
;.· '

: 'I> .' ~

. . ·. . ..•.. -- ,,::;>. (~.... . .
UNI·x Programmer's ··Re·fetence· Manual.·,.

. . .. (PRM)'.i·)t;· >· ~

·. .~f "1' / .:~ ·:· ·. ·~ ·.• ·<· . .
4.3 Berkeley\gof(wire Di~tribu#on . = ,

490.l4S Rev. l> ·· · . . · · . :,,'~ · ... :
"'".,'. \..:·

. . . ·.

; . :· ··.:

.. December 19S8

Integrated Solutibn.s;· ·
1140 RingwoOd Court .
San Jose·, CA 95J31 ·

(408) 943-19oi

., .

' ' ' ~ . \~~

--:. ·· ... ··"" .
· ~, . -~.:: \:

'';":

r: r ~ '· .

. .. ,,."-:i,,,,,,, . ..& ..

. .) :• ,.,~. '
':'1' ,.,.1 •

• ' • "~ f,

.,,
' I ~ I

Ji.:·

.. ~: ~ '

·.: ·,1 ~ '..~;:,·:~;:;¢:opypg~i:.'.i9..7~.::')'.980~~~ i9s3:···'I9S6~··-r9g7: T988' Regents' of the
. .. ~:· '.,''.µ~tye~~~, .. of, califomii ··p~rn1iSsfon"t()"'copy)liest(cfociifuents or any·
:T:'':.f·~rtion .. thereof as ... iiecessacy'.tor''Hcenseifuse of]he "soTtWate'is grahted
. .. to.jicens,ees ·~f--tbis'"soti\f&e:·~·provided thfs"' copyfighCilotictf and

st.a~~en·~~~, .. 'miission'artirit'fudeil>'·,.,.... '!_'• "

'''· •··> '' ·•'••'V~'"'•••<e·.'.. '""~·-•·;•·,.,.~.· , '..';::;:" ·•••"<·>•H,,o.••.',.,.,,

.,,,• P, 11>~ it""'~"'4'-f1J-"J"tl.r:J" : •••• :",:-1<"'':,.:r~~: ,"' ~ ;.,· ... ~•~·
... ._.~" · .. · .. · ·:;; 't' ;;·~,·~·t· · ~·: .. :. ,·~·~-:1· .. :·; ... ;~ }~""'" ''.f'.. · .··--rr.;

1
i... .· . ¥ •

. 1 .: .. copytj.ght · 1~79, A.t8l.T ·B~iI. liifurafurle8~ ·1ncorporatect:'"Holders «>f
:···.: -'~'.QNixr~/~.iY,?'~i~~m.·;u~ ois'ystem v 'softWare'iice1ises are permitted

', '~""'•'W•, '"'•ftl• ... t>o~;·~-~'," ·~:' '1~*''° ~··,~·.•f.f-..,.>t•'•t•~">', ,'·••I.· ... ~",•'%•\' • •ij·ot •0-t•"I

1·::tP·.~QllY.Jh~ ... Q.oCum~nts, or any portion of them, 'as necessary for
ti<;~n~<t, .. M~.·,..q{'. ~~~·-.·. ~(i~~e,· ''P!ovided. ·.iliis···· copyngfif ''tio'tice and ~\1
suitemem i\~f ~rmissioii.are 'm~milid.': " ... ' '•'' ''

''..,.,i"':· ~:.· _,;' ,, ;/~.~.o;',:·'· " ' {"~"·¥ ~~." ~.,t> .• .' ,. ,1.,+r:i-t .. "t\+.:,,;·!"t.)""t.t-:~~;~~.,..-:~:·~ .. ::.;,. :if:.8"f>t"'r·~.\~p 't&>f-,..1'~~'>·

. ~, .,, ,,."' , .. ,. :.~n::\: \ .1{: ;1:;3_.ro~:~.~~·~:~ .. ~~;,~ ... ~:",'.·.-.-.~"I).".·.··:·.'.".,._.~.· .. · .. ··••,,.••· ~.·.·~.·."·.~·.·.".,· .• ~~ ;.~· .• ·',· .. _'~~- ~ ~ .. ~"' "'~ ... :. ,"'rt~ .. ~11 •. ,,..,,,. 1.~ {;:.· :t:. ~, . ., ... ~'"';<i.~.··-.ft.• .• ~ · ··~., ";;·~-~·- ,,,_ ,•

........... ,(.G · ~.... ! ... :~ ,.; .. • .• ;.".'.: .. ·
1

TW~ ... ~;~:.i~ft~~ .. ··sy~~fµ" .. erthanceffi~ntS'""made"'af"Berkeley anc(
: .. spon,~red. in, pfil"t hi the. oereii~<·A.<ivafi¢eci' '1feseareti'. Projects ·Agency· ·

.,.~., :i.(n,Qp).~-<~~ .. ·~4~i··PN0~·:.·4g~7'i :tii6niioraf "6i. -ilie ·Navai ·£1ectronics:

I ..

.. . . ·. . : Systems .Cpmmand ~det · cri*fract· :No:· ':NYxio3~i~s4:c-oos9. ",The views
'·'

1
' \ ·. /J. '1'!:'.~<t~onciusi.~li§~~9~tiin~·'ifi·!M~e''ii0cuments are.those of ilie"authors

. . " .~ .. sb<>W<t: .. nQt·~ j~t~ffifR~~~(~ ·~e,~~~ri~!!~·.'.~ffi.c.~j~~~!~~' e!ther
...... ·:·e:~presse4,or:(~pJ.ied., Qfthe l:>efense Research Projects Agency or ot the

, '." .. ;~··US Gpve, m Jlt ... · ., .. ·. :·\·~ •• ::.:: .· · ,,. ,..,,.,..... . .,, •.. ,,

· n: 11 : ·····~'.'.'.;··· ;; . t,/)~lJNI~ ..isma"~&~ie~~··\.rtl&riiiirk."o'f AT&T iit'ilie. t:JSA ... and ... other
·-:r-:;." .,: ' ·· ::f: «~o.un.iQes ... -,;· ~ : .. ::·~·:··~·~ :.·,·.·.,.·.·.? '. .•.. -.'~·.:~. ·: ~.' :.::~:: .. ::~~~~~:~:.'.'"··· · ·· .·. . .. · · · ··.··.··,···.·· .. ·.: ... ·.·.·.•· .. :

~v,,ci:~·~~'·r>~ ... ,'./~· -~ . .., .. _3b-~·fl•h~.t·:,~.~:~ .. ~ ~
• • • , ,,.. ·p. ,, : · ;4.2BStland 4.3.QSP .. w,r&~:cl~~?:1¢~9: ~Y.. ~.~. ~~g~1.1~ 9~.~epniY,~rsity ...

.. .. ,. ,,,,. "· '· of G.al.ifomia,(B~r.lc~l~Y).,,}~J~m~J~;ng!n~~g.~~«~~~p~ter .. ~.~i~!1c~s ...
·1:::1 .. , .•••. ,'. .• ,.;~;:~ .. De~ents.. :./:.'..: :;.•.LL ""' ~~.:.~.::·~.·;'.·, ~~ ,,.'!, •• ·: • ; ... "°,. .. '. . · ·

:···1; ··:.··~··.~DE~,. ·:VAX,: . .)m<t .. ~-~1-~~:; ~~:·;)f49kili!!'~, .. 9f .. P.~~~ .. ~9..1'.liP~.~nt
''.'''"';'"· j;: ·i .• t.:"···Coninnition· ·. · · ·:..:··· · · · ··,·

·•,·~········~· . · :~ 1 »<,Nis{the».s.~~·N.~;Qr~ Fit~·~$~1.~~f~.~~;P~~dt1c~.;~r~~Cieveioi>ed ·

~l

! Ji .,,'

..... ;

)·.

. ·~.·

"i Ji:, .. , "~~~~·'"··". , .. ,. """""; : .. , •. ;;by-Sun.Mi.C.tQSYS.t~IIJ.~,.l~w.:: ,...,.,~ .~··.·· .. ·.' :~ . · ~............. . ..
· ·· ··J. t ; ; ""'l~ \-·~·~ .~ ;

1
'.". t . · .• , ... "' .. ·.,.~,,.,,:~,,, •• /~-,;,· ·.~\.~~~./ .. ~~::;:~·~~~~-:·:<;,.~-.~*;""' '·"'.·:;.·· .. " .. """(--~·, -·"~' ·,-t~~ .. ,. .. 11·- .. , .. , ... xr~·, t :.

"-. ': ~ :~·:"' ... ' ~ . ..,
- .. ,. ,,,_,,+\··.-,·:·;

•#•H• ~·! ... ::_:'·:;_:::::~:;.

i· .·.f \~}};1V.' . .'
!', i

~ . ·~ ~·.. . . ~:,

"' ., .. , . ' '~ , .. ,,,.,
•"''I,

,,..~ :'; . ,·. . i. ••.• -~· • .:- , 1 ~ ... ;, t ,f,, ~·

.. ,. "\.~ .• ~l~~" ~~:.· ;-;~~,.~~; .. ~·:·~~~~.~:'.~.

' .. ~·.·/~,i. : .~·~ '1:.:;,~:.;;;~~;·~:: ~:::'if.-::•~~ :,'.":

; ~.'.
~.I •• ,.,, "', ~i ~ ~: ... i .;. "4: ! ._

'f ... , t ~--

.. ' " 1i './ i ? '• • 1··i. ~"'' " \ • ~

"

\ .. t\. ··.·

.. }T

TABLE OF CONTENTS.

2. System Calls

intro •• introduction to system calls and error numbers

accept ···~~·········~·················· accept a connection on a socket
access .. ~································ determine accessibility of fil~_
acct .. ~ ••••••••••••••••.•••••••••••••••••••••••••••••••••••• turn accounting on or off
adjtime •• corr~t the ti.tne to allow synchfonization of the system clock
bind .. ~·································~············· bind a name to a socket
brk .. -:··············~·~·· .. •••••••••••••••••••••••••••••••••••• change data, segment size
chdir ... ~···········~·· change current working directory
chmod .. ~·-·····························•o••"!··· change mode of file
chown e~······················~· .. ·······~ ~ chan.ge owner and group of a file
chroot ~.!··~:················~····························~-~······································ change root directory
close ·······:·~~···········-···············~··~~~~·r····~~;r·,····~~·~·:·:···T~·~········~;;~~-·····~~\~~······:~~:·:····.·.·········· del~te a descriptor
connect o ... ~ •••••••••••• ;;.~ ~ ••• · ••••••• trutiate a connecuon on a socket

'
1 ~ t~. .~;. ,·:: :::~~~n'.· ~ ~·. · (. _.'.'."·,. f''Ti~J t r:· -~· 1.:. ·. · . ~ :" ,,~ • ·;

creat ··················-· .. ····~·~-·,,~~,··~-r,!;.~ .• ~--~·;i~ .• ~ •..•. ,~.~-~ •.•. ~0~.·~~~: •• ~ ••• ~~ ••• ~ •••••• ~~--·~~········~;; •••• ~.~~ •••••••••••• create a new file .
dup ••••••••••••••••••••• ~••o••··~-:~.:~.·~··~~~:~ ... ::~ .. ~::!·······~·~~·;~ .. ~:~.~.~~ ~ ~.·~~~~.~~-~.!~ .••.•.. ~ .•• ~~-~~~·:.;.; ••. duplicate a descriptQr

:~:~::-.:::=::-.:::::::2::5:=:::::=:..±:t:t:::::-.::::::i.:::Eti::::::-.:::·~u:c:
fcntl ~~.: •• ·.~ ••• · ••••• ~~:.;.:~~~.~ ••••••• J.~~.:~~ ... ~··· file c·onttol
flock .. ~~~~---···,~~r·········.···.···~·~:~····••H•• apply o~ re~oV.e an ~visory lock on an open fily
fork ··············;-··················:~ :~;~: •• ;~~: ••• ~~ ••••• : ••••••• ~· •••• ~ •••• ~.~~ •••••• ·~~ •••• ~ •• ,; ••••• ~.~ ••. ~~ •• ~~·~:·;~ •••••• ·~. create a new process
fsync ··················••J!··~·~~·····.::~.-~~:.~~~~ .. ~~~ .. 2:~~·~--~ c;;;;;.·~~~~ •• ~.' sybchlohiZe a ··file ts: in~ore state with that on disk
getdtablesize •••••••• :~~~~~-~····~:L~ ... ~:!~ ~~~;~ .. ~:~:~.~~~~i .. ~ ..•.... ?. •••••••••••• ~~~~~~-~~~-~:~~~--~······~····~· ,·get descriptor table size

, ·.; ~ · • I l,. : '('~ . , ., , ·'\" ·'. • , .. ~ ~ ~ 1 ,r·; •• _- ,. . '· , ,. :,; I ;_ ,

getgid •••••••••• · •••••• · •• ":.~···~·····.-~~ •••• ~·~.~.~~~-•• ·~~~~,t ••• ~~~~~~!:.~·~-.~~ ~~ ~·•..•..... ·.~ ...• ~ .. ~ ~ .. ~l~~ •••••••••• get group iden~ty
getgroups •••••••••• ,.~···~-~~~ .•. ~.;~~ •••••••••••••• ~ :~~~~ •••••••••••• ~~.!~.~~: .•.. ~.:~~.:~~.l ~~ get group access list
gethostid •••••••••• ~~::·~:~~ •• :~~L.~~L~:;•. ~.u;.~~~-~·~·····················•-m•• get/set unique identifier of current nost
gethostname ... ~'!··~···~·-··········~···· get/set name of current host
getitimer ···········'l'l"•··~~-~: .. :: ~~~ ... ~~-~;~~~~ .. i:i~i!l~l.:~ •.... !:.~ ..•....• ~~ ~ ••.... ;~ .. ~ ..• ~.~~ get/set value of interval timer

• ·=., ·u rn·~;-_:?".' ; .. ':~:;_- ~1 . .)~· .,. · :·~ _:·i • · .:· :-·~ ••· .. .\·· ·· • ·

getpagesize ······~!~·····:-~~··•l".•·· .. ~··•···:.~ ~;~ .• ~.~~·:·~ ~ ... ~.~.····•~···········~···;;;•.•... ~~ .••....... get system page· size
getpeername ···;~~-~~~-~~~:~·······~~--~~~77: .. ~~\r{~~--~~~:,~~·~·:~~-~-~~--~:··~··~~:~·~-~t.k~l .. ;_ .. ~~r~~ .. ~~···· &,et.:.name of connected peer
getpgip ··········~~~··························· .. •••••••••• .. ······~··············•··············•·····~~~····~··········j;···•········· get process group
getpid ••••••••••• ~ ••••••••• ~: ••• ~~ ••• ~: •• ~ ••••• ~~~~ ••• ~ ••• ~~:;;~~-~~~rr.:~;.;~~.~.ll •.. t .• ~ •... ~ ~:.~'12.~~ •••••• ~: •••• get process identification
getpriority ••••• ~." ••••••• ~~~;:L _ .. ~~_~ ... f~;~;~ ~.:~ .. ~ l~~~-~·~:~::.~•. :~~ ... l .•. :gef/set program scheduling priority
getrlimit •••••••••••••••••••.• ~-~: •.•• L.~~L ...• ~~L .• L~;-;~ ... ~.:~ .•.. ~:.~.~~~---~~· control maximum system resource consumption
getrusage ••••••••••••••••• ~ •• ~.~ ••••• ~ !·~······················-·····~--~··· get information aoout resource utilization
getsockname •••••••• ~.~-.-~ ••••••••••••• ~ •••••• ~:~ ••• ;~.~-~.: t: ... ~.:.f.~~~·.:·~······-··~·····~-~~·~•...... ;~ : •......... get socket name
getsockopt ••••••••••• -~.~~ •• ~~······~·············· ~-...... ,.~;~ • .; •••••••••••••••••••••••••••• ~~·~·-·· get and· set options on sockets

• '·'~ I ' .. ~', :'" .(.'·,": .. :~ .•• , • ·'.·. ,· ·: .. :?~·'-1!"'iJ ··.~_:·, ::"'!_''.. .. ,-; •

getttmeof day ~···········~·,~··········~······;. ••••• ;.~.:·~··~ •••• ~~~;:~~;~.;.~~~ •••• ~.~:· ... ~~ •• ~~,.,. •• ~~····"-···,~~·····~·~······'··· get/set d.a~ and ume . d . ' . : _: ·'/'' , ,. .. '.• ., ·, .. . : ... ;I;, .. , .:-. · ' ·. : , . '. :' . ". . "" : · • d .
getu1 ·········-,~····t~·····-·~···~••;·~~~ .. ~ .• ; •.... ~ •......•. t.•;;c·~~~-.~~ ~~ •••.•• ~~ ••••• ~~·~·······~--~·-·······~~~'·}••'•·~·····;-. get user 1. ent:1.ty
highpri ••••••••••••• ;~~---~--~! .. ~• ~~~-~ •.•.•.• ~ ~;~;~ ~~ make the current pra<;ess' a high priority process
ioctl ···················•m•~~~l,!.,.~:;~~.~-· .. ~ ~~~U.!i,.i~~!~~~~~~~···'•~····•······~······~~:.: ~ ... :~ ~.~ ... control device
kill ••••••••••••••••••••••••••••• :~~~~ •• ~ •• ~ •••• ~it··~~·-~····~.~· .. ···~·····~~~·······~~·~·~·················-~~~-~~············• .. :i•••:-· send· Signal to· a process
killpg •••••••••••••• :~ •••• ~~ ••••• ~~_ ••••• V~.·l~'..~:; .. ~~;.; •• ~:.2~:.:~ ;;~ •. ~ ... ~.:.~:;.~ .. ~ ~ •.. ~~-.~ ~.~ send Signal to a process group
link ..•••••••••••••••••••••• ~ ••• ~.:.~ ••••••• : ••• : ••••••••••••. ~.~:~~~-~;, ••••••••••• ~ •• ~;; ;~~-~-~·~ •••••• ~ •• ~~ •• ~.~ ••• ~ •• make a hard link to a file
listen ... ~ •••••••• J;.~~ ~•••.-~··,·~······· .. ••••••••••••••••••••••••• .. listen for cO~neCtions on a socket
lockf •• ~ •• ~ •••• ~ •• ~ ••• ~· •••••••••••••••••••••• provide advisory reeord .locking on· files
lseek •••••••••••••••••••••••••••••••.••.•• _ ••• ~ move· read/write. pointer
mkdir ··~~························~····~.;. ... make a 00,ec.tory file
mknod ····························~,···········••e;·~~····~·········~~ °'"'········~· .. ····················•··•············•··········· mak.e a.-s~cial file
mmap ~.,ft.,, •• ,~e••··············~····~~····················:····································•····· maps or unmaps pages
mount ••••••••••••••••••••••••• ,,_ •• ,~··············,·············~······················~··~··· mount file syste.m
normalpri ·····················~·-···~·····················~~······················make the current process a normal priority process
open ... n•••••n , ••• "°~·····t•·········~··············~··•········ open a file for reading or writing, or create a new file
pipe o "°., .. ;•••~.·······; ••••••••••••• ~~~-~ ••••••••••••••••••••••••• create an interprocess communication channel

INTEGRATED SOLUTIONS 4.3 BSD - iii - December 1988

. ,,

~, \".: '"

. ·x

-·,·~.(

.. :.f

Table of Cor!teh.ts

.. I..

ploelC' ••••••••••••••••••••••••••••••• ·:.~ ••••• ~ ••• : •• ~.~-~.--:~~ ••• ;~ •••• ;:;;;~.;~ •••••••••••••••••••••••••••••••••• lock the·current process in core
I .' ' . ~ . • •

pron.J: .. •••.,•·-·~········~·······~·····················"'.••.::~::~~~;~~-;~.·~;~ •• ;~~·; ••• execuuon tt.me profile
PtraCe ; i·~ •• :.~ •••••••••••• ~ •••••••• ~ ••••••••••• ~ ••••• ;;;.~~~.~ •••• ; •••••• ~ ••••••••••••• ~ ••••••••••••••••••••••• ~ •• ~~~ •••••••••••••••••••••••••••• process trace

• t • . . .

p,9illoc~" ·~·······~···~-~~~ •••••••••••••••• ~ •••••• :~ •• ~ ••• ~~ •••••••• ; •• ; •••••••• ~<H ••• ~ ••••••••••••••••••••••••••••••••••••• unlock th.e current process
qri.ota ~;~; ••••••••••••• .-••• ..,('.0H••················~····;;.;;; .. ~.~;;~;~; •.•. ~~~~~ •..... ~ ~ .••.•.••.••......••..•.••....••.... manipulate disk quota.s
read ~: •••• -~ ••••••••• ~ ••••• ~a. •• ~ ••••••••••• -~.;::::;:~~~:~~-.~-~~.;~~~~;:~.~-~;~.~~ •••••• ~ •••••••••••••• ~~·····················•·····••················· read input
re8.dlink'";~;;~ •••••• ~ •••• ~.;.~ •••••••••••••••• ~;;~;;;~;;;~;~~~-~-~~;~.;~ •• ~~ •• read value of a symbolic link
· reh9ot; ~-~~~~····~·-~•••• ~.~ •• ~ •• ~; ••• ~ •••• ; ••• ;~~~;r:~;~~~~..;;. •• ~~~ •• ;;~ ••••• ~ ••••••••• ~ •••• ~ ••••.••• ~· ••••••••• reboot system or halt processor

i 'recy ~~.-~~· •• ~:~;~:~ .•••• ;;~ .. ~~ ~~.· •••••••. ~~:~~~~~~~~.:~~~~~.·~;.:~~:~~·~~~~~);~·; •.• · •• ;·~~:: •••. ·~;.~~ ••. ~;~ ••.•.•••.•• receive a message from a socket
: re~~~:· ~.~.;:L;.;;;;~ ••• u. ••• ~;; •••• ~; •••• ~~.~;:;:.~~;; •• ~~;;: •••••• ~ ••• ; •• ;~~;;;~:~~;;;;;;~··•~ •• ~••···•·· .. •••••••••••• change th.e name of a file

· 'nridit -~.~-~~~.~~~ •••••••••• ~ ~~~;.~;;;;;~~;~;~;~ •• ~~;;~~~;;.~.;.~;~~~~;~:~~~~:;;~~···~~~~.;~~~-~~ remove a directory file
· -. ~lefa ·) •• ~·.;i ••••. ;~;;~~~ •.• ;~ ••.•.• ~.~.~~ •• ~ •. ;~~;:;;~~;~;~~~;~;~·;;.~ .•..•. ;.;;~;~.~ .•. ;.;;~;~.~~~~~~;;.~~!•.•::~~ ••••••••• synchronous I/O multiplexing

send .~~·:.;~~.i .. ~.~.~~~,::~.~ .. oc•~•~:~~.~ .• ~ •. ~:~;;:;;:;~:;:~~.:~~~:;~ .• ~~;;:.~ ... ·~~:.;:.:.;:. •. ~~·-~:.;. ~ send·a message from a socket
~tgrdiii>s : L ... :~~.:L..~L ~~ .. ~ ...•.. ·: .. ~;~:::;~~ .. ~:::i:~.-:~;;.·;~;~~;~ •. ::~~.;;;:; •..•• ~ •.•• ;: •• :.;~·~ ~ •.• set group access list

::1. . .~ . Se4J&.rP.'<:·:.~::~~t~~:,::~~:~····~~:~~~<~:~~::.·:~~~:~~:.::.~~::~~~·.::~:.~::~:~:_::.~~~:~~~~:·~:. .. ·;.~··~~~::~.-.:.:.·._·:~.:.; :················· set process group
selq:uota ••••••••••••••••. ~.······························ .. •• enable/disable quotas on a file system
~~Si~f ~;.: ~;~.: : ~ ... ~ ~ ~:~~·~~~~.::~.~ .. ::~.~~~~~~ .. · ; ~·~-~ ~~~.: •....•..... set real ·and effective group ID

