UNIX Programm%n S $upplem@ntary Doeumems

7 Volume 1
oo (PS1)

: m;,4.3 Berkeley. Software Distribution
‘ Virtual YAXZ11 Version
B 490146 Rev. A

July, 1987

Integrated Solutions ikl
1140 Ringwood Court =
San Jose, CA 95131
- (408) 943-1902 -

(129 [amwioV etnsmusoC vyinsmsiqgue
goiexsV i f-209 etV noktnd el

28Ql IngA
Copyright 1979, 1980, 1983, 1986 Regents of the University of
California. Permission to copy these documents or any portion thereof
as necessary for licensed use of the software is granted to licensees of
this software, provxded this copyright notice and statement of

ARATAS SRS G %E6 inblided, 2 1rar. gei foidw - csmuoob b
WU e bssdimatt 2 e 129l 30 moRtey oAV ,-uumZV sly 0% }mm;« .

Documents PS1:1, 9, 10, 12, 15, 16, and 17 are copyright 1979, AT&T

Bell Laéomﬁ'és ’Iﬁﬁ&jéamté’dc 19DuosRts! #3932 oand F0 @8 nor

1:129 modifications of earlier documents that are copngh'@d 1829,,@?"“ E,lll ar-

odBell-d-aboratories;-Incorporated, W {32V S stem
ixopSystem; ¥ software dicenses; pre ferm cguse ofs%le % ﬁ%& ts,)

or any portion of them, as necessary for hcens
provided this copyright notice and statement of permission dfe

©e.r

29

=t i
* Podiitfiett PS1:13 is - parviiofsthe vser!icomtributed software, ang:is
copyright 1983 by Walter *RutFichy > iPermission to copy::the,RGCS
documentation or any portion thereof as necessary for licensed use of

£:129 the software is granted to licensees of this software, provided, éhns

s cﬂpmgm noﬁc% ‘% 9luded', T nsod Cot v

Y

This manual reflects system enhancements made at Berkeley and
sponsored in part by the Defense Advanced Research Projects Agency
(DoD), Arpa Order No.:4871 monitonpd by.the Naval Electronics
Systems Command under contract No. N00039-84-C-0089. The views
and conclusions contained in these documents are those of the authors

" and should not be mterpreted as resenting official policies, either
expressed or implied; of tHi& Défénisé Research Projects Agency or of the
US Government.

1o

3 U
Vel LT AT b
O . EN

7 S CI VS LA PN

e
B
:

et m:) s

e tiee raad "

-3
~3
1

IsirsuT ¢ hpuine

LR W asiniting e A cer Maueln. At sl v

FEN

g

20M G,

EEET
AR
REIEH

a;«‘,g! oo -9

Feapsuyusd
- garnenereerT O of T

fu 4TSS, TN)

W ggwsygmm}”

%c u)&ed 47 bas motnviodng

T e LT A
o1 A
Lok

adombe il
A
LAred
T vs | el
915 LT

wieg wonza o T

SR TS LY T
L NOE pEis e
CoEelaeD &
101 beeivgy

LG IEHOH (A
oF we .

UNIX Programmer’s Supplementary Documents, Volume 1 (PS1)
4.3 Berkeley Software Distribution, Virtual vax-11 Version

April, 1986
dieww el Yo anegsi 380) £301 0801 LOTOS Wgirrqal

ST AL 88 6 2 came 3 erodt voos of nofertrmied gieliinD
ol Looorbsk L suwlior 3 10 vr odnsst A, F1329390 20
ekt bns o osslion v o gid, Dab VoY @IEWII02 ud

These two volumes contain documents which supplement the mgk,ggg% i9irhhe UNIXT
Programmer's Reference Manual for the Virtual VAX-11 version of the system as distributed By U.C.
Berkeley.

T2a78 0T sdangor 5w U s A1 2T LS0 08 .0,1:129 atns auond
Languages in common usé*otlier lamgusges in Bmmmr’sbsunnl&mﬂnt, volwnp,%,; O Leg
‘7"‘ReferenceMmuzﬂ“” T iRt mm* ol uifisy b ﬂ*x:*",.--,,;vx:‘mx PS1:1

ks

The C Programming Langu { :
Official statement of (}gzriyntax 'oF.C. Shoul&‘bg Ut
Language,” B.W. Kermgmn gn%_bM “Ritchig” 'Pes té"r‘Iall’ 1‘978 ﬁl&t’édntams*af titdrial

introduction and mmy:l. VL i west Duafeotl O y'n,.a.gsqu b Jics Oaomoan viG 0
)L)U‘ OfE B oL, oY 1 30 1SM9E Lng sushor v Ly @ion 2irf hwo ivo
A Portable Fortran 77 Compiler PS1:2

A revised version of the“doctiment which driginally:appearedcin;Volume 2b: of theBell,Labs
documentation; this vet$ion reflects the ongomg work atBerkeley. i v oo f80) sngheacs

K

L R R e LR IR R« PR LT T Y]
Introduction to the £77 I/Oﬂi)rary'”“‘”f CTEeEmn e pswnsLt o beineve 5 zwwiios see PS1H3
A description of the revised input/output library for Fortran 77, refiéctihg work '¢ditiéd: ot at -
Berkeley.

Tehe aw g oetgve woeles beoanon ol

SR be ”f;{T -{—\:?'; S gy dva vn o P51:4

Berkeley Pascal User’s Manual

v ’” ‘UV (\, FOEDGD Doy ¥R

Integrated Solutions Assembler Reference Manual wob g tian bouss 2 PS1:5
ix DI . O TYVERR T D
The usage and syntax of the assembler; usgt?ul mostlygby con%p;lgg W" Stiqm: 1 voses xq
Jessmavol 2L
General Reference
Berkeley Software Architecture Manual (4.3 Edition) PS1:6

A concise and terse description of the system call interface provided in Berkeley Unix, as
revised for 4.3BSD. This will never be a best seller.

An Introductory 4.3BSD Interprocess Communication Tutorial , PS1:7
How to write programs that use the Interprocess Communication Facilities of 4.3BSD.

T UNIX is a trademark of Bell Laboratories.

PS1 Contents

An Advanced 4.3BSD Interprocess Communication Tutorial PS1:8

The reference document (with some examples) for the Interprocess Communication Facilities
of 4.3BSD.

Programming Tools
Lint, A C Program Checker PS1:9

Checks C programs for syntax errors, type violations, portability problems, and a variety of
probable errors.

A Tutorial Introduction to ADB PS1:10

How to debug programs using the adb debugger. For hints on the use of ADB for debugging
the UNIX kernel, see ‘“Using ADB to Debug the Kernel’’, SMM:3

Debugging with dbx PS1:11
How to debug programs without having to know much about machine language.

Make — A Program for Maintaining Computer Programs PS1:12
Indispensable tool for making sure large programs are properly compiled with minimal effort.

An Introduction to the Revision Control System PS1:13
RCS is a user-contributed tool for working together with other people without stepping on
each other’s toes. An alternative to sces for controlling scftware changes.

An Introduction to the Source Code Control System PS1:14
A useful introductory article for those users with installations licensed for SCCS.

YACC: Yet Another Compiler-Compiler PS1:15

Converts a BNF specification of a language and semaniic actions written in C into a compiler
for that language.
LEX — A Lexical Analyzer Generator PS1:16

Creates a recognizer for a set of regular expressions: each regular expression can be followed
by arbitrary C code to be executed upon finding the regular expression.

The M4 Macro Processor PS1:17
- M4 is a macro processor useful in its own right and as a front-end for C, Ratfor, and Cobol.

Programming Libraries
Screen Updating and Cursor Movement Optimization PS1:18

Describes the curses package, an aid for writing screen-oriented, terminal-independent pro-
grams.

The C Programming Language - Reference Manual

Dennis M. Ritchie

This manual is a reprint, with updates to the current C standard, from The C Programming
Language, by Brian W. Kernighan and Dennis M. Richie, Prentice-Hall, Inc., 1978.

1. Introduction

This manual describes the C language on the DEC PDP-11%, the DEC VAX-11, and the AT&T 3B
20%. Where differences exist, it concentrates on the VAX, but tries to point out implementation-dependent
~ details. With few execptions, these dependencies follow directly from the underlying properties of the
hardware; the various compilers are generally quite compatible,

2. Lexical Conventions

There are six classes of tokens - identifiers, keywords, constants, strings, operators, and other
separators. Blanks, tabs, new-lines, and comments (collectively, ‘‘white space’’) as described below are
ignored except as they serve to separate tokens. Some white space is required to separate otherwise adja-
cent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to
include the longest string of characters which could possibly constitute a token.

2.1. Comments

The characters /* introduce a comment which terminates with the characters */. Comments do not
nest.

2.2. Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a letter. The underscore
() counts as a letter. Uppercase and lowercase letters are different. Although there is no limit on the
length of a name, only initial characters are significant: at least eight characters of a non-external name,
and perhaps fewer for external names. Moreover, some implementations may collapse case distinctions for
external names. The external name sizes include:

PDP-11 7 characters, 2 cases
VAX-11 >100 characters, 2 cases
AT&T 3B 20 >100 characters, 2 cases

2.3. Keywords
The following identifiers are reserved for use as keywords and may not be used otherwise:

t DEC PDP-11, and DEC VAX-11 are trademarks of Digital Equipment Corporation.
3B 20 is a trademark of AT&T.

PS1:1-2 The C Programming Language - Reference Manual

auto do . for . . return typedef
break ~double . _goto . . short union
case else . if . - sizeof unsigned
char enum ot | . static void
continue external long struct while
default float register switch

Somé implementations alsoreseive the words fortran, asm, gfloat, hfloat and quad

2.4. Constants

There are several kinds of constants. Each has a type; an introduction to types is given in
“NAMES.” Hardware characteristits *hat: affect sxzes are sununanzed in ‘‘Hardware Characteristics’’
under “LEXICAL CONVENTIONS" MR TR ‘o :

R A . Do 1
24.1 Integer Constants T SN L S

An integer constant consisting of a sequence of dlgus is taken to be octal if it begins with 0 (digit
zero). An oétal constant Consists of the digits 0 through 7 orily. A sequence of digits preceded by 0x or 0X
(digit zero) is taken to be a hexadecimal integer. The hexadecimal digits include a or A through f or F with
values 10 through 15. Otherwise, the integer constant is taken to be decimal. A decimal constant whose
value exceeds the largest signed machine integer is taken to be long; an octal or hex constant which
exceeds the largest unsigned machine integer is likewise taken to be long. Otherwise, integer constants are
int.

24.2, Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is a long
constant. As discussed below, on some machines integer and long values may be considered identical.

2.4.3. Character Constants

A character constant is a character enclosed in single quotes, as in ’x’. The value of a character con-
stant is the numerical value of the character in the machine’s character set.

Certain nongraphic characters, the single quote (*) and the backslash (\), may be represented accord-
ing to the following table of escape sequences:

new-line NLILF) \n

horizontal tab HT. \t

vertical tab vT \v

backspace BS \b

carriagereturn CR \r

form feed . FF \f

backslash .\ R\ T o
single quote ’ v 7
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to
specify the value of the desired character. A special case of this construction is \0 (not followed by a digit),
which indicates the character NUL. If the character following a backslash is not one of those specified, the
behavior is undefined. A new-line character is illegal in a character constant. The type of a character con-
stant is int,

The C Programming Language - Reference Manual PS1:1-3

2.4.4. Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an
optionally signed integer exponent. The integer and fraction parts both consist of a sequence of digits.
Either the integer part or the fraction part (not both) may be missing. Either the decimal point or the e and
the exponent (not both) may be missing. Every floating constant has type double.

2.4.5. Enumeration Constants

, Names declared as enumerators (see ‘‘Structure, Union, and,Enumeration Declarations’’ under .
“DECLARATIONS’’) have type int.

2.5. Strlngs e aed 4R estanas e ¢ Iy
A string is a sequence of characters surrounded by double. quotes,, as.ip " A smng has type .
““array of char’’ and storage class static (see ‘‘NAMES”’) and is initialized with the given characters. The -
compiler places a null byte (\0) at the end of each string so that programs which scan the string can find its
end. In a string, the double quote character (") must be preceded by a \; in addition, the same escapes as ;-: ; . -
described for character constants may be used. S omigit g . .
A\ and the immediately following new-line are ignored. All strmgs, even when written 1denucally, P Cemes
are distinct. S T T SO o g o e 1

2.6. Hardware Characteristics s e T o
The following figure summarize certain hardware properties that vary from machine to machme hf Gl el B85S

DECPDP-11 DECVAX-11 AT&T3B L)
(ASCI) (ASCII) (ASCIT) [« 57w gy WL L
ol TR LREGL . £
char 8 bits i 8 bits 8bits O enantiell 5L BT
int 16 32 32 .
short 16 16 16 | PEIPTINR B PRIl PO M
long 32 32 32 ey e
float 32 32 32 T earnan W
double 64 64 64 e e e
float range +10 ** 10 ** 102 |0 e
doublerange | +10 = +10 = +10 #% i
3. Syntax Notation P)

Syntactic categories are indicated by italic type and literal words and characters in bold type. Alter- :
native categories are listed on separate lines. An optional terminal or nonterminal symbol is mdlcated by ‘
the subscript ‘‘opt,’’ so that :

e. resszon
{exp opt }

indicates an optional expression enclosed in braces. The syntax is summanzed in “SYNTAX SUM
MARY”.

4. Names
The C language bases the interpretation of an identifier upon two attributes of the identifier — its

storage class and its type. The storage class determines the location and lifetime of the storage associated
with an identifier; the type determines the meaning of the values found in the identifier’s storage.

PS1:14 The C Programming Language - Reference Manual

4.1. Storage Class
There are four declarable storage classes: Automatic Static External Register.

Automatic variables are local to each invocation of a block (see *‘Compound Statement or Block’” in
*“‘STATEMENTS’’) and are discarded upon exit from the block. Static variables are local to a block but
retain their values upon reentry to a block even after control has left the block. External variables exist and
retain their values throughout the execution of the entire program and may be used for communication
between functions, even separately compiled functions. Register variables are (if possible) stored in the
fast registers of the machine; hke automauc vanables, they are local to each block and disappear on exit
from the block. - - s

42. Type = 0 - osniynagh :

The C language supports several fundamental types of objects Objects declared as characters (char)
are large enough to store any member of the implementation’s character set. If a genuine character from
that character set is stored in a char variable, its value is equivalent to the integer code for that character.
Other quantities may be stored into character variables, but the implementation is machine dependent. In
particular, char may be signed or unsigned by default.

Up to three sizes of integer, declared short int, int, and long int, are available. Longer integers pro-
vide no less storage than shorter ones, but the implementation may make either short integers or long
integers, or both, equivalent to plain integers. ‘‘Plain’’ integers have the natural size suggested by the host
machine architecture. The other sizes are provided to meet special needs.

The properties of enum types (see ‘‘Structure, Union, and Enumeration Declarations’’ under
‘“DECLARATIONS?’) are identical to those of some integer types. The implementation may use the range
of values to determine how to allocate storage.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2" where n is the number
of bits in the representation. (On the PDP-11, unsigned long quantities are not supported.)

Single-precision floating point (float) and double precision floating point (double) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be referred
to as arithmetic types. Char, int of all sizes whether unsigned or not, and enum will collectively be called
integral types. The float and double types will collectively be called floating types.

The void type specifies an empty set of values. It is used as the type returned by functions that gen-
* erate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite class of derived types con-
structed from the fundamental types in the following ways: Arrays of objects of most types Functions
which return objects of a given type Pointers to objects of a given type Structures containing a sequence of
objects of various types Unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

§. Objects and Lvalues

An object is a manipulatable region of storage. An Ivalue is an expression referring to an object. An
obvious example of an lvalue expression is an identifier. There are operators which yield lvalues: for
example, if E is an expression of pointer type, then *E is an lvalue expression referring to the object to
which E points. - The name ‘‘lvalue’’ comes from the assignment expression E1 = E2 in which the left
operand E1 must be an Ivalue expression. The discussion of each operator below indicates whether it
expects Ivalue operands and whether it yields an lvalue.

6. Conversions

A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This part explains the result to be expected from such conversions. The
conversions demanded by most ordinary operators are summarized under ‘* Arithmetic Conversions.”” The
summary will be supplemented as required by the discussion of each operator.

The C Programming Language - Reference Manual PS1:1-5

6.1. Characters and Integers

A character or a short integer may be used wherever an integer may be used. In all cases the value is
converted to an integer. Conversion of a shorter integer to a longer preserves sign. Whether or not sign-
extension occurs for characters is machine dependent, but it is guaranteed that a member of the standard
character set is non-negative. Of the machines treated here, only the PDP-11 and VAX-11 sign-extend.
On these machines, char variables range in value from —128 to 127. The more explicit type unsigned
char forces the values to range from 0 to 255.

On machines that treat characters as signed, the characters of the ASCII set are all non-negative.
However, a character constant specified with an octal escape suffers sign extension and may appear nega-
tive; for example, \377° has the value ~1.

When a longer integer is converted to a shorter i mteger or to a char, it is truncated on the left. Excess
bits are simply discarded. 2 /

6.2. Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a float appears in an.
expression it is lengthened to double by zero padding its fraction. When a double must be converted to '
float, for example by an assignment, the double is rounded before truncation to float length. This result is.
undefined if it cannot be represented as a float. On the VAX, the compiler can be directed to use smgle;
percision for expressions containing only float and interger operands C .

6.3. Floating and Integral

Conversions of floating values to integral type are rather machine dependent. In particular, ﬂ'*e dxrec- Lo

tion of truncation of negative numbers varies. The result is undefined if it will not fit in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of accuracy occurs if the -,
destination lacks sufficient bits. PR

6.4. Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in such a case, the ﬁrst :
is converted as specified in the discussion of the addition operator. Two pointers to objects of the same;; L.
type may be subtracted; in this case, the result is converted to an integer as specified in the discussion of

the subtraction operator.

6.5. Unsigned
Whenever an unsigned integer and a plain integer are combined, the plain integer is converted to -

unsigned and the result is unsigned. The value is the least unsigned integer congruent to the signed integer = "

(modulo 2%ordsizey In 3 2°s complement representation, this conversion is conceptual; and there is no‘ o
actual change in the bit pattern. :

When an unsigned short integer is converted to long, the value of the result is the same numerically -

as that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

6.6. Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar way. This pattern will
be called the ‘‘usual arithmetic conversions.”” First, any operands of type char or short are converted to
int, and any operands of type unsigned char or unsigned short are converted to unsigned int. Then, if
either operand is double, the other is converted to double and that is the type of the result. Otherwise, if
either operand is unsigned long, the other is converted to unsigned long and that is the type of the result.-
Otherwise, if either operand is long, the other is converted to long and that is the type of the result. Other-
wise, if one operand is long, and the other is unsigned int, they are both converted to unsigned long and
that is the type of the result. Otherwise, if either operand is unsigned, the other is converted to unsigned
and that is the type of the result. Otherwise, both operands must be int, and that is the type of the result.

PS1:1-6 The C Programming Language - Reference Manual

6.7. Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit nor implicit
conversion may be applied. Because a void expression denotes a nonexistent value, such an expression
may be used only as an expression statement (see ‘ ‘Expression Statement’’ under ‘‘STATEMENTS’’) or
as the left operand of a comma expression (see ‘‘Comma Operator’’ under ‘“EXPRESSIONS’’).

An expression may be converted ¢o type void by use of a cast. For example, this makes explicit the
discarding of the value of a function call used as an expression statement.

7. Expressions

The precedence of expression operators is the same as the order of the major subsections of this sec-
tion, highest precedence first. Thus, for example, the expressions referred to as the operands of + (see
*“Additive Operators’’) are those expressions defined under ‘‘Primary Expressions’’, ‘“Unary Operators’’,
and ‘“Multiplicative Operators’’. Within each subpart, the operators have the same precedence. Left- or
right-associativity is specified in each subsection for the operators discussed therein. The precedence and
associativity of all the expression operators are summarized in the grammar of *‘SYNTAX SUMMARY"’.

Otherwise, the order of evaluation of expressions is undefined. In particular, the compiler considers
itself free to compute subexpressions in the order it believes most efficient even if the subexpressions
involve side effects. The order in which subexpression evaluation takes place is unspecified. Expressions
involving a commutative and associative operator (*, +, &, |, ") may be rearranged arbitrarily even in the
presence of parentheses; to force a particular order of evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is undefined. Most existing
implementations of C ignore integer overflows; treatment of division by 0 and all floating-point exceptions
varies between machines and is usually adjustable by a library function.

7.1. Primary Expressions
Primary expressions involving ., —>, subscripting, and function calls group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression. [expression |
primary-expression (expression-list)
primary-expression . identifier ‘
primary-expression —> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression provided it has been suitably declared as discussed below. Its
type is specified by its declaration. If the type of the identifier is ‘‘array of ...”’, then the value of the
identifier expression is a pointer to the first object in the array; and the type of the expression is ‘‘pointer to
...”". Moreover, an array identifier is not an lvalue expression. Likewise, an identifier which is declared
‘‘function returning ..."”’, when used except in the function-name position of a call, is converted to
‘“pointer to function returning ...”’.

A constant is a primary expression. Its type may be int, long, or double depending on its form.
Character constants have type int and floating constants have type double.

A string is a primary expression. Its type is originally ‘‘array of char’’, but following the same rule
given above for identifiers, this is modified to ‘‘pointer to char’’ and the result is a pointer to the first char-
acter in the string. (There is an exception in certain initializers; see ‘‘Initialization’’ under ‘‘DECLARA-
TIONS.”)

The C Programming Language - Reference Manual PS1:1-7

A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually, the primary expression has type ‘‘pointer to ...”’, the sub-
script expression is int, and the type of the result is ‘“...”’. The expression EI1[E2] is identical (by
definition) to *((E1)+E2)). All the clues needed to understand this notation are contained in this $abpart
together with the discussions in ‘“‘Unary Operators’’ and ‘‘Additive Operators’’ on identifiers, * and +
respectively. The implications are summarized under ‘‘Arrays, Pointers, and Subscripting’’ under
‘“TYPES REVISITED.”

A function call is a primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function. The primary
expression must be of type ‘‘function returning ...,”" and the result of the function call is of type ‘‘...”".
As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis is contextually
declared to represent a function returning an integer; thus in the most common case, integer-valued func-
tions need not be declared.

Any actual arguments of type float are converted to double before the call. Any of type char or
short are converted to int. Array names are converted to pointers. No other conversions are performed
automatically; in particular, the compiler does not compare the types of actual arguments with those of for-
mal arguments. If conversion is needed, use a cast; see ‘“Unary Operators’’ and ‘‘Type Names’’ under
“DECLARATIONS.”

In preparing for the call to a function, a copy is made of each actual parameter. Thus, all argument
passing in C is strictly by value. A function may change the values of its formal parameters, but these
changes cannot affect the values of the actual parameters. It is possible to pass a pointer on the understand-
ing that the function may change the value of the object to which the pointer points. An array name is a
pointer expression. The order of evaluation of arguments is undefined by the language; take note that the
various compilers differ. Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expression. The first expres-
sion must be a structure or a union, and the identifier must name a member of the structure or union. The
value is the named member of the structure or union, and it is an lvalue if the first expression is an lvalue.

A primary expression followed by an arrow (built from — and >) followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier must name a
member of that structure or union. The result is an Ivalue referring to the named member of the structure
or union to which the pointer expression points. Thus the expression E1->MOS is the same as
(*E1).MOS. Structures and unions are discussed in ‘‘Structure, Union, and Enumeration Declarations’’
under “DECLARATIONS.”

7.2. Unary Operators
Expressions with unary operators group right to left.

unary-expression:
* expression
& lvalue
— expression
! expression
~ expression
++ lvalue
—lvalue
lvalue ++
Ivalue —
(type-name) expression
sizeof expression
sizeof (type-name)

PS1:1-8 The C Programming Language - Reference Manual

The unary * operator means indirection ; the expression must be a pointer, and the result is an Ivalue
referring to the object to which the expression points. If the type of the expression is ‘‘pointer to ...,”” the
type of the resultis <“...”".

The result of the unary & operator is a pointer to the object referred to by the lvalue. If the type of
the lvalue is ““ ... "’ the type of the result is ‘“pointer to .

The result of the unary — operator is the negative of its operand. The usual arithmetic convers10ns
are performed. The negative of an unsigned quantity is computed by subtracting its value from 2" where n
is the number of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator ! is one if the value of its operand is zero, zero if the
value of its operand is nonzero. The type of the result is int. It is applicable to any arithmetic type or to
pointers.

The ~ operator yields the one’s complement of its operand. The usual arithmetic conversions are
performed. The type of the operand must be integral.

The object referred to by the lvalue operand of prefix ++ is incremented. The value is the new value
of the operand but is not an lvalue. The expression ++x is equivalent to x=x+1. See the discussions
*“ Additive Operators’’ and *‘Assignment Operators’’ for information on conversions.

The Ivalue operand of prefix — is decremented analogously to the prefix ++ operator.

When postfix ++ is applied to an Ivalue, the result is the value of the object referred to by the lvalue.
After the result is noted, the object is incremented in the same manner as for the prefix ++ operator. The
type of the result is the same as the type of the lvalue expression.

When postfix — is applied to an lvalue, the result is the value of the object referred to by the Ivalue.
After the result is noted, the object is decremented in the manner as for the prefix — operator. The type of
the result is the same as the type of the Ivalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value of
the expression to the named type. This construction is called a cast. Type names are described in ‘‘Type
Names’’ under ‘‘Declarations.’’

The sizeof operator yields the size in bytes of its operand. (A byte is undefined by the language
except in terms of the value of sizeof. However, in all existing implementations, a byte is the space
required to hold a char.) When applied to an array, the result is the total number of bytes in the array. The
size is determined from the declarations of the objects in the expression. This expression is semantically an
unsigned constant and may be used anywhere a constant is required. Its major use is in communication
with routines like storage allocators and I/O systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the size
in bytes of an object of the indicated type.

The construction sizeof(type) is taken to be a unit, so the expression sizeof(sype)-2 is the same as
(sizeof(type))-2.

7.3. Multiplicative Operators

The multiplicative operators *, /, and % group left to right. The usual arithmetic conversions are
performed.

multiplicative expression:
expression * expression
expression | expression
expression % expression

The binary * operator indicates multiplication. The * operator is associative, and expressions with
several multiplications at the same level may be rearranged by the compiler. The binary / operator indi-
cates division,

The C Programming Language - Reference Manual PS1:1-9

The binary % operator yields the remainder from the division of the first expression by the second.
The operands must be integral.

When positive integers are divided, truncation is toward 0; but the form of truncation is machine-
dependent if either operand is negative. On all machines covered by this manual, the remainder has the
same sign as the dividend. Itis always true that (a/b)*b + a%b is equal to a (if b is not 0).

7.4. Additive Operators

The additive operators + and — group left to right. The usual arithmetic conversions are performed.
There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression — expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and a value
of any integral type may be added. The latter is in all cases converted to an address offset by multiplying it
by the length of the object to which the pointer points. The result is a pointer of the same type as the origi-
nal pointer which points to another object in the same array, appropriately offset from the original object.
Thus if P is a pointer to an object in an array, the expression P+1 is a pointer to the next object in the array.
No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the same level may be rear-
ranged by the compiler.

The result of the — operator is the difference of the operands. The usual arithmetic conversions are
performed. Additionally, a value of any integral type may be subtracted from a pointer, and then the same
conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the
length of the object) to an int representing the number of objects separating the pointed-to objects. This
conversion will in general give unexpected results unless the pointers point to objects in the same array,
since pointers, even to objects of the same type, do not necessarily differ by a multiple of the object length.

7.5. Shift Operators

The shift operators << and >> group left to right. Both perform the usual arithmetic conversions on
their operands, each of which must be integral. Then the right operand is converted to int; the type of the
result is that of the left operand. The result is undefined if the right operand is negative or greater than or
equal to the length of the object in bits. On the VAX a negative right operand is interpreted as reversing
the direction of the shift.

shift-expression:
expression < < expression
expression >> expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits. Vacated bits are 0
filled. The value of E1>>E2 is E1 right-shifted E2 bit positions. The right shift is guaranteed to be logical
(0 fill) if E1 is unsigned; otherwise, it may be arithmetic.

7.6. Relational Operators
The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression < = expression
expression > = expression

PS1:1-10 The C Programming Language - Reference Manual

The operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or equal
to) all yield O if the specified relation is false and 1 if it is true. The type of the result is int. The usual
arithmetic conversions are performed. Two pointers may be compared; the result depends on the relative
locations in the address space of the pointed-to objects. Pointer comparison is portable only when the
pointers point to objects in the same array.

7.7. Equality Operators

equality-expression:
expression == expression
expression ! = expression

The == (equal to) and the != (not equal to) operators are exactly analogous to the relational operators
except for their lower precedence. (Thus a<b == c<d is 1 whenever a<b and c<d have the same truth
value).

A pointer may be compared to an integer only if the integer is the constant 0. A pointer to which 0
has been assigned is guaranteed not to point to any object and will appear to be equal to 0. In conventional
usage, such a pointer is considered to be null,

7.8. Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged. The usual arithmetic
conversions are performed. The result is the bitwise AND function of the operands. The operator applies
only to integral operands.

7.9. Bitwise Exclusive OR Operator

exclusive-or-expression:
expression ” expression

The * operator is associative, and expressions involving ~ may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise exclusive OR function of the operands. The operator
applies only to integral operands. ‘

7.10. Bitwise Inclusive OR Operator

inclusive-or-expression.
expression | expression

The | operator is associative, and expressions involving | may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise inclusive OR function of its operands. The operator
applies only to integral operands.

7.11. Logical AND Operator

logical-and-expression:
expression & & expression

The && operator groups left to right. It returns 1 if both its operands evaluate to nonzero, O other-
wise. Unlike &, & & guarantees left to right evaluation; moreover, the second operand is not evaluated if
the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or be a
pointer. The result is always int.

The C Programming Language - Reference Manual PS1:1-11

7.12. Logical OR Operator

logical-or-expression:
expression || expression

The || operator groups left to right. It returns 1 if either of its operands evaluates to nonzero, 0 other-
wise. Unlike |, || guarantees left to right evaluation; moreover, the second operand is not evaluated if the
value of the first operand is nonzero.

The operands need not have the same type, but each must have one of the fundamental types or be a
pointer. The result is always int.

7.13. Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated; and if it is nonzero, the
result is the value of the second expression, otherwise that of third expression. If possible, the usual arith-
metic conversions are performed to bring the second and third expressions to a common type. If both are
structures or unions of the same type, the result has the type of the structure or union. If both pointers are
of the same type, the result has the common type. Otherwise, one must be a pointer and the other the con-
stant O, and the result has the type of the pointer. Only one of the second and third expressions is
evaluated.

7.14. Assignment Operators

There are a number of assignment operators, all of which group right to left. All require an lvalue as
their left operand, and the type of an assignment expression is that of its left operand. The value is the
value stored in the left operand after the assignment has taken place. The two parts of a compound assign-
ment operator are separate tokens.

assignment-expression.

Ivalue = expression
lvalue += expression
lvalue —= expression
lvalue *= expression
lvalue /= expression
lvalue %= expression
lvalue >>= expression
lvalue <<= expression
lvalue &= expression
lvalue "= expression
lvalue [= expression

In the simple assignment with =, the value of the expression replaces that of the object referred to by
the lvalue. If both operands have arithmetic type, the right operand is converted to the type of the left
preparatory to the assignment. Second, both operands may be structures or unions of the same type.
Finally, if the left operand is a pointer, the right operand must in general be a pointer of the same type.
However, the constant 0 may be assigned to a pointer; it is guaranteed that this value will produce a null
pointer distinguishable from a pointer to any object.

The behavior of an expression of the form E1 op = E2 may be inferred by taking it as equivalent to
E1 = E1 op (E2); however, E1 is evaluated only once. In += and —=, the left operand may be a pointer; in
which case, the (integral) right operand is converted as explained in ‘‘Additive Operators.”” All right
operands and all nonpointer left operands must have arithmetic type.

PS1:1-12 The C Programming Language - Reference Manual

7.15. Comma Operator

comma-expression.:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and the value of the left
expression is discarded. The type and value of the result are the type and value of the right operand. This
operator groups left to right. In contexts where comma is given a special meaning, e.g., in lists of actual
arguments to functions (see ‘‘Primary Expressions’’) and lists of initializers (see ‘‘Initialization’’ under
“DECLARATIONS”’), the comma operator as described in this subpart can only appear in parentheses.
For example,

f(a, (t=3, t+2), c)
has three arguments, the second of which has the value 5.

8. Declarations

Declarations are used to specify the interpretation which C gives to each identifier; they do not
necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator—listap‘ ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers con-
sist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers
sc-specifier decl-speciﬁerso;

The list must be self-consistent in a way described below.

8.1. Storage Class Specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a *‘storage class specifier’’ only for syn-
tactic convenience. See ‘‘Typedef”’ for more information. The meanings of the various storage classes
were discussed in ‘‘Names.”’

The auto, static, and register declarations also serve as definitions in that they cause an appropriate
amount of storage to be reserved. In the extern case, there must be an external definition (see ‘‘External
Definitions’”) for the given identifiers somewhere outside the function in which they are declared.

A register-declaration is best thought of as an auto declaration, together with a hint to the compiler
that the variables declared will be heavily used. Only the first few such declarations in each function are
effective. Moreover, only variables of certain types will be stored in registers; on the PDP-11, they are int
or pointer. One other restriction applies to register variables: the address-of operator & cannot be applied
to them. Smaller, faster programs can be expected if register declarations are used appropriately, but future
improvements in code generation may render them unnecessary.

At most, one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declara-
tion, it is taken to be auto inside a function, extern outside. Exception: functions are never automatic.

The C Programming Language - Reference Manual PS1:1-13

8.2. Type Specifiers
The type-specifiers are

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

At most one of the words long or short may be specified in conjunction with int; the meaning is the
same as if int were not mentioned. The word long may be specified in conjunction with float; the meaning
is the same as double. The word unsigned may be specified alone, or in conjunction with int or any of its
short or long varieties, or with char.

Otherwise, at most on type-specifier may be given in a declaration. In particular, adjectival use of
long, short, or unsigned is not permitted with typedef names. If the type-specifier is missing from a
declaration, it is taken to be int.

Specifiers for structures, unions, and enumerations are discussed in *‘Structure, Union, and Enumera-
tion Declarations.”” Declarations with typedef names are discussed in ‘‘Typedef.”’

8.3. Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of
which may have an initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator initializer
0]

Initializers are discussed in ‘‘Initialization’’. The specifiers in the declaration indicate the type and
storage class of the objects to which the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressionopt]

The grouping is the same as in expressions.

PS1:1-14 | The C Programming Language - Reference Manual

8.4. Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the same form as the declara-
tor appears in an expression, it yields an object of the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is declared. If an unadorned
identifier appears as a declarator, then it has the type indicated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now imagine a declaration
TD1

where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this declaration makes the
identifier have type ‘... T ,”’ where the *“...”’ is empty if D1 is just a plain identifier (so that the type of
X in ‘int x** is just int). Then if D1 has the form

*D

the type of the contained identifier is ‘... pointerto T .”’
If D1 has the form

D()

then the contained identifier has the type ‘... function returning T.”’
If D1 has the form

D { constant-expression]

or
D[]

then the contained identifier has type ‘“... array of T.”” In the first case, the constant expression is an
expression whose value is determinable at compile time , whose type is int, and whose value is positive.
(Constant expressions are defined precisely in ‘‘Constant Expressions.’”’) When several ‘‘array of’’
specifications are adjacent, a multidimensional array is created; the constant expressions which specify the
bounds of the arrays may be missing only for the first member of the sequence. This elision is useful when
the array is external and the actual definition, which allocates storage, is given elsewhere. The first con-
stant expression may also be omitted when the declarator is followed by initialization. In this case the size
is calculated from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or union,
or from another array (to generate a multidimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as
follows: functions may not return arrays or functions although they may return pointers; there are no
arrays of functions although there may be arrays of pointers to functions. Likewise, a structure or union
may not contain a function; but it may contain a pointer to a function.

As an example, the declaration
int i, *ip, £, *fip(), (*pfi)Q; -

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function fip returning a
pointer to an integer, and a pointer pfi to a function which returns an integer. It is especially useful to com-
pare the last two. The binding of *fip() is *(fip()). The declaration suggests, and the same construction in
an expression requires, the calling of a function fip. Using indirection through the (pointer) result to yield
an integer. In the declarator (*pfi)(), the extra parentheses are necessary, as they are also in an expression,
to indicate that indirection through a pointer to a function yields a function, which is then called; it returns
an integer. .

The C Programming Language - Reference Manual PS1:1-15

As another example,
float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. Finally,
static int x3d{3][5][7];

declares a static 3-dimensional array of integers, with rank 3x5x7. In complete detail, x3d is an array of
three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers. Any
of the expressions x3d, x3d[il, x3d[i][j], x3d[il(jl[k] may reasonably appear in an expression. The first
three have type ‘‘array’’ and the last has type int.

8.5. Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each member may have any
type. A union is an object which may, at a given time, contain any one of several members. Structure and
union specifiers have the same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A
structure member may also consist of a specified number of bits. Such a member is also called a field ; its
length, a non-negative constant expression, is set off from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as the declarations are read
left to right. Each nonfield member of a structure begins on an addressing boundary appropriate to its type;
therefore, there may be unnamed holes in a structure. Field members are packed into machine integers;
they do not straddle words. A field which does not fit into the space remaining in a word is put into the
next word. No field may be wider than a word.

Fields are assigned right to left on the PDP-11 and VAX-11, left to right on the 3B 20.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field useful
for padding to conform to externally-imposed layouts. As a special case, a field with a width of 0 specifies

PS1:1-16 The C Programming Language - Reference Manual

alignment of the next field at an implementation dependant boundary.

The language does not restrict the types of things that are declared as fields, but implementations are
not required to support any but integer fields. Moreover, even int fields may be considered to be unsigned.
On the PDP-11, fields are not signed and have only integer values; on the VAX-11, fields declared with int
are treaied as containing a sign. For these reasons, it is strongly recommended that fields be declared as
unsigned. In all implementations, there are no arrays of fields, and the address-of operator & may not be
applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset O and whose size is
sufficient to contain any of its members. At most, one of the members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A subse-
quent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags also permit the long part of
the declaration to be given once and used several times. It is illegal to declare a structure or union which
contains an instance of itself, but a structure or union may contain a pointer to an instance of itself.

The third form of a structure or union specifier may be used prior to a declaration which gives the
complete specification of the structure or union in situations in which the size of the structure or union is
unnecessary. The size is unnecessary in two situations: when a pointer to a structure or union is being
declared and when a typedef name is declared to be a synonym for a structure or union. This, for example,
allows the declaration of a pair of structures which contain pointers to each other.

The names of members and tags do not conflict with each other or with ordinary variables. A partic-
ular name may not be used twice in the same structure, but the same name may be used in several different
structures in the same scope.

A simple but important example of a structure declaration is the following binary tree structure:

struct tnode
{
char tword[20];
int count;
struct tnode *left;
struct tnode *right;

JH

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this
declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a structure of the given sort. With
these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;
s.left

refers to the left subtree pointer of the structure s; and

The C Programming Language - Reference Manual PS1:1-17

s.right->tword[0]

refers to the first character of the tword member of the right subtree of s.

8.6. Enumeration Declarations
Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and may appear wherever constants are
required. If no enumerators with = appear, then the values of the corresponding constants begin at 0 and
increase by 1 as the declaration is read from left to right. An enumerator with = gives the associated
identifier the value indicated; subsequent identifiers continue the progression from the assigned value.

The names of enumerators in the same scope must all be distinct from each other and from those of
ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a
struct-specifier; it names a particular enumeration. For example,

enum color; { chartreuse, burgundy, claret=20, winedark };

enum color **cp, col;
col = claret;
cp = &col;

if (**cp == burgundy) ...

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer to an
object of that type, and col as an object of that type. The possible values are drawn from the set
{0,1,20,21}.

8.7. Initialization

A declarator may specify an initial value for the identifier being declared. The initializer is preceded
by = and consists of an expression or a list of values nested in braces.
initializer:
= expression
= { initializer-list }
= { initializer-list , }

PS1:1-18 | The C Programming Language - Reference Manual

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external variable must be constant expressions,
which are described in “CONSTANT EXPRESSIONS”, or expressions which reduce to the address of a
previously declared variable, possibly offset by a constant expression. Automatic or register variables may
be initialized by arbitrary expressions involving constants and previously declared variables and functions.

Static and external variables that are not initialized are guaranteed to start off as zero. Automatic and
register variables that are not initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of a sin-
gle expression, perhaps in braces. The initial value of the object is taken from the expression; the same
conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array), the initializer consists of a brace-
enclosed, comma-separated list of initializers for the members of the aggregate written in increasing sub-
script or member order. If the aggregate contains subaggregates, this rule applies recursively to the
members of the aggregate. If there are fewer initializers in the list than there are members of the aggregate,
then the aggregate is padded with zeros. It is not permitted to initialize unions or automatic aggregates.

Braces may in some cases be omitted. If the initializer begins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to be
more initializers than members. If, however, the initializer does not begin with a left brace, then only
enough elements from the list are taken to account for the members of the aggregate; any remaining
members are left to initialize the next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive charac-
ters of the string initialize the members of the array.

For example,
intx[1={1,3,5};

declares and initializes x as a one-dimensional array which has three members, since no size was specified
and there are three initializers.

float y[4][3] =
{
{L3,5},
{ 2, 4’ 6 }’
{ 3, 5’ 7 }’

5

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y[0], namely y[0][0],
y[0][1], and y[0][2]. Likewise, the next two lines initialize y[1] and y{2]. The initializer ends early and
therefore y[3] is initialized with 0. Precisely, the same effect could have been achieved by

" float y[4][3] =
{
1,3,5,2,4,6,3,5,7
}H

The initializer for y begins with a left brace but that for y[0] does not; therefore, three elements from
the list are used. Likewise, the next three are taken successively for y[1] and y[2]. Also,

The C Programming Language - Reference Manual PS1:1-19

float y[4](3] =
{

{1},{2},{3}, {4}
J§

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0.
Finally,
char msg{] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

8.8. Type Names

In two contexts (to specify type conversions explicitly by means of a cast and as an argument of
sizeof), it is desired to supply the name of a data type. This is accomplished using a ‘‘type name’’, which
in essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* gbstract-declarator
abstract-declarator ()
abstract-declarator constant-expressionopt]

To avoid ambiguity, in the construction
(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to identify uniquely
the location in the abstract-declarator where the identifier would appear if the construction were a declara-
tor in a declaration. The named type is then the same as the type of the hypothetical identifier. For exam-
ple,

int

int *

int *[3]

int (*)[3]

int *()

int (*)O

int (*[3D0
name respectively the types ‘‘integer,”” ‘‘pointer to integer,”’ ‘‘array of three pointers to integers,”’

‘‘pointer to an array of three integers,”” ‘‘function returning pointer to integer,”’ ‘‘pointer to function
returning an integer,”’ and ‘‘array of three pointers to functions returning an integer.’’

8.9. Typedef

Declarations whose “‘storage class’’ is typedef do not define storage but instead define identifiers
which can be used later as if they were type keywords naming fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as part of any declara-
tor therein becomes syntactically equivalent to the type keyword naming the type associated with the

PS1:1-20 The C Programming Language - Reference Manual

identifier in the way described in ‘‘Meaning of Declarators.”’ For example, after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is ‘‘pointer to int, *’ and that of z is
the specified structure. The zp is a pointer to such a structure,

The typedef does not introduce brand-new types, only synonyms for types which could be specified
in another way. Thus in the example above distance is considered to have exactly the same type as any
other int object. -

9. Statements
Except as indicated, statements are executed in sequence.

9.1. Expression Statement
Most statements are expression statements, which have the form

expression ;
Usually expression statements are assignments or function calls.

9.2, Compound Statement or Block

So that several statements can be used where one is expected, the compound statement (also, and
equivalently, called ‘“‘block’’) is provided:

compound-statement:
{ declaration-list _ statement-list _}
opt opt

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is
pushed down for the duration of the block, after which it resumes its force.

Any initializations of auto or register variables are performed each time the block is entered at the
top. It is currently possible (but a bad practice) to transfer into a block; in that case the initializations are
not performed. Initializations of static variables are performed only once when the program begins execu- -
tion. Inside a block, extern declarations do not reserve storage so initialization is not permitted.

9.3. Conditional Statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

The C Programming Language - Reference Manual PS1:1-21

In both cases, the expression is evaluated; and if it is nonzero, the first substatement is executed. In
the second case, the second substatement is executed if the expression is 0. The ‘‘else’”’ ambiguity is
resolved by connecting an else with the last encountered else-less if.

9.4. While Statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains nonzero. The
test takes place before each execution of the statement.

9.5. Do Statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes 0. The test takes
place after each execution of the statement.

9.6. For Statement
The for statement has the form:

for (exp-1 opt ; exp-Zop‘ ; exp-3op‘) statement

Except for the behavior of continue, this statement is equivalent to
exp-1;
while (exp-2)
{

statement
exp-3 ;
}

Thus the first expression specifies initialization for the loop; the second specifies a test, made before
each iteration, such that the loop is exited when the expression becomes 0. The third expression often
specifies an incrementing that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes the implied while clause
equivalent to while(1); other missing expressions are simply dropped from the expansion above.

9.7. Switch Statement

The switch statement causes control to be transferred to one of several statements depending on the
value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be int. The
statement is typically compound. Any statement within the statement may be labeled with one or more
case prefixes as follows:

case constant-expr ession ;

where the constant expression must be int. No two of the case constants in the same switch may have the
same value. Constant expressions are precisely defined in ‘‘CONSTANT EXPRESSIONS.”’

There may also be at most one statement prefix of the form

PS1:1-22 The C Programming Language - Reference Manual

default :

When the switch statement is executed, its expression is evaluated and compared with each case
constant. If one of the case constants is equal to the value of the expression, control is passed to the state-
ment following the matched case prefix. If no case constant matches the expression and if there is a
default, prefix, control passes to the prefixed statement. If no case matches and if there is no default, then
none of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues unimpeded across
such prefixes. To exit from a switch, see ‘‘Break Statement.”’

" Usually, the statement that is the subject of a switch is compound. Declarations may appear at the
head of this statement, but initializations of automatic or register variables are ineffective.

9.8. Break Statement
The statement

break ;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to the state-
ment following the terminated statement.

9.9. Continue Statement
The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for statement;
that is to the end of the loop. More precisely, in each of the statements

while (...) { do { for (...){
statement ; statement ; statement ;
contin: ; contin: ; contin: ;

} } while (...); }

a continue is equivalent to goto contin. (Following the contin: is a null statement, see ‘“Null State-
ment’’.)

9.10. Return Statement
A function returns to its caller by means of the return statement which has one of the forms
return ;
return expression ;

In the first case, the returned value is undefined. In the second case, the value of the expression is
returned to the caller of the function. If required, the expression is converted, as if by assignment, to the
type of function in which it appears. Flowing off the end of a function is equivalent to a return with no
returned value. The expression may be parenthesized.

9.11. Goto Statement
Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (see ‘‘Labeled Statement’’) located in the current function.

The C Programming Language - Reference Manual PS1:1-23

9.12. Labeled Statement
Any statement may be preceded by label prefixes of the form

identifier

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The scope
of a label is the current function, excluding any subblocks in which the same identifier has been redeclared.
See ‘“SCOPE RULES.”’

9.13. Null Statement
The null statement has the form

.
’

A null statement is useful to carry a label just before the } of a compound statement or to supply a
null body to a looping statement such as while.

10. External Definitions

A C program consists of a sequence of external definitions. An external definition declares an
identifier to have storage class extern (by default) or perhaps static, and a specified type. The type-
specifier (see “Type Specifiers’’ in ““DECLARATIONS’’) may also be empty, in which case the type is
taken to be int. The scope of external definitions persists to the end of the file in which they are declared
just as the effect of declarations persists to the end of a block. The syntax of external definitions is the
same as that of all declarations except that only at this level may the code for functions be given.

10.1. External Function Definitions
Function definitions have the form

Junction-definition:
decl-speciﬁersop‘ function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see ‘‘Scope of Exter-
nals’’ in *“SCOPE RULES”’ for the distinction between them. A function declarator is similar to a declara-
tor for a ‘‘function returning ...’’ except that it lists the formal parameters of the function being defined.

Jfunction-declarator:
declarator (parameter-listoﬂ)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form :

function-body:
declaration-list ‘compound-statement
op

The identifiers in the parameter list, and only those identifiers, may be declared in the declaration list.
Any identifiers whose type is not given are taken to be int. The only storage class which may be specified
is register; if it is specified, the corresponding actual parameter will be copied, if possible, into a register at
the outset of the function.

A simple example of a complete function definition is

o

PS1:1-24 The C Programming Language - Reference Manual

int max(a, b, ¢)
inta, b, c;

{
int m;
m=(@>hb)?a:b;
return((m >c¢) ?m: ¢);
}

Here int is the type-specifier; max(a, b, ¢) is the function-declarator; int a, b, c; is the declaration-
list for the formal parameters; { ... } is the block giving the code for the statement.

The C program converts all float actual parameters to double, so formal parameters declared float
have their declaration adjusted to read double. All char and short formal parameter declarations are simi-
larly adjusted to read int. Also, since a reference to an array in any context (in particular as an actual
parameter) is taken to mean a pointer to the first element of the array, declarations of formal parameters
declared “‘array of ...’" are adjusted to read ‘‘pointer 0”

10.2. External Data Definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static but not auto or register.

11. Scope Rules

A C program need not all be compiled at the same time. The source text of the program may be kept
in several files, and precompiled routines may be loaded from libraries. Communication among the func-
tions of a program may be carried out both through explicit calls and through manipulation of external data.

Therefore, there are two kinds of scopes to consider: first, what may be called the lexical scope of an
identifier, which is essentially the region of a program during which it may be used without drawing
‘‘undefined identifier’’ diagnostics; and second, the scope associated with external identifiers, which is
characterized by the rule that references to the same external identifier are references to the same object.

11.1. Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the definition through
the end of the source file in which they appear. The lexical scope of identifiers which are formal parame-
ters persists through the function with which they are associated. The lexical scope of identifiers declared
at the head of a block persists until the end of the block. The lexical scope of labels is the whole of the
function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the block
constituting a function, any declaration of that identifier outside the block is suspended until the end of the
block.

Remember also (see ‘Structure, Union, and Enumeration Declarations’’ in ‘‘DECLARATIONS’’)
that tags, identifiers associated with ordinary variables, and identities associated with structure and union
members form three disjoint classes which do not conflict. Members and tags follow the same scope rules
as other identifiers. The enum constants are in the same class as ordinary variables and follow the same
scope rules. The typedef names are in the same class as ordinary identifiers. They may be redeclared in
inner blocks, but an explicit type must be given in the inner declaration:

The C Programming Language - Reference Manual PS1:1-25

typedef float distance;

{

auto int distance;

)

The int must be present in the second declaration, or it would be taken to be a declaration with no
declarators and type distance.

11.2. Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere among the files or libraries
constituting the complete program there must be at least one external definition for the identifier. All func-
tions in a given program which refer to the same external identifier refer to the same object, so care must be
taken that the type and size specified in the definition are compatible with those specified by each function
which references the data.

It is illegal to explicitly initialize any external identifier more than once in the set of files and libraries
comprising a multi-file program. It is legal to have more than one data definition for any external non-
function identifier; explicit use of extern does not change the meaning of an external declaration.

In restricted environments, the use of the extern storage class takes on an additional meaning. In
these environments, the explicit appearance of the extern keyword in external data declarations of identi-
ties without initialization indicates that the storage for the identifiers is allocated elsewhere, either in this
file or another file. It is required that there be exactly one definition of each external identifier (without
extern) in the set of files and libraries comprising a mult-file program.

Identifiers declared static at the top level in external definitions are not visible in other files. Func-
tions may be declared static. '

12. Compiler Control Lines

The C compiler contains a preprocessor capable of macro substitution, conditional compilation, and
inclusion of named files. Lines beginning with # communicate with this preprocessor. There may be any
number of blanks and horizontal tabs between the # and the directive. These lines have syntax independent
of the rest of the language; they may appear anywhere and have effect which lasts (independent of scope)
until the end of the source program file.

12.1. Token Replacement
A compiler-control line of the form

#define identifier taken-stringop‘

causes the preprocessor to replace subsequent instances of the identifier with the given string of tokens.
Semicolons in or at the end of the token-string are part of that string. A line of the form

#define identifier(identifier, ...)token-stringop‘

where there is no space between the first identifier and the (, is a macro definition with arguments. There
may be zero or more formal parameters. Subsequent instances of the first identifier followed by a (, a
sequence of tokens delimited by commas, and a) are replaced by the token string in the definition. Each
occurrence of an identifier mentioned in the formal parameter list of the definition is replaced by the
corresponding token string from the call. The actual arguments in the call are token strings separated by
commas; however, commas in quoted strings or protected by parentheses do not separate arguments. The
number of formal and actual parameters must be the same. Strings and character constants in the token-
string are scanned for formal parameters, but strings and character constants in the rest of the program are
not scanned for defined identifiers to replacement.

PS1:1-26 The C Programming Language - Reference Manual

In both forms the replacement string is rescanned for more defined identifiers. In both forms a long
definition may be continued on another line by writing \ at the end of the line to be continued.

This facility is most valuable for definition of ‘‘manifest constants,’’ as in
#define TABSIZE 100 '

int table [TABSIZE];

A control line of the form
#undef identifier

causes the identifier’s preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no intervening #undef, then the
two token-strings are compared textually. If the two token-strings are not identical (all white space is con-
sidered as equivalent), then the identifier is considered to be redefined.

12.2. File Inclusion
A compiler control line of the form

#include "filename "

causes the replacement of that line by the entire contents of the file filename. The named file is searched
for first in the directory of the file containing the #include, and then in a sequence of specified or standard
places. Alternatively, a control line of the form

#include <filename >

searches only the specified or standard places and not the directory of \the #include. (How the places are
specified is not part of the language.)

#includes may be nested.

12.3. Conditional Compilation
A compiler control line of the form

#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to nonzero. (Constant expressions are dis-
cussed in ‘““CONSTANT EXPRESSIONS’’; the following additional restrictions apply here: the constant
expression may not contain sizeof casts, or an enumeration constant.)

A restricted constant expression may also contain the additional unary expression
defined identifier
or
defined(identifier)
which evaluates to one if the identifier is currently defined in the preprocessor and zero if it is not.

All currently defined identifiers in restricted-constant-expressions are replaced by their token-strings
(except those identifiers modified by defined) just as in normal text. The restricted constant expression will
be evaluated only after all expressions have finished. During this evaluation, all undefined (to the pro-
cedure) identifiers evaluate to zero.

A control line of the form
#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e., whether it has been the subject of
a #define control line. It is equivalent to #ifdef(identifier). A control line of the form

The C Programming Language - Reference Manual PS1:1-27

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is equivalent to
#if !defined(identifier).

All three forms are followed by an arbitrary number of lines, possibly containing a control line
#else

and then by a control line
#endif

If the checked condition is true, then any lines between #else and #endif are ignored. If the checked
condition is false, then any lines between the test and a #else or, lacking a #else, the #endif are ignored.

These constructions may be nested.

12.4. Line Control _
For the benefit of other preprocessors which generate C programs, a line of the form

#line constant "filename"

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next source
line is given by the constant and the current input file is named by "filename". If "filename" is absent, the
remembered file name does not change.

13. Implicit Declarations

It is not always necessary to specify both the storage class and the type of identifiers in a declaration.
The storage class is supplied by the context in external definitions and in declarations of formal parameters
and structure members. In a declaration inside a function, if a storage class but no type is given, the
identifier is assumed to be int; if a type but no storage class is indicated, the identifier is assumed to be
auto. An exception to the latter rule is made for functions because auto functions do not exist. If the type
of an identifier is ‘‘function returning . ..,”" it is implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is contextually declared to be
*‘function returning int.”’

14. Types Revisited
This part summarizes the operations which can be performed on objects of certain types.

14.1. Structures and Unions

Structures and unions may be assigned, passed as arguments to functions, and returned by functions.
Other plausible operators, such as equality comparison and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of the -> or the . must specify a
member of the aggregate named or pointed to by the expression on the left. In general, a member of a
* union may not be inspected unless the value of the union has been assigned using that same member.
However, one special guarantee is made by the language in order to simplify the use of unions: if a union
contains several structures that share a common initial sequence and if the union currently contains one of
these structures, it is permitted to inspect the common initial part of any of the contained structures. For
example, the following is a legal fragment: '

PS1:1-28 The C Programming Language - Reference Manual

union
{
struct
{
int type;
}n;
struct
{
int type;
int intnode;
} mi;
struct
{
int type;
float floatnode;
} nf;
}ug

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

o0

if (u.n.type == FLOAT)
«« sin(u.nf floatnode) ...

14.2. Functions

There are only two things that can be done with a function m, call it or take its address. If the name
of a function appears in an expression not in the function-name position of a call, a pointer to the function
is generated. Thus, to pass one function to another, one might say

int fQ;
{UH
Then the definition of g might read

g(funcp)
int (*funcp)(;
{

E:funcp)();

}

Notice that f must be declared explicitly in the calling routine since its appearance in g(f) was not
followed by (.

14.3. Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer to the
first member of the array. Because of this conversion, arrays are not lvalues. By definition, the subscript
operator [] is interpreted in such a way that E1[E2] is identical to *((E1)+E2)). Because of the conversion
rules which apply to +, if E1 is an array and E2 an integer, then E1[E2] refers to the E2-th member of E1.
Therefore, despite its asymmetric appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multidimensional arrays. If E is an n-dimensional array
of rank ixjx...xk, then E appearing in an expression is converted to a pointer to an (n-1)-dimensional array

The C Programming Language - Reference Manual PS1:1-29

with rank jx..xk. If the * operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to (n-1)-dimensional array, which itself is immediately converted into
a pointer.

For example, consider

int x[3][5];

Here x is a 35 array of integers. When x appears in an expression, it is converted to a pointer to
(the first of three) S-membered arrays of integers. In the expression x[i], which is equivalent to *(x+i), x is
first converted to a pointer as described; then i is converted to the type of x, which involves multiplying i
by the length the object to which the pointer points, namely 5-integer objects. The results are added and
indirection applied to yield an array (of five integers) which in turn is converted to a pointer to the first of
the integers. If there is another subscript, the same argument applies again; this time the result is an
integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first subscript in the declaration
helps determine the amount of storage consumed by an array. Arrays play no other part in subscript calcu-
lations.

14.4. Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have implementation-dependent aspects.
They are all specified by means of an explicit type-conversion operator, see ‘‘Unary Operators’’
under ‘EXPRESSIONS’’ and ‘‘Type Names’’under ‘‘DECLARATIONS.”’

A pointer may be converted to any of the integral types large enough to hold it. Whether an int or
long is required is machine dependent. The mapping function is also machine dependent but is intended to
be unsurprising to those who know the addressing structure of the machine. Details for some particular
machines are given below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries an
integer converted from a pointer back to the same pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may cause
addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in storage.
It is guaranteed that a pointer to an object of a given size may be converted to a pointer to an object of a
smaller size and back again without change. '

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate, and
return a char pointer; it might be used in this way.

extern char *malloc();
double *dp;

dp = (double *) malloc(sizeof(double));
*dp =22.0/7.0;

The alloc must ensure (in a machine-dependent way) that its return value is suitable for conversion to
a pointer to double; then the use of the function is portable.

The pointer representation on the PDP-11 corresponds to a 16-bit integer and measures bytes. The
char’s have no alignment requirements; everything else must have an even address.

On the VAX-11, pointers are 32 bits long and measure bytes. Elementary objects are aligned on a
boundary equal to their length, except that double quantities need be aligned only on even 4-byte boun-
daries. Aggregates are aligned on the strictest boundary required by any of their constituents.

The 3B 20 computer has 24-bit pointers placed into 32-bit quantities. Most objects are aligned on 4-
byte boundaries. Shorts are aligned in all cases on 2-byte boundaries. Arrays of characters, all structures,
ints, longs, floats, and doubles are aligned on 4-byte boundries; but structure members may be packed
tighter.

PS1:1-30 The C Programming Language - Reference Manual

14.5. CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a constant: after case, as array bounds, and
in initializers. In the first two cases, the expression can involve only integer constants, character constants,
casts to integral types, enumeration constants, and sizeof expressions, possibly connected by the binary
operators

+—*/ % &|"<<>>==1l=<><=>=&& ||

or by the unary operators

or by the ternary operator
n

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as discussed above, one can
also use floating constants and arbitrary casts and can also apply the unary & operator to external or static
objects and to external or static arrays subscripted with a constant expression. The unary & can also be
applied implicitly by appearance of unsubscripted arrays and functions. The basic rule is that initializers
must evaluate either to a constant or to the address of a previously declared external or static object plus or
minus a constant,

15. Portability Considerations

Certain parts of C are inherently machine dependent. The following list of potential trouble spots is
not meant to be all-inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of floating point arithmetic and integer divi-
sion have proven in practice to be not much of a problem. Other facets of the hardware are reflected in
differing implementations. Some of these, particularly sign extension (converting a negative character into
a negative integer) and the order in which bytes are placed in a word, are nuisances that must be carefully
watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies from machine to
machine as does the set of valid types. Nonetheless, the compilers all do things properly for their own
machine; excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to
write programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. The order in which
side effects take place is also unspecified.

Since character constants are really objects of type int, multicharactér character constants may be
permitted. The specific implementation is very machine dependent because the order in which characters
are assigned to a word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on some machines and left to right
on other machines. These differences are invisible to isolated programs that do not indulge in type punning
(e.g., by converting an int pointer to a char pointer and inspecting the pointed-to storage) but must be
accounted for when conforming to externally-imposed storage layouts.

16. Syntax Summary
This summary of C syntax is intended more for aiding comprehension than as an exact statement of

The C Programming Language - Reference Manual PS1:1-31

the language.

16.1. Expressions
The basic expressions are:

expression:
primary
* expression
&lvalue
— expression
! expression
~ expression
++ lvalue
—lvalue
lvalue ++
lvalue —
sizeof expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression ? expression : expression
Ivalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)
primary (expression-list)
primary [expression | °
primary . identifier
primary — identifier

lvalue:
identifier
primary [expression |
lvalue . identifier
primary — identifier
* expression
(lvalue)

The primary-expression operators
on.-
have highest priority and group left to right. The unary operators
* & — ! 7 ++—sizeof (type-name)

have priority below the primary operators but higher than any binary operator and group right to left.
Binary operators group left to right; they have priority decreasing as indicated below.

The C Programming Language - Reference Manual

binop:
* [%
+ -
>> <<

< > <= >=
== !=

&

~

I
&&

I

The conditional operator groups right to left.
Assignment operators all have the same priority and all group right to left.

asgnop:
= = —= %= /= %= >o= L= &= ‘= l=

The comma operator has the lowest priority and groups left to right.

