipe out the other one. 

7. RCS provides high-level retrieval functions. Revisions can be retrieved according to ranges of revi­
sion numbers, symbolic names, dates, authors, and states. 

8. RCS provides release and configuration control. Revisions can be marked as released, stable, experi­
mental, etc. Configuratiens of modules can be described simply and directly. 

9. RCS performs automatic identification of modules with name, revision number, creation time, 
author, etc. Thus, it is always possible to determine which revisions of which modules make up a 
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given configuration. 

10. Provides high-level management visibility. Thus, it is easy to track the status of a software project. 

a. RCS provides a complete change history. 

b. RCS records who did what when to which revision of which module. 

11. RCS is fully compatible with existing software development tools. RCS is unobtrusive -- its inter­
face to the file system is such that all your existing software tools can be used as before. 

12. RCS' basic user interface is extremely simple. The novice only needs to learn two commands. Its 
more sophisticated features have been tuned towards advanced software development environments 
and the experienced software professional. 

13. RCS simplifies software distribution if customers also maintain sources with RCS. This technique 
assures proper identification of versions and configurations, and tracking of customer changes. Cus­
tomer changes can be merged into distributed versions locally or by the development group. 

14. RCS needs little extra space for the revisions (only the differences). If intermediate revisions are 
deleted, the corresponding differences are compressed into the shortest possible form. 

Getting Started with RCS 

Suppose you have a file f.c that you wish to put under control of RCS. Invoke the checkin command: 

ci f.c 

This command creates f.c,v, stores f.c into it as revision 1.1, and deletes f.c. It also asks you for a descrip­
tion. The description should be a synopsis of the contents of the file. All later checkin commands will ask 
you for a log entry, which should summarize the changes that you made. 

Files ending in ,v are called RCS files ("v" stands for "versions"), the others are called working files. 
To get back the working file f.c in the previous example, use the checkout command: 

co f.c 

This command extracts the latest revision from f.c, v and writes it into f.c. You can now edit f.c and check 
it in back in by invoking: 

ci f.c 

Ci increments the revision number properly. If ci complains with the m~ssage 

ci error: no lock set by <your login> 

then your system administrator has decided to create all RCS files with the locking attribute set to "strict". 
With strict locking, you you must lock the revision during the previous checkout. Thus, your last checkout 
should have been 

co -1 f.c 

Locking assures that you, and only you, can check in the next update, and avoids nasty problems if several 
people work on the same file. Of course, it is too late now to do the checkout with locking, because you 
probably modified f.c already, and a second checkout would overwrite your changes. Instead, invoke 

res -1 f.c 

This command will lock the latest revision for you, unless somebody else got ahead of you already. If· 
someone else has the lock you will have to negotiate your changes with them. 

If your RCS file is private, i.e., if you are the only person who is going to deposit revisions into it, 
strict locking is not needed and you can turn it off. If strict locking is turned off, the owner off the RCS file 
need not have a lock for checkin; all others still do. Turning strict locking off and on is done with the com­
mands: 

res -U f.c and res -L f.c 

You can set the locking to strict or non-strict on every RCS file. 
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If you do not want to clutter your working directory with RCS files, create a subdirectory called RCS 
in your working directory, and move all your RCS files there. RCS commands will look first into that direc­
tory to find needed files. All the commands discussed above will still work, without any change*. 

To avoid the deletion of the working file during checkin (should you want to continue editing), 
invoke 

ci -1 f.c 

This command checks in f.c as usual, but performs an additional checkout with locking. Thus, it saves you 
one checkout operation. There is also an option -u for ci that does a checkin followed by a checkout 
without locking. This is useful if you want to compile the file after the checkin. Both options also update 
the identification markers in your file (see below). 

You can give ci the number you want assigned to a checked in revision. Assume all your revisions 
were numbered 1.1, 1.2, 1.3, etc., and you would like to start release 2. The command 

ci -r2 f.c or ci -r2.1 f.c 

assigns the number 2.1 to the new revision. From then on, ci will number the subsequent revisions with 
2.2, 2.3, etc. The corresponding co commands 

co -r2 f.c and co -r2.1 f.c 

retrieve the latest revision numbered 2.x and the revision 2.1, respectively. Co without a revision number 
selects the latest revision on the "trunk", i.e., the highest revision with a number consisting of 2 fields. 
Numbers with more than 2 fields are needed for branches. For example, to start a branch at revision 1.3, 
invoke 

ci -rl.3.1 f.c 

This command starts a branch numbered 1 at revision 1.3, and assigns the number 1.3.1.1 to the_ new revi­
sion. For more information about branches, see rcsfile(S). 

Automatic Identification 

RCS can put special strings for identification into your source and object code. To obtain such 
identification, place the marker 

$Header$ 

into your text, for instance inside a comment RCS will replace this marker with a string of the form 

$Header: filename revisionnumber date time author state $ 

You never need to touch this string, because RCS keeps it up to date automatically. To propagate the 
marker into your object code, simply put it into a literal character string. In C, this is done as follows: 

static char rcsidO ="$Header$"; 

The command ident extracts such markers from any file, even object code. Thus, ident helps you to find 
out which revisions of which modules were used in a given program. 

You may also find it useful to put the marker 

$Log$ 

into your text, inside a comment This marker accumulates the log messages that are requested during 
checkin. Thus, you can maintain the complete history of your file directly inside it. There are several addi­
tional identification markers; see co (1) for details. 

* Pairs of RCS and working files can really be specified in 3 ways: a) both are given, b) only the working file is given, c) 
only the RCS file is given. Both files may have arbitrary path prefixes; RCS commands pair them up intelligently. 
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How to combine MAKE and RCS 

If your RCS files are in the same directory as your working files, you can put a default rule into your 
makefileo Do not use a rule of the form .c, v .c, because such a rule keeps a copy of every working file 
checked out, even those you are not working on. Instead, use this: 

.SUFFIXES: .c,v 

.c,v.o: 
co-q $*.c 
cc $(CFLAGS) -c $* .c 
rm-f$*.c 

prog: ft.o f2.o .... . 
cc fl~o f2.o ..... -o prog 

This rule has the following effect If a file f.c does not exist, and f.o is older than f.c, v, MAKE checks out 
f.c, compiles f.c into f.o, and then deletes f.c. From then on, MAKE will use f.o until you ch~ge f.c, v. 

If f.c exists (presumably because you are working on it), the default rule .c.o takes precedence, and 
f.c is compiled into f.o, but not deleted. · 

If you keep your RCS file in the directory JRCS, all this will not work and you have to write explicit 
checkout rules for every file, like 

fl.c: RCS/fl.c,v; co -q fl.c 

Unfortunately, these rules do not have the property of removing unneeded .c-files. 

Additional Information on RCS 

If you want to know more about RCS, for example how to work with a tree of revisions and how to 
use symbolic revision numbers, read the following paper: 

Walter F. Tichy, ''Design, Implementation, and Evaluation of a Revision Control System,'' in Proceedings 
of the 6th International Conference on Software Engineering, IEEE, Tokyo, Sept. 1982. 

Taking a look at the manual page RCSFILE(5) should also help to understand the revision tree per-
mitted by RCS. . 
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This document gives a quick introduction to using the Source Code Control System (SCCS). The 
presentation is geared to programmers who are more concerned with what to do to get a task done rather 
than how it works; for this reason some of the examples are not well explained. For details of what the 
magic options do, see the section on "Further Information". 

This is a working document Please send any comments or suggestions to 
eric@Berkeley .Edu. 

1. Introduction 

SCCS is a source management system. Such a system maintains a record of versions of a system; a 
record is kept with each set of changes of what the changes are, why they were made, and who made them 
and when. Old versions can be recovered, and different versions can be maintained simultaneously. In 
projects with more than one person, SCCS will insure that two people are not editing the same file at the 
same time. 

All versions of your program, plus the log and other information, is kept in a file called the ''s-file''. 
There are three major operations that can be performed on the s-file: 

( 1) Get a file for compilation (not for editing). This operation retrieves a version of the file from the s­
file. By default, the latest version is retrieved. This file is intended for compilation, printing, or 
whatever; it is specifically NOT intended to be edited or changed in any way; any changes made to a 
file retrieved in this way will probably be lost. 

(2) Get a file for editing. This operation also retrieves a version of the file from the s-file, but this file is 
intended to be edited and then incorporated back into the s-file. Only one person may be editing a 
file at one time. 

(3) Merge a file back into the s-file. This is the companion operation to (2). A new version number is 
assigned, and comments are saved explaining why this change was made. 

2. Learning the Lingo 

There are a number of terms that are worth learning before we go any farther. 

2.1. S-file 

The s-file is a single file that holds all the different versions of your file. The s-file is stored in dif­
ferential format; i.e., only the differences between versions are stored, rather than the entire text of the new 
version. This saves disk space and allows selective changes to be removed later. Also included in the s­
file is some header information for each version, including the comments given by the person who created 
the version explaining why the changes were made. 

This is version 1.21 of this document It was last modified on 12/5/80. 
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2.2. Deltas 

Each set of changes to the s-file (which is approximately [but not exactly!] equivalent to a version of 
the file) is called a delta. Although technically a delta only includes the changes made, in practice it is 
usual for each delta to be made with respect to all the deltas that have occWTed before1• However, it is pos­
sible to get a version of the file that has selected deltas removed out of the middle of the list of changes -
equivalent to removing your changes later. 

2.3. SID's (or, version numbers) 

A SID (SCCS Id) is a number that represents a delta. This is normally a two-part number consisting 
of a ''release'' number and a ''level'' number. Normally the release number stays the same, however, it is 
possible to move into a new release if some major change is being made. 

Since all past deltas are normally applied, the SID of the final delta applied can be used to represent a 
version number of the file as a whole. 

2.4. Id keywords 

When you get a version of a file with intent to compile and install it (i.e., something other than edit 
it), some special keywords are expanded inline by secs. These Id Keywords can be used to include the 
current version number or other information into the file. All id keywords are of the form %x%, where x 
is an upper case letter. For example, %1% is the SID of the latest delta applied, %W% includes the 
module name, SID, and a made that makes it findable by a program, and % G % is the date of the latest delta 
applied. There are many others, most of which are of dubious usefulness. 

When you get a file for editing, the id keywords are not expanded; this is so that after you put them 
back in to the s-file, they will be expanded automatically on each new version. But notice: if you were to 
get them expanded accidently, then your file would appear to be the same version forever more, which 
would of course defeat the purpose. Also, if you should install a version of the program without expanding 
the id keywords, it will be impossible to tell what version it is (since all it will have is "%W%" or what­
ever). 

3. Creating secs Files 

To put source files into secs format, run the following shell script from csh: 

mkdir SCCS save 
foreach i (*.[ch]) 

end 

SCCS admin -i$i $i 
rnv $i save/$i 

This will put the named files into s-files in the subdirectory "SCCS" The files will be removed from the 
current directory and hidden away in the directory "save", so the next thing you will probably want to do 
is to get all the files (described below). When you are convinced that SCCS has correctly created the s-files, 
you should remove the directory "save". 

If you want to have id keywords in the files, it is best to put them in before you create the s-files. If 
you do not, admin will print "No Id Keywords (cm7)", which is a warning message only. 

4. Getting Files for Compilation 

To get a copy of the latest version of a file, run 

sccs get prog.c 

SCCS will respond: 

1.1 
87 lines 

1This matches nonnal usage, where the previous changes are not saved at all, so all changes are automatically based on all other 
changes that have happened through history. 
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meaning that version 1.1 was retrieved2 and that it has 87 lines. The file prog.c will be created in the 
current directory. The file will be read-only to remind you that you are not supposed to change it. 

This copy of the file should not be changed, since secs is unable to merge the changes back into the 
s-file. If you do make changes, they will be lost the next time someone does a get. 

5. Changing Files (or, Creating Deltas) 

5.1. Getting a copy to edit 

To edit a source file, you must first get it, requesting permission to edit it3: 

sccs edit prog.c 

The response will be the same as with get except that it will also say: 

New delta 1.2 

You then edit it, using a standard text editor: 

vi prog.c 

5.2. Merging the changes back into the s-file 

When the desired changes are made, you can put your changes into the secs file using the delta 
command: 

SCCS delta prog.c 

Delta will prompt you for "comments?" before it merges the changes in. At this prompt you should 
type a one-line description of what the changes mean (more lines can be entered by ending each line except 
the last with a backslash4). Delta will then type: 

1.2 
5 inserted 
3 deleted 
84 unchanged 

saying that delta 1.2 was created, and it inserted five lines, removed three lines, and left 84 lines 
unchanged5

• The prog.c file will be removed; it can be retrieved using get. 

5.3. When to make deltas 

It is probably unwise to make a delta before every recompilation or test; otherwise, you tend to get a 
lot of deltas with comments like "fixed compilation problem in previous delta" or "fixed botch in 1.3". 
However, it is very important to delta everything before installing a module for general use. A good tech­
nique is to edit the files you need, make all necessary changes and tests, compiling and editing as often as 
necessary without making deltas. When you are satisfied that you have a working version, delta everything 
being edited, re-get them, and recompile everything. 

5.4. What's going on: the info command 

To find out what files where being edited, you can use: 

secs info 

to print out all the files being edited and other information such as the name of the user who did the edit. 

2Actually, the SID of the final delta applied was 1.1. 

31be "edit" command is equivalent to using the -e ftag to get, as: 

secs get -e prog.c 

Keep this in mind when reading other documentation. 
4Yes, this is a stupid default 

"Changes to a line are counted as a line deleted and a line inserted. 
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Also, the command: 

SCCS check 

is nearly equivalent to the info command, except that it is silent if nothing is being edited, and returns non­
zero exit status if anything is being edited; it can be used in an "install" entry in a makefile to abort the 
install if anything has not been properly deltaed. 

H you know that everything being edited should be deltaed, you can use: 

SCCS delta .. SCCS tell' 

The tell command is similar to info except that only the names of files being edited are output, one per line. 

All of these commands take a-b ftag to ignore "branches" (alternate versions, described later) and 
the -u ftag to only give files being edited by you. The -u flag takes an optional user argument, giving only 
files being edited by that user. For example, 

sccs info -ujohn 

gives a listing of files being edited by john. 

5.5. ID keywords 

Id keywords can be inserted into your file that will be expanded automatically by get. For example, a 
line such as: 

static char SccsldO = "%W%\t%0%"; 

will be replaced with something like: 

static char Sccsld[] = "@(#)prog.c 1.2 08/29/80"; 

This tells you the name and version of the source file and the time the delta was created The string 
"@(#)"is a special string which signals the beginning of an secs Id keyword. 

5.5.1. The what command 

To find out what version of a program is being run, use: 

sccs what prog.c /usr/bin/prog 

which will print all strings it finds that begin with "@(#)". This works on all types of files, including 
binaries and libraries. For example, the above command will output something like: 

prog.c: 
prog.c 1.2 

/usr/bin/prog: 
prog.c 1.1 

08/29/80 

02105179 

From this I can see that the source that I have in prog.c will not compile into the same version as the binary 
in /usr/.bin/prog. 

S.S.2. Where to put id keywords 

ID keywords can be inserted anywhere, including in comments, but Id Keywords that are compiled 
into the object module are especially useful, since it lets you find out what version of the object is being 
run, as well as the source. However, there is a cost: data space is used up to store the keywords, and on 
small address space machines this may be prohibitive. 

When you put id keywords into header files, it is important that you assign them to different vari­
ables. For example, you might use: 

static char AccessSid[] = "%W% %0%"; 

in the file access .h and: 

static char OpsysSidO = "%W% %0%"; • 

in the file opsys.h. Otherwise, you will get compilation errors because '' Sccsid'' is redefined. The prob­
lem with this is that if the header file is included by many modules that are loaded together, the version 
number of that header file is included in the object module many times; you may find it more to your taste 
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. to put id keywords in header files in comments. 

S.6. Keeping SID's consistent across files 

With some care, it is possible to keep the SID's consistent in multi-file systems. The trick here is to 
always edit all files at once. The changes can then be made to whatever files are necessary and then all 
files (even those not changed) are redeltaed. This can be done fairly easily by just specifying the name of 
the directory that the secs files are in: 

secs edit SCCS 

which will edit all files in that directory. To make the delta, use: 

secs delta SCCS 

You will be prompted for comments only once. 

S. 7. Creating new releases 

When you want to create a new release of a program, you can specify the release number you want 
to create on the edit command For example: 

secs edit -r2 prog.c 

will cause the next delta to be in release two (that is, it will be numbered 2.1). Future deltas will automati­
cally be in release two. To change the release number of an entire system, use: 

SCCS edit -r2 SCCS 

6. Restoring Old Versions 

6.1. Reverting to old versions 

Suppose that after delta 1.2 was stable you made and released a delta 1.3. But this introduced a bug, 
so you made a delta 1.4 to correct it. But 1.4 was still buggy, and you decided you wanted to go back to 
the old version. You could revert to delta 1.2 by choosing the SID in a get: 

secs get -rl.2 prog.c 

This will produce a version of prog.c that is delta 1.2 that can be reinstalled so that work can proceed. 

In some cases you don't know what the SID of the delta you want is. However, you can revert to the 
version of the program that was running as of a certain date by using the -c (cutoff) flag. For example, 

secs get -c800722120000 prog.c 

will retrieve whatever version was current as of July 22, 1980 at 12:00 noon. Trailing components can be 
stripped off (defaulting to their highest legal value), and punctuation can be inserted in the obvious places; 
for example, the above line could be equivalently stated: 

secs get -c"S0/07/22 12:00:00" prog.c 

6.2. Selectively deleting old deltas 

Suppose that you later decided that you liked the changes in delta 1.4, but that delta 1.3 should be 
removed. You could do this by excluding delta 1.3: 

secs edit -xl.3 prog.c 

When delta 1.5 is made, it will include the changes made in delta 1.4, but will exclude the changes made in 
delta 1.3. You can exclude a range of deltas using a dash. For example, if you want to get rid of 1.3 and 
1.4 you can use: 

secs edit -xl.3-1.4 prog.c 

which will exclude all deltas from 1.3 to 1.4. Alternatively, 

secs edit -xl.3-1 prog.c 

will exclude a range of deltas from 1.3 to the current highest delta in release 1. 
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In certain cases when using -x (or-i; see below) there will be conflicts between versions; for exam­
ple, it may be necessary to both include and delete a particular line. If this happens, SCCS always prints out 
a message telling the range of lines effected; these lines should then be examined very carefully to see if 
the version SCCS got is ok. 

Since each delta (in the sense of "a set of changes") can be excluded at will, that this makes it most 
useful to put each semantically distinct change into its own delta. 

7 e Auditing Changes 

7 .1. The prt command 

When you created a delta, you presumably gave a reason for the delta to the "comments?" prompt. 
To print out these comments later, use: 

sccs prt prog.c 

This will produce a report for each delta of the SID, time and date of creation, user who created the delta, 
number of lines inserted, deleted, and unchanged, and the comments associated with the delta. For exam­
ple, the output of the above command might be: 

D 1.2 80/08129 12:35:31 bill 2 1 00005/00003/00084 
removed "-q" option 

D 1.1 79/02/05 00:19:31 eric 1 0 00081100000100000 
date and time created 80/06110 00:19:31 by eric 

7.2. Finding why lines were inserted 

To find out why you inserted lines, you can get a copy of the file with each line preceded by the SID 
that created it: 

sccs get -m prog.c 

You can then find out what this delta did by printing the comments using prt. 

To find out what lines are associated with a particular delta (e.g., 1.3), use: 

sccs get -m -p prog.c I grep '"1.3' 

The -p flag causes SCCS to output the generated source to the standard output rather than to a file. 

7.3. Finding what changes you have made 

When you are editing a file, you can find out what changes you have made using: 

sccs diffs prog.c 

Most of the "diff' flags can be used. To pass the -c flag, use -C. 

To compare two versions that are in deltas, use: 

sccs sccsdiff -rl.3 -rl.6 prog.c 

to see the differences between delta 1.3 and delta 1.6. 

8. Shorthand Notations 

There are several sequences of COJ11111ands that get executed frequently. Secs tries to make it easy to 
do these. 

8.1. Delget 

A frequent requirement is to make a delta of some file and then get that file. This can be done by 
using: 

SCCS delget prog.c 

which is entirely equivalent to using: 
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secs delta prog.c 
secs get prog.c 
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The "deledit" command is equivalent to "delget" except that the "edit" command is used instead of the 
"get" command. 

8.2e Fix 

Frequently, there are small bugs in deltas, e.g., compilation errors, for which there is no reason to 
maintain an audit trail. To replace a delta, use: 

secs fix -rl.4 prog.c 

This will get a copy of delta 1.4 of prog.c for you to edit and then delete delta 1.4 from the SCCS file. 
When you do a delta of prog.c, it will be delta 1.4 again. The -r flag must be specified, and the delta that is 
specified must be a leaf delta, i.e., no other deltas may have been made subsequent to the creation of that 
delta. 

8.3. Unedit 

If you found you edited a file that you did not want to edit, you can back out by using: 

secs unedit prog.c 

8.4. The -d flag 

If you are working on a project where the SCCS code is in a directory somewhere, you may be able 
to simplify things by using a shell alias. For example, the alias: 

alias syssccs secs -d/usr/src 

will allow you to issue commands such as: 

syssccs edit cmd/who.c 

which will look for the file "/usr/src/cmd/SCCS/who.c". The file "who.c" will always be created in your 
current directory regardless of the value of the --d flag. 

9. Using secs on a Project 

Working on a project with several people has its own set of special problems. The main problem 
occurs when two people modify a file at the same time. secs prevents this by locking ans-file while it is 
being edited. 

As a result, files should not be reserved for editing unless they are actually being edited at the time, 
since this will prevent other people on the project from making necessary changes. For example, a good 
scenario for working might be: 

secs edit a.c g.c t.c 
vi a.c g.c t.c 
# do testing of the (experimental) version 
sccs delget ac g.c tc 
SCCS info 
# should respond "Nothing being edited" 
make install 

As a general rule, all source files should be deltaed before installing the program for general use. 
This will insure that it is possible to restore any version in use at any time. 

10. Saving Yourself 

10.1. Recovering a munged edit file 

Sometimes you may find that you have destroyed or trashed a file that you were trying to edit6• 
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Unfortunately, you can'tjust remove it and re-edit it; secs keeps track of the fact that someone is trying to 
edit it, so it won't let you do it again. Neither can you just get it using get, since that would expand the Id 
keywords. Instead, you can say: 

sccs get -k prog.c 

This will not expand the Id keywords, so it is safe to do a delta with it 

Alternately, you can unedit and edit the file. 

10.2. Restoring the s-file 

In particularly bad circumstances, the secs file itself may get munged. The most common way this 
happens is that it gets edited Since secs keeps a checksum, you will get errors every time you read the 
file. To fix this checksum, use: 

sccs ad.min -z prog.c 

11. Using the Admin Command 

There are a number of parameters that can be set using the admin command The most interesting of 
these are ftags. Flags can be added by using the -f ftag. For example: 

sccs admin -fdl prog.c 

sets the "d" flag to the value " l ". This ftag can be deleted by using: 

sccs admin -dd prog.c 

The most useful ftags are: 
b Allow branches to be made using the -b ftag to edit. 

dSID Default SID to be used on a get or edit. If this is just a release number it constrains the version to a 
particular release only. 

Give a fatal error if there are no Id Keywords in a file. This is useful to guarantee that a version of 
the file does not get merged into the s-file that has the Id Keywords inserted as constants instead of 
internal forms. 

y The "type" of the module. Actually, the value of this ftag is unused by secs except that it 
replaces the % Y% keyword. 

The-tfile ftag can be used to store descriptive text from.file. This descriptive text might be the docu­
mentation or a design and implementation document Using the -t ftag insures that if the secs file is sent, 
the documentation will be sent also. If file is omitted, the descriptive text is deleted. To see the descriptive 
text, use "prt -t''. 

The admin command can be used safely any number of times on files. A file need not be gotten for 
admin to work. 

12. Maintaining Different Versions (Branches) 

Sometimes it is convenient to maintain an experimental version of a program for an extended period 
while normal maintenance continues on the version in production. This can be done using a ''branch.'' 
Normally deltas continue in a straight line, each depending on the delta before. Creating a branch ''forks 
off'' a version of the program. 

The ability to create branches must be enabled in advance using: 

sccs admin -fb prog.c 

The -.tb ftag can be specified when the secs file is first created. 

6c>r given up and decided to start over. 
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12.1. Creating a branch 

To create a branch, use: 

SCCS edit -b prog.c 

This will create a branch with (for example) SID 1.5.1.1. The deltas for this version will be numbered 
1.5.1.n. 