I • • setre1

fild i~~~~-~.;~;;;; •••• ~ •• H ... H ~~~;~;;~~;;;;~;~~;;;~~.;:;;;~.;;~~ ••• ~~~~~~ •••• :~ •• ~~~~;~~~-~~ •••• ~ ••••• set real. and effective user ID' s
~~~@0% . -~~~~ ..... ~.~:::::~: ......... ~~.~~:~~~:~:~.:;~~.: ... ~~~~:~::~.;.~~~.~ ... ~:.~.~~:.:.~:.:.~ .. ;shut· down part of a full-duplex connection 

· ~i~,~~qck .. · ~~.~-~~~; •• :~· •• ~~.-.~~-~:~,~~~~-~· ••• ~~:, ••. ~~~·~~,~~~·.*.~~·.·.~~ ••••• ~~-..-~~ ••• ~ ......... '°¥.i; ......... ~.I;.,. •••• .-::~~~-~·:~ •••••.•••••••••••••.••••••••••• ~-.•••• block signals 
: ~ '. si~4se ~-~-~.:.-.-......... ,.~;~;~~~:.: ••• •;~ ••••• ~;;~~~~~~~~~~~~~.~~;~;~.~~~,atomically release blocked signals and wait for interrupt 

si~t&rlr:~~!;.~~.-.~;;.~;;·; •• ;.;;;;;; •• ;;;:~.;~.;;;.~~;~;:~ •••• ;~;.:.: ••••• ;;.;;~~;~:.::;;.;•~•••••·•••··•·~~·~••···:•i ........................ return from signal 
sig8etrnask" · ~~;;;;.-;;;.;~ • .;·;; •• ;;;~.~:~;.;-;~.~;~;;:;.;_. ..... :;.;.;.; ••• ;~;.; • .;~ ... -..~~ •• ••~••~•••~•::::~ •••• ;.~.--. .... ~.•••·····°"···•······ set current signal mask 
s~gslliCk · .~~~i.~;.~.~ ..... ~e,;:.; ••• ~ .. ~ •• :~~~~~~-~.~l· •• ~~:2~·~ ....... ~ •• ~; ••••••• ~ •••• ~-~~:~~:.~~"oea .... ~•••••··••••'••·••· set and/or· get signal stack context 
SigVeC ·. ·!;~·~.~.::.':~!.;~~:~.:.~:.I~.: ..... ~:~ ... :.~.-!!l~.~ ••••• ~ ........... ~·~-~~.~~·•··•••••::••••·····•••······················•··· software signal facilities 

-rflfS()C~e;fs~~~;~.:~~~~ •• ·~.~.·~-~~;;; •••••• ~.:;•~~··~·••·~~~ •• ~~~········~·~·····••·••••••••·••:u••~••·,•••••···· create an endpoint for communication 
. ···S&k.etpair·~~;:~.~ •. ·.-0 ••••• " ••••• • •• .:.;•:: ....... .: •• .: ••••••• , •••••.••••••••••••••••••• , •.•• ::,.1•·.:.:•••J•••••·•·••••·~···· create a pair of connected sockets 

.'' r·: 1:1 rt~ ·, ;-~'.;, :H.~.1:: ,'.:~s~ .·~~:~~··::.;::·~~~~:~···~~~:::~::~;~:=~·~~~·~·~~~~~:·~~~~···•··~···~·~··~····~~~~~~~··w••:'·--~••••····~·•••···:··~~····'·:··•··········•·•·•····· ~et file sta~us 
'f:'.(\ > ' '.. s~al*>n ............................................................................. add a swap device for mterleaved pag1ng/swappmg 

-~'., .'.C.f.'Jl' ~-, :~ymlihk· .• ;;;;;;.;;~-~~ •.. ~;;.~~~~~.;; •• ;:~.;;; •• .,;~~;~; ••.• ~ ••••••• ; .••.••• ~····••~•~:.m::.o;~.:.m••~···~~··•;;i:::: .... ·make symbolic link to a file 
)'...·: .. :~ ~/: ~·,,.i· r:syii.C:,, ·~~;·~· ••••••••• ~ •• ~~-~-~~ •••• ·~~ ......... ~ .. ~ .. -~~ ••• ~~-~~~ •••••• ~~ ........ ~ ....... .: ............. ,,~-.·:.".";.oe:~.t;,·~··•·,•··••·······;~~ •••••••••••••••••••••• update super-block 

:,: : ·~!TL;-.' ~yscaii :··~~ ••... : ..•.••••. ~.~ .•..• ~~.:l:!~.; ••. ~~.;;~~;;;~~ ••.. ~~.~ ... ~~~~~~;~ ..•.•• ;~~~;;~;~.····•ooe•••·••······•····~~.~ .................. indirect system call 
-·ii-unCilte ••••• ~ ••••••• L ........ ~~ .. ~.o •• ~~;;;;:;~~.~~;~ ••• ~-. •••••••••• ~-.~·~~~~~;-.~: .. ~;~~ ••••••••• -. ............. truncate a file to a specified length. 

.. .:. ) ~··~·,. . l ~ "~ ; • 

~:.;·~;umask·"; ••••••• ~~.;~;~;;~ ••• ;:;; •• ;;~~=;~:;;;; •• ;;;;~;;;;;; •• ;;;;~ ••••• ;~;~~;~;;;~;;~;~~ •• ~.~ ...... ~~~ ••••• ~ ••••••••••••••• set ·file creation mode mask 
.·-·:.Urilj.nk'. ~:;;~~~;;::~:~;~;~:;~~.~;~~ •• ;;~~.H ......... ~.~ •• ~.~~;.;~~~;~ ..... ~;~~;~ •• ;.~~~;~~;~;~~~ ........ ~·~ •••• ;.~ ••••••••••••••••••••• remove directory entry 
/o)\mOtiht. ~~;;;;~;;~;;;~.;;~~~~~ ••• ;~ ••• ~~ ••••• ~;;~~.~ ••• ~.~~~~.-;.~ •• ~~~;~~;~ •••••• ~~:; •••• ~~~~~ •••• ~.~~ ••••••••••••••••••••••••••• remove a file system 

.h 

c 

Utiriibs .. ~~.~~~.'::~~~ •• ~~~~~~~ •••• ~~~ •••••• ~~ •• ~.~ •• ~~~· •••••••• ~~~~~~~-~-~~~~ ••••• -.~ ... ~~ ........... "'. • .-.~.~ .......... ,~ .. ·.~ •••• ee........................... set file times 
· ''.·)vfork" ';;:iL;~~~~L ........ ._:.:~~ ........... ;.;:; ... ~ .......... ·;.::.::~ ... ;: .... spawn .. new ·process in a virtual memory efficient way 
· J'\)harigup ..... ~~~;~h.~ •. ~ ..•.•. ~ ...... o~.~:.;;: ••••• : ••••••• ~ •••• '.~~.~·;~~ •• -.~:::::: •••• ~ •• virtually '·'hangup'' the current control terminal 

j i\Vaj~ .:.~~~~:~.i~ .. ;;;!;!:~.~.~~ ... ~~~~~~.~~:~~~~~~~.~-~~~ .. ~ .. :~ .. ~~ .... ~~~~.;~~~~;~;·~~.~;.~·.~.~ ....... ~ ........•.•• ,~ ...... wait for process to terminate 
write·,~. r,,~::.~·7~ .. '.~ .. _:.:;;,;., ·.~;.~·;;;~~~~--~;~;;;;;;;; ••• ~;~;;~;;~;~;;~~;;;~.~~~;~,;~.;;~.;;~;~~;;;~~;~~;~;·~~ •• ~ ••••••• ~~ •••••••••••• ~ •••••• ~ .••••••• ~ ......... write output 

,: ::•') ... 

3. C Library Subfoutines 
. ".r_: _. ..... ~ '' • • ' < • • • • . ~ .. ~~tro~.·····~··~o•• .. ••·····~~·~~~~ ................................................. ~.~ .. ;.~ ................................ 1ntroduct1on to library functions 

.,"""'rt' ... : .. i. . ... F ..... ,, .... ,, .. ..,._ ........ :.; .•• ,." '"''""'"""""'""·•""'"" ( . f; I 
~~'·''1'.' •• o~~······~··••i···~·~.·············································~·~~-~~~~·····~·········~··········••e•'9>•••••o•••••'••················· generate a au t 

'::etr;;77:7.~~:::::.:S~~~7~~~:.::~~~~~~~~t\i\t~~~~:::~~:::~::~.~.t~~.::·.:.:0;:!~!:C:~~~ 
atof •• ~:~~~:.·~ •• ~ •• ~.··········;: •••••• ~ •• ~;~; •••••••••••• ~~.::::~.~;;;~;:~;:;:;~~;~.;;;;;, ........ ~.;~ •••••••••••• ~~ •• ~~~.~o~~; convert ASCII to' numbers 

··~~. · .. ". ,· . _.,~·~···""·\·~··· 

· •bstring ~-·~··~::~.~····~·~··~········; ....... ~~~ ••••••••• ;~.~~~~~~~~~~~~~:~:::~~ •• !~;;,;~~~ ... ·~~:,~.~ ..... ~~-.... ~~.~~ .. ~ .. ~:·~~~bit and byte string operations 
... t .· ··· ·'· - ,. _ .. ,, · · .... :. ·. .. . ...... · ·",.,..,,., . .,"·· .. ·. DES . C1?'J> . ••••••••••••••••··~···•••••••••••eo••••••• .. ••••••••••••••··~··~·.~.!:>••••••••··~,,., •••••.•• ····••••••••••·-·~··: ... ·~.·~.~····••••••••••••••• encryption 

cµ111e · .~ •••••••••• ; ••••• :.~:···-····-····:;; ... ~ ••• · •• ;.~;.~· .... ;~.~·;.~.~~·.'····~.;~~.u .. ; .• ~.::::::~~-·~:;;~.~~.-.•... convert date and time to ASCII 
ctyPe · ••••••••• ~············· .. ·~~-···········~~ •• ~;~ ••• ~ •••• ,;~~ •• .;;;;~; .. ;;;~~;;~.~~~~;;~.; •••••• ~;~ ••••• ~~i;~;;~~.~~,;·;~·~~ 9·ch3racter classification macros 

• . ;·r ,, -~ ' : . , . - . . . - .... ~- . . , . . . . ': . .. . - ~ •. , .. 
directory .~ ............................... ~ .... ·.~~~ •••• ~~ •• -••• ~:~.~· ••••• ,;.~ •• ~~~ •• ~~~~ ••• ~;,. ... · •••••••• :t~ •• :;~;;~~~~~-~.~~-~.; •••••••••••• 'directory operationS: 

"t ' "' - . /. ~~ ,, .~ ,, '~ \ ··'. •l • • • . "\ 

ecvt •••••••••••••••••••••••••••••••••••••••• ~;.; •••••• ~; •••••• ~ •••••• ~ •• ~•~·~;~~·~·····~;~ •• ~ •••••••••••••• ;.;.~~~~-~.~~ •• ~~-.:.-.~~::::::.~::···~ output conversion;,. 
end ..................................... o ............ ;~~ ••• ;;.:;~.;~.~ •••• ~~~~-~~~~!~~.;_;~;.~.~~~ ••• ;~ ......... ~.~.~~~~~·~.,.~~~~ ••••• last. locations in pro~ . 

1.. . . . . . . . . . . . ..', :·-·_ ............ .. 
exec .. ··········~l·······················"'·············~~~~ ...... ; .. ~ ...... ~~ .. e ••• ~;; ••• ~~ ••••• ~.~ •••••••• ;~ •• ~; •••• !~~.~··:;~ •.••••.•...••. ;.,, •.•• execute a file I t _: ,~.e: V4- •••IA••.:" . , ~·"" 

·"""'"'"'°'•·""'"'•11• 

December 1988 -i~ - INTEGRATED SOLUTIONS f.3 :B'sD 
,:rr t 



Table of Contents 

exit.,.~ ••• ~.: ........................................................... ~··········· terminate a.process after flushing any pending output 
frexp •••••••••••••••••••••••••••••••• ~ ••••••••••••••••••••••••••••••• ~::·~:~ •••• ~.~.:.:.~: •• ~·:.~:::::.· .............. split into mantisSa arid exponent 
getdisk ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• :~ •••• ~~ •• : •• : .... ~· ••• ~ •••••••••••••••••••• get disk descrip.tion by its name 
getenv ...................................................... ~ •••••••••••••• ~ ............ :.~~ •••••••••••••••• manipulate envirorilJ:iental .variables 

getf sent ·········································~··········~·········~~·····:;~;~~~:~~·~~-~···~~~-~····~······ get file system descrip~or file entry 
getgrent ............ ~!··································~····~·····.········~······~···~····.~··~~:··~~················~·······~···~:~~·· get 'group file entry 
getlogin ........... ~,.. •••••••••••••••••••••••••• ., •••••••••••••••••••••••••••••••••••••• ~···~~··········································~·····~ g~t ,login name 
getopt ............................................... ~~-~~·····.·:·~····~:~···············~··~~~~ ••••••••••••••••••••••• : ••••• get option l~tter from argv 
getpass ······-···································~···-.····~················~·····~.····~····~···················~····················~·····:read a password 
getpwent ..................................................... ~.~ ••• : ••••••••• ::.:·~: ••• :· •• : ••••••••••••••••••••••••• ~ •••••••••• get' pas'swqrg .file entry 

,. ' . ' . • ",,. ·. • . : ' ' : ,. •• '.. '·O •' • ,> ' •' ,-.· • ~ ' ' '" ' . •, ' 

getttyent ······················~·········~:-~~········~~~~~~-~~~~~···~~~~--~~~·~·~····~~·~·~·············:~~·~······~·-.·······-~········.get. ~l:Y~: file entry 
getusershell ···························~···········--·····················································~·····;···~············· get legal user shells 
getwd .......................... ~ •••••••• ::~ •••••• : •• :-~-.~~~~-~~ ••• ~ •••• ~ ••••••••• ~ •• :~:~~~-~-~: ..... ~.~· get ·cilrrent working directory pathname 
insque ................................. *°"O••· ............. ~.~: •• ~ •• ~ •• :.:::.~.: ••••••• ~~::.:~:.u~ ......... insert/remove eieme,lit frorri a queue 

·"'~·~.. '·•· •,.,.,;,, ''•/'/9;.~~·~.,· .,,.,,,,;•. '"'' •''1'..lll •· •.• :.;., 11 ·•:• ~··' 

malloc .................................................. ~ ................................................................................ memory allocator 
•.: •.·' .. ,........ ''°?""~· ~·•l'l•• ...... ,, .. - .... .,.11...-··· ...... , . ., .......... , .............. , .. iv•:·: ·~ ,.., .. .,fol., ...•• r~·.,:. ' . .' 

mktemp ................................. ~.·~············~ •••• ~ ••••••• ~~ ••••••••••••••••••••••••••••••••••••• ~.~ ••••••• · ••••.•.• ~ •• 1rl.lake a~ijnique filename 
•'1):'•' •.• ,,...,, ~It--• '''•°'".J..r·~·t• ,.., •.•• ,.~ ... ' ... ~ ~-..· •, ' ~.:•; . .,.17,.,• •.•' 

monitor ··························~~········.···~,·.·~ . .,·····~~~·.-····~·.-.·······.···~.···~::····~·····~~·····~·········~ •• ·~ ••••• ~~~ ••. prepare e,xe<;;ution profile 
ndbm .............................. !·············~···························~············~··················~·······~······~~.:~ .. d.8.t3. base:~.SQbroutines • .. .,.,, "· .)· .. .. ......... ··--~··' ~ ..... ,, ,,, ~. .. ..... ~ ....... ..,.; . l.~ ' 

nlist ·············•,•••••••c••············••tt•-,···~·········· .... ·····························································~·~ get. entr,ieS, .'fr.Om~. name list ,. .· , • • .. • . . , .• • , ,, • , ·' • • \ , ~ ' . • ) , . • ~ '·· . • ... ' ,.: • .;. ' r ( 

perror ··································~··~~.~~~~ .. ····.·.~·~·~ .. ~~····~·······.~;·······~~···········.~:······~··.~.·~.·:~~···:~;-~······ ~ysterp.. erro~. 91-essages 
J>OJ>en ................................................... i>•~!·.~~·~··~········~·~·····~·····················~············ 'initiate 1/0 to/4°*1 a process 
psignal ............................ , ....... ~·······~··~~·~~-!~~~-~ ........... · ...... ~.; ..... ~.~ . .':.' ....... ~ ..................... system,.s:lgl').~. ~essages 

· • ' ' t, < , , ., - " ~ • • •I •,. _,, '"· , , I<• , , , ·' ,_ ., .p, I, " : , ', .• • · • , • 

qsort ···-····················-····.~········~.··~~···~~··~~·~~~··~···.···········.,~.····-.~~~.~······.····~··~~·.-.-.:··.··.-.-.··~~~.-.~~·.···,·~~··~~·~r···;~7'i}i4icker sort 
random ········-··~·························-·~·.·.-.········~ .. _pett~r random number_g~l}~!!;ltor; r9~~!1e~,!~~~~~an~~~.~enerators 
rcmd ······························!············!·······~.,··!·•·•········-······· routines for returning a str~ to a rerqote.·· ~ommand .. • • .. ' ( ~'" " .,. ' " f · • :• I . ' " ' ! I )' • ' ' " • • , • "' • 1 \ • . , I , ,<. ~ " ~ , " < 1 . ~ r1 • "4 -...· ' ""' '). i,, 

regex ................... ,, ......... •··················~·~,_~,:!~,~~~~·~,,,~··········~················~~··!····~~~!~~·······~~~ !e~~ar. ~?.CP~~~ ... ~qp. handler 
resolver ············~·········•··•.•·········~~····•···'!·,~~,~·!,, .... ~,_~,·~.~~··········•,•.·~···.········~.·.-.···,,·.·········~~t-...-.·.··················~· ~~~~-l:v~r routines 
rexec ··············:·.7.~··························· .............. ~· . .,~:-..··-. .. ·.·-·······.·············,·~·········~~···~········ retlll,'1:1. str~ _to a re~ot~.~ommand 
scan.dir ••••••• ~:·.-.

0

.~~ •••••••••••••••••••••••••••••• ,, •• ·~.~-·~··························~·····················~ •••• ~ •• ~~.~~········~······--··· scan. a .directory I' I ' . ' < • • • I • • ~ , ' • ,O ' ' • , • , . ' '~ ~ . •" • ,. ~ .< f . ' 

setjmp ·············~·········4!~················!!! .. M?•-.~~~,"!~~··-.-.~····~~·········.~~~~-.······~········-········~·~··~·····-~·-~····.~~~~~.······~·'· ~oµ~ local g<;>to 
setuid ••••••••••••• ~ •••••••••• ~ .................................................................................. · ••• ~............... set user and .group ID 

'" ~~. ~·'·"'•· ' . •" \•' _.,, • ,,,. • ·~.-~"'"'• <• • .·~. '• ' , ,,, ""' '· '• I· ;.', 

siginterrupt ·················~···············~············~··'.9·~············~~~~~~···············~·~·~~· allow sign~s to inte~~l.~ystem calls 
sleep •••••••••••••••••••••••••••••••••••••••••••••••••••••••~~:.~~.:: •••••••••••••••••••••••• ~~ ••.•• ~:~ •• ~~ •• ~.~.~ •••• SuSpend execution:for interval 

• . • ...,.,,. ~..,lr,..~-J;,.::,,,:,• .. , ~, ... ,.,~ ,,, ' ' ' ............ :1.'.. ~ .. .t.. • 

strtng ·····························~·····~···············-··~-.··-.~~~·····:~·····~~~·~·~···~·············:·~~~~·:•·····~:····:::·::····~:·:· su,:i~g ~perattons 
swab .................................. ·.········!··············~~·······~~··~~·····~··~·····~·············~···········~~~-~~-~~~·~:·.~~~~·~-~~··~···~~·~· s':':'ap bytes 
syslog ................ o ............................................................. ~·································~·············~~··· c.ontt.ol .system log 
system ••••••••••••••••••••••••••••••••••••••••••••••••••••• ~~ •••••••• ~ ••• ~ ••••• ~ •••• ~ ••••••••••••••• HQ•·······:·.~· •• ~ ••• ~.:~.~~:: issue ·a' sQ.eU .c-ommand 

, .,. "' • ., ~ ' " • "'" ~.· , , ·" . .A~ : ! '· 

ttynam.e ........................ ~ .............................. ~~·~·~·~···~·.~.···~~~·-············ .. ~-~·.~.····.~·······~··~~··.·.~~·.···· fi~~ ~~~1i9~·.ia terminal 
ualarm ............................. ~································.········~···~···················.········· schedule signal after .specified time 
usleep, ............................ ,.~················~: •.••••••••••• ::;~:.;~~~-~.' •••• ;.~,··~·-~·~.·~·~:~~~:~~~~~~7···~-~~~~~ s.t#pend: ~x~-~ution. for interval 
valloc ··········~··········~··~~~······~·············~·~·~·~·~~·····~···~··~·~~·~··········~.~~·····~····~·····~········~···~··'aligned; ~ri1~mory allocator 
varargs ~ •••••••• ~ ••••••••••• ~~~~-~ •••••• ~~:~ •••••••••••• ~ ......... :~.~ •• ~::~:~ •• ~:.::::::::::.~.::.:~:::~:~.:~.~.: •••• ~ •• ~ •••••• ~ .. ~.·.·variable argument list 

3C. Compatibility Library Subroutines 

intro ••••••••••••••••••••••••••••••••••• ~~-•• ~::: •• ~.~~~~~~~~:.~~~~~-~~~c~~.m~····::~~ ..... mtroduction to corripatibility' .library functions 
alarm •••••••••• ~~ •••••• ~:::::~~.-.~~~.~: ••••• ~ ....... :.~:~'"·~·~:·.:~~~~·.· •• : •• :.:.~:~~~:~:· •••• :~:·.~.· ...... ~:~: •••• : schedule signal after specified time 

• •.•. ,.. ·~ ·) '~•1• ·''""" '· ""w •·•• ., ,•I'"'"'''<> .•••>,1• -.~<('!~. '"~· ·,~, ·•., .. - .;,.,l•'I 

getpw ~············································ .. ~··••'••······ .. ·········~··~·················~··································~····· get. n~e from uid • , -'• ... ~{·~··'" ,, ... 11,,... . .• , .. ~,.~ ..... ~.,. ..... ~ ,' '\'«·~· '"' •• ,. •' •'" . ,. J ... 

~ice ·······················~.·~~~·······=~~~···················~~~~~~9!~~~~··~·~-~~~~~~~~~·········~············ ... ·····~·····~·~·········~~···~ ~~~~. P~<?.~am pnonty 
pause ·················~·-.:-:·~············~·~····················~······~··~················r································~················ s,top until signal N .; '•.: • • ~ , , I" \ •, 1 • . <• ., • • ~ 

phys ................... ~···~····~······:-.·:;.···.·· .. ··~·············-···~···~,~~~-·.············~··· allows a process to access physical addresses 
rand ······························~·············· ................... ;.;;~······~:~··~····~······-·································· random number .generator 

· signal •••••••••• ~ •••• ~.· •••• ~~·······:~:.~:.~ ••• ~.:.~ •••••••••••••• ~ •• : ••••• :~~:~ •••• : •••••••• ~.·~·············· simplified softWare signal facilities 
stty ••••••••••• .;;~:~;;:~.~;::~~ ••• ~·.~:~~.:~.::.·.~ •••••• ::: •••••••••• :.:::.::.~.~ •••••••••••••••••••••••• · ••••••••• set and get terminal state (defunct) 
time ••••••••• ~t~l::~.~:.~~: .. ~ .... :.:::::· .... : ...........• ::~ ..... :~ ..... : .......... ~ ........ ::~ ...... .' ................................... get date and time 

• ' , . .. r-~· 1 .,. ... r '' ~. ' I'-.~ ,,. p • ' • • ' ' .,. "' • ., ' ,, ~ • 

umes ............... ~.: ••••••• , ••••.•••••••••.••.•• ····~····················~·····~··········~~·······~············································ get pr~ess umes 
; utime ···········-········~.~ •• :.::: •• :: ••••••• :~ ••••••••••••••• ~.: •• : •• :.~ •••••••••• ~~· ••••••• :~ •••••••••••••••••••••••••••••••••••••••••••••••••• set file times 

" ' . ,, '. • . r• , ~ ' ' • ' ' • < • : '.. ' '· • • • .; • ' ; ' "'),. ~. ~ " • 

I: , 

INTEGR.t\ ~D SOLUTIONS 4.3 BSD December 1988 



Table of Contents 

valloc ....................................................................................................................... aligned memory allocator 
vlimit •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• control maximum system resource consumption 
vtime~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get information about resource utilization 

3F. Fortran Library 

.; •. :' • i.> 

.~ .;,. 

intro •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• introd.uction to FORTRAN library functions 

al>ort ·-~,··········································· .. •• .. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• abnonn.al termination 
access ······~······································································································· determine accessibility of a file 
alarm ••ooueoeo .................................................................................... execute a subroutine after a specified time 

.l>essel ·······~····••.!t.••································ .. ·········•·····························•······················ of two kinds for integer orders 
.. :bit ................. , •••••• ee••••••••••••H••················································· and, or, xor, not, rshift, !shift bitwise functions 

chdir , .•••••• , •••••••••••••••••••••••• 9 ........................................................................................... change default directory 

'chmod. ·······••o••••••••••ci••••o••································································································· change mode of a file 
· etime ····.·~··••f).••it•.•··········..-······ .. •·••··•••••·••••·• ... ··························································$·· return elapsed execution time 
exit ............................................................................... ,,...................................... terminate process with status 
f date •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• return. date and time in an. ASCII string 
ftmin ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• return. extreme values 

flush ·-····································'.'················································································ flush output to a logical unit 
fork ~·:·····················~········································~····················································· create a copy of this process 
'~seek .•••••••••••••••••••• ~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• reposition a file on a logical unit 
.getarg~" ••••••••••••••••••••• ~~:~,.·~ ••••• ~ ••••••• ~~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• return. command line arguments 
getc •. ~·~~·~ •••••••• ~ •••••••••••• ~~ •••• ~ ••• ~ .•.•.••••.••.••••••••••.•••••••.••.••.•.•••••••••.••••••••.••.•••••.••• get a character from a logical unit 
gCtcWaf·:;~ ••• ~~ ••••••••••• ~ •••••••••• ~;~ •••••••••••••••••••••••••••••••••••••••••••••• ~;~ ••••••••• get pathname of current working directory 
-~(~t~ny··~ ••••••• ~ •••• ~ •••••• ~ ••••••••• ~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get value of environment variables 

.···.ietl,b~f,.~·········~··························~························································································· get user's login name 
· getJJid ···; •••• ~ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get process id 
getuid •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get user or group ID of the caller 
hostnm •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get name of current host 

·._~ci$.~1 ··~!f·~········~·~ ...... c..ci••••·······~·········· .. ···································--··· .. ·•·•·•••·•·••• return date or time in numerical form 
,., incl~~ 1. ····················••••OA••••••eeoe&&e••··~·············e•t14'8e•••••••••••••OftO~Olt'~Co•<&eeeee···························· tell aoout character objects 

. ::' 1.~ ./iQ~~~t1 ........................................ tt••···········••t11•f'••••·············••lf'l"••••oe•••o••·························· change fl7 1/0 initialization 
~~- ······································~············· ... ··················••o•o•lf'l•••O-••·~····$································· send a signal to a process 
:!.~ ••••••••••••• " ..................................... &"'•···············.,····•o•···~··,,·····.,··························· make a link to an. existing file 

" ~.' ···,~····~·······.·~··,~············ .. ···············································••e•.,••e••························ return the address of an. object 
I • .long .•••••••• ., ... '!~~"'·-,.·~•.o•••······························· .. ·····•··························································•·· integer object conversion 

¥ta!loc ..•••••••• ~.,., •••••••••••••••••••••••••••••••••• - ......................... H•••••·· .. ·H··········································· memory allocator 
'·;~i;ror ·~ti..,••••:~···~·11,······~·~·· .. ••••••••·••••·••••••••••• .. ····························$·································· get system error messages 
·.plot ••••••·······1~••.•••••o••••·~··•••••••••••••••e••••••••••••••••••• .. ••e•oe,0•1t•<-•~•o•••••••eooe•o•• 'f77 library interface to plot (3X) libraries . 

. :' p~~ ••e••o·~·~·''''·~~~············~··••!l'•••·························•o, ......... , .•................... write a character to a f ortran logical unit 
,q~rt 9'.!·········~···'''~t····,········•••:9••···························(9~·························•••o••••··············································· quick sort 

. ' ~d. •••'••••••••'.'!.•·.~~.·-··-~~~.····e:···~····~~····················~.,···········•••ll!l••oci•o•••••••oo$••••••oe•••••••¢'•••••0••••••••••••••••• return random values 
J~d.9m .~•····~·~····••«~ ..... .,o ••••••••••••.••••.•••••••••• _ ....................................................... 00•0 better random number generator 

~-)'.r~µa.m~ lli'·~·~··-~··~tl····c>•········································--..... , ........... 4!.••···~······..-····················•e•$e••······························· rename a file 
signal •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• change the action for a signal 
sleep ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• suspend execution for an interval 

sta.t ··························:····································································· .. •••••••••••••••••••••••••••••••••••••••••••••• get file status 
system •••••••••••••••••••••••••••••••••••••••••• ~::: •••• : •••••••• :::::.:::.:::::::::::~ ......................... ., •••••••• execute a UNIX comman.d 
time .......................... ~ •••••••••••••••••••••••••••••••• ~·.~.:.~::::~~ •• ~:~(~:~~~~.: ••••••••••••••••••••• o••••••••oeo•••·············· return system time 
topen •••••••••••••••••••••••••• ~ •••••••••••••••••••••••••••••••• :~~~ ••••• ~~ •••••••••••••••••••••••••••••• ·~ ••••••••••••••••••••••••••••••••••••••••• n1 ta.pe 1/0 
tra.per •••.•••••••••••••••••••••••••••••••••••••••••••••••• ~-~ •••• ~~ ••• :.~~ •••••• ~ ••••••••••••• ~.~~ •••• ~ ••••••• ~ ••••••••• ~.............. trap arithmetic errors 
tra.pov .................................................................... :~.~::~~ ••••••••••••• :~.: •• :~~:·trap• and repair floating point overflow 
trpfpe •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ~:~~ •••••••••••• ~ •••••••••••• ~ ••• ~ ••• ~~.~~ •• frap arid repair floating point faults 
ttynam •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ~ ••• :~.:~ ••• ~.· ·nrid n3,Jlle of a terminal port 
unlink ................................................................................................. :~ •• ~:~.~.:~:~ ••• ~~:::.~·remove a directory entry 
wait .................................................................................................... ~.: •••• ~.~~~··~_'~rut,~o~ a process to terminate 

December 1988 - vi - INTEGRATED SOLUTIONS 4.3 BSD 



Table of Contents 

31\1. 1\1ath Library 

intro ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• introduction to mathematical library functions 
asinh •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• inverse hyperbolic functions 
erf •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• error fU11ctions 
exp •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• exponential, logaritllm, power 

floor ·······················································••H••• .... absolute value, floor, ceiling, and round-to-nearest functions 
hypot .................................................. co ....................................... Euclidean distance, complex absolute value 

ieee ···········································••••oo••••· .. ·•······•·····•·•·· .. ·•············· copysign, remainder, exponent manipulations 
infnan ............................................................ signals invalid floating-point operations on a VAX (temporary) 
jO ................................................................................................................................................ ,'bessel functions 

lgamma ••••••O•••··············_,·"·······°'···················••e•······· .. ··································~············•··········· log gamma function 
matll ·············································••U••••••••••U••H••••"·······•n••········ introduction to mathematical' library functions 
sin ................................................................................................... trigonometric functions and their inverses 

sinh ···············••OC)O••··············••O••· .. ···························································._·················-······-···· hyperbolic fun.ctions 
sqrt ··················o••···············ei•••··································•.a••···································· .. ············· cube· root, square root 

3N. Internet Network Library 

intro ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• intro-- introduction to rietWork library functions 
byteorder ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• convert values between host and .. i;iet~ork byte order 
gethostbyname •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• gel Q~twork host entry 
getnetent •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ~··:········:········:-.:~,:~~ ... ·,get network entry 
getprotoent ............................................................................................................................ get protocol entry 
getservent •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ~ ••••••••••••••••••••••••• ~ ••••••••• ~~ .• f~·· get service entry 

inet ·······························································-·························~········~··· Internet address U.i~iI)Ulation routines 
ns •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ~ •••• Xerox NS(tm}' addres~, .c.pnversion routines 

3S. C Standard 1/0 Library Subroutines 
): Li' 

intro ··············································-···················································· standard·buffered·inplit/output package 
fclose ···········································~············°'···································································· clOSe· ·or flush a stream 
ferror ··································••O•$············· .. ·····•··························•·····•································· strea.ffi sta.tus inquiries 
fopen ooooooooooooeooooooeoooooooooooooooooooooooooe-oeoOHwoooooooooooooooooOOOOOoooooooeoooooooooooooooooooooooooooooooeoooeoooooooo•oooo•~e:O open a stream 
fread ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• buffered biliary input/output 
f seek .................................................................................................................................. ~. reIX}sition a stream 

getc ······································································································-····· get character or word from stream 
gets ············································································································•••·······~···· get a string from a stream 
printf ······································································································•·•···•···••·· fermattecf'output conversion 
putc ............................................................................................................. put character- oi'···wOrd on a stream. 
puts .............................................................................................................................. put a~stting on a stream 

scanf ·····························································································•••·•····•••••····'••··••• fonn.aned· iriput conversion 
setbuf ···········••n••······················· .. ·····················································•········•••······••·••''• ·assign· buffering to a stream 
stdio •••••••••••• e ................................................ ., ........................................... standard buffered input/output package 

ungetc ··············································-·· .... ••••••· .................................... ~.··········· push character b~ck:'1flto input stream 

3X. Other Libraries 

intro •••••••••••••••••••••••••••••• ~ ••••••••• : •••••• : •• :: ••• :~~~~:~ ••• ::::~::~.: ••••••• ~:uo. · introducti?n to miscellaneous library functions 
assert •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• program verification 
curses •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ~: ••• ~ •••••••••••••••••• screen functions witll '' optim.al'' cursor motion 
dbm •••••••••••••••••••••••••••••••••••••••••••••••• ~ ••••••••••••••••••••• ~ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• data base subroutines 

getdisk ························~·························-························································· get disk description by its name 
getfsent ••••••••••••••••••.••••••• ~.~ •••.•••••••.•••••••••••••••••••••••••••••••••••••••.•••••.••••••••••••••••• get filesystem descriptor file entry 
initgroups •.••••••••••••• ~~ •••• ' ••••••••••••• ~ ................................................................................ initialize group access list 
lib2648 ••• ~;:; ••••••••••••••••• ~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• subroutines for the lIP 2648 graphics terminal 
mp •••••• ~:~;~.::~:~ •.•• ~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• multiple precision integer aritllmetic 
plot •••••••• ~ •••• ~~: •••• ~·~ ................................................................................................................. graphics interface 

INTEGRATED SOLUTIONS 4.3 BSD - vii - December 1988 



Table of Contents 

rcmd ............................................................................. routines for returning a stream to a remote command 
rexec ........... - ................................. - ...................................................... return stream to a remote command 
termcap ............. - ............................................................................. terminal independent operation routines 

4~ Special Files 

intro .................................................................................... introduction to special files and hardware support 
arp .......................... _ .......................................................................................... Address Resolution Protocol 
bk .................................................................. line discipline for machine-machine communication (obsolete) 
cp .................................. ___ ..................... - .... - ................................. Intelligent Communications Processor 
dh ............................................................................................... DH-l l/DM-11 communications multiplexer 
di ...................................... - ..................................................................... DL-11 communications multiplexer 
drum ........................................................................................................................................... paging device 
dz ............................................................................................................. DZ-11 communications multiplexer 
el .................................................................................................................................................. disk interface 
enet .. ~ .............. _ ....................................................................................... generalized Ethernet device driver 
e:it ............... - ............................... - .................................................. - Excelan 10 Mb/s Ethernet controller 
gd ......... ~ .. ~ .............................................................................................................. ISI SCSI hard disk driver 
gg ............ :.. ......................................................................................................... ISi raw SCSI interface driver 
gt ....................................................................................................................................... ISI SCSI ta.pe driver 
hk -~ ........................................................................................... RK6-l l/RK06 and RK07 moving head disk 
hp ................................................................................................................................................. disk interface 

il. --.. ----------.......... ---------.. ---··--------·-----.. Interlan 10 Mb/s Ethernet controller 
inet .............................................................................................................................. Internet protocol family 
jp .~ .......................................................................................................................................... Internet Protocol 

.·,.1~ ~~ .. -~~ .. ----··----·--···--................... ----·----···------· software loopback network interface 
!.Ip··~~ ............................................................................................................................................... line printer 
mem~.- .... ..,~ .................................................................................................................................... main memory 
mtjo ............................................................................................................................ 'UNIX magta,pe interface 

.. null ..... .:~ ............................................................................................................................................ da.ta. sink. 
n\\/~.~--.. :. .............. _ .................................................. Integrated Solutions, Inc., 10 Mb/s Ethernet controller 
pty.: ... ~ ............................................................................................................................ pseudo temtinal driver 
rk ................................................................................................. RK6- l l/RK06 and RK.07 moving hea.d disk 
rx .............................................................................. - .................................. DEC RX02 floppy disk interface 
sd. ................................................................................................................. V~ SCSI disk adaptor interface 
sm ............................................................................................................................ ~ S'MD disk interface 
sp ......................... - ............................... _. ___ ............................................. disk spanning pseudo disk driver 
tcp ............................................ - ......................................................... Internet Transmission Control Protocol 
till .................................................................................................................. TM-1 lfIE,-10 magta.pe interface 
ts ................................................................................................................................ TS-11 magta.pe interface 
tty' ............................................................................................................................. general terminal interface 
vb ............................................................................................................................................ v~ backplane 

5. File Formats 

L-devices ........................................................................................................... WCP device description file 
L-dialcodes ..................................................................................................... WCP phone nlllllber index file 
L.aliases ................................................................................................................... WCP hostname alias file 
L.cmds ······---···--··-·-············-· .. --............................................ WCP remote command permissions file 
L.sys .......................................................................................................... UU'CP remote host description file 
USERFII..E .................................................................................................. WCP pa.thname permissions file 
a.out ............................................................................................. o .. e>o ............. assembler and link editor output 
acct ................................................................................................. 900 ........................ execution accounting file 
aliases .......................................................................................................................... aliases file for sendmail 
ar ........................................................................................................................... archive (library) file fonnat 
core ..................................................................................................................... f omlat of memory image file 

dbx ·············-···············-··············-········-········-····························-··········-·-·-· dbx symbol table information 

December 1988 - viii - INTEGRATED SOLUTIONS 4.3 BSD 



Table of Contents 

dir ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• format of directories 
disktab ............................................................................................................................... disk description file 
dump ........................................................................................................................ incremental dump format 
f s ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• format of file system volume 
f stab •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• static information about filesystems 
gettytab •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• terminal configuration data base 
group .................................................................................................................................................. group file 
hosts .................................................................................................................................. host name data. base 
map3270 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• database for mapping ascii keystrokes into IBM 3270 keys 
mtab ......................................................................................................................... mounted file system table 
networks ..................................................................................................................... network name data. base 
passwd ......................................................................................................................................... password file 
phones •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• remote host phone number data base 
plot ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••• graphics interface 
printcap .................................................................................................................. printer capability data base 
protocols ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• protocol name data base 
remote ................................................................................................................... remote host description file 
resolver •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• resolver configuration file 
services ........•......•........................................................................................................ service name data. base 
sptab •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• dynamic inf orrnation for spanned disk configuration 
sta.b .............................•......•......••...•.................................•................................................... sy·mbol ta.hie types 
tar ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ta.pe, ·archive file format 
termcap ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• terminal capability data base 
tp •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• DEC/mag tape formats 
ttys .......................................................................................................................... terminal initialization data 
types •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• primitive··· systeni; data types 
tzfile ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• time zori~·· information 
uttnp •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••• ~~~.~ lbgin records 
uuencode •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• format of an encoded uuehcode file 
vfont •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• font formats for the Benson-Varian. or Versatec 
vgrindefs •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• vgrind' s language definition. data base 

INTEGRATED SOLUTIONS 4.3 BSD - ix - December 1988 





2. System Calls 

intro 
accept 
access 
acct 
adjtime 
bind 
brk 
chdir 
chmod 
chown 
chroot 
close 
connect 
creat 
dup 
execve 
exit 
fcntl 

TABLE OF CONTENTS 

introduction to system calls and error numbers 
. . • • . . . . accept a connection on a socket 

• . . . determine accessibility of file 
. • • . • . . . turn accounting on or off 

correct the time to allow synchronization of the system clock 
. . . • • . • • • . . . • . . . • . • . • . . • . . . . . bind a name to a socket 

• • • • • . • • • • . • . • . • . . • • . . . . . . change data segment size 
• . • . . . • . . . . • . . . . . . . . . . • . . change current working directory 
. • . . • . . . . • . • . • . . • • . • . . . . . . • . . . change mode of file 

• . . . . . • . change owner and group of a file 
• . . . . . . . . . . . . . • . . . . . . . . . . . . . . change root directory 

. . • • . • • • • . . • . • • • • • . . • . • . • . . . . • . delete a descriptor 
. . • • . • . . . • . . • • • . . . . . . . • . initiate a connection on a socket 

. . . . . • • • • . . . . • • • . . . • . . . . . . . • . . . . create a new file 

. • . . . . • • . . • • . • . • • . • • . • . • . . . • . . duplicate a descriptor 
. • . . • • • . . . . . . • . . • . . . . • . . • • . • • . execute a file 

terminate a process 
file control 

flock . . . . . . • . apply or remove an advisory lock on an open file 
fork . . . . . . . . . • • . . • . • create a new process 
fsync synchronize a file's in-core state with that on disk 
getdtablesize • . . • • . • • • . . . • • • • • • • . get descriptor table size 
getgid . • . • • • . • . • . . . . . • . • • • • • . • • . . • . • • get group identity 
getgroups . • . . . . . . . . . • . . . . . • • . . • . . . . . • get group access list 
gethostid . • . . . . . . . . . . . . . . . • . • . get/set unique identifier of current host 
gethostname • . • • . • . . . • . . . . • • . . . . . . • • get/set name of current host 
getitimer • . • • . • • . . . . . . . . . . . . . . . . . . get/set value of interval timer 
getpagesize . . • • get system page size 
getpeemame . . . . get name of connected peer 
getpgrp . • . • . . . . . get process group 
getpid . • . . . . . . get process identification 
getpriority • • • . get/set program scheduling priority 
getrlimit . . . . . . . . . • . • . . . . . . control maximum system resource consumption 
getrusage . • . . • • . . . . . . . . . . . . . . get information about resource utilization 
getsockname . . • • . • • • . . • • . • • . • • . • • • . . . • . . . get socket name 
getsockopt • . . • • • . . . • . • • . . . . • • . . . . . get and set options on sockets 
gettimeof day . . . . • . . • . . . • . • . . . • . • . . . . get/set date and time 
getuid . . . . . . . • . . . . . . . . • get user identity 
highpri . . . . make the current process a high priority process 
ioctl . . . . . . • • . . • . • . . . • . control device 
kill . • . . . • . • • . . . . . . send signal to a process 
killpg . . . • • . • . • . . . . • • . . . . . . . . . . . send signal to a process group 
link • . . • . . • . . . . . . • • . . . • • . . . • . . . . . make a hard link to a file 
listen 
lockf 
lseek 
mkdir 
mknod 

. . • . • . . . • . . • . . . . . • . . . . . listen for connections on a socket 
. . . . . • . . . . . • . • . • . • . . • • provide advisory record lockir.g on files 

. • . . . • . . • . . . . . . • . . . . . . . . . . . • . move read/write pointer 
• . . . • . . . • . • . . . • . . . . . . . . • . . . . . • make a directory file 

. . . • . . • . . • • . . . . . . . . . . . . . . . • • • . make a special file 
mmap . • . . . . . . . . . . . • . . . . . . . • . . . . . . . maps or unmaps pages 
mount . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . • mount file system 
normalpri . . . . . . • . . . . . . . . . make the current process a normal priority process 
open open a file for reading or writing, or create a new file 
pipe . . . . . . . . . . . . . . . create an interprocess communication channel 

INTEGRATED SOLUTIONS 4.3 BSD - xi - October 1987 



Table of Contents 

plock . . • • • • . • . . . • . • . . . . . . • . . . . lock the current process in core 
profil . • . • • • • . • • • . . • • . . . . • . . . . . . . . . . execution time profile 
ptrace . • • • • • . • • . . • • • . • . • • . • . • • . . . • • . . . • process trace 
punlock . . • • • • • • • • . . . . . . • . . • • . • . . . • unlock the current process 
quota • . • . • • • • • . . • • . . . . • . • . . • . . . • . . manipulate disk quotas 
read . • • • • • • • • . • • . • • . • . . • . • . . . . . . read input 
readlink . . . • • • • . • • . • • . • . . . . . . . . . • read value of a symbolic link 
reboot . • • • • • • • • . . • . • . . • . • • . • • . • reboot system or halt processor 
recv . • • • receive a message from a socket 
rename • • . • • • • . • • . • . • . . • • • . • • • . . . . change the name of a file 
rmdir • • • . • • . • • • . . . . • • remove a directory file 
select • • • . . . . • • • • • • synchronous I/0 multiplexing 
send . • . . send a message from a socket 
setgroups . . • . . . . . . set group access list 
setpgrp . • • • . • . . . set process group 
setquota . . • • enable/disable quotas on a file system 
setregid • . • • • • • . • . • • • • . • • . set real and effective group ID 
setreuid • • • • • • • • • • . • • . set real and effective user ID's 
shutdown • • • • . • . • shut down part of a full-duplex connection 
sigblock . • • • . • • . • . . . . . . . . . . . • block signals 
sigpause • . • • • • • • . . . • . . atomically release blocked signals and wait for interrupt 
sigreturn . • . • • • • • • • • • • . . . . . • . • • • . • . • . • • return from signal 
sigsetmask • • . • • • • . • • • • • . . . • • • • . . . . . • . set current signal mask 
sigstack . . . . . . . . . . . • . . . . . . . . . . . set and/or get signal stack context 
sigvec . • • . • . • • • • • . • • . • • • . . • • . . • • • . software signal facilities 
socket . . . . • . . • • • . • • . . • • • • . • . create an endpoint for communication 
socketpair . • • • • • • . • • . • . . . . . . . . . . . create a pair of connected sockets 
stat . • . . . • • • • . . . . . . . . . . . • • • . • . • . . . . . . . get file status 
swapon • • . • . • • . • . • . • . . . . add a swap device for interleaved paging/swapping 
symlink . . . . . . . . . . . . . . . . . • . • • . . • . . make symbolic link to a file 
sync • . • . . . . . • • • . . . . • . . . • . . • • . . . • • . . update super-block 
syscall • • . • . . • . • • • • • • . . . . • • • • . • . . • • . . indirect system call 
truncate . . . . truncate a file to a specified length 
umask . • • • set file creation mode mask 
unlink • . • . • . • • • • . . . . . . . . • remove directory entry 
unmount • . • • . • • . • . . remove a file system 
utimes . • • . . • . • . • . . . • • • . . . • . . . • . . . . • . • . • set file times 
vfork . • . • . . . . . . . . • . . . spawn new process in a virtual memory efficient way 
vhangup • . • • • • • . • . . . • • . . • • virtually "hangup" the current control terminal 
wait • • • • . . • . wait for process to terminate 
write . . . . . . . • • . . . . . . . . . . . . . . . . . . • • • . • . • write output 

October 1987 - xii - INTEGRATED SOLUTIONS 4.3 BSD 



INTR0(2) UNIX Programmer's Manual INTR0(2) 

NAME 
intro - introduction to system calls and error numbers 

SYNOPSIS 
#include < sysle"no.h> 

DESCRIPTION 
This section describes all of the system calls. Most of these calls have one or more error returns. An error 
condition is indicated by an otheiwise impossible return value. This is almost always -1; the individual 
descriptions specify the details. Note that a number of system calls overload the meanings of these error 
numbers, and that the meanings must be interpreted according to the type and circumstances of the call. 

As with normal arguments, all return codes and values from functions are of type integer unless otheiwise 
noted. An error number is also made available in the external variable e"no, which is not cleared on suc­
cessful calls. Thus e"no should be tested only after an error has occurred 

The following is a complete list of the errors and their names as given in <syslerrno.h>. 

0 Error 0 
Unused 

1 EPERM Not owner 
Typically this error indicates an attempt to modify a file in some way forbidden except to its 
owner or super-user. It is also returned for attempts by ordinary users to do things allowed only to 
the super-user. 

2 ENOENT No such file or directory 
This error occurs when a filename is specified and the file should exist but doesn't, or when one of 
the directories in a path name does not exist. 

3 ESRCH No such process 
The process or process group whose number was given does not exist, or any such process is 
already dead. 

4 EINTR Interrupted system call 
An asynchronous signal (such as interrupt or quit) that the user has elected to catch occurred dur­
ing a system call. If execution is resumed after processing the signal and the system call is not 
restarted, it will appear as if the interrupted system call returned this error condition. 

5 EIO 1/0 error 
Some physical 1/0 error occurred during a read or write. This error may in some cases occur on 
a call following the one to which it actually applies. 

6 ENXIO No such device or address 
1/0 on a special file refers to a subdevice that does not exist, or beyond the limits of the device .. It 
may also occur when, for example, an illegal tape drive unit number is selected or a disk pack is 
not loaded on a drive. 

7 E2BIG Arg list too long 
An argument list longer than 20480 bytes (or the current limit, NCARGS in <syslparam.h>) is 
presented to execve. 

8 ENOEXEC Exec format error 
A request is made to execute a file that, although it has the appropriate permissions, does not start 
with a valid magic number, (see a.out(5)). 

9 EBADF Bad file number 

May 23, 1986 

Either a file descriptor refers to no open file, or a read (resp. write) request is made to a file that is 
open only for writing (resp. reading). 

INTEGRATED SOLUTIONS 4.3 BSD 1 



INTR0(2) UNIX Programmer's Manual INTR0(2) 

10 ECHILD No children 
Wait and the process has no living or unwaited-for children. 

11 EAGAIN No more processes 
In a fork, the system's process table is full or the user is not allowed to create any more processes. 

12 ENOMEM Not enough memory 
During an execve or break, a program asks for more core or swap space than the system is able to 
supply, or a process size limit would be exceeded A lack of swap space is normally a temporary 
condition; however, a lack of core is not a temporary condition; the maximum size of the text, 
data, and stack segments is a system parameter. Soft limits may be increased to their correspond­
ing hard limits. 

13 EACCES Permission denied 
An attempt was made to access a file in a way forbidden by the protection system. 

14 EFAULT Bad address 
The system encountered a hardware fault in attempting to access the arguments of a system call. 

15 ENOTBLK Block device required 
A plain file was mentioned where a block device was required, e.g., in mount. 

16 EBUSY Device busy 
An attempt to mount a device that was already mounted or an attempt was made to dismount a 
device on which there is an active file (open file, current directory, mounted-on file, or active text 
segment). A request was made to an exclusive access device that was already in use. 

17 EEXIST File exists 
An existing file was mentioned in an inappropriate context, e.g., link. 

18 EXDEV Cross-device link 
A hard link to a file on another device was attempted. 

19 ENODEV No such device 
An attempt was made to apply an inappropriate system call to a device, e.g., to read a write-only 
device, or the device is not configured by the system. 

20 ENOTDIR Not a directory 
A non-directory was specified where a directory is required, for example, in a path name or as an 
argument to chdir. 

21 EISDIR Is a directory 
An attempt to write on a directory. 

22 EINV AL Invalid argument 
Some invalid argument: dismounting a non-mounted device, mentioning an unknown signal in 
signal, or some other argument inappropriate for the call. Also set by math functions, (see 
math(3)). 

23 ENFILE File table overftow 
The system's table of open files is full, and temporarily no more opens can be accepted. 

24 EMFILE Too many open files 
As released, the limit on the number of open files per process is 64. Getdtablesize(2) will obtain 
the current limit Customary configuration limit on most other UNIX systems is 20 per process. 

25 ENOTTY Inappropriate ioctl for device 
The file mentioned in an ioctl is not a terminal or one of the devices to which this call applies. 

26 ETXTBSY Text file busy 

May23, 1986 

An attempt to execute a pure-procedure program that is currently open for writing. Also an 
attempt to open for writing a pure-procedure program that is being executed. 

INTEGRATED SOLUTIONS 4.3 BSD 2 



INTR0(2) UNIX Programmer's Manual INTR0(2) 

27 EFBIG File too large 
The size of a file exceeded the maximum (about 231 bytes). 

28 ENOSPC No space left on device 
A write to an ordinary file, the creation of a directory or symbolic link, or the creation of a direc­
tory entry failed because no more disk blocks are available on the file system, or the allocation of 
an inode for a newly created file failed because no more inodes are available on the file system. 

29 ESPIPE illegal seek 
An lseek was issued to a socket or pipe. This error may also be issued for other non-seekable dev­
ices. 

30 EROFS Read-only file system 
An attempt to modify a file or directory was made on a device mounted read-only. 

31 EMLINK Too many links 
An attempt to make more than 32767 hard links to a file. 

32 EPIPE Broken pipe 
A write on a pipe or socket for which there is no process to read the data. This condition normally 
generates a signal; the error is returned if the signal is caught or ignored. 

33 EDOM Argument too large 
The argument of a function in the math package (3M) is out of the domain of the function. 

34 ERANGE Result too large 
The value of a function in the math package (3M) is unrepresentable within machine precision. 

35 EWOULDBLOCK Operation would block 
An operation that would cause a process to block was attempted on an object in non-blocking 
mode (see fcntl(2)). 

36 EINPROGRESS Operation now in progress 
An operation that takes a long time to complete (such as a connect(2)) was attempted on a non­
blocking object (see fcntl(2)). 

37 EALREADY Operation already in progress 
An operation was attempted on a non-blocking object that already had an operation in progress. 

38 ENOTSOCK Socket operation on non-socket 
Self-explanatory. 

39 ED EST ADDRREQ Destination address required 
A required address was omitted from an operation on a socket 

40 EMSGSIZE Message too long 
A message sent on a socket was larger than the internal message buffer or some other network 
limit. 

41 EPROTOTYPE Protocol wrong type for socket 
A protocol was specified that does not support the semantics of the socket type requested For 
example, you cannot use the ARP A Internet UDP protocol with type SOCK_ STREAM. 

42 ENOPROTOOPT Option not supported by protocol 
A bad option or level was specified !n a getsockopt(2) or setsockopt(2) call. 

43 EPROTONOSUPPORT Protocol not supported 
The protocol has not been configured into the system or no implementation for it exists. 

44 ESOCKTNOSUPPORT Socket type not supported 
The support for the socket type has not been configured into the system or no implementation for 
it exists. 

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 3 



INTR0(2) UNIX Programmer's Manual INTR0(2) 

45 EOPNOTSUPP Operation not supported on socket 
For example, trying to accept a connection on a datagram socket. 

46 EPFNOSUPPORT Protocol family not supported 
The protocol family has not been configured into the system or no implementation for it exists. 

47 EAFNOSUPPORT Address family not supported by protocol family 
An address incompatible with the requested protocol was used. For example, you shouldn't 
necessarily expect to be able to use NS addresses with ARP A Internet protocols. 

48 EADDRINUSE Address already in use 
Only one usage of each address is normally permitted. 

49 EADDRNOTAV All.. Can't assign requested address 
Normally results from an attempt to create a socket with an address not on this machine. 

50 ENETDOWN Network is down 
A socket operation encountered a dead network. 

51 ENETUNREACH Network is unreachable 
A socket operation was attempted to an unreachable network. 

52 ENETRESET Network dropped connection on reset 
The host you were connected to crashed and rebooted 

53 ECONNABORIBD Software caused connection abort 
A connection abort was caused internal to your host machine. 

54 ECONNRESET Connection reset by peer 
A connection was forcibly closed by a peer. This normally results from a loss of the connection 
on the remote socket due to a timeout or a reboot 

55 ENOBUFS No buffer space available 
An operation on a socket or pipe was not performed because the system lacked sufficient buffer 
space or because a queue was full. 

56 EISCONN Socket is already connected 
A connect request was made on an already connected socket; or, a sendto or sendmsg request on 
a connected socket specified a destination when already connected. 

57 ENOTCONN Socket is not connected 
An request to send or receive data was disallowed because the socket is not connected and (when 
sending on a datagram socket) no address was supplied. 

58 ESHUTDOWN Can't send after socket shutdown 
A request to send data was disallowed because the socket had already been shut down with a pre­
vious shutdown(2) call. 

59 unused 

60 ETIMEDOUT Connection timed out 
A connect or send request failed because the connected party did not properly respond after a 
period of time. (The timeout period is dependent on the communication protocol.) 

61 ECONNREFUSED Connection refused 
No connection could be made because the target machine actively refused it This usually results 
from trying to connect to a service that is inactive on the foreign host. 

62 ELOOP Too many levels of symbolic links 
A path name lookup involved more than 8 symbolic links. 

May23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 4 



INTR0(2) UNIX Programmer's Manual INTR0(2) 

63 ENAMETOOLONG File name too long 
A component of a path name exceeded 255 (MAXNAMELEN) characters, or an entire path name 
exceeded 1023 (MAXP A THLEN-1) characters. 

64 EHOSTDOWN Host is down 
A socket operation failed because the destination host was down. 

65 EHOSTUNREACH Host is unreachable 
A socket operation was attempted to an unreachable host. 

66 ENOTEMPTY Directory not empty 
A directory with entries other than ''.'' and '' .. '' was supplied to a remove directory or rename 
call. 

69 EDQUOT Disc quota exceeded 
A write to an ordinary file, the creation of a directory or symbolic link, or the creation of a direc­
tory entry failed because the user's quota of disk blocks was exhausted, or the allocation of an 
inode for a newly created file failed because the user's quota of inodes was exhausted. 

DEFINITIONS 
Process ID 

Each active process in the system is uniquely identified by a positive integer called a process ID. 
The range of this ID is from 0 to 30000. 

Parent process ID 
A new process is created by a currently active process; (see fork(2)). The parent process ID of a 
process is the process ID of its creator. 

Process Group ID 
Each active process is a member of a process group that is identified by a positive integer called the 
process group ID. This is the process ID of the group leader. This grouping permits the signaling of 
related processes (see killpg(2)) and the job control mechanisms of csh(l). 

Tty Group ID 
Each active process can be a member of a terminal group that is identified by a positive integer 
called the tty group ID. This grouping is used to arbitrate between multiple jobs contending for the 
same terminal; (see csh(l) and tty(4)). 

Real User ID and Real Group ID 
Each user on the system is identified by a positive integer termed the real user ID. 

Each user is also a member of one or more groups. One of these groups is distinguished from others 
and used in implementing accounting facilities. The positive integer corresponding to this dis­
tinguished group is termed the real group ID. 

All processes have a real user ID and real group ID. These are initialized from the equivalent attri­
butes of the process that created it 

Effective User Id, Effective Group Id, and Access Groups 
Access to system resources is governed by three values: the effective user ID, the effective group 
ID, and the group access list 

The effective user ID and effective group ID are initially the process's real user ID and real group ID 
respectively. Either may be modified through execution of a set-user-ID or set-group-ID file (possi­
bly by one its ancestors) (see execve(2)). 

The group access list is an additional set of group ID' s used only in determining resource accessibil­
ity. Access checks are performed as described below in ''File Access Permissions''. 

Super-user 
A process is recognized as a super-user process and is granted special privileges if its effective user 
IDisQ . 

May23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 5 



INTR0(2) UNIX Programmer's Manual INTR0(2) 

Special Processes 
The processes with a process ID's of 0, l, and 2 are special. Process 0 is the scheduler. Process 1 is 
the initialization process init, and is the ancestor of every other process in the system. It is used to 
control the process structure. Process 2 is the paging daemon. 

Descriptor 
An integer assigned by the system when a file is referenced by open(2) or dup(2), or when a socket 
is created by pipe(2), socket(2) or socketpair(2), which uniquely identifies an access path to that file 
or socket from a given process or any of its children. 

File Name 
Names consisting of up to 255 (MAXNAMELEN) characters may be used to name an ordinary file, 
special file, or directory. 

These characters may be selected from the set of all ASCII character excluding 0 (null) and the 
ASCII code for I (slash). (The parity bit, bit 8, must be 0.) 

Note that it is generally unwise to use*,?, [or] as part of filenames because of the special meaning 
attached to these characters by the shell. 

Path Name 
A path name is a null-terminated character string starting with an optional slash (/), followed by zero 
or more directory names separated by slashes, optionally followed by a filename. The total length of 
a path name must be less than 1024 (MAXPATHLEN) characters. 

If a path name begins with a slash, the path search begins at the root directory. Otherwise, the search 
begins from the current working directory. A slash by itself names the root directory. A null path­
name refers to the current directory. 

Directory 
A directory is a special type of file that contains entries that are references to other files. Directory 
entries are called links. By convention, a directory contains at least two links,. and .. , referred to as 
dot and dot-dot respectively. Dot refers to the directory itself and dot-dot refers to its parent direc­
tory. 

Root Directory and Current Working Directory 
Each process has associated with it a concept of a root directory and a current working directory for 
the purpose of resolving path name searches. A process's root directory need not be the root direc­
tory of the root file system. 

File Access Permissions 

May 23, 1986 

Every file in the file system has a set of access permissions. These permissions are used in determin­
ing whether a process may petform a requested operation on the file (such as opening a file for writ­
ing). Access permissions are established at the time a file is created. They may be changed at some 
later time through the chmod(2) call. 

File access is broken down according to whether a file may be: read, written, or executed. Directory 
files use the execute permission to control if the directory may be searched. 

File access permissions are interpreted by the system as they apply to three different classes of users: 
the owner of the file, those users in the file's group, anyone else. Every file has an independent set of 
access permissions for each of these classes. When an access check is made, the system decides if 
permission should be granted by checking the access information applicable to the caller. 

Read, write, and execute/search permissions on a file are granted to a process if: 

The process's effective user ID is that of the super-user. 

The process's effective user ID matches the user ID of the owner of the file and the owner permis­
sions allow the access. 

The process's effective user ID does not match the user ID of the owner of the file, and either the 

INTEGRATED SOLUTIONS 4.3 BSD 6 



INTR0(2) UNIX Programmer's Manual INTR0(2) 

process's effective group ID matches the group ID of the file, or the group ID of the file is in the 
process's group access list, and the group permissions allow the access. 

Neither the effective user ID nor effective group ID and group access list of the process match the 
corresponding user ID and group ID of the file, but the permissions for ''other users'' allow access. 

Otherwise, permission is denied. 

Sockets and Address Families 

SEE ALSO 

A socket is an endpoint for communication between processes. Each socket has queues for sending 
and receiving data. 

Sockets are typed according to their communications properties. These properties include whether 
messages sent and received at a socket require the name of the partner, whether communication is 
reliable, the format used in naming message recipients, etc. 

Each instance of the system supports some collection of socket types; consult socket(2) for more 
information about the types available and their properties. 

Each instance of the system supports some number of sets of communications protocols. Each proto­
col set supports addresses of a certain format. An Address Family is the set of addresses for a 
specific group of protocols. Each socket has an address chosen from the address family in which the 
socket was created. 

intro(3), perror(3) 

May23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 7 



ACCEPT(2) UNIX Programmer's Manual ACCEPT(2) 

NAME 
accept - accept a connection on a socket 

SYNOPSIS 
#include < sysltypes.h> 
#include < syslsocket.h> 

ns = accept(s, addr, addrlen) 
int ns, s; 
struct sockaddr *addr; 
int *addrlen; 

DESCRIPTION 
The arguments is a socket that has been created with socket(2), bound to an address with bind(2), and is 
listening for connections after a listen(2). Accept extracts the first connection on the queue of pending 
connections, creates a new socket with the same properties of s and allocates a new file descriptor, ns, for 
the socket. If no pending connections are present on the queue, and the socket is not marked as non­
blocking, accept blocks the caller until a connection is present. If the socket is marked non-blocking and 
no pending connections are present on the queue, accept returns an error as described below. The accepted 
socket, ns, may not be used to accept more connections. The original socket s remains open. 

The argument addr is a result parameter that is filled in with the address of the connecting entity, as known 
to the communications layer. The exact format of the addr parameter is determined by the domain in 
which the communication is occurring. The addrlen is a value-result parameter; it should initially contain 
the amount of space pointed to by addr; on return it will contain the actual length (in bytes) of the address 
returned. This call is used with connection-based socket types, currently with SOCK_ STREAM. 

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for read. 

RETURN VALUE 
The call returns -1 on error. If it succeeds, it returns a non-negative integer that is a descriptor for the 
accepted socket. 

ERRORS 
The accept will fail if: 

[EBADF] The descriptor is invalid. 

The descriptor references a file, not a socket 

The referenced socket is not of type SOCK_ STREAM. 

The addr parameter is not in a writable part of the user address space. 

[ENOTSOCK] 

[EOPNOTSUPP] 

[EFAULT] 

[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to be accepted. 

SEE ALSO 
bind(2), connect(2), listen(2), select(2), socket(2) 

May22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



ACCESS(2) UNIX Programmer's Manual ACCESS(2) 

NAME 
access - determine accessibility of file 

SYNOPSIS 
#include < sys!file.h> 

#define R OK 4 
#define W OK 2 
#define X OK 1 
#define F OK 0 

I* test for read permission •I 
I• test for write permission •/ 
I• test for execute (search) permission •/ 
I* test for presence of file•/ 

accessible = access( path, mode) 
int accessible; 
char •path; 
int mode; 

DESCRIPTION 
Access checks the given file path for accessibility according to mode, which is an inclusive or of the bits 
R _OK, W _OK and X _OK. Specifying mode as F _OK (i.e., 0) tests whether the directories leading to the 
file can be searched and the file exists. 

The real user ID and the group access list (including the real group ID) are used in verifying permission, so 
this call is useful to set-UID programs. 

Notice that only access bits are checked. A directory may be indicated as writable by access, but an 
attempt to open it for writing will fail (although files may be created there); a file may look executable, but 
execve will fail unless it is in proper format 

RETURN VALUE 
If path cannot be found or if any of the desired access modes would not be granted, then a -1 value is 
returned; otherwise a 0 value is returned. 

ERRORS 
Access to the file is denied if one or more of the following are true: 

[ENOTDIR] A component of the path prefix is not a directory. 

[EINV AL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[ELOOP] 

[EROFS] 

[ETXTBSY] 

[EACCES] 

[EFAULT] 

[EIO] 

May22, 1986 

A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

The named file does not exist. 

Search permission is denied for a component of the path prefix. 

Too many symbolic links were encountered in translating the pathname. 

Write access is requested for a file on a read-only file system. 

Write access is requested for a pure procedure (shared text) file that is being executed. 

Permission bits of the file mode do not permit the requested access, or search permission 
is denied on a component of the path prefix. The owner of a file has permission checked 
with respect to the "owner" read, write, and execute mode bits, members of the file's 
group other than the owner have permission checked with respect to the "group" mode 
bits, and all others have permissions checked with respect to the ''other'' mode bits. 

Path points outside the process's allocated address space. 

An I/O error occurred while reading from or writing to the file system. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



ACCESS(2) UNIX Programmer's Manual ACCESS(2) 

SEE ALSO 
chmod(2), stat(2) 

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



ACCT(2) UNIX Programmer's Manual ACCT(2) 

NAME 
acct - turn accounting on or off 

SYNOPSIS 
acct(file) 
char •file; 

DESCRIPTION 

NOTES 

The system is prepared to write a record in an accounting file for each process as it terminates. This call, 
with a null-terminated string naming an existing file as argument, turns on accounting; records for each ter­
minating process are appended to file. An argument of 0 causes accounting to be turned off. 

The accounting file format is given in acct(5). 

This call is permitted only to the super-user. 

Accounting is automatically disabled when the file system the accounting file resides on runs out of space; 
it is enabled when space once again becomes available. 

RETURN VALUE 
On error -1 is returned The file must exist and the call may be exercised only by the super-user. It is 
erroneous to try to turn on accounting when it is already on. 

ERRORS 
Acct will fail if one of the following is true: 

[EPERM] 

[ENOTDIR] 

[EINVAL] 

The caller is not the super-user. 

A component of the path prefix is not a directory. 

The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[ELOOP] 

[EROFS] 

[EFAULT] 

[EIO] 

A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

The named file does not exist. 

Search permission is denied for a component of the path prefix, or the path name is not a 
regular file. 

Too many symbolic links were encountered in translating the pathname. 

The named file resides on a read-only file system. 

File points outside the process's allocated address space. 

An 1/0 error occurred while reading from or writing to the file system. 

SEE ALSO 

BUGS 

acct(5), sa(8) 

No accounting is produced for programs running when a crash occurs. In particular non-terminating pro­
grams are never accounted for. 

May22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



ADJTIME(2) UNIX Programmer's Manual ADJTIME(2) 

NAME 
adjtime - correct the time to allow synchronization of the system clock 

SYNOPSIS 
#include < sysltime.h> 

adjtime( delta, olddelta) 
struct timeval *delta; 
struct timeval *olddelta; 

DESCRIPTION 
Adj time makes small adjustments to the system time, as returned by gettimeof day(2), advancing or retard­
ing it by the time specified by the timeval delta. If delta is negative, the clock is slowed down by incre­
menting it more slowly than normal until the correction is complete. If delta is positive, a larger increment 
than normal is used. The skew used to perform the correction is generally a fraction of one percent. Thus, 
the time is always a monotonically increasing function. A time correction from an earlier call to adjtime 
may not be :finished when adjtime is called again. If olddelta is non-zero, then the structure pointed to will 
contain, upon return, the number of microseconds still to be corrected from the earlier call. 

This call may be used by ti.me servers that synchronize the clocks of computers in a local area network. 
Such time servers would slow down the clocks of some machines and speed up the clocks of others to 
bring them to the average network time. 

The call adjtime(2) is restricted to the super-user. 

RETURN VALUE 
A return value of 0 indicates that the call succeeded. A return value of -1 indicates that an error occurred, 
and in this case an error code is stored in the global variable errno. 

ERRORS 
The following error codes may be set in errno: 

[EF AULT] An argument points outside the process's allocated address space. 

[EPERM] The process's effective user ID is not that of the super-user. 

SEE ALSO 
date(l), gettimeofday(2), timed(8), timedc(8), 
TSP: The Time Synchronization Protocol for UNIX 4.3BSD, R. Gusella and S. Zatti 

May 15, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



BIND(2) UNIX Programmer's Manual BIND(2) 

NAME 
bind - bind a name to a socket 

SYNOPSIS 
#include <sysltypes.h> 
#include <sys/socket.h> 

bind(s, name, namelen) 
int s; 
struct sockaddr *name; 
int namelen; 

DESCRIPTION 

NOTES 

Bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists in a name 
space (address family) but has no name assigned. Bind requests that name be assigned to the socket. 

Binding a name in the UNIX domain creates a socket in the file system that must be deleted by the caller 
when it is no longer needed (using unlink(2)). 

The rules used in name binding vary between communication domains. Consult the manual entries in sec­
tion 4 for detailed information. 

RETURN VALUE 
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which is further 
specified in the global err no. 

ERRORS 
The bind call will fail if: 

[EBADF] 

[ENOTSOCK] 

S is not a valid descriptor. 

S is not a socket 

[EADDRNOTAV AIL] The specified address is not available from the local machine. 

The specified address is already in use. 

The socket is already bound to an address. 

[EADDRINUSE] 

[EINVAL] 

[EACCES] The requested address is protected, and the current user has inadequate permission 
to access it 

[EF AULT] The name parameter is not in a valid part of the user address space. 

The following errors are specific to binding names in the UNIX domain. 

[ENOTDIR] 

[EINVAL] 

A component of the path prefix is not a directory. 

The pathname contains a character with the high-order bit set. 

[ENAMETOOLONG] 
A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

[ENO ENT] 

[ELOOP] 

[EIO] 

[EROFS] 

[EISDIR] 

May 22, 1986 

A prefix component of the path name does not exist 

Too many symbolic links were encountered in translating the pathname. 

An 1/0 error occurred while making the directory entry or allocating the inode. 

The name would reside on a read-only file system. 

A null pathname was specified. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



BIND(2) UNIX Programmer's Manual BIND(2) 

SEE ALSO 
connect(2), listen(2), socket(2), getsockname(2) 

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



BRK(2) UNIX Programmer's Manual BRK(2) 

NAME 
brk, sbrk - change data segment size 

SYNOPSIS 
#include < sysltypes.h> 

char •bric( addr) 
char •addr; 

char •sbrk( incr) 
int incr; 

DESCRIPTION 
Brk sets the system's idea of the lowest data segment location not used by the program (called the break) 
to addr (rounded up to the next multiple of the system's page size). Locations greater than addr and below 
the stack pointer are not in the address space and will thus cause a memory violation if accessed. 

In the alternate function sbrk, incr more bytes are added to the program's data space and a pointer to the 
start of the new area is returned. 

When a program begins execution via execve the break is set at the highest location defined by the program 
and data storage areas. Ordinarily, therefore, only programs with growing data areas need to use sbrk. 

The getrlimit(2) system call may be used to determine the maximum permissible size of the data segment; 
it will not be possible to set the break beyond the rlim max value returned from a call to getrlimit, e.g. 
"etext + rlp.-+rlim_max." (see end(3) for the definition-of etext). 

RETURN VALUE 
Zero is returned if the brk could be set; -1 if the program requests more memory than the system limit. 
Sbrk returns -1 if the break could not be set. 

ERRORS 
Sbrk will fail and no additional memory will be allocated if one of the following are true: 

[ENOMEM] The limit, as set by setrlimit(2), was exceeded. 

[ENOMEM] 

[ENOMEM] 

The maximum possible size of a data segment (compiled into the system) was exceeded. 

Insufficient space existed in the swap area to support the expansion. 

SEE ALSO 

BUGS 

execve(2), getrlimit(2), end(3), malloc(3) 

Setting the break may fail due to a temporary lack of swap space. It is not possible to distinguish this from 
a failure caused by exceeding the maximum size of the data segment without consulting getrlimit. 

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



CHDIR(2) UNIX Programmer's Manual CHDIR(2) 

NAME 
chdir - change current working directory 

SYNOPSIS 
chdir(path) 
char *path; 

DESCRIPTION 
Path is the pathname of a directory. Chdir causes this directory to become the current working directory, 
the starting point for path names not beginning with''/''. 

In order for a directory to become the current directory, a process must have execute (search) access to the 
directory. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
Chdir will fail and the current working directory will be unchanged if one or more of the following are 
true: 

[ENOTDIR] 

[EINVAL] 

A component of the path prefix is not a directory. 

The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

[ENOENT] 

[ELOOP] 

[EACCES] 

[EFAULT] 

[EIO] 

SEE ALSO 
chroot(2) 

August 26, 1985 

A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

The named directory does not exist. 

Too many symbolic links were encountered in translating the pathname. 

Search permission is denied for any component of the path name. 

Path points outside the process's allocated address space. 

An I/O error occurred while reading from or writing to the file system. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



CHMOD(2) UNIX Programmer's Manual CHMOD(2) 

NAME 
chmod - change mode of file 

SYNOPSIS 
chmod(path, mode) 
char *path; 
int mode; 

fchmod(fd, mode) 
intfd, mode; 

DESCRIPTION 
The file whose name is given by path or referenced by the descriptor f d has its mode changed to mode. 
Modes are constructed by or' ing together some combination of the following, defined in < syslinode .h> : 

ISUID 04000 set user ID on execution 
ISGID 02000 set group ID on execution 
ISVTX 01000 'sticky bit' (see below) 
IREAD 00400 read by owner 
IWRITE 00200 write by owner 
IEXEC 00100 execute (search on directory) by owner 

00070 read, write, execute (search) by group 
00007 read, write, execute (search) by others 

If an executable file is set up for sharing (this is the default) then mode ISVTX (the 'sticky bit') prevents 
the system from abandoning the swap-space image of the program-text portion of the file when its last user 
terminates. Ability to set this bit on executable files is restricted to the super-user. 

If mode ISVTX (the 'sticky bit') is set on a directory, an unprivileged user may not delete or rename files 
of other users in that directory. For more details of the properties of the sticky bit, see sticky(8). 

Only the owner of a file (or the super-user) may change the mode. 

Writing or changing the owner of a file turns off the set-user-id and set-group-id bits unless the user is the 
super-user. This makes the system somewhat more secure by protecting set-user-id (set-group-id) files 
from remaining set-user-id (set-group-id) if they are modified, at the expense of a degree of compatibility. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
Chmod will fail and the file mode will be unchanged if: 

[ENOTDIR] A component of the path prefix is not a directory. 

[EINVAL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[ELOOP] 

[EPERM] 

[EROFS] 

[EFAULT] 

May 13, 1986 

A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

The named file does not exist. 

Search permission is denied for a component of the path prefix. 

Too many symbolic links were encountered in translating the pathname. 

The effective user ID does not match the owner of the file and the effective user ID is 
not the super-user. 

The named file resides on a read-only file system. 

Path points outside the process's allocated address space. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



CHMOD(2) UNIX Programmer's Manual 

[EIO] An 1/0 error occurred while reading from or writing to the file system. 

F chmod will fail if: 

[EBADF] 

[EINVAL] 

[EROFS] 

[EIO] 

SEE ALSO 

The descriptor is not valid. 

F d refers to a socket, not to a file. 

The file resides on a read-only file system. 

An 1/0 error occurred while reading from or writing to the file system. 

chmod(l), open(2), chown(2), stat(2), sticky(8) 

May 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 

CHMOD(2) 

2 



CHOWN(2) UNIX Programmer's Manual CHOWN(2) 

NAME 
chown - change owner and group of a file 

SYNOPSIS 
chown(path, owner, group) 
char •path; 
int owner, group; 

fchown(fd, owner, group) 
intfd, owner, group; 

DESCRIPTION 
The file that is named by path or referenced by f d has its owner and group changed as specified. Only the 
super-user may change the owner of the file, because if users were able to give files away, they could 
defeat the file-space accounting procedures. The owner of the file may change the group to a group of 
which he is a member. 

On some systems, chown clears the set-user-id and set-group-id bits on the file to prevent accidental crea­
tion of set-user-id and set-group-id programs. 

Fchown is particularly useful when used in conjunction with the file locking primitives (see ftock(2)). 

One of the owner or group id's may be left unchanged by specifying it as -1. 

If the final component of path is a symbolic link, the ownership and group of the symbolic link is changed, 
not the ownership and group of the file or directory to which it points. 

RETURN VALUE 
Zero is returned if the operation was successful; -1 is returned if an error occurs, with a more specific error 
code being placed in the global variable e"no. 

ERRORS 
Chown will fail and the file will be unchanged if: 

[ENOTDIR] A component of the path prefix is not a directory. 

[EINV AL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 
A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

[ENOENT] 

[EACCES] 

[ELOOP] 

The named file does not exist. 

Search permission is denied for a component of the path prefix. 

Too many symbolic links were encountered in translating the pathname. 

[EPERM] The effective user ID is not the super-user. 

[EROFS] The named file resides on a read-only file system. 

[EFAULT] Path points outside the process's allocated address space. 

[EIO] An 1/0 error occurred while reading from or writing to the me system. 

Fchown will fail if: 

[EBADF] 

[EINVAL] 

[EPERM] 

[EROFS] 

[EIO] 

May22, 1986 

Fd does not refer to a valid descriptor. 

F d refers to a socket, not a file. 

The effective user ID is not the super-user. 

The named file resides on a read-only file system. 

An 110 error occurred while reading from or writing to the file system. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



CHOWN(2) UNIX Programmer's Manual CHOWN(2) 

SEE ALSO 
chown(8), chgrp(l), chmod(2), flock(2) 

May22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



CHROOT(2) 

NAME 
chroot - change root directory 

SYNOPSIS 
chroot( dirname) 
char •dirname; 

DESCRIPTION 

UNIX Programmer's Manual CHROOT(2) 

Dirname is the address of the pathname of a directory, terminated by a null byte. Chroot causes this direc­
tory to become the root directory, the starting point for path names beginning with"/". 

In order for a directory to become the root directory a process must have execute (search) access to the 
directory. 

This call is restricted to the super-user. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and e"no is set 
to indicate an error. 

ERRORS 
Chroot will fail and the root directory will be unchanged if one or more of the following are true: 

[ENOTDIR] A component of the path name is not a directory. 

[EINVAL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 
A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

[ENOENT] 

[EACCES] 

[BLOOP] 

[EFAULT] 

[EIO] 

SEE ALSO 
chdir(2) 

August 26, 1985 

The named directory does not exist. 

Search permission is denied for any component of the path name. 

Too many symbolic links were encountered in translating the pathname. 

Path points outside the process's allocated address space. 

An 110 error occurred while reading from or writing to the file system. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



CLOSE(2) UNIX Programmer's Manual CLOSE(2) 

NAME 
close - delete a descriptor 

SYNOPSIS 
close(d) 
intd; 

DESCRIPTION 
The close call deletes a descriptor from the per-process object reference table. If this is the last reference 
to the underlying object, then it will be deactivated. For example, on the last close of a file the current seek 
pointer associated with the file is lost; on the last close of a socket(2) associated naming information and 
queued data are discarded; on the last close of a file holding an advisory lock the lock is released (see 
further flock(2)). 

A close of all of a process's descriptors is automatic on exit, but since there is a limit on the number of 
active descriptors per process, close is necessary for programs that deal with many descriptors. 

When a process forks (see fork(2)), all descriptors for the new child process reference the same objects as 
they did in the parent before the fork. If a new process is then to be run using execve(2), the process would 
normally inherit these descriptors. Most of the descriptors can be rearranged with dup2(2) or deleted with 
close before the execve is attempted, but if some of these descriptors will still be needed if the execve fails, 
it is necessary to arrange for them to be closed if the execve succeeds. For this reason, the call ''fcntl( d, 
F _SETFD, l)'' is provided, which arranges that a descriptor will be closed after a successful execve; the 
call "fcntl(d, F _SETFD, 0)" restores the default, which is to not close the descriptor. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the global 
integer variable errno is set to indicate the error. 

ERRORS 
Close will fail if: 

[EBADF] D is not an active descriptor. 

SEE ALSO 
accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), fcntl(2) 

May22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



CONNECT(2) UNIX Programmer's Manual CONNECT(2) 

NAME 
connect - initiate a connection on a socket 

SYNOPSIS 
#include < sysltypes.h> 
#include < sys!socket.h> 

connect(s, name, namelen) 
int s; 
struct sockaddr *name; 
int namelen; 

DESCRIPTION 

The parameter s is a socket. If it is of type SOCK OGRAM, then this call specifies the peer with which 
the socket is to be associated; this address is that tO which datagrams are to be sent, and the only address 
from which datagrams are to be received. If the socket is of type SOCK_ STREAM, then this call attempts 
to make a connection to another socket The other socket is specified by name, which is an address in the 
communications space of the socket. Each communications space inteiprets the name parameter in its own 
way. Generally, stream sockets may successfully connect only once; datagram sockets may use connect 
multiple times to change their association. Datagram sockets may dissolve the association by connecting to 
an invalid address, such as a null address. 

RETURN VALUE 
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned, and a more specific 
error code is stored in e"no. 

ERRORS 
The call fails if: 

[EBADF] 

[ENOTSOCK] 

[EADDRNOTA V All..] 

[EAFNOSUPPORT] 

[EISCONN] 

[ETIMEDOUT] 

[ECONNREFUSED] 

[ENETUNREACH] 

[EADDRINUSE] 

[EFAULT] 

[EINPROGRESS] 

[EALREADY] 

S is not a valid descriptor. 

S is a descriptor for a file, not a socket 

The specified address is not available on this machine. 

Addresses in the specified address family cannot be used with this socket 

The socket is already connected. 

Connection establishment timed out without establishing a connection. 

The attempt to connect was forcefully rejected. 

The network isn't reachable from this host. 

The address is already in use. 

The name parameter specifies an area outside the process address space. 

The socket is non-blocking and the connection cannot be completed immediately. 
It is possible to select(2) for completion by selecting the socket for writing. 

The socket is non-blocking and a previous connection attempt has not yet been 
completed. 

The following errors are specific to connecting names in the UNIX domain. These errors may not apply in 
future versions of the UNIX IPC domain. 

[ENOTDIR] 

[EINVAL] 

A component of the path prefix is not a directory. 

The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

May22, 1986 

A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



CONNECT(2) 

[ENOENT] 

[EACCES] 

[EACCES] 

[ELOOP] 

SEE ALSO 

UNIX Programmer's Manual 

The named socket does not exist. 

Search permission is denied for a component of the path prefix. 

Write access to the named socket is denied. 

Too many symbolic links were encountered in translating the pathname. 

accept(2), select(2), socket(2), getsockname(2) 

May22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 

CONNECT(2) 

2 



CREAT(2) UNIX Programmer's Manual CREAT(2) 

NAME 
creat - create a new file 

SYNOPSIS 
creat( name, mode) 
char •name; 

DESCRIPTION 

NOTES 

This interface is made obsolete by open(2). 

Creat creates a new file or prepares to rewrite an existing file called name, given as the address of a null­
terminated string. If the file did not exist, it is given mode mode, as modified by the process's mode mask 
(see umask(2)). Also see chmod(2) for the construction of the mode argument. 

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length. 

The file is also opened for writing, and its file descriptor is returned. 

The mode given is arbitrary; it need not allow writing. This feature has been used in the past by programs 
to construct a simple, exclusive locking mechanism. It is replaced by the 0 _ EXCL open mode, or flock(2) 
facility. 

RETURN VALUE 
The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative descriptor that only 
permits writing. 

ERRORS 
Creat will fail and the file will not be created or truncated if one of the following occur: 

[ENOTDIR] A component of the path prefix is not a directory. 

[EINV AL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

[ENOENT] 

[ELOOP] 

[EACCES] 

[EACCES] 

[EACCES] 

[EISDIR] 

[EMF~E] 

[ENFILE] 

[ENOSPC] 

[ENOSPC] 

[EDQUOT] 

[EROFS] 

May22, 1986 

A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

The named file does not exist. 

Too many symbolic links were encountered in translating the pathname. 

Search permission is denied for a component of the path prefix. 

The file does not exist and the directory in which it is to be created is not writable. 

The file exists, but it is unwritable. 

The file is a directory. 

There are already too many files open. 

The system file table is full. 

The directory in which the entry for the new file is being placed cannot be extended 
because there is no space left on the file system containing the directory. 

There are no free inodes on the file system on which the file is being created. 

The directory in which the entry for the new file is being placed cannot be extended 
because the user's quota of disk blocks on the file system containing the directory has 
been exhausted. 

The user's quota of inodes on the file system on which the file is being created has been 
exhausted. 

The named file resides on a read-only file system. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



CREAT(2) 

[ENXIO] 

[ETXTBSY] 

[EIO] 

UNIX Programmer's Manual CREAT(2) 

The file is a character special or block special file, and the associated device does not 
exist 

The file is a pure procedure (shared text) file that is being executed 

An 1/0 error occurred while making the directory entry or allocating the inode. 

[EFAULT] Name points outside the process's allocated address space. 

[EOPNOTSUPP] The file was a socket (not currently implemented). 

SEE ALSO 
open(2), write(2), close(2), chmod(2), umask(2) 

May22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



DUP(2) UNIX Programmer's Manual DUP(2) 

NAME 
dup, dup2 - duplicate a descriptor 

SYNOPSIS 
newd = dup(oldd) 
int newd, oldd; 

dup2( oldd, newd) 
int oldd, newd; 

DESCRIPTION 
Dup duplicates an existing object descriptor. The argument oldd is a small non-negative integer index in 
the per-process descriptor table. The value must be less than the size of the table, which is returned by 
getdtablesize(2). The new descriptor returned by the call, newd, is the lowest numbered descriptor that is 
not currently in use by the process. 

The object referenced by the descriptor does not distinguish between references using oldd and newd in 
any way. Thus if newd and oldd are duplicate references to an open file, read(2), write(2) and lseek(2) 
calls all move a single pointer into the file, and append mode, non-blocking 1/0 and asynchronous 1/0 
options are shared between the references. If a separate pointer into the file is desired, a different object 
reference to the file must be obtained by issuing an additional open(2) call. The close-on-exec flag on the 
new file descriptor is unset 

In the second form of the call, the value of newd desired is specified. If this descriptor is already in use, the 
descriptor is first deallocated as if a close(2) call had been done first 

RETURN VALUE 
The value -1 is returned if an error occurs in either call. The external variable errno indicates the cause of 
the error. 

ERRORS 
Dup and dup2 fail if: 

[EBADF] Oldd or newd is not a valid active descriptor 

[EMFil..E] Too many descriptors are active. 

SEE ALSO 
accept(2), open(2), close(2), fcntl(2), pipe(2), socket(2), socketpair(2), getdtablesize(2) 

May 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



EXECVE(2) UNIX Programmer's Manual EXECVE(2) 

NAME 
execve - execute a file 

SYNOPSIS 
execve(na01e,argv,envp) 
char •na01e, •argv[], •envp[]; 

DESCRIPTION 
Execve transforms the calling process into a new process. The new process is constructed from an ordi­
nary file called the new process file. This file is either an executable object file, or a file of data for an inter­
preter. An executable object file consists of an identifying header, followed by pages of data representing 
the initial program (text) and initialized data pages. Additional pages may be specified by the header to be 
initialized with zero data. See a.out(5). 

An interpreter file begins with a line of the form "#! interpreter". When an interpreter file is execve 'd, 
the system execve 's the specified interpreter, giving it the name of the originally exec'd file as an argument 
and shifting over the rest of the original arguments. 

There can be no return from a successful execve because the calling core image is lost. This is the mechan­
ism whereby different process images become active. 

The argument argv is a null-terminated array of character pointers to null-terminated character strings. 
These strings constitute the argument list to be made available to the new process. By convention, at least 
one argument must be present in this array, and the first element of this array should be the name of the 
executed program (i.e., the last component of name). 

The argument envp is also a null-terminated array of character pointers to null-terminated strings. These 
strings pass information to the new process that is not directly an argument to the command (see 
environ(7)). 

Descriptors open in the calling process remain open in the new process, except for those for which the 
close-on-exec fiag is set (see close(2)). Descriptors that remain open are unaffected by execve. 

Ignored signals remain ignored across an execve, but signals that are caught are reset to their default 
values. Blocked signals remain blocked regardless of changes to the signal action. The signal stack is reset 
to be undefined (see sigvec(2) for more information). 

Each process has real user and group IDs and an effective user and group IDs. The real ID identifies the 
person using the system; the effective ID determines his access privileges. Execve changes the effective 
user and group ID to the owner of the executed file if the file has the "set-user-ID" or "set-group-ID" 
modes. The real user ID is not affected. 

The new process also inherits the following attributes from the calling process: 

process ID see getpid (2) 
parent process ID see getppid (2) 
process group ID see getpgrp (2) 
access groups see getgroups (2) 
working directory see chdir (2) 
root directory see chroot (2) 
control terminal see tty ( 4) 
resource usages see getrusage (2) 
interval timers see getitimer (2) 
resource limits see getrlimit (2) 
file mode mask see umask (2) 
signal mask see sigvec (2), sigmask (2) 

When the executed program begins, it is called as follows: 

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



EXECVE(2) UNIX Programmer's Manual EXECVE(2) 

main(argc.argv,envp) 
int argc; 
char **argv, **envp; 

where argc is the number of elements in argv (the "arg count") and argv is the array of character pointers 
to the arguments themselves. 

Envp is a pointer to an array of strings that constitute the environment of the process. A pointer to this 
array is also stored in the global variable "environ". Each string consists of a name, an "=", and a null­
terminated value. The array of pointers is terminated by a null pointer. The shell sh(l) passes an environ­
ment entry for each global shell variable defined when the program is called. See environ(7) for some 
conventionally used names. 

RETURN VALUE 
If execve returns to the calling process an error has occurred; the return value will be -1 and the global 
variable e"no will contain an error code. 

ERRORS 
Execve will fail and return to the calling process if one or more of the following are true: 

[ENOTDIR] A component of the path prefix is not a directory. 

[EINV AL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

[ENOENT] 

[ELOOP] 

[EACCES] 

[EACCES] 

[EACCES] 

[ENO EXEC] 

[ETXTBSY] 

[ENOMEM] 

[E2BIG] 

[EFAULT] 

[EFAULT] 

[EIO] 

CAVEATS 

A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

The new process file does not exist. 

Too many symbolic links were encountered in translating the pathname. 

Search permission is denied for a component of the path prefix. 

The new process file is not an ordinary file. 

The new process file mode denies execute permission. 

The new process file has the appropriate access permission, but has an invalid magic 
number in its header. 

The new process file is a pure procedure (shared text) file that is currently open for writ­
ing or reading by some process. 

The new process requires more virtual memory than is allowed by the imposed max­
imum (getrlimit (2)). 

The number of bytes in the new process's argument list is larger than the system­
imposed limit The limit in the system as released is 20480 bytes (NCARGS in 
< syslparam.h>. 

The new process file is not as long as indicated by the size values in its header. 

Path , argv, or envp point to an illegal address. 

An 1/0 error occurred while reading from the file system. 

If a program is setuid to a non-super-user, but is executed when the real uid is ''root'', then the program 
has some of the powers of a super-user as well. 

SEE ALSO 
exit(2), fork(2), execl(3), environ(7) 

May22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



EXIT(2) UNIX Programmer's Manual EXIT(2) 

NAME 
_exit - terminate a process 

SYNOPSIS 
_exit( status) 
int status; 

DESCRIPTION 
_exit terminates a process with the following consequences: 

All of the descriptors open in the calling process are closed. This may entail delays, for example, waiting 
for output to drain; a process in this state may not be killed, as it is already dying. 

If the parent process of the calling process is executing a wait or is interested in the SIGCHLD signal, then 
it is notified of the calling process's termination and the low-order eight bits of status are made available to 
it; see wait(2). 

The parent process ID of all of the calling process's existing child processes are also set to 1. This means 
that the initialization process (see intro(2)) inherits each of these processes as well. Any stopped children 
are restarted with a hangup signal (SIGHUP). 

Most C programs call the library routine exit(3), which performs cleanup actions in the standard 1/0 library 
before calling _exit . 

RETURN VALUE 
This call never returns. 

SEE ALSO 
rork(2), sigvec(2), wait(2), exit(3) 

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



FCNTL(2) UNIX Programmer's Manual FCNTL(2) 

NAME 
fcntl - file control 

SYNOPSIS 
#include <fcntl.h> 

res = f cntl(fd, cmd, arg) 
int res; 
intfd, cmd, arg; 

DESCRIPTION 

NOTES 

Fenti performs a variety of functions on open descriptors. The argument fd is an open descriptor to be 
operated on by cmd as follows: 

F DUPFD Return a new descriptor as follows: 

F GE1FD 

F_SE1FD 

F GE1FL 

F SE1FL 

F_GETLK 

F SETLK 

F SETLKW 

Lowest numbered available descriptor greater than or equal to arg. 

References the same object as the original descriptor. 

New descriptor shares the same file pointer if the object was a file. 

Same access mode (read, write or read/write). 

Same file status flags (i.e., both descriptors share the same file status flags). 

The close-on-exec flag associated with the new descriptor is set to remain open across 
execve(2) system calls. 

Get the close-on-exec flag associated with the descriptor fd. If the low-order bit is 0, the 
file will remain open across exec, otherwise the file will be closed upon execution of 
exec. 

Set the close-on-exec flag associated with/d to the low order bit of arg (0 or 1 as above). 

Get descriptor status flags, see fcntl(5) for their definitions. 

Set descriptor status flags, see fcntl(5) for their definitions. 

Get a description of the first lock which would block the lock specified in the flock struc­
ture pointed to by arg. The information retrieved overwrites the information in the flock 
structure. If no lock is found that would prevent this lock from being created, then the 
structure is passed back unchanged except for the lock type which will be set to 
F_UNLCK. 

Set or clear an advisory record lock according to the flock structure pointed to by arg. 
F _ SETLK is used to establish shared (F _ RDLCK) and exclusive (F _ WRLCK) locks, or 
to remove either type of lock (F _ UNLCK). If the specified lock cannot be applied,fcntl 
will return with an error value of -1. 

This cmd is the same as F _ SETLK except that if a shared or exclusive lock is blocked by 
other locks, the requesting process will sleep until the lock may be applied. 

F GETOWN Get the process ID or process group currently receiving SIGIO and SIGURG signals; 
process groups are returned as negative values. 

F SETOWN Set the process or process group to receive SIGIO and SIGURG signals; process groups 
are specified by supplying arg as negative, otherwise arg is interpreted as a process ID. 

The SIGIO facilities are enabled by setting the FASYNC flag with F _ SE1FL. 

Advisory locks allow cooperating processes to perform consistent operations on files, but do not guarantee 
exclusive access (i.e., processes may still access files without using advisory locks, possibly resulting in 
inconsistencies). 

16 July 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



FCNTL(2) UNIX Programmer's Manual FCNTL(2) 

The record locking mechanism allows two types of locks: shared locks (F _RDLCK) and exclusive locks 
(F _ WRLCK). More than one process may hold a shared lock for a particular segment of a file at any given 
time, but multiple exclusive, or both shared and exclusive, locks may not exist simultaneously on any seg­
ment 

In order to claim a shared lock, the descriptor must have been opened with read access. The descriptor on 
which an exclusive lock is being placed must have been opened with write access. 

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the appropriate 
lock type with a cmd of F _ SETLK or F _ SE1LKW; the previous lock will be released and the new lock 
applied (possibly after other processes have gained and released the lock). 

If the cmd is F _ SE1LKW and the requested lock cannot be claimed immediately (e.g., another process 
holds an exclusive lock that partially or completely overlaps the current request) then the calling process 
will block until the lock may be acquired. Processes blocked awaiting a lock may be awakened by signals. 

Care should be taken to avoid deadlock situations in applications in which multiple processes perform 
blocking locks on a set of common records. 

The record that is to be locked or unlocked is described by the flock structure, which is defined in <fcntl.h> 
as follows: 

struct flock { 
short 
short 
long 
long 
short 

}; 

l_type; 
I_ whence; 
l_start; 
I_Ien; 
l_pid; 

I• F RDLCK, F WRLCK, or F UNLCK •I 
t•' fli°g to choose starting offset *t 
I• relative offset, in bytes •I 
I• length, in bytes; 0 means lock to EOF •I 
I• returned with F GE1LK •/ 

The flock structure describes the type (l_type), starting offset (I_ whence), relative offset (l_start), and size 
(l _len) of the segment of the file to be affected. L _whence must be set to 0, 1, or 2 to indicate that the rela­
tive offset will be measured from the start of the file, current position, or end-of-file, respectively. The pro­
cess id field (l _pid) is only used with the F _ GE1LK cmd to return the description of a lock held by another 
process. 

Locks may start and extend beyond the current end-of-file, but may not be negative relative to the begin­
ning of the file. A lock may be set to always extend to the end-of-file by setting l _len to zero (0). If such a 
lock also has l _whence and I _start set to zero (0), the entire file will be locked. Changing or unlocking a 
segment from the middle of a larger locked segment leaves two smaller segments at either end. Locking a 
segment that is already locked by the calling process causes the old lock type to be removed and the new 
lock type to take affect All locks associated with a file for a given process are removed when the file is 
closed or the process terminates. Locks are not inherited by the child process in afork(2) system call. 

In order to maintain consistency in the network case, data must not be cached on client machines. For this 
reason, file buffering for an NFS file is turned off when the first lock is attempted on the file. Buffering 
will remain off as long as the file is open. Programs that do 110 buffering in the user address space, how­
ever, may have inconsistent results (the standard 110 package, for instance, is a common source of unex­
pected buffering). 

The advisory record locking capabilities off cntl are implemented throughout the network by the network 
lock daemon; see lockd(SC). If the file server crashes and is rebooted, the lock daemon will attempt to 
recover all locks that were associated with that server. If a lock cannot be reclaimed, the process that held 
the lock will be issued a SIGLOST signal. 

RETURN VALUE 
Upon successful completion, the value returned depends on cmd as follows: 

F DUPFD A new descriptor. 
F GETFD Value of flag (only the low-order bit is defined). 

16 July 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



FCNTL(2) UNIX Programmer's Manual FCNTL(2) 

F GETFL 
F GETOWN 
other 

Value of flags. 
Value of descriptor owner. 
Value other than -1. 

Otherwise, a value of-1 is returned and errno is set to indicate the error. 

ERRORS 
Fenti will fail if one or more of the following are true: 

EBADF Fd is not a valid open descriptor. 

EMFILE Cmd is F _ DUPFD and the maximum allowed number of descriptors are currently open. 

EINVAL 

EFAULT 

EINVAL 

EBADF 

EA GAIN 

EINTR 

ENOLCK 

Cmd is F _ DUPFD and arg is negative or greater than the maximum allowable number 
(see getdtablesize(2)). 

Cmd is F _ GETLK, F _ SETLK, or F _ SETLKW and arg points to an invalid address. 

Cmd is F _ GETLK, F _ SETLK, or F _ SETLKW and the data arg points to is not valid. 

Cmd is F _ SETLK or F _ SETLKW and the process does not have the appropriate read or 
write permissions on the file. 

Cmd is F _SETLK, the lock type (l_type) is F _RDLCK (shared lock), and the segment of 
the file to be locked already has an exclusive lock held by another process. This error 
will also be returned if the lock type is F _ WRLCK (exclusive lock) and another process 
already has the segment locked with either a shared or exclusive lock. 

Cmd is F _ SETLKW and a signal interrupted the process while it was waiting for the 
lock to be granted. 

Cmd is F _ SETLK or F _ SETLKW and there are no more file lock entries available. 

SEE ALSO 

BUGS 

close(2), execve(2), getdtablesize(2), open(2V), sigvec(2), lockf(3), lockd(8C) 

File locks obtained through the fcntl mechanism do not interact in any way with those acquired via 
flock(2). They do, however, work correctly with the exclusive locks claimed by lockf(3). 

F _ GETLK returns F _ UNLCK if the requesting process holds the specified lock. Thus, there is no way for 
a process to determine if it is still holding a specific lock after catching a SIGLOST signal. 

In a network environment, the value of l_yid returned by F _ GETLK is next to useless. 

16 July 1986 INTEGRATED SOLUTIONS 4.3 BSD 3 



FLOCK(2) UNIX Programmer's Manual FLOCK(2) 

NAME 
ftock - apply or remove an advisory lock on an open file 

SYNOPSIS 
#include < sys!file.h> 

#define LOCK SH 
#define LOCK EX 
#define LOCK NB 
#define LOCK UN 

8.ock(f d, operation) 
intfd, operation; 

1 
2 
4 
8 

I* shared lock •I 
I• exclusive lock•/ 
I• don't block when locking •/ 
I• unlock•/ 

DESCRIPTION 

NOTES 

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A lock is 
applied by specifying an operation parameter that is the inclusive or of LOCK_ SH or LOCK _EX and, pos­
sibly, LOCK_NB. To unlock an existing lock operation should be LOCK_ UN. 

Advisory locks allow cooperating processes to perf orrn consistent operations on files, but do not guarantee 
consistency (i.e., processes may still access files without using advisory locks possibly resulting in incon­
sistencies). 

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any time multiple 
shared locks may be applied to a file, but at no time are multiple exclusive, or both shared and exclusive, 
locks allowed simultaneously on a file. 

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the appropriate 
lock type; this results in the previous lock being released and the new lock applied (possibly after other 
processes have gained and released the lock). 

Requesting a lock on an object that is already locked normally causes the caller to be blocked until the lock 
may be acquired. If LOCK _NB is included in operation, then this will not happen; instead the call will fail 
and the error EWOULDBLOCK will be returned. 

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or fork(2) do not 
result in multiple instances of a lock, but rather multiple references to a single lock. If a process holding a 
lock on a file forks and the child explicitly unlocks the file, the parent will lose its lock. 

Processes blocked awaiting a lock may be awakened by signals. 

RETURN VALUE 
Zero is returned if the operation was successful; on an error a -1 is returned and an error code is left in the 
global location e"no. 

ERRORS 
The flock call fails if: 

[EWOULDBLOCK] The file is locked and the LOCK _NB option was specified. 

[EBADF] The argument/dis an invalid descriptor. 

[EINVAL] The argumentfd refers tu an object other than a file. 

SEE ALSO 
open(2), close(2), dup(2), execve(2), fork(2) 

May22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



FORK(2) UNIX Programmer's Manual FORK(2) 

NAME 
fork - create a new process 

SYNOPSIS 
pid = forkO 
intpid; 

DESCRIPTION 
Fork causes creation of a new process. The new process (child process) is an exact copy of the calling 
process except for the following: 

The child process has a unique process ID. 

The child process has a different parent process ID (i.e., the process ID of the parent process). 

The child process has its own copy of the parent's descriptors. These descriptors reference the same 
underlying objects, so that, for instance, file pointers in file objects are shared between the child and 
the parent, so that an lseek(2) on a descriptor in the child process can affect a subsequent read or 
write by the parent This descriptor copying is also used by the shell to establish standard input and 
output for newly created processes as well as to set up pipes. 

The child processes resource utilizations are set to O; see setrlimit(2). 

RETURN VALUE 
Upon successful completion, fork returns a value of 0 to the child process and returns the process ID of the 
child process to the parent process. Otherwise, a value of -1 is returned to the parent process, no child pro­
cess is created, and the global variable e"no is set to indicate the error. 

ERRORS 
Fork will fail and no child process will be created if one or more of the following are true: 

[EAGAIN] 

[EAGAIN] 

[ENOMEM] 

SEE ALSO 
execve(2), wait(2) 

May 22, 1986 

The system-imposed limit on the total number of processes under execution would be 
exceeded. This limit is configuration-dependent 

The system-imposed limit MAXUPRC ( < syslparam.h>) on the total number of 
processes under execution by a single user would be exceeded. 

There is insufficient swap space for the new process. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



FSYNC(2) UNIX Programmer's Manual 

NAME 
fsync - synchronize a file's in-core state with that on disk 

SYNOPSIS 
fsync(fd) 
int/d; 

DESCRIPTION 

FSYNC(2) 

Fsync causes all modified data and attributes of fd to be moved to a permanent storage device. This nor­
mally results in all in-core modified copies of buffers for the associated file to be written to a disk. 

Fsync should be used by programs that require a file to be in a known state, for example, in building a sim­
ple transaction facility. 

RETURN VALUE 
A 0 value is returned on success. A -1 value indicates an error. 

ERRORS 
The fsync fails if: 

[EBADF] 

[EINVAL] 

[EIO] 

SEE ALSO 

F dis not a valid descriptor. 

F d refers to a socket, not to a file. 

An I/O error occurred while reading from or writing to the file system. 

sync(2), sync(8), update(8) 

May 22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETDTABLESIZE ( 2) UNIX Programmer's Manual 

NAME 
getdtablesize - get descriptor table size 

SYNOPSIS 
nfds = getdtablesizeO 
int nfds; 

DESCRIPTION 

GETDTABLESIZE ( 2) 

Each process has a fixed size descriptor table, which is guaranteed to have at least 20 slots. The entries in 
the descriptor table are numbered with small integers starting at 0. The call getdtablesize returns the size 
of this table. 

SEE ALSO 
close(2), dup(2), open(2), select(2) 

June 28, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETGID(2) UNIX Programmer's Manual 

NAME 
getgid, getegid - get group identity 

SYNOPSIS 
#include < sys!types.h> 

gid = getgidO 
gid_t gid; 

egid = getegidO 
gid_t egid; 

DESCRIPTION 
Getgid returns the real group ID of the current process, getegid the effective group ID. 

The real group ID is specified at login time. 

GETGID(2) 

The effective group ID is more transient, and determines additional access permission during execution of 
a "set-group-ID" process, and it is for such processes that getgid is most useful. 

SEE ALSO 
getuid(2),setregid(2},setgid(3) 

January 7, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETGROUPS(2) UNIX Programmer's Manual GETGROUPS ( 2) 

NAME 
getgroups - get group access list 

SYNOPSIS 
#include < syslparam.h> 

ngroups = getgroups( gidsetlen, gidset) 
int ngroups, gidsetlen, * gidset; 

DESCRIPTION 
Getgroups gets the current group access list of the user process and stores it in the array gidset. The 
parameter gidsetlen indicates the number of entries that may be placed in gidset. Getgroups returns the 
actual number of groups returned in gidset. No more than NGROUPS, as defined in <syslparam.h>, will 
ever be returned. 

RETURN VALUE 
A successful call returns the number of groups in the group set A value of -1 indicates that an error 
occurred, and the error code is stored in the global variable errno . 

ERRORS 
The possible errors for getgroup are: 

[EINVAL] 

[EFAULT] 

SEE ALSO 

The argument gidsetlen is smaller than the number of groups in the group set. 

The argument gidset specifies an invalid address. 

setgroups(2), initgroups(3X) 

BUGS 
The gidset array should be of type gid _ t, but remains integer for compatibility with earlier systems. 

May 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETHOSTID ( 2) UNIX Programmer's Manual 

NAME 
gethostid, sethostid - get/set unique identifier of current host 

SYNOPSIS 
hostid = gethostidO 
long hostid; 

sethostid( hostid) 
long hostid; 

DESCRIPTION 

GETHOSTID ( 2) 

Sethostid establishes a 32-bit identifier for the current processor that is intended to be unique among all 
UNIX systems in existence. This is normally a DARPA Internet address for the local machine. This call is 
allowed only to the super-user and is normally performed at boot time. 

Gethostid returns the 32-bit identifier for the current processor. 

SEE ALSO 
hostid(l), gethostname(2) 

BUGS 
32 bits for the identifier is too small. 

November 28, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETHOSTNAME ( 2) UNIX Programmer's Manual GETHOSTNAME(2) 

NAME 
gethostname, sethostname - get/set name of current host 

SYNOPSIS 
gethostname(name, name/en) 
char •name; 
int namelen; 

sethostname(name, name/en) 
char •name; 
int namelen; 

DESCRIPTION 
Gethostname returns the standard host name for the current processor, as previously set by sethostname. 
The parameter namelen specifies the size of the name array. The returned name is null-terminated unless 
insufficient space is provided. 

Sethostname sets the name of the host machine to be name, which has length name/en. This call is res­
tricted to the super-user and is normally used only when the system is bootstrapped. 

RETURN VALUE 
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned and an error 
code is placed in the global location errno. 

ERRORS 
The following errors may be returned by these calls: 

[EF AULT] The name or namelen parameter gave an invalid address. 

[EPERM] The caller tried to set the hostname and was not the super-user. 

SEE ALSO 
gethostid(2) 

BUGS 
Host names are limited to MAXHOSTNAMELEN (from <sys!param.h>) characters, currently 64. 

May22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETITIMER ( 2) UNIX Programmer's Manual GETITIMER ( 2) 

NAME 
getitimer, setitimer - get/set value of interval timer 

SYNOPSIS 
#include < sysltime.h> 

#define /TIMER REAL 
#define /TIMER_ VIRTUAL 
#define /TIMER PROF 

getitimer(which, value) 
int which; 
struct itimerval *value; 

setitimer(which, value, ovalue) 
int which; 
struct itimerval *value, *ovalue; 

0 
1 
2 

I* real time intervals */ 
/*virtual time intervals*/ 
I* user and system virtual time*/ 

DESCRIPTION 

NOTES 

The system provides each process with three interval timers, defined in <sysltime.h>. The getitimer call 
returns the current value for the timer specified in which in the structure at value. The setitimer call sets a 
timer to the specified value (returning the previous value of the timer if ovalue is nonzero). 

A timer value is defined by the itimerval structure: 

struct itimerval { 
struct timeval it_interval; /*timer interval*/ 
struct timeval it_ value; /* current value */ 

}; 

If it _value is non-zero, it indicates the time to the next timer expiration. If it _interval is non-zero, it 
specifies a value to be used in reloading it_ value when the timer expires. Setting it_ value to 0 disables a 
timer. Setting it_interval to 0 causes a timer to be disabled after its next expiration (assuming it_value is 
non-zero). 

Time values smaller than the resolution of the system clock are rounded up to this resolution. (The resolu­
tion of the system clock is 1/60 of a second) 

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when this timer 
expires. 

The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs only when the process is execut­
ing. A SIGVTALRM signal is delivered when it expires. 

The ITIMER_PROF timer decrements both in process virtual time and when the system is running on 
behalf of the process. It is designed to be used by interpreters in statistically profiling the execution of 
interpreted programs. Each time the !TIMER _PROF timer expires, the SIGPROF signal is delivered. 
Because this signal may interrupt in-progress system calls, programs using this timer must be prepared to 
restart interrupted system calls. 

Three macros for manipulating time. values are defined in <sysltime.h>. Timerclear sets a time value to 
zero, timerisset tests if a time value is non-zero, and timercmp compares two time values (beware that >= 
and<= do not work with this macro). 

RETURN VALUE 
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and a more precise 
error code is placed in the global variable e"no. 