16.2. Declarations

declaration:
decl-specifiers init-declarator-list .
op

decl-specifiers:

type-specifier decl-specifiers
sc-specifier decl-speczﬁersop:

sc-specifier:
auto
static
extern
register
typedef

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

The C Programming Language - Reference Manual PS1:1-33

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializer
opt

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressionapt]

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

PS1:1-34 The C Programming Language - Reference Manual

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
emply
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstraci-declarator [constant-expressionoﬂ]

typedef-name:
identifier

16.3. Statements

compound-statement:
{ declaration-list statement-list }
opt opt

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

The C Programming Language - Reference Manual

Statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (exp opt3EXP opt3€XP op,) Statement
switch (expression) statement
case constant-expression : statement
default : statement
break ;
continue ;
return ;
return expression ;
goto identifier ;
identifier : statement

16.4. External definitions

program:
external-definition
external-definition program

external-definition:
Sfunction-definition
data-definition

Sfunction-definition:
decl-speciﬁerop‘ Sfunction-declarator function-body

Sfunction-declarator:
declarator (parameter-listop‘)

parameter-list:
identifier
identifier , parameter-list

function-body:
declaration-list ‘compound-statemem
op

data-definition:

extern declaration ;
static declaration ;

17. Preprocessor

PS1:1-35

PS1:1-36 The C Programming Language - Reference Manual

#define identifier token-string opt

#define identifier(identifier,...)token-string
#undef identifier ' P
#include "filename "

#include <filename >

#if restricted-constant-expression

#ifdef identifier

#ifndef identifier

Helse

#endif

#line constant " filename "

A Portable Fortran 77 Compiler

S.I. Feldman
P.J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

J. Berkman

University of California
Berkeley, CA 94720

ABSTRACT

The Fortran language has been revised. The new language, known as
Fortran 77, became an official American National Standard on April 3, 1978. We report
here on a compiler and run-time system for the new extended language. It is believed to
be the first complete Fortran 77 system to be implemented. This compiler is designed to
be portable, to be correct and complete, and to generate code compatible with calling
sequences produced by C compilers. In particular, this Fortran is quite usable on UNIXY
systems. In this paper, we describe the language compiled, interfaces between pro-
cedures, and file formats assumed by the /O system. Appendix A describes the Fortran
77 language extensions.

This is a standard Bell Laboratories document reproduced with minor
modifications to the text. The Bell Laboratory’s appendix on ‘‘Differences Between For-
tran 66 and Fortran 77°’ has been changed to Appendix A, and a local appendix has been
added. Appendix B contains a list of Fortran 77 references (some from the original Bell
document and some added at Berkeley).

Revised September, 1985

NOTE: This article includes some comments on the standard Berkeley Fortran 77 com-
piler. Note all of these comments apply to the Integrated Solutions Fortran 77 compiler.
For more information on the IS compiler, please see the UNIX Compiler Guide: C, Pas-
cal, FORTRAN 77.

1 UNIX is a trademark of Bell Laboratories.

PS1:2-2 A Portable Fortran 77 Compiler

Table of Contents

1. Introduction -
L1, USAZE cocrenererrsarsscrnncsasssssesassnssssnsssosnascssssnanssssnssesssnasssssssanassssnssssssssnssssssnssasssonsssssssssassssssssssassesase
1.2. Documentation Conventions
1.3. Implementation Strategy
1.4. Debugging Aids

2. Language Extensions
2.1. Double Complex Data Type
2.2, Internal Files
2.3. Implicit Undefined Statement
2.4. Recursion
2.5. Automatic Storage
2.6. Source Input Format
2.7. Include Statement
2.8. Binary Initialization Constants
2.9. Character Strings
2.10. Hollerith
2.11. Equivalence Statements
2.12. One-Trip DO Loops
2.13. Commas in Formatted Input .
2.14. Short Integers
2.15. Additional Intrinsic Functions
2.16. Namelist V'O

\O O \O O 00 00 00 00 00 3 N) =3 1 OO\ OOy & &

2.17. Automatic Precision Increase 11
2.18. Characters and Integers ereveesaeesasasnassons 12

3. Violations Of the StANAArdcccccereveereerneereererseessesessesessonernsssssessassasesssssasessastssassssessassssessrassssassnses 12
3.1. Double Precision Alignment “ rreeenerasnanasnenes 12

3.2, Dummy Procedure Arguments .. eeesesesteneatsaes e s ta s st st sese s R eR s s e SR se SRSt SR bR B S e R SRR e S e0s 12

3.3. T and TL Formats weeeresasenssassssnasessnses 12

3.4. Carriage Control - eeemtereneerentnasarestaasaeresaeraarassrsserasateresransstenestsiss 12

~ 3.5. Assigned Goto 13

4. Inter-Procedure Interface 13
4.1. Procedure Names . 13
4.2. Data Representations 13

4.3. Arrays 13

4.4. Return Values 13

4.5. Argument Lists 14

4.6. System Interface 14

A Portable Fortran 77 Compiler

5. File Formats

PS1:2-3

5.1. Structure 6f Fortran Files

5.2. Portability Considerations
5.3. Logical Units and Files

.....

Appendix A. Differences Between Fortran 66 and Fortran 77
1. Features Deleted from Fortran 66

1.1. Hollerith

1.2. Extended Range of DO
2. Program Form

2.1, Blank Lines

2.2. Program and Block Data Statements
2.3. ENTRY Statement

2.4. DO Loops

2.5. Alternate Returns

3. Declarations

3.1. CHARACTER Data Type

3.2. IMPLICIT Statement

3.3. PARAMETER Statement

3.4. Array Declarations

3.5. SAVE Statement

3.6. INTRINSIC Statement

4. Expressions
4.1. Character Constants

4.2, Concatenation

4.3. Character String Assignment
4.4, Substrings

4.5. Exponentiation

...............

4.6. Relaxation of Restrictions

5. Executable Statements

5.1. IF-THEN-ELSEcuuveereevererecnnrreeseenne
5.2. Alternate Returns

.....

6. Input/Output

................

.......................................

.................

6.1. Format Variables
6.2. END=, ERR=, and IOSTAT= Clauses

6.3. Formatted /O

........

6.4. Standard Units

6.5. List-Directed 110

6.6. Direct /O

6.7. Internal Files

6.8. OPEN, CL.OSE, and INQUIRE Statements

Appendix B. References and Bibliography

..........

15
15
15

- 15

17
17
17
17
17
17
17
17
18
18
18
18
18
18
19
19
19
19
19
20
20
20
20
20
21
21
21
21
22
22
22
23
24
24
24
25

PS1:2-4 A Portable Fortran 77 Compiler

1. INTRODUCTION

The Fortran language has been revised. The new language, known as Fortran 77, became an official Amer-
ican National Standard [1] on April 3, 1978. Fortran 77 supplants 1966 Standard Fortran [2]. We report
here on a compiler and run-time system for the new extended language. The compiler and computation
library were written by S.LF., the I/O system by P.J.W. We believe ours to be the first complete Fortran 77
system to be implemented. This compiler is designed to be portable to a number of different machines, to
be correct and complete, and to generate code compatible with calling sequences produced by compilers
for the C language [3]. In particular, it is in use on UNIX systems. Two families of C compilers are in use
at Bell Laboratories, those based on D. M. Ritchie’s PDP-11 compiler [4] and those based on S. C.
Johnson’s portable C compiler [S]. This Fortran compiler can drive the second passes of either family. In
this paper, we describe the language compiled, interfaces between procedures, and file formats assumed by
the I/O system. We will describe implementation details in companion papers.

1.1. Usage

At present, versions of the compiler run on and compile for the PDP-11, the VAX-11/780, and the
Interdata 8/32 UNIX systems. The command to run the compiler is

£77 flags file . ..

£77 is a general-purpose command for compiling and loading Fortran and Fortran-related files. EFL
[6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran compiler.
C and assembler source files will be compiled by the appropriate programs. Object files will be
loaded. (The f77 and cc commands cause slightly different loading sequences to be generated, since
Fortran programs need a few extra libraries and a different startup routine than do C programs.) The
following file name suffixes are understood:

Fortran source file
Fortran source file
EFL source file
Ratfor source file

C source file
Assembler source file
Object file

Sthb bk byte

Arguments whose names end with .f are taken to be Fortran 77 source programs; they are compiled,
and each object program is left on the file in the current directory whose name is that of the source
with .o substituted for .f. '

Arguments whose names end with .F are also taken to be Fortran 77 source programs; these are first
processed by the C preprocessor before being compiled by f77.

Arguments whose names end with .r or .e are taken to be Ratfor or EFL source programs, respec-
tively; these are first transformed by the appropriate preprocessor, then compiled by f77.

In the same way, arguments whose names end with .c or .s are taken to be C or assembly source pro-
grams and are compiled or assembled, producing a .o file.

The following flags are understood:

—C Compile but do not load. Output for x.f, x.F, x.e, x.r, X.c, or X.s is put on file x.0.
-d Used in debugging the compiler.
-g Have the compiler produce additional symbol table information for dbx(I). This flag

is incompatible with —~O. See section 1.4 for more details.

-i2 On machines which support short integers, make the default integer constants and vari-
ables short (see section 2.14). (—i4 is the standard value of this option). All logical

A Portable Fortran 77 Compiler PS1:2-5

quantities will be short.

-m Apply the M4 macro preprocessor to each EFL or Ratfor source file before using the
appropriate compiler.

—o file Put executable module on file file. (Default is a.out).

—onetrip or -1
Compile code that performs every do loop at least once (see section 2.12).

-p Generate code to produce usage profiles.

-pg Generate code in the manner of —p, but invoke a run-time recording mechanism that
keeps more extensive statistics. See gprof(1).

—-q Suppress printing of file names and program unit names during compilation.

-r8 Treat all floating point variables, constants, functions and intrinsics as double precision
and all complex quantities as double complex. See section 2.17.

-u Make the default type of a variable undefined (see section 2.3).

-V Print the version number of the compiler and the name of each pass.

-w Suppress all warning messages.

-w66 Suppress warnings about Fortran 66 features used.

-C Compile code that checks that subscripts are within array bounds. For multi-
dimensional arrays, only the equivalent linear subscript is checked.

~Dname=def

~Dname Define the name to the C preprocessor, as if by ‘#define’. If no definition is given, the
name is defined as "1". (.F files only).

—Estr Use the string str as an EFL option in processing .e files.

-F Ratfor, EFL, and .F source files are pre-processed into .f files, and those .f files are left
on the disk without being compiled.

-Idir “#include’ files whose names do not begin with */’ are always sought first in the direc-
tory of the file argument, then in directories named in —I options, then in directories on
a standard list. (.F files only).

—N[qxscn]nnn

Make static tables in the compiler bigger. The compiler will complain if it overflows
its tables and suggest you apply one or more of these flags. These flags have the fol-
lowing meanings:

q Maximum number of equivalenced variables. Default is 150.

X Maximum number of external names (common block names, subroutine and
function names). Default is 200. ‘

s Maximum number of statement numbers. Default is 401.
c Maximum depth of nesting for control statements (e.g. DO loops). Default is 20.
n Maximum number of identifiers. Default is 1009.

-0 Invoke the object code optimizer. Incompatible with —g.

~Rstr Use the string str as a Ratfor option in processing .r files.

-U Do not convert upper case letters to lower case. The default is to convert Fortran pro-
grams to lower case except within character string constants.

-S Generate assembler output for each source file, but do not assemble it. Assembler out-

put for a source file x.f, x.F, x.e, x.r, or x.c is put on file x.s.

Other flags, all library names (arguments beginning —1), and any names not ending with one of the
understood suffixes are passed to the loader.

PS1:2-6 A Portable Fortran 77 Compiler

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in boldface lower case. Exam-
ples will be presented in lightface lower case. Names representing a class of values will be printed in
italics.

1.3. Implementation Strategy

The compiler and library are written entirely in C. The compiler generates C compiler intermediate
code. Since there are C compilers running on a variety of machines, relatively small changes will
make this Fortran compiler generate code for any of them. Furthermore, this approach guarantees
that the resulting programs are compatible with C usage. The runtime computational library is com-
plete. The runtime IO library makes use of D. M. Ritchie’s Standard C IO package [8] for transfer-
ring data, With the few exceptions described below, only documented calls are used, so it should be
relatively easy to modify to run on other operating systems.

1.4. Debugging Aids

A memory image is sometimes written to a file core in the current directory upon abnormal termina-
tion for errors caught by the 77 libraries, user calls to abort, and certain signals (see sigvec (2) in
the UNIX Programmer’s Manual). Core is normally created only if the —g flag was specified to 77
during loading.t The source-level debugger dbx (1) may be used with the executable and the core
file to examine the image and determine what went wrong.

In the event that it is necessary to override this default behavior, the user may set the environment
variable f77_dump_flag. If f77_dump_flag is set to a value beginning with n, a core file is not pro-
duced regardless of whether —g was specified at compile time, and if the value begins with y, dumps
are produced even if —g was not specified.

2. LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences briefly in Appendix
A. The most important additions are a character string data type, file-oriented input/output statements, and
random access I/O. Also, the language has been cleaned up considerably.

In addition to implementing the language specified in the new Standard, our compiler implements a few
extensions described in this section. Most are useful additions to the language. The remainder are exten-
sions to make it easier to communicate with C procedures or to permit compilation of old (1966 Standard)
programs.

2.1. Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of double precision
real values. The statements

z1 = (0.1d0, 0.2d0)
22 = demplx(dx, dy)

assign double complex values to z1 and z2. The double precision values which constitute the double
complex value may be isolated by using dreal or dble for the real part and imag or dimag for the
imaginary part. To compute the double complex conjugate of a double complex value, use conjg or
dconjg. The other double complex intrinsic functions may be accessed using their generic names or
specific names. The generic names are: abs, sqrt, exp, log, sin, and cos. The specific names are the
same as the generic names preceded by either cd or z, e.g. you may code sqrt, zsqrt or cdsqrt to
compute the square root of a double complex value.

Specify —g when loading with cc or f77; specify —Ig as a library when using Id directly.

A Portable Fortran 77 Compiler PS1:2-7

2.2. Internal Files

The Fortran 77 standard introduces ‘‘internal files’’ (memory arrays), but restricts their use to for-
matted sequential I/0 statements. Our I/O system also permits internal files to be used in formatted
direct reads and writes and list directed sequential read and writes.

2.3. Implicit Undefined Statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type statement is
integer if its first letter is i, j, k, 1, m or n, and real otherwise. Fortran 77 has an implicit statement
for overriding this rule. As an aid to good programming practice, we permit an additional type,
undefined. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for each vari-
able that is used but does not appear in a type statement. Specifying the —u compiler flag is
equivalent to beginning each procedure with this statement.

2.4. Recursion

Procedures may call themselves, directly or through a chain of other procedures. Since Fortran vari-
ables are by default static, it is often necessary to use the automatic storage extension to prevent
unexpected results from recursive functions.

2.5. Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as ‘‘types’’
in type statements and in implicit statements. Local variables are static by default; there is only one
instance of the variable. For variables declared automatic, there is a separate instance of the vari-
able for each invocation of the procedure. Automatic variables may not appear in equivalence,
data, or save statements. Neither type of variable is guaranteed to retain its value between calls to a
subprogram (see the save statement in Appendix A).

2.6. Source Input Format

The Standard expects input to the compiler to be in 72-column format: except in comment lines, the
first five characters are the statement number, the next is the continuation character, and the next 66
are the body of the line. (If there are fewer than 72 characters on a line, the compiler pads it with
blanks; characters after the seventy-second are ignored.)

In order to make it easier to type Fortran programs, our compiler also accepts input in variable length
lines. An ampersand ‘‘&”’ in the first position of a line indicates a continuation line; the remaining
characters form the body of the line. A tab character in one of the first six positions of a line signals
the end of the statement number and continuation part of the line; the remaining characters form the
body of the line. A tab elsewhere on the line is treated as another kind of blank by the compiler.

In the Standard, there are only 26 letters — Fortran is a one-case language. Consistent with ordinary
UNIX system usage, our compiler expects lower case input. By default, the compiler converts all
upper case characters to lower case except those inside character constants. However, if the —U
compiler flag is specified, upper case letters are not transformed. In this mode, it is possible to
specify external names with upper case letters in them, and to have distinct variables differing only
in case. If -U is specified, keywords will only be recognized in lower case.

2.7. Include Statement
The statement

include ‘stuff”’

is replaced by the contents of the file stuff; include statements may be nested to a reasonable depth,
currently ten.

PS1:2-8 A Portable Fortran 77 Compiler

2.8. Binary Initialization Constants

A variable may be initialized in a data statement by a binary constant, denoted by a letter followed
by a quoted string. If the letter is b, the string is binary, and only zeroes and ones are permitted. If
the letter is o, the string is octal, with digits 0—7. If the letter is z or x, the string is hexadecimal, with
digits 09, a—f. Thus, the statements

integer a(3)
dataa/b’1010’, 0'12%, z’a’/
initialize all three elements of a to ten.

2.9. Character Strings

2.10.

211,

2.12.

For compatibility with C usage, the following backslash escapes are recognized:

\n newline
\t tab

\b backspace
\f form feed
\0 nuil

\" apostrophe (does not terminate a string)
\" quotation mark (does not terminate a string)
L\

\x x, where x is any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and I/O system recognize
both the apostrophe *‘ >’ and the double-quote ‘“ " *’. If a string begins with one variety of quote
mark, the other may be embedded within it without using the repeated quote or backslash escapes.

Each character string constant appearing outside a data statement is followed by a null character to
ease communication with C routines.

Hollerith

Fortran 77 does not have the old Hollerith ‘‘ah’’ notation, though the new Standard recommends
implementing the old Hollerith feature in order to improve compatibility with old programs. In our
compiler, Hollerith data may be used in place of character string constants, and may also be used to
initialize non-character variables in data statements.

Equivalence Statements

As a very special and peculiar case, Fortran 66 permits an element of a multiply-dimensioned array
to be represented by a singly-subscripted reference in equivalence statements. Fortran 77 does not
permit this usage, since subscript lower bounds may now be different from 1. Our compiler permits
single subscripts in equivalence statements, under the interpretation that all missing subscripts are
equal to 1. A warning message is printed for each such incomplete subscript.

One-Trip DO Loops

The Fortran 77 Standard requires that the range of a do loop not be performed if the initial value is
already past the limit value, as in

do10i=2,1

The 1966 Standard stated that the effect of such a statement was undefined, but it was common prac-
tice that the range of a do loop would be performed at least once. In order to accommodate old pro-
grams, though they were in violation of the 1966 Standard, the —onetrip or —1 compiler flags causes
non-standard loops to be generated.

A Portable Fortran 77 Compiler PS1:2-9

2.13.

2.14.

2.15.

2.16.

Commas in Formatted Input .

The IO system attempts to be more lenient than the Standard when it seems worthwhile. When
doing a formatted read of non-character variables, commas may be used as value separators in the
input record, overriding the field lengths given in the format statement. Thus, the format

(i10, £20.10, i4)
will read the record
-345,.05e-3,12

correctly.

Short Integers

On machines that support halfword integers, the compiler accepts declarations of type integer*2.
(Ordinary integers follow the Fortran rules about occupying the same space as a real variable; they
are assumed to be of C type long int; halfword integers are of C type short int.) An expression
involving only objects of type integer*2 is of that type. Generic functions return short or long
integers depending on the actual types of their arguments. If a procedure is compiled using the —i2
flag, all small integer constants will be of type integer#*2. If the precision of an integer-valued intrin-
sic function is not determined by the generic function rules, one will be chosen that returns the pre-
vailing length (integer*2 when the —i2 command flag is in effect). When the —i2 option is in effect,
all quantities of type logical will be short. Note that these short integer and logical quantities do not
obey the standard rules for storage association.

Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard. In addition,
there are built-in functions for performing bitwise logical and boolean operations on integer and logi-
cal values (or, and, xor, not, Ishift, and rshift), and intrinsic functions for double complex values
(see section 2.1), The 77 library contains many other functions, such as accessing the UNIX com-
mand arguments (getarg and iargc) and environment (getenv). See intro(3f) and bit(3f) in the UNIX
Programmer’ s Manual for more information.

Namelist 1/0

Namelist 'O provides an easy way to input and output information without formats. Although not
part of the standard, namelist 'O was part of many Fortran 66 systems and is a common extension to
Fortran 77 systems.

Variables and arrays to be used in namelist I/O are declared as part of a namelist in a namelist state-
ment, e.g.:

character str*12

logical flags(20)

complex c(2)

real arr1(2,3), arr2(0:3,4)

namelist /basic/ arrl, arr2, key, str, ¢ /figlst/ key, flags

This defines two namelists: list basic consists of variables key and str and arrays arrl, arr2, and c;
list figlst consists of variable key and array flags. A namelist can include variables and arrays of any
type, and a variable or array may be in several different namelists. However dummy arguments and
array elements may not be in a namelist. A namelist name may be used in external sequential read,
write and print statements wherever a format could be used.

In a namelist read, column one of each data record is ignored. The data begins with an ampersand in
column 2 followed by the namelist name and a blank. Then there is a sequence of value assignments
separated by commas and finally an ‘“‘&end’’. A simple example of input data corresponding to
namelist basic is:

PS1:2-10 A Portable Fortran 77 Compiler

&basic key=5, str="hi there’ &end
For compatibility with other systems, dollar signs may be used instead of the ampersands:
$basic key=5, str="hi there’ $end

A value assignment in the data record must be one of three forms. The simplest is a variable name
followed by an equal sign followed by a data value which is assigned to that variable, e.g. ‘‘key=5"".
The second form consists of an array name followed by ‘="’ followed by one or more values ta be
assigned to the array, e.g.:

¢=(1.1,-2.9),(~1.8e+10,14.0e-3)

assigns values to c(1) and c(2) in the complex array c.

As in other read statements, values are assigned in the order of the array in memory, i.e. column-
major order for two dimensional arrays. Multiple copies of a value may be represented by a repeti-
tion count followed by an asterisk followed by the value; e.g. ‘3*55.4"’ is the same as ‘‘55.4, 55.4,
55.4°°. It is an error to specify more values than the array can hold; if less are specified, only that
number of elements of the array are changed. The third form of a value assignment is a subscripted
variable name followed by ‘‘="" followed by a value or values, e.g.; ‘‘arr2(0,4)=15.2"’. Only integer
constant subscripts may be used. The correct number of subscripts must be used and the subscripts
must be legal. This form is the same as the form with an array name except the array is filled starting
at the named element,

In all three forms, the variable or array name must be declared in the namelist. The form of the data
values is the same as in list directed input except that in namelist /O, character strings in the data
must be enclosed in apostrophes or double quotes, and repetition counts must be followed by data
values.

One use of namelist input is to read in a list of options or flags. For example:

logical flags(14)
namelist /pars/ flags, iters, xlow, xhigh, xinc
data flags/14* false./

10 read(S,pars,end=900)
print pars
call calc(xlow, xhigh, xinc, flags, iters)
goto 10
900 continue
end

could be run with the following data (each record begins with a space):

&pars iters=10, xlow=0.0, xhigh=1.0, xinc=0.1 &end
&pars xinc=0.2,

flags(2)=2* true., flags(8)=.true. &end
&pars xlow=2.0, xhigh=8.0 &end

The program reads parameters for the run from the first data set and computes using them. Then it
loops and each successive set of namelist input data specifies only those data items which need to be
changed. Note the second data set sets the 24, 374, and 8% elements in the array flags to .true..

When a namelist name is used in a write or print statement, all the values in the namelist are output
together with their names. For example the print in the program above prints the following:

A Portable Fortran 77 Compiler PS1:2-11

2.17.

&pars flags= f, f, f, f, f, f, f, f, f, f, f, f, f, f, iters=
10, xlow= 0., xhigh= 1.00000, xinc= 0.100000

&end

&pars flags=f, t, t, f, f, f, £, ¢, f, f, f, f, f, f, iters=
10, xlow= 0., xhigh= 1.00000, xinc= 0.200000

&end

&pars flags=f, t, ¢, f, f, f, f, t, f, f, f, f, f, £ iters=
10, xlow= 2.00000, xhigh= 8.00000, xinc= 0.200000

&end

Each line begins with a space so that namelist output can be used as input to a namelist read. The
default is to use ampersands in namelist print and write. However, dollar signs will be used if the
last preceding namelist read data set used dollar signs. The character to be used is stored as the first
character of the common block namelistkey.

Automatic Precision Increase

The -r8 flag allows a user to run a program with increased precision without changing any of the
program source, i.e. it allows a user to take a program coded in single precision and compile and exe-
cute it as if it had been coded in double precision. The option extends the precision of all single pre-
cision real and complex constants, variables, external functions, and intrinsic functions. For exam-
ple, the source:

implicit complex(c)
real last

intrinsic sin, csin
data last/0.3/

x=0.1
y = sqrt(x)+sqrt(last)
c1=(0.1,0.2)
c2 = sqrt(cl)
x = real(i)
y = aimag(c1)
call fun(sin,csin)
is compiled under this flag as if it had been written as:

implicit double precision (a-b,d-h,0-z), double complex(c)
double precision last

intrinsic dsin, cdsin

data last/0.3d0/

x =0.1d0

y = sqrt(x)+sqrt(last)
¢l = (0.1d0,0.2d0)
c2 = sqrt(cl)

x = dreal(i)

y = dimag(c1)

call fun(dsin,cdsin)

When the —r8 flag is invoked, the calls using the generic name sqrt will refer to a different specific
function since the types of the arguments have changed. This option extends the precision of all sin-
gle precision real and complex variables and functions, including those declared real*4 and com-
plex*8,

In order to successfully use this flag to increase precision, the entire program including all the sub-
routines and functions it calls must be recompiled. Programs which use dynamic memory allocation

PS1:2-12 A Portable Fortran 77 Compiler

2.18.

or use equivalence or common statements to associate variables of different types may have to be
changed by hand. Similar caveats apply to the sizes of records in unformatted I/O.

Characters and Integers

A character constant of integer length or less may be assigned to an integer variable. Individual
bytes are packed into the integer in the native byte order. The character constant is padded with
blanks to the width of the integer during the assignment. Use of this feature is deprecated; it is
intended only as a porting aid for extended Fortran 66 programs. Note that the intrinsic ichar func-
tion behaves as the standard requires, converting only single bytes to integers.

3. VIOLATIONS OF THE STANDARD
‘We know only a few ways in which our Fortran system violates the new standard:

3.1. Double Precision Alignment

The Fortran Standards (both 1966 and 1977) permit common or equivalence statements to force a
double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,c

equivalence (a(1),b), (a(4)c)

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities be on dou-
ble word boundaries; other machines (e.g., IBM 370), run inefficiently if this alignment rule is not
observed. It is possible to tell which equivalenced and common variables suffer from a forced odd
alignment, but every double precision argument would have to be assumed on a bad boundary. To
load such a quantity on some machines, it would be necessary to use separate operations to move the
upper and lower halves into the halves of an aligned temporary, then to load that double precision
temporary; the reverse would be needed to store a result. We have chosen to require that all double
precision real and complex quantities fall on even word boundaries on machines with corresponding
hardware requirements, and to issue a diagnostic if the source code demands a violation of the rule.

3.2. Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of that pro-
cedure must be declared in an external statement. This requirement arises as a subtle corollary of
the way we represent character string arguments and of the one-pass nature of the compiler, A warn-
ing is printed if a dummy procedure is not declared external. Code is correct if there are no charac-
ter arguments.

3.3. T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective. These
codes allow rereading or rewriting part of the record which has already been processed (section 6.3.2
in Appendix A). The implementation uses seeks, so if the unit is not one which allows seeks, such as
a terminal, the program is in error. A benefit of the implementation chosen is that there is no upper
limit on the length of a record, nor is it necessary to predeclare any record lengths except where
specifically required by Fortran or the operating system.

3.4. Carriage Control

The Standard leaves as implementation dependent which logical unit(s) are treated as ‘‘printer’’ files.
In this implementation there is no printer file and thus by default, no carriage control is recognized
on formatted output. This can be changed using form="print’ in the open statement for a unit, or
by using the fpr(1) filter for output; see [9].

A Portable Fortran 77 Compiler PS1:2-13

3.5. Assigned Goto

The optional list associated with an assigned goto statement is not checked against the actual
assigned value during execution.

4. INTER-PROCEDURE INTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is necessary to know the
conventions for procedure names, data representation, return values, and argument lists that the compiled
code obeys.

4.1. Procedure Names

On UNIX systems, the name of a common block or a Fortran procedure has an underscore appended
to it by the compiler to distinguish it from a C procedure or external variable with the same user-
assigned name. Fortran built-in procedure names have embedded underscores to avoid clashes with
user-assigned subroutine names.

4.2. Data Representations
The following is a table of corresponding Fortran and C declarations:

Fortran C

integer*2 x short int x;

integer x long int x;

logical x long int x;

real x float x;

double precision x double x;

complex x struct { floatr, i; } x;
double complex x struct { double dr, di; } x;
character*6 x char x[6];

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory.)

4.3. Arrays

The first element of a C array always has subscript zero, while Fortran arrays begin at 1 by default.
Fortran arrays are stored in column-major order in contiguous storage, C arrays are stored in row-
major order. Many mathematical libraries have subroutines which transpose a two dimensional
matrix, e.g. f0lcrf in the NAG library and vtran in the IMSL library. These may be used to tran-
spose a two-dimensional array stored in C in row-major order to Fortran column-major order or
vice-versa.

4.4. Return Values

A function of type integer, logical, real, or double precision declared as a C function returns the
corresponding type. A complex or double complex function is equivalent to a C routine with an
additional initial argument that points to the place where the return value is to be stored. Thus,

complex function f(. ..)
is equivalent to

f (temp,...)
struct { floatr, i; } *temp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a data
address and a length. Thus,

character*15 function g(...)

PS1:2-14 A Portable Fortran 77 Compiler

is equivalent to

g_(result, length, ...)
char result[J;
long int length;

and could be invoked in C by
char chars[15];

g_(chars, 15L,...);

Subroutines are invoked as if they were integer-valued functions whose value specifies which alter-
nate return to use. Alternate return arguments (statement labels) are not passed to the function, but
are used to do an indexed branch in the calling procedure. (If the subroutine has no entry points with
alternate return arguments, the returned value is undefined.) The statement

call nret(*1, *2, *3)
is treated exactly as if it were the computed goto
goto (1, 2, 3), nret()

4.5. Argument Lists

All Fortran arguments are passed by address. In addition, for every argument that is of type charac-
ter or that is a dummy procedure, an argument giving the length of the value is passed. (The string
lengths are long int quantities passed by value.) The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external f
character*7 s
integer b(3)

call sam(f, b(2), s)
is equivalent to that in

int f();
char s[7];
long int b[3];

sam_(f, &b(1}, s; OL, 7L);

4.6. System Interface

To run a Fortran program, the system invokes a small C program which first initializes signal han-
dling, then calls f_init to initialize the Fortran I/O library, then calls your Fortran main program, and
then calls f_exit to close any Fortran files opened.

f_init initializes Fortran units O, 5, and 6 to standard error, standard input, and standard output
respectively. It also calls setlinebuf to initiate line buffering of standard error. If you are using For-
tran subroutines which may do IO and you have a C main program, call f_init before calling the For-
tran subroutines. Otherwise, Fortran units 0, 5, and 6 will be connected to files fort.0, fort.5, and
fort.6, and error messages from the {77 libraries will be written to fort.0 instead of to standard error.
If your C program terminates by calling the C function exit, all files are automatically closed. If

A Portable Fortran 77 Compiler PS1:2-15

there are Fortran scratch files to be deleted, first call f_exit. F_init and f_exit do not have any argu-
ments.

The —d flag will show what libraries are used in loading Fortran programs.
5. FILE FORMATS

5.1. Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and direct for-
matted and unformatted. On UNIX systems, these are all implemented as ordinary files which are
assumed to have the proper internal structure.

Fortran I/O is based on records. When a direct file is opened in a Fortran program, the record length
of the records must be given, and this is used by the Fortran I/O system to make the file look as if it is
made up of records of the given length. In the special case that the record length is given as 1, the
files are not considered to be divided into records, but are treated as byte-addressable byte strings;
that is, as ordinary UNIX file system files. (A read or write request on such a file keeps consuming
bytes until satisfied, rather than being restricted to a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will ever be read
or written by any means except Fortran /O statements. Each record is preceded and followed by an
integer containing the record’s length in bytes.

The Fortran O system breaks sequential formatted files into records while reading by using each
newline as a record separator. The result of reading off the end of a record is undefined according to
the Standard. The L/O system is permissive and treats the record as being extended by blanks. On
output, the 'O system will write a newline at the end of each record. It is also possible for programs
to write newlines for themselves. This is an error, but the only effect will be that the single record
the user thought he wrote will be treated as more than one record when being read or backspaced
over.

5.2. Portability Considerations

The Fortran /O system uses only the facilities of the standard C VO library, a widely available and
fairly portable package, with the following two nonstandard features: the I/O system needs to know
whether a file can be used for direct /O, and whether or not it is possible to backspace. Both of these
facilities are implemented using the fseek routine, so there is a routine canseek which determines if
fseek will have the desired effect. Also, the inquire statement provides the user with the ability to
find out if two files are the same, and to get the name of an already opened file in a form which
would enable the program to reopen it. Therefore there are two routines which depend on facilities
of the operating system to provide these two services. In any case, the I/0 system runs on the PDP-
11, VAX-11/780, and Interdata 8/32 UNIX systems,

5.3. Logical Units and Files

Fortran logical unit numbers may be any integer between 0 and 99. The number of simultaneously
open files is currently limited to 48.

Units 5, 6, and 0 are connected before the program begins to standard input, standard output, and
standard error respectively.

If an unit is opened explicitly by an open statement with a file= keyword, then the file name is the
name from the open statement. Otherwise, the default file name corresponding to unit » is fort.n. If
there is an environment variable whose name is the same as the tail of the file name after periods are
deleted, then the contents of that environment variable are used as the name of the file. See [9] for
details.

The default connection for all units is for sequential formatted I/0. The Standard does not specify
where a file which has been explicitly opened for sequential /O is initially positioned. The I/O sys-
tem will position the file at the beginning. Therefore a write will destroy any data already in the file,
but a read will work reasonably. To position a file to its end, use a read loop, or the system

PS1:2-16 A Portable Fortran 77 Compiler

dependent function fseek. The preconnected units 0, 5, and 6 are positioned as they come from the
program’s parent process.

A Portable Fortran 77 Compiler PS1:2-17

APPENDIX A: Differences Between Fortran 66 and Fortran 77

The following is a very brief description of the differences between the 1966 [2] and the 1977 [1] Standard
languages. We assume that the reader is familiar with Fortran 66. We do not pretend to be complete, pre-
cise, or unbiased, but plan to describe what we feel are the most important aspects of the new language.
The best current information on the 1977 Standard is in publications of the X3J3 Subcommittee of the
American National Standards Institute, and the ANSI X3.9-1978 document, the official description of the
language. The Standard is written in English rather than a meta-language, but it is forbidding and legalis-
tic. A number of tutorials and textbooks are available (see Appendix B).

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of ‘‘Hollerith’* (nh) as data have been officially removed, although our compiler, like
almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range of DO

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is permissible to
jump out of the range of a do loop, then jump back into it. Extended range has been removed in the
Fortran 77 language. The restrictions are so special, and the implementation of extended range is so
unreliable in many compilers, that this change really counts as no loss.

2. Program Form

2.1. Blank Lines
Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements
A main program may now begin with a statement that gives that program an external name:

program work
Block data procedures may also have names.
block data stuff

There is now a rule that only one unnamed block data procedure may appear in a program. (This
rule is not enforced by our system.) The Standard does not specify the effect of the program and
block data names, but they are clearly intended to aid conventional loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have additional entry
points, declared by an entry statement with an optional argument list.

entry extra(a, b, ¢)

Execution begins at the first statement following the entry line. All variable declarations must pre-
cede all executable statements in the procedure. If the procedure begins with a subroutine state-
ment, all entry points are subroutine names. If it begins with a function statement, each entry is a
function entry point, with type determined by the type declared for the entry name. If any entry is a
character-valued function, then all entries must be. In a function, an entry name of the same type as
that where control entered must be assigned a value. Arguments do not retain their values between
calls. (The ancient trick of calling one entry point with a large number of arguments to cause the
procedure to ‘‘remember’’ the locations of those arguments, then invoking an entry with just a few
arguments for later calculation, is still illegal. Furthermore, the trick doesn’t work in our implemen-
tation, since arguments are not kept in static storage.)

PS1:2-18 A Portable Fortran 77 Compiler

2.4. DO Loops

do variables and range parameters may now be of integer, real, or double precision types. (The use
of floating point do variables is very dangerous because of the possibility of unexpected roundoff,
and we strongly recommend against their use.) The action of the do statement is now defined for all
values of the do parameters. The statement

do10i=1u,d

performs max(0, | (u—I+d)/d]) iterations. The do variable has a predictable value when exiting a
loop: the value at the time a goto or return terminates the loop; otherwise the value that failed the
limit test.

2.5. Alternate Returns
In a subroutine or subroutine entry statement, some of the arguments may be noted by an asterisk,
as in
subroutine s(a, *, b, *)

The meaning of the ‘alternate returns’’ is described in section 5.2 of Appendix A.
3. Declarations

3.1. CHARACTER Data Type
One of the biggest improvements to the language is the addition of a character-string data type.
Local and common character variables must have a length denoted by a constant expression:

character*17 a, b(3,4)
character*(6+3) ¢

If the length is omitted entirely, it is assumed equal to 1. A character string argument may have a
constant length, or the length may be declared to be the same as that of the corresponding actual
argument at run time by a statement like

character*(*) a

(There is an intrinsic function len that returns the actual length of a character string.) Character
arrays and common blocks containing character variables must be packed: in an array of character
variables, the first character of one element must follow the last character of the preceding element,
without holes.

3.2, IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with i, j, k, 1, m, or
n is of type integer; other variables are of type real, unless otherwise declared. This general rule
may be overridden with an implicit statement:

implicit real(a-c,g), complex(w-z), character*(17) (s)

declares that variables whose name begins with an a ,b, ¢, or g are real, those beginning with w, x, y,
or z are assumed complex, and so on. It is still poor practice to depend on implicit typing, but this
statement is an industry standard.

3.3. PARAMETER Statement
It is now possible to give a constant a symbolic name, as in

character str*(*)
parameter (x=17, y=x/3, pi=3.14159d0, str="hello")

The type of each parameter name is governed by the same implicit and explicit rules as for a vari-
able. Symbolic names for character constants may be declared with an implied length *‘(*)”’. The

A Portable Fortran 77 Compiler PS1:2-19

right side of each equal sign must be a constant expression (an expression made up of constants,
operators, and already defined parameters).

3.4. Array Declarations

Arrays may now have as many as seven dimensions. (Only three were permitted in 1966.) The
lower bound of each dimension may be declared to be other than 1 by using a colon. Furthermore,
an adjustable array bound may be an integer expression involving constants, arguments, and vari-
ables in common,

real a(-5:3, 7, m:n), b(n+1:2*n)

The upper bound on the last dimension of an array argument may be denoted by an asterisk to indi-
cate that the upper bound is not specified:

integer a(5, *), b(*), c(0:1, —2:%)

3.5. SAVE Statement

A little known rule of Fortran 66 is that variables in a procedure do not necessarily retain their values
between invocations of that procedure. This rule permits overlay and stack implementations for the
affected variables. In Fortran 77, three types of variables automatically keep there values: variables
in blank common, variables defined in data statements and never changed, and variables in named
common blocks which have not become undefined. At any instant in the execution of a program, if a
named common block is declared neither in the currently executing procedure nor in any of the pro-
cedures in the chain of callers, all of the variables in that common block become undefined. Fortran
77 permits one to specify that certain variables and common blocks are to retain their values between
invocations. The declaration

save a, /b/, ¢

leaves the values of the variables a and ¢ and all of the contents of common block b unaffected by an
exit from the procedure. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block must be
saved in every procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statement

All of the functions specified in the Standard are in a single category, “‘intrinsic functions’’, rather
than being divided into ‘‘intrinsic’’ and ‘‘basic external’’ functions. If an intrinsic function is to be
passed to another procedure, it must be declared intrinsic. Declaring it external (as in Fortran 66)
causes a function other than the built-in one to be passed.

4. Expressions

4.1. Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apostrophe is to
be included in a constant, it is repeated:

Ia‘xl

lainiltl
Although null (zero-length) character strings are not allowed in the standard Fortran, they may be
used with f77. Our compiler has two different quotation marks, ‘‘“** and ** " *’. (See section 2.9 in

the main text.)

PS1:2-20 A Portable Fortran 77 Compiler

4.2, Concatenation

One new operator has been added, character string concatenation, marked by a double slash **//”’.
The result of a concatenation is the string containing the characters of the left operand followed by
the characters of the right operand. The character expressions

‘ab’ // ‘cd’
‘abed’
are equal.
Dummy arguments of type character may be declared with implied lengths:
subroutine s (a, b)
character a*(*), b*(*)
Such dummy arguments may be used in concatenations in assign statements:
s=al/lb
but not in other contexts. For example:
if(a//b.eq.’abc’) key = 1
calisub(a//b)

are legal statements if “°a’’ and *‘b’’ are dummy arguments declared with explicit lengths, or if they
are not arguments. These are illegal if they are declared with implied lengths.

4.3. Character String Assignment

The left and right sides of a character assignment may not share storage. (The assumed implementa-
tion of character assignment is to copy characters from the right to the left side.) If the left side is
longer than the right, it is padded with blanks. If the left side is shorter than the right, trailing charac-
ters are discarded. Since the two sides of a character assignment must be disjoint, the following are
illegal:

str=""//str

str = str(2:)

These are not flagged as errors during compilation or execution, however the result is undefined.

4.4. Substrings

It is possible to extract a substring of a character variable or character array element, using the colon
notation:

a(i, j) (m:n)

is the string of (n~m+1) characters beginning at the m* character of the character array element a;;.
Results are undefined unless m<n. Substrings may be used on the left sides of assignments and as
procedure actual arguments.

4.5. Exponentiation

It is now permissible to raise real quantities to complex powers, or complex quantities to real or com-
plex powers. (The principal part of the logarithm is used.) Also, multiple exponentiation is now
defined:

ax*b¥*c is equivalent to a ** (b**c)

4.6. Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is permissible to combine integer and
complex quantities in an expression.)

A Portable Fortran 77 Compiler PS1:2-21

Constant expressions are permitted where a constant is allowed, except in data statements and for-
mat statements. (A constant expression is made up of explicit constants and parameters and the
Fortran operators, except for exponentiation to a floating-point power.) An adjustable dimension
may now be an integer expression involving constants, arguments, and variables in common.

Subscripts may now be general integer expressions; the old cv+c’ rules have been removed. do loop
bounds may be general integer, real, or double precision expressions. Computed goto expressions
and IO unit numbers may be general integer expressions.

5. Executable Statements

5.1. IF-THEN-ELSE

At last, the if-then-else branching structure has been added to Fortran. It is called a “‘Block If’. A
Block If begins with a statement of the form

if (...) then
and ends with an
end if
statement. Two other new statements may appear in a Block If. There may be several
else if (...) then
statements, followed by at most one
else

statement. If the logical expression in the Block If statement is true, the statements following it up to
the next else if, else, or end if are executed. Otherwise, the next else if statement in the group is exe-
cuted. If none of the else if conditions are true, control passes to the statements following the else
statement, if any. (The else block must follow all else if blocks in a Block If. Of course, there may
be Block Ifs embedded inside of other Block If structures.) A case construct may be rendered:

if (s .eq. “ab’) then
else if (s .eq. "cd’) then
else
end if
5.2. Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an asterisk, as in:
call joe(j, *10, m, *2)

A return statement may have an integer expression, such as:
return k

If the entry point has n alternate return (asterisk) arguments and if 1<k <n, the return is followed by
a branch to the corresponding statement label; otherwise the usual return to the statement following
the call is executed.

6. Input/Output

PS1:2-22 A Portable Fortran 77 Compiler

6.1. Format Variables

A format may be the value of a character expression (constant or otherwise), or be stored in a charac-
ter array, as in:

write(6, “(i5)") x

6.2. END=, ERR=, and IOSTAT= Clauses

A read or write statement may contain end=, err=, and iostat= clauses, as in:

write(6, 101, err=20, iostat=a(4))
read(5, 101, err=20, end=30, iostat=x)

Here 5 and 6 are the units on which the /O is done, 101 is the statement number of the associated
format, 20 and 30 are statement numbers, and a and x are integer variables. If an error occurs during
IO, control returns to the program at statement 20. If the end of the file is reached, control returns to
the program at statement 30. In any case, the variable referred to in the iostat= clause is given a
value when the I/O statement finishes. (Yes, the value is assigned to the name on the right side of the
equal sign.) This value is zero if all went well, negative for end of file, and some positive value for
€rTorS.

6.3. Formatted 1/0

6.3.1.

6.3.2.

Character Constants
Character constants in formats are copied literally to the output.
A format may be specified as a character constant within the read or write statement.
write(6, ‘(i2,’ isn”’*’t **,i1)") 7,4
produces
7isn’t4
In the example above, the format is tﬁe character constant
(i2,”isn""t *,il)
and the embedded character constant
isn’t
is copied into the output.

The example could have been written more legibly by taking advantage of the two types of quote
marks. '

write(6, '(i2," isn” "t ",i1)") 7, 4
However, the double quote is not standard Fortran 77.

The standard does not allow reading into character constants or Hollerith fields. In order to facilitate
running older programs, the Fortran /O library allows reading into Hollerith fields; however this is a
practice to be avoided.

Positional Editing Codes

t, tl, tr, and x codes control where the next character is in the record. tra or nx specifies that the next
character is n to the right of the current position. tln specifies that the next character is n to the left
of the current position, allowing parts of the record to be reconsidered. tn says that the next charac-
ter is to be character number n in the record. (See section 3.3 in the main text.)

A Portable Fortran 77 Compiler PS1:2-23

6.3.3. Colon

A colon in the format terminates the /O operation if there are no more data items in the I/O list, oth-
erwise it has no effect. In the fragment

x='("hello", :, " there", i4)”
write(6, x) 12
write(6, x)
the first write statement prints
hello there 12
while the second only prints

hello

6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of putting plus signs in front of non-
negative numeric output. The sp format code may be used to make the optional plus signs actually
appear for all subsequent items while the format is active. The ss format code guarantees that the I/O
system will not insert the optional plus signs, and the s format code restores the default behavior of
the /O system. (Since we never put out optional plus signs, ss and s codes have the same effect in
our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks, will be ignored following a bn code in a
format statement, and will be treated as zeros following a bz code in a format statement. The default
for a unit may be changed by using the open statement. (Blanks are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in the form required by a format
code, the output field must be filled with asterisks. (We think this should have been an option.)

6.3.7. Iw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at least m
digits in the output field, including, if necessary, leading zeros. The case iw. 0 is special, in that if the
value being printed is O, the output field is entirely blank. iw.1 is the same as iw.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning. On output
we always use e or d. The e and d format codes also have identical meanings. A leading zero before
the decimal point in e output without a scale factor is optional with the implementation. There is a
gw.d format code which is the same as ew.d and fw.d on input, but which chooses f or e formats for
output depending on the size of the number and of 4.

6.3.9. “A’’ Format Code

The a code is used for character data. a& uses a field width of w, while a plain a uses the length of
the internal character item.

6.4. Standard Units
There are default formatted input and output units. The statement

read 10,a, b
reads from the standard unit using format statement 10. The default unit may be explicitly specified

PS1:2-24 A Portable Fortran 77 Compiler

by an asterisk, as in
read(*, 10) a, b
Similarly, the standard output unit is specified by a print statement or an asterisk unit:

print 10
write(*, 10)

6.5. List-Directed /O

List-directed I/O is a kind of free form input for sequential /O, It is invoked by using an asterisk as
the format identifier, as in

read(6, *) a,b,c

On input, values are separated by strings of blanks and possibly a comma. On UNIX, tabs may be
used interchangeably with blanks as separators. Values, except for character strings, cannot contain
blanks. End of record counts as a blank, except in character strings, where it is ignored. Complex
constants are given as two real constants separated by a comma and enclosed in parentheses. A null
input field, such as between two consecutive commas, means the corresponding variable in the /O
list is not changed. Values may be preceded by repetition counts, as in

4%(3.,2.) 2%, 4+ helio”’

which stands for 4 complex constants, 2 null values, and 4 string constants.

The Fortran standard requires data being read into character variables by a list-directed read to be
enclosed in quotes. In our system, the quotes are optional for strings which do not start with a digit
or quote and do not contain separators.

For output, suitable formats are chosen for each item. The values of character strings are printed;
they are not enclosed in quotes. According to the standard, they could not be read back using list-
directed input. However much of this data could be read back in with list-directed O on our system.

6.6. Direct /O

A file connected for direct access consists of a set of equal-sized records each of which is uniquely
identified by a positive integer. The records may be written or read in any order, using direct access
1/O statements.

Direct access read and write statements have an extra argument, rec=, which gives the record
number to be read or written.

read(2, rec=13, err=20) (a(i), i=1, 203)
reads the thirteenth record into the array a.

The size of the records must be given by an open statement (see below). Direct access files may be
connected for either formatted or unformatted I/O.

6.7. Internal Files

Internal files are character string objects, such as variables or substrings, or arrays of type character.
In the former cases there is only a single record in the file; in the latter case each array element is a
record. The Standard includes only sequential formatted I/O on internal files. (I/O is not a very pre-
cise term to use here, but internal files are dealt with using read and write.) Internal files are used
by giving the name of the character object in place of the unit number, as in

character*80 x
read(5,’(a)") x
read(x,’(i3,i4)") n1,n2

which reads a character string into x and then reads two integers from the front of it. A sequential

A Portable Fortran 77 Compiler PS1:2-25

read or write always starts at the beginning of an internal file.

We also support two extensions of the standard. The first is direct 'O on internal files. This is like
direct /O on external files, except that the number of records in the file cannot be changed. In this
case a record is a single element of an array of character strings. The second extension is list-
directed /O on internal files.

6.8. OPEN, CLOSE, and INQUIRE Statements

These statements are used to connect and disconnect units and files, and to gather information about
units and files.

6.8.1. OPEN

The open statement is used to connect a file with a unit, or to alter some properties of the connection.
The following is a minimal example.

open(1, file="fort.junk")
open takes a variety of arguments with meanings described below.
unit= an integer between 0 and 99 inclusive which is the unit to which the file is to be connected (see
section 5.3 in the text). If this parameter is the first one in the open statement, the unit= can be
omitted.
iostat= is the same as in read or write.
err= is the same as in read or write.

file= a character expression, which when stripped of trailing blanks, is the name of the file to be con-
nected to the unit. The file name should not be given if the status="scratch’.

status=one of ‘old’, ’mew’, ‘scratch’, or ’‘unkmown’. If this parameter is not given,
“unknown’ is assumed. The meaning of ‘unknown’ is processor dependent; our system will
create the file if it doesn’t exist. If ‘scratch’ is given, a temporary file will be created. Tem-
porary files are destroyed at the end of execution. If ‘new’ is given, the file must not exist. It
will be created for both reading and writing. If ‘old” is given, it is an error for the file not to
exist.

access= ‘sequential’ or ‘direct’, depending on whether the file is to be opened for sequential or
direct 1/O.

form=‘formatted” or “unformatted’. On UNIX systems, form="print’ implies ‘formatted” with
vertical format control. (See section 3.4 of the text).

recl= a positive integer specifying the record length of the direct access file being opened. We meas-
ure all record lengths in bytes. On UNIX systems a record length of 1 has the special meaning
explained in section 5.1 of the text.

blank= "null’ or ‘zero’. This parameter has meaning only for formatted ’O. The default value is
‘null’. “zero’ means that blanks, other than leading blanks, in numeric input fields are to be
treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the old file.

6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number must be given. The optional
parameters are iostat= and err= with their usual meanings, and status= either ’keep’ or “delete’. For
scratch files the default is ‘delete”; otherwise ‘keep’ is the default. ‘delete’ means the file will be
removed. A simple example is

close(3, err=17)

PS1:2-26 A Portable Fortran 77 Compiler

6.8.3. INQUIRE
The inquire statement gives information about a unit (‘‘inquire by unit’’) or a file (‘‘inquire by
file’’). Simple examples are:
inquire(unit=3, name=xx)
inquire(file="junk ’; number=n, exist=1)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file name are
ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or unit= must
be used.

iostat=, err= are as before.

exist= a logical variable. The logical variable is set to .true. if the file or unit exists and is set to
.false. otherwise.

opened= a logical variable. The logical variable is set to .true. if the file is connected to a unit or if
the unit is connected to a file, and it is set to .false. otherwise.

number= an integer variable to which is assigned the number of the unit connected to the file, if any.
named= a logical variable to which is assigned .true. if the file has a name, or .false. otherwise.

name= a character variable to which is assigned the name of the file (inquire by file) or the name of
the file connected to the unit (inquire by unit).

access= a character variable to which will be assigned the value ‘sequential’ if the connection is for
sequential I/0, “direct’ if the connection is for direct 'O, ‘unknown” if not connected.

sequential= a character variable to which is assigned the value “yes’ if the file could be connected for
sequential /O, ‘no’ if the file could not be connected for sequential I/O, and “unknown’ if we
can’t tell.

direct= a character variable to which is assigned the value “yes’ if the file could be connected for
direct I/O, “no’ if the file could not be connected for direct /O, and “'unknown” if we can’t tell.

form= a character variable to which is assigned the value ‘unformatted’ if the file is connected for
unformatted I/'O, ‘formatted’ if the file is connected for formatted /O, ‘print’ for formatted IO
with vertical format control, or ‘unknown’ if not connected.

formatted= a character variable to which is assigned the value “yes’ if the file could be connected for
formatted IO, ‘no’ if the file could not be connected for formatted /O, and “unknown’ if we
can’t tell,

unformatted= a character variable to which is assigned the value “yes’ if the file could be connected
for unformatted /0, “no” if the file could not be connected for unformatted /O, and ‘unknown’
if we can’t tell. »

recl= an integer variable to which is assigned the record length of the records in the file if the file is
connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the last record
read from a file connected for direct access.

blank= a character variable to which is assigned the value “null’ if null blank control is in effect for
the file connected for formatted I/, “zero’ if blanks are being converted to zeros and the file is
connected for formatted I/O.

For information on file permissions, ownership, etc., use the Fortran library routines stat and access.
For further discussion of the UNIX Fortran /O system see ‘‘Introduction to the f77 /O Library’’ [9].

A Portable Fortran 77 Compiler PS1:2-27

APPENDIX B: References and Bibliography

References

1.

2.

8.
9.

American National Standard Programming Language FORTRAN, ANSI X3.9-1978. New York: Ameri-
can National Standards Institute, 1978.

USA Standard FORTRAN, USAS X3.9-1966. New York: United States of America Standards Institute,
1966. Clarified in Comm. ACM 12:289 (1969) and Comm. ACM 14:628 (1971).

Kernighan, B. W,, and D. M. Ritchie. The C Programming Language. Englewood Cliffs: Prentice-
Hall, 1978.

Ritchie, D. M. Private communication.

Johnson, S. C. ‘‘A Portable Compiler: Theory and Practice,”’ Proceedings of Fifth ACM Symposium on
Principles of Programming Languages. 1978.

Feldman, S. I. ‘‘An Informal Description of EFL,”’ internal memorandum.

Kernighan, B. W, ‘‘RATFOR—A Preprocessor for Rational Fortran,”’ Bell Laboratories Computing
Science Technical Report #55. 1977.

Ritchie, D. M. Private communication.
Wasley, D. L. “‘Introduction to the £77 I/0 Library’’, UNIX Programmer’'s Manual, Volume 2c.

Bibliography

The following books or documents describe aspects of Fortran 77. This list cannot pretend to be complete.
Certainly no particular endorsement is implied.

1.

Nown kv

8.
9.

Brainerd, Walter S., et al. Fortran 77 Programming. Harper Row, 1978.

Day, A. C. Compatible Fortran. Cambridge University Press, 1979.

Dock, V. Thomas. Structured Fortran IV Programming. West, 1979.

Feldman, S. I. ‘‘“The Programming Language EFL,”’ Bell Laboratories Technical Report. June 1979.
Hume, J.N,, and R. C. Holt. Programming Fortran 77. Reston, 1979.

Katzan, Harry, Jr. Fortran 77. Van Nostrand-Reinhold, 1978.

Meissner, Loren P., and Organick, Elliott I. Fortran 77 Featuring Structured Programming, Addison-
Wesley, 1979.

Merchant, Michael J. ABC’s of Fortran Programming. Wadsworth, 1979.
Page, Rex, and Richard Didday. Fortran 77 for Humans. West, 1980.

10. Wagener, Jerrold L. Principles of Fortran 77 Programming. Wiley, 1980.

Introduction to the f77 I/O Library

David L. Wasley
J. Berkman

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

The 77 VO library, 1ibI77.a, includes routines to perform all of the standard types
of Fortran input and output specified in the ANSI 1978 Fortran standard. The I/O Library
was written originally by Peter J. Weinberger at Bell Labs. Where the original imple-
mentation was incomplete, it has been rewritten to more closely implement the standard.
Where the standard is vague, we have tried to provide flexibility within the constraints of
the UNIXT operating system. A number of logical extensions and enhancements have
been provided such as the use of the C stdio library routines to provide efficient buffering
for file I/0.

Revised September, 1985

T UNIX is a trademark of Bell Laboratories.

PS1:3-2

Table of Contents

1. Fortran I/O

Introduction to the 77 I/O Library

1.1. Types of I/O and logical records

1.1.1. Direct access external I/O

1.1.2. Sequential access external I/O

1.1.3. List directed and namelist sequential external /O
1.1.4. Internal /O

1.2. I/O execution

.....

2. Implementation details ...
2.1. Number of logical units

.....

2.2, Standard logical units

2.3. Vertical format control

2.4, File names and the open staiement

2.5. Format interpretation

.....

2.6. List directed output
2.7.1/O errors

3. Non-‘ANSI Standard’’ extensions

3.1. Format specifiers

3.2. Print files

3.3. Scratch files
3.4. List directed I/'O

3.5. Namelist /O

4. Running older programs
4.1. Traditional unit control parameters

4.2. Ioinit()

5. Magnetic tape /'O
6. Caveat Programmer

Appendix A: I/O Library Error Messages

Appendix B: Exceptions to the ANSI Standard

O 00 00 00 N N N N N NNl b DA D R WWWLWWWWW

—
p—

Introduction to the £77 /O Library PS1:3-3

1. Fortran1/O

The requirements of the ANSI standard impose significant overhead on programs that do large
amounts of I/O. Formatted I/O can be very ‘‘expensive’’ while direct access binary I/O is usually very
efficient. Because of the complexity of Fortran /O, some general concepts deserve clarification.

1.1. Types of I/O and logical records

There are four forms of /O: formatted, unformatted, list directed, and namelist. The last two are
related to formatted but do not obey all the rules for formatted I/O. There are two types of *‘files’’: exter-
nal and internal and two modes of access to files: direct and sequential. The definition of a logical
record depends upon the combination of I/O form, file type, and access mode specified by the Fortran /O
statement.

1.1.1. Direct access external /O

A logical record in a direct access external file is a string of bytes of a length specified when the file
is opened. Read and write statements must not specify logical records longer than the original record size
definition. Shorter logical records are allowed. Unformatted direct writes leave the unfilled part of the
record undefined. Formatted direct writes cause the unfilled record to be padded with blanks.

1.1.2. Sequential access external /'O

Logical records in sequentially accessed external files may be of arbitrary and variable length.
Logical record length for unformatted sequential files is determined by the size of items in the iolist. The
requirements of this form of I/O cause the external physical record size to be somewhat larger than the log-
ical record size. For formatted write statements, logical record length is determined by the format state-
ment interacting with the iolist at execution time. The ‘‘newline’’ character is the logical record delimiter.
Formatted sequential access causes one or more logical records ending with ‘‘newline’’ characters to be
read or written,

1.1.3. List directed and namelist sequential external I/O

Logical record length for list directed and namelist /O is relatively meaningiess. On output, the
record length is dependent on the magnitude of the data items. On input, the record length is determined
by the data types and the file contents. By ANSI definition, a slash, ‘‘/’’, terminates execution of a list
directed input operation. Namelist input is terminated by ‘‘&end’’ or ‘‘$end’’ (depending on whether the
character before the namelist name was “‘&’’ or *‘$’").

1.1.4. Internal /O

~ The logical record length for an internal read or write is the length of the character variable or array
element. Thus a simple character variable is a single logical record. A character variable array is similar to
a fixed length direct access file, and obeys the same rules. Unformatted and namelist I/O are not allowed
on ‘‘internal’’ files.

1.2. 1/0O execution

Note that each execution of a Fortran unformatted /O statement causes a single logical record to be
read or written. Each execution of a Fortran formatted I/O statement causes one or more logical records to
be read or written. '

A slash, *“/’, will terminate assignment of values to the input list during list directed input and the
remainder of the current input line is skipped. The standard is rather vague on this point but seems to
require that a new external logical record be found at the start of any formatted input. Therefore data fol-
lowing the slash is ignored and may be used to comment the data file.

Direct access list directed I/O is not allowed. Unformatted internal I/O is not allowed. Namelist
I/O is allowed only with external sequential files. All other flavors of /O are allowed, although some are
not part of the ANSI standard.

PS1:3-4 _ Introduction to the £77 I/O Library

Any 1/O statement may include an err= clause to specify an alternative branch to be taken on errors
and/or an iostat= clause to return the specific error code. Any error detected during I/O processing will
cause the program to abort unless either err= or iostat= has been specificed in the program. Read state-
ments may include end= to branch on end-of-file. The end-of-file indication for that logical unit may be
reset with a backspace statement. File position and the value of /O list items is undefined following an
error.

2. Implementation details

Some details of the current implementation may be useful in understanding constraints on Fortran
I/0.

2.1. Number of logical units

Unit numbers must be in the range 0 — 99. The maximum number of logical units that a program
may have open at one time is the same as the UNIX system limit, currently 48.

2.2. Standard logical units

By default, logical units 0, 5, and 6 are opened to “‘stderr’’, “‘stdin’’, and ‘‘stdout’’ respectively.
However they can be re-defined with an open statement. To preserve error reporting, it is an error to close
logical unit 0 although it may be reopened to another file.

If you want to open the default file name for any preconnected logical unit, remember to close the
unit first. Redefining the standard units may impair normal console O. An alternative is to use shell re-
direction to externally re-define the above units. To re-define default blank control or format of the stan-
dard input or output files, use the open statement specifying the unit number and no file name (see § 2.4).

The standard units, 0, 5, and 6, are named internally ‘‘stderr’’, *‘stdin’’, and ‘‘stdout’’ respectively.
These are not actual file names and can not be used for opening these units. Inquire will not return these
names and will indicate that the above units are not named unless they have been opened to real files. The
names are meant to make error reporting more meaningful.

2.3. Vertical format control

Simple vertical format control is implemented. The logical unit must be opened for sequential access
with form = ‘print’ (see § 3.2). Control codes ‘‘0’’ and *‘1°* are replaced in the output file with ‘“‘\n’’ and
“Af’ respectively. The control character “‘+’’ is not implemented and, like any other character in the first
position of a record written to a “‘print’’ file, is dropped. The form = ‘print’ mode does not recognize vert-
ical format control for direct formatted, list directed, or namelist output.

An alternative is to use the filter fpr(1) for vertical format control. It replaces *“0°* and ““1’’ by “\n”’
and ‘“\f’ respectively, and implements the *‘+”’ control code. Unlike form = ‘print’ which drops unrecog-
nized form control characters, fpr copies those characters to the output file.

24. File names and the open statement ‘

A file name may be specified in an open statement for the logical unit. If a logical unit is opened by
an open statement which does not specify a file name, or it is opened implicitly by the execution of a read,
write, or endfile statement, then the default file name is fort.N where N is the logical unit number. Before
opening the file, the library checks for an environment variable with a name identical to the tail of the file
name with periods removed.t If it finds such an environment variable, it uses its value as the actual name
of the file. For example, a program containing:

‘tPeriods are deleted because they can not be part of environment variable names in the Bourne shell.

Introduction to the f77 /O Library PS1:3-5

open(32,file="/usr/guest/census/data.d")
read(32,100) vec
write(44) vec

normally will read from /usr/guest/censusidata.d and write to fort.44 in the current directory. If the
environment variables datad and fort44 are set, e.g.:

% setenv datad mydata
% setenv fort44 myout

in the C shell or:

$ datad=mydata
$ fort44=myout
$ export datad fort44

in the Bourne shell, then the program will read from mydata and write to myout.