12.2. Getting from a branch 

Deltas in a branch are normally not included when you do a get To get these versions, you will have 
to say: 

secs get -rl.5.1 prog.c 

12.3. Merging a branch back into the main trunk 

At some point you will have finished the experiment, and if it was successful you will want to incor­
porate it into the release version. But in the meantime someone may have created a delta 1.6 that you don't 
want to lose. The commands: 

secs edit -il.5.1.1-1.5.1 prog.c 
secs delta prog.c 

will merge all of your changes into the release system. If some of the changes conflict, get will print an 
error; the generated result should be carefully examined before the delta is made. 

12.4. A more detailed example 

The following technique might be used to maintain a different version of a program. First, create a 
directory to contain the new version: 

mkdir .Jnewxyz 
cd .Jnewxyz 

Edit a copy of the program on a branch: 

secs -d.Jxyz edit prog.c 

When using the old version, be sure to use the -b fiag to info, check, tell, and clean to avoid confusion. 
For example, use: 

secs info -b 

when in the directory "xyz". 

If you want to save a copy of the program (still on the branch) back in the s-file, you can use: 

secs -d.Jxyz deledit prog.c 

which will do a delta on the branch and reedit it for you. 

When the experiment is complete, merge it back into the s-file using delta: 

sccs -d.Jxyz delta prog.c 

At this point you must decide whether this version should be merged back into the trunk (i.e. the default 
version), which may have undergone changes. If so, it can be merged using the -i flag to edit as described 
above. 

12.S. A warning 

Branches should be kept to a minimum. After the first branch from the trunk, SID' s are assigned 
rather haphazardly, and the structure gets complex fast. 

13. Using SCCS with Make 

SCCS and make can be made to work together with a little care. A few sample makefiles for com­
mon applications are shown. 
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There are a few basic entries that every makefile ought to have. These are: 

a.out 

install 

sources 

clean 

print 

(or whatever the makefile generates.) This entry regenerates whatever this makefile is 
supposed to regenerate. If the makefile regenerates many things, this should be called 
''all'' and should in turn have dependencies on everything the makefile can generate. 

Moves the objects to the final resting place, doing any special chmod's or ranlib's as 
appropriate. 

Creates all the source files from secs files. 

Removes all files from the current directory that can be regenerated from SCCS files. 

Prints the contents of the directory. 

The examples shown below are only partial examples, and may omit some of these entries when they are 
deemed to be obvious. 

The clean entry should not remove files that can be regenerated from the secs files. It is sufficiently 
important to have the source files around at all times that the only time they should be removed is when the 
directory is being mothballed. To do this, the command: 

secs clean 

can be used. This will remove all files for which an s-file exists, but which is not being edited. 

13.1. To maintain single programs 

Frequently there are directories with several largely unrelated programs (such as simple commands). 
These can be put into a single makefile: 

LDFLAGS= -i -s 

prog: prog.o 
$(CC) $(LDFLAGS) -o prog prog.o 

prog.o: prog.c prog.h 

example: example.o 
$(CC) $(LDFLAGS) -o example example.o 

example.o: example.c 

DEFAULT: 
SCCS get$< 

The trick here is that the .DEFAULT rule is called every time something is needed that does not exist, and 
no other rule exists to make iL The explicit dependency of the .o file on the .c file is important Another 
way of doing the same thing is: 

SRCS= prog.c prog.h example.c 

LDFLAGS= -i -s 

prog: prog.o 
$(CC) $(LDFLAGS) -o prog prog.o 

prog.o: prog.h 

example: example.o 
$(CC) $(LDFLAGS) -o example example.a 

sources: $(SRCS) 
$(SRCS): 

secs get$@ 

There are a couple of advantages to this approach: (1) the explicit dependencies of the .o on the .c files are 
not needed, (2) there is an entry called "sourcesn so if you want to get all the sources you can just say 
"make sources", and (3) the makefile is less likely to do confusing things since it won't try to get things 
that do not exist 
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13.2. To maintain a library 

Libraries that are largely static are best updated using explicit commands, since make doesn't know 
about updating them properly. However, libraries that are in the process of being developed can be han­
dled quite adequately. The problem is that the .o files have to be kept out of the library as well as in the 
library. 

# configuration information 
OBJS== a.o b.o c.o d.o 
SRCS= a.c b.c c.c d.s x.h y.h z.h 
TARG= /usr/lib 

#programs 
GET= sccs get 
REL= 
AR= -ar 
RANLIB= ranlib 

lib.a: $(0BJS) 
$(AR) IVu lib.a $(0BJS) 
$(RANLIB) lib.a 

install: lib.a 
SCCS check 
cp lib.a $(T ARG)/lib.a 
$(RANLIB) $(TARG)/lib.a 

sources: $(SRCS) 
$(SRCS): 

$(GET) $(REL)$@ 

print: sources 
pr *.h *.[cs] 

clean: 
rm -f *.o 
rm -f core a.out $(LIB) 

The "$(REL)" in the get can be used to get old versions easily; for example: 

make b.o REL=-rl.3 

The install entry includes the line '' sccs check'' before anything else. This guarantees that all the s­
files are up to date (i.e., nothing is being edited), and will abort the make if this condition is not met. 

13.3. To maintain a large program 

OBJS= a.o b.o c.o d.o 
SRCS= ac b.c c.y d.s x.h y .h z.h 

GET= sccs get 
REL= 

a.out: $(0BJS) 
$(CC) $(LDFLAGS) $(0BJS) $(LIBS) 

sources: $(SRCS) 
$(SRCS): 

$(GET) $(REL) $@ 

(The print and clean entries are identical to the previous case.) This makefile requires copies of the source 
and object files to be kept during development. It is probably also wise to include lines of the form: 
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a.o: x.h y.h 
b.o: z.h 
c.o: x.h y .h z.h 
z.h: x.h 
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so that modules will be recompiled if header files change. 

Since make does not do transitive closure on dependencies, you may find in some makefiles lines 
like: 

z.h: x.h 
touch z.h 

This would be used in cases where file z.h has a line: 

#include "x.h" 

in order to bring the mod date of z.h in line with the mod date of x.h. When you have a makefile such as 
above, the touch command can be removed completely; the equivalent effect will be achieved by doing an 
automatic get on z.h. 

14. Further Information 

The SCCSIPWB User's Manual gives a deeper description of how to use secs. Of particular interest 
are the numbering of branches, the I-file, which gives a description of what deltas were used on a get, and 
certain other SCCS commands. 

The SCCS manual pages are a good last resort. These should be read by software managers and by 
people who want to know everything about everything. 

Both of these documents were written without the secs front end in mind, so most of the examples 
are slightly different from those in this document. 
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Quick Ref ere nee 

1. Commands 
The following commands should all be preceded with "secs". This list is not exhaustive; for more 

options see Further Jnforma.tion. 

get Gets files for compilation (not for editing). Id keywords are expanded. 

-rSID Version to get. 

-p Send to standard output rather than to the actual file. 

-k Don't expand id keywords. 

-ilist List of deltas to include. 

-xlist List of deltas to exclude. 

-m Precede each line with SID of creating delta. 

--cdate Don't apply any deltas created after date. 

edit Gets files for editing. Id keywords are not expanded. Should be matched with a delta com­
mand. 

delta 

unedit 

prt 

info 

check 

tell 

clean 

what 

admin 

-rSID Same as get. If SID specifies a release that does not yet exist, the highest numbered 
delta is retrieved and the new delta is numbered with SID. 

-b Create a branch. 

-ilist Same as get. 

-xlist Same as get. 

Merge a file gotten using edit back into the s-file. Collect comments about why this delta was 
made. 

Remove a file that has been edited previously without merging the changes into the s-file. 

Produce a report of changes. 

-t Print the descriptive text 

--e Print (nearly) everything. 

Give a list of all files being edited. 

-b Ignore branches. 

-u[user] 
Ignore files not being edited by user. 

Same as info, except that nothing is printed if nothing is being edited and exit status is returned. 

Same as info, except that one line is produced per file being edited containing only the file 
name. 

Remove all files that can be regenerated from the s-file. 

Find and print id keywords. 

Create or set parameters on s-files. 

-ifile Create, usingfile as the initial contents. 

-z Rebuild the checksum in case the file has been trashed. 

-fjla,g Turn on the.flag. 

-djlag Turn off (delete) the flag. 

-tfile Replace the descriptive text in the s-file with the contents of file. If file is omitted, the 
text is deleted. Useful for storing documentation or "design & implementation" 
documents to insure they get distributed with the s-file. 
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fix 

delget 

deledit 
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Useful ftags are: 

b Allow branches to be made using the -b ftag to edit. · 

dSID Default SID to be used on a get or edit. 

i Cause ''No Id Keywords'' error message to be a fatal error rather than a warning. 

t The module utype"; the value of this fiag replaces the %Y% keyword. 

Remove a delta and reedit it. 

Do a delta followed by a get. 

Do a delta followed by an edit. 

2e Id Keywords 
%Z% Expands to"@(#)" for the what command to find. 

%M% The current module name, e.g., "prog.c". 

%1% The highest SID applied. 

%W% A shorthand for "%Z%%M% <tab> %I%" 0 

%G% The date of the delta corresponding to the ''%1%'' keyword. 

%R% The current release number, i.e., the first component of the "%1%'' keyword. 

% Y% Replaced by the value of the t ftag (set by admin). 



Yacc: Yet Another Compiler-Compiler 

Stephen C. Johnson 

ABSTRACT 

Computer program input generally has some structure; in fact, every computer pro­
gram that does input can be thought of as defining an "input language" which it accepts. 
An input language may be as complex as a programming language, or as simple as a 
sequence of numbers. Unfortunately, usual input facilities are limited, difficult to use, 
and often are lax about checking their inputs for validity. 

Yacc provides a general tool for describing the input to a computer program. The 
Y ace user specifies the structures of his input, together with code to be invoked as each 
such structure is recognized. Y ace turns such a specification into a subroutine that han­
dles the input process; frequently, it is convenient and appropriate to have most of the 
fiow of control in the user's application handled by this subroutine. 

The input subroutine produced by Yacc calls a user-supplied routine to return the 
next basic input item. Thus, the user can specify his input in tenns of individual input 
characters, or in tenns of higher level constructs such as names and numbers. The user­
supplied routine may also handle idiomatic features such as comment and continuation 
conventions, which typically defy easy grammatical specification. 

Y ace is written in portable C. The class of specifications accepted is a very general 
one: LALR( 1) grammars with disambiguating rules. 

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also been 
used for less conventional languages, including a phototypesetter language, several desk 
calculator languages, a document retrieval system, and a Fortran debugging system. 

0: Introduction 

Yacc provides a general tool for imposing structure on the input to a computer program. The Yacc 
user prepares a specification of the input process; this includes rules describing the input structure, code to 
be invoked when these rules are recognized, and a low-level routine to do the basic input. Yacc then gen­
erates a function to control the input process. This function, called a parser, calls the user-supplied low­
level input routine (the lexical analyzer) to pick up the basic items (called tokens) from the input stream. 
These tokens are organized according to the input structure rules, called grammar rules ; when one of these 
rules has been recognized, then user code supplied for this rule, an action, is invoked; actions have the 
ability to return values and make use of the values of other actions. 

Yacc is written in a portable dialect of C Ritchie Kernighan Language Prentice and the actions, and 
output subroutine, are in C as well. Moreover, many of the syntactic conventions of Y ace follow C. 

The heart of the input specification is a collection of grammar rules. Each rule describes an allow­
able structure and gives it a name. For example, one grammar rule might be 

date : month_name day ',' year ; 

Here, date, month_name, day, and year represent structures of interest in the input process; presumably, 
month_name, day, and year are defined elsewhere. The comma"," is enclosed in single quotes; this 
implies that the comma is to appear literally in the input. The colon and semicolon merely serve as punc­
tuation in the rule, and have no significance in controlling the input. Thus, with proper definitions, the 
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input 

July 4, 1776 

might be matched by the above rule. 

An important part of the input process is carried out by the lexical analyzer. This user routine reads 
the input stteam, recognizing the lower level structures, and communicates these tokens to the parser. For 
historical reasons, a structure recognized by the lexical analyzer is called a terminal symbol, while the 
structure recognized by the parser is called a nonterminal symbol. To avoid confusion, tenninal symbols 
will usually be referred to as tokens. 

There is considerable leeway in deciding whether to recognize structures using the lexical analyzer 
or grammar rules. For example, the rules 

month_name : 'J' 'a' 'n' , 
month_name : 'F' 'e' 'b' ; 

month_name : 'D' 'e' 'c' ; 

might be used in the above example. The lexical analyzer would only need to recognize individual letters, 
and month_name would be a nonterminal symbol. Such low-level rules tend to waste time and space, and 
may complicate the specification beyond Yacc's ability to deal with it. Usually, the lexical analyzer would 
recognize the month names, and return an indication that a month_name was seen; in this case, 
month_name would be a token. 

Literal characters such as "," must also be passed through the lexical analyzer, and are also con­
sidered tokens. 

Specification files are very flexible. It is realively easy to add to the above example the rule 

date : month '/' day '/' year 

allowing 

71411776 

as a synonym for 

July 4, 1776 

In most cases, this new rule could be "slipped in" to a working system with minimal effort, and little 
danger of disrupting existing input. 

The input being read may not conform to the specifications. These input errors are detected as early 
as is theoretically possible with a left-to-right scan; thus, not only is the chance of reading and computing 
with bad input data substantially reduced, but the bad data can usually be quickly found. Error handling, 
provided as part of the input specifications, permits the reentry of bad data, or the continuation of the input 
process after skipping over the bad data. 

In some cases, Yacc fails to produce a parser when given a set of specifications. For example, the 
specifications may be self contradictory, or they may require a more powerful recognition mechanism than 
that available to Yacc. The former cases represent design errors; the latter cases can often be corrected by 
making the lexical analyzer more powerful, or by rewriting some of the grammar rules. While Yacc can­
not handle all possible specifications, its power compares favorably with similar systems; moreover, the 
constructions which are difficult for Yacc to handle are also frequently difficult for human beings to han­
dle. Some users have reported that the discipline of formulating valid Yacc specifications for their input 
revealed errors of conception or design early in the program development. 

The theory underlying Yacc has been described elsewhere. Aho Johnson Surveys LR Parsing Aho 
Johnson Ullman Ambiguous Grammars Aho Ullman Principles Compiler Design Yacc has been exten­
sively used in numerous practical applications, including lint, Johnson Lint the Portable C Compiler, 
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Johnson Portable Compiler Theory and a system for typesetting mathematics. Kernighan Cherry typeset­
ting system CACM 

The next several sections describe the basic process of preparing a Yacc specification; Section 1 
describes the preparation of grammar rules, Section 2 the preparation of the user supplied actions associ­
ated with these rules, and Section 3 the preparation of lexical analyzers. Section 4 describes the operation 
of the parser. Section 5 discusses various reasons why Yacc may be unable to produce a parser from a 
specification, and what to do about it Section 6 describes a simple mechanism for handling operator pre­
cedence8 in arithmetic expressions. Section 7 discusses error detection and recovery. Section 8 discusses 
the operating environment and special features of the parsers Y ace produces. Section 9 gives some sugges­
tions which should improve the style and efficiency of the specifications. Section 10 discusses some 
advanced topics, and Section 11 gives acknowledgements. Appendix A has a brief example, and Appendix 
B gives a summary of the Yacc input syntax. Appendix C gives an example using some of the more 
advanced features of Yacc, and, finally, Appendix D describes mechanisms and syntax no longer actively 
supported, but provided for historical continuity with older versions of Yacc. 

1: Basic Specifications 

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be declared as 
such. In addition, for reasons discussed in Section 3, it is often desirable to include the lexical analyzer as 
part of the specification file; it may be useful to include other programs as well. Thus, every specification 
file consists of three sections: the declarations, (grammar) rules, and pro grams. The sections are 
separated by double percent''%%'' marks. (The percent''%'' is generally used in Yacc specifications as 
an escape character.) 

In other words, a full specification file looks like 

declarations 
%% 
rules 
%%• 
programs 

The declaration section may be empty. Moreover, if the programs section is omitted, the second%% 
mark may be omitted also; thus, the smallest legal Yacc specification is 

%% 
rules 

Blanks, tabs, and newlines are ignored except that they may not appear in names or multi-character 
reserved symbols. Comments may appear wherever a name is legal; they are enclosed in/• ... •I, as in C 
andPUI. 

The rules section is made up of one or more grammar rules. A grammar rule has the form: 

A: BODY; 

A represents a nonterminal name, and BODY represents a sequence of zero or more names and literals. 
The colon and the semicolon are Yacc punctuation. 

Names may be of arbitrary length, and may be made up of letters, dot ".", underscore "_", and 
non-initial digits. Upper and lower case letters are distinct The names used in the body of a grammar rule 
may represent tokens or nonterminal symbols. · 

A literal consists of a character enclosed in single quotes "'". As in C, the backslash "\" is an 
escape character within literals, and all the C escapes are recognized. Thus 
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"\n' newline 
"\r' return 
"\" single quote '' ''' 
"\ \' backslash "\" 
"\t' tab 
"\b' backspace 
"\f' form feed 
"\xxx'"xxx" in octal 
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For a number of technical reasons, the NUL character ("\O' or 0) should never be used in grammar rules. 

If there are several grammar rules with the same left hand side, the vertical bar ''I'' can be used to 
avoid rewriting the left hand side. In addition, the semicolon at the end of a rule can be dropped before a 
vertical bar. Thus the grammar rules 

A BCD 
A E F 
A G 

can be given to Y ace as 

A BCD 
EF 
G 

It is not necessary that all grammar rules with the same left side appear together in the grammar rules sec­
tion, although it makes the input much more readable, and easier to change. 

If a nonterminal symbol matches the empty string, this can be indicated in the obvious way: 

empty: ; 

Names representing tokens must be declared; this is most simply done by writing 

%token namel name2 ... 

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name not defined 
in the declarations section is assumed to represent .a nonterminal symbol. Every nonterminal symbol must 
appear on the left side of at least one rule. 

Of all the nonterminal symbols, one, called the start symbol, has particular importance. The parser 
is designed to recognize the start symbol; thus, this symbol represents the largest, most general structure 
described by the grammar rules. By default, the start symbol is taken to be the left hand side of the first 
grammar rule in the rules section. It is possible, and in fact desirable, to declare the start symbol explicitly 
in the declarations section using the %start keyword: 

%start symbol 

The end of the input to the parser is signaled by a special token, called the endmarker. If the tokens 
up to, but not including, the endmarker form a structure which matches the start symbol, the parser function 
returns to its caller after the endmarker is seen; it accepts the input. If the endmarker is seen in any other 
context, it is an error. 

It is the job of the user-supplied lexical analyzer to return the endmarker when appropriate; see sec­
tion 3, below. Usually the endmarker represents some reasonably obvious 1/0 status, such as "end-of­
file" or "end-of-record". 

2: Actions 

With each grammar rule, the user may associate actions to be performed each time the rule is recog­
nized in the input process. These actions may return values, and may obtain the values returned by 
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previous actions. Moreover, the lexical analyzer can return values for tokens, if desired. 

An action is an arbitrary C statement, and as such can do input and output, call subprograms, and 
alter external vectors and variables. An action is specified by one or more statements, enclosed in curly 
braces " {" and "}". For example, 

and 

A '(' B ')' 
{ hello( 1, "abc" ); } 

:xxx: yyy zz:z 
{ printf("a message\n"); 

fiag - 25; } 

are grammar rules with actions. 

To facilitate easy communication between the actions and the parser, the action statements are 
altered slightly. The symbol ''dollar sign'' ''$''is used as a signal to Yacc in this context 

To return a value, the action normally sets the pseudo-variable ''$$'' to some value. For example, 
an action that does nothing but return the value 1 is 

{ $$ == 1; } 

To obtain the values returned by previous actions and the lexical analyzer, the action may use the 
pseudo-variables $1~ $2, ... , which refer to the values returned by the components of the right side of a 
rule, reading from left to right Thus, if the rule is 

A BCD; 

for example, then $2 has the value returned by C, and $3 the value returned by D. 

As a more concrete example, consider the rule 

expr : '(' expr ')' ; 

The value returned by this rule is usually the value of the expr in parentheses. This can be indicated by 

expr : '(' expr ')' { $$ = $2 ; } 

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar rules of the 
form 

A B ; 

frequently need not have an explicit action. 

In the examples above, all the actions came at the end of their rules. Sometimes, it is desirable to get 
control before a rule is fully parsed. Yacc permits an action to be written in the middle of a rule as well as 
at the end This rule is assumed to return a value, accessible through the usual mechanism by the actions to 
the right of it In tum, it may access the values returned by the symbols to its left. Thus, in the rule 

A B 
{ $$ = 1; } 

c 
{ x = $2; y = $3; } 

the effect is to setx to 1, andy to the value returned by C. 

Actions that do not terminate a rule are actually handled by Y ace by manufact.uring a new nontermi­
nal symbol name, and a new rule matching this name to the empty string. The interior action is the action 
triggered off by recognizing this added rule. Y ace actually treats the above example as if it had been writ­
ten: 
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$ACT 

A 

I* empty •I 
{ $$ = 1; } 

B $ACT C 
{ x = $2; y = $3; } 
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In many applications, output is not done directly by the actions; rather, a data structure, such as a 
parse tree, is constructed in memory, and transformations are applied to it before output is generated. Parse 
trees are particularly easy to construct, given routines to build and maintain the tree structure desired. For 
example, suppose there is a C function node, written so that the call 

node( L, nl, n2 ) 

creates a node with label L, and descendants nl and n2, and returns the index of the newly created node. 
Then parse tree can be built by supplying actions such as: 

expr : expr '+' expr 
{ $$=node( '+', $1, $3 ); } 

in the specification. 

The user may define other variables to be used by the actions. Declarations and definitions can 
appear in the declarations section, enclosed in the marks "%{" and "%}". These declarations and 
definitions have global scope, so they are known to the action statements and the lexical analyzer. For 
example, 

%{ int variable = O; % } 

could be placed in the declarations section, making variable accessible to all of the actions .. The Yacc 
parser uses only names beginning in ''yy''; the user should avoid such names. 

In these examples, all the values are integers: a discussion of values of other types will be found in 
Section 10. 

3: Lexical Analysis 

The user must supply a lexical analyzer to read the input stream and communicate tokens (with 
values, if desired) to the parser. The lexical analyzer is an integer-valued function called yylex. The func­
tion returns an integer, the token. number, representing the kind of token read. If there is a value associated 
with that token, it should be assigned to the external variable yylval. 

The parser and the lexical analyzer must agree on these token numbers in order for communication 
between them to take place. The numbers may be chosen by Yacc, or chosen by the user. In either case, 
the''# define'' mechanism of C is used to allow the lexical analyzer to return these numbers symbolically. 
For example, suppose that the token name DIGIT has been defined in the declarations section of the Yacc 
specification file. The relevant portion of the lexical analyzer might look like: 
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yylex(){ 
extern int yylval; 
intc; 

c = getchar(); 

switch( c) { 

case 'O': 
case '1 ': 

case '9': 
yylval = c-'O'; 
return( DIGIT); 

} 

PS1:15-7 

The intent is to return a token number of DIGIT, and a value equal to the numerical value of the 
digit. Provided that the lexical analyzer code is placed in the programs section of the specification file, the 
identifier DIGIT will be defined as the token number associated with the token DIGIT. 

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the need to avoid 
using any token names in the grammar that are reserved or significant in C or the parser; for example, the 
use of token names if or while will almost certainly cause severe difficulties when the lexical analyzer is 
compiled. The token name e"or is reserved for error handling, and should not be used naively (see Sec­
tion 7). 

As mentioned above, the token numbers may be chosen by Y ace or by the user. In the default situa­
tion, the numbers are chosen by Yacc. The default token number for a literal character is the numerical 
value of the character in the local character set Other names are assigned token numbers starting at 257. 

To assign a token number to a token (including literals), the first appearance of the token name or 
literal in the declarations section can be immediately followed by a nonnegative integer. This integer is 
taken to be the token number of the name or literal. Names and literals not defined by this mechanism 
re~ their default definition. It is important that all token numbers be distinct 

For historical reasons, the end.marker must have token number 0 or negative. This token number 
cannot be redefined by the user; thus, all lexical analyzers should be prepared to return 0 or negative as a 
token number upon reaching the end of their input. 