August 26, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETITThIBR ( 2) UNIX Programmer's Manual GETITThIBR ( 2) 

ERRORS 
The possible errors are: 

[EF AULT] The value parameter specified a bad address. 

[EINV AL] A value parameter specified a time was too large to be handled. 

SEE ALSO 
sigvec(2), gettimeof day(2) 

August 26, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



GETP AGESIZE ( 2) UNIX Programmer's Manual 

NAME 
getpagesize - get system page size 

SYNOPSIS 
pagesize = getpagesizeO 
int pagesize; 

DESCRIPTION 

GETP AGESIZE ( 2) 

Getpagesize returns the number of bytes in a page. Page granularity is the granularity of many of the 
memory management calls. 

The page size is a system page size and may not be the same as the underlying hardware page size. 

SEE ALSO 
sbrk(2), pagesize(l) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETPEERNAME (2) UNIX Programmer's Manual GETPEERNAME ( 2) 

NAME 
getpeername - get name of connected peer 

SYNOPSIS 
getpeername( s, name, namelen) 
int s; 
struct sockaddr •name; 
int •namelen; 

DESCRIPTION 
Getpeername returns the name of the peer connected to socket s. The namelen parameter should be ini­
tialized to indicate the amount of space pointed to by name. On return it contains the actual size of the 
name returned (in bytes). The name is truncated if the buffer provided is too small. 

DIAGNOSTICS 
A 0 is returned if the call succeeds, -1 if it fails. 

ERRORS 
The call succeeds unless: 

[EBADF] 

[ENOTSOCK] 

[ENOTCONN] 

[ENOBUFS] 

[EFAULT] 

SEE ALSO 

The argument s is not a valid descriptor. 

The argument s is a file, not a socket 

The socket is not connected. 

Insufficient resources were available in the system to perform the operation. 

The name parameter points to memory not in a valid part of the process address space. 

accept(2), bind(2), socket(2), getsockname(2) 

May 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETPGRP(2) UNIX Programmer's Manual GETPGRP(2) 

NAME 
getpgrp - get process group 

SYNOPSIS 
pgrp = getpgrp(pid) 
intpgrp; 
intpid; 

DESCRIPTION 
The process group of the specified process is returned by getpgrp. If pid is zero, then the call applies to the 
current process. 

Process groups are used for distribution of signals, and by terminals to arbitrate requests for their input: 
processes that have the same process group as the terminal are foreground and may read, while others will 
block with a signal if they attempt to read. 

This call is thus used by programs such as csh(l) to create process groups in implementing job control. 
The TIOCGPGRP and TIOCSPGRP calls described in tty(4) are used to get/set the process group of the 
control terminal. 

SEE ALSO 
setpgrp(2), getuid(2), tty(4) 

August 26, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETPID(2) UNIX Programmer's Manual 

NAME 
getpid, getppid - get process identification 

SYNOPSIS 
pid = getpidO 
intpid; 

ppid = getppidO 
intppid; 

DESCRIPTION 

GETPID(2) 

Getpid returns the process ID of the current process. Most often it is used to generate uniquely-named 
temporary files. 

Getppid returns the process ID of the parent of the current process. 

SEE ALSO 
gethostid(2) 

May 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETPRIORITY ( 2) UNIX Programmer's Manual GETPRIORITY ( 2) 

NAME 
getpriority, setpriority- get/set program scheduling priority 

SYNOPSIS 
#include <sys/resource .h> 

prio = getpriority(which, who) 
intprio, which, who; 

setpriority(which, who, prio) 
int which, who, prio; 

DESCRIPTION 
The scheduling priority of the process, process group, or user, as indicated by which and who is obtained 
with the getpriority call and set with the setpriority call. Which is one of PRIO _PROCESS, 
PRIO _ PGRP, or PRIO _USER, and who is interpreted relative to which (a process identifier for 
PRIO _PROCESS, process group identifier for PRIO _ PGRP, and a user ID for PRIO _USER). A zero value 
of who denotes the current process, process group, or user. Prio is a value in the range -20 to 20. The 
default priority is 0; lower priorities cause more favorable scheduling. 

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the specified 
processes. The setpriority call sets the priorities of all of the specified processes to the specified value. 
Only the super-user may lower priorities. 

RETURN VALUE 
Since getpriority can legitimately return the value -1, it is necessary to clear the external variable errno 
prior to the call, then check it afterward to determine if a -1 is an error or a legitimate value. The setprior­
ity call returns 0 if there is no error, or -1 if there is. 

ERRORS 
Getpriority and setpriority may return one of the following errors: 

[ESRCH] No process was located using the which and who values specified 

[EINV AL] Which was not one of PRIO _PROCESS, PRIO _ PGRP, or PRIO _USER. 

In addition to the errors indicated above, setpriority may fail with one of the following errors returned: 

[EPERM] A process was located, but neither its effective nor real user ID matched the effective 
user ID of the caller. 

[EACCES] 

SEE ALSO 

A non super-user attempted to lower a process priority. 

nice(l), fork(2), renice(8) 

May22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETRLIMIT ( 2) UNIX Programmer's Manual GETRLIMIT ( 2) 

NAME 
getrlimit, setrlimit - control maximum system resource consumption 

SYNOPSIS 
#include <sys/time .h> 
#include < syslresource.h> 

getrlimit(resource, rlp) 
int resource; 
struct rlimit *rlp; 

setrlimit(resource, rlp) 
int resource; 
struct rlimit *rlp; 

DESCRIPTION 
Limits on the consumption of system resources by the current process and each process it creates may be 
obtained with the getrlimit call, and set with the setrlimit call. 

The resource parameter is one of the following: 

RLIMIT _CPU the maximum amount of cpu time (in seconds) to be used by each process. 

RLIMIT _FSIZE the largest size, in bytes, of any single file that may be created. 

RLIMIT DATA the maximum size, in bytes, of the data segment for a process; this defines how far a 
program may extend its break with the sbrk(2) system call. 

RLIMIT STACK the maximum size, in bytes, of the stack segment for a process; this defines how far a 
program's stack segment may be extended Stack extension is performed automati­
cally by the system. 

RLIMIT CORE the largest size, in bytes, of a core file that may be created 

RLIMIT RSS the maximum size, in bytes, to which a process's resident set size may grow. This 
imposes a limit on the amount of physical memory to be given to a process; if 
memory is tight, the system will prefer to take memory from processes that are 
exceeding their declared resident set size. 

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a process may 
receive a signal (for example, if the cpu time is exceeded), but it will be allowed to continue execution until 
it reaches the hard limit (or modifies its resource limit). The rlimit structure is used to specify the hard and 
soft limits on a resource, 

struct rlimit { 

}; 

int 
int 

rlim_cur; 
rlim_max; 

I* current (soft) limit */ 
I* hard limit*/ 

Only the super-user may raise the maximum limits. Other users may only alter rlim _cur within the range 
from 0 to rlim_max or (irreversibly) lower rlim_max. 

An ''infinite'' value for a limit is defined as RLIM _INFINITY (Ox7fffffft). 

Because this information is stored in the per-process information, this system call must be executed directly 
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command to 
csh(l). 

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way: 
a break call fails if the data space limit is reached. When the stack limit is reached, the process receives a 
segmentation fault (SIGSEGV); if this signal is not caught by a handler using the signal stack, this signal 
will kill the process. 

May 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETRLIMIT ( 2) UNIX Programmer's Manual GETRLIMIT ( 2) 

A file 1/0 operation that would create a file that is too large will cause a signal SIGXFSZ to be generated; 
this normally terminates the process, but may be caught. When the soft cpu time limit is exceeded, a signal 
SIGXCPU is sent to the offending process. 

RETURN VALUE 
A 0 return value indicates that the call succeeded, changing or returning the resource limit. A return value 
of -1 indicates that an error occurred, and an error code is stored in the global location errno. 

ERRORS 
The possible errors are: 

[EF AULT] The address specified for rlp is invalid. 

[EPERM] The limit specified to setrlimit would have 
raised the maximum limit value, and the caller is not the super-user. 

SEE ALSO 
csh(l}, quota(2}, sigvec(2}, sigstack(2) 

BUGS 
There should be limit and unlimit commands in sh( 1) as well as in csh. 

May 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



GETRUSAGE(2) UNIX Programmer's Manual GETRUSAGE(2) 

NAME 
getrusage - get information about resource utilization 

SYNOPSIS 
#include < sysltime.h> 
#include < syslresource.h> 

#define RUSAGE _SELF 0 I• calling process •/ 
#defineRUSAGE CHILDREN -1 I• terminated child processes•/ 

getrusage(who, rusage) 
int who; 
struct rusage •rusage; 

DESCRIPTION 
Getrusage returns information describing the resources utilized by the current process, or all its terminated 
child processes. The who parameter is one of RUSAGE_SELF or RUSAGE_CHILDREN. The buffer to 
which rusage points will be filled in with the following structure: 

struct rusage { 

}; 

struct timeval ru _ utime; /* user time used •/ 
struct timeval ru_stime; I• system time used•/ 
int ru _ maxrss; 
int ru_ixrss; 
int ru_idrss; 
int ru_isrss; 
int ru_minflt; 
int ru_majflt; 
int ru_nswap; 
int ru _ inblock; 
int ru _ oublock; 
int ru_msgsnd; 
int ru_msgrcv; 
int ru _ nsignals; 
int ru_nvcsw; 
int ru_nivcsw; 

I• integral shared text memory size•/ 
I* integral unshared data size •I 
I• integral unshared stack size •I 
/*page reclaims•/ 
I• page faults •/ 
I* swaps•/ 
I• block input operations •I 
I* block output operations •/ 
I• messages sent •/ 
/*messages received*/ 
I* signals received */ 
/* voluntary context switches •/ 
I* involuntary context switches •/ 

The fields are interpreted as follows: 

ru utime 

ru stime 

ru maxrss 

ru ixrss 

ru idrss 

ru isrss 

ru minflt 

May 13, 1986 

the total amount of time spent executing in user mode. 

the total amount of time spent in the system executing on behalf of the process( es). 

the maximum resident set size utilized (in kilobytes). 

an ''integral'' value indicating the amount of memory used by the text segment that was 
also shared among other processes. This value is expressed in units of kilobytes * 
seconds-of-execution and is calculated by summing the number of shared memory pages 
in use each time the internal system clock ticks and then averaging over 1 second inter­
vals. 

an integral value of the amount of unshared memory residing in the data segment of a 
process (expressed in units of kilobytes* seconds-of-execution). 

an integral value of the amount of unshared memory residing in the stack segment of a 
process (expressed in units of kilobytes* seconds-of-execution). 

the number of page faults serviced without any 1/0 activity; here 1/0 activity is avoided 
by ''reclaiming'' a page frame from the list of pages awaiting reallocation. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



GETRUSAGE(2) UNIX Programmer's Manual GETRUSAGE(2) 

NOTES 

ru_rnajflt 

ru_nswap 

ru inblock 

ru outblock 

ru_msgsnd 

ru_msgrcv 

ru _ nsignals 

ru nvcsw 

ru nivcsw 

the number of page faults serviced that required 1/0 activity. 

the number of times a process was ''swapped'' out of main memory. 

the number of times the file system had to perform input 

the number of times the file system had to perform output 

the number of IPC messages sent. 

the number of IPC messages received. 

the number of signals delivered 

the number of times a context switch resulted due to a process voluntarily giving up the 
processor before its time slice was completed (usually to await availability of a 
resource). 

the number of times a context switch resulted due to a higher priority process becoming 
runnable or because the current process exceeded its time slice. 

The numbers ru _inblock and ru _ outblock account only for real 1/0; data supplied by the caching mechan­
ism is charged only to the first process to read or write the data. 

ERRORS 
The possible errors for getrusage are: 

The who parameter is not a valid value. [EINVAL] 

[EFAULT] The address specified by the rusage parameter is not in a valid part of the process 
address space. 

SEE ALSO 
gettimeof day(2), wait(2) 

BUGS 
There is no way to obtain information about a child process that has not yet terminated. 

May 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



GETSOCKNAME ( 2) UNIX Programmer's Manual GETSOCKNAME ( 2) 

NAME 
getsockname - get socket name 

SYNOPSIS 
getsockname( s, name, ntlml!len) 
int s; 
struct sockaddr •name; 
int •namelen; 

DESCRIPTION 
Getsockname returns the current name for the specified socket The namelen parameter should be initial­
ized to indicate the amount of space pointed to by name. On return it contains the actual size of the name 
returned (in bytes). 

DIAGNOSTICS 
A 0 is returned if the call succeeds, -1 if it fails. 

ERRORS 
The call succeeds unless: 

[EBADF] The arguments is not a valid descriptor. 

[ENOTSOCK] The argument s is a file, not a socket 

[ENOBUFS] Insufficient resources were available in the system to perform the operation. 

[EF AULT] The name parameter points to memory not in a valid part of the process address space. 

SEE ALSO 
bind(2), socket(2) 

BUGS 
Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero length name. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETSOCKOPT ( 2) UNIX Programmer's Manual GETSOCKOPT ( 2) 

NAME 
getsockopt, setsockopt - get and set options on sockets 

SYNOPSIS 
#include < sysltypes.h> 
#include < syslsocket.h> 

getsockopt(s, level, optname, optval, optlen) 
int s, level, optname; 
char •optval; 
int •optlen; 

setsockopt(s, level, optname, optval, optlen) 
int s, level, optname; 
char •optval; 
int optlen; 

DESCRIPTION 
Getsockopt and setsockopt manipulate options associated with a socket Options may exist at multiple 
protocol levels; they are always present at the uppermost "socket" level. 

When manipulating socket options the level at which the option resides and the name of the option must be 
specified. To manipulate options at the "socket" level, level is specified as SOL_ SOCKET. To manipu­
late options at any other level the protocol number of the appropriate protocol controlling the option is sup­
plied For example, to indicate that an option is to be interpreted by the TCP protocol, level should be set 
to the protocol number of TCP; see getprotoent(3N). 

The parameters optval and optlen are used to access option values for setsockopt. For getsockopt they 
identify a buffer in which the value for the requested option(s) are to be returned. For getsockopt, optlen is 
a value-result parameter, initially containing the size of the buffer pointed to by optval, and modified on 
return to indicate the actual size of the value returned. If no option value is to be supplied or returned, 
optval may be supplied as 0. 

Optname and any specified options are passed uninterpreted to the appropriate protocol module for 
interpretation. The include file <syslsocket.h> contains definitions for "socket" level options, described 
below. Options at other protocol levels vary in format and name; consult the appropriate entries in section 
(4P). 

Most socket-level options take an int parameter for optval. For setsockopt, the parameter should non-zero 
to enable a boolean option, or zero if the option is to be disabled. SO_ LINGER uses a struct linger param­
eter, defined in <syslsocket.h>, which specifies the desired state of the option and the linger interval (see 
below). 

The following options are recognized at the socket level. Except as noted, each may be examined with get­
sockopt and set with setsockopt. 

May 23, 1986 

SO_DEBUG 
SO REUSEADDR 
SO KEEP ALIVE 
SO_OONTROUTE 
SO LINGER 
SO_BROADCAST 
SO OOBINLINE 
SO SNDBUF 
SO RCVBUF 
SO_TYPE 
SO ERROR 

toggle recording of debugging information 
toggle local address reuse 
toggle keep connections alive 
toggle routing bypass fnr outgoing messages 
linger on close if data present 
toggle permission to transmit broadcast messages 
toggle reception of out-of-band data in band 
set buffer size for output 
set buffer size for input 
get the type of the socket (get only) 
get and clear error on the socket (get only) 

INTEGRATED SOLUTIONS 4.3 BSD 1 



GETSOCKOPT ( 2) UNIX Programmer's Manual GETSOCKOPT ( 2) 

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indicates that the 
rules used in validating addresses supplied in a bind(2) call should allow reuse of local addresses. 
SO_ KEEP ALIVE enables the periodic transmission of messages on a connected socket. Should the con­
nected party fail to respond to these messages, the connection is considered broken and processes using the 
socket are notified via a SIGPIPE signal. SO_ DONTROUTE indicates that outgoing messages should 
bypass the standard routing facilities. Instead, messages are directed to the appropriate network interface 
according to the network portion of the destination address. 

SO_ LINGER controls the action taken when unsent messags are queued on socket and a close(2) is per­
formed If the socket promises reliable delivery of data and SO_ LINGER is set, the system will block the 
process on the close attempt until it is able to transmit the data or until it decides it is unable to deliver the 
information (a timeout period, termed the linger interval, is specified in the setsockopt call when 
SO_ LINGER is requested). If SO_ LINGER is disabled and a close is issued, the system will process the 
close in a manner that allows the process to continue as quickly as possible. 

The option SO_ BROADCAST requests permission to send broadcast datagrams on the socket Broadcast 
was a privileged operation in earlier versions of the system. With protocols that support out-of-band data, 
the SO_ OOBINLINE option requests that out-of-band data be placed in the normal data input queue as 
received; it will then be accessible with recv or read calls without the MSG OOB fiag. SO SNDBUF and 
SO_ RCVBUF are options to adjust the normal buffer sizes allocated for otrtput and input buffers, respec­
tively. The buffer size may be increased for high-volume connections, or may be decreased to limit the 
possible backlog of incoming data. The system places an absolute limit on these values. Finally, 
SO_ TYPE and SO_ ERROR are options used only with setsockopt. SO_ TYPE returns the type of the 
socket, such as SOCK_ S1REAM; it is useful for servers that inherit sockets on startup. SO_ ERROR 
returns any pending error on the socket and clears the error status. It may be used to check for asynchro­
nous errors on connected datagram sockets or for other asynchronous errors. 

RETURN VALUE 
A 0 is returned if the call succeeds, -1 if it fails. 

ERRORS 
The call succeeds unless: 

The arguments is not a valid descriptor. 

The argument s is a file, not a socket 

The option is unknown at the level indicated. 

[EBADF] 

[ENOTSOCK] 

[ENOPROTOOPT] 

[EFAULT] The address pointed to by optval is not in a valid part of the process address space. 
For getsockopt, this error may also be returned if optlen is not in a valid part of 
the process address space. 

SEE ALSO 
ioctl(2), socket(2), getprotoent(3N) 

BUGS 
Several of the socket options should be handled at lower levels of the system. 

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



GETIIMEOFDA Y ( 2) UNIX Programmer's Manual GETIIMEOFDAY(2) 

NAME 
gettimeofday, settimeofday - get/set date and time 

SYNOPSIS 
#include <sysltirM.h> 

gettimeofday(tp, tzp) 
struct tirMval •tp; 
struct tirMzone * tzp; 

settimeofday(tp, tzp) 
struct timeval *tp; 
struct tirMzone * tzp; 

DESCRIPTION 
The system's notion of the current Greenwich time and the current time zone is obtained with the get­
timeofday call, and set with the settimeofday call. The time is expressed in seconds and microseconds 
since midnight (0 hour), January 1, 1970. The resolution of the system clock is hardware dependent, and 
the time may be updated continuously or in "ticks." If tzp is zero, the time zone information will not be 
returned or set. 

The structures pointed to by tp and tzp are defined in <sysltime.h> as: 

struct timeval { 
long 
long 

}; 

struct timezone { 

tv_sec; 
tv_usec; 

I* seconds since Jan. 1, 1970 */ 
I• and microseconds•/ 

int tz _ minuteswest; /* of Greenwich */ 
int tz_dsttime; /*type of dst correction to apply*/ 

}; 

The tirMzone structure indicates the local time zone (measured in minutes of time westward from 
Greenwich), and a ftag that, if nonzero, indicates that Daylight Saving time applies locally during the 
appropriate part of the year. 

Only the super-user may set the time of day or time zone. 

RETURN 
A 0 return value indicates that the call succeeded. A -1 return value indicates an error occurred, and in this 
case an error code is stored into the global variable errno. 

ERRORS 
The following error codes may be set in errno: 

[EFAULT] 

[EPERM] 

SEE ALSO 

An argument address referenced invalid memory. 

A user other than the super-user attempted to set the time. 

date(l), adjtime(2), ctime(3), timed(8) 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETUID(2) 

NAME 
getuid, geteuid - get user identity 

SYNOPSIS 
#include < sysltypes.h> 

uid = getuid() 
uid_t uid; 

euid = geteuid() 
uid_t euid; 

DESCRIPTION 

UNIX Programmer's Manual 

Getuid returns the real user ID of the current process, geteuid the effective user ID. 

GETUID(2) 

The real user ID identifies the person who is logged in. The effective user ID gives the process additional 
permissions during execution of "set-user-ID" mode processes, which use getuid to determine the real­
user-id of the process that invoked them. 

SEE ALSO 
getgid(2), setreuid(2) 

January 7, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



HIGHPRI(2) UNIX Programmer's Manual 

NAME 
highpri - make the current process a high priority process 

SYNOPSIS 
highpriO 

DESCRIPTION 

HIGHPRI(2) 

Highpri makes the current process a high priority process. It is scheduled before any of the normal prior­
ity processes. 

This call can be executed only by the super user. 

RETURN VALUE 
Zero is returned if the operation was successful; on an error, -1 is returned and an error code is left in the 
global location errno. 

ERRORS 
The highpri call fails if: 

[EPERM] The caller is not the super-user. 

SEE ALSO 
plock(2), punlock(2), normalpri(2) 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



IOCTL(2) UNIX Programmer's Manual IOCTL(2) 

NAME 
ioctl - control device 

SYNOPSIS 
#include < syslioctl.h> 

ioctl(d, request, argp) 
int d; 
unsigned long request; 
char •argp; 

DESCRIPTION 
locd performs a variety of functions on open descriptors. In particular, many operating characteristics of 
character special files (e.g. terminals) may be controlled with ioctl requests. The writeups of various dev­
ices in section 4 discuss how ioctl applies to them. 

An ioctl request has encoded in it whether the argument is an "in" parameter or "out" parameter, and the 
size of the argument argp in bytes. Macros and defines used in specifying an ioctl request are located in 
the file <syslioctl.h>. 

RETURN VALUE 
If an error has occurred, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
Iocd will fail if one or more of the following are true: 

[EBADF] D is not a valid descriptor. 

[ENO'ITY] D is not associated with a character special device. 

[ENO'ITY] The specified request does not apply to the kind of object that the descriptor d refer­
ences. 

[EINVAL] Request or argp is not valid. 

SEE ALSO 
execve(2), fcntl(2), mt(4), tty(4), intro(4N) 

March 4, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



KILL(2) UNIX Programmer's Manual KILL(2) 

NAME 
kill - send signal to a process 

SYNOPSIS 
kill(pid, sig) 
intpid, sig; 

DESCRIPTION 
Kill sends the signal sig to a process, specified by the process number pid. Sig may be one of the signals 
specified in sigvec(2), or it may be 0, in which case error checking is performed but no signal is actually 
sent This can be used to check the validity of pid. 

The sending and receiving processes must have the same effective user ID, otherwise this call is restricted 
to the super-user. A single exception is the signal SIGCONT, which may always be sent to any descendant 
of the current process. 

If the process number is 0, the signal is sent to all processes in the sender's process group; this is a variant 
of killpg(2). 

If the process number is -1 and the user is the super-user, the signal is broadcast universally except to sys­
tem processes and the process sending the signal. If the process number is -1 and the user is not the 
super-user, the signal is broadcast universally to all processes with the same uid as the user except the pro­
cess sending the signal. No error is returned if any process could be signaled. 

For compatibility with System V, if the process number is negative but not -1, the signal is sent to all 
processes whose process group ID is equal to the absolute value of the process number. This is a variant of 
killpg(2). 

Processes may send signals to themselves. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and e"no is set 
to indicate the error. 

ERRORS 
Kill will fail and no signal will be sent if any of the following occur: 

[EINVAL] 

[ESRCH] 

[ESRCH] 

[EPERM] 

SEE ALSO 

Sig is not a valid signal number. 

No process can be found corresponding to that specified by pid. 

The process id was given as 0 but the sending process does not have a process group. 

The sending process is not the super-user and its effective user id does not match the 
effective user-id of the receiving process. When signaling a process group, this error 
was returned if any members of the group could not be signaled. 

getpid(2), getpgrp(2), killpg(2), sigvec(2) 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



KILLPG(2) UNIX Programmer's Manual KILLPG(2) 

NAME 
killpg - send signal to a process group 

SYNOPSIS 
killpg(pgrp, sig) 
intpgrp, sig; 

DESCRIPTION 
Killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals. 

The sending process and members of the process group must have the same effective user ID, or the sender 
must be the super-user. As a single special case the continue signal SIGCONT may be sent to any process 
that is a descendant of the current process. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the global 
variable e"no is set to indicate the error. 

ERRORS 
Killpg will fail and no signal will be sent if any of the following occur: 

[ElNV AL] Sig is not a valid signal number. 

[ESRCH] No process can be found in the process group specified by pgrp. 

[ESRCH] 

[EPERM] 

SEE ALSO 

The process group was given as 0 but the sending process does not have a process 
group. 

The sending process is not the super-user and one or more of the target processes has an 
effective user ID different from that of the sending process. 

kill(2), getpgrp(2), sigvec(2) 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



LINK(2) UNIX Programmer's Manual LINK(2) 

NAME 
link - make a hard link to a file 

SYNOPSIS 
link(namel, name2) 
char•namel,•name2; 

DESCRIPTION 
A hard link to namel is created; the link has the name name2. Namel must exist 

With hard links, both namel and name2 must be in the same file system. Unless the caller is the super­
user, namel must not be a directory. Both the old and the new link share equal access and rights to the 
underlying object. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
Link will fail and no link will be created if one or more of the following are true: 

[ENOTDIR] A component of either path prefix is not a directory. 

[EINVAL] Either pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[EACCES] 

[ELOOP] 

[ENOENT] 

[EEXIST] 

[EPERM] 

[EXDEV] 

[ENOSPC] 

[EDQUOT] 

[EIO] 

[EROFS] 

[EFAULT] 

SEE ALSO 

A component of either pathname exceeded 255 characters, or entire length of either path 
name exceeded 1023 characters. 

A component of either path prefix does not exist 

A component of either path prefix denies search permission. 

The requested link requires writing in a directory with a mode that denies write permis­
sion. 

Too many symbolic links were encountered in translating one of the pathnames. 

The file named by namel does not exist. 

The link named by name2 does exist. 

The file named by namel is a directory and the effective user ID is not super-user. 

The link named by name2 and the file named by namel are on different file systems. 

The directory in which the entry for the new link is being placed cannot be extended 
because there is no space left on the file system containing the directory. 

The directory in which the entry for the new link is being placed cannot be extended 
because the user's quota of disk blocks on the file system containing the directory has 
been exhausted. 

An I/O error occurred while reading from or writing to the file system to make the direc­
tory entry. 

The requested link reqoires writing in a directory on a read-only file system. 

One of the pathnames specified is outside the process's allocated address space. 

symlink(2), unlink(2) 

August 26, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



LISTEN(2) UNIX Programmer's Manual LISTEN(2) 

NAME 
listen - listen for connections on a socket 

SYNOPSIS 
listen( s, backlog) 
int s, backlog; 

DESCRIPTION 
To accept connections, a socket is first created with socket(2), a willingness to accept incoming connec­
tions and a queue limit for incoming connections are specified with listen(2), and then the connections are 
accepted with accept(2). The listen call applies only to sockets of type SOCK STREAM or 
SOCK_SEQPACKET. -

The backlog parameter defines the maximum length the queue of pending connections may grow to. If a 
connection request arrives with the queue full the client may receive an error with an indication of 
ECONNREFUSED, or, if the underlying protocol supports retransmission, the request may be ignored so 
that retries may succeed. 

RETURN VALUE 
A 0 return value indicates success; -1 indicates an error. 

ERRORS 
The call fails if: 

[EBADF] 

[ENOTSOCK] 

[EOPNOTSUPP] 

SEE ALSO 

The argument s is not a valid descriptor. 

The argument s is not a socket 

The socket is not of a type that supports the operation listen. 

accept(2), connect(2), socket(2) 

BUGS 
The backlog is currently limited (silently) to 5. 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



LOCKF(2) UNIX Programmer's Manual LOCKF(2) 

NAME 
lockf - provide advisory record locking on files 

SYNOPSIS 
#include <unistd.h> 

res= lockf(jildes,function, size) 
int res; 
int fildes function; 
long size; 

DESCRIPTION 
Lockf allows regions of a file to be used as semaphores (advisory locks). Other processes which attempt to 
access the locked resource will either return an error or sleep until the resource becomes unlocked. All the 
locks for a process are removed when the process closes the file or terminates. Fildes is an open file 
descriptor. Function is a control value which specifies the action to be taken. The permissible values are 
defined in <unistd.h> as follows: 

#define F ULOCK 
#define F LOCK 
#define F TLOCK 
#define F _TEST 

0 /*Unlock a previously locked region*/ 
1 /*Lock a region for exclusive use*/ 
2 /* Test and lock a region for exclusive use */ 
3 /*Test region for other processes' locks*/ 

All other values of/unction are reserved for future extensions and will result in an error return. 

F _TEST is used to detect if a lock by another process is present on the specified region. F _LOCK and 
F _ TLOCK both lock a region of a file if the region is available. F _ ULOCK removes locks from a region 
of the file. 

Size is the number of contiguous bytes to be locked or unlocked The resource to be locked starts at the 
current offset in the file and extends either forward, for a positive size, or backward for a negative size (the 
preceding byte, up to but not including the current offset). If size is zero the region from the current offset 
thru the largest file offset is locked (i.e. from the current offset thru the present or any future end-of-file). 
An area need not be allocated to the file in order to be locked, as such locks may exist past the end of the 
file. 

The regions locked with F _LOCK or F _ TLOCK may, in whole or in part, contain or be contained by a pre­
viously locked region for the same process. When this occurs, or if adjacent regions occur, the regions are 
combined into a single region. If the request requires that a new element be. added to the table of active 
locks and this table is already full, an error is returned, and the new region is not locked. 

F _LOCK and F _ TLOCK differ only in the actions taken if the resource is not available: F _LOCK will 
cause the calling process to sleep until the resource is available, and F _ TLOCK will return an [EACCES] 
error if the region is already locked by another process. 

F _ ULOCK requests may, in whole or in part, release one or more locked regions controlled by the process. 
When regions are not fully released, the remaining regions are still locked by the process. Releasing the 
center sesction of a locked region requires an additional element in the table of active locks. If this table is 
full, an [EDEADLK] error is returned, and the requested region is not released. 

A potential for deadlock occurs if a process controlling a locked resource is put to sleep by accessing 
another process's locked resource. Thus calls to lockf scan for a deadlock prior to sleeping on a locked 
resource. An error return is made if sleeping on the locked resource would cause a deadlock. 

Since sleeping on a resource is interrupted with any signal, alarm(2) may be used to provide a timeout 
facility in applications which require this facility. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

15November1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



LOCKF(2) UNIX Programmer's Manual LOCKF(2) 

ERRORS 

BUGS 

Lockf will fail if any of the following occur: 

[EACCES] will be returned for lockf requests in which the region is already locked by another pro­
cess. 

[EBADF] 

[EDEADLK] 

if fildes is not a valid file descriptor. 

will be returned by lockf if a deadlock would occur; or if there are not enough entries in 
the lock table. 

Unexpected results may occur in processes that do buffering in the user address space. The process may 
later read/write data which is/was locked. The standard I/O package, stdio( 3) is the most common source 
of unexpected buffering. 

15 November 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



LSEEK(2) UNIX Programmer's Manual LSEEK(2) 

NAME 
lseek - move read/write pointer 

SYNOPSIS 
#include < sys!file.h> 

#define L SET 0 I• set the seek pointer •/ 
#define L _!NCR 1 I• increment the seek pointer •/ 
#define L XTND 2 I• extend the file size •I 

pos = Jseek( d, offset, whence) 
ofT_tpos; 
intd; 
off_ t offset; 
int whence; 

DESCRIPTION 

NOTES 

The descriptor d refers to a file or device open for reading and/or writing. Lseek sets the file pointer of d as 
follows: 

If whence is L _SET, the pointer is set to offset bytes. 

If whence is L _ INCR, the pointer is set to its current location plus offset. 

If whence is L _ X1ND, the pointer is set to the size of the file plus offset. 

Upon successful completion, the resulting pointer location as measured in bytes from beginning of the file 
is returned Some devices are incapable of seeking. The value of the pointer associated with such a device 
is undefined 

Seeking far beyond the end of a file, then writing, creates a gap or "hole", which occupies no physical 
space and reads as zeros. 

RETURN VALUE 
Upon successful completion, the current file pointer value is returned. Otherwise, a value of -1 is returned 
and errno is set to indicate the error. 

ERRORS 
Lseek will fail and the file pointer will remain unchanged if: 

[EBADF] Fildes is not an open file descriptor. 

[ES PIPE] 

[EINVAL] 

SEE ALSO 
dup(2), open(2) 

BUGS 

Fildes is associated with a pipe or a socket 

Whence is not a proper value. 

This document's use of whence is incorrect English, but maintained for historical reasons. 

February 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



MKDIR(2) UNIX Programmer's Manual MKDIR(2) 

NAME 
mkdir - make a directory file 

SYNOPSIS 
mkdir(path, mode) 
char •path; 
int mode; 

DESCRIPTION 
Mkdir creates a new directory file with name path. The mode of the new file is initialized from mode. 
(The protection part of the mode is modified by the process's mode mask; see umask(2)). 

The directory's owner ID is set to the process's effective user ID. The directory's group ID is set to that of 
the parent directory in which it is created. 

The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits set in the 
process's file mode creation mask are cleared. See umask(2). 

RETURN VALUE 
A 0 return value indicates success. A -1 return value indicates an error, and an error code is stored in 
e"no. 

ERRORS 
Mkdir will fail and no directory will be created if: 

[ENOTDIR] A component of the path prefix is not a directory. 

[EINV AL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[ELOOP] 

[EPERM] 

[EROFS] 

[EEXIST] 

[ENOSPC] 

[ENOSPC] 

[ENOSPC] 

[EDQUOT] 

[EDQUOT] 

[EIO] 

[EIO] 

August 26, 1985 

A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

A component of the path prefix does not exist 

Search permission is denied for a component of the path prefix. 

Too many symbolic links were encountered in translating the pathname. 

The path argument contains a byte with the high-order bit set. 

The named file resides on a read-only file system. 

The named file exists. 

The directory in which the entry for the new directory is being placed cannot be 
extended because there is no space left on the file system containing the directory. 

The new directory cannot be created because there there is no space left on the file sys­
tem that will contain the directory. 

There are no free inodes on the file system on which the directory is being created. 

The directory in which the entry for the new directory is being placed cannot be 
extended because the user's quota of disk blocks on the file system containing the direc­
tory has been exhausted. 

The new directory cannot be created because the user's quota of disk blocks on the file 
system that will contain the directory has been exhausted. 

The user's quota of inodes on the file system on which the directory is being created has 
been exhausted. 

An J/O error occurred while making the directory entry or allocating the inode. 

An J/O error occurred while reading from or writing to the file system. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



MKDIR(2) UNIX Programmer's Manual MKDIR(2) 

[EFAULT] Path points outside the process's allocated address space. 

SEE ALSO 
chmod(2), stat(2), umask(2) 

August 26, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



MKNOD(2) UNIX Programmer's Manual MKNOD(2) 

NAME 
mknod - make a special file 

SYNOPSIS 
mknod(path, mode, dev) 
char •path; 
int mode, dev; 

DESCRIPTION 
Mknod creates a new file whose name is path. The mode of the new file (including special file bits) is ini­
tialized from mode. (The protection part of the mode is modified by the process's mode mask (see 
umask(2))). The first block pointer of the i-node is initialized from dev and is used to specify which device 
the special file refers to. 

If mode indicates a block or character special file, dev is a configuration dependent specification of a char­
acter or block 1/0 device. If mode does not indicate a block special or character special device, dev is 
ignored. 

Mknod may be invoked only by the super-user. 

RETURN VALUE 
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
Mknod will fail and the file mode will be unchanged if: 

[ENOTDIR] A component of the path prefix is not a directory. 

[EINV AL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[ELOOP] 

[EPERM] 

[EPERM] 

[EIO] 

[ENOSPC] 

[ENOSPC] 

[EDQUOT] 

[EROFS] 

[EEXIST] 

[EFAULT] 

May23, 1986 

A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

A component of the path prefix does not exist 

Search permission is denied for a component of the path prefix. 

Too many symbolic links were encountered in translating the pathname. 

The process's effective user ID is not super-user. 

The pathname contains a character with the high-order bit set 

An 1/0 error occurred while making the directory entry or allocating the inode. 

The directory in which the entry for the new node is being placed cannot be extended 
because there is no space left on the file system containing the directory. 

There are no free inodes on the file system on which the node is being created. 

The directory in which the entry for the new node is being placed cannot be extended 
because the user's quota of disk blocks on the file system containing the directory has 
been exhausted. 

The user's quota of inodes on the file system on which the node is being created has 
been exhausted. 

The named file resides on a read-only file system. 

The named file exists. 

Path points outside the process's allocated address space. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



MKNOD(2) UNIX Programmer's Manual MKNOD(2) 

SEE ALSO 
chmod(2), stat(2), umask(2) 

May23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



MMAP(2) UNIX Programmer's Manual MMAP(2) 

NAME 
mmap, munmap - maps or unmaps pages 

SYNOPSIS 
#include <sys/mman.h> 

mmap(addr, len, prot, share,fd, pos) 
char •addr; 
int len, prot, share,fd; 
intpos; 

munmap(addr, len) 
char •addr; 
int len; 

DESCRIPTION 
Mmap maps physical memory non-contiguous with the rest of memory (e.g., the 1/0 pages or a video 
frame buffer). Users can share this memory through access to /dev/mem. Mmap causes the pages (start­
ing at addr and continuing for len bytes) to be mapped to the character special file represented by fd at the 
absolute position pos. The parameter share must be MAP_ SHARED. The addr, len, and pos parameters 
must be multiples of the page size; see getpagesize(2). Also, the region described by addr and len must be 
within the program's data segment; see brk(2). 

The parameter prot, which specifies the accessibility of the mapped pages, consists of bits selected from 
PROT _READ, PROT _WRITE, and PROT _EXEC ored together. The file descriptor, fd, must represent a 
character special file capable of mapping pages. F d is opened with read/write permissions as needed for 
prot. When fd is closed, the pages are automatically unmapped. 

While accesses outside the data segment cause segmentation violations, accesses to non-existent memory 
(within a mapped region) cause bus errors. If permitted by prot, it is possible to perform read(2) and 
write(2) calls on mapped regions. Bad buffer addresses or transfers encountering non-existent memory 
yield an EF AULT error or cause a segmentation violation, depending on the size of the attempted transfer. 

Munmap removes a mapping starting at addr and continuing for len bytes; further references to these 
pages refer to private pages initialized to zero. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
Mmap fails and no pages are mapped when one of the following occurs: 

[EBADF] The descriptor fd is not valid. 

[EINV AL] The descriptor f d does not refer to a character special file capable of mapping pages. 

The descriptor fd is not opened with a mode supporting prot. 

Addr, len, or pos is not a multiple of the page size, or len is not greater than zero. 

[EINVAL] 

[EINVAL] 

[EINVAL] The address region (starting at addr and continuing for len bytes) is not totally within the 
program's data segment. 

[EINVAL] 

[EINVAL] 

The device region (starting at pos and continuing for len bytes) exceeds the device size. 

Share is not MAP_ SHARED. 

Munmap fails when one of the following errors occurs: 

[EINVAL] 

[EINVAL] 

1 August 1985 

Addr or len is not a multiple of the page size, or len is not greater than zero. 

The address region (starting at addr and continuing for len bytes) is not wholly within 

INTEGRATED SOLUTIONS 4.3 BSD 1 



MMAP(2) UNIX Programmer's Manual MMAP(2) 

the program's data segment. 

SEE ALSO 
brk(2), getpagesize(2), phys(3C), mem(4) 

BUGS 
Mmap is only partially implemented and cannot map pages to an ordinary file. It is Integrated Solutions 
machine-dependent. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



MOUNT(2) UNIX Programmer's Manual MOUNT(2) 

NAME 
mount - mount file system 

SYNOPSIS 
#include < syslmount.h> 
mount(type, dir,flags, data) 
int type; 
char •dir; 
int flags; 
caddr_t data; 

DESCRIPTION 
Mount attaches a file system to a directory. After a successful return, references to directory dir will refer 
to the root directory on the newly mounted file system. Dir is a pointer to a null-terminated string contain­
ing a path name. Dir must exist already, and must be a directory. Its old contents are inaccessible while 
the file system is mounted. 

The flags argument determines whether the file system can be written on, and if set-uid execution is 
allowed. Physically write-protected and magnetic tape file systems must be mounted read-only or errors 
will occur when access times are updated, whether or not any explicit write is attempted. 

Type indicates the type of the filesystem. It must be one of the types defined in mount.h. Data is a pointer 
to a structure which contains the type specific arguments to mount. Below is a list of the filesystem types 
supported and the type specific arguments to each: 

MOUNT_UFS 
struct ufs_args { 

char •fspec; !• Block special file to mount •! 
}; 

MOUNT_NFS 
#include <11fs/nfs.h> 
#include <11etinet/in.h> 
struct nfs_args { 

struct sockaddr _in •addr; /* file server address •/ 
fhandle _ t •fh; I• File handle to be mounted •/ 
int flags; /• flags •/ 
int wsize; /• write size in bytes •! 
int rsize; /•read size in bytes•! 
int timeo; I• initial timeout in .1 secs •/ 
int retrans; /•times to retry send•/ 

}; 

RETURN VALUE 
Mount returns 0 if the action occurred, and -1 if special is inaccessible or not an appropriate file, if name 
does not exist, if special is already mounted, if name is in use, or if there are already too many file systems 
mounted. 

ERRORS 
Mount will fail when one of the following occurs: 

[EPERM] 

[ENOENT] 

[ENOTBLK] 

[ENXIO] 

19 August 1985 

The caller is not the super-user. 

Special does not exist 

Special is not a block device. 

The major device number of special is out of range (this indicates no device driver exists 
for the associated hardware). 

INTEGRATED SOLUTIONS 4.3 BSD 1 



MOUNT(2) 

[EPERM] 

[ENOIDIR] 

[EBUSY] 

[EBUSY] 

[EBUSY] 

[EBUSY] 

[EIO] 

[ENOIDIR] 

[EPERM] 

UNIX Programmer's Manual 

The pathname contains a character with the high-order bit set 

A component of the path prefix in name is not a directory. 

Dir is not a directory, or another process currently holds a reference to it. 

No space remains in the mount table. 

MOUNT(2) 

The super block for the file system had a bad magic number or an out of range block 
size. 

Not enough memory was available to read the cylinder group information for the file 
system. 

An I/O error occurred while reading the super block or cylinder group information. 

A component of the path prefix in special or name is not a directory. 

The pathname of special or name contains a character with the high-order bit set. 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[EFAULT] 

[ELOOP] 

[EIO] 

SEE ALSO 

The pathname of special or name was too long. 

Special or name does not exist 

Search permission is denied for a component of the path prefix of special or name. 

Special or name points outside the process's allocated address space. 

Too many symbolic links were encountered in translating the pathname of special or 
name. 

An I/O error occurred while reading from or writing to the file system. 

unmount(2), mount(8) 

BUGS 
The error codes are in a state of disarray; too many errors appear to the caller as one value. 

19 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



NORMALPRI ( 2) UNIX Programmer's Manual 

NAME 
normalpri - make the current process a normal priority process 

SYNOPSIS 
normalpriO 

DESCRIPTION 

NORMALPRI ( 2) 

Normalpri returns the current process to a normal priority process, which is scheduled like any other ordi­
nary UNIX process. This call has no effect if the process was not previously highpried. 

RETURN VALUE 
Zero is returned if the operation was successful; on an error, -1 is returned and an error code is left in the 
global location errno. 

ERRORS 
The normalpri call should not fail. 

SEE ALSO 
plock(2), punlock(2), higbpri(2) 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



OPEN(2) UNIX Programmer's Manual OPEN(2) 

NAME 
open - open a file for reading or writing, or create a new file 

SYNOPSIS 
#include < sys!file.h> 

open(path,jlags, mode) 
char •path; 
int.flags, mode; 

DESCRIPTION 
Open opens the file path for reading and/or writing, as specified by the flags argument and returns a 
descriptor for that file. The flags argument may indicate the file is to be created if it does not already exist 
(by specifying the 0 _ CREAT ftag), in which case the file is created with mode mode as described in 
chmod(2) and modified by the process' umask value (see umask(2)). 

Path is the address of a string of ASCII characters representing a path name, terminated by a null character. 
The ftags specified are formed by or'ing the following values 

0 _ RDONL Y open for reading only 
0 WRONL Y open for writing only 
0 RDWR open for reading and writing 
O _NDELA Y do not block on open 
0 APPEND append on each write 
0 _CREA T create file if it does not exist 
O _ TRUNC truncate size to 0 
0 _ EXCL error if create and file exists 

Opening a file with 0 _APPEND set causes each write on the file to be appended to the end. If O _ TRUNC 
is specified and the file exists, the file is truncated to zero length. If O _ EXCL is set with O _ CREAT, then 
if the file already exists, the open returns an error. This can be used to implement a simple exclusive 
access locking mechanism. If 0 _ EXCL is set and the last component of the pathname is a symbolic link, 
the open will fail even if the symbolic link points to a non-existent name. If the 0 NDELA Y ftag is 
specified and the open call would result in the process being blocked for some reason (e:g. waiting for car­
rier on a dialup line), the open returns immediately. The first time the process attempts to perform i/o on the 
open file it will block (not currently implemented). 

Upon successful completion a non-negative integer termed a file descriptor is returned. The file pointer 
used to mark the current position within the file is set to the beginning of the file. 

The new descriptor is set to remain open across execve system calls; see close(2). 

The system imposes a limit on the number of file descriptors open simultaneously by one process. Getdta· 
blesize(2) returns the current system limit. 

ERRORS 
The named file is opened unless one or more of the following are true: 

[ENOTDIR] A component of the path prefix is not a directory. 

[EINVAL] The pathname contains a character with the high-order bit set. 

[ENAMETOOLONG] 
A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

[ENOENT] 

[ENOENT] 

[EACCES] 

[EACCES] 

May 14, 1986 

0 CREAT is not set and the named file does not exist. 

A component of the path name that must exist does not exist 

Search permission is denied for a component of the path prefix. 

The required permissions (for reading and/or writing) are denied for the named ftag. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



OPEN(2) 

[EACCES] 

[ELOOP] 

[EISDIR] 

[EROFS] 

[EMFILE] 

[ENFILE] 

[ENXIO] 

[ENOSPC] 

[ENOSPC] 

[EDQUOT] 

[EIO] 

[ETXTBSY] 

[EFAULT] 

[EEXIST] 

UNIX Programmer's Manual OPEN(2) 

0 _ CREAT is specified, the file does not exist, and the directory in which it is to be 
created does not permit writing. 

Too many symbolic links were encountered in translating the pathname. 

The named file is a directory, and the arguments specify it is to be opened for writting. 

The named file resides on a read-only file system, and the file is to be modified. 

The system limit for open file descriptors per process has already been reached. 

The system file table is full. 

The named file is a character special or block special file, and the device associated with 
this special file does not exist. 

0 _ CREAT is specified, the file does not exist, and the directory in which the entry for 
the new file is being placed cannot be extended because there is no space left on the file 
system containing the directory. 

0 _ CREAT is specified, the file does not exist, and there are no free inodes on the file 
system on which the file is being created. 

O _ CREAT is specified, the file does not exist, and the directory in which the entry for 
the new fie is being placed cannot be extended because the user's quota of disk blocks 
on the file system containing the directory has been exhausted 

O _ CREAT is specified, the file does not exist, and the user's quota of inodes on the file 
system on which the file is being created has been exhausted 

An I/O error occurred while making the directory entry or allocating the inode for 
O_CREAT. 

The file is a pure procedure (shared text) file that is being executed and the open call 
requests write access. 

Path points outside the process's allocated.address space. 

0 _ CREAT and 0 _ EXCL were specified and the file exists. 

[EOPNOTSUPP] An attempt was made to open a socket (not currently implemented). 

SEE ALSO 
chmod(2), close(2), dup(2), getdtablesize(2), lseek(2), read(2), write(2), umask(2) 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



PIPE(2) UNIX Programmer's Manual PIPE(2) 

NAME 
pipe - create an interprocess communication channel 

SYNOPSIS 
pipe(.fildes) 
int fildes[2]; 

DESCRIPTION 
The pipe system call creates an 1/0 mechanism called a pipe. The file descriptors returned can be used in 
read and write operations. When the pipe is written using the descriptor fildes[l] up to 4096 bytes of data 
are buffered before the writing process is suspended. A read using the descriptor fildes [0] will pick up the 
data 

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created by subse­
quent/ark calls) will pass data through the pipe with read and write calls. 

The shell has a syntax to set up a linear array of processes connected by pipes. 

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors closed) returns 
an end-of-file. 

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as such in the system. 

A signal is generated if a write on a pipe with only one end is attempted. 

RETURN VALUE 
The function value zero is returned if the pipe was created; -1 if an error occurred 

ERRORS 
The pipe call will fail if: 

[EMFILE] Too many descriptors are active. 

[ENFILE] The system file table is full. 

[EFAULT] Thejildes buffer is in an invalid area of the process's address space. 

SEE ALSO 
sh(l}, read(2}, write(2), fork(2}, socketpair(2) 

BUGS 
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will occur. 

August 26, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



PLOCK(2) UNIX Programmer's Manual PLOCK(2) 

NAME 
plock - lock the current process in core 

SYNOPSIS 
plockO 

DESCRIPTION 

NOTES 

Plock locks the current process in core. The process is made fully resident by faulting in all the pages. 
Once locked, neither the process nor any of its pages get swapped out The process can be unlocked by the 
punlock call. 

This call can be executed only by the super-user. 

When a plocked process asks for more memory, it may have to wait indefinitely if enough memory is not 
available. 

If a plocked process is forked, both the child and parent processes are in plocked state. As more memory 
is needed, the parent may have to wait indefinitely. 

If the plocked process execs a new image, it gets unlocked. 

RETURN VALUE 
Zero is returned if the operation was successful; on an error, -1 is returned and an error code is left in the 
global location errno. 

ERRORS 
The plock call fails if: 

[EPERM] The caller is not the super-user. 

[ENOMEM] The system does not have sufficient physical memory, or the limit, as set by setrlimit(2), 
is exceeded. 

SEE ALSO 
punlock(2), highpri(2), normalpri(2), setrlimit(2) 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



PROFIL(2) UNIX Programmer's Manual PROFIL(2) 

NAME 
profil - execution time profile 

SYNOPSIS 
profil(bl.fff, bufsiz, offset, scale) 
char •buff; 
int bufsiz, offset, scale; 

DESCRIPTION 
Buf/points to an area of core whose length (in bytes) is given by bufsiz. After this call, the user's program 
counter (pc) is examined each clock tick (10 milliseconds); offset is subtracted from it, and the result multi­
plied by scale. If the resulting number corresponds to a word inside buff, that word is incremented. 

The scale is interpreted as an unsigned, fixed-point fraction with 16 bits of fraction: OxlOOOO gives a 1-1 
mapping ofpc's to words in buff; Ox8000 maps each pair of instruction words together. 

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a buf siz of 0. 
Profiling is turned off when an execve is executed, but remains on in child and parent both after a fork. 
Profiling is turned off if an update in buff would cause a memory fault. 

RETURN VALUE 
A 0, indicating success, is always returned. 

SEE ALSO 
gprof(l), setitimer(2), monitor(3) 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



PTRACE(2) UNIX Programmer's Manual PTRACE(2) 

NAME 
ptrace - process trace 

SYNOPSIS 
#include < syslsignal.h> 
#include < syslptrace.h> 

ptrace(request, pid, addr, data) 
int request, pid, •addr, data; 

DESCRIPTION 
Ptrace provides a means by which a parent process may control the execution of a child process, and 
examine and change its core image. Its primary use is for the implementation of breakpoint debugging. 
There are four arguments whose interpretation depends on a request argument. Generally, pid is the pro­
cess ID of the traced process, which must be a child (no more distant descendant) of the tracing process. A 
process being traced behaves normally until it encounters some signal whether internally generated like 
''illegal instruction'' or externally generated like ''interrupt''. See sigvec(2) for the list. Then the traced 
process enters a stopped state and its parent is notified via wait(2). When the child is in the stopped state, 
its core image can be examined and modified using ptrace. If desired, another ptrace request can then 
cause the child either to terminate or to continue, possibly ignoring the signal. 

The value of the request argument determines the precise action of the call: 

PT TRACE ME - -
This request is the only one used by the child process; it declares that the process is to be traced by its 
parent. All the other arguments are ignored. Peculiar results will ensue if the parent does not expect 
to trace the child. 

PT_READ_I, PT_READ_D 
The word in the child process's address space at addr is returned. If I and D space are separated (e.g. 
historically on a pdp-11), request PT READ I indicates I space, PT READ DD space. Addr must 
be even on some machines. The child must be stopped. The input da°Ui is ignored. 

PT READ U - -
The word of the system's per-process data area corresponding to addr is returned. Addr must be even 
on some machines and less than 512. This space contains the registers and other information about 
the process; its layout corresponds to the user structure in the system. 

PT_ WRITE_ I, PT_ WRITE _D 
The given data is written at the word in the process's address space corresponding to addr, which 
must be even on some machines. No useful value is returned. If I and D space are separated, request 
PT_ WRITE_ I indicates I space, PT_ WRITE_ D D space. Attempts to write in pure procedure fail if 
another process is executing the same file. 

PT_WRITE_U 
The process's system data is written, as it is read with request PT _READ_ U. Only a few locations 
can be written in this way: the general registers, the floating point status and registers, and certain bits 
of the processor status word. 

PT_ CONTINUE 
The data argumet1L is taken as a signal number and the child's execution continues at location addr as 
if it had incurred that signal. Normally the signal number will be either 0 to indicate that the signal 
that caused the stop should be ignored, or that value fetched out of the process's image indicating 
which signal caused the stop. If addr is (int *) 1 then execution continues from where it stopped 

PT KILL 
The traced process terminates. 

PT STEP 
Execution continues as in request PT_ CONTINUE; however, as soon as possible after execution of at 

May23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



PTRACE(2) UNIX Programmer's Manual PTRACE(2) 

least one instruction, execution stops again. The signal number from the stop is SIGTRAP. (The T­
bit is used and just one instruction is executed.) This is part of the mechanism for implementing 
break.points. 

As indicated, these calls (except for request PT TRACE ME) can be used only when the subject process 
has stopped. The wait call is used to determine when a-process stops; in such a case the "termination" 
status returned by wait has the value 0177 to indicate stoppage rather than genuine termination. 

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on subsequent 
execve(2) calls. If a traced process calls execve, it will stop before executing the first instruction of the 
new image showing signal SIGTRAP. 

''Word'' also means a 32-bit integer. 

RETURN VALUE 
A 0 value is returned if the call succeeds. If the call fails then a -1 is returned and the global variable 
e"no is set to indicate the error. 

ERRORS 
[EIO] 

[ESRCH] 

[EIO] 

[EIO] 

[EPERM] 

The request code is invalid. 

The specified process does not exist 

The given signal number is invalid. 

The specified address is out of bounds. 

The specified process cannot be traced. 

SEE ALSO 

BUGS 

wait(2), sigvec(2), adb(l) 

Ptrace is unique and arcane; it should be replaced with a special file that can be opened and read and writ­
ten. The control functions could then be implemented with ioctl(2) calls on this file. This would be 
simpler to understand and have much higher performance. 

The request PT_ TRACE_ ME call should be able to specify signals that are to be treated normally and not 
cause a stop. In this way, for example, programs with simulated :floating point (which use "illegal instruc­
tion" signals at a very high rate) could be efficiently debugged. 

The error indication,-1, is a legitimate function value; e"no, (see intro(2)), can be used to disambiguate. 

It should be possible to stop a process on occurrence of a system call; in this way a completely controlled 
environment could be provided. 

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



PUNLOCK(2) UNIX Programmer's Manual 

NAME 
punlock - unlock the current process 

SYNOPSIS 
punlockO 

DESCRIPTION 

PUNLOCK(2) 

Punlock unlocks the current process from core. The process reverts to a normal, swappable, pageable pro­
cess. This call has no effect if the process was not previously plocked. 

RETURN VALUE 
Zero is returned if the operation was successful; on an error, -1 is returned and an error code is left in the 
global location errno. 

ERRORS 
The punlock call should not fail. 

SEE ALSO 
plock(2), highpri(2), normalpri(2) 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



QUOTA(2) UNIX Programmer's Manual QUOTA(2) 

NAME 
quota - manipulate disk quotas 

SYNOPSIS 
#include < syslquota.h> 

quota( cmd, uid, arg, addr) 
int cmd, uid, arg; 
caddr _ t addr; 

WARNING 
N.B.: This call is not implemented in the current version of the system. 

DESCRIPTION 
The quota call manipulates disk quotas for file systems which have had quotas enabled with setquota(2). 
The cmd parameter indicates a command to be applied to the user ID uid. Arg is a command specific argu­
ment and addr is the address of an optional, command specific, data structure which is copied in or out of 
the system. The interpretation of arg and addr is given with each command below. 

Q_SETDLIM 
Set disc quota limits and current usage for the user with ID uid. Arg is a major-minor device indi­
cating a particular file system. Addr is a pointer to a struct dqblk structure (defined in 
<syslquota.h>). This call is restricted to the super-user. 

Q_GETDLIM 
Get disc quota limits and current usage for the user with ID uid. The remaining parameters are as 
for Q_ SETDLIM. 

Q_SETDUSE 
Set disc usage limits for the user with ID uid. Arg is a major-minor device indicating a particular 
file system. Addr is a pointer to a struct dqusage structure (defined in <syslquota.h>). This call is 
restricted to the super-user. 

Q_SYNC 
Update the on-disc copy of quota usages. The uid, arg, and addr parameters are ignored. 

Q_SETUID 
Change the calling process's quota limits to those of the user with ID uid. The arg and addr 
parameters are ignored. This call is restricted to the super-user. 

Q_SETWARN 
Alter the disc usage warning limits for the user with ID uid. Arg is a major-minor device indicat­
ing a particular file system. Addr is a pointer to a struct dqwarn structure (defined in 
<syslquota.h>). This call is restricted to the super-user. 

Q_DOWARN 

RETURN VALUE 

W am the user with user ID uid about excessive disc usage. This call causes the system to check 
its current disc usage information and print a message on the terminal of the caller for each file 
system on which the user is over quota. If the arg parameter is specified as NODEV, all file sys­
tems which have disc quotas will be checked. Otherwise, arg indicates a specific major-minor 
device to be checked. This call is restricted to the super-user. 

A successful call returns 0 and, possibly, more information specific to the cmd performed When an error 
occurs, the value -1 is returned and e"no is set to indicate the reason. 

ERRORS 
A quota call will fail when one of the following occurs: 

[EINV AL] Cmd is invalid 

[ESRCH] No disc quota is found for the indicated user. 

7 July 1983 INTEGRATED SOLUTIONS 4.3 BSD 1 



QUOTA(2) UNIX Programmer's Manual QUOTA(2) 

[EPERM] 

[EINVAL] 

[EFAULT] 

[EU SERS] 

The call is priviledged and the caller was not the super-user. 

The arg parameter is being interpreted as a major-minor device and it indicates an 
unmounted file system. 

An invalid addr is supplied; the associated structure could not be copied in or out of the 
kernel. 

The quota table is full. 

SEE ALSO 

BUGS 

setquota(2), quotaon(8), quotacheck(8) 

There should be someway to integrate this call with the resource limit interlace provided by setrlimit(2) 
and getrlimit(2). 

The Australian spelling of disk is used throughout the quota facilities in honor of the implementors. 

7 July 1983 INTEGRATED SOLUTIONS 4.3 BSD 2 



READ(2) UNIX Programmer's Manual READ(2) 

NAME 
read, readv - read input 

SYNOPSIS 
cc= read(d, buf, nbytes) 
int cc, d; 
char •buf; 
int nbytes; 

#include < sysltypes.h> 
#include < sysluio.h> 

cc= readv(d, iov, iovcnt) 
int cc, d; 
struct iovec •iov; 
int iovcnt; 

DESCRIPTION 
Read attempts to read nbytes of data from the object referenced by the descriptor d into the buffer pointed 
to by buf. Readv performs the same action, but scatters the input data into the iovcnt buffers specified by 
the members of the iov array: iov[O], iov[l], ... , iov[iovcnt-1]. 

For readv, the iovec structure is defined as 

struct iovec { 
caddr _ t iov _base; 
int iov _ len; 

}; 

Each iovec entry specifies the base address and length of an area in memory where data should be placed. 
Readv will always fill an area completely before proceeding to the next 

On objects capable of seeking, the read starts at a position given by the pointer associated with d (see 
lseek(2)). Upon return from read, the pointer is incremented by the number of bytes actually read. 

Objects that are not capable of seeking always read from the current position. The value of the pointer 
associated with such an object is undefined. 

Upon successful completion, read and readv return the number of bytes actually read and placed in the 
buffer. The system guarantees to read the number of bytes requested if the descriptor references a normal 
file that has that many bytes left before the end-of-file, but in no other case. 

If the returned value is 0, then end-of-file has been reached. 

RETURN VALUE 
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and the global vari­
able errno is set to indicate the error. 

ERRORS 
Read and readv will fail if one or more of the following are true: 

[EBADF] 

[EFAULT] 

D is not a valid file or socket descriptor open for reading. 

Bufpoints outside the allocated address space. 

An 1/0 error occurred while reading from the file system. [EIO] 

[EINTR] A read from a slow device was interrupted before any data arrived by the delivery of a 
signal. 

[EINV AL] The pointer associated with d was negative. 

[EWOULDBLOCK] 
The file was marked for non-blocking 1/0, and no data were ready to be read. 

May23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



READ(2) UNIX Programmer's Manual 

In addition, readv may return one of the following errors: 

[EINVAL] 

[EINVAL] 

[EINVAL] 

[EFAULT] 

SEE ALSO 

Iovcnt was less than or equal to 0, or greater than 16. 

One of the iov _len values in the iov array was negative. 

The sum of the iov _len values in the iov array overflowed a 32-bit integer. 

Part of the iov points outside the process's allocated address space. 

dup(2), fcntl(2), open(2), pipe(2), select(2), socket(2), socketpair(2) 

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 

READ(2) 

2 



READLINK ( 2) UNIX Programmer's Manual 

NAME 
readlink - read value of a symbolic link 

SYNOPSIS 
cc = readlink(path, buf, bufsiz) 
int cc; 
char *path, •buf; 
int bufsiz; 

DESCRIPTION 

READLINK ( 2) 

Readlink places the contents of the symbolic link name in the buffer buf, which has size bufsiz. The con­
tents of the link are not null terminated when returned. 

RETURN VALUE 
The call returns the count of characters placed in the buffer if it succeeds, or a -1 if an error occurs, placing 
the error code in the global variable errno. 

ERRORS 
Readlink will fail and the file mode will be unchanged if: 

[ENOTDIR] 

[EINVAL] 

A component of the path prefix is not a directory. 

The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 
A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

[ENOENT] 

[EACCES] 

[ELOOP] 

[EINVAL] 

[EIO] 

[EFAULT] 

SEE ALSO 

The named file does not exist. 

Search permission is denied for a component of the path prefix. 

Too many symbolic links were encountered in translating the pathname. 

The named file is not a symbolic link. 

An 1/0 error occurred while reading from the file system. 

Buf extends outside the process's allocated address space. 

stat(2), lstat(2), symlink(2) 

August 26, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



REBOOT(2) UNIX Programmer's Manual REBOOT(2) 

NAME 
reboot - reboot system or halt processor 

SYNOPSIS 
#include < syslreboot.h> 

reboot( how to) 
int howto; 

DESCRIPTION 
Reboot reboots the system, and is invoked automatically in the event of unrecoverable system failures. 
Howto is a mask of options passed to the bootstrap program. The system call interface permits only 
RB_ HALT or RB _AUTO BOOT to be passed to the reboot program. When none of these options (e.g., 
RB_ AUTO BOOT) is given, the system is rebooted from file ''vmunix'' in the root file system of unit 0 of a 
disk chosen in a processor-specific way. An automatic consistency check of the disks is then normally per­
formed 

The bits of howto are: 

RB HALT 
The processor is simply halted; no reboot takes place. RB_ HALT should be used with caution. 

RB ASKNAME 
Interpreted by the bootstrap program itself, causing it to inquire as to what file should be booted. 
Normally, the system is booted from the file "xx(O,O)vmunix" without asking. 

RB SINGLE 
Normally, the reboot procedure involves an automatic disk consistency check and then multi-user 
operations. RB_ SINGLE prevents the consistency check, rather simply booting the system with a 
single-user shell on the console. RB_ SINGLE is inteipreted by the init(8) program in the newly 
booted system. This switch is not available from the system call interface. 

Only the super-user may reboot a machine. 

RETURN VALUES 
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in the global vari­
able e"no. 

ERRORS 
[EPERM] The caller is not the super-user. 

SEE ALSO 
crash(8), halt(8), init(8), reboot(8) 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



RECV(2) UNIX Programmer's Manual RECV(2) 

NAME 
recv, recvfrom, recvmsg - receive a message from a socket 

SYNOPSIS 
#include < sysltypes.h> 
#include <sys/ socket.h> 

cc= recv(s, buf, len,flags) 
int cc, s; 
char •buf; 
int len,flags; 

cc= recvfrom(s, buf, len,flags,from,fromlen) 
int cc, s; 
char •bu/; 
int len,flags; 
struct sockaddr *from; 
int *fromlen; 

cc= recvmsg(s, msg,flags) 
int cc, s; 
struct msghdr msgO; 
int.flags; 

DESCRIPTION 
Recv, recvfrom, and recvmsg are used to receive messages from a socket. 

The recv call is normally used only on a connected socket (see connect(2)), while recvfrom and recvmsg 
may be used to receive data on a socket whether it is in a connected state or not. 

If from is non-zero, the source address of the message is filled in. Fromlen is a value-result parameter, ini­
tialized to the size of the buffer associated with from, and modified on return to indicate the actual size of 
the address stored there. The length of the message is returned in cc. If a message is too long to fit in the 
supplied buffer, excess bytes may be discarded depending on the type of socket the message is received 
from (see socket(2)). 

If no messages are available at the socket, the receive call waits for a message to arrive, unless the socket is 
nonblocking (see ioctl(2)) in which case a cc of -1 is returned with the external variable ermo set to 
EWOULDBLOCK. 

The select(2) call may be used to determine when more data arrives. 

The flags argument to a recv call is formed by or'ing one or more of the values, 

#define MSG OOB Oxl /*process out-of-band data*/ 
#define MSG PEEK Ox2 /*peek at incoming message*/ 

The recvmsg call uses a msghdr structure to minimize the number of directly supplied parameters. This 
structure has the following form, as defined in <syslsocket.h>: 

struct msghdr { 
caddr _ t msg_ name; /• optional address •/ 
int msg_ namelen; /• size of address */ 
struct iovec •msg_iov; /* scatter/gather array •/ 
int msg_iovlen; /* # elements in msg_iov •I 
caddr _t msg_accrights; /* access rights sent/received •/ 
int msg_ accrightslen; 

}; 

May23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



RECV(2) UNIX Programmer's Manual RECV(2) 

Here msg_name and msg_ namelen specify the destination address if the socket is unconnected; msg_ name 
may be given as a null pointer if no names are desired or required. The msg_ iov and msg_iovlen describe 
the scatter gather locations, as described in read(2). A buffer to receive any access rights sent along with 
the message is specified in msg_accrights, which has length msg_accrightslen. Access rights are currently 
limited to file descriptors, which each occupy the size of an int. 

RETURN VALUE 
These calls return the number of bytes received, or -1 if an error occurred 

ERRORS 
The calls fail if: 

[EBADF] 

[ENOTSOCK] 

[EWOULDBLOCK] 

[EINTR] 

[EFAULT] 

SEE ALSO 

The arguments is an invalid descriptor. 

The arguments is not a socket 

The socket is marked non-blocking and the receive operation would block. 

The receive was interrupted by delivery of a signal before any data was available 
for the receive. 

The data was specified to be received into a non-existent or protected part of the 
process address space. 

fcntl(2), read(2), send(2), select(2), getsockopt(2), socket(2) 

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



RENAME(2) UNIX Programmer's Manual RENAME(2) 

NAME 
rename - change the name of a file 

SYNOPSIS 
rename(from, to) 
char *from, *to; 

DESCRIPTION 
Rename causes the link namedfrom to be renamed as to. If to exists, then it is first removed. Bothfrom 
and to must be of the same type (that is, both directories or both non-directories}, and must reside on the 
same file system. 

Rename guarantees that an instance of to will always exist, even if the system should crash in the middle 
of the operation. 

If the final component of from is a symbolic link, the symbolic link is renamed, not the file or directory to 
which it points. 

CAVEAT 
The system can deadlock if a loop in the file system graph is present This loop talces the form of an entry 
in directory "a", say "a/foo", being a hard link to directory "b", and an entry in directory "b", say 
"b/bar", being a hard link to directory "a". When such a loop exists and two separate processes attempt 
to perform "rename a/foo b/bar" and "rename b/bar a/foo", respectively, the system may deadlock 
attempting to lock both directories for modification. Hard links to directories should be replaced by sym­
bolic links by the system administrator. 

RETURN VALUE 
A 0 value is returned if the operation succeeds, otherwise rename returns -1 and the global variable errno 
indicates the reason for the failure. 

ERRORS 
Rename will fail and neither of the argument files will be affected if any of the following are true: 

[EINV AL] Either pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES) 

[EACCES] 

[EPERM] 

[EPERM] 

[ELOOP] 

[ENOIDIR] 

[ENOIDIR] 

[EISDIR] 

[EXDEV] 

[ENOSPC] 

May22, 1986 

A component of either pathname exceeded 255 characters, or the entire length of either 
path name exceeded 1023 characters. 

A component of the from path does not exist, or a path prefix of Fito does not exist. 

A component of either path prefix denies search permission. 

The requested link requires writing in a directory with a mode that denies write permis­
sion. 

The directory containingfrom is marked sticky, and neither the containing directory nor 
from are owned by the effective user ID. 

The to file exists, the directory containing to is marked sticky, and neither the containing 
directory nor to are owned by the effective user ID. 

Too many symbolic links were encountered in translating either pathname. 

A component of either patt prefix is not a directory. 

From is a directory, but to is not a directory. 

To is a directory, but from is not a directory. 

The link named by to and the file named by from are on different logical devices (file 
systems). Note that this error code will not be returned if the implementation permits 
cross-device links. 

The directory in which the entry for the new name is being placed cannot be extended 

INTEGRATED SOLUTIONS 4.3 BSD 1 



RENAME(2) 

[EDQUOT] 

[EIO] 

[EROFS] 

[EFAULT] 

UNIX Programmer's Manual RENAME(2) 

because there is no space left on the file system containing the directory. 

The directory in which the entry for the new name is being placed cannot be extended 
because the user's quota of disk blocks on the file system containing the directory has 
been exhausted. 

An 1/0 error occurred while making or updating a directory entry. 

The requested link requires writing in a directory on a read-only file system. 

Path points outside the process's allocated address space. 

[EINV AL] From is a parent directory of to, or an attempt is made to rename ''.'' or '' .. ''. 

[ENOTEMPTY] To is a directory and is not empty. 

SEE ALSO 
open(2) 

May22, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



RMDIR(2) UNIX Programmer's Manual RMDIR(2) 

NAME 
rmdir - remove a directory file 

SYNOPSIS 
rmdir(path) 
char •path; 

DESCRIPTION 
Rmdir removes a directory file whose name is given by path. The directory must not have any entries 
other than "." and " .. ". 

RETURN VALUE 
A 0 is returned if the remove succeeds; otherwise a -1 is returned and an error code is stored in the global 
location errno . 

ERRORS 
The named file is removed unless one or more of the following are true: 

[ENOTDIR] A component of the path is not a directory. 

[EINV AL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 
A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

[ENOENT] 

[BLOOP] 

The named directory does not exist. 

Too many symbolic links were encountered in translating the pathname. 

[ENOTEMPTY] The named directory contains files other than ''.'' and '' .. '' in it. 

[EACCES] Search permission is denied for a component of the path prefix. 

[EACCES] 

[EPERM] 

[EBUSY] 

[EIO] 

[EROFS] 

[EFAULT] 

SEE ALSO 
mkdir(2), 

August 26, 1985 

Write pennission is denied on the directory containing the link to be removed. 

The directory containing the directory to be removed is marked sticky, and neither the 
containing directory nor the directory to be removed are owned by the effective user ID. 

The directory to be removed is the mount point for a mounted file system. 

An 1/0 error occurred while deleting the directory entry or deallocating the inode. 

The directory entry to be removed resides on a read-only file system. 

Path points outside the process's allocated address space. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



SELECT(2) UNIX Programmer's Manual SELECT(2) 

NAME 
select - synchronous 1/0 multiplexing 

SYNOPSIS 
#include < sysltypes.h> 
#include < sysltime.h> 

nfound = select(n/ds', readfds, writefds, exceptfds, timeout) 
int nfound, nf ds'; 
fd _set •readfds, •writef ds, •exceptfds; 
struct timeval •timeout; 

FD _SET(fd. &fdset) 
FD_ CLR(fd, &fdset) 
FD _ISSET(fd, &fds'et) 
FD_ ZERO( &fdset) 
int/d; 
f d _set f ds'et; 

DESCRIPTION 
Select examines the 1/0 descriptor sets whose addresses are passed in readfds, writefds, and exceptf ds to 
see if some of their descriptors are ready for reading, are ready for writing, or have an exceptional condi­
tion pending, respectively. The first nf ds descriptors are checked in each set; i.e. the descriptors from 0 
through nfds-1 in the descriptor sets are examined. On return, select replaces the given descriptor sets with 
subsets consisting of those descriptors that are ready for the requested operation. The total number of 
ready descriptors in all the sets is returned in nf ound. 

The descriptor sets are stored as bit fields in arrays of integers. The following macros are provided for 
manipulating such descriptor sets: FD _ZERO(&fds'et) initializes a descriptor set fdset to the null set. 
FD _SET(fd, &fds'et) includes a particular descriptor fd in fdset. FD _CLR(fd, &fdset) removes fd from 
fds'et. FD _ISSET(fd, &fdset) is nonzero iffd is a member offdset, zero otherwise. The behavior of these 
macros is undefined if a descriptor value is less than zero or greater than or equal to FD_ SETSIZE, which 
is normally at least equal to the maximum number of descriptors supported by the system. 

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to complete. If 
timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the timeout argument should be 
non-zero, pointing to a zero-valued tirneval structure. 

Any of readf ds', writefds, and exceptfds' may be given as zero pointers if no descriptors are of interest. 

RETURN VALUE 
Select returns the number of ready descriptors that are contained in the descriptor sets, or -1 if an error 
occurred. If the time limit expires then select returns 0. If select returns with an error, including one due 
to an interrupted call, the descriptor sets will be unmodified. 

ERRORS 
An error return from select indicates: 

[EBADF] 

[EINTR] 

[EINVAL] 

One of the descriptor sets specified an invalid descriptor. 

A signal was delivered before the time limit expired and before any of the selected 
events occurred. 

The specified time limit is invalid. One of its components is negative or too large. 

SEE ALSO 

BUGS 

accept(2), connect(2), read(2), write(2), recv(2), send(2), getdtablesize(2) 

Although the provision of getdtablesize(2) was intended to allow user programs to be written independent 
of the kernel limit on the number of open files, the dimension of a sufficiently large bit field for select 

May 15, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SELECT(2) UNIX Programmer's Manual SELECT(2) 

remains a problem. The default size FD _SETSIZE (currently 256) is somewhat larger than the current ker­
nel limit to the number of open files. However, in order to accommodate programs which might potentially 
use a larger number of open files with select, it is possible to increase this size within a program by provid­
ing a larger definition of FD_ SETSIZE before the inclusion of <sys/types.h>. 

Select should probably rettun the time remaining from the original timeout, if any, by modifying the time 
value in place. This may be implemented in future versions of the system. Thus, it is unwise to assume 
that the timeout value will be unmodified by the select call. 

May 15, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



SEND(2) UNIX Programmer's Manual SEND(2) 

NAME 
send, send to, sendmsg - send a message from a socket 

SYNOPSIS 
#include < sysltypes.h> 
#include < syslsocket.h> 

cc= send(s, msg, len,jlags) 
int cc, s; 
char •msg; 
int len,flags; 

cc= sendto(s, msg, len,jlags, to, tolen) 
int cc, s; 
char •msg; 
int len, flags; 
struct sockaddr •to; 
int tolen; 

cc= sendmsg(s, msg,flags) 
int cc, s; 
struct msghdr msgO; 
int flags; 

DESCRIPTION 
Send, sendto, and sendmsg are used to transmit a message to another socket Send may be used only 
when the socket is in a connected state, while sendto and sendmsg may be used at any time. 

The address of the target is given by to with tolen specifying its size. The length of the message is given by 
len. If the message is too long to pass atomically through the underlying protocol, then the error 
EMSGSIZE is returned, and the message is not transmitted. 

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some locally detected 
errors. 

If no messages space is available at the socket to hold the message to be transmitted, then send normally 
blocks, unless the socket has been placed in non-blocking 1/0 mode. The select(2) call may be used to 
determine when it is possible to send more data. 

The flags parameter may include one or more of the following: 

#define MSG OOB Oxl /•process out-of-band data •I 
#define MSG - DONTROUTE Ox4 I• bypass routing, use direct interface •/ 

The flag MSG_ OOB -is used to send "out-of-band" data on sockets that support this notion (e.g. 
SOCK_STREAM); the underlying protocol must also support "out-of-band" data. MSG_DONTROUTE 
is usually used only by diagnostic or routing programs. 

See recv(2) for a description of the msghdr structure. 

RETURN VALUE 
The call returns the number of characters sent, or -1 if an error occurred. 

ERRORS 
[EBADF] 

[ENOTSOCK] 

[EFAULT] 

[EMSGSIZE] 

[EWOULDBLOCK] 

May 14, 1986 

An invalid descriptor was specified 

The arguments is not a socket 

An invalid user space address was specified for a parameter. 

The socket requires that message be sent atomically, and the size of the message 
to be sent made this impossible. 

The socket is marked non-blocking and the requested operation would block. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



SEND(2) 

[ENOBUFS] 

[ENOBUFS] 

SEE ALSO 

UNIX Programmer's Manual SEND(2) 

The system was unable to allocate an internal buffer. The operation may succeed 
when buffers become available. 

The output queue for a network interface was full. This generally indicates that 
the interface has stopped sending, but may be caused by transient congestion. 

fcnt1(2), recv(2), select(2), getsockopt(2), socket(2), write(2) 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



SETGROUPS ( 2) 

NAME 
setgroups - set group access list 

SYNOPSIS 
#include < syslparam.h> 

setgroups(ngroups, gidset) 
int ngroups, • gidset; 

DESCRIPTION 

UNIX Programmer's Manual SETGROUPS ( 2) 

Setgroups sets the group access list of the current user process according to the array gidset. The parame­
ter ngroups indicates the number of entries in the array and must be no more than NGROUPS, as de.fined in 
<SJS!param.h>. 

Only the super-user may set new groups. 

RETURN VALUE 
A 0 value is returned on success, -1 on error, with a error code stored in errno. 

ERRORS 
The setgroups call will fail if: 

[EPERM] 

[EFAULT] 

The caller is not the super-user. 

The address specified for gidset is outside the process address space. 

SEE ALSO 
getgroups(2), initgroups(3X) 

BUGS 
The gidset array should be of type gid _ t, but remains integer for compatibility with earlier systems. 

May 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SETPGRP(2) 

NAME 
setpgrp - set process group 

SYNOPSIS 
setpgrp(pid, pgrp) 
int pid, pgrp; 

DESCRIPTION 

UNIX Programmer's Manual SETPGRP(2) 

Setpgrp sets the process group of the specified process pid to the specified pgrp. If pid is zero, then the 
call applies to the current process. 

If the invoker is not the super-user, then the affected process must have the same effective user-id as the 
invoker or be a descendant of the invoking process. 

RETURN VALUE 
Setpgrp returns when the operation was successful. If the request failed, -1 is returned and the global 
variable errno indicates the reason. 

ERRORS 
Setpgrp will fail and the process group will not be altered if one of the following occur: 

[ESRCH] 

[EPERM] 

SEE ALSO 
getpgrp(2) 

May9, 1985 

The requested process does not exist. 

The effective user ID of the requested process is different from that of the caller and the 
process is not a descendent of the calling process. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



SETQUOTA ( 2) UNIX Programmer's Manual SETQUOTA ( 2) 

NAME 
setquota - enable/disable quotas on a file system 

SYNOPSIS 
setquota( special, file) 
char •special, •file; 

DESCRIPTION 
The setquota call enables or disables disc quotas. Special indicates a block special device on which a 
mounted file system exists. If file is nonzero, it specifies a file in that file system from which to take the 
quotas. If file is 0, then setquota disables the quotas on the file system. The quota file must exist. Nor­
mally it is created with the quotacbeck(8) program. 

Only the super-user may turn quotas on or off. 

SEE ALSO 
quota(2), quotacheck(8), quotaon(8) 

RETURN VALUE 
A 0 return value indicates a successful call. A value of -1 is returned when an error occurs and errno is set 
to indicate the reason for failure. 

ERRORS 

BUGS 

Setquota will fail when one of the following occurs: 

[EPERM] 

[ENOENT] 

[ENOTBLK] 

[ENXIO] 

[EPERM] 

[EN01DIR] 

[EACCES] 

[EACCES] 

The caller is not the super-user. 

Special does not exist. 

Special is not a block device. 

The major device number of special is out of range (this indicates no device driver exists 
for the associated hardware). 

The pathname contains a character with the high-order bit set. 

A component of the path prefix in file is not a directory. 

File resides on a file system different from special. 

File is not a plain file. 

[ENAMETOOLONG] 
The pathname was too long. 

[EF AULT] Special or file points outside the process's allocated address space. 

[EIO] An 1/0 error occurred while reading from or writing to the file system. 

The error codes are in a state of disarray; too many errors appear to the caller as one value. 

19 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SETREGID ( 2) UNIX Programmer's Manual SETREGID ( 2) 

NAME 
setregid - set real and effective group ID 

SYNOPSIS 
setregid(rgid, egid) 
int rgid, egid; 

DESCRIPTION 
The real and effective group ID' s of the current process are set to the arguments. Unprivileged users may 
change the real group ID to the effective group ID and vice-versa; only the super-user may make other 
changes. 

Supplying a value of -1 for either the real or effective group ID forces the system to substitute the current 
ID in place of the -1 parameter. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and e"no is set 
to indicate the error. 

ERRORS 
[EPERM] 

SEE ALSO 

The current process is not the super-user and a change other than changing the effective 
group-id to the real group-id was specified. 

getgid(2), setreuid(2), setgid(3) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SETREUID(2) UNIX Programmer's Manual 

NAME 
setreuid - set real and effective user ID' s 

SYNOPSIS 
setreuid(ruid,euid) 
int ruid, eui.d; 

DESCRIPTION 

SETREUID ( 2) 

The real and effective user ID's of the current process are set according to the arguments. If ruid or eui.d is 
-1, the current uid is filled in by the system. Unprivileged users may change the real user ID to the effec­
tive user ID and vice-versa; only the super-user may make other changes. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and e"no is set 
to indicate the error. 

ERRORS 
[EPERM] The current process is not the super-user and a change other than changing the effective 

user-id to the real user-id was specified. 

SEE ALSO 
getuid(2),setregid(2),setuid(3) 

May 9, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SHUTDOWN(2) UNIX Programmer's Manual 

NAME 
shutdown - shut down part of a full-duplex connection 

SYNOPSIS 
shutdown(s, how) 
int S, how; 

DESCRIPTION 

SHUTDOWN(2) 

The shutdown call causes all or part of a full-duplex connection on the socket associated with s to be shut 
down. If how is 0, then further receives will be disallowed If how is 1, then further sends will be disal­
lowed. If how is 2, then further sends and receives will be disallowed 

DIAGNOSTICS 
A 0 is returned if the call succeeds, -1 if it fails. 

ERRORS 
The call succeeds unless: 

[EBADF] S is not a valid descriptor. 

[ENOTSOCK] S is a file, not a socket 

[ENOTCONN] The specified socket is not connected. 

SEE ALSO 
connect(2), socket(2) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SIG BLOCK ( 2) 

NAME 
sigblock - block signals 

SYNOPSIS 
#include < signal.h> 

sigblock(mask); 
int mask; 

mask= sigmask(signum) 

DESCRIPTION 

UNIX Programmer's Manual SIGBLOCK(2) 

Sigblock causes the signals specified in mask to be added to the set of signals currently being blocked from 
delivery. Signals are blocked if the corresponding bit in mask is a 1; the macro sigmask is provided to con­
struct the mask for a given signum. 

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT; this restriction is silently imposed by the 
system. 

RETURN VALUE 
The previous set of masked signals is returned. 

SEE ALSO 
kill(2), sigvec(2), sigsetmask(2) 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SIGPAUSE ( 2) UNIX Programmer's Manual 

NAME 
sigpause - atomically release blocked signals and wait for interrupt 

SYNOPSIS 
sigpause( sigmask) 
int sigmask; 

DESCRIPTION 

SIGPAUSE ( 2) 

Sigpause assigns sigma.sk to the set of masked signals and then waits for a signal to arrive; on return the set 
of masked signals is restored. Sigma.sk is usually 0 to indicate that no signals are now to be blocked. Sig· 
pause always terminates by being interrupted, returning -1 with errno set to EINTR. 

In normal usage, a signal is blocked using sigblock(2), to begin a critical section, variables modified on the 
occurrence of the signal are examined to determine that there is no work to be done, and the process pauses 
awaiting work by using sigpause with the mask returned by sigblock. 

SEE ALSO 
sigblock(2), sigvec(2) 

May 15, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SIGRETURN ( 2) UNIX Programmer's Manual SIGRETURN ( 2) 

NAME 
sigreturn - return from signal 

SYNOPSIS 
#include < signal.h> 

struct sigcontext { 
int sc _ onstack; 
int sc _mask; 
int sc_sp; 
int scJp; 
int sc_ap; 
int sc_pc; 
int sc_ps; 

}; 

sigretum( scp ); 
struct sigcontext •scp; 

DESCRIPTION 

NOTES 

Sigretum allows users to atomically unmask, switch stacks, and return from a signal context. The 
processes signal mask and stack status are restored from the context The system call does not return; the 
users stack pointer, frame pointer, argument pointer, and processor status longword are restored from the 
context. Execution resumes at the specified pc. This system call is used by the trampoline code, and 
longjmp(3) when returning from a signal to the previously executing program. 

This system call is not available in 4.2BSD, hence it should not be used if backward compatibility is 
needed. 

RETURN VALUE 
If successful, the system call does not return. Otherwise, a value of -1 is returned and e"no is set to indi­
cate the error. 

ERRORS 
Sigreturn will fail and the process context will remain unchanged if one of the following occurs. 

[EFAULT] 

[EINVAL] 

SEE ALSO 

Sep points to memory that is not a valid part of the process address space. 

The process status longword is invalid or would improperly raise the privilege level of 
the process. 

sigvec(2), setjmp(3) 

June 30, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SIGSETMASK ( 2) UNIX Programmer's Manual 

NAME 
sigsetmask - set current signal mask 

SYNOPSIS 
#include < signal.h> 

sigsetmask(mask); 
int mask; 

mask= sigmask( signum) 

DESCRIPTION 

SIGSETMASK(2) 

Sigsetmask sets the current signal mask (those signals that are blocked from delivery). Signals are blocked 
if the corresponding bit in mask is a 1; the macro sigmask is provided to construct the mask for a given sig­
num. 

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be blocked 

RETURN VALUE 
The previous set of masked signals is returned. 

SEE ALSO 
kill(2), sigvec(2), sigblock(2), sigpause(2) 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SIG STACK ( 2) UNIX Programmer's Manual SIG ST ACK ( 2) 

NAME 
sigstack - set and/or get signal stack context 

SYNOPSIS 
#include < signal.h> 

struct sigstack { 
caddr_t ss_sp; 
int ss _ onstack; 

}; 

sigstack(ss, oss); 
struct sigstack •ss, •oss; 

DESCRIPTION 

NOTES 

Sigstack allows users to define an alternate stack on which signals are to be processed If ss is non-zero, it 
specifies a signal stack on which to deliver signals and tells the system if the process is currently executing 
on that stack. When a signal's action indicates its handler should execute on the signal stack (specified 
with a sigvec(2) call), the system checks to see if the process is currently executing on that stack. If the 
process is not currently executing on the signal stack, the system arranges a switch to the signal stack for 
the duration of the signal handler's execution. If oss is non-zero, the current signal stack state is returned. 

Signal stacks are not "grown" automatically, as is done for the normal stack. If the stack overflows 
unpredictable results may occur. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and e"no is set 
to indicate the error. 

ERRORS 
Sigstack will fail and the signal stack context will remain unchanged if one of the following occurs. 

[EF AULT] Either ss or oss points to memory that is not a valid part of the process address space. 

SEE ALSO 
sigvec(2), setjmp(3) 

June 30, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SIGVEC(2) UNIX Programmer's Manual SIGVEC(2) 

NAME 
sigvec - software signal facilities 

SYNOPSIS 
#include < signal.h> 

struct sigvec { 
int 
int 
int 

}; 

(*sv _handler)(); 
sv_mask; 
sv _ onstack; 

sigvec(sig, vec, ovec) 
int sig; 
struct sigvec •vec, •ovec; 

DESCRIPTION 
The system defines a set of signals that may be delivered to a process. Signal delivery resembles the 
occurrence of a hardware interrupt: the signal is blocked from further occurrence, the current process con­
text is saved, and a new one is built. A process may specify a handler to which a signal is delivered, or 
specify that a signal is to be blocked or ignored. A process may also specify that a default action is to be 
taken by the system when a signal occurs. Normally, signal handlers execute on the current stack of the 
process. This may be changed, on a per-handler basis, so that signals are taken on a special ''signal 
stack.'' 

All signals have the same priority. Signal routines execute with the signal that caused their invocation 
blocked, but other signals may yet occur. A global "signal mask" defines the set of signals currently 
blocked from delivery to a process. The signal mask for a process is initialized from that of its parent (nor­
mally 0). It may be changed with a sigblock(2) or sigsetmask(2) call, or when a signal is delivered to the 
process. 

When a signal condition arises for a process, the signal is added to a set of signals pending for the process. 
If the signal is not currently blocked by the process, then it is delivered to the process. When a signal is 
delivered, the current state of the process is saved, a new signal mask is calculated (as described below), 
and the signal handler is invoked. The call to the handler is arranged so that if the signal handling routine 
returns normally the process will resume execution in the context from before the signal's delivery. If the 
process should resume in a different context, then the process must arrange to restore the previous context. 

When a signal is delivered to a process, a new signal mask is installed for the duration of the process's sig­
nal handler (or until a sigblock or sigsetmask call is made). This mask is formed by taking the current sig­
nal mask, adding the signal to be delivered, and oring in the signal mask associated with the handler to be 
invoked. 

Sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler routine and mask to 
be used when delivering the specified signal. Further, if sv _onstack is 1, the system will deliver the signal 
to the process on a signal stack, specified with sigstack(2). If ovec is non-zero, the previous handling 
information for the signal is returned to the user. 

The following is a list of all signals with names as given in the include file <Signal.h>: 

SIGHUP 1 hangup 
SIGINT 2 interrupt 
SIGQUIT 3• quit 
SIGILL 4• illegal instruction 
SIGTRAP 5• trace trap 
SIGIOT 6• IOT instruction 
SIGEMT 7• EMT instruction 
SIGFPE 8• floating point exception 
SIGKILL 9 kill (cannot be caught, blocked, or ignored) 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SIGVEC(2) UNIX Programmer's Manual SIGVEC(2) 

NOTES 

SIGBUS 10• bus error 
SIGSEGV 11 • segmentation violation 
SIGSYS 12• bad argument to system call 
SIGPIPE 13 write on a pipe with no one to read it 
SIGALRM 14 alann clock 
SIGTERM 15 software termination signal 
SIGURG 16e urgent condition present on socket 
SIGSTOP 17t stop (cannot be caught, blocked, or ignored) 
SIGTSTP 18t stop signal generated from keyboard 
SIGCONT 19e continue after stop (cannot be blocked) 
SIGCiil..D 20. child status has changed 
SIGTTIN 21 t background read attempted from control terminal 
SIGTIOU 22t background write attempted to control terminal 
SIGIO 23• 1/0 is possible on a descriptor (see rcnd(2)) 
SIGXCPU 24 CPU time limit exceeded (see setrlimit(2)) 
SIGXFSZ 25 file size limit exceeded (see setrlimit(2)) 
SIG VT ALRM 26 virtual time alarm (see setitimer(2)) 
SIGPROF 27 profiling timer alarm (see setitimer(2)) 
SIGREF 28• window requires refresh 
SIGADJ 29e window changed size 

The starred signals in the list above cause a core image if not caught or ignored. 

Once a signal handler is installed, it remains installed until another sigvec call is made, or an execve(2) is 
performed. The default action for a signal may be reinstated by setting sv _handler to SIG_ DFL; this 
default is termination (with a core image for starred signals) except for signals marked with •or t. Signals 
marked with• are discarded if the action is SIG_DFL; signals marked with t cause the process to stop. If 
sv _handler is SIG_ ION the signal is subsequently ignored, and pending instances of the signal are dis­
carded. 

If a caught signal occurs during certain system calls, causing the call to terminate prematurely, the call is 
automatically restarted. In particular this can occur during a read or write(2) on a slow device (such as a 
terminal; but not a file) and during a wait(2}. 

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, and the signal stack. 

Execve(2) resets all caught signals to default action; ignored signals remain ignored; the signal mask 
remains the same; the signal stack state is reset. 

The mask specified in vec is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. This is done silently 
by the system. 

RETURN VALUE 
A value of 0 indicates that the call succeeded. A return value of -1 shows that an error occurred, and errno 
is set to indicate the reason. 

ERRORS 
Sigvec will fail and no new signal handler will be installed if one of the following occurs: 

[EFAULT] 

[EINVAL] 

[EINVAL] 

[EINVAL] 

1 August 1985 

Either vec or ovec points to memory which is not a valid part of the process address 
space. 

Sig is not a valid signal number. 

An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP. 

An attempt is made to ignore SIGCONT (by default SIGCONT is ignored). 

INTEGRATED SOLUTIONS 4.3 BSD 2 



SIGVEC(2) UNIX Programmer's Manual SIGVEC(2) 

SEE ALSO 
kill(l), ptrace(2), kill(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), sigvec(2), setjmp(3), 
tty(4) 

NOTES (IS68K) 
The handler routine can be declared: 

handler(sig, code, scp) 
int sig, code; 
struct sigcontext •scp; 

Here sig is the signal number, into which the hardware faults and traps are mapped as defined below. Code 
is a parameter which is a constant as given below. Sep is a pointer to the sigcontext structure (defined in 
<Signal.h> ), used to restore the context from before the signal. 

The following defines the mapping of hardware traps to signals and codes. All of these symbols are 
defined in <signal.h>: 

Hardware condition 

Arithmetic traps: 
Integer division by zero 
TRAPV instruction trap 
CHK instruction trap 

Length access control 
Odd address error 
Protection violation 
Illegal instruction 
Privileged instruction 
Line 1010 trap 
Line 1011 trap 
Unused trap instruction 
Trace pending 

1 August 1985 

Signal 

SIGFPE 
SIGFPE 
SIGFPE 
SIGSEGV 
SIG BUS 
SIG BUS 
SIGILL 
SIG ILL 
SIG EMT 
SIG EMT 
SIG TRAP 
SIG TRAP 

Code 

FPE INTDIV TRAP - -
FPE _ INTOVF _TRAP 
FPE_ SUBRNG _TRAP 

ILL_RESOP _FAULT 
ILL PRIVIN FAULT - -
opcode 
opcode 
trap number 

INTEGRATED SOLUTIONS 4.3 BSD 3 



SOCKET(2) UNIX Programmer's Manual SOCKET(2) 

NAME 
socket - create an endpoint for communication 

SYNOPSIS 
#include < sysltypes.h> 
#include <sys/ socket.h> 

s = socket(domain, type, protocol) 
int s, domain, type, protocol; 

DESCRIPTION 
Socket creates an endpoint for communication and returns a descriptor. 

The domain parameter specifies a communications domain within which communication will take place; 
this selects the protocol family which should be used. The protocol family generally is the same as the 
address family for the addresses supplied in later operations on the socket. These families are defined in 
the include file < syslsocket.h>. The currently understood formats are 

PF UNIX (UNIX internal protocols), 
PF INET (ARP A Internet protocols), 
PF NS (Xerox Network Systems protocols), and 
PF IMPLINK (IMP "host at IMP" link layer). 

The socket has the indicated type, which specifies the semantics of communication. Currently defined 
types are: 

SOCK STREAM 
SOCK_DGRAM 
SOCK_RAW 
SOCK_ SEQPACKET 
SOCK RDM 

A SOCK_ STREAM type provides sequenced, reliable, two-way connection based byte streams. An out­
of-band data transmission mechanism may be supported. A SOCK OGRAM socket supports datagrams 
(connectionless, unreliable messages of a fixed (typically small) maximum length). A 
SOCK_ SEQP ACKET socket may provide a sequenced, reliable, two-way connection-based data transmis­
sion path for datagrams of fixed maximum length; a consumer may be required to read an entire packet 
with each read system call. This facility is protocol specific, and presently implemented only for PF_ NS. 
SOCK_ RAW sockets provide access to internal network protocols and interfaces. The types 
SOCK_RAW, which is available only to the super-user, and SOCK_RDM, which is planned, but not yet 
implemented, are not described here. 

The protocol specifies a particular protocol to be used with the socket Normally only a single protocol 
exists to support a particular socket type within a given protocol family. However, it is possible that many 
protocols may exist, in which case a particular protocol must be specified in this manner. The protocol 
number to use is particular to the "communication domain'' in which communication is to take place; see 
protocols(3N). 

Sockets of type SOCK_ STREAM are full-duplex byte streams, similar to pipes. A stream socket must be 
in a connected state before any data may be sent or received on it A connection to another socket is 
created with a connect(2) call. Once connected, data may be transferred using read(2) and write(2) calls 
or some variant of the send(2) and recv(2) calls. When a session has been completed a close(2) may be 
performed. Out-of-band data may also be transmitted as described in send(2) and received as described in 
recv(2). 

The communications protocols used to implement a SOCK_ STREAM insure that data is not lost or dupli­
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transmitted 
within a reasonable length of time, then the connection is considered broken and calls will indicate an error 
with -1 returns and with ETIMEDOUT as the specific code in the global variable errno. The protocols 

May23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SOCKET(2) UNIX Programmer's Manual SOCKET(2) 

optionally keep sockets "warm'' by forcing transmissions roughly every minute in the absence of other 
activity. An error is then indicated if no response can be elicited on an otherwise idle connection for a 
extended period (e.g. 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this 
causes naive processes, which do not handle the signal, to exil 

SOCK_ SEQPACKET sockets employ the same system calls as SOCK_ STREAM sockets. The only differ­
ence is that read(2) calls will return only the amount of data requested, and any remaining in the arriving 
packet will be discarded. 

SOCK_ OGRAM and SOCK_ RAW sockets allow sending of datagrams to correspondents named in 
send(2) calls. Datagrams are generally received with recvfrom(2), which returns the next datagram with 
its return address. 

An rcntl(2) call can be used to specify a process group to receive a SIGURG signal when the out-of-band 
data arrives. It may also enable non-blocking 1/0 and asynchronous notification of 1/0 events via SIGIO. 

The operation of sockets is controlled by socket level options. These options are defined in the file 
<SJslsocket.h>. Setsockopt(2) and getsockopt(2) are used to set and get options, respectively. 

RETURN VALUE 
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the sockel 

ERRORS 
The socket call fails if: 

[EPROTONOSUPPORT] 

[EMFILE] 

[ENFILE] 

[EACCESS] 

[ENOBUFS] 

SEE ALSO 

The protocol type or the specified protocol is not supported within this domain. 

The per-process descriptor table is full. 

The system file table is full. 

Permission to create a socket of the specified type and/or protocol is denied. 

Insufficient buffer space is available. The socket cannot be created until sufficient 
resources are freed. 

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), read(2), recv(2), 
select(2), send(2), shutdown(2), socketpair(2), write(2) 
"An Introductory 4.3BSD Interprocess Communication Tutorial." (reprinted in UNIX Programmer's 
Supplementary Documents Volume 1, PS1:7) "An Advanced 4.3BSD Interprocess Communication 
Tutorial.'' (reprinted in UNIX Programmer's Supplementary Documents Volume 1, PS1:8) 

May 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



SOCKETPAIR(2) UNIX Programmer's Manual SOCKETP AIR ( 2) 

NAME 
socketpair - create a pair of connected sockets 

SYNOPSIS 
#include < sysltypes.h> 
#include < syslsocket.h> 

socketpair(d, type, protocol, sv) 
int d, type, protocol; 
int sv[2]; 

DESCRIPTION 
The socketpair call creates an unnamed pair of connected sockets in the specified domain d, of the 
specified type, and using the optionally specified protocol. The descriptors used in referencing the new 
sockets are returned in sv[O] and sv[l]. The two sockets are indistinguishable. 

DIAGNOSTICS 
A 0 is returned if the call succeeds, -1 if it fails. 

ERRORS 
The call succeeds unless: 

[EMFil..E] Too many descriptors are in use by this process. 

[EAFNOSUPPORT] The specified address family is not supported on this machine. 

[EPROTONOSUPPORT] 
The specified protocol is not supported on this machine. 

[EOPNOSUPPORT] The specified protocol does not support creation of socket pairs. 

[EF AULT] The address sv does not specify a valid part of the process address space. 

SEE ALSO 
read(2), write(2), pipe(2) 

BUGS 
This call is currently implemented only for the UNIX domain. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



STAT(2) UNIX Programmer's Manual STAT(2) 

NAME 
stat, lstat, rstat - get file status 

SYNOPSIS 
#include < sysltypes.h> 
#include < syslstat.h> 

stat(path, bujJ 
char •path; 
struct stat •buf; 

lstat(path, bujJ 
char •path; 
struct stat •buf; 

rstat(f d, bujJ 
int/d; 
struct stat •bu/; 

DESCRIPTION 
Stat obtains information about the file path. Read, write or execute permission of the named file is not 
required, but all directories listed in the path name leading to the file must be reachable. 

Lstat is like stat except in the case where the named file is a symbolic link, in which case lstat returns 
information about the link, while stat returns information about the file the link references. 

Fstat obtains the same information about an open file referenced by the argument descriptor, such as would 
be obtained by an open call. 

Buf is a pointer to a stat structure into which information is placed concerning the file. The contents of the 
structure pointed to by bu/ 

struct stat { 

}; 

st atime 

st_mtime 

st ctime 

May 12, 1986 

dev_t 
ino_t 
u_short 
short 
short 
short 
dev t 
off t 
time t 
int 
time_t 
int 
time t 
int 
long 
long 
long 

st_dev; 
st_ino; 
st_ mode; 
st_nlink; 
st_uid; 
st_gid; 
st_rdev; 
st_ size; 
st_atime; 
st_sparel; 

I• device inode resides on•! 
I• this inode's number•/ 
I• protection •/ 
I• number or hard links to the file•/ 
I• user-id of owner •I 
I• group-id of owner */ 
I• the device type, for inode that is device•/ 
I• total size of file•/ 
I• file last access time•/ 

st_ mtime; I• file last modify time •/ 
st_spare2; 
st_ctime; 
st_spare3; 

I• file last status change time •/ 

st_ blksize; /* optimal blocksize for file system i/o ops •/ 
st_ blocks; I• actual number of blocks allocated •/ 
st_spare4[2]; 

Time when file data was last read or modified. Changed by the following system calls: 
mknod(2), utimes(2), read(2), and write(2). For reasons of efficiency, st_atime is not set 
when a directory is searched, although this would be more logical. 

Time when data was last modified. It is not set by changes of owner, group, link count, or 
mode. Changed by the following system calls: utimes(2), write(2). 

Time when file status was last changed. It is set both both by writing and changing the i-

INTEGRATED SOLUTIONS 4.3 BSD 1 



STAT(2) UNIX Programmer's Manual STAT(2) 

node. Changed by the following system calls: chmod(2) chown(2), link(2), mknod(2), 
rename(2), unlink(2), utimes(2), write(2). 

The status information word st_ mode has bits: 
#define S _ IFMT 0170000 
#define S_IFDIR 0040000 
#define S_IFCHR 0020000 
#define S _ IFBLK 0060000 
#define S_IFREG 0100000 
#define S_IFLNK 0120000 
#define S_IFSOCK 0140000 
#define S _ ISUID 0004000 
#define S _ ISGID 0002000 
#define S_ISVTX 0001000 
#defineS_IREAD 0000400 
#define S !WRITE 0000200 
#define S _ IEXEC 0000100 

I• type of file •/ 
I• directory •/ 
I• character special•/ 
I• block special•/ 
I• regular •/ 
I• symbolic link •/ 
I• socket•/ 
I• set user id on execution•/ 
I• set group id on execution •/ 
I• save swapped text even after use•/ 
I• read permission, owner •/ 
I• write permission, owner •/ 
I• execute/search permission, owner •/ 

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)). 

RETURN VALUE 
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and e"no is set 
to indicate the error. 

ERRORS 
Stat and lstat will fail if one or more of the following are true: 

[ENOTDIR] A component of the path prefix is not a directory. 

[EINV AL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[BLOOP] 

[EFAULT] 

[EIO] 

A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

The named file does not exist. 

Search permission is denied for a component of the path prefix. 

Too many symbolic links were encountered in translating the pathname. 

Bu/ or name points to an invalid address. 

An 1/0 error occurred while reading from or writing to the file system. 

F stat will fail if one or both of the following are true: 

[EBADF] 

[EFAULT] 

[EIO] 

Fildes is not a valid open file descriptor. 

Bu/points to an invalid address. 

An 1/0 error occurred while reading from or writing to the file system. 

CAVEAT 
The fields in the stat structure currently marked st_sparel, st_!pare2, and st_spare3 are present in prepara­
tion for inode time stamps expanding to 64 bits. This, however, can break certain programs that depend on 
the time stamps being contiguous (in calls to utimes(2)). 

SEE ALSO 

BUGS 

chmod(2), chown(2), utimes(2) 

Applying rstat to a socket (and thus to a pipe) returns a zero'd buffer, except for the blocksize field, and a 
unique device and inode number. 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



SWAPON(2) UNIX Programmer's Manual SWAPON(2) 

NAME 
swapon - add a swap device for interleaved paging/swapping 

SYNOPSIS 
swapon( special) 
char •special; 

DESCRIPTION 
Swapon makes the block device special available to the system for allocation for paging and swapping. 
The names of potentially available devices are known to the system and defined at system configuration 
time. The size of the swap area on special is calculated at the time the device is first made available for 
swapping. 

RETURN VALUE 
If an error has occurred, a value of -1 is returned and errno is set to indicate the error. 

ERRORS 
Swapon succeeds unless: 

[ENO'IDIR] A component of the path prefix is not a directory. 

[EINV AL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONO] 

[ENOENT] 

[EACCES] 

[ELOOP] 

[EPERM] 

[ENOTBLK] 

[EBUSY] 

[EINVAL] 

[ENXIO] 

[EIO] 

[EFAULT] 

A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

The named device does not exist 

Search permission is denied for a component of the path prefix. 

Too many symbolic links were encountered in translating the pathname. 

The caller is not the super-user. 

Special is not a block device. 

The device specified by special has already been made available for swapping 

The device configured by special was not configured into the system as a swap device. 

The major device number of special is out of range (this indicates no device driver exists 
for the associated hardware). 

An 1/0 error occurred while opening the swap device. 

Special points outside the process's allocated address space. 

SEE ALSO 

BUGS 

swapon(8), config(8) 

There is no way to stop swapping on a disk so that the pack may be dismounted. 

This call will be upgraded in future versions of the system. 

March 9, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SYMLINK(2) UNIX Programmer's Manual SYMLINK(2) 

NAME 
symlink - make symbolic link to a file 

SYNOPSIS 
symlink(namel, name2) 
char•namel,•name2; 

DESCRIPTION 
A symbolic link name2 is created to namel (name2 is the name of the file created, namel is the string used 
in creating the symbolic link). Either name may be an arbitrary path name; the files need not be on the 
same file system. 

RETURN VALUE 
Upon successful completion, a zero value is returned. If an error occurs, the error code is stored in e"no 
and a -1 value is returned. 

ERRORS 
The symbolic link is made unless on or more of the following are true: 

[ENOIDIR] A component of the name2 prefix is not a directory. 

[EINVAL] Either name] or name2 contains a character with the high-order bit set. 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[ELOOP] 

[EEXIST] 

[EIO] 

[EROFS] 

[ENOSPC] 

[ENOSPC] 

[ENOSPC] 

[EDQUOT] 

[EDQUOT] 

[EIO] 

[EFAULT] 

SEE ALSO 

A component of either pathname exceeded 255 characters, or the entire length of either 
path name exceeded 1023 characters. 

The named file does not exist. 

A component of the name2 path prefix denies search permission. 

Too many symbolic links were encountered in translating the pathname. 

Name2 already exists. 

An 1/0 error occurred while making the directory entry for name2, or allocating the 
inode for name2, or writing out the link contents of name2. 

The file name2 would reside on a read-only file system. 

The directory in which the entry for the new symbolic link is being placed cannot be 
extended because there is no space left on the file system containing the directory. 

The new symbolic link cannot be created because there there is no space left on the file 
system that will contain the symbolic link. 

There are no free inodes on the file system on which the symbolic link is being created. 

The directory in which the entry for the new symbolic link is being placed cannot be 
extended because the user's quota of disk blocks on the file system containing the direc­
tory has been exhausted. 

The new symbolic link cannot be created because the user's quota of disk blocks on the 
file system that will contain the symbolic link has been exhausted. 

The user's quota of inodes on the file system on which the symbolic link is being created 
has been exhausted. 

An 1/0 error occurred while making the directory entry or allocating the inode. 

Namel or name2 points outside the process's allocated address space. 

link(2), In( 1 ), unlink(2) 

August 26, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SYNC(2) 

NAME 
sync - update super-block 

SYNOPSIS 
syncO 

DESCRIPTION 

UNIX Programmer's Manual SYNC(2) 

Sync causes all information in core memory that should be on disk to be written out. This includes 
modified super blocks, modified i-nodes, and delayed block 1/0. 

Sync should be used by programs that examine a file system, for example fsck, df, etc. Sync is mandatory 
before a boot. 

SEE ALSO 
fsync(2), sync(8), update(8) 

BUGS 
The writing, although scheduled, is not necessarily complete upon return from sync. 

June 30, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SYSCALL(2) 

NAME 
syscall - indirect system call 

SYNOPSIS 
#include < syscall.h> 

syscaU(number, arg, ... ) 

DESCRIPTION 

UNIX Programmer's Manual SYSCALL(2) 

Syscall performs the system call whose assembly language interface has the specified number, register 
arguments rO and rl and further arguments arg. Symbolic constants for system calls can be found in the 
header file <syscall.h>. 

The t() value of the system call is returned 

DIAGNOSTICS 
When the C-bit is set, syscall returns -1 and sets the external variable errno (see intro(2)). 

BUGS 
There is no way to simulate system calls such as pipe(2), which return values in register rl. 

April 16, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



TRUNCATE(2) UNIX Programmer's Manual TRUNCATE(2) 

NAME 
truncate - truncate a file to a specified length 

SYNOPSIS 
truncate(path, length) 
char •path; 
otT_t length; 

rtruncate(f d, length) 
intfd; 
otT_t length; 

DESCRIPTION 
Truncate causes the file named by path or referenced by f d to be truncated to at most length bytes in size. 
If the file previously was larger than this size, the extra data is lost With/truncate, the file must be open 
for writing. 

RETURN VALUES 
A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the global variable errno 
specifies the error. 

ERRORS 
Truncate succeeds unless: 

[ENOTDIR] A component of the path prefix is not a directory. 

[EINV AL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 
A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

[ENOENT] 

[EACCES] 

[EACCES] 

[ELOOP] 

[EISDIR] 

[EROFS] 

[ETXTBSY] 

[EIO] 

[EFAULT] 

The named file does not exist. 

Search permission is denied for a component of the path prefix. 

The named file is not writable by the user. 

Too many symbolic links were encountered in translating the pathname. 

The named file is a directory. 

The named file resides on a read-only file system. 

The file is a pure procedure (shared text) file that is being executed 

An 1/0 error occurred updating the inode. 

Path points outside the process's allocated address space. 

Ftruncate succeeds unless: 

[EBADF] 

[EINVAL] 

[EINVAL] 

SEE ALSO 
open(2) 

BUGS 

The f d is not a valid descriptor. 

The f d references a socket, not a file. 

The f dis not open for writing. 

These calls should be generalized to allow ranges of bytes in a file to be discarded. 

March 29, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



UMASK(2) UNIX Programmer's Manual 

NAME 
umask - set file creation mode mask 

SYNOPSIS 
oumask = umask( numask) 
intoumask,numask; 

DESCRIPTION 

UMASK(2) 

Umask sets the process's file mode creation mask to numask and returns the previous value of the mask. 
The low-order 9 bits of numask are used whenever a file is created, clearing corresponding bits in the file 
mode (see chmod(2)). This clearing allows each user to restrict the default access to his files. 

The value is initially 022 (write access for owner only). The mask is inherited by child processes. 

RETURN VALUE 
The previous value of the file mode mask is returned by the call. 

SEE ALSO 
chmod(2), mknod(2), open(2) 

May9, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



UNLINK.(2) UNIX Programmer's Manual UNLINK(2) 

NAME 
unlink - remove directory entry 

SYNOPSIS 
unlink( path) 
char •path; 

DESCRIPTION 
Unlink removes the entry for the file path from its directory. If this entry was the last link to the file, and 
no process has the file open, then all resources associated with the file are reclaimed. If, however, the file 
was open in any process, the actual resource reclamation is delayed until it is closed, even though the direc­
tory entry has disappeared. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and e"no is set 
to indicate the error. 

ERRORS 
The unlink succeeds unless: 

[ENOTDIR] 

[EINVAL] 

A component of the path prefix is not a directory. 

The pathname contains a character with the high-order bit sel 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[EACCES] 

[ELOOP] 

[EPERM] 

[EPERM] 

[EBUSY] 

[EIO] 

[EROFS] 

[EFAULT] 

SEE ALSO 

A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

The named file does not exist. 

Search permission is denied for a component of the path prefix. 

Write permission is denied on the directory containing the link to be removed. 