An open statement need not specify a file name. If it refers to a logical unit that is already open, the
blank= and form= specifiers may be redefined without affecting the current file position. Otherwise, if
status = ‘scratch’ is specified, a temporary file with a name of the form tmp FXXXXXX will be opened,
and, by default, will be deleted when closed or during termination of program execution.

It is an error to try to open an existing file with status = ‘new’ . It is an error to try to open a nonex-
istent file with status = ‘old’. By default, status = ‘unknown’ will be assumed, and a file will be created if
necessary.

By default, files are positioned at their beginning upon opening, but see fseek(3f) and ioinit(3f) for
alternatives. Existing files are never truncated on opening. Sequentially accessed external files are trun-
cated to the current file position on close, backspace, or rewind only if the last access to the file was a
write. An endfile always causes such files to be truncated to the current file position.

2.5. Format interpretation

Formats which are in format statements are parsed by the compiler; formats in read, write, and print
statements are parsed during execution by the /O library. Upper as well as lower case characters are
recognized in format statements and all the alphabetic arguments to the I/O library routines.

If the external representation of a datum is too large for the field width specified, the specified field is
filled with asterisks (*). On Ew.dEe output, the exponent field will be filled with asterisks if the exponent
representation is too large. This will only happen if ‘‘e’’ is zero (see appendix B).

On output, a real value that is truly zero will display as ‘‘0.”’ to distinguish it from a very small non-
zero value. If this causes problems for other input systems, the BZ edit descriptor may be used to cause the
field following the decimal point to be filled with zero’s.

Non-destructive tabbing is implemented for both internal and external formatted I/O. Tabbing left or
right on output does not affect previously written portions of a record. Tabbing right on output causes
unwritten portions of a record to be filled with blanks. Tabbing right off the end of an input logical record
is an error. Tabbing left beyond the beginning of an input logical record leaves the input pointer at the
beginning of the record. The format specifier T must be followed by a positive non-zero number. If it is
not, it will have a different meaning (see § 3.1).

Tabbing left requires seek ability on the logical unit. Therefore it is not allowed in I/O to a terminal
or pipe. Likewise, nondestructive tabbing in either direction is possible only on a unit that can seek. Other-
wise tabbing right or spacing with X will write blanks on the output.

2.6. List directed output

In formatting list directed output, the /O system tries to prevent output lines longer than 80 charac-
ters. Each external datum will be separated by two spaces. List directed output of complex values
includes an appropriate comma. List directed output distinguishes between real and double precision
values and formats them differently. Output of a character string that includes ‘‘\n’’ is interpreted

PS1:3-6 Introduction to the f77 I/O Library

reasonably by the output system.

2.7. 1/O errors

If 1/O errors are not trapped by the user’s program an appropriate error message will be written to
“‘stderr’’ before aborting. An error number will be printed in *‘[]’* along with a brief error message show-
ing the logical unit and I/O state. Error numbers < 100 refer to UNIX errors, and are described in the intro-
duction to chapter 2 of the UNIX Programmer’s Manual. Error numbers = 100 come from the I/O library,
and are described further in the appendix to this writeupf. For internal I/O, part of the string will be
printed with “‘’” at the current position in the string. For external I/O, part of the current record will be
displayed if the error was caused during reading from a file that can backspace.

3. Non-*‘ANSI Standard’’ extensions

Several extensions have been added to the I/O system to provide for functions ormtted or poorly
defined in the standard. Programmers should be aware that these are non-portable.

3.1. Format specifiers

B is an acceptable edit control specifier. It causes return to the logical unit’s default mode of blank
interpretation. This is consistent with S which returns to default sign control.

P by itself is equivalent to OP . It resets the scale factor to the default value, 0.

The form of the Ew.dEe format specifier has been extended to D also. The form Ew.d.e is allowed
but is not standard. The “‘e’’ field specifies the minimum number of digits or spaces in the exponent field
on output. If the value of the exponent is too large, the exponent notation e or d will be dropped from the
output to allow one more character position. If this is still not adequate, the ‘“‘e’’ field will be filled with
asterisks (*). The default value for “‘e’’ is 2.

An additional form of tab control specification has been added. The ANSI standard forms TRn, TLn,
and Tn are supported where n is a positive non-zero number. If T or nT is specified, tabbing will be to the
next (or n-th) 8-column tab stop. Thus columns of alphanumerics can be lined up without counting.

A format control specifier has been added to suppress the newline at the end of the last record of a
formatted sequential write. The specifier is a dollar sign ($). It is constrained by the same rules as the colon
(2). It is used typically for console prompts. For example:

write (*, "(‘enter value for x: *,$)")
read (*y*) X

Radices other than 10 can be specified for formatted integer 'O conversion. The specifier is pat-
terned after P, the scale factor for floating point conversion. It remains in effect until another radix is
specified or format interpretation is complete. The specifier is defined as [n]R where 2 < n < 36. If n is
omitted, the default decimal radix is restored.

The format specifier Ommn may be used for an octal conversion; it is equivalent to 8R,Im.n,10R.
Similarly, Zm.n is equivalent to 16R,Im.n,10R and may be used for an hexadecimal conversion;

In conjunction with the above, a sign control specifier has been added to cause integer values to be
interpreted as unsigned during output conversion. The specifier is SU and remains in effect until another
sign control specifier is encountered, or format interpretation is complete.t Radix and ‘‘unsigned”
specifiers could be used to format a hexadecimal dump, as follows:

1 On many systems, these are also available in help /77 io_err_msgs.
tNote: Unsigned integer values greater than (2**31 - 1), can be read and written using SU. However they can not be used
in computations because Fortran uses signed arithmetic and such values appear to the arithmetic unit as negative numbers.

Introduction to the f77 /O Library PS1:3-7

2000 format (SU, 8210.8)

3.2. Print files

The ANSI standard is ambiguous regarding the definition of a “‘print’’ file. Since UNIX has no
default “‘print”’ file, an additional form= specifier is now recognized in the open statement. Specifying
form = ‘print’ implies formatted and enables vertical format control for that logical unit (see § 2.3). Vert-
ical format control is interpreted only on sequential formatted writes to a *““print’’ file.

The inquire statement will return print in the form= string variable for logical units opened as
‘‘print” files. It will return -1 for the unit number of an unconnected file.

If a logical unit is already open, an open statement including the form= option or the blank= option
will do nothing but re-define those options. This instance of the open statement need not include the file
name, and must not include a file name if unit= refers to a standard input or output. Therefore, to re-define
the standard output as a ‘*print’’ file, use:

open (unit=6, form="print’)

3.3. Scratch files

A close statement with status = ‘keep’ may be specified for temporary files. This is the default for
all other files. Remember to get the scratch file’s real name, using inquire , if you want to re-open it later.

3.4. List directed /'O

List directed read has been modified to allow tab characters wherever blanks are allowed. It also
allows input of a string not enclosed in quotes. The string must not start with a digit or quote, and can not
contain any separators (‘“,”’, */°’, blank or tab). A newline will terminate the string unless escaped with \.
Any string not meeting the above restrictions must be enclosed in quotes (*“ " >’ or *“ ’).

Internal list directed I/O has been implemented. During internal list reads, bytes are consumed until
the iolist is satisfied, or the ‘‘end-of-file’’ is reached. During internal list writes, records are filled until the
iolist is satisfied. The length of an internal array element should be at least 20 bytes to avoid logical record
overflow when writing double precision values. Internal list read was implemented to make command line
decoding easier. Internal list write should be avoided.

3.5. Namelist I/O

Namelist /O is a common extension in Fortran systems. The 77 version was designed to be compa-
tible with other vendors versions; it is described in ‘‘A Portable Fortran 77 Compiler’’, by Feldman and
Weinberger, August, 1985.

4. Running older programs

Traditional Fortran environments usually assume carriage control on all logical units, usually inter-
pret blank spaces on input as “‘0’’s, and often provide attachment of global file names to logical units at run
time. There are several routines in the I/O library to provide these functions.

4.1. Traditional unit control parameters

If a program reads and writes only units 5 and 6, then including —1166 in the f77 command will cause
carriage control to be interpreted on output and cause blanks to be zeros on input without further
modification of the program. If this is not adequate, the routine ioinit(3f) can be called to specify control
parameters separately, including whether files should be positioned at their beginning or end upon opening.

PS1:3-8 Introduction to the f77 I/O Library

4.2, Ioinit()

Ioinit(3f) can be used to attach logical units to specific files at run time, and to set global parameters
for the /O system. It will look for names of a user specified form in the environment and open the
corresponding logical unit for sequential formatted I/O. Names must be of the form PREFIXnn where
PREFIX is specified in the call to ioinit and nn is the logical unit to be opened. Unit numbers < 10 must
include the leading ‘‘0°’.

Ioinit should prove adequate for most programs as written. However, it is written in Fortran-77
specifically so that it may serve as an example for similar user-supplied routines. A copy may be retrieved
by “‘ar x /usr/lib/libU77.a ioinit.f’. See §2.4 for another way to override program file names through
environment variables.

5. Magnetic tape I/0

Because the L/O library uses stdio buffering, reading or writing magnetic tapes should be done with
great caution, or avoided if possible. A set of routines has been provided to read and write arbitrary sized
buffers to or from tape directly. The buffer must be a character object. Internal I/O can be used to fill or
interpret the buffer. These routines do not use normal Fortran I/O processing and do not obey Fortran I/O
rules. See topen(3f).

6. Caveat Programmer

The I/O library is extremely complex yet we believe there are few bugs left. We’ve tried to make the
system as correct as possible according to the ANSI X3.9-1978 document and keep it compatible with the
UNIX file system. Exceptions to the standard are noted in appendix B.

Introduction to the f77 /O Library PS1:3-9

Appendix A

/O Library Error Messages

The following error messages are generated by the I/O library. The error numbers are returned in the
iostat= variable. Error numbers < 100 are generated by the UNIX kernel. See the introduction to chapter 2
of the UNIX Programmers Manual for their description.

100

101

102

103

104

105

106

107

108

109

110

111

112

error in fonndt

See error message output for the location of the error in the format. Can be caused by more
than 10 levels of nested parentheses, or an extremely long format statement.

illegal unit number

It is illegal to close logical unit 0. Unit numbers must be between 0 and 99 inclusive.
formatted ilo not allowed

The logical unit was opened for unformatted I/O.

unformatted ilo not allowed

The logical unit was opened for formatted I/O.

direct ilo not allowed

The logical unit was opened for sequential access, or the logical record length was specified as
0.

sequential ilo not allowed N
The logical unit was opened for direct access I/O.

can't backspace file

The file associated with the logical unit can’t seek. May be a device or a pipe.

off beginning of record

The format specified a left tab beyond the beginning of an internal input record.

can’t stat file

The system can’t return status information about the file. Perhaps the directory is unreadable.
no * after repeat count

Repeat counts in list directed I/O must be followed by an * with no blank spaces.

off end of record

A formatted write tried to go beyond the logical end-of-record. An unformatted read or write
will also cause this.

truncation failed

The truncation of an external sequential file on close, backspace, rewind, or endfile failed.
incomprehensible list input

List input has to be just right.

PS1:3-10

113

114

115

116

117

118

119

120

121

122

123

124

125

Introduction to the f77 I/O Library

out of free space
The library dynamically creates buffers for internal use. You ran out of memory for this. Your
program is too big!

unit not connected
The logical unit was not open.

invalid data for integer format term
Only spaces, a leading sign and digits are allowed.

invalid data for logical format term
Legal input consists of spaces (optional), a period (optional), and then a *‘t’’, ““T"’, *‘f"’, or
“F”.

‘new’ file exists
You tried to open an existing file with ‘‘status="new ”’.

can't find ‘old’ file
You tried to open a non-existent file with *‘status=‘old ”’.

opening too many files or unknown system error
Either you are trying to open too many files simultaneously or there has been an undetected
system error.

requires seek ability
Direct access requires seek ability. Sequential unformatted I/O requires seek ability on the file
due to the special data structure required. Tabbing left also requires seek ability.

illegal argument : .
Certain arguments to open, etc. will be checked for legitimacy. Often only non-default forms
are looked for.

negative repeat count
The repeat count for list directed input must be a positive integer.

illegal operation for unit
An operation was requested for a device associated with the logical unit which was not possi-
ble. This error is returned by the tape I/O routines if attempting to read past end-of-tape, etc.

invalid data for d, e, f or g format term
Input data must be legal.

illegal input for namelist
Column one of input is ignored, the namelist name must match, the variables must be in the
namelist, and the data must be of the right type.

Introduction to the £77 I/O Library PS1:3-11

Appendix B

Exceptions to the ANSI Standard

A few exceptions to the ANSI standard remain.

Vertical format control

The ‘“+*’ carriage control specifier is not fully implemented (see §2.3). It would be difficult to
implement it correctly and still provide UNIX-like file I/O.

Furthermore, the carriage control implementation is asymmetrical. A file written with carriage con-
trol interpretation can not be read again with the same characters in column 1.

An alternative to interpreting carriage control internally is to run the output file through a ‘‘Fortran
output filter’’ before printing. This filter could recognize a much broader range of carriage control and
include terminal dependent processing. One such filter is fpr(1).

Default files

Files created by default use of endfile statements are opened for sequential formatted access. There
is no way to redefine such a file to allow direct or unformatted access.

Lower case strings

It is not clear if the ANSI standard requires internally generated strings to be upper case or not. As
currently written, the inquire statement will return lower case strings for any alphanumeric data.

Exponent representation on Ew.dEe output

If the field width for the exponent is too small, the standard allows dropping the exponent character
but only if the exponent is > 99. This system does not enforce that restriction. Further, the standard implies
that the entire field, ‘‘w’’, should be filled with asterisks if the exponent can not be displayed. This system
fills only the exponent field in the above case since that is more diagnostic.

Pre-connection of files

The standard says units must be pre-connected to files before the program starts or must be explicitly
opened. Instead, the I/O library connects the unit to a file on its first use in a read, write, print, or endfile
statement. Thus inquire by unit can not tell prior to a unit number use the characteristics or name of the
file corresponding to a unit.

Berkeley Pascal User’s Manual
Version 3.1 — April 1986

William N. Joy#, Susan L. Graham, Charles B. Haley?,
Marshall Kirk McKusick, and Peter B. Kessler}

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Berkeley Pascal is designed for interactive instructional use and runs on the PDP/11
and VAX/11 computers. Interpretive code is produced, providing fast translation at the
expense of slower execution speed. There is also a fully compatible compiler for the
VAX/11. An execution profiler and Wirth’s cross reference program are also available
with the system.

The system supports full Pascal. The language accepted is ‘standard’ Pascal, and a
small number of extensions. There is an option to suppress the extensions. The exten-
sions include a separate compilation facility and the ability to link to object modules pro-
duced from other source languages.

The User’s Manual gives a list of sources relating to the UNIXT system, the Pascal
language, and the Berkeley Pascal system. Basic usage examples are provided for the
Pascal components pi, px, pix, pc, and pxp. Errors commonly encountered in these pro-
grams are discussed. Details are given of special considerations due to the interactive
implementation. A number of examples are provided including many dealing with
input/output. An appendix supplements Wirth’s Pascal Report to form the full definition
of the Berkeley implementation of the language.

Introduction

The Berkeley Pascal User’s Manual consists of five major sections and an appendix. In section 1 we
give sources of information about UNIX, about the programming language Pascal, and about the Berkeley
implementation of the language. Section 2 introduces the Berkeley implementation and provides a number
of tutorial examples. Section 3 discusses the error diagnostics produced by the translators pc and pi, and
the runtime interpreter px. Section 4 describes input/output with special attention given to features of the
interactive implementation and to features unique to UNIX. Section 5 gives details on the components of
the system and explanation of all relevant options. The User’s Manual concludes with an appendix to
Wirth’s Pascal Report with which it forms a precise definition of the implementation.

Copyright 1977, 1979, 1980, 1983 W. N. Joy, S. L. Graham, C. B. Haley, M. K. McKusick, P. B. Kessler

$Author’s current addresses: William Joy: Sun Microsystems, 2550 Garcia Ave., Mountain View, CA 94043; Charles
Haley: S & B Associates, 1110 Centennial Ave., Piscataway, NJ 08854; Peter Kessler: Xerox Research Park, Palo Alto,
CA

t UNIX is a trademark of Bell Laboratories.

PS1:4-2 Berkeley Pascal User’s Manual

History of the implementation

The first Berkeley system was written by Ken Thompson in early 1976. The main features of the
present system were implemented by Charles Haley and William Joy during the latter half of 1976. Earlier
versions of this system have been in use since January, 1977.

The system was moved to the VAX-11 by Peter Kessler and Kirk McKusick with the porting of the
interpreter in the spring of 1979, and the implementation of the compiler in the summer of 1980.

1. Sources of information

This section lists the resources available for information about general features of UNIX, text editing,
the Pascal language, and the Berkeley Pascal implementation, concluding with a list of references. The
available documents include both so-called standard documents — those distributed with all UNIX system —
and documents (such as this one) written at Berkeley.

1.1. Where to get documentation

Current documentation for most of the UNIX system is available ‘‘on line’’ at your terminal. Details
on getting such documentation interactively are given in section 1.3.

1.2. Documentation describing UNIX

The foliowing documents are those recommended as tutorial and reference material about the UNIX
system. We give the documents with the introductory and tutorial materials first, the reference materials
last.

UNIX For Beginners — Second Edition
This document is the basic tutorial for UNIX available with the standard system.,

Communicating with UNIX

This is also a basic tutorial on the system and assumes no previous familiarity with computers; it was
written at Berkeley.

An introduction to the C shell

This document introduces csk, the shell in common use at Berkeley, and provides a good deal of
general description about the way in which the system functions. It provides a useful glossary of terms
used in discussing the system.

UNIX Programmer’s Manual

This manual is the major source of details on the components of the UNIX system. It consists of an
Introduction, a permuted index, and eight command sections. Section 1 consists of descriptions of most of
the ‘‘commands’’ of UNIX. Most of the other sections have limited relevance to the user of Berkeley Pas-
cal, being of interest mainly to system programmers.

UNIX documentation often refers the reader to sections of the manual. Such a reference consists of a
command name and a section number or name. An example of such a reference would be: ed (1). Here
ed is a command name — the standard UNIX text editor, and ‘(1) indicates that its documentation is in sec-
tion 1 of the manual.

The pieces of the Berkeley Pascal system are pi (1), px (1), the combined Pascal translator and inter-
pretive executor pix (1), the Pascal compiler pc (1), the Pascal execution profiler pxp (1), and the Pascal
cross-reference generator pxref (1).

It is possible to obtain a copy of a manual section by using the man (1) command. To get the Pascal
documentation just described one could issue the command:

% man pi

Berkeley Pascal User’s Manual PS1:4-3

to the shell. The user input here is shown in bold face; the ‘% ’, which was printed by the shell as a
prompt, is not. Similarly the command:

% man man
asks the man command to describe itself.

1.3. Text editing documents

The following documents introduce the various UNIX text editors. Most Berkeley users use a version
of the text editor ex; either edit, which is a version of ex for new and casual users, ex itself, or vi (visual)
which focuses on the display editing portion of ex.

A Tutorial Introduction to the UNIX Text Editor

This document, written by Brian Kernighan of Bell Laboratories, is a tutorial for the standard UNIX
text editor ed. It introduces you to the basics of text editing, and provides enough information to meet
day-to-day editing needs, for ed users.

Edit: A tutorial

This introduces the use of edit, an editor similar to ed which provxdes a more hospitable environ-
ment for beginning users.

Ex/edit Command Summary

This summarizes the features of the editors ex and edit in a concise form. If you have used a line
oriented editor before this summary alone may be enough to get you started.

Ex Reference Manual — Version 3.7
A complete reference on the features of ex and edit.

An Introduction to Display Editing with Vi

Vi is a display oriented text editor. It can be used on most any CRT terminal, and uses the screen as a
window into the file you are editing. Changes you make to the file are reflected in what you see. This
manual serves both as an introduction to editing with vi and a reference manual.

Vi Quick Reference

This reference card is a handy quick guide to vi; you should get one when you get the introduction to
vi.

1.4. Pascal documents — The language

This section describes the documents on the Pascal language which are likely to be most useful to the
Berkeley Pascal user. Complete references for these documents are given in section 1.7.

Pascal User Manual

By Kathleen Jensen and Niklaus Wirth, the User Manual provides a tutorial introduction to the
features of the language Pascal, and serves as an excellent quick-reference to the language. The reader
with no familiarity with Algol-like languages may prefer one of the Pascal text books listed below, as they
provide more examples and explanation. Particularly important here are pages 116-118 which define the
syntax of the language. Sections 13 and 14 and Appendix F pertain only to the 6000-3.4 implementation of
Pascal.

PS1:4-4 Berkeley Pascal User’s Manual

Pascal Report

By Niklaus Wirth, this document is bound with the User Manual. It is the guiding reference for
implementors and the fundamental definition of the language. Some programmers find this report too con-
cise to be of practical use, preferring the User Manual as a reference,

Books on Pascal

Several good books which teach Pascal or use it as a medium are available. The books by Wirth Sys-
tematic Programming and Algorithms + Data Structures = Programs use Pascal as a vehicle for teaching
programming and data structure concepts respectively. They are both recommended. Other books on Pas-
cal are listed in the references below.

1.5. Pascal documents — The Berkeley Implementation

This section describes the documentation which is available describing the Berkeley implementation
of Pascal.

User’s Manual

The document you are reading is the User’s Manual for Berkeley Pascal. We often refer the reader
to the Jensen-Wirth User Manual mentioned above, a different document with a similar name.

Manual sections

The sections relating to Pascal in the UNIX Programmer's Manual are pix (1), pi (1), pc (1), px (1),
pxp (1), and pxref (1). These sections give a description of each program, summarize the available
options, indicate files used by the program, give basic information on the diagnostics produced and include
a list of known bugs.

Implementation notes

For those interested in the internal organization of the Berkeley Pascal system there are a series of
Implementation Notes describing these details. The Berkeley Pascal PXP Implementation Notes describe
the Pascal interpreter px ; and the Berkeley Pascal PX Implementation Notes describe the structure of the
execution profiler pxp.

1.6. References

UNIX Documents

Communicating With UNIX
Computer Center

University of California, Berkeley
January, 1978.

Ricki Blau and James Joyce

Edit: a tutorial

UNIX User’s Supplementary Documents (USD), 14
University of California, Berkeley, CA. 94720
April, 1986.

Exledit Command Summary
Computer Center

University of California, Berkeley
August, 1978.

Berkeley Pascal User’s Manual PS1:4-5

William Joy

Ex Reference Manual — Version 3.7

UNIX User’s Supplementary Documents (USD), 16
University of California, Berkeley, CA. 94720
April, 1986.

William Joy

An Introduction to Display Editing with Vi

UNIX User’s Supplementary Documents (USD), 15
University of California, Berkeley, CA. 94720
April, 1986.

William Joy

An Introduction to the C shell (Revised)

UNIX User’s Supplementary Documents (USD), 4
University of California, Berkeley, CA. 94720
April, 1986.

Brian W. Kernighan

UNIX for Beginners — Second Edition

UNIX User’s Supplementary Documents (USD), 1
University of California, Berkeley, CA. 94720
April, 1986.

Brian W. Kernighan

A Tutorial Introduction to the UNIX Text Editor
UNIX User’s Supplementary Documents (USD), 12
University of California, Berkeley, CA. 94720
April, 1986.

Dennis M. Ritchie and Ken Thompson

The UNIX Time Sharing System

Reprinted from Communications of the ACM July 1974 in

UNIX Programmer’s Supplementary Documents, Volume 2 (PS2), 1
University of California, Berkeley, CA. 94720

April, 1986.

Pascal Language Documents

Cooper and Clancy

Oh! Pascal!, 2nd Edition

W. W. Norton & Company, Inc.
500 Fifth Ave., NY, NY. 10110
1985, 475 pp.

Cooper

Standard Pascal User Reference Manual
W. W. Norton & Company, Inc.

500 Fifth Ave., NY, NY. 10110

1983, 176 pp.

PS1:4-6 Berkeley Pascal User’s Manual

Kathleen Jensen and Niklaus Wirth
Pascal — User Manual and Report
Springer-Verlag, New York.

1975, 167 pp.

Niklaus Wirth

Algorithms + Data structures = Programs
Prentice-Hall, New York.

1976, 366 pp.

Berkeley Pascal documents

The following documents are available from the Computer Center Library at the University of Cali-
fornia, Berkeley.

William N. Joy

Berkeley Pascal PX Implementation Notes

Version 1.1, April 1979.

(Vax-11 Version 2.0 By Kirk McKusick, December, 1979)

William N. Joy ;
Berkeley Pascal PXP Implementation Notes
Version 1.1, April 1979.

2. Basic UNIX Pascal

The following sections explain the basics of using Berkeley Pascal. In examples here we use the text
editor ex (1). Users of the text editor ed should have little trouble. following these examples, as ex is simi-
lar to ed. We use ex because it allows us to make clearer examples.t The new UNIX user will find it help-
ful to read one of the text editor documents described in section 1.4 before continuing with this section.

2.1. A first program

To prepare a program for Berkeley Pascal we first need to have an account on UNIX and to ‘login’ to
the system on this account. These procedures are described in the documents Communicating with UNIX
and UNIX for Beginners . '

Once we are logged in we need to choose a name for our program; let us call it ‘first’ as this is the
first example. We must also choose a name for the file in which the program will be stored. The Berkeley
Pascal system requires that programs reside in files which have names ending with the sequence ‘.p’ so we
will call our file “first.p’.

A sample editing session to create this file would begin:

% ex first.p
"first.p" [New file]

We didn’t expect the file to exist, so the error diagnostic doesn’t bother us. The editor now knows the
name of the file we are creating. The ‘:’ prompt indicates that it is ready for command input. We can add
the text for our program using the ‘append’ command as follows.

:append
program first(output)

t Users with crT terminals should find the editor vi more pleasant to use; we do not show its use here because its display
oriented nature makes it difficult to illustrate.

Berkeley Pascal User’s Manual PS1:4-7

begin
writeln("Hello, world!")
end.

The line containing the single ‘.’ character here indicated the end of the appended text. The ‘:* prompt
indicates that ex is ready for another command. As the editor operates in a temporary work space we must
now store the contents of this work space in the file ‘first.p’ so we can use the Pascal translator and execu-
tor pix on it.

:write

"first.p" [New file] 4 lines, 59 characters
‘quit

%

We wrote out the file from the edit buffer here with the ‘write’ command, and ex indicated the number of
lines and characters written. We then quit the editor, and now have a prompt from the shell.}

¥ Our examples here assume you are using csh.

Assembler Reference Manual

Integrated Solutions
1140 Ringwood Court
San Jose, CA 95131
(408) 943-1902

PS1:5-ii ISI Assembler Reference Manual

490110 Rev. B

July 1986

Copyright 1984, 1985, 1986 by Integrated Solutions. All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means (e.g., electronic,

mechanical, photocopying, recording) without the prior permission of Integrated Solutions.

The information in this publication is subject to change without notice.

ISI Assembler Reference Manual PS1:5-ii

PREFACE

This manual describes the UNIX 4.2BSD assembler, as(1), for the IS-68K processor (based on the
MC68010) and the VME-68K10 and 68K20 processors (based on the MC68010 and MC68020 with
MC68881). It is written for the experienced assembly language programmer and describes the assembler
in detail so the programmer can develop programs. This manual is organized in reference format into the
following sections:

Section 1 - Introduction
This section describes the notation conventions used in this manual; summarizes how to
format assembly language program statements and how to invoke the assembler and
presents comments about the diagnostics.

Section 2 - Lexical Conventions
This section describes the lexical conventions of as.

Section 3 - Expressions
This section discusses rules for expressions.

Section 4 - Assembler Directives
This section discusses assembler directives.

Section 5 - Instructions/Addressing Modes
This section comments on the assembler’s instructions and addressing modes.

Appendix A - Instruction Mnemonics
This appendix lists the assembler’s instruction mnemonics.

Appendix B - Summary of MC680x0 Instruction Mnemonics
This appendix lists a functional summary of the MC68000/68010/68020 instruction
mnemonics.

Appendix C - Summary of MC68881 Instruction Mnemonics
This appendix lists a functional summary of the MC68881 instruction mnemonics.

PS1:5-iv IST Assembler Reference Manual
TABLE OF CONTENTS
SECTION 1: INTRODUCTION 1-1
1.1 Notation Conventions 1-1
12 Assembly Language Program Statements 1-1
12.1 Label Field 1-1
122 Opcode Field 1-1
123 Operand Field 1-2
124 Comment Field 1-2
13 Invoking the Assembler 1-2
14 Diagnostics 1-2
SECTION 2: LEXICAL CONVENTIONS 2-1
21 Identifiers 2-1
2.1.1 Named Labels 2-1
2.12 Named Numeric Labels 2-1
22 Constants 2-1
22.1 Numeric Constants 2-1
222 Floating Point Constants 2-1
223 String Constants 2-2
23 Blanks 2-2
24 Comments 2-2
24.1 C Style Comments 2-2
242 Scratch Mark Comments 2-3
25 Segments and Location Counters 2-3
SECTION 3: EXPRESSIONS 3-1
i1 Expression Operators 3-1
32 Expression Data Types 3-2
33 Type Propagation in Expressions 33
SECTION 4: ASSEMBLER DIRECTIVES e 4-1
4.1 Interface to a Previous Pass Directives 4-1
411 Abort 4-1
412 File 4-1
413 Line 4-1
4.2 Location Counter Control Directives 4-1
42.1 Data and Text 4-1
43 Filled Data Directives 4-2
43.1 Align 4-2
432 Org 4-2
433 Space . 42
434 Fill 4-2
44 Initialized Data Directives 4-2
45 Floating Point Initializtion Directives 4-3
4.6 String Initialization Directives 4-4
4.6.1 Ascii, Asciz 4-4

A ISI Assembler Reference Manual

4.7

438

External Symbol Definition Directives
47.1 Comm

472 Lcomm

473 Globl

474 Set

475 Lsym

Debugger Directives

4.8.1 Stabs, Stabn, Stabd

SECTION 5: INSTRUCTIONS/ADDRESSING MODES

51

52
53

APPENDIX A: INSTRUCTION MNEMONICS

APPENDIX B: SUMMARY OF MC680x0 INSTRUCTION MNEMONICS ..ccceceesconse

B.1
B2
B.3
B4
B.S
B.6
B.7
B8

APPENDIX C: SUMMARY OF MC68881 INSTRUCTION MNEMONICS .cceeceessasese

C1
C2
C3
C4
CsS
C.6
C8

Instuctions

5.1.1 Branch Instructions
5.1.2 Extended Branch Instructions

Addressing Modes

Special Addressing Modes ..

53.1 More Multiple Register Mask

5.3.2 Register Pairs

Double Operand Instructions

Single Operand Instructions
Branch Instructions

Extended Branch Instructions

Test Conditions Instructions

Shift Instructions

Trap Instructions

Miscellaneous

Double Operand Instructions

Single Operand Instructions

Branch Instructions

Extended Branch Instructions

Test Conditions Instructions

Trap Instructions

Miscellaneous

4-4
4-4
44
4-4
4-5
4-5
4-5

5-1
5-1
5-1
5-2
5-3
5-5

5-5

B-1
B-1
B-2
B-3
B-4
B-4

B-5
B-6

C-1
C-1
C-6
C-7
C-8
C-9
C-9
C-11

PS1:5-v

PS1:5-vi ISI Assembler Reference Manual

LIST OF TABLES
Table 1-1 Notation Convention Definitions 1-1
Table 2-1 Floating Point Type Characters e 2-2
Table 3-1 Expression Operators 3-1
Table 3-2 Operator Precedence 3-1
Table 3-3 Expressions and Their Descriptions seseessssssss eseesesearas ssessscsssasene veesse 32
Table 4-1 Expression Truncation 4-3
Table 4-2 Operand Format and Size .. 4-3
Table 5-1 Extended Branch Instructions 5-2
Table 5-2 Floating Extended Branch Instructions 5-3

Table 5-3 Addressing Modes 5-4

SECTION 1: INTRODUCTION

As is the UNIX 4.2BSD assembler for the IS-68K processor (based on the MC68010) and the VME-68K 10
and 68K20 processors (based on the MC68010 and MC68020 with MC68881). Its primary function is to
assemble code produced by the C compiler, but it can also be used to assemble programs written in
assembly language. Users who intend to write assembly language programs should use this manual in
conjunction with the following publications which fully describe the 68000/68010/68020/68881 instruction
set and addressing modes:

» Motorola’s 16-Bit Microprocessor User's Manual. Prentice Hall.
¢ Motorola’s MC68010 16-Bit Virtual Memory Microprocessor. Motorola, 1983. (ADI-942-R1)

» Motorola’s MC68020 32-Bit Microprocessor User's Manual. Prentice Hall, 1984,
(ISBN 0-13-541418-0)

e Motorola’s MC68881 Floating-Point Coprocessor User's Manual. Motorola, 1985, (First Edition)
1.1 Notation Conventions

The conventions used to describe formats in this manual are as follows:

Table 1-1. Notation Convention Definitions

Convention Definition

{1 Denotes an optional element.

N.. Denotes one or more occurrences of N.

italic Denotes a user-substitutable element.

bold Denotes a keyword or character that must be entered exactly as shown.

1.2 Assembly Language Program Statements

An assembly language source program is composed of a sequence of statements. Statements are separated
either by new-lines or by semicolons. With a few exceptions, the format of an assembly language
statement is

[label field] opcode [operand field) [comment]

One exception is the statement consisting of a label only. Another is the statement consisting of a comment
only. Blank lines are also allowed.

1.2.1 Label Field

A label is a user-defined symbol. It is a symbolic means of referring to a specific location within a
program. If present, a label always occurs first in a statement and must be terminated with a colon.

The value of a label is either absolute or relocatable, depending on whether the location counter value is
currently absolute or relocatable. In the latter case, the absolute value of the symbol is assigned when the
program is linked with ld.

1.2.2 Opcode Field

The opcode field identifies the statement as either a machine instruction or an assembler directive, also
called a pseudo opcode. Instruction statements and assembler directives are known as keyword statements,
One or more blanks or tabs must separate an opcode from the operand field.

Introduction

PS1:5 1-2 ISI Assembler Reference Manual

A machine instruction is indicated by an instruction mnemonic (see Appendix A). Note that instruction
mnemonics and register names are lower-case.

An assembler directive, unlike an instruction, does not result in executable code. Rather, it simply directs
the assembly process. The directives are discussed in Section 4.

1.2.3 Operand Field

The operand field consists of one or more operands, depending on the requirements of the opcode field.
When more than one operand appears in a statement, they must be separated by commas. Appendices B
and C, a functional breakdown of the machine instruction mnemonics, summarizes single and double
operand machine instructions.

1.24 Comment Field

The preferred method of commenting a statement is with the C language-style comment delimiters: "/* ..
*/", C style comments can extend across multiple lines.

A comment field can also be introduced with the "#" character, provided that the "#" starts in column 1 and
does not contain the newline character. Any other character can appear in the comment. See Section 2.4
for more details.

1.3 Invoking The Assembler

After the assembly language program is written, it is assembled by as and loaded by the link editor, /d, for
execution.

To invoke the assembler, enter the following command line:
as [FL]1[-WI1[-R1[-20][~oobjfile][name ...]
The available flags are

-L Save defined labels beginning with an "L", which are normally discarded to save space in the
resultant symbol table, The compilers generate such temporary labels.

—W Do not complain about warnings.

—-R Make initialized data segments read-only by concatenating them to the text segments. This obviates
the need to run editor scripts on assembly code to make initialized data read-only and shared.

—20 Allow the use of 68020 addressing modes and 68020/68881 instructions.

All undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file objfile; if that is omitted, a.out is used.
1.4 Diagnostics

Diagnostics are intended to be self-explanatory and appear on the standard output. Diagnostics either
report an error or a warning. Error diagnostics complain about lexical, syntactic, or semantic errors, and
suppress the creation of objfile for the assembly.

Introduction

SECTION 2: LEXICAL CONVENTIONS

This section describes the lexical conventions of as. These conventions govern the use of identifiers
(alternatively, symbols or names) and constants.

2.1 Identifiers

An identifier consists of a sequence of alphanumeric characters (including period ".", underscore "_", and

dollar "$"). Identifiers can be arbitrarily long (practically). The first character in an identifier may not be
numeric. All characters are significant.

2.1.1 Named Labels

A named label consists of a name followed by a colon. The effect of a named label is to assign the current
value and type of the location counter to the name. An error is indicated in pass one if the name is already
defined; an error is indicated in pass two if the value assigned changes the definition of the label.

A label is referenced by its name.

Labels beginning with an "L " are discarded from the symbol table unless as is invoked with the —L option
(see Section 1-3, "Invoking the Assembler"),

2.1.2 Named Numeric Labels

A numeric label consists of a digit 0 to 9 followed by a colon (e.g., 0z, 2:, 5:). Such a label serves to define
temporary symbols of the form "ab" and "af", where n is the digit of the label. As in the case of named
labels, a numeric label assigns the current value and type of the location counter to the temporary symbol.
However, several numeric labels with the same digit may be used within the same assembly. References to
symbols of the form "nb" refer to the first numeric label "n:" backwards from the reference; "nf" symbols
refer to the first numeric label "n:" forwards from the reference. Such numeric labels conserve the
inventive powers of the programmer.

As turns local labels into labels of the form Ln.m. Programmer-defined labels of this form should,
therefore, be avoided.

2.2 Constants

There are three forms of constants: numeric, floating point, and string constants. All constants are
considered absolute quantities when they appear in an expression.

2.2.1 Numeric Constants

Numeric constants can represent quantities up to 32 bits wide.

The digits are "0123456789abcdefABCDEF" with the obvious values.

An octal constant consists of a sequence of digits with a leading zero.

A decimal constant consists of a sequence of digits without a leading zero.

A hexadecimal constant consists of the characters "0x" (or "0X") followed by a sequence of digits.

A single-character constant consists of a single quote "’" followed by any ASCII character, even the
ASCII newline. The constant’s value is the code for the given character.

2.2.2 Floating Point Constants

The lexical form of a floating point constant is specified with the following metanotation:

Lexical Conventions

PS1:5 2-2 ISI Assembler Reference Manual

Olexpt]([+ ~DIdec] *(.)([dec] *)(lexpel([+-1)(decT)
where:

[expt] is a type specification character ("fFdD")

[dec] is a decimal digit ("0123456789")

[expe] is an exponent delimiter and type specification character ("eEdD")
and

*
x means 0 or more occurrences of x

x means 1 or more occurrences of x

The standard semantic interpretation is used for the signed integer, fraction and signed power of 10
exponent. If the exponent delimiter is specified, it should agree with the initial type specification character
that is used (i.e., "e" for type "f" and "d" for type "d"). The type specification character specifies the type
and representation of the constructed number as follows:

Table 2-1, Floating Point Type Characters
Type Floating Size
Character Representation (Bits)
f,F F format floating 32
dD D format floating 64

The assembler uses the library routine atof(3) to convert F and D numbers.

Collectively, all floating point numbers together with the quad scalar, are called Bignums. When as
requires a Bignum, a 32-bit scalar quantity can also be used.

Floating point constants are generated in IEEE format. (A separate version, decas, is available to generate
DEC format floating point constants.)

2.2.3 String Constants

A string constant is defined by using the same syntax and semantics as used by the C language. Strings
begin and end with a double quote ("). Most C backslash conventions are observed. Strings are known by
their value and their length; the assembler does not implicitly end strings with a null byte.

2.3 Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be used within tokens
(except string constants). A blank or tab is required to separate adjacent identifiers or constants not
otherwise separated.

2.4 Comments
Comments are available in two varieties: C style and scratch mark comments.
2.4.1 C Style Comments

The assembler recognizes C style comments, introduced with "/*" and ending with "+/". C style comments
can extend across multiple lines, and are the preferred comment style.

Lexical Conventions

ISI Assembler Reference Manual . PS1:5 2-3

2.4.2 Scratch Mark Comments

The character "#" introduces a scratch mark comment, that extends through the end of the line on which it
appears. Comments starting in column 1 and having the format "# expression string", are interpreted as an
indication that the assembler is now assembling file string at line expression. Thus, one can use the C
preprocessor on an assembly language source file, and use the #include and #define preprocessor directives.
(Note that there may not be a scratch mark starting in column 1 if the assembler source is given to the C
preprocessor, as it is interpreted by the preprocessor in a way not intended.) Comments are otherwise
ignored by the assembler.

2.5 Segments and Location Counters

Assembled code and data fall into three segments: the text segment, the data segment, and the bss
segment. The operating system makes some assumptions about the content of these segments, the
assembler does not. Within the text and data segments, there are a number of subsegments, distinguished
by number ("text 0", "text 1", ... "data 0", "data 1", ...). Currently, there are four subsegments each in text
and data. The subsegments are for programming convenience only.

Before writing the output file, the assembler zero-pads each text subsegment to a multiple of four bytes and
then concatenates the subsegments to form the text segment; an analogous operation is done for the data
segment. Requesting that the loader define symbols and storage regions is the only action allowed by the
assembler with respect to the bss segment. Assembly begins in "text 0",

Associated with each (sub)segment is an implicit location counter which begins at zero and is incremented
by one for each byte assembled into the (sub)segment. There is no way to explicitly reference a location
counter. Note that the location counters of subsegments other than "text 0" and "data 0" behave
peculiarly due to the concatenation used to form the text and data segments.

Lexical Conventions

SECTION 3: EXPRESSIONS

This section discusses the rules for expressions. An expression is a sequence of symbols representing a
value. Its constituents are identifiers, constants, operators, and parentheses.

3.1 Expression Operators

All operators in expressions are fundamentally binary in nature. Arithmetic is two’s complement and has
32 bits of precision. As can not do assembly-time arithmetic on either floating point numbers or quad
precision scalar numbers. The operators are:

Table 3-1. Expression Operators

Operator Meaning

+ addition

- (binary) subtraction

* multiplication

/ division

% modulo

- (unary) 2’s complement

& bitwise and

| bitwise or

° bitwise exclusive or (carrot)
! bitwise or not
- bitwise 1’s complement (tilde)
> logical right shift

>> logical right shift

< logical left shift

<< logical left shift

Expressions may be grouped by use of parentheses, "(" and ")".
There are four levels of precedence. They are listed here from lowest precedence level to highest:
Table 3-2. Operator Precedence

Precedence Operators
binary +, =
binary |,& 51
binary *, [y P, >y >>, <y <<
unary -

All operators of the same precedence are evaluated strictly left to right, except for the evaluation order
enforced by parentheses.

Expressions

PS1:5 3-2 ISI Assembler Reference Ménual

3.2 Expression Data Types

The assembler manipulates several different types of expressions. The types likely to be met explicitly are:

Table 3-3. Descriptions of Expressions
Expression Description

undefined Upon first encounter, each symbol is undefined. (A symbol becomes defined
when a value is associated with it via the .set, .comm, .comm or .globl
directives, as described in the next section.) It may become undefined if it is
assigned an undefined expression. If it is undefined in pass two, an error occurs.
If it is undefined in pass one, an error does not occur unless the opcode requires
a defined symbol.

undefined external | A symbol declared with .globl, but not defined in the current assembly, is an
undefined external. If such a symbol is declared, the link editor Id(1) must be
used to load the assembler’s output with another routine that defines the
undefined reference.

absolute An absolute symbol is one that has been defined with the value of a constant.
The value of an absolute symbol is unaffected by any possible future
applications of the link-editor to the output file.

text The value of a text symbol is measured with respect to the beginning of the text
segment of the program. If the assembler output is link-edited, its text symbols
may change in value since the program need not be the first in the link editor’s
output. Most text symbols are defined by appearing as labels. At the start of an
assembly, the value of the location counter is "text 0".

data The value of a data symbol is measured with respect to the origin of the data
segment of a program. Like text symbols, the value of a data symbol may
change during a subsequent link-editor run since previously loaded programs
may have data segments. After the first .data statement, the value of the
location counter is "data 0",

bss The value of a bss symbol is measured from the beginning of the bss segment of
a program. Like text and data symbols, the value of a bss symbol may change
during a subsequent link-editor run, since previously loaded programs may have
bss segments.

(continued on next page)

Expressions

ISI Assembler Reference Manual PS1:5 3-3

Table 3-3. Descriptions of Expressions (Continued)

Expression Description
external absolute
text, data, or bss Symbols declared with the directive .globl, but defined within an assembly as
absolute, text, data, or bss symbols, can be used exactly as if they were not
declared .globl; however, their value and type are available to the link editor so
that the program may be loaded with others that reference these symbols.

registers The following symbols are predefined as register symbols.

d0-d7 data

a0-a7 address

fp frame pointer (equivalent to a6)

sp stack pointer (equivalent to a7)

pc program counter

cc condition codes

sr status (privileged mode only)

usp user stack pointer (privileged mode only)

vb vector base (privileged mode only) (68010, 68020)

sfc source function code (privileged mode only) (68010, 68020)
dfc destination function code (privileged mode only) (68010, 68020)
cac cache control (privileged mode only) (68020 only)

caa cache address (privileged mode only) (68020 only)

msp master stack (privileged mode only) (68020 only)

isp interrupt stack (privileged mode only) (68020 only)

fO-f7 floating point data (68881)

fpcr floating point control (68881)

fpsr floating point status (68881)

fpiar floating point instruction address (68881)

other types Each keyword known to the assembler has a type that is used to select the
routine which processes the associated keyword statement. The behavior of
such symbols when not used as keywords is the same as if they were absolute.

3.3 Type Propagation in Expressions

When operands are combined by expression operators, the result has a type which depends on the types of
the operands and on the operator. The rules involved are complex to state, but are intended to be sensible
and predictable. For purposes of expression evaluation, the important result types are

undefined
absolute

text

data

bss

undefined external
other

The combination rules are

1. If one of the operands is undefined, the result is undefined.

Expressions

PS1:5 34 ISI Assembler Reference Manual

2. If both operands are absolute, the result is absolute.

If an absolute is combined with one of the "other types”, described in Table 3-3, the result has the
other type. An "other type" combined with an explicitly discussed type other than absolute acts like
an absolute.

Further rules applying to-particular operators are

+ If one operand is text-, data-, bss-segment relocatable, or is an undefined external, the other
operand must be absolute. The result has the postulated type.

- If the first operand is a relocatable text-, data-, or bss-segment symbol, the second operand may
either be absolute or have the same type as the first. If the second operand is absolute, the result
has the type of the first operand. If the second operand is the same type as the first, the result is
absolute., If the first operand is external undefined, the second must be absolute. All other
combinations are illegal.

others It is illegal to apply these operators to any but absolute symbols.

Expressions

SECTION 4: ASSEMBLER DIRECTIVES

Assembler directives, also called pseudo ops, direct the operation of the assembler, but do not result in
executable code. The keywords listed in this section are the directives, grouped functionally, supported by
as.

4.1 Interface to a Previous Pass Directives

These directives are mainly of interest to those charged with maintaining the assembler.

4.1.1 Abort
The ABORT directive causes the assembler to ignore further input and aborts the assembly.
ABORT

It does read to the end of file. No files are created. This directive is intended for use in a pipe
interconnected version of a compiler, where the first major syntax error would cause the compiler to issue
this directive, saving unnecessary work in assembling code that would have to be discarded anyway.

4.1.2 File

The file directive causes the assembler to think it is in file string, so error messages reflect the proper
source file.

file string
4.1.3 Line

The line directive causes the assembler to think it is on line expression, so error messages reflect the proper
source file.

Jine expression

The only effect of assembling multiple files specified in the command string is to insert the file and line
directives, with the appropriate values, at the beginning of the source from each file.

expression string
expression

This is the only instance where a comment is meaningful to the assembler. The "#" must be in the first
column. This meta comment causes the assembler to believe it is on line expression. The second
argument, if included, causes the assembler to believe it is in file string, otherwise the current file name
does not change.

4.2 Location Counter Control Directives

There are two types of location counter control directives: data and text.
4.2.1 Data and Text

The two directives

.data [expression]
.text [expression]

cause the assembler to begin assembling into the indicated text or data subsegment. If specified, the
expression must be defined and absolute; an omitted expression is treated as zero. The effect of a .data

Assembler Directive

PS1:5 4-2 ISI Assembler Reference Manual

directive is treated as a .text directive if the —R assembly flag is set. Assembly starts in the .text O
subsegment. The directives .align and .org also control the placement of the location counter.

4.3 Filled Data Directives
The directives align, org, space, and fill are discussed in this subsection.
43.1 Align
The
.align align_expr

directive causes the location counter to be adjusted so that the align_expr lowest bits of the location
counter become zero. This is done by assembling from O to 2 %/87-¢*" _ 1 null bytes. Thus .align 2 pads
by null bytes to make the location counter evenly divisible by 4. Note that .align 1 and .align 2 are the
only acceptable forms of this directive.

432 Org
With the
org org_expr [, fill_expr]

directive, the location counter is set equal to the value of org_expr, which must be defined and absolute.
The value of the org_expr must be greater than the current value of the location counter. Space between
the current value of the location counter and the desired value are filled with bytes taken from the low order
byte of fill_expr, which must be absolute and defaults to 0.

4.3.3 Space
With the space directive,
.space space_expr [, fill_expr]

the location counter is advanced by space_expr bytes. Space_expr must be defined and absolute. The
space is filled in with bytes taken from the low order byte of fill_expr, which must be defined and absolute.
Fill_expr defaults to 0. The .fill directive is a more general way to accomplish the .space directive.

4.34 Fill
With the
Aill rep_expr, size_expr, fill_expr

all three expressions must be absolute. Fill_expr, treated as an expression of size size_expr bytes, is
assembled and replicated rep_expr times. The effect is to advance the current location counter rep_expr *
size_expr bytes and fill the resulting space with fill_expr. Size_expr must be between 1 and 8.

4.4 Initialized Data Directives
With these directives

.byte expr [, expr] ...
word expr [, expr] ...
Aintexpr[,expr]...
long expr [, expr] ...

the expressions in the comma-separated list are truncated to the size indicated by the key word, (see Table
4-1) and assembled in successive locations:

Assembler Directive

ISI Assembler Reference Manual PS1:5 4-3

Table 4-1. Expression Truncation

Keyword | Length (Bits)
.byte 8
word 16
.int 32
Jong 32

The expressions must be absolute.
Each expression may optionally be of the form:
expression, : expression,

In this case, the value of expression,, is truncated to expression, bits, and assembled in the next expression,
bit field which fits in the natural data size being assembled. Bits which are skipped because a field does not
fit are filled with zeros. Thus, ".byte 123" is equivalent to ".byte 8:123", and ".byte 3:1,2:1,5:1" assembles
two bytes, containing the values 9 and 1.

4.5 Floating Point Initialization Directives

These floating point initialization directives initialize Bignums in successive locations whose size is a
function of the key word.

.quad number [, number] ...
float number [, number] ...
.double number [, number] ...

The type of the Bignums (determined by the exponent field, or lack thereof) may not agree with type
implied by the key word. Table 4-2 shows the key words, their size, and the data types for the Bignums
they expect.

Table 4-2. Operand Format and Size
Keyword | Format Length (Bits) | Valid Number(s)
quad quad scalar | 64 scalar
float F float 32 F, D and scalar
.double D float 64 F, D and scalar
NOTE

As does not currently support a floating point initialization to match the 68881’s extended
precision type.

4.6 String Initialization Directives

Two string initialization directives, ascii and asciz, are discussed in this subsection.
4.6.1 Ascii, Asciz

These two directives handle ascii strings:

ascii string [, string] ...
.asciz string [, string] ...

Each string in the list is assembled into successive locations, with the first letter in the string being placed
into the first location, etc. The .ascii directive does not null pad the string; the .asciz directive will null pad

Assembler Directive

PS1:5 4-4 ISI Assembler Reference Manual

the string. (Recall that strings are known by their length, and need not be terminated with a null, and that
the C conventions for escaping are understood.) The .ascii directive is identical to:

byte string, string,, ...
4.7 External Symbol Definition Directives

The comm, lcomm, globl, set, and Isym external symbol definition directives are discussed in this
subsection.

4.7.1 Comm
The comm directive causes as to declare name as a common symbol with a value equal to expression.
.COmmM name,expression

Provided the name is not defined elsewhere, its type is made "undefined external”, and its value is
expression. In fact the name behaves in the current assembly just like an undefined external. However, the
link editor 1d has been special-cased so that all external symbols, which are not otherwise defined and have
a non-zero value, are defined to lie in the bss segment, and enough space is left after the symbol to hold
expression bytes.

4.7.2 Lcomm

Lcomm causes as to declare name with a value of expression.

Jcomm rame, expression

Expression bytes are allocated in the bss segment and name assigned the location of the first byte, but the
name is not declared as global and hence is unknown to the link editor, 1d.

4.7.3 Globl
The globl directive causes as to declare the names as global symbols.
.globl name [, name] ...

This statement makes each name external. If it is otherwise defined (by .set or by appearance as a label) it
acts within the assembly exactly as if the .globl statement were not given; however, the link editor Id can
be used to combine this object module with other modules referring to this symbol.

Conversely, if the given symbol is not defined within the current assembly, l1d can combine the output of
this assembly with that of others which define the symbol. The assembler makes all otherwise undefined
symbols external. :

4.7.4 Set
The set directive causes as to enter the symbol name with value expression into the symbol table.
Set name, expression

Multiple .set statements with the same name are legal; the most recent value replaces all previous values.

4.7.5 Lsym
JIsym name, expression

A unique instance that cannot otherwise be referenced, of the (name, expression) pair is created in the
symbol table. The Fortran 77 (f77(1) compiler uses this mechanism to pass local symbol definitions to the

Assembler Directive

ISI Assembler Reference Manual PS1:5 4-5

link editor and debugger.

4.8 Debugger Directives

This subsection discusses three debugger directives: stabs, stabn, and stabd.

43.1 Stabs, Stabn, Stabd
stabs string, expr , expr,, expr,, exp,

stabn expr 1 €XPT 4, EXPT 3, expr

stabd expr ;, expr,, expr,

The stab directives place symbols in the symbol table for the symbolic debugger, dbx(1). A "stab" is a
symbol table entry. The .stabs is a string stab; the .stabn is a stab not having a string; and the location
counter,

The string in the .stabs directive is the name of a symbol. If the symbol name is zero, the .stabn directive
may be used instead.

The other expressions are stored in the name list structure of the symbol table and preserved by the loader
for reference by dbx; the value of the expressions are peculiar to formats required by dbx.

expr,
expr,
expr,
expr,

is used as a symbol table tag (nlist field n_type).
seems to always be zero (nlist field n_other).
is used for either the source line number, or for a nesting level (nlist field n_desc).

is used as tag specific information (nlist field n_value). In the case of the .stabd directive, this
expression is nonexistent, and is taken to be the value of the location counter at the following
instruction. Since there is no associated name for a .stabd directive, it can only be used in
circumstances where the name is zero. The effect of a .stabd directive can be achieved by one of
the other .stabx directives in the following manner:

stabn expr ;, expr,, expr;, LLn
LLn:

The .stabd directive is preferred, because it does not clog the symbol table with labels used only
for the stab symbol entries.

Assembler Directive

SECTION 5: INSTRUCTIONS/ADDRESSING MODES

As supports the MC68000/68010/68020/68881 instruction set as described in the following documents
» Motorola’s 16-Bit Microprocessor User’s Manual. Prentice Hall.
e Motorola’s MC68010 16-Bit Virtual Memory Microprocessor. Motorola, 1983. (ADI-942-R1)

» Motorola’s MC68020 32-Bit Microprocessor User's Manual. Prentice Hall, 1984,
(ISBN 0-13-541418-0)

o Motorola’s MC68881 Floating-Point Coprocessor User’s Manual. Motorola, 1985. (First Edition)

with a few exceptions as described in this section. Appendix A of this manual lists instruction mnemonics;
note they are lower-case.

5.1 Instructions

Most of the MC68010/68020 instructions can apply to byte, word, or long operands. Instead of using a
qualifier of .b, .w, .1 for byte, long, and word as in the Motorola assembler, as places a suffix after the
normal instruction mnemonic, thereby creating a separate mnemonic for each length operand. For example,
the three mnemonics for the or instruction are orb, orw, and orl.

Instruction mnemonics for instructions with unusual opcodes can have additional suffixes. Thus, in addition
to the normal add variations, there is addqb, addqw, addql for the add quick instruction.

Some instructions have two acceptable mnemonics. For example, the move long instruction uses either the
movel or movl mnemonic.

‘When as encounters an instruction mnemonic, two actions occur.
1. It maps the mnemonic to the instruction type.

2. It attempts to generate the most appropriate instruction possible.
For example, it automatically generates an addqgb instruction for an addb instruction if possible. Similarly,
it generates a cmpmb (compare memory byte) for a cmpb (compare byte) if it determines that the cmpb
operands are two memory bytes. Thus, the programmer can generally use the "simpler” instruction and as
optimizes it if possible.

For the MC68881, instructions can apply to byte, word, long, single precision, double precision, extended
precision, and packed decimal operands. As uses the suffixes b, w, 1, s, d, x, and p for the respective types.

5.1.1 Branch Instructions

Branch instructions come in two flavors: byte (or short) and word. Each instruction appends an s to the
basic mnemonic to specify the short version of the instruction. For example, beq refers to the word version
of the Branch If Equal instruction, while beqs refers to the short version of the instruction. The 68020 also
has a long flavor of branch instructions with beql referring to the long version.

For the MC68881, branch instructions come in only two flavors, word and long, For example, fbeqw refers
to the word version of the Floating Branch If Equal instruction, while fbeql refers to the long version of the
instruction.

5.1.2 Extended Branch Instructions

The extended branch instruction mnemonics are formed by substituting a "j" for the initial "b" of the
standard opcodes. These instructions take the name of a label in the current subsegment as branch

Instructions/ Addressing Modes

PS1:5 5-2 ISI Assembler Reference Manu_al

destinations. If the destination is in a different subsegment, an error results. If the destination is not
defined within the object module being assembled, a warning results.

If the operand of the extended branch instruction is a simple address in the current segment, and the offset
to that address is sufficiently small, as automatically generates the corresponding short branch instruction.
If the offset is too large for a short branch, but small enough for a branch, the corresponding branch
instruction is generated. If the operand references an external address or is complex, the extended branch
instruction is implemented either by a jmp or jsr (for jra or jbsr) or by a conditional branch (with the
sense of conditional inverted) around a jmp for the extended conditional branches. In this context, a
complex address is either an address which specifies other than normal mode addressing, or relocatable
expressions containing more than one relocatable symbol (i.e. if a, b, and ¢ are symbols in the curmrent
segment, then the expression a+b-c is relocatable, but not simple).

On the 68020, the long conditional branches are used where possible, in place of the short branch around a
jmp.
Table 5-1 lists the extended branch instruction mnemonics as recognizes:

Table 5-1. Extended Branch Instructions

Instruction Definition
jor jump/branch always
jbsr jump/branch to subroutine
jec jump/branch on carry clear
jes jump/branch on carry set
jeq jump/branch on equal
jge jump/branch on greater than or equal
jst jump/branch on greater than
- jhi jump/branch on high
jhs jump/branch on high or same
jle jump/branch on less than or equal
jlo jump/branch on low
jls jump/branch on low or same
jle jump/branch on less than
jmi jump/branch on minus
jne jump/branch on not equal
jpl jump/branch on plus
jra jump/branch always
jve jump/branch on overflow clear
jvs jump/branch on overflow set

Note that jbr turns into bras if its target is close enough; otherwise a bra is used. On the 68020, a bral is
used if the target is too far away for a bra to be used.

For the MC68881, the extended branch instruction mnemonics are formed by substituting a "fj" for the "fb"
of the standard floating branch opcodes. As generates the word branch instruction if the destination is close
enough. Otherwise the long branch instruction is used, unless the destination is complex, in which case a
word branch around a jmp is necessary. Table 5-2 lists floating extended branch instruction mnemonics as
recognizes.

Instructions/Addressing Modes

ISI Assembler Reference Manual PS1:5 5-3

Table 5-2. Floating Extended Branch Instructions

Instruction Definition

fleq floating jump/branch on equal

fif floating jump/branch always false

fige floating jump/branch on greater than or equal

figl floating jump/branch on greater than or less than

figle floating jump/branch on greater than or less than or equal
figt floating jump/branch on greater than

file floating jump/branch on less than or equal

filt floating jump/branch on less than

fjne floating jump/branch on not equal

fjnge floating jump/branch on not (greater than or equal)

fingl floating jump/branch on not (greater than or less than)
fingle floating jump/branch on not (greater than or less than or equal)
fingt floating jump/branch on not (greater than)

finle floating jump/branch on not (less than or equal)

finlt floating jump/branch on not (less than)

fjoge floating jump/branch on ordered greater than or equal
fjogl floating jump/branch on ordered greater than or less than
fjogt floating jump/branch on ordered greater than

fjole floating jump/branch on ordered less than or equal

fjolt floating jump/branch on ordered less than

fjor floating jump/branch on ordered

fira floating jump/branch always

fjseq floating jump/branch on signaling equal

fjsf floating jump/branch on signaling always false

fjsne floating jump/branch on signaling not equal

fst floating jump/branch on signaling always true

fit floating jump/branch always true

fjueq floating jump/branch on unordered or equal

fjuge floating jump/branch on unordered or greater than or equal
fjugt floating jump/branch on unordered or greater than

fjule floating jump/branch on unordered or less than or equal
fjult floating jump/branch on unordered or less than

fjun floating jump/branch on unordered

5.2 Addressing Modes

In Table 5-3 descriptions of the applicable addressing modes are listed. The notations in the table have
these meanings:

an refer to an address register

dn refers to a data register

o] refers to either a data or an address register

PC refers to the program counter

dbd,od refer to a displacement, which is a constant expression in as
xxx refers to a constant expression

fn refers to a floating point register

S refers to a scale factor (1,2,4,8)

Certain instructions, particularly move accept a variety of special registers including:

Instructions/ Addressing Modes

PS1:5 5-4 ISI Assembler Reference Manual

sp
fp
cc
sr
usp
vb
sfc
dfc
cac
caa
msp
isp

the stack pointer, equivalent to a7

frame pointer, equivalent to a6

the condition codes of the status register

the status register (privileged mode only)

user stack pointer (privileged mode only)

vector base (privileged mode only) (68010, 68020)

the source function code register (privileged mode only) (68010, 68020)
the destination function code register (privileged mode only) (68010, 68020)
cache control (privileged mode only) (68020 only)

cache address (privileged mode only) (68020 only)

master stack (privileged mode only) (68020 only)

interrupt stack (privileged mode only) (68020 only)

The 68010/68020 tends to be restrictive; most instructions accept only a limited subset of the address
modes. For example, the add address instruction does not accept a data register as a destination. As tries to
check all these restrictions and generate an illegal operand error code for instructions that do not satisfy the

address mode restrictions.
Table 5-3. Addressing Modes
Mode Notation Example
Register an,dn,fn,sp,fp movw a4,d3
Register Indirect an@ movw ad@,d3
Postincrement an@+ movw ad@+,d3
Predecrement an@- movw ad@-,d3
Displacement an@(d) movw ad@(25),d3
Word Index an@(d,ri: W) movw ad@(16,d2:W),d4
Long Index an@(d,ri:L) movw ad@(16,d2:L),d4
Absolute XXX movw foo,d3
PC Displacement pc@(d) movw pc@(20),d3
PC Word Index pc@(d,ri:-W) movw pc@(14,d2:W),d3
PC Long Index pc@(d,ri:L) movw pc@(14,d2:L),d3
Immediate #xxx movw #27 +3,d4
Word Displacement an@(d:w) movw ad@(25:W),d3
Long Displacement an@(d:L) movw ad@(25:L),d3
PC Word Displacement pc@(d:W) movw pc@(20:W),d3
PC Long Displacement pc@(d:L) movw pc@(20:L),d3
Mem. Indirect an@(bd)[od] movw d3,a2@(8)[12]
PC Indirect pc@(bd){od] movw d3,pc@(8)[12]
Mem. Pre-indexed Word an@(bd,ri:W*S)[od] movw d3,a2@(8,d0:W*1)[12]
Mem. Pre-indexed Long an@(bd,ri:L*S)[od] movw d3,a2@(8,d0:L*1)[12]
Mem., Post-indexed Word | an@(bd)[ri:W*S, od] | movw d3,a2@(8)[a0:W*2,12]
Mem. Post-indexed Long | an@(bd)[ri:L*S, od] movw d3,a22@(8)[a0:W*2,12]
PC Pre-indexed Word pc@(bd,ri:W*S)[od] | movw pc@(8,a0:W*2)[12],d3
PC Pre-indexed Long pc@(bd,ri:L*S){od] movw pc@(8,a0:L*2)[12],d3
PC Post-indexed Word pc@(bd)[ri:W*S, od] | movw pc@(8)[d0:W*4,12],d3
PC Post-indexed Long pc@(bd)[ri:L*S, od] movw pc@(8)[d0:W*4,12],d3

The Long Displacement mode forces the use of the 68020’s 32 bit displacement mode, a variant of its
extended memory addressing modes. The Word Displacement mode is the same as the 68000/68010’s 16
bit displacement mode. It is provided to complement the notation for the Long Displacement mode.