A very useful tool for constructing lexical analyzers is the Lex program developed by Mike Lesk. 
Lesk Lex These lexical analyzers are designed to work in close harmony with Yacc parsers. The 
specifications for these lexical analyzers use regular expressions instead of grammar rules. Lex can be 
easily used to produce quite complicated lexical analyzers, but there remain some languages (such as FOR­
TRAN) which do not fit any theoretical framework, and whose lexical analyzers must be crafted by hand 

4: How the Parser Works 

Yacc turns the specification file into a C program, which parses the input according to the 
specification given. The algorithm used to go from the specification to the parser is complex, and will not 
be discussed here (see the references for more information). The parser itself, however, is relatively sim­
ple, and understanding how it works, while not strictly necessary, will nevertheless make treatment of error 
recovery and ambiguities much more comprehensible. 

The parser produced by Yacc consists of a finite state machine with a stack. The parser is also capa­
ble of reading and remembering the next input token (called the lookahead token). The current state is 
always the one on the top of the stack .. The states of the finite state machine are given small integer labels; 
initially, the machine is in state 0, the stack contains only state 0, and no lookahead token has been read 
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The machine has only four actions available to it, called shift, reduce, accept, and e"or. A move 
of the parser is done as follows: 

1. Based on its current state, the parser decides whether it needs a lookahead token to decide what 
action should be done; if it needs one, and does not have one, it calls yylex to obtain the next token. 

2. Using the current state, and the lookahead token if needed, the parser decides on its next action, and 
carries it out This may result in states being pushed onto the stack, or popped off of the stack, and in 
the lookahead token being processed or left alone. 

The shift action is the most common action the parser takes. Whenever a shift action is taken, there 
is always a lookahead token. For example, in state 56 there may be an action: 

IF shift 34 

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on the stack, and 
state 34 becomes the current state (on the top of the stack). The lookahead token is cleared. 

The reduce action keeps the stack from growing without bounds. Reduce actions are appropriate 
when the parser has seen the right hand side of a grammar rule, and is prepared to announce that it has seen 
an instance of the rule, replacing the right hand side by the left hand side. It may be necessary to consult 
the lookahead token to decide whether to reduce, but usually it is not; in fact, the default action 
(represented by a ''.' ') is often a reduce action. 

Reduce actions are associated with individual grammar rules. Grammar rules are also given small 
integer numbers, leading to some confusion. The action 

reduce 18 

refers to grammar rule 18, while the action 

IF shift 34 

refers to state 34. 

Suppose the rule being reduced is 

A x y z ; 

The reduce action depends on the left hand symbol (A in this case), and the number of symbols on the right 
hand side (three in this case). To reduce, first pop off the top three states from the stack (In general, the 
number of states popped equals the number of symbols on the right side of the rule). In effect, these states 
were the ones put on the stack while recognizing x, y, and z, and no longer serve any useful purpose. 
After popping these states, a state is uncovered which was the state the parser was in before beginning to 
process the rule. Using this uncovered state, and the symbol on the left side of the rule, perfonn what is in 
effect a shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are 
significant differences between the processing of the left hand symbol and an ordinary shift of a token, 
however, so this action is called a goto action. In particular, the lookahead token is cleared by a shift, and 
is not affected by a goto. In any case, the uncovered state contains an entry such as: 

A goto20 

causing state 20 to be pushed onto the stack, and become the current state. 

In effect, the reduce action "turns back the clock" in the parse, popping the states off the stack to go 
back to the state where the right hand side of the rule was first seen. The parser then behaves as if it had 
seen the left side at that time. If the right hand side of the rule is empty, no states are popped off of the 
stack: the uncovered state is in fact the current state. 

The reduce action is also important in the treatment of user-supplied actions and values. When a rule 
is reduced, the code supplied with the rule is executed before the stack is adjusted. In addition to the stack 
holding the states, another stack, running in parallel with it, holds the values returned from the lexical 
analyzer and the actions. When a shift takes place, the external variable yylval is copied onto the value 
stack. After the return from the user code, the reduction is carried out When the goto action is done, the 
external variable yyval is copied onto the value stack. The pseudo-variables $1, $2, etc., refer to the value 
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stack. 

The other two parser actions are conceptually much simpler. The accept action indicates that the 
entire input has been seen and that it matches the specification. This action appears only when the looka­
head token is the endmarker, and indicates that the parser has successfully done its job. The e"or action, 
on the other hand, represents a place where the parser can no longer continue parsing according to the 
specification. The input tokens it has seen, together with the lookahead token, cannot be followed by any­
thing that would result in a legal input. The parser reports an error, and attempts to recover the situation 
and resume parsing: the error recovery (as opposed to the detection of error) will be covered in Section 7. 

It is time for an examplel Consider the specification 

%token DING DONG DELL 
%% 
rhyme sound place 

sound: DING DONG 

place : DELL 

When Yacc is invoked with the -v option, a file called y.output is produced, with a human-readable 
description of the parser. The y.output file corresponding to the above grammar (with some statistics 
stripped off the end) is: 
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state 0 
$accept : _rhyme $end 

DING shift 3 
. error 

rhyme goto 1 
sound goto2 

state 1 
$accept : rhyme_$end 

$end accept 
• error 

state 2 
rhyme : sound_place 

DEIL shifts 
. error 

place goto4 

state 3 
sound : DING_DONG 

DONG shift6 
. error 

state4 
rhyme : sound place_ (1) 

. reduce 1 

state 5 
place : DELL_ (3) 

. reduce 3 

state 6 
sound : DING DONG_ (2) 

. reduce 2 
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Notice that, in addition to the actions for each state, there is a description of the parsing rules being pro­
cessed in each state. The _ character is used to indicate what has been seen, and what is yet to come, in 
each rule. Suppose the input is 

DING DONG DELL 

It is instructive to follow the steps of the parser while processing this input. 

Initially, the current state is state 0. The parser needs to refer to the input in order to decide between 
the actions available in state 0, so the first token, DING , is read, becoming the lookahead token. The 
action in state 0 on DING is is "shift 3", so state 3 is pushed onto the stack, and the lookahead token is 
cleared. State 3 becomes the current state. The next token, DONG , is read, becoming the lookahead 
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token. The action in state 3 on the token DONG is ''shift 6' ', so state 6 is pushed onto the stack, and the 
lookahead is cleared. The stack now contains 0, 3, and 6. In state 6, without even consulting the looka­
head, the parser reduces by rule 2. 

sound : DING DONG 

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the stack, uncov­
ering state 0. Consulting the description of state 0, looking for a goto on sound, 

soundgoto2 

is obtained; thus state 2 is pushed onto the stack, becoming the current state. 

In state 2, the next token, DEU, must be read. The action is ''shift 5' ', so state 5 is pushed onto the 
stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In state 5, the only action is to 
reduce by rule 3. This has one symbol on the right hand side, so one state, 5, is popped off, and state 2 is 
uncovered. The goto in state 2 on place, the left side of rule 3, is state 4. Now, the stack contains 0, 2, and 
4. In state 4, the only action is to reduce by rule 1. There are two symbols on the right, so the top two 
states are popped off, uncovering state 0 again. In state 0, there is a goto on rhyme causing the parser to 
enter state 1. In state 1, the input is read; the endmarker is obtained, indicated by "$end" in they.output 
file. The action in state 1 when the endmarker is seen is to accept, successfully ending the parse. 

The reader is urged to consider how the parser works when confronted with such incorrect strings as 
DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes spend with this and 
other simple examples will probably be repaid when problems arise in more complicated contexts. 

5: Ambiguity and Confticts 

A set of grammar rules is ambiguous if there is some input string that can be structured in two or 
more different ways. For example, the grammar rule 

expr : expr ' - ' expr 

is a natural way of expressing the fact that one way of forming an arithmetic expression is to put two other 
expressions together with a minus sign between them. Unfortunately, this grammar rule does not com­
pletely specify the way that all complex inputs should be structured. For example, if the input is 

expr - expr - expr 

the rule allows this input to be structured as either 

( expr - expr ) - expr 

or as 

expr - ( expr - expr ) 

(The first is called left association, the second right association). 

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to consider 
the problem that confronts the parser when it is given an input such as 

expr - expr - expr 

When the parser has read the second expr, the input that it has seen: 

expr - expr 

matches the right side of the grammar rule above. The parser could reduce the input by applying this rule; 
after applying the rule; the input is reduced to expr (the left side of the rule). The parser would then read 
the final part of the input: 

- expr 

and again reduce. The effect of this is to take the left associative interpretation. 
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Alternatively, when the parser has seen 

expr - expr 
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it could defer the immediate application of the rule, and continue reading the input until it had seen 

expr - expr - expr 

It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving 

ex.pr - expr 

Now the rule can be reduced once more; the effect is to take the right associative interpretation. Thus, hav­
ing read 

expr - expr 

the parser can do two legal things, a shift or a reduction, and has no way of deciding between them. This is 
called a shift I reduce conflict. It may also happen that the parser has a choice of two legal reductions; this 
is called a reduce I reduce conflict. Note that there are never any "Shift/shift" conflicts. 

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It does this by 
selecting one of the valid steps wherever it has a choice. A rule describing which choice to make in a 
given situation is called a disambiguating rule . 

Y ace invokes two disambiguating rules by default: 

1. In a shift/reduce conflict, the default is to do the shift 

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the input 
sequence). 

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts. Rule 2 
gives the user rather crude control over the behavior of the parser in this situation, but reduce/reduce 
conflicts should be a~oided whenever possible. 

Conflicts may arise because of mistakes in input or logic, or because the grammar rules, while con­
sistent, require a more complex parser than Y ace can construct The use of actions within rules can also 
cause conflicts, if the action must be done before the parser can be sure which rule is being recognized. In 
these cases, the application of disambiguating rules is inappropriate, and leads to an incorrect parser. For 
this reason, Yacc always reports the number of shift/reduce and reduce/reduce conflicts resolved by Rule 1 
andRule2. 

In general, whenever it is possible to apply disambiguating rules to produce a correct parser, it is also 
possible to rewrite the grammar rules so that the same inputs are read but there are no conflicts. For this 
reason, most previous parser generators have considered conflicts to be fatal errors. Our experience has 
suggested that this rewriting is somewhat unnatural, and produces slower parsers; thus, Yacc will produce 
parsers even in the presence of conflicts. 

As an example of the power of disambiguating rules, consider a fragment from a programming 
language involving an ''if-then-else'' construction: 

stat IF T cond ')' stat 
IF T cond ')' stat ELSE stat 

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional (logical) 
expressions, and stat is a nonterminal symbol describing statements. The first rule will be called the 
simple-if rule, and the second the if-else rule. 

These two rules form an ambiguous construction, since input of the form 

IF ( Cl ) IF ( C2 ) Sl ELSE S2 

can be structured according to these rules in two ways: 
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or 

IF ( Cl ) { 
IF ( C2 ) Sl 
} 

ELSE S2 

IF ( Cl ) { 
IF ( C2 ) Sl 
ELSE S2 
} 
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The second interpretation is the one given in most programming languages having this construct. Each 
ELSE is associated with the last preceding ''un-ELSE' d'' IF. In this example, consider the situation where 
the parser has seen 

IF ( Cl ) IF ( C2 ) Sl 

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get 

IF ( Cl ) stat 

and then read the remaining input, 

ELSE S2 

and reduce 

IF ( Cl ) stat ELSE S2 

by the if-else rule. This leads to the first of the above groupings of the input 

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of 

IF ( Cl ) IF ( C2 ) Sl ELSE S2 

can be reduced by the if-else rule to get 

IF ( Cl ) stat 

which can be reduced by the simple-if rule. This leads to the second of the above groupings of the input, 
which is usually desired. 

Once again the parser can do two valid things - there is a shift/reduce conflict The application of 
disambiguating rule 1 tells the parser to shift in this case, which leads to the desired grouping. 

This shift/reduce con:O.ict arises only when there is a particular current input symbol, ELSE, and par­
ticular inputs already seen, such as 

IF ( Cl ) IF ( C2 ) Sl 

In general, there may be many con:O.icts, and each one will be associated with an input symbol and a set of 
previously read inputs. The previously read inputs are characterized by the state of the parser. 

The conflict messages of Yacc are best understood by examining the verbose (-v) option output file. 
For example, the output corresponding to the above con:O.ict state might be: 
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23: shift/reduce conflict (shift 45, reduce 18) on ELSE 

state 23 

stat : IF ( cond ) stat_ (18) 
stat : IF ( cond ) stat_ELSE stat 

ELSE shift 45 
reduce 18 
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The first line describes the conflict, giving the state and the input symbol. The ordinary state description 
follows, giving the grammar rules active in the state, and the parser actions. Recall that the underline 
marks the portion of the grammar rules which has been seen. Thus in the example, in state 23 the parser 
has seen input corresponding to 

IF ( cond ) stat 

and the two grammar rules shown are active at this time. The parser can do two possible things. If the 
input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as part of its description, the 
line 

stat : IF ( cond ) stat ELSE_stat 

since the ELSE will have been shifted in this state. Back in state 23, the alternative action, described by 
".",is to be done if the input symbol is not mentioned explicitly in the above actions; thus, in this case, if 
the input symbol is not ELSE, the parser reduces by grammar rule 18: 

stat : IF '(' cond ')' stat 

Once again, notice that the numbers following "shift" commands refer to other states, while the numbers 
following ''reduce'' commands refer to grammar rule numbers. In they.output file, the rule numbers are 
printed after those rules which can be reduced. In most one states, there will be at most reduce action pos­
sible in the state, and this will be the default command. The user who encounters unexpected shift/reduce 
conflicts will probably want to look at the verbose output to decide whether the default actions are 
appropriate. In really tough cases, the user might need to know more about the behavior and construction 
of the parser than can be covered here. In this case, one of the theoretical references Aho Johnson Surveys 
Parsing Aho Johnson Ullman Deterministic Ambiguous Aho Ullman Principles Design might be consulted; 
the services of a local guru might also be appropriate. 

6: Precedence 

There is one common situation where the rules given above for resolving conflicts are not sufficient; 
this is in the parsing of arithmetic expressions. Most of the commonly used constructions for arithmetic 
expressions can be naturally described by the notion of precedence levels for operators, together with 
information about left or right associativity. It turns out that ambiguous grammars with appropriate disam­
biguating rules can be used to create parsers that are faster and easier to write than parsers constructed 
from unambiguous grammars. The basic notion is to write grammar rules of the form 

expr : expr OP expr 

and 

expr : UNARY expr 

for all binary and unary operators desired. This creates a very ambiguous grammar, with many parsing 
conflicts. As disambiguating rules, the user specifies the precedence, or binding strength, of all the opera­
tors, and the associativity of the binary operators. This information is sufficient to allow Yacc to resolve 
the parsing conflicts in accordance with these rules, and construct a parser that realizes the desired pre­
cedences and associativities .. 
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The precedences and associativities are attached to tokens in the declarations section. This is done 
by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc, followed by a list of 
tokens. All of the tokens on the same line are assumed to have the same precedence level and associa­
tivity; the lines are listed in order of increasing precedence or binding strength. Thus, 

%left '+' '-' 
%left '•' '/' 

describes the precedence and associativity of the four arithmetic operators. Plus and minus are left associa­
tive, and have lower precedence than star and slash, which are also left associative. The keyword %right is 
used to describe right associative operators, and the keyword %nonassoc is used to describe operators, like 
the operator LT. in Fortran, that may not associate with themselves; thus, 

A .LT. B .LT. C 

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in Yacc. As an 
example of the behavior of these declarations, the description 

%right '=' 
%left '+' '-' 
%left '•' '/' 

%% 

expr expr '=' expr 
expr '+' expr 
expr ' - ' expr 
expr '•' expr 
expr '/' expr 
NAME 

might be used to structure the input 

a = b = c•d - e - f•g 

as follows: 

a= ( b = ( ((c•d)-e) - (f•g)) ) 

When this mechanism is used, unary operators must, in general, be given a precedence. Sometimes a unary 
operator and a binary operator have the same symbolic representation, but different precedences. An 
example is unary and binary '-'; unary minus may be given the same strength as multiplication, or even 
higher, while binary minus has a lower strength than multiplication. The keyword, %prec, changes the pre­
cedence level associated with a particular grammar rule. %prec appears immediately after the body of the 
grammar rule, before the action or closing semicolon, and is followed by a token name or literal. It causes 
the precedence of the grammar rule to become that of the following token name or literal. For example, to 
make unary minus have the same precedence as multiplication the rules might resemble: 
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%left '+' '-' 
%left '•' r 

%% 

expr expr '+' expr 
expr '-' expr 
expr '•' expr 
expr '/' expr 
'-' expr %prec '•' 
NAME 
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A token declared by %left, %right, and %nonassoc need not be, but may be, declared by %token as 
well. 

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give rise to 
disambig~ating rules. Formally, the rules work as follows: 

1. The precedences and associativities are recorded for those tokens and literals that have them. 

2. A precedence and associativity is associated with each grammar rule; it is the precedence and associ­
ativity of the last token or literal in the body of the rule. If the %prec construction is used, it over­
rides this default. Some grammar rules may have no precedence and associativity associated with 
them. 

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the input symbol 
or the grammar rule has no precedence and associativity, then the two disambiguating rules given at 
the beginning of the section are used, and the conflicts are reported. 

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have precedence 
and associativity associated with them, then the conflict is resolved in favor of the action (shift or 
reduce) associated with the higher precedence. If the precedences are the same, then the associa­
tivity is used; left associative implies reduce, right associative implies shift, and nonassociating 
implies error. 

Conflicts resolved by precedence are not counted in the number of shift/reduce and reduce/reduce 
conflicts reported by Yacc. This means that mistakes in the specification of precedences may disguise 
errors in the input grammar; it is a good idea to be sparing with precedences, and use them in an essentially 
"cookbook" fashion, until some experience has been gained. They.output file is very useful in deciding 
whether the parser is actually doing what was intended. 

7: Error Handling 

Error handling is an extremely difficult area, and many of the problems are semantic ones. When an 
error is found, for example, it may be necessary to reclaim parse tree storage, delete or alter symbol table 
entries, and, typically, set switches to avoid generating any further output. 

It is seldom acceptable to stop all processing when an error is found; it is more useful to continue 
scanning the input to find further syntax errors. This leads to the problem of getting the parser ''restarted'' 
after an error. A general class of algorithms to do this involves discarding a number of tokens from the 
input string, and attempting to adjust the parser so that input can continue. 

To allow the user some control over this process, Yacc provides a simple, but reasonably general, 
feature. The token name ''error'' is reserved for error handling. This name can be used in grammar rules; 
in effect, it suggests places where errors are expected, and recovery might take place. The parser pops its 
stack until it enters a state where the token ''error'' is legal. It then behaves as if the token ''error'' were 
the current lookahead token, and performs the action encountered. The lookahead token is then reset to the 
token that caused the error. If no special error rules have been specified, the processing halts when an error 
is detected. 
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In order to prevent a cascade of error messages, the parser, after detecting an error, remains in error 
state until three tokens have been successfully read and shifted If an error is detected when the parser is 
already in error state, no message is given, and the input token is quietly deleted. 

As an example, a rule of the form 

stat : error 

would, in effect, mean that on a syntax error the parser would attempt to skip over the statement in which 
the error was seen. More precisely, the parser will scan ahead, looking for three tokens that might legally 
follow a statement, and start processing at the first of these; if the beginnings of statements are not 
sufficiently distinctive, it may make a false start in the middle of a statement, and end up reporting a second 
error where there is in fact no error. 

Actions may be used with these special error rules. These actions might attempt to reinitialize tables, 
reclaim symbol table space, etc. 

Error rules such as the above are very general, but difficult to control. Somewhat easier are rules 
such as 

stat : error ';' 

Here, when there is an error, the parser attempts to skip over the statement, but will do so by skipping to 
the next';'. All tokens after the error and before the next';' cannot be shifted, and are discarded. When 
the';' is seen, this rule will be reduced, and any ''cleanup'' action associated with it performed. 

Another form of error rule arises in interactive applications, where it may be desirable to permit a 
line to be reentered after an error. A possible error rule might be 

input : error \n' { printf( "Reenter last line:" ); } input 
{ $$ = $4; } 

There is one potential difficulty with this approach; the parser must correctly process three input tokens 
before it admits that it has correctly resynchronized after the error. If the reentered line contains an error in 
the first two tokens, the parser deletes the offending tokens, and gives no message; this is clearly unaccept­
able. For this reason, there is a mechanism that can be used to force the parser to believe that an error has 
been fully recove~ from. The statement 

yyerrok; 

in an action resets the parser to its normal mode. The last example is better written 

input: error \n' 
{ yyerrok; 

printf( "Reenter last line:" ); } 
input 

{ $$ = $4; } 

As mentioned above, the token seen immediately after the "error" symbol is the input token at 
which the error was discovered. Sometimes, this is inappropriate; for example, an error recovery action 
might take upon itself the job of finding the correct place to resume input In this case, the previous looka­
head token must be cleared. The statement 

yyclearin; 

in an action will have this effect. For example, suppose the action after error were to call some sophisti­
cated resynchronization routine, supplied by the user, that attempted to advance the input to the beginning 
of the next valid statement After this routine was called, the next token returned by yylex would presum­
ably be the first token in a legal statement; the old, illegal token must be discarded, and the error state reset 
This could be done by a rule like 
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stat error 
{ resynch(); 

yyerrok; 
yyclearin ; } 
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These mechanisms are admittedly crude, but do allow for a simple, fairly effective recovery of the 
parser from many errors; moreover, the user can get control to deal with the error actions required by other 
portions of the program. 

8: The Yacc Environment 

When the user inputs a specification to Yacc, the output is a file of C programs, called y.tab.c on 
most systems (due to local file system conventions, the names may differ from installation to installation). 
The function produced by Yacc is called yyparse ; it is an integer valued function. When it is called, it in 
tum repeatedly cans yylex, the lexical analyzer supplied by the user (see Section 3) to obtain input tokens. 
Eventually, either an error is detected, in which case (if no error recovery is possible) yyparse returns the 
value 1, or the lexical analyzer returns the endmarker token and the parser accepts. In this case, yyparse 
returns the value 0. 

The user must provide a certain amount of environment for this parser in order to obtain a working 
program. For example, as with every C program, a program called main must be defined, that eventually 
calls yyparse • In addition, a routine called yye"or prints a message when a syntax error is detected. 

These two routines must be supplied in one form or another by the user. To ease the initial effort of 
using Y ace, a library has been provided with default versions of main and yyerror. The name of this 
library is system dependent; on many systems the library is accessed by a -ly argument to the loader. To 
show the triviality of these default programs, the source is given below: 

and 

main(){ 
return( yyparse() ); 
} 

# include <Stdio.It> 

yyerror(s) char •s; { 
fprintf( stderr, "%s\n", s ); 
} 

The argument to yyerror is a string containing an error message, usually the string ''syntax error''. The 
average application will want to do better than this. Ordinarily, the program should keep track of the input 
line number, and print it along with the message when a syntax error is detected The external integer vari­
able yychar contains the lookahead token number at the time the error was detected; this may be of some 
interest in giving better diagnostics. Since the main program is probably supplied by the user (to read 
arguments, etc.) the Y ace library is useful only in small projects, or in the earliest stages of larger ones. 

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value, the parser 
will output a verbose description of its actions, including a discussion of which input symbols have been 
read, and what the parser actions are. Depending on the operating environment, it may be possible to set 
this variable by using a debugging system. 

9: Hints for Preparing Specifications 

This section contains miscellaneous hints on preparing efficient, easy to change, and clear 
specifications. The individual subsections are more or less independent. 
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Input Style 

It is difficult to provide rules with substantial actions and still have a readable specification file. The 
following style hints owe much to Brian Kernighan. 

a. Use all capital letters for token names, all lower case letters for nonterminal names. This rule comes 
under the heading of "knowing who to blame when things go wrong." 

b. Put grammar rules and actions on separate lines. This allows either to be changed without an 
automatic need to change the other. 

c. Put all rules with the same left hand side together. Put the left hand side in only once, and let all fol­
lowing rules begin with a vertical bar. 

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon on a 
separate line. This allows new rules to be easily added 

e. Indent rule bodies by two tab stops, and action bodies by three tab stops. 

The example in Appendix A is written following this style, as are the examples in the text of this 
paper (where space permits). The user must make up his own mind about these stylistic questions; the cen­
tral problem, however, is to make the rules visible through the morass of action code. 

Left Recursion 

The algorithm used by the Y ace parser encourages so called ''left recursive'' grammar rules: rules of 
the form 

name: name rest_ of_ rule ; 

These rules frequently arise when writing specifications of sequences and lists: 

list item 
list "',"' item 

and 

seq item 
seq item 

In each of these cases, the first rule will be reduced for the first item only, and the second rule will be 
reduced for the second and all succeeding items. 