Too many symbolic links were encountered in translating the pathname. 

The named file is a directory and the effective user ID of the process is not the super­
user. 

The directory containing the file is marked sticky, and neither the containing directory 
nor the file to be removed are owned by the effective user ID. 

The entry to be unlinked is the mount point for a mounted file system. 

An 110 error occurred while deleting the directory entry or deallocating the inode. 

The named file resides on a read-only file system. 

Path points outside the process's allocated address space. 

close(2), link(2), rmdir(2) 

May 22, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



UNMOUNT(2) UNIX Programmer's Manual UNMOUNT(2) 

NAME 
unmount - remove a file system 

SYNOPSIS 
unmount( name) 
char •name; 

DESCRIPTION 
Unmount announces to the system that the directory name is no longer to refer to the root of a mounted file 
system. The directory name reverts to its ordinary interpretation. 

RETURN VALUE 
Unmount returns 0 if it was able to remove the file system successfully. It returns -1 if the directory is 
inaccessible or does not have a mounted file system. It also returns -1 if there are active files in the 
mounted file system. 

ERRORS 
Unmount may fail with one of the following errors: 

[EPERM] 

[EINVAL] 

[EBUSY] 

[ENOTDIR] 

[EPERM] 

The caller is not the super-user. 

Name is not the root of a mounted file system. 

A process is holding a reference to a file located on the file system. 

A component of the path prefix is not a directory. 

The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 

[ENOENT] 

[EACCES] 

[EFAULT] 

[BLOOP] 

[EIO] 

The pathname was too long. 

name does not exist. 

Search permission is denied for a component of the path prefix. 

name points outside the process's allocated address space. 

Too many symbolic links were encountered in translating the pathname. 

An I/O error occurred while reading from or writing to the file system. 

SEE ALSO 
mount(2), mount(8), umount(8) 

BUGS 
The error codes are in a state of disarray. Too many errors appear to the caller as one value. 

19 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



UTIMES(2) UNIX Programmer's Manual UTIMES(2) 

NAME 
utimes - set file times 

SYNOPSIS 
#include < sysltime.h> 

utimes(file, tvp) 
char •file; 
struct timeval tvp[2]; 

DESCRIPTION 
The utimes call uses the "accessed" and "updated" times in that order from the tvp vector to set the 
corresponding recorded times for file. 

The caller must be the owner of the file or the super-user. The "inode-changed" time of the file is set to 
the current time. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of-1 is returned and errno is set 
to indicate the error. 

ERRORS 
Utime will fail if one or more of the following are true: 

[ENOIDIR] A component of the path prefix is not a directory. 

[EINV AL] The pathname contains a character with the high-order bit set 

[ENAMETOOLONG] 
A component of a pathname exceeded 255 characters, or an entire path name exceeded 
1023 characters. 

[ENOENT] 

[ELOOP] 

[EPERM] 

[EACCES] 

[EROFS] 

[EFAULT] 

[EIO] 

SEE ALSO 
stat(2) 

August 26, 1985 

The named file does not exist. 

Too many symbolic links were encountered in translating the pathname. 

The process is not super-user and not the owner of the file. 

Search permission is denied for a component of the path prefix. 

The file system containing the file is mounted read-only. 

File or tvp points outside the process's allocated address space. 

An 1/0 error occurred while reading or writing the affected inode. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



VFORK(2) UNIX Programmer's Manual VFORK(2) 

NAME 
vf ork - spawn new process in a virtual memory efficient way 

SYNOPSIS 
pid=vforkO 
intpid; 

DESCRIPTION 
Vfork can be used to create new processes without fully copying the address space of the old process, 
which is horrendously inefficient in a paged environment It is useful when the purpose of fork(2) would 
have been to create a new system context for an execve. Vfork differs from fork in that the child borrows 
the parent's memory and thread of control until a call to execve(2) or an exit (either by a call to exit(2) or 
abnormally.) The parent process is suspended while the child is using its resources. 

Vfork returns 0 in the child's context and (later) the pid of the child in the parent's context. 

Vfork can normally be used just like fork. It does not work, however, to return while running in the childs 
context from the procedure that called vfork since the eventual return from vfork would then return to a no 
longer existent stack frame. Be careful, also, to call _exit rather than exit if you can't execve, since exit 
will ftush and close standard 1/0 channels, and thereby mess up the parent processes standard 1/0 data 
structures. (Even with fork it is wrong to call exit since buffered data would then be ftushed twice.) 

SEE ALSO 
fork(2), execve(2), sigvec(2), 

DIAGNOSTICS 

BUGS 

Same as for fork. 

This system call will be eliminated when proper system sharing mechanisms are implemented Users 
should not depend on the memory sharing semantics of vfork as it will, in that case, be made synonymous 
to fork. 

To avoid a possible deadlock situation, processes that are children in the middle of a vfork are never sent 
SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input attempts result in an end-of­
file indication. 

June 30, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



VHANGUP(2) UNIX Programmer's Manual 

NAME 
vhangup- virtually "hangup" the current control terminal 

SYNOPSIS 
vhangupO 

DESCRIPTION 

VHANGUP(2) 

Vhangup is used by the initialization process init(8) (among others) to arrange that users are given 
"clean'" terminals at login, by revoking access of the previous users' processes to the terminal. To effect 
this, vhangup searches the system tables for references to the control terminal of the invoking process, 
revoking access permissions on each instance of the terminal that it finds. Further attempts to access the 
terminal by the affected processes will yield i/o errors (EBADF). Finally, a hangup signal (SIGHUP) is 
sent to the process group of the control terminal. 

SEE ALSO 
init(8) 

BUGS 
Access to the control terminal via /dev/tty is still possible. 

This call should be replaced by an automatic mechanism that takes place on process exit. 

June 30, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



WAIT(2) UNIX Programmer's Manual WAIT(2) 

NAME 
wait, wait3 - wait for process to terminate 

SYNOPSIS 
#include < syslwait.h> 

pid = wait( status) 
intpid; 
union wait •status; 

pid = wait(O) 
intpid; 

#include < sysltime.h> 
#include < syslresource.h> 

pid = wait3(status, options, rusage) 
intpid; 
union wait •status; 
int options; 
struct rusage •rusage; 

DESCRIPTION 

NOTES 

Wait causes its caller to delay until a signal is received or one of its child processes terminates. If any 
child has died since the last wait, return is immediate, returning the process id and exit status of one of the 
terminated children. If there are no children, return is immediate with the value -1 returned. 

On return from a successful wait call, status is nonzero, and the high byte of status contains the low byte of 
the argument to exit supplied by the child process; the low byte of status contains the termination status of 
the process. A more precise definition of the status word is given in <syslwait.h>. 

Wait3 provides an alternate interface for programs that must not block when collecting the status of child 
processes. The status parameter is defined as above. The options parameter is used to indicate the call 
should not block if there are no processes that wish to report status (WNOHANG), and/or that children of 
the current process that are stopped due to a SIGTIIN, SIGTTOU, SIGTSTP, or SIGSTOP signal should 
also have their status reported (WUNTRACED). If rusage is non-zero, a summary of the resources used 
by the terminated process and all its children is returned (this information is currently not available for 
stopped processes). 

When the WNOHANG option is specified and no processes wish to report status, wait3 returns a pid of 0. 
The WNOHANG and WUNTRACED options may be combined by or'ing the two values. 

See sigvec(2) for a list of termination statuses (signals); 0 status indicates normal termination. A special 
status (0177) is returned for a stopped process that has not terminated and can be restarted; see ptrace(2). 
If the 0200 bit of the termination status is set, a core image of the process was produced by the system. 

If the parent process terminates without waiting on its children, the initialization process (process ID = 1) 
inherits the children. 

Wait and wait3 are automatically restarted when a process receives a signal while awaiting termination of 
a child process. 

RETURN VALUE 
If wait returns due to a stopped or terminated child process, the process ID of the child is returned to the 
calling process. Otherwise, a value of -1 is returned and errno is set to indicate the error. 

Wait3 returns -1 if there are no children not previously waited for; 0 is returned if WNOHANG is 
specified and there are no stopped or exited children. 

June 30, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



WAIT(2) UNIX Programmer's Manual 

ERRORS 
Wait will fail and return immediately if one or more of the following are true: 

[ECHILD] 

[EFAULT] 

SEE ALSO 
exit(2) 

June 30, 1985 

The calling process has no existing unwaited-for child processes. 

The status or rusage arguments point to an illegal address. 

INTEGRATED SOLUTIONS 4.3 BSD 

WAIT(2) 

2 



WRITE(2) UNIX Programmer's Manual WRITE(2) 

NAME 
write, writev - write output 

SYNOPSIS 
cc = write( d, bu/, nbytes) 
int cc, d; 
char •bu/; 
int nbytes; 

#include < sysltypes.h> 
#include < sysluio.h> 

cc= writev(d, iov, iovcnt) 
int cc, d; 
struct iovec •iov; 
int iovcnt; 

DESCRIPTION 
Write attempts to write nbytes of data to the object referenced by the descriptor d from the buffer pointed 
to by buf. Writev performs the same action, but gathers the output data from the iovcnt buffers specified 
by the members of the iov array: iov[O], iov[l], .•. , iov[iovcnt-1]. 

For writev, the iovec structure is defined as 

struct iovec { 
caddr t iov _base; 
int iov _ len; 

}; 

Each iovec entty specifies the base address and length of an area in memory from which data should be 
written. Writev will always write a complete area before proceeding to the next. 

On objects capable of seeking, the write starts at a position given by the pointer associated with d, see 
lseek(2). Upon return from write, the pointer is incremented by the number of bytes actually written. 

Objects that are not capable of seeking always write from the current position. The value of the pointer 
associated with such an object is undefined. 

H the real user is not the super-user, then write clears the set-user-id bit on a file. This prevents penetration 
of system security by a user who "captures" a writable set-user-id file owned by the super-user. 

When using non-blocking I/O on objects such as sockets that are subject to flow control, write and writev 
may write fewer bytes than requested; the return value must be noted, and the remainder of the operation 
should be retried when possible. 

RETURN VALUE 
Upon successful completion the number of bytes actually written is returned. Otherwise a -1 is returned 
and the global variable e"no is set to indicate the error. 

ERRORS 
Write and writev will fail and the file pointer will remain unchanged if one or more of the following are 
true: 

[EBADF] 

[EPIPE] 

[EPIPE] 

[EFBIG] 

May 14, 1986 

D is not a valid descriptor open for writing. 

An attempt is made to write to a pipe that is not open for reading by any process. 

An attempt is made to write to a socket of type SOCK_ STREAM that is not connected 
to a peer socket. 

An attempt was made to write a file that exceeds the process's file size limit or the max­
imum file size. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



WRITE(2) UNIX Programmer's Manual WRITE(2) 

[EFAULT] Part of iov or data to be written to the file points outside the process's allocated address 
space. 

The pointer associated with d was negative. 

There is no free space remaining on the file system containing the file. 

[EINVAL] 

[ENOSPC] 

[EDQUOT] The user's quota of disk blocks on the file system containing the file has been exhausted. 

[EIO] An 1/0 error occurred while reading from or writing to the file system. 

[EWOULDBLOCK] 
The file was marked for non-blocking 110, and no data could be written immediately. 

In addition, writev may return one of the following errors: 

[ElNV AL] Iovcnt was less than or equal to 0, or greater than .16. 

[EINVAL] 

[EINVAL] 

SEE ALSO 

One of the iov _len values in the iov array was negative. 

The sum ot'the iov _len values in the iov array overflowed a 32-bit integer. 

fcntl(2), lseek(2), open(2), pipe(2), select(2) 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



TABLE OF CONTENTS 

3. C Library Subroutines 

intro ................................................................................................................ introduction to library functions 
al>ort ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• generate a fault 
abs .................................................................................................................................. integer absolute value 
assert ................................................................................................................................ program verification 
atof .......................................................................................................................... convert ASCII to numbers 
bstring ................................................................................................................. bit aild byte string operations 
crypt ........................................................................................................................................ DES encryption 
ctime ............................................................................................................... convert date and time to ASCII 
ctype ................................................................................................................ character classification macros 
directory ............................................................................................................................ directory operations 
ecvt ....................................................................................................................................... output conversion 

end ···········-···············-···· .. ···········-··········································································· last locations in program 
execl ............................................................................................................................................. execute a file 
exit ............................................................................... terminate a process after flushing any pending output 
frexp •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• split into mantissa and exponent 
getdisk ............................................................................................................ get disk description by its name 
getenv ...................................................................................................... manipulate environmental variables 

getf sent ·················-·· .. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• .. ••••••••••• get file system descriptor file entry 
getgrent ............................................................................................................................... get group file entry 
getlogin ..................................................................................................................................... get login name 
getopt ...................................................................................................................... get option letter from argv 
getpass ..................................................................................................................................... read a password 
getpwent ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get password file entry 
getttyent ................................................................................................................................. get ttys file entry 
getusershell •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get legal user shells 
getwd ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get c-urrent war.king directory path.name 
insque ...................................................................................................... insert/remove element from a queue 
malloc ................................................................................................................................... memory allocator 
mktemp ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• make a unique filename 
monitor •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• prepare execution profile 
ndbm ............................................................................................................................... data. base subroutines 
nlist ...................... - ................... - ............... _ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get entries from name list 
perror ....................................................... - ................................................................... system error messages 
popen .................................................................................................................. initiate 1/0 to/from a process 
psign.al ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• system signal messages 
q sort •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••• qui ck er sort 
random •••••••••••••••••••••••••••••••••••••••••••••••••••• better random number generator; routines for changing generators 
rcmd ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• routines for returning a stream to a remote command 
regex •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••..• regular expression handler 
resolver ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• resolver routines 
rexec ........................................................................................................ return stream to a remote command 
scandir ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• scan a directory 
setjmp •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• non-local goto 
setuid .............................................................................................................................. set user and group ID 
siginterrupt •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• allow signals to interrupt system calls 
sleep •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• suspend execution for interval 
string ••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• string operations 
swab •••••••••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••.••••••••••••• swap bytes 
syslog ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• control system log 
system ........................................................................................................................... issue a shell command 
ttyname •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• find name of a terminal 
ualarm ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• schedule sign.al after specified time 
usleep ................................................................................................................ suspend execution for interval 

INTEGRATED SOLUTIONS 4.3 BSD - cxlv - December 1988 



Table of Contents 

valloc ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• aligned memory allocator 
varargs ............................................................................................................................ variable argument list 

JC. Compatibility Library Subroutines 

intro ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• introduction to compatibility library functions 
alarm ......................................................................................................... schedule signal after specified time 
getpw ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get name from uid 
nice •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• set program priority 
pause •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• stop until signal 
phys •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• allows a process to access physical addresses 
rand ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• random number generator 
signal ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• simplified software signal facilities 
stty ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• set and get terminal sta.te (defunct) 
time •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get date and time 
times •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get prcx=ess times 
utime ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• set file times 
valloc ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• aligned memory allocator 
vlimit •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• control maximum system resource consumption 
vtimes ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get information about resource utilization 

3F. Fortran Library 

intro •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• introd.uction to FOR'I'R.AN' library functions 
abort ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• abnonnal termination 
access •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• detemtine accessibility of a file 
alarm •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• execute a subroutine after a specified time 
l>essel •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• of two kinds for integer orders 
bit ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• and, or, xor, not, rshift, !shift bitwise functions 

chdir ··································································································••o•oooo••··············· change default directory 
chmod ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• change mode of a file 
etime •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• return elapsed execution time 
exit •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• terminate prcx;ess with status 
f date •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• return date and time in an ASCII string 
flmin ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• return extreme values 
flush ...................................................................................................................... flush output to a logical unit 
fork ...................................................................................................................... create a copy of this process 

fseek ····································································································••o•••••o• reposition a file on a logical unit 
getarg ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• return command line arguments 
getc ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get a character from a logical unit 
getcwd ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get pathname of current working directory 
getenv •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get value of environment variables 
getlog •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get user's login name 
getpid •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get process id 
getuid •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get user or group ID of the caller 
hosmm ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••.•••••••••••••••••••••••••••••••• get name of current host 
ida.te ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• return date or time in numerical form 
index •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• tell al::x:>ut character objects 

ioinit ·····································································•••r.-•••••••••••••••e••·························· change 'f77 1/0 initialization 
kill ·····················································································••e••·································· send a signal to a process 
link ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• mak.e a link to an existing file 

loc ······················································································•••oo••····· .. ················· return the address of an object 
long ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• integer object conversion 
malloc ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• memory allocator 
pe,rror •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get system error messages 
plot •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 'f77 library interface to plot (3X) libraries. 
putc ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• write a character to a fortran logical unit 

December 1988 - cxlvi - INTEGRATED SOLUTIONS 4.3 BSD 



Table of Contents 

qsort •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• quick sort 
ran.d ................................................................................................................................. return random values 
random •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••• better random number generator 
rename •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• rename a file 
sigll8.l .................................................................................................................. change the action for a signal 
sleep ............................................................................................................. suspend execution for an interval 
sta.t •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get file status 
system •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• execute a "UNIX comman.d 
time ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• retlll11 system time 
topen •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 'f77 ta.pe I/O 
traper ............................................................................................................................... trap arithmetic errors 
trapov ................................................................................................... trap an.d repair floating point overflow 
trpfpe ......................................................................................................... trap an.d repair floating point faults 
tty'nam •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• find name of a terminal port 
unlink ••••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• remove a directory entry' 
wait ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• wait for a process to terminate 

31\1. 1\1ath Library 

intro ......................................................................................... introduction to mathematical library functions 
asinh .................................................................................................................... inverse hyperoolic functions 
erf .............................................................................................................................................. error functions 
exp •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• exponential, logaritllm, power 
floor .................................................................. absolute value, floor, ceiling, an.d round-to-nearest functions 
hYJX>t ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Euclidean. distan.ce, complex absolute value 
ieee ........................................................................................... copysign, remainder, exponent manipulations 
infnan ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• signals invalid floating-point operations on a VAX (temporary) 
jO •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• bessel functions 
lgamma •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••••••••• log gamma function 
math ........................................................................................ introduction to mathematical library functions 
sin ................................................................................................... trigonometric functions and their inverses 
sinh ................................................................................................................................... hyperoolic functions 
sqrt •••••••••••••••• •• •••••••••••••••••••••• •••••••••••••• •••••••••••••••••••••• •••• ••• •• ••••• •••••••••• ••••••••• •••••••••••• •••••••• cu be root, square root 

3N. Internet Network Library 

intro ....................................................................................... intro- introduction to network library functions 
byteorder ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• convert values between host an.d network byte order 
gethostbyname •••••••••••••••••••••••••.•••••••••••••••••••••••••••••••.••••.••.•••••••••••••••••••••••••••••••••••••••••••• get network host entry' 
getnetent ............................................................................................................................... get network entry' 
getprotoent •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get protocol entry' 
getservent ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get service entry' 
inet ....................................................................................................... Internet address man.ipulation routines 
ns ••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Xerox NS(tm) address conversion routines 

3S. C Standard 1/0 Library Subroutines 

intro •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• stan.dard buffered input/output package 
f close ••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••.••.•••••••••••••••••••••••.••••.•.•••.•••••.•..•.•.••.•••••• close or flush a stream 
ferror ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• strea.m sta.tus inquiries 
f open ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• open a stream 
fread ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• buffered binary input/output 
f seek ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• reposition a stream 
getc ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••••••• get character or word from stream 
gets •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••••••••••••••••• get a string from a stream 
printf •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• formatted output conversion 
putc ............................................................................................................. put character or word on a stream 
puts ••••••••••••••••••••••••••••••••••••••••••••••••.•..•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• put a string on a stream 

INTEGRATED SOLUTIONS 4.3 BSD - cxlvii - December 1988 



Table of Contents 

scanf •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• formatted. input conversion 
retbuf .................................................................................................................... assign buffering to a stremn 
stdio •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• sta.ndard buffered input/output package 
ungetc •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• push character back into input stremn 

3X. Other Libraries 

intro •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• introduction to miscellaneous library functions 
assert •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• program verification 
curses .................................................................................... screen functions with ''optimal'' cursor motion 
dbm ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• data. base subroutines 
getdisk •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get disk description by its nmne 
getfsent ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• get filesystem descriptor file entry 
initgroups ................................................................................................................. initialize group access list 
lib2648 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• subroutines for the fIP 2648 graphics terminal 
mp ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• multiple precision integer aritltmetic 
plot ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• graphics interface 
rcmd ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• routines for returning a stream to a remote command 
rexec ........................................................................................................ return stream to a remote command 
term.cap ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• terminal inde,J>endent opera.ti.on routines 

December 1988 - cxlviii - INTEGRATED SOLUTIONS 4.3 BSD 



IN1R0(3) UNIX Programmer's Manual INTR0(3) 

NAME 
intro - introduction to library functions 

DESCRIPTION 

FILES 

This section describes functions that are found in various libraries. The library functions are those other 
than the functions which directly invoke UNIX system primitives, described in Section 2. 

The library to which each function belongs is indicated by the letter which may appear at the end of its 
manual page heading. In Section 3, the functions are physically grouped together into the following 
libraries: 

(3) and (3S) 
Functions with the suffix (3) are the standard C library functions. The C library also includes all 
the functions described in Section 2. The (3S) functions make up the standard 1/0 library. These 
functions, along with the (3N), (3X), and (3C) routines, constitute library libc, which is automati­
cally loaded by the C compiler cc(l), the Pascal compiler pc(l), and the Fortran compiler fi7(1). 
The link editor ld(l) searches this library under the -le option. Declarations for some of these 
functions can be obtained from include files indicated on the appropriate pages. 

(3C) Routines included for compatibility with other systems. In particular, a number of system call 
interfaces provided in previous releases of 4BSD have been included for source code compatibil­
ity. The manual page entry for each compatibility routine indicates the proper interface to use. 

(3F) The (3F) functions are all callable from Fortran. They perform the same tasks as the (3) func­
tions. 

(3M) These functions constitute the math library, libm. They are automatically loaded as needed by 
the Pascal compiler pc(l) and the Fortran compiler fi7(1). The link editor searches this library 
under the -Im option. Declarations for these functions can be obtained from the include file 
<math.h>. 

(3N) The (3N) functions constitute the internet network library. 

(3S) These functions constitute the standard 1/0 package (see intro(3S)) and are in the library libc, 
mentioned above. Declarations for these functions can be obtained from the include file 
<stdio.h>. 

(3X) Various specialized libraries have not been given distinctive captions. Files in which such 
libraries are found are named on appropriate pages. 

/lib/libc.a 
/usr/lib/libm.a 
/usr/lib/libc_p.a 
/usr/lib/libm_p.a 

SEE ALSO 
intro(3C), intro(3S), intro(3F), intro(3M), intro(3N), nm(l), ld(l), cc(l), t77(1), intro(2) 

DIAGNOSTICS 
Functions in the math library (3M) may return conventional values when the function is undefined for the 
given arguments or when the value is not representable. In these cases the external variable errno (see 
intro(2)) is set to the value EDOM (domain error) or ERANGE (range error). The values of EDOM and 
ERANGE are defined in the include file <math.h>. 

November 2, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1 



ABORT(3) 

NAME 
abort - generate a fault 

DESCRIPTION 

UNIX Programmer's Manucil ABORT(3) 

Abort executes an instruction which is illegal in user mode. This causes a signal that normally terminates 
the process with a core dump, which may be used for debugging. 

SEE ALSO 
adb(l), sigvec(2), exit(2) 

DIAGNOSTICS 
Usually ''Illegal instruction - core dumped'' from the shell. 

BUGS 
The abort() function does not flush standard I/O buffers. Use fflush (3S). 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



ABS(3) 

NAME 
abs - integer absolute value 

SYNOPSIS 
abs(i) 
inti; 

DESCRIPTION 

UNIX Programmer's Manual 

Abs returns the absolute value of its integer operand. 

SEE ALSO 
floor(3M) for f abs 

BUGS 

ABS(3) 

Applying the abs function to the most negative integer generates a result which is the most negative 
integer. That is, 

abs(Ox80000000) 

returns Ox80000000 as a result 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



ASSERT(3) 

NAME 
assert - program verification 

SYNOPSIS 
#include <assert.h> 

assert( expression) 

DESCRIPTION 

UNIX Programmer's Manual ASSERT(3) 

Assert is a macro that indicates expression is expected to be true at this point in the program. It causes an 
exit(2) with a diagnostic comment on the standard output when expression is false (0). Compiling with the 
cc(l) option -DNDEBUG effectively deletes ass~rt from the program. 

DIAGNOSTICS 
'Assertion failed: file f line n.' F is the source file and n the source line number of the assert statement 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



ATOF(3) UNIX Programmer's Manual 

NAME 
atof, atoi, atol - convert ASCII to numbers 

SYNOPSIS 
double atof( nptr) 
char •nptr; 

atoi(nptr) 
char •nptr; 

long atol(nptr) 
char •nptr; 

DESCRIPTION 

ATOF(3) 

These functions convert a string pointed to by nptr to floating, integer, and long integer representation 
respectively. The first unrecognized character ends the string. 

Atof recognizes an optional string of spaces, then an optional sign, then a string of digits optionally con­
taining a decimal point, then an optional 'e' or 'E' followed by an optionally signed integer. 

Atoi and atol recognize an optional string of spaces, then an optional sign, then a string of digits. 

SEE ALSO 
scanf(3S) 

BUGS 
There are no provisions for overflow. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



BSTRING(3) UNIX Programmer's Manual BSTRING(3) 

NAME 
hcopy, hemp, hzero, fTs - bit and byte string operations 

SYNOPSIS 
hcopy(src, dst, length) 
char *src, *dst; 
int length; 

hcmp(bl, b2, length) 
char *bl, •b2; 
int length; 

hzero(b, length) 
char *b; 
int length; 

fTs(i) 
inti; 

DESCRIPTION 

BUGS 

The functions hcopy, hemp, and hzero operate on variable length strings of bytes. They do not check for 
null bytes as the routines in string(3) do. 

Bcopy copies length bytes from string src to the string dst. 

Bcmp compares byte string bl against byte string b2, returning zero if they are identical, non-zero other­
wise. Both strings are assumed to be length bytes long. 

Bzero places length 0 bytes in the string bl. 

Ffs find the first bit set in the argument passed it and returns the index of that bit Bits are numbered start­
ing at 1. A return value of 0 indicates the value passed is zero. 

The hcopy routine take parameters backwards from strcpy. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



CRYPT(3) UNIX Programmer's Manual CRYPT(3) 

NAME 
crypt, setkey, encrypt - DES encryption 

SYNOPSIS 
char •crypt(key, salt) 
char •key, •salt; 

setkey(key) 
char •key; 

encrypt(block, edflag) 
char •block; 

DESCRIPTION 
Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard, with varia­
tions intended (among other things) to frustrate use of hardware implementations of the DES for key 
search. 

The first argument to crypt is normally a user's typed password. The second is a 2-character string chosen 
from the set [a-zA-Z0-9J]. The salt string is used to perturb the DES algorithm in one of 4096 different 
ways, after which the password is used as the key to encrypt repeatedly a constant string. The returned 
value points to the encrypted password, in the same alphabet as the salt The first two characters are the 
salt itself. 

The other entries provide (rather primitive) access to the actual DES algorithm. The argument of setkey is 
a character array of length 64 containing only the characters with numerical value 0 and 1. If this string is 
divided into groups of 8, the low-order bit in each group is ignored, leading to a 56-bit key which is set into 
the machine. 

The argument to the encrypt entry is likewise a character array of length 64 containing O's and 1' s. The 
argument array is modified in place to a similar array representing the bits of the argument after having 
been subjected to the DES algorithm using the key set by setkey. If edfla.g is 0, the argument is encrypted; 
if non-zero, it is decrypted 

SEE ALSO 
passwd(l), passwd(5), login(l), getpass(3) 

BUGS 
The return value points to static data whose content is overwritten by each call. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



CTIME(3) UNIX Programmer's Manual CTIME(3) 

NAME 
ctime, localtime, gmtime, asctime, timezone, tzset - convert date and time to ASCII 

SYNOPSIS 
void tzset() 

char *ctime(clock) 
time_ t *clock; 

#include <time.h> 

char *asctime(tm) 
struct tm *tm; 

struct tm *localtime(clock) 
time_ t *clock; 

struct tm *gmtime(clock) 
time_ t *clock; 

char *fimezone(zone, dst) 

DESCRIPTION 
Tzset uses the value of the environment variable TZ to set up the time conversion information used by 
localtime. 

If TZ does not appear in the environment, the TZDEFAULT file (as defined in tzfile.h) is used by local­
time. If this file fails for any reason, the GMT offset as provided by the kernel is used. In this case, DST is 
ignored, resulting in the time being incorrect by some amount if DST is currently in effect. If this fails for 
any reason, GMT is used. 

If TZ appears in the environment but its value is a null string, Greenwich Mean Time is used; if TZ 
appears and begins with a slash, it is used as the absolute pathname of the tzfile(5)-format file from which 
to read the time conversion information; if TZ appears and begins with a character other than a slash, it's 
used as a pathname relative to the system time conversion information directory, defined as TZDIR in the 
include file tzfile.h. If this file fails for any reason, GMT is used. 

Programs that always wish to use local wall clock time should explicitly remove the environmental variable 
TZ with unsetenv(3). 

Ctime converts a long integer, pointed to by clock, such as returned by time(2) into ASCII and returns a 
pointer to a 26-character string in the following form. All the fields have constant width. 

Sun Sep 16 01:03:52 1973\n\O 

Localtime and gmtime return pointers to structures containing the broken-down time. Localtime corrects 
for the time zone and possible daylight savings time; gmtime converts directly to GMT, which is the time 
UNIX uses. Asctime converts a broken-down time to ASCII and returns a pointer to a 26-character string. 

The structure declaration from the include file is: 

struct tm { 
int tm_sec; I* 0-59 seconds *I 
int tm_min; I* 0-59 minutes •I 
int tm _hour; /* 0-23 hour •/ 
inttm_mday; /* 1-31 day of month•/ 
int tm_mon; I* 0-11 month•/ 
int tm _year; /* 0- year - 1900 *I 
int tm _ wday; /* 0-6 day of week (Sunday = 0) */ 
int tm _yday; /* 0-365 day of year *I 
int tm _isdst; /* flag: daylight savings time in effect */ 
char **tm_zone;/* abbreviation of timezone name*/ 

March 22, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1 



CTIME(3) UNIX Programmer's Manual CTIME(3) 

FILES 

long tm_gmtoff; !•offset from GMT in seconds •I 
}; 

Tm _isdst is non-zero if a time zone adjustment such as Daylight Savings time is in effect. 

Tm_gmtoff is the offset (in seconds) of the time represented from GMT, with positive values indicating 
East of Greenwich. 

Timezone remains for compatibility reasons only; it's impossible to reliably map timezone's arguments 
(zone, a "minutes west of GMT" value and dst, a "daylight saving time in effect" flag) to a time zone abbre­
viation. 

If the environmental string 17NAME exists, timezone returns its value, unless it consists of two comma 
separated strings, in which case the second string is returned if dst is non-zero, else the first string. If 
17NAME doesn't exist, zone is checked for equality with a built-in table of values, in which case timezone 
returns the time zone or daylight time zone abbreviation associated with that value. If the requested zone 
does not appear in the table, the difference from GMT is returned; e.g. in Afghanistan, timezone(­
( 60•4+30 ), 0) is appropriate because it is 4:30 ahead of GMT, and the string GMT+4:30 is returned. Pro­
grams that in the past used the timezone function should return the zone name as set by localtime to assure 
correctness. 

/etc/zoneinfo time zone information directory 
/etc/zoneinfo/localtime local time zone file 

SEE ALSO 

NOTE 

gettimeofday(2), getenv(3), time(3), tzfile(5), environ(7) 

The return values point to static data whose content is overwritten by each call. The tm _zone field of a 
returned struct tm points to a static array of characters, which will also be overwritten at the next call (and 
by calls to tzset). 

March 22, 1987 INTEGRATED SOLUTIONS 4.3 BSD 2 



CTYPE(3) UNIX Programmer's Manual 

NAME 
isalpha, isupper, islower, isdigit, isxdigit, isalnum, - character classification macros 

SYNOPSIS 
#include < ctype .h> 

isalpha(c) 

DESCRIPTION 

CTYPE(3) 

These macros classify ASCII-coded integer values by table lookup. Each is a predicate returning nonzero 
for true, zero for false. Isascii and toascii are defined on all integer values; the rest are defined only where 
isascii is true and on the single non-ASCil value EOF (see stdio(3S)). 

isalpha 

isupper 

islower 

isdigit 

isxdigit 

isalnum 

isspace 

ispunct 

isprint 

isgraph 

iscntrl 

isascii 

to lower 

toupper 

toascii 

SEE ALSO 
ascii(7) 

May 12, 1986 

c is a letter 

c is an upper case letter 

c is a lower case letter 

c is a digit 

c is a hex digit 

c is an alphanumeric character 

c is a space, tab, carriage return, newline, vertical tab, or formfeed 

c is a punctuation character (neither control nor alphanumeric) 

c is a printing character, code 040(8) (space) through 0176 (tilde) 

c is a printing character, similar to isprint except false for space. 

c is a delete character (0177) or ordinary control character (less than 040). 

c is an ASCII character, code less than 0200 

c is converted to lower case. Return value is undefined if not isupper( c ). 

c is converted to upper case. Return value is undefined if not islower( c ) . 

c is converted to be a valid ascii character. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



DIRECTORY ( 3) UNIX Programmer's Manual DIRECTORY ( 3) 

NAME 
opendir, readdir, telldir, seekdir, rewinddir, closedir - directory operations 

SYNOPSIS 
#include < sysltypes.h> 
#include < sysldir.h> 

DIR •opendir(filename) 
char *filename; 

struct direct •readdir( dirp) 
DIR *dirp; 

long telldir( dirp) 
DIR •dirp; 

seekdir(dirp, loc) 
DIR *dirp; 
long loc; 

rewinddir( dirp) 
DIR •dirp; 

closedir( dirp) 
DIR *dirp; 

DESCRIPTION 
Opendir opens the directory named by filename and associates a directory stream with it Opendir returns 
a pointer to be used to identify the directory stream in subsequent operations. The pointer NULL is 
returned if filename cannot be accessed, or if it cannot malloc(3) enough memory to hold the whole thing. 

Readdir returns a pointer to the next directory entry. It returns NULL upon reaching the end of the direc­
tory or detecting an invalid seekdir operation. 

returns the current location associated with the named directory stream. 

Seekdir sets the position of the next readdir operation on the directory stream. The new position reverts to 
the one associated with the directory stream when the telldir operation was performed. Values returned by 
telldir are good only for the lifetime of the DIR pointer from which they are derived. If the directory is 
closed and then reopened, the telldir value may be invalidated due to undetected directory compaction. It 
is safe to use a previous telldir value immediately after a call to opendir and before any calls to readdir. 

Rewinddir resets the position of the named directory stream to the beginning of the directory. 

Closedir closes the named directory stream and frees the structure associated with the DIR pointer. 

Sample code which searchs a directory for entry ''name'' is: 

SEE ALSO 

len = strlen(name); 
dirp = opendir(" ."); 
for ( dp = readdir( dirp ); dp ! = NULL; dp = readdir( dirp)) 

if (dp->d_namlen == len && !strcmp(dp->d_name, name)) { 
closedir( dirp); 

} 
closedir( dirp); 

return FOUND; 

return NOT_FOUND; 

open(2), close(2), read(2), lseek(2), dir(5) 

September 24, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



ECVT(3) UNIX Programmer's Manual ECVT(3) 

NAME 
ecvt, f cvt, gcvt - output conversion 

SYNOPSIS 
char *ecvt(value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, *sign; 

char *fcvt(value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, *sign; 

char *gcvt(value, ndigit, buf) 
double value; 
char *buf; 

DESCRIPTION 
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer thereto. The 
position of the decimal point relative to the beginning of the string is stored indirectly through decpt (nega­
tive means to the left of the returned digits). If the sign of the result is negative, the word pointed to by 
sign is non-zero, otherwise it is zero. The low-order digit is rounded. 

Fcvt is identical to ecvt, except that the correct digit has been rounded for Fortran F-format output of the 
number of digits specified by ndigits. 

Gcvt converts the value to a null-terminated ASCil string in buf and returns a pointer to buf It attempts to 
produce ndigit significant digits in Fortran F format if possible, otherwise E format, ready for printing. 
Trailing zeros may be suppressed. 

SEE ALSO 
printf(3) 

BUGS 
The return values point to static data whose content is overwritten by each call. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



END(3) UNIX Programmer's Manual END(3) 

NAME 
end, etext, edata - last locations in program 

SYNOPSIS 
extern end; 
extern etext; 
extern edata; 

DESCRIPTION 
These names refer neither to routines nor to locations with interesting contents. The address of etext is the 
first address above the program text, edata above the initialized data region, and end above the uninitial­
ized data region. 

When execution begins, the program break coincides with end, but it is reset by the routines brk(2), mal­
loc(3), standard input/output (stdio(3S)), the profile (-p) option of cc(l), etc. The current value of the pro­
gram break is reliably returned by 'sbrk(O)', see brk(2). 

SEE ALSO 
brk(2), malloc(3) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



EXECL(3) UNIX Programmer's Manual EXECL(3) 

NAME 
execl, execv, execle, execlp, execvp, exec, exece, exect, environ - execute a file 

SYNOPSIS 
execl(name, argO, argl, ... , argn, 0) 
char *name, *argO, *argl, ... , *argn; 

execv(name,argv) 
char *name, *argv[ ]; 

execle(name, argO, argl, ... , argn, 0, envp) 
char *name, *argO, *argl, ... , *argn, *envp[ ]; 

exect(name, argv, envp) 
char *name, *argv[ ], *envp[ ]; 

extern char **environ; 

DESCRIPTION 
These routines provide various interfaces to the execve system call. Refer to execve(2) for a description of 
their properties; only brief descriptions are provided here. 

Exec in all its forms overlays the calling process with the named file, then transfers to the entry point of the 
core image of the file. There can be no return from a successful exec; the calling core image is lost. 

The name argument is a pointer to the name of the file to be executed. The pointers arg [0], arg [1] ... 
address null-terminated strings. Conventionally arg [0] is the name of the file. 

Two interfaces are available. Execl is useful when a known file with known arguments is being called. 
The arguments to execl are the character strings constituting the file and the arguments; the first argument 
is conventionally the same as the filename (or its last component). A zero (0) argument must end the argu­
ment list. 

The execv version is useful when the number of arguments is unknown in advance. The arguments to 
execv are the name of the file to be executed and a vector of strings containing the arguments. The last 
argument string must be followed by a 0 pointer. 

The exect version is used when the executed file is to be manipulated with ptrace(2). The program is 
forced to single step a single instruction giving the parent an opportunity to manipulate its state. On the 
IS68K this is done by setting the trace bit in the status register. 

When a C program is executed, it is called as follows: 

1nain(argc, argv,envp) 
int argc; 
char **argv, **envp; 

where argc is the argument count and argv is an array of character pointers to the arguments themselves. 
As indicated, argc is conventionally at least one, and the first member of the array points to a string con­
taining the name of the file. 

Argv is directly usable in another execv because argv[argc] is 0. 

Envp is a pointer to an array of strings which constitutes the environment of the process. Each string con­
sists of a name, an equal sign, and a null-terminated value. The array of pointus is terminated by a null 
pointer. The shell sh( 1) passes an environment entry for each global shell variable defined when the pro­
gram is called. See environ(?) for some conventionally used names. The C run-time start-off routine 
places a copy of envp in the global cell environ, which is used by execv and execl to pass the environment 
to any subprograms executed by the current program. 

Execlp and execvp are called with the same arguments as execl and execv, but duplicate the shell's actions 
in searching for an executable file in a list of directories. The directory list is obtained from the environ­
ment. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



EXECL(3) UNIX Programmer's Manual EXECL(3) 

FILES 
/bin/sh shell, invoked if command file found by execlp or execvp 

SEE ALSO 
execve(2), fork(2), environ(?), csh(l) 

DIAGNOSTICS 

BUGS 

A return with the value -1 constitutes the diagnostic, in the following cases: if the file cannot be found; if 
it is not executable; if it does not start with a valid magic number (see a.out(5)); if maximum memory is 
exceeded; or if the arguments require too much space. Even for the super-user, at least one of the execute­
permission bits must be set for a file to be executed 

If execvp is called to execute a file that turns out to be a shell command file, and if it is impossible to exe­
cute the shell, the values of argv[O] and argv[-1] will be modified before return. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



EXIT(3) UNIX Programmer's Manual 

NAME 
exit - terminate a process after flushing any pending output 

SYNOPSIS 
exit( status) 
int status; 

DESCRIPTION 

EXIT(3) 

Exit terminates a process after calling the Standard I/O library function _cleanup to flush any buffered out­
put Exit never returns. 

SEE ALSO 
exit(2), intro(3) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



FREXP(3) UNIX Programmer's Manual 

NAME 
frexp, ldexp, modf - split into mantissa and exponent 

SYNOPSIS 
double frexp(value, eptr) 
double value; 
int •eptr; 

double ldexp(value, exp) 
double value; 

double modf(value, iptr) 
double value, •iptr; 

DESCRIPTION 

FREXP(3) 

Frexp returns the mantissa of a double value as a double quantity, x, of magnitude less than 1 and stores an 
integer n such that value = x * 2n indirectly through eptr. 

Ldexp returns the quantity value* 2exp_ 

Modf returns the positive fractional part of value and stores the integer part indirectly through iptr. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GEIDISKBYNAME ( 3) UNIX Programmer's Manual 

NAME 
getdiskbyname - get disk description by its name 

SYNOPSIS 
#include <di.sktab.h> 

struct disktab • 
getdiskbyname(name) 
char •name; 

DESCRIPTION 

GEIDISKBYNAME ( 3) 

Getdiskbyname takes a disk name (e.g. rm03) and returns a structure describing its geometry information 
and the standard disk partition tables. All information obtained from the disktab(5) file. 

<di.sktab.h> has the following form: 

I* disktab.h 4.3 83/08/ 11 */ 

I• 
•Disk description table, see disktab(5) 
•I 

#define DISKT AB "/etc/disktab" 

struct disktab { 
char •d_name; /*drive name*/ 
char •d_type; I• drive type •I 
int d_secsize; I• sector size in bytes •I 
int d _ ntracks; /* # tracks/cylinder •/ 
int d _ nsectors; I• # sectors/track •I 
int d _ ncylinders; /• #cylinders •/ 
int d _rpm; /• revolutions/minute •/ 
struct partition { 

int p _size; I* #sectors in partition *I 
short p _ bsize; /• block size in bytes •I 
short p _fsize; I• frag size in bytes •I 

} d _partitions[8]; 
}; 

struct disktab •getdiskbyname(); 

SEE ALSO 
disktab (S) 

BUGS 
This information should be obtained from the system for locally available disks (in particular, the disk par­
tition tables). 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETENV(3) UNIX Programmer's Manual GETENV(3) 

NAME 
getenv, setenv, unsetenv- manipulate environmental variables 

SYNOPSIS 
char •getenv(name) 
char •name; 

setenv(name, value, overwrite) 
char •name, value; 
int overwrite; 

void unsetenv(name) 
char •name; 

DESCRIPTION 
Getenv searches the environment list (see environ(7)) for a string of the form name=value and returns a 
pointer to the string value if such a string is present, and 0 (NULL) if it is not. 

Setenv searches the environment list as getenv does; if the string name is not found, a string of the form 
name=value is added to the environment. If it is found, and overwrite is non-zero, its value is changed to 
value. Setenv returns 0 on success and -1 on failure, where failure is caused by an inability to allocate 
space for the environment 

Unsetenv removes all occurrences of the string name from the environment. There is no library provision 
for completely removing the current environment. It is suggested that the following code be used to do so. 

static char •envinit[l]; 
extern char **environ; 
environ = envinit; 

All of these routines permit, but do not require, a trailing equals ("=") sign on name or a leading equals 
sign on value. 

SEE ALSO 
csh(l}, sh(l}, execve(2), environ(7) 

March 20, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETFSENT ( 3 ) UNIX Programmer's Manual GETFSENT(3) 

NAME 
getfsent, getf~pec, getfsfile, getfstype, setfsent, endfsent - get file system descriptor file entry 

SYNOPSIS 
#include <fstab.h> 

struct fstab •getfsentO 

struct fstab •getf~pec(spec) 
char •spec; 

struct fstab •getfsfile(/ile) 
char •file; 

struct fstab •getfstype(type) 
char •type; 

int setfsentO 

int endfsentO 

DESCRIPTION 
Getfsent, getf~pec, getfstype, and getfsfile each return a pointer to an object with the following structure 
containing the broken-out fields of a line in the file system description file, < fstab.h>. 

struct fstab { 
char 
char 
char 

}; 

int 
int 

•fs_spec; 
•fs_file; 
•fs_type; 
fs_freq; 
fs_passno; 

The fields have meanings described in fstab(5). 

Getfsent reads the next line of the file, opening the file if necessary. 

Setfsent opens and rewinds the file. 

Endfsent closes the file. 

Getf~pec and getfsfile sequentially search from the beginning of the file until a matching special filename 
or file system filename is found, or until EOF is encountered. Getfstype does likewise, matching on the 
file system type field. 

FILES 
/etc/fstab 

SEE ALSO 
fstab(5) 

DIAGNOSTICS 
Null pointer (0) returned on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to be saved. 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETGRENT ( 3) UNIX Programmer's Manual GETGRENT ( 3) 

NAME 
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry 

SYNOPSIS 
#include < grp.h> 

struct group •getgrentO 

struct group •getgrgid(gid) 
int gid; 

struct group •getgrnam(name) 
char •name; 

setgrentO 

endgrentO 

DESCRIPTION 

FILES 

Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure containing 
the broken-out fields of a line in the group file. 

I• grp.h 4.1 83/05/03•/ 

struct group { /• see getgrent(3) •/ 
char •gr_ name; 
char •gr _passwd; 
int gr_gid; 
char ••gr_mem; 

}; 

struct group •getgrent(), •getgrgid(), •getgmam(); 

The members of this structure are: 

gr_ name The name of the group. 
gr _passwd The encrypted password of the group. 
gr _gid The numerical group-ID. 
gr mem Null-terminated vector of pointers to the individual member names. 

Getgrent simply reads the next line while getgrgid and getgrnam search until a matching gid or name is 
found (or until EOF is encountered). Each routine picks up where the others leave off so successive calls 
may be used to search the entire file. 

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent may be 
called to close the group file when processing is complete. 

/etc/group 

SEE ALSO 
getlogin{3), getpwent(3), group(5) 

DIAGNOSTICS 
A null pointer (0) is returned on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to be saved 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GE1LOGIN ( 3) 

NAME 
getlogin - get login name 

SYNOPSIS 
char •getlogin() 

DESCRIPTION 

UNIX Programmer's Manual GE1LOGIN ( 3) 

Getlogin returns a pointer to the login name as found in ®It may be used in conjunction with getpwnam to 
locate the correct password file entry when the same userid is shared by several login names. 

If getlogin is called within a process that is not attached to a terminal, or if there is no entry in /etc/utmp for 
the process's terminal, getlogin returns a NULL pointer (0). A reasonable procedure for determining the 
login name is to first call getlogin and if it fails, to call getpwuid(getuid()). 

FILES 
/etc/utmp 

SEE ALSO 
getpwent(3), utmp(5), ttyslot(3) 

DIAGNOSTICS 
Returns a NULL pointer (0) if name not found. 

BUGS 
The return values point to static data whose content is overwritten by each call. 

May9, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETOPT(3) UNIX Programmer's Manual GETOPT(3) 

NAME 
getopt - get option letter from argv 

SYNOPSIS 
int getopt(argc, argv, optstring) 
int argc; 
char ••argv; 
char •optstring; 

extern char •optarg; 
extern int optind; 

DESCRIPTION 
Getopt returns the next option letter in argv that matches a letter in optstring. Optstring is a string of 
recognized option letters; if a letter is followed by a colon, the option is expected to have an argument that 
may or may not be separated from it by white space. Optarg is set to point to the start of the option argu­
ment on return from getopt. 

Getopt places in optind the argv index of the next argument to be processed. Because optind is external, it 
is normally initialized to zero automatically before the first call to getopt. 

When all options have been processed (i.e., up to the first non-option argument), getopt returns EOF. The 
special option - may be used to delimit the end of the options; EOF will be returned, and - will be 
skipped. 

DIAGNOSTICS 
Getopt prints an error message on stde" and returns a question mark (?) when it encounters an option 
letter not included in optstring. 

EXAMPLE 
The following code fragment shows how one might process the arguments for a command that can take the 
mutually exclusive options a and b, and the options f and o, both of which require arguments: 

May27, 1986 

main(argc, argv) 
int argc; 
char • • argv; 
{ 

intc; 
extern int optind; 
extern char •optarg; 

while ((c = getopt(argc, argv, "abf:o:")) != EOF) 
switch (c) { 
case 'a': 

if (bflg) 
errflg++; 

else 
aflg++; 

break; 
case 'b': 

if (aflg) 
errflg++; 

else 
bproc(); 

break; 

INTEGRATED SOLUTIONS 4.3 BSD 1 



GETOPT(3) UNIX Programmer's Manual GETOPT(3) 

} 

case 'f: 

case 'o': 

case '?': 
default: 

} 
if ( errftg) { 

Hile= optarg; 
break; 

o.file = optarg; 
break; 

errfig++; 
break; 

fprintf(stderr, "Usage: ... "); 
exit(2); 

} 
for(; optind < argc; optind++) { 

} 

lllSTORY 

BUGS 

Written by Henry Spencer, working from a Bell Labs manual page. Modified by Keith Bostic to behave 
more like the System V version. 

It is not obvious how '-' standing alone should be treated; this version treats it as a non-option argument, 
which is not always right 

Option arguments are allowed to begin with'-'; this is reasonable but reduces the amount of error check­
ing possible. 

Getopt is quite flexible but the obvious price must be paid: there is much it could do that it doesn't, like 
checking mutually exclusive options, checking type of option arguments, etc. 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



GETPASS(3) 

NAME 
getpass - read a password 

SYNOPSIS 
char •getpass(prompt) 
char •prompt; 

DESCRIPTION 

UNIX Programmer's Manual GETPASS(3) 

Getpass reads a password from the file /dev/tty, or if that cannot be opened, from the standard input, after 
prompting with the null-terminated string prompt and disabling echoing. A pointer is returned to a null­
terminated string of at most 8 characters. 

FILES 
/dev/tty 

SEE ALSO 
crypt(3) 

BUGS 

The return value points to static data whose content is overwritten by each call. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETPWENT ( 3) UNIX Programmer's Manual GETPWENT ( 3) 

NAME 
getpwent, getpwuid, getpwnam, setpwent, endpwent, setpwfile - get password file entry 

SYNOPSIS 
#include < pwd.h> 

struct passwd •getpwuid(uid) 
int uid; 

struct passwd •getpwnam(name) 
char •name; 

struct passwd * getpwentO 

setpwent() 

endpwent() 

setpwfile( name) 
char •name; 

DESCRIPTION 

FILES 

Getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure con­
taining the broken-out fields of a line in the password file. 

I* pwd.h 4.1 83/05/03•/ 

struct passwd {/*see getpwent(3) •/ 
char •pw _name; 
char •pw _passwd; 
int pw uid; 
int pw_gid; 
int pw_quota; 
char •pw _comment; 
char •pw _gecos; 
char •pw _ dir; 
char •pw _shell; 

}; 

struct passwd •getpwent(), •getpwuid(), •getpwnam(); 

The fields pw _quota and pw _comment are unused; the others have meanings described in passwd(5). 

Searching of the password file is done using the ndbm database access routines. Setpwent opens the data­
base; endpwent closes it. Getpwuid and getpwnam search the database (opening it if necessary) for a 
matching uid or name. EOF is returned if there is no entry. 

For programs wishing to read the entire database, getpwent reads the next line (opening the database if 
necessary). In addition to opening the database, setpwent can be used to make getpwent begin its search 
from the beginning of the database. 

Setpwfile changes the default password file to name thus allowing alternate password files to be used. 
Note that it does not close the previous file. If this is desired, endpwent should be called prior to it. 

/etc/passwd 

SEE ALSO 
getlogin(3), getgrent(3), passwd(5) 

May 15, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETPWENT ( 3) UNIX Programmer's Manual GETPWENT ( 3) 

DIAGNOSTICS 
The routines getpweot, getpwuid, and getpwnam, return a null pointer (0) on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to be saved 

May 15, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



GETITYENT ( 3) UNIX Programmer's Manual 

NAME 
getttyent, getttynam, setttyent, endttyent- get ttys file entry 

SYNOPSIS 
#include <ttyent.h> 

struct ttyent •getttyentO 

struct ttyent •getttynam(name) 
char •name; 

setttyentO 

endttyentO 

DESCRIPTION 

GETITYENT ( 3) 

Getttyent, and getttynam each return a pointer to an object with the following structure containing the 
broken-out fields of a line from the tty description file. 

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETUSERSHELL(3) UNIX Programmer's Manual 

NAME 
getusershell, setusershell, endusershell - get legal user shells 

SYNOPSIS 
char •getusershellO 

setusershellO 

endusershellO 

DESCRIPTION 

GETUSERSHELL(3) 

Getusershell returns a pointer to a legal user shell as defined by the system manager in the file /etc/shells. 
ff /etc/shells does not exist, the two standard system shells /bin/sh and /bin/csh are returned. 

Getusershell reads the next line {opening the file if necessary); setusershell rewinds the file; endusershell 
closes it. 

FILES 
/etc/shells 

DIAGNOSTICS 
The routine getusershell returns a null pointer (0) on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to be saved 

November 8, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETWD(3) UNIX Programmer's Manual 

NAME 
getwd - get current working directory pathname 

SYNOPSIS 
char •getwd(pathname) 
char •pathname; 

DESCRIPTION 

GETWD(3) 

Getwd copies the absolute pathname of the current working directory to pathname and returns a pointer to 
the result 

LIMITATIONS 
Maximum pathname length is MAXPAT.HLEN characters (1024), as defined in <syslparam.h>. 

DIAGNOSTICS 
Getwd returns zero and places a message in pathname if an error occurs. 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



INSQUE(3) UNIX Programmer's Manual 

NAME 
insque, remque - insert/remove element from a queue 

SYNOPSIS 
struct qelem { 

}; 

struct qelem •qJorw; 
struct qelem •q_ back; 
char q_dataO; 

insque( elem, pred) 
struct qelem •elem, •pred; 

remque( elem) 
struct qelem •elem; 

DESCRIPTION 

INSQUE(3) 

lnsque and remque manipulate queues built from doubly linked lists. Each element in the queue must in 
the form of "struct qelem". lnsque inserts elem in a queue immediately after pred; remque removes an 
entry elem from a queue. 

SEE ALSO 
"VAX Architecture Handbook", pp. 228-235. 

May 20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



MALLOC(3) UNIX Programmer's Manual MALLOC(3) 

NAME 
malloc, free, realloc, calloc, alloca - memory allocator 

SYNOPSIS 
char •malloc( size) 
unsigned size; 

free(ptr) 
char *ptr; 

char •realloc(ptr, size) 
char *ptr; 
unsigned size; 

char •calloc(nelem, elsize) 
unsigned nelem, elsize; 

char •alloca(size) 
int size; 

DESCRIPTION 
Malloc and free provide a general-purpose memory allocation package. Malloc returns a pointer to a 
block of at least size bytes beginning on a word boundary. 

The argument to free is a pointer to a block previously allocated by malloc; this space is made available 
for further allocation, but its contents are left undisturbed. 

Needless to say, grave disorder will result if the space assigned by malloc is overrun or if some random 
number is handed to free. 

Malloc maintains multiple lists of free blocks according to size, allocating space from the appropriate list. 
It calls sbrk (see brk(2)) to get more memory from the system when there is no suitable space already free. 

Realloc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the (possibly 
moved) block. The contents will be unchanged up to the lesser of the new and old sizes. 

In order to be compatible with older versions, realloc also works if ptr points to a block freed since the last 
call of malloc, realloc or calloc; sequences of free, malloc and realloc were previously used to attempt 
storage compaction. This procedure is no longer recommended. 

Canoe allocates space for an array of nelem elements of size elsize. The space is initialized to zeros. 

Alloca allocates size bytes of space in the stack frame of the caller. This temporary space is automatically 
freed on return. 

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer coercion) 
for storage of any type of object. If the space is of pagesize or larger, the memory returned will be page­
aligned. 

SEE ALSO 
brk(2), pagesize(2) 

DIAGNOSTICS 

BUGS 

Malloc, realloc and calloc return a null pointer (0) if there is no available memory or if the arena has been 
detectably corrupted by storing outside the bounds of a block. Malloc may be recompileG. to check the 
arena very stringently on every transaction; those sites with a source code license may check the source 
code to see how this can be done. 

When realloc returns 0, the block pointed to by ptr may be destroyed. 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



MALLOC(3) UNIX Programmer's Manual MALLOC(3) 

The current implementation of malloc does not always fail gracefully when system memory limits are 
approached. It may fail to allocate memory when larger free blocks could be broken up, or when limits are 
exceeded because the size is rounded up. It is optimized for sizes that are powers of two. 

Alloca is machine dependent; its use is discouraged. 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 
2 



MKTEMP(3) UNIX Programmer's Manual 

NAME 
mktemp - make a unique filename 

SYNOPSIS 
char •mktemp( template) 
char •template; 

mkstemp(template) 
char •template; 

DESCRIPTION 

MKTE:MP(3) 

Mktemp creates a unique filename, typically in a temporary filesystem, by replacing template with a 
unique filename, and returns the address of the template. The template should contain a filename with six 
trailing X's, which are replaced with the current process id and a unique letter. Mkstemp makes the same 
replacement to the template but returns a file descriptor for the template file open for reading and writing. 
Mkstemp avoids the race between testing whether the file exists and opening it for use. 

SEE ALSO 
getpid(2), open(2) 

DIAGNOSTICS 
Mkstemp returns an open file descriptor upon success. It returns -1 if no suitable file could be created. 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



MONITOR(3) UNIX Programmer's Manual MONITOR(3) 

NAME 
monitor, monstartup, moncontrol - prepare execution profile 

SYNOPSIS 
monitor(lowpc, highpc, buffer, bu/size, nfunc) 
int (*lowpc)O, (*highpc)O; 
short buff erO; 

monstartup(lowpc, highpc) 
int (•lowpc)O, (•highpc)O; 

moncontrol(mode) 

DESCRIPTION 
There are two different forms of monitoring available: An executable program created by: 

cc-p ... 

automatically includes calls for the prof(l) monitor and includes an initial call to its start-up routine mon­
startup with default parameters; monitor need not be called explicitly except to gain fine control over 
profil buffer allocation. An executable program created by: 

cc-pg ... 

automatically includes calls for the gprof(l) monitor. 

Monstartup is a high level interface to profil(2). Lowpc and highpc specify the address range that is to be 
sampled; the lowest address sampled is that of lowpc and the highest is just below highpc. Monstartup 
allocates space using sbrk(2) and passes it to monitor (see below) to record a histogram of periodically 
sampled values of the program counter, and of counts of calls of certain functions, in the buffer. Only calls 
of functions compiled with the profiling option -p of cc( 1) are recorded. 

To profile the entire program, it is sufficient to use 

extern etext(); 

monstartup((int) 2, etext); 

Etext lies just above all the program text, see end(3). 

To stop execution monitoring and write the results on the file mon.out, use 

monitor(O); 

then prof(l) can be used to examine the results. 

Moncontrol is used to selectively control profiling within a program. This works with either prof(l) or 
gprof(l) type profiling. When the program starts, profiling begins. To stop the collection of histogram 
ticks and call counts use moncontrol(O); to resume the collection of histogram ticks and call counts use 
moncontrol(l). This allows the cost of particular operations to be measured. Note that an output file will 
be produced upon program exit irregardless of the state of moncontrol. 

Monitor is a low level interface to profil(2). Lowpc and highpc are the addresses of two functions; buffer 
is the address of a (user supplied) array of bu/size short integers. At most nfunc call counts can be kept. 
For the results to be significant, especially where there are small, heavily used routines, it is suggested that 
the buffer be no more than a few times smaller than the range of locations sampled. Monitor divides the 
buffer into space to record the histogram of program counter samples over the range lowpc to highpc, and 
space to record call counts of functions compiled with the-p option to cc(l). 

To profile the entire program, it is sufficient to use 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



MONITOR(3) UNIX Programmer's Manual MONITOR(3) 

extern etext(); 

monitor((int) 2, etext, buf, bufsize, nfunc); 

FILES 
mon.out 

SEE ALSO 
cc(l), prof(l), gprof(l), profil(2), sbrk(2) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



NDBM(3) UNIX Programmer's Manual NDBM(3) 

NAME 
dbm_open, dbm_close, dbm_fetch, dbm_store, dbm_delete, dbm_firstkey, - data base subroutines 

SYNOPSIS 
#include < ndbm.h> 

typedef struct { 
char •dptr; 
int dsize; 

} datum; 

DBM •dbm_open(file,jla.gs, mode) 
char •file; 
intjla.gs, mode; 

void dbm _close( db) 
DBM •db; 

datum dbm_fetch(db, key) 
DBM •db; 
datum key; 

int dbm_store(db, key, content.flags) 
DBM •db; 
datum key, content; 
intjla.gs; 

int dbm_delete(db, key) 
DBM •db; 
datum key; 

datum dbm _ firstkey( db) 
DBM •db; 

datum dbm _ nextkey( db) 
DBM •db; 

int dbm _error( db) 
DBM •db; 

int dbm _clear err( db) 
DBM •db; 

DESCRIPTION 
These functions maintain key/content pairs in a data base. The functions will handle very large (a billion 
blocks) databases and will access a keyed item in one or two file system accesses. This package replaces 
the earlier dbm(3x) library, which managed only a single database. 

Keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes pointed to 
by dptr. Arbitrary binary data, as well as normal ASCTI strings, are allowed. The data base is stored in two 
files. One file is a directory containing a bit map and has '.dir' as its suffix. The second file contains all 
data and has '.pag' as its suffix. 

Before a database can be accessed, it must be opened by dbm _open. This will open and/or create the files 
.file.dir and.file.pag depending on the flags parameter (see open(2)). 

Once open, the data stored under a key is accessed by dbm _retch and data is placed under a key by 
dbm_store. The.flags field can be either DBM_INSERT or DBM_REPLACE. DBM_INSERT will only 
insert new entries into the database and will not change an existing entry with the same key. 
DBM_REPLACE will replace an existing entry if it has the same key. A key (and its associated contents) 
is deleted by dbm_delete. A linear pass through all keys in a database may be made, in an (apparently) 
random order, by use of dbm_firstkey and dbm_nextkey. Dbm_firstkey will return the first key in the 

May20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



NDBM(3) UNIX Programmer's Manual NDBM(3) 

database. Dbm_nextkey will return the next key in the database. This code will traverse the data base: 

for (key= dbm_firstkey(db); key.dptr !=NULL; key= dbm_nextkey(db)) 

Dbm _error returns non-zero when an error has occurred reading or writing the database. Dbm _ clearerr 
resets the error condition on the named database. 

DIAGNOSTICS 

BUGS 

All functions that return an int indicate errors with negative values. A zero return indicates ok. Routines 
that return a datum indicate errors with a null (0) dptr. If dbm store called with a flags value of 
DBM_ INSERT finds an existing entry with the same key it returns 1.-

The '.pag' file will contain holes so that its apparent size is about four times its actual content. Older 
UNIX systems may create real file blocks for these holes when touched. These files cannot be copied by 
normal means (cp, cat, tp, tar, ar) without filling in the holes. 

Dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls. 

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 4096 bytes). 
Moreover all key/content pairs that hash together must fit on a single block. Dbm _store will return an 
error in the event that a disk block fills with inseparable data. 

Dbm _delete does not physically reclaim file space, although it does make it available for reuse. 

The order of keys presented by dbm _ firstkey and dbm _ nextkey depends on a hashing function, not on 
anything interesting. 

SEE ALSO 
dbm(3X) 

May20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



NLIST(3) UNIX Programmer's Manual NLIST(3) 

NAME 
nlist - get entries from name list 

SYNOPSIS 
#include < nlist.h> 

nlist(filename, nI) 
char •filename; 
struct nlist nil[]; 

DESCRIPTION 
Nlist examines the name list in the given executable output file and selectively extracts a list of values. 
The name list consists of an array of structures containing names, types and values. The list is terminated 
with a null name. Each name is looked up in the name list of the file. If the name is found, the type and 
value of the name are inserted in the next two fields. If the name is not found, both entries are set to 0. See 
a.out(5) for the structure declaration. 

This subroutine is useful for examining the system name list kept in the file /vmunix. In this way programs 
can obtain system addresses that are up to date. 

SEE ALSO 
a.out (5) 

DIAGNOSTICS 
If the file cannot be found or if it is not a valid namelist -1 is returned; otherwise, the number of unfound 
namelist entries is returned. 

The type entry is set to 0 if the symbol is not found. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



PERROR(3) UNIX Programmer's Manual PERROR(3) 

NAME 
perror, sys_errlist, sys_nerr- system error messages 

SYNOPSIS 
perror(s) 
char •s; 

int sys_ ne"; 
char •sys_ errlist[]; 

DESCRIPTION 
Perror produces a short error message on the standard error file describing the last error encountered dur­
ing a call to the system from a C program. First the argument string s is printed, then a colon, then the 
message and a new-line. Most usefully, the argument string is the name of the program which incurred the 
error. The error number is taken from the external variable e"no (see intro(2)), which is set when errors 
occur but not cleared when non-erroneous calls are made. 

To simplify variant formatting of messages, the vector of message strings sys_ err list is provided; errno 
can be used as an index in this table to get the message string without the newline. Sys_nerr is the number 
of messages provided for in the table; it should be checked because new error codes may be added to the 
system before they are added to the table. 

SEE ALSO 
intro(2), psignal(3) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



POPEN(3) UNIX Programmer's Manual POPEN(3) 

NAME 
popen, pclose - initiate 1/0 to/from a process 

SYNOPSIS 
#include < stdio.h> 

FILE •popen( command, type) 
char •command, •type; 

pclose( stream) 
FILE •stream; 

DESCRIPTION 
The arguments to popen are pointers to null-terminated strings containing respectively a shell command 
line and an 1/0 mode, either "r" for reading or "w" for writing. It creates a pipe between the calling process 
and the command to be executed. The value returned is a stream pointer that can be used (as appropriate) 
to write to the standard input of the command or read from its standard output. 

A stream opened by popen should be closed by pclose, which waits for the associated process to terminate 
and returns the exit status of the command. 

Because open files are shared, a type "r" command may be used as an input filter, and a type "w" as an out­
put filter. 

SEE ALSO 
pipe(2}, fopen(3S}, fclose(3S}, system(3}, wait(2), sh(l) 

DIAGNOSTICS 

BUGS 

Popen returns a null pointer if files or processes cannot be created, or the shell cannot be accessed. 

Pclose returns -1 if stream is not associated with a 'popened' command 

Buffered reading before opening an input filter may leave the standard input of that filter mispositioned. 
Similar problems with an output filter may be forestalled by careful buffer flushing, for instance, with 
fflush( see fclose(3S)). 

Popen always calls sh, never calls csh. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



PSIGNAL(3) UNIX Programmer's Manual PSIGNAL(3) 

NAME 
psignal, sys_ siglist - system signal messages 

SYNOPSIS 
psignal(sig, s) 
unsigned sig; 
char •s; 

char •sys_ siglistO; 

DESCRIPTION 
Psignal produces a short message on the standard error file describing the indicated signal. First the argu­
ment strings is printed, then a colon, then the name of the signal and a new-line. Most usefully, the argu­
ment string is the name of the program which incurred the signal. The signal number should be from 
among those found in <signal.h>. 

To simplify variant formatting of signal names, the vector of message strings sys_ siglist is provided; the 
signal number can be used as an index in this table to get the signal name without the newline. The define 
NSIG defined in <Signal.h> is the number of messages provided for in the table; it should be checked 
because new signals may be added to the system before they are added to the table. 

SEE ALSO 
sigvec(2), perror(3) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



QSORT(3) 

NAME 
qsort - quicker sort 

SYNOPSIS 
qsort(base, nel, width, compar) 
char •base; 
int (*compar)(); 

DESCRIPTION 

UNIX Programmer's Manual QSORT(3) 

Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the base of the 
data; the second is the number of elements; the third is the width of an element in bytes; the last is the name 
of the comparison routine to be called with two arguments which are pointers to the elements being com­
pared. The routine must return an integer less than, equal to, or greater than 0 according as the first argu­
ment is to be considered less than, equal to, or greater than the second. 

SEE ALSO 
sort(l) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



RANDOM(3) UNIX Programmer's Manual RANDOM(3) 

NAME 
random, srandom, initstate, setstate - better random number generator; routines for changing generators 

SYNOPSIS 
long randomO 

srandom( seed) 
int seed; 

char •initstate(seed, state, n) 
unsigned seed; 
char •state; 
int n; 

char •setstate(state) 
char •state; 

DESCRIPTION 
Random uses a non-linear additive feedback random number generator employing a default table of size 
31 long integers to return successive pseudo-random numbers in the range from 0 to 231-1. The period of 
this random number generator is very large, approximately 16x(231-l). 

Random and srandom have almost the same calling sequence and initialization properties as rand and 
srand. The difference is that rand(3) produces a much less random sequence - in fact, the low dozen bits 
generated by rand go through a cyclic pattern. All the bits generated by random are usable. For example, 
''random()&O 1'' will produce a random binary value. 

Unlike srand, srandom does not return the old seed; the reason for this is that the amount of state informa­
tion used is much more than a single word. (Two other routines are provided to deal with 
restarting/changing random number generators). Like rand(3), however, random will by default produce 
a sequence of numbers that can be duplicated by calling srandom with 1 as the seed. 

The initstate routine allows a state array, passed in as an argument, to be initialized for future use. The 
size of the state array (in bytes) is used by initstate to decide how sophisticated a random number genera­
tor it should use -- the more state, the better the random numbers will be. (Current "optimal" values for the 
amount of state information are 8, 32, 64, 128, and 256 bytes; other amounts will be rounded down to the 
nearest known amount Using less than 8 bytes will cause an error). The seed for the initialization (which 
specifies a starting point for the random number sequence, and provides for restarting at the same point) is 
also an argument. lnitstate returns a pointer to the previous state information array. 

Once a state has been initialized, the setstate routine provides for rapid switching between states. Setstate 
returns a pointer to the previous state array; its argument state array is used for further random number gen­
eration until the next call to initstate or setstate. 

Once a state array has been initialized, it may be restarted at a different point either by calling initstate 
(with the desired seed, the state array, and its size) or by calling both setstate (with the state array) and 
srandom (with the desired seed). The advantage of calling both setstate and srandom is that the size of 
the state array does not have to be remembered after it is initialized 

With 256 bytes of state information, the period of the random number generator is greater than 2
69

, which 
should be sufficient for most purposes. 

DIAGNOSTICS 
If initstate is called with less than 8 bytes of state information, or if setstate detects that the state informa­
tion has been garbled, error messages are printed on the standard error output 

SEE ALSO 
rand(3) 

September 29, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



RANDOM(3) UNIX Programmer's Manual RANDOM(3) 

BUGS 
This generator runs at about 2/3 the speed of rand(3C). 

September 29, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



RCMD(3) UNIX Programmer's Manual RCMD(3) 

NAME 
rcmd, rresvport, ruserok - routines for returning a stream to a remote command 

SYNOPSIS 
rem = rcmd( ahost, inport, locuser, remuser, 
char * •ahost; 
int inport; 
char •locuser, •remuser, •cmd; 
int •fd2p; 

s = rresvport(port); 
int •port; 

ruserok(rhost, superuser, ruser, luser); 
char •rhost; 
int superuser; 
char •ruser, •luser; 

DESCRIPTION 
Rcmd is a routine used by the super-user to execute a command on a remote machine using an authentica­
tion scheme based on reserved port numbers. Rresvport is a routine which returns a descriptor to a socket 
with an address in the privileged port space. Ruserok is a routine used by servers to authenticate clients 
requesting service with rcmd. All three functions are present in the same file and are used by the rshd(SC) 
server (among others). 

Rcmd looks up the host •ahost using gethostbyname(3N}, returning -1 if the host does not exist Other­
wise •ahost is set to the standard name of the host and a connection is established to a server residing at the 
well-known Internet port inport. 

If the connection succeeds, a socket in the Internet domain of type SOCK_ STREAM is returned to the 
caller, and given to the remote command as stdio and stdout. lffd2p is non-zero, then an auxiliary chan­
nel to a control process will be set up, and a descriptor for it will be placed in •fd2p. The control process 
will return diagnostic output from the command (unit 2) on this channel, and will also accept bytes on this 
channel as being UNIX signal numbers, to be forwarded to the process group of the command lffd2p is 0, 
then the stderr (unit 2 of the remote command) will be made the same as the stdout and no provision is 
made for sending arbitrary signals to the remote process, although you may be able to get its attention by 
using out-of-band data. 

The protocol is described in detail in rshd(8C). 

The rresvport routine is used to obtain a socket with a privileged address bound to it This socket is suit­
able for use by rcmd and several other routines. Privileged Internet ports are those in the range 0 to 1023. 
Only the super-user is allowed to bind an address of this sort to a socket. 

Ruserok takes a remote host's name, as returned by a gethostbyaddr(3N) routine, two user names and a 
flag indicating whether the local user's name is that of the super-user. It then checks the files 
/etc/hosts.equiv and, possibly, .rhosts in the current working directory (normally the local user's home 
directory) to see if the request for service is allowed A 0 is returned if the machine name is listed in the 
"hosts.equiv" file, or the host and remote user name are found in the ".rhosts" file; otherwise ruserok 
returns -1. If the superuser flag is 1, the checking of the "host.equiv" file is bypassed. If the local 
domain (as obtained from gethostname (2)) is the same as the remote domain, only the machine name need 
be specified. 

SEE ALSO 
rlogin(lC}, rsh(lC), intro(2), rexec(3), rexecd(SC), rlogind(8C}, rshd(8C) 

DIAGNOSTICS 
Rcmd returns a valid socket descriptor on success. It returns -1 on error and prints a diagnostic message 
on the standard error. 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



RCMD(3) UNIX Programmer's Manual RCMD(3) 

Rresvport returns a valid, bound socket descriptor on success. It returns -1 on error with the global value 
errno set according to the reason for failure. The error code EAGAIN is overloaded to mean ''All network 
ports in use.'' 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



REGEX(3) UNIX Programmer's Manual REGEX(3) 

NAME 
re_ comp, re_exec - regular expression handler 

SYNOPSIS 
char •re_comp(s) 
char •s; 

re_exec(s) 
char 2•s; 

DESCRIPTION 
Re_comp compiles a string into an internal form suitable for pattern matching. Re_exec checks the argu­
ment string against the last string passed to re_comp. 

Re_ comp returns 0 if the string s was compiled successfully; otherwise a string containing an error mes­
sage is returned. If re_ comp is passed 0 or a null string, it returns without changing the currently compiled 
regular expression. 

Re_ exec returns 1 if the string s matches the last compiled regular expression, 0 if the string s failed to 
match the last compiled regular expression, and -1 if the compiled regular expression was invalid (indicat­
ing an internal error). 

The strings passed to both re_comp and re_exec may have trailing or embedded newline characters; they 
are terminated by nulls. The regular expressions recognized are described in the manual entry for ed(l), 
given the above difference. 

SEE ALSO 
ed(l), ex(l), egrep(l), fgrep(l), grep(l) 

DIAGNOSTICS 
Re_ exec returns -1 for an internal error. 

Re_comp returns one of the following strings if an error occurs: 

May 15, 1985 

No previous regular expression, 
Regular expression too long, 
unmatched\(, 
mi.ssing ], 
too many\(\) pairs, 
unmatched\). 

INTEGRATED SOLUTIONS 4.3 BSD 1 



RESOLVER ( 3) UNIX Programmer's Manual RESOLVER ( 3) 

NAME 
res_mkquery, res_send, res_init, dn_comp, dn_expand- resolver routines 

SYNOPSIS 
#include < sysltypes.h> 
#include <netinetlin.h> 
#include <arpalnaml!ser.h> 
#include <resolv.h> 

res_mkquery(op, dname, class, type, data, datalen, new", buf, buflen) 
int op; 
char •dname; 
int class, type; 
char •data; 
int datalen; 
struct rrec •newrr; 
char •buf; 
int buften; 

res_send(msg, msglen, answer, anslen) 
char •msg; 
int msglen; 
char •answer; 
int anslen; 

res_initO 

dn _comp( exp_ dn, comp_ dn, length, dnptrs, lastdnptr) 
char •exp_ dn, •comp _dn; 
int length; 
char ••dnptrs, **lastdnptr; 

dn_expand(msg, eomorig, comp_dn, exp_dn, length) 
char •msg, •eomorig, •comp_dn, exp_dn; 
int length; 

DESCRIPTION 
These routines are used for making, sending and interpreting packets to Internet domain name servers. Glo­
bal information that is used by the resolver routines is kept in the variable _res. Most of the values have 
reasonable defaults and can be ignored. Options stored in res.options are defined in resolv.h and are as 
follows. Options are a simple bit mask and are or' ed in to enable. 

RES INIT 
True if the initial name server address and default domain name are initialized (i.e., res_init has 
been called). 

RES_DEBUG 
Print debugging messages. 

RES_AAONLY 
Accept authoritative answers only. Res_send will continue until it finds an authoritative answer 
or finds an error. Currently this is not implemented. 

RES_USEVC 
Use TCP connections for queries instead of UDP. 

RES_STAYOPEN 
Used with RES_ USEVC to keep the TCP connection open between queries. This is useful only in 
programs that regularly do many queries. UDP should be the normal mode used. 

15 November 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



RESOLVER ( 3) UNIX Programmer's Manual RESOLVER ( 3) 

FILES 

RES_IGNTC 
Unused currently (ignore truncation errors, i.e., don't retry with TCP). 

RES_ RECURSE 
Set the recursion desired bit in queries. This is the default. ( res_send does not do iterative 
queries and expects the name server to handle recursion.) 

RES_DEFNAMES 
Append the default domain name to single label queries. This is the default. 

Res_init 

reads the initialization file to get the default domain name and the Internet address of the initial hosts run­
ning the name server. If this line does not exist, the host running the resolver is tried. Res_ mkquery 
makes a standard query message and places it in buf. Res_mkquery will return the size of the query or-1 
if the query is larger than bujlen. Op is usually QUERY but can be any of the query types defined in 
nameser.h. Dname is the domain name. If dname consists of a single label and the RES_DEFNAMES flag 
is enabled (the default), dname will be appended with the current domain name. The current domain name 
is defined in a system file and can be overridden by the environment variable LOCALDOMAIN. Newrr is 
currently unused but is intended for making update messages. 

Res_ send sends a query to name servers and returns an answer. It will call res_ init if RES_ INIT is not set, 
send the query to the local name server, and handle timeouts and retries. The length of the message is 
returned or -1 if there were errors. 

Dn _expand expands the compressed domain name comp_ dn to a full domain name. Expanded names are 
converted to upper case. Msg is a pointer to the beginning of the message, exp_ dn is a pointer to a buffer 
of size length for the result. The size of compressed name is returned or -1 if there was an error. 

Dn_comp compresses the domain name exp_dn and stores it in comp_dn. The size of the compressed 
name is returned or -1 if there were errors. length is the size of the comp_ dn. Dnptrs is a list of pointers to 
previously compressed names in the current message. The first pointer points to to the beginning of the 
message and the list ends with NULL. lastdnptr is a pointer to the end of the array pointed to dnptrs. A 
side effect is to update the list of pointers for labels inserted into the message by dn_comp as the name is 
compressed. If dnptr is NULL, we don't try to compress names. If lastdnptr is NULL, we don't update the 
list. 

/etc/resolv.conf see resolver(5) 

SEE ALSO 
named(8), resolver(5), RFC882, RFC883, RFC973, RFC974, SMM: 11 Name Server Operations Guide for 
BIND 

15 November 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



REXEC(3) UNIX Programmer's Manual REXEC(3) 

NAME 
rexec - return stream to a remote command 

SYNOPSIS 
rem= rexec(ahost, inport, user, passwd, 
char * •ahost; 
int inport; 
char •user, •passwd, •cmd; 
int •fd2p; 

DESCRIPTION 
Rexec looks up the host •ahost using gethostbyname(3N), returning -1 if the host does not exist Other­
wise •ahost is set to the standard name of the host If a usernarne and password are both specified, then 
these are used to authenticate to the foreign host; otherwise the environment and then the user's .netrc file 
in his home directory are searched for appropriate information. If all this fails, the user is prompted for the 
information. 

The port inport specifies which well-known DARPA Internet port to use for the connection; the call 
"getservbynarne("exec", "tcp")" (see getservent(3N)) will return a pointer to a structure, which contains 
the necessary port. The protocol for connection is described in detail in rexecd(8C). 

If the connection succeeds, a socket in the Internet domain of type SOCK S1REAM is returned to the 
caller, and given to the remote command as stdio and stdout. If fd2p is non:zero, then an auxiliary chan­
nel to a control process will be setup, and a descriptor for it will be placed in •fd2p. The control process 
will return diagnostic output from the command (unit 2) on this channel, and will also accept bytes on this 
channel as being UNIX signal numbers, to be forwarded to the process group of the command. The diag­
nostic information returned does not include remote authorization failure, as the secondary connection is 
set up after authorization has been verified If fd2p is 0, then the stderr (unit 2 of the remote command) 
will be made the same as the stdout and no provision is made for sending arbitrary signals to the remote 
process, although you may be able to get its attention by using out-of-band data. 

SEE ALSO 
rcmd(3), rexecd(8C) 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SCANDIR(3) UNIX Programmer's Manual SCANDIR(3) 

NAME 
scandir, alphasort - scan a directory 

SYNOPSIS 
#include < sysltypes.h> 
#include < sysldir.h> 

scandir(dirname, namelist, select, compar) 
char •dirname; 
struct direct •(•namelistO); 
int (•select)(); 
int (•compar)(); 

alphasort( dl, d2) 
struct direct ••dl, **d2; 

DESCRIPTION 
Scandir reads the directory dirname and builds an array of pointers to directory entries using malloc(3). It 
returns the number of entries in the array and a pointer to the array through namelist. 

The select parameter is a pointer to a user supplied subroutine which is called by scandir to select which 
entries are to be included in the array. The select routine is passed a pointer to a directory entry and should 
return a non-zero value if the directory entry is to be included in the array. If select is null, then all the 
directory entries will be included. 

The compar parameter is a pointer to a user supplied subroutine which is passed to qsort(3) to sort the 
completed array. If this pointer is null, the array is not sorted. Alphasort is a routine which can be used for 
the compar parameter to sort the array alphabetically. 

The memory allocated for the array can be deallocated withfree (see malloc(3)) by freeing each pointer in 
the array and the array itself. 

SEE ALSO 
directory(3), malloc(3), qsort(3), dir(5) 

DIAGNOSTICS 
Returns -1 if the directory cannot be opened for reading or if malloc(3) cannot allocate enough memory to 
hold all the data structures. 

September 17, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SETJMP(3) UNIX Programmer's Manual SETJMP(3) 

NAME 
setjmp, longjmp - non-local goto 

SYNOPSIS 
#include < setjmp.h> 

setjmp( env) 
jmp _ buf env; 

longjmp(env, val) 
jmp_buf env; 

_ setjmp( env) 
jmp _ buf env; 

_Iongjmp(env, val) 
jmp _ buf env; 

DESCRIPTION 
These routines are useful for dealing with errors and interrupts encountered in a low-level subroutine of a 
program. 

Setjmp saves its stack environment in env for later use by longjmp. It returns value 0. 

Longjmp restores the environment saved by the last call of setjmp. It then returns in such a way that exe­
cution continues as if the call of setjmp had just returned the value val to the function that invoked setjmp, 
which must not itself have returned in the interim. All accessible data have values as of the time longjmp 
was called. 

Setjmp and longjmp save and restore the signal mask sigm.ask(2), while _setjmp and _Iongjmp manipu­
late only the C stack and registers. 

ERRORS 
If the contents of the jmp _buf are corrupted, or correspond to an environment that has already returned, 
longjmp calls the routine longjmpe"or. If longjmpe"or returns the program is aborted. The default ver­
sion of longjmperror prints the message "longjmp botch" to standard error and returns. User programs 
wishing to exit more gracefully can write their own versions of longjmperror. 

SEE ALSO 
sigvec(2), sigstack(2), signal(3) 

January 9, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SETUID(3) UNIX Programmer's Manual 

NAME 
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID 

SYNOPSIS 
#include < sysltypes.h> 

setuid( uid) 
seteuid( euid) 
setruid(ruid) 
uid_t wuid, euid, ruid; 

setgid( gid) 
setegid( egid) 
setrgid( rgid) 
gid_t gid, egid, rgid; 

DESCRIPTION 

SETUID(3) 

Setuid (setgid) sets both the real and effective user ID (group ID) of the current process to as specified. 

Seteuid (setegid) sets the effective user ID (group ID) of the current process. 

Setruid (setrgid) sets the real user ID (group ID) of the current process. 

These calls are only permitted to the super-user or if the argument is the real or effective ID. 

SEE ALSO 
setreuid(2), setregid(2), getuid(2), getgid(2) 

DIAGNOSTICS 
Zero is returned if the user (group) ID is set; -1 is returned otherwise. 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SIG INTERRUPT ( 3) UNIX Programmer's Manual SIGINTERRUPT(3) 

NAME 
siginterrupt - allow signals to interrupt system calls 

SYNOPSIS 
siginterrupt( sig ,flag); 
int sig,flag; 

DESCRIPTION 

NOTES 

Siginterrupt is used to change the system call restart behavior when a system call is interrupted by the 
specified signal. If the ftag is false (0), then system calls will be restarted if they are interrupted by the 
specified signal and no data has been transferred yet. System call restart is the default behavior on 4.2 
BSD. 

If the ftag is true (1), then restarting of system calls is disabled. If a system call is interrupted by the 
specified signal and no data has been transferred, the system call will return -1 with errno set to EINTR. 
Interrupted system calls that have started transferring data will return the amount of data actually 
transferred. System call interrupt is the signal behavior found on 4.1 BSD and AT&T System V UNIX 
systems. 

Note that the new 4.2 BSD signal handling semantics are not altered in any other way. Most notably, sig­
nal handlers always remain installed until explicitly changed by a subsequent sigvec(2) call, and the signal 
mask operates as documented in sigvec(2). Programs may switch between restartable and interruptible sys­
tem call operation as often as desired in the execution of a program. 

Issuing a siginterrupt{3) call during the execution of a signal handler will cause the new action to take 
place on the next signal to be caught. 

This library routine uses an extension of the sigvec(2) system call that is not available in 4.2BSD, hence it 
should not be used if backward compatibility is needed. 

RETURN VALUE 
A 0 value indicates that the call succeeded A -1 value indicates that an invalid signal number has been 
supplied. 

SEE ALSO 
sigvec(2), sigblock(2), sigpause(2), sigsetmask(2). 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SLEEP(3) UNIX Programmer's Manual 

NAME 
sleep - suspend execution for interval 

SYNOPSIS 
sleep( seconds) 
unsigned seconds; 

DESCRIPTION 

SLEEP(3) 

The current process is suspended from execution for the number of seconds specified by the argument. 
The actual suspension time may be up to 1 second less than that requested, because scheduled wakeups 
occur at fixed 1-second intervals, and an arbitrary amount longer because of other activity in the system. 

The routine is implemented by setting an interval timer and pausing until it occurs. The previous state of 
this timer is saved and restored. If the sleep time exceeds the time to the expiration of the previous timer, 
the process sleeps only until the signal would have occurred, and the signal is sent 1 second later. 

SEE ALSO 
setitimer(2), sigpause(2), usleep(3) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



STRING(3) UNIX Programmer's Manual STRING(3) 

NAME 
strcat, strncat, strcmp, strncmp, strcpy, strncpy, - string operations 

SYNOPSIS 
#include < strings.h> 

char *Streat( sl, s2) 
char •sl, •s2; 

char •strncat(sl, s2, n) 
char •sl, •s2; 

strcmp(sl, s2) 
char •sl, •s2; 

strncmp(sl, s2, n) 
char •sl, •s2; 

char •strcpy(sl, s2) 
char •sl, •s2; 

char •strncpy( sl, s2, n) 
char •sl, •s2; 

strlen(s) 
char •s; 

char •index(s, c) 
char •s, c; 

char •rindex( s, c) 
char •s, c; 

DESCRIPTION 
These functions operate on null-terminated strings. They do not check for overflow of any receiving string. 

Streat appends a copy of string s2 to the end of string sl. Strncat copies at most n characters. Both return 
a pointer to the null-terminated result 

Strcmp compares its arguments and returns an integer greater than, equal to, or less than 0, according as sl 
is lexicographically greater than, equal to, or less than s2. Strncmp makes the same comparison but looks 
at at most n characters. 

Strcpy copies string s2 to sl, stopping after the null character has been moved. Strncpy copies exactly n 
characters, truncating or null-padding s2; the target may not be null-terminated if the length of s2 is nor 
more. Both return sl . 

Strlen returns the number of non-null characters in s. 

Index (rindex) returns a pointer to the first (last) occurrence of character c in strings, or zero if c does not 
occur in the string. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SWAB(3) 

NAME 
swab - swap bytes 

SYNOPSIS 
swab(from, to, nbytes) 
char •from, •to; 

DESCRIPTION 

UNIX Programmer's Manual SWAB(3) 

Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adjacent even and 
odd bytes. It is useful for carrying binary data between PDPll's and other machines. Nbytes should be 
even. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SYSLOG(3) UNIX Programmer's Manual SYSLOG(3) 

NAME 
syslog, openlog, closelog, setlogmask - control system log 

SYNOPSIS 
#include <syslog.h> 

openlog(ident, logopt,facility) 
char •ident; 

syslog(priority, message, parameters ... ) 
char •message; 

closelogO 

setlogmask( maskpri) 

DESCRIPTION 
Syslog arranges to write message onto the system log maintained by syslogd(8). The message is tagged 
with priority. The message looks like a printf(3) string except that %m is replaced by the current error 
message (collected from e"no ). A trailing newline is added if needed. This message will be read by sys­
logd(8) and written to the system console, log files, or forwarded to syslogd on another host as appropriate. 

Priorities are encoded as a facility and a level. The facility describes the part of the system generating the 
message. The level is selected from an ordered list: 

LOG_ EMERG A panic condition. This is normally broadcast to all users. 

LOG ALERT A condition that should be corrected immediately, such as a corrupted system data-
base. 

LOG CRIT Critical conditions, e.g., hard device errors. 

LOG ERR Errors. 

LOG WARNING Warning messages. 

LOG _NOTICE Conditions that are not error conditions, but should possibly be handled specially. 

LOG INFO Informational messages. 

LOG_ DEBUG Messages that contain information normally of use only when debugging a program. 

If syslog cannot pass the message to syslogd, it will attempt to write the message on !devlconsole if the 
LOG_ CONS option is set (see below). 

If special processing is needed, openlog can be called to initialize the log file. The parameter ident is a 
string that is prepended to every message. Logopt is a bit field indicating logging options. Current values 
for lo go pt are: 

LOG PID log the process id with each message: useful for identifying instantiations of dae­
mons. 

LOG CONS 

LOG NDELAY 

LOG NOWAIT 

May 15, 1986 

Force writing messages to the console if unable to send it to syslogd. This option is 
safe to use in daemon processes that have no controlling terminal since syslog will 
fork before opening the console. 

Open the connection to syslogd immediately. Normally the open is delayed until the 
first message is logged. Useful for programs that need to manage the order in which 
file descriptors are allocated. 

Don't wait for children forked to log messages on the console. This option should be 
used by processes that enable notification of child termination via SIGCHLD, as sys­
log may otherwise block waiting for a child whose exit status has already been col­
lected. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



SYSLOG(3) UNIX Programmer's Manual SYSLOG(3) 

The facility parameter encodes a default facility to be assigned to all messages that do not have an explicit 
facility encoded: 

LOG_ KERN Messages generated by the kernel. These cannot be generated by any user processes. 

LOG_USER Messages generated by random user processes. This is the default facility identifier 
if none is specified. 

LOG_MAIL 

LOG_DAEMON 

LOG_AUTH 

LOG LPR 

LOG_LOCALO 

The mail system. 

System daemons, such as ftpd(8), routed(8), etc. 

The authorization system: login(l), su(l), getty(8), etc. 

The line printer spooling system: lpr(l), Ipc(8), Ipd(8), etc. 

Reserved for local use. Similarly for LOG_ LOCAL! through LOG_ LOCAL 7 o 

Closelog can be used to close the log file. 

Setlogmask sets the log priority mask to maskpri and returns the previous mask. Calls to syslog with a 
priority not set in maskpri are rejected. The mask for an individual priority pri is calculated by the macro 
LOG_ MASK(pri); the mask for all priorities up to and including toppri is given by the macro 
LOG_ UPTO(toppn). The default allows all priorities to be logged. 

EXAMPLES 
syslog(LOG _ALERT, "who: internal error 23"); 

openlog("ftpd", LOG_ PIO, LOG_ DAEMON); 
setlogmask(LOG UPTO(LOG ERR)); 
syslog(LOG _INFO, "Connection from host %d", CallingHost); 

syslog(LOG _ INFOILOG _ LOCAL2, "foobar error: %m"); 

SEE ALSO 
logger(l), syslogd(8) 

May 15, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



SYSTEM(3) 

NAME 
system - issue a shell command 

SYNOPSIS 
system( string) 
char *string; 

DESCRIPTION 

UNIX Programmer's Manual SYSTEM(3) 

System causes the string to be given to sh(l) as input as if the string had been typed as a command at a ter­
minal. The current process waits until the shell has completed, then returns the exit status of the shell. 

SEE ALSO 
popen(3S), execve(2), wait(2) 

DIAGNOSTICS 
Exit status 127 indicates the shell couldn't be executed. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TTYNAME(3) UNIX Programmer's Manual TIYNAME(3) 

NAME 
ttyname, isatty, ttyslot - find name of a terminal 

SYNOPSIS 
char •ttyname(.filedes) 

isatty(.filedes) 

ttyslotO 

DESCRIPTION 
Ttyname returns a pointer to the null-terminated pathname of the terminal device associated with file 
descriptor filedes. (This is a system file descriptor and has nothing to do with the standard I/O FILE 
typedef.) 

FILES 

Isa tty returns 1 if filedes is associated with a terminal device, 0 otherwise. 

Ttyslot returns the number of the entry in the ttys(5) file for the control terminal of the current process. 

/dev/* 
/etc/ttys 

SEE ALSO 
ioctl(2), ttys(5) 

DIAGNOSTICS 
Ttyname returns a null pointer (0) iffiledes does not describe a terminal device in directory /dev. 

Ttyslot returns 0 if /etc/ttys is inaccessible or if it cannot determine the control terminal. 

BUGS 
The return value points to static data whose content is overwritten by each call. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



UALARM(3) UNIX Programmer's Manual UALARM(3) 

NAME 
ualarm - schedule signal after specified time 

SYNOPSIS 
unsigned ualarm(value, interval) 
unsigned value; 
unsigned interval; 

DESCRIPTION 
This is a simplified interface to setitimer(2). 

Ualarm causes signal SIGALRM, see signal(3C), to be sent to the invoking process in a number of 
microseconds given by the value argument Unless caught or ignored, the signal terminates the process. 

If the interval argument is non-zero, the SIGALRM signal will be sent to the process every interval 
microseconds after the timer expires (e.g. after value microseconds have passed). 

Because of scheduling delays, resumption of execution of when the signal is caught may be delayed an 
arbitrary amount. The longest specifiable delay time (on the vax) is 2147483647 microseconds. 

The return value is the amount of time previously remaining in the alarm clock. 

SEE ALSO 
getitimer(2), setitimer(2), sigpause(2), sigvec(2), signal(3C), sleep(3), alarm(3), usleep(3) 

May 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



USLEEP(3) UNIX Programmer's Manual USLEEP(3) 

NAME 
usleep - suspend execution for interval 

SYNOPSIS 
usleep(useconds) 
unsigned useconds; 

DESCRIPTION 
The current process is suspended from execution for the number of microseconds specified by the argu­
ment. The actual suspension time may be an arbitrary amount longer because of other activity in the sys­
tem or because of the time spent in processing the call. 

The routine is implemented by setting an interval timer and pausing until it occurs. The previous state of 
this timer is saved and restored. If the sleep time exceeds the time to the expiration of the previous timer, 
the process sleeps only until the signal would have occurred, and the signal is sent a short time later. 

This routine is implemented using setitimer(2); it requires eight system calls each time it is invoked. A 
similar but less compatible function can be obtained with a single select(2); it would not restart after sig­
nals, but would not interfere with other uses of setitimer. 

SEE ALSO 
setitimer(2), getitimer(2), sigpause(2), ualarm(3), sleep(3), alarm(3) 

May 15, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



VALLOC(3) UNIX Programmer's Manual 

NAME 
valloc - aligned memory allocator 

SYNOPSIS 
char •valloc(size) 
unsigned size; 

DESCRIPTION 

VALLOC(3) 

Valloc allocates size bytes aligned on a page boundary. It is implemented by calling malloc(3) with a 
slightly larger request, saving the true beginning of the block allocated, and returning a properly aligned 
pointer. 

DIAGNOSTICS 
Valloc returns a null pointer (0) if there is no available memory or if the arena has been detectably cor­
rupted by storing outside the bounds of a block. 

BUGS 
vrree is not implemented. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



VARARGS(3) UNIX Programmer's Manual VARARGS(3) 

NAME 
varargs - variable argument list 

SYNOPSIS 
#include <varargs.h> 

function(va alist) 
va_dcl 
va _list pvar; 
va _ start(pvar ); 
f = va_arg(pvar, type); 
va _ end(pvar ); 

DESCRIPTION 
This set of macros provides a means of writing portable procedures that accept variable argument lists. 
Routines having variable argument lists (such as printf(3)) that do not use varargs are inherently nonport­
able, since different machines use different argument passing conventions. 

va_alist is used in a function header to declare a variable argument list. 

va_dcl is a declaration for va_alist. Note that there is no semicolon after va_dcl. 

va_Iist is a type which can be used for the variable pvar, which is used to traverse the list. One such vari­
able must always be declared. 

va_start(pvar) is called to initialize pvar to the beginning of the list. 

va_arg(pvar, type) will return the next argument in the list pointed to by pvar. Type is the type to which 
the expected argument will be converted when passed as an argument In standard C, arguments that are 
char or short should be accessed as int, unsigned char or unsigned short are converted to unsigned int, 
and float arguments are converted to double. Different types can be mixed, but it is up to the routine to 
know what type of argument is expected, since it cannot be determined at runtime. 

va _ end(pvar) is used to finish up. 

Multiple traversals, each bracketed by va _start ... va _end, are possible. 

EXAMPLE 

BUGS 

#include <varargs.h> 
execl( va _ alist) 
va_dcl 
{ 

} 

va_Iist ap; 
char •file; 
char •args[lOO]; 
int argno = 0; 

va_start(ap); 
file= va_arg(ap, char•); 
while (args[argno++] = va_arg(ap, char•)) 

; 
va_end(ap); 
return execv(file, args); 

It is up to the calling routine to determine how many arguments there are, since it is not possible to deter­
mine this from the stack frame. For example, execl passes a 0 to signal the end of the list Printf can tell 
how many arguments are supposed to be there by the format. 

May 15, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



VARARGS(3) UNIX Programmer's Manual VARARGS(3) 

The macros va _start and va _end may be arbitrarily complex; for example, va _start might contain an open­
ing brace, which is closed by a matching brace in va_end. Thus, they should only be used where they 
could be placed within a single complex statement. 

May 15, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 





IN'IR0(3C) UNIX Programmer's Manual INTR0(3C) 

NAME 
intro - introduction to compatibility library functions 

DESCRIPTION 
The (3C) functions constitute the compatibility library portion of Jibe. They are automatically loaded as 
needed by the C compiler ee(l). The link editor searches this library under the -le option. Use of these 
routines should for the most part be avoided Manual entries for the functions in this library describe the 
proper routine to use. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



ALARM(3C) UNIX Programmer's Manual 

NAME 
alarm - schedule signal after specified time 

SYNOPSIS 
alarm( seconds) 
unsigned seconds; 

DESCRIPTION 
This interface is made obsolete by setitimer(2). 

ALARM(3C) 

Alarm causes signal SIGALRM, see sigvec(2), to be sent to the invoking process in a number of seconds 
given by the argument Unless caught or ignored, the signal terminates the process. 

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any alarm 
request is canceled. Because of scheduling delays, resumption of execution of when the signal is caught 
may be delayed an arbitrary amount. The longest specifiable delay time is 2147483647 seconds. 

The return value is the amount of time previously remaining in the alarm clock. 

SEE ALSO 
sigpause(2), sigvec(2), signal(3C}, sleep(3}, ualarm(3}, usleep(3) 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETPW(3C) 

NAME 
getpw - get name from uid 

SYNOPSIS 
getpw( uid, buf) 
char •buf; 

DESCRIPTION 

UNIX Programmer's Manual 

Getpw is made obsolete by getpwuid (3). 

GETPW(3C) 

Getpw searches the password file for the (numerical) uid, and fills in bu/ with the corresponding line; it 
returns non-zero if uid could not be found The line is null-terminated. 

FILES 
/etc/passwd 

SEE ALSO 
getpwent(3), passwd(5) 

DIAGNOSTICS 
Non-zero return on error. 

May 27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



NICE(3C) UNIX Programmer's Manual NICE(3C) 

NAME 
nice - set program priority 

SYNOPSIS 
nice(incr) 

DESCRIPTION 
This interface is obsoleted by setpriority(2). 

The scheduling priority of the process is augmented by incr. Positive priorities get less service than nor­
mal. Priority 10 is recommended to users who wish to execute long-running programs without flak from 
the administration. 

Negative increments are ignored except on behalf of the super-user. The priority is limited to the range 
-20 (most urgent) to 20 (least). 

The priority of a process is passed to a child process by fork(2). For a privileged process to return to nor­
mal priority from an unknown state, nice should be called successively with arguments -40 (goes to prior­
ity -20 because of truncation), 20 (to get to 0), then 0 (to maintain compatibility with previous versions of 
this call). 

SEE ALSO 
nice(l), setpriority(2), fork(2), renice(8) 

May9, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



PAUSE(3C) 

NAME 
pause - stop until signal 

SYNOPSIS 
pause() 

DESCRIPTION 

UNIX Programmer's Manual PAUSE(3C) 

Pause never returns normally. It is used to give up control while waiting for a signal from kill(2) or an 
interval timer, see setitimer(2). Upon termination of a signal handler started during a pause, the pause 
call will return. 

RETURN VALUE 
Always returns -1. 

ERRORS 
Pause always returns: 

[EINTR] The call was interrupted. 

SEE ALSO 
kill(2), select(2), sigpause(2) 

May9, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



PHYS(3C) UNIX Programmer's Manual PHYS(3C) 

NAME 
phys - allows a process to access physical addresses 

SYNOPSIS 
phys(physnum, addr, len, physaddr) 
int physnum; 
char •addr; 
int len; 
char • physaddr; 

DESCRIPTION 
Although phys has been updated by the mmap(2) system call (mmap actually maps the region), it is pro­
vided here for compatibility with previous systems. 

Phys maps a region of program virtual addresses to arbitrary physical memory. Physnum specifies which 
of four address regions (0-3) to set up. Up to four phys calls can be active at any one time. Phys causes 
the address region (starting at addr and continuing for len bytes) to be mapped to physical memory at the 
absolute address physaddr. 

Addr and physaddr must be a multiple of the the page size; see getpagesize(2). Unlike System III, this 
implementation permits addr to lie within the active data segment. 

If len is non-zero, it is rounded up to the next multiple of the page size. If len is zero, any previous phys 
mapping for that physnum region is nullified; further references to that region refer to private memory ini­
tialized to zero. 

For example, the call 

phys(2, OxlOOOOO, 32768, 0) 

allows a process to access physical locations 0 through 32767 by referencing virtual address OxlOOOOO 
through OxlOOOOO + 32767. 

The current implementation applies the mmap(2) system call to the mem(4) character special file as fol­
lows. The file /dev/mem is opened for reading and writing on the first call to phys and remains open. (The 
program must have read and write permission for /dev/mem.) To remove any previous mapping for this 
physnum region, use munmap(2). The virtual address region addr through addr + len - 1 is made part of 
the data segment with the brk(2) system call if necessary. 

RETURN VALUE 
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and errno is set 
to indicate the error. 

ERRORS 
Phys will fail when one of the following occurs: 

[EPERM] 

[EINVAL] 

[EINVAL] 

SEE ALSO 

The file /dev/mem cannot be opened for reading and writing. 

One of addr, len, or physaddr is not a multiple of the page size. 

Physaddr + len exceeds the size of addressable physical memory. 

brk(2), getpagesize(2), mmap(2), mem(4) 

BUGS 
This routine is Integrated Solutions machine-dependent. 

I August 1985 INTEGRATED SOLUTIONS 4.3 BSD I 



RAND(3C) UNIX Programmer's Manual 

NAME 
rand, srand - random number generator 

SYNOPSIS 
srand( seed) 
int seed; 

randO 

DESCRIPTION 

RAND(3C) 

The newer random (3) should be used in new applications; rand remains for compatibilty. 

Rand uses a multiplicative congruential random number generator with period 232 to return successive 
pseudo-random numbers in the range from O to 231-1. 

The generator is reinitialized by calling srand with 1 as argument It can be set to a random starting point 
by calling srand with whatever you like as argument. 

SEE ALSO 
random(3) 

September 29, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SIGNAL(3C) UNIX Programmer's Manual SIGNAL(3C) 

NAME 
signal - simplified software signal facilities 

SYNOPSIS 
#include < signal.h> 

(•signal( sig, June ))0 
int (*/unc)O; 

DESCRIPTION 
Signal is a simplified interface to the more general sigvec(2) facility. 

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, interrupt, stop), by a 
program error (bus error, etc.}, by request of another program (kill}, or when a process is stopped because it 
wishes to access its control terminal while in the background (see tty(4)). Signals are optionally generated 
when a process resumes after being stopped, when the status of child processes changes, or when input is 
ready at the control terminal. Most signals cause termination of the receiving process if no action is taken; 
some signals instead cause the process receiving them to be stopped, or are simply discarded if the process 
has not requested otherwise. Except for the SIGKILL and SIGSTOP signals, the signal call allows signals 
either to be ignored or to cause an interrupt to a specified location. The following is a list of all signals 