Instructions/ Addressing Modes

ISI Assembler Reference Manual PS1:5 5-5

In Table 5-3, the notation for the Memory and PC pre- and post-indexed modes were defined to give a
relatively mnemonic relationship to the placement of the square brackets as well as to fit in with the other
previously defined modes. In addition, the special symbols za and zpc can be used to replace an and pc
respectively in these modes to indicate that the an or pc reference is to be omitted (e.g., taken to be zero).

The long displacement, memory indirect, PC indirect, pre-indexed and post-indexed addressing modes are
restricted to the 68020 (and 68881).

5.3 Special Addressing Modes
Several instructions take operands that have unique addressing modes.
5.3.1 Move Multiple Register Mask

The movem and fmovem instructions take a mask that specifies which registers are to be moved. To make
this more mnemonic for the programmer, a notation to allow the registers to be given by name was
implemented. This is specified as a "constant” of the form #<register list>. Where a register list is a list of
register names separated by commas, or a register range which is specified by rm-rn. Where register m to
register n of the data, address, or floating data registers are to be moved, and m must be less than n. It is
also possible to mix data and address registers as in "#<d0-a5>".

The 68881 special registers, fpcr, fpsr, and fpiar may also be used in the fmoveml instruction’s mask.
The only reasonable register range for this instructions is "#<fpcr-fpiar>".

5.32 Register Pairs

The notation used to describe the register pairs taken by the cas2, divsl, mulsl, fsincos, etc. instructions is:
rm:rn. Where the order of the registers is the same as that specified in the appropriate Motorola manual.

Instructions/ Addressing Modes

APPENDIX A: INSTRUCTION MNEMONICS

This appendix lists the assembler’s instruction mnemonics. The instructions are described in the following
documents:

e Motorola’s 16-Bit Microprocessor User's Manual. Prentice Hall.
e Motorola’s MC68010 16-Bit Virtual Memory Microprocessor. Motorola, 1983. (ADI-942-R1)

» Motorola’s MC68020 32-Bit Microprocessor User's Manual. Prentice Hall, 1984.
(ISBN 0-13-541418-0)

e Motorola’s MC68881 Floating-Point Coprocessor User’s Manual. Motorola, 1985. (First Edition)

abed add decimal with extend
addb add, byte

addl add, long

addqb add quick, byte
addql add quick, long
addqw add quick, word
addw add, word

addxb add extended, byte
addxl add extended, long
addxw add extended, word
andb and, byte

andl and, long

andw and, word

aslb arithmetic shift left, byte

asll arithmetic shift left, long

aslw arithmetic shift left, word

astb arithmetic shift right, byte

asrl arithmetic shift right, byte

asrw arithmetic shift right, byte

bee branch on carry clear

becl branch on carry clear, long (68020)
bees branch on carry clear, short

bchg test a bit and change

belr test a bit and clear

bes branch on carry set

besl branch on carry set, long (68020)
bess branch on carry set, short

beq branch on equal

beql branch on equal, long (68020)
begs branch on equal, short

bfchg test bit field and change (68020)
bfclr test bit field and clear (68020)
bfexts extract bit field (68020)

bfextu extract unsigned bit field (68020)
bfffo first find one in bit field (68020)
bfins insert bit field (68020)

bfset set bit field (68020)

A-1 Instruction Mnemonics A-1

AS Integrated Solutions

bftst test bit fielf (68020)

bge branch on greater than or equal

bgel branch on greater than or equal, long (68020)
bges branch on greater than or equal, short
bgt branch on greater than

bgtl branch on greater than, long (68020)
bgts branch on greater than, short

bhi branch on high

bhil branch on high, long (68020)

bhis branch on high, short

bhs branch on high or same

bhsl branch on high or same, long (68020)
bhss branch on high or same, short

bkpt breakpoint trap (68020)

ble branch on less than or equal

blel branch on less than or equal, long (68020)
bles branch on less than or equal, short
blo branch on low

blol branch on low, long (68020)

blos branch on low, short

bls branch on low or same

blsl branch on low or same, long (68020)
blss branch on low or same, short

blt branch on less than

bitl branch on less than, long (68020)
blts branch on less than, short

bmi branch on minus

bmil branch on minus, long (68020)

bmis branch on minus, short

bne branch on not equal

bnel branch on not equal, long (68020)
bnes branch on not equal, short

bpl branch on plus

bpll branch on plus, long (68020)

bpls branch on plus, short

bra branch always

bral branch always, long (68020)

bras branch always, short

bset test a bit and set

bsr branch to subroutine

bsrl branch to subroutine, long (68020)
bsrs branch to subroutine, short

btst test a bit

bve branch on overflow clear

bvcl branch on overflow clear, long (68020)
bvcs branch on overflow clear, short

bvs branch on overflow set

bvsl branch on overflow set, long (68020)
bvss branch on overflow set, short

callm call module (68020)

cas2b . compare and swap with double operand, byte (68020)
cas2l compare and swap with double operand, long (68020)
cas2w compare and swap with double operand, word (68020)

A-2 Instruction Mnemonics

casb
casl
casw
chk
chk2b
chk2l
chk2w
chkl
chkw
clrb
clrl
clrw
cmp2b
cmp2!
cmp2w
cmpb
cmpl
cmpmb
cmpml
cmpmw
cmpw
dbce
dbes
dbeq
dbf
dbge
dbgt
dbhi
dbhs
dble
dblo
dbls
dblt
dbmi
dbne
dbpl
dbra
dbt
dbvc
dbvs
divs
divsl
divsll
diva
divul
divull
eorb
eorl
eorw
exg
extbl
extl
extw

Integrated Solutions

compare and swap with operand, byte (68020)
compare and swap with operand, long (68020)
compare and swap with operand, word (68020)
check register against bounds

check register against bounds, byte (68020)
check register against bounds, long (68020)
check register against bounds, word (68020)
check register against bounds, long (68020)

check register against bounds, word (alternate mnemonic for 68020)

clear, byte

clear, long

clear, word

compare register against bounds, byte (68020)
compare register against bounds, long (68020)
compare register against bounds, word (68020)
compare, byte

compare, long

compare memory, byte

compare memory, long

compare memory, word

compare, word

test carry clear, decrement and branch

test carry set, decrement and branch

test equal, decrement and branch

test false, decrement and branch

test greater than or equal, decrement and branch
test greater than,-decrement and branch

test high, decrement and branch

test high of the same, decrement and branch
test less than or equal, decrement and branch
test low, decrement and branch

test less than or same, decrement and branch
test less than, decrement and branch

test minus, decrement and branch

test not equal, decrement and branch

test plus, decrement and branch

test false, decrement and branch

test true, decrement and branch

test overflow clear, decrement and branch
test overflow set, decrement and branch
signed divide

signed divide, long (68020)

signed divide extended, long (68020)
unsigned divide

unsigned divide, long (68020)

unsigned divide extended, long (68020)
exclusive or, byte

exclusive or, long

exclusive or, word

exchange registers

sign extend, byte to long (68020)

sign extend, word to long

sign extend, byte to word

Instruction Mnemonics

AS

AS Integrated Solutions

fabsb floating absolute value, byte

fabsd floating absolute value, double precision
fabsl floating absolute value, long

fabsp floating absolute value, packed decimat

fabss floating absolute value, single precision
fabsw floating absolute value, word
fabsx floating absolute value, extended precision

facosb floating arc cosine, byte

facosd floating arc cosine, double precision
facosl floating arc cosine, long

facosp floating arc cosine, packed decimal
facoss floating arc cosine, single precision
facosw floating arc cosine, word

facosx floating arc cosine, extended precision
faddb floating add, byte

faddd floating add, double precision

faddl floating add, long

faddp floating add, packed decimal

fadds floating add, single precision

faddw floating add, word

faddx floating add, extended precision
fasinb floating arc sine, byte

fasind floating arc sine, double precision

fasinl floating arc sine, long

fasinp floating arc sine, packed decimal
fasins floating arc sine, single precision
fasinw floating arc sine, word

fasinx floating arc sine, extended precision

fatanb floating arc tangent, byte

fatand floating arc tangent, double precision
fatanhb floating hyperbolic arctan, byte

fatanhd floating hyperbolic arctan, double precision
fatanhl floating hyperbolic arctan, long

fatanhp floating hyperbolic arctan, packed decimal
fatanhs floating hyperbolic arctan, single precision
fatanhw floating hyperbolic arctan, word

fatanhx floating hyperbolic arctan, extended precision
fatanl floating arc tangent, long

fatanp floating arc tangent, packed decimal

fatans floating arc tangent, single precision
fatanw floating arc tangent, word

fatanx floating arc tangent, extended precision
fbegql floating branch on equal, long

fbeqw . floating branch on equal, word

fofl floating branch always false, long

fbfw floating branch always false, word

fbgel floating branch on greater than or equal, long

fbgew floating branch on greater than or equal, word

fbglel floating branch on greater than or less than or equal, long
fbglew floating branch on greater than or less than or equal, word
fbgll floating branch on greater than or less than, long

fbglw floating branch on greater than or less than, word

fbgtl floating branch on greater than, long .

A4 Instruction Mnemonics

fbgtw
fblel
fblew
fbitl
foltw
fbnel
fbnew
fbngel
fbngew
fbnglel
fbnglew
fbngll
fbnglw
fbngtl
fongtw
fbnlel
fonlew
fbnld
fonltw
fbogel
fbogew
fbogll
fboglw
fbogtl
fbogtw
fbolel
fbolew
fboltl
fboltw
fborl
foorw
fbseqi
fbseqw
fbsfi
fbsfw
fbsnel
fosnew
fbstl
fbstw
fbd
fbtw
fbueql
foueqw
fbugel
fbugew
fbugtl
fbugtw
fbulel
fbulew
fbultl
fbultw
fbuni
founw

Integrated Solutions AS

floating branch on greater than, word

floating branch on less than or equal, long

floating branch on less than or equal, word

floating branch on less than, long

floating branch on less than, word

floating branch on not equal, long

floating branch on not equal, word

floating branch on not (greater than or less than or equal), long
floating branch on not (greater than or less than or equal), word
floating branch on not (greater than or less than or equal), long
floating branch on not (greater than or less than or equal), word
floating branch on not (greater than or less than), long
floating branch on not (greater than or less than), word
floating branch on not (greater than), long

floating branch on not (greater than), word

floating branch on not (less than or equal), long

floating branch on not (less than or equal), word

floating branch on not (less than), long

floating branch on not (less than), word

floating branch on ordered greater than or equal, long
floating branch on ordered greater than or equal, word
floating branch on ordered greater than or less than, long
floating branch on ordered greater than or less than, word
floating branch on ordered greater than, long

floating branch on ordered greater than, word

floating branch on ordered less than or equal, long

floating branch on ordered less than or equal, word
floating branch on ordered less than, long

floating branch on ordered less than, word

floating branch on ordered, long

floating branch on ordered, word

floating branch on signalling equal, long

floating branch on signalling equal, word

floating branch on signalling always false, long

floating branch on signalling always false, word

floating branch on signalling not equal, long

floating branch on signalling not equal, word

floating branch on signalling always true, long

floating branch on signalling always true, word

floating branch always true, long

floating branch always true, word

floating branch on unordered or equal, long

floating branch on unordered or equal, word

floating branch on unordered or greater than or equal, long
floating branch on unordered or greater than or equal, word
floating branch on unordered or greater than, long

floating branch on unordered or greater than, word
floating branch on unordered or less than or equal, long
floating branch on unordered or less than or equal, word
floating branch on unordered or less than, long

floating branch on unordered or less than, word

floating branch on unordered, long

floating branch on unordered, word

Instruction Mnemonics A-S

fempb
fcmpd
fcmpl
fcmpp
femps
fempw
fcmpx
fcosb
fcosd
fcoshb
fcoshd
fcoshl
fcoshp
fcoshs
fcoshw
fcoshx
fcosl
fcosp
fcoss
fcosw
fcosx
fdbeq
fdbf
fdbge
fdbgl
fdbgle
fdbgt
fdble
fdble
fdbne
fdbnge
fdbngl
fdbngle
fdbngt
fdbnle
fdbnlt
fdboge
fdbogl
fdbogt
fdbole
fdbolt
fdbor
fdbra
fdbseq
fdbsf
fdbsne
fdbst
fdbt
fdbueq
fdbuge
fdbugt
fdbule
fdbult

A-6

Integrated Solutions

floating compare, byte

floating compare, double precision

floating compare, long

floating compare, packed decimal

floating compare, single precision

floating compare, word

floating compare, extended precision

floating cosine, byte

floating cosine, double precision

floating hyperbolic cosine, byte

floating hyperbolic cosine, double precision
floating hyperbolic cosine, long

floating hyperbolic cosine, packed decimal
floating hyperbolic cosine, single precision
floating hyperbolic cosine, word

floating hyperbolic cosine, extended precision
floating cosine, long

floating cosine, packed decimal

floating cosine, single precision

floating cosine, word

floating cosine, extended precision

floating decr/branch on equal

floating decr/branch always false

floating decr/branch on greater than or equal
floating decr/branch on greater than or less than
floating decr/branch on greater than or less than or equal
floating decr/branch on greater than

floating decr/branch on less than or equal
floating decr/branch on less than

floating decr/branch on not equal

floating decr/branch on not (greater than or less than or equal)

floating decr/branch on not (greater than or less than)

floating decr/branch on not (greater than or less than or equal)

floating decr/branch on not (greater than)

floating decr/branch on not (less than or equal)

floating decr/branch on not (less than)

floating decr/branch on ordered greater than or equal
floating decr/branch on ordered greater than or less than
floating decr/branch on ordered greater than

floating decr/branch on ordered less than or equal
floating decr/branch on ordered less than

floating decr/branch on ordered

floating decr/branch always false

floating decr/branch on signalling equal

floating decr/branch on signalling always false

floating decr/branch on signalling not equal

floating decr/branch on signalling always true

floating decr/branch always true

floating decr/branch on unordered or equal

floating decr/branch on unordered or greater than or equal
floating decr/branch on unordered or greater than
floating decr/branch on unordered or less than or equal
floating decr/branch on unordered or less than

Instruction Mnemonics

AS

A-6

AS

fdbun
fdivb
fdivd
fdivl
fdivp
fdivs
fdivw
fdivx
fetoxb
fetoxd
fetoxl
fetoxmlb
fetoxm1d
fetoxmil
fetoxmlp
fetoxmls
fetoxmlw
fetoxmlx
fetoxp
fetoxs
fetoxw
fetoxx
fgetexpb
fgetexpd
fgetexpl
fgetexpp
fgetexps
fgetexpw
fgetexpx
fgetmanb
fgetmand
fgetmanl
fgetmanp
fgetmans
fgetmanw
fgetmanx
fintb
fintd

fint

fintp
fintrzb
fintrzd
fintrzl
fintrzp
fintrzs
fintrzw
fintrzx
fints
fintw
fintx

fieq

fif

fige

A-7

Integrated Solutions

floating decr/branch on unordered

floating divide, byte

floating divide, double precision

floating divide, long

floating divide, packed decimal

floating divide, single precision

floating divide, word

floating divide, extended precision

floating e to the x power, byte

floating e to the x power, double precision
floating e to the x power, long

floating e to the x power - 1, byte

floating e to the x power - 1, double precision
floating e to the x power - 1, long

floating e to the x power - 1, packed decimal
floating e to the x power - 1, single precision
floating e to the x power - 1, word

floating e to the x power - 1, extended precision
floating e to the x power, packed decimal
floating e to the x power, single precision
floating e to the x power, word

floating e to the x power, extended precision
floating get exponent, byte

floating get exponent, double precision
floating get exponent, long

floating get exponent, packed decimal
floating get exponent, single precision
floating get exponent, word

floating get exponent, extended precision
floating get mantissa, byte

floating get mantissa, double precision
floating get mantissa, long

floating get mantissa, packed decimal
floating get mantissa, single precision
floating get mantissa, word

floating get mantissa, extended precision
floating integer part, byte

floating integer part, double precision
floating integer part, long

floating integer part, packed decimal

floating integer part (truncated), byte

floating integer part (truncated), double precision
floating integer part (truncated), long

floating integer part (truncated), packed decimal
floating integer part (truncated), single precision
floating integer part (truncated), word
floating integer part (truncated), extended precision
floating integer part, single precision

floating integer part, word

floating integer part, extended precision
floating jump/branch on equal

floating jump/branch always false

floating jump/branch on greater than or equal

Instruction Mnemonics

AS

A7

AS

figl
figle
figt

file

filt

fjne
finge
fingl
fingle
fjngt
finle
finlt
fjoge
fjogl
fjogt
fjole
fjolt
fjor

fjra
fiseq
fjsf
fisne
fjst

fjt

fjueq
fjuge
fjugt
fjule
fjult
fjun
flog10b
flog10d
flog101
flog10p
flog10s
flog10w
flog10x
flog2b
flog2d
flog21
flog2p
flog2s
flog2w
flog2x
flognb
flognd
flognl
flognp
flognplb
flognp1d
flognpil
flognplp
flognpls

A-8

Integrated Solutions AS

floating jump/branch on greater than or less than -~
floating jump/branch on greater than or less than or equal
floating jump/branch on greater than

floating jump/branch on less than or equal

floating jump/branch on less than

floating jump/branch on not equal

floating jump/branch on not (greater than or equal)
floating jump/branch on not (greater than or less than)
floating jump/branch on not (greater than or less than or equal)
floating jump/branch on not (greater than)

floating jump/branch on not (less than or equal)
floating jump/branch on not (less than)

floating jump/branch on ordered greater than or equal
floating jump/branch on ordered greater than or less than
floating jump/branch on ordered greater than

floating jump/branch on ordered less than or equal
floating jump/branch on ordered less than

floating jump/branch on ordered

floating jump/branch always

floating jump/branch on signalling equal

floating jump/branch on signalling always false
floating jump/branch on signalling not equal

floating jump/branch on signalling always true
floating jump/branch always true

floating jump/branch on unordered or equal

floating jump/branch on unordered or greater than or equal
floating jump/branch on unordered or greater than
floating jump/branch on unordered or less than or equal
floating jump/branch on unordered or less than
floating jump/branch on unordered

floating log base 10, byte

floating log base 10, double precision

floating log base 10, long

floating log base 10, packed decimal

floating log base 10, single precision

floating log base 10, word

floating log base 10, extended precision

floating log base 2, byte

floating log base 2, double precision

floating log base 2, long

floating log base 2, packed decimal

floating log base 2, single precision

floating log base 2, word

floating log base 2, extended precision

floating log base e, byte

floating log base e, double precision

floating log base e, long

floating log base e, packed decimal

floating log base e of (x+1), byte

floating log base e of (x+1), double precision

floating log base e of (x+1), long

floating log base e of (x+1), packed decimal

floating log base e of (x+1), single precision

Instruction Mnemonics A-8

flognplw
flognp1x
flogns
flognw
flognx
fmodb
fmodb
fmodd
fmodl
fmodp
fmods
fmodw
fmovb
fmovcr
fmovd
fmoveml
fmovemx
fmovl
fmovp
fmovs
fmovw
fmovx
fmulb
fmuld
fmull
fmulp
fmuls
fmulw
fmulx
fnegb
fnegd
fnegl
fnegp
fnegs
fnegw
fnegx
fnop
fremb
fremd
freml
fremp
frems
fremw
fremx
frestore
fsave
fscaleb
fscaled
fscalel
fscalep
fscales
fscalew
fscalex

A9

Integrated Solutions

floating log base e of (x+1), word
floating log base e of (x+1), extended precision
floating log base e, single precision
floating log base e, word

floating log base e, extended precision
floating module, byte

floating module, extended precision
floating module, double precision
floating module, long

floating module, packed decimal
floating module, single precision
floating module, word

floating move, byte

floating move from constant rom
floating move, double precision
floating move multiple, long

floating move multiple, extented
floating move, long

floating move, packed decimal
floating move, single precision
floating move, word

floating move, extended precision
floating multiply, byte

floating multiply, double precision
floating multiply, long

floating multiply, packed decimal
floating multiply, single precision
floating multiply, word

floating multiply, extended precision

- floating negate, byte

floating negate, double precision
floating negate, long

floating negate, packed decimal
floating negate, single precision
floating negate, word

floating negate, extended precision
floating no operation

floating remainder, byte

floating remainder, double precision
floating remainder, long

floating remainder, packed decimal
floating remainder, single precision
floating remainder, word

floating remainder, extended precision
floating state restore

floating state save

floating scale, byte

floating scale, double precision
floating scale, long

floating scale, packed decimal
floating scale, single precision
floating scale, word

floating scale, extended precision

Instruction Mnemonics

AS

A9

AS

fseq

fsf

fsge

fsgl
fsgldivb
fsgldivd
fsgldivl
fsgldivp
fsgldivs
fsgldivw
fsgldivx
fsgle
fsglmulb
fsgimuld
fsglmull
fsgimulp
fsglmuls
fsglmulw
fsgimulx
fsgt
fsinb
fsincosb
fsincosd
fsincosl
fsincosp
fsincoss
fsincosw
fsincosx
fsind
fsinhb
fsinhd
fsinhl
fsinhp
fsinhs
fsinhw
fsinhx
fsinl
fsinp
fsins
fsinw
fsinx
fsle

fslt

fsne
fsnge
fsngl
fsngle
fsngt
fsnle
fsnlt
fsoge
fsogl
fsogt

A-10

Integrated Solutions

floating set on equal

floating set on always false

floating set on greater than or equal

floating set on greater than or less than
floating (single) divide, byte

floating (single) divide, double precision
floating (single) divide, long

floating (single) divide, packed decimal
floating (single) divide, single precision
floating (single) divide, word

floating (single) divide, extended precision
floating set on greater than or less than or equal
floating (single) multiply, byte

floating (single) multiply, double precision
floating (single) multiply, long

floating (single) multiply, packed decimal
floating (single) multiply, single precision
floating (single) multiply, word

floating (single) multiply, extended precision
floating set on greater than

floating sine, byte

floating sine/cosine, byte

floating sine/cosine, double precision
floating sine/cosine, long

floating sine/cosine, packed decimal
floating sine/cosine, single precision
floating sine/cosine, word

floating sine/cosine, extended precision
floating sine, double precision

floating hyperbolic sine, byte

floating hyperbolic sine, double precision
floating hyperbolic sine, long

floating hyperbolic sine, packed decimal
floating hyperbolic sine, single precision
floating hyperbolic sine, word

floating hyperbolic sine, extended precision
floating sine, long

floating sine, packed decimal

floating sine, single precision

floating sine, word

floating sine, extended precision

floating set on less than or equal

floating set on less than

floating set on not equal

floating set on not (greater than or less than or equal)
floating set on not (greater than or less than)
floating set on not (greater than or less than or equal)
floating set on not (greater than)

floating set on not (less than or equal)
floating set on not (less than)

floating set on ordered greater than or equal
floating set on ordered greater than or less than
floating set on ordered greater than

Instruction Mnemonics

AS

A-10

fsole
fsolt
fsor
fsqrtb
fsqrtd
fsqrtl
fsqrtp
fsqrts
fsqrtw
fsqrtx
fsseq
fssf
fssne
fsst
fst
fsubb
fsubd
fsubl
fsubp
fsubs
fsubw
fsubx
fsueq
fsuge
fsugt
fsule
fsult
fsun
ftanb
ftand
ftanhb
ftanhd
ftanhl
ftanhp
ftanhs
ftanhw
ftanhx
ftanl
ftanp
ftans
ftanw
ftanx
ftentoxb
ftentoxd
ftentox1
ftentoxp
ftentoxs
ftentoxw
ftentoxx
ftrapeq
ftrapeql
- ftrapeqw
ftrapf

A-11

Integrated Solutions

floating set on ordered less than or equal
floating set on ordered less than

floating set on ordered

floating square root, byte

floating square root, double precision
floating square root, long

floating square root, packed decimal
floating square root, single precision
floating square root, word

floating square root, extended precision
floating set on signalling equal

floating set on signalling always false
floating set on signalling not equal

floating set on signalling always true
floating set on always true

floating subtract, byte

floating subtract, double precision

floating subtract, long

floating subtract, packed decimal

floating subtract, single precision

floating subtract, word

floating subtract, extended precision
floating set on unordered or equal

floating set on unordered or greater than or equal
floating set on unordered or greater than
floating set on unordered or less than or equal
floating set on unordered or less than
floating set on unordered

floating tangent, byte

floating tangent, double precision

floating hyperbolic tangent, byte

floating hyperbolic tangent, double precision
floating hyperbolic tangent, long

floating hyperbolic tangent, packed decimal
floating hyperbolic tangent, single precision
floating hyperbolic tangent, word

floating hyperbolic tangent, extended precision
floating tangent, long

floating tangent, packed decimal

floating tangent, single precision

floating tangent, word

floating tangent, extended precision
floating 10 to the x power, byte

floating 10 to the x power, double precision
floating 10 to the x power, long

floating 10 to the x power, packed decimal
floating 10 to the x power, single precision
floating 10 to the x power, word

floating 10 to the x power, extended precision
floating trap on equal

floating trap on equal, long

floating trap on equal, word

floating trap on always false

Instruction Mnemonics

AS

A-11

ftrapfl
frapfw
ftrapge
firapgel
firapgew
ftrapgl
firapgle
firapglel
firapglew
ftrapglt
ftrapglw
ftrapgt
ftrapgtl
frapgtw
ftraple
ftraplel
ftraplew
ftraplt
ftrapitl
ftrapltw
ftrapne
frapnel
ftrapnew
ftrapnge
frapngel
ftrapngew
ftrapngl
ftrapngle
ftrapnglel
ftrapnglew
frapngll
ftrapnglw
ftrapngt
ftrapngtl
ftrapngtw
ftrapnle
ftrapnlel
ftrapnlew
ftrapnlt
ftrapnltl
forapnltw
ftrapoge
ftrapogel
ftrapogew
ftrapogl
ftrapogll
ftrapoglw
frapogt
ftrapogtl
ftrapogtw
ftrapole
ftrapolel
ftrapolew

A-12

Integrated Solutions

floating trap on always false, long

floating trap on always false, word

floating trap on greater than or equal

floating trap on greater than or equal, long

floating trap on greater than or equal, word

floating trap on greater than or less than

floating trap on greater than or less than or equal
floating trap on greater than or less than or equal, long
floating trap on greater than or less than or equal, word
floating trap on greater than or less than, long

floating trap on greater than or less than, word

floating trap on greater than

floating trap on greater than, long

floating trap on greater than, word

floating trap on less than or equal

floating trap on less than or equal, long

floating trap on less than or equal, word

floating trap on less than

floating trap on less than, long

floating trap on less than, word

floating trap on not equal

floating trap on not equal, long

floating trap on not equal, word

floating trap on not (greater than or less than or equal)
floating trap on not (greater than or less than or equal), long
floating trap on not (greater than or less than or equal), word
floating trap on not (greater than or less than)

floating trap on not (greater than or less than or equal)
floating trap on not (greater than or less than or equal), long
floating trap on not (greater than or less than or equal), word
floating trap on not (greater than or less than), long
floating trap on not (greater than or less than), word
floating trap on not (greater than)

floating trap on not (greater than), long

floating trap on not (greater than), word

floating trap on not (less than or equal)

floating trap on not (less than or equal), long

floating trap on not (less than or equal), word

floating trap on not (less than)

floating trap on not (less than), long

floating trap on not (less than), word

floating trap on ordered greater than or equal

floating trap on ordered greater than or equal, long
floating trap on ordered greater than or equal, word
floating trap on ordered greater than or less than
floating trap on ordered greater than or less than, long
floating trap on ordered greater than or less than, word
floating trap on ordered greater than

floating trap on ordered greater than, long

floating trap on ordered greater than, word

floating trap on ordered less than or equal

" floating trap on ordered less than or equal, long

floating trap on ordered less than or equal, word

Instruction Mnemonics

AS

A-12

AS

ftrapolt
ftrapoitl
ftrapoltw
ftrapor
ftraporl
ftraporw
ftrapseq
ftrapseql
ftrapseqw
ftrapsf
ftrapsfl
ftrapsfw
ftrapsne
ftrapsnel
ftrapsnew
ftrapst
ftrapstl
firapstw
ftrapt
ftraptl
ftraptw
ftrapueq
ftrapueql
ftrapueqw
ftrapuge
ftrapugel
ftrapugew
ftrapugt
ftrapugtl
frapugtw
ftrapule
ftrapulel
firapulew
ftrapult
ftrapultl
ftrapultw
ftrapun
ftrapunl
ftrapunw
fistb

ftstd

ftstl

ftstp

ftsts

ftstw
ftstx
ftwotoxb
ftwotoxd
ftwotoxl
ftwotoxp
ftwotoxs
ftwotoxw
ftwotoxx

A-13

Integrated Solutions

floating trap on ordered less than

floating trap on ordered less than, long
floating trap on ordered less than, word
floating trap on ordered

floating trap on ordered, long

floating trap on ordered, word

floating trap on signalling equal

floating trap on signalling equal, long
floating trap on signalling equal, word
floating trap on signalling always false
floating trap on signalling always false, long
floating trap on signalling always false, word
floating trap on signalling not equal

floating trap on signalling not equal, long
floating trap on signalling not equal, word
floating trap on signalling always true
floating trap on signalling always true, long
floating trap on signalling always true, word
floating trap on always true

floating trap on always true, long

floating trap on always true, word

floating trap on unordered or equal

floating trap on unordered or equal, long
floating trap on unordered or equal, word
floating trap on unordered or greater than or equal

floating trap on unordered or greater than or equal, long
floating trap on unordered or greater than or equal, word

floating trap on unordered or greater than
floating trap on unordered or greater than, long
floating trap on unordered or greater than, word
floating trap on unordered or less than or equal
floating trap on unordered or less than or equal, long
floating trap on unordered or less than or equal, word
floating trap on unordered or less than

floating trap on unordered or less than, long
floating trap on unordered or less than, word
floating trap on unordered

floating trap on unordered, long

floating trap on unordered, word

floating test, byte

floating test, double precision

floating test, long

floating test, packed decimal

floating test, single precision

floating test, word

floating test, extended precision

floating 2 to the x poser, byte

floating 2 to the x poser, double precision
floating 2 to the x poser, long

floating 2 to the x poser, packed decimal
floating 2 to the x poser, single precision
floating 2 to the x poser, word

floating 2 to the x poser, extended precision

Instruction Mnemonics

AS

A-13

AS

jmp
jne

il

jra

jsr

jve

jvs

link

Islb

Isll

Islw
Isrb

Isrl
Isrw
movb
moveb
movel
moveml
movemw
movepl
movepw
moveq
movesb
movesl
movesw
movew
movl
movml
movmw
movpl
movpw
movq
movsb
movsl
movsw
movw
muls
mulsl
mulu

A-14

Integrated Solutions

jump/branch always
jump/branch to subroutine
jump/branch on carry clear
jump/branch on carry set

- jump/branch on equal

jump/branch on greater than or equal
jump/branch on greater than
jump/branch on high

jump/branch on high or same
jump/branch on less than or equal
jump/branch on low

jump/branch on low or same
jump/branch on less than

jump/branch on minus

jump

jump/branch on not equal

jump/branch on plus

jump/branch always

jump to subroutine

jump/branch on overflow clear
jump/branch on overflow set

link and allocate

logical shift left, byte

logical shift left, long

logical shift left, word

logical shift right, byte

logical shift right, long

logical shift right, word

move, byte

move, byte

move, long

move multiple registers, long

move multiple registers, word

move peripheral, long

move peripheral, word

move quick

move from address space, byte (68010)
move from address space, long (68010)
move from address space, word (68010)
move, word

move, long

move multiple registers, long

move multiple registers, word

move peripheral, long

move peripheral, word

move quick

move from address space, byte (68010)
move from address space, long (68010)
move from address space, word (68010)
move, word

signed multiply

signed multiply, long (68020)
unsigned multiply

Instruction Mnemonics

AS

A-14

AS

mulul
nbcd
negb
negl
negw
negxb
negxl
negxw
nop
notb
notl
notw

orl

A-15

Integrated Solutions

unsigned multiply, long (68020)
negate decimal with extend
negate, byte

negate, long

negate, word

negate with extend, byte
negate with extend, long
negate with extend, word

no operation

logical complement, byte
logical complement, long
logical complement, word
inclusive or, byte

inclusive or, byte

inclusive or, word

pack into BCD (68020)
push effective address

reset machine

rotate left, byte

rotate left, long

rotate left, word

rotate right, byte

rotate right, long

rotate right, word

rotate left with extend, byte
rotate left with extend, long
rotate left with extend, word
rotate right with extend, byte
rotate right with extend, long
rotate right with extend, word
return and deallocate parameters (68010/68020)
return from exception

return from module (68020)
return and restore codes
return from subroutine
subtract decimal with extend
set on carry clear

set on carry set

set on equal

set all zeros

set on greater or equal

set on greater than

set on high

set on high or same

set on less than or equal

set on low

set on low or same

set on less than

set on minus

set on not equal

set on plus

set all ones

halt machine

Instruction Mnemonics

AS

A-15

subb
subl
subgb
subql
subqw
subw
subxb
subxl
subxw
sVC
svs
swap

trap
trapcc
trapccl
trapccw
trapcs
trapesl
trapcsw
trapeq
trapeql
trapeqw
trapf
trapfl
trapfw
trapge
trapgel
trapgew
trapgt
trapgtl
trapgtw
traphi
traphil
traphiw
traple
traplel
traplew
trapls
traplsl
traplsw
traplt
trapltl
trapltw
trapmi
trapmil
trapmiw
trapne
trapnel
trapnew
trappl
trappll
trapplw

A-16

Integrated Solutions

subtract, byte

subtract, long

subtract quick, byte

subtract quick, long

subtract quick, word

subtract, word

subtract extended, byte

subtract extended, long

subtract extended, word

set overflow clear

set overflow set

swap register halves

test and set operand

trap

trap on carry clear (68020)

trap on carry clear, long (68020)
trap on carry clear, word (68020)
trap on carry set (68020)

trap on carry set, long (68020)
trap on carry set, word (68020)
trap on equal (68020)

trap on equal, long (68020)

trap on equal, word (68020)

trap false (68020)

trap false, long (68020)

trap false, word (68020)

trap greater or equal (68020)
trap greater or equal, long (68020)
trap greater or equal, word (68020)
trap greater than (68020)

trap greater than, long (68020)
trap greater than, word (68020)
trap high (68020)

trap high, long (68020)

trap high, word (68020)

trap less than or equal (68020)
trap less than or equal, long (68020)
trap less than or equal, word (68020)
trap low or same (68020)

trap low or same, long (68020)
trap low or same, word (68020)
trap less than (68020)

trap less than, long (68020)

trap less than, word (68020)
trap minus (68020)

trap minus, long (68020)

trap minus, word (68020)

trap not equal (68020)

trap not equal, long (68020)
trap not equal, word (68020)
trap plus (68020)

trap plus, long (68020)

trap plus, word (63020)

Instruction Mnemonics

AS

A-16

trapt
traptl
traptw
trapvc
trapvcl
trapvew
trapvs
trapvsl
trapvsw
tstb

tstl
tstw
unlk
unpk

A-17

Integrated Solutions

trap true (68020)

trap true, long (68020)

trap true, word (68020)

trap on overflow clear (68020)

trap on overflow clear, long (68020)
trap on overflow clear, word (68020)
trap on overflow set (68020)

trap on overflow set, long (68020)
trap on overflow set, word (68020)
test, byte

test, long

test, word

unlink

unpack from BCD (68020)

Instruction Mnemonics

AS

A-17

APPENDIX B: SUMMARY OF MC680x0 INSTRUCTION MNEMONICS

This appendix gives a functional summary of the MC68000/68010/68020 instruction mhemonics.
B.1 Double Operand Instructions

abcd add decimal with extend
addb add binary, byte

addl add binary, long

addgb add quick binary, byte
addql add quick binary, long
addgw add quick binary, word
addw add binary, word

addxb add extended binary, byte
addxl add extended binary, long
addxw add extended binary, word

andb and, byte
andl and, long
andw and, word
cmpb compare, byte
cmpl compare, long
cmpmb compare memory, byte
" cmpml compare memory, long
cmpmw compare memory, word
cmpw compare, word
divs signed divide
divsl signed divide, long (68020)
divsll signed divide extended, long (68020)
- divu unsigned divide
divul unsigned divide, long (68020)
divull unsigned divide extended, long (68020)
eorb exclusive or, byte
eorl exclusive or, long
eorw exclusive or, word
movb move, byte
moveb move, byte
movel move, long

moveml - move multiple registers, long

movemw move multiple registers, word

movepl move peripheral, long

movepw move peripheral, word

moveq move quick

movesb move from address space (68010/68020)
movesl move from address space (68010/68020)
movesw move from address space (68010/68020)

movew move, word
- movl move, long
movml move multiple registers, long

B-1 Summary MC680x0 Mnemonics

movmw
movpl
movpw
movq
movsb
movsl
movsw
movw
muls
mulsl
mulu
mulul
orb

orl
orw
sbcd
subb
subl
subgb
subgl
subqw
subw
subxb
subxl
subxw

Integrated Solutions

move multiple registers, word

move peripheral, long

move peripheral, word

move quick

move from address space (68010/68020), byte
move from address space (68010/68020), long
move from address space (68010/68020), word
move, word

signed multiply

signed multiply, long (68020)

unsigned multiply

unsigned multiply, long (68020)

inclusive or, byte

inclusive or, byte

inclusive or, word

subtract decimal with extend

subtract, byte

subtract, long

subtract quick, byte

subtract quick, long

subtract quick, word

subtract, word

subtract extended, byte

subtract extended, long

subtract extended, word

B.2 Single Operand Instructions

clrb
cirl
chrw
nbed
negb
negl
negw
negxb
negxl
negxw
notb
notl
notw
scc
sCS
seq
sf
sge
sgt
shi
shs
sle
slo
sls
sit

clear, byte

clear, long

clear, word

negate decimal with extend
negate, byte

negate, long

negate, word

negate with extend, byte
negate with extend, long
negate with extend, word
logical complement, byte
logical complement, long
logical complement, word
set on carry clear

set on carry set

set on equal

set all zeroes

set on greater or equal
set on greater than

set on high

set on high or same

set on less than or equal
set on low

set on low or same

set on less than

Summary MC680x0 Mnemonics

AS

B-2

AS Integrated Solutions
smi set on minus

sne set on not equal

spl set on plus

st set all ones

sve set on overflow clear

svs set on overflow set

tas test and set operand

tstb test, byte

tstl test, long

tstw test, word

B.3 Branch Instructions

bee branch on carry clear

beel branch on carry clear, long (68020)
beces branch on carry clear, short

bes branch on carry set

besl branch on carry set, long (68020)
bess branch on carry set, short

beq branch on equal

begl branch on equal, long (68020)

beqs branch on equal, short

bge branch on greater than or equal

bgel branch on greater than or equal, long (68020)
bges branch on greater than or equal, short
bgt branch on greater than

bgtl branch on greater than, long (68020)
bgts branch on greater than, short

bhi branch on high

bhil branch on high, long (68020)

bhis branch on high, short

bhs branch on high or same

bhsl branch on high or same, long (68020)
bhss branch on high or same, short

ble branch on less than or equal

blel branch on less than or equal, long (68020)
bles branch on less than or equal, short
blo branch on low

blol branch on low, long (68020)

blos branch on low, short

bls branch on low or same

blsi branch on low or same, long (68020)
blss branch on low or same, short

blt branch on less than

bltl branch on less than, long (68020)
blts branch on less than, short

bmi branch on minus

bmil branch on minus, long (68020)

bmis branch on minus, short

bne branch on not equal

bnel branch on not equal, long (68020)
bnes branch on not equal, short

bpl branch on plus

B-3 Summary MC680x0 Mnemonics

AS

B-3

bpll
bpls
bra
bral
bras
bsr
bsrl
bsrs
bvc
bvcl
bvcs
bvs
bvsl
bvss

Integrated Solutions

branch on plus, long (68020)

branch on plus, short

branch always

branch always, long (68020)

branch always, short

branch to subroutine

branch to subroutine, long (68020)
branch to subroutine, short

branch on overflow clear

branch on overflow clear, long (68020)
branch on overflow clear, short
branch on overflow set

branch on overflow set, long (68020)
branch on overflow set, short

B.4 Extended Branch Instructions

jbr
josr
jec
jcs
jeq
jee
jet
jhi
jhs
jle
jlo
jls
jlt
jmi
jne
ol
jra
jve
jvs

jump/branch always

jump/branch to subroutine
jump/branch on carry clear
jump/branch on carry set
jump/branch on equal
jump/branch on greater than or equal
jump/branch on greater than
jump/branch on high
jump/branch on high or same
jump/branch on less than or equal
Jjump/branch on low

jump/branch on low or same
jump/branch on less than
jump/branch on minus
jump/branch on not equal
jump/branch on plus
jump/branch always
jump/branch on overflow clear
jump/branch on overflow set

B.5 Test Conditions Instructions

dbce
dbcs
dbeq
dbf
dbge
dbgt
dbhi
dbhs
dble
dblo
dbls
dblt
dbmi
dbne

B-4

test carry clear, decrement and branch

test carry set, decrement and branch

test equal, decrement and branch

test false, decrement and branch

test greater than or equal, decrement and branch
test greater than, decrement and branch

test high, decrement and branch

test high or same, decrement and branch

test less than or equal, decrement and branch
test low, decrement and branch

test low or same, decrement and branch

test less than, decrement and branch

test minus, decrement and branch

test not equal, decrement and branch

Summary MC680x0 Mnemonics

AS

B-4

dbpl
dbra
dbt

dbvc
. dbvs

Integrated Solutions

test plus, decrement and branch

test false, decrement and branch

test true, decrement and branch

test overflow clear, decrement and branch
test overflow set, decrement and branch

B.6 Shift Instructions

aslb
asll
aslw
asrb
asrl
asrw
Islb
1sll
Islw
1srb
Isrl
Isrw
rolb
roll
rolw
rorb
rorl
rorw
roxib
roxll
roxlw
roxrb
roxrl
TOXIW

arithmetic shift left, byte
arithmetic shift left, long
arithmetic shift left, word
arithmetic shift right, byte
arithmetic shift right, byte
arithmetic shift right, byte
logical shift left, byte
logical shift left, long
logical shift left, word
logical shift right, byte
logical shift right, long
logical shift right , word
rotate left, byte

rotate left, long

rotate left, word

rotate right, byte

rotate right, long

rotate right, word

rotate left with extend, byte
rotate left with extend, long
rotate left with extend, word
rotate right with extend, byte
rotate right with extend, long
rotate right with extend, word

B.7 Trap Instructions

bkpt
trap
trapcc
trapccl
trapccw
trapcs
trapcsl
trapcsw
trapeq
trapeql
trapeqw
trapf
trapfl
trapfw
trapge
trapgel
trapgew
trapgt

B-5

breakpoint trap (68020)

trap

trap carry clear (68020)

trap carry clear, long (68020)

trap carry clear, word (68020)
trap carry set (68020)

trap carry set, long (68020)

trap carry set, word (68020)

trap on equal (68020)

trap on equal, long (68020)

trap on equal, word (68020)

trap false (68020)

trap false, long (68020)

trap false, word (68020)

trap greater or equal (68020)

trap greater or equal, long (68020)
trap greater or equal, word (68020)
trap greater than (68020)

Summary MC680x0 Mnemonics

AS

trapgtl
trapgtw
traphi
traphil
traphiw
traple

traplel

traplew
trapls
traplsl
traplsw
traplt
trapitl
trapltw
trapmi
trapmil
trapmiw
trapne
trapnel
trapnew
trappl
trappll
trapplw
trapt
traptl
traptw
trapvc
trapvcl
trapvew
trapvs
trapvsl
trapvsw

Integrated Solutions

trap greater than, long (68020)

trap greater than, word (68020)

trap high (68020)

trap high, long (68020)

trap high, word (68020)

trap less than or equal (68020)

trap less than or equal, long (68020)
trap less than or equal, word (68020)
trap low or same (68020)

trap low or same, long (68020)

trap low or same, word (68020)

trap less than (68020)

trap less than, long (68020)

trap less than, word (68020)

trap minus (68020)

trap minus, long (68020)

trap minus, word (68020)

trap not equal (68020)

trap not equal, long (68020)

trap not equal, word (68020)

trap plus (68020)

trap plus, long (68020)

trap plus, word (68020)

trap true (68020)

trap true, long (68020)

trap true, word (68020)

trap on overflow clear (68020)

trap on overflow clear, long (68020)
trap on overflow clear, word (68020)
trap on overflow set (68020)

trap on overflow set, long (68020)
trap on overflow set, word (68020)

B.8 Miscellaneous

bchg
bclr
bfchg
bfclr
bfexts
bfextu
bfffo
bfins
bfset
bftst
bset
btst
callm
casb
casl
casw
cas2b
cas2]

test a bit and change

test a bit and clear

test bit field and change (68020)

test bit field and clear (68020)

extract bit field and clear (68020)

extract unsigned bit field (68020)

first find one in bit field (68020)

insert bit field (68020)

set bit field (68020)

test bit field (68020)

test a bit and set

test a bit

call module (68020)

compare and swap with operand, byte (68020)
compare and swap with operand, long (68020)
compare and swap with operand, word (68020)
compare and swap with double operand, byte (68020)
compare and swap with double operand, long (68020)

Summary MC680x0 Mnemonics

AS

B-6

cas2w

swap

B-7

Integrated Solutions

compare and swap with double operand, word (68020)
check register against bounds

check register against bounds, long (68020)
check register against bounds, word (alternate mnemonic for 68020)
check register against bounds, byte (63020)
check register against bounds, long (68020)
check register against bounds, word (68020)
compare register against bounds, byte (68020)
compare register against bounds, long (68020)
compare register against bounds, word (68020)
exchange registers

sign extend, byte to long (68020)

sign extend, word to long

sign extend, byte to word

link and allocate

jump

jump to subroutine

no operation

pack into BCD (68020)

push effective address

reset machine

return and deallocate parameters (68010/68020)
return from exception

return from module (68020)

return and restore codes

return from subroutine

halt machine

swap register halves

unlink

unpack from BCD (68020)

Summary MC680x0 Mnemonics

AS

APPENDIX C: SUMMARY OF MC68881 INSTRUCTION MNEMONICS

This appendix gives a functional summary of the MC68881 instruction mnemonics.

C.1 Double Operand Instructions

fabsb floating absolute value, byte

fabsd floating absolute value, double precision
fabsl floating absolute value, long

fabsp floating absolute value, packed decimal
fabss floating absolute value, single precision
fabsw floating absolute value, word

fabsx floating absolute value, extended precision
facosb floating arc cosine, byte

facosd floating arc cosine, double precision
facosl floating arc cosine, long

facosp floating arc cosine, packed decimal

facoss floating arc cosine, single precision
facosw floating arc cosine, word

facosx floating arc cosine, extended precision
faddb floating add, byte

faddd floating add, double precision

faddl floating add, long

faddp floating add, packed decimal

fadds floating add, single precision

faddw floating add, word

faddx floating add, extended precision

fasinb floating arc sine, byte

fasind floating arc sine, double precision

fasinl floating arc sine, long

fasinp floating arc sine, packed decimal

fasins floating arc sine, single precision

fasinw floating arc sine, word

fasinx floating arc sine, extended precision
fatanb floating arc tangent, byte

fatand floating arc tangent, double precision
fatanl floating arc tangent, long

fatanp floating arc tangent, packed decimal
fatans floating arc tangent, single precision
fatanw floating arc tangent, word

fatanx floating arc tangent, extended precision
fatanhb floating hyperbolic arctan, byte

fatanhd floating hyperbolic arctan, double precision
fatanhl floating hyperbolic arctan, long

fatanhp floating hyperbolic arctan, packed decimal
fatanhs floating hyperbolic arctan, single precision

fatanhw floating hyperbolic arctan, word

C-1 Summary of MC68881 Mnemonics

AS

fatanhx
fcmpb
fcmpd
fcmpl
fcmpp
fcmps
fcmpw
fcmpx
fcosb
fcosd
fcosl
fcosp
fcoss
fcosw
fcosx
fcoshb
fcoshd
fcoshl
fcoshp
fcoshs
fcoshw
fcoshx
fdivb
fdivd
fdivl
fdivp
fdivs
fdivw
fdivx
fetoxb
fetoxd
fetoxl
fetoxp
fetoxs
fetoxw
fetoxx
fetoxmlb
fetoxm1d
fetoxmil
fetoxmilp
fetoxmls
fetoxmlw
fetoxmlx
fgetexpb
fgetexpd
fgetexp'l
fgetexpp
fgetexps
fgetexpw
fgetexpx
fgetmanb
fgetmand
fgetmanl

Integrated Solutions

floating hyperbolic arctan, extended precision
floating compare, byte

floating compare, double precision

floating compare, long

floating compare, packed decimal

floating compare, single precision

floating compare, word

floating compare, extended precision
floating cosine, byte

floating cosine, double precision

floating cosine, long

floating cosine, packed decimal

floating cosine, single precision

floating cosine, word

floating cosine, extended precision

floating hyperbolic cosine, byte

floating hyperbolic cosine, double precision
floating hyperbolic cosine, long

floating hyperbolic cosine, packed decimal
floating hyperbolic cosine, single precision
floating hyperbolic cosine, word

floating hyperbolic cosine, extended precision
floating divide, byte

floating divide, double precision

floating divide, long

floating divide, packed decimal

floating divide, single precision

floating divide, word

floating divide, extended precision

floating e to the x power, byte

floating e to the x power, double precision
floating e to the x power, long

floating e to the x power, packed decimal
floating e to the x power, single precision
floating e to the x power, word

floating e to the x power, extended precision
floating e to the x power - 1, byte

floating e to the x power - 1, double precision
floating e to the x power - 1, long

floating e to the x power - 1, packed decimal
floating e to the x power - 1, single precision
floating e to the x power - 1, word

floating e to the x power - 1, extended precision
floating get exponent, byte

floating get exponent, double precision
floating get exponent, long

floating get exponent, packed decimal
floating get exponent, single precision
floating get exponent, word

floating get exponent, extended precision
floating get mantissa, byte

floating get mantissa, double precision
floating get mantissa, long

Summary of MC68881 Mnemonics

AS

fgetmanp
fgetmans
fgetmanw
fgetmanx
fintb
fintd
fintl
fintp
fints
fintw
fintx
fintrzb
fintrzd
fintrzl
fintrzp
fintrzs
fintrzw
fintrzx
flognb
flognd
flogni
flognp
flogns
flognw
flognx
flognp1b
flognpld
flognp1l
flognplp
flognp1s
flognplw
flognp1x
flog10b
flog10d
flog10t
flog10p
flog10s
flogl0w
flog10x
flog2b
flog2d
flog2l
flog2p
flog2s
flog2w
flog2x
fmodb
fmodd
fmodl
fmodp
fmods
fmodw
fmodx

Integrated Solutions

floating get mantissa, packed decimal
floating get mantissa, single precision
floating get mantissa, word

floating get mantissa, extended precision
floating integer part, byte

floating integer part, double precision
floating integer part, long

floating integer part, packed decimal

floating integer part, single precision
floating integer part, word

floating integer part, extended precision
floating integer part (truncated), byte
floating integer part (truncated), double precision
floating integer part (truncated), long
floating integer part (truncated), packed decimal
floating integer part (truncated), single precision
floating integer part (truncated), word
floating integer part (truncated), extended precision
floating log base e, byte

floating log base e, double precision

floating log base e, long

floating log base e, packed decimal

floating log base e, single precision

floating log base e, word

floating log base e, extended precision
floating log base e of (x+1), byte

floating log base e of (x+1), double precision
floating log base e of (x+1), long

floating log base e of (x+1), packed decimal
floating log base e of (x+1), single precision
floating log base e of (x+1), word

floating log base e of (x+1), extended precision
floating log base 10, byte

floating log base 10, double precision
floating log base 10, long

floating log base 10, packed decimal

floating log base 10, single precision

floating log base 10, word

floating log base 10, extended precision
floating log base 2, byte

floating log base 2, double precision

floating log base 2, long

floating log base 2, packed decimal

floating log base 2, single precision

floating log base 2, word

floating log base 2, extended precision
floating module, byte

floating module, double precision

floating module, long

floating module, packed decimal

floating module, single precision

floating module, word

floating module, extended precision

Summary of MC68881 Mnemonics

AS

C3

fmovb
fmovd
fmovl
fmovp
fmovs
fmovw
fmovx
fmovcr
fmoveml
fmovemx
fmulb
fmuld
fmull
fmulp
fmuls
fmulw
fmulx
fnegb
fnegd
fnegl
fnegp
fnegs
fnegw
fnegx
fremb
fremd
freml
fremp
frems
fremw
fremx
fscaleb
fscaled
fscalel
fscalep
fscales
fscalew
fscalex
fsgldivb
fsgldivd
fsgldivl
fsgldivp
fsgldivs
fsgldivw
fsgldivx
fsglmulb
fsglmuld
fsglmull
fsglmulp
fsglmuls
fsglmulw
fsglmulx
fsinb

C4

Integrated Solutions

floating move, byte

floating move, double precision

floating move, long

floating move, packed decimal

floating move, single precision

floating move, word

floating move, extended precision
floating move from constant rom

floating move mulitiple, long

floating move multiple, extented

floating multiply, byte

floating multiply, double precision
floating multiply, long

floating multiply, packed decimal
floating multiply, single precision
floating multiply, word

floating multiply, extended precision
floating negate, byte

floating negate, double precision

floating negate, long

floating negate, packed decimal

floating negate, single precision

floating negate, word

floating negate, extended precision
floating remainder, byte

floating remainder, double precision
floating remainder, long

floating remainder, packed decimal
floating remainder, single precision
floating remainder, word :
floating remainder, extended precision
floating scale, byte

floating scale, double precision

floating scale, long

floating scale, packed decimal

floating scale, single precision

floating scale, word

floating scale, extended precision

floating (single) divide, byte

floating (single) divide, double precision
floating (single) divide, long

floating (single) divide, packed decimal
floating (single) divide, single precision
floating (single) divide, word

floating (single) divide, extended precision
floating (single) multiply, byte

floating (single) multiply, double precision
floating (single) multiply, long

floating (single) multiply, packed decimal
floating (single) multiply, single precision
floating (single) multiply, word

floating (single) multiply, extended precision
floating sine, byte :

Summary of MC68881 Mnemonics

AS

fsind
fsinl
fsinp
fsins
fsinw
fsinx
fsincosb
fsincosd
fsincosl
fsincosp
fsincoss
fsincosw
fsincosx
fsinhb
fsinhd
fsinhl
fsinhp
fsinhs
fsinhw
fsinhx
fsqrtb
fsqrtd
fsqrtl
fsqrtp
fsqrts
fsqrtw
fsqrtx
fsubb
fsubd
fsubl
fsubp
fsubs
fsubw
fsubx
ftanb
ftand
ftanl
ftanp
ftans
ftanw
ftanx
ftanhb
ftanhd
ftanhl
ftanhp
ftanhs
ftanhw
ftanhx
ftentoxb
ftentoxd
ftentox1
ftentoxp
ftentoxs

C-5

Integrated Solutions

floating sine, double precision

floating sine, long

floating sine, packed decimal

floating sine, single precision

floating sine, word

floating sine, extended precision
floating sine/cosine, byte

floating sine/cosine, double precision
floating sine/cosine, long

floating sine/cosine, packed decimal
floating sine/cosine, single precision
floating sine/cosine, word

floating sine/cosine, extended precision
floating hyperbolic sine, byte

floating hyperbolic sine, double precision
floating hyperbolic sine, long

floating hyperbolic sine, packed decimal
floating hyperbolic sine, single precision
floating hyperbolic sine, word

floating hyperbolic sine, extended precision
floating square root, byte

floating square root, double precision

. floating square root, long

floating square root, packed decimal
floating square root, single precision
floating square root, word

floating square root, extended precision
floating subtract, byte

floating subtract, double precision

floating subtract, long

floating subtract, packed decimal

floating subtract, single precision

floating subtract, word

floating subtract, extended precision
floating tangent, byte

floating tangent, double precision

floating tangent, long

floating tangent, packed decimal

floating tangent, single precision

floating tangent, word

floating tangent, extended precision
floating hyperbolic tangent, byte

floating hyperbolic tangent, double precision
floating hyperbolic tangent, long

floating hyperbolic tangent, packed decimal
floating hyperbolic tangent, single precision
floating hyperbolic tangent, word

floating hyperbolic tangent, extended precision
floating 10 to the x power, byte

floating 10 to the x power, double precision
floating 10 to the x power, long

floating 10 to the x power, packed decimal
floating 10 to the x power, single precision

Summary of MC68881 Mnemonics

AS

C-5

AS

ftentoxw
ftentoxx
ftwotoxb
ftwotoxd
ftwotoxl
ftwotoxp
ftwotoxs
ftwotoxw
ftwotoxx

Integrated Solutions

floating 10 to the x power, word

floating 10 to the x power, extended precision
floating 2 to the x poser, byte

floating 2 to the x poser, double precision
floating 2 to the x poser, long

floating 2 to the x poser, packed decimal
floating 2 to the x poser, single precision
floating 2 to the x poser, word

floating 2 to the x poser, extended precision

C.2 Single Operand Instructions

fseq
fsf
fsge
 fsgt
fsgl
fsgle
fsle
fsit
fsne
fsnge
fsngle
fsngl
fsngt
fsnle
fsnlt
fsogt
fsoge
fsole
fsolt
fsogl
fsor
fsseq
fssf
fssne
fsst
fst
fsueq
fsuge
fsugt
fsule
fsult
fsun
ftstb
ftstd
fstl
ftstp
ftsts
ftstw
ftstx

floating set on equal

floating set all zeroes

floating set on greater than or equal

floating set on greater than

floating set on greater than or less than

floating set on greater than or less than or equal
floating set on less than or equal

floating set on less than

floating set on not equal

floating set on not(greater than or less than or equal)
floating set on not(greater than or less than or equal)
floating set on not(greater than or less than)
floating set on not(greater than)

floating set on not(less than or equal)

floating set on not(less than)

floating set on ordered greater than

floating set on ordered greater than or equal
floating set on ordered less than or equal
floating set on ordered less than

floating set on ordered greater than or less than
floating set on ordered

floating set on signalling equal

floating set on signalling always false

floating set on signalling not equal

floating set on signalling always true

floating set all ones

floating set on unordered or equal

floating set on unordered or greater than or equal
floating set on unordered or greater than
floating set on unordered or less than or equal
floating set on unordered or less than

floating set on unordered

floating test, byte

floating test, double precision

floating test, long

floating test, packed decimal

floating test, single precision

floating test, word

floating test, extended precision

Summary of MC68881 Mnemonics

AS

Integrated Solutions AS

C.3 Branch Instructions

fbegl
fbeqw
bl
fbfw
fbgel
fogew
fbgll
fbglw
fbglel
fbglew
fbgtl
fbgtw
fblel
fblew
fbld
fbltw
fbnel
fbnew
fbngel
fongew
fbnglel
fonglew
fbngll
fbnglw
fongtl
fongtw
fbnlel
fbnlew
fbnldl
fonltw
fbogel
fbogew
foogll
fboglw
fbogtl
fbogtw
fbolel
fbolew
fbold
fboltw
fborl
fborw
fbseql
fbseqw
fbsft
fosfw
fbsnel
fbsnew
fbstl
fbstw
fbd

C7

floating branch on equal, long

floating branch on equal, word

floating branch always false, long

floating branch always false, word

floating branch on greater than or equal, long

floating branch on greater than or equal, word

floating branch on greater than or less than, long

floating branch on greater than or less than, word
floating branch on greater than or less than or equal, long
floating branch on greater than or less than or equal, word
floating branch on greater than, long

floating branch on greater than, word

floating branch on less than or equal, long

floating branch on less than or equal, word

floating branch on less than, long

floating branch on less than, word

floating branch on not equal, long

floating branch on not equal, word

floating branch on not (greater than or less than or equal), long
floating branch on not (greater than or less than or equal), word
floating branch on not (greater than or less than or equal), long
floating branch on not (greater than or less than or equal), word
floating branch on not (greater than or less than), long
floating branch on not (greater than or less than), word
floating branch on not (greater than), long

floating branch on not (greater than), word

floating branch on not (less than or equal), long

floating branch on not (less than or equal), word

floating branch on not (less than), long

floating branch on not (less than), word

floating branch on ordered greater than or equal, long
floating branch on ordered greater than or equal, word
floating branch on ordered greater than or less than, long
floating branch on ordered greater than or less than, word
floating branch on ordered greater than, long

floating branch on ordered greater than, word

floating branch on ordered less than or equal, long
floating branch on ordered less than or equal, word
floating branch on ordered less than, long

floating branch on ordered less than, word

floating branch on ordered, long

floating branch on ordered, word

floating branch on signalling equal, long

floating branch on signalling equal, word

floating branch on signalling always false, long

floating branch on signalling always false, word

floating branch on signalling not equal, long

floating branch on signalling not equal, word

floating branch on signalling always true, long

floating branch on signalling always true, word

floating branch always true, long

Summary of MC68881 Mnemonics ‘ C-7

AS

fbtw
fbuegl
fbueqw
fbugel
fbugew
fbugtl
fbugtw
fbulel
fbulew
fbultl
fbultw
fbunl
founw

Integrated Solutions

floating branch always true, word

floating branch on unordered or equal, long

floating branch on unordered or equal, word

floating branch on unordered or greater than or equal, long
floating branch on unordered or greater than or equal, word
floating branch on unordered or greater than, long

floating branch on unordered or greater than, word
floating branch on unordered or less than or equal, long
floating branch on unordered or less than or equal, word
floating branch on unordered or less than, long

floating branch on unordered or less than, word

floating branch on unordered, long

floating branch on unordered, word

C.4 Extended Branch Instructions

fieq
fif
fige
figl
figle
figt
fjle
filt
fjne
finge
fingl
fjngle
fjngt
fjnle
finlt
fjoge
fjogl
fjogt
fjole
fjolt
fjor
fjra
fiseq
fjsf
fjsne
fijst
fjt
fjueq
fjuge
fjugt
fjule
fjult
fjun

C-8

floating jump/branch on equal

floating jump/branch always false

floating jump/branch on greater than or equal
floating jump/branch on greater than or less than

~ floating jump/branch on greater than or less than or equal

floating jump/branch on greater than

floating jump/branch on less than or equal

floating jump/branch on less than

floating jump/branch on not equal

floating jump/branch on not (greater than or equal)
floating jump/branch on not (greater than or less than)
floating jump/branch on not (greater than or less than or equal)
floating jump/branch on not (greater than)

floating jump/branch on not (less than or equal)

floating jump/branch on not (less than)

floating jump/branch on ordered greater than or equal
floating jump/branch on ordered greater than or less than
floating jump/branch on ordered greater than

floating jump/branch on ordered less than or equal
floating jump/branch on ordered less than

floating jump/branch on ordered

floating jump/branch always

floating jump/branch on signalling equal

floating jump/branch on signalling always false

floating jump/branch on signalling not equal

floating jump/branch on signalling always true

floating jump/branch always true

floating jump/branch on unordered or equal

floating jump/branch on unordered or greater than or equal
floating jump/branch on unordered or greater than
floating jump/branch on unordered or less than or equal
floating jump/branch on unordered or less than

floating jump/branch on unordered

Summary of MC68881 Mnemonics

AS

C-8

AS

Integrated Solutions

C.5 Test Condition Instructions

fdbeq
fdbf
fdbge
fdbgl
fdbgle
fdbgt
fdble
fdblt
fdbne
fdbngl
fdbngle
fdbnge
fdbngt
fdbnle
fdbnlt
fdboge
fdbogl
fdbogt
fdbole
fdbolt
fdbor
fdbra
fdbsf
fdbseq
fdbsne
fdbst
fdbt
fdbueq
fdbuge
fdbugt
fdbule
fdbult
fdbun

floating decr/branch on equal

floating decr/branch always false

floating decr/branch on greater than or equal

floating decr/branch on greater than or less than

floating decr/branch on greater than or less than or equal
floating decr/branch on greater than

floating decr/branch on less than or equal

floating decr/branch on less than

floating decr/branch on not equal

floating decr/branch on not (greater than or less than)
floating decr/branch on not (greater than or less than or equal)
floating decr/branch on not (greater than or less than or equal)
floating decr/branch on not (greater than)

floating decr/branch on not (less than or equal)

floating decr/branch on not (less than)

floating decr/branch on ordered greater than or equal
floating decr/branch on ordered greater than or less than
floating decr/branch on ordered greater than

floating decr/branch on ordered less than or equal
floating decr/branch on ordered less than

floating decr/branch on ordered

floating decr/branch always false

floating decr/branch on signalling always false

floating decr/branch on signalling equal

floating decr/branch on signalling not equal

floating decr/branch on signalling always true

floating decr/branch always true

floating decr/branch on unordered or equal

floating decr/branch on unordered or greater than or equal
floating decr/branch on unordered or greater than
floating decr/branch on unordered or less than or equal
floating decr/branch on unordered or less than

floating decr/branch on unordered

C.6 Trap Instructions

ftrapeq
ftrapeql
ftrapeqw
ftrapf
frapfl
frapfw
ftrapge
ftrapgel
ftrapgew
ftrapgl
frapgll
frrapglw
ftrapgle
ftrapglel
ftrapglew

C9

floating trap on equal

floating trap on equal, long

floating trap on equal, word

floating trap on always false

floating trap on always false, long

floating trap on always false, word

floating trap on greater than or equal

floating trap on greater than or equal, long

floating trap on greater than or equal, word

floating trap on greater than or less than

floating trap on greater than or less than, long

floating trap on greater than or less than, word
floating trap on greater than or less than or equal
floating trap on greater than or less than or equal, long
floating trap on greater than or less than or equal, word

Summary of MC68881 Mnemonics

AS

C-9

ftrapgt
ftrapgtl
ftrapgtw
ftraple
ftraplel
ftraplew
ftraplt
ftrapltl
frapltw
ftrapne
ftrapnel
ftrapnew
ftrapnge
ftrapngel
ftrapngew
ftrapngle
ftrapnglel
frapnglew
frapngl
ftrapngll
ftrapnglw
ftrapngt
ftrapngtl
frapngtw
ftrapnle
ftrapnlel
frapnlew
ftrapnlt
ftrapnitl
ferapnltw
frapoge
frapogel
ftrapogew
ftrapogl
ftrapogll
ftrapoglw
ftrapogt
ftrapogtl
ftrapogtw
ftrapole
ftrapolel
ftrapolew
frapolt
ftrapoltl
frapoltw
ftrapor
ftraporl
ftraporw
ftrapseq
ftrapseql
ftrapseqw
ftrapsf
frapsfl

C-10

Integrated Solutions

floating trap on greater than

floating trap on greater than, long
floating trap on greater than, word
floating trap on less than or equal
floating trap on less than or equal, long
floating trap on less than or equal, word
floating trap on less than

floating trap on less than, long

floating trap on less than, word

floating trap on not equal

floating trap on not equal, long

floating trap on not equal, word
floating trap on not (greater than or less than or equal)

floating trap on not (greater than or less than or equal), long
floating trap on not (greater than or less than or equal), word

floating trap on not (greater than or less than or equal)

floating trap on not (greater than or less than or equal), long
floating trap on not (greater than or less than or equal), word

floating trap on not (greater than or less than)
floating trap on not (greater than or less than), long
floating trap on not (greater than or less than), word
floating trap on not (greater than)

floating trap on not (greater than), long

floating trap on not (greater than), word

floating trap on not (less than or equal)

floating trap on not (less than or equal), long
floating trap on not (less than or equal), word
floating trap on not (less than)

floating trap on not (less than), long

floating trap on not (less than), word

floating trap on ordered greater than or equal
floating trap on ordered greater than or equal, long
floating trap on ordered greater than or equal, word
floating trap on ordered greater than or less than
floating trap on ordered greater than or less than, long
floating trap on ordered greater than or less than, word
floating trap on ordered greater than

floating trap on ordered greater than, long

floating trap on ordered greater than, word

floating trap on ordered less than or equal

floating trap on ordered less than or equal, long
floating trap on ordered less than or equal, word
floating trap on ordered less than

floating trap on ordered less than, long

floating trap on ordered less than, word

floating trap on ordered

floating trap on ordered, long

floating trap on ordered, word

floating trap on signalling equal

floating trap on signalling equal, long

floating trap on signalling equal, word

floating trap on signalling always false

floating trap on signalling always false, long

Summary of MC68881 Mnemonics

AS

C-10

ftrapsfw
ftrapsne
frapsnel
ftrapsnew
ftrapst
firapstl
ftrapstw
ftrapt
ftrapt
fraptw
ftrapueq
ftrapueql
ftrapueqw
ftrapuge
ftrapugel
ftrapugew
ftrapugt
ftrapugtl
frapugtw
ftrapule
ftrapulel
ftrapulew
ftrapult
ftrapultl
ftrapultw
ftrapun
ferapunl
ftrapunw

Integrated Solutions

floating trap on signalling always false, word
floating trap on signalling not equal

floating trap on signalling not equal, long
floating trap on signalling not equal, word

~ floating trap on signalling always true

floating trap on signalling always true, long

floating trap on signalling always true, word

floating trap on always true

floating trap on always true, long

floating trap on always true, word

floating trap on unordered or equal

floating trap on unordered or equal, long

floating trap on unordered or equal, word

floating trap on unordered or greater than or equal
floating trap on unordered or greater than or equal, long
floating trap on unordered or greater than or equal, word
floating trap on unordered or greater than

floating trap on unordered or greater than, long
floating trap on unordered or greater than, word
floating trap on unordered or less than or equal
floating trap on unordered or less than or equal, long
floating trap on unordered or less than or equal, word
floating trap on unordered or less than

floating trap on unordered or less than, long

floating trap on unordered or less than, word

floating trap on unordered

floating trap on unordered, long

floating trap on unordered, word

C.7 Miscellaneous Instructions

fnop

floating no operation

frestore floating state restore

fsave

C-11

floating state save

Summary of MC68881 Mnemonics

AS

AS Integrated Solutions AS

C-12 Summary of MC68881 Mnemonics - C12

Berkeley Software Architecture Manual
4.3BSD Edition

William Joy, Robert Fabry,
Samuel Leffler, M. Kirk McKusick,
Michael Karels

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

This document summarizes the facilities provided by the 4.3BSD version of the
UNIX * operating system. It does not attempt to act as a tutorial for use of the system
nor does it attempt to explain or justify the design of the system facilities. It gives neither
motivation nor implementation details, in favor of brevity.