With right recursive rules, such as 

seq item 
item seq 

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left. More seri­
ously, an internal stack in the parser would be in danger of overflowing if a very long sequence were read. 
Thus, the user should use left recursion wherever reasonable. 

It is worth considering whether a sequence with zero elements has any meaning, and if so, consider 
writing the sequence specification with an empty rule: 

seq /*empty•/ 
seq item 

Once again, the first rule would always be reduced exactly once, before the first item was read, and then the 
second rule would be reduced once for each item read. Permitting empty sequences often leads to 
increased generality. However, conflicts might arise if Y ace is asked to decide which empty sequence it 
has seen, when it hasn't seen enough to know! 



PS1:15-20 Y ace: Yet Another Compiler-Compiler 

Lexical Tie-ins 

Some lexical decisions depend on context. For example, the lexical analyzer might want to delete 
blanks normally, but not within quoted strings. Or names might be entered into a symbol table in declara­
tions, but not in expressions. 

One way of handling this situation is to create a global ftag that is examined by the lexical analyzer, 
and set by actions. For example, suppose a program consists of 0 or more declarations, followed by 0 or 
more statements. Consider: 

%{ 
int dftag; 

%} 
..• other declarations ... 

%% 

prog decls stats 

decls : I• empty•/ 
{ dftag = 1; } 

decls declaration 

stats I• empty •I 
{ dftag = O; } 

stats statement 

.•• other rules ..• 

The flag djlag is now 0 when reading statements, and 1 when reading declarations, except for the first token 
in the first statement. This token must be seen by the parser before it can tell that the declaration section 
has ended and the statements have begun. In many cases, this single token exception does not affect the 
lexical scan. 

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless, it 
represents a way of doing some things that are difficult, if not impossible, to do otherwise. 

Reserved Words 

Some programming languages permit the user to use words like ''if'', which are normally reserved, 
as label or variable names, provided that such use does not conflict with the legal use of these names in the 
programming language. This is extremely hard to do in the framework of Yacc; it is difficult to pass infor­
mation to the lexical analyzer telling it "this instance of 'ir is a keyword, and that instance is a variable". 
The user can make a stab at it, using the mechanism described in the last subsection, but it is difficult 

A number of ways of making this easier are under advisement. Until then, it is better that the key­
words be reserved ; that is, be forbidden for use as variable names. There are powerful stylistic reasons for 
preferring this, anyway. 

10: Advanced Topics 

This section discusses a number of advanced features of Yacc. 

Simulating Error and Accept in Actions 

The parsing actions of error and accept can be simulated in an action by use of macros YY ACCEPT 
and YYERROR. YY ACCEPT causes yyparse to return the value O; YYERROR causes the parser to 
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behave as if the current input symbol had been a syntax error; yyerror is called, and error recovery takes 
place. These mechanisms can be used to simulate parsers with multiple endmarkers or context-sensitive 
syntax checking. 

Accessing V aloes in Enclosing Rules. 
An action may refer to values returned by actions to the left of the current rule. The mechanism is 

simply the same as with ordinary actions, a dollar sign followed by a digit, but in this case the digit may be 
0 or negative. Consider 

" 
sent adj noun verb adj noun 

adj 

noun: 

{ look at the sentence . . . } 

THE { 
YOUNG { 

$$ = TIIB; } 
$$=YOUNG;} 

DOG 
{ 

CRONE 
{ 

$$=DOG; } 

if( $0 == YOUNG ){ 
printf( "what?\n" ); 
} 

$$=CRONE; 
} 

In the action following the word CRONE, a check is made that the preceding token shifted was not 
YOUNG. Obviously, this is only possible when a great deal is known about what might precede the sym­
bol noun in the input. There is also a distinctly unstructured flavor about this. Nevertheless, at times this 
mechanism will save a great deal of trouble, especially when a few combinations are to be excluded from 
an otherwise regular structure. 

Support for Arbitrary Value Types 

By default, the values returned by actions and the lexical analyzer are integers. Yacc can also sup­
port values of other types, including structures. In addition, Yacc keeps track of the types, and inserts 
appropriate union member names so that the resulting parser will be strictly type checked. The Yacc value 
stack (see Section 4) is declared to be a union of the various types of values desired. The user declares the 
union, and associates union member names to each token and nonterminal symbol having a value. When 
the value is referenced through a$$ or $n construction, Yacc will automatically insert the appropriate 
union name, so that no unwanted conversions will take place. In addition, type checking commands such 
as Lint Johnson Lint Checker 1273 will be far more silent 

There are three mechanisms used to provide for this typing. First, there is a way of defining the 
union; this must be done by the user since other programs, notably the lexical analyzer, must know about 
the union member names. Second, there is a way of associating a union member name with tokens and 
nonterminals. Finally, there is a mechanism for describing the type of those few values where Yacc can 
not easily determine the type. 

To declare the union, the user includes in the declaration section: 

%union { 
body of union ... 
} 
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This declares the Yacc value stack, and the external variables yylval and yyval, to have type equal to this 
union. If Yacc was invoked with the-d option, the union declaration is copied onto the y.tab.h file. Alter­
natively, the union may be declared in a header file, and a typedef used to define the variable YYSTYPE to 
represent this union. Thus, the header file might also have said: 

typedef union { 
body of union ... 
} YYSTYPE; 

The header file must be included in the declarations section, by use of%{ and%}. 

Once YYSTYPE is defined, the union member names must be associated with the various terminal 
and nonterminal names. The construction 

<name> 

is used to indicate a union member name. If this follows one of the keywords %token, %left, %right, and 
%nonassoc, the union member name is associated with the tokens listed. Thus, saying 

%left <Optype> '+' '-' 

will cause any reference to values returned by these two tokens to be tagged with the union member name 
optype. Another keyword, %type, is used similarly to associate union member names with nonterminals. 
Thus, one might say 

%type <nodetype> expr stat 

There remain a couple of cases where these mechanisms are insufficient. If there is an action within 
a rule, the value returned by this action has no a priori type. Similarly, reference to left context values 
(such as $0 - see the previous subsection ) leaves Y ace with no easy way of knowing the type. In this 
case, a type can be imposed on the reference by inserting a union member name, between < and >, immedi­
ately after the first $. An example of this usage is 

rule aaa { $<intvab$ = 3; } bbb 
{ fun( $<intvab2, $<other>O ); } 

This syntax has little to recommend it, but the situation arises rarely. 

A sample specification is given in Appendix C. The facilities in this subsection are not triggered 
until they are used: in particular, the use of %type will turn on these mechanisms. When they are used, 
there is a fairly strict level of checking. For example, use of $n or $$ to refer to something with no defined 
type is diagnosed. If these facilities are not triggered, the Y ace value stack is used to hold int' s, as was 
true historically. 
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$LIST$ 
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Appendix A: A Simple Example 

This example gives the complete Y ace specification for a small desk calculator; the desk calculator 
has 26 registers, labeled ua" through "z", and accepts arithmetic expressions made up of the operators+, 
-, •,I,% (mod operator), & (bitwise and), I (bitwise or), and assignment If an expression at the top level 
is an assignment, the value is not printed; otherwise it is. As in C, an integer that begins with 0 (zero) is 
assumed to be octal; otherwise, it is assumed to be decimal. 

As an example of a Yacc specification, the desk calculator does a reasonable job of showing how 
precedences and ambiguities are used, and demonstrating simple error recovery. The major 
oversimplifications are that the lexical analysis phase is much simpler than for most applications, and the 
output is produced immediately, line by line. Note the way that decimal and octal integers are read in by 
the grammar rules; This job is probably better done by the lexical analyzer. 

%{ 
# include <stdio.h> 
# include <Ctype.h> 

int regs [26]; 
int base; 

%} 

%start list 

%token DIGIT LETIER 

%left 1' 
%left '&' 
%left '+' '-' 
%left '•' '/' '%' 
%left UMINUS I• supplies precedence for unary minus •/ 

%% I• beginning of rules section •I 

list 

stat 

expr 

I• empty •/ 
list stat \n' 
list error \n' 

{ yyerrok; } 

expr 
{ printf( "%d\n", $1 ); } 

LEITER '=' expr 
{ regs[$1] = $3; } 

T expr ')' 
{ $$ = $2; } 

expr '+' expr 
{ $$ = $1 + $3; } 

expr '-' expr 
{ $$ = $1 - $3; } 

expr '•' expr 
{ $$ = $1 * $3; } 
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number : 

expr '/' expr 
{ 

expr '%' expr 
$$ = $1 I $3; } 

$$ = $1 % $3; } 

$$ = $1 & $3; } 

{ 
expr ' & ' expr 

{ 
expr 'I' expr 

{ $$ = $1 I $3; } 
%prec UMINUS '-' expr 

{ 
LE TIER 

{ 
number 

DIGIT 

$$ = - $2; } 

$$ = regs[$1]; } 

{ $$ = $1; base = ($1==0) ? 8 : 10; } 
number DIGIT 

{ $$ = base * $1 + $2; } 

%% I• start of programs •/ 

yylex() { /• lexical analysis routine •/ 
I• returns LETIER for a lower case letter, yylval ~ 0 through 25 *I 
I• return DIGIT for a digit, yylval = 0 through 9 •I 
I• all other characters are returned immediately •/ 

int c; 

while( (c=getchar()) == ' ' ) { /* skip blanks •/ } 

I• c is now nonblank •/ 

if( islower( c ) ) { 
yylval = c - 'a'; 
return ( LETIER ); 
} 

if ( isdigit( c ) ) { 
yylval = c - 'O'; 
return( DIGIT ); 
} 

return( c ); 
} 

PS1:15-25 
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Appendix B: Yacc Input Syntax 

This Appendix has a description of the Yacc input syntax, as a Y ace specification. Context depen­
dencies, etc., are not considered Ironically, the Yacc input specification language is most naturally 
specified as an LR(2) grammar; the sticky part comes when an identifier is seen in a rule, immediately fol­
lowing an action. If this identifier is followed by a colon, it is the start of the next rule; otherwise it is a 
continuation of the current rule, which just happens to have an action embedded in it As implemented, the 
lexical analyzer looks ahead after seeing an identifier, and decide whether the next token (skipping blanks, 
newlines, comments, etc.) is a colon. If so, it returns the token C IDENTIFIER. Otherwise, it returns 
IDENTIFIER. Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of 
C _ IDENTIFIERs. 

I• grammar for the input to Yacc •/ 

%token 
%token 
%token 

I• basic entities •/ 
IDENTIFIER 
C_IDENTIFIER 
NUMBER 

I• includes identifiers and literals •/ 
I• identifier (but not literal) followed by colon •I 
I• [0-9]+ •I 

I• reserved words: %type => TYPE, %left => LEFr, etc. •I 

%token LEFr RIGHT NONASSOC TOKEN PREC TYPE START UNION 

%token MARK I• the %% mark •/ 
%token LCURL /• the %{ mark •/ 
%token RCURL /• the %} mark •/ 

I• ascii character literals stand for themselves •/ 

%start spec 

%% 

spec 

tail 

defs 

def 

rword 

defs MARK rules tail 

MARK { In this action, eat up the rest of the file } 
!• empty: the second MARK is optional •/ 

I• empty •/ 
defs def 

START IDENTIFIER 
UNION { Copy union definition to output } 
LCURL { Copy C code to output file } RCURL 
ndefs rword tag nlist 

TOKEN 
LEFf 
RIGHT 
NON ASSOC 
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tag 

nlist 

nmno 

rules 

rule 

rbody 

act 

prec 

TYPE 

I• empty: union tag is optional •/ 
'<~ IDENTIFIER '>' 

nmno 
nlist nnmo 
nlist ',' nmno 

IDENTIFIER /• NOTE: literal illegal with %type •I 
IDENTIFIER NUMBER /* NOTE: illegal with %type *I 

I• rules section •/ 

C_IDENTIFIER rbody prec 
rules rule 

C IDENTIFIER rbody prec 
'I' rbOdy prec 

I• empty •/ 
rbody IDENTIFIER 
rbody act 

T { Copy action, translate $$, etc. } '}' 

I• empty •/ 
PREC IDENTIFIER 
PREC IDENTIFIER act 
prec ';' 

PSl:lS-27 
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Appendix C: An Advanced Example 

This Appendix gives an example of a grammar using some of the advanced features discussed in 
Section 10. The desk calculator example in Appendix A is modified to provide a desk calculator that does 
fioating point interval arithmetic. The calculator understands :floating point constants, the arithmetic opera­
tions+,-,•, I, unary-, and= (assignment), and has 26 fioating point variables, "au through "z" o More­
over, it also understands intervals, written 

(x,y) 

where x is less than or equal to y. There are 26 interval valued variables ''A'' through ''Z'' that may also 
be used. The usage is similar to that in Appendix A; assignments return no value, and print nothing, while 
expressions print the (fioating or interval) value. 

This example explores a number of interesting features of Yacc and C. Intervals are represented by a 
structure, consisting of the left and right endpoint values, stored as double 's. This structure is given a type 
name, INTERVAL, by using typedef. The Yacc value stack can also contain fioating point scalars, and 
integers (used to index into the arrays holding the variable values). Notice that this entire strategy depends 
strongly on being able to assign structures and unions in C. In fact, many of the actions call functions that 
return structures as well. 

It is also worth noting the use of YYERROR to handle error conditions: division by an interval con­
taining 0, and an interval presented in the wrong order. In effect, the error recovery mechanism of Yacc is 
used to throw away the rest of the offending line. 

In addition to the mixing of types on the value stack, this grammar also demonstrates an interesting 
use of syntax to keep track of the type (e.g. scalar or interval) of intermediate expressions. Note that a 
scalar can be automatically promoted to an interval if the context demands an interval value. This causes a 
large number of confiicts when the grammar is run through Y ace: 18 Shift/Reduce and 26 Reduce/Reduce. 
The problem can be seen by looking at the two input lines: 

2.5 + ( 3.5 - 4. ) 

and 

2.5 + ( 3.5 ' 4. ) 

Notice that the 2.5 is to be used in an interval valued expression in the second example, but this fact is not 
known until the '','' is read; by this time, 2.5 is finished, and the parser cannot go back and change its 
mind. More generally, it might be necessary to look ahead an arbitrary number of tokens to decide whether 
to convert a scalar to an interval. This problem is evaded by having two rules for each binary interval 
valued operator: one when the left operand is a scalar, and one when the left operand is an intervalo In the 
second case, the right operand must be an interval, so the conversion will be applied automatically. 
Despite this evasion, there are still many cases where the conversion may be applied or not, leading to the 
above confiicts. They are resolved by listing the rules that yield scalars first in the specification file; in this 
way, the confiicts will be resolved in the direction of keeping scalar valued expressions scalar valued until 
they are forced to become intervals. 

This way of handling multiple types is very instructive, but not very general. If there were many 
kinds of expression types, instead of just two, the number of rules needed would increase dramatically, and 
the confiicts even more dramatically. Thus, while this example is instructive, it is better practice in a more 
normal programming language environment to keep the type information as part of the value, and not as 
part of the grammar. 

Finally, a word about the lexical analysis. The only unusual feature is the treatment of fioating point 
constants. The C library routine atof is used to do the actual conversion from a character string to a double 
precision value. If the lexical analyzer detects an error, it responds by returning a token that is illegal in the 
grammar, provoking a syntax error in the parser, and thence error recovery. 
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%{ 

# include <stdio.h> 
# include <Ctype.h> 

typedef struct interval { 
double lo, hi; 
} INTERVAL; 

INTERVAL vmul(), vdiv(); 

double atof(); 

double dreg[ 26 ] ; 
INTERVAL vreg[ 26 ]; 

%} 

%start lines 

%union { 
int ival; 
double dval; 
INTERVAL vval; 
} 

%token <ival> DREG VREG 

%token <dval> CONST 

I• indices into dreg, vreg arrays */ 

I* fioating point constant */ 

%type <dvab dexp I* expression */ 

%type <vval> vexp I• interval expression */ 

/* precedence information about the operators *I 

%left '+' '-' 
%left '•' '/' 
%left UMINUS 

%% 

/* precedence for unary minus */ 

lines /* empty */ 
lines line 

line dexp '\n' 
{ printf( "%15.8t\n", $1 ); } 

vexp '\n' 
{ printf( "(%15.Sf , %15.8f )\n", $1.lo, $1.hi ); } 

DREG '=' dexp '\n' 
{ dreg[$1] = $3; } 

VREG '=' vexp '\n' 
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{ vreg[$1] = $3; } 
error \n' 

{ yyerrok; } 

dexp: CONST 
I DREG 

{ $$ = dreg[$1]; } 
dexp '+' dexp 

{ $$ = $1 + $3; } 
dexp '-' dexp 

{ $$ = $1 - $3; } 
dexp '•' dexp 

{ $$ = $1 • $3; } 
dexp r dexp 

{ $$ = $1 I $3; } 
'-' dexp %prec UMINUS 

{ $$ = -$2; } 
'(' dexp ')' 

{ $$ = $2; } 

vexp : dexp 
{ $$.hi = $$.lo = $1; } 

'(' dexp ",' dexp ')' 
{ 
$$.lo = $2; 
$$.hi = $4; 
if( $$.lo > $$.hi ){ 

} 
VREG 

printf( "interval out of order\n" ); 
YYERROR;,, 
} 

{ $$ = vreg[$1]; } 
vexp '+' vexp 

{ $$.hi = $1.hi + $3.hi; 
$$.lo = $1.lo + $3.lo; } 

dexp '+' vexp 
{ $$.hi = $1 + $3.hi; 

$$.lo = $1 + $3.lo; } 
vexp '-' vexp 

{ $$.hi = $1.hi - $3.lo; 
$$.lo = $1.lo - $3.hi; } 

dexp '-' vexp 
{ $$.hi = $1 - $3.lo; 

$$.lo = $1 - $3.hi; } 
vexp '•' vexp 

{ $$ = vmul( $1.lo, $1.hi, $3 ); } 
dexp '•' vexp 

{ $$ = vmul( $1, $1, $3 ); } 
vexp r vexp 

{ if( dcheck( $3 ) ) YYERROR; 
$$ = vdiv( $1.lo, $1.hi, $3 ); } 
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%% 

dexp '/' vexp 
{ if( dcheck( $3 ) ) YYERROR; 

$$ = vdiv( $1, $1, $3 ); } 
' - ' vexp %prec UMINUS 

{ $$.hi = -$2.lo; $.$.lo = -$2.hi; } 
'(' vexp ')' 

{ $$ = $2; } 

# define BSZ 50 I• buffer size for :floating point numbers •/ 

I• lexical analysis •/ 

yylex(){ 
register c; 

while( (c=getchar()) == '' ){ I* skip over blanks •/ } 

if ( is upper( c ) ){ 
yylval.ival = c - 'A'; 
return( VREG ); 
} 

if( islower( c ) ){ 
yylval.ival = c - 'a'; 
return( DREG ); 
} 

if( isdigit( c ) II C== '., ){ 
I• gobble up digits, points, exponents •/ 

char buf[BSZ+l], •cp = buf; 
int dot = 0, exp = O; 

for( ; (cp-but}d3SZ ; ++cp,c=getchar() ){ 

•cp = c; 
if( isdigit( c ) ) continue; 
if( c == '.' ){ 

if( dot++ II exp ) return( '.' ); /• will cause syntax error •/ 
continue; 
} 

if( c == 'e' ){ 
if( exp++ ) return( 'e' ); /• will cause syntax error •/ 
continue; 
} 

I* end of number •/ 
break; 
} 

•cp = '\O'; 
if( (cp-but) >= BSZ ) printf( "constant too long: truncated\n" ); 
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else ungetc( c, std.in ); !• push back last char read •/ 
yylval.dval = atof( buf ); 
return( CONST ); 
} 

return( c ); 
} 

INTERVAL hilo( a, b, c, d ) double a, b, c, d; { 
I• returns the smallest interval containing a, b, c, and d •I 
I• used by •, I routines •/ 
INTERVAL v; 

if( a>b ) { v.hi = a; v.lo = b; } 
else { v.hi = b; v.Io = a; } 

if( C>d ) { 
if( c>v.hi ) v.hi = c; 
if( d<v .lo )_ v .Io = d; 
} 

else { 
if( d>v .hi ) v .hi = d; 
if( c<v .lo ) v .Io = c; 
} 

return( v ); 
} 

INTERVAL vmul( a, b, v ) double a, b; INTERVAL v; { 
return( hilo( a•v.hi, a•v.lo, b•v.hi, b•v.lo ) ); 
} 

dcheck( v ) INTERVAL v; { 
if( v.hi >= 0. && v.lo <= 0. ){ 

printf( "divisor interval contains O.\n" ); 
return( 1 ); 
} 

return( 0 ); 
} 

INIERV AL vdiv( a, b, v ) double a, b; INTERVAL v; { 
return( hilo( a/v .hi, a/v .lo, b/v .hi, b/v .lo ) ); 
} 
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Appendix D: Old Features Supported but not Encouraged 

This Appendix mentions synonyms and features which are supported for historical continuity, but, 
for various reasons, are not encouraged. 

1. Literals may also be delimited by double quotes'""'. 

2. Literals may be more than one character long. If all the characters are alphabetic, numeric, or __, the 
type number of the literal is defined, just as if the literal did not have the quotes around it. Other­
wise, it is difficult to find the value for such literals. 

The use of multi-character literals is likely to mislead those unfamiliar with Y ace, since it suggests 
that Yacc is doing a job which must be actually done by the lexical analyzer. 

3. Most places where% is legal, backslash "\" may be used. In particular,\\ is the same as%%, \left 
the same as %left, etc. 

4. There are a number of other synonyms: 

%< is the same as %left 
%> is the same as %right 
%binary and %2 are the same as %nonassoc 
%0 and %term are the same as %token 
%== is the same as %prec 

5. Actions may also have the form 

-{ ... } 

and the curly braces can be dropped if the action is a single C statement 

6. C code between %{ and % } used to be permitted at the head of the rules section, as well as in the 
declaration section. 
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M. E. Lesk and E. Schmidt 

ABSTRACT 

Lex helps write programs whose control flow is directed by instances of regular 
expressions in the input stream. It is well suited for editor-script type transformations 
and for segmenting input in preparation for a parsing routine. 

Lex source is a table of regular expressions and corresponding program fragments. 
The table is translated to a program which reads an input stream, copying it to an output 
stream and partitioning the input into strings which match the given expressions. As 
each such string is recognized the corresponding program fragment is executed. The 
recognition of the expressions is performed by a deterministic finite automaton generated 
by Lex. The program fragments written by the user are executed in the order in which 
the corresponding regular expressions occur in the input stream. 

The lexical analysis programs written with Lex accept ambiguous specifications 
and choose the longest match possible at each input point. If necessary, substantial look­
ahead is performed on the input, but the input stream will be backed up to the end of the 
current partition, so that the user has general freedom to manipulate it. 

Lex can generate analyzers in either C or Ratfor, a language which can be 
translated automatically to portable Fortran. It is available on the PDP-11 UNIX, 
Honeywell GCOS, and IBM OS systems. This manual, however, will only discuss gen­
erating analyzers in C on the UNIX system, which is the only . supported form of Lex 
under UNIX Version 7. Lex is designed to simplify interfacing with Yacc, for those with 
access to this compiler-compiler system. 

1. Introduction. 

Lex is a program generator designed for 
lexical processing of character input streams. It 
accepts a high-level, problem oriented 
specification for character string matching, and 
produces a program in a general purpose 
language which recognizes regular expressions. 
The regular expressions are specified by the user 
in the source specifications given to Lex. The 
Lex written code recognizes these expressions in 
an input stream and partitions the input stream 
into strings matching the expressions. At the 
boundaries between strings program sections pro­
vided by the user are executed. The Lex source 
file associates the regular expressions and the pro­
gram fragments. As each expression appears in 
the input to the program written by Lex, the 
corresponding fragment is executed. 

The user supplies the additional code 
beyond expression matching needed to complete 
his tasks, possibly including code written by other 
generators. The program that recognizes the 
expressions is generated in the general purpose 
programming language employed for the user's 
program fragments. Thus, a high level expression 
language is provided to write the string expres­
sions to be matched while the user's freedom to 
write actions is unimpaired. 'fhis avoids forcing 
the user who wishes to use a string manipulation 
language for input analysis to write processing 
programs in the same and often inappropriate 
string handling language. 