with names as in the include file <Signal.h>: 

SIGHUP 1 hangup 
SIGINT 2 interrupt 
SIGQUIT 3• quit 
SIGil.L 4• illegal instruction 
SIGTRAP S• trace trap 
SIGIOT 6• IOT instruction 
SIGEMT 7• EMT instruction 
SIGFPE 8• floating point exception 
SIG KILL 9 kill (cannot be caught or ignored) 
SIGBUS 10• bus error 
SIGSEGV 11 * segmentation violation 
SIGSYS 12• bad argument to system call 
SIGPIPE 13 write on a pipe with no one to read it 
SIGALRM 14 alarm clock 
SIGTERM 15 software termination signal 
SIGURG Hie urgent condition present on socket 
SIGSTOP l 7t stop (cannot be caught or ignored) 
SIGTS-W- 18t stop signal generated from keyboard 
SIGCONT 19e continue after stop 
SIGCID...D 20. child status has changed 
SIGITIN 21 t background read attempted from control terminal 
SIGTTOU 22t background write attempted to control terminal 
SIGIO 23e i/o is possible on a descriptor (see fcntl(2)} 
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2)) 
SIGXFSZ 25 file size limit exceeded (see setrlimit(2)) 
SIGVTALRM 26 virtual time alarm (see setitimer(2)) 
SIGPROF 27 profiling timer alarm (see setitimer(2)) 
SIGWINCH 28• Window size change 
SIGUSR 1 30 User defined signal 1 
SIGUSR2 31 User defined signal 2 

The starred signals in the list above cause a core image if not caught or ignored. 

May20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SIGNAL(3C) UNIX Programmer's Manual SIGNAL(3C) 

If June is SIG_ DFL, the default action for signal sig is reinstated; this default is termination (with a core 
image for starred signals) except for signals marked with •or t. Signals marked with • are discarded if the 
action is SIG_DFL; signals marked with t cause the process to stop. If June is SIG_IGN the signal is sub­
sequently ignored and pending instances of the signal are discarded. Otherwise, when the signal occurs 
further occurrences of the signal are automatically blocked and June is called. 

A return from the function unblocks the handled signal and continues the process at the point it was inter­
rupted. Unlike previous signal facilities, the handler June remains installed after a signal has been 
delivered. 

If a caught signal occurs during certain system calls, causing the call to terminate prematurely, the call is 
automatically restarted. In particular this can occur during a read or write(2) on a slow device (such as a 
terminal; but not a file) and during a wait(2). 

The value of signal is the previous (or initial) value of June for the particular signal. 

After a fork(2) or vfork(2) the child inherits all signals. Execve(2) resets all caught signals to the default 
action; ignored signals remain ignored. 

RETURN VALUE 

The previous action is returned on a successful call. Otherwise, -1 is returned and e"no is set to indicate 
the error. 

ERRORS 
Signal will fail and no action will take place if one of the following occur: 

[EINV AL] Sig is not a valid signal number. 

[EINV AL] An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP. 

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is ignored). 

SEE ALSO 
kill(l), ptrace(2), kill(2), sigvec(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), setjmp(3), 
tty(4) 

NOTES (V AX-11) 
The handler routine can be declared: 

handler(sig, code, scp) 

Here sig is the signal number, into which the hardware faults and traps are mapped as defined below. Code 
is a parameter which is either a constant as given below or, for compatibility mode faults, the code pro­
vided by the hardware. Sep is a pointer to the struct sigcontext used by the system to restore the process 
context from before the signal. Compatibility mode faults are distinguished from the other SIGILL traps 
by having PSL _CM set in the psl. 

The following defines the mapping of hardware traps to signals and codes. All of these symbols are 
defined in <signal.h>: 

Hardware condition Signal Code 

Arithmetic traps: 
Integer overflow SIGFPE FPE INTOVF TRAP - -
Integer division by zero SIGFPE FPE INTDIV TRAP - -
Floating overflow trap SIGFPE FPE FLTOVF TRAP - -
Floating/decimal division by zero SIGFPE FPE FLTDIV TRAP - -
Floating underflow trap SIGFPE FPE FLTUND TRAP - -
Decimal overflow trap SIGFPE FPE DECOVF TRAP - -
Subscript-range SIGFPE FPE SUBRNG TRAP - -
Floating overflow fault SIGFPE FPE FLTOVF FAULT - -
Floating divide by zero fault SIGFPE FPE FLTDIV FAULT - -

May20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



SIGNAL(3C) 

Floating underflow fault 
Length access control 
Protection violation 
Reserved instruction 
Customer-reserved instr. 
Reserved operand 
Reserved addressing 
Trace pending 
Bpt instruction 
Compatibility-mode 
Ch me 
Chms 
Chmu 

May20, 1986 

UNIX Programmer's Manual 

SIGFPE 
SIGSEGV 
SIG BUS 
SIG ILL 
SIG EMT 
SIG ILL 
SIG ILL 
SIG TRAP 
SIG TRAP 
SIG ILL 
SIGSEGV 
SIGSEGV 
SIGSEGV 

FPE FLTUND FAULT - -

ILL RESAD FAULT - -

ILL PRIVIN FAULT - -
ILL RESOP FAULT - -

hardware supplied code 

INTEGRATED SOLUTIONS 4.3 BSD 

SIGNAL(3C) 

3 



STTY(3C) UNIX Programmer's Manual 

NAME 
stty, gtty- set and get terminal state (defunct) 

SYNOPSIS 
#include < sgtty.h> 

stty(f d, buf) 
int/d; 
struct sgttyb •bu/; 

gtty(fd, buf) 
int/d; 
struct sgttyb •bu/; 

DESCRIPTION 
This interface is obsoleted by ioctl(2). 

STTY(3C) 

Stty sets the state of the terminal associated with/d. Gtty retrieves the state of the terminal associated 
withfd. To set the state of a terminal the call must have write permission. 

The stty call is actually "ioctl(fd, TIOCSE1P, but)", while the gtty call is "ioctl(fd, TIOCGE1P, but)". 
See ioctl(2) and tty( 4) for an explanation. 

DIAGNOSTICS 
If the call is successful 0 is returned, otherwise -1 is returned and the global variable e"no contains the 
reason for the failure. 

SEE ALSO 
ioctl(2), tty( 4) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TIME(3C) UNIX Programmer's Manual 

NAME 
time, ftime - get date and time 

SYNOPSIS 
long time(O) 

long time( tloc) 
long •tloc; 

#include < sys!types.h> 
#include < sysltimeb.h> 
ftime(tp) 
struct timeb *tp; 

DESCRIPTION 
These interfaces are obsoleted by gettimeof day(2). 

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. 

If tloc is nonnull, the return value is also stored in the place to which tloc points. 

The ftime entry fills in a structure pointed to by its argument, as defined by <sys!timeb.h>: 

/* timeb.h 6.183/07/29•/ 

/* 
* Structure returned by ftime system call 
*/ 

struct timeb 
{ 

}; 

time_ t time; 
unsigned short millitm; 
short timezone; 
short dstftag; 

TIME(3C) 

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more-precise inter­
val, the local time zone (measured in minutes of time westward from Greenwich), and a flag that, if 
nonzero, indicates that Daylight Saving time applies locally during the appropriate part of the year. 

SEE ALSO 
date(l), gettimeofday(2), settimeofday(2), ctime(3) 

May9, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TlMES(3C) 

NAME 
times - get process times 

SYNOPSIS 
#include < sysltypes.h> 
#include < sysltimes.h> 

times( buff er) 
struct tms *buffer; 

DESCRIPTION 

UNIX Programmer's Manual 

This interface is obsoleted by getrusage(2). 

TIMES(3C) 

Times returns time-accounting information for the current process and for the terminated child processes 
of the current process. All times are in 1/HZ seconds, where HZ is 60. 

This is the structure returned by times: 

/* times.h 6.1 83/07/29*/ 

/* 
* Structure returned by times() 
*I 
struct tms { 

}; 

time t tms _ utime; 
time t tms_stime; 
time t tms _ cutime; 
time t tms_cstime; 

I* user time*/ 
I* system time *I 
I* user time, children */ 
I* system time, children*/ 

The children times are the sum of the children's process times and their children's times. 

SEE ALSO 
time(l), getrusage(2), wait3(2), time(3) 

May 9, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



UTIME(3C) UNIX Programmer's Manual UTIME(3C) 

NAME 
utime - set file times 

SYNOPSIS 
#include < sysltypes.h> 

utime(file, timep) 
char •file; 
time_ t timep[2]; 

DESCRIPTION 
This interface is obsoleted by utimes(2). 

The utime call uses the 'accessed' and 'updated' times in that order from the timep vector to set the 
corresponding recorded times for file. 

The caller must be the owner of the file or the super-user. The 'inode-changed' time of the file is set to the 
current time. 

SEE ALSO 
utimes(2), stat(2) 

May9, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



VALLOC(3C) UNIX Programmer's Manual 

NAME 
valloc - aligned memory allocator 

SYNOPSIS 
char •valloc(size) 
unsigned size: 

DESCRIPTION 

VALLOC(3C) 

Valloc is obsoleted by the current version ofmalloc, which aligns page-sized and larger allocations. 

Valloc allocates size bytes aligned on a page boundary. It is implemented by calling malloc(3) with a 
slightly larger request, saving the true beginning of the block allocated, and returning a properly aligned 
pointer. 

DIAGNOSTICS 

BUGS 

Valloc returns a null pointer (0) if there is no available memory or if the arena has been detectably cor­
rupted by storing outside the bounds of a block. 

vrree isn't implemented. 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



VLIMIT(3C) UNIX Programmer's Manual VLIMIT(3C) 

NAME 
vlimit - control maximum system resource consumption 

SYNOPSIS 
#include < sys/vlimit.h> 

vlimit(resource, value) 

DESCRIPTION 
This facility is superseded by getrlimit(2). 

Limits the consumption by the current process and each process it creates to not individually exceed value 
on the specified resource. If value is specified as -1, then the current limit is returned and the limit is 
unchanged. The resources which are currently controllable are: 

LIM NORAISE A pseudo-limit; if set non-zero then the limits may not be raised. Only the super-user 
may remove the noraise restriction. 

LIM CPU the maximum number of cpu-seconds to be used by each process 

LIM FSIZE the largest single file which can be created 

LIM DATA 

LIM_STACK 

LIM_CORE 

the maximum growth of the data+stack region via sbrk(2) beyond the end of the pro­
gram text 

the maximum size of the automatically-extended stack region 

the size of the largest core dump that will be created 

LIM_ MAXRSS a soft limit for the amount of physical memory (in bytes) to be given to the program. If 
memory is tight, the system will prefer to take memory from processes which are 
exceeding their declared LIM_ MAXRSS. 

Because this information is stored in the per-process information this system call must be executed directly 
by the shell if it is to affect all future processes created by the shell; limit is thus a built-in command to 
csh(l). 

The system refuses to extend the data or stack space when the limits would be exceeded in the normal way; 
a break call fails if the data space limit is reached, or the process is killed when the stack limit is reached 
(since the stack cannot be extended, there is no way to send a signal!). 

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to be gen­
erated, this normally terminates the process, but may be caught. When the cpu time limit is exceeded, a 
signal SIGXCPU is sent to the offending process; to allow it time to process the signal it is given 5 seconds 
grace by raising the cpu time limit. 

SEE ALSO 
csh(l) 

BUGS 
LIM_ NORAISE no longer exists. 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



VTIM:ES(3C) UNIX Programmer's Manual VTIMES(3C) 

NAME 
vtimes - get information about resource utilization 

SYNOPSIS 
#include <sys Iv times .h> 

vtimes(par_vm, ch_vm) 
struct vtimes •par_vm, •ch_vm; 

DESCRIPTION 
This facility is superseded by getrusage(2). 

Vtimes returns accounting information for the current process and for the terminated child processes of the 
current process. Either par _vm or ch _vm or both may be 0, in which case only the information for the 
pointers which are non-zero is returned. 

After the call, each buffer contains information as defined by the contents of the include file 
lusrlincludel syslvtimes .h: 

struct vtimes { 
int vm_utime; I• user time (•HZ) •I 
int vm_stime; I• system time (•HZ) •I 
I• divide next two by utime+stime to get averages•/ 
unsigned vm _ idsrss; /• integral of d+s rss •/ 
unsigned vm_ixrss; I• integral oftextrss •I 
int vm _ maxrss; I• maximum rss •/ 
int vm _ majflt; /• major page faults •/ 
int vm_minflt; I• minor page faults •I 
int vm_nswap; /•number of swaps•/ 
int vm_inblk; /•block reads•/ 
int vm_oublk; I• block writes•/ 

}; 

The vm_utime and vm_stime fields give the user and system time respectively in 60ths of a second (or 50ths 
if that is the frequency of wall current in your locality.) The vm_idrss and vm_ixrss measure memory 
usage. They are computed by integrating the number of memory pages in use each over cpu time. They 
are reported as though computed discretely, adding the current memory usage (in 512 byte pages) each 
time the clock ticks. If a process used 5 core pages over 1 cpu-second for its data and stack, then vm _idsrss 
would have the value 5•60, where vm utime+vm stime would be the 60. Vm idsrss integrates data and 
stack segment usage, while vm _ ixrss integrates text segment usage. Vm _ ~rss reports the maximum 
instantaneous sum of the text+data+stack core-resident page count. 

The vm_majflt field gives the number of page faults which resulted in disk activity; the vm_minflt field 
gives the number of page faults incurred in simulation of reference bits; vm_nswap is the number of swaps 
which occurred. The number of file system input/output events are reported in vm_inblk and vm_oublk 
These numbers account only for real i/o; data supplied by the caching mechanism is charged only to the 
first process to read or write the data. 

SEE ALSO 
time(2), wait3(2), getrusage(2) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 





INTR0(3F) UNIX Programmer's Manual INTR0(3F) 

NAME 
intro - introduction to FORTRAN library functions 

DESCRIPTION 
This section describes those functions that are in the Fortran run time library. The functions listed here 
provide an interface fromf77 programs to the system in the same manner as the C library does for C pro­
grams. They are automatically loaded as needed by the Fortran compiler 177 ( 1 ), except for the graphics 
interface routines. Those must be explicitly requested, see plot(3f). 

The math intrinsics required by the 1977 Fortran standard are available, although not described here. In 
addition, the abs, sqrt, exp, log, sin, and cos intrinsics have been extended for double complex values. 
They may be referenced using the generic names listed above, or they may be referenced using their 
specific names that consist of the generic names preceded by either cd or z. For example, if zz is double 
complex, then sqrt(zz), zsqrt(zz), or cdsqrt(zz) compute the square root of zz. The dcmplx intrinsic forms a 
double complex value from two double precision variables or expressions, and the name of the specific 
function for the conjugate of a double complex value is dconj g. 

Most of these functions are in libU77 .a. Some are in libF77 .a or libl77 .a. A few intrinsic functions are 
described for the sake of completeness. 

For efficiency, the SCCS ID strings are not normally included in the a.out file. To include them, simply 
declare 

external ti7lid 

in any fl7 module. 

LIST OF FUNCTIONS 
Name Appears on Page Description 

abort abort.3f abnormal termination 
access access.3f determine accessibility of a file 
alarm alarm.3f execute a subroutine after a specified time 
and bit.3f bitwise and 
arc plot.3f t/7 interface to plot(3x) 
bessel bessel.3f bessel functions of two kinds for integer orders 
box plot.3f t/7 interface to plot(3x) 
chdir chdir.3f change default directory 
chmod chmod.3f change mode of a file 
circle plot.3f t/7 interface to plot(3x) 
clospl plot.3f t/7 interface to plot(3x) 
cont plot.3f t/7 interface to plot(3x) 
ctime time.3f return system time 
dffrac flmin.3f return extreme values 
dflmax flmin.3f return extreme values 
dflmin flmin.3f return extreme values 
drand rand.3f return random values 
drandm random.3f better random number generator 
dtime etime.3f return elapsed execution time 
erase plot.3f t/7 interface to plot(3x) 
etime etime.3f return elapsed execution time 
exit exit.3f terminate process with status 
falloc malloc.3f memory allocator 
fdate fdate.3f return date and time in an ASCII string 
ffrac flmin.3f return extreme values 
fgetc getc.3f get a character from a logical unit 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



INTR0(3F) UNIX Programmer's Manual INTR0(3F) 

flmax flrnin.3f return extreme values 
flmin flrnin.3f return extreme values 
flush flush.3f flush output to a logical unit 
fork fork.3f create a copy of this process 
fpecnt trpfpe.3f trap and repair floating point faults 
fputc putc.3f write a character to a fortran logical unit 
free rnalloc.3f memory allocator 
fseek fseek.3f reposition a file on a logical unit 
fstat stat.3f get file status 
ftell fseek.3f reposition a file on a logical unit 
gerror perror.3f get system error messages 
getarg getarg.3f return command line arguments 
getc getc.3f get a character from a logical unit 
getcwd getcwd3f get pathname of current working directory 
getenv getenv.3f get value of environment variables 
getgid getuid.3f get user or group ID of the caller 
getlog getlog.3f get user's login name 
getpid getpid.3f get process id 
getuid getuid.3f get user or group ID of the caller 
gmtirne tirne.3f return system time 
hostnrn hostnm.3f get name of current host 
iargc getarg.3f return command line arguments 
idate idate.3f return date or time in numerical form 
iermo perror.3f get system error messages 
index index.3f tell about character objects 
inrnax flrnin.3f return extreme values 
ioinit ioinit.3f change rn IIO initialization 
irand rand.3f return random values 
irandrn random.3f better random number generator 
is atty ttynam.3f find name of a terminal port 
itime idate.3f return date or time in numerical form 
kill kill.3f send a signal to a process 
label plot.3f f77 interface to plot(3x) 
len index.3f tell about character objects 
line plot.3f f77 interface to plot(3x) 
linemd plot.3f f77 interface to plot(3x) 
link link.3f make a link to an existing file 
lnblnk index.3f tell about character objects 
loc loc.3f return the address of an object 
long long.3f integer object conversion 
lshift bit.3f left shift 
ls tat stat.3f get file status 
ltime tirne.3f return system time 
malloc malloc.3f memory allocator 
move plot.3f f77 interface to plot(3x) 
not bit.3f bitwise complement 
openpl plot.3f f77 interface to plot(3x) 
or bit.3f bitwise or 
perror perror.3f get system error messages 
point plot.3f f77 interface to plot(3x) 
putc putc.3f write a character to a fortran logical unit 
qsort qsort.3f quick sort 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



INTR0(3F) UNIX Programmer's Manual INTR0(3F) 

rand rand.3f return random values 
random random.3f better random number generator 
rename rename.3f rename a file 
rindex index.3f tell about character objects 
rshift bit.3f right shift 
short long.3f integer object conversion 
signal signal.3f change the action for a signal 
sleep sleep.3f suspend execution for an interval 
space plot.3f f77 interface to plot(3x) 
stat stat.3f get file status 
symlnk symlnk.3f make a symbolic link 
system system.3f execute a UNIX command 
tclose topen.3f f77tape1/0 
time time.3f return system time 
topen topen.3f f77tape1/0 
tr aper traper.3f trap arithmetic errors 
trapov trapov.3f trap and repair fioating point overfiow 
tread topen.3f f77 tape I/O 
trewin topen.3f f77 tape I/O 
trpfpe trpfpe.3f trap and repair fioating point faults 
tskipf topen.3f f77tape1/0 
tstate topen.3f f77 tape IIO 
ttynam ttynam.3f find name of a terminal port 
twrite topen.3f f77 tape I/O 
unlink unlink.3f remove a directory entry 
wait wait.3f wait for a process to terminate 
xor bit.3f bitwise exclusive or 

May 27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 3 



ABORT(3F) UNIX Programmer's Manual ABORT(3F) 

NAME 
abort - abnormal termination 

SYNOPSIS 
subroutine abort (string) 
character*(*) string 

DESCRIPTION 

FILES 

Abort cleans up the I/O buffers and then terminates execution. If string is given, it is written to logical 
unit 0 preceded by "abort:". 

If the -g flag was specified during loading, then execution is terminated by calling abort (3) which aborts 
producing a core file in the current directory. If -g was not specified while loading, then ***Execution 
terminated is written on logical unit 0 and execution is terminated. 

If thef77_dump _flag environment variable has been set to a value which begins with y, abort(3) is called 
whether or not -g was specified during loading. Similarly, if the value of [17 _dump _flag begins with 
n, abort is not called. 

/usr/lib/libF77 .a 

SEE ALSO 
abort(3) 

BUGS 
String is ignored on the PDPl 1. 

June 7, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



ACCESS(3F) UNIX Programmer's Manual 

NAME 
access - determine accessibility of a file 

SYNOPSIS 
integer function access (name, mode) 
character*(*) name, mode 

DESCRIPTION 

ACCESS(3F) 

Access checks the given file, name, for accessibility with respect to the caller according to mode. Mode 
may include in any order and in any combination one or more of: 

r 
w 
x 

(blank) 

test for read permission 
test for write permission 
test for execute permission 
test for existence 

An error code is returned if either argument is illegal, or if the file cannot be accessed in all of the specified 
modes. 0 is returned if the specified access would be successful. 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
access(2), perror(3F) 

BUGS 

Pathnames can be no longer than MAXPATHLEN as defined in <SJS/param.h>. 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



ALARM(3F) UNIX Programmer's Manual 

NAME 
alarm - execute a subroutine after a specified time 

SYNOPSIS 
integer function alarm (time, proc) 
integer time 
external proc 

DESCRIPTION 

ALARM(3F) 

This routine arranges for subroutine proc to be called after time seconds. If time is ''O' ', the alarm is turned 
off and no routine will be called. The returned value will be the time remaining on the last alarm. 

FILES 
/usr/lib/libU77.a 

SEE ALSO 
alarm(3C), sleep(3F), signal(3F) 

BUGS 
Alarm and sleep interact If sleep is called after alarm, the alarm process will never be called. SIGALRM 
will occur at the lesser of the remaining alarm time or the sleep time. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



BESSEL(3F) UNIX Programmer's Manual 

NAME 
bessel functions - of two kinds for integer orders 

SYNOPSIS 
function besjO (x) 

function besjl (x) 

function besjn (n, x) 

function besyO (x) 

function besyl (x) 

function besyn (n, x) 

double precision/unction dbesjO (x) 
double precision x 

double precision/unction dbesjl (x) 
double precision x 

double precision/unction dbesjn (n, x) 
double precision x 

double precision function dbesyO (x) 
double precision x 

double precision function dbesyl (x) 
double precision x 

double precision/unction dbesyn (n, x) 
double precision x 

DESCRIPTION 

BESSEL(3F) 

These functions calculate Bessel functions of the first and second kinds for real arguments and integer ord­
ers. 

DIAGNOSTICS 
Negative arguments cause besyO, besyl, and besynto return a huge negative value. The system error code 
will be set to EDOM (33). 

FILES 
/usr/lib/libF77 .a 

SEE ALSO 
j0(3M), perror(3F) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



BIT(3F) UNIX Programmer's Manual BIT(3F) 

NAME 
bit- and, or, xor, not, rshift, !shift bitwise functions 

SYNOPSIS 
(intrinsic) function and (wordl, word2) 

(intrinsic) function or (wordl, word2) 

(intrinsic) function xor (wordl, word2) 

(intrinsic) function not (word) 

(intrinsic) function rshift (word, nbits) 

(intrinsic) function lshift (word, nbits) 

DESCRIPTION 

FILES 

These bitwise functions are built into the compiler and return the data type of their argument(s). Their 
arguments must be integer or logical values. 

The bitwise combinatorial functions return the bitwise "and" (and), "or" (or), or "exclusive or" (xor) of 
two operands. Not returns the bitwise complement of its operand. 

Lshift, or rshift with a negative nbits, is a logical left shift with no end around carry. Rshift, or /shift with a 
negative nbits, is an arithmetic right shift with sign extension. No test is made for a reasonable value of 
nbits. 

These functions may be used to create a variety of general routines, as in the following statement function 
definitions: 

integer bitset, bitclr, getbit, word, bitnum 

bitset( word, bitnum) = or(word,Ishift(l,bitnum)) 
bitclr( word, bitnum) = and(word,not(lshift(l,bitnum))) 
getbit( word, bitnum ) = and(rshift(word,bitnum),1) 

These functions are generated in-line by the f77 compiler. 

April 30, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



CHDIR(3F) 

NAME 
chdir - change default directory 

SYNOPSIS 
integer function chdir ( dirname) 
character•(*) dirname 

DESCRIPTION 

UNIX Programmer's Manual CHDIR(3F) 

The default directory for creating and locating files will be changed to dirname. Zero is returned if success­
ful; an error code otherwise. 

FILES 
/usr/lib/lib U77 .a 

SEE ALSO 
chdir(2), cd(l), perror(3F) 

BUGS 
Pathnames can be no longer than MAXPATHLEN as defined in <syslparam.h>. 

Use of this function may cause inquire by unit to fail. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



CHMOD(3F) 

NAME 
chmod - change mode of a file 

SYNOPSIS 

UNIX Programmer's Manual 

integer function chmod (name, mode) 
character*(*) name, mode 

DESCRIPTION 

CHMOD(3F) 

This function changes the filesystem mode of file name. Mode can be any specification recognized by 
chmod(l). Name must be a single pathname. 

The normal returned value is 0. Any other value will be a system error number. 

FILES 
/usr/lib/libU77 .a 
/bin/chmod 

SEE ALSO 
chmod(l) 

BUGS 

exec'ed to change the mode. 

Pathnames can be no longer than MAXPATHLEN as defined in <syslparam.h>. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



ETIME(3F) UNIX Programmer's Manual 

NAME 
etime, dtime - return elapsed execution time 

SYNOPSIS 
function etime (tarray) 
real ta"ay(2) 

function dtime (tarray) 
real ta"ay(2) 

DESCRIPTION 

ETIME(3F) 

These two routines return elapsed runtime in seconds for the calling process. Dtime returns the elapsed 
time since the last call to dtime, or the start of execution on the first call. 

The argument array returns user time in the first element and system time in the second element. The func­
tion value is the sum of user and system time. 

The resolution of all timing is 1/HZ sec. where HZ is currently 60. 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
times(2) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



EXIT(3F) UNIX Programmer's Manual 

NAME 
exit - terminate process with status 

SYNOPSIS 
subroutine exit (status) 
integer status 

DESCRIPTION 

EXIT(3F) 

Exit flushes and closes all the process's files, and notifies the parent process if it is executing a wait. The 
low-order 8 bits of status are available to the parent process. (Therefore status should be in the range 0 -
255) 

This call will never return. 

The C function exit may cause cleanup actions before the final 'sys exit'. 

FILES 
/usr/lib/libF77 .a 

SEE ALSO 
exit(2), fork(2), fork(3F), wait(2), wait(3F) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



FDATE(3F) UNIX Programmer's Manual 

NAME 
fdate - return date and time in an ASCII string 

SYNOPSIS 
subroutine /date (string) 
character•(*) string 

character•(*) function fdateO 

DESCRIPTION 

FDATE(3F) 

Fdate returns the current date and time as a 24 character string in the format described under ctime(3). 
Neither 'newline' nor NULL will be included 

Fdate can be called either as a function or as a·subroutine. If called as a function, the calling routine must 
define its type and length. For example: 

character•24 fdate 
external fdate 

write{*,*) fdate() 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
ctime(3}, time(3F), itime(3F}, idate(3F), ltime(3F) 

May 27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



FLMIN(3F) UNIX Programmer's Manual FLMIN(3F) 

NAME 
ftmin, ftmax, rrrac, dftmin, dftmax, dffrac, - return extreme values 

SYNOPSIS 
function ftminO 

function ftmaxO 

function ffracO 

double precision/unction dflminO 

double precision/unction dflmaxO 

double precision function dffracO 

function inmaxO 

DESCRIPTION 

FILES 

Functions flmin and flmax return the minimum and maximum positive floating point values respectively. 
Functions dflmin and dflmax return the minimum and maximum positive double precision floating point 
values. Function inmax returns the maximum positive integer value. 

The functions fTrac and dtrrac return the fractional accuracy of single and double precision floating point 
numbers respectively. This is the difference between 1.0 and the smallest real number greater than 1.0. 

These functions can be used by programs that must scale algorithms to the numerical range of the proces­
sor. 

/usr/lib/libF77 .a 

June 7, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



FLUSH(3F) UNIX Programmer's Manual 

NAME 
Hush - flush output to a logical unit 

SYNOPSIS 
subroutine Bush (lunit) 

DESCRIPTION 

FLUSH(3F) 

Flush causes the contents of the buffer for logical unit lunit to be flushed to the associated file. This is 
most useful for logical units 0 and 6 when they are both associated with the control terminal. 

FILES 
/usr/lib/libl77 .a 

SEE ALSO 
fclose(3S) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



FORK(3F) UNIX Programmer's Manual FORK(3F) 

NAME 
fork - create a copy of this process 

SYNOPSIS 
integer function forkO 

DESCRIPTION 

FILES 

Fork creates a copy of the calling process. The only distinction between the 2 processes is that the value 
returned to one of them (referred to as the 'parent' process) will be the process id of the copy. The copy is 
usually referred to as the 'child' process. The value returned to the 'child' process will be zero. 

All logical units open for writing are flushed before the fork to avoid duplication of the contents of 1/0 
buffers in the external file(s). 

If the returned value is negative, it indicates an error and will be the negation of the system error code. See 
perror(3F). 

A corresponding exec routine has not been provided because there is no satisfactory way to retain open 
logical units across the exec. However, the usual function of fork/exec can be performed using 
system(3F). 

/usr/lib/lib U77 .a 

SEE ALSO 
fork(2), wait(3F), kill(3F), system(3F), perror(3F) 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



FSEEK(3F) UNIX Programmer's Manual 

NAME 
fseek, ftell - reposition a file on a logical unit 

SYNOPSIS 
integer function fseek (lunit, offset,from) 
integer offset,from 

integer function ftell (lunit) 

DESCRIPTION 

FSEEK(3F) 

lunit must refer to an open logical unit. offset is an offset in bytes relative to the position specified by from. 
Valid values for from are: 

0 meaning 'beginning of the file' 
1 meaning 'the current position' 
2 meaning 'the end of the file' 

The value returned by fseek will be 0 if successful, a system error code otherwise. (See perror(3F)) 

Ftell returns the current position of the file associated with the specified logical unit. The value is an offset, 
· in bytes, from the beginning of the file. If the value returned is negative, it indicates an error and will be 

the negation of the system error code. (See perror(3F)) 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
fseek(3S), perror(3F) 

May 27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETARG(3F) UNIX Programmer's Manual 

NAME 
getarg, iargc - return command line arguments 

SYNOPSIS 
subroutine getarg (k, arg) 
character•(*) arg 

function iargc O 
DESCRIPTION 

GETARG(3F) 

A call to getarg will return the kth command line argument in character string arg. The 0th argument is the 
command name. 

large returns the index of the last command line argument 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
getenv(3F), execve(2) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETC(3F) UNIX Programmer's Manual 

NAME 
getc, fgetc - get a character from a logical unit 

SYNOPSIS 
integer function getc (char) 
character char 

integer function fgetc (lunit, char) 
character char 

DESCRIPTION 

GETC(3F) 

These routines.return the next character from a file associated with a fortran logical unit, bypassing normal 
fortran 1/0. Getc reads from logical unit 5, normally connected to the control terminal input. 

FILES 

The value of each function is a system status code. :lero indicates no error occurred on the read; -1 indi­
cates end of file was detected. A positive value will be either a UNIX system error code or an f77 1/0 error 
code. See perror(3F). 

/usr/lib/libU77 .a 

SEE ALSO 
getc(3S), intro(2), perror(3F) 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETCWD(3F) UNIX Programmer's Manual 

NAME 
getcwd - get pathname of current working directory 

SYNOPSIS 
integer function getcwd ( dirname) 
character•(*) dirname 

DESCRIPTION 

GETCWD(3F) 

The pathname of the default directory for creating and locating files will be returned in dirname. The value 
of the function will be zero if successful; an error code otherwise. 

FILES 
/usr/lib/lib U77 .a 

SEE ALSO 
chdir(3F), perror(3F) 

BUGS 
Pathnames can be no longer than MAXPATHLEN as defined in <syslparam.h>. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETENV(3F) UNIX Programmer's Manual 

NAME 
getenv - get value of environment variables 

SYNOPSIS 
subroutine getenv (ename, evalue) 
character•(*) ename, evalue 

DESCRIPTION 

GETENV(3F) 

Getenv searches the environment list (see environ(7)) for a string of the form ename=value and returns 
value in evalue if such a string is present, otherwise fills evalue with blanks. 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
environ(7), execve(2) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETLOG(3F) 

NAME 
getlog - get user's login name 

SYNOPSIS 
subroutine getlog (name) 
character*(*) name 

character*(*) function getlogO 

DESCRIPTION 

UNIX Programmer's Manual GETL00(3F) 

Getlog will return the user's login name or all blanks if the process is running detached from a terminal. 

FILES 
/usr/lib/lib U77 .a 

SEE ALSO 
getlogin(3) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETPID(3F) 

NAME 
getpid - get process id 

SYNOPSIS 
integer function getpidO 

DESCRIPTION 

UNIX Programmer's Manual 

Getpid returns the process ID number of the current process. 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
getpid(2) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 

GETPID(3F) 

1 



GETUID(3F) UNIX Programmer's Manual 

NAME 
getuid, getgid - get user or group ID of the caller 

SYNOPSIS 
integer function getuidO 

integer function getgidO 

DESCRIPTION 
These functions return the real user or group ID of the user of the process. 

FILES 
/usr/lib/lib U77. a 

SEE ALSO 
getuid(2) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 

GETUID(3F) 

1 



HOSTNM(3F) UNIX Programmer's Manual 

NAME 
hostnm - get name of current host 

SYNOPSIS 
integer function hostnm (name) 
character•(*) name 

DESCRIPTION 

HOSTNM(3F) 

This function puts the name of the current host into character string name. The return value should be O; 
any other value indicates an error. 

FILES 
/usr/lib/libU77.a 

SEE ALSO 
gethostname(2) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



IDATE(3F) UNIX Programmer's Manual 

NAME 
idate, itime - return date or time in numerical form 

SYNOPSIS 
subroutine idate (iarray) 
integer iarray( 3) 

subroutine itime ( iarray) 
integer iarray(3) 

DESCRIPTION 

IDATE(3F) 

Idate returns the current date in ia"ay. The order is: day, mon, year. Month will be in the range 1-12. 
Year will be~ 1969. 

Itime returns the current time in iarray. The order is: hour, minute, second. 

FILES 
/usr/lib/libU77.a 

SEE ALSO 
ctime(3F), f date(3F) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



INDEX(3F) UNIX Programmer's Manual 

NAME 
index, rindex, lnblnk, len - tell about character objects 

SYNOPSIS 
(intrinsic) function index (string, substr) 
character•(•) string, substr 

integer function rindex (string, substr) 
character•(•) string, substr 

function lnblnk (string) 
character•(•) string 

(intrinsic) function Jen (string) 
character•(•) string 

DESCRIPTION 

INDEX(3F) 

Index( rindex) returns the index of the first (last) occurrence of the substring substr in string, or zero if it 
does not occur. Index is an f77 intrinsic function; rindex is a library routine. 

FILES 

Lnblnk returns the index of the last non-blank character in string. This is useful since all f77 character 
objects are fixed length, blank padded. Intrinsic function Jen returns the size of the character object argu­
ment. 

/usr/lib/libF77 .a 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



IOINIT(3F) UNIX Programmer's Manual IOINIT(3F) 

NAME 
ioinit - change f77 1/0 initialization 

SYNOPSIS 
logical/unction ioinit (cctl, bzro, apnd,prefix, vrbose) 
logical cctl, bzro, apnd, vrbose 
character•(*) prefix 

DESCRIPTION 
This routine will initialize several global parameters in the f77 I/O system, and attach externally defined 
files to logical units at run time. The effect of the flag arguments applies to logical units opened after is 
called. The exception is the preassigned units, 5 and 6, to which cctl and bzro will apply at any time. 

· Ioinit is written in Fortran-77. 

By default, carriage control is not recognized on any logical unit. If cctl is ®then carriage control will be 
recognized on formatted output to all logical units except unit 0, the diagnostic channel. Otherwise the 
default will be restored. 

By default, trailing and embedded blanks in input data fields are ignored. If bzro is ®then such blanks will 
be treated as zeros. Otherwise the default will be restored. 

By default, all files opened for sequential access are positioned at their beginning. It is sometimes neces­
sary or convenient to open at the END-OF-Fil..E so that a write will append to the existing data. If apnd is 
®then files opened subsequently on any logical unit will be positioned at their end upon opening. A value 
of ®will restore the default behavior. 

Ioinit may be used to associate filenames with Fortran logical unit numbers through environment variables 
(see "Introduction to the f77 I/O Library" for a more general way of doing this). If the argument prefix is a 
non-blank string, then names of the form prefixNN will be sought in the program environment. The value 
associated with each such name found will be used to open logical unit NN for formatted sequential access. 
For example, if f77 program myprogram included the call 

call ioinit (.true., .false., .false., 'FORT', .false.) 

then when the following sequence 

% setenv FORTOl mydata 
% setenv FORT12 myresults 
% myprogram 

would result in logical unit 1 opened to file mydata and logical unit 12 opened to file myresults. Both files 
would be positioned at their beginning. Any formatted output would have column 1 removed and inter­
preted as carriage control. Embedded and trailing blanks would be ignored on input. 

If the argument vrbose is ®then ioinit will report on its activity. 

The effect of 

call ioinit (.true., .true., .false.,", .false.) 

can be achieved without the actual call by including ''-II66'' on thep7 command line. This gives carriage 
control on all logical units except 0, causes files to be opened at their beginning, and causes blanks to be 
interpreted as zero's. 

The internal flags are stored in a labeled common block with the following definition: 

May27, 1986 

integer•2 ieof, ictl, ibzr 
common /ioiflg/ ieof, ictl, ibzr 

INTEGRATED SOLUTIONS 4.3 BSD 1 



IOINIT(3F) 

FILES 
/usr/lib/libl77 .a 
/usr/lib/libl66.a 

SEE ALSO 

UNIX Programmer's Manual 

f77 I/O library 
sets older fortran I/O modes 

getarg(3F), getenv(3F), ''Introduction to the [17 110 Library'' 

BUGS 

IOINIT(3F) 

Prefix can be no longer than 30 characters. A pathname associated with an environment name can be no 
longer than 255 characters. 

The''+'' carriage control does not work. 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



KILL(3F) 

NAME 
kill - send a signal to a process 

SYNOPSIS 
function kill (pid, signum) 
integer pid, signum 

DESCRIPTION 

UNIX Programmer's Manual K.ILL(3F) 

Pid must be the process id of one of the user's processes. Signum must be a valid signal number (see 
sigvec(2)). The returned value will be 0 if successful; an error code otherwise. 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
kill(2), sigvec(2), signal(3F), fork(3F), perror(3F) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



LINK(3F) UNIX Programmer's Manual 

NAME 
link- make a link to an existing file 

SYNOPSIS 
function link (name], name2) 
character•(*) name], name2 

integer function symlnk (name], name2) 
character•(*) namel, name2 

DESCRIPTION 

LINK(3F) 

Name] must be the pathname of an existing file. Name2 is a pathname to be linked to file name]. Name2 
must not already exist The returned value will be 0 if successful; a system error code otherwise. 

Symlnk creates a symbolic link to namel . 

FILES 
/usr/lib/lib U77 .a 

SEE ALSO 
link(2), symlink(2), perror(3F), unlink(3F) 

BUGS 
Pathnames can be no longer than MAXPATHLEN as defined in <.SJS/param.h>. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



LOC(3F) UNIX Programmer's Manual 

NAME 
Joe - return the address of an object 

SYNOPSIS 
function Joe (arg) 

DESCRIPTION 
The returned value will be the address of arg. 

FILES 
/usr/lib/libU77 .a 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 

LOC(3F) 

1 



LONG(3F) UNIX Programmer's Manual 

NAME 
long, short - integer object conversion 

SYNOPSIS 
integer•4 function long (int2) 
integer•? int2 

integer•2/unction short (int4) 
integer•4 int4 

DESCRIPTION 

LONG(3F) 

These functions provide conversion between short and long integer objects. Long is useful when constants 
are used in calls to library routines ·and the code is to be compiled with '' -i2' '. Short is useful in similar 
context when an otherwise long object must be passed as a short integer. 

FILES 
/usr/lib/libF77 .a 



MALLOC(3F) UNIX Programmer's Manual MALLOC(3F) 

NAME 
malloc, free, falloc - memory allocator 

SYNOPSIS 
subroutine malloc (size, addr) 
integer size, addr 

subroutine free (addr) 
integer addr 

subroutine falloc lem, elsize, clean, basevec, 
integer nelem, elsize, clean, addr, offset 

DESCRIPTION .. 

Malloc, falloc and free provide a general-purpose memory allocation package. Malloc returns in addr the 
address of a block of at least size bytes beginning on an even-byte boundary. 

Falloc allocates space for an array of nelem elements of size elsize and returns the address of the block in 
addr. It zeros the block if clean is 1. It returns in offset an index such that the storage may be addressed as 
basevec(ojfset+l) ... basevec(ojfset+nelem). Falloc gets extra bytes so that after address arithmetic, all the 
objects so addressed are within the block. 

The argument to free is the address of a block previously allocated by malloc or falloc; this space is made 
available for further allocation, but its contents are left undisturbed. To free blocks allocated by falloc, use 
addr in calls to free, do not use basevec(offset+l). 

Needless to say, grave disorder will result if the space assigned by mallocorfalloc is overrun or if some 
random number is handed to free. 

DIAGNOSTICS 
Malloc and falloc set addr to 0 if there is no available memory or if the arena has been detectably cor­
rupted by storing outside the bounds of a block. 

The following example shows how to obtain memory and use it within a subprogram: 

integer addr, work(l), offset 

call falloc ( n, 4, 0, work, addr, offset ) 
do 10 i = 1, n 
work(offset+i) = ••• 

10 continue 

The next example reads in dimension information, allocates space for two arrays and two vectors, and calls 
subroutine doit to do the computations: 

integer addr, dummy(l), offs 
read*, k, l, m 
indml = 1 
indrn2 = indml + k*l 
indm3 = indm2 + l•m 
indsym = indm3 + k*m 
lsym = n*(n+ 1 )/2 
indv = indsym + lsym 
indtot = indv + m 
call falloc ( indtot, 4, 0, dummy, addr, offs) 
call do it( dummy(indml +offs), dummy(indm2+offs ), 

dummy(indm3+offs), dummy(indsym+offs), 
dummy(indv +offs), m, n, lsym) 

end 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



MALLOC(3F) UNIX Programmer's Manual 

subroutine doit( arrl, arr2, arr3, vsym, vec, m, n, lsym) 
real arrl(k,l), arr2(1,m), arr3(k,m), vsym(lsym), v2(m) 

FILES 
/usr/lib/lib U77. a 

SEE ALSO 
malloc(3) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 

MALLOC(3F) 

2 



PERROR(3F) UNIX Programmer's Manual PERROR(3F) 

NAME 
perror, gerror, ierrno - get system error messages 

SYNOPSIS 
subroutine perror (string) 
character•(*) string 

subroutine gerror (string) 
character•(*) string 

character•(*) function gerrorO 

function ierrnoO 

DESCRIPTION 

FILES 

Perror will write a message to fortran logical unit 0 appropriate to the last detected system error. String 
will be written preceding the standard error message. 

Gerror returns the system error message in character variable string. Gerror may be called either as a 
subroutine or as a function. 

Ierrno will return the error number of the last detected system error. This number is updated only when an 
error actually occurs. Most routines and I/O statements that might generate such errors return an error code 
after the call; that value is a more reliable indicator of what caused the error condition. 

/usr/lib/lib U77 .a 

SEE ALSO 
intro(2), perror(3) 
D. L. Wasley, Introduction to thef77110 Library 

BUGS 
String in the call to perror can be no longer than 127 characters. 

The length of the string returned by gerror is determined by the calling program. 

NOTES 
UNIX system error codes are described in intro(2). The f77 I/O error codes and their meanings are: 

100 ''error in format'' 
101 "illegal unit number" 
102 "formatted i/o not allowed" 
103 "unformatted i/o not allowed" 
104 "direct i/o not allowed" 
105 "sequential i/o not allowed" 
106 "can't backspace file" 
107 ''off beginning of record'' 
108 "can't stat file" 
109 ''no * after repeat count'' 
110 ''off end of record'' 
111 "truncation failed" 
112 "incomprehensible list input" 
113 "out of free space" 
114 "unit not connected" 
115 "invalid data for integer format term" 
116 ''invalid data for logical format term'' 
117 "'new' file exists" 

June 7, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



PERROR(3F) UNIX Programmer's Manual PERROR(3F) 

118 "can't find 'old' file" 
119 "opening too many files or unknown system error" 
120 ''requires seek ability'' 
121 "illegal argument" 
122 "negative repeat count" 
123 "illegal operation for unit" 
124 ''invalid data for d, e, f, or g format term'' 

June 7, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



PLOT(3F) UNIX Programmer's Manual PLOT(3F) 

NAME 
openpl, erase, label, line, box, circle, arc, move, cont, point, linemd, space, clospl - f77 library interface 
to plot (3X) libraries. 

SYNOPSIS 
subroutine openplO 

subroutine eraseO 

subroutine label( str) 
character str•(*) 

subroutine line(ixl, iyl, ix2, iy2) 

subroutine box(ixl, iyl, ix2, iy2) 
Draw a rectangle and leave the cursor at ( ix2 ,iy2). 

subroutine circle(ix, iy, ir) 

subroutine arc(ix, iy, ixO, iyO, ixl, 

subroutine move(ix, iy) 

subroutine cont( ix, iy) 

subroutine point(ix, iy) 

subroutine linemd( str) 
character str•(*) 

subroutine space(ixO, iyO, ixl, iyl) 

subroutine closplO 

DESCRIPTION 
These are interface subroutines, in the library -lf77plot, allowing j77 users to call the plot(3X) graphics 
routines which generate graphic output in a relatively device-independent manner. The [17 subroutine 
names are the same as the C function names except that linemod and closepl have been shortened to linemd 
and clospl . See plot(5) and plot(3X) for a description of their effect 

Only the first 255 character in string arguments to label and linemd are used. 

This library must be specified in the 177(1) command before the device specific graphics library; for exam­
ple, to compile and load a FOR1RAN program in progf to run on a Tektronix 4014 terminal: 

177 prog.f -1177plot -14014 

See plot(3X) for a complete list of device specific plotting libraries. 

SEE ALSO 
plot(5), plot(lG), plot(3X), graph(lG) 

October 28, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1 



PUTC(3F) UNIX Programmer's Manual 

NAME 
putc, fputc -write a character to a fortran logical unit 

SYNOPSIS 
integer function putc (char) 
character char 

integer function fputc (lunit, char) 
character char 

DESCRIPTION 

PUTC(3F) 

These funtions write a character to the file associated with a fortran logical unit bypassing normal fortran 
I/O. Pote writes to logical unit 6, normally connected to the control terminal output. 

The value of each function will be zero unless some error occurred; a system error code otherwise. See 
perror(3F). 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
putc(3S), intro(2), perror(3F) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



QSORT(3F) UNIX Programmer's Manual 

NAME 
qsort - quick sort 

SYNOPSIS 
subroutine qsort (array, len, isize, compar) 
external compar 
integer•2 compar 

DESCRIPTION 

QSORT(3F) 

One dimensional a"ay contains the elements to be sorted. len is the number of elements in the array. isize 
is the size of an element, typically -

4 for integer and real 
8 for double precision or complex 
16 for double complex 
(length of character object) for character arrays 

Compar is the name of a user supplied integer•2 function that will determine the sorting order. This func­
tion will be called with 2 arguments that will be elements of array. The function must return -

negative if arg 1 is considered to precede arg 2 
zero if arg 1 is equivalent to arg 2 
positive if arg 1 is considered to follow arg 2 

On return, the elements of a"ay will be sorted. 

FILES 
/usr/lib/libU77.a 

SEE ALSO 
qsort(3) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



RAND(3F) UNIX Programmer's Manual 

NAME 
rand, drand, irand - return random values 

SYNOPSIS 
function irand (iftag) 

function rand (ijlag) 

double precision/unction drand (iftag) 

DESCRIPTION 

RAND(3F) 

The newer random(3f) should be used in new applications; rand remains for compatibilty. 

FILES 

These functions use rand(3C) to generate sequences of random numbers. If ijlag is '1 ', the generator is 
restarted and the first random value is returned. If iftag is otherwise non-zero, it is used as a new seed for 
the random number generator, and the first new random value is returned. 

Irand returns positive integers in the range 0 through 2147483647. Rand and drand return values in the 
range 0. through 1.0 . 

/usr/lib/libF77 .a 

SEE ALSO 
random(3F), rand(3C) 

BUGS 
The algorithm returns a 31 bit quantity. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



RANDOM(3F) UNIX Programmer's Manual 

NAME 
random, drandm, irandm - better random number generator 

SYNOPSIS 
function irandm (ijlo.g) 

function random (iflag) 

double precision/unction drandm (ijlo.g) 

DESCRIPTION 

RANDOM(3F) 

These functions use random(3) to generate sequences of random numbers, and should be used rather than 
the older functions described in man 3f rand. If ijlag is non-zero, it is used as a new seed for the random 
number generator, and the first new random value is returned. 

Irandm returns positive integers in the range 0 through 2147483647 ( 2**31-1). Random and drandm 
return values in the range 0. through 1.0 by dividing the integer random number from random(3) by 
2147483647 . 

FILES 
/usr/lib/libF77 .a 

SEE ALSO 
random(3) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



RENAME(3F) 

NAME 
rename - rename a file 

SYNOPSIS 

UNIX Programmer's Manual 

integer function rename (from, to) 
character•(*) from, to 

DESCRIPTION 

RENAME(3F) 

From must be the pathname of an existing file. To will become the new pathname for the file. If to exists, 
then both from and to must be the same type of file, and must reside on the same file system. If to exists, it 
will be removed first 

The returned value will be 0 if successful; a system error code otherwise. 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
rename(2), perror(3F) 

BUGS 
Pathnames can be no longer than MAXPATHLEN as defined in <.SJSlparam.h>. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SIGNAL(3F) UNIX Programmer's Manual SIGNAL(3F) 

NAME 
signal - change the action for a signal 

SYNOPSIS 
integer function signal( signum, proc,flag) 
integer signum,flag 
external proc 

DESCRIPTION 

FILES 

When a process incurs a signal (see signal(3C)) the default action is usually to clean up and abort. The 
user may choose to write an alternative signal handling routine. A call to signal is the way this alternate 
action is specified to the system. 

Signum is the signal number (see signal(3C)). If flag is negative, then proc must be the name of the user 
signal handling routine. If flag is zero or positive, then proc is ignored and the value of flag is passed to the 
system as the signal action definition. In particular, this is how previously saved signal actions can be 
restored. Two possible values for flag have specific meanings: 0 means "use the default action" (See 
NOTES below), 1 means "ignore this signal". 

A positive returned value is the previous action definition. A value greater than 1 is the address of a rou­
tine that was to have been called on occurrence of the given signal. The returned value can be used in sub­
sequent calls to signal in order to restore a previous action definition. A negative returned value is the 
negation of a system error code. (See perror(3F)) 

/usr/lib/lib U77 .a 

SEE ALSO 

NOTES 

signal(3C), kill(3F), kill( 1) 

f77 arranges to trap certain signals when a process is started. The only way to restore the default f77 action 
is to save the returned value from the first call to signal. 

If the user signal handler is called, it will be passed the signal number as an integer argument. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SLEEP(3F) UNIX Programmer's Manual 

NAME 
sleep - suspend execution for an interval 

SYNOPSIS 
subroutine sleep (itime) 

DESCRIPTION 

SLEEP(3F) 

Sleep causes the calling process to be suspended for itime seconds. The actual time can be up to 1 second 
less than itime due to granularity in system timekeeping. 

FILES 
/usr/lib/libU77.a 

SEE ALSO 
sleep(3) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



STAT(3F) UNIX Programmer's Manual 

NAME 
stat, Istat, fstat - get file status 

SYNOPSIS 
integer function stat (name, statb) 
character•(*) name 
integer statb(l 2) 

integer function Istat (name, statb) 
character•(*) name 
integer statb(l 2) 

integer function fstat (lunit, statb) 
integer statb(l 2) 

DESCRIPTION 

STAT(3F) 

These routines return detailed information about a file. Stat and lstat return information about file name; 
fstat returns information about the file associated with fortran logical unit lunit. The order and meaning of 
the information returned in array statb is as described for the structure stat under stat(2). The "spare" 
values are not included. 

The value of either function will be zero if successful; an error code otherwise. 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
stat(2), access(3F), perror(3F), time(3F) 

BUGS 
Pathnames can be no longer than MAXPATHLEN as defined in <SJS!param.h>. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SYSTEM(3F) UNIX Programmer's Manual 

NAME 
system - execute a UNIX command 

SYNOPSIS 
integer function system (string) 
character•(*) string 

DESCRIPTION 

SYSTEM(3F) 

System causes string to be given to your shell as input as if the string had been typed as a command. If 
environment variable SHELL is found, its value will be used as the command interpreter (shell); otherwise 
sh(l) is used 

The current process waits until the command terminates. The returned value will be the exit status of the 
shell. See wait(2) for an explanation of this value. 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
exec(2), wait(2), system(3) 

BUGS 

String can not be longer than NCARGS-50 characters, as defined in <.Syslparam.h >. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TIME(3F) UNIX Programmer's Manual 

NAME 
time, ctime, ltime, gmtime - return system time 

SYNOPSIS 
real/unction time() 

character•(*) function ctime ( stime) 
integer stime 

subroutine ltime ( stime, tarray) 
integer stime, tarray(9) 

subroutine gm time ( stime, tarray) 
integer stime, ta"ay(9) 

DESCRIPTION 

TIME(3F) 

time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. This is the value of the 
UNIX system clock. 

FILES 

ctime converts a system time to a 24 character ASCII string. The format is described under ctime(3). No 
'newline' or NULL will be included. 

ltime and gmtime disect a UNIX time into month, day, etc., either for the local time zone or as GMT. The 
order and meaning of each element returned in tarray is described under ctime(3). 

/usr/lib/libU77.a 

SEE ALSO 
ctime(3), itime(3F), idate(3F), fdate(3F) 

September 1, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1 



TOPEN(3F) UNIX Programmer's Manual TOPEN(3F) 

NAME 
topen, tclose, tread, twrite, trewin, tskipf, tstate - f77tape1/0 

SYNOPSIS 
integer function topen ( tlu, devnam, label) 
integer tlu 
character•(*) devnam 
logical label 

integer function tclose (tlu) 
integer tlu 

integer function tread (tlu, buffer) 
integer tlu 
character•(* )buff er 

integer function twrite (tlu, buffer) 
integer tlu 
character•(* )buffer 

integer function trewin (tlu) 
integer tlu 

integer function tskipf (tlu, nfiles, nrecs) 
integer tlu, nfiles, nrecs 

integer function tstate (tlu,fileno, recno, errf, eoff, eotf, tcsr) 
integer tlu,fileno, recno, tcsr 
logical errf, eoff, eotf 

DESCRIPTION 
These functions provide a simple interface between f77 and magnetic tape devices. A ''tape logical unit'', 
tlu, is "topen"ed in much the same way as a normal f77 logical unit is "open"ed. All other operations are 
performed via the tlu. The tlu has no relationship at all to any normal f77 logical unit. 

Topen associates a device name with a tlu. Tiu must be in the range 0 to 3. The logical argument label 
should indicate whether the tape includes a tape label. This is used by trewin below. Topen does not 
move the tape. The normal returned value is 0. If the value of the function is negative, an error has 
occured. See perror(3F) for details. 

Tclose closes the tape device channel and removes its association with tlu. The normal returned value is 0. 
A negative value indicates an error. 

Tread reads the next physical record from tape to buffer. Buffer must be of type character. The size of 
buffer should be large enough to hold the largest physical record to be read. The actual number of bytes 
read will be returned as the value of the function. If the value is 0, the end-of-file has been detected. A 
negative value indicates an error. 

Twrite writes a physical record to tape from buffer. The physical record length will be the size of buffer. 
Buff er must be of type character. The number of bytes written will be returned. A value of 0 or negative 
indicates an error. 

Trewin rewinds the tape associated with tlu to the beginning of the first data file. If the tape is a labelled 
tape (see topen above) then the label is skipped over after rewinding. The normal returned value is 0. A 
negative value indicates an error. 

October 28, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1 



TOPEN(3F) UNIX Programmer's Manual TOPEN(3F) 

FILES 

Tskipf allows the user to skip over files and/or records. First, nfiles end-of-file marks are skipped. If the 
current file is at EOF, this counts as 1 file to skip. (Note: This is the way to reset the EOF status for a tlu .) 
Next, nrecs physical records are skipped over. The normal returned value is 0. A negative value indicates 
an error. 

Finally, tstate allows the user to determine the logical state of the tape I/O channel and to see the tape drive 
control status register. The values of fileno and recno will be returned and indicate the current file and 
record number. The logical values errf, eoff, and eotf indicate an error has occurred, the current file is at 
EOF, or the tape has reached logical end-of-tape. End-of-tape (EQT) is indicated by an empty file, often 
referred to as a double EOF mark. It is not allowed to read past EQT although it is allowed to write. The 
value of tcsr will reflect the tape drive control status register. See ht(4) for details. 

/usr/lib/lib U77 .a 

SEE ALSO 
ht(4), perror(3F), rewind(l) 

October 28, 1987 INTEGRATED SOLUTIONS 4.3 BSD 2 



TRAPER(3F) 

NAME 
traper - trap arithmetic errors 

SYNOPSIS 
integer function traper (mask) 

DESCRIPTION 

UNIX Programmer's Manual 

NOTE: This routine applies only to the VAX. It is ignored on the PDPU. 

TRAPER(3F) 

Integer overflow and floating point underflow are not normally trapped during execution. This routine 
enables these traps by setting status bits in the process status word. These bits are reset on entry to a sub­
program, and the previous state is restored on return. Therefore, this routine must be called inside each 
subprogram in which these conditions should be trapped. If the condition occurs and trapping is enabled, 
signal SIGFPE is sent to the process. (See signal(3C)) 

FILES 

The argument has the following meaning: 

value meaning 
0 do not trap either condition 
1 trap integer overflow only 
2 trap floating underflow only 
3 trap both the above 

The previous value of these bits is returned. 

/usr/lib/libF77 .a 

SEE ALSO 
signal(3C}, signal(3F) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TRAPOV(3F) UNIX Programmer's Manual TRAPOV(3F) 

NAME 
trapov - trap and repair floating point overflow 

SYNOPSIS 
subroutine trapov (numesg, rtnval) 
double precision rtnval 

DESCRIPTION 

FILES 

NOTE: This routine applies only to the older VAX 11/780's. VAX computers made or upgraded 
since spring 1983 handle errors differently. See trpfpe(3F) for the newer error handler. This routine 
has always been ineffective on the VAX 111750. It is a null routine on the PDPl 1. 

This call sets up signal handlers to trap arithmetic exceptions and the use of illegal operands. Trapping 
arithmetic exceptions allows the user's program to proceed from instances of floating point overflow or 
divide by zero. The result of such operations will be an illegal floating point value. The subsequent use of 
the illegal operand will be trapped and the operand replaced by the specified value. 

The first numesg occurrences of a floating point arithmetic error will cause a message to be written to the 
standard error file. If the resulting value is used, the value given for rtnval will replace the illegal operand 
generated by the arithmetic error. Rtnval must be a double precision value. For example, ''OdO'' or 
''dflmax()''. 

/usr/lib/libF77 .a 

SEE ALSO 

BUGS 

trpfpe(3F), signal(3F), range(3F) 

Other arithmetic exceptions can be trapped but not repaired. 

There is no way to distinguish between an integer value of 32768 and the illegal floating point form. 
Therefore such an integer value may get replaced while repairing the use of an illegal operand. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TRPFPE(3F) UNIX Programmer's Manual TRPFPE(3F) 

NAME 
trpfpe, fpecnt - trap and repair floating point faults 

SYNOPSIS 
subroutine trpfpe (numesg, rtnval) 
double precision rtnval 

integer function fpecnt O 

common /fpeflt/ fperr 
logicalfperr 

DESCRIPTION 

FILES 

NOTE: This routine applies only to Vax computers. It is a null routine on the PDPl 1. 

Trpfpe sets up a signal handler to trap arithmetic exceptions. If the exception is due to a floating point 
arithmetic fault, the result of the operation is replaced with the rtnval specified. Rtnval must be a double 
precision value. For example, "OdO" or "dflmax.()". 

The first numesg occurrences of a floating point arithmetic error will cause a message to be written to the 
standard error file. Any exception that can't be repaired will result in the default action, typically an abort 
with core image.· 

Fpecnt returns the number of faults since the last call to trpfpe. 

The logical value in the common block labelledfpejlt will be set to .true. each time a fault occurs. 

/usr/lib/libF77 .a 

SEE ALSO 

BUGS 

signal(3F), range(3F) 

This routine works only for faults, not traps. This is primarily due to the Vax architecture. 

If the operation involves changing the stack pointer, it can't be repaired. This seldom should be a problem 
with the f77 compiler, but such an operation might be produced by the optimizer. 

The POLY and EMOD opcodes are not dealt with. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TTYNAM(3F) UNIX Programmer's Manual 

NAME 
ttynam, isatty - find name of a terminal port 

SYNOPSIS 
character•(*) function ttynam (lunit) 

logical/unction isatty (lunit) 

DESCRIPTION 

TIYNAM(3F) 

Ttynam returns a blank padded path name of the terminal device associated with logical unit lunit. 

FILES 

Isatty returns .true. if lunit is associated with a terminal device, .false. otherwise. 

/dev/* 
/usr/lib/libU77 .a 

DIAGNOSTICS 
Ttynam returns an empty string (all blanks) if lunit is not associated with a terminal device in directory 
'/dev'. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



UNLINK(3F) 

NAME 
unlink - remove a directory entry 

SYNOPSIS 
integer function unlink (name) 
character•(•) name 

DESCRIPTION 

UNIX Programmer's Manual UNLINK(3F) 

Unlink causes the directory entry specified by pathname name to be removed. If this was the last link to 
the file, the contents of the file are lost. The returned value will be zero if successful; a system error code 
otherwise. 

FILES 
/usr/lib/libU77 .a 

SEE ALSO 
unlink(2), link(3F), filsys(S), perror(3F) 

BUGS 
Pathnames can be no longer than MAXPATHLEN as defined in <.SJS!param.h>. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



WAIT(3F) UNIX Programmer's Manual 

NAME 
wait - wait for a process to terminate 

SYNOPSIS 
integer function wait (status) 
integer status 

DESCRIPTION 

WAIT(3F) 

Wait causes its caller to be suspended until a signal is received or one of its child processes terminates. If 
any child has terminated since the last wait, return is immediate; if there are no children, return is immedi­
ate with an error code. 

If the returned value is positive, it is the process ID of the child and status is its termination status (see 
wait(2)). If the returned value is negative, it is the negation of a system error code. 

FILES 
/usr/lib/lib U77 .a 

SEE ALSO 
wait(2), signal(3F), kill(3F), perror(3F) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



INTR0(3M) UNIX Programmer's Manual INTR0(3M) 

NAME 
intro - introduction to mathematical library functions 

DESCRIPTION 
These functions constitute the math library, libm. They are automatically loaded as needed by the Fortran 
compiler 177(1). The link editor searches this library under the -Im option. Declarations for these func­
tions may be obtained from the "math.h" include file. 

There are actually three versions of this library. The Fortran and C compilers automatically use the 
appropriate version. When linking by hand, the user must specify the correct library, using one of the fol­
lowing options. 

OPTIONS 
-Im 

-I deem 

-lskym 

15 August 1985 

References the math library /usr/lib/libm.a, for use with IEEE floating point format software. 

References the math library /usr/lib/libdecm.a, for use with DEC floating point format 
software. 

References the math library /usr/lib/libskym.a, for use with the IEEE Sky board floating 
point processor. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



ASINH(3M) UNIX Programmer's Manual 

NAME 
asinh, acosh, atanh - inverse hyperbolic functions 

SYNOPSIS 
#include <math.h> 

double asinh(x) 
doublex; 

double acosh(x) 
doublex; 

double atanh(x) 
doublex; 

DESCRIPTION 
These functions compute the designated inverse hyperbolic functions for real arguments. 

ERROR (due to Roundoff etc.) 
These functions inherit much of their error from loglp described in exp(3M). 

SEE ALSO 
math(3M), exp(3M), infnan(3M) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 

ASINH(3M) 

1 



ERF(3M) 

NAME 
erf, erfc - error functions 

SYNOPSIS 
#include <math.h> 

double erf(x) 
doublex; 

double erfc(x) 
doublex; 

DESCRIPTION 

UNIX Programmer's Manual 

Erf (x) returns the error function of x; where erf (x) := (21"1x) f~ exp(-t2) dt 

Erfc (x) returns 1.0-erf (x). 

ERF(3M) 

The entry for erfc is provided because of the extreme loss of relative accuracy if erf (x) is called for large x 
and the result subtracted from 1. (e.g. for x = 10, 12 places are lost). 

SEE ALSO 
math(3M) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



EXP(3M) UNIX Programmer's Manual EXP(3M) 

NAME 

exp, expml, log, loglO, loglp, pow - exponential, logarithm, power 

SYNOPSIS 
#include <math.h> 

double exp(x) 
doublex; 

double expml(x) 
doublex; 

double log(x) 
doublex; 

double loglO(x) 
doublex; 

double loglp(x) 
doublex; 

double pow(x,y) 
doublex,y; 

DESCRIPTION 
Exp returns the exponential function of x. 

Expml returns exp(x)-1 accurately even for tiny x. 

Log returns the natural logarithm of x. 

LoglO returns the logarithm of x to base 10. 

Loglp returns log(l+x) accurately even for tiny x. 

Pow(x,y) returns xY. 

ERROR (due to Roundoff etc.) 
exp(x), log(x), expml(x) and loglp(x) are accurate to within an ulp, and loglO(x) to within about 2 ulps; 
an ulp is one Unit in the Last Place. The error in pow(x,y) is below about 2 ulps when its magnitude is 
moderate, but increases as pow(x,y) approaches the over/underflow thresholds until almost as many bits 
could be lost as are occupied by the floating-point format's exponent field; that is 8 bits for VAX D and 11 
bits for IEEE 754 Double. No such drastic loss has been exposed by testing; the worst errors observed 
have been below 20 ulps for VAX D, 300 ulps for IEEE 754 Double. Moderate values of pow are accurate 
enough that pow(integer,integer) is exact until it is bigger than 2**56 on a VAX, 2**53 for IEEE 754. 

DIAGNOSTICS 

NOTES 

Exp, expml, and pow return the reserved operand on a VAX when the correct value would overflow, and 
they set e"no to ERANGE. Pow(x,y) returns the reserved operand on a VAX and sets errno to EDOM 
when x < 0 and y is not an integer. 

On a VAX, errno is set to EDOM and the reserved operand is returned by log unless x > 0, by loglp unless 
X>-1. 

The functions exp(x)-1 and log (l+x) are called expml and logpl in BASIC on the Hewlett-Packard 
HP-71B and APPLE Macintosh, EXPl and LNl in Pascal, expl and logl in Con APPLE Macintoshes, 
where they have been provided to make sure financial calculations of ((l+x)**n-1)/x, namely expml 
(n*loglp(x))/x, will be accurate when xis tiny. They also provide accurate inverse hyperbolic functions. 

Pow(x,0) returns x**O = 1 for all x including x = 0, oo (not found on a VAX), and NaN (the reserved 
operand on a VAX). Previous implementations of pow may have defined x**O to be undefined in some or 
all of these cases. Here are reasons for returning x**O = 1 always: 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



EXP(3M) UNIX Programmer's Manual EXP(3M) 

(1) Any program that already tests whether xis zero (or infinite or NaN) before computing x**O cannot 
care whether O**O = 1 or not. Any program that depends upon O**O to be invalid is dubious anyway 
since that expression's meaning and, if invalid, its consequences vary from one computer system to 

another. 

(2) Some Algebra texts (e.g. Sigler's) define x••O = 1 for all x, including x = 0. This is compatible with 
the convention that accepts a[O] as the value of polynomial 

p(x) = a[O]•x••O + a[l]*X**l + a[2]*X**2 + ... + a[n]*X**n 

at x = 0 rather than reject a[O]*O**O as invalid. 

(3) Analysts will accept O**O = 1 despite that x**Y can approach anything or nothing as x and y approach 
0 independently. The reason for setting O**O = 1 anyway is this: 

If x(z) and y(z) are any functions analytic (expandable in power series) in z around z = 0, and if there 
x(O) = y(O) = 0, then x(z)**y(z) --+ 1 as z --+ 0. 

(4) If 0••0 = 1, then oo••O = 110**0 = 1 too; and then NaN••O = 1 too because x••O = 1 for all finite and 
infinite x, i.e., independently of x. 

SEE ALSO 
01ath(3M),infnan(3M) 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



FLOOR(3M) UNIX Programmer's Manual FLOOR(3M) 

NAME 
fabs, floor, ceil, rint- absolute value, floor, ceiling, and round-to-nearest functions 

SYNOPSIS 
#include <math.h> 

double floor(x) 
doublex; 

double ceil(x) 
doublex; 

double fabs(x) 
doublex; 

double rint(x) 
doublex; 

DESCRIPTION 

NOTES 

Fahs returns the absolute value I x 1. 
Floor returns the largest integer no greater than x. 

Ceil returns the smallest integer no less than x. 

Riot returns the integer (represented as a double precision number) nearest x in the direction of the prevail­
ing rounding mode. 

Rint(x) is equivalent to adding half to the magnitude and then rounding towards zero. 

In the default rounding mode, to nearest, on a machine that conforms to IEEE 754, rint(x) is the integer 
nearest x with the additional stipulation that if lrint(x)-xl= 1/2 then rint(x) is even. Other rounding modes 
can make rint act like floor, or like ceil, or round towards zero. 

Another way to obtain an integer near x is to declare (in C) 
double x; int k; k = x; 

Most C compilers round x towards 0 to get the integer k, but some do otherwise. If in doubt, use floor, ceil, 
or rint first, whichever you intend. Also note that, if x is larger than k can accommodate, the value of k and 
the presence or absence of an integer overflow are hard to predict 

SEE ALSO 
abs(3 ), ieee(3M), math(3M) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



HYPOT(3M) UNIX Programmer's Manual HYPOT(3M) 

NAME 
hypot, cabs - Euclidean distance, complex absolute value 

SYNOPSIS 
#include <math.h> 

double hypot(x,y) 
doublex,y; 

double cabs(z) 
struct {double x,y;} z; 

DESCRIPTION 
Hypot{x,y) and cabs(x,y) return sqrt(x•x+y*y) computed in such a way that underfiow will not happen, 
and overfiow occurs only if the final result deserves it. 

hypot(oo,v) = hypot{v,oo) = +oo for all v, including NaN. 

ERROR (due to Roundoff, etc.) 

NOTES 

Below 0.97 ulps. Consequently hypot{5.0,12.0) = 13.0 exactly; in general, hypot and cabs return an 
integer whenever an integer might be expected. 

The same cannot be said for the shorter and faster version of hypot and cabs that is provided in the com­
ments in cabs.c; its error can exceed 1.2 ulps. 

As might be expected, hypot(v,NaN) and hypot(NaN,v) are NaN for all.finite v; with "reserved operand" in 
place of "NaN", the same is true on a VAX. But programmers on machines other than a VAX (it has no oo) 
might be surprised at first to discover that hypot(±oo,NaN) = +oo. This is intentional; it happens because 
hypot(oo,v) = +oo for all v, finite or infinite. Hence hypot(oo,v) is independent of v. Unlike the reserved 
operand on a VAX, the IEEE NaN is designed to disappear when it turns out to be irrelevant, as it does in 
hypot(oo,NaN). 

SEE ALSO 
math(3M), sqrt(3M) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



IEEE(3M) UNIX Programmer's Manual IEEE(3M) 

NAME 
copysign, drem, finite, logb, scalb - copysign, remainder, exponent manipulations 

SYNOPSIS 
#include <math.h> 

double copysign(x,y) 
doublex,y; 

double drem(x,y) 
doublex,y; 

int finite( x) 
doublex; 

double logb(x) 
doublex; 

double scalb(x,n) 
doublex; 
int n; 

DESCRIPTION 
These functions are required for, or recommended by the IEEE standard 754 for floating-point arithmetic. 

Copysign(x,y) returns x with its sign changed toy's. 

Drem(x,y) returns the remainder r := x - n*y where n is the integer nearest the exact value of x/y; more­
over if In - x/yl = 1/2 then n is even. Consequently the remainder is computed exactly and Ir! s lyl/2. But 
drem(x,0) is exceptional; see below under DIAGNOSTICS. 

Finite(x) = 1 just when -oo < x < +oo, 
= 0 otherwise (when lxl = oo or xis NaN or 

x is the VAX's reserved operand.) 

Logb(x) returns x' s exponent n, a signed integer converted to double-precision floating-point and so 
chosen that 1 S lxl/2**n < 2 unless x = 0 or (only on machines that conform to IEEE 754) lxl = oo or x 
lies between 0 and the Underflow Threshold; see below under "BUGS". 

Scalb(x,n) = x*(2**n) computed, for integer n, without first computing 2**n. 

DIAGNOSTICS 
IEEE 754 defines drem(x,0) and drem(oo,y) to be invalid operations that produce a NaN. On a VAX, 
drem(x,0) returns the reserved operand. No oo exists on a VAX. 

IEEE 754 defines logb(±oo) = +oo and logb(O) = -oo, and requires the latter to signal Division-by-Zero. 
But on a VAX, logb(O) = 1.0- 2.0**31 = -2,147,483,647.0. And if the correct value of scalb(x,n) would 
overflow on a VAX, it returns the reserved operand and sets errno to ERAN GE. 

SEE ALSO 

BUGS 

floor(3M), math(3M), infnan(3M) 

Should drem<x,0) and logb(O) on a VAX signal invalidity by setting e"no = EDOM? Should logb(O) 
return -1.7e38? 

IEEE 754 currently specifies that logb(denormalized no.) = logb(tiniest normalized no. > 0) but the con­
sensus has changed to the specification in the new proposed IEEE standard p854, namely that logb(x) 
satisfy 

1 s scalb(lxl,-logb(x)) <Radix ... = 2 for IEEE 754 
for every x except 0, oo and NaN. Almost every program that assumes 754's specification will work 
correctly if logb follows 854's specification instead. 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



IEEE(3M) UNIX Progranuner' s Manual IEEE(3M) 

IEEE 754 requires copysign(x,NaN) = ±x but says nothing else about the sign of a NaN. A NaN (Not a 
Number) is similar in spirit to the VAX's reserved operand, but very different in important details. Since 
the sign bit of a reserved operand makes it look negative, 

copysign(x,reserved operand) = -x; 
should this return the reserved operand instead? 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



INFNAN(3M) UNIX Programmer's Manual INFNAN(3M) 

NAME 
infnan- signals invalid floating-point operations on a VAX (temporary) 

SYNOPSIS 
#include <math.h> 

double infnan(iarg) 
int iarg; 

DESCRIPTION 
At some time in the future, some of the useful properties of the Infinities and NaNs in the IEEE standard 
754 for Binary Floating-Point Arithmetic will be simulated in UNIX on the DEC VAX by using its 
Reserved Operands. Meanwhile, the Invalid, Overflow and Divide-by-Zero exceptions of the IEEE stan­
dard are being approximated on a VAX by calls to a procedure infnan in appropriate places in libm. When 
better exception-handling is implemented in UNIX, only infnan among the codes in libm will have to be 
changed. And users of libm can design their own infnan now to insulate themselves from future changes. 

Whenever an elementary function code in libm has to simulate one of the aforementioned IEEE exceptions, 
it calls infnan(iarg) with an appropriate value of iarg. Then a reserved operand fault stops computation. 
But infnan could be replaced by a function with the same name that returns some plausible value, assigns 
an apt value to the global variable e"no, and allows computation to resume. Alternatively, the Reserved 
Operand Fault Handler could be changed to respond by returning that plausible value, etc. instead of abort­
ing. 

In the table below, the first two columns show various exceptions signaled by the IEEE standard, and the 
default result it prescribes. The third column shows what value is given to iarg by functions in libm when 
they invoke infnan(iarg) under analogous circumstances on a VAX. Currently infnan stops computation 
under all those circumstances. The last two columns offer an alternative; they suggest a setting for e"no 
and a value for a revised infnan to return. And a C program to implement that suggestion follows. 

IEEE IEEE 

~7777~711~'1lJ777777fff ~q7777777777777777ifffff777 
Invalid NaN EDOM EDOM 0 
Overflow ±oo ERANGE ERANGE HUGE 
Div-by-0 ±oo ±ERAN GE ERANGE or EDOM ±HUGE 

(HUGE= 1.7e38 ... nearly 2.0**127) 

ALTERNATIVE infnan: 

#include <math.h> 
#include <errno.h> 
extern int errno ; 
double infnan(iarg) 
int iarg; 
{ 

} 

SEE ALSO 

switch(iarg) { 
case ERANGE: errno = ERANGE; return(HUGE); 
case -ERANGE: errno =EDOM; return(-HUGE); 
default: errno = EDOM; return(O); 
} 

math(3M}, intro(2}, signal(3). 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



INFNAN(3M) UNIX Programmer's Manual INFNAN(3M) 

ERANGE and EDOM are defined in <errno.h>. See intro(2) for explanation of EDOM and ERAN GE. 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



J0(3M) UNIX Programmer's Manual 

NAME 
jO, jl, jn, yO, yl, yo - bessel functions 

SYNOPSIS 
#include <math.h> 

doublejO(x) 
doublex; 

double jl(x) 
doublex; 

double jn(n,x) 
int n; 
doublex; 

double yO(x) 
doublex; 

double yl(x) 
doublex; 

double yn(n,x) 
int n; 
doublex; 

DESCRIPTION 

J0(3M) 

These functions calculate Bessel functions of the first and second kinds for real arguments and integer ord­
ers. 

DIAGNOSTICS 
On a VAX, negative arguments cause yO, yl, and yo to return the reserved operand and set errno to 
EDOM. 

SEE ALSO 
math(3M), infnan(3M) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



LGAMMA(3M) UNIX Programmer's Manual LGAMMA(3M) 

NAME 
lgamma - log gamma function 

SYNOPSIS 
#include <math.h> 

double lgamma(x) 
doublex; 

DESCRIPTION 
Lgamma 
returns ln 1r(x)I where 

returns ln lr(x)I. 

r(x) = r; c-1 e-t dt 
r(x) = 1t/(r(l-x) sin(1tx)) 

The external integer signgam returns the sign of r(x) . 

IDIOSYNCRASIES 

forx >0 and 
for x < 1. 

Do not use the expression signgam*exp(lgamma(x)) to compute g := r(x). Instead use a program like this 
(in C): 

lg = lgamrna(x); g = signgam*exp(lg); 

Only after lgamma has returned can signgam be correct. Note too that r(x) must overfiow when x is large 
enough, under:ftow when -x is large enough, and spawn a division by zero when x is a nonpositive integer. 

Only in the UNIX math library for C was the name gamma ever attached to lru. Elsewhere, for instance in 
IBM's FORTRAN library, the name GAMMA belongs tor and the name ALGAMA to lnr in single preci­
sion; in double the names are DGAMMA and DLGAMA. Why should C be different? 

Archaeological records suggest that C's gamma originally delivered ln(r(lxl)). Later, the program gamma 
was changed to cope with negative arguments x in a more conventional way, but the documentation did not 
reflect that change correctly. The most recent change corrects inaccurate values when x is almost a nega­
tive integer, and lets r(x) be computed without conditional expressions. Programmers should not assume 
that lgamma has settled down. 

At some time in the future, the name gamma will be rehabilitated and used for the gamma function, just as 
is done in FORTRAN. The reason for this is not so much compatibility with FORTRAN as a desire to 
achieve greater speed for smaller values of lxl and greater accuracy for larger values. 

Meanwhile, programmers who have to use the name gamma in its former sense, for what is now lgamma, 
have two choices: 

1) Use the old math library, libom. 

2) Add the following program to your others: 
#include <math.h> 
double gamma(x) 
doublex; 
{ 

} 

DIAGNOSTICS 

return (lgamma(x)); 

The reserved operand is returned on a VAX for negative integer arguments, errno is set to ERANGE; for 
very large arguments over/underflows will occur inside the lgamma routine. 

SEE ALSO 
math(3M), infnan(3M) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



MATH(3M) UNIX Programmer's Manual MATII(3M) 

NAME 
math - introduction to mathematical library functions 

DESCRIPTION 
These functions constitute the C math library, libm. The link editor searches this library under the ''-Im'' 
option. Declarations for these functions may be obtained from the include file <math.h>. The Fortran 
math library is described in ''man 3f intro''. 

LIST OF FUNCTIONS 
Name Appears on Page Description E"or Bound (ULPs) 

a cos sin.3m inverse trigonometric function 3 
acosh asinh.3m inverse hyperbolic function 3 
asin sin.3m inverse trigonometric function 3 
asinh asinh.3m inverse hyperbolic function 3 
a tan sin.3m inverse trigonometric function 1 
atanh asinh.3m inverse hyperbolic function 3 
atan2 sin.3m inverse trigonometric function 2 
cabs hypot.3m complex absolute value 1 
cbrt sqrt.3m cube root 1 
ceil floor.3m integer no less than 0 
copysign ieee.3m copy sign bit 0 
cos sin.3m trigonometric function 1 
cosh sinh.3m hyperbolic function 3 
drem ieee.3m remainder 0 
erf erf.3m error function ??? 
erfc erf.3m complementary error function ??? 
exp exp.3m exponential 1 
expml exp.3m exp(x)-1 1 
fabs floor.3m absolute value 0 
floor floor.3m integer no greater than 0 
hypot hypot.3m Euclidean distance 1 
infnan infnan.3m signals exceptions 
jO j0.3m bessel function ??? 
jl j0.3m bessel function ??? 
jn j0.3m bessel function ??? 
lgamma lgamma3m log gamma function; (formerly gamma.3m) 
log exp.3m natural logarithm 1 
logb ieee.3m exponent extraction 0 
loglO exp.3m logarithm to base 10 3 
loglp exp.3m log(l+x) 1 
pow exp.3m exponential X**Y 60-500 
rint floor.3m round to nearest integer 0 
scalb ieee.3m exponent adjustment 0 
sin sin.3m trigonometric function 1 
sinh sinh.3m hyperbolic function 3 
sqrt sqrt.3m square root 1 
tan sin.3m trigonometric function 3 
tanh sinh.3m hyperbolic function 3 
yO j0.3m bessel function ??? 
yl j0.3m bessel function ??? 
yn j0.3m bessel function ??? 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



MATII(3M) UNIX Programmer's Manual MATH(3M) 

NOTES 
In 4.3 BSD, distributed from the University of California in late 1985, most of the foregoing functions 
come in two versions, one for the double-precision "D" format in the DEC V AX-11 family of computers, 
another for double-precision arithmetic conforming to the IEEE Standard 754 for Binary Floating-Point 
Arithmetic. The two versions behave very similarly, as should be expected from programs more accurate 
and robust than was the norm when UNIX was born. For instance, the programs are accurate to within the 
numbers of ulps tabulated above; an ulp is one Unit in the Last Place. And the programs have been cured 
of anomalies that affiicted the older math library libm in which incidents like the following had been 
reported: 

sqrt(-1.0) = 0.0 and log(-1.0) = -1.7e38. 
cos(l.Oe-11) > cos(0.0) > 1.0. 
pow(x,1.0) :I: x when x = 2.0, 3.0, 4.0, ... , 9.0. 
pow(-1.0,1.0elO) trapped on Integer Overflow. 
sqrt(l.Oe30) and sqrt(l.Oe-30) were very slow. 

However the two versions do differ in ways that have to be explained, to which end the following notes are 
provided. 

DEC V AX-11 D _floating-point: 

This is the format for which the original math library libm was developed, and to which this manual is still 
principally dedicated It is the double-precision format for the PDP-11 and the earlier V AX-11 machines; 
V AX-1 ls after 1983 were provided with an optional "G" format closer to the IEEE double-precision for­
mat. The earlier DEC Micro V AXs have no D format, only G double-precision. (Why? Why not?) 

Properties of D _floating-point: 
Wordsize: 64 bits, 8 bytes. Radix: Binary. 
Precision: 56 significant bits, roughly like 17 significant decimals. 

If x and x' are consecutive positive D _floating-point numbers (they differ by 1 ulp), then 
1.3e-17 < 0.5••56 < (x'-x)/x S 0.5••55 < 2.8e-17. 

Range: Overflow threshold = 2.0••127 = 1.7e38. 
Underflow threshold = 0.5••128 = 2.9e-39. 
NOTE: THIS RANGE IS COMPARATIVELY NARROW. 
Overflow customarily stops computation. 
Underflow is customarily flushed quietly to zero. 
CAUTION: 

It is possible to have x -:1: y and yet x-y = 0 because of underflow. Similarly x > 
y > 0 cannot prevent either x•y = 0 or y/x = 0 from happening without warning. 

Zero is represented ambiguously. 
Although 2**55 different representations of zero are accepted by the hardware, only the 
obvious representation is ever produced. There is no -0 on a VAX. 

oo is not part of the VAX architecture. 
Reserved operands: 

of the 2••55 that the hardware recognizes, only one of them is ever produced. Any 
floating-point operation upon a reserved operand, even a MOVF or MOVD, customarily 
stops computation, so they are not much used. 

Exceptions: 
Divisions by zero and operations that overflow are invalid operations that customarily 
stop computation or, in earlier machines, produce reserved operands that will stop com­
putation. 

Rounding: 
Every rational operation ( +, -, •, /) on a VAX (but not necessarily on a PDP-11), if not 
an over/underflow nor division by zero, is rounded to within half an ulp, and when the 
rounding error is exactly half an ulp then rounding is away from 0. 

May 27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



MATH(3M) UNIX Programmer's Manual MATH(3M) 

Except for its narrow range, D _floating-point is one of the better computer arithmetics designed in the 
1960's. Its properties are reflected fairly faithfully in the elementary functions for a VAX distributed in 4.3 
BSD. They over/underflow only if their results have to lie out of range or very nearly so, and then they 
behave much as any rational arithmetic operation that over/underflowed would behave. Similarly, expres­
sions like log(O) and atanh( 1) behave like 1/0; and sqrt(-3) and acos(3) behave like 0/0; they all produce 
reserved operands and/or stop computation! The situation is described in more detail in manual pages. 

This response seems excessively punitive, so it is destined to be replaced at some time in 
the foreseeable future by a more flexible but still uniform scheme being developed to han­
dle all .floating-point arithmetic exceptions neatly. See inf nan( 3M) for the present state 
of affairs. 

How do the functions in 4.3 .BSD's new libm for UNIX compare with their counterparts in DEC's 
VAX/VMS library? Some of die· VMS functions are a little faster, some are a little more accurate, some 
are more puritanical about exceptions (like pow(0.0,0.0) and atan2(0.0,0.0)), and most occupy much more 
memory than their counterparts in libm. The VMS codes interpolate in large table to achieve speed and 
accuracy; the libm codes use tricky formulas compact enough that all of them may some day fit into a 
ROM. 

More important, DEC regards the VMS codes as proprietary and guards them zealously against unauthor­
ized use. But the libm codes in 4.3 BSD are intended for the public domain; they may be copied freely pro­
vided their provenance is always acknowledged, and provided users assist the authors in their researches by 
reporting experience with the codes. Therefore no user of UNIX on a machine whose arithmetic resembles 
VAX D _floating-point need use anything worse than the new libm. 

IEEE STANDARD 754 Floating-Point Arithmetic: 

This standard is on its way to becoming more widely adopted than any other design for computer arith­
metic. VLSI chips that conform to some version of that standard have been produced by a host of 
manufacturers, among them ... 

Intel i8087, i80287 National Semiconductor 32081 
Motorola 68881 Weitek W1L-1032, ... , -1165 
Zilog Z8070 Western Electric (AT&T) WE32106. 

Other implementations range from software, done thoroughly in the Apple Macintosh, through VLSI in the 
Hewlett-Packard 9000 series, to the ELXSI 6400 running ECL at 3 Megaflops. Several other companies 
have adopted the formats of IEEE 754 without, alas, adhering to the standard's way of handling rounding 
and exceptions like over/underflow. The DEC VAX G _floating-point format is very similar to the IEEE 
7 54 Double format, so similar that the C programs for the IEEE versions of most of the elementary func­
tions listed above could easily be converted to run on a MicroVAX, though nobody has volunteered to do 
that yet. 

The codes in 4.3 BSD's libm for machines that conform to IEEE 754 are intended primarily for the 
National Semi. 32081 and WTL 1164/65. To use these codes with the Intel or Zilog chips, or with the 
Apple Macintosh or ELXSI 6400, is to forego the use of better codes provided (perhaps freely) by those 
companies and designed by some of the authors of the codes above. Except for atan, cabs, cbrt, erf, erfc, 
hypot, jO-jn, lgamma, pow and yO-yn, the Motorola 68881 has all the functions in libm on chip, and fas­
ter and more accurate; it, Apple, the i8087, Z8070 and WE32106 all use 64 significant bits. The main vir­
tue of 4.3 BSD's libm codes is that they are intended for the public domain; they may be copied freely pro­
vided their provenance is always acknowledged, and provided users assist the authors in their researches by 
reporting experience with the codes. Therefore no user of UNIX on a machine that conforms to IEEE 754 
need use anything worse than the new libm. 

Properties of IEEE 754 Double-Precision: 

May27, 1986 

Wordsize: 64 bits, 8 bytes. Radix: Binary. 
Precision: 53 significant bits, roughly like 16 significant decimals. 

If x and x' are consecutive positive Double-Precision numbers (they differ by 1 ulp), 
then 

INTEGRATED SOLUTIONS 4.3 BSD 3 



MATH(3M) 

May 27, 1986 

UNIX Programmer's Manual 

1.le-16 < 0.5••53 < (x'-x)/x S 0.5••52 < 2.3e-16. 
Range: Overflow threshold = 2.0* * 1024 = 1.8e308 

Underflow threshold = 0.5••1022 = 2.2e-308 
Overfiow goes by default to a signed oo. 

MATH(3M) 

Underflow is Gradual, rounding to the nearest integer multiple of 0.5** 1074 = 4.9e-324. 
Zero is represented ambiguously as +O or -0. 

Its sign transforms correctly through multiplication or division, and is preserved by addi­
tion of zeros with like signs; but x-x yields +0 for every finite x. The only operations 
that reveal zero's sign are division by zero and copysign(x,±0). In particular, comparison 
(x > y, x ~ y, etc.) cannot be affected by the sign of zero; but if finite x = y then oo = 

1/(x-y) * -1/(y-x) = --oo. 

oo is signed. 
it persists when added to itself or to any finite number. Its sign transforms correctly 
through multiplication and division, and (finite)/±oo = ±0 (nonzero)/0 = ±oo. But 00--00, 

oo•O and oo/oo are, like 0/0 and sqrt(-3), invalid operations that produce NaN . ..• 
Reserved operands: 

there are 2••53-2 of them, all called NaN (Not a Number). Some, called Signaling 
NaNs, trap any fioating-point operation performed upon them; they are used to mark 
missing or uninitialized values, or nonexistent elements of arrays. The rest are Quiet 
NaNs; they are the default results of Invalid Operations, and propagate through subse­
quent arithmetic operations. If x * x then xis NaN; every other predicate (x > y, x = y, x 
< y, ... )is FALSE if NaN is involved. 
NOTE: Trichotomy is violated by NaN. 

Rounding: 

Besides being FALSE, predicates that entail ordered comparison, rather than 
mere (in)equality, signal Invalid Operation when NaN is involved. 

Every algebraic operation(+,-,•,/, ..J) is rounded by default to within half an ulp, and 
when the rounding error is exactly half an ulp then the rounded value's least significant 
bit is zero. This kind of rounding is usually the best kind, sometimes provably so; for 
instance, for every x = 1.0, 2.0, 3.0, 4.0, ... , 2.0**52, we find (x/3.0)•3.0 == x and 
(x/10.0)•10.0 == x and ... despite that both the quotients and the products have been 
rounded. Only rounding like IEEE 754 can do that. But no single kind of rounding can 
be proved best for every circumstance, so IEEE 7 54 provides rounding towards zero or 
towards +oo or towards -oo at the programmer's option. And the same kinds of rounding 
are specified for Binary-Decimal Conversions, at least for magnitudes between roughly 
1.0e-10 and 1.0e37. 

Exceptions: 
IEEE 754 recognizes five kinds of fioating-point exceptions, listed below in declining 
order of probable importance. 

Exception Default Result 
7777777777777777777777777777777777777 
Invalid Operation NaN, or FALSE 
Overfiow ±oo 
Divide by Zero ±oo 
Underflow Gradual Underflow 
Inexact Rounded value 

NOTE: An Exception is not an Error unless handled badly. What makes a class of 
exceptions exceptional is that no single default response can be satisfactory in every 
instance. On the other hand, if a default response will serve most instances satisfactorily, 
the unsatisfactory instances cannot justify aborting computation every time the exception 
occurs. 

INTEGRATED SOLUTIONS 4.3 BSD 4 



MATH(3M) UNIX Programmer's Manual MATH(3M) 

For each kind of floating-point exception, IEEE 7 54 provides a Flag that is raised each time its 
exception is signaled, and stays raised until the program resets it. Programs may also test, save 
and restore a flag. Thus, IEEE 754 provides three ways by which programs may cope with excep­
tions for which the default result might be unsatisfactory: 

1) Test for a condition that might cause an exception later, and branch to avoid the exception. 

2) Test a flag to see whether an exception has occurred since the program last reset its flag. 

3) Test a result to see whether it is a value that only an exception could have produced. 
CAUTION: The only reliable ways to discover whether Underflow has occurred are to test 
whether products or quotients lie closer to zero than the underflow threshold, or to test the 
Underflow flag. (Sums and differences cannot underflow in IEEE 754; if x-::!: y then x-y is 
correct to full precision and certainly nonzero regardless of how tiny it may be.) Products 
and quotients that underflow gradually can lose accuracy gradually without vanishing, so 
comparing them with zero (as one might on a VAX) will not reveal the loss. Fortunately, if a 
gradually underflowed value is destined to be added to something bigger than the underflow 
threshold, as is almost always the case, digits lost to gradual underflow will not be missed 
because they would have been rounded off anyway. So gradual underflows are usually prov­
ably ignorable. The same cannot be said of underflows flushed to 0. 

At the option of an implementor conforming to IEEE 754, other ways to cope with exceptions 
may be provided: 

4) ABORT. This mechanism classifies an exception in advance as an incident to be handled by 
means traditionally associated with error-handling statements like "ON ERROR GO TO ... ". 
Different languages offer different forms of this statement, but most share the following 
characteristics: 

No means is provided to substitute a value for the offending operation's result and resume 
computation from what may be the middle of an expression. An exceptional result is aban­
doned. 

In a subprogram that lacks an error-handling statement, an exception causes the subprogram 
to abort within whatever program called it, and so on back up the chain of calling subpro­
grams until an error-handling statement is encountered or the whole task is aborted and 
memory is dumped. 

5) STOP. This mechanism, requiring an interactive debugging environment, is more for the 
programmer than the program. It classifies an exception in advance as a symptom of a 
programmer's error; the exception suspends execution as near as it can to the offending 
operation so that the programmer can look around to see how it happened. Quite often the 
first several exceptions turn out to be quite unexceptionable, so the programmer ought ideally 
to be able to resume execution after each one as if execution had not been stopped. 

6) ... Other ways lie beyond the scope of this document. 

The crucial problem for exception handling is the problem of Scope, and the problem's solution is under­
stood, but not enough manpower was available to implement it fully in time to be distributed in 4.3 BSD' s 
libm. Ideally, each elementary function should act as if it were indivisible, or atomic, in the sense that ... 

i) No exception should be signaled that is not deserved by the data supplied tv that function. 

ii) Any exception signaled should be identified with that function rather than with one of its subroutines. 

iii) The internal behavior of an atomic function should not be disrupted when a calling program changes 
from one to another of the five or so ways of handling exceptions listed above, although the definition 
of the function may be correlated intentionally with exception handling. 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 5 



MATH(3M) UNIX Programmer's Manual MATH(3M) 

BUGS 

Ideally, every programmer should be able conveniently to turn a debugged subprogram into one that 
appears atomic to its users. But simulating all three characteristics of an atomic function is still a tedious 
affair, entailing hosts of tests and saves-restores; work is under way to ameliorate the inconvenience. 

Meanwhile, the functions in libm are only approximately atomic. They signal no inappropriate exception 
except possibly ... 

Over/Underflow 
when a result, if properly computed, might have lain barely within range, and 

Inexact in cabs, cbrt, hypot, loglO and pow 
when it happens to be exact, thanks to fortuitous cancellation of errors. 

Otherwise, ... 
Invalid Operation is signaled only when 

any result but NaN would probably be misleading. 
Overflow is signaled only when 

the exact result would be finite but beyond the overflow threshold. 
Divide-by-Zero is signaled only when 

a function takes exactly infinite values at finite operands. 
Underflow is signaled only when 

the exact result would be nonzero but tinier than the underflow threshold. 
Inexact is signaled only when 

greater range or precision would be needed to represent the exact result 

When signals are appropriate, they are emitted by certain operations within the codes, so a 
subroutine-trace may be needed to identify the function with its signal in case method 5) above is in use. 
And the codes all take the IEEE 754 defaults for granted; this means that a decision to trap all divisions by 
zero could disrupt a code that would otherwise get correct results despite division by zero. 

SEE ALSO 
An explanation of IEEE 754 and its proposed extension p854 was published in the IEEE magazine MICRO 
in August 1984 under the title "A Proposed Radix- and Word-length-independent Standard for 
Floating-point Arithmetic" by W. J. Cody et al. The manuals for Pascal, C and BASIC on the Apple 
Macintosh document the features of IEEE 754 pretty well. Articles in the IEEE magazine COMPUTER 
vol. 14 no. 3 (Mar. 1981), and in the ACM SIGNUM Newsletter Special Issue of Oct 1979, may be help­
ful although they pertain to superseded drafts of the standard. 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 6 



SIN(3M) UNIX Programmer's Manual SIN (3M) 

NAME 
sin, cos, tan, asin, acos, atan, - trigonometric functions and their inverses 

SYNOPSIS 
#include <math.h> 

double sin(x) 
doublex; 

double cos(x) 
doublex; 

double tan(x) 
doublex; 

double asin( x) 
doublex; 

double acos(x) 
doublex; 

double atan(x) 
doublex; 

double atan2(y,.x) 
double y ,.x; 

DESCRIPTION 
Sin, cos, and tan return trigonometric functions of radian arguments x. 

Asin returns the arc sine in the range -'Tt/2 to 'Tt/2. 

Acos returns the arc cosine in the range 0 to 1t. 

Atan returns the arc tangent in the range -'Tt/2 to 'Tt/2. 

Ona VAX, 
atan2(y,x) := atan(y/x) if x > 0, 

sign(y)*(1t - atan(ly/xl)) if x < 0, 
0 if x = y = 0, or 
sign(y)*'Tt/2 if x = 0 '¢ y. 

DIAGNOSTICS 

NOTES 

On a VAX, if lxl > 1 then asin(x) and acos(x) will return reserved operands and errno will be set to EDOM. 

Atan2 defines atan2(0,0) = 0 on a VAX despite that previously atan2(0,0) may have generated an error 
message. The reasons for assigning a value to atan2(0,0) are these: 

(1) Programs that test arguments to avoid computing atan2(0,0) must be indifferent to its value. Programs 
that require it to be invalid are vulnerable to diverse reactions to that invalidity on diverse computer 
systems. 

(2) Atan2 is used mostly to convert from rectangular (x,y) to polar (r,0) coordinates that must satisfy x = 
r*cos0 and y = r*sin0. These equations are satisfied when (x=O,y=O) i;; mapped to (r=0,0=0) on a 
VAX. In general, conversions to polar coordinates should be computed thus: 

r := hypot(x,y); ... := '1(x2 +y2) 
e := atan2(y,x). 

(3) The foregoing formulas need not be altered to cope in a reasonable way with signed zeros and 
infinities on a machine that conforms to IEEE 754; the versions of hypot and atan2 provided for such a 
machine are designed to handle all cases. That is why atan2(±0,-0) = ±7t, for instance. In general the 
formulas above are equivalent to these: 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SIN(3M) UNIX Programmer's Manual 

r := .../(x*x+y*y); if r = 0 then x := copysign(l,x); 
if x > 0 then e := 2*atan(y/(r+x)) 

else e := 2*atan((r-x)/y); 

SIN (3M) 

except if r is infinite then atan2 will yield an appropriate multiple of 1t/4 that would otherwise have to be 
obtained by taking limits. 

ERROR (due to RoundotT etc.) 
Let P stand for the number stored in the computer in place of 1t = 3.14159 26535 89793 23846 26433 .... 
Let "trig" stand for one of "sin", "cos" or "tan". Then the expression "trig(x)" in a program actually pro­
duces an approximation to trig(x*1tlP), and "atrig(x)" approximates (P/1t)*atrig(x). The approximations are 
close, within 0.9 ulps for sin, cos and atan, within 2.2 ulps for tan, asin, acos and atan2 on a VAX. More­
over, P = 1t in the codes that run on a VAX. 

In the codes that run on other machines, P differs from 1t by a fraction of an ulp; the difference matters only 
if the argument xis huge, and even then the difference is likely to be swamped by the uncertainty in x. 
Besides, every trigonometric identity that does not involve 1t explicitly is satisfied equally well regardless 
of whether P = 1t. For instance, sin2(x)+cos2(x) = 1 and sin(2x) = 2 sin(x)cos(x) to within a few ulps no 
matter how big x may be. Therefore the difference between P and 1t is most unlikely to affect scientific and 
engineering computations. 

SEE ALSO 
math(3M}, hypot(3M}, sqrt(3M}, infnan(3M) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



SINH(3M) UNIX Programmer's Manual 

NAME 
sinh, cosh, tanh - hyperbolic functions 

SYNOPSIS 
#include <math.h> 

double sinh(x) 
doublex; 

double cosh(x) 
doublex; 

double tanh(x) 
doublex; 

DESCRIPTION 
These functions compute the designated hyperbolic functions for real arguments. 

ERROR (due to Roundoff etc.) 
Below 2.4 ulps; an ulp is one Unit in the Last Place. 

DIAGNOSTICS 
Sinh and cosh return the reserved operand on a VAX if the correct value would overflow. 

SEE ALSO 
math(3M), infnan(3M) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 

SINH(3M) 

1 



SQRT(3M) 

NAME 
cbrt, sqrt - cube root, square root 

SYNOPSIS 
#include <math.h> 

double cbrt(x) 
doublex; 

double sqrt(x) 
doublex; 

DESCRIPTION 
Cbrt(x).returns the cube root of x. 

UNIX Programmer's Manual 

Sqrt(x) returns the square root of x. 

DIAGNOSTICS 
On a VAX, sqrt(negative) returns the reserved operand and sets errno to EDOM. 

ERROR (due to Roundoff etc.) 
Cbrt is accurate to within 0.7 ulps. 
Sqrt on a VAX is accurate to within 0.501 ulps. 

SQRT(3M) 

Sqrt on a machine that conforms to IEEE 7 54 is correctly rounded in accordance with the rounding mode 
in force; the error is less than half an ulp in the default mode (round-to-nearest). An ulp is one Unit in the 
Last Place carried. 

SEE ALSO 
math(3M), infnan(3M) 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 





INTR0(3N) UNIX Programmer's Manual 

NAME 
intro - introduction to network library functions 

DESCRIPTION 
This section describes functions that are applicable to the DARPA Internet network. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 

INTR0(3N) 

1 



BYTEORDER(3N) UNIX Programmer's Manual 

NAME 
htonl, htons, ntohl, ntohs- convert values between host and network byte order 

SYNOPSIS 
#include <sys/types.h> 
#include <netinet/in.h> 

netlong = htonl(hostlong); 
u _long netlong, host long; 

netshort = htons(hostshort); 
u_short netshort, hostshort; 

hostlong = ntohl(netlong); 
u_Iong hostlong, netlong; 

hostshort = ntohs(netshort); 
u_short hostshort, netshort; 

DESCRIPTION 

BYTEORDER ( 3N) 

These routines convert 16- and 32-bit quantities between network byte order and host byte order. On 
machines such as the IS68K these routines are defined as null macros in the include file <netinet/in.h>. 

These routines are most often used in conjunction with Internet addresses and ports as returned by 
gethostent(3N) and getservent(3N). 

SEE ALSO 
gethostent(3N), getservent(3N) 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETHOSTBYNAME ( 3N) UNIX Programmer's Manual GETHOSTBYNAME ( 3N) 

NAME 
gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent - get network host entry 

SYNOPSIS 
#include <netdb.h> 

extern int h_errno; 

struct hostent •gethostbyname(name) 
char •name; 

struct hostent •gethostbyaddr(addr, len, type) 
char •addr; int len, type; 

struct hostent •gethostentO 

sethostent( stayopen) 
int stayopen; 

endhostentO 

DESCRIPTION 
Gethostbyname and gethostbyaddr each return a pointer to an object with the following structure. This 
structure contains either the information obtained from the name server, named(8), or broken-out fields 
from a line in /etc/hosts . If the local name server is not running these routines do a lookup in /etc/hosts . 

struct hostent { 
char •h_name; 
char **h_aliases; 
int h _ addrtype; 
int h_length; 
char **h_addr_list; 

}; 
#define h _ addr h _ addr _ list[O] 

The members of this structure are: 

h name Official name of the host. 

I* official name of host */ 
I* alias list •I 
I* host address type */ 
/* length of address */ 
/*list of addresses from name server*/ 

I• address, for backward compatibility •/ 

h aliases A zero terminated array of alternate names for the host. 

h_ addrtype The type of address being returned; currently always AF_ INET. 

h _length The length, in bytes, of the address. 

h addr list A zero terminated array of network addresses for the host. Host addresses are returned in 
network byte order. 

h addr The first address in h _addr _list; this is for backward cornpatiblity. 

Sethostent allows a request for the use of a connected socket using TCP for queries. If the stayopen fiag is 
non-zero, this sets the option to send all queries to the name server using TCP and to retain the connection 
after each call to gethostbyname or gethostbyaddr. 

Endhostent closes the TCP connection. 

DIAGNOSTICS 
Error return status from gethostbyname and gethostbyaddr is indicated by return of a null pointer. The 
external integer h _ errno may then be checked to see whether this is a temporary failure or an invalid or 
unknown host 

h _ errno can have the following values: 

HOST _NOT _FOUND No such host is known. 

TRY AGAIN This is usually a temporary error and means that the local server did not 

May20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GEIBOSTBYNAME ( 3N) UNIX Programmer's Manual GEIBOSTBYNAME ( 3N) 

FILES 

NO RECOVERY 

NO ADDRESS 

receive a response from an authoritative server. A retry at some later 
time may succeed 

This is a non-recoverable error. 

The requested name is valid but does not have an IP address; this is not a 
temporary error. This means another type of request to the name server 
will result in an answer. 

/etc/hosts 

SEE ALSO 
hosts(5), resolver(3), named(8) 

CAVEAT 

BUGS 

Gethostent is defined, and setbostent and endhostent are redefined, when libc is built to use only the rou­
tines to lookup in /etc/hosts and not the name server. 

Gethostent reads the next line of /etc/hosts , opening the file if necessary. 

Sethostent is redefined to open and rewind the file. If the stayopen argument is non-zero, the hosts data 
base will not be closed after each call to gethostbyname or gethostbyaddr. Endhostent is redefined to 
close the file. 

All information is contained in a static area so it must be copied if it is to be saved. Only the Internet 
address format is currently understood. 

May20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



GETNETENT ( 3N) UNIX Programmer's Manual GETNETENT ( 3N) 

NAME 
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent- get network entry 

SYNOPSIS 
#include < netdb.h> 

struct netent •getnetentO 

struct netent * getnetbyname(name) 
char •name; 

struct netent •getnetbyaddr(net, type) 
long net; 
int type; 

setnetent( stayopen) 
int stayopen; 

endnetentO 

DESCRIPTION 

FILES 

Getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object with the following struc­
ture containing the broken-out fields of a line in the network data base, /etc/networks . 

struct netent { 
char 
char 
int 
unsigned long 

}; 

The members of this structure are: 

•n_name; 
••n_aliases; 
n addrtype; 
n_net; 

The official name of the network. 

/*official name of net •I 
/* alias list •/ 
/* net number type •/ 
I• net number •/ 

n name 

n_aliases A zero terminated list of alternate names for the network. 

n_addrtype The type of the network number returned; currently only AF_ INET. 

n net The network number. Network numbers are returned in machine byte order. 

Getnetent reads the next line of the file, opening the file if necessary. 

Setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be closed 
after each call to getnetbyname or getnetbyaddr. 

Endnetent closes the file. 

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file until a matching net 
name or net address and type is found, or until EOF is encountered. Network numbers are supplied in host 
order. 

/etc/networks 

SEE ALSO 
networks(5) 

DIAGNOSTICS 

BUGS 

Null pointer (0) returned on EOF or error. 

All information is contained in a static area so it must be copied if it is to be saved. Only Internet network 
numbers are currently understood. Expecting network numbers to fit in no more than 32 bits is probably 
naive. 

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETPROTOENT ( 3N) UNIX Programmer's Manual GETPROTOENT ( 3N) 

NAME 
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get protocol entry 

SYNOPSIS 
#include <netdb.h> 

struct protoent •getprotoentO 

struct protoent •getprotobyname(name) 
char •name; 

struct protoent •getprotobynumber(proto) 
intproto; 

setprotoent( stayopen) 
int stayopen 

endprotoent() 

DESCRIPTION 

FILES 

Getprotoent, getprotobyname, and getprotobynumber each return a pointer to an object with the follow­
ing structure containing the broken-out fields of a line in the network protocol data base, /etc/protocols . 

struct protoent { 
char *p_narne; /*official name of protocol*/ 
char **p_aliases; /*alias list•/ 
int p _proto; /* protocol number */ 

}; 

The members of this structure are: 

p name The official name of the protocol. 

p _aliases A zero terminated list of alternate names for the protocol. 

p_proto The protocol number. 

Getprotoent reads the next line of the file, opening the file if necessary. 

Setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be 
closed after each call to getprotobyname or getprotobynumber. 

Endprotoent closes the file. 

Getprotobyname and getprotobynumber sequentially search from the beginning of the file until a match­
ing protocol name or protocol number is found, or until EOF is encountered. 

/etc/protocols 

SEE ALSO 
protocols(5) 

DIAGNOSTICS 
Null pointer (0) returned on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to be saved. Only the Internet pro­
tocols are currently understood. 

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETSERVENT ( 3N) UNIX Programmer's Manual GETSER VENT ( 3N) 

NAME 
getservent, getservbyport, getservbyname, setservent, endservent - get service entry 

SYNOPSIS 
#include <netdb.h> 

struct servent • getserventO 

struct servent •getservbyname(name, proto) 
char •name, *proto; 

struct servent •getservbyport(port, proto) 
int port; char *pro to; 

setservent( stayopen) 
int stayopen 

endserventO 

DESCRIPTION 

FILES 

Getservent, getservbyname, and getservbyport each return a pointer to an object with the following 
structure containing the broken-out fields of a line in the network services data base, /etc/services . 

struct servent { 
char 
char 
int 
char 

}; 

•s_name; 
**s_aliases; 
s_port; 
•s_proto; 

The members of this structure are: 

s name The official name of the service. 

/* official name of service */ 
I• alias list */ 
I• port service resides at */ 
I* protocol to use */ 

s aliases A zero terminated list of alternate names for the service. 

s_port The port number at which the service resides. Port numbers are returned in network byte order. 

s _proto The name of the protocol to use when contacting the service. 

Getservent reads the next line of the file, opening the file if necessary. 

Setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will not be closed 
after each call to getservbyname or getservbyport. 

Endservent closes the file. 

Getservbyname and getservbyport sequentially search from the beginning of the file until a matching 
protocol name or port number is found, or until EOF is encountered. If a protocol name is also supplied 
(non-NULL), searches must also match the protocol. 

/etc/services 

SEE ALSO 
getprotoent(3N), services(5) 

DIAGNOSTICS 
Null pointer (0) returned on EOF or error. 

BUGS 
All information is contained in a static area so it must be copied if it is to be saved. Expecting port 
numbers to fit in a 32 bit quantity is probably naive. 

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



INET(3N) UNIX Programmer's Manual INET(3N) 

NAME 
inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof- Internet address manipula­
tion routines 

SYNOPSIS 
#include < syslsocket.h> 
#include < netinetlin.h> 
#include <arpalinet.h> 

unsigned long in et_ addr( cp) 
char •cp; 

unsigned long inet_network(cp) 
char •cp; 

char •inet_ ntoa(in) 
struct in_ addr in; 

struct in_addr inet_makeaddr(net, Ina) 
int net, Ina; 

int inet_Inaof(in) 
struct in_addr in; 

int inet_netof(in) 
struct in_ addr in; 

DESCRIPTION 
The routines inet_addr and inet_network each interpret character strings representing numbers expressed 
in the Internet standard''.'' notation, returning numbers suitable for use as Internet addresses and Internet 
network numbers, respectively. The routine inet ntoa takes an Internet address and returns an ASCII 
string representing the address in "." notation. The routine inet_makeaddr takes an Internet network 
number and a local network address and constructs an Internet address from it. The routines inet_netof 
and inet_Inaof break apart Internet host addresses, returning the network number and local network 
address part, respectively. 

All Internet address are returned in network order (bytes ordered from left to right). All network numbers 
and local address parts are returned as machine format integer values. 

INTERNET ADDRESSES 
Values specified using the ''.'' notation take one of the following forms: 

a.b.c.d 
a.b.c 
a.b 
a 

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right, to the 
four bytes of an Internet address. 

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in the right 
most two bytes of the network address. This makes the three part address format convenient for specifying 
Class B network addresses as "128.net.host". 

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed in the right 
most three bytes of the network address. This makes the two part address format convenient for specifying 
Class A network addresses as "nethost". 

When only one part is given, the value is stored directly in the network address without any byte rearrange­
ment 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



INET(3N) UNIX Programmer's Manual INET(3N) 

All numbers supplied as "parts" in a"." notation may be decimal, octal, or hexadecimal, as specified in 
the C language (i.e., a leading Ox or OX implies hexadecimal; otheiwise, a leading 0 implies octal; other­
wise, the number is interpreted as decimal). 

SEE ALSO 
gethostbyname(3N), getnetent(3N), hosts(5), networks(5), 

DIAGNOSTICS 

BUGS 

The value -1 is returned by inet_ addr and inet_ network for malformed requests. 

The problem of host byte ordering versus network byte ordering is confusing. A simple way to specify 
Class C network addresses in a manner similar to that for Class B and Class A is needed. The string 
returned by inet _ ntoa resides in a static memory area. 
Inet _ addr should return a struct in_ addr. 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



NS(3N) UNIX Programmer's Manual NS(3N) 

NAME 
ns_addr, ns_ntoa- Xerox NS(tm) address conversion routines 

SYNOPSIS 
#include < sysltypes.h> 
#include <netnslns.h> 

struct ns _ addr ns _ addr( cp) 
char *cp; 

char *ns_ntoa(ns) 
struct ns _ addr ns; 

DESCRIPTION 
The routine ns_addr interprets character strings representing XNS addresses, returning binary information 
suitable for use in system calls. ns _ ntoa takes XNS addresses and returns ASCII strings representing the 
address in a notation in common use in the Xerox Development Environment 

<network number>.<host number>.<part number> 
Trailing zero fields are suppressed, and each number is priitted in hexadecimal, in a format suitable for 
input to ns_addr. Any fields lacking super-decimal digits will have a trailing ''H'' appended. 

Unfortunately, no universal standard exists for representing XNS addresses. An effort has been made to 
insure that ns_addr be compatible with most formats in common use. It will first separate an address into 
1 to 3 fields using a single delimiter chosen from period (" ."), colon (":") or pound-sign ("#"). Each 
field is then examined for byte separators (colon or period). If there are byte separators, each subfield 
separated is taken to be a small hexadecimal number, and the entirety is taken as a network-byte-ordered 
quantity to be zero extended in the high-network-order bytes. Next, the field is inspected for hyphens, in 
which case the field is assumed to be a number in decimal notation with hyphens separating the millenia. 
Next, the field is assumed to be a number: It is interpreted as hexadecimal if there is a leading ''Ox'' (as in 
C), a trailing ''H'' (as in Mesa), or there are any super-decimal digits present. It is inteipreted as octal is 
there is a leading ''O'' and there are no super-octal digits. Otherwise, it is converted as a decimal number. 

SEE ALSO 
hosts(S), networks(S), 

DIAGNOSTICS 
None (see BUGS). 

BUGS 
The string returned by ns _ ntoa resides in a static memory area. 
ns_addr should diagnose improperly formed input, and there should be an unambiguous way to recognize 
this. 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



INTR0(3S) UNIX Programmer's Manual INTR0(3S) 

NAME 
stdio - standard buffered input/output package 

SYNOPSIS 
#include <stdio.h> 

FILE •stdio; 
FILE •stdout; 
FILE •stderr; 

DESCRIPTION 
The (3S) functions constitute a user-level buffering scheme. The in-line macros getc and putc(3S) handle 
characters quickly. The higher level routines (gets, fgets, scanf, fscanf, fread, puts, fputs, printf, fprintf, 
fwrite) all use getc and putc; they can be freely intermixed. 

A file with associated buffering is called a ''stream,'' and is declared to be a pointer to a defined type FILE. 
Fopen(3S) creates certain descriptive data for a stream and returns a pointer to designate the stream in all 
further transactions. There are three normally open streams with constant pointers declared in the include 
file and associated with the standard open files: 

stdio standard input file 
stdout standard output file 
stderr standard error file 

A constant ''pointer'' NULL (0) designates no stream at all. 

An integer constant EOF (-1) is returned upon end-of-file or error by integer functions that deal with 
streams. 

Any routine that uses the standard input/output package must include the header file <stdio.h> of pertinent 
macro definitions. The functions and constants mentioned in sections labeled 3S are declared in the 
include file and need no further declaration. The constants, and the following ''functions'' are imple­
mented as macros; redeclaration of these names is perilous: getc, getchar, putc, putchar, feof, ferror, 
fileno. 

SEE ALSO 
open(2), close(2), read(2), write(2), fread(3S), fseek(3S), f•(3S) 

DIAGNOSTICS 

BUGS 

The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized with fopen; 
input (output) has been attempted on an output (input) stream; or a FILE pointer designates corrupt or oth­
erwise unintelligible FILE data. 

For purposes of efficiency, this implementation of the standard library has been changed to line buffer out­
put to a terminal by default It attempts to do this transparently by flushing the output whenever a read(2) 
from the standard input is necessary. This is almost always transparent, but may cause confusion or mal­
functioning of programs which employ standard 1/0 routines, but use read(2) themselves to read from the 
standard input. 

When a large amount of computation is done after printing part of a line on an output terminal, it is neces­
sary to mush(3S) the standard output before going off and computing, so that the output will appear. 

The standard buffered functions do not interact well with certain other library and system functions, espe­
cially vf ork and abort. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



FCLOSE(3S) UNIX Programmer's Manual FCLOSE(3S) 

NAME 
f close, fflush - close or fiush a stream 

SYNOPSIS 
#include < stdio.h> 

fclose( stream) 
FILE *stream; 

fflush( stream) 
FILE •stream; 

DESCRIPTION 
Fclose causes any buffers for the named stream to be emptied, and the file to be closed. Buffers allocated 
by the standard input/output system are freed. 

Fclose is performed automatically upon calling exit(3). 

Fftush causes any buffered data for the named output stream to be written to that file. The stream remains 
open. 

SEE ALSO 
close(2), fopen(3S), setbuf(3S) 

DIAGNOSTICS 
These routines return EOF if stream is not associated with an output file, or if buffered data cannot be 
transferred to that file. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



FERROR(3S) UNIX Programmer's Manual 

NAME 
rerror, reor, clearerr, fileno - stream status inquiries 

SYNOPSIS 
#include < stdio.h> 

reof( stream) 
FILE •stream; 

rerror( stream) 
FILE •stream 

clearerr( stream) 
FILE •stream 

fileno( stream) 
FILE •stream; 

DESCRIPTION 

FERROR(3S) 

Feof returns non-zero when end-of-file is read on the named input stream, otherwise zero. Unless cleared 
by clearerr, the end-of-file indication lasts until the stream is closed. 

Ferror returns non-zero when an error has occurred reading or writing the named stream, otherwise zero. 
Unless cleared by clearerr, the error indication lasts until the stream is closed. 

Clearerr resets the error and end-of-file indicators on the named stream. 

Fileno returns the integer file descriptor associated with the stream, see open(2). 

Currently all of these functions are implemented as macros; they cannot be redeclared. 

SEE ALSO 
fopen(3S), open(2) 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



FOPEN(3S) UNIX Programmer's Manual FOPEN(3S) 

NAME 
fopen, freopen, f dopen - open a stream 

SYNOPSIS 
#include <stdio.h> 

FILE •fopen(jilename, type) 
char •filename, •type; 

FILE •freopen(jilename, type, stream) 
char •filename, *type; 
FILE *stream; 

FILE •fdopen(jildes, type) 
char *type; 

DESCRIPTION 
Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer to be used 
to identify the stream in subsequent operations. 

Type is a character string having one of the following values: 
11r 11 open for reading 
11w11 create for writing 

"a" append: open for writing at end of file, or create for writing 

In addition, each type may be followed by a 11 +11 to have the file opened for reading and writing. 11r+" posi­
tions the stream at the beginning of the file, 11w+" creates or truncates it, and "a+" positions it at the end 
Both reads and writes may be used on read/write streams, with the limitation that an/seek, rewind, or read­
ing an end-of-file must be used between a read and a write or vice-versa. 

Freopen substitutes the named file in place of the open stream. It returns the original value of stream. 
The original stream is closed. 

Freopen is typically used to attach the preopened constant names, stdio, stdout, stderr, to specified files. 

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe(2). The type of 
the stream must agree with the mode of the open file. 

SEE ALSO 
open(2), fclose(3) 

DIAGNOSTICS 

BUGS 

Fopen and freopen return the pointer NULL if filename cannot be accessed, if too many files are already 
open, or if other resources needed cannot be allocated. 

Fdopen is not portable to systems other than UNIX. 

The read/write types do not exist on all systems. Those systems without read/write modes will probably 
treat the type as if the 11 +" was not present. These are unreliable in any event 

In order to support the same number of open files as does the system, fopen must allocate additional 
memory for data structures using canoe after 20 files have. been opened. This confuses some programs 
which use their own memory allocators. An undocumented routine, f_prealloc, may be called to force 
immediate allocation of all internal memory except for buffers. 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



FREAD(3S) UNIX Programmer's Manual 

NAME 
fread, fwrite - buffered binary input/output 

SYNOPSIS 
#include < stdio.h> 

fread(ptr, sizeof(*ptr), nitems, stream) 
FILE •stream; 

fwrite(ptr, sizeof(*ptr), nitems, stream) 
FILE •stream; 

DESCRIPTION 

FREAD(3S) 

Fread reads, into a block beginning at ptr, nitems of data of the type of *ptr from the named input stream. 
It returns the number of items actually read. 

If stream is stdio and the standard output is line buffered, then any partial output line will be flushed before 
any call to read(2) to satisfy the fread. 

Fwrite appends at most nitems of data of the type of *ptr beginning at ptr to the named output stream. It 
returns the number of items actually written. 

SEE ALSO 
read(2), write(2), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S), scanf(3S) 

DIAGNOSTICS 
Fread and fwrite return 0 upon end of file or error. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



FSEEK(3S) UNIX Programmer's Manual FSEEK(3S) 

NAME 
fseek, ftell, rewind - reposition a stream 

SYNOPSIS 
#include < stdio.h> 

fseek( stream, offset, ptrname) 
FILE •stream; 
long offset; 

long ftell( stream) 
FILE *stream; 

rewind( stream) 

DESCRIPTION 
Fseek sets the position of the next input or output operation on the stream. The new position is at the 
signed distance offset bytes from the beginning, the current position, or the end of the file, according as 
ptrname has the value 0, 1, or 2. 

Fseek undoes any effects of ungetc(3S). 

Ftell returns the current value of the offset relative to the beginning of the file associated with the named 
stream. It is measured in bytes on UNIX; on some other systems it is a magic cookie, and the only fool­
proof way to obtain an offset for fseek. 

Rewind( stream) is equivalent to fseek( stream, OL, 0). 

SEE ALSO 
lseek(2), fopen(3S) 

DIAGNOSTICS 
Fseek returns -1 for improper seeks, otherwise zero. 

February 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETC(3S) UNIX Programmer's Manual GETC(3S) 

NAME 
getc, getchar, fgetc, getw - get character or word from stream 

SYNOPSIS 
#include <Stdio.h> 

int getc( stream) 
FILE *stream; 

int getcharO 

int fgetc( stream) 
FILE •stream; 

int getw( stream) 
FILE *stream; 

DESCRIPTION 
Getc returns the next character from the named input stream. 

Getchar() is identical to getc(stdin). 

Fgetc behaves like getc, but is a genuine function, not a macro. It may be used to save object text. 

Getw returns the next word (in a 32-bit integer on the IS68K) from the named input stream. It returns the 
constant EOF upon end-of-file or error, but since that is a good integer value, feof and ferror(3S) should be 
used to check the success of getw. Getw assumes no special alignment in the file. 

SEE ALSO 
fopen(3S), putc(3S), gets(3S), scanf(3S), fread(3S), ungetc(3S) 

DIAGNOSTICS 

BUGS 

These functions return the integer constant EOF at end-of-file or upon read error. 

A stop with the message, uReading bad file,'' means that an attempt has been made to read from a stream 
that has not been opened for reading by fopen. 

The end-of-file return from getchar is incompatible with that in UNIX editions 1-6. 

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly. In par­
ticular, getc(•f++); does not work properly. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETS(3S) UNIX Programmer's Manual 

NAME 
gets, fgets - get a string from a stream 

SYNOPSIS 
#include <stdio.h> 

char •gets( s) 
char •s; 

char •fgets(s, n, stream) 
char •s; 
FILE •stream; 

DESCRIPTION 

GETS(3S) 

Gets reads a string into s from the standard input stream stdio. The string is terminated by a newline char­
acter, which is replaced ins by a null character. Gets returns its argument. 

Fgets reads n-1 characters, or up through a newline character, whichever comes first, from the stream into 
the string s. The last character read into sis followed by a null character. Fgets returns its first argument. 

SEE ALSO 
puts(3S), getc(3S), scanf(3S), fread(3S), ferror(3S) 

DIAGNOSTICS 
Gets and fgets return the constant pointer NULL upon end-of-file or error. 

BUGS 
Gets deletes a newline, fgets keeps it, all in the name of backward compatibility. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



PRINTF(3S) UNIX Programmer's Manual PRINTF(3S) 

NAME 
printf, fprintf, sprintf - formatted output conversion 

SYNOPSIS 
#include < stdio.h> 

printf(f ormat [ , arg ] ... ) 
char *format; 

fprintf( stream, format [ , arg ] ... ) 
FILE •stream; 
char *format; 

sprintf(s,format [, arg] ... ) 
char *s,format; 

#include <varargs.h> 
_doprnt(format, args, stream) 
char *format; 
va_list *args; 
FILE *stream; 

DESCRIPTION 
Printf places output on the standard output stream stdout. Fprintf places output on the named output 
stream. Sprintf places output in the strings, followed by the character \0. All of these routines work by 
calling the internal routine _doprnt, using the variable-length argument facilities ofvarargs(3). 

Each of these functions converts, formats, and prints its arguments after the first, under control of the first 
argument The first argument is a character string which contains two types of objects: plain characters, 
which are simply copied to the output stream; and conversion specifications, each of which causes conver­
sion and printing of the next successive arg printf. 

Each conversion specification is introduced by the character % . Following the % there may be: 

• An optional minus sign (-) which specifies left adjustment of the converted value in the indicated field. 

• An optional digit string specifying a field width. If the converted value has fewer characters than the 
field width, it will be blank-padded on the left to make up the field width. (Or it will be blank-padded 
on the right, if the left-adjustment indicator has been given.) If the field width begins with a zero, zero­
padding will be done instead of blank-padding. 

• An optional period(.) which serves to separate the field width from the next digit string. 

• An optional digit string specifying a precision which sets the number of digits to appear after the 
decimal point (for e- and f-conversion), or the maximum number of characters to be printed from a 
string. 

• An optional# character specifying that the value should be converted to an ''alternate form.'' For c, d, 
s, and u, conversions, this option has no effect. For o conversions, the precision of the number is 
increased to force the first character of the output string to a zero. For x(X) conversion, a non-zero 
result has the string Ox(OX) prepended to it. Fore, E, f, g, and G, conversions, the result will always 
contain a decimal point, even if no digits follow the point (Normally, a decimal point only appears in 
the results of such conversions if a digit follows the decimal point.) For g and G conversions, trailing 
zeros are not removed from the result, as they would be otherwise. 

• The character I which specifies that a following d, o, x, or u corresponds to a long integer arg. 

• A character which indicates the type of conversion to be applied. 

A field width or precision may be * instead of a digit string. In this case an integer arg supplies the field 
width or precision. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



PRIN1F(3S) UNIX Programmer's Manual PRIN1F(3S) 

The conversion characters and their meanings are as follows: 

c The character arg is printed 

dox The integer arg is converted to decimal, octal, or hexadecimal notation, respectively. 

e The float or double arg is converted in the style [-]d.ddde±dd where there is one digit before the 
decimal point and the number after is equal to the precision specification for the argument When 
the precision is missing, six digits are produced. 

f The float or double arg is converted to decimal notation in the style [-]ddd.ddd where the number 
of ds after the decimal point is equal to the precision specification for the argument. If the preci­
sion is missing, six digits are given; if the precision is explicitly 0, no digits and no decimal point 
are printed. 

g The float or double arg is printed in styled, f, ore, whichever gives full precision in minimum 
space. 

s Arg is taken to be a string (character pointer) and characters from the string are printed until a null 
character or the number of characters indicated by the precision specification is reached. How­
ever, if the precision is 0 or missing, all characters up to a null are printed. 

u The unsigned integer arg is converted to decimal and printed. The result will be in the range 0 
through MAXUINT, where MAXUINT equals 4294967295 on the IS68K. 

% Prints a % ; no argument is converted. 

In no case does a non-existent or small field width cause truncation of a field; padding takes place only if 
the specified field width exceeds the actual width. Characters generated by printf are printed by putc(3S). 

EXAMPLES 
To print a date and time in the form "Sunday, July 3, 10:02," where weekday and month are pointers to 
null-terminated strings: 

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min); 

To print 1t to 5 decimals: 

printf("pi = %.5f', 4*atan(l.0)); 

SEE ALSO 
putc(3S), scanf(3S), ecvt(3) 

BUGS 
Very wide fields (>128 characters) fail. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



PUTC(3S) UNIX Programmer's Manual PUTC(3S) 

NAME 
putc, putchar, fputc, putw- put character or word on a stream 

SYNOPSIS 
#include < stdio.h> 

int putc( c, stream) 
char c; 
FILE •stream; 

int putchar( c) 

int fputc( c, stream) 
FILE •stream; 

int putw(w, stream) 
FILE •stream; 

DESCRIPTION 
Putc appends the character c to the named output stream. It returns the character written. 

Putchar(c) is defined as putc(c, stdout). 

Fputc behaves like putc, but is a genuine function rather than a macro. 

Putw appends word (that is, int) w to the output stream. It returns the word written. Putw neither 
assumes nor causes special alignment in the file. 

SEE ALSO 
fopen(3S}, fclose(3S}, getc(3S}, puts(3S}, printf(3S}, fread(3S) 

DIAGNOSTICS 

BUGS 

These functions return the constant EOF upon error. Since this is a good integer, ferror(3S) should be 
used to detect putw errors. 

Because it is implemented as a macro, putc treats a stream argument with side effects improperly. In par­
ticular 

putc{c, •f++); 

doesn't work sensibly. 

Errors can occur long after the call to putc. 

November 6, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



PUTS( 3S) UNIX Programmer's Manual 

NAME 
puts, fputs - put a string on a stream 

SYNOPSIS 
#include <Stdio.h> 

puts(s) 
char •s; 

fputs(s, stream) 
char •s; 
FILE •stream; 

DESCRIPTION 

PUTS(3S) 

Puts copies the null-terminated string s to the standard output stream stdout and appends a newline charac­
ter. 

Fputs copies the null-terminated string s to the named output stream. 

Neither routine copies the terminal null character. 

SEE ALSO 

BUGS 

fopen(3S), gets(3S), putc(3S), printf(3S), f error(3S) 
fread(3S)for fwrite 

Puts appends a newline, fputs does not, all in the name of backward compatibility. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SCANF(3S) UNIX Programmer's Manual SCANF(3S) 

NAME 
scanf, fscanf, sscanf - formatted input conversion 

SYNOPSIS 
#include <stdio.h> 

scanf(format [ , pointer ] . . . ) 
char *format; 

fscanf( stream, format [ , pointer ] . . . ) 
FILE *stream; 
char *format; 

sscanf( s, for mat [ , pointer ] . . . ) 
char * s, *format; 

DESCRIPTION 
scanf, fscanf, and sscanf read characters, interpret them according to specified formats, and store the 
results of the interpretation in arguments. Each function expects as arguments a control string format, 
described below, and a set of pointer arguments indicating where the converted input should be stored. 
scanf reads from the standard input stream stdin. fscanf reads from the named input stream. sscanf reads 
from the character string s. 

The control string usually contains conversion specifications, which are used to direct interpretation of 
input sequences. The control string may contain: 

1. Blanks, tabs, or newlines, which match optional white space in the input. 

2. An ordinary character (not % ) which must match the next character of the input stream. 

3. Conversion specifications, consisting of the character %, an optional assignment suppressing charac-
ter•, an optional numerical maximum field width, and a conversion character. 

A conversion specification directs the conversion of the next input field; the result is placed in the variable 
pointed to by the corresponding argument, unless assignment suppression was indicated by •. An input 
field is defined as a string of non-space characters; it extends to the next inappropriate character or until the 
field width, if specified, is exhausted. 

The conversion character indicates the interpretation of the input field; the corresponding pointer argument 
must usually be of a restricted type. The following conversion characters are legal: 

% a single '%' is expected in the input at this point; no assignment is done. 

d a decimal integer is expected; the corresponding argument should be an integer pointer. 

o an octal integer is expected; the corresponding argument should be a integer pointer. 

x a hexadecimal integer is expected; the corresponding argument should be an integer pointer. 

s a character string is expected; the corresponding argument should be a character pointer pointing to an 
array of characters large enough to accept the string and a terminating ''-0', which will be added. The 
input field is terminated by a space character or a newline. 

c a character is expected; the corresponding argument should be a character pointer. The normal skip 
over space characters is suppressed in this case; to read the next non-space character, try '%ls'. If a 
field width is given, the corresponding argument should refer to a character array, and the indicated 
number of characters is read. 

eorf 
a floating point number is expected; the next field is converted accordingly and stored through the 
corresponding argument, which should be a pointer to a float. The input format for floating point 
numbers is an optionally signed string of digits possibly containing a decimal point, followed by an 
optional exponent field consisting of an E ore followed by an optionally signed integer. 

September 27, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1 



SCANF(3S) UNIX Programmer's Manual SCANF(3S) 

indicates a string not to be delimited by space characters. The left bracket is followed by a set of char­
acters and a right bracket; the characters between the brackets define a set of characters making up the 
string. If the first character is not circumflex (" ), the input field is all characters until the first charac­
ter not in the set between the brackets; if the first character after the left bracket is "', the input field is 
all characters until the first character which is in the remaining set of characters between the brackets. 
The corresponding argument must point to a character array. 

The conversion characters d, o, and x may be capitalized or preceded by I to indicate that a pointer to long 
rather than to int is in the argument list Similarly, the conversion characters e or f may be capitalized or 
preceded by I to indicate a pointer to double rather than to ftoat. The conversion characters d, o and x may 
be preceded by h to indicate a pointer to short rather than to int. 

The scanf functions return the number of successfully matched and assigned input items. This number can 
be used to determine how many input items were found. 

When scanf reaches the end of input, it returns the constant EOF. A return of EOF differs from a return of 
0. 0 indicates that scanf did not complete any conversions and that, were conversions intended, an inap­
propriate input character could have prevented scanf from successfully converting. 

For example, the call 

inti; float x; char name[50]; 
scanf("%d%f%s", &i, &x, name); 

with the input line 

25 54.32E-1 thompson 

will assign to i the value 25, x the value 5.432, and name will contain 'thompson\O' . Or, 

inti; float x; char name[50]; 
scanf("%2d%f%•d%[1234567890]", &i, &x, name); 

with input 

56789 0123 56a72 

will assign 56 to i, 789.0 to x, skip '0123', and place the string '56'1J' in name. The next call to getchar 
will return 'a'. 

If a white space character appears at the end of a format string (for example, scanf("%s0,str)), scanf will 
continue to read input until it encounters an EOF or a non-white space string followed by the specified 
white space character. This behavior might foul up applications reading keyboard input. To specify a 
newline (or any other character) as a termination character, enclose it in the symbols ["' ]. For example, 
scanf("%s["''n]" ,str). 

SEE ALSO 
atof(3), getc(3S), printf(3S) 

DIAGNOSTICS 
The scanf functions return EOF on end of input, and a short count for missing or illegal data items. 

BUGS 
~e success of literal matches and suppressed assignments is not directly determinable. 

September 27, 1988 INTEGRATED SOLUTIONS 4.3 BSD 2 



SETBUF(3S) UNIX Programmer's Manual SETBUF(3S) 

NAME 
setbuf, setbuffer, setlinebuf- assign buffering to a stream 

SYNOPSIS 
#include < stdio.h> 

setbuf( stream, bu/) 
FILE •stream; 
char •buf; 

setbuffer(stream, buf. size) 
FILE •stream; 
char •buf; 
int size; 

setlinebuf( stream) 
FILE •stream; 

DESCRIPTION 
The three types of buffering available are unbuffered, block buffered, and line buffered. When an output 
stream is unbuffered, information appears on the destination file or terminal as soon as written; when it is 
block buffered many characters are saved up and written as a block; when it is line buffered characters are 
saved up until a newline is encountered or input is read from stdin. Fftush (see fclose(3S)) may be used to 
force the block out early. Normally all files are block buffered. A buffer is obtained from malloc(3) upon 
the first getc or putc(3S) on the file. If the standard stream stdout refers to a terminal it is line buffered. 
The standard stream stderr is always unbuffered. 

Setbuf is used after a stream has been opened but before it is read or written. The character array buf is 
used instead of an automatically allocated buffer. If buf is the constant pointer NULL, input/output will be 
completely unbuffered. A manifest constant BUFSIZ tells how big an array is needed: 

char buf[BUFSIZ]; 

Setbuffer, an alternate form of setbuf, is used after a stream has been opened but before it is read or writ­
ten. The character array buf whose size is determined by the size argument is used instead of an automati­
cally allocated buffer. If buf is the constant pointer NULL, input/output will be completely unbuffered. 

Setlinebuf is used to change stdout or stderr from block buffered or unbuffered to line buffered. Unlike 
setbuf and setbuff er it can be used at any time that the file descriptor is active. 

A file can be changed from unbuffered or line buffered to block buffered by using freopen (see 
fopen(3S)). A file can be changed from block buffered or line buffered to unbuffered by using freopen 
followed by setbuf with a buffer argument of NULL. 

SEE ALSO 

BUGS 

fopen(3S), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3S), fread(3S) 

The standard error stream should be line buffered by default 

The setbuffer and setlinebuf functions are not portable to non-4.2BSD versions of UNIX. On 4.2BSD and 
4.3BSD systems, setbuf always uses a suboptimal buffer size and should be avoided SetbutTer is not usu­
ally needed as the default file 1/0 buffer sizes are optimal. 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



STDI0(3S) UNIX Programmer's Manual STDI0(3S) 

NAME 
stdio - standard buffered input/output package 

SYNOPSIS 
#include < stdio.h> 

FILE •stdin; 
FILE •stdout; 
FILE •stderr; 

DESCRIPTION 
The functions described in section 3S constitute a user-level buffering scheme. The in-line macros getc 
and R putc (3S) handle characters quickly. The higher level routines gets, fgets, scanf, fscanf, fread, 
puts, fputs, printf, fprintf, fwrite all use getc and putc; they can be freely intermixed. 

A file with associated buffering is called a stream, and is declared to be a pointer to a defined type FILE. 
Fopen(3S) creates certain descriptive data for a stream and returns a pointer to designate the stream in all 
further transactions. There are three normally open streams with constant pointers declared in the include 
file and associated with the standard open files: 

stdio standard input file 
stdout standard output file 
stderr standard error file 

A constant 'pointer' NULL (0) designates no stream at all. 

An integer constant EOF (-1) is returned upon end of file or error by integer functions that deal with 
streams. 

Any routine that uses the standard input/output package must include the header file <stdio.h> of pertinent 
macro definitions. The functions and constants mentioned in sections labeled 3S are declared in the 
include file and need no further declaration. The constants, and the following 'functions' are implemented 
as macros; redeclaration of these names is perilous: getc, getchar, putc, putchar, feof, ferror, fileno. 

SEE ALSO 
open(2), close(2), read(2), write(2), fread(3S), fseek(3S), f•(3S) 

DIAGNOSTICS 

BUGS 

The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized with fopen, 
input (output) has been attempted on an output (input) stream, or a FILE pointer designates corrupt or oth­
erwise unintelligible FILE data. 

For purposes of efficiency, this implementation of the standard library has been changed to line buffer out­
put to a terminal by default and attempts to do this transparently by flushing the output whenever a read(2) 
from the standard input is necessary. This is almost always transparent, but may cause confusion or mal­
functioning of programs which use standard i/o routines but use read(2) themselves to read from the stan­
dard input. 

In cases where a large amount of computation is done after printing part of a line on an output terminal, it 
is necessary to fflush(3S) the standard output before going off and computing so that the output will 
appear. 

The standard buffered functions do not interact well with certain other library and system functions, espe­
cially vfork and abort. 

LIST OF FUNCTIONS 
Name 

clearerr 
fclose 
fdopen 

May 13, 1986 

Appears on Page Description 

ferror.3s stream status inquiries 
fclose.3s close or flush a stream 
fopen.3s open a stream 

INTEGRATED SOLUTIONS 4.3 BSD 1 



STDI0(3S) UNIX Programmer's Manual STDI0(3S) 

feof ferror.3s stream status inquiries 
ferror ferror.3s stream status inquiries 
fftush fclose.3s close or ftush a stream 
fgetc getc.3s get character or word from stream 
fgets gets.3s get a string from a stream 
fileno ferror.3s stream status inquiries 
fopen fopen.3s open a stream 
fprintf printf.3s formatted output conversion 
fputc putc.3s put character or word on a stream 
fputs puts.3s put a string on a stream 
fread fread.3s buffered binary input/output 
freopen fopen.3s open a stream 
fscanf scanf.3s formatted input conversion 
fseek fseek.3s reposition a stream 
ftell fseek.3s reposition a stream 
fwrite fread.3s buffered binary input/output 
getc getc.3s get character or word from stream 
getchar getc.3s get character or word from stream 
gets gets.3s get a string from a stream 
getw getc.3s get character or word from stream 
printf printf.3s formatted output conversion 
putc putc.3s put character or word on a stream 
putchar putc.3s put character or word on a stream 
puts puts.3s put a string on a stream 
putw putc.3s put character or word on a stream 
rewind fseek.3s reposition a stream 
scanf scanf.3s formatted input conversion 
setbuf setbuf.3s assign buffering to a stream 
setbuffer setbuf.3s assign buffering to a stream 
setlinebuf setbuf.3s assign buffering to a stream 
sprintf printf.3s formatted output conversion 
sscanf scanf.3s formatted input conversion 
ungetc ungetc.3s push character back into input stream 

May 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



UNGETC(3S) UNIX Programmer's Manual 

NAME 
ungetc - push character back into input stream 

SYNOPSIS 
#include < stdio.h> 

ungetc( c, stream) 
FILE *stream; 

DESCRIPTION 

UNGETC(3S) 

Ungetc pushes the character c back on an input stream. That character will be returned by the next getc 
call on that stream. Ungetc returns c. 

One character of pushback is guaranteed provided something has been read from the stream and the stream 
is actually buffered. Attempts to push EOF are rejected. 

Fseek(3S) erases all memory of pushed back characters. 

SEE ALSO 
getc(3S), setbuf(3S), fseek(3S) 

DIAGNOSTICS 
Ungetc returns EOF if it can't push a character back. 

May 15, 1985 \) "EGRATED SOLUTIONS 4.3 BSD 1 



INTR0(3X) UNIX Programmer's Manual INTR0(3X) 

NAME 
intro - introduction to miscellaneous library functions 

DESCRIPTION 

FILES 

The (3X) functions constitute minor libraries and other miscellaneous run time facilities. Most are avail­
able only when programming in C. This section includes libraries which provide device-independent plot­
ting functions, terminal-independent screen management routines for two-dimensional non-bitmap display 
terminals, functions for managing data bases with inverted indexes, and sundry routines used in executing 
commands on remote machines. The routines getdiskbyname, rcmd, rresvport, ruserok, and rexec 
reside in the standard C run time library -le. All other functions are located in separate libraries indicated 
in each manual entry. 

/lib/libc.a 
/usr/lib/libdbm.a 
/usr/lib/libtermcap.a 
/usr/lib/libcurses.a 
/usr/lib/lib2648.a 
/usr/lib/libplota 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



ASSERT(3X) 

NAME 
~ert - program verification 

SYNOPSIS 
#include <a~ert.h> 

~rt( expression) 

DESCRIPTION 

UNIX Programmer's Manual ASSERT(3X) 

A~ert is a macro which indicates that expression is expected to be true at this point in the program. It 
causes an exit(2) with a diagnostic comment on the standard output when expression is false (0). Compil­
ing with the cc(l) option -DNDEBUG effectively deletes a~rt from the program. 

DIAGNOSTICS 
''Assertion failed: file f line n.'' F is the source file and n the source line number of the assert statement 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



CURSES(3X) UNIX Programmer's Manual 

NAME 
curses - screen functions with ''optimal'' cursor motion 

SYNOPSIS 
cc [flags ]files-lcurses -ltermcap [libraries] 

DESCRIPTION 

CURSES(3X) 

These routines give the user a method of updating screens with reasonable optimization. They keep an 
image of the current screen, and the user sets up an image of a new one. Then the refresh() tells the rou­
tines to make the current screen look like the new one. In order to initialize the routines, the routine 
initscr() must be called before any of the other routines that deal with windows and screens are used. The 
routine endwin() should be called before exiting. 

SEE ALSO 
Screen Updating and Cursor Movement Optimization: A Library Package, Ken Arnold, 
ioctl(2), getenv(3), tty(4), termcap(5) 

FUNCTIONS 
addch(ch) 
addstr( str) 
box(win,vert,hor) 
cbreakO 
clearO 
clearok( scr,booif) 
clrtobot() 
clrtoeol() 
delch() 
deleteln() 
delwin(win) 
echoO 
endwinO 
eraseO 
ftusok(win,booif) 
getch() 
getcap( name) 
getstr( str) 
gettmodeO 
getyx(win,y,x) 
inchO 
initscrO 
insch(c) 
insertlnO 
leaveok(win,boolf) 
longname(termbuf,name) 
move(y,x) 
mvcur(lasty,lastx,newy,newx) 
newwin(lines,cols,begin _y,begin _x) 
nIO 
nocbreakO 
noechoO 
nonIO 
norawO 
overlay(winl ,win2) 
overwrite(winl, win2) 
printw(fmt,argl ,arg2 , ... ) 

Add a character to stdscr 
Add a string to stdscr 
Draw a box around a window 
Set cbreak mode 
Clear stdscr 
Set clear flag for scr 
Clear to bottom on stdscr 
Clear to end of line on stdscr 
Delete a character 
Delete a line 
Delete win 
Set echo mode 
End window modes 
Erase stdscr 
Set :6.ush-on-refresh flag for win 
Get a char through stdscr 
Get terminal capability name 
Get a string through stdscr 
Get tty modes 
Get (y ,x) co-ordinates 
Get char at current (y ,x) co-ordinates 
Initialize screens 
Insert a char 
Insert a line 
Set leave flag for win 
Get long name from termbuf 
Move to (y,x) on stdscr 
Actually move cursor 
Create a new window 
Set newline mapping 
Unset cbreak mode 
Unset echo mode 
Unset newline mapping 
Unset raw mode 
Overlay win 1 on win2 
Overwrite win 1 on top of win2 
Printf" on stdscr 

April 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



CURSES(3X) UNIX Programmer's Manual CURSES(3X) 

rawO 
refreshO 
resettyO 
savettyO 
scanw(fmt,argl ,arg2 , ... ) 
scroll( win) 
scrollok(win,boolj) 
setterm( name) 
standendO 
standoutO 
subwin(win,lines,cols,begin _y,begin _ x) 
touchline(win,y,sx,ex) 
touchoverlap(winJ ,win2) 
touch win( win) 
unctrl(ch) 
waddch(win,ch) 
waddstr(win,str) 
wclear(win) 
wclrtobot(win) 
wclrtoeol(win) 
wdelch(win,c) 
wdeleteln(win) 
werase(win) 
wgetch(win) 
wgetstr(win,str) 
winch( win) 
winsch(win,c) 
winsertln(win) 
wmove(win,y,x) 
wprin.tw(winfmt,argl ,arg2 , ... ) 
wrefresh(win) 
wscanw(winfmt,argl ,arg2, ... ) 
wstandend(win) 
wstandout(win) 

Set raw mode 
Make current screen look like stdscr 
Reset tty flags to stored value 
Stored current tty flags 
Scanf through stdscr 
Scroll win one line 
Set scroll flag 
Set term variables for name 
End standout mode 
Start standout mode 
Create a subwindow 
Mark line y sx through sy as changed 
Mark overlap of winl on win2 as changed 
change'' all of win 
Printable version of ch 
Add char to win 
Add string to win 
Clear win 
Clear to bottom of win 
Clear to end of line on win 
Delete char from win 
Delete line from win 
Erase win 
Get a char through win 
Get a string through win 
Get char at current (y,x) in win 
Insert char into win 
Insert line into win 
Set current (y,x) co-ordinates on win 
Printf on win 
Make screen look like win 
Scanf through win 
End standout mode on win 
Start standout mode on win 

April 23, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



DBM(3X) UNIX Programmer's Manual DBM(3X) 

NAME 
dbminit, fetch, store, delete, firstkey, nextkey- data base subroutines 

SYNOPSIS 
#include <dbm.h> 

typedef struct { 
char *dptr; 
int dsize; 

} datum; 

dbminit(file) 
char *file; 

datum fetch(key) 
datum key; 

store(key, content) 
datum key, content; 

delete( key) 
datum key; 

datum firstkeyO 

datum nextkey(key) 
datum key; 

DESCRIPTION 
Note: the dbm library has been superceded by ndbm(3), and is now implemented using ndbm. These 
functions maintain key/content pairs in a data base. The functions will handle very large (a billion blocks) 
databases and will access a keyed item in one or two file system accesses. The functions are obtained with 
the loader option -ldbm. 

Keys and contents are described by the datum typedef. A datum specifies a string of dsize bytes pointed to 
by dptr. Arbitrary binary data, as well as normal ASCII strings, are allowed. The data base is stored in two 
files. One file is a directory containing a bit map and has '.dir' as its suffix. The second file contains all 
data and has '.pag' as its suffix. 

Before a database can be accessed, it must be opened by dbminit. At the time of this call, the files file .dir 
and file .pag must exist. (An empty database is created by creating zero-length '.dir' and' .pag' files.) 

Once open, the data stored under a key is accessed by fetch and data is placed under a key by store. A key 
(and its associated contents) is deleted by delete. A linear pass through all keys in a database may be 
made, in an (apparently) random order, by use of firstkey and nextkey. Firstkey will return the first key in 
the database. With any key nextkey will return the next key in the database. This code will traverse the 
data base: 

for (key= firstkey(); key.dptr !=NULL; key= nextkey(key)) 

DIAGNOSTICS 
All functions that return an int indicate errors with negative values. A zero return indicates ok. Routines 
that return a datum indicate errors with a null (0) dptr. 

SEE ALSO 
ndbm(3) 

BUGS 
The '.pag' file will contain holes so that its apparent size is about four times its actual content. Older 
UNIX systems may create real file blocks for these holes when touched. These files cannot be copied by 
normal means (cp, cat, tp, tar, ar) without filling in the holes. 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



DBM(3X) UNIX Programmer's Manual DBM(3X) 

Dptr pointers returned by these subroutines point into static storage that is changed by subsequent calls. 

The sum of the sizes of a key/content pair must not exceed the internal block size (currently 1024 bytes). 
Moreover all key/content pairs that hash together must fit on a single block. Store will return an error in 
the event that a disk block fills with inseparable data. 

Delete does not physically reclaim file space, although it does make it available for reuse. 

The order of keys presented by firstkey and nextkey depends on a hashing function, not on anything 
interesting. 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



GETDISKBYNAME ( 3X) UNIX Programmer's Manual 

NAME 
getdiskbyname - get disk description by its name 

SYNOPSIS 
#include <disktab.h> 

struct disktab • 
getdiskbyname( name) 
char •name; 

DESCRIPTION 

GETDISKBYNAME ( 3X) 

Getdiskbyname takes a disk name (e.g., rm03) and returns a structure describing its geometry information 
and the standard disk partition tables. All information is obtained from the disktab(5) file. 

The form of <disktab.h> is as follows: 

disktab.h 4.3 83/08/11•/ 

I• 
* Disk description table, see disktab(5) 
•I 

#define DISKTAB "/etc/disktab" 

struct 

}; 

disktab { 
char •d_name; 
char •d_type; 
int d _secsize; 
int d _ ntracks; 
int d _ nsectors; 
int d _ ncylinders; 
int d_rpm; 
struct partition { 

I• drive name •/ 
/* drive type •I 

I• sector size in bytes •I 
I•# tracks/cylinder•/ 
I•# sectors/track •I 
/*#cylinders•/ 
I• revolutions/minute */ 

int p_size; I• #sectors in partition•/ 
short p _ bsize; I* block size in bytes •/ 
short p _fsize; /* frag size in bytes •I 

} d _partitions [8]; 

struct disktab •getdiskbyname(); 

SEE ALSO 
disktab(5) 

BUGS 
This infonnation should be obtained from the system for locally available disks (in particular, the disk par­
tition tables). 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GETFSENT ( 3X) UNIX Programmer's Manual GETFSENT ( 3X) 

NAME 
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent - get filesystem descriptor file entry 

SYNOPSIS 
#include <fstab.h> 

struct fstab •getfsentO 

struct fstab •getfsspec (spec) 
char •spec; 

struct fstab •getfsfile (file) 
char •file; 

struct fstab •getfstype(type) 
char •type; 

int setfsentO 

int endfsentO 

DESCRIPTION 
Getfsent, getfsspec, getfstype, and getfsfile each return a pointer to an object with the following structure 
containing the broken-out fields of a line in the filesystem description file, <fstab.h>. 

struct fstab{ 
char 
char 
char 

}; 

int 
int 

•fs_spec; 
•fs_file; 
•fs_type; 
fs_freq; 
fs_passno; 

The fields have meanings described in fstab(5). 

Getfsent reads the next line of the file, opening the file if necessary. 

Setfsent opens and rewinds the file. 

Endfsent closes the file. 

Getfsspec and getfsfile sequentially search from the beginning of the file until a matching special filename 
or filesystem name is found, or until EOF is encountered. Getfstype does likewise, matching on the 
filesystem type field. 

FILES 
/etc/fstab 

SEE ALSO 
fstab(5) 

DIAGNOSTICS 
Null pointer (0) returned on EOF or error. 

BUGS 
All information is contained in a static area, so it must be copied if it is to be saved. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



INITGROUPS ( 3X) UNIX Programmer's Manual 

NAME 
initgroups - initialize group access list 

SYNOPSIS 
initgroups( name, basegid) 
char •name; 
int basegid; 

DESCRIPTION 

INITGROUPS ( 3X) 

Initgroups reads through the group file and sets up, using the setgroups(2) call, the group access list for 
the user specified in name. The basegid is automatically included in the groups list. Typically this value is 
given as the group number from the password file. 

FILES 
/etc/group 

SEE ALSO 
setgroups(2) 

DIAGNOSTICS 
Initgroups returns -1 if it was not invoked by the super-user. 

BUGS 
Initgroups uses the routines based on getgrent(3). If the invoking program uses any of these routines, the 
group structure will be overwritten in the call to initgroups. 

May 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



LIB2648 ( 3X) UNIX Programmer's Manual LIB2648 ( 3X) 

NAME 
lib2648 - subroutines for the HP 2648 graphics terminal 

SYNOPSIS 
#include <stdio.h> 

typedef char •bitmat; 
FILE •trace; 

cc fi.Ie.c -12648 

DESCRIPTION 
Lib2648 is a general purpose library of subroutines useful for interactive graphics on the Hewlett-Packard 
2648 graphics terminal. To use it you must call the routine ttyinit() at the beginning of execution, and 
done() at the end of execution. All terminal input and output must go through the routines rawchar, read­
line, outchar, and outstr. 

Lib2648 does the necessary "E/"F handshaking if getenv(' 'TERM'') returns ''hp2648' ', as it will if set by 
tset(l). Any other value, including for example "2648", will disable handshaking. 

Bit matrix routines are provided to model the graphics memory of the 2648. These routines are generally 
useful, but are specifically useful for the update function which efficiently changes what is on the screen to 
what is supposed to be on the screen. The primative bit matrix routines are newmat, mat, and setmat. 

The file trace, if non-null, is expected to be a file descriptor as returned by /open. If so, lib2648 will trace 
the progress of the output by writing onto this file. It is provided to make debugging output feasible for 
graphics programs without messing up the screen or the escape sequences being sent Typical use of trace 
will include: 

switch (argv[l][l]) { 
case 'T': 

if (trace) 

trace= fopen("trace", "w"); 
break; 

fprintf(trace, "xis %d, y is %s\n", x, y); 

dumpmat("before update", xmat); 

ROUTINES 
agoto(x, y) 

Move the alphanumeric cursor to position (x, y), measured from the upper left corner of the 
screen. 

aofTO Tum the alphanumeric display off. 

aonO Tum the alphanumeric display on. 

areaclear(rmin, cmin, rmax, cmax) 
Clear the area on the graphics screen bordered by the four arguments. In normal mode the area is 
set to all black, in inverse video mode it is set to all white. 

beep() Ring the bell on the terminal. 

bitcopy(dest, src, rows, cols) bitmat dest, 
Copy a rows by cols bit matrix from src to (user provided) dest. 

cleara() 
Clear the alphanumeric display. 

clearg() 

May 27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



LIB2648(3X) 

curotTO 

UNIX Programmer's Manual LIB2648(3X) 

Clear the graphics display. Note that the 2648 will only clear the part of the screen that is visible 
if zoomed in. 

Turn the graphics cursor off. 

curonO Turn the graphics cursor on. 

dispmsg(str, x, y, maxlen) char •str; 
Display the message str in graphics text at position (x, y). The maximum message length is given 
by maxlen, and is needed for dispmsg to know how big an area to clear before drawing the mes­
sage. The lower left comer of the first character is at (x, y). 

doneO Should be called before the program exits. Restores the tty to normal, turns off graphics screen, 
turns on alphanumeric screen, flushes the standard output, etc. 

draw(x, y) 
Draw a line from the pen location to (x, y). As with all graphics coordinates, (x, y) is measured 
from the bottom left corner of the screen. (x, y) coordinates represent the first quadrant of the 
usual Cartesian system. 

drawbox(r, c, color, rows, cols) 
Draw a rectangular box on the graphics screen. The lower left comer is at location (r, c). The box 
is rows rows high and cols columns wide. The box is drawn if color is 1, erased if color is 0. (r, 
c) absolute coordinates represent row and column on the screen, with the origin at the lower left 
They are equivalent to (x, y) except for being reversed in order. 

dumpmat(msg, m, rows, cols) char •msg; bitmat m; 
If trace is non-null, write a readable ASCTI representation of the matrix m on trace. Msg is a label 
to identify the output. 

emptyrow(m, rows, cols, r) bitmat m; 
Returns 1 if row r of matrix m is all zero, else returns 0. This routine is provided because it can be 
implemented more efficiently with a knowledge of the internal representation than a series of calls 
to mat. 

error(msg) char •msg; 
Default error handler. Calls message(msg) and returns. This is called by certain routines in 
lib2648. It is also suitable for calling by the user program. It is probably a good idea for a fancy 
graphics program to supply its own error procedure which uses setjmp(3) to restart the program. 

gdefaultO 
Set the terminal to the default graphics modes. 

gotTO Turn the graphics display off. 

gonO Turn the graphics display on. 

kotTO Turn the keypad off. 

konO Turn the keypad on. This means that most special keys on the terminal (such as the alphanumeric 
arrow keys) will transmit an escape sequence instead of doing their function locally. 

line(xl, yl, x2, y2) 

low left() 

Draw a line in the current mode from (xl, yl) to (x2, y2). This is equivalent to move(xl, yl ); 
draw(x2, y2),· except that a bug in the terminal involving repeated lines from the same point is 
compensated for. 

Move the alphanumeric cursor to the lower left (home down) position. 

mat(m, rows, cols, r, c) bitmat m; 
Used to retrieve an element from a bit matrix. Returns 1or0 as the value of the fr, c] element of 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



LIB2648 ( 3X) UNIX Programmer's Manual LIB2648 ( 3X) 

the rows by cols matrix m. Bit matrices are numbered (r, c) from the upper left comer of the 
mattix, beginning at (0, 0). R represents the row, and c represents the column. 

message(str) char •str; 
Display the text message str at the bottom of the graphics screen. 

minmax(g, rows, cols, rmin, cmin, rmax, cmax) bitmat g; 
int •rmin, •cmin, •rmax, •cmax; 

Find the smallest rectangle that contains all the 1 (on) elements in the bit matrix g. The coordi­
nates are returned in the variables pointed to by rmin, cmin, rmax, cmax. 

move(x, y) 
Move the pen to location (x, y). Such motion is internal and will not cause output until a subse­
quent sync(). 

movecurs(x, y) 
Move the graphics cursor to location (x, y). 

bitmat newmat(rows, cols) 
Create (with malloc(3)) a new bit matrix of size rows by cols. The value created (e.g. a pointer to 
the first location) is returned. A bit matrix can be freed directly with free. 

outchar(c) char c; 
Print the character con the standard output. All output to the terminal should go through this rou­
tine or outstr. 

outstr(str) char •str; 

printg() 

Print the string str on the standard output by repeated calls to outchar. 

Print the graphics display on the printer. The printer must be configured as device 6 (the default) 
on theHPIB. 

char rawchar() 
Read one character from the terminal and return it. This routine or readline should be used to get 
all input, rather than getchar(3). 

rbofT() Tum the rubber band line off. 

rbon() Tum the rubber band line on. 

char •rdchar(c) char c; 
Return a readable representation of the character c. If c is a printing character it returns itself, if a 
control character it is shown in the "X notation, if negative an apostrophe is prepended. Space 
returns "'', rubout returns "?. 

NOTE: A pointer to a static place is returned. For this reason, it will not work to pass rdchar 
twice to the same fprintf! sprint/ call. You must instead save one of the values in your own buffer 
with strcpy. 

readline(prompt, msg, maxlen) char •prompt, •msg; 
Display prompt on the bottom line of the graphics display and read one line of text from the user, 
terminated by a newline. The line is placed in the buffer msg, which has size maxlen characters. 
Backspace processing is supported. 

setclearO 
Set the display to draw lines in erase mode. (This is reversed by inverse video mode.) 

setmat(m, rows, cols, r, c, val) bitmat m; 
The basic operation to store a value in an element of a bit matrix. The fr, c] element of mis set to 
val, which should be either 0 or 1. 

setset() Set the display to draw lines in normal (solid) mode. (This is reversed by inverse video mode.) 

May 27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 3 



LIB2648(3X) UNIX Programmer's Manual LIB2648(3X) 

setxorO 
Set the display to draw lines in exclusive or mode. 

syncO Force all accumulated output to be displayed on the screen. This should be followed by 
ffiush(stdout). The cursor is not affected by this function. Note that it is normally never necessary 
to call sync, since rawchar and readline call sync() andfflush(stdout) automatically. 

togvidO 
Toggle the state of video. If in normal mode, go into inverse video mode, and vice versa. The 
screen is reversed as well as the internal state of the library. 

ttyinitO Set up the terminal for processing. This routine should be called at the beginning of execution. It 
places the terminal in CBREAK mode, turns off echo, sets the proper modes in the terminal, and 
initializes the library. 

update(mold, mnew, rows, cols, baser, basec) bitmat mold, mnew; 

vidinvO 

Make whatever changes are needed to make a window on the screen look like mnew. Mold is 
what the window on the screen currently looks like. The window has size rows by cols, and the 
lower left corner on the screen of the window is [baser, basec]. Note: update was not intended to 
be used for the entire screen. It would work but be very slow and take 64K bytes of memory just 
for mold and mnew. It was intended for 100 by 100 windows with objects in the center of them, 
and is quite fast for such windows. 

Set inverse video mode. 

vidnormO 
Set normal video mode. 

zermat(m, rows, cols) bitmat m; 
Set the bit matrix m to all zeros. 

zoomn(size) 
Set the hardware zoom to value size, which can range from 1to15. 

zoomoffO 
Turn zoom off. This forces the screen to zoom level 1 without affecting the current internal zoom 
number. 

zoomonO 
Turn zoom on. This restores the screen to the previously specified zoom size. 

DIAGNOSTICS 

FILES 

The routine e"or is called when an error is detected. The only error currently detected is overflow of the 
buffer provided to readline. 

Subscripts out of bounds to setmat return without setting anything. 

/usr/lib/lib2648 .a 

SEE ALSO 

BUGS 

fed(l) 

This library is not supported. It makes no attempt to use all of the features of the terminal, only those 
needed by fed. Contributions from users will be accepted for addition to the library. 

The HP 2648 terminal is somewhat unreliable at speeds over 2400 baud, even with the "E/"F handshaking. 
In an effort to improve reliability, handshaking is done every 32 characters. (The manual claims it is only 
necessary every 80 characters.) Nonetheless, I/O errors sometimes still occur. 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 4 



LIB2648(3X) UNIX Programmer's Manual LIB2648(3X) 

There is no way to control the amount of debugging output generated on trace without modifying the 
source to the library. 

May27, 1986 INTEGRATED SOLUTIONS 4.3 BSD 5 



MP(3X) UNIX Programmer's Manual MP(3X) 

NAME 
madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min, omin, fmin, m_in, mout, 
omout, fmout, m_out, sdiv, itom - multiple precision integer arithmetic 

SYNOPSIS 
#include <mp.h> 
#include < stdio.h> 

typedef struct mint {int len; short *val;} MINT; 

madd(a, b, c) 
msub( a, b, c) 
mult( a, b, c) 
mdiv(a, b, q, r) 
pow( a, b, m, c) 
gcd(a, b, c) 
invert( a, b, c) 
rpow( a, n, c) 
msqrt(a, b, r) 
mcmp(a, b) 
move(a, b) 
min( a) 
omin(a) 
fmin(a,f) 
m_in(a, n,f} 
mout(a) 
omout(a) 
fmout(a,f) 
m_out(a, n,f) 
MINT *a, *b, *c, *m, *q, *r; 
FILE *f; 
int n; 

sdiv(a, n, q, r) 
MINT *a, *q; 
short n; 
short *r; 

MINT •itom(n) 

DESCRIPTION 
These routines perform arithmetic on integers of arbitrary length. The integers are stored using the defined 
type MINT. Pointers to a MINT can be initialized using the function itom which sets the initial value to n. 
After that, space is managed automatically by the routines. 

madd, msub and mult assign to c the sum~, difference and product, respectively, of a and b. mdiv assigns 
to q and r the quotient and remainder obtained from dividing a by b. sdiv is like mdiv except that the divi­
sor is a short integer n and the remainder is placed in a short whose address is given as r. msqrt produces 
the integer square root of a in b and places the remainder in r. rpow calculates in c the value of a raised to 
the (''regular'' integral) power n, while pow calculates this with a full multiple precision exponent band 
the result is reduced modulo m. gcd returns the greatest common denominator of a and b inc, and invert 
computes c such that a*c mod b = 1, for a and b relatively prime. mcmp returns a negative, zero or posi­
tive integer value when a is less than, equal to or greater than b, respectively. move copies a to b. min 
and mout do decimal input and output while omin and omout do octal input and output. More generally, 
fmin and fmout do decimal input and output using file/, and m_in and m_out do I/O with arbitrary radix 
n. On input, records should have the form of strings of digits terminated by a newline; output records have 
a similar form. 

October 29, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1 



MP(3X) UNIX Programmer's Manual MP(3X) 

Programs which use the multiple-precision arithmetic library must be loaded using the loader flag -Imp. 

FILES 
/usr/include/mp.h 
/usr/lib/libmp.a 

include file 
object code library 

SEE ALSO 
dc(l), bc(l) 

DIAGNOSTICS 

BUGS 

Illegal operations and running out of memory produce messages and core images. 

Bases for input and output should be<= 10. 

dc(l) and bc(l) don't use this library. 

The input and output routines are a crock. 

pow is also the name of a standard math library routine. 

October 29, 1987 INTEGRATED SOLUTIONS 4.3 BSD 2 



PLOT(3X) UNIX Programmer's Manual PLOT(3X) 

NAME 
openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl - graphics interface 

SYNOPSIS 
openplO 

eraseO 

label(s) 
chars[]; 

line(xJ, yl, x2, y2) 

circle(x, y, r) 

arc(x,y,x.O,yO,xl,yl) 

move(x,y) 

cont(x, y) 

point(x, y) 

linemod(s) 
chars[]; 

space(x.0,yO,xJ,yJ) 

closepIO 

DESCRIPTION 
These subroutines generate graphic output in a relatively device-independent manner. See plot(5) for a 
description of their effect. Openpl must be used before any of the others to open the device for writing. 
Closepl flushes the output 

String arguments to label and linemod are null-terminated, and do not contain newlines. 

Various versions of these functions exist for different output devices. They are obtained by the following 
ld(l) options: 

-I plot 
-1300 
-1300s 
-1450 
-14014 
-ltws 

SEE ALSO 

Device-independent graphics stream on standard output for plot(l) filters 
GSI 300 terminal 
GSI 300S terminal 
DASI 450 tenninal 
Tektronix 4014 tenninal 
Integrated Solutions Optimum V WorkS tation Window 

plot(5), plot(lG), graph(lG) 

October 28, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1 



RCMD(3X) UNIX Programmer's Manual RC:MD(3X) 

NAME 
rcmd, rresvport, ruserok - routines for returning a stream to a remote command 

SYNOPSIS 
rem= rcmd(ahost, inport, locuser, remuser, cmd,fd2p); 
char **ahost; 
u _short inport; 
char •locuser, •remuser, •cmd; 
int *fd2p; 

s = rresvport(port); 
int •port; 

ruserok(rhost, superuser, ruser, luser); 
char •rhost; 
int superuser; 
char •ruser, •luser; 

DESCRIPTION 
Rcmd is a routine used by the super-user to execute a command on a remote machine using an authentica­
tion scheme based on reserved port numbers. Rresvport is a routine which returns a descriptor to a socket 
with an address in the privileged port space. Ruserok is a routine used by servers to authenticate clients 
requesting service with rcmd. All three functions are present in the same file and are used by the rshd(8C) 
server (among others). 

Rcmd looks up the host •ahost using gethostbyname(3N), returning -1 if the host does not exist Other­
wise •ahost is set to the standard name of the host and a connection is established to a server residing at the 
well-known Internet port inport. 

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the remote 
command as stdio and stdout. If fd2p is non-zero, then an auxiliary channel to a control process will be 
set up, and a descriptor for it will be placed in •fd2p. The control process will return diagnostic output 
from the command (unit 2) on this channel, and will also accept bytes on this channel as being UNIX sig­
nal numbers, to be forwarded to the process group of the command. Iffd2p is 0, then the stderr (unit 2 of 
the remote command) will be made the same as the stdout and no provision is made for sending arbitrary 
signals to the remote process, although the user may be able to get its attention by using out-of-band data. 

The protocol is described in detail in rshd(8C). 

The rresvport routine is used to obtain a socket with a privileged address bound to it This socket is suit­
able for use by rcmd and sevral other routines. Privileged addresses consist of a port in the range 0 to 
1023. Only the super-user is allowed to bind an address of this sort to a socket 

Ruserok takes a remote host's name as returned by a gethostent(3N) routine, two user names, and a flag 
indicating whether the local user's name is the super-user. It then checks the files /etc/hosts.equiv and, pos­
sibly, .rhosts in the current working directory (normally the local user's home directory) to see if the 
request for service is allowed. A 1 is returned if the machine name is listed in the hosts.equiv file, or the 
host and remote user name are found in the .rhosts file; otherwise ruserok returns 0. If the superuser flag 
is 1, the checking of the host.equiv file is bypassed. 

SEE ALSO 
rlogin(lC), rsh(lC), rexec(3X), rexecd(SC), rlogind(8C), rshd(8C) 

BUGS 
There is no way to specify options to the socket call which rcmd makes. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



REXEC(3X) UNIX Programmer's Manual REXEC(3X) 

NAME 
rexec - return stream to a remote command 

SYNOPSIS 
rem= rexec(ahost, inport, user, passwd, cmd,fd2p); 
char • •ahost; 
u _short inport; 
char •user, •passwd, •cmd; 
int •fd2p; 

DESCRIPTION 
Rexec looks up the host •ahost using gethostbyname(3N), returning -1 if the host does not exist. Other­
wise •ahost is set to the standard name of the host If a username and password are both specified, then 
these are used to authenticate to the foreign host. Otherwise, the environment and then the user's .netrc file 
in his or her home directory are searched for appropriate information. If all this fails, the user is prompted 
for the information. 

The port inport specifies which well-known DARPA Internet port to use for the connection; it will nor­
mally be the value returned from the call getservbyname("exec", "tcp"). (See getservent(3N).) The 
protocol for connection is described in detail in rexecd(8C). 

If ·the call succeeds, a socket of type SOCK STREAM is returned to the caller, and given to the remote 
command as stdio and stdout. If fd2p is non-zero, then an auxiliary channel to a control process will be 
set up, and a descriptor for it will be placed in •fd2p. The control process will return diagnostic output 
from the command (unit 2) on this channel, and will also accept bytes on this channel as being UNIX sig­
nal numbers, to be forwarded to the process group of the command. If fd2p is 0, then the stderr (unit 2 of 
the remote command) will be made the same as the stdout and no provision will be made for sending arbi­
trary signals to the remote process, although the user may be able to get its attention by using out-of-band 
data. 

SEE ALSO 
rcmd(3X), rexecd(8C) 

BUGS 
There is no way to specify options to the socket call which rexec makes. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TERMCAP ( 3X) UNIX Programmer's Manual TERMCAP( 3X) 

NAME 
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs- terminal independent operation routines 

SYNOPSIS 
char PC; 
char *BC; 
char *UP; 
short ospeed; 

tgetent(bp, name) 
char *bp, *name; 

tgetnum(id) 
char *id; 

tgetftag(id) 
char *id; 

char* 
tgetstr(id, area) 
char *id, **area; 

char* 
tgoto(cm, destcol, destline) 
char *cm; 

tputs( cp, affcnt, outc) 
register char *cp; 
int ajfcnt; 
int (*outc)(); 

DESCRIPTION 
These functions extract and use capabilities from the terminal capability data base termcap(5). These are 
low level routines; see curses(3X) for a higher level package. 

Tgetent extracts the entry for terminal name into the buffer at bp. Bp should be a character buffer of size 
1024 and must be retained through all subsequent calls to tgetnum, tgetflag, and tgetstr. Tgetent returns 
-1 if it cannot open the termcap file, 0 if the terminal name given does not have an entry, and 1 if all goes 
well. It will look in the environment for a TERMCAP variable. If found, and the value does not begin 
with a slash, and the terminal type name is the same as the environment string TERM, the TERMCAP 
string is used instead of reading the termcap file. If it does begin with a slash, the string is used as a path 
name rather than /etc/termcap. This can speed up entry into programs that call tgetent, as well as to help 
debug new terminal descriptions or to make one for your terminal if you can't write the file ®.PP Tgetnum 
gets the numeric value of capability id, returning -1 if is not given for the terminal. Tgetflag returns 1 if 
the specified capability is present in the terminal's entry, 0 if it is not. Tgetstr returns the string value of 
the capability id, places it in the buffer at area, and advances the area pointer. It decodes the abbreviations 
for this field described in termcap(5), except for cursor addressing and padding information. Tgetstr 
returns NULL if the capability was not found. 

Tgoto returns a cursor addressing string decoded from cm to go to column destcol in line destline. It uses 
the extemai variables UP (from the up capability) and BC (if be is given rather than bs) if necessary to 
avoid placing \n, "D or "@ in the returned string. (Programs which call tgoto should be sure to tum off the 
XT ABS bit(s), since tgoto may now output a tab. Note that programs using termcap should in general tum 
off XTABS anyway since some terminals use control I for other functions, such as nondestructive space.) 
If a% sequence is given which is not understood, then tgoto returns ''OOPS''. 

Tputs decodes the leading padding information of the string cp; affcnt gives the number of lines affected 
by the operation, or 1 if this is not applicable, outc is a routine which is called with each character in tum. 
The external variable ospeed should contain the output speed of the terminal as encoded by stty(3). The 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TERMCAP ( 3X) UNIX Programmer's Manual TERMCAP ( 3X) 

external variable PC should contain a pad character to be used (from the pc capability) if a null ("@) is 
inappropriate. 

FILES 
/usr/lib/libtermcap.a -ltermcap library 
/etc/termcap data base 

SEE ALSO 
ex(l), curses(3X), termcap(5) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 





TABLE OF CONTENTS 

4. Special Flies 

intro .................................................................................... introduction to special files and hardware support 
arp ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Address Resolution Protocol 
bk •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• line discipline for machine-machine communication (obsolete) 
cp ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Intelligent Communications Prc:>cessor 
dh ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• DH-l l/DM-11 communications multiplexer 
di •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• DL-11 communications multiplexer 
drum ........................................................................................................................................... paging device 
dz ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• DZ-11 communications multiplexer 
el •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• disk interf'ace 
enet •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• generalized Ethernet device driver 
ex ............................................................................................................ Excelan 10 Mb/s Ethernet controller 
gd .............................................................................................................................. ISi SCSI hard disk driver 
gg ....................................................................................................................... ISi raw SCSI interface driver 
gt ....................................................................................................................................... ISi SCSI ta.pe driver 
hk •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• RK.6- l l/R.K06 and RK07 movin.g head disk 
hp ................................................................................................................................................. disk interf'ace 
ii .............................................................................................................. Interlan 10 Mb/s Ethernet controller 
inet .............................................................................................................................. lnte,met protocol family 
ip •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• Internet Protocol 
lo •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• software loopback network. interface 
Ip •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• line printer 
mem •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• main memory 
mtio ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• UN'IX magmpe interface 
null ....................................................................................................................................... ••••••• ••••• ••• data. sink 
nw ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.•• Integrated Solutions, Inc., 10 Mb/s Ethernet controller 
pty' ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• pseudo terminal driver 
rk ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• RK6- l l/R.K06 and RK07 moving head disk 
rx .................................................................................................................. DEC RX02 floppy disk interface 
sd ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• V~ SCSI disk adaptor interface 
sm ............................................................................................................................ VME SMD disk interface 
sp .................................................................................................................. disk spanning pseudo disk driver 
tcp ....................................................................................................... Internet Tran.smission Control Protocol 
tm .................................................................................................................. TM-11/l'E-10 magtape interface 
ts ................................................................................................................................ TS-11 magta.pe interf"ace 
tty' ............................................................................................................................. general terminal interf'ace 
vb ............................................................................................................................................. v~ backplane 

INTEGRATED SOLUTIONS 4.3 BSD - ccclxiii - December 1988 





INTR0(4) UNIX Programmer's Manual INTR0(4) 

NAME 
intro - introduction to special files and hardware support 

DESCRIPTION 
This section describes the device interfaces to the operating system for disks, tapes, serial and network 
communications and other devices. Software support for these devices comes in two forms. A hardware 
device may be supported with a character or block device driver, or it may be used within the networking 
subsystem and have a network interface driver. Block and character devices are accessed through files in 
the file system of a special type; see mknod (8). Network interfaces are indirectly accessed through the 
interprocess communication facilities provided by the system; see socket(2). 

Integrated Solutions builds the operating system with all of the devices as appropriate to an LSI-11 or V:ME 
bus system listed in Section 4. (If you have a somce license, you can generate the system without some of 
these devices; the only required ones are the drivers for data sink dev/null, nul1(4); for physical, virtual and 
I/O memory, mem(4); and for the paging drum, drum(4). (Refer to the document Building 4.3BSD UNIX 
Systems with Config (SMM:2)). When the resultant system binary image is booted, the autoconfiguration 
facilities in the system probe for devices on the bus. If a device is found, the associated software support is 
enabled and the system reports the device's CSR address/interrupt vector in the boot header. 

For the appropriate device description entries in this section, the SYNOPSIS line shows the device's 
default Control Stan.is Register (CSR) address and the default interrupt vector. Note that these 
addresses/vectors can be changed; therefore, the system may report a device at a different address/interrupt 
vector than that shown in the SYNOPSIS line of the device description at boot time. 

The DIAGNOSTICS section lists messages which may appear on the console and in the system error log 
lusr!admlmessages due to errors in device operation. 

Section 4 is divided as follows: 

4 machine-independent device interfaces 
4I Integrated Solutions specific devices 
4N networking devices 
4P protocol devices 
4F protocol families 

The networking support is introduced in intro ( 4N). 

SEE ALSO 
intro(4), intro(4N), config(8), 
Building 4.3BSD UNIX System with Config in the UNIX System Manager's Manual (SMM:2) 

MAJOR AND MINOR DEVICE NUMBERS 
To determine the major and minor numbers of a device, cd to the /dev directory and list the device with the 
Is -I command, as described in the ls(l) man page. In the example below, the user listed the special file for 
the device smOa. 

% cd/dev 
% ls-lsmOa 
brw------- 1 root 2, 0 Oct 23 07:34 smOa 
% 

The major and minor numbers appear in the place usually reserved for file size (between the name of the 
owner (root) and the last date of modification (Oct 23)). In the example above, the major number for this 
device is 2, and the minor number is 0. 

LIST OF DEVICES FOR LSI-11 BUS SYSTEMS 
Machine-dependent devices that are supported by Integrated Solution's LSI-11 Bus-based systems are 
listed below: 

August 1, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1 



IN1R0(4) UNIX Programmer's Manual INTR0(4) 

dh DH-11 emulators, terminal multiplexor 
d1 DL-11 terminal multiplexor 
dz DZ-11 terminal multiplexor 
el extended RL disk interface (winchester) 
ex Excelan 1 OMb/s Ethernet controller 
hp SMD disk interface (RP06, RM03, RMOS, Eagle, etc.) 
ii Interlan 1 OMb/s Ethernet controller 
Ip LP-11 parallel line printer interface 
rk RK6-l l/RK06 and RK07 moving head disk 
rx DEC RX02 floppy interface 
tm TM-l l/I'E-10 tape drive interface 
ts TS-11 tape drive interface 

LIST OF DEVICES FOR VME BUS SYSTEMS 
Machine-dependent devices that are supported by our VME-based systems are listed below: 

cp ICP8 or ICP16 Intelligent Communications Processor 
enet ISi generalized Ethernet device driver 
ep ISI ICP16/8 Centronics parallel port printer 
ex Excelan 1 OMb/s Ethernet controller 
gd ISi SCSI/U SCSI disk device 
gg ISi SCSl/U raw SCSI monitor 
gt ISI SCSI/U SCSI tape device 
sd SCSI disk adaptor interface 
nw ISI 10 Mb/s Ethernet controller 
sm Interphase SMD disk interface 
sp ISi disk span pseudo disk device 
ts tape drive interface 
vb ISi shared-memory card 

August 1, 1988 INTEGRATED SOLUTIONS 4.3 BSD 2 



INTR0(4N) UNIX Programmer's Manual INTR0(4N) 

NAME 
networking - introduction to networking facilities 

SYNOPSIS 
#include <sys/socket.h> 
#include <net/route.h> 
#include <net/if .h> 

DESCRIPTION 
This section briefly describes the networking facilities available in the system. Documentation in this part 
of section 4 is broken up into three areas: protocol-families, protocols, and network interfaces. Entries 
describing a protocol-family are marked "4F", while entries describing protocol use are marked "4P". 
Hardware support for network interfaces are found among the standard ''4'' entries. 

All network protocols are associated with a specific protocolfamily. A protocol-family provides basic ser­
vices to the protocol implementation to allow it to function within a specific network environment These 
services may include packet fragmentation and reassembly, routing, addressing, and basic transport. A 
protocol-family may support multiple methods of addressing, though the current protocol implementations 
do not. A protocol-family is normally comprised of a number of protocols, one per socket(2) type. It is not 
required that a protocol-family support all socket types. A protocol-family may contain multiple protocols 
supporting the same socket abstraction. 

A protocol supports one of the socket abstractions detailed in socket(2). A specific protocol may be 
accessed either by creating a socket of the appropriate type and protocol-family, or by requesting the proto­
col explicitly when creating a socket. Protocols normally accept only one type of address format, usually 
determined by the addressing structure inherent in the design of the protocol-family/network architecture. 
Certain semantics of the basic socket abstractions are protocol specific. All protocols are expected to sup­
port the basic model for their particular socket type, but may, in addition, provide non-standard facilities or 
extensions to a mechanism. For example, a protocol supporting the SOCK_ STREAM abstraction may 
allow more than one byte of out-of-band data to be transmitted per out-of-band message. 

A network interface is similar to a device interface. Network interfaces comprise the lowest layer of the 
networking subsystem, interacting with the actual transport hardware. An interface may support one or 
more protocol families, and/or address formats. The SYNOPSIS section of each network interface entry 
gives a sample specification of the related drivers for use in providing a system description to the config(S) 
program. The DIAGNOSTICS section lists messages which may appear on the console and in the system 
error log lusr!adm!messages due to errors in device operation. 

PROTOCOLS 
The system currently supports only the DARPA Internet protocols fully. Raw socket interfaces are pro­
vided to IP protocol layer of the DARPA Internet, to the IMP link layer (1822), and to Xerox PUP-1 layer 
operating on top of 3Mb/s Ethernet interfaces. Consult the appropriate manual pages in this section for 
more information regarding the support for each protocol family. 

ADDRESSING 
Associated with each protocol family is an address format. The following address formats are used by the 
system: 

#define 
#define 
#define 
#define 

ROUTING 

AF UNIX 
AF INET 
AF IMPLINK 
AF_PUP 

1 
2 
3 
4 

/•local to host (pipes, portals) •I 
I• internetwork: UDP, TCP, etc. */ 
I• arpanet imp addresses*/ 
I• pup protocols: e.g. BSP */ 

The network facilities provided limited packet routing. A simple set of data structures comprise a ''routing 
table'' used in selecting the appropriate network interface when transmitting packets. This table contains a 
single entry for each route to a specific network or host A user process, the routing daemon, maintains this 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



INTR0(4N) UNIX Programmer's Manual INTR0(4N) 

data base with the aid of two socket specific ioctl(2) commands, SIOCADDRT and SIOCDELRT. The 
commands allow the addition and deletion of a single routing table entry, respectively. Routing table mani­
pulations may only be carried out by super-user. 

A routing table entry has the following form, as defined in <.netlroute.h>; 

struct rtentry { 
u_long 
struct 
struct 
short 
short 
u_long 
struct 

}; 

rt_ hash; 
sockaddr rt_ dst; 
sockaddr rt_gateway; 
rt_ft.ags; 
rt_refcnt; 
rt_ use; 
ifnet •rt_ ifp; 

with rt _flags defined from, 

#define 
#define 
#define 

RTF UP 
RTF GATEWAY 
RTF HOST 

Oxl 
Ox2 
Ox4 

/* route usable */ 
I* destination is a gateway */ 
/*host entry (net otherwise) */ 

Routing table entries come in three ft.avors: for a specific host, for all hosts on a specific network, for any 
destination not matched by entries of the first two types (a wildcard route). When the system is booted, 
each network interface autoconfigured installs a routing table entry when it wishes to have packets sent 
through it. Normally the interface specifies the route through it is a ''direct'' connection to the destination 
host or network. If the route is direct, the transport layer of a protocol family usually requests the packet 
be sent to the same host specified in the packet. Otherwise, the interface may be requested to address the 
packet to an entity different from the eventual recipient (i.e. the packet is forwarded). 

Routing table entries installed by a user process may not specify the hash, reference count, use, or interface 
fields; these are filled in by the routing routines. If a route is in use when it is deleted (rt _ref cnt is non­
zero), the resources associated with it will not be reclaimed until further references to it are released 

The routing code returns EEXIST if requested to duplicate an existing entry, ESRCH if requested to delete 
a non-existant entry, or ENOBUFS if insufficient resources were available to install a new route. 

User processes read the routing tables through the ldevlkmem device. 

The rt_ use field contains the number of packets sent along the route. This value is used to select among 
multiple routes to the same destination. When multiple routes to the same destination exist, the least used 
route is selected. 

A wildcard routing entry is specified with a zero destination address value. Wildcard routes are used only 
when the system fails to find a route to the destination host and network. The combination of wildcard 
routes and routing redirects can provide an economical mechanism for routing traffic. 

INTERFACES 
Each network interface in a system corresponds to a path through which messages may be sent and 
received. A network interface usually has a hardware device associated with it, though certain intetfaces 
such as the loopback interface, lo(4), do not 

At boot time each interface which has underlying hardware support makes itself known to the system dur­
ing the autoconfiguration process. Once the interface has acquired its address it is expected to install a 
routing table entry so that messages may be routed through it. Most interfaces require some part of their 
address specified with an SIOCSIF ADDR ioctl before they will allow traffic to ft.ow through them. On 
interfaces where the network-link layer address mapping is static, only the network number is taken from 
the ioctl; the remainder is found in a hardware specific manner. On interfaces which provide dynamic 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



INTR0(4N) UNIX Programmer's Manual INTR0(4N) 

network-link layer address mapping facilities (e.g. lOMb/s Ethernets), the entire address specified in the 
ioctl is used. 

The following ioctl calls may be used to manipulate network interfaces. Unless specified otherwise, the 
request takes an ifrequest structure as its parameter. This structure has the form 

struct ifreq { 
char ifr_name[16]; /*name of interface (e.g. "ecO") *I 

#define 
#define 
#define 
}; 

union { 
struct sockaddr ifru _ addr; 
struct sockaddr ifru _ dstaddr; 
short ifru _flags; 

} ifr_ifru; 
ifr addr ifr ifru.ifru addr /*address•/ - - -
ifr_ dstaddr ifr _ ifru.ifru _ dstaddr 
ifr_flags ifr_ifru.ifru_flags I• flags •I 

SIOCSIFADDR 

I* other end of p-to-p link •/ 

Set interface address. Following the address assignment, the "initialization" routine for the inter­
face is called. 

SIOCGIFADDR 
Get interface address. 

SIOCSIFDST ADDR 
Set point to point address for interface. 

SIOCGIFDST ADDR 
Get point to point address for interface. 

SIOCSIFFLAGS 
Set interface flags field. If the interface is marked down, any processes currently routing packets 
through the interface are notified. 

SIOCGIFFLAGS 
Get interface flags. 

SIOCGIFCONF 
Get interface configuration list. This request takes an ifconf structure (see below) as a value-result 
parameter. The ifc_len field should be initially set to the size of the buffer pointed to by ifc_buf. 
On return it will contain the length, in bytes, of the configuration list. 

I* 
* Structure used in SIOCGIFCONF request. 
* Used to retrieve interface configuration 
* for machine (useful for programs which 
* must know all networks accessible). 
*/ 

struct ifconf { 
int ifc _ len; /• size of associated buffer •/ 
union { 

caddr _ t if cu_ buf; 
struct ifreq •if cu_ req; 

} ifc_ifcu; 
#define ifc _ buf ifc _ ifcu.ifcu _ buf /• buffer address •/ 
#define ifc_req ifc_ifcu.ifcu_req I• array of structures returned•/ 
}; 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 3 



INTR0(4N) UNIX Programmer's Manual INTR0(4N) 

SEE ALSO 
socket(2), ioctl(2), intro(4), config(8), routed(8C) 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 4 



ARP(4P) UNIX Programmer's Manual ARP(4P) 

NAME 
arp - Address Resolution Protocol 

SYNOPSIS 
pseudo-device ether 

DESCRIPTION 
ARP is a protocol used to dynamically map between DARPA Internet and lOMb/s Ethernet addresses on a 
local area network. It is used by all the lOMb/s Ethernet interface drivers and is not directly accessible to 
users. 

ARP caches Internet-Ethernet address mappings. When an interface requests a mapping for an address not 
in the cache, ARP queues the message which requires the mapping and broadcasts a message on the associ­
ated network requesting the address mapping. If a response is provided, the new mapping is cached and 
any pending messages are transmitted. ARP itself is not Internet or Ethernet specific; this implementation, 
however, is. ARP will queue at most one packet while waiting for a mapping request to be responded to; 
only the most recently "transmitted" packet is kept. 

ARP watches passively for hosts impersonating the local host (i.e. a host which responds to an ARP map­
ping request for the local host's address) and will, optionally, periodically probe a network looking for 
impostors. 

DIAGNOSTICS 
duplicate IP address!! sent from ethernet address: %x %x %x %x %x %x. ARP has discovered 
another host on the local network which responds to mapping requests for its own Internet address. 

SEE ALSO 
il(4) 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



BK(4) UNIX Programmer's Manual BK(4) 

NAME 
bk - line discipline for machine-machine communication (obsolete) 

SYNOPSIS 
pseudo-device bk 

DESCRIPTION 
This line discipline provides a replacement for the old and new tty drivers described in tty(4) when high 
speed output to and especially input from another machine is to be transmitted over a asynchronous com­
munications line. The discipline was designed for use by the Berkeley network. It may be suitable for 
uploading of data from microprocessors into the system. If you are going to send data over asynchronous 
communications lines at high speed into the system, you must use this discipline, as the system otherwise 
may detect high input data rates on terminal lines and disables the lines; in any case the processing of such 
data when normal terminal mechanisms are involved saturates the system. 

The line discipline is enabled by a sequence: 

#include <sgtty .h> 
int ldisc = NETLDISC, fildes; ••• 
ioctl(fildes, TIOCSETD, &Idisc); 

A typical application program then reads a sequence of lines from the terminal port, checking header and 
sequencing information on each line and acknowledging receipt of each line to the sender, who then 
transmits another line of data. Typically several hundred bytes of data and a smaller amount of control 
information will be received on each handshake. 

The old standard teletype discipline can be restored by doing: 

ldisc = OTTYDISC; 
ioctl(fildes, TIOCSETD, &ldisc); 

While in networked mode, normal teletype output functions take place. Thus, if an 8 bit output data path is 
desired, it is necessary to prepare the output line by putting it into RAW mode using ioctl(2). This must be 
done before changing the discipline with TIOCSETD, as most ioctl (2) calls are disabled while in network 
line-discipline mode. 

When in network mode, input processing is very limited to reduce overhead. Currently the input path is 
only 7 bits wide, with newline the only recognized character, terminating an input record. Each input 
record must be read and acknowledged before the next input is read as the system refuses to accept any 
new data when there is a record in the buffer. The buffer is limited in length, but the system guarantees to 
always be willing to accept input resulting in 512 data characters and then the terminating newline. 

User level programs should provide sequencing and checksums on the information to guarantee accurate 
data transfer. 

SEE ALSO 
tty(4) 

DIAGNOSTICS 
None. 

BUGS 
The Purdue uploading line discipline, which provides 8 bits and uses timeout' s to terminate uploading 
should be incorporated into the standard system, as it is much more suitable for microprocessor connec­
tions. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



CP( 41) UNIX Programmer's Manual CP( 41) 

NAME 
cp - Intelligent Communications Processor 

SYNOPSIS 
CPO at Ox7ff520 vector Ox56 

DESCRIPTION 

FILES 

Cp is the driver for the Integrated Solutions Intelligent Communications Processor (ICP), available in two 
versions: an eight line controller (ICP8) and a sixteen line controller (ICP16). 

Each line attached to the controller behaves as described in tty(4). Input and output for each line may 
independently be set to run at any of 16 speeds; see tty(4) for the encoding. Modem control is supported 
on each line. 

Line printer support is provided on the ICP16/8 for a Centronics or Data Products interface. Bit 7 of the 
minor device number indicates the Ip device. 

/elev/tty[hi] [0-9a-f] 
/elev/ttyd[0-9a-f] dial-up lines 
/elev/Ip? 
/elev/rip? 
/di!v/Lp? 

SEE ALSO 
tty(4) 

DIAGNOSTICS 
cp%d: NXM. No response from the bus on a dma transfer within a timeout period. This occurs most fre­
quently when the bus is heavily loaded and when devices which hog the bus are present. It is not serious. 

cp%d: silo overftow. The character input silo overflowed before it could be serviced. This can happen if 
a hard error occurs when the CPU is running with elevated priority, as the system will then print a message 
on the console with interrupts disabled. 

• 

15 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



DH(4) UNIX Programmer's Manual DH(4) 

NAME 
dh - DH-11/DM-11 communications multiplexer 

SYNOPSIS 
DHO at address Ox3fe010/017760020 vector OxcS/0310 
DMO at addre~ Ox3m40/017770500 vector Oxc0/0300 

DESCRIPTION 

FILES 

A dh-11 provides 16 communication lines; dm-ll's may be optionally paired with dh-ll's to provide 
modem control for the lines. 

Each line attached to the DH-11 communications multiplexer behaves as described in tty(4). Input and 
output f~r ~ach line may independently be set to run at any of 16 speeds; see tty(4) for the encoding. 

Bit i of flags may be specified for a dh to say that a line is not properly connected and that the line should 
be treated as hard-wired with carrier always present. In the specification of dhO, indicating "flags Ox0004" 
causes line ttyh2 to be treated in this way. 

/dev/tty[hi] [0-9a-f] 
/dev/ttyd[0-9a-f] dialups 

SEE ALSO 
tty(4) 

DIAGNOSTICS 
dh%d: NXM. No response from the LSI-11 bus on a dma transfer within a timeout period. This occurs 
most frequently when the LSI-11 bus is heavily loaded and when devices which hog the bus (such as 
rk07's) are present. It is not serious. 

db% d: silo overflow. The character input silo overfiowed before it could be serviced. This can happen if 
a hard error occurs when the CPU is running with elevated priority, as the system will then print a message 
on the console with interrupts disabled. It is not serious. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



DL(4) UNIX Programmer's Manual DL(4) 

NAME 
di - DL-11 communications multiplexer 

SYNOPSIS 
DLO at addre~ Ox3ffd40/017776500 vector Oxc0/0300 

DESCRIPTION 

FILES 

A dl-11 provides 4 serial communication lines. Each line attached to the DL-11 communications multi­
plexer behaves as described in tty(4). Input and output for each line may independently be set to run at any 
of 16 speeds; see tty(4) for the encoding. 

Bit i of flags may be specified for a di to say that a line is not properly connected and that the line should be 
treated as hard-wired with carrier always present In the specification of dlO, indicating "flags Ox04" causes 
line tty02 to be treated in this way. 

/dev/ttyl[0-3] 

SEE ALSO 
tty(4) 

DIAGNOSTICS 
di %d: overflow. The character input buffer overflowed before it could be serviced. This can happen if a 
hard error occurs when the CPU is running with elevated priority, as the system will then print a message 
on the console with interrupts disabled. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



DRUM(4) UNIX Programmer's Manual DRUM(4) 

NAME 
drum - paging device 

DESCRIPTION 

FILES 

BUGS 

This file refers to the paging device in use by the system. This may actually be a subdevice of one of the 
disk drivers, but in a system with paging interleaved across multiple disk drives it provides an indirect 
driver for the multiple drives. 

/dev/drum 

Reads from the drum are not allowed across the interleaving boundaries. Since these only occur every 
.5Mbytes or so, and since the system never· allocates blocks across the boundary, this is usually not a prob­
lem. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



DZ(4) UNIX Programmer's Manual DZ(4) 

NAME 
dz - DZ-11 communications multiplexer 

SYNOPSIS 
DZO at addre~ Ox3fe008/17760010 vector Oxc0/0300 

DESCRIPTION 

FILES 

A dz-11 provides 8 communication lines with partial modem control, adequate for UNIX dialup use. Each 
line attached to the DZ-11 communications multiplexer behaves as described in tty(4) and may be set to 
run at any of 16 speeds; see tty(4) for the encoding. 

Bit i of flags may be specified for a dz to say that a line is not properly connected, and that the line should 
be treated as hard-wired with carrier always present. In the specification of dzO, indicating ''flags Ox04'' 
causes line tty02 to be treated in this way. 

/dev/tty[0-9] [0-9] 
/dev/ttyd[0-9a-f] dial ups 

SEE ALSO 
tty(4) 

DIAGNOSTICS 
dz%d: silo overftow. The 64 character input silo overflowed before it could be serviced. This can happen 
if a hard error occurs when the CPU is running with elevated priority, as the system will then print a mes­
sage on the console with interrupts disabled. If the Berknet is running on a dz line at high speed (e.g. 9600 
baud), there is only 1/15th of a second of buffering capacity in the silo, and overrun is possible. This may 
cause a few input characters to be lost to users and a network packet is likely to be corrupted, but the net­
work will recover. It is not serious. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



EL( 4I) UNIX Programmer's Manual EL( 41) 

NAME 
el - disk interface 

SYNOPSIS 
ELO at address Ox3ff900/17774400 vector Ox70/0160 

DESCRIPTION 
el is the disk interface for Integrated Solution's extended RL101 disk controller for 5 1.4-inch Winchester 
drives. 

The standard (block) device names begin with 'el' followed by the drive number and a letter a-h for parti­
tions 0-7 respectively. For example, 'elOa' designates the block device for the first partition (a) on the first 
drive (0). The character ? stands here for a drive number in the range 0-7 .) 

Files with minor device numbers 0 through 7 refer to drive 0 partitions; minor devices 8 through 15 refer to 
drive 1 partitions, etc. 

The block files access the disk via the system's normal buffering mechanism and may be read and written 
without regard to physical disk records. There is also a raw interface which provides for direct transmission 
between the disk and the user's read or write buffer. A single read or write call results in exactly one I/O 
operation; therefore, raw 1/0 is considerably more efficient when many words are transmitted. The names 
of the raw files begin with an extra 'r.' In raw I/0, counts should be a multiple of 512 bytes (a disk sector). 
Likewise seek calls should specify a multiple of 512 bytes. 

DISK SUPPORT 

FILES 

The el device supports ST506 drives attached to the Integrated Solutions extended RL101 controller. The 
most common of the supported drives are: CDC Wren 36, Maxtor 1065, 1110, 1140, 2085, 2140 and 2190. 
Their characteristics and the number of sectors allotted to the default partitions on each drive are contained 
in the I etc/ disktab file. 

The disk partitions are normally used as follows: 

el?a used for the root filesystem 
el?b used as a paging area 
el?c maps the entire disk 

All disk partition tables are calculated using the diskpart(S) program. 

/dev/el[0-7] [a-h] 
/dev/rel[0-7] [a-h] 

block files 
raw files 

SEE ALSO 
rk(4), hp{4) 
UNIX 4.3BSD System Administrator Guide (SMM:l) 

DIAGNOSTICS 

BUGS 

el%d%c: hard error sn%d cs= %b. An unrecoverable error occurred during transfer of the specified 
sector of the specified disk partition. The contents of the control status register are printed in octal and 
symbolically with bits decoded. The error was either unrecoverable, or a large number of retry attempts 
(including offset positioning and drive recalibration) could not recover the error. 

el%d: lost interrupt. As a result of a lost interrupt, el resets itself and cancels the software state of pend­
ing transfers. 

In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles on the 
tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and /seek(2) 
should always deal in 512-byte multiples. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



EL( 41) UNIX Programmer's Manual EL(4I) 

A program to analyze the logged error information (even in its present reduced form) is needed. 

The partition tables for the filesystems should be read off of each pack, as they are never quite what any 
single installation would prefer, and this would make packs more portable. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



ENET(4) UNIX Programmer's Manual ENET(4) 

NAME 
enet - generalized Ethernet device driver 

DESCRIPTION 

FILES 

/dev/enet is a generalized Ethernet device driver that provides a programmatic interface to Ethernet. 
/dev /enet supports the traditional open/close/read/write device-driver interface and the following IOCTL 
system calls: 

EIOCGETP - get ethernet parameters 
EIOCSETP - set ethernet parameters 
EIOCSETF - set ethernet read filter 
EIOCENBS - enable signal when read packet available 
EIOCINHS - inhibit signal when read packet available 
FIONREAD - check for read packet available 
EIOCSETW - set maximum read packet wait queue length 
EIOCFLUSH - flush read packet waiting queue 
EIOCALLOCP - allocate packet (kernel only) 
EIOCDEALLOCP-deallocate packet (kernel only) 
EIOCMBIS - set mode bits 
EIOCMBIC - clear mode bits 
EIOCDEVP - get device parameters 

/dev/enet is used by the ISI boot deamon (/etc/bootd) for Ethernet packet filtering in support of booting 
diskless nodes and clusters. 

/dev/enet 
/usr/include/is68kif/enet.h 
/usr/include/is68kif/enetdefs.h 

generalized Ethernet device driver 
Ethernet definitions needed for user processes 
Ethernet definitions not needed for user processes 

October 25, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1 



EX(41) UNIX Programmer's Manual EX(41) 

NAME 
ex - Excelan 10 Mb/s Ethernet controller 

SYNOPSIS 
EXO at addre~ Ox7f0000/037600000 vector OxS0/0120 (VME Bus) 
EXO at addre~ Ox3fe820/017764040 vector OxS0/0120 (LSl-11 Bus) 

DESCRIPTION 
The ex interface provides access to a 10 Mb/s Ethernet network through an Excelan controller. 

The host's Excelan address is specified at boot time with an SIOCSIF ADDR ioctl. The ex interface 
employs the address resolution protocol described in arp(4P) to dynamically map between Internet and 
Ethernet addresses on the local network. 

The interface normally tries to use a ''trailer'' encapsulation to minimize copying data on input and output. 
This may be disabled, on a per-interface basis, by setting the IFF _NOTRAILERS flag with an SIOCSIF­
FLAGS ioctl. 

DIAGNOSTICS 
ex%d: 100 transmit errors. Indicates that 100 transmit errors have been recorded (and presumably 
corrected) since the last time this error message appeared. 

ex%d: 100 receive errors. Indicates that 100 receive errors have been recorded (and presumably 
corrected) since the last time this error message appeared. 

SEE ALSO 
intro(4N), arp(4P) 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



GD ( 41) UNIX Programmer's Manual GD(41) 

NAME 
gd - ISi SCSI hard disk driver 

SYNOPSIS 
GDO at address OOOflTf cO vector Ox78 level 6 
GDO at*** no address*** no vector 

DESCRIPTION 
The driver supports all four possible SCSI-U boards, as well as SCSI drive target devices in id positions 0-
3. It also supports up to two logical units (drives) per device. 

The GD devices are used like any other disk drives. 

The flag qi_flags&l disables the use of disconnect/reconnect, which is enabled on all devices by default. 

The GD devices also support an ioctl call (defined in <sys/gdio.h>) to enable/disable the use of the 
disconnect/reconnect by the drives. This call overrides the qi-flag. 

The SCSI-U hardware byte-swaps all data sent to disk. Byte-swapping medium data poses no problem, 
because the data will be byte-swapped again when it is read from the disk, but byte-swapping command 
data renders commands unintelligible. Therefore, the SCSI-U firmware automatically byte-swaps com­
mand data before sending it to the device, ensuring that it will be read properly after the SCSI-U hardware 
byte;.swaps it again. 

You can control software byte-swapping with two flags: qi_flags&2 and qi_flags&4. When these flags are 
sent to 0, command data is byte-swapped by the SCSI-U firmware before being sent to the device, but 
medium data is not 

Setting qi-flags&2 to 1 disables software byte-swapping of command data. This flag must be set to 0 when 
using the SCSI-U. 

Setting qi-flags&4 to 1 enables software byte-swapping of medium data. The data will be byte-swapped 
twice, slowing down transfers, but making the stored data readable by other controllers or CPUs. 

DISK SUPPORT 

FILES 

The GD devices provide standard disk access to a variety of hard disk drives, many floppy drives, and 
removable disk drives. 

[r]gd{0-31) {a-h) 

GD Minor Device Number Construction: 

bit UNIX and Standalone Function 
0-2 drive partition (a-h) 
3 logical unit number 
4-5 SCSI target device id number 
6-7 SCSI bus (SCSI-U controller) number 

SEE ALSO 
gg(4i), gdbad(8i), scsimon(8i) 

DIAGNOSTICS 
gd%d%c: hard error bn%d. An unrecoverable error occurred during transfer of the specified sector of 
the specified disk partition. The error was unrecoverable. A large number of retry attempts (including 
offset positioning and drive recalibration) could not recover the error. 

gd%d: not ready. The drive was spun down or off line when it was accessed. The I/O operation is not 
recoverable. 

gd%d%c: soft bn%d. A recoverable ECC error occurred on the specified sector in the specified disk par­
tition. Check to see if certain cylinders on the pack, spots on the carriage of the drive or heads are indi­
cated. 

15 April 1988 INTEGRATED SOLUTIONS 4.3 BSD 
• 



GD(4I) 

BUGS 

UNIX Programmer's Manual GD (41) 

In raw I/0 read(2) and write(2) truncate file offsets to 512-byte block boundaries, and write(2) scribbles on 
the tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read(2), write(2), 
and lseek(2) should always deal in 512-byte multiples. 

15 April 1988 INTEGRATED SOLUTIONS 4.3 BSD 2 



GG(41) UNIX Programmer's Manual GG(4I) 

NAME 
gg- ISI raw SCSI interface driver 

SYNOPSIS 
GGO at address OOOfTfTcO vector Ox78 level 6 
GG at*** no address*** no vector 

DESCRIPTION 

FILES 

The GG devices provide access to any SCSI device, including the initiator, the SCSI-U. The first digit of 
the supported devices identifies which SCSI bus of the possible four is attached to the CPU. The second 
digit identifies the SCSI device id of the specific device to be accessed. The logical unit number is 
specified as part of the command request package sent to the target SCSI device. 

The SCSI-U, which is usually SCSI id 7, can be a target as well as an initiator, and has its own set of com­
mands, which are documented in the SCSI-U Hardware Manual. Commands for other devices will be 
found in their manuals. 

The rgg devices are used by opening the appropriate device, and then calling ioctIO. The ioctl to use, 
GGIOCCMD, is defined in <sys/ggio.h>. The call requires that the user first set up a DCB structure 
(hadb_dcb) in user memory. This structure is defined in both the SCSI-U Hardware Manual and in 
<sys/gsreg.h>. The CDB structure (dcb_cdb) is part of the DCB, and conforms to the CDB as described by 
the ANSI specification. For examples of programs using the GG device, see the source code for /etc/gdbad 
or /etc/scsimon. 

The flag qi_flags&l disables the use of disconnect/reconnect, which is enabled on all devices by default. 

The SCSI-U hardware byte-swaps all data sent to devices. Byte-swapping medium data poses no problem, 
because the data will be byte-swapped again when it is read from the device, but byte-swapping command 
data renders commands unintelligible. Therefore, the SCSI-U firmware automatically byte-swaps com­
mand data before sending it to the device, ensuring that it will be read properly after the SCSI-U hardware 
byte-swaps it again. 

You can control software byte-swapping with two flags: qi_flags&2 and qi_flags&4. When these flags are 
set to 0, command data is byte-swapped by the SCSI-U firmware before being sent to the device, but 
medium data is not 

Setting qi_flags&2 to 1 disables software byte-swapping of command data. This flag must be set to 0 when 
using the SCSI-U. 

Setting qi_flags&4 to 1 enables software byte-swapping of medium data. The data will be byte-swapped 
twice, slowing down transfers, but making the stored data readable by other controllers or CPUs. 

rggOO - rgg07 
rgglO - rgg17 
rgg20 - rgg27 
rgg30 - rgg37 

SEE ALSO 
gd(4i), gt(4i), gdbad(8i), scsimon(8i) 
VME-SCSI Hardware Reference Manual 

15 April 1988 INTEGRATED SOLUTIONS 4.3 BSD 



GT(4I) UNIX Programmer's Manual GT( 41) 

NAME 
gt - ISi SCSI tape driver 

SYNOPSIS 
GTO at address OOOfl'ffcO vector Ox78 level 6 
GTO at • • • no address ••• no vector 

DESCRIPTION 

FILES 

The GT devices provide standard magtape access to a variety of tape storage devices. They work with dif­
ferent QIC formats, 1/2-inch reel-to-reel, 1/2-inch cartridge, micro-cartridges, 8mm video, etc. 

Because the SCSI-U hardware byte-swaps data, disabling byte-swap (by swapping again in the software) 
slows down transfers, but allows tapes to be read by other machines. ISi format enable (together with byte 
swap) is used to read tapes written by the ISi QIC-2 controller (with variable block sizes). It can also be 
used to write ISi format tapes, if a QIC-24 drive is used. ISi system distribution tapes and diagnostic tapes 
are written in ISi format and must be read using the isi-swap device. The ISi format block device is not 
supported. 

The standalone drivers support all the device types supported by the UNIX driver except for non-rewind 
devices. However, it should be noted that only devices scsi_chr_isi_swap_ 4 and scsi_chr_isi_swap_5 can 
be used to autoboot or to load the system distribution or diagnostics tapes. 

The flag qi_flags& 1 disables the use of disconnect/reconnect, which is enabled on all devices by default. 

The SCSI-U hardware byte-swaps all data sent to devices. Byte-swapping medium data poses no problem, 
because the data will be byte-swapped again when it is read from the device, but byte-swapping command 
data renders commands unintelligible. Therefore, the SCSI-U firmware automatically byte-swaps com­
mand data before sending it to the device, ensuring that it will be read properly after the SCSI-U hardware 
byte-swaps it again. 

You can control software byte-swapping with two flags: qi_flags&2 and qi_flags &4. When these flags are 
set to 0, command data is byte-swapped by the SCSI-U firmware before being sent to the device, but 
medium data is not 

Setting qi_flags&2 to 1 disables software byte-swapping of command data. This flag must be set to 0 when 
using the SCSI-U. 

Setting qi-flags&4 to 1 enables software byte-swapping of medium data. The data will be byte-swapped 
twice, slowing down transfers, but making the stored data readable by other controllers or CPUs. 

The qi-flags&8 flag disables buffering by the tape drive. By default, the tape drives use buffering, which 
allows them to stream. The drawback associated with buffering is that tape write errors cannot be 
identified until one or more transfers later. Thus, residual counts on error are not accurate. 

The GT devices also support some additional ioctl calls. These are listed in <sys/mtio.h>. Not all calls 
work with all tape devices. 

GT Minor Device Number Construction: 

bit 
0-2 
3-4 
5 
6 
7 

UNIX function 
SCSI target device id number 
SCSI bus (SCSI-U controller) number 
disable byte swap (1 = no byte swapping) 
enable ISi format (1 =use ISi format) 
non-rewind (1 = no rewind after close) 

The table on the next page lists examples of device names. 

Standalone function 
same as UNIX function 
same as UNIX function 
same as UNIX function 
same as UNIX function 
reserved 

15 April 1988 INTEGRATED SOLUTIONS 4.3 BSD 



GT(41) UNIX Programmer's Manual 

Example Device Names for Controller 0, Device 4: 

/dev/tape name /dev links 
scsi_blk_swap_ 4 mtO mt8 
scsi_blk_ 4 smtO smt8 
scsi_blk_swap_norew _ 4 nmtO mt4 nmt8 mt12 
scsi_blk_norew _ 4 snmtO smt4 snmt8 smt12 
scsi_chr_swap_ 4 rmtO rmt8 
scsi_chr_4 srmtO srmt8 
scsi_chr_swap_norew _ 4 nrmtO rmt4 nrmt8 rmtl2 
scsi_chr_norew _ 4 snrmtO srmt4 snrmt8 srmt12 
scsi_chr_isi_swap_ 4 irmtO irmt8 
scsi_chr_isi_ 4 isrmtO isrmt8 
scsi_chr_isi_swap_norew _ 4 isnrmtO isrmt4 isnrmt8 isrmtl2 
scsi_chr_isi_norew _ 4 inrmtO irmt4 inrmt8 irmt12 

SEE ALSO 
gg(4i), mtio(4) 

15 April 1988 INTEGRATED SOLUTIONS 4.3 BSD 

standalone 
gt(4,0) 
gt(36,0) 

gt(4,0) 
gt(36,0) 

gt(68,0) 
gt(IOO,O) 

GT(4I) 

2 



HK(4) UNIX Programmer's Manual HK(4) 

NAME 
hk - RK6-11/RK06 and RK07 moving head disk 

SYNOPSIS 
controller hkO at uba? csr 0177440 vector rkintr 
disk rkO at hkO drive 0 

DESCRIPTION 
Files with minor device numbers 0 through 7 refer to various portions of drive O; minor devices 8 through 
15 refer to drive 1, etc. The standard device names begin with ''hk'' followed by the drive number and 
then a letter a-h for partitions 0-7 respectively. The character? stands here for a drive number in the range 
0-7. 

The block files access the disk via the system's normal buffering mechanism and may be read and written 
without regard to physical disk records. There is also a 'raw' interface which provides for direct transmis­
sion between the disk and the user's read or write buffer. A single read or write call results in exactly one 
1/0 operation and therefore raw I/O is considerably more efficient when many words are transmitted. The 
names of the raw files conventionally begin with an extra 'r.' 

In raw 1/0 counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should specify a 
multiple of 512 bytes. 

DISK SUPPORT 

FILES 

The origin and size (in sectors) of the pseudo-disks on each drive are as follows: 

RK07 partitions: 
disk 
hk?a 
hk?b 
hk?c 
hk?g 

RK06 partitions 
disk 
hk?a 
hk?b 
hk?c 

start 
0 
15906 
0 
26004 

start 
0 
15906 
0 

length 
15884 
10032 
53790 
27786 

length 
15884 
11154 
27126 

cyl 
0-240 
241-392 
0-814 
393-813 

cyl 
0-240 
241-409 
0-410 

On a dual RK-07 system partition hk?a is used for the root for one drive and partition hk?g for the /usr 
filesystem. If large jobs are to be run using hk?b on both drives as swap area provides a lOMbyte paging 
area Otherwise partition hk?c on the other drive is used as a single large filesystem. 

/dev/hk[O-7] [a-h] block files 
/dev/rhk[O-7][a-h] raw files 

SEE ALSO 
hp(4), uda(4), up(4) 

DIAGNOSTICS 
rk%d%c: hard error sn%d cs2=%b ds=%b er=%b. An unrecoverable error occurred during transfer 
of the specified sector of the specified disk partition. The contents of the cs2, ds and er registers are printed 
in octal and symbolically with bits decoded The error was either unrecoverable, or a large number of retry 
attempts (including offset positioning and drive recalibration) could not recover the error. 

rk %d: write locked. The write protect switch was set on the drive when a write was attempted. The 
write operation is not recoverable. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



HK(4) 

BUGS 

UNIX Programmer's Manual HK(4) 

rk%d: not ready. The drive was spun down or off line when it was accessed The i/o operation is not 
recoverable. 

rk%d: not ready (came back!). The drive was not ready, but after printing the message about being not 
ready (which takes a fraction of a second) was ready. The operation is recovered if no further errors occur. 

rk%d%c: soft ecc sn%d. A recoverable ECC error occurred on the specified sector in the specified disk 
partition. This happens normally a few times a week. If it happens more frequently than this the sectors 
where the errors are occurring should be checked to see if certain cylinders on the pack, spots on the car­
riage of the drive or heads are indicated. 

hk%d: lost interrupt. A timer watching the controller detected no interrupt for an extended period while 
an operation was outstanding. This indicates a hardware or software failure. There is currently a 
hardware/software problem with spinning down drives while they are being accessed which causes this 
error to occur. The error causes a retry of the pending operations. If the controller continues to lose inter­
rupts, this error will recur a few seconds later. 

In raw 110 read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles on the 
tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and lseek(2) 
should always deal in 512-byte multiples. 

DEC-standard error logging should be supported. 

A program to analyze the logged error information (even in its present reduced form) is needed. 

The partition tables for the filesystems should be read off of each pack, as they are never quite what any 
single installation would prefer, and this would make packs more portable. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



HP(4) UNIX Programmer's Manual HP(4) 

NAME 
hp - disk interface 

SYNOPSIS 
HPO at addre~ Ox3tTdc0/17776700 

DESCRIPTION 
Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor devices 8 through 
15 refer to drive 1, etc. The standard device names begin with "hp" followed by the drive number and 
then a letter a-h for partitions 0-7 respectively. The character? stands here for a drive number in the range 
0-7. 

The block file's access the disk via the system's normal buffering mechanism and may be read and written 
·without regard to physical disk records. There is also a 'raw' interface which provides for direct transmis­
sion between the disk and the user's read or write buffer. A single read or write call results in exactly one 
I/O operation and therefore raw 1/0 is considerably more efficient when many words are transmitted. The 
names of the raw files conventionally begin with an extra 'r.' 

In raw I/O counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should specify a 
multiple of 512 bytes. 

DISK SUPPORT 
This driver handles both standard DEC controllers and Emulex SC750 and SC780 controllers. Standard 
DEC drive types are recognized according to the MASSBUS drive type register. For the Emulex controller 
the drive type register should be configured to indicate the drive is an RM02. When this is encountered, 
the driver checks the holding register to find out the disk geometry and, based on this information, decides 
what the drive type is. The following disks are supported: RM03, RM05, RP06, RM80, RP05, RP07, 
MLllA, MLllB, CDC 9775, CDC 9730, AMPEX Capricorn (32 sectors/track), FUJITSU Eagle (48 
sectors/track), and AMPEX 9300. The origin and size (in sectors) of the pseudo-disks on each drive are as 
follows: 

RM03 partitions 
disk start length cyls 
hp?a 0 15884 0-99 
hp?b 16000 33440 100-309 
hp?c 0 131680 0-822 
hp?d 49600 15884 309-408 
hp?e 65440 55936 409-758 
hp?f 121440 10080 759-822 
hp?g 49600 82080 309-822 

RM05 partitions 
disk start length cyls 
hp?a 0 15884 0-26 
hp?b 16416 33440 27-81 
hp?c 0 500384 0-822 
hp?d 341696 15884 562-588 
hp?e 358112 55936 589-680 
hp?f 414048 86176 681-822 
hp?g 341696 158528 562-822 
hp?h 49856 291346 82-561 

RP06 partitions 
disk start length cyls 
hp?a 0 15884 0-37 
hp?b 15884 33440 38-117 
hp?c 0 340670 0-814 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



HP(4) UNIX Programmer's Manual HP(4) 

hp?d 49324 15884 118-155 
hp?e 65208 55936 156-289 
hp?f 121220 219296 290-814 
hp?g 49324 291192 118-814 

RM80 partitions 
disk start length cyls 
hp?a 0 15884 0-36 
hp?b Hi058 33440 37-114 
hp?c 0 242606 0-558 
hp?d 49910 15884 115-151 
hp?e 68096 55936 152-280 
hp?f 125888 120466 281-558 
hp?g 49910 192510 115-558 

RP05 partitions 
disk start length cyls 
hp?a 0 15884 0-37 
hp?b 15884 33440 38-117 
hp?c 0 171798 0-410 
hp?d 2242 15884 118-155 
hp?e 65208 55936 156-289 
hp?f 121220 50424 290-410 
hp?g 2242 122320 118-410 

RP07 partitions 
disk start length cyls 
hp?a 0 15884 0-9 
hp?b 16000 66880 10-51 
hp?c 0 1008000 0-629 
hp?d 376000 15884 235-244 
hp?e 392000 307200 245-436 
hp?f 699200 308600 437-629 
hp?g 376000 631800 235-629 
hp?h 83200 291346 52-234 

CDC 9775 partitions 
disk start length cyls 
hp?a 0 15884 0-12 
hp?b 16640 66880 13-65 
hp?c 0 1079040 0-842 
hp?d 376320 15884 294-306 
hp?e 392960 307200 307-546 
hp?f 700160 378720 547-842 
hp?g 376320 702560 294-842 
hp?h 84480 291346 66-293 

CDC 9730 partitions 
disk start length cyls 
hp?a 0 15884 0-49 
hp?b 16000 33440 50-154 
hp?c 0 263360 0-822 
hp?d 49600 15884 155-204 
hp?e 65600 55936 205-379 
hp?f 121600 141600 380-822 
hp?g 49600 213600 155-822 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



HP(4) 

FILES 

UNIX Programmer's Manual HP(4) 

AMPEX Capricorn partitions 
disk start length cyls 
hp?a 0 15884 0-31 
hp?b 16384 33440 32-97 
hp?c 0 524288 0-1023 
hp?d 342016 15884 668-699 
hp?e 358400 55936 700-809 
hp?f 414720 109408 810-1023 
hp?g 342016 182112 668-1023 
hp?h 50176 291346 98-667 

FUJITSU Eagle partitions 
disk start length cyls 
hp?a 0 15884 0-16 
hp?b 16320 66880 17-86 
hp?c 0 808320 0-841 
hp?d 375360 15884 391-407 
hp?e 391680 55936 408-727 
hp?f 698880 109248 728-841 
hp?g 375360 432768 391-841 
hp?h 83520 291346 87-390 

AMPEX 9300 partitions 
disk start length cyl 
hp?a 0 15884 0-26 
hp?b 16416 33440 27-81 
hp?c 0 495520 0-814 
hp?d 341696 15884 562-588 
hp?e 358112 55936 589-680 
hp?f 414048 81312 681-814 
hp?g 341696 153664 562-814 
hp?h 49856 291346 82-561 

It is unwise for all of these files to be present in one installation, since there is overlap in addresses and pro­
tection becomes a sticky matter. The hp?a partition is normally used for the root filesystem, the hp?b parti­
tion as a paging area, and the hp?c partition for pack-pack copying (it maps the entire disk). On disks 
larger than about 205 Megabytes, the hp?h partition is inserted prior to the hp?d or hp?g partition; the hp?g 
partition then maps the remainder of the pack. All disk partition tables are calculated using the diskpart(8) 
program. 

/dev/hp[0-7] [a-h] 
/dev/rhp[O-7][a-h] 

block files 
raw files 

SEE ALSO 
rk(4), uda(4), up(4) 

DIAGNOSTICS 
hp%d%c: hard error sn%d er1=%b er2=%b. An unrecoverable error occurred during transfer of the 
specified sector of the specified disk partition. The contents of the two error registers are printed in octal 
and symbolically with bits decoded. (Note that er2 is what old rp06 manuals would call er3; the terminol­
ogy is that of the rm disks). The error was either unrecoverable, or a large number of retry attempts 
(including offset positioning and drive recalibration) could not recover the error. 

hp%d: write locked. The write protect switch was set on the drive when a write was attempted. The 
write operation is not recoverable. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 3 



HP(4) 

BUGS 

UNIX Programmer's Manual HP(4) 

hp%d: not ready. The drive was spun down or off line when it was accessed The i/o operation is not 
recoverable. 

hp %d %c: soft ecc sn %d. A recoverable ECC error occurred on the specified sector of the specified disk 
partition. This happens normally a few times a week. If it happens more frequently than this the sectors 
where the errors are occurring should be checked to see if certain cylinders on the pack, spots on the car­
riage of the drive or heads are indicated. 

In raw 1/0 read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles on the 
tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and lseek(2) 
should always deal in 512-byte multiples. 

A program to analyze the logged error information (even in its present reduced form) is needed. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 4 



IL( 41) UNIX Programmer's Manual IL( 41) 

NAME 
il- Interlan 10 Mb/s Ethernet controller 

SYNOPSIS 
ILO at address Ox3fe820/017764040 vector OxS0/0120 

DESCRIPTION 
The il interface provides access to a 10 Mb/s Ethernet network through an lnterlan controller. 

The host's Internet address is specified at boot time with an SIOCSIFADDR ioctl. Theil interface employs 
the address resolution protocol described in arp(4P) to dynamically map between Internet and Ethernet 
addresses on the local network. 

The interface normally tries to use a "trailer" encapsulation to mini,nµze copying data on input and output. 
This may be disabled, on a per-interface basis, by setting the IFF _ NOTRAil..ERS flag with an SIOCSIF­
FLAGS ioctl. 

DIAGNOSTICS 
i1%d: input error. The hardware indicated an error in reading a packet off the cable or an illegally sized 
packet. 

i1%d: can't handle af%d. The interface was handed a message with addresses formatted in an unsuitable 
address family; the packet was dropped. 

SEE ALSO 
intro( 4N), inet( 4F), arp{ 4P) 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



INET(4F) UNIX Programmer's Manual INET(4F) 

NAME 
inet - Internet protocol family 

SYNOPSIS 
#include <sys/types.h> 
#include <netinet/in.h> 

DESCRIPTION 
The Internet protocol family is a collection of protocols layered atop the Internet Protocol (IP) transport 
layer, and utilizing the Internet address format. The Internet family provides protocol support for the 
SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types; the SOCK_ RAW interface provides 
access to the IP protocol. 

ADDRESSING 
Internet addresses are four byte quantities, stored in network standard format (on the VAX these are word 
and byte reversed). The include file <netinetlin.h> defines this address as a discriminated union. 

Sockets bound to the Internet protocol family utilize the following addressing structure, 

struct sockaddr_in { 
short 

}; 

u short 
struct 
char 

sin _family; 
sin_port; 
in_ addr sin_ addr; 
sin_ zero[8]; 

Sockets may be created with the address INADDR _ANY to effect ''wildcard'' matching on incoming mes­
sages. 

PROTOCOLS 
The Internet protocol family is comprised of the IP transport protocol, Internet Control Message Protocol 
(ICMP), Transmission Control Protocol (TCP), and User Datagram Protocol (UDP). TCP is used to sup­
port the SOCK_ STREAM abstraction while UDP is used to support the SOCK_ OGRAM abstraction. A 
raw interface to IP is available by creating an Internet socket of type SOCK_ RAW. The ICMP message 
protocol is not directly accessible. 

SEE ALSO 
tcp( 4P), ip( 4P) 

CAVEAT 
The Internet protocol support is subject to change as the Internet protocols develop. Users should not 
depend on details of the current implementation, but rather the services exported. 

15 November 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



IP( 4P) UNIX Programmer's Manual IP( 4P) 

NAME 
ip - Internet Protocol 

SYNOPSIS 
#include <sys/socket.h> 
#include <netinet/in.h> 

s = socket(AF _INET, SOCK_ RAW, 0); 

DESCRIPTION 
IP is the transport layer protocol used by the Internet protocol family. It may be accessed through a ''raw 
socket'' when developing new protocols, or special purpose applications. IP sockets are connectionless, 
and are normally used with the sendto and recvfrom calls, though the connect(2) call may also be used to 
fix the destination for future packets (in which case the read(2) or recv(2) and write(2) or send(2) system 
calls may be used). 

Outgoing packets automatically have an IP header prepended to them (based on the destination address and 
the protocol number the socket is created with). Likewise, incoming packets have their IP header stripped 
before being sent to the user. 

DIAGNOSTICS 
A socket operation may fail with one of the following errors returned: 

[EISCONN] when trying to establish a connection on a socket which already has one, or when trying 
to send a datagram with the destination address specified and the socket is already con­
nected; 

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and the socket 
hasn't been connected; 

[ENOBUFS] when the system runs out of memory for an internal data structure; 

[EADDRNOTAV AIL] 
when an attempt is made to create a socket with a network address for which no network 
interface exists. 

SEE ALSO 

BUGS 

send(2), recv(2), intro(4N), inet(4F) 

One should be able to send and receive ip options. 

The protocol should be settable after socket creation. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



L0(4) UNIX Programmer's Manual L0(4) 

NAME 
lo - software loopback network interface 

SYNOPSIS 
pseudo-device loop 

DESCRIPTION 
The loop interface is a software loopback mechanism which may be used for performance analysis, 
software testing, and/or local communication. By default, the loopback interface is accessible at address 
127.0.0.1 (non-standard); this address may be changed with the SIOCSIFADDR ioctl. 

DIAGNOSTICS 
lo%d: can't handle af%d. The interface was handed a message with addresses formatted in an unsuitable 
address family; the packet was dropped. 

SEE ALSO 

BUGS 

intro( 4N), inet( 4F) 

It should handle all address and protocol families. An approved network address should be reserved for 
this interface. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



LP(4) UNIX Programmer's Manual LP(4) 

NAME 
Ip- line printer 

SYNOPSIS 
LPO at address Ox3fff4c/017777514 vector Ox80/0200 

DESCRIPTION 

FILES 

Ip provides the interface to any of the standard DEC line printers on an LP-11 parallel interface. When it is 
opened or closed, a suitable number of page ejects is generated. Bytes written are printed. 

The unit number of the printer is specified by the minor device after removing the low 3 bits, which act as 
per-device parameters. Currently, only the two lowest of the low three bits are interpreted. When neither 
of these two low bits is set (that is, they have values of zero), the device is treated as having a full ASCII 
96-character set If the second lowest bit is set with a value of one, raw I/O transfers occur. If the lowest 
bit is set with a value of one, the device is treated as having a 64--character set, rather than a full 96-
character set. In the resulting half-ASCII mode, lower case letters are turned into upper case and certain 
characters are escaped according to the following table: 

{ ( 
} ~ .. , 

+ 

The driver correctly interprets carriage returns, backspaces, tabs, and form feeds. Lines longer than the 
maximum page width are truncated. The default page width is 132 columns. This may be overridden by 
specifying, for example, ''flags 256''. 

/dev/lp* 

SEE ALSO 
lpr(l) 

DIAGNOSTICS 
None. 

April 27, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1 



l\1EM( 4) UNIX Programmer's Manual l\1EM( 4) 

NAME 
mem, kmem, vmem - main memory 

DESCRIPTION 

FILES 

BUGS 

Mem is a special file that is an image of the main memory of the computer. It may be used to examine (and 
even to patch) the system. 

Byte addresses in mem are interpreted as physical memory addresses. References to non-existent locations 
cause errors to be returned. 

Examining and patching device registers is likely to lead to unexpected results when read-only or write­
only bits are present. 

The file kmem is the same as mem except that kernel virtual memory rather than physical memory is 
accessed. 

The file vmem is the same as mem except that video memory, which holds the bitmap image of the screen, 
is accessed. 

The mmap(2) system call may be applied to the mem file to obtain direct access to physical memory or 
device registers. 

/dev/mem 
/dev/kmem 
/dev/vmem 

Memory files are accessed one byte at a time, an inappropriate method for some device registers. 

August l, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1 



MTl0(4) UNIX Programmer's Manual MTl0(4) 

NAME 
mtio - UNIX magtape interface 

DESCRIPTION 
The files mtO, ... , mtl5 refer to the UNIX magtape drives using either the TMll or TSll formatters tm(4) 
or ts(4). 

The following description applies to any of the transport/controller pairs. Device names in parentheses are 
provided in "/dev" that correspond to the listed files. The files mtO, ... , mt3 (mtO, ... , mt3) are basic dev­
ices without options; mt4, ... , mt7 (nmtO, ... , nmt3) are non-rewind devices; mt32, ... , mt35 (smtO, ... , smt3) 
are swap-byte devices; mt36, ... , mt39 (snmtO, ... , snmt3) are non-rewind swap-byte devices. 

When a file open for writing is closed, two end-of-files are written. If the tape is not to be rewound it is 
positioned with the head betWeen the two tapemarks. 

A standard tape consists of a series of 1024 byte records terminated by an end-of-file. To the extent possi­
ble, the system makes it possible, if inefficient, to treat the tape like any other file. Seeks have their usual 
meaning and it is possible to read or write a byte at a time. Writing in very small units is inadvisable, how­
ever, because it tends to create monstrous record gaps. 

The mt files discussed above are useful when it is desired to access the tape in a way compatible with ordi­
nary files. When foreign tapes are to be dealt with, and especially when long records are to be read or writ­
ten, the 'raw' interface is appropriate. The associated files are named rmtO, ... , rmt47, but the same minor­
device considerations as for the regular files still apply. A number of other ioctl operations are available on 
raw magnetic tape. The following definitions are from <SJS!mtio.h>: 

I• 
* Structures and definitions for mag tape io control commands 
*Current TS driver limits blocksize to less than 10 Kbytes 
*/ 

!• structure for MTIOCTOP - mag tape op command */ 
struct mtop { 

short mt_op; 
daddr _ t mt_ count; 

I* operations defined below */ 
I* how many of them *I 

}; 

/*operations */ 
#define MTWEOF 
#define MTFSF 1 
#define MTBSF 2 
#define MTFSR 3 
#define MTBSR 4 
#define MTREW 5 
#define MTOFFL6 
#define MTNOP 7 

0 /*write an end-of-file record*/ 
/* forward space file */ 
/* backward space file */ 
/* forward space record */ 
I* backward space record */ 
I* rewind*/ 
/*rewind and put the drive offtine */ 
I* no operation, sets status only*/ 

!• structure for MTIOCGET - mag tape get status command */ 

struct mtget { 
short mt_ type;/* type of magtape device */ 

/* the following two registers are grossly device dependent */ 
short mt_dsreg; /* "drive status" register*/ 
short mt_ erreg; /* ''error'' register */ 

/* end device-dependent registers */ 
short mt_resid; /*residual count*/ 

15 July 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



MTI0(4) UNIX Programmer's Manual MTI0(4) 

FILES 

/*the following two are not yet implemented*/ 
daddr t mt fileno; /* file number of current position */ 
daddr=t mt)Ikno; /*block number of current position *I 

/*end not yet implemented*/ 
}; 

I* 
* Constants for mt_type byte 
*I 
#define MT ISTS OxOl 
#define MT ISHT Ox02 
#define MT ISTM Ox03 
#define MT ISMT Ox04 
#define MT _ISUT Ox05 
#define MT ISCPC Ox06 
#define MT ISAR Ox07 

I* mag tape io control commands*/ 
#define MTIOCTOP _IOW(m, 1, struct mtop) /* do a mag tape op •I 
#define MTIOCGET _ IOR(m, 2, struct mtget) /* get tape status •/ 

#ifndef KERNEL 
#define DEFr APE 
#endif 

"/dev/rmt12" 

Each read or write call reads or writes the next record on the tape. In the write case the record has the 
same length as the buffer given. During a read, the record size is passed back as the number of bytes read, 