The first section describes the basic kernel functions provided to a UNIX process:
process naming and protection, memory management, software interrupts, object refer-
ences (descriptors), time and statistics functions, and resource controls, These facilities,
as well as facilities for bootstrap, shutdown and process accounting, are provided solely
by the kernel.

The second section describes the standard system abstractions for files and file sys-

tems, communication, terminal handling, and process control and debugging. These
facilities are implemented by the operating system or by network server processes.

* UNIX is a trademark of Bell Laboratories.

PS1:6-2 4.3BSD Architecture Manual

TABLE OF CONTENTS

Introduction.
0. Notation and types
1. Kernel primitives

1.1. Processes and protection

1.1.1. Host and process identifiers
1.1.2. Process creation and termination
1.1.3. User and group ids

1.1.4. Process groups

1.2, Memory management
1.2.1. Text, data and stack
1.2.2. Mapping pages

1.2.3. Page protection control
1.2.4. Giving and getting advice
1.2.5. Protection primitives

1.3. Signals

1.3.1. Overview

1.3.2. Signal types

1.3.3. Signal handlers

1.3.4. Sending signals

1.3.5. Protecting critical sections
1.3.6. Signal stacks

1.4. Timing and statistics
1.4.1, Real time
1.4.2. Interval time

1.5. Descriptors

1.5.1. The reference table

1.5.2. Descriptor properties

1.5.3. Managing descriptor references
1.5.4. Multiplexing requests

1.5.5. Descriptor wrapping

1.6. Resource controls
1.6.1. Process priorities
1.6.2. Resource utilization
1.6.3. Resource limits

1.7. System operation support
1.7.1. Bootstrap operations
1.7.2. Shutdown operations
1.7.3. Accounting

4.3BSD Architecture Manual

2. System facilities

2.1. Generic operations

2.1.1. Read and write

2.1.2. Input/output control

2.1.3. Non-blocking and asynchronous operations

2.2, File system

2.2.1 Overview

2.2.2, Naming

2.2.3. Creation and removal

2.2.3.1. Directory creation and removal
2.2.3.2. File creation

2.2.3.3. Creating references to devices
2.2.3.4. Portal creation

2.2.3.6. File, device, and portal removal
2.2.4. Reading and modifying file attributes
2.2.5. Links and renaming

2.2.6. Extension and truncation

2.2.7. Checking accessibility

2.2.8. Locking

2.2.9. Disc quotas

2.3. Interprocess communication

2.3.1. Interprocess communication primitives
23.1.1. Communication domains

23.1.2. Socket types and protocols

23.1.3. Socket creation, naming and service establishment
2.3.14. Accepting connections

2.3.1.5. Making connections

2.3.1.6. Sending and receiving data

2.3.1.7. Scatter/gather and exchanging access rights
2.3.1.8. Using read and write with sockets

2.3.19. Shutting down halves of full-duplex connections
2.3.1.10. Socket and protocol options

2.3.2. UNIX domain

2.3.2.1. Types of sockets

23.2.2. Naming

2.3.2.3. Access rights transmission

2.3.3. INTERNET domain

2.3.3.1. Socket types and protocols

2.3.3.2. Socket naming

2.3.3.3. Access rights transmission

2.3.34. Raw access

2.4. Terminals and devices

2.4.1, Terminals

24.1.1. Terminal input

24.1.1.1 Input modes

24.1.1.2 Interrupt characters
24.1.1.3 Line editing

24.1.2. Terminal output

24.1.3. Terminal control operations
24.14. Terminal hardware support
2.4.2. Structured devices

PS1:6-3

PS1:6-4 4.3BSD Architecture Manual

2.4.3. Unstructured devices
2.5. Process control and debugging

I. Summary of facilities

4.3BSD Architecture Manual PS1:6-5

0. Notation and types

The notation used to describe system calls is a variant of a C language call, consisting of a prototype
call followed by declaration of parameters and results. An additional keyword result, not part of the nor-
mal C language, is used to indicate which of the declared entities receive results. As an example, consider
the read call, as described in section 2.1:

cc = read(fd, buf, nbytes);
result int cc; int fd; result char *buf; int nbytes;

The first line shows how the read routine is called, with three parameters. As shown on the second line cc
is an integer and read also returns information in the parameter buf.

Description of all error conditions arising from each system call is not provided here; they appear in
the programmer’s manual. In particular, when accessed from the C language, many calls return a charac-
teristic —1 value when an error occurs, returning the error code in the global variable errno. Other
languages may present errors in different ways.

A number of system standard types are defined in the include file <sys/types.h> and used in the
specifications here and in many C programs. These include caddr_t giving a memory address (typically as
a character pointer), off_t giving a file offset (typically as a long integer), and a set of unsigned types
u_char, u_short, u_int and u_long, shorthand names for unsigned char, unsigned short, etc.

PS1:6-6 4.3BSD Architecture Manual

1. Kernel primitives

The facilities available to a UNIX user process are logically divided into two parts: kernel facilities
directly implemented by UNIX code running in the operating system, and system facilities implemented
either by the system, or in cooperation with a server process. These kernel facilities are described in this
section 1.

The facilities implemented in the kernel are those which define the UNIX virtual machine in which
each process runs. Like many real machines, this virtual machine has memory management hardware, an
interrupt facility, timers and counters. The UNIX virtual machine also allows access to files and other
objects through a set of descriptors. Each descriptor resembles a device controller, and supports a set of
operations. Like devices on real machines, some of which are internal to the machine and some of which
are external, parts of the descriptor machinery are built-in to the operating system, while other parts are
often implemented in server processes on other machines. The facilities provided through the descriptor
machinery are described in section 2.

4.3BSD Architecture Manual PS1:6-7

1.1. Processes and protection

1.1.1. Host and process identifiers

Each UNIX host has associated with it a 32-bit host id, and a host name of up to 64 characters (as
defined by MAXHOSTNAMELEN in <sys/param.h>). These are set (by a privileged user) and returned
by the calls:

sethostid(hostid)
long hostid;

hostid = gethostid();
result long hostid;

sethostname(name, len)
char *name; int len;

len = gethostname(buf, buflen)
result int len; result char *buf; int buflen;

On each host runs a set of processes. Each process is largely independent of other processes, having its
own protection domain, address space, timers, and an independent set of references to system or user
implemented objects.

Each process in a host is named by an integer called the process id. This number is in the range 1-
30000 and is returned by the getpid routine:
pid = getpid();
result int pid;

On each UNIX host this identifier is guaranteed to be unique; in a multi-host environment, the (hostid, pro-
cess id) pairs are guaranteed unique.

1.1.2. Process creation and termination
A new process is created by making a logical duplicate of an existing process:
pid = fork();
result int pid;

The fork call returns twice, once in the parent process, where pid is the process identifier of the child, and
once in the child process where pid is 0. The parent-child relationship induces a hierarchical structure on
the set of processes in the system.

A process may terminate by executing an exit call:
exit(status)
int status;
returning 8 bits of exit status to its parent.

When a child process exits or terminates abnormally, the parent process receives information about
any event which caused termination of the child process. A second call provides a non-blocking interface
and may also be used to retrieve information about resources consumed by the process during its lifetime.

PS1:6-8 - 4.3BSD Architecture Manual

#include <sys/wait.h>

pid = wait(astatus);
result int pid; result union wait *astatus;

pid = wait3(astatus, options, arusage);
result int pid; result union waitstatus *astatus;
int options; result struct rusage *arusage;

A process can overlay itself with the memory image of another process, passing the newly created
process a set of parameters, using the call:

execve(name, argv, envp)
char *name, **argv, **envp;

The specified name must be a file which is in a format recognized by the system, either a binary executable
file or a file which causes the execution of a specified interpreter program to process its contents.

1.1.3. User and group ids

Each process in the system has associated with it two user-id’s: a real user id and a effective user id,
both 16 bit unsigned integers (type uid_t). Each process has an real accounting group id and an effective
accounsing group id and a set of access group id’s. The group id’s are 16 bit unsigned integers (type
gid_t). Each process may be in several different access groups, with the maximum concurrent number of
access groups a system compilation parameter, the constant NGROUPS in the file <sys/param.h>,
guaranteed to be at least 8.

The real and effective user ids associated with a process are returned by:
ruid = getuid();
result uid_t ruid;
euid = geteuid();
result uid_t euid;
the real and effective accounting group ids by:

1gid = getgid();
result gid_t rgid;

egid = getegid();
result gid_t egid;
The access group id set is returned by a getgroups call*:

ngroups = getgroups(gidsetsize, gidset);
result int ngroups; int gidsetsize; result int gidset[gidsetsize];

The user and group id’s are assigned at login time using the setreuid, setregid, and setgroups calls:

* The type of the gidset array in getgroups and setgroups remains integer for compatibility with 4.2BSD. It may change to
gid_t in future releases.

4.3BSD Architecture Manual PS1:6-9

setrenid(ruid, euid);
int ruid, euid;

setregid(rgid, egid);
int rgid, egid;

setgroups(gidsetsize, gidset)

int gidsetsize; int gidset{gidsetsize];
The setreuid call sets both the real and effective user-id’s, while the setregid call sets both the real and
effective accounting group id’s. Unless the caller is the super-user, ruid must be equal to either the current
real or effective user-id, and rgid equal to either the current real or effective accounting group id. The set-
groups call is restricted to the super-user.

1.1.4. Process groups

Each process in the system is also normally associated with a process group. The group of processes
in a process group is sometimes referred to as a job and manipulated by high-level system software (such
as the shell). The current process group of a process is returned by the getpgrp call:

perp = getpgrp(pid);

result int pgrp; int pid;
When a process is in a specific process group it may receive software interrupts affecting the group, caus-
ing the group to suspend or resume execution or to be interrupted or terminated. In particular, a system ter-
minal has a process group and only processes which are in the process group of the terminal may read from
the terminal, allowing arbitration of terminals among several different jobs.

The process group associated with a process may be changed by the setpgrp call:
§etpgrp(pid, perp);
int pid, pgrp;
Newly created processes are assigned process id’s distinct from all processes and process groups, and the

same process group as their parent. A normal (unprivileged) process may set its process group equal to its
process id. A privileged process may set the process group of any process to any value.

PS1:6-10 4.3BSD Architecture Manual

1.2. Memory mdnagement'}'

1.2.1. Text, data and stack

Each process begins execution with three logical areas of memory called text, data and stack. The
text area is read-only and shared, while the data and stack areas are private to the process. Both the data
and stack areas may be extended and contracted on program request. The call

addr = sbrk(incr); v
result caddr_t addr; int incr;

changes the size of the data area by incr bytes and returns the new end of the data area, while
addr = sstk(incr); '
result caddr_t addr; int incr;

changes the size of the stack area. The stack area is also automatically extended as needed. On the VAX
the text and data areas are adjacent in the PQ region, while the stack section is in the P1 region, and grows
downward.

1.2.2, Mapping pages

The system supports sharing of data between processes by allowing pages to be mapped into
memory. These mapped pages may be shared with other processes or private to the process. Protection
and sharing options are defined in <sys/mman.h> as:

/* protections are chosen from these bits, or-ed together */

#define PROT_READ 0x04 /* pages can be read */
#define PROT_WRITE 0x02 /* pages can be written */
#define PROT_EXEC 0x01 /* pages can be executed */

/* flags contain mapping type, sharing type and options */
/* mapping type; choose one */

#define MAP_FILE 0x0001 /* mapped from a file or device */

#define MAP_ANON 0x0002 /* allocated from memory, swap space */
#define MAP_TYPE 0x000f /* mask for type field */

/* sharing types; choose one */

#define MAP_SHARED 0x0010 /* share changes */

#define MAP_PRIVATE 0x0000 /* changes are private */

/* other flags */

#define MAP_FIXED 0x0020 /* map addr must be exactly as requested */

#define MAP_NOEXTEND 0x0040 /* for MAP_FILE, don’t change file size */
#define MAP_HASSEMPHORE 0x0080 /* region may contain semaphores */
#define MAP_INHERIT 0x0100 /* region is retained after exec */

The cpu-dependent size of a page is returned by the getpagesize system call:

pagesize = getpagesize();
result int pagesize;

The call:

T This section represents the interface planned for later releases of the system. Of the calls described in this section, only
sbrk and getpagesize are included in 4.3BSD.

4.3BSD Architecture Manual PS1:6-11

maddr = mmap(addr, len, prot, flags, fd, pos);
result caddr_t maddr; caddr_t addr; int *len, prot, flags, fd; off_t pos;

causes the pages starting at addr and continuing for at most len bytes to be mapped from the object
represented by descriptor fd, starting at byte offset pos. The starting address of the region is returned; for
the convenience of the system, it may be different than that supplied unless the MAP_FIXED flag is given,
in which case the exact address will be used or the call will fail. The actual amount mapped is returned in
len. The addr, len, and pos parameters must all be multiples of the pagesize. The parameter prot specifies
the accessibility of the mapped pages. The parameter flags specifies the type of object to be mapped, map-
ping options, and whether modifications made to this mapped copy of the page are to be kept private, or are
to be shared with other references. Possible types include MAP_FILE, mapping a regular file or
character-special device memory, and MAP_ANON, which maps memory not associated with any specific
file. The file descriptor used for creating MAP_ANON regions is used only for naming, and may be given

as —1 if no name is associated with the mgloni The MAP_NOEXTEND flag prevents the mapped file
from being extended despite rounding due to the granularity of mapping. The MAP_HASSEMAPHORE
flag allows special handling for regions that may contain semaphores. The MAP_INHERIT flag allows a
region to be inherited after an exec.

A facility is provided to synchronize a mapped region with the file it maps; the call

msync(addr, len);
caddr_t addr; int len;

writes any modified pages back to the filesystem and updates the file modification time. If len is 0, all
modified pages within the region containing addr will be flushed; if len is non-zero, only the pages contain-
ing addr and len succeeding locations will be examined. Any required invalidation of memory caches will
also take place at this time. Filesystem operations on a file which is mapped for shared modifications are
unpredictable except after an msync.

A mapping can be removed by the call

munmap(addr);
caddr_t addr;

This call deletes the region containing the address given, and causes further references to addresses within
the region to generate invalid memory references.

1.2.3. Page protection control
A process can control the protection of pages using the call

mprotect(addr, len, prot);
caddr_t addr; int len, prot;

This call changes the specified pages to have protection prot. Not all implementations will guarantee pro-
tection on a page basis; the granularity of protection changes may be as large as an entire region.

1.2.4. Giving and getting advice
A process that has knowledge of its memory behavior may use the madvise call:

madvise(addr, len, behav);
caddr_t addr; int len, behav;

Behav describes expected behavior, as given in <sys/mman.h>:

% The current design does not allow a process to specify the location of swap space. In the future we may define an
additional mapping type, MAP_SWAP, in which the file descriptor argument specifies a file or device to which swapping
should be done.

PS1:6-12 4.3BSD Architecture Manual

#define MADV_NORMAL 0 /* no further special treatment */
#define MADV_RANDOM 1 /* expect random page references */
#define MADV_SEQUENTIAL 2 /* expect sequential references */
#define MADV_WILLNEED 3 /* will need these pages */

#define MADV_DONTNEED 4 /*don’t need these pages */

#define MADV_SPACEAVAIL 5§ /* insure that resources are reserved */

Finally, a process may obtain information about whether pages are core resident by using the call

mincore(addr, len, vec)
caddr_t addr; int len; result char *vec;

Here the current core residency of the pages is returned in the character array vec, with a value of 1 mean-
ing that the page is in-core.

1.2.5. Synchronization primitives

Primitives are provided for synchronization using semaphores in shared memory. Semaphores must
lie within a MAP_SHARED region with at least modes PROT_READ and PROT _WRITE. The
MAP_HASSEMAPHORE flag must have been specified when the region was created. To acquire a lock a
process calls:

value = mset(sem, wait)

result int value; semaphore *sem; int wait;
Mset indivisibly tests and sets the semaphore sem. If the the previous value is zero, the process has
acquired the lock and mset returns true immediately. Otherwise, if the wait flag is zero, failure is returned.

If wait is true and the previous value is non-zero, the ‘‘want’’ flag is set and the test-and-set is retried; if the
lock is still unavailable mset relinquishes the processor until notified that it should retry.

To release a lock a process calls:
mclear(sem)
semaphore *sem;

Mclear indivisibly tests and clears the semaphore sem. If the “want’’ flag is zero in the previous value,
mclear returns immediately. If the ‘‘want’’ flag is non-zero in the previous value, mclear arranges for
waiting processes to retry before returning.

Two routines provide services analogous to the kernel sleep and wakeup functions interpreted in the
domain of shared memory. A process may relinquish the processor by calling msleep:

msleep(sem)
semaphore *sem;

The process will remain in a sleeping state until some other process issues an mwakeup for the same sema-
phore within the region using the call:

mwakeup(sem)
semaphore *sem;

An mwakeup may awaken all sleepers on the semaphore, or may awaken only the next sleeper on a queue.

4.3BSD Architecture Manual PS1:6-13

1.3. Signals

1.3.1. Overview

The system defines a set of signals that may be delivered to a process. Signal delivery resembles the
occurrence of a hardware interrupt; the signal is blocked from further occurrence, the current process con-
text is saved, and a new one is built. A process may specify the handler to which a signal is delivered, or
specify that the signal is to be blocked or ignored. A process may also specify that a default action is to be
taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be accompanied by
creation of a core image file, containing the current memory image of the process for use in post-mortem
debugging. A process may choose to have signals delivered on a special stack, so that sophisticated
software stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultaneously, the order in which
they are delivered to a process is implementation specific. Signal routines execute with the signal that
caused their invocation blocked, but other signals may yet occur. Mechanisms are provided whereby criti-
cal sections of code may protect themselves against the occurrence of specified signals.

1.3.2. Signal types

The signals defined by the system fall into one of five classes: hardware conditions, software condi-
tions, input/output notification, process control, or resource control. The set of signals is defined in the file
<signal.h>.

Hardware signals are derived from exceptional conditions which may occur during execution. Such
signals include SIGFPE representing floating point and other arithmetic exceptions, SIGILL for illegal
instruction execution, SIGSEGV for addresses outside the currently assigned area of memory, and
SIGBUS for accesses that violate memory protection constraints. Other, more cpu-specific hardware sig-
nals exist, such as those for the various customer-reserved instructions on the VAX (SIGIOT, SIGEMT,
and SIGTRAP).

Software signals reflect interrupts generated by user request: SIGINT for the normal interrupt signal;
SIGQUIT for the more powerful quit signal, that normally causes a core image to be generated; SIGHUP
and SIGTERM that cause graceful process termination, either because a user has ‘‘hung up’”, or by user or
program request; and SIGKILL, a more powerful termination signal which a process cannot catch or
ignore. Programs may define their own asynchronous events using SIGUSR1 and SIGUSR2. Other
software signals (SIGALRM, SIGVTALRM, SIGPROF) indicate the expiration of interval timers.

A process can request notification via a SIGIO signal when input or output is possible on a descrip-
tor, or when a non-blocking operation completes. A process may request to receive a SIGURG signal
when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process group. The SIGSTOP
signal is a powerful stop signal, because it cannot be caught. Other stop signals SIGTSTP, SIGTTIN, and
SIGTTOU are used when a user request, input request, or output request respectively is the reason for stop-
ping the process. A SIGCONT signal is sent to a process when it is continued from a stopped state.
Processes may receive notification with a SIGCHLD signal when a child process changes state, either by
stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a process
nears its CPU time limit and SIGXFSZ warns that the limit on file size creation has been reached.

1.3.3. Signal handlers

A process has a handler associated with each signal. The handler controls the way the signal is
delivered. The call

PS1:6-14 ' 4.3BSD Architecture Manual

#include <signal.h>

struct sigvec {
int (*sv_handler)();
int sv_mask;
int sv_flags;

|5

sigvec(signo, sv, osv)
int signo; struct sigvec *sv; result struct sigvec *osv;

assigns interrupt handler address sv_handler to signal signo. Each handler address specifies either an inter-
rupt routine for the signal, that the signal is to be ignored, or that a default action (usually process termina-
tion) is to occur if the signal occurs. The constants SIG_IGN and SIG_DEF used as values for sv_handler
cause ignoring or defaulting of a condition. The sv_ mask value specxﬁes the signal mask to be used when
the handler is invoked; it implicitly includes the sxgnal which invoked the handler. Signal masks include
one bit for each signal; the mask for a signal signo is provided by the macro sigmask(signo), from
<signal.h>. Sv_flags specifies whether system calls should be restarted if the signal handler returns and
whether the handler should operate on the normal run-time stack or a special signal stack (see below). If
osv is non-zero, the previous signal vector is returned.

When a signal condition arises for a process, the signal is added to a set of signals pending for the
process. If the signal is not currently blocked by the process then it will be delivered. The process of sig-
nal delivery adds the signal to be delivered and those signals specified in the associated signal handler’s
sv_mask to a set of those masked for the process, saves the current process context, and places the process
in the context of the signal handling routine. The call is arranged so that if the signal handling routine exits
normally the signal mask will be restored and the process will resume execution in the original context. If
the process wishes to resume in a different context, then it must arrange to restore the signal mask itself.

The mask of blocked signals is independent of handlers for signals. It delays signals from being
delivered much as a raised hardware interrupt priority level delays hardware interrupts. Preventing an
interrupt from occurring by changing the handler is analogous to disabling a device from further interrupts.

The signal handling routine sv_handler is called by a C call of the form
(*sv_handler)(signo, code, scp);
int signo; long code; struct sigcontext *scp;

The signo gives the number of the signal that occurred, and the code, a word of information supplied by the
hardware. The scp parameter is a pointer to a machine-dependent structure containing the information for
restoring the context before the signal.

1.3.4. Sending signals
A process can send a signal to another process or group of processes with the calls:

kill(pid, signo)
int pid, signo;

killpgrp(pgrp, signo)

int pgrp, signo;
Unless the process sending the signal is privileged, it must have the same effective user id as the process
receiving the signal.

Signals are also sent implicitly from a terminal device to the process group associated with the termi-
nal when certain input characters are typed.

4.3BSD Architecture Manual PS1:6-15

1.3.5. Protecting critical sections

To block a section of code against one or more signals, a sigblock call may be used to add a set of
signals to the existing mask, returning the old mask: ’

oldmask = sigblock(mask);
result long oldmask; long mask;

The old mask can then be restored later with sigsetmask,

oldmask = sigsetrnask(mask);
result long oldmask; long mask;

The sigblock call can be used to read the current mask by specifying an empty mask .

It is possible to check conditions with some signals blocked, and then to pause waiting for a signal
and restoring the mask, by using:

sigpause(mask);
long mask;

1.3.6. Signal stacks
Applications that maintain complex or fixed size stacks can use the call

struct sigstack {

caddr_t SS_sp;

int ss_onstack;
b
sigstack(ss, 0ss)

struct sigstack *ss; result struct sigstack *oss;

to provide the system with a stack based at ss_sp for delivery of signals. The value ss_onstack indicates
whether the process is currently on the signal stack, a notion maintained in software by the system.

When a signal is to be delivered, the system checks whether the process is on a signal stack. If not,
then the process is switched to the signal stack for delivery, with the return from the signal arranged to
restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code from the signal
stack that uses a different stack, a sigstack call should be used to reset the signal stack.

PS1:6-16 4.3BSD Architecture Manual

14. Timers

1.4.1. Real time

The system’s notion of the current Greenwich time and the current time zone is set and returned by
the call by the calls:

#include <sys/time.h>

settimeofday(tvp, tzp);
struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp);
result struct timeval *tp;
result struct timezone *tzp;

where the structures are defined in <sys/time.h> as:

struct timeval {
long tv_sec; /* seconds since Jan 1, 1970 */
long tv_usec; /* and microseconds */
5
struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */
5

The precision of the system clock is hardware dependent. Earlier versions of UNIX contained only a 1-
second resolution version of this call, which remains as a library routine:

time(tvsec)
result long *tvsec;

returning only the tv_sec field from the gettimeofday call.

14.2. Interval time
The system provides each process with three interval timers, defined in <sys/time.h>:

#define ITIMER_REAL 0 /* real time intervals */
#define ITIMER_VIRTUAL 1 /* virtual time intervals */
#define ITIMER_PROF 2 /* user and system virtual time */

The ITIMER_REAL timer decrements in real time. It could be used by a library routine to maintain a
wakeup service queue. A SIGALRM signal is delivered when this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the process is
executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is running
on behalf of the process. It is designed to be used by processes to statistically profile their execution. A
SIGPROF signal is delivered when it expires.

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

IS

4.3BSD Architecture Manual PS1:6-17

and a timer is set or read by the call:

getitimer(which, value);
int which; result struct itimerval *value;

setitimer(which, value, ovalue);
int which; struct itimerval *value; result struct itimerval *ovalue;

The third argument to setitimer specifies an optional structure to receive the previous contents of the inter-
val timer. A timer can be disabled by specifying a timer value of 0.

The system rounds argument timer intervals to be not less than the resolution of its clock. This clock
resolution can be determined by loading a very small value into a timer and reading the timer back to see
what value resulted.

The alarm system call of earlier versions of UNIX is provided as a library routine using the
ITIMER_REAL timer. The process profiling facilities of earlier versions of UNIX remain because it is not
always possible to guarantee the automatic restart of system calls after receipt of a signal. The profil call
arranges for the kernel to begin gathering execution statistics for a process:

profil(buf, bufsize, offset, scale);
result char *buf; int bufsize, offset, scale;

This begins sampling of the program counter, with statistics maintained in the user-provided buffer.

PS1:6-18 4.3BSD Architecture Manual

1.5. Descriptors

1.5.1. The reference table

Each process has access to resources through descriptors. Each descriptor is a handle allowing the
process to reference objects such as files, devices and communications links.

Rather than allowing processes direct access to descriptors, the system introduces a level of indirec-
tion, so that descriptors may be shared between processes. Each process has a descriptor reference table,
containing pointers to the actual descriptors. The descriptors themselves thus have multiple references, and
are reference counted by the system.

. Each process has a fixed size descriptor reference table, where the size is returned by the getdta-
blesize call:

nds = getdtablesize();
result int nds;

and guaranteed to be at least 20. The entries in the descriptor reference table are referred to by smalil
integers; for example if there are 20 slots they are numbered 0 to 19.

1.5.2. Descriptor properties

Each descriptor has a logical set of properties maintained by the system and defined by its type.
Each type supports a set of operations; some operations, such as reading and writing, are common to
several abstractions, while others are unique. The generic operations applying to many of these types are
described in section 2.1. Naming contexts, files and directories are described in section 2.2. Section 2.3
describes communications domains and sockets. Terminals and (structured and unstructured) devices are
described in section 2.4.

1.5.3. Managing descriptor references
A duplicate of a descriptor reference may be made by doing

new = dup(old);
result int new; int old;

returning a copy of descriptor reference old indistinguishable from the original. The new chosen by the
system will be the smallest unused descriptor reference slot. A copy of a descriptor reference may be made
ina specific slot by doing

dup2(old, new);

int old, new;

The dup2 call causes the system to deallocate the descriptor reference current occupying slot new, if any,
replacing it with a reference to the same descriptor as old. This deallocation is also performed by:

close(old);
int old;

1.5.4. Multiplexing requests

The system provides a standard way to do synchronous and asynchronous multiplexing of opera-
tions. '

Synchronous multiplexing is performed by using the select call to examine the state of multiple
descriptors simultaneously, and to wait for state changes on those descriptors. Sets of descriptors of
interest are specified as bit masks, as follows:

4.3BSD Architecture Manual . PS1:6-19

#include <sys/types.h>

nds = select(nd, in, out, except, tvp);
result int nds; int nd; result fd_set *in, *out, *except;
struct timeval *tvp;

FD_ZERO(&fdset);
FD_SET(fd, &fdset);
FD_CLR(fd, &fdset);
FD_ISSET(fd, &fdset);
int fs; fs_set fdset;

The select call examines the descriptors specified by the sets in, out and except, replacing the specified bit
masks by the subsets that select true for input, output, and exceptional conditions respectively (nd indicates
the number of file descriptors specified by the bit masks). If any descriptors meet the following criteria,
then the number of such descriptors is returned in nds and the bit masks are updated.

° A descriptor selects for input if an input oriented operation such as read or receive is possible, or if a
connection request may be accepted (see section 2.3.1.4).

. A descriptor selects for output if an output oriented operation such as write or send is possible, or if
an operation that was ‘in progress’’, such as connection establishment, has completed (see section
2.1.3).

) A descriptor selects for an exceptional condition if a condition that would cause a SIGURG signal to
be generated exists (see section 1.3.2), or other device-specific events have occurred.

If none of the specified conditions is true, the operation waits for one of the conditions to arise, blocking at
most the amount of time specified by tvp. If tvp is given as 0, the select waits indefinitely.

Options affecting I/0 on a descriptor may be read and set by the call:

dopt = fentl(d, cmd, arg)
result int dopt; int d, cmd, arg;

/* interesting values for cmd */
#define F_SETFL

#define F_GETFL

#define F _SETOWN
#define F_GETOWN

The F_SETFL cmd may be used to set a descriptor in non-blocking I/O mode and/or enable signaling when
I/O is possible. F_SETOWN may be used to specify a process or process group to be signaled when using
the latter mode of operation or when urgent indications arise.

Operations on non-blocking descriptors will either complete immediately, note an error EWOULD-
BLOCK, partially complete an input or output operation returning a partial count, or return an error
EINPROGRESS noting that the requested operation is in progress. A descriptor which has signalling
enabled will cause the specified process and/or process group be signaled, with a SIGIO for input, output,
or in-progress operation complete, or a SIGURG for exceptional conditions.

For example, when writing to a terminal using non-blocking output, the system will accept only as
much data as there is buffer space for and return; when making a connection on a socket, the operation may
return indicating that the connection establishment is ‘‘in progress’’. The select facility can be used to
determine when further output is possible on the terminal, or when the connection establishment attempt is
complete.

/* set descriptor options */
/* get descriptor options */
/* set descriptor owner (pid/pgrp) */
* get descriptor owner (pid/pgrp) */

[« WV N R)

PS1:6-20 4.3BSD Architecture Manual

1.5.5. Descriptor wrapping.t

A user process may build descriptors of a specified type by wrapping a communications channel with
a system supplied protocol translator:

new = wrap(old, proto)
result int new; int old; struct dprop *proto;

Operations on the descriptor old are then translated by the system provided protocol translator into requests
on the underlying object old in a way defined by the protocol. The protocols supported by the kernel may
vary from system to system and are described in the programmers manual. '

Protocols may be based on communications multiplexing or a rights-passing style of handling multi-
ple requests made on the same object. For instance, a protocol for implementing a file abstraction may or
may not include locally generated ‘‘read-ahead’’ requests. A protocol that provides for read-ahead may
provide higher performance but have a more difficult implementation.

Another example is the terminal driving facilities. Normally a terminal is associated with a com-
munications line, and the terminal type and standard terminal access protocol are wrapped around a syn-
chronous communications line and given to the user. If a virtual terminal is required, the terminal driver
can be wrapped around a communications link, the other end of which is held by a virtual terminal protocol
interpreter.

T The facilities described in this section are not included in 4.3BSD.

4.3BSD Architecture Manual PS1:6-21

1.6. Resource controls

1.6.1. Process priorities

The system gives CPU scheduling priority to processes that have not used CPU time recently. This
tends to favor interactive processes and processes that execute only for short periods. It is possible to
determine the priority currently assigned to a process, process group, or the processes of a specified user, or
to alter this priority using the calls:

#define PRIO_PROCESS 0 /* process */
#define PRIO_PGRP 1 /* process group */
#define PRIO_USER 2 /* user id */

prio = getpriority(which, who);
result int prio; int which, who;

setpriority(which, who, prio);

int which, who, prio;
The value prio is in the range —20 to 20. The default priority is O; lower priorities cause more favorable
execution. The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the

specified processes. The setpriority call sets the priorities of all of the specified processes to the specified
value. Only the super-user may lower priorities.

1.6.2. Resource utilization

The resources used by a process are returned by a getrusage call, returning information in a structure
defined in <sys/resource.h>:

#define RUSAGE_SELF 0 /* usage by this process */
#define RUSAGE_CHILDREN -1 /* usage by all children */
getrusage(who, rusage)

int who; result struct rusage *rusage;

struct rusage {

struct timeval ru_utime; /* user time used */

struct timeval ru_stime; /* system time used */

int ru_maxrss; /* maximum core resident set size: kbytes */
int ru_ixrss; /* integral shared memory size (kbytes*sec) */
int ru_idrss; /* unshared data memory size */

int ru_isrss; /* unshared stack memory size */

int ru_minfit; /* page-reclaims */

int ru_majflt; /* page faults */

int ru_nswap; /* swaps */

int ru_inblock; /* block input operations */

int ru_oublock; /* block output operations */

int ru_msgsnd; /* messages sent */

int - ru_msgrcv; /* messages received */

int ru_nsignals; [* signals received */

int TuU_NVCSW; /* voluntary context switches */

int ru_nivesw; /* involuntary context switches */

b

The who parameter specifies whose resource usage is to be returned. The resources used by the current

process, or by all the terminated children of the current process may be requested.

PS1:6-22 4.3BSD Architecture Manual

1.6.3. Resource limits

The resources of a process for which limits are controlled by the kemel are defined in
<sysiresource.h>, and controlled by the getrlimit and setrlimit calls:

#define RLIMIT_CPU 0 /* cpu time in milliseconds */
#define RLIMIT FSIZE 1 /* maximum file size */
#define RLIMIT DATA 2 /* maximum data segment size */
#define RLIMIT STACK 3 /* maximum stack segment size */
#define RLIMIT_CORE 4 /* maximum core file size */
#define RLIMIT_RSS 5 /* maximum resident set size */
#define RLIM_NLIMITS 6
#define RLIM_INFINITY Ox7fffeftf
struct rlimit {

int rlim_cur; /* current (soft) limit */

int rlim_max; /* hard limit */
b
getrlimit(resource, rlp)

int resource; result struct rlimit *rlp;

setrlimit(resource, rlp)
int resource; struct rlimit *rlp;

Only the super-user can raise the maximum limits. Other users may only alter rlim_cur within the
range from O to rlim_max or (irreversibly) lower rlim_max.

4.3BSD Architecture Manual PS1:6-23

1.7. System operation support
Unless noted otherwise, the calls in this section are permitted only to a privileged user.

1.7.1. Bootstrap operations
The call
mount(blkdev, dir, ronly);
char *blkdev, *dir; int ronly;

extends the UNIX name space. The mount call specifies a block device blkdev containing a UNIX file sys-
tem to be made available starting at dir. If ronly is set then the file system is read-only; writes to the file
system will not be permitted and access times will not be updated when files are referenced. Dir is nor-
mally a name in the root directory.

The call

swapon(blkdev, size);
char *blkdev; int size;

specifies a device to be made available for paging and swapping.

1.7.2. Shutdown operations
The call

unmount(dir);
char *dir;

unmounts the file system mounted on dir. This call will succeed only if the file system is not currently
being used.

The call
sync();
schedules input/output to clean all system buffer caches. (This call does not require privileged status.)
The call

reboot(how)
int how;

causes a machine halt or reboot. The call may request a reboot by specifying how as RB_AUTOBOOT, or
that the machine be halted with RB_HALT. These constants are defined in <sys/reboot.h>.

1.7.3. Accounting

The system opﬁonally keeps an accounting record in a file for each process that exits on the system.
The format of this record is beyond the scope of this document. The accounting may be enabled to a file
name by doing

acct(path);
char *path;

If path is null, then accounting is disabled. Otherwise, the named file becomes the accounting file.

PS1:6-24 4.3BSD Architecture Manual

2. System facilities

This section discusses the system facilities that are not considered part of the kernel.
The system abstractions described are:

Directory contexts
A directory context is a position in the UNIX file system name space. Operations on files and other
named objects in a file system are always specified relative to such a context.

Files
Files are used to store uninterpreted sequence of bytes on which random access reads and writes may
occur. Pages from files may also be mapped into process address space.t A directory may be read as
afile.

Communications domains
A communications domain represents an interprocess communications environment, such as the
communications facilities of the UNIX system, communications in the INTERNET, or the resource
sharing protocols and access rights of a resource sharing system on a local network.

Sockets
A socket is an endpoint of communication and the focal point for IPC in a communications domain.
Sockets may be created in pairs, or given names and used to rendezvous with other sockets in a com-
munications domain, accepting connections from these sockets or exchanging messages with them.
These operations model a labeled or unlabeled communications graph, and can be used in a wide
variety of communications domains. Sockets can have different types to provide different semantics
of communication, increasing the flexibility of the model.

Terminals and other devices
Devices include terminals, providing input editing and interrupt generation and output flow control
and editing, magnetic tapes, disks and other peripherals. They often support the generic read and
write operations as well as a number of ioctl's.

Processes
Process descriptors provide facilities for control and debugging of other processes.

t Support for mapping files is not included in the 4.3 release.

4.3BSD Architecture Manual PS1:6-25

2.1. Generic operations

Many system abstractions support the operations read, write and ioctl. We describe the basics of
these common primitives here. Similarly, the mechanisms whereby normally synchronous operations may
occur in a non-blocking or asynchronous fashion are common to all system-defined abstractions and are
described here.

2.1.1. Read and write

The read and write system calls can be applied to communications channels, files, terminals and dev-
ices. They have the form:

- cc = read(fd, buf, nbytes);
result int cc; int fd; result caddr_t buf; int nbytes;

cc = write(fd, buf, nbytes);
result int cc; int fd; caddr_t buf; int nbytes;

The read call transfers as much data as possible from the object defined by fd to the buffer at address buf of
size nbytes. The number of bytes transferred is returned in cc, which is —1 if a return occurred before any
data was transferred because of an error or use of non-blocking operations.

The write call transfers data from the buffer to the object defined by fd. Depending on the type of fd,
it is possible that the write call will accept some portion of the provided bytes; the user should resubmit the
other bytes in a later request in this case. Error returns because of interrupted or otherwise incomplete
operations are possible.

Scattering of data on input or gathering of data for output is also possible using an array of
input/output vector descriptors. The type for the descriptors is defined in <sys/uio.h> as:

struct iovec {
caddr t iov_msg; /* base of a component */
int iov_len; /* length of a component */
h
The calls using an array of descriptors are:

cc = readv(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

cc = writev(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

Here iovien is the count of elements in the iov array.

2.1.2. Input/output control
Control operations on an object are performed by the ioct! operation:

ioctl(fd, request, buffer);
int fd, request; caddr_t buffer;

This operation causes the specified request to be performed on the object fd. The request parameter
specifies whether the argument buffer is to be read, written, read and written, or is not needed, and also the
size of the buffer, as well as the request. Different descriptor types and subtypes within descriptor types
may use distinct ioctl requests. For example, operations on terminals control flushing of input and output
queues and setting of terminal parameters; operations on disks cause formatting operations to occur; opera-
tions on tapes control tape positioning.

The names for basic control operations are defined in <sys/ioctl.h>.

PS1:6-26 4.3BSD Architecture Manual

2.1.3. Non-blocking and asynchronous operations

A process that wishes to do non-blocking operations on one of its descriptors sets the descriptor in
non-blocking mode as described in section 1.5.4. Thereafter the read call will return a specific EWOULD-
BLOCK error indication if there is no data to be read. The process may select the associated descriptor to
determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either accept some of the
provided data, returning a shorter than normal length, or return an error indicating that the operation would
block. More output can be performed as soon as a select call indicates the object is writeable.

Operations other than data input or output may be performed on a descriptor in a non-blocking
fashion. These operations will return with a characteristic error indicating that they are in progress if they
cannot complete immediately. The descriptor may then be selected for write to find out when the operation
has been completed. When select indicates the descriptor is writeable, the operation has completed.
Depending on the nature of the descriptor and the operation, additional activity may be started or the new
state may be tested.

4.3BSD Architecture Manual PS1:6-27

2.2. File system

2.2.1. Overview

The file system abstraction provides access to a hierarchical file system structure. The file system
contains directories (each of which may contain other sub-directories) as well as files and references to
other objects such as devices and inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system related information
is present in a file. Files may be read and written in a random-access fashion. The user may read the data
in a directory as though it were an ordinary file to determine the names of the contained files, but only the
system may write into the directories. The file system stores only a small amount of ownership, protection
and usage information with a file.

2.2.2. Naming

The file system calls take path name arguments. These consist of a zero or more component file
"names separated by *‘/*’ characters, where each file name is up to 255 ASCII characters excluding null and
(3 / i 2] .
Each process always has two naming contexts: one for the root directory of the file system and one
for the current working directory. These are used by the system in the filename translation process. If a
path name begins with a *‘/"’, it is called a full path name and interpreted relative to the root directory con-
text. If the path name does not begin with a **/”’ it is called a relative path name and interpreted relative to
the current directory context.

The system limits the total length of a path name to 1024 characters.

The file name ““..”” in each directory refers to the parent directory of that directory. The parent direc-
tory of the root of the file system is always that directory.

The calls

chdir(path);
char *path;

chroot(path)

char *path;
change the current working directory and root directory context of a process. Only the super-user can
change the root directory context of a process.

2.2.3. Creation and removal

The file system allows directories, files, special devices, and ‘‘portals’’ to be created and removed
from the file system.

2.2.3.1. Directory creation and removal
A directory is created with the mkdir system call:

mkdir(path, mode);
char *path; int mode;

where the mode is defined as for files (see below). Directories are removed with the rmdir system call:

rmdir(path);
char *path;

A directory must be empty if it is to be deleted.

PS1:6-28 4.3BSD Architecture Manual

22.3.2, File creation
Files are created with the open system call,

fd = open(path, oflag, mode);
result int fd; char *path; int oflag, mode;

The path parameter specifies the name of the file to be created. The oflag parameter must include
O_CREAT from below to cause the file to be created. Bits for oflag are defined in <sys/file.h>:

#define O_RDONLY 000 /* open for reading */

#define O_WRONLY 001 /* open for writing */

#define O_RDWR 002 /* open for read & write */
#define O _NDELAY 004 /* non-blocking open */
#define O_APPEND 010 /* append on each write */
#define O_CREAT 01000 /* open with file create */
#define O_TRUNC 02000 /* open with truncation */
#define O_EXCL 04000 /* error on create if file exists */

One of O_RDONLY, O_WRONLY and O_RDWR should be specified, indicating what types of
operations are desired to be performed on the open n file. The operations will be checked against the user’s
access rights to the file before allowing the open to succeed. Specifying O_APPEND causes writes to
automatically append to the file. The flag O_CREAT causes the file to be created if it does not exist,
owned by the current user and the group of the containing directory. The protection for the new file is
specified in mode. The file mode is used as a three digit octal number. Each digit encodes read access as 4,
write access as 2 and execute access as 1, or’ed together. The 0700 bits describe owner access, the 070 bits
describe the access rights for processes in the same group as the file, and the 07 bits describe the access
rights for other processes.

If the open specifies to create the file with O_EXCL and the file already exists, then the open will fail
without affecting the file in any way. This provides a simple exclusive access facility. If the file exists but
is a symbolic link, the open will fail regardless of the existence of the file specified by the link.

2.2.3.3. Creating references to devices

The file system allows entries which reference peripheral devices. Peripherals are distinguished as
block or character devices according by their ability to support block-oriented operations. Devices are
identified by their ‘‘major’’ and ‘‘minor’’ device numbers. The major device number determines the kind
of peripheral it is, while the minor device number indicates one of possibly many peripherals of that kind.
Structured devices have all operations performed internally in ‘‘block’” quantities while unstructured dev-
ices often have a number of special ioct! operations, and may have input and output performed in varying
units. The mknod call creates special entries:

mknod(path, mode, dev);
char *path; int mode, dev;

where mode is formed from the object type and access permissions. The parameter dev is a configuration
dependent parameter used to identify specific character or block I/O devices.

2.2.3.4. Portal creationt
The call

fd = portal(name, server, param, dtype, protocol, domain, socktype)
result int fd; char *name, *server, *param,; int dtype, protocol;
int domain, socktype;

places a name in the file system name space that causes connection to a server process when the name is

t The portal call is not implemented in 4.3BSD.

43BSD Architecture Manual ' PS1:6-29

used. The portal call returns an active portal in fd as though an access had occurred to activate an inactive
portal, as now described.

When an inactive portal is accessed, the system sets up a socket of the specified socktype in the
specified communications domain (see section 2.3), and creates the server process, giving it the specified
param as argument to help it identify the portal, and also giving it the newly created socket as descriptor
number 0. The accessor of the portal will create a socket in the same domain and connect to the server.
The user will then wrap the socket in the specified protocol to create an object of the required descriptor
type dtype and proceed with the operation which was in progress before the portal was encountered.

While the server process holds the socket (which it received as fd from the portal call on descriptor 0
at activation) further references will result in connections being made to the same socket.

2.2.3.5. File, device, and portal removal
A reference to a file, special device or portal may be removed with the unlink call,
unlink(path);
char *path;
The caller must have write access to the directory in which the file is located for this call to be successful.

2.2.4. Reading and modifying file attributes
Detailed information about the attributes of a file may be obtained with the calls:

#include <sys/stath>

stat(path, stb);
char *path; result struct stat *stb;

fstat(fd, stb);
int fd; result struct stat *stb;

The stat structure includes the file type, protection, ownership, access times, size, and a count of hard links.
If the file is a symbolic link, then the status of the link itself (rather than the file the link references) may be
found using the Istat call:

Istat(path, stb);
char *path; result struct stat *stb;

Newly created files are assigned the user id of the process that created it and the group id of the
directory in which it was created. The ownership of a file may be changed by either of the calls

chown(path, owner, group);
char *path; int owner, group;

fchown(fd, owner, group);
int fd, owner, group;

In addition to ownership, each file has three levels of access protection associated with it. These lev-
els are owner relative, group relative, and global (all users and groups). Each level of access has separate
indicators for read permission, write permission, and execute permission. The protection bits associated
with a file may be set by either of the calls:

chmod(path, mode);
char *path; int mode;
fchmod(fd, mode);
int fd, mode;
where mode is a value indicating the new protection of the file, as listed in section 2.2.3.2.

PS1:6-30 ' 4.3BSD Architecture Manual

Finally, the access and modify times on a file may be set by the call:
utimes(path, tvp)
char *path; struct timeval *tvp[2];

This is particularly useful when moving files between media, to preserve relationships between the times
the file was modified.

2.2.5, Links and renaming
Links allow multiple names for a file to exist. Links exist independently of the file linked to.

Two types of links exist, hard links and symbolic links. A hard link is a reference counting mechan-
ism that allows a file to have multiple names within the same file system. Symbolic links cause string sub-
stitution during the pathname interpretation process.

Hard links and symbolic links have different properties. A hard link insures the target file will
always be accessible, even after its original directory entry is removed; no such guarantee exists for a sym-
bolic link. Symbolic links can span file systems boundaries.

The following calls create a new link, named path2, to pathl:

link(path1, path2);
char *pathi, *path2;

symlink(path1, path2);
char *pathl, *path2;
The unlink primitive may be used to remove either type of link.
If a file is a symbolic link, the ‘‘value’’ of the link may be read with the readlink call,
len = readlink(path, buf, bufsize);
result int len; result char *path, *buf; int bufsize;
This call returns, in buf, the null-terminated string substituted into pathnames passing through path.
Atomic renaming of file system resident objects is possible with the rename call:

rename(oldname, newname);
char *oldname, *newname;

where both oldname and newname must be in the same file system. If newname exists and is a directory,
then it must be empty.

2.2.6. Extension and truncation

Files are created with zero length and may be extended simply by writing or appending to them.
While a file is open the system maintains a pointer into the file indicating the current location in the file
associated with the descriptor. This pointer may be moved about in the file in a random access fashion. To
set the current offset into a file, the Iseek call may be used,

oldoffset = Iseek(fd, offset, type);
result off_t oldoffset; int fd; off_t offset; int type;

where type is given in <sys/file.h> as one of:

#define L SET 0 /* set absolute file offset */
#define L _INCR 1 /* set file offset relative to current position */
#define L _XTND 2 1* set offset relative to end-of-file */

The call *‘Iseek(fd, 0, L_INCR)”’ returns the current offset into the file.

Files may have ‘‘holes’’ in them. Holes are void areas in the linear extent of the file where data has
never been written. These may be created by seeking to a location in a file past the current end-of-file and
writing. Holes are treated by the system as zero valued bytes.

4.3BSD Architecture Manual PS1:6-31

A file may be truncated with either of the calls:
truncate(path, length);
char *path; int length;
furuncate(fd, length);
int fd, length;
reducing the size of the specified file to length bytes.

2.2.7. Checking accessibility

A process running with different real and effective user ids may interrogate the accessibility of a file
to the real user by using the access call:

accessible = access(path, how);
result int accessible; char *path; int how;

Here how is constructed by or’ing the following bits, defined in <sys/file.h>:

#define F_OK 0 /* file exists */
#define X OK 1 /* file is executable */
#define W_OK 2 /* file is writable */
#define R _OK 4 /* file is readable */

The presence or absence of advisory locks does not affect the result of access .

2.2.8. Locking

The file system provides basic facilities that allow cooperating processes to synchronize their access
to shared files. A process may place an advisory read or write lock on a file, so that other cooperating
processes may avoid interfering with the process’ access. This simple mechanism provides locking with
file granularity. More granular locking can be built using the IPC facilities to provide a lock manager. The
system does not force processes to obey the locks; they are of an advisory nature only.

Locking is performed after an open call by applying the flock primitive,

flock(fd, how);
int fd, how;
where the how parameter is formed from bits defined in <sys/file.h>:
#define LOCK SH 1 /* shared lock */
#define LOCK_EX 2 /* exclusive lock */
#define LOCK_NB 4 /* don’t block when locking */
#define LOCK UN 8 /* unlock */

Successive lock calls may be used to increase or decrease the level of locking. If an object is currently
locked by another process when a flock call is made, the caller will be blocked until the current lock owner
releases the lock; this may be avoided by including LOCK NB in the how parameter. Specifying
LOCK_UN removes all locks associated with the descriptor. Advisory locks held by a process are
automatically deleted when the process terminates.

2.2.9. Disk quotas

As an optional facility, each file system may be requested to impose limits on a user’s disk usage.
Two quantities are limited: the total amount of disk space which a user may allocate in a file system and the
total number of files a user may create in a file system. Quotas are expressed as hard limits and soft limits.
A hard limit is always imposed; if a user would exceed a hard limit, the operation which caused the
resource request will fail. A soft limit results in the user receiving a warning message, but with allocation
succeeding. Facilities are provided to turn soft limits into hard limits if a user has exceeded a soft limit for
an unreasonable period of time.

PS1:6-32 | 4.3BSD Architecture Manual

To enable disk quotas on a file system the setquota call is used:

setquota(special, file)
-char *special, *file;

where special refers to a structured device file where a mounted file system exists, and file refers to a disk
quota file (residing on the file system associated with special) from which user quotas should be obtained.
The format of the disk quota file is implementation dependent.

To manipulate disk quotas the quota call is provided:
#include <sys/quota.h>
quota(cmd, uid, arg, addr)
int cmd, uid, arg; caddr_t addr;

The indicated cmd is applied to the user ID uid. The parameters arg and addr are command specific. The
file <sys/quota.h> contains definitions pertinent to the use of this call.

4.3BSD Architecture Manual PS1:6-33

2.3. Interprocess communications

2.3.1. Interprocess communication primitives

2.3.1.1. Communication domains

The system provides access to an extensible set of communication domains. A communication
domain is identified by a manifest constant defined in the file <sys/socket.h>. Important standard domains
supported by the system are the ‘‘unix’’ domain, AF_UNIX, for communication within the system, the
““Internet’’ domain for communication in the DARPA Internet, AF_INET, and the ‘“NS’’ domain, AF_NS,
for communication using the Xerox Network Systems protocols. Other domains can be added to the sys-
tem.,

2.3.1.2. Socket types and protocols

Within a domain, communication takes place between communication endpoints known as sockets.
Each socket has the potential to exchange information with other sockets of an appropriate type within the
domain.

Each socket has an associated abstract type, which describes the semantics of communication using
that socket. Properties such as reliability, ordering, and prevention of duplication of messages are deter-
mined by the type. The basic set of socket types is defined in <sys/socket.h>:

/* Standard socket types */
#define SOCK_DGRAM
#define SOCK_STREAM
#define SOCK_RAW

#define SOCK_RDM

#define SOCK_SEQPACKET

The SOCK_DGRAM type models the semantics of datagrams in network communication: messages may
be lost or duplicated and may arrive out-of-order. A datagram socket may send messages to and receive
messages from multiple peers. The SOCK_RDM type models the semantics of reliable datagrams: mes-
sages arrive unduplicated and in-order, the sender is notified if messages are lost. The send and receive
operations (described below) generate reliable/unreliable datagrams. The SOCK_STREAM type models
connection-based virtual circuits: two-way byte streams with no record boundaries. Connection setup is
required before data communication may begin. The SOCK_SEQPACKET type models a connection-
based, full-duplex, reliable, sequenced packet exchange; the sender is notified if messages are lost, and
messages are never duplicated or presented out-of-order. Users of the last two abstractions may use the
facilities for out-of-band transmission to send out-of-band data.

/* datagram */

/* virtual circuit */

/* raw socket */

/* reliably-delivered message */
/* sequenced packets */

(V- S R

SOCK_RAW is used for unprocessed access to internal network layers and interfaces; it has no
specific semantics.

Other socket types can be defined.

Each socket may have a specific protocol associated with it. This protocol is used within the domain
to provide the semantics required by the socket type. Not all socket types are supported by each domain;
support depends on the existence and the implementation of a suitable protocol within the domain. For
example, within the ‘‘Internet’’ domain, the SOCK_DGRAM type may be implemented by the UDP user
datagram protocol, and the SOCK_STREAM type may be implemented by the TCP transmission control
protocol, while no standard protocols to provide SOCK_RDM or SOCK_SEQPACKET sockets exist.

2.3.1.3. Socket creation, naming and service establishment

Sockets may be connected or unconnected. An unconnected socket descriptor is obtained by the
socket call:

PS1:6-34 4.3BSD Architecture Manual

s = socket(domain, type, protocol);
result int s; int domain, type, protocol;

The socket domain and type are as described above, and are specified using the definitions from
<sysisocket.h>. The protocol may be given as 0, meaning any suitable protocol. One of several possible
protocols may be selected using identifiers obtained from a library routine, getprotobyname.

An unconnected socket descriptor of a connection-oriented type may yield a connected socket
descriptor in one of two ways: either by actively connecting to another socket, or by becoming associated
with a name in the communications domain and accepting a connection from another socket. Datagram
sockets need not establish connections before use.

To accept connections or to receive datagrams, a socket must first have a binding to a name (or
address) within the communications domain. Such a binding may be established by a bind call:

bind(s, name, namelen);
- int s; struct sockaddr *name; int namelen;

Datagram sockets may have default bindings established when first sending data if not explicitly bound
earlier. In either case, a socket’s bound name may be retrieved with a getsockname call:

getsockname(s, name, namelen);
int s; result struct sockaddr *name; result int *namelen;

while the peer’s name can be retrieved with getpeername:

getpeername(s, name, namelen);
int s; result struct sockaddr *name; result int *namelen;

Domains may support sockets with several names.

2.3.1.4. Accepting connections
Once a binding is made to a connection-oriented socket, it is possible to listen for connections:

listen(s, backlog);
int s, backlog;

The backlog specifies the maximum count of connections that can be simultaneously queued awaiting
acceptance.
An accept call:

t = accept(s, name, anamelen);
result int t; int s; result struct sockaddr *name; result int *anamelen;

returns a descriptor for a new, connected, socket from the queue of pending connections on s. If no new
connections are queued for acceptance, the call will wait for a connection unless non-blocking I/O has been
enabled.