Lex is not a complete language, but rather a 
generator representing a new language feature 
which can be added to different programming 
languages, called ''host languages.'' Just as gen­
eral purpose languages can produce code to run 
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on different computer hardware, Lex can write 
code in different host languages. The host 
language is used for the output code generated by 
Lex and also for the program fragments added by 
the user. Compatible run-time libraries for the 
different host languages are also provided This 
makes Lex adaptable to different environments 
and different users. Each application may be 
directed to the combination of hardware and host 
language appropriate to the task, the user's back­
ground, and the properties of local implementa­
tions. At present, the only supported host 
language is C, although Fortran (in the form of 
Ratfor [2] has been available in the past. Lex 
itself exists on UNIX, GCOS, and OS/370; but 
the code generated by Lex may be taken any­
where the appropriate compilers exist 

Lex turns the user's expressions and actions 
(called source in this memo) into the host 
general-purpose language; the generated program 
is named yylex. The yylex program will recog­
nize expressions in a stream (called input in this 
memo) and perform the specified actions for each 
expression as it is detected. See Figure 1. 

Source ~ I Lex I · ~ yylex 

Input~ yylex ~ Output 

An overview of Lex 
Figure 1 

For a trivial example, consider a program to 
delete from the input all blanks or tabs at the tmds 
of lines. 

%% 
[ \t]+$ 

is all that is required The program contains a 
%% delimiter to mark the beginning of the rules, 
and one rule. This rule contains a regular expres­
sion which matches one or more instances of the 
characters blank or tab (written \t for visibility, in 
accordance with the C language convention) just 
prior to the end of a line. The brackets indicate 
the character class made of blank and tab; the + 
indicates "one or more ... "; and the $ indicates 
"end ofline," as in QED. No action is specified, 
so the program generated by Lex (yylex) will 
ignore these characters. Everything else will be 
copied. To change any remaining string of blanks 
or tabs to a single blank, add another rule: 

%% 
[\t]+$ 
[ \t]+ printf(" "); 
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The finite automaton generated for this source 
will scan for both rules at once, observing at the 
termination of the string of blanks or tabs whether 
or not there is a newline character, and executing 
the desired rule action. The first rule matches all 
strings of blanks or tabs at the end of lines, and 
the second rule all remaining strings of blanks or 
tabs. 

Lex can be used alone for simple transfor­
mations, or for analysis and statistics gathering on 
a lexical level. Lex can also be used with a parser 
generator to perform the lexical analysis phase; it 
is particularly easy to interface Lex and Yacc [3]. 
Lex programs recognize only regular expressions; 
Y ace writes parsers that accept a large class of 
context free grammars, but require a lower level 
analyzer to recognize input tokens. Thus, a com­
bination of Lex and Y ace is often appropriate. 
When used as a preprocessor for a later parser 
generator, Lex is used to partition the input 
stream, and the parser generator assigns structure 
to the resulting pieces. The flow of control in 
such a case (which might be the first half of a 
compiler, for example) is shown in Figure 2. 
Additional programs, written by other generators 
or by hand, can be added easily to programs writ­
ten by Lex. 

lexical 
rules 

J, 

Lex 

grammar 
rules 

J, 

Yacc 

Input -+ yylex -+ yyparse -+ Parsed input 

Lex with Y ace 
Figure 2 

Y ace users will realize that the name yylex is 
what Yacc expects its lexical analyzer to be 
named, so that the use of this name by Lex 
simplifies interfacing. 

Lex generates a deterministic finite automa­
ton from the regular expressions in the source [ 4]. 
The automaton is interpreted, rather than com­
piled, in order to save space. The result is still a 
fast analyzer. In particular, the time taken by a 
Lex program to recognize and partition an input 
stream is proportional to the length of the input. 
The number of Lex rules or the complexity of the. 
rules is not important in determining speed, 
unless rules which include forward context 
require a significant amount of rescanning. What 
does increase with the number and complexity of 
rules is the size of the finite automaton, and there­
fore the size of the program generated by Lex. 
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In the program written by Lex, the user's 
fragments {representing the actions to be per­
formed as each regular expression is found) are 
gathered as cases of a switch. The automaton 
interpreter directs the control ft.ow. Opportunity 
is provided for the user to insert either declara­
tions or additional statements in the routine con­
taining the actions, or to add subroutines outside 
this action routine. 

Lex is not limited to source which can be 
interpreted on the basis of one character look­
ahead. For example, if there are two rules, one 
looking for ab and another for abcdef g, and the 
input stream is abcdefh, Lex will recognize ab 
and leave the input pointer just before ed. . . 
Such backup is more costly than the processing of 
simpler languages. 

2. Lex Source. 

The general format of Lex source is: 
{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

where the definitions and the user subroutines are 
often omitted. The second %% is optional, but 
the first is required to mark the beginnirig of the 
rules. The absolute minimum Lex program is 
thus 

%% 
(no definitions, no rules) which translates into a 
program which copies the input to the output 
unchanged. 

In the outline of Lex programs shown 
above, the rules represent the user's control deci­
sions; they are a table, in which the left column 
contains regular expressions (see section 3) and 
the right column contains actions, program frag­
ments to be executed when the expressions are 
recognized. Thus an individual rule might appear 

integer printf("found keyword INT'); 
to look for the string integer in the input stream 
and print the message ''found keyword INT'' 
whenever it appears. In this example the host 
procedural language is C and the C library func­
tion print/ is used to print the string. The end of 
the expression is indicated by the first blank or 
tab character. If the action is merely a single C 
expression, it can just be given on the right side 
of the line; if it is compound, or takes more than a 
line, it should be enclosed in braces. As a slightly 
more useful example, suppose it is desired to 
change a number of words from British to Ameri-
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can spelling. Lex rules such as 
colour printf("color"); 
mechanise printf("mechanize"); 
petrol printf("gas"); 

would be a start. These rules are not quite 
enough, since the word petroleum would become 
gaseum ; a way of dealing with this will be 
described later. 

3. Lex Regular Expressions. 

The definitions of regular expressions are 
very similar to those in QED [5]. A regular 
expression specifies a set of strings to be 
matched. It contains text characters (which 
match the corresponding characters in the strings 
being compared) and operator characters (which 
specify repetitions, choices, and other features). 
The letters of the alphabet and the digits are 
always text characters; thus the regular expres-
sion 

integer 
matches the string integer wherever it appears 
and the expression 

a57D 
looks for the string a57D. 

Operators. The operator characters are 
"\[]"-?.*+1()$/{}%<> 

and if they are to be used as text characters, an 
escape should be used. The quotation mark 
operator (") indicates that whatever is contained 
between a pair of quotes is to be taken as text 
characters. Thus 

xyz"++" 
matches the string xyz++ when it appears. Note 
that a part of a string may be quoted. It is harm­
less but unnecessary to quote an ordinary text 
character; the expression 

"xyz++" 
is the same as the one above. Thus by quoting 
every non-alphanumeric character being used as a 
text character, the user can avoid remembering 
the list above of current operator characters, and 
is safe should further extensions to Lex lengthen 
the list. 

An operator character may also be turned 
into a text character by preceding it with \ as in 

xyz\+\+ 
which is another, less readable, equivalent of the 
above expressions. Another use of the quoting 
mechanism is to get a blank into an expression; 
normally, as explained above, blanks or tabs end 
a rule. Any blank character not contained within 
[](see below) must be quoted. Several normal C 
escapes with\ are recognized: \n is newline, \tis 
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tab, and \b is backspace. To enter\ itself, use\\. 
Since newline is illegal in an expression, \n must 
be used; it is not required to escape tab and back­
space. Every character but blank, tab, newline 
and the list above is always a text character. 

Character classes. Classes of characters 
can be specified using the operatt>r pair []. The 
construction [ abc J matches a single character, 
which may be a, b, or c. Within square brack­
ets, most operator meanings are ignored Only 
three characters are special: these are\ - and". 
The - character indicates ranges. For example, 

[a-z0-9<> _] 
indicates the character class containing all the 
lower case letters, the digits, the angle brackets, 
and underline. Ranges may be given in either 
order. Using - between any pair of characters 
which are .. not both upper case letters, both lower 
case letters, or both digits is implementation 
dependent and will get a warning message. (E.g., 
[0-z] in ASCII is many more characters than it is 
in EBCDIC). If it is desired to include the char­
acter - in a character class, it should be first or 
last; thus 

[-+0-9] 
matches all the digits and the two signs. 

In character classes, the " operator must 
appear as the first character after the left bracket; 
it indicates that the resulting string is to be com­
plemented with respect to the computer character 
set Thus 

["abc] 
matches all characters except a, b, or c, including 
all special or control characters; or 

["a-zA-Z] 
is any character which is not a letter. The \ char­
acter provides the usual escapes within character 
class brackets. 

Arbitrary character. To match almost any 
character, the operator character 

is the class of all characters except newline. 
Escaping into octal is possible although non­
portable: 

[\40-\176] 
matches all printable characters in the ASCII 
character set, from octal 40 (blank) to octal 17 6 
(tilde). 

Optional expressions. The operator ? 
indicates an optional element of an expression. 
Thus 

ab?c 
matches either ac or abc . 
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Repeated expressions. Repetitions of 
classes are indicated by the operators * and + . 

a• 
is any number of consecutive a characters, 
including zero; while 

a+ 
is one or more instances of a. For example, 

[a-z]+ 
is all strings of lower case letters. And 

[A-Za-z][A-Za-z0-9]• 
indicates all alphanumeric strings with a leading 
alphabetic character. This is a typical expression 
for recognizing identifiers in computer languages. 

Alternation and Grouping. The operator I 
indicates alternation: 

(ab I cd) 
matches either ab or ed. Note that parentheses 
are used for grouping, although they are not 
necessary on the outside level; 

ablcd 
would have sufficed. Parentheses can be used for 
more complex expressions: 

(ab I cd+)?(et)• 
matches such strings as abefef, efefef, cdef, or 
cddd ; but not abc, abed, or abcdef. 

Context sensitivity. Lex will recognize a 
small amount of surrounding context. The two 
simplest operators for this are " and $. If the first 
character of an expression is ", the expression 
will only be matched at the beginning of a line 
(after a newline character, or at the beginning of 
the input stream). This can never confiict with 
the other meaning of ", complementation of char­
acter classes, since that only applies within the [] 
operators. If the very last character is $, the 
expression will only be matched at the end of a 
line (when immediately followed by newline). 
The latter operator is a special case of the I 
operator character, which indicates trailing con­
text. The expression 

ab/cd 
matches the string ab, but only if followed by ed. 
Thus 

ab$ 
is the same as 

ab/\n 
Left context is handled in Lex by start conditions 
as explained in section 10. If a rule is only to be 
executed when the Lex automaton interpreter is in 
start condition x. the rule should be prefixed by 

<X> 
using the angle bracket operator characters. If we 
considered "being at the beginning of a line" to 
be start condition ONE, then the " operator would 
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be equivalent to 
<ONE> 

Start conditions are explained more fully later. 

Repetitions and Definitions. The operators 
{} specify either repetitions (if they enclose 
numbers) or definition expansion (if they enclose 
a name). For example 

{digit} 
looks for a predefined string named digit and 
inserts it at that point in the expression. The 
definitions are given in the first part of the Lex 
input, before the rules. In contrast, 

a{l,5} 
looks for 1 to 5 occurrences of a . 

Finally, initial % is special, being the 
separator for Lex source segments. 

4. Lex Actions. 

When an expression written as above is 
matched, Lex executes the corresponding action. 
This section describes some features of Lex 
which aid in writing actions. Note that there is a 
default action, which consists of copying the 
input to the output. This is performed on all 
strings not otherwise matched. Thus the Lex user 
who wishes to absorb the entire input, without 
producing any output, must provide rules to 
match everything. When Lex is being used with 
Yacc, this is the normal situation. One may con­
sider that actions are what is done instead of 
copying the input to the output; thus, in general, a 
rule which merely copies can be omitted. Also, a 
character combination which is omitted from the 

, rules and which appears as input is likely to be 
printed on the output, thus calling attention to the 
gap in the rules. 

One of the simplest things that can be done 
is to ignore the input. Specifying a C null state­
ment, ; as an action causes this result. A frequent 
rule is 

[ \t\n] ; 
which causes the three spacing characters (blank, 
tab, and newline) to be ignored. 

Another easy way to avoid writing actions 
is the action character I, which indicates that the 
action for this rule is the action for the next rule. 
The previous example could also have been writ-
ten 

"" 
"\t" 
"\n" 

with the same result, although in different style. 
The quotes around \n and \t are not required. 
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In more complex actions, the user will 
often want to know the actual text that matched 
some expression like [ a-z] + . Lex leaves this 
text in an external character array named yytext. 
Thus, to print the name found, a rule like 

[a-z]+ printf("%s", yytext); 
will print the string in yytext. The C function 
print/ accepts a format argument and data to be 
printed; in this case, the format is ''print string'' 
(% indicating data conversion, and s indicating 
string type), and the data are the characters in 
yytex.t. So this just places the matched string on 
the output. This action is so common that it may 
be written as ECHO: 

[a-z]+ ECHO; 
is the same as the above. Since the default action 
is just to print the characters found, one might ask 
why give a rule, like this one, which merely 
specifies the default action? Such rules are often 
required to avoid matching some other rule which 
is not desired. For example, if there is a rule 
which matches read it will normally match the 
instances of read contained in bread or read­
just; to avoid this, a rule of the form [a-z]+ is 
needed. This is explained further below. 

Sometimes it is more convenient to know 
the end of what has been found; hence Lex also 
provides a count yyleng of the number of charac­
ters matched. To count both the number of words 
and the number of characters in words in the 
input, the user might write 

[a-zA-Z]+ {words++; chars += yyleng;} 
which accumulates in chars the number of char­
acters in the words recognized. The last character 
in the string matched can be accessed by 

yytext[yyleng-1] 

Occasionally, a Lex action may decide that 
a rule has not recognized the correct span of char­
acters. Two routines are provided to aid with this 
situation. First, yymore() can be called to indi­
cate that the next input expression recognized is 
to be tacked on to the end of this input. Nor­
mally, the next input string would overwrite the 
current entry in yytext. Second, yyless (n) may 
be called to indicate that not all the characters 
matched by the currently successful expression 
are wanted right now. The argument n indicates 
the number of characters in yytext to be retained. 
Further characters previously matched are 
returned to the input. This provides the same sort 
of lookahead offered by the I operator, but in a 
different form. 

Example: Consider a language which 
defines a string as a set of characters between 
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quotation (") marks, and provides that to include a 
"in a string it must be preceded by a\. The regu­
lar expression which matches that is somewhat 
confusing, so that it might be preferable to write 

\'T"l• { 
if (yytext[yyleng-1] == '\\') 

yymore(); 
else 

... normal user processing 
} 

which will, when faced with a string such as 
"abc\"def" first match the five characters "abc\; 
then the call to yymore() will cause the next part 
of the string, "def, to be tacked on the end. Note 
that the final quote terminating the string should 
be picked up in the code labeled ''normal pro­
cessing' '. 

The function yyless() might be used to 
reprocess text in various circumstances. Consider 
the C problem of distinguishing the ambiguity of 
''=-a''. Suppose it is desired to treat this as '' =­
a" but print a message. A rule might be 

=-[a-zA-Z] { 
printf("Op (=-) ambiguous\n"); 
yyless(yyleng-1); 
... action for =- ... 
} 

which prints a message, returns the letter after the 
operator to the input stream, and treats the opera­
tor as "==-". Alternatively it might be desired to 
treat this as '' = -a''. To do this, just return the 
minus sign as well as the letter to the input 

=-[a-zA-Z] { 
printf("Op (=-) ambiguous\n"); 
yyless(yyleng-2); 
... action for = ... 
} 

will perform the other interpretation. Note that 
the expressions for the two cases might more 
easily be written 

=-/[A-Za-z] 
in the first case and 

=/-[A-Za-z] 
in the second; no backup would be required in the 
rule action. It is not necessary to recognize the 
whole identifier to observe the ambiguity. The 
possibility of "=-3", however, makes 

=-/[" \t\n] 
a still better rule. 

In addition to these routines, Lex also per­
mits access to the 1/0 routines it uses. They are: 

1) input() which returns the next input charac­
ter; 
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2) output( c) which writes the character c· on 
the output; and 

3) unput(c) pushes the character c back onto 
the input stream to be read later by input(). 

By default these routines are provided as macro 
definitions, but the user can override them and 
supply private versions. These routines define the 
relationship between external files and internal 
characters, and must all be retained or modified 
consistently. They may be redefined, to cause 
input or output to be transmitted to or from 
strange places, including other programs or inter­
nal memory; but the character set used must be 
consistent in all routines; a value of zero returned 
by input must mean end of file; and the relation­
ship between unput and input must be retained or 
the Lex lookahead will not work. Lex does not 
look ahead at all if it does not have to, but every 
rule ending in + • ? or $ or containing I implies 
lookahead. Lookahead is also necessary to match 
an expression that is a prefix of another expres­
sion. See below for a discussion of the character 
set used by Lex. · The standard Lex library 
imposes a 100 character limit on backup. 

Another Lex library routine that the user 
will sometimes want to redefine is yywrap() 
which is called whenever Lex reaches an end-of­
file. If yywrap returns a l, Lex continues with the 
normal wrapup on end of input Sometimes, 
however, it is convenient to arrange for more 
input to arrive from a new source. In this case, 
the user should provide a yywrap which arranges 
for new input and returns 0. This instructs Lex to 
continue processing. The default yywrap always 
returns 1. 

This routine is also a convenient place to 
print tables, summaries, etc. at the end of a pro­
gram. Note that it is not possible to write a nor­
mal rule which recognizes end-of-file; the only 
access to this condition is through yywrap. In 
fact, unless a private version of input() is sup­
plied a file containing nulls cannot be handled, 
since a value of 0 returned by input is taken to be 
end-of-file. 

5. Ambiguous Source Rules. 

Lex can handle ambiguous specifications. 
When more than one expression can match the 
current input, Lex chooses as follows: 

1) The longest match is preferred. 

2) Among rules which matched the same 
number of characters, the rule given first is 
preferred. 
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Thus, suppose the rules 
integer keyword action ... ; 
[a-z]+ identifier action ... ; 

to be given in that order. If the input is integers, 
it is taken as an identifier, because [a-z]+ 
matches 8 characters while integer matches only 
7. H the input is integer, both rules match 7 
characters, and the keyword rule is selected 
because it was given first. Anything shorter (e.g. 
int) will not match the expression integer and so 
the identifier interpretation is used. 

The principle of preferring the longest 
match makes rules containing expressions like . • 
dangerous. For example, 

'.•' 
might seem a good way of recognizing a string in 
single quotes. But it is an invitation for the pro­
gram to read far ahead, looking for a distant sin­
gle quote. Presented with the input 

'firs( quoted string here, 'second' here 
the above expression will match 

'firs( quoted string here, 'second' 
which is probably not what was wanted. A better 
rule is of the form 

'["'\n]•' 
which, on the above input, will stop after 'firs(. 
The consequences of errors like this are mitigated 
by the fact that the . operator will not match new­
line. Thus expressions like . • stop on the current 
line. Don't try to defeat this with expressions like 
[.\n]+ or equivalents; the Lex generated program 
will try to read the entire input file, causing inter­
nal buffer overflows. 

Note that Lex is normally partitioning the 
input stream, not searching for all possible 
matches of each expression. This means that 
each character is accounted for once and only 
once. For example, suppose it is desired to count 
occurrences of both she and he in an input text 
Some Lex rules to do this might be 

she s++; 
he h++; 
\n I 

where the last two rules ignore everything besides 
he and she. Remember that . does not include 
newline. Since she includes he, Lex will nor­
mally not recognize the instances of he included 
in she, since once it has passed a she those char­
acters are gone. 

Sometimes the user would like to override 
this choice. The action REJECT means ''go do 
the next alternative." It causes whatever rule 
was second choice after the current rule to be 
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executed. The position of the input pointer is 
adjusted accordingly. Suppose the user really 
wants to count the included instances of he: 

she {s++; REJECT;} 
he {h++; REJECT;} 
\n I 

these rules are one way of changing the previous 
example to do just that. After counting each 
expression, it is rejected; whenever appropriate, 
the other expression will then be counted. In this 
example, of course, the user could note that she 
includes he but not vice versa, and omit the 
REJECT action on he; in other cases, however, it 
would not be possible a priori to tell which input 
characters were in both classes. 

Consider the two rules 
a[bc]+ { ... ; REJECT;} 
a[cd]+ { ... ; REJECT;} 

If the input is ab, only the first rule matches, and 
on ad only the second matches. The input string 
accb matches the first rule for four characters and 
then the second rule for three characters. In con­
trast, the input aced agrees with the second rule 
for four characters and then the first rule for three. 

In general, REJECT is useful whenever the 
purpose of Lex is not to partition the input stream 
but to detect all examples of some items in the 
input, and the instances of these items may over­
lap or include each other. Suppose a digram table 
of the input is desired; normally the digrams over­
lap, that is the word the is considered to contain 
both th and he • Assuming a two-dimensional 
array named digram to be incremented, the 
appropriate source is 

%% 
[a-z][a-z] { 

\n 

digram[yytext[O]] [yytext[ 1 ]]++; 
REJECT; 
} 

where the REJECT is necessary to pick up a letter 
pair beginning at every character, rather than at 
every other character. 

6. Lex Source Definitions. 

Remember the format of the Lex source: 
{definitions} 
%% 
{rules} 
%% 
{user routines} 

So far only the rules have been described. The 
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user needs additional options, though, to define 
variables for use in his program and for use by 
Lex. These can go either in the definitions sec­
tion or in the rules section. 

Remember that Lex is turning the rules into 
a program. Any source not intercepted by Lex is 
copied into the generated program. There are 
three classes of such things. 

1) Any line which is not part of a Lex rule or 
action which begins with a blank or tab is 
copied into the Lex generated program. 
Such source input prior to the first %% del­
imiter will be external to any function in 
the code; if it appears immediately after the 
first %%, it appears in an appropriate place 
for declarations in the function written by 
Lex which contains the actions. This 
material must look like program fragments, 
and should precede the first Lex rule. 

As a side effect of the above, lines which 
begin with a blank or tab, and which con­
tain a comment, are passed through to the 
generated program. This can be used to 
include comments in either the Lex source 
or the generated code. The comments 
should follow the host language conven­
tion. 

2) Anything included between lines contain­
ing only %{ and %} is copied out as 
above. The delimiters are discarded. This 
format permits entering text like preproces­
sor statements that must begin in column 1, 
or copying lines that do not look like pro­
grams. 

3) Anything after the third %% delimiter, 
regardless of formats, etc., is copied out 
after the Lex output 

Definitions intended for Lex are given 
before the first %% delimiter. Any line in this 
section not contained between %{ and % }, and 
begining in column 1, is assumed to define Lex 
substitution strings. The format of such lines is 

name translation 
and it causes the string given as a translation to be 
associated with the name. The name and transla­
tion must be separated by at least one blank or 
tab, and the name must begin with a letter. The 
translation can then be called out by the {name} 
syntax in a rule. Using {D} for the digits and {E} 
for an exponent field, for example, might abbrevi­
ate rules to recognize numbers: 

D [0-9] 
E [DEde][-+]?{D}+ 
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%% 
{D}+ printf("integer"); 
{D}+"."{D}*({E})? I 
{D}*"."{D}+({E})? I 
{D}+{E} 

Note the first two rules for real numbers; both 
require a decimal point and contain an optional 
exponent field, but the first requires at least one 
digit before the decimal point and the second 
requires at least one digit after the decimal point. 
To correctly handle the problem posed by a For­
tran expression such as 35.EQ.I, which does not 
contain a real number, a context-sensitive rule 
such as 

[0-9]+/" ."EQ printf("integer"); 
could be used in addition to the normal rule for 
integers. 

The definitions section may also contain 
other commands, including the selection of a host 
language, a character set table, a list of s~ con­
ditions, or adjustments to the default size of 
arrays within Lex itself for larger source pro­
grams. These possibilities are discussed below 
under "Summary of Source Format," section 12. 

7. Usage. 

There are two steps in compiling a Lex 
source program. First, the Lex source must be 
turned into a generated program in the host gen­
eral purpose language. Then this program must 
be compiled and loaded, usually with a library of 
Lex subroutines. The generated program is on a 
file named lex.yy.c . The 1/0 library is defined in 
terms of the C standard library [6]. 

The C programs generated by Lex are 
slightly different on OS/370, because the OS 
compiler is less powerful than the ~I~ or 
GCOS compilers, and does less at comptle ttme. 
C programs generated on GCOS and UNIX are 
the same. 