provided it is no greater than the buffer size; if the record is long, an error is indicated. In raw tape I/O 
seeks are ignored. A zero byte count is returned when a tape mark is read, but another read will fetch the 
first record of the new tape file. 

/dev/mt? 
/dev/rmt? 

SEE ALSO 
tar(l), tp(l), tm(4), ts(4), 

BUGS 
The status should be returned in a device independent format 

15 July 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



NULL(4) 

NAME 
null - data sink 

DESCRIPTION 

UNIX Programmer's Manual 

Data written on a null special file is discarded. 

Reads from a null special file always return 0 bytes. 

FILES 
/dev/null 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 

NULL(4) 

1 



NW(4I) UNIX Programmer's Manual NW(4I) 

NAME 
nw - Integrated Solutions, Inc., 10 Mb/s Ethernet controller 

SYNOPSIS 
NWO at address OxFS0000/076000000 vector OxC2/0302 (VME Bus) 

DESCRIPTION 
The nw interface provides access to a 10 Mb/s Ethernet network through an Integrated Solutions controller. 

The host's Integrated Solutions address is specified at boot time with an SIOCSIFADDR ioctl. The nw 
interface employs the address resolution protocol described in arp(4P) to dynamically map between Inter­
net and Ethernet addresses on the local network. 

The interface normally tries to use a ''trailer'' encapsulation to minimize copying data on input and output. 
This may be disabled, on a per-interface basis, by setting the IFF _NOTRAILERS flag with an SIOCSIF­
FLAGS ioctl. 

DIAGNOSTICS 
nw%d: 100 transmit errors. Indicates that 100 transmit errors have been recorded (and presumably 
corrected) since the last time this error message appeared. 

nw%d: 100 receive errors. Indicates that 100 receive errors have been recorded (and presumably 
corrected) since the last time this error message appeared. 

SEE ALSO 
intro(4N), arp(4P) 

1July1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



PTY(4) UNIX Programmer's Manual PTY(4) 

NAME 
pty - pseudo terminal driver 

SYNOPSIS 
pseudo-device pty 

DESCRIPTION 
The pty driver provides support for a device-pair termed a pseudo terminal. A pseudo terminal is a pair of 
character devices, a master device and a slave device. The slave device provides processes an interface 
identical to that described in tty(4). However, whereas all other devices which provide the interface 
described in tty(4) have a hardware device of some sort behind them, the slave device has, instead, another 
process manipulating it through the master half of the pseudo terminal. That is, anything written on the 
master device is given to the slave device as· input and anything written on the slave device is presented as 
input on the master device. 

In configuring, if no optional "count" is given in the specification, 16 pseudo terminal pairs are 
configured. 

The following ioctl calls apply only to pseudo terminals: 

TIOCSTOP 
Stops output to a terminal (e.g. like typing AS). Takes no parameter. 

TIOCSTART 
Restarts output (stopped by TIOCSTOP or by typing AS). Takes no parameter. 

TIOCPKT 
Enable/disable packet mode. Packet mode is enabled by specifying (by reference) a nonzero 
parameter and disabled by specifying (by reference) a zero parameter. When applied to the mas­
ter side of a pseudo terminal, each subsequent read from the terminal will return data written on 
the slave part of the pseudo terminal preceded by a zero byte (symbolically defined as 
TIOCPKT_DATA}, or a single byte reflecting control status information. In the latter case, the 
byte is an inclusive-or of zero or more of the bits: 

TIOCPKT_FLUSHREAD 
whenever the read queue for the terminal is flushed. 

TIOCPKT _ FLUSHWRITE 
whenever the write queue for the terminal is flushed. 

TIOCPKT _STOP 
whenever output to the terminal is stopped a la AS. 

TIOCPKT START 
whenever output to the terminal is restarted. 

TIOCPKT DOSTOP 
whenever t _stopc is AS and t _ startc is AQ. 

TIOCPKT NOSTOP 
whenever the start and stop characters are not "StQ. 

This mode is used by rlogin(lC) and rlogind(SC) to implement a remote-echoed, locally "S/"Q 
ft.ow-controlled remote login with proper back-flushing of output; it can be used by other similar 
programs. 

TIOCREMOTE 

1August1985 

A mode for the master half of a pseudo terminal, independent of TIOCPKT. This mode causes 
input to the pseudo terminal to be ft.ow controlled and not input edited (regardless of the terminal 
mode). Each write to the control terminal produces· a record boundary for the process reading the 
terminal. In normal usage, a write of data is like the data typed as a line on the terminal; a write of 
0 bytes is like typing an end-of-file character. TIOCREMOTE can be used when doing remote 

INTEGRATED SOLUTIONS 4.3 BSD 1 



PTY(4) UNIX Programmer's Manual 

line editing in a window manager, or whenever :How controlled input is required. 

FILES 
/dev/pty[p-r] [0-9a-f] 
/dev/tty[p-r] [0-9a-f] 

DIAGNOSTICS 
None. 

BUGS 

master pseudo terminals 
slave pseudo terminals 

It is not possible to send an EOT. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 

PTY(4) 

2 



RK(4) UNIX Programmer's Manual RK(4) 

NAME 
rk- RK.6-11/RK.06 and RK.07 moving head disk 

SYNOPSIS 
RKO at address Ox3tTf20/17777440 

DESCRIPTION 
Files with minor device numbers 0 through 7 refer to various portions of drive O; minor devices 8 through 
15 refer to drive 1, etc. The standard device names begin with 'rk' followed by the drive number and then 
a letter a-h for partitions 0-7 respectively. The character ? stands here for a drive number in the range 0-7. 

The block files access the disk via the system's normal buffering mechanism and may be read and written 
without regard to physical disk records. There is also a 'raw' interface which provides for direct transmis­
sion between the disk and the user's read or write buffer. A single read or write call results in exactly one 
I/O operation and therefore raw I/O is considerably more efficient when many words are transmitted. The 
names of the raw files conventionally begin with an extra 'r.' 

In raw I/O counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should specify a 
multiple of 512 bytes. 

DISK SUPPORT 

FILES 

The origin and size (in sectors) of the pseudo-disks on each drive are as follows: 

RK07 partitions: 
disk 
rk?a 
rk?b 
rk?c 
rk?g 

RK06 partitions 
disk 
rk?a 
rk?b 
rk?c 

start 
0 
15906 
0 
26004 

start 
0 
15906 
0 

length 
15884 
10032 
53790 
27786 

length 
15884 
11154 
27126 

cyl 
0-240 
241-392 
0-814 
393-813 

cyl 
0-240 
241-409 
0-410 

On a dual RK-07 system partition rk?a is used for the root for one drive and partition rk?g for the /usr 
filesystem. If large jobs are to be run using rk?b on both drives as swap area provides a lOMbyte paging 
area. Otherwise partition rk?c on the other drive is used as a single large filesystem. 

/dev/rk[O-7] [a-h] block files 
/dev/rrk[O-7][a-h]raw files 

SEE ALSO 
hp(4), uda(4), up(4) 

DIAGNOSTICS 
rk%d%c: hard error sn%d cs2=%b ds=%b er=%b. An unrecoverable error occurred during transfer 
of the specified sector of the specified disk partition. The contents of the cs2, els and er registers are printed 
in octal and symbolically with bits decoded The error was either unrecoverable, or a large number of retry 
attempts (including offset positioning and drive recalibration) could not recover the error. 

rk %d: write locked. The write protect switch was set on the drive when a write was attempted. The 
write operation is not recoverable. 

rk%d: not ready. The drive was spun down or off line when it was accessed The i/o operation is not 
recoverable. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



RK(4) 

BUGS 

UNIX Programmer's Manual RK(4) 

rk%d: not ready (came back!). The drive was not ready, but after printing the message about being not 
ready (which takes a fraction of a second) was ready. The operation is recovered if no further errors occur. 

rk %d %c: soft ecc sn %d. A recoverable ECC error occurred on the specified sector in the specified disk 
partition. This happens normally a few times a week. If it happens more frequently than this the sectors 
where the errors are occurring should be checked to see if certain cylinders on the pack, spots on the car­
riage of the drive or heads are indicated. 

rk%d: lost interrupt. A timer watching the controller detected no interrupt for an extended period while 
an operation was outstanding. This indicates a hardware or software failure. There is currently a 
hardware/software problem with spinning down drives while they are being accessed which causes this 
error to occur. The error causes a retry of the pending operations. If the controller continues to lose inter­
rupts, this error will recur a few seconds later. 

In raw 1/0 read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles on the 
tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and lseek(2) 
should always deal in 512-byte multiples. 

A program to analyze the logged error information (even in its present reduced form) is needed. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



RX(4) UNIX Programmer's Manual RX(4) 

NAME 
rx - DEC RX02 floppy disk interface 

SYNOPSIS 
controller fxO at ubaO csr 0177170 vector rxintr 
disk rxO at fxO slave 0 
disk rxl at fxO slave 1 

DESCRIPTION 

NOTES 

The rx device provides access to a DEC RX02 floppy disk unit with M8256 interface module (RX2l1 
configuration). The RX02 uses 8-inch, single-sided, soft-sectored floppy disks (with pre-formatted 
industry-standard headers) in either single or double density. 

Floppy disks handled by the RX02 contain 77 tracks, each with 26 sectors (for a total of 2,002. sectors). 
The sector size is 128 bytes for single density, 256 bytes for double density. Single density disks are com­
patible with the RXOl floppy disk unit and with IBM 3740 Series Diskette 1 systems. 

In addition to normal ('block' and 'raw') i/o, the driver supports formatting of disks for either density and 
the ability to invoke a 2 for 1 interleaved sector mapping compatible with the DEC operating system RT-
11. 

The minor device number is interpreted as follows: 

Bit Description 
0 Sector interleaving (1 disables interleaving) 
1 Logical sector 1 is on track 1 (0 no, 1 yes) 
2 Not used, reserved 
Other Drive number 

The two drives in a single RX02 unit are treated as two disks attached to a single controller. Thus, if there 
are two RX02's on a system, the drives on the first RX02 are "rxO" and "rxl", while the drives on the 
second are "rx2" and "rx3". 

When the device is opened, the density of the disk currently in the drive is automatically determined If 
there is no floppy in the device, open will fail. 

The interleaving parameters are represented in raw device names by the letters 'a' through 'd'. Thus, unit 
0, drive 0 is called by one of the following names: 

Mapping Device name Starting track 
interleaved /dev/rrxOa 0 
direct /dev/rrxOb 0 
interleaved /dev/rrxOc 1 
direct /dev/rrxOd 1 

The mapping used on the 'c' device is compatible with the DEC operating system RT-11. The 'b' device 
accesses the sectors of the disk in strictly sequential order. The 'a' device is the most efficient for disk-to­
disk copying. 

1/0 requests must start on a sector boundary, involve an integral number of complete sectors, and not go off 
the end of the disk. 

Even though the storage capacity on a floppy disk is quite small, it is possible to make filesystems on dou­
ble density disks. For example, the command 

% mkfs /dev/rxO 100113 14()<)6512 32 0 4 
makes a filesystem on the double density disk in rxO with 436 kbytes available for file storage. Using 
tar(l) gives a more efficient utilization of the available space for file storage. Single density diskettes do 
not provide sufficient storage capacity to hold filesystems. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



RX(4) UNIX Programmer's Manual 

A number of ioctl(2) calls apply to the rx devices, and have the form 
#include <vaxuba/rxreg.h> 
ioctl(fildes, code, arg) 
int •arg; 

The applicable codes are: 

RX(4) 

RXIOC_FORMAT Format the diskette. The density to use is specified by the arg argument, 0 gives sin­
gle density while non-zero gives double density. 

RXIOC GETDENS Return the density of the diskette (0 or !=0 as above). 

RXIOC _ WDDMK On the next write, include a deleted data address mark in the header of the first sec­
tor. 

RXIOC RDDMK Return non-zero if the last sector read contained a deleted data address mark in its 
header, otherwise return 0. 

ERRORS 

FILES 

The following errors may be returned by the above ioctl calls: 

[ENODEV] Drive not ready; usually because no disk is in the drive or the drive door is open. 

[ENXIO] Nonexistent drive (on open); offset is too large or not on a sector boundary or byte count is 
not a multiple of the sector size (on read or write); or bad (undefined) ioctl code. 

[EIO] 

[EBUSY] 

[EBADF] 

/dev/rx? 
/dev/rrx?[a-d] 

A physical error other than ''not ready'', probably bad media or unknown format. 

Drive has been opened for exclusive access. 

No write access (on format), or wrong density; the latter can only happen if the disk is 
changed without closing the device (i.e., calling close(2) ). 

SEE ALSO 
rxformat(8V), newfs(8), rnkfs(8), tar( 1 ), arff(8V) 

DIAGNOSTICS 

BUGS 

rx%d: hard error, trk %d psec %d cs=%b, db=%b, err=%x, %x, %x, %x. An unrecoverable error 
was encountered. The track and physical sector numbers, the device registers and the extended error status 
are displayed. 

rx%d: state %d (reset). The driver entered a bogus state. This should not happen. 

A floppy may not be formatted if the header info on sector 1, track 0 has been damaged. Hence, it is not 
possible to format completely degaussed disks or disks with other formats than the two known by the 
hardware. 

If the drive subsystem is powered down when the machine is booted, the controller won't interrupt. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



SD( 4I) UNIX Programmer's Manual SD(4I) 

NAME 
sd - VME SCSI disk adaptor interface 

SYNOPSIS 
SDO at address Ox7ftTe0/037777740 vector Ox78/0170 

DESCRIPTION 
sd is the disk interface for Integrated Solution's SCSI host adaptor for 5 1/4-inch Winchester drives. The 
standard (block) device names begin with 'sd' followed by the drive number and a letter a-h for partitions 
0-7 respectively. For example, 'sdOa' designates the block device for the first partition (a) on the first drive 
(0). 

Files with minor device numbers 0 through 7 refer to drive 0 partitions; minor devices 8 through 15 refer to 
drive 1 partitions, etc. - · - · 

The block files access the disk via the system's normal buffering mechanism and may be read and written 
without regard to physical disk records. There is also a 'raw' interface which provides for direct transmis­
sion between the disk and the user's read or write buffer. A single read or write call results in exactly one 
1/0 operation; therefore, raw I/O is considerably more efficient when many words are transmitted. The 
names of the raw files begin with an extra 'r.' 

In raw 1/0, counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should specify a 
multiple of 512 bytes. 

DISK SUPPORT 

FILES 

The sd device supports ST506 drives configured with the Integrated Solutions SCSI host adaptor and an 
Adaptec ACB 4000 (MFM encoding) or ACB 4070 (RLL encoded) target disk controller. The most com­
monly supported drives are: 

CDC36, 86 
Maxtor 1065, 1110, and 1140 
Vertex 185 

You can obtain drive configuration information in the online file /etc/disktab. Note that /etc/disktab con­
tains two entries for each ST506 drive supported by sd. Entries with have an "L" appended to them, such 
as V185L, support drives that have been run length limit (RLL) encoded. Such drives require the Adaptec 
ACB 4070 target disk controller. The ST506 entries without the L (e.g V185) support the MFM encoded 
drives which require the Adaptec ACB 4000 target disk controller. 

Each sd drive is divided into disk partitions as follows: where ? stands for the drive number: 

sd?a used for the root filesystem 
sd?b used as a paging area 
sd?c maps the entire disk 

All disk partition tables are calculated using the diskpart(8) program. 

/dev/sd[0-7] [a-h] 
/dev/rsd[0-7] [a-h] 

block files 
raw files 

SEE ALSO 
rk{4), hp{4) 
UNIX 4.3BSD System Administrator Guide (SMM:l) 

DIAGNOSTICS 
sd %d %c: hard error sn %d cs = % b. An unrecoverable error occurred during transfer of the specified 
sector of the specified disk partition. The contents of the control status register are printed in octal and 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SD( 4I) 

BUGS 

UNIX Programmer's Manual SD(4I) 

symbolically with bits decoded. The error was either unrecoverable, or a large number of retry attempts 
(including offset positioning and drive recalibration) could not recover the error. 

sd%d: lost interrupt. As a result of a lost interrupt, sd resets itself and cancels the software state of pend­
ing transfers. 

In raw 1/0 read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles on the 
tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and lseek(2) 
should always deal in 512-byte multiples. 

A program to analyze the logged error information (even in its present reduced form) is needed. 

The partition tables for the filesystems should be read off of each pack, as they are never quite what any 
single installation would prefer, and this would make packs more portable. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



SM(4I) UNIX Programmer's Manual SM(4I) 

NAME 
sm - VME SMD disk interface 

SYNOPSIS 
SMO at shortio Ox0/00 vector Ox56 

DESCRIPTION 
Sm is the disk interface for lnterphase SMD Disk Controller on VME-based systems. 

When one physical drive is formatted as one logical drive (standard formatting), the (block) device names 
begin with sm followed by the drive number and a letter a-h for partitions 0-7 respectively. For example, 
smOa refers to the first partition on the first drive, drive O; smla to the first partition on the second drive, 
drive one. 

When one physical drive is optionally formatted as two logical drives, the device names begin with sm fol­
lowed by the the logical volume number and a letter a-h for partitions 0-7 respectively. Thus, smOa is the 
first partition on physical drive 0, volume O; smla is the first partition on physical drive 0, volume 1; sm2a 
is the first partition on physical drive 1, volume 0 and so on. 

The sm?a partition is normally used for the root filesystem, the sm?b partition as a paging area, and the 
sm?c partition maps the entire disk. On disks larger than about 205 Megabytes, the sm?h partition is 
inserted prior to the sm?d or sm?g partition; Refer to the letc!disktab file for a definition of the geometries 
of the supported disk drives. All disk partition tables are calculated using the diskpart(S) 

The block files access the disk via the system's normal buffering mechanism and can be read and written 
without regard to physical disk records. There is also a raw interface which provides for direct transmis­
sion between the disk and the user's read or write buffer. A single read or write call results in exactly one 
1/0 operation and therefore raw 110 is considerably more efficient when many words are transmitted. The 
names of the raw files are prefixed with an r, as in rsmOa. 

In raw 1/0 counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should specify a 
multiple of 512 bytes. 

DISK SUPPORT 

FILES 

This driver handles the Interphase VME SMD controller. The S.MD drives supported include those that 
have transfer rates at 1.8 and 2.4 Mbytes per second. Refer to the /etc/disktab file for a listing of the 
currently supported drives. 

/dev/sm[0-7] [a-h] 
/dev/rsm[0-7] [a-h] 

block files 
raw files 

SEE ALSO 
disktab(5), diskpart(8) 

DIAGNOSTICS 

BUGS 

sm%d%c: sm%d HARD (READ/WRITE) %x. An unrecoverable error occurred during transfer of the 
specified sector of the specified disk partition. The type of operation and the hexadecimal error code are 
displayed. 

sm %d %c: sm %d SO Ff (READ/WRITE) %x. A recoverable error occurred on the specified sector of 
the specified disk partition. The type of operation, error code and number of retries are displayed. The 
recovery involves retrying, reseeking, and applying ECC to correct the problem. If the error recurs, the 
affected sectors should be mapped out. 

In raw 1/0 read and write(2) truncate file offsets to 512-byte block boundaries, and write scribbles on the 
tail of incomplete blocks. Thus, in programs that are likely to access raw devices, read, write and lseek(2) 
should always deal in 512-byte multiples. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



SP( 4I) UNIX Programmer's Manual SP( 4I) 

NAME 
sp - disk spanning pseudo disk driver 

SYNOPSIS 
SPO at address Ox0/00 ***no vector 

DESCRIPTION 
sp is a pseudo-disk driver that allows an arbitrarily large logical disk partition to be "spanned" across a 
number of physical disk partitions. Once it is properly configured, this resulting logical disk has the same 
interface to the kernel and to a user program as any standard disk partitions. 

Since this device is intended to allow the system administrator to custom design the size of a partition, and 
also since sp is not intended to have a root or swap partition, the normal conventions of dividing a disk into 
a through h partitions has been abandoned. Instead, the sp device has only four minor devices currently in 
use, spOc, splc, sp2c, and sp3c, each of which is an independently configurable pseudo-disk partition. 

CONFIGURATION 
The configuration of a spanned disk (the list of physical partitions that comprise the logical disk) can be 
specified in one of two ways: 

1. Compile the configuration statically into the kernel, so that the spanned disk is available at boot 
time. 

2. Describe the configuration in the file letc/sptab (see sptab (5)), and configure the sp device driver 
dynamically by running spconfig(8) manually or from within !etc/re. 

In either case, the information needed to configure a spanned disk is the same. You create a spanned disk 
of the desired size by specifying a number of physical disk partitions that, when added together, are large 
enough to store the resulting .logical disk. You define the actual spanned disk by specifying a list of parti­
tions that create it This list consists of the physical disk major and minor device numbers. 

For example, consider a VME-based system that has two Maxtor 1140 disk drives and you want to create a 
single disk partition of at least 150 Mbytes. Running the command 

diskpart max1140 

produces the following information: 

max 1140: #sectors/track= 17, #tracks/cylinder= 15 #cylinders=916 

Partition Size Range 
a 15884 0-62 
b 33440 63 - 194 
c 233580 0-915 
d 15884 195 - 257 
e 55936 258 - 477 
f 111537 478 - 915 
g 183702 195 - 915 
h unused 

A spanned disk of 150 Mbytes requires 292968 blocks. (One block equals 512 kbytes.) In this example 
system with two disk drives you can use the "g" partition on drive 0 and the "f' partition on drive 1 for a 
total of 295239 blocks or 151 Mbytes. 

To sensibly allocate the remaining space on drive sdl, you might use sdlb for interleaved swap space, then 
combine sdla, sdld, and sdle (partitions (1,8), (l,11), (1,12)) to form a separate 45-Mbyte (87704-block) 
spanned disk. The resulting file system layout would probably be: 

October 28, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1 



SP( 41) UNIX Programmer's Manual SP( 41) 

Partition Size Usage Comment 
sdOa 8.1 Mbytes root root file system 
sdOb 17.1 Mbytes swap drive 0 swap area 
sdlb 17.1 Mbytes swap drive 1 swap area 
spOc 151 Mbytes usrl spanned disk 
splc 44.9 Mbytes usr2 spanned disk 

There is one restriction on the use of physical disk partitions to make a spanned disk: Never use the c phy­
sical partitions on any disk as part of a spanned disk, because the bad block table at the end of the physical 
disk can become corrupted. Aside from this restriction, you can mix the type and number of physical parti­
tions. used to create the spanned disk in any order, and in fact need not use the same type drives, or even 
similar controllers. To use an entire physical disk as part of a spanned disk, you should include entries for 
the a, b, d, e,f, g, and h partitions in the spanned disk configuration rather than specifying the c partition. 

Dynamic Configuration 
Of the two configuration methods, this is the simpler. The exact configuration is described in the file 
letclsptab, and the format is described in detail in sptab (5). For example, the configuration described 
above would appear in letclsptab as: 

spOc ( (1,6),(1,13)) 
splc ( (l,8),(l,ll),(l,l2)) 

This shows that device !devlspOc comprises partitions (1,6) and (1,13), and device !devlspl c comprises par­
titions (1,8), (1,11), and (1,12). No size information is needed in this file, since that will be gathered by the 
driver itself when spconfig (8) is run. 

After letclsptab has been properly edited, running spconfig loads the configuration tables in the device 
driver, and leaves the driver ready for normal operation. Any I/O calls made on the driver prior to running 
spconfig will result in an error. 

Static Configuration 
Static configuration of a spanned disk requires modification of one file in the kernel configuration area, and 
subsequent recompilation of the kernel. The file is lsyslconflspconfc, which describes the configuration of 
each of four possible pseudo-disks. 

The spconfig.c file contains the major and minor device numbers for all of the physical drives used in creat­
ing spanned disks. For each spanned disk device, the file entry is a comma-separated series of mak­
edev (8) commands specifying the decimal major and minor numbers of the partitions. The spconfig.c file 
must contain four entries for spanned disks (sp[0-3]c), even ifless than four are used. 

The spconfig.c file contains example lines to show syntax for entries. Again using the example 
configuration described earlier, the spconfig.c entries would appear as: 

dev t spOc[Nsp_segs] = {makedev(l,6), makedev(l,13), O}; 
dev t splc[Nsp_segs] = {makedev(l,8), makedev(l,11), makedev(l,12), 0}; 
dev t sp2c[Nsp_segs] = {O}; 
dev t sp3c[Nsp _segs] = {O}; 

Note that the last two entries, sp2c and sp3c, are null entries. These partitions will be listed with a ''not 
configured'' message at boot time. The line 

dev t *sp_config[] = {spOc, splc, sp2c, sp3c, O}; 

must remain unaltered. 

October 28, 1987 INTEGRATED SOLUTIONS 4.3 BSD 2 



SP( 4I) UNIX Programmer's Manual SP( 4I) 

Once this file is edited, the kernel must be rebuilt as described in the UNIX 4.3BSD System Administrator 
Guide (SMM:l). Thereafter, during boot procedures or in response to the dmesg (8) command, the follow­
ing lines will appear among device configuration messages: 

SPO at address Ox400/02000 * * * no vector 
spO at SPO slave 0 (sdOg sdlf ):151M (295239) 
spl at SPO slave 1 (sdla sdld sdle ):45M (87704) 
sp2 at SPO slave 2 ( * * not configured * *) 
sp3 at SPO slave 3 (**not configured**) 

MAKING FILE SYSTEMS 
Since there is no standard configuration associated with an sp device, newfs (8) cannot be used to build a 
file system. Therefore it is necessary to fall back on mkfs (8), which requires the user to specify the size of 
the file system to be built 

To insure that the pseudo-disks operate correctly with block dependent operations, the size of the disk 
should be rounded down to the nearest 16-block boundary. Recalling the information obtained from 
diskpart (8) for the previous example, the usable sizes of the spanned disk partitions are calculated as fol­
lows: 

Pseudo-disk 
spOc 

size of pseudo disk 
(/devlspOc) 
blocked value (16 block) 

Pseudo-disk 
splc 

total size of pseudo disk 
(/devlspl c) 
blocked value (16 block) 

Physical partitions 
sdOg 
sdlf 

Physical partitions 
sdla 
sdld 
sdle 

Size 
183702 
111537 

295239 

295232 

Size 
15884 
15884 
55936 

87704 

87696 

With these numbers in hand, it is now only necessary to run mkfs (8), as in: 

/etc/mkfs /dev/rspOc 295232 
/etc/mkfs /dev/rsplc 87696 

If all disk partitions making up a given spanned-disk are of the same physical type, as in this example, than 
a more efficient file system may be built by supplying additional arguments to the mkfs command. You 
should specify the number of sectors per track and the number of tracks per cylinder (see mkfs (8) for 
default values). In the above example of two Maxtor 1140's on a VME system the diskpart(8) command 
shows 17 sectors per track and 15 tracks per cylinder. To build the file system, use the commands 

October 28, 1987 

/etc/mkfs /dev/rspOc 295232 17 15 
/etc/mkfs /dev/rsplc 87696 17 15 

INTEGRATED SOLUTIONS 4.3 BSD 3 



SP( 41) 

FILES 

UNIX Programmer's Manual SP( 41) 

If you are using dynamic configuration, you must run spconfig (8) prior to running mkfs (8) (in fact, prior 
to any pseudo-disk access). 

/dev/sp[0-3]c block files 
/dev/rsp[0-3]c raw files 
/etc/sptab 
I etc/ spconfig 
/sys/conf/spconf.c 

SEE ALSO 
sptab(S), spconfig(8), diskpart(8), mkfs(8) 
UNIX 4.3BSD System Administrator Guide (SMM:l) 

DIAGNOSTICS 

BUGS 

Since the sp device driver is a pseudo device which in turn calls upon other device drivers, all the diagnos­
tics for the drivers used in making up a spanned disk apply. 

As in the diagnostics section above, bugs listed under the physical device drivers in question will be visible 
through the sp driver. 

Do not use a spanned disk as the root(/) partition. The PROMs cannot access spanned disks, and the sys­
tem will not boot. Do not use a spanned disk as the swap partition. 

October 28, 1987 INTEGRATED SOLUTIONS 4.3 BSD 4 



TCP(4P) UNIX Programmer's Manual TCP(4P) 

NAME 
tcp - Internet Transmission Control Protocol 

SYNOPSIS 
#include <sys/socket.h> 
#include <netinet/in.h> 

s = socket(AF _INET, SOCK_STREAM, 0); 

DESCRIPTION 
The TCP protocol provides reliable, flow-controlled, two-way transmission of data. It is a byte-stream pro­
tocol used to support the SOCK_ STREAM abstraction. TCP uses the standard Internet address format and, 
in addition, provides a per-host collection of ''port addresses''. Thus, each address is composed of an 
Internet address specifying the host and network, with a specific TCP port on the host identifying the peer 
entity. 

Sockets utilizing the tcp protocol are either "active" or "passive". Active sockets initiate connections to 
passive sockets. By default TCP sockets are created active; to create a passive socket the listen (2) system 
call must be used after binding the socket with the bind(2) system call. Only passive sockets may use the 
accept(2) call to accept incoming connections. Only active sockets may use the connect(2) call to initiate 
connections. 

Passive sockets may ''underspecify'' their location to match incoming connection requests from multiple 
networks. This technique, termed ''wildcard addressing'', allows a single server to provide service to 
clients on multiple networks. To create a socket which listens on all networks, the Internet address 
INADDR _ANY must be bound. The TCP port may still be specified at this time; if the port is not specified 
the system will assign one. Once a connection has been established the socket's address is fixed by the 
peer entity's location. The address assigned the socket is the address associated with the network interface 
through which packets are being transmitted and received. Normally this address corresponds to the peer 
entity's network. 

DIAGNOSTICS 
A socket operation may fail with one of the following errors returned: 

[EISCONN] when trying to establish a connection on a socket which already has one; 

[ENOBUFS] when the system runs out of memory for an internal data structure; 

[ETIMEOOUT] when a connection was dropped due to excessive retransmissions; 

[ECONNRESET] when the remote peer forces the connection to be closed; 

[ECONNREFUSED] when the remote peer actively refuses connection establishment (usually because 
no process is listening to the port); 

[EADDRINUSE] when an attempt is made to create a socket with a port which has already been 
allocated; 

[EADDRNOTA VAIL] when an attempt is made to create a socket with a network address for which no 
network interface exists. 

SEE ALSO 

BUGS 

intro(4N), inet(4F) 

It should be possible to send and receive TCP options. The system always tries to negotiate the maximum 
TCP segment size to be 1024 bytes. This can result in poor performance if an intervening network per­
forms excessive fragmentation. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TM(4) UNIX Programmer's Manual TM(4) 

NAME 
tm - TM-11/TE-10 magtape interface 

SYNOPSIS 
TMO at addre~ Ox3fr550/017772520 vector Ox94/0224 

DESCRIPTION 
The tm-11/te-10 combination provides a standard tape drive interface as described in mtio(4). Hardware 
implementing this on the IS68K is typified by the Emulex TCOl controller operating with a Kennedy model 
9300 tape transport, providing 800 and 1600 bpi operation at 125 ips. 

SEE ALSO 
tar(l), tp(l), mtio(4), ts(4}, 

DIAGNOSTICS 

BUGS 

tm %d: no write ring. An attempt was made to write on the tape drive when no write ring was present; 
this message is written on the terminal of the user who tried to access the tape. 

tm %d: not online. An attempt was made to access the tape while it was offline; this message is written on 
the terminal of the user who tried to access the tape. 

tm %d: can't switch density in mid-tape. An attempt was made to write on a tape at a different density 
than is already recorded on the tape. This message is written on the terminal of the user who tried to switch 
the density. 

tm%d: hard error bn%d er=%b. A tape error occurred at block bn; the tm error register is printed in 
octal with the bits symbolically decoded. Any error is fatal on non-raw tape; when possible the driver will 
have retried the operation which failed several times before reporting the error. 

tm %d: lost interrupt. A tape operation did not complete within a reasonable time, most likely because 
the tape was taken off-line during rewind or lost vacuum. The controller should, but does not, give an 
interrupt in these cases. The device will be made available again after this message, but any current open 
reference to the device will return an error as the operation in progress aborts. 

If any non-data error is encountered on non-raw tape, it refuses to do anything more until closed. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TS(4) UNIX Programmer's Manual TS(4) 

NAME 
ts - TS-11 magtape interface 

SYNOPSIS 
TSO at address Ox3fTSS0/017772520 vector Ox94/0224 

DESCRIPTION 
The ts-11 combination provides a standard tape drive interface as described in mtio(4). It supports one 
transport is possible per controller. 

SEE ALSO 
tar(l), tp(l), mtio(4), tm(4), 

DIAGNOSTICS 

·nuGS 

ts%d: no write ring. An attempt was made to write on the tape drive when no write ring was present; this 
message is written on the terminal of the user who tried to access the tape. 

ts%d: not online. An attempt was made to access the tape while it was offiine; this message is written on 
the terminal of the user who tried to access the tape. 

ts%d: hard error bn%d xs0=%b. A hard error occurred on the tape at block bn; status register 0 is 
printed in octal and symbolically decoded as bits. 

If any non-data error is encountered on non-raw tape, it refuses to do anything more until closed. 

The device lives at the same address as a tm-11 tm(4); as it is very difficult to get this device to interrupt, a 
generic system assumes that a ts is present whenever no tm-11 exists but the csr responds and a ts-11 is 
configured. This does no harm as long as a non-existent ts-11 is not accessed. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TTY(4) UNIX Programmer's Manual TTY(4) 

NAME 
tty - general terminal interface 

SYNOPSIS 
#include <sgtty .h> 

DESCRIPTION 
This section describes both a particular special file /dev/tty and the terminal drivers used for conversational 
computing. 

Line disciplines. 

The system provides different line disciplines for controlling communications lines. In this version of the 
system there are three disciplines available: 

old The old (standard) terminal driver. This is used when using the standard shell sh(l) and for com­
patibility with other standard version 7 UNIX systems. 

new A newer terminal driver, with features for job control; this must be used when using csh(l). 

net A line discipline used for networking and loading data into the system over communications 
lines. It allows high speed input at very low overhead, and is described in bk(4). 

Line discipline switching is accomplished with the TIOCSEID ioctl: 

int ldisc = LDISC; ioctl(filedes, TIOCSETD, &ldisc); 

where LDISC is OTIYDISC for the standard tty driver, NTIYDISC for the new driver and NETLDISC 
for the networking discipline. The standard (currently old) tty driver is discipline 0 by convention. The 
current line discipline can be obtained with the TIOCGEID ioctl. Pending input is discarded when the line 
discipline is changed. 

All of the low-speed asynchronous communications ports can use any of the available line disciplines, no 
matter what hardware is involved. The remainder of this section discusses the ''old'' and ''new'' discip­
lines. 

The control terminal. 

When a terminal file is opened, it causes the process to wait until a connection is established. In practice, 
user programs seldom open these files; they are opened by init(S) and become a user's standard input and 
output file. 

If a process which has no control terminal opens a terminal file, then that terminal file becomes the control 
terminal for that process. The control terminal is thereafter inherited by a child process during a/ork(2), 
even if the control terminal is closed. 

The file /dev/tty is, in each process, a synonym for a control termi.nal associated with that process. It is 
useful for programs that wish to be sure of writing messages on the terminal no matter how output has been 
redirected. It can also be used for programs that demand a file name for output, when typed output is 
desired and it is tiresome to find out which terminal is currently in use. 

Process groups. 

Command processors such as csh(l) can arbitrate the terminal between different jobs by placing related 
jobs in a single process group and associating this process group with the terminal. A terminals associated 
process group may be set using the TIOCSPGRP ioctl (2): 

ioctl(fildes, TIOCSPGRP, &pgrp) 

or examined using TIOCGPGRP rather than TIOCSPGRP, returning the current process group in pgrp. 
The new terminal driver aids in this arbitration by restricting access to the terminal by processes which are 
not in the current process group; see Job access control below. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TTY(4) UNIX Programmer's Manual TIY(4) 

Modes. 

The terminal drivers have three major modes, characterized by the amount of processing on the input and 
output characters: 

cooked The normal mode. In this mode lines of input are collected and input editing is done. The 
edited line is made available when it is completed by a newline or when an EOT (control-D, 
hereafter "D) is entered. A carriage return is usually made synonymous with newline in this 
mode, and replaced with a newline whenever it is typed. All driver functions (input editing, 
interrupt generation, output processing such as delay generation and tab expansion, etc.) are 
available in this mode. 

CBREAK This mode eliminates the character, word, and line editing input facilities, making the input 
character available to the user program as it is typed. Flow control, literal-next and interrupt 
processing are still done in this mode. Output processing is done. 

RAW This mode eliminates all input processing and makes all input characters available as they are 
typed; no output processing is done either. 

The style of input processing can also be very different when the terminal is put in non-blocking i/o mode; 
see f cntl (2). In this case a read (2) from the control terminal will never block, but rather return an error 
indication (EWOULDBLOCK) if there is no input available. 

A process may also request a SIGIO signal be sent it whenever input is present To enable this mode the 
FASYNC flag should be set using/ cntl (2). 

Input editing. 

A UNIX terminal ordinarily operates in full-duplex mode. Characters may be typed at any time, even 
while output is occurring, and are only lost when the system's character input buffers become completely 
choked, which is rare, or when the user has accumulated the maximum allowed number of input characters 
that have not yet been read by some program. Currently this· limit is 256 characters. In the old terminal 
driver all the saved characters are thrown away when the limit is reached, without notice; the new driver 
simply refuses to accept any further input, and rings the terminal bell. 

Input characters are normally accepted in either even or odd parity with the parity bit being stripped off 
before the character is given to the program. By clearing either the EVEN or ODD bit in the flags word it 
is possible to have input characters with that parity discarded (see the Summary below.) 

In all of the line disciplines, it is possible to simulate terminal input using the TIOCSTI ioctl, which takes, 
as its third argument, the address of a character. The system pretends that this character was typed on the 
argument terminal, which must be the control terminal except for the super-user (this call is not in standard 
version 7 UNIX). 

Input characters are normally echoed by putting them in an output queue as they arrive. This may be dis­
abled by clearing the ECHO bit in the flags word using the stty(3) call or the TIOCSETN or TIOCSETP 
ioctls (see the Summary below). 

In cooked mode, terminal input is processed in units of lines. A program attempting to read will normally 
be suspended until an entire line has been received (but see the description of SIGTIIN in Modes above 
and FIONREAD in Summary below.) No matter how many characters are requested in the read call, at 
most one line will be returned It is not, however, necessary to read a whcle line at once; any number of 
characters may be requested in a read, even one, without losing information. 

During input, line editing is normally done, with the character '#' logically erasing the last character typed 
and the character'@' logically erasing the entire current input line. These are often reset on crt's, with "H 
replacing #, and "U replacing @. These characters never erase beyond the beginning of the current input 
line or an "D. These characters may be entered literally by preceding them with '\ '; in the old teletype 
driver both the '\ ' and the character entered literally will appear on the screen; in the new driver the '\ ' 
will normally disappear. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



TTY(4) UNIX Programmer's Manual TIY(4) 

The drivers normally treat either a carriage return or a newline character as terminating an input line, 
replacing the return with a newline and echoing a return and a line feed. If the CRMOD bit is cleared in 
the local mode word then the processing for carriage return is disabled, and it is simply echoed as a return, 
and does not terminate cooked mode input. 

In the new driver there is a literal-next character AV which can be typed in both cooked and CBREAK 
mode preceding any character to prevent its special meaning. This is to be preferred to the use of '\ ' 
escaping erase and kill characters, but'\' is (at least temporarily) retained with its old function in the new 
driver for historical reasons. 

The new terminal driver also provides two other editing characters in normal mode. The word-erase char­
acter, normally AW, erases the preceding word, but not any spaces before it. For the purposes of AW, a 
word is defined as a sequence of non-blank characters, with tabs counted as blanks. Finally, the reprint 
character, normally ''R, retypes the pending input beginning on a new line. Retyping occurs automatically 
in cooked mode if characters which would normally be erased from the screen are fouled by program out­
put 

Input echoing and redisplay 

In the old terminal driver, nothing special occurs when an erase character is typed; the erase character is 
simply echoed. When a kill character is typed it is echoed followed by a new-line (even if the character is 
not killing the line, because it was preceded by a '\ '!.) 

The new terminal driver has several modes for handling the echoing of terminal input, controlled by bits in 
a local mode word. 

Hardcopy terminals. When a hardcopy terminal is in use, the LPRTERA bit is normally set in the local 
mode word. Characters which are logically erased are then printed out backwards preceded by'\' and fol­
lowed by 'I' in this mode. 

Crt tenni.nals. When a crt terminal is in use, the LCRTBS bit is normally set in the local mode word. The 
terminal driver then echoes the proper number of erase characters when input is erased; in the normal case 
where the erase character is a AH this causes the cursor of the terminal to back up to where it was before the 
logically erased character was typed. If the input has become fouled due to interspersed asynchronous out­
put, the input is automatically retyped. 

Erasing characters from a crt. When a crt terminal is in use, the LCRTERA bit may be set to cause input to 
be erased from the screen with a ''backspace-space-backspace'' sequence when character or word deleting 
sequences are used. A LCRTK.IL bit may be set as well, causing the input to be erased in this manner on 
line kill sequences as well. 

Echoing of control characters. If the LCTLECH bit is set in the local state word, then non-printing (con­
trol) characters are normally echoed as AX (for some X) rather than being echoed unmodified; delete is 
echoed as A?. 

The normal modes for using the new terminal driver on crt terminals are speed dependent At speeds less 
than 1200 baud, the LCRTERA and LCRTKILL processing is painfully slow, so stty(l) normally just sets 
LCRTBS and LCTLECH; at speeds of 1200 baud or greater all of these bits are normally set. Stty(l) sum­
marizes these option settings and the use of the new terminal driver as ''newcrt.'' 

Output processing. 

When one or more characters are written, they are actually transmitted to the terminal as soon as 
previously-written characters have finished typing. (As noted above, input characters are normally echoed 
by putting them in the output queue as they arrive.) When a process produces characters more rapidly than 
they can be typed, it will be suspended when its output queue exceeds some limit. When the queue has 
drained down to some threshold the program is resumed Even parity is normally generated on output. 
The EOT character is not transmitted in cooked mode to prevent terminals that respond to it from hanging 
up; programs using raw or cbreak: mode should be careful. 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 3 



TTY(4) UNIX Programmer's Manual TIY(4) 

The terminal drivers provide necessary processing for cooked and CBREAK mode output including delay 
generation for certain special characters and parity generation. Delays are available after backspaces ''H, 
form feeds "L, carriage returns "M, tabs "I and newlines "J. The driver will also optionally expand tabs into 
spaces, where the tab stops are assumed to be set every eight columns. These functions are controlled by 
bits in the tty flags word; see Summary below. 

The terminal drivers provide for mapping between upper and lower case on terminals lacking lower case, 
and for other special processing on deficient terminals. 

Finally, in the new terminal driver, there is a output flush character, normally "0, which sets the LFLUSHO 
bit in the local mode word, causing subsequent output to be flushed until it is cleared by a program or more 
input is typed. This character has effect in both cooked and CBREAK modes and causes pending input to 
be retyped if there is any pending input An ioctl to flush the characters in the input and output queues 
TIOCFLUSH, is also available. 

Upper case terminals and Hazeltines 

If the LCASE bit is set in the tty flags, then all upper-case letters are mapped into the corresponding 
lower-case letter. The upper-case letter may be generated by preceding it by'\'. If the new terminal driver 
is being used, then upper case letters are preceded by a '\ ' when output. In addition, the following escape 
sequences can be generated on output and accepted on input: 

h { } 
use \' \! \" \( \) 

To deal with Hazeltine terminals, which do not understand that - has been made into an ASCII character, 
the LTILDE bit may be set in the local mode word when using the new terminal driver; in this case the 
character - will be replaced with the character ' on output 

Flow control. 

There are two characters (the stop character, normally "S, and the start character, normally "Q) which cause 
output to be suspended and resumed respectively. Extra stop characters typed when output is already 
stopped have no effect, unless the start and stop characters are made the same, in which case output 
resumes. 

A bit in the flags word may be set to put the terminal into TANDEM mode. In this mode the system pro­
duces a stop character (default "S) when the input queue is in danger of overflowing, and a start character 
(default "Q) when the input has drained sufficiently. This mode is useful when the terminal is actually 
another machine that obeys the conventions. 

Line control and breaks. 

There are several ioctl calls available to control the state of the terminal line. The TIOCSBRK ioctl will set 
the break bit in the hardware interface causing a break condition to exist; this can be cleared (usually after 
a delay with sleep(3)) by TIOCCBRK. Break conditions in the input are reflected as a null character in 
RAW mode or as the interrupt character in cooked or CBREAK mode. The TIOCCDTR ioctl will clear 
the data terminal ready condition; it can be set again by TIOCSDTR. 

When the carrier signal from the dataset drops (usually because the user has hung up his terminal) a 
SIGHUP hangup signal is sent to the processes in the distinguished process group of the terminal; this usu­
ally causes them to terminate (the SIGHUP can be suppressed by setting the LNOHANG bit in the local 
state word of the driver.) Access to the terminal by other processes is then normally revoked, so any 
further reads will fail, and programs that read a terminal and test for end-of-file on their input will ter­
minate appropriately. 

When using an ACU it is possible to ask that the phone line be hung up on the last close with the 
TIOCHPCL ioctl; this is normally done on the outgoing line. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 4 



ITY(4) UNIX Programmer's Manual TIY(4) 

Interrupt characters. 

There are several characters that generate interrupts in cooked and CBREAK mode; all are sent the 
processes in the control group of the terminal, as if a TIOCGPGRP ioctl were done to get the process group 
and then a killpg(2) system call were done, except that these characters also flush pending input and output 
when typed at a terminal ('a" la TIOCFLUSH). The characters shown here are the defaults; the field names 
in the structures (given below) are also shown. The characters may be changed, although this is not often 
done. 

"? t_intrc (Delete) generates a SIGINT signal. This is the normal way to stop a process which is no 
longer interesting, or to regain control in an interactive program. 

"\ t _ quitc (FS) generates a SIGQUIT signal. This is used to cause a program to terminate and pro­
duce a core image, if possible, in the file core in the current directory. 

"Z t_suspc (EM) generates a SIGTSTP signal, which is used to suspend the current process group. 

"Y t_dsuspc (SUB) generates a SIGTSTP signal as "Z does, but the signal is sent when a program 
attempts to read the "Y, rather than when it is typed. 

Job access control. 

When using the new terminal driver, if a process which is not in the distinguished process group of its con­
trol terminal attempts to read from that terminal its process group is sent a SIGTTIN signal. This signal 
normally causes the members of that process group to stop. If, however, the process is ignoring SIGTTIN, 
has SIGTTIN blocked, is an orphan process, or is in the middle of process creation using vfork(2)), it is 
instead returned an end-of-file. (An orphan process is a process whose parent has exited and has been 
inherited by the init(8) process.) Under older UNIX systems these processes would typically have had 
their input files reset to /dev/null, so this is a compatible change. 

When using the new terminal driver with the LTOSTOP bit set in the local modes, a process is prohibited 
from writing on its control terminal if it is not in the distinguished process group for that terminal. 
Processes which are holding or ignoring SIGTTOU signals, which are orphans, or which are in the middle 
of a vf ork(2) are excepted and allowed to produce output. 

Summary of modes. 

Unfortunately, due to the evolution of the terminal driver, there are 4 different structures which contain 
various portions of the driver data The first of these (sgttyb) contains that part of the information largely 
common between version 6 and version 7 UNIX systems. The second contains additional control charac­
ters added in version 7. The third is a word oflocal state peculiar to the new terminal driver, and the fourth 
is another structure of special characters added for the new driver. In the future a single structure may be 
made available to programs which need to access all this information; most programs need not concern 
themselves with all this state. 

Basic modes: sgttv. 

The basic ioctl s use the structure defined in < sgtty.h>: 

struct sgttyb { 
char sg_ispeed; 
char sg_ospeed; 
char sg_ erase; 
char sg_kill; 
short sg_ ftags; 

}; 

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device according to the fol­
lowing table, which corresponds to the DEC DH-11 interface. If other hardware is used, impossible speed 
changes are ignored. Symbolic values in the table are as defined in <qgtty.h>. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 5 



TTY(4) 

BO 0 
B50 1 
B75 2 
BllO 3 
B134 4 
B150 5 
B200 6 
B300 7 
B600 8 
B1200 9 
B1800 10 
B2400 11 
B4800 12 
B9600 13 
EXTA 14 
EXTB 15 

UNIX Programmer's Manual 

(hang up dataphone) 
50 baud 
75 baud 
110 baud 
134.5 baud 
150baud 
200baud 
300baud 
600baud 
1200 baud 
1800baud 
2400baud 
4800baud 
9600baud 
External A 
ExtemalB 

TIY(4) 

In the current configuration, only 110, 150, 300 and 1200 baud are really supported on dial-up lines. Code 
conversion and line control required for IBM 2741's (134.5 baud) must be implemented by the user's pro­
gram. The half-duplex line discipline required for the 202 dataset (1200 baud) is not supplied; full-duplex 
212 datasets work fine. 

The sg_erase and sg_ldll fields of the argument structure specify the erase and kill characters respectively. 
(Defaults are # and @.) 

The sg_jlags field of the argument structure contains several bits that determine the system's treatment of 
the terminal: 

ALLDELA Y 0177400 Delay algorithm selection 
BSDELAY 0100000 Select backspace delays (not implemented): 
BSO 0 
BSl 0100000 
VTDELA Y 0040000 Select form-feed and vertical-tab delays: 
FFO 0 
FFl 0100000 
CRDELA Y 0030000 Select carriage-return delays: 
CRO 0 
CRl 0010000 
CR2 0020000 
CR3 0030000 
TBDELA Y 0006000 Select tab delays: 
TABO 0 
TABl 0001000 
T AB2 0004000 
XT ABS 0006000 
NLDELAY 0001400 Select new-line delays: 
NLO 0 
NLl 0000400 
NL2 0001000 
NL3 0001400 
EVENP 0000200 Even parity allowed on input (most terminals) 
ODDP 0000100 Odd parity allowed on input 
RAW 0000040 Raw mode: wake up on all characters, 8-bit interface 
CRMOD 0000020 Map CR into LF; echo LF or CR as CR-LF 
ECHO 0000010 Echo (full duplex) 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 6 



TTY(4) UNIX Programmer's Manual TTY(4) 

LCASE 
CBREAK 
TANDEM 

0000004 Map upper case to lower on input 
0000002 Return each character as soon as typed 
0000001 Automatic flow control 

The delay bits specify how long transmission stops to allow for mechanical or other movement when cer­
tain characters are sent to the tenninal. In all cases a value of 0 indicates no delay. 

Backspace delays are currently ignored but might be used for Terminet 300's. 

If a form-feed/vertical tab delay is specified, it lasts for about 2 seconds. 

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet 300. Delay type 2 
lasts about .16 seconds and is suitable for the VT05 and the TI 700. Delay type 3 is suitable for the 
concept-100 and pads lines to be at least 9 characters at 9600 baud. 

New-line delay type 1 is dependent on the current column and is tuned for Teletype model 37's. Type 2 is 
useful for the VT05 and is about .10 seconds. Type 3 is unimplemented and is 0. 

Tab delay type 1 is dependent on the amount of movement and is tuned to the Teletype model 37. Type 3, 
called XT ABS, is not a delay at all but causes tabs to be replaced by the appropriate number of spaces on 
output. 

Input characters with the wrong parity, as detennined by bits 200 and 100, are ignored in cooked and 
CBREAK mode. 

RAW disables all processing save output flushing with LFLUSHO; full 8 bits of input are given as soon as 
it is available; all 8 bits are passed on output. A break condition in the input is reported as a null character. 
If the input queue overflows in raw mode it is discarded; this applies to both new and old drivers. 

CRMOD causes input carriage returns to be turned into new-lines; input of either CR or LF causes LF-CR 
both to be echoed (for terminals with a new-line function). 

CBREAK is a sort of half-cooked (rare?) mode. Programs can read each character as soon as typed, 
instead of waiting for a full line; all processing is done except the input editing: character and word erase 
and line kill, input reprint, and the special treatment of\ or EOT are disabled. 

TANDEM mode causes the system to produce a stop character (default "S) whenever the input queue is in 
danger of overflowing, and a start character (default "Q) when the input queue has drained sufficiently. It 
is useful for flow control when the 'terminal' is really another computer which understands the conven­
tions. 

Basic ioctls 

In addition to the TIOCSETD and TIOCGETD disciplines discussed in Line disciplines above, a large 
number of other ioctl (2) calls apply to tenninals, and have the general form: 

#include <sgtty .h> 

ioctl(fildes, code, arg) 
struct sgttyb •arg; 

The applicable codes are: 

TIOCGETP Fetch the basic parameters associated with the terminal, and store in the pointed-to 
sgttyb structure. 

TIOCSETP 

TIOCSE1N 

1 August 1985 

Set the parameters according to the pointed-to sgttyb structure. The interface delays 
until output is quiescent, then throws away any unread characters, before changing the 
modes. 

Set the parameters like TIOCSETP but do not delay or flush input. Input is not 
preserved, however, when changing to or from RAW. 

INTEGRATED SOLUTIONS 4.3 BSD 7 



TTY(4) UNIX Programmer's Manual 'ITY(4) 

With the following codes the arg is ignored 

TIOCEXCL Set ''exclusive-use'' mode: no further opens are permitted until the file has been closed. 

TIOCNXCL Turn off "exclusive-use" mode. 

TIOCHPCL When the file is closed for the last time, hang up the terminal. This is useful when the 
line is associated with an ACU used to place outgoing calls. 

TIOCFLUSH All characters waiting in input or output queues are flushed. 

The remaining calls are not available in vanilla version 7 UNIX. In cases where arguments are required, 
they are described; arg should otherwise be given as 0. 

TIOCSTI the argument is the address of a character which the system pretends was typed on the 
terminal. 

TIOCSBRK 

TIOCCBRK 

TIOCSDTR 

TIOCCDTR 

TIOCGPGRP 

TIOCSPGRP 

FIONREAD 

the break bit is set in the terminal. 

the break bit is cleared. 

data terminal ready is set 

data terminal ready is cleared. 

arg is the address of a word into which is placed the process group number of the control 
terminal. 

arg is a word (typically a process id) which becomes the process group for the control 
terminal. 

returns in the long integer whose address is arg the number of immediately readable 
characters from the argument unit This works for files, pipes, and terminals, but not 
(yet) for multiplexed channels. 

The second structure associated with each terminal specifies characters that are special in both the old and 
new terminal interfaces: The following structure is defined in < syslioctl.h>, which is automatically 
included in < sgtty.h>: 

struct tchars { 
char 

}; 

char 
char 
char 
char 
char 

t_intrc; 
t_quitc; 
t_startc; 
t_stopc; 
t_eofc; 
t_brkc; 

I• interrupt •/ 
I• quit•/ 
I• start output •/ 
I• stop output •/ 
I• end-of-file •/ 
I• input delimiter (like nl) •/ 

The default values for these characters are"?,\, "Q, "S, "D, and-1. A character value of-1 eliminates the 
effect of that character. The t_brkc character, by default -1, acts like a new-line in that it terminates a 
'line,' is echoed, and is passed to the program. The 'stop' and 'start' characters may be the same, to pro­
duce a toggle effect. It is probably counterproductive to make other special characters (including erase and 
kill) identical. The applicable ioctl calls are: 

TIOCGETC Get the special characters and put them in the specified structure. 

TIOCSETC Set the special characters to those given in the structure. 

Local mode 

The third structure associated with each terminal is a local mode word; except for the LNOHANG bit, this 
word is interpreted only when the new driver is in use. The bits of the local mode word are: 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 8 



TTY(4) UNIX Programmer's Manual TTY(4) 

FILES 

LCRTBS 000001 Backspace on erase rather than echoing erase 
LPRTERA 000002 Printing terminal erase mode 
LCRTERA 000004 Erase character echoes as backspace-space-backspace 
LTILDEOOOOlO Convert.- to' on output (for Hazeltine terminals) 
LMDMBUF 000020 Stop.'start output when carrier drops 
LLITOUT 000040 Suppress output translations 
LTOSTOP 000100 Send SIGTIOU for background output 
LFLUSHO 000200 Output is being ftushed 
LNOHANG 000400 Don't send hangup when carrier drops 
LETXACK 001000 Diablo style buffer hacking (unimplemented) 
LCR TKIL 002000 BS-space-BS erase entire line on line kill 
LNO:MDM 004000· Ignore the modem control signals 
LCTLECH 010000 Echo input control chars as '"X, delete as '"? 
LPENDIN 020000 Retype pending input at next read or input character 
LDECCTQ 040000 Only '"Q restarts output after '"S, like DEC systems 

The applicable ioctl functions are: 

TIOCLBIS arg is the address of a mask which is the bits to be set in the local mode word. 

TIOCLBIC arg is the address of a mask of bits to be cleared in the local mode word. 

TIOCLSET arg is the address of a mask to be placed in the local mode word. 

TIOCLGET arg is the address of a word into which the current mask is placed. 

Local special chars 

The final structure associated with each terminal is die ltchars structure which defines interrupt characters 
for the new terminal driver. Its structure is: 

struct ltchars { 
char 
char 
char 
char 
char 
char 

}; 

t_suspc; 
t_dsuspc; 
t_rprntc; 
t_flushc; 
t_werasc; 
t_lnextc; 

I• stop process signal•/ 
I• delayed stop process signal•/ 
I• reprint line•/ 
I• flush output (toggles) •/ 
I• word erase •/ 
!•literal next character•/ 

The default values for these characters are '"Z, '"Y, '"R, '"O, "'W, and '"V. A value of -1 disables the charac­
ter. 

The applicable ioctl functions are: 

TIOCSL TC args is the address of a ltchars structure which defines the new local special characters. 

TIOCGLTC args is the address of a ltchars structure into which is placed the current set of local special 

/dev/tty 
/dev/tty• 
/dev/console 

characters. 

SEE ALSO 
csh(l), stty(l), ioctl(2), sigvec(2), stty(3C), getty(8), init(8) 

1August1985 INTEGRATED SOLUTIONS 4.3 BSD 9 



TIY(4) UNIX Programmer's Manual TIY(4) 

BUGS 
Half-duplex terminals are not supported. 

1 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 10 



VB(4) UNIX Programmer's Manual VB(4) 

NAME 
vb - VME backplane 

DESCRIPTION 
ISI Cluster CPUs communicate with the Server CPU through the ISI vb (VME backplane) device. vb 
implements an Ethernet-like interface using 256kb of shared memory into which the Cluster and Server 
cpus pass Ethernet packets as though the shared memory were an Ethernet controller. vb, which UNIX 
treats as an Ethernet device, is autoconfigured at boot time and ifconfig' d by re.local when the system is 
going multiuser. 

October 25, 1988 INTEGRATED SOLUTIONS 4.3 BSD 1 





TABLE OF CONTENTS 

5. File Formats 

L-devices • . . • • • . • • • . • . • • • • • . . • . . • • UUCP device description file 
L-dialcodes . . • . • • • . • • • . • • . • • . . . . . . UUCP phone number index file 
L.aliases • • • . • • • • • • • • • . • • • . • • . • • . • • • UUCP hostname alias file 
L.cmds • • • • • • • . • • . • • • • • • • • • . UUCP remote command permissions file 
L.sys . • • • • • . • • • • . • • • • • • • • • • • • UUCP remote host description file 
USERFILE • . • • . • • . • • • • • • • • • • • . • • UUCP pathname permissions file 
a.out • . • • . • • . • • . • • • • • • • . . • • • assembler and link editor output 
acct • • . • • . • • • • . • • • . • • • • • • • • execution accounting file 
aliases • • • • . • • . • • . • • • • • • • . • • • • • • . • • aliases file for sendmail 
ar • • . . • . • • . • . • • . . • . • . • • • . • . . • . . archive (library) file format 
core • • • • . • • . • • • • . • • • • • • • • • • • . . • format of memory image file 
dbx • . • . • • . • • . . • • • • • • • . . • • • • . • • dbx symbol table information 
dir • • • • . • • . • • . • • . • • • • • • • • . . • • . • format of directories 
disktab • • . . • . • • . • • • • . . • • • • . • • • . • • . • • • disk description file 
dump . • • • • • • • . • • . . • • . • • • • • • • • . . • . incremental dump format 
fs • • • • • . • • . • • • . . • • . • . • . . • . . • format of file system volume 
fstab . • • • • • • • • • • • • . • • • • • • • • • . static information about filesystems 
gettytab • . • • • • . • • • • • • • • • • • • • • . . • terminal configuration data base 
group . • • • • • . • • • . • • • • • • • • • • • . • • . • • • • • • • • group file 
hosts • • . • • • • • • • • • • . • • • • • • • • . • • • • • • • host name data base 
map3270 • • • • . • . • • . • • . database for mapping ascii keystrokes into IBM 3270 keys 
mtab • • • • . • • • • . • • • • • • • • • . • • • • • • • • mounted file system table 
networks • • • . • • • • • . • • • • • • • • • • . • • . • • • network name data base 
passwd • • • • • • • • . • . • • • • • . • • • • • . • • • • . • • • • password file 
phones remote host phone number data base 
plot • • • • • • • . • • • • • • • • • • . • . • • • • • . graphics interface 
printcap • • • • printer capability data base 
protocols . • • • • • • . • . • • . • • • . . • • . • . protocol name data base 
remote • • • • • • • • • • • • • • • • • . • • • • . • remote host description file 
resolver . . . • . • • • • . • . • • resolver- resolver configuration file 
services . • • . • . • • . • • • • • • . • • • • • • • • • • . • service name data base 
sptab . • • • • • • • . . • • • • • . • dynamic information for spanned disk configuration 
stab . • • . . • • • . • • • • • symbol table types 
tar • • • • • • • • • • • • • • • • • • • • • • • • • • • • tape archive file format 
termcap • • • • • • • • . • . • • • • • . . . • • • . • • • terminal capability data base 
tp • . • • • . . • • • • • • • • • • • • • • • • • • • • • DEC/mag tape formats 
ttys • . • . • • . • . . • • • • • • . . • • • • • • • • • • terminal initialization data 
types . • • • . . . • primitive system data types 
tzfile • . • . . . • . • . • • • • • • • • . • . . • • • • • • time zone information 
utmp • • • . • • • . • • . • . • • . • . • • . • • . • • . • . login records 
uuencode . . . • • • • • . • format of an encoded uuencode file 
vfont font formats for the Benson-Varian or Versatec 
vgrindefs • • • • • • • . vgrind's language definition data base 

INTEGRATED SOLUTIONS 4.3 BSD - cdxxiii - October 1987 





L.ALIASES ( 5) UNIX Programmer's Manual L.ALIASES ( 5) 

NAME 
L.aliases - UUCP hostnarne alias file 

DESCRIPTION 

FILES 

The L.aliases file defines mapping (aliasing) of system names for uucp. This is intended for compensating 
for systems that have changed names, or do not provide their entire machine name (like most USG sys­
tems). It is also useful when a machine's name is not obvious or commonly misspelled. 

Each line in L.aliases is of the form: 

real_ name alias_ name 

Any amount of whitespace may separate the two items. Lines beginning with a '#' character are com­
ments. 

All occurrences of alias_name are mapped to real_name by uucico(8C), uucp(l), and uux(l). The map­
ping occurs regardless of whether the name was typed in by a user or provided by a remote site. An excep­
tion is the -s option of uucico; only the site's real hostname (the name in L.sys(5)) will be accepted there. 

Aliased system names should not be placed in L.sys; they will not be used. 

/usr/lib/uucp/L.aliases /usr/lib/uucp/UUAIDS/L.aliases L.aliases example 

SEE ALSO 
uucp(lC), uux(lC), L.sys(5), uucico(8C) 

May 10, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



L.Cl\IDS ( 5 ) UNIX Programmer's Manual L.CMDS(5) 

NAME 
L.cmds - UUCP remote command permissions file 

DESCRIPTION 

FILES 

The L.cmds file contains a list of commands, one per line, that are permitted for remote execution via 
uux(lC). 

The default search path is /bin:/usr/bin:/usr/ucb. To change the path, include anywhere in the file a line of 
the form: 

PA TH=/bin:/usr/bin:/usr/ucb 

Normally, an acknowledgment is mailed back to the requesting site after the command completes. If a 
command name is suffixed with ,Error, then an acknowledgment will be mailed only if the command fails. 
If the command is suffixed with ,No, then no acknowledgment will ever be sent. (These correspond with 
the -z and-n options of uux, respectively.) 

For most sites, L.cmds should only include the lines: 

rmail 
ruusend 

News sites should add: 

PA TH=/bin:/usr/bin:/usr/ucb:/usr/new 
mews,Error 

While filenames supplied as arguments to uux commands will be checked against the list of accessible 
directory trees in USERFILE(S), this check can be easily circumvented and should not be depended upon. 
In other words, it is unwise to include any commands in L.cmds that accept local filenames. In particular, 
sh(l) and csh(l) are extreme risks. 

It is common (but hazardous) to include uucp(lC) in L.cmds; see the NOTES section ofUSERFILE. 

/usr/lib/uucp/L.cmds 
/usr/lib/uucp/UUAIDS/L.cmds L.cmds example. 

SEE ALSO 
uucp(lC), uux(lC), USERFILE(S), uucico(8C), uuxqt(8C) 

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



L-DEVICES ( 5) UNIX Programmer's Manual L-DEVICES ( 5) 

NAME 
L-devices - UUCP device description file 

DESCRIPTION 
The L-devices file is consulted by the UUCP daemon uucico(8C) under the direction of L.sys(5) for infor­
mation on the devices that it may use. Each line describes exactly one device. 

A line in L-devices has the form: 

Caller Device Call_Unit Class Dialer [Expect Send] .... 

Each item can be separated by any number of blanks or tabs. Lines beginning with a '#' character are com­
ments; long lines can be continued by appending a '\' character to the end of the line. 

Caller denotes the type of connection, and must be one of the following: 

ACU Automatic call unit, e.g., autodialing modems such as the Hayes Smartmodem 1200 or Novation 
"Smart Cat". 

DIR Direct connect; hardwired line (usually RS-232) to a remote system. 

DK AT&TDatakit. 

MIC OM 
Micom Terminal switch. 

PAD X.25 PAD connection. 

PCP GTE Telenet PC Pursuit. 

SYTEK Sytek high-speed dedicated modem port connection. 

TCP Berkeley TCP/IP or 3Com UNET connection. These are mutually exclusive. Note that listing 
TCP connections in L-devices is superfluous; uucico does not even bother to look here since it 
has all the information it needs in L.sys(5). 

Device is a device file in /dev/ that is opened to use the device. The device file must be owned by UUCP, 
with access modes of 0600 or better. (See chmod(2)). 

Call_ Unit is an optional second device filename. True automatic call units use a separate device file for 
data and for dialing; the Device field specifies the data port, while the Call _unit field specifies the dialing 
port. If the Call_ unit field is unused, it must not be left empty. Insert a dummy entry as a placeholder, 
such as "O" or "unused." 

Class is an integer number that specifies the line baud (for dialers and direct lines) or the port number (for 
network connections). 

The Class may be preceded by a non-numeric prefix. This is to differentiate among devices that have 
identical Caller and baud, but are distinctly different. For example, '' 1200'' could refer to all Bell 212-
compatible modems, "V1200" to Racal-Vadic modems, and "Cl200" to CCfIT modems, all at 1200 
baud. Similarly, "Wl200" could denote long distance lines, while "L1200" could refer to local phone 
lines. 

Dialer applies only to ACU devices. This is the "brand" or type of the ACU or modem. 

DF02 DEC DF02 or DF03 modems. 

DF112 Dec DFl 12 modems. Use a Dialer field of DF112T to use tone dialing, or DF112P for pulse 
dialing. 

att AT&T 2224 2400 baud modem. 

cds224 Concord Data Systems 224 2400 baud modem. 

dnll DEC DNl 1 Unibus dialer. 

hayes Hayes Smartmodem 1200 and compatible autodialing modems. Use a Dialer field of hayestone 

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



L-DEVICES ( 5) UNIX Programmer's Manual L-DEVICES ( 5) 

FILES 

to use tone dialing, or hayespulse for pulse dialing. It is also permissible to include the letters 
'T' and 'P' in the phone number (in L.sys) to change to tone or pulse midway through dialing. 
(Note that a leading 'T' or 'P' will be interpreted as a dialcode!) 

hayes2400 

novation 

Hayes Srnanrnodern 2400 and compatible moderns. Use a Dialer field of hayes2400tone to use 
tone dialing, or hayes2400pulse for pulse dialing. 

Novation ''Smart Cat'' autodialing modern. 

penril Penril Corp "Hayes compatible" modems (they really aren't or they would use the hayes entry.) 

rvmacs Racal-Vadic 820 dialer with 831 adapter in a MACS configuration. 

va212 Racal-Vadic 212 autodialing modem. 

va811s Racal-Vadic 8lls dialer with 831 adapter. 

va820 Racal-Vadic 820 dialer with 831 adapter. 

vadic Racal-Vadic 3450 and 3451 series autodialing moderns. 

ventel Ventel 212+ autodialing modem. 

vmacs Racal-Vadic 811 dialer with 831 adapter in a MACS configuration. 

Expect/Send is an optional Expect/Send script for getting through a smart port selector, or for issuing spe­
cial commands to the modem. The syntax is identical to that of the Expect/Send script of L.sys. The 
difference is that the L-devices script is used before the connection is made, while the L.sys script is used 
after. 

/usr/lib/uucp/L-devices 
/usr/lib/uucp/UUAIDS/L-devices L-devices example 

SEE ALSO 
uucp(lC), uux(lC), L.sys(5), uucico(8C) 

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



L-DIALCODES ( 5) UNIX Programmer's Manual L-DIALCODES ( 5 ) 

NAME 
L-dialcodes - UUCP phone number index file 

DESCRIPTION 

FILES 

The L-dialcodes file defines the mapping of strings from the phone number field of L.sys(5) to actual 
phone numbers. 

Each line in L-dialcodes has the form: 

alpha _string phone_ number 

The two items can be separated by any number of blanks or tabs. Lines beginning with a'#' character are 
comments. 

A phone number in L.sys can be preceded by an arbitrary alphabetic character string; the string is matched 
against the list of alpha _strings in L-dialcodes. If a match is found, phone_ number is substituted for it If 
no match is found, the string is discarded. 

L-dialcodes is commonly used either of two ways: 

( 1) The alphabetic strings are used as prefixes to denote area codes, zones, and other commonly used 
sequences. For example, if L-dialcodes included the following lines: 

chi 1312 
mv 1415 

In L.sys you could enter: 

chivax Any ACU 1200 chi5551234 ogin:--ogin: nuucp 
mvpyr Any ACU 1200 mv5556001 ogin:--ogin: Uuucp 

instead of 

chivax Any ACU 1200 13125551234 ogin:--ogin: nuucp 
mvpyr Any ACU 1200 14155556001 ogin:--ogin: Uuucp 

(2) All phone numbers are placed in L-dialcodes, one for each remote site. L.sys then refers to these by 
name. For example, if L-dialcodes contains the following lines: 

chivax 13125551234 
mvpyr 14155556601 

then L.sys could have: 

chivax Any ACU 1200 chivax ogin:--ogin: nuucp 
mvpyr Any ACU 1200 rnvpyr ogin:--ogin: Uuucp 

This scheme allows a site administrator to give users read access to the table of phone numbers, while still 
protecting the login/password sequences in L.sys. 

/usr/lib/uucp/L-dialcodes 
/usr/lib/uucp/UUAIDS/L-dialcodes L-dialcodes example 

SEE ALSO 
uucp(lC), uux(lC), L.sys(5), uucico(8C). 

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



L.SYS(S) UNIX Programmer's Manual L.SYS (5) 

NAME 
L.sys - UUCP remote host description file 

DESCRIPTION 
The L.sys file is consulted by the UUCP daemon uucico(8C) for information on remote systems. L.sys 
includes the system name, appropriate times to call, phone numbers, and a login and password for the 
remote system. L.sys is thus a privileged file, owned by the UUCP Administrator; it is accessible only to 
the Administrator and to the superuser. 

Each line in L.sys describes one connection to one remote host, and has the form: 

System Times Caller Class Device/Phone_Number [Expect Send] .... 

Fields can be separated by any number of blanks or tabs. Lines beginning with a '#' character are com­
ments; long lines can be continued by appending a'\' character to the end of the line. 

The first five fields (System through Device!Phone_Number) specify the hardware mechanism that is 
necessary to make a connection to a remote host, such as a modem or network. Uucico searches from the 
top down through L.sys to find the desired System; it then opens the L-devices(5) file and searches for the 
first available device with the same Caller, Class, and (possibly) Device. (''Available'' means that the 
device is ready and not being used for something else.) Uucico attempts a connection using that device; if 
the connection cannot be made (for example, a dialer gets a busy signal), uucico tries the next available 
device. If this also fails, it returns to L.sys to look for another line for the same System. If none is found, 
uucico gives up. 

System is the hostname of the remote system. Every machine with which this system communicates via 
UUCP should be listed, regardless of who calls whom. Systems not listed in L.sys will not be permitted a 
connection. The local hostname should not appear here for security reasons. 

Times is a comma-separated list of the times of the day and week that calls are permitted to this System. 
Times is most commonly used to restrict long distance telephone calls to those times when rates are lower. 
List items are constructed as: 

keywordhhmm-hhmm/ grade;retry _time 

Keyword is required, and must be one of: 

Any Any time, any day of the week. 

Wk Any weekday. In addition, Mo, Tu, We, Th, Fr, Sa, and Su can be used for Monday through 
Sunday, respectively. 

Evening When evening telephone rates are in effect, from 1700 to 0800 Monday through Friday, and all 
day Saturday and Sunday. Evening is the same as Wkl 700-0800,Sa,Su. 

Night When nighttime telephone rates are in effect, from 2300 to 0800 Monday through Friday, all day 
Saturday, and from 2300 to 1700 Sunday. Night is the same as Any2300-0800,Sa,Su0800-1700. 

NonPeak 
This is a slight modification of Evening. It matches when the USA X.25 carriers have their 
lower rate period. This is 1800 to 0700 Monday through Friday, and all day Saturday and Sun­
day. NonPeak is the same as Any1800-0700,Sa,Su. 

Never Never call; calling into this System is forbidden or impossible. This is intended for polled con­
nections, where the remote system calls into the local machine periodically. This is necessary 
when one of the machines is lacking either dial-in or dial-out modems. 

The optional hhmm-hhmm subfield provides a time range that modifies the keyword. hhmm refers to hours 
and minutes in 24-hour time (from 0000 to 2359). The time range is permitted to "wrap" around midnight, 
and will behave in the obvious way. It is invalid to follow the Evening, NonPeak, and Night keywords 
with a time range. 

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



L.SYS (5) UNIX Programmer's Manual L.SYS(5) 

The grade subfield is optional; if present, it is composed of a 'I' (slash) and single character denoting the 
grade of the connection, from 0 to 9, A to Z, or a to z. This specifies that only requests of grade grade or 
better will be transferred during this time. (The grade of a request or job is specified when it is queued by 
uucp or um:.) By convention, mail is sent at grade C, news is sent at graded, and uucp copies are sent at 
grade n. Unfortunately, some sites do not follow these conventions, so it is not 100% reliable. 

The retry_time subfield is optional; it must be preceded by a ';' (semicolon) and specifies the time, in 
minutes, before a failed connection may be tried again. (This restriction is in addition to any constraints 
imposed by the rest of the Time field.) By default, the retry time starts at 10 minutes and gradually 
increases at each failure, until after 26 tries uucico gives up completely (MAX RETRIES). If the retry time 
is too small, uucico may run into MAX RETRIES too soon. 

Caller is the type of device used: 

ACU Automatic call unit or auto-dialing modem such as the Hayes Smartmodem 1200 or Novation 
''Smart Cat''. See L-devices for a list of supported modems. 

DIR Direct connect; hardwired line (usually RS-232) to a remote system. 

MICOM 
Micom Terminal Switch. 

PAD X.25 PAD connection. 

PCP GTE Telenet PC Pursuit See L-devices for configuration details. 

SYTEK Sytek high-speed dedicated modem port connection. 

TCP Berkeley TCP/IP or 3Com UNET connection. These are mutually exclusive. TCP ports do not 
need entries in L-devices since all the necessary information is contained in L.sys. If several 
alternate ports or network connections should be tried, use multiple L.sys entries. 

Class is usually the speed (baud) of the device, typically 300, 1200, or 2400 for ACU devices and 9600 for 
direct lines. Valid values are device dependent, and are specified in the L-devices file. 

On some devices, the baud may be preceded by a non-numeric prefix. This is used in L-devices to distin­
guish among devices that have identical Caller and baud, but yet are distinctly different For example, 1200 
could refer to all Bell 212-compatible modems, V1200 to Racal-Vadic modems, and C1200 to CCITT 
modems, all at 1200 baud. 

On TCP connections, Class is the port number (an integer number) or a port name from !etc/services that is 
used to make the connection. For standard Berkeley TCP/IP, UUCP normally uses port number 540. 

Device!P hone _Number varies based on the Caller field For ACU devices, this is the phone number to 
dial. The number may include: digits 0 through 9; #and • for dialing those symbols on tone telephone 
lines;· (hyphen) to pause for a moment, typically two to four seconds;= (equal sign) to wait for a second 
dial tone (implemented as a pause on many modems). Other characters are modem dependent; generally 
standard telephone punctuation characters (such as the slash and parentheses) are ignored, although uucico 
does not guarantee this. 

The phone number can be preceded by an alphabetic string; the string is indexed and converted through the 
L-dialcodes(5) file. 

For DIR devices, the Device/Phone Number field contains the name of the device in !dev that is used to 
make the connection. There must be a corresponding line in L-devices with identical Caller, Class, and 
Device fields. 

For TCP and other network devices, Device/Phone _Number holds the true network name of the remote 
system, which may be different from its UUCP name (although one would hope not). 

Expect and Send refer to an arbitrarily long set of strings that alternately specify what to expect and what to 
send to login to the remote system once a physical connection has been established. A complete set of 
expect/send strings is referred to as an expect/send script. The same syntax is used in the L-devices file to 

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



L.SYS(5) UNIX Programmer's Manual L.SYS(5) 

interact with the dialer prior to making a connection; there it is referred to as a chat script. The complete 
format for one expect/send pair is: 

expect-timeout-send-expect-timeout send 

Expect and Send are character strings. Expect is compared against incoming text from the remote host; 
send is sent back when expect is matched. By default, the send is followed by a '\r' (carriage return). If the 
expect string is not matched within timeout seconds (default 45), then it is assumed that the match failed. 
The 'expect-send-expect' notation provides a limited loop mechanism; if the first expect string fails to 
match, then the send string between the hyphens is transmitted, and uucico waits for the second expect 
string. This can be repeated indefinitely. When the last expect string fails, uucico hangs up and logs that the 
connection failed. 

The timeout can (optionally) be specified by appending the parameter ,_nn' to the expect string, when nn is 
the timeout time in seconds. 

Backslash escapes that may be imbedded in the expect or send strings include: 

\b Generate a 3/10 second BREAK. 
\bn Where n is a single-digit number; 

generate an n/10 second BREAK. 
\c Suppress the \r at the end of a send string. 
\d Delay; pause for 1 second. (Send only.) 
\r Carriage Return. 
\s Space. 
\n Newline. 
\xxx Where xu is an octal constant; 

denotes the corresponding ASCIT character. 

As a special case, an empty pair of double-quotes "" in the expect string is interpreted as "expect noth­
ing''; that is, transmit the send string regardless of what is received. Empty double-quotes in the send string 
cause a lone '\r' (carriage return) to be sent. 

One of the following keywords may be substituted for the send string: 

BREAK Generate a 3/10 second BREAK 
BREAKn Generate an n/10 second BREAK 
CR Send a Carriage Return (same as ""). 
EOT Send an End-Of-Transmission character, ASCII \004. 

NL 
PAUSE 
PAUSEn 
P ODD 
PONE 
P EVEN 
P ZERO 

Note that this will cause most hosts to hang up. 
Send a Newline. 
Pause for 3 seconds. 
Pause for n seconds. 
Use odd parity on future send strings. 
Use parity one on future send strings. 
Use even parity on future send strings. (Default) 
Use parity zero on future send strings. 

Finally, if the expect string consists of the keyword ABORT, then the string following is used to arm an 
~bort trap. If that string is subsequently received any time prior to the completion of the entire expect/send 
script, then uucico will abort, just as if the script had timed out. This is useful for trapping error messages 
from port selectors or front-end processors such as ''Host Unavailable'' or ''System is Down.'' 

For example: 

"" "" ogin:--ogin: nuucp ssword: ufeedme 

This is executed as, ''When the remote system answers, expect nothing. Send a carriage return. Expect the 
remote to transmit the string 'ogin:'. If it doesn't within 45 seconds, send another carriage return. When it 
finally does, send it the string 'nuucp'. Then expect the string 'ssword:'; when that is received, send 

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 3 



L.SYS(S) UNIX Programmer's Manual L.SYS(S) 

FILES 

'ufeedme' .'' 

/usr/lib/uucp/L.sys 
/usr/lib/uucp/UU AID SIL.sys L.sys example 

SEE ALSO 

BUGS 

uucp(lC), uux(lC), L-devices(S), services(S), uucico(8C) 

"ABORT" in the send/expect script is expressed "backwards," that is, it should be written " expect 
ABORT'' but instead it is'' ABORT expect''. 

Several of the backslash escapes in the send/expect strings are confusing and/or different from those used 
by AT&T and Honey-Danber UUCP. For example, '\b' requests a BREAK, while practically everywhere 
else '\b' means backspace. '\t' for tab and '\f for formfeed are not implemented. '\s' is a kludge; it would 
be more sensible to be able to delimit strings with quotation marks. 

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 4 



USERFILE ( 5) UNIX Programmer's Manual USERFILE ( 5) 

NAME 
USERFILE - UUCP pathname permissions file 

DESCRIPTION 

FILES 

The USERFILE file specifies the file system directory trees that are accessible to local users and to remote 
systems via UUCP. 

Each line in USERFILE is of the form: 

[loginname],[system] [ c] pathname [pathname] [pathname] 

The first two items are separated by a comma; any number of spaces or tabs may separate the remaining 
items. Lines beginning with a '#' character are comments. A trailing '\' indicates that the next line is a 
continuation of the current line. 

Lo ginname is a login (from /etc/passwd) on the local machine. 

System is the name of a remote machine, the same name used in L.sys(5). 

c denotes the optional callback field. If a c appears here, a remote machine that calls in will be told that 
callback is requested, and the conversation will be terminated. The local system will then immediately call 
the remote host back. 

Pathname is a pathname prefix that is permissible for this lo gin and/or system. 

When uucico(SC) runs in master role or uucp(lC) or uux(lC) are run by local users, the permitted path­
names are those on the first line with a loginname that matches the name of the user who executed the com­
mand. If no such line exists, then the first line with a null (missing) loginname field is used. (Beware: 
uucico is often run by the superuser or the UUCP administrator through cron(8).) 

When uucico runs in slave role, the permitted pathnames are those on the first line with a system field that 
matches the hostname of the remote machine. If no such line exists, then the first line with a null (missing) 
system field is used. 

Uuxqt(8) works differently; it knows neither a login name nor a hostname. It accepts the pathnames on the 
first line that has a null system field (This is the same line that is used by uucico when it cannot match the 
remote machine's hostname.) 

A line with both lo ginname and system null, for example 

,/usr/spooVuucppublic 

can be used to conveniently specify the paths for both "no match" cases if lines earlier in USERFILE did 
not define them. (This differs from older Berkeley and all USG versions, where each case must be indivi­
dually specified. If neither case is defined earlier, a "null" line only defines the "unknown login" case.) 

To correctly process loginname on systems that assign several logins per UID, the following strategy is 
used to determine the current loginname: 

1) If the process is attached to a terminal, a login entry exists in /etc/utmp, and the UID for the utmp 
name matches the current real UID, then lo ginname is set to the utmp name. 

2) If the USER environment variable is defined and the UID for this name matches the current real 
UID, then loginname is set to the name in USER. 

3) If both of the above fail, call getpwuid(3) to fetch the first name in /etc/passwd that matches the 
real UID. 

4) If all of the above fail, the utility aborts. 

/usr/lib/uucp/USERFILE 
/usr/lib/uucp/UUAIDS/USERFILE USERFILE example 

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 



USERFILE ( 5) UNIX Programmer's Manual USERFILE ( 5) 

SEE ALSO 

NOTES 

uucp(lC), uux(lC), L.cmds(5), L.sys(5), uucico(8C), uuxqt(8C) 

The UUCP utilities (uucico, uucp, uux, and uuxqt) always have access to the UUCP spool files in 
/usr/spool/uucp, regardless of pathnames in USERFILE. 

If uucp is listed in L.cmds(5), then a remote system will execute uucp on the local system with the USER­
FILE privileges for its login, not its hostname. 

Uucico freely switches between master and slave roles during the course of a conversation, regardless of 
the role it was started with. This affects how USERFILE is interpreted. 

WARNING 

BUGS 

USERFILE restricts access only on strings that the UUCP utilities identify as being pathnames. If the 
wrong holes are left in other UUCP control files (notably L.cmds), it can be easy for an intruder to open 
files anywhere in the file system. Arguments to uucp(lC) are safe, since it assumes all of its non-option 
arguments are files. Uux(lC) cannot make such assumptions; hence, it is more dangerous. 

The UUCP Implementation Description explicitly states that all remote login names must be listed in 
USERFILE. This requirement is not enforced by Berkeley UUCP, although it is by USG UUCP. 

Early versions of 4.2BSD uuxqt(8) erroneously check UUCP spool files against the USERFILE pathname 
permissions. Hence, on these systems it is necessary to specify /usr/spool/uucp as a valid path on the 
USERFILE line used by uuxqt. Otherwise, all uux( 1 C) requests are rejected with a "PERMISSION 
DENIED" message. 

April 24, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



A.OUT(5) UNIX Programmer's Manual A.OUT(5) 

NAME 
a.out - assembler and link editor output 

SYNOPSIS 
#include <a.out.h> 

DESCRIPTION 
A.out is the output file of the assembler as(l) and the link editor ld(l). Both programs make a.out execut­
able if there are no errors and no unresolved external references. Layout information as given in the 
include file for the IS68K is: 

!• 
* Header prepended to each a.out file. 
•! 

struct exec { 

}; 

long a_ magic; /*magic number•/ 
unsigned a_text; /•size of text segment•/ 
unsigned a_ data; /* size of initialized data •/ 
unsigned a_ bss; I* size of uninitialized data •/ 
unsigned a_syms; !•size of symbol table•/ 
unsigned a_entry; /•entry point•/ 
unsigned a_trsize; !• size of text relocation •I 
unsigned a_drsize; /*size of data relocation•/ 

#define OMAGIC0407 
#define NMAGIC0410 
#define ZMAGIC0413 

I* old impure format •/ 
I* read-only text */ 
I* demand load format */ 

!• 
* Macros which take exec structures as arguments and tell whether 
* the file has a reasonable magic number or offsets to text I symbols I strings. 
•! 

#define N_BADMAG(x) \ 
(((x).a_magic)!=OMAGIC && ((x).a_magic)!=NMAGIC && ((x).a_magic)!=ZMAGIC) 

#define N _ OLOOFF(x) \ 
((x).a_magic)==ZMAGIC? 0: sizeof (struct exec)) 

#define N _ TXTOFF(x) \ 
(sizeof (struct exec)) 

#define N _ SYMOFF(x) \ 
(N OLDOFF(x) + (x).a text+(x).a data+ (x).a trsize+(x).a drsize) 

#define N _STROFF(x) \ - - - -
(N_SYMOFF(x) + (x).a_syms) 

The file has five sections: a header, the program text and data, relocation information, a symbol table, and 
a string table (in that order). The last three may be omitted if the program was loaded with the -s option of 
Id or if the symbols and relocation have been removed by ~trip(l). 

In the header the sizes of each section are given in bytes. 

When an a.out file is executed, three logical segments are set up: the text segment, the data segment (with 
uninitialized data, which starts off as all 0, following initialized), and a stack. The text segment begins at 0 
in the core image; the header is not loaded for OMAGIC files. If the magic number in the header is 
OMAGIC (0407), it indicates that the text segment is not to be write-protected and shared, so the data seg­
ment is immediately contiguous with the text segment. This is the oldest kind of executable program and is 
rarely used. 

15 July 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



A.OUT(S) UNIX Programmer's Manual A.0UT(5) 

If the magic number is NMAGIC (0410) or ZMAGIC (0413), the data segment begins at the first 0 mod 
4096 byte boundary following the text segment, and the text segment is not writable by the program; if 
other processes are executing the same file, they will share the text segment 

For ZMAGIC format, the text segment begins at the 0 page boundary in the a.out file. In this case the text 
and data sizes must both be multiples of 4096 bytes, and the pages of the file will be brought into the run­
ning image as needed, and not pre-loaded as with the other formats. This is especially suitable for very 
large programs and is the default format produced by ld(l). Note that the exec header occupies the first 
Ox20 bytes of the text segment. This means that the actual beginning of the text is offset Ox20 bytes from 
the 0 byte page boundary, and that the size of the text segment includes the size of the exec header. 

The stack will occupy the highest possible locations in the core image, growing downwards from Ox7ffffe 
for VME-68K10-based systems, Oxfffeffe for VME-68K20-based systems, and Ox3ffffe for Q-bus systems. 
The stack is automatically extended as required. Because environment information is pushed onto the 
stack at start-up time, these addresses will vary slightly. The data segment is only extended as requested by 
brk(2). 

After the header in the file follow the text, data, text relocation data relocation, symbol table and string 
table, in that order. The text begins after the header for all formats. The N _ TXTOFF macro returns this 
absolute file position when given the name of an exec structure as argument. The data segment is contigu­
ous with the text and immediately followed by the text relocation and then the data relocation information. 
The symbol table follows all this; its position is computed by the N_SYMOFF macro. Finally, the string 
table immediately follows the symbol table at a position which can be gotten easily using N _ STROFF. The 
first four bytes of the string table are not used for string storage, instead they contain the size of the string 
table. This size INCLUDES the four bytes; therefore the minimum string table size is 4. 

The layout of a symbol table entry and the principal flag values that distinguish symbol types are given in 
the include file as follows: 

'* * Format of a symbol table entry. 
*I 

struct nlist { 
union { 

char 
long 

} n_un; 

•n_name; /*for use when in-core•/ 
n _strx; /* index into file string table•/ 

unsigned char n_type; /*type ftag, i.e. N_TEXT etc; see below•/ 
char n _other; 
short n _ desc; I• see <stab.h> •I 
unsigned n _value; /* value of this symbol (or offset) •/ 

}; 
#define n hash n desc I* used internally by Id*/ 

I* 
*Simple values for n_type. 
*I 

#define N _ UNDF 
#define N ABS 
#define N TEXT 
#define N DATA 
#define N BSS 
#define N COMM 
#define N FN 

#define N EXT 

15 July 1986 

OxO 
Ox2 
Ox4 
Ox6 
Ox8 
Ox12 
Oxlf 

01 

I* undefined•/ 
I* absolute •/ 
I• text•/ 
I* data*/ 
I• bss •I 
I* common (internal to Id) */ 
/* file name symbol •/ 

I* external bit, or' ed in •I 

INTEGRATED SOLUTIONS 4.3 BSD 2 



A.OUT(5) UNIX Programmer's Manual A.OUT(5) 

#define N TYPE Oxle I* mask for all the type bits*/ 

/* 
* Other permanent symbol table entries have some of the N _ST AB bits set. 
*These are given in <stab.h> 
*/ 

#define N STAB OxeO /* if any of these bits set, do not discard •I 

I* 
* Format for namelist values. 
*/ 

#define N_FORMAT "%08x" 

In the a.out file a symbol's n _ un.n _ strx field gives an index into the string table. A n _ strx value of 0 indi­
cates that no name is associated with a particular symbol table entry. The field n _ un.n _name can be used 
to refer to the symbol name only if the program sets this up using n_strx and appropriate data from the 
string table. 

If a symbol's type is undefined external, and the value field is non-zero, the symbol is interpreted by the 
loader Id as the name of a common region whose size is indicated by the value of the symbol. 

The value of a byte in the text or data which is not a portion of a reference to an undefined external symbol 
is exactly that value which will appear in memory when the file is executed. If a byte in the text or data 
involves a reference to an undefined external symbol, as indicated by the relocation information, then the 
value stored in the file is an offset from the associated external symbol. When the file is processed by the 
link editor and the external symbol becomes defined, the value of the symbol will be added to the bytes in 
the file. 

If relocation information is present, it amounts to eight bytes per relocatable datum, as in the following 
structure: 

I• 
* Format of a relocation datum. 
*/ 

struct relocation_ info { 
int r_address; /*address which is relocated•/ 
unsigned r _symbolnum:24, /* local symbol ordinal •/ 

r _pcrel: 1, /* was relocated pc relative already •/ 
r_Iength:2, /* O=byte, l=word, 2=long •I 
r _extern: 1, /* does not include value of sym referenced •/ 
:4; I* nothing, yet •/ 

}; 

There is no relocation information if a_trsize+a_drsize==O. If r_extern is 0, then r_symbolnum is actually 
a n _type for the relocation (i.e. N _TEXT meaning relative to segment text origin.) 

SEE ALSO 

BUGS 

adb(l), as(l), ld(l), nm(l), dbx(l), stab(S), strip(l) 

Not having the size of the string table in the header is a loss, but expanding the header size would have 
meant stripped executable file incompatibility. This problem could not currently be avoided. 

15 July 1986 INTEGRATED SOLUTIONS 4.3 BSD 3 



ACCT(S) 

NAME 
acct - execution accounting file 

SYNOPSIS 
#include <sys/acct.h> 

DESCRIPTION 

UNIX Programmer's Manual ACCT(5) 

The acct(2) system call arranges for entries to be made in an accounting file for each process that ter­
minates. The accounting file is a sequence of entries whose layout, as defined by the include file is: 

I• accth 6.1 83/07/29•/ 

!• 
•Accounting structures; 
• these use a comp_ t type which is a 3 bits base 8 
*exponent, 13 bit fraction "floating point'' number. 
•I 

typedef u _short comp_ t; 

struct acct 
{ 

char ac_comm[lO]; 
comp_t ac_utime; 
comp_t ac_stime; 
comp_t ac_etime; 
time_t ac_btime; 
short ac_uid; 
short ac_gid; 
short ac_mem; 
comp_t ac_io; 
dev t ac_tty; 
char ac_flag; 

}; 

#define AFORK 0001 
#define ASU 0002 
#define ACOMP AT 0004 
#define ACORE 0010 
#define AXSIG 0020 

#if def KERNEL 
struct acct 
struct inode 
#endif 

acctbuf; 
•acctp; 

I• Accounting command name •/ 
I* Accounting user time •I 
I* Accounting system time•/ 
I* Accounting elapsed time•/ 
/* Beginning time •/ 
/*Accounting user ID•/ 
/*Accounting group ID•/ 
!• average memory usage */ 
/*number of disk IO blocks•/ 
/*control typewriter*/ 
I* Accounting flag •/ 

I* has executed fork, but no exec*/ 
I• useEl super-user privileges•/ 
I* used compatibility mode•/ 
/* dumped core •/ 
I• killed by a signal•/ 

If the process was created by an execve(2), the first 10 characters of the filename appear in ac _comm. The 
accounting flag contains bits indicating whether execve(2) was ever accomplished, and whether the process 
ever had super-user privileges. 

SEE ALSO 
acct(2), execve(2), sa(8) 

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



ALIASES(5) UNIX Programmer's Manual ALIASES(5) 

NAME 
aliases - aliases file for sendmail 

SYNOPSIS 
/usr/Iib/mail/aliases 

DESCRIPTION 
This file describes user id aliases used by /usr/lib/sendmail. It is formatted as a series of lines of the form 

name: name_l, name2, name_3, ... 
The name is the name to alias, and the name_ n are the aliases for that name. Lines beginning with white 
space are continuation lines. Lines beginning with ' # ' are comments. 

Aliasing occurs only on local names. Loops can not occur, since no message will be sent to any person 
more than once. · 

After aliasing has been done, local and valid recipients who have a ''.forward'' file in their home directory 
have messages forwarded to the list of users defined in that file. 

This is only the raw data file; the actual aliasing information is placed into a binary format in the files 
/usr/lib/mail/aliases.dir and /usr/lib/mail/aliases.pag using the program newaliases(l). A newaliases com­
mand should be executed each time the aliases file is changed for the change to take effect. 

SEE ALSO 

BUGS 

newaliases(l), dbm(3X), sendmail(8) 
SENDMAa Installation and Operation Guide. 
SENDMAa An Internetwork Mail Router. 

Because of restrictions in dbm(3X) a single alias cannot contain more than about 1000 bytes of informa­
tion. You can get longer aliases by "chaining"; that is, make the last name in the alias be a dummy name 
which is a continuation alias. 

October 27, 1987 INTEGRATED SOLUTIONS 4.3 BSD 1 



AR(5) UNIX Programmer's Manual AR(5) 

NAME 
ar - archive (library) file format 

SYNOPSIS 
#include <ar .h> 

DESCRIPTION 
The archive command ar combines several files into one. Archives are used mainly as libraries to be 
searched by the link-editor Id. 

A file produced by ar has a magic string at the start, followed by the constituent files, each preceded by a 
file header. The magic number and header layout as described in the include file are: 

/* ar.h 4.183/05/03•/ 

#define ARMAG "karch>\n" 
#define SARMAG 8 

#define ARFMAG "'\n" 

struct ar _ hdr { 
char 
char 
char 
char 
char 
char 
char 

}; 

ar _name[16]; 
ar_date[12]; 
ar_uid[6]; 
ar_gid[6]; 
ar _ mode[8]; 
ar _size[lO]; 
ar _ fmag[2]; 

The name is a blank-padded string. The ar Jmag field contains ARFMAG to help verify the presence of a 
header. The other fields are left-adjusted, blank-padded numbers. They are decimal except for ar _mode, 
which is octal. The date is the modification date of the file at the time of its insertion into the archive. 

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if necessary. Neverthe­
less the size given reflects the actual size of the file exclusive of padding. 

There is no provision for empty areas in an archive file. 

The encoding of the header is portable across machines. If an archive contains printable files, the archive 
itself is printable. 

SEE ALSO 

BUGS 

ar(l), ld(l), nm(l) 

File names lose trailing blanks. Most software dealing with archives takes even an included blank as a 
name terminator. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



CORE(5) UNIX Programmer's Manual CORE(5) 

NAME 
core - format of memory image file 

SYNOPSIS 
#include <sys/param.h> 

DESCRIPTION 
The UNIX System writes out a memory image of a terminated process when any of various errors occur. 
See sigvec(2) for the list of reasons; the most common are memory violations, illegal instructions, bus 
errors, and user-generated quit signals. The memory image is called 'core' and is written in the process's 
working directory (provided it can be; normal access controls apply). 

The maximum size of a core file is limited by setrlimit(2). Fil~s which would be larger than the limit are 
not created. 

The core file consists of the u. area, whose size (in pages) is defined by the UPAGES manifest in the 
<.SJS!param.h> file. The u. area starts with a user structure as given in <sysluser.h>. The remainder of the 
core file consists first of the data pages and then the stack pages of the process image. The amount of data 
space image in the core file is given (in pages) by the variable u _ dsize in the u. area. The amount of stack 
image in the core file is given (in pages) by the variable u _ssize in the u. area The size of a "page" is 
given by the constantNBPG (also from <.SJSlparam.h>). 

In general the debugger adb( 1) is sufficient to deal with core images. 

SEE ALSO 
adb(l), dbx(l), sigvec(2), setrlimit(2) 

March 9, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



DBX(5) UNIX Programmer's Manual DBX(5) 

NAME 
dbx - dbx symbol table information 

DESCRIPTION 
The compiler symbol information generated for dbx(l) uses the same structure as described in stab(5), 
with additional type and scope information appended to a symbol's name. The assembler directive used to 
describe symbol information has the following format: 

stabs ''string'' ,kind,0,size, value 

String contains the name, source language type, and scope of the symbol, kind specifies the memory class 
(e.g., external, static, parameter, local, register), and size specifies the byte size of the object, if relevant. 
The third field (0 above) is unused. For a global variable or a type, value is unused; for a local variable or 
parameter, it is the offset from the frame pointer, for a register variable, it is the associated register number. 

The different kinds of stab entries are interpreted by dbx as follows: 

N GSYM The symbol is a global variable (e.g., .comm variable). The variable's address can be found 
from the corresponding ld(l) symbol entry, thus the value field for N_GSYM symbols is 
ignored. For example, a global variable "x" will have both an N _ GSYM entry and an ld(l) 
entry (e.g., N _BSS + N _EXT). See a.out(5) for details about these other entries. of 

N FUN The symbol is a procedure or function. The size field contains the line number of the entry 
point. The value field contains the address of the entry point (in the text segment). 

N _ STSYM The symbol is a statically allocated variable for which an initial value has been specified. The 
value field contains the address of the variable (in the data segment). 

N _ LCSYM The symbol is statically allocated, but not initialized. 

N RSYM The symbol is a register variable whose value is kept in the register denoted by the value field. 

N PSYM The symbol is a parameter whose value is pushed on the stack before the call. The value field 
contains the offset from the argument base pointer (on the VAX, the ap register). 

N_LSYM The symbol is a local variable whose value is stored in the most recently defined procedure's 
stack frame. The value is the (often negative) offset from the frame pointer (on the VAX, the 
fp register). 

N_PC,N_MOD2 
The symbol defines separate compilation information for pre-linking checking for Berkeley 
Pascal and DEC Modula-2 programs respectively. For Pascal, the value field contains the line 
number that the symbol is defined on. The value field is not used for Modula-2. 

Most of the source level information about a symbol is stored in the string field of the stab entry. Since 
strings are kept in a separate string table in the a.out file, they can be arbitrarily long. Thus there are no 
restrictions on the kind or length of information in the string field, and it was not necessary to modify the 
assembler or loader when extending or modifying the format of this information. 

Below is a grammar describing the syntax of the symbol string. Except in the case of a constant whose 
value is a string, there are no blanks in a symbol string. 

NAME: 
INTEGER: 
REAL: 
STRING: 
BSTRING: 

String: 

January 12, 1986 

[a-zA-Z _] [a-zA-Z _ 0-9]* 
[-] [0-9] [0-9] * 
[ +-][0-9] *(.[0-9][0-9] *D([eEJ([ +-]1)[0-9][0-9]•1) 
".*" 
·* 

INTEGRATED SOLUTIONS 4.3 BSD 1 



DBX(5) UNIX Programmer's Manual 

NAME':' Class 
':'Class 

Class: 
'c' '=' Constant';' 
Variable 
Procedure 
Parameter 
NarnedType 
'X' Exportlnfo-- export or import information (for N _ MOD2 only) 

Constant 
'i' INTEGER 
'r' REAL 
'c' OrdV alue 
'b' OrdValue 
's' STRING 
'e' Typeld ',' OrdValue 
'S' Typeld ',' NumElements ',' NumBits ',' BSTRING 

OrdValue: 
INTEGER 

NumElements: 
INTEGER 

NumBits: 
INTEGER 

Variable: 
Typeld 
'r' Typeld 
'S' Typeld 
'V' Typeld 
'G' Typeld 

Procedure: 
Proc 

-- local variable of type Typeld 
-- register variable of type Typeld 
-- module variable of type Typeld (static global in C) 
-- own variable of type Typeld (static local in C) 
-- global variable of type Typeld 

-- top level procedure 
Proc ','NAME',' NAME -- local to first NAME, 

Proc: 
'P' 
'Q' 
'I' 
'F' Typeld 
'f Typeld 
'J' Typeld 

Parameter: 
'p' Typeld 
'v' Typeld 

January 12, 1986 

-- second NAME is corresponding Id symbol 

-- global procedure 
-- local procedure (static in C) 
-- internal procedure (different calling sequence) 
-- function returning type Typeld 
-- local function 
-- internal function 

-- value parameter of type Typeld 
-- reference parameter of type Typeld 

INTEGRATED SOLUTIONS 4.3 BSD 

DBX(5) 

2 



DBX(S) UNIX Programmer's Manual 

NamedType: 
't' Typeld 
'T' Typeld 

-- type name for type Typeld 
-- C structure tag name for struct Typeid 

Type Id: 
INTEGER -- Unique (per compilation) number of type 
INTEGER'=' TypeDef -- Definition of type number 
INTEGER '=' TypeAttrs TypeDef 

-- Type attributes are extra information associated with a type, 
-- such as alignment constraints or pointer checking semantics. 
-- Dbx interprets some of these, but will ignore rather than complain 
-- about any it does not recognize. Therefore this is a way to add 
-- extra information for pre-linking checking. 

TypeAttrs: 
'@' TypeAttrList ';' 

TypeAttrList: 
TypeAttrList ',' TypeAttr 
TypeAttr 

TypeAttr: 
'a' INTEGER -- align boundary 
's' INTEGER -- size in bits 
'p' INTEGER -- pointer class (e.g., checking) 
BSTRING -- something else 

TypeDef: 
INTEGER 
Subrange 
Array 
Record 
'e' EnumList ';' 
'*' Typeld 
'S' Typeld 
'd' Typeld 
Procedure Type 

-- enumeration 
-- pointer to Typeld 
-- set of Typeld 
-- file of Typeld 

. 'i' NAME':' NAME';' -- imported type ModuleName:Name 
'o' NAME';' -- opaque type 
'i' NAME':' NAME',' Typeld ';' 
'o' NAME',' Typeld ';' 

Subrange: 
'r' Typeld ';' INTEGER ';' INTEGER 

Array: 
'a' Typeld ';' Typeld 
'A' Typeld 
'D' INTEGER ',' Typeld 
'E' INTEGER ',' Typeld 

January 12, 1986 

-- array [Typeld] of Typeld 
-- open array of Typeld 
-- N-dim. dynamic array 
-- N-dim. subarray 

INTEGRATED SOLUTIONS 4.3 BSD 

DBX(5) 

3 



DBX(5) UNIX Programmer's Manual 

Procedure Type: 
'r Typeld ';' -- C function type 
'r Typeld ',' NumPararns ';' TParamList ';' 
'p' NurnParams ';' TParamList ';' 

NurnParams: 
INTEGER 

Record: 
's' ByteSize Field.List';' 
'u' ByteSize Field.List';' 

ByteSize: 
INTEGER 

Field.List: 
Field 
Field.List Field 

Field: 

-- structure/record 
-- C union 

NAME':' Typeld ',' BitOffset ',' BitSize ';' 

BitSize: 
INTEGER 

BitOffset: 
INTEGER 

EnurnList: 
En um 
EnurnList Enum 

En um: 
NAME':' OrdValue ',' 

ParamList 
Par am 
PararnList Param 

Param: 
NAME':' Typeld ',' PassBy ';' 

PassBy: 
INTEGER 

TParam: 
Typeld ',' PassBy ';' 

TParamList : 
TParam 
TParamList TParam 

January 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 

DBX(5) 

4 



DBX(5) 

Export 
INTEGER Exportlnfo 

Exportlnfo: 
't' Typeld 

UNIX Programmer's Manual 

'f Typeld ',' NumParams ';' ParamList ';' 
'p' NumParams ';' ParamList ';' 
'v' Typeld 
'c' '=' Constant 

DBX(5) 

A '?' indicates that the symbol information is continued in the next stab entry. This directive can only 
occur where a';' would otherwise separate the fields of a record or constants in an enumeration. It is use­
ful when the number of elements in one of these lists is large. 

SEE ALSO 
dbx(l), stab(5), a.out(5) 

January 12, 1986 INTEGRATED SOLUTIONS 4.3 BSD 5 



DIR(5) 

NAME 
dir - format of directories 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/dir.h> 

DESCRIPTION 

UNIX Programmer's Manual DIR(5) 

A directory behaves exactly like an ordinary file, save that no user may write into a directory. The fact that 
a file is a directory is indicated by a bit in the flag word of its i-node entry; see fs(5). The structure of a 
directory entry as given in the include file is: 

May 15, 1985 

I* 
* A directory consists of some number of blocks of DIRBLKSIZ 
* bytes, where DIRBLKSIZ is chosen such that it can be transferred 
*to disk in a single atomic operation (e.g. 512 bytes on most machines). 

* 
* Each DIRBLKSIZ byte block contains some number of directory entry 
* structures, which are of variable length. Each directory entry has 
* a struct direct at the front of it, containing its inode number, 
* the length of the entry, and the length of the name contained in 
* the entry. These are followed by the name padded to a 4 byte boundary 
* with null bytes. All names are guaranteed null terminated. 
* The maximum length of a name in a directory is MAXNAMLEN. 

* 
* The macro DIRSIZ(dp) gives the amount of space required to represent 
* a directory entry. Free space in a directory is represented by 
*entries which have dp->d_reclen > DIRSIZ(dp). All DIRBLKSIZ bytes 
*in a directory block are claimed by the directory entries. This 
* usually results in the last entry in a directory having a large 
* dp->d_reclen. When entries are deleted from a directory, the 
* space is returned to the previous entry in the same directory 
* block by increasing its dp->d _reclen. If the first entry of 
* a directory block is free, then its dp->d_ino is set to 0. 
* Entries other than the first in a directory do not normally have 
* dp->d _ino set to 0. 
*I 
#if def KERNEL 
#define DIRBLKSIZ DEV_ BSIZE 
#else 
#define DIRBLKSIZ 512 
#endif 

#define MAXNAMLEN 255 

I* 
* The DIRSIZ macro gives the minimum record length which will hold 
* the directory entry. This requires the amount of space in struct direct 
* without the d _name field, plus enough space for the name with a terminating 
*null byte (dp->d_namlen+l), rounded up to a4 byte boundary. 

*I 
#undef DIRSIZ 
#define DIRSIZ( dp) \ 

((sizeof (struct direct) - (MAXNAMLEN+l)) + (((dp)->d_namlen+l + 3) &- 3)) 

INTEGRATED SOLUTIONS 4.3 BSD 1 



DIR(5) UNIX Programmer's Manual 

struct direct { 
u_long d_ino; 
short d_reclen; 
short d _ namlen; 
char d_name[MAXNAMLEN + 1]; 
I* typically shorter */ 

}; 

struct _ dirdesc { 
int 
long 
long 
char 

}; 

dd_fd; 
dd_loc; 
dd_size; 
dd _ buf[DIRBLKSIZ]; 

DIR(5) 

By convention, the first two entries in each directory are for '.' and ' .. '. The first is an entry for the direc­
tory itself. The second is for the parent directory. The meaning of ' .. ' is modified for the root directory of 
the master file system("/"), where' .. ' has the same meaning as'.'. 

SEE ALSO 
fs(5) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



DISKTAB(5) 

NAME 
disktab - disk description file 

SYNOPSIS 
#include <disktab.h> 

DESCRIPTION 

UNIX Programmer's Manual DISKTAB(5) 

Disktab is a simple date base which describes disk geometries and disk partition characteristics. The for­
mat is patterned after the termcap(5) terminal data base. Entries in disktab consist of a number of':' 
separated fields. The first entry for each disk gives the names which are known for the disk, separated by 
'I' characters. The last name given should be a long name fully identifying the disk. 

The following list indicates the normal values stored for each disk entry. 

Name Type Description 
ns num Number of sectors per track 
nt num Number of tracks per cylinder 
nc num Total number of cylinders on the disk 
ba num Block size for partition 'a' (bytes) 
bd num Block size for partition 'd' (bytes) 
be num Block size for partition 'e' (bytes) 
bf num Block size for partition 'f (bytes) 
bg num Block size for partition 'g' (bytes) 
bh num Block size for partition 'h' (bytes) 
fa num Fragment size for partition 'a' (bytes) 
fd num Fragment size for partition 'd' (bytes) 
fe num Fragment size for partition 'e' (bytes) 
ff num Fragment size for partition 'r (bytes) 
fg num Fragment size for partition 'g' (bytes) 
flt num Fragment size for partition 'h' (bytes) 
pa num Size of partition 'a' in sectors 
pb num Size of partition 'b' in sectors 
pc num Size of partition 'c' in sectors 
pd num Size of partition 'd' in sectors 
pe num Size of partition 'e' in sectors 
pf num Size of partition 'r in sectors 
pg num Size of partition 'g' in sectors 
ph num Size of partition 'h' in sectors 
se num Sector size in bytes 
sf bool supports bad144-style bad sector forwarding 
so bool partition offsets in sectors 
ty str Type of disk (e.g. removable, winchester) 

Disktab entries may be automatically generated with the diskpart program. 

FILES 
I etc! disktab 

SEE ALSO 
newfs(8), diskpart(8), getdiskbyname(3) 

BUGS 
This file shouldn't exist, the information should be stored on each disk pack. 

May 17, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



DUMP(S) UNIX Programmer's Manual 

NAME 
dump, dumpdates - incremental dump format 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/inode.h> 
#include <protocols/dumprestore.h> 

DESCRIPTION 
Tapes used by dump and restore(8) contain: 

a header record 
two groups of bit map records 
a group of records describing directories 
a group of records describing files 

DUMP(S) 

The format of the header record and of the first record of each description as given in the include file 
<protocolsldumprestore.h> is: 

#define NTREC 
#define MLEN 16 
#define MSIZ 4096 

#define TS TAPE 
#define TS_ INODE 
#define TS BITS 
#define TS ADDR 
#define TS END 
#define TS_ CLRI 
#define MAGIC 
#define CHECKSUM 

struct spcl { 
int 
time t 
time t 
int 
daddr t 
ino t 
int 
int 
struct 
int 
char 

} spcl; 

struct idates { 
char 
char 
time t 

}; 

10 

1 
2 
3 
4 
5 
6 
(int) 60011 
(int) 84446 

c_type; 
c_date; 
c_ddate; 
c_volume; 
c_tapea; 
c_inumber; 
c_magic; 
c _checksum; 
din ode 
c_count; 
c _addr[BSIZE]; 

id_name[16]; 
id_incno; 
id_ddate; 

c_dinode; 

#define DUMPOU'IFMT "%-16s %c %s" I* for printf */ 

#define DUMPINFMT "%16s %c %[\n]\n" 
/* name, incno, ctime( date) */ 
I* inverse for scanf */ 

June 18, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



DUMP(5) UNIX Programmer's Manual DUMP(5) 

FILES 

NTREC is the number of 1024 byte records in a physical tape block. :Ml.EN is the number of bits in a bit 
map word. MSIZ is the number of bit map words. 

The TS_ entries are used in the c _type field to indicate what sort of header this is. The types and their 
meanings are as follows: 

TS TAPE Tape volume label 
TS INODE A file or directory follows. The c _di111Jde field is a copy of the disk inode and contains bits 

TS BITS 
TS ADDR 
TS END 
TS CLRI 

telling what sort of file this is. 
A bit map follows. This bit map has a one bit for each inode that was dumped. 
A subrecord of a file description. See c _ addr below. 
End of tape record 
A bit map follows. This bit map contains a zero bit for all inodes that were empty on the 
file system when dumped. 

MAGIC All header records have this number in c _magic. 
CHECKSUM Header records checksum to this value. 

The fields of the header structure are as follows: 

c _type The type of the header. 
c date The date the dump was taken. 
c ddate The date the file system was dumped from. 
c _volume The current volume number of the dump. 
c_tapea The current number of this (1024-byte) record 
c inumber The number of the inode being dumped if this is of type TS IN ODE. 
c _magic This contains the value MAGIC above, truncated as needed-:-
c _checksum This contains whatever value is needed to make the record sum to CHECKSUM. 
c dinode This is a copy of the inode as it appears on the file system; see fs(S). 
c _count The count of characters in c addr. 
c addr An array of characters describing the blocks of the dumped file. A character is zero if the 

block associated with that character was not present on the file system, otherwise the char­
acter is non-zero. If the block was not present on the file system, no block was dumped; 
the block will be restored as a hole in the file. If there is not sufficient space in this record 
to describe all of the blocks in a file, TS ADDR records will be scattered through the file, 
each one picking up where the last left off. 

Each volume except the last ends with a tapemark (read as an end of file). The last volume ends with a 
TS_ END record and then the tapemark. 

The structure idates describes an entry in the file /etc/dumpdates where dump history is kept. The fields of 
the structure are: 

id name 
id_incno 
id ddate 

The dumped filesystem is 'ldevlid _nam'. 
The level number of the dump tape; see dump(8). 
The date of the incremental dump in system format see types(5). 

/etc/dumpdates 

SEE ALSO 
dump(8), restore(8), fs(5), types(5) 

June 18, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



FS(S) UNIX Programmer's Manual FS(5) 

NAME 
fs, inode - format of file system volume 

SYNOPSIS 
#include <sys/types.h> 
#include <sys/fs.h> 
#include <sys/inode.h> 

DESCRIPTION 
Every file system storage volume (disk, nine-track tape, for instance) has a common format for certain vital 
information. Every such volume is divided into a certain number of blocks. The block size is a parameter 
of the file system. Sectors beginning at BBLOCK and continuing for BBSIZE are used to contain primary 
and secondary bootstrapping programs. 

The actual file system begins at sector SBLOCK with the super block that is of size SBSIZE. The layout of 
the super block as defined by the include file <SJS/fs.h> is: 

#define FS_MAGIC Ox011954 
struct fs { 

struct fs •fs _link; /* linked list of file systems •I 
struct fs •fs_rlink; I• used for incore super blocks*/ 
daddr_t fs_sblkno; /* addr of super-block in filesys •/ 
daddr_t fs_cblkno; I• offset of cyl-block in filesys •/ 
daddr _ t fs _iblkno; /* offset of inode-blocks in filesys •/ 
daddr_t fs_dblkno; I• offset of first data after cg•/ 
long fs_cgoffset; /*cylinder group offset in cylinder*/ 
long fs_cgmask; /*used to calc mod fs ntrak •/ 
time_t fs_time; /*last time written•/ 
long fs _size; /* number of blocks in fs •I 
long fs_dsize; /*number of data blocks in fs •I 
long fs_ncg; /*number of cylinder groups*/ 
long fs _ bsize; /* size of basic blocks in fs */ 
long fs _fsize; /* size of frag blocks in fs •/ 
long fs _ frag; /* number of frags in a block in fs •/ 

/* these are configuration parameters •/ 
long fs_minfree; /*minimum percentage of free blocks*/ 
long fs _rotdelay; /* num of ms for optimal next block */ 
long fs_rps; /*disk revolutions per second*/ 

I* these fields can be computed from the others•/ 
long fs _ bmask; /• "blkoff" calc of blk offsets •I 
long fs_fmask; I• "fragoff' calc of frag offsets •I 
long fs _ bshift; /* ''lblkno'' calc of logical blkno •/ 
long fs_fshift; /* "numfrags" calc number of frags */ 

I* these are configuration parameters•/ 
long fs _ maxcontig; /* max number of contiguous blks •/ 
long fs_maxbpg; /*max number of blks per cyl group*/ 

I* these fields can be computed from the others*/ 
long fs _ fragshift; /• block to frag shift •/ 
long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant*/ 
long fs_sbsize; /*actual size of super block*/ 
long fs_csmask; I• csum block offset*/ 
long fs_csshift; /* csum block number*/ 
long fs_nindir; /*value ofNINDIR •/ 
long fs_inopb; /*value ofINOPB •I 
long fs_nspf; /*value ofNSPF •/ 

May 16, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



FS(5) UNIX Programmer's Manual FS(5) 

long fs_optim; /*optimization preference, see below*/ 
long fs_sparecon[5]; /*reserved for future constants*/ 

I* sizes determined by number of cylinder groups and their sizes *I 
daddr_t fs_csaddr; I• blk addr of cyl grp summary area*/ 
long fs _ cssize; I• size of cyl grp summary area •/ 
long fs_cgsize; /*cylinder group size•/ 

I* these fields should be derived from the hardware•/ 
long fs_ntrak; /*tracks per cylinder*/ 
long fs _ nsect; I• sectors per track •/ 
long fs_spc; /*sectors per cylinder*/ 

I* this comes from the disk driver partitioning */ 
long fs_ncyl; I* cylinders in file system *I 

I* these fields can be computed from the others *I 
long fs_cpg; I* cylinders per group *I 
long fs_ipg; /* inodes per group*/ 
long fs_fpg; /*blocks per group* fs_frag •I 