2.3.1.5. Making connections
An active connection to a named socket is made by the connect call:

connect(s, name, namelen);
int s; struct sockaddr *name; int namelen;

Although datagram sockets do not establish connections, the connect call may be used with such sockets to
create an association with the foreign address. The address is recorded for use in future send calls, which
then need not supply destination addresses. Datagrams will be received only from that peer, and asynchro-
nous eITor reports may be received.

It is also possible to create connected pairs of sockets without using the domain’s name space to ren-
dezvous; this is done with the socketpair callt:

1 4.3BSD supports socketpair creation only in the ‘‘unix’’ communication domain.

4.3BSD Architecture Manual PS1:6-35

socketpair(domain, type, protocol, sv);
int domain, type, protocol; result int sv[2];
Here the returned sv descriptors correspond to those obtained with accept and connect.
The call
pipe(pv)
result int pv[2];

creates a pair of SOCK_STREAM sockets in the UNIX domain, with pv[0] only writable and pv[1] only
readable.

2.3.1.6. Sending and receiving data
Messages may be sent from a socket by:

cc= setho(s, buf, len, flags, to, tolen);

result int cc; int s; caddr_t buf; int len, flags; caddr t to; int tolen;
if the socket is not connected or:

cc = send(s, buf, len, flags);

result int cc; int s; caddr_t buf; int len, flags;
if the socket is connected. The corresponding receive primitives are:

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);

result int msglen; int s; result caddr_t buf; int len, flags;
result caddr_t from; result int *fromlenaddr;

and

msglen = recv(s, buf, len, flags);
result int msglen; int s; result caddr_t buf; int len, flags;

In the unconnected case, the parameters to and tolen specify the destination or source of the message,
while the from parameter stores the source of the message, and *fromlenaddr initially gives the size of the
from buffer and is updated to reflect the true length of the from address.

All calls cause the message to be received in or sent from the message buffer of length len bytes,
starting at address buf. The flags specify peeking at a message without reading it or sending or receiving
high-priority out-of-band messages, as follows:

#define MSG_PEEK Ox1 /* peek at incoming message */
#define MSG_OOB 0x2 /* process out-of-band data */

2.3.1.7. Scatter/gather and exchanging access rights

It is possible scatter and gather data and to exchange access rights with messages. When either of
these operations is involved, the number of parameters to the call becomes large. Thus the system defines a
message header structure, in <sys/socket.h>, which can be used to conveniently contain the parameters to
the calls:

struct msghdr {
caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iov *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_jov */
caddr ¢t msg_accrights; /* access rights sent/received */
int msg_accrightslen; 1* size of msg_accrights */

h

PS1:6-36 4.3BSD Architecture Manual

Here msg_name and msg_namelen specify the source or destination address if the socket is unconnected;
msg_name may be given as a null pointer if no names are desired or required. The msg_iov and
msg_iovlen describe the scatter/gather locations, as described in section 2.1.3. Access rights to be sent
along with' the message are specified in msg_accrights, which has length msg_accrightsien. In the *‘unix’’
domain these are an array of integer descriptors, taken from the sending process and duplicated in the
receiver,

This structure is used in the operations sendmsg and recvmsg:

sendmsg(s, msg, flags);
int s; struct msghdr *msg; int flags;

msglen = recvmsg(s, msg, flags);
result int msglen; int s; result struct msghdr *msg; int flags;

2.3.1.8. Using read and write with sockets

The normal UNIX read and write calls may be applied to connected sockets and translated into send
and receive calls from or to a single area of memory and discarding any rights received. A process may
operate on a virtual circuit socket, a terminal or a file with blocking or non-blocking input/output opera-

tions without distinguishing the descriptor type.

2.3.1.9. Shutting down halves of full-duplex connections

A process that has a full-duplex socket such as a virtual circuit and no longer wishes to read from or
write to this socket can give the call:

shutdown(s, direction);
int s, direction;
where direction is 0 to not read further, 1 to not write further, or 2 to completely shut the connection down.

If the underlying protocol supports unidirectional or bidirectional shutdown, this indication will be passed
to the peer. For example, a shutdown for writing might produce an end-of-file condition at the remote end.

2.3.1.10. Socket and protocol options

Sockets, and their underlying communication protocols, may support options. These options may be
used to manipulate implementation- or protocol-specific facilities. The getsockopt and setsockopt calls are
used to control options:

getsockopt(s, level, optname, optval, optlen)
int s, level, optname; result caddr_t optval; result int *optlen;

setsockopt(s, level, optname, optval, optlen)

int s, level, optname; caddr_t optval; int optlen;
The option optname is interpreted at the indicated protocol level for socket s. If a value is specified with
optval and optlen, it is interpreted by the software operating at the specified level. The level
SOL_SOCKET is reserved to indicate options maintained by the socket facilities. Other level values indi-
cate a particular protocol which is to act on the option request; these values are normally interpreted as a
‘‘protocol number’’,

2.3.2. UNIX domain
This section describes briefly the properties of the UNIX communications domain.

2.3.2.1. Types of sockets

In the UNIX domain, the SOCK_STREAM abstraction provides pipe-like facilities, whlle
SOCK_DGRAM provides (usually) reliable message-style communications.

4.3BSD Architecture Manual PS1:6-37

2.3.2.2. Naming
Socket names are strings and may appear in the UNIX file system name space through portalst.

2.3.2.3. Access rights transmission

The ability to pass UNIX descriptors with messages in this domain allows migration of service
within the system and allows user processes to be used in building system facilities.

2.3.3. INTERNET domain

This section describes briefly how the Internet domain is mapped to the model described in this sec-
tion. More information will be found in the document describing the network implementation in 4.3BSD.

2.3.3.1. Socket types and protocols

SOCK_STREAM is supported by the Internet TCP protocol; SOCK_DGRAM by the UDP protocol.
Each is layered atop the transport-level Internet Protocol (IP). The Internet Control Message Protocol is
implemented atop/beside IP and is accessible via a raw socket. The SOCK_SEQPACKET has no direct
Internet family analogue; a protocol based on one from the XEROX NS family and layered on top of IP
could be implemented to fill this gap.

2.3.3.2. Socket naming

Sockets in the Internet domain have names composed of the 32 bit Internet address, and a 16 bit port
number. Options may be used to provide IP source routing or security options. The 32-bit address is com-
posed of network and host parts; the network part is variable in size and is frequency encoded. The host
part may optionally be interpreted as a subnet field plus the host on subnet; this is is enabled by setting a
network address mask at boot time.

2.3.3.3. Access rights transmission
No access rights transmission facilities are provided in the Internet domain.

2.3.3.4. Raw access

The Internet domain allows the super-user access to the raw facilities of IP. These interfaces are
modeled as SOCK_RAW sockets. Each raw socket is associated with one IP protocol number, and
receives all traffic received for that protocol. This allows administrative and debugging functions to occur,
and enables user-level implementations of special-purpose protocols such as inter-gateway routing proto-
cols.

t The 4.3BSD implementation of the UNIX domain embeds bound sockets in the UNIX file system name space; this may
change in future releases.

PS1:6-38 4.3BSD Architecture Manual

24. Terminals and Devices

2.4.1. Terminals

Terminals support read and write /O operations, as well as a collection of terminal specific ioctl
operations, to control input character interpretation and editing, and output format and delays.

24.1.1. Terminal input

Terminals are handled according to the underlying communication characteristics such as baud rate
and required delays, and a set of software parameters.

2.4.1.1.1. Input modes

A terminal is in one of three possible modes: raw, cbreak, or cooked. In raw mode all input is passed
through to the reading process immediately and without interpretation. In cbreak mode, the handler inter-
prets input only by looking for characters that cause interrupts or output flow control; all other characters
are made available as in raw mode. In cooked mode, input is processed to provide standard line-oriented
local editing functions, and input is presented on a line-by-line basis.

2.4.1.1.2. Interrupt characters

Interrupt characters are interpreted by the terminal handler only in cbreak and cooked modes, and
cause a software interrupt to be sent to all processes in the process group associated with the terminal.
Interrupt characters exist to send SIGINT and SIGQUIT signals, and to stop a process group with the
SIGTSTP signal either immediately, or when all input up to the stop character has been read.

2.4.1.1.3. Line editing

When the terminal is in cooked mode, editing of an input line is performed. Editing facilities allow
deletion of the previous character or word, or deletion of the current input line. In addition, a special char-
acter may be used to reprint the current input line after some number of editing operations have been
applied. ‘

Certain other characters are interpreted specially when a process is in cooked mode. The end of line
character determines the end of an input record. The end of file character simulates an end of file
occurrence on terminal input. Flow control is provided by stop output and start output control characters.
Output may be flushed with the flush output character; and a literal character may be used to force literal
input of the immediately following character in the input line.

Input characters may be echoed to the terminal as they are received. Non-graphic ASCII input char-
acters may be echoed as a two-character printable representation, ‘““character.”’

24.1.2, Terminal output

On output, the terminal handler provides some simple formatting services. These include converting
the carriage return character to the two character return-linefeed sequence, inserting delays after certain
standard control characters, expanding tabs, and providing translations for upper-case only terminals.

2.4.1.3. Terminal control operations

When a terminal is first opened it is initialized to a standard state and configured with a set of stan-
dard control, editing, and interrupt characters. A process may alter this configuration with certain control
operations, specifying parameters in a standard structure: ¥

T The control interface described here is an internal interface only in 4.3BSD. Future releases will probably use a modified
interface based on currently-proposed standards.

4.3BSD Architecture Manual PS1:6-39

struct ttymode {
short tt_ispeed; /* input speed */
int tt_iflags; /* input flags */
short tt_ospeed; /* output speed */
int tt_oflags; /* output flags */
B

and ‘‘special characters’’ are specified with the ttychars structure,
struct ttychars {

char tc_erasec; {* erase char */

char tc_killc; /* erase line */

char tc_intrc; * interrupt */

char tc_quitc; * quit */

char tc_startc; /* start output */

char tc_stopc; /* stop output */

char tc_eofc; /* end-of-file */

char tc_brkc; /* input delimiter (like nl) */
char tc_suspc; /* stop process signal */
char tc_dsuspc; /* delayed stop process signal */
char tc_rprntc; /* reprint line */

char tc_flushc; /* flush output (toggles) */
char tc_werasc; /* word erase */

char tc_lnextc; /* literal next character */

5

2.4.1.4. Terminal hardware support

The terminal handler allows a user to access basic hardware related functions; e.g. line speed,
modem control, parity, and stop bits. A special signal, SIGHUP, is automatically sent to processes in a
terminal’s process group when a carrier transition is detected. This is normally associated with a user
hanging up on a modem controlled terminal line.

2.4.2. Structured devices

Structures devices are typified by disks and magnetic tapes, but may represent any random-access
device. The system performs read-modify-write type buffering actions on block devices to allow them to
be read and written in a totally random access fashion like ordinary files. File systems are normally created
in block devices.

2.4.3. Unstructured devices

Unstructured devices are those devices which do not support block structure. Familiar unstructured
devices are raw communications lines (with no terminal handler), raster plotters, magnetic tape and disks
unfettered by buffering and permitting large block input/output and positioning and formatting commands.

PS1:6-40 4.3BSD Architecture Manual

2.5. Process and kernel descriptors

The status of the facilities in this section is still under discussion. The ptrace facility of earlier UNIX
systems remains in 4.3BSD. Planned enhancements would allow a descriptor-based process control facil-

ity.

4.3BSD Architecture Manual

I. Summary of facilities

1. Kernel primitives

1.1. Process naming and protection

sethostid
gethostid
sethostname
gethostname
getpid

fork

exit

execve
getuid
geteuid
setreuid
getgid
getegid
getgroups
setregid
setgroups
getpgrp
setpgrp

1.2 Memory management

1.3 Signals

<sys/mman.h>
sbrk

sstkf
getpagesize
mmap?
msynct
munmap?
mprotectt
madviset
mincoret
msleept
mwakeup?

<signal.h>
sigvec
kill

~ killpgrp

sigblock
sigsetmask
sigpause
sigstack

1.4 Timing and statistics

<sys/time.h>
gettimeofday
settimeofday

 Not supported in 4.3BSD.

PS1:6-41

set UNIX host id

get UNIX host id

set UNIX host name

get UNIX host name

get process id

Create new process

terminate a process

execute a different process

get user id

get effective user id

set real and effective user id’s
get accounting group id

get effective accounting group id
get access group set

set real and effective group id’s
set access group set

get process group

set process group

memory management definitions
change data section size

change stack section size

get memory page size

map pages of memory

flush modified mapped pages to filesystem
unmap memory

change protection of pages

give memory management advice
determine core residency of pages
sleep on a lock

wakeup process sleeping on a lock

signal definitions

set handler for signal

send signal to process

send signal to process group
block set of signals

restore set of blocked signals
wait for signals

set software stack for signals

time-related definitions
get current time and timezone
set current time and timezone

PS1:6-42

getitimer
setitimer
profil

1.5 Descriptors

getdtablesize
dup

dup2

close

select

fcnd

wrap?

1.6 Resource controls

<sys/resource.h>
getpriority
setpriority
getrusage
getrlimit
setrlimit

1.7 System operation support

mount
swapon
umount
sync
reboot
acct

2. System facilities
2.1 Generic operations

read

write
<sys/uio.h>
readv

writev
<sys/ioctl.h>
ioctl

2.2 File system

read an interval timer
get and set an interval timer
profile process

descriptor reference table size
duplicate descriptor

duplicate to specified index
close descriptor

multiplex input/output
control descriptor options
wrap descriptor with protocol

resource-related definitions
get process priority

set process priority

get resource usage

get resource limitations

set resource limitations

mount a device file system
add a swap device
umount a file system

flush system caches
reboot a machine

specify accounting file

read data
write data

scatter-gather related definitions

scattered data input
gathered data output
standard control operations
device control operation

4.3BSD Architecture Manual

Operations marked with a * exist in two forms: as shown, operating on a file name, and operating on
a file descriptor, when the name is preceded with a *‘f”’.

<sys/file.h>
chdir
chroot
mkdir
rmdir

open
mknod
portalt

+ Not supported in 4.3BSD.

file system definitions
change directory

change root directory
make a directory

remove a directory

open a new or existing file
make a special file

make a portal entry

4.3BSD Architecture Manual

unlink
stat*
Istat
chown*
chmod*
utimes
link
symlink
readlink
rename
Iseek
truncate*
access
flock

2.3 Communications

<sys/socket.h>
socket

bind
getsockname
listen

accept
connect
socketpair
sendto

send
recvfrom
recv
sendmsg
recvmsg
shutdown
getsockopt
setsockopt

2.4 Terminals, block and character devices

2.5 Processes and kernel hooks

PS1:6-43

remove a link

return status for a file
returned status of link
change owner

change mode

change access/modify times
make a hard link

make a symbolic link

read contents of symbolic link
change name of file
reposition within file
truncate file

determine accessibility
lock a file

standard definitions

create socket

bind socket to name

get socket name

allow queuing of connections
accept a connection

connect to peer socket

create pair of connected sockets
send data to named socket

send data to connected socket
receive data on unconnected socket
receive data on connected socket
send gathered data and/or rights
receive scattered data and/or rights
partially close full-duplex connection
get socket option

set socket option

Introductory 4.3BSD IPC PS1:7-1

An Introductory 4.3BSD
Interprocess Communication Tutorial

Stuart Sechrest

Computer Science Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley

ABSTRACT

Berkeley UNIXt 4.3BSD offers several choices for interprocess communication. To aid the pro-
grammer in developing programs which are comprised of cooperating processes, the different choices are
discussed and a series of example programs are presented. These programs demonstrate in a simple way
the use of pipes, socketpairs, sockets and the use of datagram and stream communication. The intent of
this document is to present a few simple example programs, not to describe the networking system in full.

1. Goals

Facilities for interprocess communication (IPC) and networking were a major addition to UNIX in
the Berkeley UNIX 4.2BSD release. These facilities required major additions and some changes to the
system interface. The basic idea of this interface is to make IPC similar to file I/O. In UNIX a process has
a set of I/O descriptors, from which one reads and to which one writes. Descriptors may refer to normal
files, to devices (including terminals), or to communication channels. The use of a descriptor has three
phases: its creation, its use for reading and writing, and its destruction. By using descriptors to write files,
rather than simply naming the target file in the write call, one gains a surprising amount of flexibility.
Often, the program that creates a descriptor will be different from the program that uses the descriptor. For
example the shell can create a descriptor for the output of the ‘Is’ command that will cause the listing to
appear in a file rather than on a terminal. Pipes are another form of descriptor that have been used in UNIX
for some time. Pipes allow one-way data transmission from one process to another; the two processes and
the pipe must be set up by a common ancestor.

The use of descriptors is not the only communication interface provided by UNIX. The signal
mechanism sends a tiny amount of information from one process to another. The signaled process receives
only the signal type, not the identity of the sender, and the number of possible signals is small. The signal
semantics limit the flexibility of the signaling mechanism as a means of interprocess communication.

The identification of IPC with I/O is quite longstanding in UNIX and has proved quite successful. At
first, however, IPC was limited to processes communicating within a single machine. With Berkeley
UNIX 4.2BSD this expanded to include IPC between machines. This expansion has necessitated some
change in the way that descriptors are created. Additionally, new possibilities for the meaning of read and
write have been admitted. Originally the meanings, or semantics, of these terms were fairly simple. When
you wrote something it was delivered. When you read something, you were blocked until the data arrived.
Other possibilities exist, however. One can write without full assurance of delivery if one can check later
to catch occasional failures. Messages can be kept as discrete units or merged into a stream. One can ask
to read, but insist on not waiting if nothing is immediately available. These new possibilities are allowed in
the Berkeley UNIX IPC interface.

Thus Berkeley UNIX 4.3BSD offers several choices for IPC. This paper presents simple examples
that illustrate some of the choices. The reader is presumed to be familiar with the C programming
language [Kernighan & Ritchie 1978], but not necessarily with the system calls of the UNIX system or

1 UNIX is a trademark of AT&T Bell Laboratories.

PS1:7-2 Introductory 4.3BSD IPC

with processes and interprocess communication. The paper reviews the notion of a process and the types
of communication that are supported by Berkeley UNIX 4.3BSD. A series of examples are presented that
create processes that communicate with one another. The programs show different ways of establishing
channels of communication. Finally, the calls that actually transfer data are reviewed. To clearly present
how communication can take place, the example programs have been cleared of anything that might be
construed as useful work. They can, therefore, serve as models for the programmer trying to construct pro-
grams which are comprised of cooperating processes.

2. Processes

A program is both a sequence of statements and a rough way of referring to the computation that
occurs when the compiled statements are run. A process can be thought of as a single line of control in a
program. Most programs execute some statements, go through a few loops, branch in various directions
and then end. These are single process programs. Programs can also have a point where control splits into
two independent lines, an action called forking. In UNIX these lines can never join again. A call to the
system routine fork(), causes a process to split in this way. The result of this call is that two independent
processes will be running, executing exactly the same code. Memory values will be the same for all values
set before the fork, but, subsequently, each version will be able to change only the value of its own copy of
each variable. Initially, the only difference between the two will be the value returned by fork(). The
parent will receive a process id for the child, the child will receive a zero. Calls to fork(), therefore, typi-
cally precede, or are included in, an if-statement.

A process views the rest of the system through a private table of descriptors. The descriptors can
represent open files or sockets (sockets are communication objects that will be discussed below). Descrip-
tors are referred to by their index numbers in the table. The first three descriptors are often known by spe-
cial names, stdin, stdout and stderr. These are the standard input, output and error. When a process forks,
its descriptor table is copied to the child. Thus, if the parent’s standard input is being taken from a terminal
(devices are also treated as files in UNIX), the child’s input will be taken from the same terminal. Who-
ever reads first will get the input. If, before forking, the parent changes its standard input so that it is read-
ing from a new file, the child will take its input from the new file. It is also possible to take input from a
socket, rather than from a file.

3. Pipes

Most users of UNIX know that they can pipe the output of a program ‘‘progl’’ to the input of
another, ‘‘prog2,”’ by typing the command ‘‘progl [prog2.”’ This is called ‘‘piping’’ the output of one
program to another because the mechanism used to transfer the output is called a pipe. When the user
types a command, the command is read by the shell, which decides how to execute it. If the command is
simple, for example, ‘‘progl,”’ the shell forks a process, which executes the program, prog1, and then dies.
‘The shell waits for this termination and then prompts for the next command. If the command is a com-
pound command, ‘‘progl | prog2,”’ the shell creates two processes connected by a pipe. One process runs
the program, progl, the other runs prog2. The pipe is an I/O mechanism with two ends, or sockets. Data
that is written into one socket can be read from the other.

Since a program specifies its input and output only by the descriptor table indices, which appear as
variables or constants, the input source and output destination can be changed without changing the text of
the program. It is in this way that the shell is able to set up pipes. Before executing progl, the process can
close whatever is at stdout and replace it with one end of a pipe. Similarly, the process that will execute
prog2 can substitute the opposite end of the pipe for stdin.

Let us now examine a program that creates a pipe for communication between its child and itself
(Figure 1). A pipe is created by a parent process, which then forks. When a process forks, the parent’s
descriptor table is copied into the child’s.

In Figure 1, the parent process makes a call to the system routine pipe(). This routine creates a pipe
and places descriptors for the sockets for the two ends of the pipe in the process’s descriptor table. Pipe()
is passed an array into which it places the index numbers of the sockets it created. The two ends are not
equivalent. The socket whose index is returned in the low word of the array is opened for reading only,
while the socket in the high end is opened only for writing. This corresponds to the fact that the standard
input is the first descriptor of a process’s descriptor table and the standard output is the second. After

Introductory 4.3BSD IPC PS1:7-3

#include <stdio.h>

#define DATA "Bright star, would I were steadfast as thou art . . ."

/*
* This program creates a pipe, then forks. The child communicates to the
* parent over the pipe. Notice that a pipe is a one-way communications
* device. I can write to the output socket (sockets[l], the second socket
* of the array returned by pipe()) and read from the input socket
* (sockets[0]), but not vice versa.
*/ ,

main ()

{
int sockets([2], child;

/* Create a pipe */

if (pipe(sockets) < 0) {
perror ("opening stream socket pair");
exit (10);

}

if ((child = fork()) == -1)
perror("fork"):;

else if (child) {
char buf[1024];

/* This is still the parent. It reads the child’s message. */
close (sockets([1]);
if (read(sockets{0], buf, 1024) < 0)
perror ("reading message") ;
printf ("-->%s\n", buf):;
close(sockets[0])
} else {
/* This is the child. It writes a message to its parent. */
close(sockets[0]);
if (write(sockets[l], DATA, sizeof (DATA)) < 0)
perror ("writing message"):;
close(sockets[1]);

Figure 1 Use of a pipe

creating the pipe, the parent creates the child with which it will share the pipe by calling fork(). Figure 2
illustrates the effect of a fork. The parent process’s descriptor table points to both ends of the pipe. After
the fork, both parent’s and child’s descriptor tables point to the pipe. The child can then use the pipe to
send a message to the parent.

Just what is a pipe? It is a one-way communication mechanism, with one end opened for reading
and the other end for writing. Therefore, parent and child need to agree on which way to turn the pipe,
from parent to child or the other way around. Using the same pipe for communication both from parent to
child and from child to parent would be possible (since both processes have references to both ends), but
very complicated. If the parent and child are to have a two-way conversation, the parent creates two pipes,
one for use in each direction. (In accordance with their plans, both parent and child in the example above
close the socket that they will not use. It is not required that unused descriptors be closed, but it is good
practice.) A pipe is also a stream communication mechanism; that is, all messages sent through the pipe

PS1:7-4 Introductory 4.3BSD IPC

parent

010

OI=LD

parent child

-Q

Q1Q

| =L

Figure 2 Sharing a pipe between parent and child

are placed in order and reliably delivered. When the reader asks for a certain number of bytes from this
stream, he is given as many bytes as are available, up to the amount of the request. Note that these bytes
may have come from the same call to write() or from several calls to write() which were concatenated.

4. Socketpairs

Berkeley UNIX 4.3BSD provides a slight generalization of pipes. A pipe is a pair of connected
sockets for one-way stream communication. One may obtain a pair of connected sockets for two-way
stream communication by calling the routine socketpair(). The program in Figure 3 calls socketpair() to
create such a connection. The program uses the link for communication in both directions. Since socket-
pairs are an extension of pipes, their use resembles that of pipes. Figure 4 illustrates the result of a fork fol-
lowing a call to socketpair().

Introductory 4.3BSD IPC PS1:7-5

Socketpair() takes as arguments a specification of a domain, a style of communication, and a proto-
col. These are the parameters shown in the example. Domains and protocols will be discussed in the next
section. Briefly, a domain is a space of names that may be bound to sockets and implies certain other con-
ventions. Currently, socketpairs have only been implemented for one domain, called the UNIX domain.
The UNIX domain uses UNIX path names for naming sockets. It only allows communication between
sockets on the same machine.

Note that the header files <sys/socket.h> and <sys/types.h>. are required in this program. The con-
stants AF_UNIX and SOCK_STREAM are defined in <sys/socket.h>, which in turn requires the file
<sys/types.h> for some of its definitions.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>

#define DATAl "In Xanadu, did Kublai Khan . . ."
#define DATA2 "A stately pleasure dome decree . . ."

/* .

* This program creates a pair of connected sockets then forks and

* communicates over them. This is very similar to communication with pipes,
* however, socketpairs are two-way communications objects. Therefore I can
* send messages in both directions.

*/

main ()

{
int sockets([2], child;
char buf[1024];

if (socketpair (AF_UNIX, SOCK_STREAM, 0, sockets) < 0) {
perror ("opening stream socket pair");
exit (1);

}

if ((child = fork()) == -1)
perror ("fork");
else if (child) { /* This is the parent. */
close(sockets(0]);
if (read(sockets[1], buf, 1024, 0) < 0)
perror ("reading stream message");
printf ("-->%s\n", buf);
if (write(sockets{l], DATA2, sizeof (DATA2)) < 0)
perror("writing stream message"):;
close(sockets[1]);
} else { /* This is the child. */
close (sockets[1]);
if (write(sockets([0], DATAl, sizeof (DATAl)) < 0)
perror("writing stream message”);
if (read(sockets([0], buf, 1024, 0) < 0)
perror ("reading stream message”);
printf ("-->%s\n", buf):;
close(sockets[0]);

Figure 3 Use of a socketpair

PS1:7-6 Introductory 4.3BSD IPC

parent

QlQ

O

QJQ

Figure 4 Sharing a socketpair between parent and child

5. Domains and Protocols

Pipes and socketpairs are a simple solution for communicating between a parent and child or
between child processes. What if we wanted to have processes that have no common ancestor with whom
to set up communication? Neither standard UNIX pipes nor socketpairs are the answer here, since both
mechanisms require a common ancestor to set up the communication. We would like to have two
processes separately create sockets and then have messages sent between them. This is often the case
when providing or using a service in the system. This is also the case when the communicating processes
are on separate machines. In Berkeley UNIX 4.3BSD one can create individual sockets, give them names
and send messages between them.

Sockets created by different programs use names to refer to one another; names generally must be
translated into addresses for use. The space from which an address is drawn is referred to as a domain.
There are several domains for sockets. Two that will be used in the examples here are the UNIX domain
(or AF_UNIX, for Address Format UNIX) and the Internet domain (or AF_INET). UNIX domain IPC is

Introductory 4.3BSD IPC PS1:7-7

an experimental facility in 4.2BSD and 4.3BSD. In the UNIX domain, a socket is given a path name
within the file system name space. A file system node is created for the socket and other processes may
then refer to the socket by giving the proper pathname. UNIX domain names, therefore, allow communica-
tion between any two processes that work in the same file system. The Internet domain is the UNIX imple-
mentation of the DARPA Internet standard protocols IP/TCP/UDP. Addresses in the Internet domain con-
sist of a machine network address and an identifying number, called a port. Internet domain names allow
communication between machines.

Communication follows some particular “‘style.”” Currently, communication is either through a
stream or by datagram. Stream communication implies several things. Communication takes place across
a connection between two sockets. The communication is reliable, error-free, and, as in pipes, no message
boundaries are kept. Reading from a stream may result in reading the data sent from one or several calls to
write() or only part of the data from a single call, if there is not enough room for the entire message, or if
not all the data from a large message has been transferred. The protocol implementing such a style will
retransmit messages received with errors. It will also return error messages if one tries to send a message
after the connection has been broken. Datagram communication does not use connections. Each message
is addressed individually. If the address is correct, it will generally be received, although this is not
guaranteed. Often datagrams are used for requests that require a response from the recipient. If no
response arrives in a reasonable amount of time, the request is repeated. The individual datagrams will be
kept separate when they are read, that is, message boundaries are preserved.

The difference in performance between the two styles of communication is generally less important
than the difference in semantics. The performance gain that one might find in using datagrams must be
weighed against the increased complexity of the program, which must now concern itself with lost or out of
order messages. If lost messages may simply be ignored, the quantity of traffic may be a consideration.
The expense of setting up a connection is best justified by frequent use of the connection. Since the perfor-
mance of a protocol changes as it is tuned for different situations, it is best to seek the most up-to-date
information when making choices for a program in which performance is crucial.

A protocol is a set of rules, data formats and conventions that regulate the transfer of data between
participants in the communication. In general, there is one protocol for each socket type (stream,
datagram, etc.) within each domain. The code that implements a protocol keeps track of the names that are
bound to sockets, sets up connections and transfers data between sockets, perhaps sending the data
across a network. This code also keeps track of the names that are bound to sockets. It is possible for
several protocols, differing only in low level details, to implement the same style of communication within
a particular domain. Although it is possible to select which protocol should be used, for nearly all uses it is
sufficient to request the default protocol. This has been done in all of the example programs.

One specifies the domain, style and protocol of a socket when it is created. For example, in Figure
5a the call to socket() causes the creation of a datagram socket with the default protocol in the UNIX
domain,

6. Datagrams in the UNIX Domain

Let us now look at two programs that create sockets separately. The programs in Figures 5a and 5b
use datagram communication rather than a stream. The structure used to name UNIX domain sockets is
defined in the file <sys/un.h>. The definition has also been included in the example for clarity.

Each program creates a socket with a call to socket(). These sockets are in the UNIX domain. Once
a name has been decided upon it is attached to a socket by the system call bind(). The program in Figure
5a uses the name *‘socket’’, which it binds to its socket. This name will appear in the working directory of
the program. The routines in Figure 5b use its socket only for sending messages. It does not create a name
for the socket because no other process has to refer to it.

Names in the UNIX domain are path names. Like file path names they may be either absolute (e.g.
‘‘/dev/imaginary’’) or relative (e.g. ‘‘socket’’). Because these names are used to allow processes to ren-
dezvous, relative path names can pose difficulties and should be used with care. When a name is bound
into the name space, a file (inode) is allocated in the file system. If the inode is not deallocated, the name
will continue to exist even after the bound socket is closed. This can cause subsequent runs of a program
to find that a name is unavailable, and can cause directories to fill up with these objects. The names are
removed by calling unlink() or using the rm (1) command. Names in the UNIX domain are only used for

PS1:7-8 Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>

/*
* In the included file <sys/un.h> a sockaddr_un is defined as follows
* struct sockaddr_un {

* short sun_family;
* char sun_path[108];
*)
*/
#include <stdio.h>
#define NAME "socket"

/*
* This program creates a UNIX domain datagram socket, binds a name to it,
* then reads from the socket.

*/
main ()
{
int sock, length;
struct sockaddr_un name;
char buf[1024];

/* Create socket from which to read. */

sock = socket (AF_UNIX, SOCK_DGRAM, 0);

if (sock < 0) {
perror ("opening datagram socket”);
exit (1) ;

}

/* Create name. */

name.sun_family = AF_UNIX;

strcpy (name.sun_path, NAME);

if (bind(sock, &name, sizeof (struct sockaddr_un))) {
perror("binding name to datagram socket™):
exit(l);

}

printf ("socket -->%s\n", NAME);

/* Read from the socket */

if (read(sock, buf, 1024) < 0)
perror ("receiving datagram packet”);

printf ("-->%s\n", buf);

close (sock) ;

unlink (NAME) ;

Figure 5a Reading UNIX domain datagrams

Introductory 4.3BSD IPC PS1:7-9

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define DATA "The sea is calm tonight, the tide is full . . .*

/*
* Here I send a datagram to a receiver whose name I get from the command
* line arguments. The form of the command line is udgramsend pathname

*/

main{argc, argv)
int argec:
char *argv(]:

int sock;
struct sockaddr_un name;

/* Create socket on which to send. */

sock = socket (AF_UNIX, SOCK_DGRAM, O0);

if (sock < 0) {
perror ("opening datagram socket”):;
exit (1);

}

/* Construct name of socket to send to. */

name.sun_family = AF_UNIX;

strcpy (name.sun_path, argv([1l}):

/* Send message. */

if (sendto(sock, DATA, sizeof(DATA), O,

&name, sizeof (struct sockaddr_un)) < 0) {

perror ("sending datagram message");

}

close(sock) ;

Figure 5b Sending a UNIX domain datagrams

rendezvous. They are not used for message delivery once a connection is established. Therefore, in con-
trast with the Internet domain, unbound sockets need not be (and are not) automatically given addresses
when they are connected.

There is no established means of communicating names to interested parties. In the example, the
program in Figure 5b gets the name of the socket to which it will send its message through its command
line arguments. Once a line of communication has been created, one can send the names of additional,
perhaps new, sockets over the link. Facilities will have to be built that will make the distribution of names
less of a problem than it now is.

7. Datagrams in the Internet Domain

The examples in Figure 6a and 6b are very close to the previous example except that the socket is in
the Internet domain. The structure of Internet domain addresses is defined in the file <netinet/in.h>. Inter-
net addresses specify a host address (a 32-bit number) and a delivery slot, or port, on that machine. These
ports are managed by the system routines that implement a particular protocol. Unlike UNIX domain
names, Internet socket names are not entered into the file system and, therefore, they do not have to be
unlinked after the socket has been closed. When a message must be sent between machines it is sent to the
protocol routine on the destination machine, which interprets the address to determine to which socket the
message should be delivered. Several different protocols may be active on the same machine, but, in gen-
eral, they will not communicate with one another. As a result, different protocols are allowed to use the

PS1:7-10 Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>

/*
* In the included file <netinet/in.h> a sockaddr_in is defined as follows:
* struct sockaddr_in {

* short sin_family;
* u_short sin_port;
* struct in_addr sin_addr;
* char sin_zero[8];
* b
*
* This program creates a datagram socket, binds a name to it, then reads
* from the socket.
*/
main ()

{
int sock, length;
struct sockaddr_in name;
char buf(1024];

/* Create socket from which to read. */

sock = socket (AF_INET, SOCK_DGRAM, 0);

if (sock < 0) {
perror ("opening datagram socket");
exit (1);

}

/* Create name with wildcards. */

name.sin family = AF_INET;

name.sin_addr.s_addr = INADDR_ANY;

name.sin_port = 0;

if (bind(sock, &name, sizeof (name))) {
perror("binding datagram socket"):;
exit (1);

}

/* Find assigned port value and print it out. */

length = sizeof (name) ;

if (getsockname (sock, &name, &length)) {
perror ("getting socket name");
exit (1)

}

printf("Socket has port #%d\n", ntohs(name.sin port)):

/* Read from the socket */

if (read(sock, buf, 1024) < 0)
perror("receiving datagram packet");

printf ("-->%s\n", buf);

close(sock);

Figure 6a Reading Internet domain datagrams
" same port numbers. Thus, implicitly, an Internet address is a triple including a protocol as well as the port

and machine address. An association is a temporary or permanent specification of a pair of communicating
sockets. An association is thus identified by the tuple <protocol, local machine address, local port, remote

Introductory 4.3BSD IPC PS1:7-11

machine address, remote port>. An association may be transient when using datagram sockets; the associ-
ation actually exists during a send operation.

The protocol for a socket is chosen when the socket is created. The local machine address for a
socket can be any valid network address of the machine, if it has more than one, or it can be the wildcard
value INADDR_ANY. The wildcard value is used in the program in Figure 6a. If a machine has several
network addresses, it is likely that messages sent to any of the addresses should be deliverable to a socket.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "The sea is calm tonight, the tide is full . . ."™

/*

* Here I send a datagram to a receiver whose name I get from the command

* line arguments. The form of the command line is dgramsend hostname
portnumber

*/ .

*

main(argc, argv)
int argc:
char *argv(]:;

int sock;
struct sockaddr_in name;
struct hostent *hp, *gethostbyname():;

/* Create socket on which to send. */
sock = socket (AF_INET, SOCK_DGRAM, 0);
if (sock < 0) {
perror("opening datagram socket”);
exit (1) ;

Construct name, with no wildcards, of the socket to send to.
Getnostbyname () returns a structure including the network address
of the specified host. The port number is taken from the command
line.

/

hp = gethostbyname (argv({l]):

if (hp == 0) {

fprintf (stderr, "%s: unknown host0, argv(l]):;

exit(2);

* % O % *

}

becopy (hp—>h_addr, &name.sin_addr, hp->h_length);

name.sin_family = AF_INET;

name.sin_port = htons(atoi(argv([2]));

/* Send message. */

if (sendto(sock, DATA, sizeof (DATA), 0, &name, sizeof(name)) < 0)
perror ("sending datagram message");

close(sock);

Figure 6b Sending an Internet domain datagram

PS1:7-12 Introductory 4.3BSD IPC

This will be the case if the wildcard value has been chosen. Note that even if the wildcard value is chosen,
a program sending messages to the named socket must specify a valid network address. One can be willing
to receive from ‘‘anywhere,’’ but one cannot send a message ‘‘anywhere.”” The program in Figure 6b is
given the destination host name as a command line argument. To determine a network address to which it
can send the message, it looks up the host address by the call to gethostbyname(). The returned structure
includes the host’s network address, which is copied into the structure specifying the destination of the
message.

The port number can be thought of as the number of a mailbox, into which the protocol places one’s
messages. Certain daemons, offering certain advertised services, have reserved or ‘‘well-known’’ port
numbers. These fall in the range from 1 to 1023. Higher numbers are available to general users. Only
servers need to ask for a particular number. The system will assign an unused port number when an
address is bound to a socket. This may happen when an explicit bind call is made with a port number of 0,
or when a connect or send is performed on an unbound socket. Note that port numbers are not automati-
cally reported back to the user. After calling bind(), asking for port 0, one may call getsockname() to dis-
cover what port was actually assigned. The routine getsockname() will not work for names in the UNIX
domain. »

The format of the socket address is specified in part by standards within the Internet domain. The
specification includes the order of the bytes in the address. Because machines differ in the internal
representation they ordinarily use to represent integers, printing out the port number as returned by get-
sockname() may result in a misinterpretation. To print out the number, it is necessary to use the routine
ntohs() (for network to host: short) to convert the number from the network representation to the host’s
representation. On some machines, such as 68000-based machines, this is a null operation. On others,
such as VAXes, this results in a swapping of bytes. Another routine exists to convert a short integer from
the host format to the network format, called Atons(); similar routines exist for long integers. For further
information, refer to the entry for byteorder in section 3 of the manual.

8. Connections

To send data between stream sockets (having communication style SOCK_STREAM), the sockets
must be connected. Figures 7a and 7b show two programs that create such a connection. The program in
7a is relatively simple. To initiate a connection, this program simply creates a stream socket, then calls
connect(), specifying the address of the socket to which it wishes its socket connected. Provided that the
target socket exists and is prepared to handle a connection, connection will be complete, and the program
can begin to send messages. Messages will be delivered in order without message boundaries, as with
pipes. The connection is destroyed when either socket is closed (or soon thereafter). If a process persists
in sending messages after the connection is closed, a SIGPIPE signal is sent to the process by the operating
system. Unless explicit action is taken to handle the signal (see the manual page for signal or sigvec), the
process will terminate and the shell will print the message ‘‘broken pipe.”’

Forming a connection is asymmetrical; one process, such as the program in Figure 7a, requests a
connection with a particular socket, the other process accepts connection requests. Before a connection
can be accepted a socket must be created and an address bound to it. This situation is illustrated in the top
half of Figure 8. Process 2 has created a socket and bound a port number to it. Process 1 has created an
unnamed socket. The address bound to process 2’s socket is then made known to process 1 and, perhaps to
several other potential communicants as well. If there are several possible communicants, this one socket
might receive several requests for connections. As a result, a new socket is created for each connection.
This new socket is the endpoint for communication within this process for this connection. A connection
may be destroyed by closing the corresponding socket.

The program in Figure 7b is a rather trivial example of a server. It creates a socket to which it binds
-a name, which it then advertises. (In this case it prints out the socket number.) The program then calls
listen() for this socket. Since several clients may attempt to connect more or less simultaneously, a queue
of pending connections is maintained in the system address space. Listen() marks the socket as willing to
accept connections and initializes the queue. When a connection is requested, it is listed in the queue. If
the queue is full, an error status may be returned to the requester. The maximum length of this queue is
specified by the second argument of listen(); the maximum length is limited by the system. Once the listen
call has been completed, the program enters an infinite loop. On each pass through the loop, a new connec-
tion is accepted and removed from the queue, and, hence, a new socket for the connection is created. The

Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "Half a league, half a league . . ."

/*
*
*

*

*

*/

given in the command line.

main (argc, argv)

int argc;
char *argv(]:;

int sock;

struct sockaddr_in server;

struct hostent *hp, *gethostbyname();
char buf([1024};

/* Create socket */
sock = socket (AF_INET, SOCK_STREAM, 0);
if (sock < 0) {
perror ("opening stream socket");
exit (1);
}

/* Connect socket using name specified by command line.

server.sin_family = AF INET;

hp = gethostbyname (argv[1l]);

if (hp == 0) {
fprintf (stderr, "%s: unknown host0, argv[l]):;
exit (2);

}

becopy (hp->h_addr, &server.sin_addr, hp->h length);

server.sin_port = htons(atoi(argv([2]));

if (connect {sock, &server, sizeof (server)) < 0) {
perrokr ("connecting stream socket™);
exit (1) ;
}
if (write(sock, DATA, sizeof (DATA)) < 0)
perror ("writing on stream socket™):;
close(sock);

Figure 7a Initiating an Internet domain stream connection

PS1:7-13

This program creates a socket and initiates a connection with the socket
One message is sent over the connection and
then the socket is closed, ending the connection. The form of the command
line is streamwrite hostname portnumber

*/

PS1:7-14 Introductory 4.3BSD IPC

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1

/*
* This program creates a socket and then begins an infinite loop. Each time
through the loop it accepts a connection and prints out messages from it.
* When the connection breaks, or a termination message comes through, the

* program accepts a new connection.

*/

¥

main ()
{
int sock, length;
struct sockaddr_in server;
int msgsock;
char buf[1024];
int rval;
int i;

/* Create socket */

sock = socket (AF_INET, SOCK_STREAM, 0);

if (sock < 0) {
perror ("opening stream socket");
exit (1);

}

/* Name socket using wildcards */

server.sin family = AF_INET;

server.sin_addr.s_addr = INADDR_ANY;

server.sin_port = 0;

if (bind(sock, &server, sizeof (server))) {
perror ("binding stream socket");
exit(1);

}

/* Find out assigned port number and print it out */

length = sizeof (server);

if (getsockname (sock, &server, &length)) {
perror ("getting socket name"):;
exit (1)

}

printf ("Socket has port #%d\n", ntohs(server.sin_port));

/* Start accepting connections */
listen(sock, 5):
do {
msgsock = accept(sock, 0, 0):;
if (msgsock == -1)
perror(“accept”) ;
else do {
bzero (buf, sizeof (buf)):;
if ((rval = read(msgsock, buf, 1024)) < 0)
perror ("reading stream message"):
i=0;
if (rval == 0)

Introductory 4.3BSD IPC PS1:7-15

printf ("Ending connection\n"):;
else
printf ("-->%s\n", buf);
} while (rval != 0);
close (msgsock) ;
} while (TRUE);
/*
* Since this program has an infinite loop, the socket "sock” is
* never explicitly closed. However, all sockets will be closed
* automatically when a process is killed or terminates normally.

*/

Figure 7b Accepting an Internet domain stream connection

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1

/*
* This program uses select() to check that someone is trying to connect
* before calling accept().

*/

main ()
{
int sock, length;
struct sockaddr_ in server;
int msgsock;
char buf[1024];
int rval;
fd set ready:;
struct timeval to;

/* Create socket */

sock = socket (AF INET, SOCK_STREAM, 0);

if (sock < 0) {
perror ("opening stream socket");
exit (1) ;

}

/* Name socket using wildcards */

server.sin family = AF_INET;

server.sin_addr.s_addr = INADDR_ANY;

server.sin_port = 0;

if (bind(sock, &server, sizeof (server))) {
perror ("binding stream socket"):;
exit (1) ;

}

/* Find out assigned port number and print it out */

length = sizeof (server);

if (getsockname (sock, &server, &length)) {
perror ("getting socket name");
exit (1)

PS1:7-16 Introductory 4.3BSD IPC

}
printf("Socket has port #%d\n", ntohs(server.sin port)):

/* Start accepting connections */
listen(sock, 5):
do {
FD_ZERO (&ready) ;
FD_SET(sock, é&ready):
to.tv_sec = 5;
if (select(sock + 1, &ready, 0, 0, &to) < 0) {
perror ("select");
continue;
}
if (FD_ISSET(sock, &ready)) {
msgsock = accept (sock, (struct sockaddr *)0, (int *)0);
if (msgsock == -1)
perror ("accept™) ;
else do {
bzero(buf, sizeof (buf)):;
if ((rval = read(msgsock, buf, 1024)) < 0)
perror ("reading stream message”);
else if (rval == 0)
printf ("Ending connection\n"):;
else
printf ("-->%s\n", buf);
} while (rxval > 0);
close (msgsock) ;
} else
printf ("Do something else\n");
} while (TRUE):

Figure 7¢ Using select() to check for pending connections

Introductory 4.3BSD IPC PS1:7-17

Process 1 Process 2

NAME
Process 1 Process 2
=]
~Q
NAME

%-_

Figure 8 Estabhshmg a stream connection

bottom half of Figure 8 shows the result of Process 1 connecting with the named socket of Process 2, and
Process 2 accepting the connection. After the connection is created, the service, in this case printing out
the messages, is performed and the connection socket closed. The accept() call will take a pending con-
nection request from the queue if one is available, or block waiting for a request. Messages are read from
the connection socket. Reads from an active connection will normally block until data is available. The
number of bytes read is returned. When a connection is destroyed, the read call returns immediately. The
number of bytes returned will be zero.

The program in Figure 7c is a slight variation on the server in Figure 7b. It avoids blocking when
there are no pending connection requests by calling select() to check for pending requests before calling
accept(). This strategy is useful when connections may be received on more than one socket, or when data
may arrive on other connected sockets before another connection request.

The programs in Figures 9a and 9b show a program using stream communication in the UNIX
domain. Streams in the UNIX domain can be used for this sort of program in exactly the same way as
Internet domain streams, except for the form of the names and the restriction of the connections to a single

it

PS1:7-18 Introductory 43BSD IPC

file system. There are some differences, however, in the functionality of streams in the two domains, not-
ably in the handling of out-of-band data (discussed briefly below). These differences are beyond the scope

of this paper.

9. Reads, Writes, Recyvs, etc.

UNIX 4.3BSD has several system calls for reading and writing information. The simplest calls are
read() and write(). Write() takes as arguments the index of a descriptor, a pointer to a buffer containing the
data and the size of the data. The descriptor may indicate either a file or a connected socket. ‘‘Connected’’
can mean either a connected stream socket (as described in Section 8) or a datagram socket for which a
connect() call has provided a default destination (see the connect() manual page). Read() also takes a
descriptor that indicates either a file or a socket. Write() requires a connected socket since no destination is
specified in the parameters of the system call. Read() can be used for either a connected or an unconnected
socket. These calls are, therefore, quite flexible and may be used to write applications that require no
assumptions about the source of their input or the destination of their output. There are variations on
read() and write() that allow the source and destination of the input and output to use several separate
buffers, while retaining the flexibility to handle both files and sockets. These are readv() and writev(), for
read and write vector.

It is sometimes necessary to send high priority data over a connection that may have unread low
priority data at the other end. For example, a user interface process may be interpreting commands and
sending them on to another process through a stream connection. The user interface may have filled the
stream with as yet unprocessed requests when the user types a command to cancel all outstanding requests.
Rather than have the high priority data wait to be processed after the low priority data, it is possible to send
it as out-of-band (OOB) data. The notification of pending OOB data results in the géneration of a SIGURG
signal, if this signal has been enabled (see the manual page for signal or sigvec). See [Leffler 1986] for a
more complete description of the OOB mechanism. There are a pair of calls similar to read and write that
allow options, including sending and receiving OOB information; these are send() and recv(). These calls
are used only with sockets; specifying a descriptor for a file will result in the return of an error status.
These calls also allow peeking at data in a stream. That is, they allow a process to read data without
removing the data from the stream. One use of this facility is to read ahead in a stream to determine the
size of the next item to be read. When not using these options, these calls have the same functions as
read() and write().

To send datagrams, one must be allowed to specify the destination. The call sendto() takes a destina-
tion address as an argument and is therefore used for sending datagrams. The call recvfrom() is often used
to read datagrams, since this call returns the address of the sender, if it is available, along with the data. If
the identity of the sender does not matter, one may use read() or recv().

Finally, there are a pair of calls that allow the sending and receiving of messages from multiple
buffers, when the address of the recipient must be specified. These are sendmsg() and recvmsg(). These
calls are actually quite general and have other uses, including, in the UNIX domain, the transmission of a
file descriptor from one process to another.

The various options for reading and writing are shown in Figure 10, together with their parameters.
The parameters for each system call reflect the differences in function of the different calls. In the exam-
ples given in this paper, the calls read() and write() have been used whenever possible.

10. Choices

This paper has presented examples of some of the forms of communication supported by Berkeley
UNIX 4.3BSD. These have been presented in an order chosen for ease of presentation. It is useful to
review these options emphasizing the factors that make each attractive.

Pipes have the advantage of portability, in that they are supported in all UNIX systems. They also
are relatively simple to use. Socketpairs share this simplicity and have the additional advantage of allow-
ing bidirectional communication. The major shortcoming of these mechanisms is that they require com-
municating processes to be descendants of a common process. They do not allow intermachine communi-
cation.

Introductory 4.3BSD IPC PS1:7-19

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define DATA "Half a league, half a league . . ."

/*
* This program connects to the socket named in the command line and sends a
* one line message to that socket. The form of the command line is
* ustreamwrite pathname
*/
main (argc, argv)
int argc;
char *argv([];

int sock:;
struct sockaddr_un server;
char buf[1024];

/* Create socket */
sock = socket (AF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
perror ("opening stream socket");
exit (1),
}
/* Connect socket using name specified by command line. */
server.sun_family = AF_UNIX; ’
strcpy(server.sun_path, argv[l]);

if (connect (sock, &server, sizeof (struct sockaddr_un)) < 0) {
close (sock) ;
perror (“"connecting stream socket”);
exit (1) ;

if (write(sock, DATA, sizeof (DATA)) < 0)
perror ("writing on stream socket");

Figure 9a Initiating a UNIX domain stream connection

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define NAME "socket”

/
This program creates a socket in the UNIX domain and binds a name to it.
After printing the socket’s name it begins a loop. Each time through the
loop it accepts a connection and prints out messages from it. When the
connection breaks, or a termination message comes through, the program
accepts a new connection.

* % ¥ A A *

PS1:7-20 Introductory 4.3BSD IPC

main ()

{

int sock, msgsock, rval;
struct sockaddr un server;
char buf[1024];

/* Create socket */
sock = socket (AF_UNIX, SOCK_STREAM, 0):
if (sock < 0) {
perror ("opening stream socket"):
exit(1);
}
/* Name socket using file system name */
server.sun_family = AF_UNIX;
strcpy(server.sun_path, NAME);
if (bind(sock, &server, sizeof (struct sockaddr_un))) {
perror ("binding stream socket"):;
exit(1);
}
printf ("Socket has name %s\n", server.sun_path);
/* Start accepting connections */
listen(sock, 5);
for (;:) {
msgsock = accept(sock, 0, 0);
if (msgsock == -1)
perror ("accept”) ;
else do {
bzero (buf, sizeof (buf)):]
if ((rval = read(msgsock, buf, 1024)) < 0)
perror ("reading stream message"):
else if (rval == 0)
printf ("Ending connection\n"):
else '
printf ("-->%s\n", buf);
} while (rval > 0):;
close (msgsock) ;

N

* % O * ¥ A %

The following statements are not executed, because they follow an
infinite loop. However, most ordinary programs will not run
forever. In the UNIX domain it is necessary to tell the file
system that one is through using NAME. In most programs one uses
the call unlink() as below. Since the user will have to kill this
program, it will be necessary to remove the name by a command from
* the shell.
*/
close (sock);
unlink (NAME) ;

Figure 9b Accepting a UNIX domain stream connection

Introductory 4.3BSD IPC PS1:7-21

/*
* The variable descriptor may be the descriptor of either a file
* or of a socket.
*/
cc = read(descriptor, buf, nbytes)
int c¢c, descriptor; char *buf; int nbytes;
/%
* An iovec can include several source buffers.
*/
cc = readv(descriptor, iov, iovent)
int cc, descriptor; struct iovec *iov; int iovent;

cc = write(descriptor, buf, nbytes)
int cc, descriptor; char *buf; int nbytes;

cc = writev(descriptor, iovec, ioveclen)
int cc, descriptor; struct iovec *iovec; int ioveclen;

/*

* The variable ‘‘sock’’ must be the descriptor of a socket.
* Flags may include MSG_OOB and MSG_PEEK.
*/

cc = send(sock, msg, len, flags)

int cc, sock; char *msg; int len, flags;

cc = sendto(sock, msg, len, flags, to, tolen)
int c¢c, sock; char *msg; int len, flags:;
struct sockaddr *to; int tolen;

cc = sendmsg(sock, msg, flags)
int cc, soc¢k; struct msghdr msgl]; int flags;

cc = recv(sock, buf, len, flags)
int cc, sock; char *buf; int len, flags;

cc = recvfrom(sock, buf, len, flags, from, fromlen)
int cc, sock; char *buf; int len, flags:;
struct sockaddr *from; int *fromlen;

cc = recvmsg(sock, msg, flags)
int cc, socket; struct msghdr msgl]; int flags;

Figure 10 Varieties of read and write commands

The two communication domains, UNIX and Internet, allow processes with no common ancestor to
communicate. Of the two, only the Internet domain allows communication between machines. This makes
the Internet domain a necessary choice for processes running on separate machines.

The choice between datagrams and stream communication is best made by carefully considering the
semantic and performance requirements of the application. Streams can be both advantageous and disad-
vantageous. One disadvantage is that a process is only allowed a limited number of open streams, as there
are usually only 64 entries available in the open descriptor table. This can cause problems if a single server
must talk with a large number of clients. Another is that for delivering a short message the stream setup and
teardown time can be unnecessarily long. Weighed against this are the reliability built into the streams.
This will often be the deciding factor in favor of streams.

PS1:7-22 | Introductory 4.3BSD IPC

11. What to do Next

Many of the examples presented here can serve as models for multiprocess programs and for pro-
grams distributed across several machines. In developing a new multiprocess program, it is often easiest to
first write the code to create the processes and communication paths. After this code is debugged, the code
specific to the application can be added.

An introduction to the UNIX system and programming using UNIX system calls can be found in
[Kemighan and Pike 1984]. Further documentation of the Berkeley UNIX 4.3BSD IPC mechanisms can
be found in [Leffler et al. 1986]. More detailed information about particular calls and protocols is provided
in sections 2, 3 and 4 of the UNIX Programmer’s Manual [CSRG 1986]. In particular the following
manual pages are relevant:

creating and naming sockets socket(2), bind(2)

establishing connections listen(2), accept(2), connect(2)
transferring data read(2), write(2), send(2), recv(2)
addresses inet(4F)

protocols tcp(4P), udp(4P).
Acknowledgements

I would like to thank Sam Leffler and Mike Karels for their help in understanding the IPC
mechanisms and all the people whose comments have helped in writing and improving this report.

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), ARPA
Order No. 4031, monitored by the Naval Electronics Systems Command under contract No. N00039-
C-0235. The views and conclusions contained in this document are those of the author and should not
be interpreted as representing official policies, either expressed or implied, of the Defense Research
Projects Agency or of the US Government.

References

B.W. Kernighan & R. Pike, 1984,
The UNIX Programming Environment.
Englewood Cliffs, N.J.: Prentice-Hall.

B.W. Kernighan & D.M. Ritchie, 1978,
The C Programming Language,
Englewood Cliffs, N.J.: Prentice-Hall.

SJ. Leffler, R.S. Fabry, W.N. Joy, P. Lapsley, S. Miller & C. Torek, 1986,
An Advanced 4.3BSD Interprocess Communication Tutorial.

Computer Systems Research Group,

Department of Electrical Engineering and Computer Science,

University of California, Berkeley.

Computer Systems Research Group, 1986,

UNIX Programmer’s Manual, 4.3 Berkeley Software Distribution.
Computer Systems Research Group,

Department of Electrical Engineering and Computer Science,
University of California, Berkeley.

An Advanced 4.3BSD Interprocess Communication Tutorial

Samuel J. Leffler
Robert S. Fabry
William N. Joy
Phil Lapsley

Computer Systems Research Group
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

Steve Miller
Chris Torek

Heterogeneous Systems Laboratory
Department of Computer Science
University of Maryland, College Park
College Park, Maryland 20742

ABSTRACT

" This document provides an introduction to the interprocess communication facili-
ties included in the 4.3BSD release of the UNIX* system.

It discusses the overall model for interprocess communication and introduces the
interprocess communication primitives which have been added to the system. The
majority of the document considers the use of these primitives in developing applica-
tions. The reader is expected to be familiar with the C programming language as all
examples are written in C.

* UNIX is a Trademark of Bell Laboratories.

PS1:8-2 Advanced 4.3BSD IPC Tutorial

1. INTRODUCTION

One of the most important additions to UNIX in 4.2BSD was interprocess communication. These facilities
were the result of more than two years of discussion and research. The facilities provided in 4.2BSD incor-
porated many of the ideas from current research, while trying to maintain the UNIX philosophy of simpli-
city and conciseness. The current release of Berkeley UNIX, 4.3BSD, completes some of the IPC facilities
and provides an upward-compatible interface. It is hoped that the interprocess communication facilities
included in 4.3BSD will establish a standard for UNIX. From the response to the design, it appears many
organizations carrying out work with UNIX are adopting it.

UNIX has previously been very weak in the area of interprocess communication. Prior to the 4BSD
facilities, the only standard mechanism which allowed two processes to communicate were pipes (the mpx
files which were part of Version 7 were experimental). Unfortunately, pipes are very restrictive in that the
two communicating processes must be related through a common ancestor. Further, the semantics of pipes
makes them almost impossible to maintain in a distributed environment.

Earlier attempts at extending the IPC facilities of UNIX have met with mixed reaction. The majority
of the problems have been related to the fact that these facilities have been tied to the UNIX file system,
either through naming or implementation. Consequently, the IPC facilities provided in 4.3BSD have been
designed as a totally independent subsystem. The 4.3BSD IPC allows processes to rendezvous in many
ways. Processes may rendezvous through a UNIX file system-like name space (a space where ail names are
path names) as well as through a network name space. In fact, new name spaces may be added at a future
time with only minor changes visible to users. Further, the communication facilities have been extended to
include more than the simple byte stream provided by a pipe. These extensions have resulted in a com-
pletely new part of the system which users will need time to familiarize themselves with. It is likely that as
more use is made of these facilities they will be refined; only time will tell.

This document provides a high-level description of the IPC facilities in 4.3BSD and their use. It is
designed to complement the manual pages for the IPC primitives by examples of their use. The remainder
of this document is organized in four sections. Section 2 introduces the IPC-related system calls and the
basic model of communication. Section 3 describes some of the supporting library routines users may find
useful in constructing distributed applications. Section 4 is concerned with the client/server model used in
developing applications and includes examples of the two major types of servers. Section 5 delves into
advanced topics which sophisticated users are likely to encounter when using the IPC facilities.

Advanced 4.3BSD IPC Tutorial PS1:8-3

2. BASICS

The basic building block for communication is the socket. A socket is an endpoint of communication
to which a name may be bound. Each socket in use has a type and one or more associated processes.
Sockets exist within communication domains. A communication domain is an abstraction introduced to
bundle common properties of processes communicating through sockets. One such property is the scheme
used to name sockets. For example, in the UNIX communication domain sockets are named with UNIX
path names; e.g. a socket may be named “‘/dev/foo’’. Sockets normally exchange data only with sockets in
the same domain (it may be possible to cross domain boundaries, but only if some translation process is
performed). The 4.3BSD IPC facilities support three separate communication domains: the UNIX
domain, for on-system communication; the Internet domain, which is used by processes which communi-
cate using the the DARPA standard communication protocols; and the NS domain, which is used by
processes which communicate using the Xerox standard communication protocols*. The underlying com-
munication facilities provided by these domains have a significant influence on the internal system imple-
mentation as well as the interface to socket facilities available to a user. An example of the latter is that a
socket ‘‘operating’’ in the UNIX domain sees a subset of the error conditions which are possible when
operating in the Internet (or NS) domain.

2.1. Socket types

Sockets are typed according to the communication properties visible to a user. Processes are
presumed to communicate only between sockets of the same type, although there is nothing that prevents
communication between sockets of different types should the underlying communication protocols support
this.

Four types of sockets currently are available to a user. A stream socket provides for the bidirec-
tional, reliable, sequenced, and unduplicated flow of data without record boundaries. Aside from the
bidirectionality of data flow, a pair of connected stream sockets provides an interface nearly identical to
that of pipest.

A datagram socket supports bidirectional flow of data which is not promised to be sequenced, reli-
able, or unduplicated. That is, a process receiving messages on a datagram socket may find messages dupli-
cated, and, possibly, in an order different from the order in which it was sent. An important characteristic
of a datagram socket is that record boundaries in data are preserved. Datagram sockets closely model the
facilities found in many contemporary packet switched networks such as the Ethernet.

A raw socket provides users access to the underlying communication protocols which support socket
abstractions. These sockets are normally datagram oriented, though their exact characteristics are depen-
dent on the interface provided by the protocol. Raw sockets are not intended for the general user; they
have been provided mainly for those interested in developing new communication protocols, or for gaining
access to some of the more esoteric facilities of an existing protocol. The use of raw sockets is considered
in section 5.

A sequenced packet socket is similar to a stream socket, with the exception that record boundaries
are preserved. This interface is provided only as part of the NS socket abstraction, and is very important in
most serious NS applications. Sequenced-packet sockets allow the user to manipulate the SPP or IDP
headers on a packet or a group of packets either by writing a prototype header along with whatever data is
to be sent, or by specifying a default header to be used with all outgoing data, and allows the user to
receive the headers on incoming packets. The use of these options is considered in section 5.

Another potential socket type which has interesting properties is the reliably delivered message
socket. The reliably delivered message socket has similar properties to a datagram socket, but with reliable

* See Internet Transport Protocols, Xerox System Integration Standard (XSIS)028112 for more information. This
document is almost a necessity for one trying to write NS applications.

t In the UNIX domain, in fact, the semantics are identical and, as one might expect, pipes have been implemented
internally as simply a pair of connected stream sockets.

PS1:8-4 Advanced 4.3BSD IPC Tutorial

delivery. There is currently no support for this type of socket, but a reliably delivered message protocol
similar to Xerox’s Packet Exchange Protocol (PEX) may be simulated at the user level. More information
on this topic can be found in section 5.