UNIX. The library is accessed by the 
loader flag -II . So an appropriate set of com­
mands is 

lex source cc lex.yy .c -11 
The resulting program is placed on the usual file 
a.out for later execution. To use Lex with Yacc 
see below. Although the default Lex 1/0 routines 
use the C standard library, the Lex automata 
themselves do not do so; if private versions of 
input, output and unput are given, the library can 
be avoided 



Lex - A Lexical Analyzer Generator 

8. Lex and Yacc. 

If you want to use Lex with Y ace, note that 
what Lex writes is a program named yylex(), the 
name required by Yacc for its analyzer. Nor­
mally, the default main program on the Lex 
library calls this routine, but if Y ace is loaded, 
and its main program is used, Yacc will call 
yylex(). In this case each Lex rule should end 
with 

return( token); 
where the appropriate token value is returned. An 
easy way to get access to Yacc's names for 
tokens is to compile the Lex output file as part of 
the Y ace output file by placing the line 

#include "lex.yy.c" 
in the last section of Y ace input Supposing the 
grammar to be named "good" and the lexical 
rules to be named ''better'' the UNIX command 
sequence can just be: 

yacc good 
lex better 
cc y .tab.c -ly -11 

The Yacc library (-ly) should be loaded before 
the Lex library, to obtain a main program which 
invokes the Y ace parser. The generations of Lex 
and Y ace programs can be done in either order. 

9. Examples. 

As a trivial problem, consider copying an 
input file while adding 3 to every positive number 
divisible by 7. Here is a suitable Lex source pro­
gram 

%% 
intk; 

[0-9]+ { 
k = atoi(yytext); 
if (k%7 == 0). 

printf("%d", k+3); 
else 

printf("%d" ,k); 
} 

to do just that The rule [0-9]+ recognizes strings 
of digits; atoi converts the digits to binary and 
stores the result in k. The operator % (remainder) 
is used to check whether k is divisible by 7; if it 
is, it is incremented by 3 as it is written out It 
may be objected that this program will alter such 
input items as 49 .63 or X7. Furthermore, it 
increments the absolute value of all negative 
numbers divisible by 7. To avoid this, just add a 
few more rules after the active one, as here: 
%% 

-?[0-9]+ 
intk; 
{ 
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k = atoi(yytext); 
printf("%d", 

k%7 == 0? k+3 : k); 
} 

-?[0-9.]+ ECHO; 
[A-Za-z][A-Za-z0-9]+ ECHO; 

Numerical strings containing a "." or preceded 
by a letter will be picked up by one of the last two 
rules, and not changed. The if-else has been 
replaced by a C conditional expression to save 
space; the form a?b:c means "if a then b else 
c ". 

For an example of statistics gathering, here 
is a program which histograms the lengths of 
words, where a word is defined as a string of 
letters. 

%% 
[a-z]+ 

\n 
%% 
yywrap() 
{ 
inti; 

int lengs[lOO]; 

lengs[yyleng]++; 
I 

printf("Length No. words\n"); 
for(i=O; i<lOO; i++) 

if (lengs[i] > 0) 
printf(" %5d% 1 Od\n" ,i,lengs [i]); 

retum(l); 
} 

This program accumulates the histogram, while 
producing no output At the end of the input it 
prints the table. The final statement return(l ); 
indicates that Lex is to perform wrapup. If 
yywrap returns zero (false) it implies that further 
input is available and the program is to continue 
reading and processing. To provide a yywrap 
that never returns true causes an infinite loop. 

As a larger example, here are some parts of 
a program written by N. L. Schryer to convert 
double precision Fortran to single precision For­
tran. Because Fortran does not distinguish upper 
and lower case letters, this routine begins by 
defining a set of classes including both cases of 
each letter: 

a [aA] 
b [bB] 
c [cC] 

z [zZ] 
An additional class recognizes white space: 

w [ \t]* 
The first rule changes "double precision" to 
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"real", or "DOUBLE PRECISION" to 
"REAL". 

Lex - A Lexical Analyzer Generator 

initial r: 
{d}l{m}{a}{c}{h} {yytext[O] =+ 'r' - 'd'; 

{ d}{ o }{ u }{b }{l}{ e }{W}{p }{r}{ e }{ c }{i}{s }{i}{ o }{n} { 
printf(yytext[O]=='d'? "real" : "REAL"); 
} 

Care is taken throughout this program to preserve 
the case (upper or lower) of the original program. 
The conditional operator is used to select the 
proper form of the keyword. The next rule copies 
continuation card indications to avoid confusing 
them with constants: 

"" "(" 0] ECHO; 
In the regular expression, the quotes surround the 
blanks. It is interpreted as "beginning of line, 
then five blanks, then anything but blank or 
zero.'' Note the two different meanings of ". 
There follow some rules to change double preci­
sion constants to ordinary floating constants. 
[0-9]+{W}{ d}{W}[ +-]? {W}[0-9]+ I 
[0-9]+{W}" ." {W}{ d}{W}[ +-]? {W}[0-9]+ I 
"."{W}[0-9]+{W}{d}{W}[+-]?{W}[0-9]+ { 

I• convert constants •/ 
for(p=yytext; •p != O; p++) 

{ 
if (•p == 'd' 11 •p == 'D') 

*P=+ 'e'- 'd'; 
ECHO; 
} 

After the floating point constant is recognized, it 
is scanned by the for loop to find the letter d or 
D . The program than adds 'e' -' d', which con­
verts it to the next letter of the alphabet The 
modified constant, now single-precision, is writ­
ten out again. There follow a series of names 
which must be respelled to remove their initial d. 
By using the array yytext the same action suffices 
for all the names (only a sample of a rather long 
list is given here). 

{d}{s}{i}{n} 
{d}{c}{o}{s} 
{d}{s}{q}{r}{t} 
{d}{a}{t}{a}{n} 

{ d}{f}{l}{ o }{a}{t} printf("%s" ,yytext+l); 
Another list of names must have initial d changed 
to initial a: 

{d}{l}{o}{g} 
{d}{l}{o}{g}lO 
{ d}{m}{i}{n} 1 
{d}{m}{a}{x} 1 

I 
I 
I 
{ 
yytext[O] =+ 'a' - 'd'; 
ECHO; 
} 

And one routine must have initial d changed to 

To avoid such names as dsinx being detected as 
instances of dsin, some final rules pick up longer 
words as identifiers and copy some surviving 
characters: 

[A-Za-z][A-Za-z0-9]• 
[0-9]+ 
\n 

I 
I 
I 
ECHO; 

Note that this program is not complete; it does not 
deal with the spacing problems in Fortran or with 
the use of keywords as identifiers. 
10. Left Context Sensitivity. 

Sometimes it is desirable to have several 
sets of lexical rules to be applied at different 
times in the input For example, a compiler 
preprocessor might distinguish preprocessor state­
ments and analyze them differently from ordinary 
statements. This requires sensitivity to prior con­
text, and there are several ways of handling such 
problems. The "operator, for example, is a prior 
context operator, recognizing immediately 
preceding left context just as $ recognizes 
immediately following right context. Adjacent 
left context could be extended, to produce a facil­
ity similar to that for adjacent right context, but it 
is unlikely to be as useful, since often the relevant 
left context appeared some time earlier, such as at 
the beginning of a line. 

This section describes three means of deal­
ing with different environments: a simple use of 
flags, when only a few rules change from one 
environment to another, the use of start condi­
tions on rules, and the possibility of making mul­
tiple lexical analyzers all run together. In each · 
case, there are rules which recognize the need to 
change the environment in which the following 
input text is analyzed, and set some parameter to 
reflect the change. This may be a flag explicitly 
tested by the user's action code; such a flag is the 
simplest way of dealing with the problem, since 
Lex is not involved at all. It may be more con­
venient, however, to have Lex remember the flags 
as initial conditions on the rules. Any rule may 
be associated with a start condition. It will only 
be recognized when Lex is in that start condition. 
The current start condition may be changed at any 
time. Finally, if the sets of rules for the different 
environments are very dissimilar, clarity may be 
best achieved by writing several distinct lexical 
analyzers, and switching from one to another as 
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desired. 

Consider the following problem: copy the 
input to the output, changing the word magic to 
first on every line which began with the letter a, 
changing magic to second on every line which 
began with the letter b, and changing magic to 
third on every line which began with the letter c. 
All other words and all other lines are left 
unchanged. 

These rules are so simple that the easiest 
way to do this job is with a flag: 

int flag; 
%% 
"a {flag = 'a'; ECHO;} 
"b {flag = 'b'; ECHO;} 
"c {flag= 'c'; ECHO;} 
\n {flag = 0 ; ECHO;} 
magic { 

switch (flag) 
{ 
case 'a': printf("first"); break; 
case 'b': printf("second"); break; 
case 'c': printf("third"); break; 
default ECHO; break; 
} 
} 

should be adequate. 

To handle the same problem with start con­
ditions, each start condition must be introduced to 
Lex in the definitions section with a line reading 

%Start namel name2 ... 
where the conditions may be named in any order. 
The word Start may be abbreviated to s or S. The 
conditions may be referenced at the head of a rule 
with the<> brackets: 

<namebexpression 
is a rule which is only recognized when Lex is in 
the start condition namel. To enter a start condi­
tion, execute the action statement 

BEGIN namel; 
which changes the start condition to name]. To 
resume the normal state, 

BEGINO; 
resets the initial condition of the Lex automaton 
interpreter .. A rule may be active in several start 
conditions: 

<name1,name2,name3> 
is a legal prefix. Any rule not beginning with the 
<> prefix operator is always active. 

The same example as before can be written: 
%START AA BB CC 
%% 
"a {ECHO; BEGIN AA;} 
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"b {ECHO; BEGIN BB;} 
"c {ECHO; BEGIN CC;} 
\n {ECHO; BEGIN 0;} 
<AA>magic printf("first"); 
<13B>magic printf("second"); 
<CC> magic printf("third"); 

where the logic is exactly the same as in the pre­
vious method of handling the problem, but Lex 
does the work rather than the user's code. 

11. Character Set. 
The programs generated by Lex handle 

character 1/0 only through the routines input, 
output, and unput. Thus the character representa­
tion provided in these routines is accepted by Lex 
and employed to return values in yytext. For 
internal use a character is represented as a small 
integer which, if the standard library is used, has 
a value equal to the integer value of the bit pat­
tern representing the character on the host com­
puter. Normally, the letter a is represented as the 
same form as the character constant 'a' . If this 
interpretation is changed, by providing 1/0 rou­
tines which translate the characters, Lex must be 
told about it, by giving a translation table. This 
table must be in the definitions section, and must 
be bracketed by lines containing only "%T". 
The table contains lines of the form 

{integer} {character string} 
which indicate the value associated with each 
character. Thus the next example 

%T 
1 Aa 
2 Bb 

26 Zz 
27 \n 
28 + 
29 
30 0 
31 1 

39 9 
%T 

Sample character table. 
maps the lower and upper case letters together 
into the integers 1 through 26, newline into 27, + 
and - into 28 and 29, and the digits into 30 
through 39. Note the escape for newline. If a 
table is supplied, every character that is to appear 
either in the rules or in any valid input must be 
included in the table. No character may be 
assigned the number 0, and no character may be 
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assigned a bigger number than the size of the 
hardware character set. 

12. Summary of Source Format. 

The general form of a Lex source file is: 
{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

The definitions section contains a combination of 

1) Definitions, in the form ''name space trans­
lation''. 

2) Included code, in the form "space code''. 

3) Included code, in the form 
%{ 
code 
%} 

4) Start conditions, given in the form 
%S namel name2 ... 

5) Character set tables, in the form 
%T 
number space character-string 

%T 
6) Changes to internal array sizes, in the form 

%x nnn 
where nnn is a decimal integer representing 
an array size and x selects the parameter as 
follows: 

Letter Parameter 
p positions 
n states 
e tree nodes 
a transitions 
k packed character classes 
o output array size 

Lines in the rules section have the form '' expres­
sion action'' where the action may be continued 
on succeeding lines by using braces to delimit it. 

Regular expressions in Lex use the follow-
ing operators: 
x the character "x" 
"x" an "x", even if xis an operator. 
\x an "x", even if xis an operator. 
[xy] the character x or y. 
[x-z] the characters x, y or z. 
["x] any character but x. 

"x 
<Y>X 
x$ 
x? 

any character but new line. 
an x at the beginning of a line. 
an x when Lex is in start condition y. 
an x at the end of a line. 
an optional x. 

X* 
x+ 
xly 
(x) 
x/y 
{xx} 
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0, 1,2, ... instances of x. 
1,2,3, ... instances of x. 
anxoray. 
anx. 
an x but only if followed by y. 
the translation of xx from the 
definitions section. 

x{m,n} m through n occurrences of x 

13. Caveats and Bugs. 

There are pathological expressions which 
produce exponential growth of the tables when 
converted to deterministic machines; fortunately, 
they are rare. 

REJECT does not rescan the input; instead 
it remembers the results of the previous scan. 
This means that if a rule with trailing context is 
found, and REJECT executed, the user must not 
have used unput to change the characters forth­
coming from the input stream. This is the only 
restriction on the user's ability to manipulate the 
not-yet-processed input. 
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ABSTRACT 

M4 is a macro processor available on UNIXt and GCOS. Its primary use has been 
as a front end for Ratfor for those cases where parameterless macros are not adequately 
powerful. It has also been used for languages as disparate as C and Cobol. M4 is partic­
ularly suited for functional languages like Fortran, PUI and C since macros are specified 
in a functional notation. 

M4 provides features seldom found even in much larger macro processors, includ-
ing 

• arguments 

• condition testing 

• arithmetic capabilities 

• string and substring functions 

• file manipulation 

This paper is a user's manual for M4. 

Introduction 

A macro processor is a useful way to 
enhance a programming language, to make it 
more palatable or more readable, or to tailor it to 
a particular application. The #define statement in 
C and the analogous define in Ratfor are exam­
ples of the basic facility provided by any macro 
processor - replacement of text by other text. 

The M4 macro processor is an extension of 
a macro processor called M3 which was written 
by D. M. Ritchie for the AP-3 minicomputer; M3 
was in turn based on a macro processor imple­
mented for [1]. Readers unfamiliar with the basic 
ideas of macro processing may wish to read some 
of the discussion there. 

M4 is a suitable front end for Ratfor and C, 
and has also been used successfully with Cobol. 
Besides the straightforward replacement of one 
string of text by another, it provides macros with 
arguments, conditional macro expansion, arith-

t UNIX is a trademark of Bell Laboratories. 

metic, file manipulation, and some specialized 
string processing functions. 

The basic operation of M4 is to copy its 
input to its output. As the input is read, however, 
each alphanumeric "token" (that is, string of 
letters and digits) is checked If it is the name of 
a macro, then the name of the macro is replaced 
by its defining text, and the resulting string is 
pushed back onto the input to be rescanned. 
Macros may be called with arguments, in which 
case the arguments are collected and substituted 
into the right places in the defining text before it 
is rescanned. 

M4 provides a collection of about twenty 
built-in macros which perform various useful 
operations; in addition, the user can define new 
macros. Built-ins and user-defined macros work 
exactly the same way, except that some of the 
built-in macros have side effects on the state of 
the process. 
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Usage 

On UNIX, use 

m4 [files] 

Each argument file is processed in order; if there 
are no arguments, or if an argument is "-', the 
standard input is read at that point. The processed 
text is written on the standard output, which may 
be captured for subsequent processing with 

m4 [files] >0utputfile 

On GCOS, usage is identical, but the program is 
calledJm4. 

Defining Macros 

The primary built-in function of M4 is 
define, which is used to de.fine new macros. The 
input 

define(name, stuff) 

causes the string name to be de.fined as stuff. All 
subsequent occurrences of name will be replaced 

· by stutT. name must be alphanumeric and must 
begin with a letter (the underscore_ counts as a 
letter). stuff is any text that contains balanced 
parentheses; it may stretch over multiple lines. 

Thus, as a typical example, 

define(N, 100) 

if (i > N) 

de.fines N to be 100, and uses this ...... symbolic con­
stant'' in a later if statement. 

The left parenthesis must immediately fol­
low the word define, to signal that define has 
arguments. If a macro or built-in name is not fol­
lowed immediately by '(', it is assumed to have 
no arguments. This is the situation for N above; it 
is actually a macro with no arguments, and thus 
when it is used there need be no ( ... ) following it. 

You should also notice that a macro name 
is only recognized as such if it appears sur­
rounded by non-alphanumerics. For example, in 

define(N, 100) 

if (NNN > 100) 

the variable NNN is absolutely unrelated to the 
de.fined macro N, even though it contains a lot of 
N's. 

Things may be de.fined in terms of other 
things. For example, 

define(N, 100) 
define(M, N) 
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de.fines both M and N to be 100. 

What happens if N is redefined? Or, to say 
it another way, is M defined as Nor as 100? In 
M4, the latter is true - M is 100, so even if N 
subsequently changes, M does not. 

This behavior arises because M4 expands 
macro names into their de.fining text as soon as it 
possibly can. Here, that means that when the 
string N is seen as the arguments of define are 
being collected, it is immediately replaced by 
100; it's just as if you had said 

define(M, 100) 

in the first place. 

If this isn't what you really want, there are 
two ways out of it ~The first, which is specific to 
this situation, is to interchange the order of the 
definitions: 

define(M, N) 
define(N, 100) 

Now Mis de.fined to be the string N, so when you 
ask for M later, you'll always get the value of N 
at that time (because the M will be replaced by N 
which will be replaced by 100). 

Quoting 

The more general solution is to delay the 
expansion of the arguments of define by quoting 
them. Any text surrounded by the single quotes ... 
and " is not expanded immediately, but has the 
quotes stripped off. If you say 

define(N, 100) 
define(M, 'N") 

the quotes around the N are stripped off as the 
argument is being collected, but they have served 
their purpose, and M is defined as the string N, 
not 100. The general rule is that M4 always strips 
off one level of single quotes whenever it evalu­
ates something. This is true even outside of mac­
ros. If you want the word define to appear in the 
output, you have to quote it in the input, as in 

'define" = 1; 

As another instance of the same thing, 
which is a bit more surprising, consider redefining 
N: 
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define(N, 100) 

define(N, 200) 

Perhaps regrettably, the Nin the second definition 
is evaluated as soon as it's seen; that is, it is 
replaced by 100, so it's as if you had written 

define(lOO, 200) 

This statement is ignored by M4, since you can 
only define things that look like names, but it 
obviously doesn't have the effect you wanted. To 
really redefine N, you must delay the evaluation 
by quoting: 

define(N, 100) 

define('N', 200) 

In M4, it is often wise to quote the first argument 
of a macro. 

If ' and ' are not convenient for some rea­
son, the quote characters can be changed with the 
built-in changequote: 

changequote([, ]) 

makes the new quote characters the left and right 
brackets. You can restore the original characters 
with just 

changequote 

There are two additional built-ins related to 
define. undefine removes the definition of some 
macro or built-in: 

undefine('N') 

removes the definition of N. (Why are the quotes 
absolutely necessary?) Built-ins can be removed 
with undefine, as in 

undefine(' define') 

but once you remove one, you can never get it 
back. 

The built-in ifder provides a way to deter­
mine if a macro is currently defined. In particu­
lar, M4 has pre-defined the names unix and gcos 
on the corresponding systems, so you can tell 
which one you're using: 

ifdef('unix', 'define(wordsize,16)') 
ifdef('gcos', 'define(wordsize,36)') 

makes a definition appropriate for the particular 
machine. Don't forget the quotes! 
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ifdef actually permits three arguments; if 
the name is undefined, the value of if def is then 
the third argument, as in 

ifdef('unix', on UNIX, not on UNIX) 

Arguments 

So far we have discussed the simplest form 
of macro processing - replacing one string by 
another (fixed) string. User-defined macros may 
also have arguments, so different invocations can 
have different results. Within the replacement 
text for a macro (the second argument of its 
define) any occurrence of $n will be replaced by 
the nth argument when the macro is actually 
used. Thus, the macro bump, defined as 

define(bump, $1 = $1 + 1) 

generates code to increment its argument by 1: 

bump(x) 

is 

x=x+l 

A macro can have as many arguments as 
you want, but only the first nine are accessible, 
through $1 to $9. (The macro name itself is $0, 
although that is less commonly used.) Arguments 
that are not supplied are replaced by null strings, 
so we can define a macro cat which simply con­
catenates its arguments, like this: 

define(cat,$1$2$3$4$5$6$7$8$9) 

Thus 

cat(x, y, z) 

is equivalent to 

xyz 

$4 through $9 are null, since no corresponding 
arguments were provided. 

Leading unquoted blanks, tabs, or newlines 
that occur during argument collection are dis­
carded. All other white space is retained. Thus 

define(a, b c) 

defines a to be b c. 

Arguments are separated by commas, but 
parentheses are counted properly, so a comma 
"protected'' by parentheses does not terminate an 
argument. That is, in 

define(a, (b,c)) 
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there are only two arguments; the second is 
literally (b,c). And of course a bare comma or 
parenthesis can be inserted by quoting it. 

Arithmetic Built-ins 

M4 provides two built-in functions for 
doing arithmetic on integers (only). The simplest 
is incr, which increments its numeric argument 
by 1. Thus to handle the common programming 
situation where you want a variable to be defined 
as ...... one more than N' ', write 

define(N, 100) 
define(Nl, 'incr(N)') 

Then Nl is defined as one more than the current 
value ofN. 

The more general mechanism for arithmetic 
is a built-in called eval, which is capable of arbi­
trary arithmetic on integers. It provides the 
operators (in decreasing order of precedence) 

unary+ and-
** or A (exponentiation) 
• I % (modulus) 
+-
== != < <= > >= 
! (not) 
& or && (logical and) 
I or II (logical or) 

Parentheses may be used to group operations 
where needed. All the operands of an expression 
given to eval must ultimately be numeric. The 
numeric value of a true relation (like 1>0) is 1, 
and false is 0. The precision in eval is 32 bits on 
UNIX and 36 bits on GCOS. 

As a simple example, suppose we want M 
to be 2**N+l. Then 

define(N, 3) 
define(M, 'eval(2**N+l)') 

As a matter of principle, it is advisable to quote 
the defining text for a macro unless it is very sitn­
ple indeed (say just a number); it usually gives 
the result you want, and is a good habit to get 
into. 

File Manipulation 

You can include a new file in the input at 
any time by the built-in function include: 

include(filename) 

inserts the contents of filename in place of the 
include command. The contents of the file is 
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often a set of definitions. The value of include 
(that is, its replacement text) is the contents of the 
file; this can be captured in definitions, etc. 

It is a fatal error if the file named in include 
cannot be accessed To get some control over 
this situationp the alternate form sinclude can be 
used; sinclude (''silent include»t) says nothing 
and continues if it can't access the file. 

It is also possible to divert the output of M4 
to temporary files during processing, and output 
the collected material upon command. M4 main­
tains nine 'of these diversions, numbered 1 
through 9. If you say 

divert(n) 

all subsequent output is put onto the end of a tem­
porary file referred to as n. Diverting to this file 
is stopped by another divert command; in partic­
ular, divert or divert(O) resumes the normal out­
put process. 

Diverted text is normally output all at once 
at the end of processing, with the diversions out­
put in numeric order. It is possible, however, to 
bring back diversions at any time, that is, to 
append them to the current diversion. 

undivert 

brings back all diversions in numeric order, and 
undivert with arguments brings back the selected 
diversions in the order given. The act of 
undiverting discards the diverted stuff, as does 
diverting into a diversion whose number is not 
between 0 and 9 inclusive. 

The value of undivert is not the diverted 
stuff. Furthermore, the diverted material is not 
rescanned for macros. 

The built-in divnum returns the number of 
the currently active diversion. This is zero during 
normal processing. 

System Command 

You can run any program in the local 
operating system with the syscmd built-in. For 
example, 

syscmd( date) 

on UNIX runs the date command. Normally 
syscmd would be used to create a file for a subse­
quent include. 

To facilitate making unique file names, the 
built-in maketemp is provided, with 
specifications identical to the system function 
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mktemp: a string of XXXXX in the argument is 
replaced by the process id of the current process. 

Conditionals 

There is a built-in called irelse which 
enables you to perform arbitrary conditional test­
ing. In the simplest form, 

if else(a, b, c, d) 

compares the two strings a and b. If these are 
identical, ifelse returns the string c; otherwise it 
returns d. Thus we might define a macro called 
compare which compares two strings and returns 
''yes" or ''no" if they are the same or different. 

define(compare, 'ifelse($1, $2, yes, no)') 

Note the quotes, which prevent too-early evalua­
tion of if else. 