I* this data must be re-computed after crashes*/ 
struct csum fs _ cstotal; /* cylinder summary information */ 

I* these fields are cleared at mount time•/ 
char fs_fmod; I* super block modified flag*/ 
char fs_clean; /*file system is clean flag*/ 
char fs _ronly; /• mounted read-only flag */ 
char fs_flags; I* currently unused flag*/ 
char fs_fsmnt[MAXMNTLEN]; I* name mounted on*/ 

I* these fields retain the current block allocation info*/ 
long fs_cgrotor; I* last cg searched*/ 
struct csum •fs_csp[MAXCSBUFS];/* list of fs_cs info buffers*/ 
long fs_cpc; I* cyl per cycle in postbl *I 
short fs_postbl[MAXCPG][NRPOS];/* head of blocks for each rotation*/ 
long fs_magic; /*magic number*/ 
u_char fs_rotbl[l]; /*list of blocks for each rotation*/ 

I* actually longer */ 
}; 

Each disk drive contains some number of file systems. A file system consists of a number of cylinder 
groups. Each cylinder group has inodes and data. 

A file system is described by its super-block, which in tum describes the cylinder groups. The super-block 
is critical data and is replicated in each cylinder group to protect against catastrophic loss. This is done at 
file system creation time and the critical super-block data does not change, so the copies need not be refer­
enced further unless disaster strikes. 

Addresses stored in inodes are capable of addressing fragments of 'blocks'. File system blocks of at most 
size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of which is addressable; these pieces 
may be DEV_ BSIZE, or some multiple of a DEV_ BSIZE unit 

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last data block 
of a small file is allocated as only as many fragments of a large block as are necessary. The file system for­
mat retains only a single pointer to such a fragment, which is a piece of a single large block that has been 
divided. The size of such a fragment is determinable from information in the inode, using the "blksize(fs, 
ip, lbn)'' macro. 

The file system records space availability at the fragment level; to determine block availability, aligned 
fragments are examined. 

May 16, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



FS(S) UNIX Programmer's Manual FS(S) 

The root inode is the root of the file system. Inode 0 can't be used for normal purposes and historically bad 
blocks were linked to inode 1, thus the root inode is 2 (inode 1 is no longer used for this purpose, however 
numerous dump tapes make this assumption, so we are stuck with it). The lost+found directory is given 
the next available inode when it is initially created by mkfs. 

fs _ mi.nfree gives the minimum acceptable percentage of file system blocks that may be free. If the freelist 
drops below this level only the super-user may continue to allocate blocks. This may be set to 0 if no 
reserve of free blocks is deemed necessary, however severe performance degradations will be observed if 
the file system is run at greater than 90% full; thus the default value offs mi.nfree is 10%. 

Empirically the best trade-off between block fragmentation and overall disk utilization at a loading of 90% 
comes with a fragmentation of 4, thus the default fragment size is a fourth of the block size. 

fs _ optim specifies whether the file system should try to minimize the time spent allocating blocks, or if it 
should attempt to minimize the space fragmentation on the disk. If the value offs minfree (see above) is 
less than 10%, then the file system defaults to optimizing for space to avoid running out of full sized 
blocks. If the value of minfree is greater than or equal to 10%, fragmentation is unlikely to be problemati­
cal, and the file system defaults to optimizing for time. 

Cylinder group related limi.ts: Each cylinder keeps track of the availability of blocks at different rotational 
positions, so that sequential blocks can be laid out with minimum rotational latency. NRPOS is the number 
of rotational positions which are distinguished. With NRPOS 8 the resolution of the summary information 
is 2ms for a typical 3600 rpm drive. 

f s _rotdelay gives the minimum number of milliseconds to initiate another disk transfer on the same 
cylinder. It is used in determining the rotationally optimal layout for disk blocks within a file; the default 
value for fs _rotdelay is 2ms. 

Each file system has a statically allocated number of inodes. An inode is allocated for each NBPI bytes of 
disk space. The inode allocation strategy is extremely conservative. 

MAXIPG bounds the number of inodes per cylinder group, and is needed only to keep the structure simpler 
by having the only a single variable size element (the free bit map). 

N.B.: MAXIPG must be a multiple of INOPB(fs). 

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is possible to create files of 
size 2A32 with only two levels of indirection. MINBSIZE must be big enough to hold a cylinder group 
block, thus changes to (struct cg) must keep its size within MINBSIZE. MAXCPG is limited only to 
dimension an array in (struct cg); it can be made larger as long. as that structure's size remains within the 
bounds dictated by MINBSIZE. Note that super blocks are never more than size SBSIZE. 

The path name on which the file system is mounted is maintained infs Jsmnt. MAXMNTLEN defines the 
amount of space allocated in the super block for this name. The limit on the amount of summary informa­
tion per file system is defined by MAXCSBUFS. It is currently parameterized for a maximum of two mil­
lion cylinders. 

Per cylinder group information is summarized in blocks allocated from the first cylinder group's data 
blocks. These blocks are read in from/s _ csaddr (size fs _ cssize) in addition to the super block. 

N.B.: sizeof (struct csum) must be a power of two in order for the "fs_cs" macro to work. 

Super block for a file system: MAXBPC bounds the size of the rotational layout tables and is limited by 
the fact that the super block is of size SBSIZE. The size of these tables is inversely proportional to the 
block size of the file system. The size of the tables is increased when sector sizes are not powers of two, as 
this increases the number of cylinders included before the rotational pattern repeats ( fs _ cpc ). The size of 
the rotational layout tables is derived from the number of bytes remaining in (struct fs). 

MAXB.PG bounds the number of blocks of data per cylinder group, and is limited by the fact that cylinder 
groups are at most one block. The size of the free block table is derived from the size of blocks and the 
number of remaining bytes in the cylinder group structure (struct cg). 

May 16, 1986 INTEGRATED SOLUTIONS 4.3 BSD 3 



FS(5) UNIX Programmer's Manual FS(5) 

/node: The inode is the focus of all file activity in the UNIX file system. There is a unique inode allocated 
for each active file, each current directory, each mounted-on file, text file, and the root An inode is 
'named' by its device/i-number pair. For further information, see the include file <syslinode.h>. 

May 16, 1986 INTEGRATED SOLUTIONS 4.3 BSD 4 



FSTAB ( 5) UNIX Programmer's Manual FSTAB (5) 

NAME 
f stab - static information about filesystems 

SYNOPSIS 
#include <mntent.h> 

DESCRIPTION 
The file /etc/fstab describes the filesystems and swapping partitions used by the local machine. The system 
administrator can modify it with a text editor. It is read by commands that mount, unmount, dump, restore, 
and check the consistency of filesystems; also by the system when providing swap space. The file consists 
of a number of lines of the form: 

fsname dir type opts freq passno 

For example: 

/dev/xyOa I 4.3 rw,noquota 1 2 

The entries from this file are accessed using the routines in getmntent(3 ), which returns a structure of the 
following form: 

struct mntent { 

}; 

char *rnnt_fsname; 
char *rnnt_dir; 
char *rnnt_ type; 
char *rnnt_opts; 
int rnnt_freq; 
int rnnt_passno; 

I* filesystem name *I 
I* filesystem path prefix*/ 
/* 4.3, nfs, swap, or ignore*/ 
/* rw, ro, noquota, quota, hard, soft *I 
/*dump frequency, in days*/ 
I* pass number on parallel fsck */ 

Fields are separated by white space; a '#' as the first non-white character indicates a comment. 

The mnt _ dir fields is the full path name of the directory to be mounted on. 

The mnt_type field determines how the mntJsname and mnt_opts fields will be interpreted. Here is a list of 
the filesystem types currently supported, and the way each of them interprets these fields: 

4.3 mnt Jsname Must be a block special device. 

nfs mnt Jsname the path on the server of the directory to be served. 

swap mnt Jsname must be a block special device swap partition. 

If the mnt _type is specified as ignore then the entry is ignored. This is useful to show disk partitions not 
currently used. 

The mnt_opts field contains a list of comma-separated option words. Some mnt_opts are valid for all 
filesystem types, while others apply to a specific type only: 

October 26, 1987 

mnt_opts valid on all file systems (the default is rw,suid): 

rw 

ro 

suid 

nosuid 

noauto 

read/write. 

read-only. 

set-uid execution allowed. 

set-uid execution not allowed. 

mount -a disabled. 

mnt_opts specific to 4.3 file systems (the default is noquota). 

quota usage limits enforced. 

INTEGRATED SOLUTIONS 4.3 BSD 1 



FSTAB(5) UNIX Programmer's Manual FSTAB (5) 

FILES 

noquota usage limits not enforced. 

mnt _opts specific to nfs (NFS) file systems (the defaults are: 

fg,retry=l,timeo=7,retrans=4,port=NFS _PORT ,hard 

with defaults for rsize and wsize set by the kernel): 

bg if the first attempt fails, retry in the background. 

f g 

in tr 

retry=n 

rsize=n 

wsize=n 

timeo=n 

retrans=n 

port=n 

soft 

hard 

retry in foreground. 

"C interruption of a mount awaiting server response allowed. 

set number of failure retries to n. 

set read buff er size to n bytes. 

set write buffer size ton bytes. 

set NFS timeout to n tenths of a second. 

set number of NFS retransmissions to n. 

set server IP port number to n. 

return error if server doesn't respond. 

retry request until server responds. 

The bg option causes mount to run in the background if the server's mountd(8) does not respond. 
mount attempts each request retry=n times before giving up. Once the filesystem is mounted, 
each nfs request made in the kernel waits timeo=n tenths of a second for a response. If no 
response arrives, the time-out is multiplied by 2 and the request is retransmitted. When retrans=n 
retransmissions have been sent with no reply a soft mounted filesystem returns an error on the 
request and a hard mounted filesystem retries the request. The number of bytes in a read or write 
request can be set with the rsize and wsize options. 

The field mntJreq indicates how often each partition should be dumped by the dump(8) command (and 
triggers that command's w option, which determines what filesystems should be dumped). Most systems 
set the mntJreq field to l, indicating that filesystems are dumped each day. 

The final field, mnt yassno, is used by the consistency checking program fsck(8) to allow overlapped 
checking of filesystems during a reboot. All filesystems with mnt _passno of 1 are checked first simultane­
ously, then all filesystems with mnt_passno of 2, and so on. It is usual to make the mnt_passno of the root 
filesystem have the value 1, and then check one filesystem on each available disk drive in each subsequent 
pass, until all filesystem partitions are checked. 

The /etc/fstab file is read only by programs and never written; the system administrator must maintain it 
manually. The order of records in /etc/fstab is important because fsck, mount, and umount process the 
file sequentially; filesystems must appear after filesystems they are mounted within. 

/etc/fstab 

SEE ALSO 
getmntent(3), fsck(8), mount(8), quotacheck(8), quotaon(8) 

October 26, 1987 INTEGRATED SOLUTIONS 4.3 BSD 2 



GETIYTAB ( 5) UNIX Programmer's Manual GETIYTAB(5) 

NAME 
gettytab - terminal configuration data base 

SYNOPSIS 
I etc/ gettytab 

DESCRIPTION 
Gettytab is a simplified version of the termcap(S) data base used to describe terminal lines. The initial 
terminal login process getty(8) accesses the gettytab file each time it starts, allowing simpler 
reconfiguration of terminal characteristics. Each entry in the data base is used to describe one class ofter­
minals. 

There is a default terminal class, default, that is used to set global defaults for all other classes. (That is, 
the default entry is read, then the entry for the class required is used to override particular settings.) 

CAPABILITIES 
Refer to termcap(S) for a description of the file layout The default column below lists defaults obtained if 
there is no entry in the table obtained, nor one in the special default table. 

Name Type Default Description 
ap bool false terminal uses any parity 
bd num 0 backspace delay 
bk str 0377 alternate end of line character (input break) 
cb bool false use crt backspace mode 
cd num 0 carriage-return delay 
ce bool false use crt erase algorithm 
ck bool false use crt kill algorithm 
cl str NULL screen clear sequence 
co bool false console - add \n after login prompt 
ds str "Y delayed suspend character 
dx bool false setDECCILQ 
ec bool false leave echo OFF 
ep bool false terminal uses even parity 
er str "? erase character 
et str "D end of text (EOF} character 
ev str NULL initial enviroment 
fO num unused tty mode flags to write messages 
fl num unused tty mode flags to read login name 
f2 num unused tty mode flags to leave terminal as 
f d num 0 form-feed (vertical motion) delay 
fl str "O output flush character 
he bool false do NOT hangup line on last close 
he str NULL hostname editing string 
hn str hostname hostname 
ht bool false terminal has real tabs 
ig bool false ignore garbage characters in login name 
im str NULL initial (banner) message 
in str "C interrupt character 
is num unused input speed 
kl str "U kill character 
le bool false terminal has lower case 
Im str login: login prompt 
In str "V ''literal next'' character 
lo str /bin/login program to exec when name obtained 
nd num 0 newline (line-feed) delay 

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



GEITYTAB(5) UNIX Programmer's Manual GEITYTAB ( 5) 

nl bool false terminal has (or might have) a newline character 
nx str default next table (for auto speed selection) 
op bool false terminal uses odd parity 
OS num unused output speed 
pc str \0 pad character 
pe bool false use printer (hard copy) erase algorithm 
pf num 0 delay between first prompt and following flush (seconds) 
ps bool false line connected to a MICOM port selector 
qu str "\ quit character 
rp str "R line retype character 
rw bool false do NOT use raw for input, use cbreak 
sp num unused line speed (input and output) 
SU str "Z suspend character 
tc str none table continuation 
to num 0 timeout (seconds) 
tt str NULL terminal type (for enviroment) 
ub bool false do unbuffered output (of prompts etc) 
UC bool false terminal is known upper case only 
we str "W word erase character 
xc bool false do NOT echo control chars as "X 
xf str "S XOFF (stop output) character 
xn str "Q XON (start output) character 

If no line speed is specified, speed will not be altered from that which prevails when getty is entered. 
Specifying an input or output speed will override line speed for stated direction pnly. 

Terminal modes to be used for the output of the message, for input of the login name, and to leave the ter­
minal set as upon completion, are derived from the boolean flags specified. If the derivation should prove 
inadequate, any (or all) of these three may be overriden with one of the fO, fl, or f2 numeric specifications, 
which can be used to specify (usually in octal, with a leading '0') the exact values of the flags. Local (new 
tty) flags are set in the top 16 bits of this (32 bit) value. 

Should getty receive a null character (presumed to indicate a line break) it will restart using the table indi­
cated by the nx entry. If there is none, it will re-use its original table. 

Delays are specified in milliseconds, the nearest possible delay available in the tty driver will be used. 
Should greater certainty be desired, delays with values 0, 1, 2, and 3 are interpreted as choosing that partic­
ular delay algorithm from the driver. 

The cl screen clear string may be preceded by a (decimal) number of milliseconds of delay required (a la 
termcap). This delay is simulated by repeated use of the pad character pc. 

The initial message, and login message, im and Im may include the character sequence %h or %t to obtain 
the hostname or tty name respectively. (%%obtains a single'%' character.) The hostname is normally 
obtained from the system, but may be set by the hn table entry. In either case it may be edited with he. 
The he string is a sequence of characters, each character that is neither'@' nor'#' is copied into the final 
hostname. A '@' in the he string, causes one character from the real hostname to be copied to the final 
hostname. A '#' in the he string, causes the next character of the :real hostname to be skipped. Surplus '@' 
and'#' characters are ignored. 

When getty execs the login process, given in the lo string (usually "/bin/login"), it will have set the enviro­
ment to include the terminal type, as indicated by the tt string (if it exists). The ev string, can be used to 
enter additional data into the environment It is a list of comma separated strings, each of which will 
presumably be of the form name=value. 

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



GETIYTAB(5) UNIX Programmer's Manual GETIYTAB ( 5) 

If a non-zero timeout is specified, with to, then getty will exit within the indicated number of seconds, 
either having received a login name and passed control to login, or having received an alarm signal, and 
exited. This may be useful to hangup dial in lines. 

Output from getty is even parity unless op is specified. Op may be specified with ap to allow any parity on 
input, but generate odd parity output. Note: this only applies while getty is being run, terminal driver limi­
tations prevent a more complete implementation. Getty does not check parity of input characters in RAW 
mode. 

SEE ALSO 

. BUGS 

login(l), termcap(5), getty(8) . 

The special characters (erase, kill, etc.) are reset to system defaults by login(l). In all cases, '#' or '"H' 
typed in a login name will be treated as an erase character, and'@' will be treated as a kill character. 

The delay stuff is a real crock. Apart form its general lack of flexibility, some of the delay algorithms are 
not implemented. The terminal driver should support sane delay settings. 

The he capability is stupid. 

Termcap format is horrid. Something more rational should have been chosen. 

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 3 



GROUP(5) UNIX Programmer's Manual GROUP(5) 

NAME 
group - group file 

SYNOPSIS 
/etc/group 

DESCRIPTION 
Group contains for each group the following information: 

• groupname 
• encrypted password 
• numerical group ID 
• a comma separated list of all users allowed in the group 

This is an ASCII file. The fields are separated by colons. Each group is separated from the next by a new­
line. If the password field is null, no password is demanded 

This file resides in the /etc directory. Because of the encrypted passwords, it can and does have general 
read permission and can be used, for example, to map numerical group ID' s to names. 

A group file can have a line beginning with a plus ( + ), which means to incorporate entries from the yellow 
pages. There are two styles of + entries: All by itself, + means to insert the entire contents of the yellow 
pages group file at that point; +name means to insert the entty (if any) for name from the yellow pages at 
that point If a + entry has a non-null password or group member field, the contents of that field will 
overide what is contained in the yellow pages. The numerical group ID field cannot be overridden. 

EXAMPLE 

FILES 

+myproject:::bill, steve 
+: 

If these entries appear at the end of a group file, then the group myproject will have members bill andsteve, 
and the password and group ID of the yellow pages entry for the group myproject. All the groups listed in 
the yellow pages will be pulled in and placed after the entty for myproject. 

/etc/group 
/etc/yp/group 

SEE ALSO 
setgroups(2), initgroups(3), crypt(3), passwd(l), passwd(5) 

BUGS 
The passwd(l) command won't change group passwords. 

1 February 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



HOSTS(5) UNIX Programmer's Manual HOSTS(5) 

NAME 
hosts - host name data base 

DESCRIPTION 

FILES 

The hosts file contains information regarding the known hosts on the network. For each host a single line 
should be present with the following information: 

official host name 
Internet address 
aliases 

Items are separated by any number of blanks and/or tab characters. A ''#'' indicates the beginning of a 
comment; characters up to the end of the line are not interpreted by routines which search the file. . 

When using the name server named(8), this file provides a backup when the name server is not running. 
For the name server, it is suggested that only a few addresses be included in this file. These include 
address for the local intetfaces that iCconfig(8C) needs at boot time and a few machines on the local net­
work. 

This file may be created from the official host data base maintained at the Network Information Control 
Center (NIC), though local changes may be required to bring it up to date regarding unofficial aliases 
and/or unknown hosts. As the data base maintained at NIC is incomplete, use of the name server is recom­
mend for sites on the DARPA Internet. 

Network addresses are specified in the conventional "." notation using the inet _ addr() routine from the 
Internet address manipulation library, inet(3N). Host names may contain any printable character other 
than a field delimiter, newline, or comment character. 

/etc/hosts 

SEE ALSO 
gethostbyname(3N), ifconfig(8C), named(8) 
Name Server Operations Guide for BIND 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



MAP3270(5) UNIX Programmer's Manual MAP3270(5) 

NAME 
map3270 - database for mapping ascii keystrokes into IBM 3270 keys 

SYNOPSIS 
/etc/map3270 

DESCRIPTION 
When emulating IBM-syle 3270 terminals under UNIX (see tn3270(1}}, a mapping must be performed 
between sequences of keys hit on a user's (ascii) keyboard, and the keys that are available on a 3270. For 
example, a 3270 has a key labeled EEOF which erases the contents of the current field from the location of 
the cursor to the end. In order to accomplish this function, the terminal user and a program emulating a 
3270 must agree on what keys will be typed to invoke the EEOF function. 

The requirements for these sequences are: 

FORMAT 

1.) that the first character of the sequence be outside of the 
standard ascii printable characters; 

2.) that no one sequence be an initial part of another (although 
sequences may share initial parts). 

The file consists of entries for various terminals. The first part of an entry lists the names of the terminals 
which use that entry. These names should be the same as in /etc/termcap (see termcap(5)); note that often 
the terminals from various termcap entries will all use the same map3270 entry; for example, both 925 and 
925vb (for 925 with visual bells) would probably use the same map3270 entry. After the names, separated 
by vertical bars ('I'), comes a left brace('{'); the definitions; and, finally, a right brace ('}'). 

The definitions consist of a reserved keyword (see list below) which identifies the 3270 function (extended 
as defined below), followed by an equal sign('='), followed by the various ways to generate this particular 
function, followed by a semi-colon(';'). Each way is a sequence of strings of printable ascii characters 
enclosed inside single quotes('''); various ways (options) are separated by vertical bars ('I'). 

Inside the single quotes, a few characters are special. A caret ('"') specifies that the next character is the 
"control" character of whatever the character is. So, '"a' represents control-a, ie: hexadecimal 1 (note that 
'"A' would generate the same code). To generate rubout, one enters '"?'. To represent a control character 
inside a file requires using the caret to represent a control sequence; simply typing control-A will not work. 
Note: the ctrl-caret sequence (to generate a hexadecimal lE) is represented as '""' (not '"\"'). 

In addition to the caret, a letter may be preceeded by a backslash('\'). Since this has little effect for most 
characters, its use is usually not recommended. For the case of a single quote (' '' ), the backslash prevents 
that single quote from terminating the string. To have the backslash be part of the string, it is necessary to 
place two backslashes ('\ \') in the file. 

In addition, the following characters are special: 

'\E' means an escape character; 
'\n' means newline; 
'\t' means tab; 
'\r' means carriage return. 

It is not necessary for each character in a string to be enclosed within single quotes. '\E\E\E' means three 
escape characters. 

Comments, which may appear anywhere on a line, begin with a hash mark('#'), and terminate at the end 
of that line. However, comments cannot begin inside a quoted string; a hash mark inside a quoted string 
has no special meaning. 

January 11, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



MAP3270(5) UNIX Programmer's Manual MAP3270(5) 

3270 KEYS SUPPORTED 
The following is the list of 3270 key names that are supported in this file. Note that some of the keys don't 
really exist on a 3270. In particular, the developers of this file have relied extensively on the work at the 
Yale University Computer Center with their 3270 emulator which runs in an IBM Series/ 1 front end. The 
following list corresponds closely to the functions that the developers of the Yale code offer in their pro­
duct. 

In the following list, the starred ("*") functions are not supported by tn3270(1). An unsupported 
function will cause tn3270(1) to send a bell sequence to the user's terminal. 

3270 Key Name Functional description 

(*)LPRT 
DP 
FM 

(*)CURSEL 
RESHOW 
EINP 
EEOF 
DELETE 
INSRT 
TAB 
BTAB 
COL TAB 
CO LB AK 
INDENT 
UNDENT 
NL 
HOME 
UP 
DOWN 
RIGHT 
LEFT 
SETI AB 
DELTAB 
SETMRG 
SETIIOM 
CLRTAB 

(*)APLON 
(*)APLOFF 
(*)APLEND 
(*)PCON 
(*)PCOFF 

DISC 
(*)INIT 
(*)ALTK 

FLINP 
ERASE 
WERASE 
FERA SE 
SYNCH 
RESET 

January 11, 1986 

local print 
dup character 
field mark character 

cursor select 
redisplay the screen 

erase input 
erase end of field 

delete character 
toggle insert mode 

field tab 
field back tab 

column tab 
column back tab 

indent one tab stop 
undent one tab stop 

new line 
home the cursor 

up cursor 
down cursor 

right cursor 
left cursor 

set a column tab 
delete a colurnntab 
set left margin 
set home position 
clear all column tabs 
aplon 
apl off 
treat input as ascii 

xon/xoff on 
xon/xoff off 

disconnect (suspend) 
new terminal type 

alternate keyboard dvorak 
flush input 
erase last character 

erase last word 
erase field 
we are in synch with the user 

reset key-unlock keyboard 

INTEGRATED SOLUTIONS 4.3 BSD 2 



MAP3270(5) UNIX Programmer's Manual 

MASTER_ RESET reset, unlock and redisplay 
( * )XOFF please hold output 
( * )XON please give me output 

ESCAPE enter telnet command mode 
WORDT AB tab to beginning of next word 
WORDBACKT AB tab to beginning of current/last word 
WORDEND tab to end of current/next word 
FIELDEND tab to last non-blank of current/next 

PAI 
PA2 
PA3 

CLEAR 
TREQ 
ENTER 

PFKl 
PFK2 
etc. 
PFK36 

A SAMPLE ENTRY 

unprotected (writable) field 

program attention 1 
program attention 2 
program attention 3 

local clear of the 3270 screen 
test request 
enter key 

program function key 1 
program function key 2 

etc. 
program function key 36 

MAP3270(5) 

The following entry is used by tn3270(1) when unable to locate a reasonable version in the user's environ­
ment and in /etc/map3270: 

name{ # actual name comes from TERM variable 
clear= '"z'; 
flinp = '"x'; 
enter = '"m'; 
delete= '"d' I '"?'; #note that'"?' is delete (rubout) 
synch= '"r'; 
reshow = '"v'; 
eeof = '"e'; 
tab= '"i'; 
btab = '"b'; 
nl= '"n'; 
left= '"h'; 
right= '"I'; 
up= '"k'; 
down= '"j'; 
einp = '"w'; 
reset= '"t'; 
xoff = '"s'; 
xon = '"q'; 
escape= '"c'; 
ferase = '"u'; 
insrt = 'E '; 
# program attention keys 
pal = '"pl'; pa2 = '"p2'; pa3 = '"p3'; 
# program function keys 
pfkl ='El'; ptk2 = 'E2'; pfk3 = 'E3'; pfk4 = 'E4'; 

January 11, 1986 INTEGRATED SOLUTIONS 4.3 BSD 3 



MAP3270(5) UNIX Programmer's Manual 

pfk5 = 'E5'; pfk6 = 'E6'; ptk7 = 'E7'; pfk8 ='ES'; 
pfk9 = 'E9'; pfklO = 'EO'; ptkll = 'E-'; pfk12 = 'E='; 
pfk13 = 'E!'; pfk:14 = 'E@'; pfk15 = 'E#'; pfk16 = 'E$'; 
pfk17 = 'E%'; pfk:18 = 'E'; pfk19 = 'E&'; pfk20 = 'E•'; 
pfk21 = 'E('; pfk22 = 'E)'; pfk23 = 'E_'; pfk24 = 'E+'; 
} 

IBM 3270 KEY DEFINITONS FOR AN ABOVE DEFINITION 

MAP3270(5) 

The charts below show the proper keys to emulate each 3270 function when using the default key mapping 
supplied with tn3270(1) and mset(l). 

Command Keys IBM 3270.Key Default Key(s) 
Enter RETURN 
Clear control-z 

Cursor Movement Keys 
New Line 

Tab 
Back Tab 
Cursor Left 
Cursor Right 
Cursor Up 
Cursor Down 

Edit Control Keys 
Delete Char 

EraseEOF 
Erase Input 
Insert Mode 
End Insert 

Program Function Keys 
PFl 
PF2 

PFlO 
PFll 
PF12 
PF13 
PF14 

PF24 
Program Attention Keys 

PAI 
PA2 
PA3 

Local Control Keys 

control-n or 
Home 

control-i 
control-b 
control-h 
control-I 
control-k 

control-j or 
LINEFEED 

control-d or 
RUB 

control-e 
control-w 
ESC Space 

ESC Space 

ESC 1 
ESC2 

ESCO 
ESC­
ESC= 
ESC! 
ESC@ 

ESC+ 

control-p 1 
control-p 2 
control-p 3 

Reset After Error control-r 
Purge Input Buffer control-x 
Keyboard Unlock control-t 
Redisplay Screen control-v 

Other Keys 
Erase current field control-u 

January 11, 1986 INTEGRATED SOLUTIONS 4.3 BSD 4 



MAP3270(5) UNIX Programmer's Manual MAP3270(5) 

FILES 
/etc/map3270 

SEE ALSO 

BUGS 

tn3270(1), mset(l), Yale ASCII Terminal Communication System II Program Description/Operator's 
Manual (IBM SB30-1911) 

Tn3270 doesn't yet understand how to process all the functions available in map3270; when such a func­
tion is requested tn3270 will beep at you. 

The definition of "word" (for "word delete", "word tab") should be a run-time option. Currently it is 
defined as the kernel tty driver defines it (strings of non-blanks); more than one person would rather use the 
"vi" definition (strings of specials, strings of alphanumeric). 

January 11, 1986 INTEGRATED SOLUTIONS 4.3 BSD 5 



MTAB(S) UNIX Programmer's Manual 

NAME 
/etc/mtab - mounted file system table 

SYNOPSIS 
#include <mntent.h> 

DESCRIPTION 

MTAB(5) 

Mtab resides in the /et£ directory, and contains a table of filesystems currently mounted by the mount 
command. Umount removes entries from this file. 

The file contains a line of information for each mounted filesystem, structurally identical to the contents of 
/etc/fstab , described in fstab(5). There are a number of lines of the form: 

FILES 

· · fsname dir type opts freq passno 

For example, a line might read: 

/dev/xyOa I 4.3 rw,noquota 1 2 

The file is accessed by programs using getmntent(3), and by the system administrator using a text editor. 

/etc/mtab 

SEE ALSO 
getmntent(3}, fstab(5}, mount(8) 

28 August 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



NETWORKS ( 5) UNIX Programmer's Manual NETWORKS ( 5) 

NAME 
networks - network name data base 

DESCRIPTION 

FILES 

The networks file contains information regarding the known networks which comprise the DARPA Inter­
net. For each network a single line should be present with the following information: 

official network name 
network number 
aliases 

Items are separated by any number of blanks and/or tab characters. A ''#'' indicates the beginning of a 
comment; characters up to the end of the line are not interpreted by routines which search the file. This file 
is normally created from the official network data base maintained at the Network Information Control 
Center (NIC), though local changes may be required to bring it up to date regarding unofficial aliases 
and/or unknown networks. 

Network number may be specified in the conventional ''.'' notation using the inet network() routine from 
the Internet address manipulation library, inet(3N). Network names may contain - any printable character 
other than a field delimiter, newline, or comment character. 

/etc/networks 

SEE ALSO 
getnetent(3N) 

BUGS 
A name server should be used instead of a static file. 

May 6, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



PASSWD(S) UNIX Programmer's Manual PASSWD(S) 

NAME 
passwd - password file 

SYNOPSIS 
/etc/passwd 

DESCRIPTION 
The passwd file contains for each user the following information: 

name 
User's login name - contains no upper case characters and must not be greater than eight charac­
ters long. 

password 
encrypted password 

numerical user ID 
This is the user's ID in the system and it must be unique. 

numerical group ID 
This is the number of the group that the user belongs to. 

user's real name 
In some versions of UNIX, this field also contains the user's office, extension, home phone, and so 
on. For historical reasons this field is called the GCOS field. 

initial working directory 
The directory that the user is positioned in when they log in- this is known as the 'home' direc­
tory. 

shell 
program to use as Shell when the user logs in. 

The user's real name field may contain ' & ', meaning insert the login name. 

The password file is an ASCII file. Each field within each user's entry is separated from the next by a 
colon. Each user is separated from the next by a new-line. If the password field is null, no password is 
demanded; if the Shell field is null, /bin/sh is used. 

The passwd file can also have line beginning with a plus ( + ), which means to incorporate entries from the 
yellow pages. There are three styles of+ entries: all by itself,+ means to insert the entire contents of the 
yellow pages password file at that point; +name means to insert the entry (if any) for name from the yellow 
pages at that point; +@name means to insert the entries for all members of the network group name at that 
point. If a+ entry has a non-null password, directory, gecos, or shell field, they will overide what is con­
tained in the yellow pages. The numerical user ID and group ID fields cannot be overridden. 

EXAMPLE 
Here is a sample /etc/passwd file: 

rootq.mJzTnu8icF.:O: lO:God:/:/bin/csh 
tut:6k/7KCFRPNVXg:508: lO:Bill Tuthill:/usr2/tut:/bin/csh 
+john: 
+@documentation:no-login: 
+:::Guest 

In this example, there are specific entries for users root tut, in case the yellow pages are out of order. The 
user will have his password entry in the yellow pages incorporated without change; anyone in the netgroup 
documentation will have their password field disabled, and anyone else will be able to log in with their 
usual password, shell, and home directory, but with a gecos field of Guest. 

1 February 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



PASSWD(5) UNIX Programmer's Manual PASSWD(5) 

The password file resides in the /etc directory. Because of the encrypted passwords, it has general read 
permission and can be used, for example, to map numerical user ID' s to names. 

Appropriate precautions must be taken to lock the /etc/passwd file against simultaneous changes if it is to 
be edited with a text editor; vipw(8) does the necessary locking. 

FILES 
/etc/passwd 

SEE ALSO 
getpwent(3), login(l), crypt(3), passwd(l), group(5), vipw(8), adduser(8) 

1February1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



PHONES(5) UNIX Programmer's Manual PHONES(5) 

NAME 
phones - remote host phone number data base 

DESCRIPTION 

FILES 

The file /etc/phones contains the system-wide private phone numbers for the tip(lC) program. This file is 
normally unreadable, and so may contain privileged information. The format of the file is a series of lines 
of the form: <system-name>[ \t]*<:phone-number>. The system name is one of those defined in the 
remote(5) file and the phone number is constructed from any sequence of characters terminated only by 
"," or the end of the line. The "=" and "*" characters are indicators to the auto call units to pause and 
wait for a second dial tone (when going through an exchange). The"=" is required by the DF02-AC and 
the"*" is required by the BIZCOMP 1030. 

Only one phone number per line is permitted. However, if more than one line in the file contains the same 
system name tip(lC) will attempt to dial each one in turn, until it establishes a connection. 

/etc/phones 

SEE ALSO 
tip(lC), remote(5) 

May 16, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



PLOT(5) UNIX Programmer's Manual PLOT(5) 

NAME 
plot - graphics interface 

DESCRIPTION 
Files of this format are produced by routines described in plot(3X) and plot(3F), and are interpreted for 
various devices by commands described in plot(lG). A graphics file is a stream of plotting instructions. 
Each instruction consists of an ASCII letter usually followed by bytes of binary information. The instruc­
tions are executed in order. A point is designated by four bytes representing the x and y values; each value 
is a signed integer. The last designated point in an I, m, n, a, or p instruction becomes the 'current point' 
for the next insttuction. The a and c insttuctions change the current point in a manner dependent upon the 
specific device. 

Each of the following descriptions begins with the name of the corresponding routine in plot(3X). 

m move: The next four bytes give a new current point 

n cont Draw a line from the current point to the point given by the next four bytes. 

p point Plot the point given by the next four bytes. 

I line: Draw a line from the point given by the next four bytes to the point given by the following four 
bytes. 

t label: Place the following ASCII string so that its first character falls on the current point The string is 
terminated by a newline. 

a arc: The first four bytes give the center, the next four give the starting point, and the last four give the 
end point of a circular arc. The least significant coordinate of the end point is used only to determine 
the quadrant. The arc is drawn counter-clockwise. 

c circle: The first four bytes give the center of the circle, the next two the radius. 

e erase: Start another frame of output. 

f linemod: Take the following string, up to a newline, as the style for drawing further lines. The styles 
are 'dotted,' 'solid,' 'longdashed,' 'shortdashed,' and 'dotdashed.' Effective only inplot4014 and plot 
ver. 

s space: The next four bytes give the lower left corner of the plotting area; the following four give the 
upper right corner. The plot will be magnified or reduced to fit the device as closely as possible. 

SEE ALSO 

Space settings that exactly fill the plotting area with unity scaling appear below for devices supported 
by the filters of plot(lG). The upper limit is just outside the plotting area. In every case the plotting 
area is taken to be square; points outside may be displayable on devices whose face isn't square. 

4013 space(O, 0, 780, 780); 
4014 space(O, 0, 3120, 3120); 
ver space(O, 0, 2048, 2048); 
300, 300s space(O, 0, 4096, 4096); 
450 space(O, 0, 4096, 4096); 

plot(lG), plot(3X), plot(3F), graph(lG) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



PRINTCAP ( 5) UNIX Programmer's Manual PRINTCAP ( 5) 

NAME 
printcap - printer capability data base 

SYNOPSIS 
/etc/printcap 

DESCRIPTION 
Printcap is a simplified version of the termcap(S) data base used to describe line printers. The spooling 
system accesses the printcap file every time it is used, allowing dynamic addition and deletion of printers. 
Each entry in the data base is used to describe one printer. This data base may not be substituted for, as is 
possible for termcap, because it may allow accounting to be bypassed. 

The default printer is normally Ip, though the environment variable PRINTER may be used to override this. 
Each spooling utility supports an option, -Pprinter, to allow explicit naming of a destination printer. 

Refer to the 4.3BSD Line Printer Spooler Manual for a complete discussion on how setup the database for 
a given printer. 

CAPABILITIES 
Refer to termcap(5) for a description of the file layout. 

Name Type Default Description 
af str NULL name of accounting file 
br num none if Ip is a tty, set the baud rate (ioctl call) 
cf str NULL cifplot data filter 
df str NULL tex data filter (DVI format) 
fc num 0 if Ip is a tty, clear flag bits (sgtty.h) 
ff str ''\f'' string to send for a form feed 
fo bool false print a form feed when device is opened 
fs num 0 like 'fc' but set bits 
gf str NULL graph data filter (plot (3X) format) 
hi bool false print the burst header page last 
ic bool false driver supports (non standard) ioctl to indent printout 
if str NULL name of text filter which does accounting 
If str '' /dev/console'' error logging filename 
lo str "lock" name of lock file 
Ip str "/dev/lp" device name to open for output 
mx num 1000 maximum file size (in BUFSIZ blocks), zero = unlimited 
nd str NULL next directory for list of queues (unimplemented) 
nf str NULL ditroff data filter (device independent troff) 
of str NULL name of output filtering program 
pc num 200 price per foot or page in hundredths of cents 
pl num 66 page length (in lines) 
pw num 132 page width (in characters) 
px num 0 page width in pixels (horizontal) 
PY num 0 page length in pixels (vertical) 
rf str NULL filter for printing FORTRAN style text files 
rg str NULL restricted group. Only members of group allowed access 
rm str NULL machine name for remote printer 
rp str "Ip" remote printer name argument 
rs bool false restrict remote users to those with local accounts 
rw bool false open the printer device for reading and writing 
sb bool false short banner (one line only) 
SC bool false suppress multiple copies 
sd str '' /usr/spool/lpd'' spool directory 
sf bool false suppress form feeds 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



PRINTCAP ( 5) UNIX Programmer's Manual PRINTCAP ( 5) 

sh boo I false suppress printing of burst page header 
st str "status" status filename 
tf str NULL troff data filter (cat phototypesetter) 
tr str NULL trailer string to print when queue empties 
vf str NULL raster image filter 
xc num 0 if Ip is a tty, clear local mode bits (tty (4)) 
XS num 0 like 'xc' but set bits 

If the local line printer driver supports indentation, the daemon must understand how to invoke it. 

FILTERS 
The lpd(8) daemon creates a pipeline of filters to process files for various printer types. The filters selected 
depend on the flags passed to lpr(l). The pipeline set up is: 

-p pr I if regular text +pr( 1) 
none if regular text 
-c cf cifplot 
-d df DVI (tex) 
-g gf plot(3) 
-n nf di troff 
-f rf Fortran 
-t tf troff 
-v vf raster image 

The if filter is invoked with arguments: 

if[ -c] -wwidth-llength-iindent-n login-h host acct-file 

The -c flag is passed only if the -I flag (pass control characters literally) is specified to lpr. Width and 
length specify the page width and length (from pw and pl respectively) in characters. The -n and -h 
parameters specify the login name and host name of the owner of the job respectively. Acct-file is passed 
from the af print cap entry. 

If no if is specified, of is used instead, with the distinction that of is opened only once, while if is opened 
for every individual job. Thus, if is better suited to performing accounting. The of is only given the width 
and length flags. 

All other filters are called as: 

filter -xwidth -ylength -n login -h host acct-file 

where width and length are represented in pixels, specified by the px and py entries respectively. 

All filters take stdin as the file, stdout as the printer, may log either to stderr or using syslog(3 ), and must 
not ignore SIGINT. 

LOGGING 
Error messages generated by the line printer programs themselves (that is, the Ip• programs) are logged by 
syslog(3) using the LPR facility. Messages printed on stderr of one of the filters are sent to the correspond­
ing If file. The filters may, of course, use syslog themselves. 

Error messages sent to the console have a carriage return and a line feed appended to them, rather than just 
a line feed. 

SEE ALSO 
termcap(5), lpc(8), lpd(8), pac(8), lpr(l), lpq(l), lprm(l) 
4.3BSD Line Printer Spooler Manual 

May 14, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



PROTOCOLS ( 5) UNIX Programmer's Manual PROTOCOLS ( 5) 

NAME 
protocols - protocol name data base 

DESCRIPTION 

FILES 

The protocols file contains information regarding the known protocols used in the DARPA Internet For 
each protocol a single line should be present with the following information: 

official protocol name 
protocol number 
aliases 

Items are separated by any number of blanks and/or tab characters. A "#" indicates the beginning of a 
comment; characters up to the end of the line are not interpreted by routines which search the file. 

Protocol names may contain any printable character other than a field delimiter, newline, or comment char­
acter. 

I etc/protocols 

SEE ALSO 
getprotoent(3N) 

BUGS 
A name server should be used instead of a static file. 

May 6, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



REMOTE(5) UNIX Programmer's Manual REMOTE(S) 

NAME 
remote - remote host description file 

DESCRIPTION 
The systems known by tip(lC) and their attributes are stored in an ASCII file which is structured somewhat 
like the termcap(5) file. Each line in the file provides a description for a single system. Fields are 
separated by a colon(":"). Lines ending in a\ character with an immediately following newline are con­
tinued on the next line. 

The first entry is the name(s) of the host system. If there is more than one name for a system, the names 
are separated by vertical bars. After the name of the system comes the fields of the description. A field 
name followed by an '=' sign indicates a string value follows. A field name followed by a '#' sign indi­
cates a following numeric value. 

Entries named "tip*" and "cu•" are used as default entries by tip, and the cu interface to tip, as follows. 
When tip is invoked with only a phone number, it looks for an entry of the form "tip300", where 300 is 
the baud rate with which the connection is to be made. When the cu interface is used, entries of the form 
"cu300" are used. 

CAPABILITIES 
Capabilities are either strings (str), numbers (num), or boolean flags (bool). A string capability is specified 
by capability=value; e.g. "dv=/dev/harris". A numeric capability is specified by capability#value; e.g. 
"xa#99". A boolean capability is specified by simply listing the capability. 

at (str) Auto call unit type. 

br (num) The baud rate used in establishing a connection to the remote host. This is a decimal 
number. The default baud rate is 300 baud. 

cm (str) An initial connection message to be sent to the remote host. For example, if a host is reached 
through port selector, this might be set to the appropriate sequence required to switch to the host. 

cu (str) Call unit if making a phone call. Default is the same as the 'dv' field 

di (str) Disconnect message sent to the host when a disconnect is requested by the user. 

du (bool) This host is on a dial-up line. 

dv (str) UNIX device(s) to open to establish a connection. If this file refers to a terminal line, tip(lC) 
attempts to perform an exclusive open on the device to insure only one user at a time has access to 
the port. 

el (str) Characters marking an end-of-line. The default is NULL. ,_, escapes are only recognized by 
tip after one of the characters in 'el', or after a carriage-return. 

rs (str) Frame size for transfers. The default frame size is equal to BUFSIZ. 

hd (bool) The host uses half-duplex communication, local echo should be performed. 

ie (str) Input end-of-file marks. The default is NULL. 

oe (str) Output end-of-file string. The default is NULL. When tip is transferring a file, this string is 
sent at end-of-file. 

pa (str) The type of parity to use when sending data to the host. TI.is may be one of' 'even'', ''odd'', 
"none", "zero" (always set bit 8 to zero), "one" (always set bit 8 to 1). The default is even par­
ity. 

pn (str) Telephone number(s) for this host If the telephone number field contains an @ sign, tip 
searches the file /etc/phones file for a list of telephone numbers; c.f. phones(5). 

tc (str) Indicates that the list of capabilities is continued in the named description. This is used pri­
marily to share common capability information. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



REMOTE(5) UNIX Programmer's Manual 

Here is a short example showing the use of the capability continuation feature: 

UNIX-1200:\ 
:dv=/dev/cauO:el= "D"U"C'S"Q"O@:du:at=ventel:ie=#$%:oe= "D:br#1200: 

arpavaxlax:\ 
:pn= 7654321 %:tc=UNIX-1200 

FILES 
/etc/remote 

SEE ALSO 
tip(lC), phones(5) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 

REMOTE(5) 

2 



RESOLVER ( 5) UNIX Programmer's Manual RESOLVER(5) 

NAME 
resolver - resolver configuration file 

SYNOPSIS 
/etc/resolv .conf 

DESCRIPTION 

FILES 

The resolver configuration file contains information that is read by the resolver routines the first time they 
are invoked by a process. The file is designed to be human readable and contains a list of name-value pairs 
that provide various types of resolver information. 

On a normally configured system this file should not be necessary. The only name server to be queried will 
be on the local machine and the domain name is retrieved from the system. 

The different configuration options are: 

nameserver 
followed by the Internet address (in dot notation) of a name server that the resolver should query. 
At least one name server should be listed Up to MAXNS (currently 3) name servers may be 
listed, in that case the resolver library queries tries them in the order listed. If no nameserver 
entries are present, the d~fault is to use the name server on the local machine. (The algorithm 
used is to try a name server, and if the query times out, try the next, until out of name servers, then 
repeat trying all the name servers until a maximum number of retries are made). 

domain followed by a domain name, that is the default domain to append to names that do not have a dot 
in them. If no domain entries are present, the domain returned by gethostname (2) is used (every­
thing after the first'.'). Finally, if the host name does not contain a domain part, the root domain 
is assumed. 

The name value pair must appear on a single line, and the keyword (e.g. nameserver) must start the line. 
The value follows the keyword, separated by white space. 

/etc/resolv.conf 

SEE ALSO 
gethostbyname(3N), resolver(3), named(8) 
Name Server Operations Guide for BIND 

May 15, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SERVICES ( 5) UNIX Programmer's Manual SERVICES ( 5) 

NAME 
services - service name data base 

DESCRIPTION 

FILES 

The services file contains information regarding the known services available in the DARPA Internet For 
each service a single line should be present with the following information: 

official service name 
port number 
protocol name 
aliases 

Items are separated by any number of blanks and/or tab characters. The port number and protocol name 
are considered a single item; a"/" is used to separate the port and protocol (e.g. "512/tcp"). A"#" indi­
cates the beginning of a comment; characters up to the end of the line are not interpreted by routines which 
search the file. 

Service names may contain any printable character other than a field delimiter, newline, or comment char­
acter. 

/etc/services 

SEE ALSO 
getservent(3N) 

BUGS 
A name server should be used instead of a static file. 

May 6, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



SPTAB(S) UNIX Programmer's Manual SPTAB (5) 

NAME 
sptab - dynamic information for spanned disk configuration 

DESCRIPTION 

FILES 

The file /etc/sptab contains descriptive information about spanned disks. The spconfig (8) command reads 
/etc/sptab when configuring spanned disks dynamically. This command would normally reside within 
/etc/re. 

The information you place in this file has the general form 

where 

spdevc ( (major.minor) (major,minor ), ... ,(major,minor) ) 

dev is any of the available sp devices, 0 - 3. 

major is the number of the major device. 

minor is the number of the minor device. 

A spanned disk device is described by the spanned disk device number, 0-3, followed by a list of the 
(major,minor) device numbers of the partitions that create it. Disk partitions are established by the disk 
controller, so your only choice is which partitions you wish to combine into one spanned disk device. An 
example of a valid entry in /etc/sptab is 

#local configuration for two Maxtor 1140 drives 
# 
#spOc = ( sdOg, sdlf) 
# 
spOc ( (1,6),(1,13) ) 
# 
#splc = sdla, sdld, sdle 
# 
splc ( (1,8),(l,11),(1,12) ) 

which specifies that spanned disk 0 consists of the partitions sdOg and sdlf, and spanned disk 1 consists of 
the partitions sdla, sdld, and sdle (see sp (41) ). 

A comment line in /etc/sptab begins with the "#" character and is ignored by spconfig (8). 

/etc/sptab 

SEE ALSO 
sp(41) spconfig(8) 

1 September 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



STAB(S) UNIX Programmer's Manual STAB(5) 

NAME 
stab - symbol table types 

SYNOPSIS 
#include <stab.h> 

DESCRIPTION 
Stab.h defines some values of the n _type field of the symbol table of a.out files. These are the types for 
permanent symbols (i.e. not local labels, etc.) used by the old debugger sdb and the Berkeley Pascal com­
piler pc(l). Symbol table entries can be produced by the .stabs assembler directive. This allows one to 
specify a double-quote delimited name, a symbol type, one char and one short of information about the 
symbol, and an unsigned long (usually an address). To avoid having to produce an explicit label for the 
address field, the .stabd directive can be used to implicitly address the current location. If no name is 
needed, symbol table entries can be generated using the .stabn directive. The loader promises to preserve 
the order of symbol table entries produced by .stab directives. As described in a.out(5), an element of the 
symbol table consists of the following structure: 

I* 
* Format of a symbol table entry. 
*I 

struct nlist { 
union { 

}; 

char •n_name;/• for use when in-core•/ 
long n _strx; /*index into file string table•/ 

} n_un; 
unsigned char n _type; 
char n _other; 
short n _ desc; 
unsigned n _value; 

/* type fiag •/ 
/*unused•/ 
I• see struct desc, below•/ 
I• address or offset or line•/ 

The low bits of the n _type field are used to place a symbol into at most one segment, according to the fol­
lowing masks, defined in <a.out.h>. A symbol can be in none of these segments by having none of these 
segment bits set 

/* 
* Simple values for n _type. 
*I 

#define N_UNDF OxO I• undefined*/ 
#define N ABS Ox2 I• absolute */ 
#define N TEXT Ox4 /* text •/ 
#define N DATA Ox6 /*data•/ 
#define N BSS Ox8 /* bss •I 

#define N EXT 01 /*external bit, or'ed in•/ 

The n _value field of a symbol is relocated by the linker, ld(l) as an address within the appropriate segment 
N _value fields of symbols not in any segment are unchanged by the linker. In addition, the linker will dis­
card certain symbols, according to rules of its own, unless the n _type field has ·one of the following bits set 

/* 
* Other permanent symbol table entries have some of the N _ST AB bits set. 
*These are given in <Stab.h> 
*I 

#define N STAB OxeO/• if any of these bits set, don't discard •I 

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



STAB(5) UNIX Programmer's Manual STAB(5) 

This allows up to 112 (7 * 16) symbol types, split between the various segments. Some of these have 
already been claimed The old symbolic debugger, sdb, uses the following n_type values: 

#define N _ GSYM Ox20 I• global symbol: name,,0,type,0 •I 
#define N _ FNAME Ox22 /* procedure name (f77 kludge): name,,O */ 
#define N _FUN Ox24 /* procedure: name,,0,linenumber,address •I 
#define N _ STSYM Ox26 I• static symbol: name,,0,type,address */ 
#define N _ LCSYM Ox28 I* .Icomm symbol: name,,0,type,address */ 
#define N _ RSYM Ox40 I• register sym: name,,0,type,register •/ 
#define N _ SLINE Ox44 /* src line: 0,,0,linenumber,address •/ 
#define N _ SSYM Ox60 /* structure elt: name,,0,type,struct_ offset •I 
#define N _SO Ox64 /* source filename: name,,0,0,address •I 
#define N _ LSYM Ox80 /* local sym: name,,0,type,offset */ 
#define N _SOL Ox84 !• #included filename: name,,0,0,address */ 
#define N _PSYM OxaO I• parameter: name,,0,type,offset •I 
#define N_ENTRY Oxa4 /*alternate entry: name,linenumber,address •/ 
#define N _ LBRAC OxcO I• left bracket: 0,,0,nesting level,address */ 
#define N _ RBRAC OxeO /* right bracket: 0,,0,nesting level,address •I 
#define N _ BCOMM Oxe2/• begin common: name,, *I 
#define N _ ECOMM Oxe4/• end common: name,, •/ 
#define N_ECOML Oxe8 /*end common (local name): ,,address•/ 
#define N _LENG Oxfe /* second stab entry with length information */ 

where the comments give sdb conventional use for .stabs and the n_name, n_other, n_desc, and n_value 
fields of the given n type. Sdb uses the n desc field to hold a type specifier in the form used by the Port­
able C Compiler, cc(l); see the header file pcc.h for details on the format of these type values. 

The Berkeley Pascal compiler, pc(l), uses the following n_type value: 

#define N PC Ox30 /* global pascal symbol: name,,0,subtype,line •I 

and uses the following subtypes to do type checking across separately compiled files: 
1 source filename 
2 included filename 
3 global label 
4 global constant 
5 global type 
6 global variable 
7 global function 
8 global procedure 
9 external function 
10 external procedure 
11 library variable 
12 library routine 

SEE ALSO 
as(l), ld(l), dbx(l), a.out(5) 

BUGS 
More basic types are needed. 

May 19, 1986 INTEGRATED SOLUTIONS 4.3 BSD 2 



TAR( 1) UNIX Programmer's Manual TAR(l) 

NAME 
tar - tape archiver 

SYNOPSIS 
tar [key] [option] [files] 

DESCRIPTION 

KEYS 

Tar saves and restores multiple files on a single file-usually a magnetic tape, although the file can be an 
ordinary file in the file system. Tar's actions are controlled by the key argument. The key is a string of 
characters containing at most one function letter and possibly one or more function modifiers. Other argu­
ments to tar are file or directory names specifying which files to dump or restore. In all cases, appearance 
of a directory name refers to the files and (recursively) subdirectories of that directory. 

Previous restrictions dealing with tar's inability to properly handle blocked archives have been lifted. 

Function Letters 

The function portion of the key is specified by one of the following letters: 

c Creates a new tape. Begins writing on the beginning of the tape instead of after the last file. 
This function automatically runs the r function. 

r Writes the named files on the end of the tape. (This function is automatically run by the c 
function.) r does not work on quarter-inch tape drives. The QIC 02 industry-standard inter­
face, which is the basis of the VME-QIC2 cartridge tape controller's interface, prevents this 
function from working properly. Running this command on a quarter-inch drive produces 
unpredictable results. 

t Lists the names of the specified files each time the names occur on the tape. If no file argu­
ment is given, lists all the names on the tape. 

u Adds the named files to the tape if either they are not already there or have been modified 
since last put on the tape. This command does not work on quarter-inch tape drives. The QIC 
02 industry-standard interface, which is the basis of the VME-QIC2 cartridge tape controller's 
interface, prevents this function from working properly. If you run this function on a quarter­
inch drive, the results are unpredictable. 

x Extracts the named files from the tape. If the named file matches a directory whose contents 
had been written onto the tape, this directory is recursively extracted. If possible, tar restores 
the owner, modification time, and mode of the file. If no file argument is given, the entire con­
tent of the tape is extracted. Note that if multiple entries specifying the same file are on the 
tape, the last entry overwrites all the earlier entries. 

Function Modifiers 

The following characters may be used in addition to the letter which selects the function desired. 

0, ••. , 9 Selects an alternate drive on which the tape is mounted. The default is drive 0 at 1600 bpi, 
which is normally /dev/rmt8. 

b Uses the next argument as the blocking factor for tape records. The default is 20 (the max­
imum). This modifier should only be used with raw magnetic tape archives (See f above). 
The block size is determined automatically when reading tapes (key letters x and t). 

B Forces input and output blocking to 20 blocks per record. This modifier was added so that tar 
can work across a communications channel where the blocking may not be maintained. 

f Uses the next argument as the name of the archive instead of /dev/rmt?. If the name of the file 
is ' - ', tar writes to standard output or reads from standard input, whichever is appropriate. 
Thus, tar can be used as the head or tail of a filter chain. Tar can also be used to move hierar­
chies with the command 

November 25, 1987 INTEGRATED SOLUTIONS 4.3 BSD l 



TAR(l) UNIX Programmer's Manual TAR(l) 

cd fromdir; tar cf - . I ( cd todir; tar xf - ) 

h Forces tar to follow symbolic links as though they were normal files or directories. Normally, 
tar does not follow symbolic links. 

Prints an error message if tar cannot resolve all links to dumped files. Unless you specify this 
modifier, tar will not report this inability to resolve links. 

m Tells tar not to restore the modification times. The modification time will be the time of 
extraction. 

o Suppresses output of directory information. If you do not use this modifier, tarplaces informa­
tion specifying owner and modes of directories in the archive. (Earlier versions of tar when 
encountering this information print error messages in the form: "<name>/: cannot create".) 

p Restores files to their original modes, ignoring the present umask(2). Restores setuid and 
sticky information to the super-user. 

s Swaps the low byte of each word with the high byte of that word. 

v Turns on verbose mode. Normally tar does not print messages describing its work. With this 
modifier, tar prints the name of each file it handles preceded by the function letter. If you use 
both the v modifier and the t function, tar lists the name, permissions, uid, gid, size, and date 
of each files it handles. 

w Prints the action to be taken followed by the name of the file the action will affect, then waits 
for your confirmation before completing the action. Typing tells tar to complete the action. 
Any other response cancels the action. 

OPTIONS 
-Cdir Performs a chdir(2) to the specified directory. This allows multiple directories not related by a 

close common parent to be archived using short relative path names. For example, to archive 
files from /usr/include and from /et£, one might use 

FILES 
/dev/rmt? 
/tmp/tar* 

tar c -C /usr include -C I etc 

SEE ALSO 
tar(5) 

DIAGNOSTICS 

BUGS 

Tar prints messages about bad key characters and tape read/write errors. If not enough memory is avail­
able to hold the link tables, tar prints an error message saying so. 

There is no way to ask for the n-th occurrence of a file. 

Tar handles tape errors ungracefully. 

The u function can be slow. 

The current limit on filename length is 100 characters. 

There is no way to follow symbolic links selectively. 

When extracting tapes created with the r or u functions, tar sometimes sets the directory modification 
times incorrectly. 

November 25, 1987 INTEGRATED SOLUTIONS 4.3 BSD 2 



TERMCAP(S) UNIX Programmer's Manual TERMCAP(S) 

NAME 
termcap - terminal capability data base 

SYNOPSIS 
/etc/termcap 

DESCRIPTION 
Termcap is a data base describing terminals, used, e.g., by vi(l) and curses(3X). Terminals are described 
in termcap by giving a set of capabilities that they have and by describing how operations are performed. 
Padding requirements and initialization sequences are included in termcap. 

Entries in termcap consist of a number of ':'-separated fields. The first entry for each terminal gives the 
names that are known for the terminal, separated by 'I' characters. The first name is always two characters 
long and is used by older systems which store the terminal type in a 16-bit word in a system-wide data 
base. The second name given is the most common abbreviation for the terminal, the last name given 
should be a long name fully identifying the terminal, and all others are understood as synonyms for the ter­
minal name. All names but the first and last should be in lower case and contain no blanks; the last name 
may well contain upper case and blanks for readability. 

Terminal names (except for the last, verbose entry) should be chosen using the following conventions. The 
particular piece of hardware making up the terminal should have a root name chosen, thus ''hp2621' '. 
This name should not contain hyphens. Modes that the hardware can be in or user preferences should be 
indicated by appending a hyphen and an indicator of the mode. Therefore, a "vtlOO'' in 132-column mode 
would be "vtlOO-w". The following suffixes should be used where possible: 

Suffix Meaning Example 
-w Wide mode (more than 80 columns) vtlOO-w 
-am With automatic margins (usually default) vtlOO-am 
-nam Without automatic margins vtlOO-nam 
-n Number of lines on the screen aaa-60 
-na No arrow keys (leave them in local) conceptlOO-na 
-np Number of pages of memory concept100-4p 
-rv Reverse video conceptl 00-rv 

CAPABILITIES 
The characters in the Notes field in the table have the following meanings (more than one may apply to a 
capability): 

N indicates numeric parameter(s) 
P indicates that padding may be specified 
* indicates that padding may be based on the number of lines affected 
o indicates capability is obsolete 

''Obsolete'' capabilities have no terminfo equivalents, since they were considered useless, or are sub­
sumed by other capabilities. New software should not rely on them at all. 

Name Type Notes Description 
ae str (P) End alternate character set 
AL str (NP•) Add n new blank lines 
al str (P•) Add new blank line 
am bool Terminal has automatic margins 
as str (P) Start alternate character set 
be str (o) Backspace if not "H 
bl str (P) Audible signal (bell) 
bs bool (o) Terminal can backspace with "H 
bt str (P) Back tab 
bw bool le (backspace) wraps from column 0 to last column 

1November1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TERMCAP(5) UNIX Programmer's Manual TERMCAP(5) 

cc str Terminal settable command character in prototype 
cd str (P*) Clear to end of display 
ce str (P) Clear to end of line 
ch str (NP) Set cursor column (horizontal position) 
cl str (P*) Clear screen and home cursor 
CM str (NP) Memory-relative cursor addressing 
cm str (NP) Screen-relative cursor motion 
co num Number of columns in a line (See BUGS section below) 
er str (P) Carriage return 
cs str (NP) Change scrolling region (VTl 00) 
ct str (P) Clear all tab stops 
CV str (NP) Set cursor row (vertical position) 
da bool Display may be retained above the screen 
dB num (o) Milliseconds of bs delay needed (default 0) 
db bool Display may be retained below the screen 
DC str (NP*) Delete n characters 
dC num (o) Milliseconds of er delay needed (default 0) 
de str (P*) Delete character 
dF num (o) Milliseconds of rr delay needed (default 0) 
DL str (NP*) Delete n lines 
di str (P*) Delete line 
dm str Enter delete mode 
dN num (o) Milliseconds of nl delay needed (default 0) 
DO str (NP*) Move cursor down n lines 
do str Down one line 
ds str Disable status line 
dT num (o) Milliseconds of horizontal tab delay needed (default 0) 
dV num (o) Milliseconds of vertical tab delay needed (default 0) 
ec str (NP) Erase n characters 
ed str End delete mode 
ei str End insert mode 
eo bool Can erase overstrikes with a blank 
EP bool (o) Even parity 
es bool Escape can be used on the status line 
ff str (P*) Hardcopy terminal page eject 
fs str Return from status line 
gn bool Generic line type (e.g. dialup, switch) 
he bool Hardcopy terminal 
HD bool (o) Half-duplex 
hd str Half-line down (forward 1/2 linefeed) 
ho str (P) Home cursor 
hs bool Has extra "status line" 
hu str Half-line up (reverse 1/2 linefeed) 
hz bool Cannot print Ms (Hazeltine) 
il-i3 str Terminaljnitialization strings (terminfo only) 
IC str (NP*) Insert n blank characters 
ic str (P*) Insert character 
if str Name of file containing initialization string 
im str Enter insert mode 
in bool Insert mode distinguishes nulls 
iP str Pathname of program for initialization (terminfo only) 
ip str (P*) Insert pad after character inserted 

1 November 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



TERMCAP(5) UNIX Programmer's Manual TERMCAP(5) 

is str Terminal initialization string (termcap only) 
it num Tabs initially every n positions 
Kl str Sent by keypad upper left 
K2 str Sent by keypad upper right 
K3 str Sent by keypad center 
K4 str Sent by keypad lower left 
K5 str Sent by keypad lower right 
k0-k9 str Sent by function keys 0-9 
kA str Sent by insert-line key 
ka str Sent by clear-all-tabs key 
kb str Sent by backspace key 
kC str Sent by clear-screen or erase key 
kD str Sent by delete-character key 
kd str Sent by down-arrow key 
kE str Sent by clear-to-end-of-line key 
ke str Out of ''keypad transmit'' mode 
kF str Sent by scroll-forward/down key 
kH str Sent by home-down key 
kh str Sent by home key 
kl str Sent by insert-character or enter-insert-mode key 
kL str Sent by delete-line key 
kl str Sent by left-arrow key 
kM str Sent by insert key while in insert mode 
km bool Has a "meta" key (shift, sets parity bit) 
kN str Sent by next-page key 
kn num (o) Number of function (k0-k9) keys (default 0) 
ko str (o) Termcap entries for other non-function keys 
kP str Sent by previous-page key 
kR str Sent by scroll-backward/up key 
kr str Sent by right-arrow key 
kS str Sent by clear-to-end-of-screen key 
ks str Put terminal in ''keypad transmit'' mode 
kT str Sent by set-tab key 
kt str Sent by clear-tab key 
ku str Sent by up-arrow key 
10-19 str Labels on function keys if not ''fn'' 
LC bool (o) Lower-case only 
LE str (NP) Move cursor left n positions 
le str (P) Move cursor left one position 
li num Number of lines on screen or page (See BUGS section below) 
ll str Last line, first column 
lm num Lines of memory if> Ii (0 means varies) 
ma str (o) Arrow key map (used by vi version 2 only) 
mb str Turn on blinking attribute 
md str Turn on bold (extra bright) attribute 
me str Turn off all attributes 
mh str Turn on half-bright attribute 
mi bool Safe to move while in insert mode 
mk str Turn on blank attribute (characters invisible) 
ml str (o) Memory lock on above cursor 
mm str Turn on "meta mode" (8th bit) 
mo str Turn off' 'meta mode'' 

1November1985 INTEGRATED SOLUTIONS 4.3 BSD 3 



TERMCAP(5) UNIX Programmer's Manual TERMCAP(5) 

mp str Turn on protected attribute 
mr str Turn on reverse-video attibute 
ms bool Safe to move in standout modes 
mu str (o) Memory unlock (turn off memory lock) 
nc bool (o) No correctly-working er (Datamedia 2500, Hazeltine 2000) 
nd str Non-destructive space (cursor right) 
NL bool (o) \n is newline, not line feed 
nl str (o) Newline character if not \n 
ns bool (o) Terminal is a CRT but doesn't scroll 
nw str (P) Newline (behaves like er followed by do) 
OP boo I (o) Odd parity 
OS bool Terminal overstrikes 
pb num Lowest baud where delays are required 
pc str Pad character (default NUL) 
pf str Turn off the printer 
pk str Program function key n to type strings (terminro only) 
pl str Program function key n to execute string s (terminfo only) 
pO str (N) Turn on the printer for n bytes 
po str Turn on the printer 
ps str Print contents of the screen 
pt bool (o) Has hardware tabs (may need to be set with is) 
px str Program function key n to transmit string s (terminfo only) 
rl-r3 str Reset terminal completely to sane modes (terminfo only) 
re str (P) Restore cursor to position of last sc 
rf str Name of file containing reset codes 
RI str (NP) Move cursor right n positions 
rp str (NP*) Repeat character c n times 
rs str Reset terminal completely to sane modes (termcap only) 
sa str (NP) Define the video attributes 
SC str (P) Save cursor position 
se str End standout mode 
SF str (NP*) Scroll forward n lines 
sf str (P) Scroll text up 
sg num Number of garbage chars left by so or se (default 0) 
so str Begin standout mode 
SR str (NP*) Scroll backward n lines 
sr str (P) Scroll text down 
st str Set a tab in all rows, current column 
ta str (P) Tab to next 8-position hardware tab stop 
tc str Entry of similar terminal - must be last 
te str String to end programs that use termcap 
ti str String to begin programs that use termcap 
ts str (N) Go to status line, column n 
UC bool (o) Upper-case only 
UC str Underscore one character and move past it 
ue str End underscore mode 
ug num Number of garbage chars left by us or ue (default 0) 
ul bool Underline character overstrikes 
UP str (NP•) Move cursor up n lines 
up str Upline (cursor up) 
us str Start underscore mode 
vb str Visible bell (must not move cursor) 

1 November 1985 INTEGRATED SOLUTIONS 4.3 BSD 4 



TERMCAP(5) 

ve str 
vi str 
vs str 
vt num 
wi str 
ws num 
xb boot 
xn bool 
XO bool 
xr bool 
XS bool 
xt bool 
xx boot 

UNIX Programmer's Manual 

Make cursor appear normal (undo vs/vi) 
Make cursor invisible 
Make cursor very visible 
Virtual terminal number (not supported on all systems) 

(N) Set current window 
Number of columns in status line 
Beehive (fl=ESC, t'2= "C) 
Newline ignored after 80 cols (Concept) 
Terminal uses xoff/xon (DC3/DC1) handshaking 

(o) Return acts like ce er nl (Delta Data) 
Standout not erased by overwriting (Hewlett-Packard) 
Tabs ruin, magic so char (Teleray 1061) 

(o) Tektronix 4025 insert-line 

A Sample Entry 

TERMCAP(5) 

The following entry, which describes the Concept-100, is among the more complex entries in the termcap 
file as of this writing. 

ca I conceptl 00 I c 100 I concept I c 1041 concept100-4p I HOS Concept-100:\ 
:al=3•\E"R:am:bl= "G:cd= 16•\E"C:ce= 16\E"U :cl=2•"L:cm=\Ea%+ %+ :\ 
:co#80:.cr=9"M:db:dc=16\E"A:dl=3*\E"B:do= "J :ei=\E\200:eo:im=\E"P:in:\ 
:ip= 16•:is=\EU\Et\E7\E5\E8\El\ENH\EK\E\200\Eo&\200\Eo\47\E:k1=\E5:\ 
:k2=\E6:k3=\E7:kb="h:kd=\E<:ke=\Ex:kh=\E?:kl=\E>:kr=\E=:ks=\EX:\ 
:ku=\E;:le= "H:li#24:mb=\EC:me=\EN\200:rnh=\EE:mi:rnk=\EH:mp=\EI:\ 
:mr=\ED:n<i=\E=:pb#9600:rp=0.2*\Er%.%+ :se=\Ed\Ee:sf= "J :so=\EE\ED:\ 
:.ta=8\t:te=\Ev \200\200\200\200\200\200\Ep\J\n:\ 
:ti=\EU\Ev Sp\Ep\r:ue=\Eg:ul:up=\E;:us=\EG:\ 
:vb=\Ek\200\200\200\200\200\200\200\200\200\200\200\200\200\200\EK:\ 
:ve=\Ew:vs=\EW :vt#8:xn:\ 
:bs:cr= "M:dC#9:dT#8:nl="J :ta= "I:pt: 

Entries may continue onto multiple lines by giving a \ as the last character of a line, and empty fields may 
be included for readability (here between the last field on a line and the first field on the next). Comments 
may be included on lines beginning with"#". 

Types of Capabilities 

Capabilities in termcap are of three types: Boolean capabilities, which indicate particular features that the 
terminal has; numeric capabilities, giving the size of the display or the size of other attributes; and string 
capabilities, which give character sequences that can be used to perform particular terminal operations. All 
capabilities have two-letter codes. For instance, the fact that the Concept has automatic margins (i.e., an 
automatic return and linefeed when the end of a line is reached) is indicated by the Boolean capability am. 
Hence the description of the Concept includes am. 

Numeric capabilities are followed by the character '#' then the value. In the example above co, which 
indicates the number of columns the display has, gives the value '80' for the Concept. 

Finally, string-valued capabilities, such as ce (clear-to-end-of-line sequence) are given by the two-letter 
code, an '=', then a string ending at the next following ':'. A delay in milliseconds may appear after the 
'=' in such a capability, which causes padding characters to be supplied by tputs after the remainder of the 
string is sent to provide this delay. The delay can be either a number, e.g. '20', or a number followed by an 
'*',i.e., '3•'. An'*' indicates that the padding required is proportional to the number of lines affected by 
the operation, and the amount given is the per-affected-line padding required. (In the case of insert­
character, the factor is still the number of lines affected; this is always 1 unless the terminal has in and the 
software uses it.) When an '•' is specified, it is sometimes useful to give a delay of the form '3.5' to 
specify a delay per line to tenths of milliseconds. (Only one decimal place is allowed.) 

1 November 1985 INTEGRATED SOLUTIONS 4.3 BSD 5 



TERMCAP(S) UNIX Programmer's Manual TERMCAP(S) 

A number of escape sequences are provided in the string-valued capabilities for easy encoding of control 
characters there. \E maps to an ESC character, "X maps to a control-X for any appropriate X, and the 
sequences \n \r \t \b \f map to linefeed, return, tab, backspace, and formfeed, respectively. Finally, charac­
ters may be given as three octal digits after a\, and the characters" and\ may be given as\" and\\. If it is 
necessary to place a : in a capability it must be escaped in octal as \072. If it is necessary to place a NUL 

character in a string capability it must be encoded as \200. (The routines that deal with termcap use C 
strings and strip the high bits of the output very late, so that a \200 comes out as a \000 would.) 

Sometimes individual capabilities must be commented out. To do this, put a period before the capability 
name. For example, see the first er and ta in the example above. 

Preparing Descriptions 

We now outline how to prepare descriptions of terminals. The most effective . way to prepare a terminal 
description is by imitating the description of a similar terminal in termcap and to build up a description 
gradually, using partial descriptions with vi to check that they are correct. Be aware that a very unusual 
terminal may expose deficiencies in the ability of the termcap file to describe it or bugs in vi. To easily 
test a new terminal description you can set the environment variable TERMCAP to the absolute pathname 
of a file containing the description you are working on and programs will look there rather than in 
/etc/termcap. TERMCAP can also be set to the termcap entry itself to avoid reading the file when starting 
up a program. 

To get the padding for insert-line right (if the terminal manufacturer did not document it), a severe test is to 
use vi to edit /etc/passwd at 9600 baud, delete roughly 16 lines from the middle of the screen, then hit the 
'u' key several times quickly. If the display messes up, more padding is usually needed. A similar test can 
be used for insert-character. 

Basic Capabilities 

The number of columns on each line of the display is given by the co numeric capability. If the display is a 
CRT, then the number of lines on the screen is given by the Ii capability. If the display wraps around to the 
beginning of the next line when the cursor reaches the right margin, then it should have the am capability. 
If the terminal can clear its screen, the code to do this is given by the cl string capability. If the terminal 
overstrikes (rather than clearing the position when a character is overwritten), it should have the os capabil­
ity. If the terminal is a printing terminal, with no soft copy unit, give it both he and os. ( os applies to 
storage scope terminals, such as the Tektronix 4010 series, as well as to hard copy and APL terminals.) If 
there is a code to move the cursor to the left edge of the current row, give this as er. (Normally this will be 
carriage-return, "M.) If there is a code to produce an audible signal (bell, beep, etc.), give this as bl. 

If there is a code (such as backspace) to move the cursor one position to the left, that capability should be 
given as le. Similarly, codes to move to the right, up, and down should be given as nd, up, and do, respec­
tively. These local cursor motions should not alter the text they pass over; for example, you would not nor­
mally use ''nd= '' unless the terminal has the os capability, because the space would erase the character 
moved over. 

A very important point here is that the local cursor motions encoded in termcap have undefined behavior 
at the left and top edges of a CRT display. Programs should never attempt to backspace around the left 
edge, unless bw is given, and never attempt to go up off the top using local cursor motions. 

In order to scroll text up, a program goes to the bottom left corner of the screen and sends the sf (index) 
string. To scroll text down, a program goes to the top left comer of the screen and sends the sr (reverse 
index) string. The strings sf and sr have undefined behavior when not on their respective corners of the 
screen. Parameterized versions of the scrolling sequences are SF and SR, which have the same semantics 
as sf and sr except that they take one parameter and scroll that many lines. They also have undefined 
behavior except at the appropriate corner of the screen. 

The am capability tells whether the cursor sticks at the right edge of the screen when text is output there, 
but this does not necessarily apply to nd from the last column. Leftward local motion is defined from the 
left edge only when bw is given; then an le from the left edge will move to the right edge of the previous 

1 November 1985 INTEGRATED SOLUTIONS 4.3 BSD 6 



TERMCAP(5) UNIX Programmer's Manual TERMCAP(5) 

row. This is useful for drawing a box around the edge of the screen, for example. If the terminal has 
switch-selectable automatic margins, the termcap description usually assumes that this feature is on, i.e., 
am. If the terminal has a command that moves to the first column of the next line, that command can be 
given as nw (newline). It is permissible for this to clear the remainder of the current line, so if the terminal 
has no correctly-working CR and LF it may still be possible to craft a working nw out of one or both of 
them. 

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the Teletype model 33 is 
described as 

T3 I tty33 I 33 I tty I Teletype model 33:\ 
:bl= "G:co#72:cr= "M:do= "J:hc:os: 

and the Lear Siegler ADM-3 is described as 

131 adm3 I 3 I LSI ADM-3:\ 
:am: bl= "G:cl= "Z:co#80:cr="M:do= "J :le="H:li#24:sf = "J: 

Parameterized Strings 

Cursor addressing and other strings requiring parameters are described by a parameterized string capabil­
ity, with printf(3S)-like escapes %x in it, while other characters are passed through unchanged. For exam­
ple, to address the cursor the cm capability is given, using two parameters: the row and column to move to. 
(Rows and columns are numbered from zero and refer to the physical screen visible to the user, not to any 
unseen memory. If the terminal has memory-relative cursor addressing, that can be indicated by an analo­
gous CM capability.) 

The % encodings have the following meanings: 

%% output '%' 
%d output value as in print/ %d 
%2 output value as inprintf%2d 
%3 output value as in printf %3d 
%. output value as in print/ %c 
%+x add x to value, then do %. 
%>.xy if value > x then add y, no output 
%r reverse order of two parameters, no output 
%i increment by one, no output 
%n exclusive-or all parameters with 0140 (Datamedia 2500) 
%B BCD (16•(value/10)) + (value%10), no output 
%D Reverse coding (value - 2•(value%16)), no output (Delta Data) 

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to be sent 
"\E&a12c03Y" padded for 6 milliseconds. Note that the order of the row and column coordinates is 
reversed here and that the row and column are sent as two-digit integers. Thus its cm capability is 
''cm=6\E&%r%2c%2Y''. 

The Microterm ACT-IV needs the current row and column sent simply encoded in binary preceded by a "T, 
"cm="T%.%.". Terminals that use "%." need to be able to backspace the cursor (le) and to move the 
cursor up one line on the screen (up). This is necessary because it is not always safe to transmit \n, "D, and 
\r, as the system may change ot discard them. (Programs using termcap must set terminal modes so that 
tabs are not expanded, so \t is safe to send. This turns out to be essential for the Ann Arbor 4080.) 

A final example is the Lear Siegler ADM-3a, which offsets row and column by a blank character, thus 
"cm=\E=%+ %+ ". 

Row or column absolute cursor addressing can be given as single parameter capabilities ch (horizontal 
position absolute) and cv (vertical position absolute). Sometimes these are shorter than the more general 
two-parameter sequence (as with the Hewlett-Packard 2645) and can be used in preference to cm. If there 
are parameterized local motions (e.g., move n positions to the right) these can be given as DO, LE, RI, and 

1 November 1985 INTEGRATED SOLUTIONS 4.3 BSD 7 



TERMCAP(5) UNIX Programmer's Manual TERMCAP(5) 

UP with a single parameter indicating how many positions to move. These are primarily useful if the ter­
minal does not have cm, such as the Tektronix 4025. 

Cursor Motions 

If the terminal has a fast way to home the cursor (to the very upper left comer of the screen), this can be 
given as ho. Similarly, a fast way of getting to the lower left-hand comer can be given as ll; this may 
involve going up with up from the home position, but a program should never do this itself (unless ll does), 
because it can make no assumption about the effect of moving up from the home position. Note that the 
home position is the same as cursor address (0,0): to the top left comer of the screen, not of memory. 
(Therefore, the "\EH" sequence on Hewlett-Packard terminals cannot be used for ho.) 

Area Clears 

If the terminal can clear from the current position to the end of the line, leaving the cursor where it is, this 
should be given as ce. If the terminal can clear from the current position to the end of the display, this 
should be given as ed. cd must only be invoked from the first column of a line. (Therefore, it can be simu­
lated by a request to delete a large number of lines, if a true cd is not available.) 

Insert/Delete Line 

If the terminal can open a new blank line before the line containing the cursor, this should be given as al; 
this must be invoked only from the first position of a line. The cursor must then appear at the left of the 
newly blank line. If the terminal can delete the line that the cursor is on, this should be given as di; this 
must only be used from the first position on the line to be deleted Versions of al and di which take a single 
parameter and insert or delete that many lines can be given as AL and DL. If the terminal has a settable 
scrolling region (like the VTlOO), the command to set this can be described with the cs capability, which 
takes two parameters: the top and bottom lines of the scrolling region. The cursor position is~· alas, 
undefined after using this command. It is possible to get the effect of insert or delete line using this com­
mand - the sc and re (save and restore cursor) commands are also useful. Inserting lines at the top or bot­
tom of the screen can also be done using sr or sf on many terminals without a true insert/delete line, and is 
often faster even on terminals with those features. 

If the terminal has the ability to define a window as part of memory which all commands affect, it should 
be given as the parameterized string wi. The four parameters are the starting and ending lines in memory 
and the starting and ending columns in memory, in that order. (This terminfo capability is described for 
completeness. It is unlikely that any termcap-using program will support it) 

If the terminal can retain display memory above the screen, then the da capability should be given; if 
display memory can be retained below, then db should be given. These indicate that deleting a line or 
scrolling may bring non-blank lines up from below or that scrolling back with sr may bring down non­
blank lines. 

Insert/Delete Character 

There are two basic kinds of intelligent terminals with respect to insert/delete character that can be 
described using termcap. The most common insert/delete character operations affect only the characters 
on the current line and shift characters off the end of the line rigidly. Other terminals, such as the Con­
cept-100 and the Perkin Elmer Owl, make a distinction between typed and untyped blanks on the screen, 
shifting upon an insert or delete only to an untyped blank on the screen which is either eliminated or 
expanded to two untyped blanks. You can determine the kind of terminal you have by clearing the screen 
then typing text separated by cursor motions. Type "abc der' using local cursor motions (not spaces) 
between the "abc" and the "def'. Then position the cursor before the "abc" and put the terminal in 
insert mode. If typing characters causes the rest of the line to shift rigidly and characters to fall off the end, 
then your ,terminal does not distinguish between blanks and untyped positions. If the "abc" shifts over to 
the "der' which then move together around the end of the current line and onto the next as you insert, then 
you have the second type of terminal and should give the capability in, which stands for ''insert null''. 
While these are two logically separate attributes (one line vs. multi-line insert mode, and special treatment 
of untyped spaces), we have seen no terminals whose insert mode cannot be described with the single 

1November1985 INTEGRATED SOLUTIONS 4.3 BSD 8 



TERMCAP(5) UNIX Programmer's Manual TERMCAP(5) 

attribute. 

Termcap can describe both terminals that have an insert mode and terminals that send a simple sequence 
to open a blank position on the current line. Give as im the sequence to get into insert mode. Give as ei 
the sequence to leave insert mode. Now give as ic any sequence that needs to be sent just before each char­
acter to be inserted. Most terminals with a true insert mode will not give ic; terminals that use a sequence 
to open a screen position should give it here. (If your terminal has both, insert mode is usually preferable 
to ic. Do not give both unless the terminal actually requires both to be used in combination.) If post-insert 
padding is needed, give this as a number of milliseconds in ip (a string option). Any other sequence that 
may need to be sent after insertion of a single character can also be given in ip. If your terminal needs to 
be placed into an 'insert mode' and needs a special code preceding each inserted character, then both im/ei 
and ic can be given, and both will be used. The IC capability, with one parameter n, will repeat the effects 
of ic n times. 

It is occasionally necessary to move around while in insert mode to delete characters on the same line (e.g., 
if there is a tab after the insertion position). If your terminal allows motion while in insert mode, you can 
give the capability mi to speed up inserting in this case. Omitting mi will affect only speed. Some termi­
nals (notably Datamedia's) must not have mi because of the way their insert mode works. 

Finally, you can specify de to delete a single character, DC with one parameter n to delete n characters, 
and delete mode by giving dm and ed to enter and exit delete mode (which is any mode the terminal needs 
to be placed in for de to work). 

Highlighting, Underlining, and Visible Bells 

If your terminal has one or more kinds of display attributes, these can be represented in. a number of dif­
ferent ways. You should choose one display form as standout mode, representing a good high-contrast, 
easy-on-the-eyes format for highlighting error messages and other attention getters. (If you have a choice, 
reverse video plus half-bright is good, or reverse video alone.) The sequences to enter and exit standout 
mode are given as so and se, respectively. If the code to change into or out of standout mode leaves one or 
even two blank spaces or garbage characters on the screen, as the TVI 912 and Teleray 1061 do, then sg 
should be given to tell how many characters are left 

Codes to begin underlining and end underlining can be given as us and ue, respectively. Underline mode 
change garbage is specified by ug, similar to sg. If the terminal has a code to underline the current charac­
ter and move the cursor one position to the right, such as the Microterm Mime, this can be given as uc. 

Other capabilities to enter various highlighting modes include mb (blinking), md (bold or extra bright), mh 
(dim or half-bright), mk (blanking or invisible text), mp {protected), mr (reverse video), me (tum off all 
attribute modes), as (enter alternate character set mode), and ae (exit alternate character set mode). Turn­
ing on any of these modes singly may or may not tum off other modes. 

If there is a sequence to set arbitrary combinations of mode, this should be given as sa (set attributes), tak­
ing 9 parameters. Each parameter is either 0 or 1, as the corresponding attributes is on or off. The 9 
parameters are, in order: standout, underline, reverse, blink, dim, bold, blank, protect, and alternate charac­
ter set Not all modes need be supported by sa, only those for which corresponding attribute commands 
exist. (It is unlikely that a termcap-using program will support this capability, which is defined for compa­
tibility with terminfo.) 

Terminals with the "magic cookie" glitches (sg and ug), rather than maintaining extra attribute bits for 
each character cell, instead deposit special ''cookies'', or ''garbage characters'', when they receive mode­
setting sequences, which affect the display algorithm. 

Some terminals, such as the Hewlett-Packard 2621, automatically leave standout mode when they move to 
a new line or when the cursor is addressed Programs using standout mode should exit standout mode on 
such terminals before moving the cursor or sending a newline. On terminals where this is not a problem, 
the ms capability should be present to say that this overhead is unnecessary. 

1 November 1985 INTEGRATED SOLUTIONS 4.3 BSD 9 



TERMCAP(S) UNIX Programmer's Manual TERMCAP(5) 

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement), this can be 
given as vb; it must not move the cursor. 

If the cursor needs to be made more visible than nonnal when it is not on the bottom line (to change, for 
example, a non-blinking underline into an easier-to-find block or blinking underline), give this sequence as 
vs. If there is a way to make the cursor completely invisible, give that as vi. The capability ve, which 
undoes the effects of both of these modes, should also be given. 

If your terminal correctly displays underlined characters (with no special codes needed) even though it 
does not overstrike, then you should give the capability ul. If overstrikes are erasable with a blank, this 
should be indicated by giving eo. 

Keypad 

If the terminal has a keypad that transmits codes when the keys are pressed, this information can be given. 
Note that it is not possible to handle terminals where the keypad only works in local mode (this applies, for 
example, to the unshifted Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not transmit, 
give these codes as ks and ke. Otherwise the keypad is assumed to always transmit The codes sent by the 
left-arrow, right-arrow, up-arrow, down-arrow, and home keys can be given as kl, kr, ku, kd, and kb, 
respectively. If there are function keys such as fO, fl, ... , f9, the codes they send can be given as kO, kl, 
k9. If these keys have labels other than the default fO through f9, the labels can be given as IO, 11, 19. The 
codes transmitted by certain other special keys can be given: kH (home down), kb (backspace), ka (clear 
all tabs), kt (clear the tab stop in this column), kC (clear screen or erase), kD (delete character), kL (delete 
line), kM (exit insert mode), kE (clear to end of line), kS (clear to end of screen), kl (insert character or 
enter insert mode), kA (insert line), kN (next page), kP (previous page), kF (scroll forward/down), kR 
(scroll backward/up), and kT (set a tab stop in this column). In addition, if the keypad has a 3 by 3 array of 
keys including the four arrow keys, then the other five keys can be given as Kl, K2, K3, K4, and KS. 
These keys are useful when the effects of a 3 by 3 directional pad are needed. The obsolete ko capability 
formerly used to describe "other" function keys has been completely supplanted by the above capabilities. 

The ma entry is also used to indicate arrow keys on terminals that have single-character arrow keys. It is 
obsolete but still in use in version 2 of vi which must be run on some minicomputers due to memory limita­
tions. This field is redundant with kl, kr, ku, kd, and kb. It consists of groups of two characters. In each 
group, the first character is what an arrow key sends, and the second character is the corresponding vi com­
mand. These commands are h for kl, j for kd, k for ku, I for kr, and H for kb. For example, the Mime 
would have "ma= "'HhAKfZkAXI" indicating arrow keys left CH), down ("'K), up ("'Z), and right CX). 
(There is no home key on the Mime.) 

Tabs and Initialization 

If the terminal needs to be in a special mode when running a program that uses these capabilities, the codes 
to enter and exit this mode can be given as ti and te. This arises, for example, from terminals like the Con­
cept with more than one page of memory. If the terminal has only memory-relative cursor addressing and 
not screen-relative cursor addressing, a screen-sized window must be fixed into the display for cursor 
addressing to work properly. This is also used for the Tektronix 402S, where ti sets the command charac­
ter to be the one used by termcap. 

Other capabilities include is, an initialization string for the terminal, and if, the name of a file containing 
long initialization strings. These strings are expected to set the terminal into modes consistent with the rest 
of the termcap description. They are normally sent to the terminal by the tset program each time the user 
logs in. They will be printed in the following order: is; setting tabs using ct and st; and finally if. (Ter­
minfo uses il-i2 instead of is and runs the program iP and prints i3 after the other initializations.) A pair of 
sequences that does a harder reset from a totally unknown state can be analogously given as rs and if. 
These strings are output by the reset program, which is used when the terminal gets into a wedged state. 
(Terminfo uses rl-r3 instead of rs.) Commands are normally placed in rs and rt only if they produce 
annoying effects on the screen and are not necessary when logging in. For example, the command to set 
the VTl 00 into 80-column mode would normally be part of is, but it causes an annoying glitch of the 

1 November 198S INTEGRATED SOLUTIONS 4.3 BSD 10 



TERMCAP(S) UNIX Programmer's Manual TERMCAP(5) 

screen and is not normally needed since the terminal is usually already in 80-column mode. 

If the terminal has hardware tabs, the command to advance to the next tab stop can be given as ta (usually 
"I). A ''backtab'' command which moves leftward to the previous tab stop can be given as bt. By conven­
tion, if the terminal driver modes indicate that tab stops are being expanded by the computer rather than 
being sent to the terminal, programs should not use ta or bt even if they are present, since the user may not 
have the tab stops properly set. If the terminal has hardware tabs that are initially set every n positions 
when the terminal is powered up, then the numeric parameter it is given, showing the number of positions 
between tab stops. This is normally used by the tset command to determine whether to set the driver mode 
for hardware tab expansion, and whether to set the tab stops. If the terminal has tab stops that can be saved 
in nonvolatile memory, the termcap description can assume that they are properly set. 

If there are commands to set and clear tab stops, they can be given as ct (clear all tab stops) and st (set a 
tab stop in the current column of every row). If a more complex sequence is needed to set the tabs than can 
be described by this, the sequence can be placed in is or if. 

Delays 

Certain capabilities control padding in the terminal driver. These are primarily needed by hardcopy termi­
nals and are used by the tset program to set terminal driver modes appropriately. Delays embedded in the 
capabilities er, sf, le, rr, and ta will cause the appropriate delay bits to be set in the terminal driver. If pb 
(padding baud rate) is given, these values can be ignored at baud rates below the value of pb. For 4.2BSD 
tset, the delays are given as numeric capabilities dC, dN, dB, dF, and dT instead. 

Miscellaneous 

If the terminal requires other than a NUL (zero) character as a pad, this can be given as pc. Only the first 
character of the pc string is used. 

If the terminal has commands to save and restore the position of the cursor, give them as sc and re. 

If the terminal has an extra ''status line'' that is not normally used by software, this fact can be indicated. 
If the status line is viewed as an extra line below the bottom line, then the capability hs should be given. 
Special strings to go to a position in the status line and to return from the status line can be given as ts and 
fs. (fs must leave the cursor position in the same place that it was before ts. If necessary, the sc and re 
strings can be included in ts and fs to get this effect.) The capability ts takes one parameter, which is the 
column number of the status line to which the cursor is to be moved. If escape sequences and other special 
commands such as tab work while in the status line, the flag es can be given. A string that turns off the 
status line (or otherwise erases its contents) should be given as ds. The status line is normally assumed to 
be the same width as the rest of the screen, i.e., co. If the status line is a different width (possibly because 
the terminal does not allow an entire line to be loaded), then its width in columns can be indicated with the 
numeric parameter ws. 

If the terminal can move up or down half a line, this can be indicated with bu (half-line up) and hd (half­
line down). This is primarily useful for superscripts and subscripts on hardcopy terminals. If a hardcopy 
terminal can eject to the next page (form feed), give this as ff (usually "L). 

If there is a command to repeat a given character a given number of times (to save time transmitting a large 
number of identical characters), this can be indicated with the parameterized string rp. The first parameter 
is the character to be repeated and the second is the number of times to repeat it. (This is a terminfo 
feature that is unlikely to be supported by a program that uses termcap.) 

If the terminal has a settable command character, such as the Tektronix 4025, this can be indicated with 
CC. A prototype command character is chosen which is used in all capabilities. This character is given in 
the CC capability to identify it. The following convention is supported on some UNIX systems: The 
environment is to be searched for a cc variable, and if found, all occurrences of the prototype character are 
replaced by the character in the environment variable. This use of the CC environment variable is a very 
bad idea, as it conflicts with make(l). 

1November1985 INTEGRATED SOLUTIONS 4.3 BSD 11 



TERMCAP(5) UNIX Programmer's Manual TERMCAP(S) 

Terminal descriptions that do not represent a specific kind of known terminal, such as switch, dialup, 
patch, and network, should include the gn (generic) capability so that programs can complain that they do 
not know how to talk to the terminal. (This capability does not apply to virtual terminal descriptions for 
which the escape sequences are known.) 

If the terminal uses xoff/xon (DC3/DCI) handshaking for flow control, give xo. Padding information should 
still be included so that routines can make better decisions about costs, but actual pad characters will not be 
transmitted. 

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any character transmitted, 
then this fact can be indicated with km. Otherwise, software will assume that the 8th bit is parity and it 
will usually be cleared. If strings exist to turn this "meta mode" on and off, they can be given as mm and 
mo. 

If the terminal has more lines of memory than will fit on the screen at once, the number of lines of memory 
can be indicated with Im. An explicit value of 0 indicates that the number of lines is not fixed, but that 
there is still more memory than fits on the screen. 

If the terminal is one of those supported by the UNIX system virtual terminal protocol, the terminal number 
can be given as vt. 

Media copy strings which control an auxiliary printer connected to the terminal can be given as ps: print 
the contents of the screen; pf: turn off the printer; and po: turn on the printer. When the printer is on, all 
text sent to the terminal will be sent to the printer. It is undefined whether the text is also displayed on the 
terminal screen when the printer is on. A variation pO takes one parameter and leaves the printer on for as 
many characters as the value of the parameter, then turns the printer off. The parameter should not exceed 
255. All text, including pf, is transparently passed to the printer while pO is in effect 

Strings to program function keys can be given as pk, pl, and px. Each of these strings takes two parame­
ters: the function key number to program (from 0 to 9) and the string to program it with. Function key 
numbers out of this range may program undefined keys in a terminal-dependent manner. The differences 
among the capabilities are that pk causes pressing the given key to be the same as the user typing the given 
string; pl causes the string to be executed by the terminal in local mode; and px causes the string to be 
transmitted to the computer. Unfortunately, due to lack of a definition for string parameters in termcap, 
only terminfo supports these capabilities. 

Glitches and Braindamage 

Hazeltine terminals, which do not allow ,_, characters to be displayed, should indicate bz. 

The nc capability, now obsolete, formerly indicated Datamedia terminals, which echo \r \n for carriage 
return then ignore a following linefeed. 

Terminals that ignore a linefeed immediately after an am wrap, such as the Concept, should indicate xn. 

If ce is required to get rid of standout (instead of merely writing normal text on top of it), xs should be 
given. 

Teleray terminals, where tabs tum all characters moved over to blanks, should indicate xt (destructive 
tabs). This glitch is also taken to mean that it is not possible to position the cursor on top of a "magic 
cookie'', and that to erase standout mode it is necessary to use delete and insert line. 

The Beehive Superbee, which is unable to correctly transmit the ESC or "C characters, has xb, indicating 
that the ''fl'' key is used for ESC and ''f2'' for "C. (Only certain Superbees have this problem, depending 
on the ROM.) 

Other specific terminal problems may be corrected by adding more capabilities of the form xx. 

1November1985 INTEGRATED SOLUTIONS 4.3 BSD 12 



TERMCAP(5) UNIX Programmer's Manual TERMCAP(5) 

Similar Terminals 

If there are two very similar terminals, one can be defined as being just like the other with certain excep­
tions. The string capability tc can be given with the name of the similar terminal. This capability must be 
last, and the combined length of the entries must not exceed 1024. The capabilities given before tc over­
ride those in the terminal type invoked by tc. A capability can be canceled by placing xx@ to the left of 
the tc invocation, where xx is the capability. For example, the entry 

hn I 2621-nl:ks@:ke@:tc=2621: 

defines a ''2621-nl'' that does not have the ks or ke capabilities, hence does not turn on the function key 
labels when in visual mode. This is useful for different modes for a terminal, or for different user prefer­
ences. 

AUTHOR 
William Joy 
Mark Horton added underlining and keypad support 

FILES 
/etc/termcap file containing terminal descriptions 

SEE ALSO 
ex(l), more(l), tset(l), ul(l), vi(l), curses(3X), printf(3S), term(7). 

CAVEATS AND BUGS 
Note: termcap was replaced by terminf o in UNIX System V Release 2.0. The transition will be relatively 
painless if capabilities flagged as "obsolete" are avoided. 

Lines and columns are now stored by the kernel as well as in the termcap entry. Most programs now use 
the kernel information primarily; the information in this file is used only if the kernel does not have any 
information. 

Vi allows only 256 characters for string capabilities, and the routines in termlib(3) do not check for 
overflow of this buffer. The total length of a single entry (excluding only escaped newlines) may not 
exceed 1024. 

Not all programs support all entries. 

1November1985 INTEGRATED SOLUTIONS 4.3 BSD 13 



TP(5) UNIX Programmer's Manual TP(5) 

NAME 
tp - DEC/mag tape formats 

DESCRIPTION 
Tp dumps files to and extracts files from DECtape and magtape. The formats of these tapes are the same 
except that magtapes have larger directories. 

Block zero contains a copy of a stand-alone bootstrap program. See reboot(8). 

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape. There are 192 
(resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each entry has the following 
format: 

struct { 
char pathname[32]; 
unsigned short mode; 
char uid; 
char gid; 
char unusedl; 
char size[3]; 
long modtime; 
unsigned short tapeaddr; 
char unused2[16]; 
unsigned short checksum; 

}; 

The path name entry is the path name of the file when put on the tape. If the pathname starts with a zero 
word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode, uid, gid, size and time 
modified are the same as described under i-nodes (see file system fs(5)). The tape address is the tape block 
number of the start of the contents of the file. Every file starts on a block boundary. The file occupies 
(size+511)/512 blocks of continuous tape. The checksum entry has a value such that the sum of the 32 
words of the directory entry is zero. 

Blocks above 25 (resp. 63) are available for file storage. 

A fake entry has a size of zero. 

SEE ALSO 
fs(5), tp(l) 

BUGS 
The pathname, uid, gid, and size fields are too small. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



TTYS(5) UNIX Programmer's Manual TIYS(5) 

NAME 
ttys - terminal initialization data 

DESCRIPTION 

FILES 

The ttys file contains information that is used by various routines to initialize and control the use of termi­
nal special files. This information is read with the getttyent(3) library routines. There is one line in the 
ttys file per special file. Fields are separated by tabs and/or spaces. Some fields may contain more than 
one word and should be enclosed in double quotes. Blank lines and comments can appear anywhere in the 
file; comments are delimited by '#' and new line. Unspecified fields default to null. The first field is the 
terminal's entry in the device directory, /dev. The second field of the file is the command to execute for the 
line, typically getty(8), which performs such tasks as baud-rate recognition, reading the login name, and 
calling login(l). It can be, however, any desired command, for example the start up for a window system 
terminal emulator or some other daemon process, and can contain multiple words if quoted. The third field 
is the type of terminal normally connected to that tty line, as found in the termcap(5) data base file. The 
remaining fields set flags in the ty _status entry (see getttyent(3)) or specify a window system process that 
init(8) will maintain for the terminal line. As flag values, the strings 'on' and 'off' specify whether init 
should execute the command given in the second field, while 'secure' in addition to 'on' allows root to 
login on this line. These flag fields should not be quoted The string 'window=' is followed by a quoted 
command string which init will execute before starting getty. If the line ends in a comment, the comment 
is included in the ty _comment field of the ttyent structure. 

Some examples: 

console "/etc/getty std.1200" vtlOO on secure 
ttydO "/etc/getty d1200" dial up on # 555-1234 
ttyhO "/etc/getty std.9600" hp2621-nl on #254MC 
ttyhl "/etc/getty std.9600" plug board on # John's office 
ttypO none network 
ttypl none network off 
ttyvO "/usr/new/xterm -L :O" vslOO on window="/usr/new/XvslOO O" 

The first example permits root login on the console at 1200 baud, the second allows dialup at 1200 baud 
without root login, the third and fourth allow login at 9600 baud with terminal types of "hp2621-nl" and 
"plugboard" respectively, the fifth and sixth line are examples of network pseudo ttys, which should not 
have getty enabled on them, and the last example shows a terminal emulator and window system startup 
entry. 

/etc/ttys 

SEE ALSO 
login(l), getttyent(3), gettytab(5), init(8), getty(8) 

May20, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



TYPES(5) UNIX Programmer's Manual TYPES(5) 

NAME 
types - primitive system data types 

SYNOPSIS 
#include <sys/types.h> 

DESCRIPTION 
The data types defined in the include file are used in UNIX system code; some data of these types are 
accessible to user code: 

'* types.h 6.1 83/07/29•/ 

'* *Basic system types and major/minor device constructing/busting macros. 

*' 
/* major part of a device */ 
#define major(x) ((int)(((unsigned)(x)»8)&0377)) 

/* minor part of a device */ 
#define minor(x) ((int)((x)&0377)) 

I* make a device number*/ 
#define makedev(x,y) ((dev _t)(((x)«8) I (y))) 

typedef unsigned char 
typedef unsigned short 
typedef unsigned int 
typedef unsigned fong 
typedef unsigned short 

u_char; 
u_short; 
u_int; 
u_Iong; 
ushort;/* sys III compat */ 

/•#ifdef Vax*/ 
typedef struct 
typedef struct 

int 
} label_t; 
/•#endif•/ 
typedef struct 
typedef long 
typedef char* 
typedef u _long 
typedef long 
typedef int 
typedef int 
typedef short 
typedef int 

typedef struct 

_physadr { int r[l]; } •physadr; 
label_t{ 
va1[14]; 

_quad {long val[2];} quad; 
daddr_t; 
caddr_t; 
ino_t; 
swblk_t; 
size_t; 
time_t; 
dev_t; 
off_t; 

fd_set {int fds_bits[l];} fd_set; 

The form daddr _tis used for disk addresses except in an i-node on disk, see fs(5). Times are encoded in 
seconds since 00:00:00 GMT, January 1, 1970. The major and minor parts of a device code specify kind 
and unit number of a device and are installation-dependent. Offsets are measured in bytes from the begin­
ning of a file. The label _t variables are used to save the processor state while another process is running. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



· TYPES(S) UNIX Programmer's Manual TYPES(S) 

SEE ALSO 
fs(S), time(3), lseek(2), adb(l) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 



TZFILE(S) UNIX Programmer's Manual 1ZFILE(5) 

NAME 
tzfile - time zone information 

SYNOPSIS 
#include <tzfile.h> 

DESCRIPTION 
The time zone information files used by tzset(3) begin with bytes reserved for future use, followed by three 
four-byte values of type long, written in a ''standard'' byte order (the high-order byte of the value is writ­
ten first). These values are, in order: 

tzh timecnt 
The number of "transition times" for which data is stored in the file. 

tzh _ typecnt 
The number of "local time types" for which data is stored in the file (must not be zero). 

tzh charcnt 
The number of characters of "time zone abbreviation strings" stored in the file. 

The above header is followed by tzh _timecnt four-byte values of type long, sorted in ascending order. 
These values are written in "standard" byte order. Each is used as a transition time (as returned by 
time(2)) at which the rules for computing local time change. Next come tzh timecnt one-byte values of 
type unsigned char; each one tells which of the different types of ''local time'' types described in the file 
is associated with the same-indexed transition time. These values serve as indices into an array of ttinfo 
structures that appears next in the file; these structures are defined as follows: 

struct ttinfo { 
long tt_gmtoff; 
int tt_isdst; 
unsigned int tt_ abbrind; 

}; 

Each structure is written as a four-byte value for tt _gmtoff of type long, in a standard byte order, followed 
by a one-byte value for tt_isdst and a one-byte value for tt_abbrind. In each structure, tt_gmtoff gives the 
number of seconds to be added to GMT, tt _isdst tells whether tm _isdst should be set by localtime (3) and 
tt _ abbrind serves as an index into the array of time zone abbreviation characters that follow the ttinf o 
structure(s) in the file. 

Localtime uses the first standard-time ttinfo structure in the file (or simply the first ttinfo structure in the 
absence of a standard-time structure) if either tzh timecnt is zero or the time argument is less than the first 
transition time recorded in the file. -

SEE ALSO 
ctime(3) 

INTEGRATED SOLUTIONS 4.3 BSD 1 



UTMP(5) UNIX Programmer's Manual UTMP(5) 

NAME 
utmp, wtmp- login records 

SYNOPSIS 
#include <utmp.h> 

DESCRIPTION 

FILES 

The utmp file records information about who is currently using the system. The file is a sequence of 
entries with the following structure declared in the include file: 

I* utrnp.h 4.2 83/05/22•/ 

I* 
* Structure of utmp and wtmp files. 

* * Assuming the number 8 is unwise. 
*/ 

struct utmp { 
char I• tty name •/ 

I* user id*/ char 
char 
long 

ut_line[8]; 
ut_ narne[8]; 
ut_host[16]; 
ut_tirne; 

I* host name, if remote •/ 
I* time on •I 

}; 

This structure gives the name of the special file associated with the user's terminal, the user's login name, 
and the time of the login in the form of time(3C). 

The wtmp file records all logins and logouts. A null user name indicates a logout on the associated termi­
nal. Furthermore, the terminal name ,_, indicates that the system was rebooted at the indicated time; the 
adjacent pair of entries with terminal names 'I' and '{' indicate the system-maintained time just before and 
just after a date command has changed the system's idea of the time. 

Wtmp is maintained by login(l) and init(8). Neither of these programs creates the file, so if it is removed 
record-keeping is turned off. It is summarized by ac(8). 

/etc/utmp 
/usr/adm/wtrnp 

SEE ALSO 
login(l), init(8), who(l), ac(8) 

June 23, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



UUENCODE ( 5) UNIX Programmer's Manual UUENCODE ( 5) 

NAME 
uuencode - format of an encoded uuencode file 

DESCRIPTION 
Files output by uuencode(lC) consist of a header line, followed by a number of body lines, and a trailer 
line. Uudecode(lC) will ignore any lines preceding the header or following the trailer. Lines preceding a 
header must not, of course, look like a header. 

The header line is distinguished by having the first 6 characters ''begin''. The word begin is followed by a 
mode (in octal), and a string which names the remote file. A space separates the three items in the header 
line. 

The body consists of a number of lines, each at most 62 characters long (including the trailing newline). 
These consist of a character count, followed by encoded characters, followed by a newline. The character 
count is a single printing character, and represents an integer, the number of bytes the rest of the line 
represents. Such integers are always in the range from 0 to 63 and can be determined by subtracting the 
character space (octal 40) from the character. 

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a space to make the 
characters printing. The last line may be shorter than the normal 45 bytes. If the size is not a multiple of 3, 
this fact can be determined by the value of the count on the last line. Extra garbage will be included to 
make the character count a multiple of 4. The body is terminated by a line with a count of zero. This line 
consists of one ASCII space. 

The trailer line consists of "end" on a line by itself. 

SEE ALSO 
uuencode(lC), uudecode(lC), uusend(lC), uucp(lC), mail(l) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



VFONT(5) UNIX Programmer's Manual VFONT(5) 

NAME 
vfont - font formats for the Benson-Varian or Versatec 

SYNOPSIS 
/usr/lib/vfont/• 

DESCRIPTION 

FILES 

The fonts for the printer/plotters have the following format. Each file contains a header, an array of 256 
character description structures, and then the bit maps for the characters themselves. The header has the 
following format: 

struct header { 
short magic; 
unsigned short size; 
short maxx; 
short maxy; 
short xtnd; 

} header; 

The magic number is 0436 (octal). The maxx, maxy, and xtnd fields are not used at the current time. Maxx 
and maxy are intended to be the maximum horizontal and vertical size of any glyph in the font, in raster 
lines. The size is the size of the bit maps for the characters in bytes. Before the maps for the characters is 
an array of 256 structures for each of the possible characters in the font Each element of the array has the 
form: 

struct dispatch { 
unsigned short addr; 
short nbytes; 
char up; 
char down; 
char left; 
char right; 
short width; 

}; 

The nbytes field is nonzero for characters which actually exist. For such characters, the addr field is an 
offset into the rest of the file where the data for that character begins. There are up+down rows of data for 
each character, each of which has left+right bits, rounded up to a number of bytes. The width field is not 
used by vcat, although it is to make width tables for troff. It represents the logical width of the glyph, in 
raster lines, and shows where the base point of the next glyph would be. 

/usr/lib/vfont/• 

SEE ALSO 
troff(l), pti(l), vrontinfo(l) 

May 13, 1986 INTEGRATED SOLUTIONS 4.3 BSD 1 



VGRINDEFS ( 5) UNIX Programmer's Manual VGRINDEFS ( 5) 

NAME 
vgrindefs - vgrind' s language definition data base 

SYNOPSIS 
/usr/Iib/vgrindefs 

DESCRIPTION 

FIELDS 

Vgrindefs contains all language definitions for vgrind. The data base is very similar to termcap(S). 

The following table names and describes each field 

Name Type Description 
pb str regular expression for start of a procedure 
bb str regular expression for start of a lexical block 
be str regular expression for the end of a lexical block 
cb str regular expression for the start of a comment 
ce str regular expression for the end of a comment 
sb str regular expression for the start of a string 
se str regular expression for the end of a string 
lb str regular expression for the start of a character constant 
le str regular expression for the end of a character constant 
ti bool present means procedures are only defined at the top 

lexical level 
oc bool present means upper and lower case are equivalent 
kw str a list of keywords separated by spaces 

Example 

The following entry, which describes the C language, is typical of a language entry. 

Cle: :pb="\d?•?\d?\p\d??):bb={ :be= }:cb=/•:ce=•/:sb=" :se=\e" :\ 
:lb=' :le=\e' :ti:\ 
:kw=asm auto break case char continue default do double else enum\ 
extern float for fortran goto if int long register return short\ 
sizeof static struct switch typedef union unsigned while #define\ 
#else #endif #if #ifdef #ifndef #include #undef # define else endit\ 
if if def ifndef include undef: 

Note that the first field is just the language name (and any variants of it). Thus the C language could be 
specified to vgrind(l) as "c" or "C". 

Entries may continue onto multiple lines by giving a \ as the last character of a line. Capabilities in vgrin­
defs are of two types: Boolean capabilities which indicate that the language has some particular feature 
and string capabilities which give a regular expression or keyword list. 

REGULAR EXPRESSIONS 

Vgrindefs uses regular expression which are very similar to those of ex(l) and lex(l). The characters '"', 
'$', ':' and'\' are reserved characters and must be "quoted" with a preceding\ if they are to be included as 
normal characters. The metasymbols and their meanings are: 

$ the end of a line 

the beginning of a line 

\d a delimiter (space, tab, newline, start of line) 

\a matches any string of symbols (like.* in lex) 

\p matches any alphanumeric name. In a procedure definition (pb) the string that matches this sym­
bol is used as the procedure name. 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 1 



VGRINDEFS ( 5) UNIX Programmer's Manual VGRINDEFS ( 5) 

FILES 

() grouping 

alternation 

? last item is optional 

\e preceding any string means that the string will not match an input string if the input string is pre­
ceded by an escape character (\). This is typically used for languages (like C) which can include 
the string delimiter in a string b escaping it. 

Unlike other regular expressions in the system, these match words and not characters. Hence something 
like" (tramplsteamer)fiies?" would match "tramp", "steamer", "trampflies", or "steamerflies". 

KEYWORD LIST 

The keyword list is just a list of keywords in the language separated by spaces. If the "oc" boolean is 
specified, indicating that upper and lower case are equivalent, then all the keywords should be specified in 
lower case. 

/usr/lib/vgrinclefs file containing terminal descriptions 

SEE ALSO 
vgrind( 1 ), troff( 1) 

May 15, 1985 INTEGRATED SOLUTIONS 4.3 BSD 2 





II Integrated Solutions 

H DOCUMENTATION COMMENTS 

AN NBI 
COMPANY 

Please take a minute to comment on the accuracy and completeness of this manual. Your assistance will help us 
to better identify and respond to specific documentation issues. If necessary, you may attach an additional page 
with comments. Thank you in advance for your cooperation. 

I Manual Title: UNIX Programmer's Reference Manual (PRM) Part Number: 490145 Rev. D 

Name: 

Company: ______________ _ 

Address: 

City: 

1. Please rate this manual for the following: 

Poor Fair 

Clarity 
Completeness 
Organization 
Technical Content/ Accuracy 
Readability 

Please comment: 

0 
0 
0 
0 
0 

0 
D 
D 
D 
D 

2. Does this manual contain enough examples and figures? 
YesD NoD 

Please comment: 

3. Is any information missing from this manual? 
YesD NoD 

Please comment: 

4. Is this manual adequate for your purposes? 
Yeso Noo 

Please comment on how this manual can be improved: 

Title: 

Phone: ( ) ______ _ 

State: Zip Code: _____ _ 

Good Excellent 

D D 
D D 
D D 
D D 
D D 



Fold Down First F -------------------------------------------· 

BUSINESS REPLY MAIL 
First-Class Mail Permit No. 7 628 San Jose, California 9 5131 

Postage will be paid by addressee 

• H 
AnNBI 

Comoany 

Integrated Solutions 
A TIN: Technical Publications Manager 
1140 Ringwood Court 
San Jose, CA 95131 

111111 NO POSTAGE 
NECESSARY 
IF MAil..ED 

IN THE 
UNITED ST A TES 

______________________ _, ____________________ _ 
old Up Second 

Staple Here 