2.2, Socket creation
To create a socket the socket system call is used:

s = socket(domain, type, protocol);

This call requests that the system create a socket in the specified domain and of the specified type. A par-
ticular protocol may also be requested. If the protocol is left unspecified (a value of 0), the system will
select an appropriate protocol from those protocols which comprise the communication domain and which
may be used to support the requested socket type. The user is returned a descriptor (a small integer
number) which may be used in later system calls which operate on sockets. The domain is specified as one
of the manifest constants defined in the file <sys/socket.h>. For the UNIX domain the constant is
AF_UNIX*; for the Internet domain AF_INET; and for the NS domain, AF_NS. The socket types are also
defined in this file and one of SOCK _. STREAM SOCK_DGRAM, SOCK _. RAW or SOCK_SEQPACKET
must be specified. To create a stream socket in the Internet domain the following call might be used:

= socket(AF_INET, SOCK_STREAM, 0);

This call would result in a stream socket being created with the TCP protocol providing the underlying
communication support. To create a datagram socket for on-machine use the call might be:

s = socket(AF_UNIX, SOCK_DGRAM, 0);

The default protocol (used when the protocol argument to the socket call is 0) should be correct for
most every situation. However, it is possible to specify a protocol other than the default; this will be
covered in section 5.

There are several reasons a socket call may fail. Aside from the rare occurrence of lack of memory
(ENOBUFS), a socket request may fail due to a request for an unknown protocol (EPROTONOSUP-
PORT), or a request for a type of socket for which there is no supporting protocol (EPROTOTYPE).

2.3. Binding local names

A socket is created without a name. Until a name is bound to a socket, processes have no way to
reference it and, consequently, no messages may be received on it. Communicating processes are bound
by an association. In the Internet and NS domains, an association is composed of local and foreign
addresses, and local and foreign ports, while in the UNIX domain, an association is composed of local and
foreign path names (the phrase *‘foreign pathname’’ means a pathname created by a foreign process, not a
pathname on ‘a foreign system). In most domains, associations must be unique. In the Internet domain
there may never be duplicate <protocol, local address, local port, foreign address, foreign port> tuples.
UNIX domain sockets need not always be bound to a name, but when bound there may never be duplicate
<protocol, local pathname, foreign pathname> tuples. The pathnames may not refer to files already exist-
ing on the system in 4.3; the situation may change in future releases.

The bind system call allows a process to specify half of an association, <local address, local port> (or
<local pathname>), while the connect and accept primitives are used to complete a socket’s association.

In the Internet domain, binding names to sockets can be fairly complex. Fortunately, it is usually not
necessary to specifically bind an address and port number to a socket, because the connect and send calls
will automatically bind an appropriate address if they are used with an unbound socket. The process of
binding names to NS sockets is similar in most ways to that of binding names to Internet sockets.

The bind system call is used as follows:

* The manifest constants are named AF_whatever as they indicate the ‘‘address format’’ to use in interpreting names.

Advanced 4.3BSD IPC Tutorial PS1:8-5

bind(s, name, namelen);

The bound name is a variable length byte string which is interpreted by the supporting protocol(s). Its
interpretation may vary from communication domain to communication domain (this is one of the proper-
ties which comprise the ‘‘domain’’). As mentioned, in the Internet domain names contain an Internet
address and port number. NS domain names contain an NS address and port number. In the UNIX
domain, names contain a path name and a family, which is always AF_UNIX. If one wanted to bind the
name ‘‘/tmp/foo’’ to a UNIX domain socket, the following code would be used*:

#include <sys/un.h>
struct sockaddr_un addr;

strcpy(addr.sun_path, "/tmp/foo™);

addr.sun_family = AF_UNIX;

bind(s, (struct sockaddr *) &addr, strlen(addr.sun_path) +
sizeof (addr.sun_family));

Note that in determining the size of a UNIX domain address null bytes are not counted, which is why strlen
is used. In the current implementation of UNIX domain IPC under 4.3BSD, the file name referred to in
addr.sun_path is created as a socket in the system file space. The caller must, therefore, have write permis-
sion in the directory where addr.sun_path is to reside, and this file should be deleted by the caller when it is
no longer needed. Future versions of 4BSD may not create this file.

In binding an Internet address things become more complicated. The actual call is similar,

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin; .

bind(s, (struct sockaddr *) &sin, sizeof (sin));

but the selection of what to place in the address sin requires some discussion. We will come back to the
problem of formulating Internet addresses in section 3 when the library routines used in name resolution
are discussed.

Binding an NS address to a socket is even more difficult, especially since the Internet library routines
do not work with NS hostnames. The actual call is again similar:

#include <sys/types.h>
#include <netns/ns.h>

struct sockaddr_ns sns;

bind(s, (struct sockaddr *) &sns, sizeof (sns));
Again, discussion of what to place in a ‘‘struct sockaddr_ns’’ will be deferred to section 3.

2.4. Connection establishment

- Connection establishment is usually asymmetric, with one process a ‘‘client’” and the other a
‘‘server’’. The server, when willing to offer its advertised services, binds a socket to a well-known address
associated with the service and then passively “‘listens’’ on its socket. It is then possible for an unrelated
process to rendezvous with the server. The client requests services from the server by initiating a *‘connec-
tion’’ to the server’s socket. On the client side the connect call is used to initiate a connection. Using the

* Note that, although the tendency here is to call the “‘addr’’ structure *‘sun’’, doing so would cause problems if the code
were ever ported to a Sun workstation.

PS1:8-6 Advanced 4.3BSD IPC Tutorial

UNIX domain, this might appear as,
struct sockaddr_un server;

connect(s, (struct sockaddr *)&server, strlen(server.sun_path) +
sizeof (server.sun_family));

while in the Internet domain,

struct sockaddr_in server;

connect(s, (struct sockaddr *)&server, sizeof (server));
and in the NS domain,

struct sockaddr_ns server;

connect(s, (struct sockaddr *)&server, sizeof (server));

where server in the example above would contain either the UNIX pathname, Internet address and port
number, or NS address and port number of the server to which the client process wishes to speak. If the
client process’s socket is unbound at the time of the connect call, the system will automatically select and
bind a name to the socket if necessary; c.f. section 5.4, This is the usual way that local addresses are bound
to a socket.

An error is returned if the connection was unsuccessful (any name automatically bound by the sys-
tem, however, remains). Otherwise, the socket is associated with the server and data transfer may begin.
Some of the more common errors returned when a connection attempt fails are:

ETIMEDOUT
After failing to establish a connection for a period of time, the system decided there was no point in
retrying the connection attempt any more. This usually occurs because the destination host is down,
or because problems in the network resulted in transmissions being lost.

ECONNREFUSED
The host refused service for some reason. This is usually due to a server process not being present at
the requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status information delivered to the client host by the
underlying communication services.

ENETUNREACH or EHOSTUNREACH
These operational errors can occur either because the network or host is unknown (no route to the
network or host is present), or because of status information returned by intermediate gateways or
switching nodes. Many times the status returned is not sufficient to distinguish a network being
down from a host being down, in which case the system indicates the entire network is unreachable.

For the server to receive a client’s connection it must perform two steps after binding its socket. The
first is to indicate a willingness to listen for incoming connection requests:

listen(s, 5);

The second parameter to the listen call specifies the maximum number of outstanding connections which
may be queued awaiting acceptance by the server process; this number may be limited by the system.
Should a connection be requested while the queue is full, the connection will not be refused, but rather the
individual messages which comprise the request will be ignored. This gives a harried server time to make
room in its pending connection queue while the client retries the connection request. Had the connection
been returned with the ECONNREFUSED error, the client would be unable to tell if the server was up or
not. As it is now it is still possible to get the ETIMEDOUT error back, though this is unlikely. The back-
log figure supplied with the listen call is currently limited by the system to a maximum of 5 pending con-
nections on any one queue. This avoids the problem of processes hogging system resources by setting an
infinite backlog, then ignoring all connection requests.

Advanced 4.3BSD IPC Tutorial PS1:8-7

With a socket marked as listening, a server may accept a connection:
struct sockaddr_in from;

fromlen = sizeof (from);
newsock = accept(s, (struct sockaddr *)&from, &fromlen);

(For the UNIX domain, from would be declared as a struct sockaddr_un, and for the NS domain, from
would be declared as a struct sockaddr_ns, but nothing different would need to be done as far as fromlen is
concerned. In the examples which follow, only Internet routines will be discussed.) A new descriptor is
returned on receipt of a connection (along with a new socket). If the server wishes to find out who its
client is, it may supply a buffer for the client socket’s name. The value-result parameter fromlen is initial-
ized by the server to indicate how much space is associated with from, then modified on return to reflect the
true size of the name. If the client’s name is not of interest, the second parameter may be a null pointer.

Accept normally blocks. That is, accept will not return until a connection is available or the system
call is interrupted by a signal to the process. Further, there is no way for a process to indicate it will accept
connections from only a specific individual, or individuals. It is up to the user process to consider who the
connection is from and close down the connection if it does not wish to speak to the process. If the server
process wants to accept connections on more than one socket, or wants to avoid blocking on the accept
call, there are alternatives; they will be considered in section 5.

2.5. Data transfer

With a connection established, data may begin to flow. To send and receive data there are a number
of possible calls. With the peer entity at each end of a connection anchored, a user can send or receive a
message without specifying the peer. As one might expect, in this case, then the normal read and write
system calls are usable,

write(s, buf, sizeof (buf));
read(s, buf, sizeof (buf));

In addition to read and write, the new calls send and recv may be used:

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

While send and recv are virtually identical to read and write, the extra flags argument is important. The
flags, defined in <sys/socket.h>, may be specified as a non-zero value if one or more of the following is
required:

MSG_OOB send/receive out of band data
MSG_PEEK look at data without reading
MSG_DONTROUTE send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately consider.
The option to have data sent without routing applied to the outgoing packets is currently used only by the
routing table management process, and is unlikely to be of interest to the casual user. The ability to pre-
view data is, however, of interest. When MSG_PEEK is specified with a recv call, any data present is
returned to the user, but treated as still ‘‘unread’’. That is, the next read or recv call applied to the socket
will return the data previously previewed.,

2.6. Discarding sockets
Once a socket is no longer of interest, it may be discarded by applying a close to the descriptor,
close(s);

If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when a close
takes place, the system will continue to attempt to transfer the data. However, after a fairly long period of
time, if the data is still undelivered, it will be discarded. Should a user have no use for any pending data, it

PS1:8-8 ' Advanced 4.3BSD IPC Tutorial

may perform a shutdown on the socket prior to closing it. This call is of the form:
shutdown(s, how);

where how is 0 if the user is no longer interested in reading data, 1 if no more data will be sent, or 2 if no
data is to be sent or received.

2.7. Connectionless sockets

To this point we have been concerned mostly with sockets which follow a connection oriented
model. However, there is also support for connectionless interactions typical of the datagram facilities
found in contemporary packet switched networks. A datagram socket provides a symmetric interface to
data exchange. While processes are still likely to be client and server, there is no requirement for connec-
tion establishment. Instead, each message includes the destination address.

Datagram sockets are created as before. If a particular local address is needed, the bind operation
must precede the first data transmission. Otherwise, the system will set the local address and/or port when
data is first sent. To send data, the sendto primitive is used,

sendto(s, buf, buflen, flags, (struct sockaddr *)&to, tolen);

The s, buf, buflen, and flags parameters are used as before. The fo and folen values are used to indicate the
address of the intended recipient of the message. When using an unreliable datagram interface, it is
unlikely that any errors will be reported to the sender. When information is present locally to recognize a
message that can not be delivered (for instance when a network is unreachable), the call will return —1 and
the global value errno will contain an error number.

To receive messages on an unconnected datagram socket, the recvfrom primitive is provided:
recvfrom(s, buf, buflen, flags, (struct sockaddr *)&from, &fromlen);

Once again, the fromlen parameter is handled in a value-result fashion, initially containing the size of the
Jrom buffer, and modified on return to indicate the actual size of the address from which the datagram was
received.

In addition to the two calls mentioned above, datagram sockets may also use the connect call to asso-
ciate a socket with a specific destination address. In this case, any data sent on the socket will automati-
cally be addressed to the connected peer, and only data received from that peer will be delivered to the
user. Only one connected address is permitted for each socket at one time; a second connect will change
the destination address, and a connect to a null address (family AF_UNSPEC) will disconnect. Connect
requests on datagram sockets return immediately, as this simply results in the system recording the peer’s
address (as compared to a stream socket, where a connect request initiates establishment of an end to end
connection). Accept and listen are not used with datagram sockets.

While a datagram socket socket is connected, errors from recent send calls may be returned asyn-
chronously. These errors may be reported on subsequent operations on the socket, or a special socket
option used with getsockopt, SO_ERROR, may be used to interrogate the error status. A select for reading
or writing will return true when an error indication has been received. The next operation will return the
error, and the error status is cleared. Other of the less important details of datagram sockets are described
in section 5.

2.8. Input/Output multiplexing

One last facility often used in developing applications is the ability to multiplex ¥/o requests among
multiple sockets and/or files. This is done using the select call:

Advanced 4.3BSD IPC Tutorial PS1:8-9

#include <sys/time.h>
#include <sys/types.h>

fd_set readmask, writemask, exceptmask;
struct timeval timeout;

select(nfds, &readmask, &writemask, &exceptmask, &timeout);

Select takes as arguments pointers to three sets, one for the set of file descriptors for which the caller
wishes to be able to read data on, one for those descriptors to which data is to be written, and one for which
exceptional conditions are pending; out-of-band data is the only exceptional condition currently imple-
mented by the socket If the user is not interested in certain conditions (i.e., read, write, or exceptions), the
corresponding argument to the select should be a null pointer.

Each set is actually a structure containing an array of long integer bit masks; the size of the array is
set by the definition FD_SETSIZE. The array is be long enough to hold one bit for each of FD_SETSIZE
file descriptors.

The macros FD_SET(fd, &mask) and FD_CLR(fd, &mask) have been provided for adding and
removing file descriptor fd in the set mask. The set should be zeroed before use, and the macro
FD_ZERO(&mask) has been provided to clear the set mask. The parameter nfds in the select call specifies
the range of file descriptors (i.e. one plus the value of the largest descriptor) to be examined in a set.

A timeout value may be specified if the selection is not to last more than a predetermined period of
time. If the fields in timeout are set to O, the selection takes the form of a poll, returning immediately. If
the last parameter is a null pointer, the selection will block indefinitely*. Select normally returns the
number of file descriptors selected; if the select call returns due to the timeout expiring, then the value 0 is
returned. If the select terminates because of an error or interruption, a —1 is returned with the error number
in errno, and with the file descriptor masks unchanged.

Assuming a successful return, the three sets will indicate which file descriptors are ready to be read
from, written to, or have exceptional conditions pending. The status of a file descriptor in a select mask
may be tested with the FD_ISSET(fd, &mask) macro, which returns a non-zero value if fd is a member of
the set mask, and O if it is not.

To determine if there are connections waiting on a socket to be used with an accept call, select can
be used, followed by a FD_ISSET(fd, &mask) macro to check for read readiness on the appropriate socket.
If FD_ISSET returns a non-zero value, indicating permission to read, then a connection is pending on the
socket.

As an example, to read data from two sockets, sI and s2 as it is available from each and with a one-
second timeout, the following code might be used:

* To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received by the caller,
interrupting the system call.

PS1:8-10 Advanced 4.3BSD IPC Tutorial

#include <sys/time.h>
#include <sys/types.h>

fd_set read_template;
struct timeval wait;

for () { .
wait.tv_sec = 1; /* one second */
wait.tv_usec = 0;
FD_ZERO(&read_template);

FD_SET(s1, &read_template);
FD_SET(s2, &read_template);

nb = select(FD_SETSIZE, &read_template, (fd_set *) 0, (fd_set *) 0, &wait);

if (nb <=0) {
An error occurred during the select, or
the select timed out.

}

if (FD_ISSET(s1, &read_template)) {
Socket #1 is ready to be read from.
}

if (FD_ISSET(s2, &read_template)) {
Socket #2 is ready to be read from.
}

}

In 4.2, the arguments to select were pointers to integers instead of pointers to fd_sers. This type of
call will still work as long as the number of file descriptors being examined is less than the number of bits
in an integer; however, the methods illustrated above should be used in all current programs.

Select provides. a synchronous multiplexing scheme. Asynchronous notification of output comple-
tion, input availability, and exceptional conditions is possible through use of the SIGIO and SIGURG sig-
nals described in section 5.

Advanced 4.3BSD IPC Tutorial PS1:8-11

3. NETWORK LIBRARY ROUTINES

The discussion in section 2 indicated the possible need to locate and construct network addresses
when using the interprocess communication facilities in a distributed environment. To aid in this task a
number of routines have been added to the standard C run-time library. In this section we will consider the
new routines provided to manipulate network addresses. While the 4.3BSD networking facilities support
both the DARPA standard Internet protocols and the Xerox NS protocols, most of the routines presented in
this section do not apply to the NS domain. Unless otherwise stated, it should be assumed that the routines
presented in this section do not apply to the NS domain.

Locating a service on a remote host requires many levels of mapping before client and server may
communicate. A service is assigned a name which is intended for human consumption; e.g. ‘‘the login
server on host monet’’. This name, and the name of the peer host, must then be translated into network
addresses which are not necessarily suitable for human consumption. Finally, the address must then used
in locating a physical location and route to the service. The specifics of these three mappings are likely to
vary between network architectures. For instance, it is desirable for a network to not require hosts to be
named in such a way that their physical location is known by the client host. Instead, underlying services
in the network may discover the actual location of the host at the time a client host wishes to communicate.
This ability to have hosts named in a location independent manner may induce overhead in connection
establishment, as a discovery process must take place, but allows a host to be physically mobile without
requiring it to notify its clientele of its current location.

Standard routines are provided for: mapping host names to network addresses, network names to net-
work numbers, protocol names to protocol numbers, and service names to port numbers and the appropriate
protocol to use in communicating with the server process. The file <netdb.h> must be included when using
any of these routines.

3.1. Host names
An Internet host name to address mapping is represented by the hostent structure:

struct hostent {

char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type (e.g., AF_INET) */
int h_length; /* length of address */
char **h_addr list; /* list of addresses, null terminated */
h
#define h_addr h_addr list[0] /* first address, network byte order */

The routine gethostbyname(3N) takes an Internet host name and returns a hostent structure, while the rou-
tine gethostbyaddr(3N) maps Internet host addresses into a hostent structure.

The official name of the host and its public aliases are returned by these routines, along with the
address type (family) and a null terminated list of variable length address. This list of addresses is required
because it is possible for a host to have many addresses, all having the same name. The h_addr definition
is provided for backward compatibility, and is defined to be the first address in the list of addresses in the
hostent structure.

The database for these calls is provided either by the file /etc/hosts (hosts(S)), or by use of a
nameserver, named (8). Because of the differences in these databases and their access protocols, the infor-
mation returned may differ. When using the host table version of gethostbyname, only one address will be
returned, but all listed aliases will be included. The nameserver version may return alternate addresses, but
will not provide any aliases other than one given as argument.

Unlike Internet names, NS names are always mapped into host addresses by the use of a standard NS
Clearinghouse service, a distributed name and authentication server. The algorithms for mapping NS

PS1:8-12 Advanced 4.3BSD IPC Tutorial

names to addresses via a Clearinghouse are rather complicated, and the routines are not part of the standard
libraries. The user-contributed Courier (Xerox remote procedure call protocol) compiler contains routines
to accomplish this mapping; see the documentation and examples provided therein for more information. It
is expected that almost all software that has to communicate using NS will need to use the facilities of the
Courier compiler.

An NS host address is represented by the following:

union ns_host {
u_char ¢_host[6];
u_short s_host[3];
b

union ns_net {
u_char c_net[4];
u_short s _net[2];

b

struct ns_addr {
union ns_net x_net;
union ns_host x_host;
u_short x_port;

I8

The following code fragment inserts a known NS address into a ns_addr:

Advanced 4.3BSD IPC Tutorial PS1:8-13

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>

u_long netnum;
struct sockaddr_ns dst;

l;;ero((chm *)&dst, sizeof(dst));

/#
* There is no convenient way to assign a long
* integer to a ‘‘union ns_net’’ at present; in
* the future, something will hopefully be provided,
* but this is the portable way to go for now.
* The network number below is the one for the NS net
* that the desired host (gyre) is on. '
*/
netnum = htonl(2266);
dst.sns_addr.x_net = *(union ns_net *) &netnum;
dst.sns_family = AF_NS;

/!ll
* host 2.7.1.0.2a.18 == "gyre:Computer Science:UofMaryland"
*/
dst.sns_addr.x_host.c_host[0] = 0x02;
dst.sns_addr.x_host.c_host[1] = 0x07;
dst.sns_addr.x_host.c_host[2] = 0x01;
dst.sns_addr.x_host.c_host[3] = 0x00;
dst.sns_addr.x_host.c_host[4] = 0x2a;
dst.sns_addr.x_host.c_host[5] = 0x18;
dst.sns_addr.x_port = htons(75);

3.2. Network names
As for host names, routines for mapping network names to numbers, and back, are provided. These
routines return a netent structure:
/*
* Assumption here is that a network number
* fits in 32 bits -- probably a poor one.

*/
struct netent {

char *n_name; /* official name of net */

char **n_aliases; /* alias list */

int n_addrtype; /* net address type */

int n_net; /* network number, host byte order */
b

The routines getnetbyname(3N), getnetbynumber(3N), and getnetent(3N) are the network counterparts to
the host routines described above. The routines extract their information from /etc/networks.

NS network numbers are determined either by asking your local Xerox Network Administrator (and
hardcoding the information into your code), or by querying the Clearinghouse for addresses. The internet-
work router is the only process that needs to manipulate network numbers on a regular basis; if a process
wishes to communicate with a machine, it should ask the Clearinghouse for that machine’s address (which
will include the net number).

PS1:8-14 Advanced 4.3BSD IPC Tutorial

3.3. Protocol names

For protocols, which are defined in /etc/protocols, the protoent structure defines the protocol-name
mapping used with the routines getprotobyname(3N), getprotobynumber(3N), and getprotoent(3N):

struct protoent {

char *p_name; /* official protocol name */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

I 5

In the NS domain, protocols are indicated by the "client type" field of a IDP header. No protocol
database exists; see section 5 for more information.

3.4. Service names

Information regarding services is a bit more complicated. A service is expected to reside at a
specific *‘port’’ and employ a particular communication protocol. This view is consistent with the Internet
domain, but inconsistent with other network architectures. Further, a service may reside on multiple ports.
If this occurs, the higher level library routines will have to be bypassed or extended. Services available are
contained in the file /etc/services. A service mapping is described by the servent structure,

struct servent {

char *s_name; /* official service name */

char **s_aliases; /* alias list */

int s_port; /* port number, network byte order */
char *s_proto; /* protocol to use */

b

The routine getservbyname(3N) maps service names to a servent structure by specifying a service name
and, optionally, a qualifying protocol. Thus the call

sp = getservbyname("telnet”, (char *) 0);
returns the service specification for a telnet server using any protocol, while the call
sp = getservbyname(" telnet", "tcp");

returns only that telnet server which uses the TCP protocol. The routines getservbyport(3N) and
getservent(3N) are also provided. The getservbyport routine has an interface similar to that provided by
getservbyname; an optional protocol name may be specified to qualify lookups.

In the NS domain, services are handled by a central dispatcher provided as part of the Courier remote
procedure call facilities. Again, the reader is referred to the Courier compiler documentation and to the
Xerox standard* for further details.

3.5. Miscellaneous

With the support routines described above, an Internet application program should rarely have to
deal directly with addresses. This allows services to be developed as much as possible in a network
independent fashion. It is clear, however, that purging all network dependencies is very difficult. So long
as the user is required to supply network addresses when naming services and sockets there will always
some network dependency in a program. For example, the normal code included in client programs, such
as the remote login program, is of the form shown in Figure 1. (This example will be considered in more
detail in section 4.)

If we wanted to make the remote login program independent of the Internet protocols and addressing
scheme we would be forced to add a layer of routines which masked the network dependent aspects from
the mainstream login code. For the current facilities available in the system this does not appear to be

* Courier: The Remote Procedure Call Protocol, XSIS 038112.

Advanced 4.3BSD IPC Tutorial PS1:8-15

worthwhile.

Aside from the address-related data base routines, there are several other routines available in the
run-time library which are of interest to users. These are intended mostly to simplify manipulation of
names and addresses. Table 1 summarizes the routines for manipulating variable length byte strings and
handling byte swapping of network addresses and values.

Call Synopsis

bemp(sl, s2,n) | compare byte-strings; O if same, not 0 otherwise
bcopy(s1, s2,n) | copy n bytes from sl to s2

bzero(base, n) zero-fill n bytes starting at base

htonl(val) convert 32-bit quantity from host to network byte order
htons(val) convert 16-bit quantity from host to network byte order
ntohl(val) convert 32-bit quantity from network to host byte order
ntohs(val) convert 16-bit quantity from network to host byte order

Table 1. C run-time routines.

The byte swapping routines are provided because the operating system expects addresses to be sup-
plied in network order. On some architectures, such as the VAX, host byte ordering is different than net-
work byte ordering. Consequently, programs are sometimes required to byte swap quantities. The library
routines which return network addresses provide them in network order so that they may simply be copied
into the structures provided to the system. This implies users should encounter the byte swapping problem
only when interpreting network addresses. For example, if an Internet port is to be printed out the follow-
ing code would be required:

printf("port number %d\n", ntohs(sp->s_port));

On machines where unneeded these routines are defined as null macros.

PS1:8-16 Advanced 4.3BSD IPC Tutorial

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main(argc, argv)
int argc;
char *argv(];

struct sockaddr_in server;
struct servent *sp;

struct hostent *hp;

ints;

sp = getservbyname("login", "tcp");
if (sp == NULL) {
fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(1);
}
hp = gethostbyname(argv[1]);
if (hp == NULL) {
fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);
exit(2);
}
bzero((char *)&server, sizeof (server));)
beopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length);
server.sin_family = hp->h_addrtype;
server.sin_port = sp->s_port;
s = socket(AF_INET, SOCK_STREAM, 0);
if(s<0){
perror("rlogin: socket");
exit(3);
}

/* Connect does the bind() for us */
if (connect(s, (char *)&server, sizeof (server)) < 0) {

perror("rlogin: connect”);
exit(s);

Figure 1. Remote login client code.

Advanced 4.3BSD IPC Tutorial PS1:8-17

4. CLIENT/SERVER MODEL

The most commonly used paradigm in constructing distributed applications is the client/server
model. In this scheme client applications request services from a server process. This implies an asym-
metry in establishing communication between the client and server which has been examined in section 2.
In this section we will look more closely at the interactions between client and server, and consider some of
the problems in developing client and server applications.

The client and server require a well known set of conventions before service may be rendered (and
accepted). This set of conventions comprises a protocol which must be implemented at both ends of a con-
nection. Depending on the situation, the protocol may be symmetric or asymmetric. In a symmetric proto-
col, either side may play the master or slave roles. In an asymmetric protocol, one side is immutably
recognized as the master, with the other as the slave. An example of a symmetric protocol is the TELNET
protocol used in the Internet for remote terminal emulation. An example of an asymmetric protocol is the
Internet file transfer protocol, FTP. No matter whether the specific protocol used in obtaining a service is
symmetric or asymmetric, when accessing a service there is a ‘‘client process’” and a “‘server process’’.
We will first consider the properties of server processes, then client processes.

A server process normally listens at a well known address for service requests. That is, the server
process remains dormant until a connection is requested by a client’s connection to the server’s address.
At such a time the server process ‘‘wakes up’’ and services the client, performing whatever appropriate
actions the client requests of it.

Alternative schemes which use a service server may be used to eliminate a flock of server processes
clogging the system while remaining dormant most of the time. For Internet servers in 4.3BSD, this
scheme has been implemented via inetd, the so called ‘‘internet super-server.”” Inetd listens at a variety of
ports, determined at start-up by reading a configuration file. When a connection is requested to a port on
which inetd is listening, inetd executes the appropriate server program to handle the client. With this
method, clients are unaware that an intermediary such as inetd has played any part in the connection. Inetd
will be described in more detail in section 5.

A similar alternative scheme is used by most Xerox services. In general, the Courier dispatch pro-
cess (if used) accepts connections from processes requesting services of some sort or another. The client
processes request a particular <program number, version number, procedure number> triple. If the
dispatcher knows of such a program, it is started to handle the request; if not, an error is reported to the
client. In this way, only one port is required to service a large variety of different requests. Again, the
Courier facilities are not available without the use and installation of the Courier compiler. The informa-
tion presented in this section applies only to NS clients and services that do not use Courier.

4.1. Servers

In 4.3BSD most servers are accessed at well known Internet addresses or UNIX domain names. For
example, the remote login server’s main loop is of the form shown in Figure 2.

The first step taken by the server is look up its service definition:

sp = getservbyname("login", "tcp");

if (sp == NULL) {
fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

}

The result of the getservbyname call is used in later portions of the code to define the Internet port at which
it listens for service requests (indicated by a connection).

PS1:8-18 Advanced 4.3BSD IPC Tutorial

main(arge, argv)
int argc;
char *argv[];

int f;
struct sockaddr_in from;
struct servent *sp;

sp = getservbyname("login", "tcp");

if (sp == NULL) {
fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

}

#ifndef DEBUG -
/* Disassociate server from controlling terminal */

#endif
sin.sin_port = sp->s_port; /* Restricted port -- see section 5 */
f = socket(AF_INET, SOCK_STREAM, 0);
1f (bind(f, (struct sockaddr *) &sin, sizeof (sin)) < 0) {

}

listen(f, 5);
for (33) {
int g, len = sizeof (from);

g = accept(f, (struct sockaddr *) &from, &len);
if(g<0){
if (ermo != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;
}
if (fork() == 0) {
close(f);
doit(g, &from);
}
close(g);

Figure 2. Remote login server.

Advanced 4.3BSD IPC Tutorial PS1:8-19

Step two is to disassociate the server from the controlling terminal of its invoker:

for (i =0;i < 3; ++i)
close(i);

open("/", O_RDONLY);
dup2(0, 1);
dup2(0, 2);

i = open("/devitty", O_ RDWRY);
if(i>=0){
ioctl(i, TIOCNOTTY, 0);
close(i);

}

This step is important as the server will likely not want to receive signals delivered to the process group of
the controlling terminal. Note, however, that once a server has disassociated itself it can no longer send
reports of errors to a terminal, and must log errors via syslog.

Once a server has established a pristine environment, it creates a socket and begins accepting service
requests. The bind call is required to insure the server listens at its expected location. It should be noted
that the remote login server listens at a restricted port number, and must therefore be run with a user-id of
root. This concept of a ““restricted port number”’ is 4BSD specific, and is covered in section 5.

The main body of the loop is fairly simple:

for (;3) {
int g, len = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &len);
if (g <0){
if (ermno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;
}
if (fork() == 0) { /* Child */
close(f);
doit(g, &from);
}
close(g); /* Parent */

}

An accept call blocks the server until a client requests service. This call could return a failure status if the
call is interrupted by a signal such as SIGCHLD (to be discussed in section 5). Therefore, the return value
from accept is checked to insure a connection has actually been established, and an error report is logged
via syslog if an error has occurred.

With a connection in hand, the server then forks a child process and invokes the main body of the
remote login protocol processing. Note how the socket used by the parent for queuing connection requests
is closed in the child, while the socket created as a result of the accept is closed in the parent. The address
of the client is also handed the doit routine because it requires it in authenticating clients.

4.2. Clients

The client side of the remote login service was shown earlier in Figure 1. One can see the separate,
asymmetric roles of the client and server clearly in the code. The server is a passive entity, listening for
client connections, while the client process is an active entity, initiating a connection when invoked.

Let us consider more closely the steps taken by the client remote login process. As in the server pro-
cess, the first step is to locate the service definition for a remote login:

PS1:8-20 Advanced 4.3BSD IPC Tutorial

sp = getservbyname("login", "tcp");

if (sp == NULL) {
fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(1);

}

Next the destination host is looked up with a gethostbyname call:
hp = gethostbyname(argv[1]);

if (hp == NULL) {
fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);
exit(2);

}

With this accomplished, all that is required is to establish a connection to the server at the requested host
and start up the remote login protocol. The address buffer is cleared, then filled in with the Internet address
of the foreign host and the port number at which the login process resides on the foreign host:

bzero((char *)&server, sizeof (server));

beopy(hp->h_addr, (char *) &server.sin_addr, hp->h_length);
server.sin_family = hp->h_addrtype;

server.sin_port = sp->s_port;

A socket is created, and a connection initiated. Note that connect implicitly performs a bind call, since s is
unbound.

s = socket(hp->h_addrtype, SOCK_STREAM, 0);

if(s<0){
perror("rlogin: socket");
exit(3);

}

if (connect(s, (struct sockaddr *) &server, sizeof (server)) <0) {
perror("rlogin: connect”);
exit(4);

}

The details of the remote login protocol will not be considered here.

4.3. Connectionless servers

While connection-based services are the norm, some services are based on the use of datagram sock-
ets. One, in particular, is the ‘“‘rwho’’ service which provides users with status information for hosts con-
nected to a local area network. This service, while predicated on the ability to broadcast information to all
hosts connected to a particular network, is of interest as an example usage of datagram sockets.

A user on any machine running the rwho server may find out the current status of a machine with the
ruptime(1) program. The output generated is illustrated in Figure 3.

Status information for each host is periodically broadcast by rwho server processes on each machine.
The same server process also receives the status information and uses it to update a database. This data-
base is then interpreted to generate the status information for each host. Servers operate autonomously,
coupled only by the local network and its broadcast capabilities.

Note that the use of broadcast for such a task is fairly inefficient, as all hosts must process each mes-
sage, whether or not using an rwho server. Unless such a service is sufficiently universal and is frequently
used, the expense of periodic broadcasts outweighs the simplicity.

The rwho server, in a simplified form, is pictured in Figure 4. There are two separate tasks per-
formed by the server. The first task is to act as a receiver of status information broadcast by other hosts on
the network. This job is carried out in the main loop of the program. Packets received at the rwho port are

Advanced 4.3BSD IPC Tutorial PS1:8-21

arpa up 9:45, 5users,load 1.15, 139, 131
cad up 2+12:04, 8 users,load 4.67, 5.13, 4.59
calder up 10:10, Ousers,load 027, 0.15 0.4
dali up 2+06:28, 9 users,load 1.04, 120, 1.65
degas up 25+09:48, Ousers,load 149, 143, 141
ear up 5+00:05, Qusers, load 151, 1.54, 1.56

ernie down 0:24
esvax down 17:04
ingres down 0:26

kim up 3+09:16, 8 users,load 2.03, 246, 3.11
matisse up 3+06:18, Ousers,load 0.03, 0.03, 0.05
medea up 3+09:39, 2users,load 0.35, 037, 0.50
merlin down 19+15:37

miro up 1+07:20, 7 users, load 4.59, 3.28, 2.12
monet up 1+00:43, 2 users, load 022, 0.09, 0.07
oz down 16:09

statvax up 2+15:57, 3 users,load 1.52, 181, 1.86
ucbvax up 9:34, 2 users,load 6.08, S5.16, 3.28

Figure 3. ruptime output.

interrogated to insure they’ve been sent by another rwho server process, then are time stamped with their
arrival time and used to update a file indicating the status of the host. When a host has not been heard from
for an extended period of time, the database interpretation routines assume the host is down and indicate
such on the status reports. This algorithm is prone to error as a server may be down while a host is actually
up, but serves our current needs.

The second task performed by the server is to supply information regarding the status of its host.
This involves periodically acquiring system status information, packaging it up in a message and broadcast-
ing it on the local network for other rwho servers to hear. The supply function is triggered by a timer and
runs off a signal. Locating the system status information is somewhat involved, but uninteresting. Decid-
ing where to transmit the resultant packet is somewhat problematical, however.

Status information must be broadcast on the local network. For networks which do not support the
notion of broadcast another scheme must be used to simulate or replace broadcasting. One possibility is to
enumerate the known neighbors (based on the status messages received from other rwho servers). This,
unfortunately, requires some bootstrapping information, for a server will have no idea what machines are
its neighbors until it receives status messages from them. Therefore, if all machines on a net are freshly
booted, no machine will have any known neighbors and thus never receive, or send, any status information.
This is the identical problem faced by the routing table management process in propagating routing status
information. The standard solution, unsatisfactory as it may be, is to inform one or more servers of known
neighbors and request that they always communicate with these neighbors. If each server has at least one
neighbor supplied to it, status information may then propagate through a neighbor to hosts which are not
(possibly) directly neighbors. If the server is able to support networks which provide a broadcast capabil-
ity, as well as those which do not, then networks with an arbitrary topology may share status information*,

It is important that software operating in a distributed environment not have any site-dependent
information compiled into it. This would require a separate copy of the server at each host and make
maintenance a severe headache. 4.3BSD attempts to isolate host-specific information from applications by
providing system calls which return the necessary information*. A mechanism exists, in the form of an
ioctl call, for finding the collection of networks to which a host is directly connected. Further, a local

* One must, however, be concerned about “‘loops””. That is, if a host is connected to multiple networks, it will receive
status information from itself. This can lead to an endless, wasteful, exchange of information.
* An example of such a system call is the gethostname(2) call which returns the host’s *‘official’’ name.

PS1:8-22 Advanced 4.3BSD IPC Tutorial

main()
{
sp = getservbyname("who", "udp");
net = getnetbyname("localnet");
sin.sin_addr = inet_makeaddr(INADDR_ANY, net);
sin.sin_port = sp->s_port;
s = socket(AF_INET, SOCK_DGRAM, 0);
on=1;
if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on)) < 0) {
syslog(LOG_ERR, "setsockopt SO_BROADCAST: %m");
exit(1);
1
bind(s, (struct sockaddr *) &sin, sizeof (sin));
signal(SIGALRM, onalrm);
onalrm();
for (;;) {
struct whod wd;
int cc, whod, len = sizeof (from);
cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 0,
(struct sockaddr *)&from, &len);
if (cc<=0) {
if (cc < 0 && ermo != EINTR)
syslog(LOG_ERR, "rwhod: recv: %m");
continue;
}
if (from.sin_port != sp->s_port) {
syslog(LOG_ERR, "rwhod: %d: bad from port",
ntohs(from.sin_port));
continue;
}
if (Iverify(wd.wd_hostname)) {
syslog(LOG_ERR, "rwhod: malformed host name from %x",
ntohl(from.sin_addr.s_addr));
continue;
}
(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_hostname);
whod = open(path, O_WRONLY | O_CREAT | O_TRUNC, 0666);
(void) time(&wd.wd_recvtime);
(void) write(whod, (char *)&wd, cc);
4 (void) close(whod);
}
}

Figure 4. rwho server.

Advanced 4.3BSD IPC Tutorial PS1:8-23

network broadcasting mechanism has been implemented at the socket level. Combining these two features
allows a process to broadcast on any directly connected local network which supports the notion of broad-
casting in a site independent manner. This allows 4.3BSD to solve the problem of deciding how to pro-
pagate status information in the case of rwho, or more generally in broadcasting: Such status information

is broadcast to connected networks at the socket level, where the connected networks have been obtained
via the appropriate ioctl calls. The specifics of such broadcastings are complex, however, and will be
covered in section 5.

PS1:8-24 Advanced 4.3BSD IPC Tutorial

5. ADVANCED TOPICS

A number of facilities have yet to be discussed. For most users of the IPC the mechanisms already
described will suffice in constructing distributed applications. However, others will find the need to utilize
some of the features which we consider in this section.

5.1. Out of band data

The stream socket abstraction includes the notion of ‘‘out of band’’ data. Out of band data is a logi-
cally independent transmission channel associated with each pair of connected stream sockets. Out of band
data is delivered to the user independently of normal data. The abstraction defines that the out of band data
facilities must support the reliable delivery of at least one out of band message at a time. This message
may contain at least one byte of data, and at least one message may be pending delivery to the user at any
one time. For communications protocols which support only in-band signaling (i.e. the urgent data is
delivered in sequence with the normal data), the system normally extracts the data from the normal data
stream and stores it separately. This allows users to choose between receiving the urgent data in order and
receiving it out of sequence without having to buffer all the intervening data. It is possible to ‘‘peek’’ (via
MSG_PEEK) at out of band data. If the socket has a process group, a SIGURG signal is generated when
the protocol is notified of its existence. A process can set the process group or process id to be informed by
the SIGURG signal via the appropriate fcnsd call, as described below for SIGIO. If multiple sockets may
have out of band data awaiting delivery, a select call for exceptional conditions may be used to determine
those sockets with such data pending. Neither the signal nor the select indicate the actual arrival of the
out-of-band data, but only notification that it is pending.

In addition to the information passed, a logical mark is placed in the data stream to indicate the point
at which the out of band data was sent. The remote login and remote shell applications use this facility to
propagate signals between client and server processes. When a signal flushs any pending output from the
remote process(es), all data up to the mark in the data stream is discarded.

To send an out of band message the MSG_OOB flag is supplied to a send or sendto calls, while to
receive out of band data MSG_OOB should be indicated when performing a recvfrom or recv call. To find
out if the read pointer is cmrently pointing at the mark in the data stream, the SIOCATMARK ioctl is pro-
vided:

ioctl(s, SIOCATMARK, &yes);

If yes is a 1 on return, the next read will return data after the mark. Otherwise (assuming out of band data
has arrived), the next read will provide data sent by the client prior to transmission of the out of band sig-
nal. The routine used in the remote login process to flush output on receipt of an interrupt or quit signal is
shown in Figure 5. It reads the normal data up to the mark (to discard it), then reads the out-of-band byte.

A process may also read or peek at the out-of-band data without first reading up to the mark. This is
more difficult when the underlying protocol delivers the urgent data in-band with the normal data, and only
sends notification of its presence ahead of time (e.g., the TCP protocol used to implement streams in the
Internet domain). With such protocols, the out-of-band byte may not yet have arrived when a recv is done
with the MSG_OOB flag. In that case, the call will return an error of EWOULDBLOCK. Worse, there
may be enough in-band data in the input buffer that normal flow control prevents the peer from sending the
urgent data until the buffer is cleared. The process must then read enough of the queued data that the
urgent data may be delivered.

Certain programs that use multiple bytes of urgent data and must handle multiple urgent signals (e.g.,
telnet (1C)) need to retain the position of urgent data within the stream. This treatment is available as a
socket-level option, SO_OOBINLINE; see setsockopt(2) for usage. With this option, the position of
urgent data (the * mark”) is retained, but the urgent data immediately follows the mark within the normal
data stream retumed without the MSG_OOB flag. Reception of multiple urgent indications causes the
mark to move, but no out-of-band data are lost.

Advanced 4.3BSD IPC Tutorial PS1:8-25

#include <sys/ioctl.h>
#include <sys/file.h>
o0ob()
{
int out = FWRITE;
char waste[BUFSIZ], mark;
/* flush local terminal output */
ioctl(1, TIOCFLUSH, (char *)&out);
for (;;) {
if (ioctl(rem, SIOCATMARK, &mark) < 0) {
perror("ioctl");
break;
}
if (mark)
break;
(void) read(rem, waste, sizeof (waste));
}
if (recv(rem, &mark, 1, MSG_OOB) < 0) {
perror("recv");

Figure 5. Flushing terminal I/O on receipt of out of band data.

5.2. Non-Blocking Sockets

It is occasionally convenient to make use of sockets which do not block; that is, I/O requests which
cannot complete immediately and would therefore cause the process to be suspended awaiting completion
are not executed, and an error code is returned. Once a socket has been created via the socket call, it may
be marked as non-blocking by fcntl as follows:

#include <fentl.h>
int s;
s = socket(AF_INET, SOCK_STREAM, 0);

if (fentl(s, F_SETFL, FNDELAY) < 0)
perror("fentl F_SETFL, FNDELAY™);
exit(1);

}

When performing non-blocking I/O on sockets, one must be careful to check for the error
EWOULDBLOCK (stored in the global variable errro), which occurs when an operation would normally
block, but the socket it was performed on is marked as non-blocking. In particular, accept, connect, send,
recv, read, and write can all return EWOULDBLOCK, and processes should be prepared to deal with such
return codes. If an operation such as a send cannot be done in its entirety, but partial writes are sensible
(for example, when using a stream socket), the data that can be sent immediately will be processed, and the
return value will indicate the amount actually sent.

PS1:8-26 Advanced 4.3BSD IPC Tutorial

5.3. Interrupt driven socket I/O

The SIGIO signal allows a process to be notified via a signal when a socket (or more generally, a file
descriptor) has data waiting to be read. Use of the SIGIO facility requires three steps: First, the process
must set up a SIGIO signal handler by use of the signal or sigvec calls. Second, it must set the process id
or process group id which is to receive notification of pending input to its own process id, or the process
group id of its process group (note that the default process group of a socket is group zero). This is accom-
plished by use of an fcn#l call. Third, it must enable asynchronous notification of pending I/O requests with
another fentl call. Sample code to allow a given process to receive information on pending /O requests as
they occur for a socket s is given in Figure 6. With the addition of a handler for SIGURG, this code can
also be used to prepare for receipt of SIGURG signals.

#include <fentl.h>

mt io_handler();

siénal(SIGIO, io_handler);

/* Set the process receiving SIGIO/SIGURG signals to us */

if (fentl(s, F_SETOWN, getpid()) < 0) {
perror("fcntt F_SETOWN");
exit(1);

}

/* Allow receipt of asynchronous I/O signals */

if (fentl(s, F_SETFL, FASYNC) < 0) {
perror("fentl F_SETFL, FASYNC");
exit(1);

Figure 6. Use of asynchronous notification of I/O requests.

5.4. Signals and process groups

Due to the existence of the SIGURG and SIGIO signals each socket has an associated process
number, just as is done for terminals. This value is initialized to zero, but may be redefined at a later time
with the F_SETOWN fentl, such as was done in the code above for SIGIO. To set the socket’s process id
for signals, positive arguments should be given to the fcntl call. To set the socket’s process group for sig-
nals, negative arguments should be passed to fcnel. Note that the process number indicates either the asso-
ciated process id or the associated process group; it is impossible to specify both at the same time. A simi-
lar fcntl, F_GETOWN, is available for determining the current process number of a socket.

Another signal which is useful when constructing server processes is SIGCHLD. This signal is
delivered to a process when any child processes have changed state. Normally servers use the signal to
“‘reap’” child processes that have exited without explicitly awaiting their termination or periodic polling for
exit status. For example, the remote login server loop shown in Figure 2 may be augmented as shown in
Figure 7.

If the parent server process fails to reap its children, a large number of ‘‘zombie’’ processes may be
created.

5.5. Pseudo terminals

Many programs will not function properly without a terminal for standard input and output. Since
sockets do not provide the semantics of terminals, it is often necessary to have a process communicating
over the network do so through a pseudo-terminal. A pseudo- terminal is actually a pair of devices, master

Advanced 4.3BSD IPC Tutorial - PS1:8-27

int reaper();

signal(SIGCHLD, reaper);
listen(f, 5);
for (;3) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &len,);
if(g<0){
if (ermo != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;

}

#include <wait.h>
reaper()
{

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)

Figure 7. Use of the SIGCHLD signal.

and slave, which allow a process to serve as an active agent in communication between processes and
users. Data written on the slave side of a pseudo-terminal is supplied as input to a process reading from the
master side, while data written on the master side are processed as terminal input for the slave. In this way,
the process manipulating the master side of the pseudo-terminal has control over the information read and
written on the slave side as if it were manipulating the keyboard and reading the screen on a real terminal.
The purpose of this abstraction is to preserve terminal semantics over a network connection— that is, the
slave side appears as a normal terminal to any process reading from or writing to it.

For example, the remote login server uses pseudo-terminals for remote login sessions. A user log-
ging in to a machine across the network is provided a shell with a slave pseudo-terminal as standard input,
output, and error. The server process then handles the communication between the programs invoked by
the remote shell and the user’s local client process. When a user sends a character that generates an inter-
rupt on the remote machine that flushes terminal output, the pseudo-terminal generates a control message
for the server process. The server then sends an out of band message to the client process to signal a flush
of data at the real terminal and on the intervening data buffered in the network.

Under 4.3BSD, the name of the slave side of a pseudo-terminal is of the form /dev/ttyxy, where x is a
single letter starting at ‘p’ and continuing to ‘t’. y is a hexadecimal digit (i.e., a single character in the
range 0 through 9 or ‘a’ through ‘f’). The master side of a pseudo-terminal is /dev/ptyxy, where x and y
correspond to the slave side of the pseudo-terminal.

In general, the method of obtaining a pair of master and slave pseudo-terminals is to find a pseudo-
terminal which is not currently in use. The master half of a pseudo-terminal is a single-open device; thus,
each master may be opened in turn until an open succeeds. The slave side of the pseudo-terminal is then
opened, and is set to the proper terminal modes if necessary. The process then forks; the child closes the
master side of the pseudo-terminal, and execs the appropriate program. Meanwhile, the parent closes the
slave side of the pseudo-terminal and begins reading and writing from the master side. Sample code mak-
ing use of pseudo-terminals is given in Figure 8; this code assumes that a connection on a socket s exists,
connected to a peer who wants a service of some kind, and that the process has disassociated itself from

PS1:8-28 Advanced 4.3BSD IPC Tutorial

any previous controlling terminal.

gotpty = 0;
for (c = ’p’; !gotpty && ¢ <="§’; c++) {
line = "/dev/ptyXX";
line[sizeof("/dev/pty”)-1] = ¢;
line[sizeof("/dev/ptyp")-1] = °0’;
if (stat(line, &statbuf) < 0)
break;
for(i=0;i<16;i++){
line[sizeof("/dev/ptyp")-1] = "0123456789abcdef"[i];
master = open(line, O_RDWR);

if (master > 0) {
gotpty = 1;
break;
}
}
}
if (!gotpty) {
syslog(LOG_ERR, "All network ports in use”);
exit(1);
}

line[sizeof("/dev/")-1] = 't’;
slave = open(line, O_RDWRY); /* slave is now slave side */

if (slave < 0) { ‘
syslog(LOG_ERR, "Cannot open slave pty %s", line);
exit(1);

}

ioctl(slave, TIOCGETP, &b); /* Set slave tty modes */
b.sg_flags = CRMOD|XTABS|ANYP;
ioctl(slave, TIOCSETP, &b);

i = fork();

ifi<0){
syslog(LOG_ERR, "fork: %m");
exit(1);

Yelseif (i) { /* Parent */
close(slave);

}else { /* Child */

(void) close(s);

(void) close(master);
dup2(slave, 0);
dup2(slave, 1);
dup2(slave, 2);

if (slave > 2)

(void) close(slave);

Figure 8. Creation and use of a pseudo terminal

Advanced 4.3BSD IPC Tutorial PS1:8-29

5.6. Selecting specific protocols

If the third argument to the socket call is 0, socket will select a default protocol to use with the
returned socket of the type requested. The default protocol is usually correct, and alternate choices are not
usually available. However, when using ‘‘raw’’ sockets to communicate directly with lower-level proto-
cols or hardware interfaces, the protocol argument may be important for setting up demultiplexing. For
example, raw sockets in the Internet family may be used to implement a new protocol above IP, and the
socket will receive packets only for the protocol specified. To obtain a particular protocol one determines
the protocol number as defined within the communication domain. For the Internet domain one may use
one of the library routines discussed in section 3, such as getprotobyname:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

PP = getprotobyname("newtcp");
s = socket(AF_INET, SOCK_STREAM, pp->p_proto);

This would result in a socket s using a stream based connection, but with protocol type of ‘‘newtcp’’
instead of the default ‘‘tcp.”’

In the NS domain, the available socket protocols are defined in <netns/ns.h>. To create a raw socket
for Xerox Error Protocol messages, one might use:

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>

s = socket(AF_NS, SOCK_RAW, NSPROTO_ERRORY);

5.7. Address binding

As was mentioned in section 2, binding addresses to sockets in the Internet and NS domains can be
fairly complex. As a brief reminder, these associations are composed of local and foreign addresses, and
local and foreign ports. Port numbers are allocated out of separate spaces, one for each system and one for
each domain on that system. Through the bind system call, a process may specify half of an association,
the <local address, local port> part, while the connect and accept primitives are used to complete a socket’s
association by specifying the <foreign address, foreign port> part. Since the association is created in two
steps the association uniqueness requirement indicated previously could be violated unless care is taken.
Further, it is unrealistic to expect user programs to always know proper values to use for the local address
and local port since a host may reside on multiple networks and the set of allocated port numbers is not
directly accessible to a user.

To simplify local address binding in the Internet domain the notion of a ‘‘wildcard’’ address has
been provided. When an address is specified as INADDR_ANY (a manifest constant defined in
<netinet/in.h>), the system interprets the address as ‘‘any valid address’’. For example, to bind a specific
port number to a socket, but leave the local address unspecified, the following code might be used:

PS1:8-30 Advanced 4.3BSD IPC Tutorial

#include <sys/types.h>
#include <netinet/in.h>

struct sockadds_in sin;

s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);

bind(s, (struct sockaddr *) &sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the specified port number, and
sent to any of the possible addresses assigned to a host. For example, if a host has addresses 128.32.0.4
and 10.0.0.78, and a socket is bound as above, the process will be able to accept connection requests which
are addressed to 128.32.0.4 or 10.0.0.78. If a server process wished to only allow hosts on a given network
connect to it, it would bind the address of the host on the appropriate network.

In a similar fashion, a local port may be left unspecified (specified as zero), in which case the system
will select an appropriate port number for it. This shortcut will work both in the Internet and NS domains.
For example, to bind a specific local address to a socket, but to leave the local port number unspecified:

hp = gethostbyname(hostname);
if (hp == NUI.L) {

}

becopy(hp->h_addr, (char *) sin.sin_addr, hp->h_length);
sin.sin_port = htons(0);

bind(s, (struct sockaddr *) &sin, sizeof (sin));

The system selects the local port number based on two criteria. The first is that on 4BSD systems, Internet
ports below IPPORT_RESERVED (1024) (for the Xerox domain, O through 3000) are reserved for
privileged users (i.e., the super user); Internet ports above IPPORT USERRESERVED (50000) are
reserved for non-privileged servers. The second is that the port number is not currently bound to some
other socket. In order to find a free Internet port number in the privileged range the rresvport library rou-
tine may be used as follows to return a stream socket in with a privileged port number:

int Iport = IPPORT_RESERVED - 1;
ints;
§ = rresvport(&lport);
if(s<0){
if (errno == EAGAIN)
fprintf(stderr, "socket: all ports in use\n");
else
perror("“rresvport: socket");

}

The restriction on allocating ports was done to allow processes executing in a ‘‘secure’’ environment to
perform authentication based on the originating address and port number. For example, the rlogin(1) com-
mand allows users to log in across a network without being asked for a password, if two conditions hold:
First, the name of the system the user is logging in from is in the file /etc/hosts.equiv on the system he is
logging in to (or the system name and the user name are in the user’s .rhosts file in the user’s home direc-
tory), and second, that the user’s rlogin process is coming from a privileged port on the machine from
which he is logging. The port number and network address of the machine from which the user is logging
in can be determined either by the from result of the accept call, or from the getpeername call.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable for an appli-
cation. This is because associations are created in a two step process. For example, the Internet file

Advanced 4.3BSD IPC Tutorial PS1:8-31¢

transfer protocol, FTP, specifies that data connections must always originate from the same local port.
However, duplicate associations are avoided by connecting to different foreign ports. In this situation the
system would disallow binding the same local address and port number to a socket if a previous data
connection’s socket still existed. To override the default port selection algorithm, an option call must be
performed prior to address binding: '

“int on=1;

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
bind(s, (struct sockaddr *) &sin, sizeof (sin));

With the above call, local addresses may be bound which are already in use. This does not violate the
uniqueness requirement as the system still checks at connect time to be sure any other sockets with the
same local address and port do not have the same foreign address and port. If the association already
exists, the error EADDRINUSE is returned.

5.8. Broadcasting and determining network configuration

By using a datagram socket, it is possible to send broadcast packets on many networks supported by
the system. The network itself must support broadcast; the system provides no simulation of broadcast in
software. Broadcast messages can place a high load on a network since they force every host on the net-
work to service them. Consequently, the ability to send broadcast packets has been limited to sockets
which are explicitly marked as allowing broadcasting. Broadcast is typically used for one of two reasons:
it is desired to find a resource on a local network without prior knowledge of its address, or important func-
tions such as routing require that information be sent to all accessible neighbors.

To send a broadcast message, a datagram socket should be created:
s = socket(AF_INET, SOCK_DGRAM, 0);
or '
s = socket(AF_NS, SOCK_DGRAM, 0);
The socket is marked as allowing broadcasting,

int on=1;

setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof (on));
and at least a port number should be bound to the socket:

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);

bind(s, (struct sockaddr *) &sin, sizeof (sin));

or, for the NS domain,

sns.sns_family = AF_NS;

netnum = htonl(net);

sns.sns_addr.x_net = *(union ns_net *) &netnum; /* insert net number */
sns.sns_addr.x_port = htons(MYPORT);

bind(s, (struct sockaddr *) &sns, sizeof (sns));

The destination address of the message to be broadcast depends on the network(s) on which the message is
to be broadcast. The Internet domain supports a shorthand notation for broadcast on the local network, the
address INADDR_BROADCAST (defined in <netinet/in.h>. To determine the list of addresses for all
reachable neighbors requires knowledge of the networks to which the host is connected. Since this infor-
mation should be obtained in a host-independent fashion and may be impossible to derive, 4.3BSD pro-
vides a method of retrieving this information from the system data structures. The SIOCGIFCONF ioctl

PS1:8-32 Advanced 4.3BSD IPC Tutorial

call returns the interface configuration of a host in the form of a single ifconf structure; this structure con-
tains a ‘‘data area’’ which is made up of an array of of ifreq structures, one for each network interface to
which the host is connected. These structures are defined in <net/if.h> as follows:

struct ifconf {
int ifc_len; /* size of associated buffer */
union {
caddr_t ifcu_buf;
struct ifreq *ifcu_req;
} ifc_ifcu;
b
#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc req ifc_ _ifcu. ifcu_ _req /* array of structures returned */

#define IFNAMSIZ 16

struct ifreq {
char ift_name[IFNAMSIZ]; /* if name, e.g. "en0"” */
union {
struct sockaddr ifru_addr;
struct sockaddr ifru_ _dstaddr;
struct sockaddr m“broadaddr
short ifru_flags;
caddr_t ifru_data;
}ifr_ifru;
b

#define ifr_addr ifr_ifru.ifru_addr /* address */

#define ifr dstaddr ifr_ - ifru, 1fru dstaddr /* other end of p-to-p link */
#define ifr_ _broadaddr ifr 1fru1fru broadaddr /* broadcast address */
#define 1fr_ﬂags ifr | ~_ifru. ifru_ _flags /* flags */

#define ifr_data 1fr ifru.ifru_data /* for use by interface */

The actual call which obtains the interface configuration is

struct ifconf ifc;
char buf[BUFSIZ];

ifc.ifc_len = sizeof (buf);
ifc.ifc_buf = buf;
if (ioctl(s, SIOCGIFCONTF, (char *) &ifc) < 0) {

}
After this call buf will contain one ifreq structure for each network to which the host is connected, and
ifc.ifc_len will have been modified to reflect the number of bytes used by the ifreq structures.

For each structure there exists a set of ‘‘interface flags’” which tell whether the network correspond-
ing to that interface is up or down, point to point or broadcast, etc. The SIOCGIFFLAGS ioct! retrieves
these flags for an interface specified by an ifreq structure as follows:

Advanced 4.3BSD IPC Tutorial PS1:8-33

struct ifreq *iff;
ifr = ifc.ifc_req;

for (n = ifc.ifc_len / sizeof (struct ifreq); --n >= 0; ifr++) {

/*
* We must be careful that we don’t use an interface
* devoted to an address family other than those intended;
* if we were interested in NS interfaces, the
* AF_INET would be AF_NS.
*/

if (ifr->ifr_addr.sa_family != AF_INET)

continue;
if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {

}
/*
* Skip boring cases.
*/ .
if ((ifr->ifr_flags & IFF_UP) ==0 |}
(ifr->ifr_flags & IFF_LOOPBACK) ||
(ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTTOPOINT)) == 0)
continue;

Once the flags have been obtained, the broadcast address must be obtained. In the case of broadcast
networks this is done via the SIOCGIFBRDADDR ioctl, while for point-to-point networks the address of
the destination host is obtained with SIOCGIFDSTADDR.

struct sockaddr dst;

if (ifr->ifr_flags & IFF_POINTTOPOINT) {
if (ioctl(s, SIOCGIFDSTADDR, (char *) ifr) < 0) {

}

beopy((char *) ifr->ifr_dstaddr, (char *) &dst, sizeof (ifr->ifr_dstaddr));
} else if (ifr->ifr_flags & IFF_ BROADCAST) {

if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {

1
beopy((char *) ifr->ifr_broadaddr, (char *) &dst, sizeof (ifr->ifr_broadaddr));

}

After the appropriate ioctl’s have obtained the broadcast or destination address (now in dst), the
sendto call may be used:

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof (dst));
}

In the above loop one sendto occurs for every interface to which the host is connected that supports the
notion of broadcast or point-to-point addressing. If a process only wished to send broadcast messages on a
given network, code similar to that outlined above would be used, but the loop would need to find the
correct destination address.

Received broadcast messages contain the senders address and port, as datagram sockets are bound
before a message is allowed to go out.

PS1:8-34 Advanced 4.3BSD IPC Tutorial

5.9. Socket Options

It is possible to set and get a number of options on sockets via the setsockopt and getsockopt system
calls. These options include such things as marking a socket for broadcasting, not to route, to linger on
close, etc. The general forms of the calls are:

setsockopt(s, level, optname, optval, optlen);
and

getsockopt(s, level, optname, optval, optlen);

The parameters to the calls are as follows: s is the socket on which the option is to be applied. Level
specifies the protocol layer on which the option is to be applied; in most cases this is the ‘‘socket level’’,
indicated by the symbolic constant SOL_SOCKET, defined in <sys/socket.h>. The actual option is
specified in optname, and is a symbolic constant also defined in <sys/socket.h>, Optval and Optlen point
to the value of the option (in most cases, whether the option is to be turned on or off), and the length of the
value of the option, respectively. For getsockopt, optlen is a value-result parameter, initially set to the size
of the storage area pointed to by optval, and modified upon return to indicate the actual amount of storage
used.

An example should help clarify things. It is sometimes useful to determine the type (e.g., stream,
datagram, etc.) of an existing socket; programs under inetd (described below) may need to perform this
task. This can be accomplished as follows via the SO_TYPE socket option and the getsockopt call:

#include <sys/types.h>
#include <sys/socket.h>

int type, size;
size = sizeof (int);
if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char *) &type, &size) < 0) {

}

After the getsockopt call, type will be set to the value of the socket type, as defined in <sys/socket.h>. If,
for example, the socket were a datagram socket, type would have the value corresponding to
SOCK_DGRAM.

5.10. NS Packet Sequences

The semantics of NS connections demand that the user both be able to look inside the network
header associated with any incoming packet and be able to specify what should go in certain fields of an
outgoing packet. Using different calls to setsockopt, it is possible to indicate whether prototype headers
will be associated by the user with each outgoing packet (SO_HEADERS_ON_OUTPUT), to indicate
whether the headers received by the system should be delivered to the user (SO_HEADERS_ON_INPUT),
or to indicate default information that should be associated with all outgoing packets on a given socket
(SO_DEFAULT HEADERS).