If the fourth argument is missing, it is 
treated as empty. " 

ifelse can actually have any number of 
arguments, and thus provides a limited form of 
multi-way decision capability. In the input 

if else(a, b, c, d, e, r, g) 

if the string a matches the string b, the result is c. 
Otherwise, if d is the same as e, the result is f. 
Otherwise the result is g. If the final argument is 
omitted, the result is null, so 

irelse(a, b, c) 

is c if a matches b, and null otherwise. 

String Manipulation 

The built-in len returns the length of the 
string that makes up its argument. Thus 

len(abcdef) 

is 6, and len((a,b)) is 5. 

The built-in substr can be used to produce 
substrings of strings. substr(s, i, n) returns the 
substring of s that starts at the ith position (origin 
zero), and is n characters long. If n is omitted, 
the rest of the string is returned, so 

substrfnow is the time', 1) 

is 

ow is the time 

If i or n are out of range, various sensible things 
happen. 

index(sl, s2) returns the index (position) in 
sl where the string s2 occurs, or -1 if it doesn't 
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occur. As with substr, the origin for strings is 0. 

The built-in translit performs character 
transliteration. 

translit(s, r, t) 
modifies s by replacing any character found in r 
by the corresponding character oft. That is, 

translit(s, aeiou, 12345) 

replaces the vowels by the corresponding digits. 
If t is shorter than f, characters which don't have 
an entry in t are deleted; as a limiting case, if t is 
not present at all, characters from f are deleted 
froms. So 

translit(s, aeiou) 

deletes vowels from s. 

There is also a built-in called dnl which 
deletes all characters that follow it up to and 
including the next newline; it is useful mainly for 
throwing away empty lines that otherwise tend to 
clutter up M4 output For example, if you say 

define(N, 100) 
define(M, 200) 
define(L, 300) 

the new line at the end of each line is not part of 
the definition, so it is copied into the output, 
where it may not be wanted. If you add dnl to 
each of these lines, the newlines will disappear. 

Another way to achieve this, due to J. E. 
Weythman, is 

divert(-1) 
define( ••• ) 

divert 

Printing 

The built-in errprint writes its arguments 
out on the standard error file. Thus you can say 

errprintffatal error) 

dumpdef is a debugging aid which dumps 
the current definitions of defined terms. If there 
are no arguments, you get everything; otherwise . 
you get the ones you name as arguments. Don't 
forget to quote the names! 

Summary of Built-ins 

Each entry is preceded by the page number 
where it is described. 
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3 changequote(L, R) 
1 define(name, replacement) 
4 divert(number) 
4 divnum 
s dnl 
5 dumpdef('name', 'name', ... ) 
s errprint(s, s, ooo) 
4 eval(numeric expression) 
3 ifdef('name', this if true, this if false) 
S if else( a, b, c, d) 
4 include(file) 
3 incr(number) 
S index(sl, s2) 
S len(string) 
4 maketemp( ... XXXXX ..• ) 
4 sinclude(file) 
S substr(string, position, number) 
4 syscmd(s) 
S translit(str, from, to) 
3 undefine('name 1 
4 undivert(number,number, ... ) 
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ABSTRACT 

This document describes a package of C library functions which allow the user to: 

• update a screen with reasonable optimization, 
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1. Overview 

In making available the generalized terminal descriptions in termcap(5), much information was 
made available to the programmer, but little work was taken out of one's hands. The purpose of this pack­
age is to allow the C programmer to do the most common type of terminal dependent functions, those of 
movement optimization and optimal screen updating, without doing any of the dirty work, and (hopefully) 
with nearly as much ease as is necessary to simply print or read things. 

The package is split into three parts: (1) Screen updating; (2) Screen updating with user input; and 
(3) Cursor motion optimization. 

It is possible to use the motion optimization without using either of the other two, and screen updat­
ing and input can be done without any programmer knowledge of the motion optimization, or indeed the 
database itself. 

1.1. Terminology (or, Words You Can Say to Sound Brilliant) 

In this document, the following terminology is kept to with reasonable consistency: 

window: An internal representation containing an image of what a section of the terminal screen may look 
like at some point in time. This subsection can either encompass the entire terminal screen, or any 
smaller portion down to a single character within that screen. 

terminal: Sometimes called terminal screen. The package's idea of what the terminal's screen currently 
looks like, i.e., what the user sees now. This is a special screen: 

screen: This is a subset of windows which are as large as the terminal screen, i.e., they start at the upper 
left hand comer and encompass the lower right hand comer. One of these, stdscr, is automatically 
provided for the programmer. 

1.2. Compiling Things 

In order to use the library, it is necessary to have certain types and variables defined. Therefore, the 
programmer must have a line: 

#include <curses.h> 

at the top of the program source. The header file <curses.h> needs to include <sgtty.h>, so the one should 
not do so oneself1• Also, compilations should have the following form: 

cc [flags ] file ... -lcurses -ltermcap 

1.3. Screen Updating 

In order to update the screen optimally, it is necessary for the routines to know what the screen 
currently looks like and what the programmer wants it to look like next For this purpose, a data type 
(structure) named WINDOW is defined which describes a window image to the routines, including its start­
ing position on the screen (the (y, x) co-ordinates of the upper left hand corner) and its size. One of these 
(called curscr for current screen) is a screen image of what the terminal currently looks like. Another 
screen (called stdscr, for standard screen) is provided by default to make changes on. 

A window is a purely internal representation. It is used to build and store a potential image of a por­
tion of the terminal. It doesn't bear any necessary relation to what is really on the terminal screen. It is 
more like an array of characters on which to make changes. 

When one has a window which describes what some part the terminal should look like, the routine 
refresh() (or wrefresh() if the window is not stdscr) is called. refresh() makes the terminal, in the area 
covered by the window, look like that window. Note, therefore, that changing something on a window 
does not change the termi.nal. Actual updates to the terminal screen are made only by calling refresh() or 
wrefresh( ). This allows the programmer to maintain several different ideas of what a portion of the termi-

1 The screen package also uses the Standard 1/0 library, so <curses.h> includes <Stdio.h>. It is redundant (but harmless) for 
the progpimmerto do it, too. 
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nal screen should look like. Also, changes can be made to windows in any order, without regard to motion 
efficiency. Then, at will, the programmer can effectively say "make it look like this", and let the package 
worry about the best way to do this. 

lo4e Naming Conventions 

As hinted above, the routines can use several windows, but two are automatically given: curscr, 
which knows what the terminal looks like, and stdscr, which is what the programmer wants the terminal to 
look like next. The user should never really access curscr directly. Changes should be made to the ap­
propriate screen, and then the routine refresh() (or wrefresh( )) should be called. 

Many functions are set up to deal with stdscr as a default screen. For example, to add a character to 
stdscr, one calls addch() with the desired character. If a different window is to be used, the routine 
waddch() (for window-specific addch()) is provided2• This convention of prepending function names with 
a "w" when they are to be applied to specific windows is consistent The only routines which do not do 
this are those to which a window must always be specified. 

In order to move the current (y, x) co-ordinates from one point to another, the routines move() and 
wmove() are provided. However, it is often desirable to first move and then perform some 1/0 operation. 
In order to avoid clumsyness, most I/O routines can be preceded by the prefix "mv" and the desired (y, x) 
co.-ordinates then can be added to the arguments to the function. For example, the calls 

move(y, x); 
addch(ch); 

can be replaced by 

mvaddch(y, x, ch); 

and 

wmove(win, y, x); 
waddch(win, ch); 

can be replaced by 

mvwaddch(win, y, x, ch); 

Note that the window description pointer (win) comes before the added (y, x) co-ordinates. If such pointers 
are need, they are always the first parameters passed. 

2~ Variables 

Many variables which are used to describe the tenninal environment are available to the program­
mer. They are: 

tyPe 
WINDOW* 
WINDOW* 
char* 
bool 

char* 
int 
int 
int 
int 

name 
curscr 
stdscr 
Def_term 
My_term 

ttytype 
LINES 
COLS 
ERR 
OK 

description 
current version of the screen (terminal screen). 
standard screen. Most updates are usually done here. 
default terminal type if type cannot be determined 
use the terminal specification in Def_term as terminal, 
irrelevant of real terminal type 
full name of the current terminal. 
number of lines on the terminal 
number of columns on the terminal 
error flag returned by routines on a fail. 
error flag returned by routines when things go right. 

There are also several "#define" constants and types which are of general usefulness: 

2 Actually, addch() is really a "#define" macro with arguments, as are most of the "functions" which deal with stdscr as a 
default. 
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reg 
bool 
TRUE 
FALSE 

3. Usage 

storage class "register" (e.g., reg inti;) 
boolean type, actually a "char'' (e.g., bool doneit;) 
boolean "true" flag (1). 
boolean "false" flag (0). 
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This is a description of how to actually use the screen package. In it, we assume all updating, read­
ing, etc. is applied to stdscr. All instructions will work on any window, with changing the function name 
and parameters as mentioned above. 

3.1. Starting up 

In order to use the screen package, the routines must know about terminal characteristics, and the 
space for curscr and stdscr must be allocated. These functions are performed by initscr( ). Since it must al­
locate space for the windows, it can overflow core when attempting to do so. On this rather rare occasion, 
initscr() returns ERR. initscr() must always be called before any of the routines which affect windows are 
used If it is not, the program will core dump as soon as either curscr or stdscr are referenced. However, it 
is usually best to wait to call it until after you are sure you will need it, like after checking for startup er­
rors. Terminal status changing routines like nl() and cbreak() should be called after initscr(). 

Now that the screen windows have been allocated, you can set them up for the run. If you want to, 
say, allow the window to scroll, use scrollok(). If you want the cursor to be left after the last change, use 
leaveok(). If this isn't done, refresh() will move the cursor to the window's current {y, x) co-ordinates after 
updating it. New windows of your own can be created, too, by using the functions newwin() and subwin( ). 
delwin() will allow you to get rid of old windows. If you wish to change the official size of the terminal by 
hand, just set the variables UNES and COLS to be what you want, and then call initscr(). This is best done 
before, but can be done either before or after, the first call to initscr(), as it will always delete any existing 
stdscr and/or curscr before creating new ones. 

3.2. The Nitty-Gritty 

3.2.1. Output 

Now that we have set things up, we will want to actually update the terminal. The basic functions 
used to change what will go on a window are addch() and move(). addch() adds a character at the current 
(y, x) co-ordinates, returning ERR if it would cause the window to illegally scroll, i.e., printing a character 
in the lower right-hand corner of a terminal which automatically scrolls if scrolling is not allowed. move() 
changes the current {y, x) co-ordinates to whatever you want them to be. It returns ERR if you try to move 
off the window when scrolling is not allowed. As mentioned above, you can combine the two into 
mvaddch() to do both things in one fell swoop. 

The other output functions, such as addstr() and printw( ), all call addch() to add characters to the 
window. 

After you have put on the window what you want there, when you want the portion of the terminal 
covered by the window to be made to look like it, you must call refresh(). In order to optimize finding 
changes, refresh() assumes that any part of the window not changed since the last refresh() of that window 
has not been changed on the terminal, i.e., that you have not refreshed a portion of the terminal with an 
overlapping window. If this is not the case, the routines touchwin(), touchline(), and touchoverlap() are 
provided to make it look like a desired part of window has been changed, thus forcing refresh() check that 
whole subsection of the terminal for changes. 

If you call wrefresh() with curscr, it will make the screen look like curscr thinks it looks like. This is 
useful for implementing a command which would redraw the screen in case it get messed up. 

3.2.2. Input 

Input is essentially a mirror image of output The complementary function to addch() is getch() 
which, if echo is set, will call add.ch() to echo the character. Since the screen package needs to know what 
is on the terminal at all times, if characters are to be echoed, the tty must be in raw or cbreak mode. If it is 
not, getch() sets it to be cbreak, and then reads in the character. 
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3.2.3. Miscellaneous 

All sorts of fun functions exists for maintaining and changing information about the windows. For 
the most part, the descriptions in section 5.4. should suffice. 

3.3. Finishing up 

In order to do certain optimizations, an~ on some terminals, to work at all, some things must be done 
before the screen routines start up. Thes~ functions are performed in getttmode() and setterm( ), which are 
called by initscr(). In order to clean up after the routines, the routine endwin() is provided. It restores tty 
modes to what they were when initscr() was first called. Thus, anytime after the call to initscr, endwin() 
should be called before exiting. 

4. Cursor Motion Optimization: Standing Alone 

It is possible to use the cursor optimization functions of this screen package without the overhead 
and additional size of the screen updating functions. The screen updating functions are designed for uses 
where parts of the screen are changed, but the overall image remains the same. This includes such pro-
grams as rogue and vi3• Certain other programs will find it difficult to use these functions in this manner 
without considerable unnecessary program overhead. For such applications, such as some '' crt hacks ''4 

and optimizing more(l)-type programs, all that is needed is the motion optimizations. This, therefore, is a 
description of what some of what goes on at the lower levels of this screen package. The descriptions as­
sume a certain amount of familiarity with programming problems and some finer points of C. None of it is 
terribly difficult, but you should be forewarned. 

4.1~ Terminal Information 

In order to use a terminal's features to the best of a program's abilities, it must first know what they 
are5

• The termcap(5) database describes these, but a certain amount of decoding is necessary, and there 
are, of course, both efficient and inefficient ways of reading them in. The algorithm that the uses is taken 
from vi and is hideously efficient It reads them in a tight loop into a set of variables whose names are two 
uppercase letters with some mnemonic value. For example, HO is a string which moves the cursor to the 
"home" position6• As there are two types of variables involving ttys, there are two routines. The first, 
gettmode(), sets some variables based upon the tty modes accessed by gtty(2) and stty(2) The second, set­
term( ), a larger task by reading in the descriptions from the termcap(5) database. This is the way these 
routines are used by initscr( ): 

if (isatty(O)) { 
gettmode(); 
if ((sp=getenv("TERM")) !=NULL) 

setterm(sp); 
else 

setterm(Def _term); 
} 
else 

setterm(Def term); 
_puts(TI); -
_puts(VS); 

isatty() checks to see if file descriptor 0 is a terminal7• If it is, gettmode() sets the terminal descrip-

3 rogue actually uses these functions, vi does not. 
4 Graphics programs designed to run on character-oriented tenninals. I could name many, but they come and go, so the list 

would be quickly out of date. Recently, there have been programs such as rain, rocket, and gun. 
5 If this comes as any surprise to you, there's this tower in Paris they're thinking of junking that I can let you have for a song. 
6 These names are identical to those variables used in the tenncap(5) database to describe each capability. See Appendix A for 

a complete list of those read, and the termcap(S) manual page for a full c;lescription. 
7 isatty() is defined in the default C library function routines. It does a gtty(2) on the descriptor and checks the return value. 



Screen Package PS1:18-7 

tion modes from a gtty(2) getenv() is then called to get the name of the terminal, and that value (if there is 
one) is passed to setterm(), which reads in the variables from termcap(S) associated with that terminal. 
(getenv() returns a pointer to a string containing the name of the terminal, which we save in the character 
pointer sp.) If isatty() returns false, the default terminal Def_term is used. The TI and VS sequences initial­
ize the terminal (_puts() is a macro which uses tputs() (see termcap(3)) and __putchar() to put out a string). 
endwin() undoes these things. 

4.2. Movement Optimizations, or, Getting Over Yonder 

Now that we have all this useful information, it would be nice to do something with it8• The most 
difficult thing to do properly is motion optimization. When you consider how many different features vari­
ous terminals have (tabs, backtabs, non-destructive space, home sequences, absolute tabs, ..... ) you can see 
that deciding how to get from here to there can be a decidedly non-trivial task. The editor vi uses many of 
these features, and the routines it uses to do this ~e up many pages of code. Fortunately, I was able to li­
berate them with the author's permission, and use them here. 

After using gettmode() and setterm() to get the terminal descriptions, the function mvcur() deals with 
this task. It usage is simple: you simply tell it where you are now and where you want to go. For example 

mvcur(O, 0, LINES/2, COLS/2) 

would move the cursor from the home position (0, 0) to the middle of the screen. If you wish to force ab­
solute addressing, you can use the function tgoto() from the termlib(7) routines, or you can tell mvcur() 
that you are impossibly far away, like Cleveland. For example, to absolutely address the lower left hand 
comer of the screen from anywhere just claim that you are in the upper right hand comer: 

mvcur{O, COLS-1, LINES-1, 0) 

S. The Functions 

In the following definitions, "t" means that the "function" is really a "#define" macro with argu­
ments. This means that it will not show up in stack traces in the debugger, or, in the case of such functions 
as addch(), it will show up as it's "w" counterpart. The arguments are given to show the order and type of 
each. Their names are not mandatory, just suggestive. 

S.1. Output Functions 

addch(ch) t 
char ch; 

waddch(win, ch) 
WINDOW *win; 
char ch; 

Add the character ch on the window at the current (y, x) co-ordinates. If the character is a newline 
(\n') the line will be cleared to the end, and the current (y, x) co-ordinates will be changed to the be­
ginning off the next line if newline mapping is on, or to the next line at the same x co-ordinate if it is 
off. A return (\r') will move to the beginning of the line on the window. Tabs C\n will be expand­
ed into spaces in the normal tabstop positions of every eight characters. This returns ERR if it would 
cause the screen to scroll illegally. 

addstr(str) t 
char *str; 

• Actually, it can be emotionally fulfilling just to get the infonnation. This is usually only true, however, if you have the social 
life of a kumquaL 
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waddstr(win, str) 
WINDOW *win; 
char *str; 

Screen Package 

Add the string pointed to by str on the window at the current (y, x) co-ordinates. This returns ERR if 
it would cause the screen to scroll illegally. In this case, it will put on as much as it can. 

box(win, vert, hor) 
WINDOW *win; 
char vert, hor; 

Draws a box around the window using vert as the character for drawing the vertical sides, and hor 
for drawing the horizontal lines. If scrolling is not allowed, and the window encompasses the lower 
right-hand comer of the terminal, the corners are left blank to avoid a scroll. 

clear() t 

wclear(win) 
WINDOW *win; 

Resets the entire window to blanks. If win is a screen, this sets the clear flag, which will cause a 
clear-screen sequence to be sent on the next refresh() call. This also moves the current (y, x) co­
ordinates to (0, 0). 

clearok(scr, boolf) t 
WINDOW * scr; 
boo/ boolf; 

Sets the clear flag for the screen scr. If boolf is TRUE, this will force a clear-screen to be printed on 
the next refresh(), or stop it from doing so if boolf is FALSE. This only works on screens, and, un­
like clear(), does not alter the contents of the screen. If scr is curscr, the next refresh() call will 
cause a clear-screen, even if the window passed to refresh() is not a screen. 

clrtobot() t 

wclrtobot(win) 
WINDOW *win; 

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This does not force a 
clear-screen sequence on the next refresh under any circumstances. This has no associated "rnv" 
command. 

clrtoeol() t 

wclrtoeol(win) 
WINDOW *win,· 

Wipes the window clear from the current (y, x) co-ordinates to the end of the line. This has no asso­
ciated "rnv" command. 

delch() 
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wdelcb(win) 
WINDOW *win; 
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Delete the character at the current (y, x) co-ordinates. Each character after it on the line shifts to the 
left, and the last character becomes blank. 

deletelnO 

wdeleteln(win) 
WINDOW *win; 

Delete the current line. Every line below the current one will move up, and the bottom line will be­
come blank. The current (y, x) co-ordinates will remain unchanged. 

eraseO t 

werase(win) 
WINDOW *win; 

Erases the window to blanks without setting the clear flag. This is analagous to clear(), except that it 
never causes a clear-screen sequence to be generated on a refresh(). This has no associated "mv" 
command. 

flushok(win, boolf) t 
WINDOW *win; 
bool boo If; 

Normally, refresh() fflush()'s stdout when it is finished. jlushok() allows you to control this. if boolf 
is TRUE (i.e., non-zero) it will do thefjlush(); if it is FALSE. it will not. 

idlok( win, boo It) 
WINDOW *win; 
bool boolf; 

Reserved for future use. This will eventually signal to refresh() that it is all right to use the insert and 
delete line sequences when updating the window. 

insch(c) 
char c; 

winsch(win, c) 
WINDOW *win; 
char c· , 

Insert cat the current (y, x) co-ordinates Each character after it shifts to the right, and the last"Charac­
ter disappears. This returns ERR if it would cause the screen to scroll illegally. 

insertlnO 

winsertln(win) 
WINDOW *win; 



PS1:18-10 Screen Package 

Insert a line above the current one. Every line below the current line will be shifted down, and the 
bottom line will disappear. The current line will become blank, and the current (y, x) co-ordinates 
will remain unchanged. 

move(y, x) t 
int y, x; 

wmove(win, y, x) 
WINDOW *win; 
int y,x; 

Change the current (y, x) co-ordinates of the window to (y, x). This returns ERR if it would cause 
the screen to scroll illegally. 

overlay(winl, win2) 
WINDOW *winl, *win2; 

Overlay winl on win2. The contents of winl, insofar as they fit, are placed on win2 at their starting 
(y, x) co-ordinates. This is done non-destructively, i.e., blanks on winl leave the contents of the 
space on win2 untouched. 

overwrite(winl, win2) 
WINDOW *winl, *win2; 

Overwrite winl on win2. The contents of winl, insofar as they fit, are placed on win2 at their starting 
(y, x) co-ordinates. This is done destructively, i.e., blanks on winl become blank on win2. 

printw(fmt, argl, arg2, ••• ) 
char */mt; 

wprintw(win, fmt, argl, arg2, ••• ) 
WINDOW *win; 
char */mt; 

Performs a print/() on the window starting at the current {y, x) co-ordinates. It uses addstr() to add 
the string on the window. It is often advisable to use the field width options of print/() to avoid leav­
ing things on the window from earlier calls. This returns ERR if it would cause the screen to scroll 
illegally. 

rerreshO t 

wrerresh(win) 
WINDOW *win; 

Synchronize the terminal screen with the desired window. If the window is not a screen, only that 
part covered by it is updated. This returns ERR if it would cause the screen to scroll illegally. In this 
case, it will update whatever it can without causing the scroll. 

As a special case, if wrefresh() is called with the window curscr the screen is cleared and repainted 
as it is currently. This is very useful for allowing the redrawing of the screen when the user has gar­
bage dumped on his terminal. 
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standoutO t 

wstandout(win) 
WINDOW *win; 

standendO t 

wstandend(win) 
WINDOW *win; 
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Start and stop putting characters onto win in standout mode. standout() causes any characters added 
to the window to be put in standout mode on the terminal (if it has that capability). standend() stops 
this. The sequences SO and SE (or US and UE if they are not defined) are used (see Appendix A). 

5.2. Input Functions 

cbreakO t 

nocbreakO t 

crmodeO t 

nocrmode() t 
Set or unset the terminal to/from cbreak mode. The misnamed macros crmode() and nocrmode() are 
retained for backwards compatibility with ealier versions of the library. 

echoO t 

noechoO t 

Sets the terminal to echo or not echo characters. 

getchO t 

wgetch(win) 
WINDOW *win; 

Gets a character from the terminal and (if necessary) echos it on the window. This returns ERR if it 
would cause the screen to scroll illegally. Otherwise, the character gotten is returned. If noecho has 
been set, then the window is left unaltered. In order to retain control of the terminal, it is necessary 
to have one of noecho, cbreak, or rawmode set If you do not set one, whatever routine you call to 
read characters will set cbreak for you, and then reset to the original mode when finished. 

getstr(str) t 
char *str; 

wgetstr( win, str) 
WINDOW *win; 
char *str; 

Get a string through the window and put it in the location pointed to by str, which is assumed to be 
large enough to handle it It sets tty modes if necessary, and then calls getch() (or wgetch(win)) to 
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get the characters needed to fill in the string until a newline or EOF is encountered. The newline 
stripped off the string. This returns ERR if it would cause the screen to scroll illegally. 

_putchar(c) 
char c· 

' 
Put out a character using the putchar() macro. This function is used to output every character that 
curses generates. Thus, it can be redefined by the user who wants to do non-standard things with the 
output. It is named with an initial''_'' because it usually should be invisible to the programmer. 

rawOt 

norawO t 

Set or unset the terminal to/from raw mode. On version 7 UNIX9 this also turns of newline mapping 
(see nl()). 

scanw(fmt, argl, arg2, ... ) 
char *fmt; 

wscanw(win, fmt, argl, arg2, ••• ) 
WINDOW *win; 
char *fmt; 

Perform a scan/() through the window using /mt. It does this using consecutive getch()'s (or 
wgetch(win)'s). This returns ERR if it would cause the screen to scroll illegally. 