The contents of a SPP header (minus the IDP header) are:

Advanced 4.3BSD IPC Tutorial PS1:8-35

struct sphdr {
u_char sp_cc; /* connection control */
#define SP_SP 0x80 /* system packet */
#define SP_SA 0x40 /* send acknowledgement */
#define SP_OB 0x20 /* attention (out of band data) */
#define SP_EM 0x10 /* end of message */
u_char sp_dt; /* datastream type */
u_short sp_sid; /* source connection identifier */
u_short sp_did; /* destination connection identifier */
u_short sp_seq; /* sequence number */
u_short sp_ack; I* acknowledge number */
u_short sp_alo; /* allocation number */
b

Here, the items of interest are the datastream type and the connection control fields. The semantics of the
datastream type are defined by the application(s) in question; the value of this field is, by default, zero, but
it can be used to indicate things such as Xerox’s Bulk Data Transfer Protocol (in which case it is set to
one). The connection control field is a mask of the flags defined just below it. The user may set or clear
the end-of-message bit to indicate that a given message is the last of a given substream type, or may
set/clear the attention bit as an alternate way to indicate that a packet should be sent out-of-band. As an
example, to associate prototype headers with outgoing SPP packets, consider:

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>

struct sockaddr_ns sns, to;

ints, on=1;
struct databuf {

struct sphdr proto_spp; /* prototype header */

char buf{534]; /* max. possible data by Xerox std. */
1 buf;

s = socket(AF_NS, SOCK_SEQPACKET, 0);

bind(s, (struct sockaddr *) &sns, sizeof (sns));
setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_OUTPUT, &on, sizeof(on));

buf.proto_spp.sp_dt = 1;/* bulk data */

buf.proto_spp.sp_cc = SP_EM; /* end-of-message */

strcpy(buf.buf, "hello world\n");

sendto(s, (char *) &buf, sizeof(struct sphdr) + strlen("hello world\n"),
(struct sockaddr *) &to, sizeof(to));

Note that one must be careful when writing headers; if the prototype header is not written with the data
with which it is to be associated, the kernel will treat the first few bytes of the data as the header, with
unpredictable results. To turn off the above association, and to indicate that packet headers received by the
system should be passed up to the user, one might use:

PS1:8-36 Advanced 4.3BSD IPC Tutorial

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>

struct sockaddr sns;
ints,on=1, off = 0;

s = socket(AF_NS, SOCK_SEQPACKET, 0);
bind(s, (struct sockaddr *) &sns, sizeof (sns));

setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_OUTPUT, &off, sizeof(off));
setsockopt(s, NSPROTO_SPP, SO_HEADERS ON_INPUT, &on, sizeof(on));

Output is handled somewhat differently in the IDP world. The header of an IDP-level packet looks

like:

struct idp {
u_short idp_sum; /* Checksum */
u_short idp_len; /* Length, in bytes, including header */
u_char idp_tc; /* Transport Control (i.e., hop count) */
u_char idp_pt; /* Packet Type (i.e., level 2 protocol) */
struci ns_addr idp_dna; /* Destination Network Address */
struct ns_addr idp_sna; /* Source Network Address */

b

The primary field of interest in an IDP header is the packet type field. The standard values for this field are
(as defined in <netns/ns.h>): ’

#define NSPROTO_RI 1 /* Routing Information */
#define NSPROTO_ECHO 2 /* Echo Protocol */
#define NSPROTO_ERROR 3 /* Error Protocol */
#define NSPROTO_PE 4 /* Packet Exchange */
#define NSPROTO_SPP 5 /* Sequenced Packet */

For SPP connections, the contents of this field are automatically set to NSPROTO_SPP; for IDP packets,
this value defaults to zero, which means ‘‘unknown’’.

Setting the value of that field with SO_DEFAULT_HEADERS is easy:

Advanced 4.3BSD IPC Tutorial PS1:8-37

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/idp.h>

struct sockaddr sns;
struct idp proto_idp; /* prototype header */
ints,on=1;

s = socket(AF_NS, SOCK_DGRAM, 0);

bind(s, (struct sockaddr *) &sns, sizeof (sns));

proto_idp.idp_pt = NSPROTO_PE; /* packet exchange */

setsockopt(s, NSPROTO_IDP, SO_DEFAULT_HEADERS, (char *) &proto_idp,
sizeof(proto_idp));

Using SO_HEADERS ON_OUTPUT is somewhat more difficult. When
SO_HEADERS_ON_OUTPUT is turned on for an IDP socket, the socket becomes (for all intents and pur-
poses) a raw socket. In this case, all the fields of the prototype header (except the length and checksum
fields, which are computed by the kernel) must be filled in correctly in order for the socket to send and
receive data in a sensible manner. To be more specific, the source address must be set to that of the host
sending the data; the destination address must be set to that of the host for whom the data is intended; the
packet type must be set to whatever value is desired; and the hopcount must be set to some reasonable
value (almost always zero). It should also be noted that simply sending data using write will not work
unless a connect or sendto call is used, in spite of the fact that it is the destination address in the prototype
header that is used, not the one given in either of those calls. For almost all IDP applications , using
SO_DEFAULT_HEADERS is easier and more desirable than writing headers.

5.11. Three-way Handshake

The semantics of SPP connections indicates that a three-way handshake, involving changes in the
datastream type, should — but is not absolutely required to — take place before a SPP connection is
closed. Almost all SPP connections are ‘‘well-behaved’’ in this manner; when communicating with any
process, it is best to assume that the three-way handshake is required unless it is known for certain that it is
not required. In a three-way close, the closing process indicates that it wishes to close the connection by
sending a zero-length packet with end-of-message set and with datastream type 254. The other side of the
connection indicates that it is OK to close by sending a zero-length packet with end-of-message set and
datastream type 255. Finally, the closing process replies with a zero-length packet with substream type
255; at this point, the connection is considered closed. The following code fragments are simplified exam-
ples of how one might handle this three-way handshake at the user level; in the future, support for this type
of close will probably be provided as part of the C library or as part of the kernel. The first code fragment
below illustrates how a process might handle three-way handshake if it sees that the process it is communi-
cating with wants to close the connection:

PS1:8-38

Advanced 4.3BSD IPC Tutorial

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>

#ifndef SPPSST_END

#define SPPSST_END 254
#define SPPSST_ENDREPLY 255
#endif

struct sphdr proto_sp;

ints;

read(s, buf, BUFSIZE);
if (((struct sphdr *)buf)->sp_dt == SPPSST_END) {

* :
* SPPSST_END indicates that the other side wants to
* close.
*/
proto_sp.sp_dt = SPPSST_ENDREPLY;
proto_sp.sp_cc = SP_EM;
setsockopy(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp,
sizeof(proto_sp));
write(s, buf, 0);
/*
* Write a zero-length packet with datastream type = SPPSST_ENDREPLY
* to indicate that the close is OK with us. The packet that we
* don’t see (because we don’t look for it) is another packet
* from the other side of the connection, with SPPSST_ENDREPLY
* on it it, too. Once that packet is sent, the connection is
* considered closed; note that we really ought to retransmit
* the close for some time if we do not get a reply.
*/
close(s);

To indicate to another process that we would like to close the connection, the following code would suffice:

Advanced 4.3BSD IPC Tutorial PS1:8-39

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>

#ifndef SPPSST_END

#define SPPSST_END 254
#define SPPSST_ENDREPLY 255
#endif

struct sphdr proto_sp;

ints;

proto_sp.sp_dt = SPPSST_END;

proto_sp.sp_cc = SP_EM;

setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp,
sizeof(proto_sp));

write(s, buf, 0); /* send the end request */

proto_sp.sp_dt = SPPSST_ENDREPLY;

setsockopt(s, NSPROTO_SPP, SO_DEFAULT HEADERS, (char *)&proto_sp,
sizeof(proto_sp));

/*

* We assume (perhaps unwisely)

* that the other side will send the

* ENDREPLY, so we’ll just send our final ENDREPLY

* as if we’d seen theirs already.

*/

write(s, buf, 0);

close(s);

5.12. Packet Exchange -

The Xerox standard protocols include a protocol that is both reliable and datagram-oriented. This
protocol is known as Packet Exchange (PEX or PE) and, like SPP, is layered on top of IDP. PEX is impor-
tant for a number of things: Courier remote procedure calls may be expedited through the use of PEX, and
many Xerox servers are located by doing a PEX ‘‘BroadcastForServers’’ operation. Although there is no
implementation of PEX in the kernel, it may be sifmulated at the user level with some clever coding and the
use of one peculiar getsockopt. A PEX packet looks like:

/*
* The packet-exchange header shown here is not defined
* as part of any of the system include files.

*/

struct pex {
structidp p_idp; /* idp header */
u_short ph_id[2]; /* unique transaction ID for pex */
u_short ph_client; * client type field for pex */

b

The ph_id field is used to hold a ‘‘unique id”’ that is used in duplicate suppression; the ph_client field indi-
cates the PEX client type (similar to the packet type field in the IDP header). PEX reliability stems from
the fact that it is an idempotent (‘I send a packet to you, you send a packet to me’”) protocol. Processes on
each side of the connection may use the unique id to determine if they have seen a given packet before (the
unique id field differs on each packet sent) so that duplicates may be detected, and to indicate which mes-
sage a given packet is in response to. If a packet with a given unique id is sent and no response is received

PS1:8-40 Advanced 4.3BSD IPC Tutorial

in a given amount of time, the packet is retransmitted until it is decided that no response will ever be
received. To simulate PEX, one must be able to generate unique ids -- something that is hard to do at the
user level with any real guarantee that the id is really unique. Therefore, a means (via getsockopt) has been
provided for getting unique ids from the kernel. The following code fragment indicates how to get a
unique id:

long uniqueid;
int s, idsize = sizeof(uniqueid);

s = socket(AF_NS, SOCK_DGRAM, 0);

/* get id from the kernel -- only on IDP sockets */
getsockopt(s, NSPROTO_PE, SO_SEQNO, (char *)&uniqueid, &idsize);

The retransmission and duplicate suppression code required to simulate PEX fully is left as an exercise for
the reader.

5.13. Inetd

One of the daemons provided with 4.3BSD is inetd, the so called ‘‘internet super-server.’”’ Inetd is
invoked at boot time, and determines from the file /etc/inetd.conf the servers for which it is to listen. Once
this information has been read and a pristine environment created, inetd proceeds to create one socket for
each service it is to listen for, binding the appropriate port number to each socket.

Inetd then performs a select on all these sockets for read availability, waiting for somebody wishing
a connection to the service corresponding to that socket. Inetd then performs an accept on the socket in
question, forks, dups the new socket to file descriptors 0 and 1 (stdin and stdout), closes other open file
descriptors, and execs the appropriate server.

Servers making use of inetd are considerably simplified, as inetd takes care of the majority of the IPC .
work required in establishing a connection. The server invoked by inetd expects the socket connected to its
client on file descriptors 0 and 1, and may immediately perform any operations such as read, write, send, or
recv. Indeed, servers may use buffered I/O as provided by the ‘‘stdio’’ conventions, as long as as they
remember to use fflush when appropriate.

One call which may be of interest to individuals writing servers under inetd is the getpeername call,
which returns the address of the peer (process) connected on the other end of the socket. For example, to
log the Internet address in ‘‘dot notation’’ (e.g., ‘128.32.0.4°") of a client connected to a server under
inetd, the following code might be used:

struct sockaddr_in name;
int namelen = sizeof (name);

if (getpeername(0, (struct sockaddr *)&name, &namelen) < 0) {
syslog(LOG_ERR, "getpeername: %m");
exit(1);

} else
syslog(LOG_INFO, "Connection from %s", inet_ntoa(name.sin_addr));

While the getpeername call is especially useful when writing programs to run with iretd, it can be used
under other circumstances. Be warned, however, that getpeername will fail on UNIX domain sockets.

Lint, a C Program Checker

S. C. Johnson

ABSTRACT

Lint is a command which examines C source programs, detecting a number of
bugs and obscurities. It enforces the type rules of C more strictly than the C compilers.
It may also be used to enforce a number of portability restrictions involved in moving
programs between different machines and/or operating systems. Another option detects a
number of wasteful, or error prone, constructions which nevertheless are, strictly speak-
ing, legal.

Lint accepts multiple input files and library specifications, and checks them for
consistency.

The separation of function between lint and the C compilers has both historical
and practical rationale. The compilers turn C programs into executable files rapidly and
efficiently. This is possible in part because the compilers do not do sophisticated type
checking, especially between separately compiled programs. Lint takes a more global,
leisurely view of the program, looking much more carefully at the compatibilities.

This document discusses the use of lint, gives an overview of the implementation,
and gives some hints on the writing of machine independent C code.

Introduction and Usage

Suppose there are two C Kernighan Ritchie Programming Prentice 1978 source files, filel.c and
file2.c, which are ordinarily compiled and loaded together. Then the command

lint filel.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs. The program enforces
the typing rules of C more strictly than the C compilers (for both historical and practical reasons) enforce
them. The command

lint —p filelc file2.c

will produce, in addition to the above messages, additional messages which relate to the portability of the
programs to other operating systems and machines. Replacing the —p by —h will produce messages about
various error-prone or wasteful constructions which, strictly speaking, are not bugs. Saying —-hp gets the
whole works.

The next several sections describe the major messages; the document closes with sections discussing
the implementation and giving suggestions for writing portable C. An appendix gives a summary of the
lint options.

A Word About Philosophy

Many of the facts which lint needs may be impossible to discover. For example, whether a given
function in a program ever gets called may depend on the input data. Deciding whether exit is ever called
is equivalent to solving the famous *‘halting problem,’’ known to be recursively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it can never be
called. If a function is mentioned, lint assumes it can be called; this is not necessarily so, but in practice is

PS1:9-2 Lint, a C Program Checker

quite reasonable.

Line tries to give information with a high degree of relevance. Messages of the form ‘‘xxx might be
abug’’ are easy to generate, but are acceptable only in proportion to the fraction of real bugs they uncover.
If this fraction of real bugs is too small, the messages lose their credibility and serve merely to clutter up
the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of messages which lint
produces.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to functions may
become unused; it is not uncommon for external variables, or even entire functions, to become unneces-
sary, and yet not be removed from the source. These ‘‘errors of commission’’ rarely cause working pro-
grams to fail, but they are a source of inefficiency, and make programs harder to understand and change.
Moreover, information about such unused variables and functions can occasionally serve to discover bugs;
if a function does a necessary job, and is never called, something is wrong!

Lint complains about variables and functions which are defined but not otherwise mentioned. An
exception is variables which are declared through explicit extern statements but are never referenced; thus
the statement

extern float sin();

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C compiler. In
some cases, these unused external declarations might be of some interest; they can be discovered by adding
the —x flag io the /ini invocation.

Certain styles of programming require many functions to be written with similar interfaces; fre-
quently, some of the arguments may be unused in many of the calls. The —v option is available to suppress
the printing of complaints about unused arguments. When —v is in effect, no messages are produced about
unused arguments except for those arguments which are unused and also declared as register arguments;
this can be considered an active (and preventable) waste of the register resources of the machine.

There is one case where information about unused, or undefined, variables is more distracting than
helpful. This is when Zint is applied to some, but not all, files out of a collection which are to be loaded
together. In this case, many of the functions and variables defined may not be used, and, conversely, many
functions and variables defined elsewhere may be used. The —u flag may be used to suppress the spurious
messages which might otherwise appear.

Set/Used Information

Lint attempts to detect cases where a variable is used before it is set. This is very difficult to do well;
many algorithms take a good deal of time and space, and still produce messages about perfectly valid pro-
grams. Lint detects local variables (automatic and register storage classes) whose first use appears physi-
cally earlier in the input file than the first assignment to the variable. It assumes that taking the address of a
variable constitutes a ‘‘use,”’ since the actual use may occur at any later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very simple
and quick to implement, since the true flow of control need not be discovered. It does mean that lint can
complain about some programs which are legal, but these programs would probably be considered bad on
stylistic grounds (e.g. might contain at least two goto’s). Because static and external variables are initial-
ized to 0, no meaningful information can be discovered about their uses. The algorithm deals correctly,
however, with initialized automatic variables, and variables which are used in the expression which first
sets them.

The set/used information also permits recognition of those local variables which are set and never
used; these form a frequent source of inefficiencies, and may also be symptomatic of bugs.

Lint, a C Program Checker PS1:9-3

Flow of Control

Lint attempts to detect unreachable portions of the programs which it processes. It will complain
about unlabeled statements immediately following goto, break, continue, or return statements. An
attempt is made to detect loops which can never be left at the bottom, detecting the special cases while(1)
and for(;;) as infinite loops. Lint also complains about loops which cannot be entered at the top; some
valid programs may have such loops, but at best they are bad style, at worst bugs.

Lint has an important area of blindness in the flow of control algorithm: it has no way of detecting
functions which are called and never return. Thus, a call to exir may cause unreachable code which lint
does not detect; the most serious effects of this are in the determination of returned function values (see the
next section).

One form of unreachable statement is not usually complained about by l/int; a break statement that -
cannot be reached causes no message. Programs generated by yacc, Johnson Yacc 1975 and especially
lex, Lesk Lex may have literally hundreds of unreachable break statements. The —O flag in the C com-
piler will often eliminate the resulting object code inefficiency. Thus, these unreached statements are of lit-
tle importance, there is typically nothing the user can do about them, and the resulting messages would
clutter up the lint output. If these messages are desired, lint can be invoked with the —b option.

Function Values

Sometimes functions return values which are never used; sometimes programs incorrectly use func-
tion ‘‘values’’ which have never been retumed. Lint addresses this problem in a number of ways.

Locally, within a function definition, the appearance of both
return(expr);
and
return ;
statements is cause for alarm; lint will give the message
function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of control reach-
ing the end of the function. This can be seen with a simple example:

f(a){
if (a)return (3);
%();

Notice that, if a tests false, f will call g and then return with no defined return value; this will trigger a com-
plaint from lint. If g, like exit, never returns, the message will still be produced when in fact nothing is
wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also accounts for a
substantial fraction of the ‘‘noise’’ messages produced by lint.

On a global scale, lint detects cases where a function returns a value, but this value is sometimes, or
always, unused. When the value is always unused, it may constitute an inefficiency in the function
definition. When the value is sometimes unused, it may represent bad style (e.g., not testing for error con-
ditions).

The dual problem, using a function value when the function does not return one, is also detected.
This is a serious problem. Amazingly, this bug has been observed on a couple of occasions in ‘‘working’’
programs; the desired function value just happened to have been computed in the function return register!

PS1:9-4 Lint, a C Program Checker

Type Checking

Lint enforces the type checking rules of C more strictly than the compilers do. The additional check-
ing is in four major areas: across certain binary operators and implied assignments, at the structure selec-
tion operators, between the definition and uses of functions, and in the use of enumerations.

There are a number of operators which have an implied balancing between types of the operands.
The assignment, conditional (?:), and relational operators have this property; the argument of a return
statement, and expressions used in initialization also suffer similar conversions. In these operations, char,
short, int, long, unsigned, float, and double types may be freely intermixed. The types of pointers must
agree exactly, except that arrays of x’s can, of course, be intermixed with pointers to x’s.

The type checking rules also require that, in structure references, the left operand of the —> be a
pointer to structure, the left operand of the . be a structure, and the right operand of these operators be a
member of the structure implied by the left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types float and double may
be freely matched, as may the types char, short, int, and unsigned. Also, pointers can be matched with
the associated arrays. Aside from this, all actual arguments must agree in type with their declared counter-
parts.

With enumerations, checks are made that enumeration variables or members are not mixed with
other types, or other enumerations, and that the only operations applied are =, initialization, ==, !=, and
function arguments and return values.

Type Casts

The type cast feature in C was iniroduced largely as an aid to producing more portabie programs.
Consider the assignment

p=1;
where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment
p = (char *)1 ;

in which a cast has been used to convert the integer to a character pointer. The programmer obviously had
a strong motivation for doing this, and has clearly signaled his intentions. It seems harsh for lint to con-
tinue to complain about this. On the other hand, if this code is moved to another machine, such code
should be looked at carefully. The —c flag controls the printing of comments about casts. When —c¢ is in
effect, casts are treated as though they were assignments subject to complaint; otherwise, all legal casts are
passed without comment, no matter how strange the type mixing seems to be.

Nonportable Character Use

On the PDP-11, characters are signed quantities, with a range from —128 to 127. On most of the
other C implementations, characters take on only positive values. Thus, lint will flag certain comparisons
and assignments as being illegal or nonportable. For example, the fragment

char c;

if((¢ =mgetchar(N<0)...

works on the PDP-11, but will fail on machines where characters always take on positive values. The real
solution is to declare ¢ an integer, since getchar is actually returning integer values. In any case, lint will
say ‘‘nonportable character comparison’’.

A similar issue arises with bitfields; when assignments of constant values are made to bitfields, the
field may be too small to hold the value. This is especially true because on some machines bitfields are
considered as signed quantities. While it may seem unintuitive to consider that a two bit field declared of
type int cannot hold the value 3, the problem disappears if the bitfield is declared to have type unsigned.

Lint, a C Program Checker PS1:9-5

Assignments of longs to ints

Bugs may arise from the assignment of long to an int, which loses accuracy. This may happen in
programs which have been incompletely converted to use typedefs. When a typedef variable is changed
from int to long, the program can stop working because some intermediate results may be assigned to ints,
losing accuracy. Since there are a number of legitimate reasons for assigning longs to ints, the detection of
these assignments is enabled by the —a flag.

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are flagged by lint; the messages hope-
fully encourage better code quality, clearer style, and may even point out bugs. The —h flag is used to
enable these checks. For example, in the statement

Pt ;
the * does nothing; this provokes the message ‘‘null effect’’ from lint. The program fragment

unsigned x ;
if(x<0)..

is clearly somewhat strange; the test will never succeed. Similarly, the test
if(x>0)...

is equivalent to
if(x!=0)

which may not be the intended action. Lint will say ‘‘degenerate unsigned comparison’” in these cases. If
one says

if(1!=0) ...
lint will report “‘constant in conditional context’’, since the comparison of 1 with O gives a constant result.

Another construction detected by lint involves operator precedence. Bugs which arise from
misunderstandings about the precedence of operators can be accentuated by spacing and formatting, mak-
ing such bugs extremely hard to find. For example, the statements

if(x&077==0)...
or
x<2 +40

probably do not do what was intended. The best solution is to parenthesize such expressions, and lint
encourages this by an appropriate message.

Finally, when the -h flag is in force /int complains about variables which are redeclared in inner
blocks in a way that conflicts with their use in outer blocks. This is legal, but is considered by many
(including the author) to be bad style, usually unnecessary, and frequently a bug.

Ancient History

There are several forms of older syntax which are being officially discouraged. These fall into two
classes, assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =—, . . .) could cause ambiguous expressions,
such as

a=1;
which could be taken as either
a=—1;

or

PS1:9-6 Lint, a C Program Checker

a=-1;

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro substitution.
The newer, and preferred operators (+=, —=, etc.) have no such ambiguities. To spur the abandonment of
the older forms, lint complains about these old fashioned operators.

A similar issue arises with initialization. The older language allowed
int x 1;
to initialize x to 1. This also caused syntactic difficulties: for example,
int x (-1);
looks somewhat like the beginning of a function declaration:

int x (y){ ...

and the compiler must read a fair ways past x in order to sure what the declaration really is.. Again, the
problem is even more perplexing when the initializer involves a macro. The current syntax places an
equals sign between the variable and the initializer;

int x = -1;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonabie on some machines, and illegal on others, due entirely
to alignment restrictions. For example, on the PDP-11, it is reasonable to assign integer pointers to double
pointers, since double precision values may begin on any integer boundary. On the Honeywell 6000, dou-
ble precision values must begin on even word boundaries; thus, not all such assignments make sense. Lint
tries to detect cases where pointers are assigned to other pointers, and such alignment problems might arise.
The message ‘‘possible pointer alignment problem’’ results from this situation whenever either the —p or
~h flags are in effect.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be highly
machine dependent. For example, on machines (like the PDP-11) in which the stack runs backwards, func-
tion arguments will probably be best evaluated from right-to-left; on machines with a stack running for-
ward, left-to-right seems most attractive. Function calls embedded as arguments of other functions may or
may not be treated similarly to ordinary arguments. Similar issues arise with other operators which have
side effects, such as the assignment operators and the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the C language
leaves the order of evaluation of complicated expressions up to the local compiler, and, in fact, the various
C compilers have considerable differences in the order in which they will evaluate complicated expres-
sions. In particular, if any variable is changed by a side effect, and also used elsewhere in the same expres-
sion, the result is explicitly undefined.

Lint checks for the important special case where a simple scalar variable is affected. For example,
the statement

afi] = bli++] ;
will draw the complaint:

warning: i evaluation order undefined

Lint, a C Program Checker PS1:9-7

Implementation

Lint consists of two programs and a driver. The first program is a version of the Portable C Com-
piler Johnson Ritchie BSTJ Portability Programs System Johnson portable compiler 1978 which is the
basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C compilers. This compiler does lexical and
syntax analysis on the input text, constructs and maintains symbol tables, and builds trees for expressions.
Instead of writing an intermediate file which is passed to a code generator, as the other compilers do, lint
produces an intermediate file which consists of lines of ascii text. Each line contains an external variable
name, an encoding of the context in which it was seen (use, definition, declaration, etc.), a type specifier,
and a source file name and line number. The information about variables local to a function or file is col-
lected by accessing the symbol table, and examining the expression trees.

Comments about local problems are produced as detected. The information about external names is
collected onto an intermediate file. After all the source files and library descriptions have been collected,
the intermediate file is sorted to bring all information collected about a given external name together. The
second, rather small, program then reads the lines from the intermediate file and compares all of the
definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options available to both
passes of lint.

Portability

C on the Honeywell and IBM systems is used, in part, to write system code for the host operating
system. This means that the implementation of C tends to follow local conventions rather than adhere
strictly to UNIXT system conventions. Despite these differences, many C programs have been successfully
moved to GCOS and the various IBM installations with little effort. This section describes some of the
differences between the implementations, and discusses the lint features which encourage portability.

Uninitialized external variables are treated differently in different implementations of C. Suppose
two files both contain a declaration without initialization, such as

inta;
outside of any function. The UNIX loader will resolve these declarations, and cause only a single word of
storage to be set aside for a. Under the GCOS and IBM implementations, this is not feasible (for various
stupid reasons!) so each such declaration causes a word of storage to be set aside and called a. When

loading or library editing takes place, this causes fatal conflicts which prevent the proper operation of the
program. If lint is invoked with the —p flag, it will detect such multiple definitions.

A related difficulty comes from the amount of information retained about external names during the
loading process. On the UNIX system, externally known names have seven significant characters, with the
upper/lower case distinction kept. On the IBM systems, there are eight significant characters, but the case
distinction is lost. On GCOS, there are only six characters, of a single case. This leads to situations where
programs run on the UNIX system, but encounter loader problems on the IBM or GCOS systems. Lint —p
causes all external symbols to be mapped to one case and truncated to six characters, providing a worst-
case analysis.

A number of differences arise in the area of character handling: characters in the UNIX system are
eight bit ascii, while they are eight bit ebcdic on the IBM, and nine bit ascii on GCOS. Moreover, charac-
ter strings go from high to low bit positions (‘‘left to right’”) on GCOS and IBM, and low to high (*‘right to
left’’) on the PDP-11. This means that code attempting to construct strings out of character constants, or
attempting to use characters as indices into arrays, must be looked at with great suspicion. Lint is of little
help here, except to flag multi-character character constants.

Of course, the word sizes are different! This causes less trouble than might be expected, at least
when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36 bits). The main
problems are likely to arise in shifting or masking. C now supports a bit-field facility, which can be used to

t UNIX is a trademark of Bell Laboratories.

PS1:9-8 Lint, a C Program Checker

write much of this code in a reasonably portable way. Frequently, portability of such code can be
enhanced by slight rearrangements in coding style. Many of the incompatibilities seem to have the flavor
of writing

x &= 0177700 ;

to clear the low order six bits of x. This suffices on the PDP-11, but fails badly on GCOS and IBM. If the
bit field feature cannot be used, the same effect can be obtained by writing

x&=~077;
which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-11, and logical shift on most other machines.
To obtain a logical shift on all machines, the left operand can be typed unsigned. Characters are con-
sidered signed integers on the PDP-11, and unsigned on the other machines. This persistence of the sign
bit may be reasonably considered a bug in the PDP-11 hardware which has infiltrated itself into the C
language. If there were a good way to discover the programs which would be affected, C could be
changed; in any case, lint is no help here.

The above discussion may have made the probiem of portability seem bigger than it in fact is. The
issues involved here are rarely subtle or mysterious, at least to the implementor of the program, although
they can involve some work to straighten out. The most serious bar to the portability of UNIX system utili-
ties has been the inability to mimic essential UNIX system functions on the other systems. The inability to
seek to a random character position in a text file, or to establish a pipe between processes, has involved far
more rewriting and debugging than any of the differences in C compilers. On the other hand, lint has been
very helpful in moving the UNIX operating system and associated utility programs to other machines.

Shutting Lint Up

There are occasions when the programmer is smarter than lint. There may be valid reasons for
‘“illegal’’ type casts, functions with a variable number of arguments, etc. Moreover, as specified above, the
flow of control information produced by /int often has blind spots, causing occasional spurious messages
about perfectly reasonable programs. Thus, some way of communicating with lint, typically to shut it up,
is desirable.

The form which this mechanism should take is not at all clear. New keywords would require current
and old compilers to recognize these keywords, if only to ignore them. This has both philosophical and
practical problems. New preprocessor syntax suffers from similar problems.

What was finally done was to cause a number of words to be recognized by lint when they were
embedded in comments. This required minimal preprocessor changes; the preprocessor just had to agree to
pass comments through to its output, instead of deleting them as had been previously done. Thus, lint
directives are invisible to the compilers, and the effect on systems with the older preprocessors is merely
that the lint directives don’t work.

The first directive is concerned with flow of control information; if a particular place in the program
cannot be reached, but this is not apparent to lint, this can be asserted by the directive

/* NOTREACHED */

at the appropriate spot in the program. Similarly, if it is desired to turn off strict type checking for the next
expression, the directive

/* NOSTRICT */

can be used; the situation reverts to the previous default after the next expression. The —v flag can be
turned on for one function by the directive

/* ARGSUSED */

Complaints about variable number of arguments in calls to a function can be turned off by the directive

Lint, a C Program Checker PS1:9-9

/* VARARGS */

preceding the function definition. In some cases, it is desirable to check the first several arguments, and
leave the later arguments unchecked. This can be done by following the VARARGS keyword immediately
with a digit giving the number of arguments which should be checked; thus,

/* VARARGS?2 ¥/
will cause the first two arguments to be checked, the others unchecked. Finally, the directive
/* LINTLIBRARY */
at the head of a file identifies this file as a library declaration file; this topic is worth a section by itself.

Library Declaration Files
Lint accepts certain library directives, such as

_ly

and tests the source files for compatibility with these libraries. This is done by accessing library descrip-
tion files whose names are constructed from the library directives. These files all begin with the directive

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts of these definitions are the
declaration of the function return type, whether the dummy function returns a value, and the number and
types of arguments to the function. The VARARGS and ARGSUSED directives can be used to specify
features of the library functions.

Lint library files are processed almost exactly like ordinary source files. The only difference is that
functions which are defined on a library file, but are not used on a source file, draw no complaints. Lint
does not simulate a full library search algorithm, and complains if the source files contain a redefinition of
a library routine (this is a feature!).

By default, lint checks the programs it is given against a standard library file, which contains
descriptions of the programs which are normally loaded when a C program is run. When the -p flag is in
effect, another file is checked containing descriptions of the standard VO library routines which are
expected to be portable across various machines. The -n flag can be used to suppress all library checking.

Bugs, etc.

Lint was a difficult program to write, partially because it is closely connected with matters of pro-
gramming style, and partially because users usually don’t notice bugs which cause lint to miss errors which
it should have caught. (By contrast, if lint incorrectly complains about something that is correct, the pro-
grammer reports that immediately!)

A number of areas remain to be further developed. The checking of structures and arrays is rather
inadequate; size incompatibilities go unchecked, and no attempt is made to match up structure and union
declarations across files. Some stricter checking of the use of the typedef is clearly desirable, but what
checking is appropriate, and how to carry it out, is still to be determined.

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for a special
version of the preprocessor to be constructed which checks for things such as unused macro definitions,
macro arguments which have side effects which are not expanded at all, or are expanded more than once,
etc.

The central problem with lint is the packaging of the information which it collects. There are many
options which serve only to turn off, or slightly modify, certain features. There are pressures to add even
more of these options.

In conclusion, it appears that the general notion of having two programs is a good one. The compiler
concentrates on quickly and accurately turning the program text into bits which can be run; lint concen-
trates on issues of portability, style, and efficiency. Lint can afford to be wrong, since incorrectness and

PS1:9-10 Lint, a C Program Checker

over-conservatism are merely annoying, not fatal. The compiler can be fast since it knows that lint will
cover its flanks. Finally, the programmer can concentrate at one stage of the programming process solely
on the algorithms, data structures, and correctness of the program, and then later retrofit, with the aid of
lint, the desirable properties of universality and portability. $LIST$

Lint, a C Program Checker

Appendix: Current Lint Options
The command currently has the form

lint [~options] files... library-descriptors...

The options are

Perform heuristic checks

Perform portability checks

Don’t report unused arguments

Don’t report unused or undefined externals
Report unreachable break statements.
Report unused external declarations

Complain about questionable casts
No library checking is done
Same as h (for historical reasons)

v o3 6 M TE <4

Report assignments of long to int or shorter.

PS1:9-11

A Tutorial Introduction to ADB

J. F. Maranzano
S.R. Bourne

ABSTRACT

Debugging tools generally provide a wealth of information about the inner work-
ings of programs. These tools have been available on UNIXT to allow users to examine
*‘core’” files that result from aborted programs. A new debugging program, ADB, pro-
vides enhanced capabilities to examine "core" and other program files in a variety of for-
mats, run programs with embedded breakpoints and patch files.

ADB is an indispensable but complex tool for debugging crashed systems and/or
programs. This document provides an introduction to ADB with examples of its use. It
explains the various formatting options, techniques for debugging C programs, examples
of printing file system information and patching.

1. Introduction

ADB is a new debugging program that is available on UNIX. It provides capabilities to look at
‘*‘core” files resulting from aborted programs, print output in a variety of formats, patch files, and run pro-
grams with embedded breakpoints. This document provides examples of the more useful features of ADB.
The reader is expected to be familiar with the basic commands on UNIX with the C language, and with
References 1,2 and 3.

2. A Quick Survey

2.1. Invocation
ADB is invoked as:
adb obfjfile corefile
where objfile is an executable UNIX file and corefile is a core image file. Many times this will look like:
adb a.out core
or more simply:
adb
yvhere the defaults are a.out and core respectively. The filename minus (—) means ignore this argument as
in:
adb — core

ADB has requests for examining locations in either file. The ? request examines the contents of
objfile, the / request examines the corefile. The general form of these requests is:

address ? format

f UNIX is a trademark of Bell Laboratories.

PS1:10-2 A Tutorial Introduction to ADB

or

address / format

2.2. Current Address

ADB maintains a current address, called dot, similar in function to the current pointer in the UNIX
editor. When an address is entered, the current address is set to that location, so that:

01262
sets dot to octal 126 and prints the instruction at that address. The request:
»10/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the last item printed.
When used with the ? or / requests, the current address can be advanced by typing newline; it can be decre-
mented by typing “.

Addresses are represented by expressions. Expressions are made up from decimal, octal, and hexa-
decimal integers, and symbols from the program under test. These may be combined with the operators +,
—, *, % (integer division), & (bitwise and), | (bitwise inclusive or), # (round up to the next multiple), and ~
(not). (All arithmetic within ADB is 32 bits.) When typing a symbolic address for a C program, the user
can type name or _name; ADB will recognize both forms.

2.3. Formats

To print data, a user specifies a collection of letters and characters that describe the format of the
printout. Formats are "remembered” in the sense that typing a request without one will cause the new prin-
tout to appear in the previous format. The following are the most commonly used format letters.

g

one byte in octal

one byte as a character

one word in octal

one word in decimal

two words in floating point
PDP 11 instruction

a null terminated character string
the value of dot

one word as unsigned integer
print a newline

print a blank space

backup dot

L - I R I L N - W I]

(Format letters are also available for "long" values, for example, ‘D’ for long decimal, and ‘F’ for double
floating point.) For other formats see the ADB manual.

2.4. General Request Meanings
The general form of a request is:

address,count command modifier

which sets ‘dot’ to address and executes the command count times.
The following table illustrates some general ADB command meanings:

Command Meaning

? Print contents from a.out file
/ Print contents from core file
= Print value of "dot"

: Breakpoint control

$ Miscellaneous requests

A Tutorial Introduction to ADB PS1:10-3

Request separator
Escape to shell

e we

ADB catches signals, 50 a user cannot use a quit signal to exit from ADB. The request $q or $Q (or
cntl-D) must be used to exit from ADB.

3. Debugging C Programs

3.1. Debugging A Core Image

Consider the C program in Figure 1. The program is used to illustrate a common error made by C
programmers. The object of the program is to change the lower case "t" to upper case in the string pointed
to by charp and then write the character string to the file indicated by argument 1. The bug shown is that
the character "T" is stored in the pointer charp instead of the string pointed to by charp. Executing the pro-
gram produces a core file because of an out of bounds memory reference.

ADB is invoked by:
adb a.out core
The first debugging request:

$c

is used to give a C backtrace through the subroutines called. As shown in Figure 2 only one function
(main) was called and the arguments argc and argv have octal values 02 and 0177762 respectively. Both
of these values look reasonable; 02 = two arguments, 0177762 = address on stack of parameter vector.

The next request:

$C

is used to give a C backtrace plus an interpretation of all the local variables in each function and their
values in octal. The value of the variable cc looks incorrect since cc was declared as a character.

The next request:
$r
Qrints out the registers including the program counter and an interpretation of the instruction at that loca-
tion.
The request:

$e

prints out the values of all external variables.

A map exists for each file handled by ADB. The map for the a.out file is referenced by ? whereas
the map for core file is referenced by /. Furthermore, a good rule of thumb is to use ? for instructions and /
for data when looking at programs. To print out information about the maps type:

$m

This produces a report of the contents of the maps. More about these maps later.
In our example, it is useful to see the contents of the string pointed to by charp. This is done by:

*charp/s

which says use charp as a pointer in the core file and print the information as a character string. This prin-
tout clearly shows that the character buffer was incorrectly overwritten and helps identify the error. Print-
ing the locations around charp shows that the buffer is unchanged but that the pointer is destroyed. Using
ADB similarly, we could print information about the arguments to a function. The request:

main.argc/d

prints the decimal core image value of the argument argc in the function main.

PS1:104] A Tutorial Introduction to ADB

The request:
*main.argv,3/0

prints the octal values of the three consecutive cells pointed to by argv in the function main. Note that
these values are the addresses of the arguments to main. Therefore: '

0177770/s
prints the ASCII value of the first argument. Another way to print this value would have been
*/s

The " means ditto which remembers the last address typed, in this case main.argc ; the * instructs ADB to
use the address field of the core file as a pointer.
The request:
~0

prints the current address (not its contents) in octal which has been set to the address of the first argument.
The current address, dot, is used by ADB to "remember” its current location. It allows the user to reference
locations relative to the current address, for example:

~10/d

3.2. Multiple Functions

Consider the C program illustrated in Figure 3. This program calls functions f, g, and 4 until the
stack is exhausted and a core image is produced. ‘

Again you can enter the debugger via:
adb

which assumes the names q.out and core for the executable file and core image file respectively. The
request:

$c

will fill a page of backtrace references to f, g, and h. Figure 4 shows an abbreviated list (typing DEL will
terminate the output and bring you back to ADB request level).

The request:
»5$C
prints the five most recent activations.
Notice that each function (f,g,k) has a counter of the number of times it was called.
" The request:
fent/d

prints the decimal value of the counter for the function f. Similarly gcnt and hcnt could be printed. To
print the value of an automatic variable, for example the decimal value of x in the last call of the function A,
type:

hx/d

It is currently not possible in the exported version to print stack frames other than the most recent activa-
tion of a function. Therefore, a user can print everything with $C or the occurrence of a variable in the
most recent call of a function. It is possible with the $C request, however, to print the stack frame starting
at some address as address$C.

A Tutorial Introduction to ADB PS1:10-5

3.3. Setting Breakpoints

Consider the C program in Figure 5. This program, which changes tabs into blanks, is adapted from
Software Tools by Kernighan and Plauger, pp. 18-27.

We will run this program under the control of ADB (see Figure 6a) by:
adb a.out -
Breakpoints are set in the program as:
address:b [request]
The requests:

settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b

set breakpoints at the start of these functions. C does not generate statement labels. Therefore it is
currently not possible to plant breakpoints at locations other than function entry points without a
knowledge of the code generated by the C compiler. The above addresses are entered as symbol+4 so that
they will appear in any C backtrace since the first instruction of each function is a call to the C save routine
(csv). Note that some of the functions are from the C library.

To print the location of breakpoints one types:
$b

The display indicates a count field. A breakpoint is bypassed count —I times before causing a stop. The
command field indicates the ADB requests to be executed each time the breakpoint is encountered. In our
example no command fields are present.

By displaying the original instructions at the function seztab we see that the breakpoint is set after the
jsr to the C save routine. We can display the instructions using the ADB request:

settab,5?ia

This request displays five instructions starting at settab with the addresses of each location displayed.
Another variation is:

settab,52i
which displays the instructions with only the starting address.

Notice that we accessed the addresses from the a.out file with the ? command. In general when ask-
ing for a printout of multiple items, ADB will advance the current address the number of bytes necessary to
satisfy the request; in the above example five instructions were displayed and the current address was
advanced 18 (decimal) bytes.

To run the program one simply types:
H
To delete a breakpoint, for instance the entry to the function settab, one types:
settab+4:d
To continue execution of the program from the breakpoint type:
¢

Once the program has stopped (in this case at the breakpoint for fopern), ADB requests can be used to
display the contents of memory. For example:

$C
to display a stack trace, or:

PS1:10-6 A Tutorial Introduction to ADB

tabs,3/80
to print three lines of 8 locations each from the array called fabs. By this time (at location fopen) in the C
program, settab has been called and should have set a one in every eighth location of tabs.

3.4. Advanced Breakpoint Usage
We continue execution of the program with:

C

See Figure 6b. Getc is called three times and the contents of the variable ¢ in the function main are
displayed each time. The single character on the left hand edge is the output from the C program. On the
third occurrence of getc the program stops. We can look at the full buffer of characters by typing:

ibuf+6/20c
When we continue the program with:
w©c
we hit our first breakpoint at tabpos since there is a tab following the "This" word of the data.

Several breakpoints of tabpos will occur until the program has changed the tab into equivalent
blanks. Since we feel that tabpos is working, we can remove the breakpoint at that location by:

tabpos+4:d
If the program is continued with:
Hd
it resumes normal execution after ADB prints the message

a.out:running

The UNIX quit and interrupt signals act on ADB itself rather than on the program being debugged.
If such a signal occurs then the program being debugged is stopped and control is returned to ADB. The
signal is saved by ADB and is passed on to the test program if:

H

is typed. This can be useful when testing interrupt handling routines. The signal is not passed on to the test
program if:

0
is typed.

Now let us reset the breakpoint at setrab and display the instructions located there when we reach the
breakpoint. This is accomplished by:

settab+4:b settab,5?ia *

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only stop after the
third occurrence by typing:

getc+4,3:b main.c?C *

This request will print the local variable ¢ in the function main at each occurrence of the breakpoint. The

* Owing to a bug in early versions of ADB (including the version distributed in Generic 3 UNIX) these statements must be
written as:

settab+4:b settab,5%ia;0
getc+4,3:bmain.c?C;0
settab+4:b settab,5%la; ptab/o;0

Note that ;0 will set dot to zero and stop at the breakpoint.

A Tutorial Introduction to ADB PS1:10-7

semicolon is used to separate multiple ADB requests on a single line,
Warning: setting a breakpoint causes the value of dot to be changed; executing the program under
ADB does not change dot. Therefore:

settab+4:b .,57ia
fopen+4:b

will print the 1ast thing dot was set to (in the example fopen+4) not the current location (settab+4) at which
the program is executing.
A breakpoint can be overwritten without first deleting the old breakpoint. For example:
settab+4:b settab,5?ia; ptab/o *

could be entered after typing the above requests.
Now the display of breakpoints:

$b

shows the above request for the settab breakpoint. When the breakpoint at settab is encountered the ADB
requests are executed. Note that the location at setzab+4 has been changed to plant the breakpoint; all the
other locations match their original value.

Using the functions, f, g and 4 shown in Figure 3, we can follow the execution of each function by
planting non-stopping breakpoints. We call ADB with the executable program of Figure 3 as follows:

adb ex3 -
Suppose we enter the following breakpoints:

h+4:b hent/d; h.hi/; hohr/
g+d:b gent/d; g.gi/; g.gr/
f+4:b fent/d; f.6/; f.0r/
r

Each request line indicates that the variables are printed in decimal (by the spec1ﬁcat10n d). Since the for-
mat is not changed, the d can be left off all but the first request.

The output in Figure 7 illustrates two points. First, the ADB requests in the breakpoint line are not
examined until the program under test is run. That means any errors in those ADB requests is not detected
until run time. At the location of the error ADB stops running the program.

The second point is the way ADB handles register variables. ADB uses the symbol table to address

variables. Reglswr variables, like f.fr above, have pomters to uninitialized places on the stack. Therefore
the message "symbol not found".

Another way of getting at the data in this example is to print the variables used in the call as:
f+4:b fent/d; fa/; £.b/; 1.6/

g+d:b gent/d; g.p/; g.q/; g.gV
¢
The operator / was used instead of ? to read values from the core file. The output for each function, as

shown in Figure 7, has the same format. For the function f, for example, it shows the name and value of
the external variable fcnt. It also shows the address on the stack and value of the variables a, b and fi.

Notice that the addresses on the stack will continue to decrease until no address space is left for pro-
gram execution at which time (after many pages of output) the program under test aborts. A display with
names would be produced by requests like the following:

f+4:b fent/d; f.a/"a="d; f.b/"b="d; f.fi/"fi="d

In this format the quoted string is printed literally and the d produces a decimal display of the variables.
The results are shown in Figure 7.

PS1:10-8 A Tutorial Introduction to ADB

3.5. Other Breakpoint Facilities
e Arguments and change of standard input and output are passed to a program as:
:r argl arg2 ... <infile >outfile

This request kills any existing program under test and starts the a.ous afresh.
e The program being debugged can be single stepped by:
K
If necessary, this request will start up the program being debugged and stop after executing the first
instruction.
e ADB allows a program to be entered at a specific address by typing:

address:r

e The count field can be used to skip the first # breakpoints as:
J:r
The request:
sl:C

may also be used for skipping the first » breakpoints when continuing a program.

e A program can be continued at an address different from the breakpoint by:
address:c .

e The program being debugged runs as a separate process and can be killed by:
k

4. Maps

UNIX supports several executable file formats. These are used to tell the loader how to load the
program file. File type 407 is the most common and is generated by a C compiler invocation such as cc
pgm.c. A 410 file is produced by a C compiler command of the form cc -n pgm.c, whereas a 411 file is
produced by cc -i pgm.c. ADB interprets these different file formats and provides access to the different
segments through a set of maps (see Figure 8). To print the maps type:

$m

In 407 files, both text (instructions) and data are intermixed. This makes it impossible for ADB to
differentiate data from instructions and some of the printed symbolic addresses look incorrect; for example,
printing data addresses as offsets from routines.

In 410 files (shared text), the instructions are separated from data and ?* accesses the data part of the
a.out file. The ?* request tells ADB to use the second part of the map in the a.out file. Accessing data in
the core file shows the data after it was modified by the execution of the program. Notice also that the data
segment may have grown during program execution.

In 411 files (separated I & D space), the instructions and data are also separated. However, in this
case, since data is mapped through a separate set of segmentation registers, the base of the data segment is
also relative to address zero. In this case since the addresses overlap it is necessary to use the ?* operator
to access the data space of the a.out file. In both 410 and 411 files the corresponding core file does not con-
tain the program text.

Figure 9 shows the display of three maps for the same program linked as a 407, 410, 411 respec-
tively. The b, e, and f fields are used by ADB to map addresses into file addresses. The "f1" field is the
length of the header at the beginning of the file (020 bytes for an a.out file and 02000 bytes for a core file).

A Tutorial Introduction to ADB PS1:10-9

The "f2" field is the displacement from the beginning of the file to the data. For a 407 file with mixed text
and data this is the same as the length of the header; for 410 and 411 files this is the length of the header
plus the size of the text portion.

The "b" and "e" fields are the starting and ending locations for a segment. Given an address, A, the
location in the file (either a.out or core) is calculated as:

bl<A<el > file address = (A-b1)+f1
b2<A<e? s file address = (A-b2)+f2

A user can access locations by using the ADB defined variables. The $v request prints the variables initial-
ized by ADB:

b base address of data segment
d length of the data segment

s length of the stack

t length of the text

m execution type (407,410,411)

In Figure 9 those variables not present are zero. Use can be made of these variables by expressions
such as:

<b
in the address field. Similarly the value of the variable can be changed by an assignment request such as:
02000>b

that sets b to octal 2000. These variables are useful to know if the file under examination is an executable
or core image file.

ADB reads the header of the core image file to find the values for these variables. If the second file
specified does not seem to be a core file, or if it is missing then the header of the executable file is used
instead.

5. Advanced Usage

It is possible with ADB to combine formatting requests to provide elaborate displays. Below are
several examples.

5.1. Formatted dump
The line:

<b,~1/404"8Cn

prints 4 octal words followed by their ASCII interpretation from the data space of the core image file. Bro-
ken down, the various request pieces mean:

<b The base address of the data segment.

<b,~1 Print from the base address to the end of file. A negative count is used here
and elsewhere to loop indefinitely or until some error condition (like end of
file) is detected.

The format 404"8Cn is broken down as follows:
40 Print 4 octal locations.
4" Backup the current address 4 locations (to the original start of the ﬁeld).

8C Print 8 consecutive characters using an escape convention; each character in

PS1:10-10 A Tutorial Introduction to ADB

the range 0 to 037 is printed as @ followed by the corresponding character
in the range 0140 to 0177. An @ is printed as @@.

n Print a newline.
The request:
<b,<d/404°8Cn

could have been used instead to allow the printing to stop at the end of the data segment (<d provides the
data segment size in bytes).

The formatting requests can be combined with ADB’s ability to read in a script to produce a core
image dump script. ADB is invoked as:
adb a.out core < dump
to read in a script file, dump, of requests. An example of such a script is:

1208w
4095%s

=3n"C Stack Backtrace"
$C

=3n"C External Variables"
Se

=3n"Registers"

$r

0$s

=3n"Data Segment"
<b,~1/8ona

The request 120$w sets the width of the output to 120 characters (normally, the width is 80 charac-
ters). ADB attempts to print addresses as:

symbol + offset

The request 4095%s increases the maximum permissible offset to the nearest symbolic address from 255
(default) to 4095. The request = can be used to print literal strings. Thus, headings are provided in this
dump program with requests of the form:

=3n"C Stack Backtrace"

that spaces three lines and prints the literal string. The request $v prints all non-zero ADB variables (see
Figure 8). The request 0$s sets the maximum offset for symbol matches to zero thus suppressing the print-
ing of symbolic labels in favor of octal values. Note that this is only done for the printing of the data seg-
ment. The request:

<b,~1/80na

prints a dump from the base of the data segment to the end of file with an octal address field and eight octal
numbers per line.

Figure 11 shows the results of some formatting requests on the C program of Figure 10.

5.2. Directory Dump

As another illustration (Figure 12) consider a set of requests to dump the contents of a directory
(which is made up of an integer inumber followed by a 14 character name):

adb dir -

A Tutorial Introduction to ADB PS1:10-11

=n8t"Inum" 8t"Name"
0,-1? uStldcn

In this example, the u prints the inumber as an unsigned decimal integer, the 8t means that ADB will space
to the next multiple of 8 on the output line, and the 14c¢ prints the 14 character file name.

5.3. Ilist Dump

Similarly the contents of the ilist of a file system, (e.g. /dev/src, on UNIX systems distributed by the
UNIX Support Group; see UNIX Programmer’s Manual Section V) could be dumped with the following
set of requests:

adb /dev/src —

02000>b

?m <b

<b,~1?"flags" 8ton"links,uid,gid" 8t3bn" size" 8tbrdn" addr" 8§t8un" times" 8t2Y2na

In this example the value of the base for the map was changed to 02000 (by saying ?m<b) since that is the
start of an ilist within a file system. An artifice (brd above) was used to print the 24 bit size field as a byte,
a space, and a decimal integer. The last access time and last modify time are printed with the 2Y operator.
Figure 12 shows portions of these requests as applied to a directory and file system.

5.4. Converting values
ADB may be used to convert values from one representation to another. For example:
072 = odx
will print
072 58 #3a

which is the octal, decimal and hexadecimal representations of 072 (octal). The format is remembered so
that typing subsequent numbers will print them in the given formats. Character values may be converted
similarly, for example:

’a’ =co
* prints
a 0141
It may also be used to evaluate expressions but be warned that all binary operators have the same pre-
cedence which is lower than that for unary operators.

6. Patching

Patching files with ADB is accomplished with the write, w or W, request (which is not like the ed
editor write command). This is often used in conjunction with the locate, 1 or L request. In general, the
request syntax for 1 and w are similar as follows:

1 value

The request 1 is used to match on two bytes, L is used for four bytes. The request w is used to write two
bytes, whereas W writes four bytes. The value field in either locate or write requests is an expression.
Therefore, decimal and octal numbers, or character strings are supported.

In order to modify a file, ADB must be called as:
adb ~w filel file2

When called with this option, filel and file2 are created if necessary and opened for both reading and writ-
ing.

PS1:10-12 A Tutorial Introduction to ADB

For example, consider the C program shown in Figure 10. We can change the word "This" to "The "
in the executable file for this program, ex7, by using the following requests:

adb —w ex7 ~
?1°Th?
?W °The’
The request 21 starts at dot and stops at the first match of "Th" having set dot to the address of the location
found. Note the use of ? to write to the a.out file. The form ?* would have been used for a 411 file.
More frequently the request will be typed as:
21°Th’; ?s
and locates the first occurrence of "Th" and print the entire string. Execution of this ADB request will set
dot to the address of the "Th" characters.
As another example of the utility of the patching facility, consider a C program that has an internal
logic flag. The flag could be set by the user through ADB and the program run. For example:

adb a.out —
ss argl arg2
flag/w 1

H

The :s request is normally used to single step through a process or start a process in single step mode. In
this case it starts a.out as a subprocess with arguments argl and arg2. If there is a subprocess running
ADB writes to it rather than to the file so the w request causes flag to be changed in the memory of the sub-
process.

7. Anomalies
Below is a list of some strange things that users should be aware of.

1. Function calls and arguments are put on the stack by the C save routine. Putting breakpoints at the
entry point to routines means that the function appears not to have been called when the breakpoint
- occurs.

2. When printing addresses, ADB uses either text or data symbols from the a.out file. This sometimes
causes unexpected symbol names to be printed with data (e.g. savr5+022). This does not happen if ?
is used for text (instructions) and / for data.

3. ADB cannot handle C register variables in the most recently activated function.

8. Acknowledgements

The authors are grateful for the thoughtful comments on how to organize this document from R. B.
Brandt, E. N. Pinson and B. A. Tague. D. M. Ritchie made the system changes necessary to accommodate
tracing within ADB. He also participated in discussions during the writing of ADB. His earlier work with
DB and CDB led to many of the features found in ADB.

References

9.
1. D.M.Ritchie and K. Thompson, ‘‘The UNIX Time-Sharing System,’’ CACM, July, 1974.
2. B.W.Kemighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

3 K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual - 7th Edition, 1978.
4 B. W. Kemighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

A Tutorial Introduction to ADB

Figure 1: C program with pointer bug

struct buf {
int fildes;
int nleft;
char *nextp;
char buff[512];
}bb;

struct buf *obuf;

char *charp "this is a sentence.";

main(argc,argv)
int argc;
Char **argv;
-{
char cc;
if(arge < 2) {
printf("Input file missing\n");
exit(8);
}

if((fcreat(argv[1],obuf)) < 0){
printf("%s : not found\n", argv{1]);
exit(8);

}

charp = T";

printf("debug 1 %s\n",charp);

while(cc= *charp++)-
putc(cc,obuf);

fflush(obuf);

PS1:10-13

PS1:10-14

Figure 2: ADB output for C program of Figure 1

adb a.out core
$c
“main(02,0177762)
$C
“main(02,0177762)
argc: 02
argv: 0177762
cc: 02124 .
$r
ps 0170010
pc 0204 “main+0152
sp 0177740
5 0177752
r4 01
3 0
2 0
rl 0
10 0124
“main+0152: mov _obuf,(sp)
$e
savr5: 0
_obuf: 0
_charp: 0124
_ermo: 0
_fout: 0
$m
text map ‘exl1’ _
bl1=0 - el =02360
b2 =0 e2 =02360
datamap ‘“corel’
bl=0 el =03500
b2 = 0175400 e2 = 0200000
*charp/s

0124: TITTTITIIITITTIT T I T TTITITITEITTITTTTTTTTLX

charp/s
_charp: T

_charp+02: this is a sentence.

_charp+026: Input file missing
main.arge/d
0177756: 2
*main.argv/3o
0177762: 0177770 0177776 0177777
0177770/s

0177770: a.oyt

*main.argv/3o

0177762: 0177770 0177776 0177777
e /s

0177770: a.out

=0

0177770
~10/d
0177756: 2

$q

A Tutorial Introduction to ADB

f1 = 02000

2 = 05500

Nh@x & _

A Tutorial Introduction to ADB

Figure 3: Multiple function C program for stack trace illustration

int
h(x,y)
{

FA4: X))

f(a,b)

fent,gent,hent;

int hi; register int hr;
hi = x+1;

hr = x-y+1;

hent++ ;

hj:

f(hr,hi);

int gi; register int gr;
gi=q-p;
8r=q-p+l;

gent++ ;

gi:

h(gr.gi);

int fi; register int fr;
fi = a+2*b;

fr = a+b;

fent++ ;

fj:

g(fr.fi);

f(1,1);

PS1:10-15

PS1:10-16

adb
$c
“h(04452,04451)
“g(04453,011124)
~f(02,04451)
“h(04450,04447)
“g(04451,011120)
“£(02,04447)
“h(04446,04445)
“g(04447,011114)
“(02,04445)
“h(04444,04443)
HIT DEL KEY
adb
S$C
“h(04452,04451)

X2

y:

hi:
“g(04453,011124)

P

a

gi:

gr:
~£(02,04451)
a:
b:
fis
fr:
“h(04450,04447)
X:
y:
hi:
hr
“g(04451,011120)
p:
a
gi:
gr:
fent/d
_fent:
gent/d
_gent:
hent/d
_hent:
hx/d
022004:

Figure 4: ADB output for C program of Figure 3

04452
04451

04453
011124

04451
?

02
04451
011124
04453

04450
04447
04451
02
04451
011120
04447
04450
1173
1173
1172

2346

A Tutorial Introduction to ADB

A Tutorial Introduction to ADB

Figure 5: C program to decode tabs

#define MAXLINE 80
#define YES 1
#define NO 0
#define TABSP 8
char input(] "data";
char ibuf[518];
int tabsfMAXLINE];
main()
{
int col, *ptab;
charc;
ptab = tabs;
settab(ptab); /*Set initial tab stops */
col=1;
if(fopen(input,ibuf) < 0) {
printf("%s : not found\n",input);
exit(8);
}
while((c = getc(ibuf)) != -1) {
switch(c) {
case \t: /* TAB %/
while(tabpos(col) != YES) {
putchar(’ *);
col++
}
break;
case \n": /*NEWLINE */
putchar(\n");
col=1;
break;
default:
putchar(c);
col++;
}
}
}
/* Tabpos return YES if col is a tab stop */
tabpos(col)
int col;
{
if(col > MAXLINE)
return(YES);
else
return(tabs[col]);
}
/* Settab - Set initial tab stops */
settab(tabp)
int *tabp;
{
int i;

for(i = 0; i<= MAXLINE; i++)

(i%TABSP) ? (tabs[i] = NO) : (tabs[i] = YES);

/* put BLANK */

PS1:10-17

PS1:10-18 A Tutorial Introduction to ADB

Figure 6a: ADB output for C program of Figure 5

adb a.out -
settab+4:b
fopen+4:b
getc+4:h
tabpos+4:b
$b
breakpoints
count bkpt command
1 “tabpos+04
1 _getc+04
1 _fopen+04
1 “settab+04
settab,5?ia
“settab: jsr 15,csv
“settab+04: tst —(sp)
“settab+06: clr 0177770(15)
“settab+012: cmp $0120,0177770(r5)
“settab+020: blt “settab+076
“settab+022:
settab,5?1
“settab: jsr 15,c8v
tst ~(sp)
clr 0177770(15)
cmp $0120,0177770(15)
blt “settab+076
r
a.out: running
breakpoint “settab+04: tst ~(sp)
settab+4:d
¢
a.out: running
breakpoint _fopen+04: mov 04(r5),nulstr+012
$C
_fopen(02302,02472)
“main(01,0177770)
col: 01
c: 0
ptab: 03500
tabs,3/80
03500: 01 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0

A Tutorial Introduction to ADB PS1:10-19

Figure 6b: ADB output for C program of Figure §

HY

a.out: running

breakpoint _getc+04: mov 04(r5),r1
ibuf+6/20¢

__cleanu+0202: This is atest of

:c
a.out: running

breakpoint “tabpos+04: cmp $0120,04(r5)
tabpos+4:d

settab+4:b settab,5?ia

settab+4:b settab,5?ia; 0

getc+4,3:b main.c?C; 0

settab+4:b settab,5?ia; ptab/o; 0

$b

breakpoints

count bkpt command

1 “tabpos+04

3 _getc+04 main.c?C;0

1 _fopen+04

1 “settab+04 settab,5 fia;ptab?0;0
“settab: jsr 5,csv

“settab+04: bpt

“settab+06: clr 0177770(r5)
“settab+012: cmp $0120,0177770(15)
“settab+020: blt “settab+076
“settab+022:

0177766: 0177770

0177744: @

TO177744:

i0177744:

T
h0177744: h
i
s0177744: S

PS1:10-20

Figure 7: ADB output for C program with breakpoints

adb ex3 -

h+4:b hent/d; h.hif; hohr/
g+4:b gent/d; g.gl/; g.er/
f+4:b fent/d; £.6/; £.6r/

r

ex3: running

_fent: 0

0177732: 214

symbol not found

f+4:b fent/d; f.a/; £.b/; 1.6/
g+4:b gent/d; g.p/; g.o/; g.gl/
h+4:b hent/d; h.x/; h.y/; h.hi/
HY

ex3: running

_fent: 0

0177746: 1

0177750: 1

0177732; 214

_gent: 0

0177726: 2

0177730: 3

0177712: 214

_hent: 0

0177706: 2

0177710: 1

0177672: 214

_fent: 1

0177666: 2

0177670: 3

0177652: 214

_sgeat: 1

0177646: 5

0177650: 8

0177632: 214

HIT DEL

f+4:b fent/d; f.a/"a = "d; £.b/"b = "d; 1.6/ fi = "d
g+4:b gent/d; g.p/p = "d; g.q/"q = *d; g.gi/"gi
h+4:b hent/d; h.x/"x = "d; h.y/*h = "d; h.hi/"hi = "d

r
ex3: running
_fent:
0177746:
0177750:
0177732:
_gent:
0177726:
0177730:
0177712:
_hent:
0177706:
0177710:
0177672:
_fent:
0177666:
0177670:
0177652:
HIT DEL

$q

0
am]
b=1
fi =214
0

p=2
q=3
gi=214
0

X=2
y=1
hi = 214

a=2
b=3
fi=214

A Tutorial Introduction to ADB

A Tutorial Introduction to ADB PS1:10-21
Figure 8: ADB address maps
407 files
a.out hdr text+data
I | |
0 D
core hdr text+data stack
| |
0 D
410 files (shared text)
a.out hdr text data
I | |
0 T B
core hdr data stack
| \ |
B D S
411 files (separated I and D space)
a.out hdr text data
I | I
0 T O
core hdr data stack
| '\ |
0 D S
The following adb variables are set.
407 410 411
b