5..3. Miscellaneous Functions 

baudrateO t 

Returns the output baud rate of the terminal. This is a system dependent constant (defined in 
<sys/tty.h> on BSD systems, which is included by <curses.h> ). 

delwin(win) 
WINDOW *win; 

Deletes the window from existence. All resources are freed for future use by calloc(3). If a window 
has a subwin() allocated window inside of it, deleting the outer window the subwindow is not affect­
ed, even though this does invalidate it. Therefore, subwindows should be deleted before their outer 
windows are. 

endwinO 

Finish up window routines before exit. This restores the terminal to the state it was before initscr() 
(or gettmode() and setterm()) was called It should always be called before exiting. It does not exit. 
This is especially useful for resetting tty stats when trapping rubouts via signal(2). 

9 UNIX is a trademark of Bell Laboratories. 
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erasecharO t 

Returns the erase character for the terminal, i.e., the character used by the user to erase a single char­
acter from the input 

char* 
getcap(str) 
char *str; 

Return a pointer to the termcap capability described by str (see termcap(5) for details). 

getyx(win, y, x) t 
WINDOW *win; 
int y, x; 

Puts the current (y, x) co-ordinates of win in the variables y and x. Since it is a macro, not a function, 
you do not pass the address of y and x. 

inchO t 

winch(win) t 
WINDOW *win; 

Returns the character at the current (y, x) co-ordinates on the given window. This does not make any 
changes to the window. 

initscrO 

Initialize the screen routines. This must be called before any of the screen routines are used. It ini­
tializes the terminal-type data and such, and without it none of the routines can operate. If standard 
input is not a tty, it sets the specifications to the terminal whose name is pointed to by Def_term (ini­
tialy "dumb"). If the boolean My_term is true, Def_term is always used. If the system supports the 
TIOCGWINSZ ioctl(2) call, it is used to get the number of lines and columns for the terminal, oth­
erwise it is taken from the termcap description. 

killchar() t 
Returns the line kill character for the terminal, i.e., the character used by the user to erase an entire 
line from the input. 

leaveok(win, boolf) t 
WINDOW *win; 
bool boolf; 

Sets the boolean flag for leaving the cursor after the last change. If boolf is TRUE, the cursor will be 
left after the last update on the terminal, and the current (y, x) co-ordinates for win will be changed 
accordingly. If it is FALSE, it will be moved to the current (y, x) co-ordinates. This flag (initialy 
FALSE) retains its value until changed by the user. 

longname(termbuf, name) 
char *termbuf, *name; 
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fullname(termbuf, name) 
char *termbuf, *name; 

longname() fills in name with the long name of the terminal described by the termcap entry in term­
bufi It is generally of little use, but is nice for telling the user in a readable format what terminal we 
think he has. This is available in the global variable ttytype. termbuf is usually set via the termlib 
routine tgetent(). fullname() is the same as longname(), except that it gives the fullest name given in 
the entry, which can be quite verbose. 

mvwin(win, y, x) 
WINDOW *win; 
int y. x; 

Move the home position of the window win from its current starting coordinates to (y, x). If that 
would put part or all of the window off the edge of the terminal screen, mvwin() returns ERR and 
does not change anything. For subwindows, mvwin() also returns ERR if you attempt to move it off 
its main window. If you move a main window, all subwindows are moved along with it 

WINDOW* 
newwin(lines, cols, begin_y, begin_ x) 
int lines, cols, beginy, begin_x; 

nIO t 

Create a new window with lines lines and cols columns starting at position (begin_y, begin_x). If ei­
ther lines or cols is 0 (zero), that dimension will be set to (UNES - begin _y) or (COLS - begin _x) 
respectively. Thus, to get a new windpw of dimensions UNES x COLS, use newwin(O, 0, 0, 0). 

nonlO t 

Set or unset the terminal to/from nl mode, i.e., start/stop the system from mapping <RETURN> to 
<LINE-FEED>. If the mapping is not done, refresh() can do more optimization, so it is recom­
mended, but not required, to tum it off. 

scrollok(win, boolf) t 
WINDOW *win; 
bool boolf; 

Set the scroll flag for the given window. If boolf is FALSE, scrolling is not allowed. This is its de­
fault setting. 

touchline(win, y, startx, endx) 
WINDOW *win; 
int y, startx, endx; 

This function performs a function similar to touchwin() on a single line. It marks the first change for 
the given line to be startx, if it is before the current first change mark, and the last change mark is set 
to be endx if it is currently less than endx. 

touchoverlap(winl, win2) 
WINDOW *winl, *win2; 
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Touch the window win2 in the area which overlaps with winl. If they do not overlap, no changes are 
made. 

touch win( win) 
WINDOW *win; 

Make it appear that the every location on the window has been changed. This is usually only needed 
for refreshes with overlapping windows. 

WINDOW* 
subwin(win, lines, cols, begin _y, begin_ x) 
WINDOW *win; 
int lines, cols, begin _y, begin _x; 

Create a new window with lines lines and cols columns starting at position (begin _y, begin_ x) inside 
the window win. This means that any change made to either window in the area covered by the 
subwindow will be made on both windows. begin_y, begin_x are specified relative to the overall 
screen, not the relative (0, 0) of win. If either lines or cols is 0 (zero), that dimension will be set to 
(UNES-begin_y) or (COLS- begin_x) respectively. 

unctrl(ch) t 
char ch; 

This is actually a debug function for the library, but it is of general usefulness. It returns a string 
which is a representation of ch. Control characters become their upper-case equivalents preceded by 
a """. Other letters stay just as they are. To use unctrl(), you may have to have #include <unctrl.h> 
in your file. 

5.4. Details 

gettmodeO 

Get the tty stats. This is normally called by initscr( ). 

mvcur(lasty, lastx, newy, newx) 
int lasty, lastx, newy, newx; 

Moves the terminal's cursor from (lasty, lastx) to (newy, newx) in an approximation of optimal 
fashion. This routine uses the functions borrowed from ex version 2.6. It is possible to use this op­
timization without the benefit of the screen routines. With the screen routines, this should not be 
called by the user. move() and refresh() should be used to move the cursor position, so that the rou­
tines know what's going on. 

scroll( win) 
WINDOW *win; 

Scroll the window upward one line. This is normally not used by the user. 

savettyO t 

resettyO t 
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savetty() saves the current tty characteristic flags. resetty() restores them to what savetty() stored. 
These functions are performed automatically by initscr() and endwin(). 

setterm(name) 
char *name; 

tstpO 

Set the terminal characteristics to be those of the terminal named name, getting the terminal size 
from the TIOCGWINSZ ioctl(2) if it exists, otherwise from the environment. This is normally 
called by initscr(). 

H the new tty(4) driver is in use, this function will save the current tty state and then put the process 
to sleep. When the process gets restarted, it restores the tty state and then calls wrefresh( curscr) to 
redraw the screen. initscr() sets the signal SIGTSTP to trap to this routine. 
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1. Capabilities from termcap 

1.1. Disclaimer 

The description of terminals is a difficult business, and we only attempt to summarize the capabilities 
here: for a full description see termcap(5). 

1.2e Overview 

Capabilities from termcap are of three kinds: string valued options, numeric valued options, and 
boolean options. The string valued options are the most complicated, since they may include padding in­
formation, which we describe now. 

Intelligent terminals often require padding on intelligent operations at high (and sometimes even 
low) speed. This is specified by a number before the string in the capability, and has meaning for the capa­
bilities which have a P at the front of their comment This normally is a number of milliseconds to pad the 
operation. In the current system which has no true programmable delays, we do this by sending a sequence 
of pad characters (normally nulls, but can be changed (specified by PC)). In some cases, the pad is better 
computed as some number of milliseconds times the number of affected lines (to the bottom of the screen 
usually, except when terminals have insert modes which will shift several lines.) This is specified as, i e.g. 
, 12*. before the capability, to say 12 milliseconds per affected whatever (currently always line). Capabili­
ties where this makes sense say P*. 

1.3. Variables Set By settermO 

Trpe Name 
char* AL 
bool AM 
char* BC 
bool BS 
char* BT 
bool CA 
char* CD 
char* CE 
char* CL 
char* CM 
char* DC 
char* DL 
char* DM 
char* DO 
char* ED 
bool EO 
char* El 
char* HO 
bool HZ 
char* IC 
bool IN 
char* IM 
char* IP 
char* LL 
char* MA 
bool MI 
bool NC 
char* ND 
bool OS 

variables set by setterm() 

Pad Description 
P* Add new blank Line 

Automatic Margins 
Back Cursor movement 
BackSpace works 

P Back Tab 
Cursor Addressable 

P* Clear to end of Display 
P Clear to End of line 
P* CLear screen 
P Cursor Motion 
P* Delete Character 
P* Delete Line sequence 

Delete Mode (enter) 
DOwn line sequence 
End Delete mode 
can Erase Overstrikes with ' ' 
End Insert mode 
HOme cursor 
HaZeltine - braindamage 

P Insert Character 
Insert-Null blessing 
enter Insert Mode (IC usually set, too) 

P* Pad after char Inserted using IM+ IE 
quick to Last Line, column 0 
ctrl character MAp for cmd mode 
can Move in Insert mode 
No Cr: \r sends \r\n then eats \n 
Non-Destructive space 
Overstrike works 
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variables set by setterm() 

TyPe Name Pad Description 
char 
char• 
char• 
char* 
char• 
char• 
char• 
char* 
char• 
char• 
bool 
char• 
char* 
char* 
char* 
char* 
bool 

PC 
SE 
SF P 
so 
SR P 
TA P 
TE 
TI 
UC 
UE 
UL 
UP 
us 
VB 
VE 
vs 
XN 

Pad Character 
Standout End (may leave space) 
Scroll Forwards 
Stand Out begin (may leave space) 
Scroll in Reverse 
TAb (not AI or with padding) 
Terminal address enable Ending sequence 
Terminal address enable Initialization 
Underline a single Character 
Underline Ending sequence 
UnderLining works even though !OS 
UP line 
Underline Starting sequence 
Visible Bell 
Visual End sequence 
Visual Start sequence 
a Newline gets eaten after wrap 

Names starting with X are reserved for severely nauseous glitches 
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For purposes of standout(), if SG() is not 0, SO() is set to NUU(), and if UG() is not 0(), US() is set 
toNUU(). If, after this, SO() is NULL(), and US() is not, SO() is set to be US(), and SE() is set to be UE(). 

1.4. Variables Set By gettmodeO 

variables set by gettmode() 

tyPe name 
bool NONL 
bool GT 
bool UPPERCASE 

description 
Term can't hack linefeeds doing a CR 
Gtty indicates Tabs 
Terminal generates only uppercase letters 



Screen Package Appendix B 

1. 
The WINDOW structure 

The WINDOW structure is defined as follows: 

I* 
*Copyright (c) 1980 Regents of the University of California. 
* All rights reserved. The Berkeley software License Agreement 
* specifies the terms and conditions for redistribution. 

* 
* 
•I 

@(#)win _st.c 6.1 (Berkeley) 4124186"; 

#derme 

struct _win_st { 
short 
short 
short 
short 
short 
bool 
bool 
bool 
char 
short 
short 

WINDOW struct win st 

_ cury, _ curx; 
maxy, maxx; 

-begy, begx; 
-flags; -
-ch off; 
-clear; 
-leave; 
=scroll; 
**_y; 
• firstch; 
* )astch; 

struct win st * _ nextp, *_orig; 
}; 

#define 
#define 
#define 
#derme 
#derme 
#derme 
#define 
#derme 

END LINE 
=FULL WIN 

SCROLL WIN 
-FLUSH 
-FULLLINE 

ID LINE 
-STANDOUT 
-NOCHANGE 

001 
002 
004 
010 
020 
040 
0200 
-1 
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_cury and _curx are the current (y, x) co-ordinates for the window. New characters added to the 
screen are added at this point. max:y and maxx are the maximum values allowed for ( cury, curx). 
_begy and _begx are .the starting (y, x) co-ordinates on the terminal for the window, i.e., the window's 
home. _cury, _curx, _max:y, and _maxx are measured relative to (_begy, _begx), not the terminal's home. 

_clear tells if a clear-screen sequence is to be generated on the next refresh() call. This is only 
meaningful for screens. The initial clear-screen for the first refresh() call is generated by initially setting 
clear to be TRUE for curscr, which always generates a clear-screen if set, irrelevant of the dimensions of 
the window involved. leave is TRUE if the current (y, x) co-ordinates and the cursor are to be left after 
the last character changed on the terminal, or not moved if there is no change. _scroll is TRUE if scrolling 
is allowed. 

_y is a pointer to an array of lines which describe the terminal. Thus: 

_y[i] 

is a pointer to the ith line, and 

_y[i][j] 

10 All variables not normally accessed directly by the user are named with an initial "-" to avoid conflicts with the user's 
variables. 
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is the jth character on the ith line. _flags can have one or more values or' d into it 

For windows that are not subwindows, _orig is NULL . For subwindows, it points to the main win­
dow to which the window is subsidiary. _nextp is a pointer in a circularly linked list of all the windows 
which are subwindows of the same main window, plus the main window itself. 

_firstch and _lastch are malloc()ed arrays which contain the index of the first and last changed char­
acters on the line. _ch_ off is the x offset for the window in the _firstch and _lastch arrays for this window. 
For main windows, this is always O; for subwindows it is the difference between the starting point of the 
main window and that of the subindow, so that change markers can be set relative to the main window. 
This makes these markers global in scope. 

All subwindows share the appropriate portions of _y, _firstch, _lastch, and _insdel with their main 
window. 

_END LINE says that the end of the line for this window is also the end of a screen. _FULL WIN 
says that this window is a screen. SCROLLWIN indicates that the last character of this screen is at the 
lower right-hand corner of the ternunal; i.e., if a character was put there, the terminal would scroll. 

FULLLINE says that the width of a line is the same as the width of the terminal. If FL USU is set, it 
·says thatfflush(stdout) should be called at the end of each refresh() STANDOUT says-that all characters 
added to the screen are in standout mode. _INSDEL is reserved-for future use, and is set by idlok(). 
Jirstch is set to _NOCHANGE for lines on which there has been no change since the last refresh(). 
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1. Examples 

Here we present a few examples of how to use the package. They attempt to be representative, 
though not comprehensive. 

2. Screen Updating 

The following examples are intended to demonstrate the basic structure of a program using the 
screen updating sections of the package. Several of the programs require calculational sections which are 
irrelevant of to the example, and are therefore usually not included. It is hoped that the data structure de­
finitions give enough of an idea to allow understanding of what the relevant portions do. The rest is left as 
an exercise to the reader, and will not be on the final. 

2.1. Twinkle 

This is a moderately simple program which prints pretty patterns on the screen that might even hold 
your interest for 30 seconds or more. It switches between patterns of asterisks, putting them on one by one 
in random order, and then taking them off in the same fashion. It is more efficient to write this using only 
the motion optimization, as is demonstrated below. 

I* 
*Copyright (c) 1980 Regents of the University of Californi.a. 
* All rights reserved. The Berkeley software License Agreement 
* specifies the terms and conditions for redistribution. 
*I 

#ifndef lint 
static char sccsidO = "@(#)twinklel.c 
#endif not lint 

#include 
#include 

I* 

<curses.h> 
<Signal.h> 

6.1 (Berkeley) 4/24/86"; 

* the idea for this pro gram was a product of the imagination of 
• Kurt Schoens. Not responsible for minds lost or stolen. 
•I 

#define 
#define 
#derme 

typedef struct { 

NCOLS 80 
NUNES 24 
MAXPATTERNS 

int y, x; 
} LOCS; 

LOCS 

int 

Layout[NCOLS * NUNES]; 

Pattern, 
Numstars; 

char •getenv(); 

int die(); 

main() 
{ 

4 

I• current board layout •I 

/*current pattern number*/ 
/* number of stars in pattern *I 
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srand(getpid(}); I* initialize random sequence •I 

} 

!• 

initscr(); 
signal(SIGINT, die); 
noecho(); 
nonI(); 
leaveok(stdscr9 TRUE); 
scrollok(stdscr, FALSE); 

for(;;) { 

} 

makeboard(); 
puton('•'); 
puton(' '); 

*On program exit, move the cursor to the lower left corner by 
* direct addressing, since current location is not guaranteed. 

I* make the board setup *I 
I• put on "* 's •I 
/* cover up with ''s •I 

*We lie and say we used to be at the upper right corner to guarantee 
• absolute addressing. 
•I 

die() 
{ 

} 

I* 

signaI(SIGINT, SIG IGN); 
mvcur(O, COLS - 1,-LINES - 1, 0); 
end win(); 
exit(O); 

* Make the current board setup. It picks a random pattern and 
* calls ison() to determine if the character is on that pattern 
*or not. 
*I 

make board() 
{ 

} 

I• 

reg int 
reg LOCS 

y,x; 
•Ip; 

Pattern= rand()% MAXPATIERNS; 
Ip= Layout; 
for (y = O; y <NUNES; y++) 

for (x = O; x < NCOLS; x++) 
if (ison(y, x)) { 

} 
Numstars = Ip - Layout; 

lp->y = y; 
lp->X = x; 
Ip++; 

*Return TRUE if (y, x) is on the current pattern. 
*I 

ison(y, x) 
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reg int 

} 

puton(ch) 
reg char 
{ 

} 

2.2. Life 

y, x; { 

switch (Pattern) { 
case 0: /*alternating lines *I 

return !(y & 01); 
case 1: 

case 2: 

case 3: 

} 

I* box •I 
if (x >= LINES && y >= NCOLS) 

return FALSE; 
if (y < 3 II y >= NLINES - 3) 

return TRUE; 
return (x < 3 11 x >= NCOLS - 3); 

I* holy pattern! •I 
return ((x + y) & 01); 

I* bar across center •I 
return (y >= 9 && y <= 15); 

/* NOTREACHED *I 

regLOCS 
reg int 
regLOCS 
LOCS 

ch; 

•Ip; 
r; 
•end; 
temp; 

end= &Layout[Numstars]; 
for (Ip = Layout; Ip < end; Ip++) { 

r =rand()% Numstars; 
temp= •Ip; 

} 

•Ip= Layout[r]; 
Layout[r] = temp; 

for (Ip = Layout; Ip < end; Ip++) { 
mvaddch(Ip->y, Ip->x, ch); 
refresh(); 

} 
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This program fragment models the famous computer pattern game of life (Scientific American, May, 
1974). The calculational routines create a linked list of structures defining where each piece is. Nothing 
here claims to be optimal, merely demonstrative. This code, however, is a very good place to use the 
screen updating routines, as it allows them to worry about what the last position looked like, so you don't 
have to. It also demonstrates some of the input routines. 

/* 
*Copyright (c) 1980 Regents of the University of California. 
*All rights reserved. The Berkeley software License Agreement 
* specifies the terms and conditions for redistribution. 
*I 

#irndef lint 
static char sccsid[] = "@(#)life.c 6.1 (Berkeley) 4/23/86"; 



PS1:18-24 

#endif not lint 

#include 
#include 

I* 

<curses.h> 
<Signal.h> 
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* Run a life game. This is a demonstration program/or 
•the Screen Updating section ofthe-lcurses cursor package. 
•I 

typedef struct lst_st { 
int 
struct lst_st 

y, x; 
•next, *last; 

/* linked list element *I 
I• (y, x) position of piece •I 
I* doubly linked *I 

} LIST; 

LIST •Head; I• head of linked list *I 

int 

main{ac, av) 
int 
char 
{ 

} 

I* 

die(); 

ac; 
•avO; 

evalargs(ac, av); 

initscr(); 
signal(SIGINT, die); 
cbreak(); 
noecho(); 
nonl(); 

gets tart(); 
for(;;) { 

} 

prboard(); 
update(); 

* This is the routine which is called when rubout is hit. 
*It resets the tty stats to their original values. This 
*is the normal way of leaving the program. 
*/ 

die() 
{ 

} 

/* 

signal(SIGINT, SIG IGN); 
mvcur{O, COLS - CLINES - 1, 0); 
end win(); 
exit(O); 

*Get the starting positionfrom the user. They keys u, i, o,j, l, 

I• evaluate arguments •I 

I• initialize screen package •I 
I• set to restore tty stats *I 
I* set/or char-by-char •I 
I* 
I• for optimization *I 

/*get starting position *I 

/* print out current board */ 
/* update board position *I 

/* ignore rubouts */ 
/* go to bottom of screen */ 
/* set terminal to good state *I 

* m, ,, and . are used for moving their relative directions from the 
* k key. Thus, u move diagonally up to the left,, moves directly down, 
*etc. x places a piece at the current position,"" takes it away. 
*The input can also be from a file. The list is built after the 
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*board setup is ready. 

*' gets tart() 
{ 

reg char 
reg int 
auto char 

c; 
x, y; 
buf[lOO]; 
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I* box in the screen •I box(stdscr, T, '_ '); 
move(l, 1); I* move to upper left corner •I 

} 

for(;;) { 
refresh(); /*print current position •I 

} 

if ((c = getch()) == 'q') 
break; 

switch (c) { 
case 'u': 
case 'i': 
case 'o': 
case 'j': 
case 1": 
case 'm': 
case',': 
case'.': 

case T: 

case 'x': 

case''· 

} 

adjustyx(c); 
break; 

mvaddstr(O, 0, "File name: "); 
getstr(but); 
readfile(but); 
break; 

addch('X'); 
break; 

addch(' '); 
break; 

if (Head != NULL) 
dellist(Head); 

Head= malloc(sizeof (LIST)); 

/* 
*loop through the screen looking for 'x's, and add a list 
*element for each one 
•I 

for (y = 1; y <LINES- 1; y++) 
for (x = 1; x <COLS - 1; x++) { 

move(y, x); 

} 

if (inch()== 'x') 
addlist(y, x); 

/* start new list •I 
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I* 
* Print out the current board position from the linked list 
*/ 

prboard() { 

reg LIST •hp; 
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erase(); 
box(stdscr, 'I', '_ '); 

/* clear out last position •I 
I• box in the screen •I 

} 

I* 
* go through the list adding each piece to the newly 
* blank board 
•I 
for {hp = Head; hp; hp = hp->next) 

mvaddch(hp->y, hp->x, 'X'); 

refresh(); 

3. Motion optimization 

The following example shows how motion optimization is written on its own. Programs which flit 
from one place to another without regard for what is already there usually do not need the overhead of both 
space and time associated with screen updating. They should instead use motion optimization. 

3.1. Twinkle 

The twinkle program. is a good candidate for simple motion optimization. Here is how it could be 
written (only the routines that have been changed are shown): 

I* 
*Copyright (c) 1980 Regents of the University of California. 
* All rights reserved. The Berkeley software License Agreement 
* specifies the terms and conditions for redistribution. 
*I 

#ifndef lint 
static char sccsid[] = "@(#)twinkle2.c 
#endif not lint 

6.1 (Berkeley) 4/24/86"; 

extern int 

main() 
{ 

_putchar(); 

reg char 

srand(getpid()); 

if (isatty(O)) { 
gettmode(); 

*sp; 

if ((sp = getenv("TERM")) != NULL) 
setterm( sp); 

signal(SIGINT, die); 
} 
else { 

/*initialize random sequence *I 

printf("Need a terminal on %d\n", _tty_ch); 
exit(l); 
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} 

puton(ch) 

} 
_puts(TI); 
_puts(VS); 

noecho(); 
nonI(); 
tputs(CL, NUNES, _putchar); 
for(;;) { 

} 

makeboard(); 
puton('*'); 
puton(' '); 

I* make the board setup */ 
/*put on '* 's */ 
/* cover up with ' 's *I 

char ch; 
{ 

} 

regLOCS 
reg int 
regLOCS 
LOCS 
static int 

*Ip; 
r; 
•end; 
temp; 
Iasty, Iastx; 

end = &Layout[Numstars]; 
for (Ip = Layout; Ip < end; Ip++) { 

r =rand()% Numstars; 
temp= •Ip; 

} 

•Ip= Layout[r]; 
Layout[r] =temp; 

for (Ip = Layout; Ip < end; Ip++) 
I• prevent scrolling •I 

if (!AM 11 (Ip->y < NLINES-111 Ip->x < NCOLS-1)) { 
mvcur(lasty, Iastx, Ip->y, Ip->x); 
putchar(ch); 

} 

Iasty = lp->y; 
if ((Iastx = lp->x + 1) >= NCOLS) 

if (AM) { 

} 
else 

Iastx = O; 
Iasty++; 

Iastx = NCOLS - 1; 
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