
UNIX User's Su~--"plementary Documents

(USD) "'···

:, · 4e3 Ber~~ley- Software Distribution
vr::tualYAX~ll Version

490144 Rev. A

July, 1987

lnteg.:rated ~9lutions
1140. Ring~ Court
San Jose, CA 95131

(4o8) 943'-1902 '

Copyright 1979, 1980, 1983, 1986 Regents of the University of
CaU.fomia. Pemll"ion ·:o copy !hese dccurnents or ~Y · p<'rtioo thereof.
as necessary for licensed use ·of the software is gnn~ to licensoes of
this software, provided this copyright notice and StaeJRent cf
permission are included.

Documents USD:l, 2, 3, S, 6, 12, 13, 18, 19, 20, 24, 2S, 26, 27,_ 28, 30,
and 32 are copyright 1979, AT&T Bell Laboratories, Incorporated.
Holders ofUNIX™t32V, System m, or System V soltware licenst;S are'·
permitted to copy these documents, or :;.;,.~y portion of the. .. ···" ~uy ·
for licensed u,se of the software, provided)his. copyri? and
statement of permission are included.: .

Documents USD:8, 9, 10, 11, 17, and 31 are part of the user CQntrit d
software.

This manual reflects system enhancements made at B~eley. ~
sponsored in pan by the Defense Advanced Research Projects Agency .
(DoD), Arp.i Order No. 4871 monito~ ·by the Nav~ Electronics
Systems Command under contract No~ N000j9-84-C-0089. The views.
and conclusions contained in these documents are those of the authors
and should not be interpreted as representing official policies, either
expressed or implied, of the Defense Re~~dt Projeco; Agency or of the .
US Government. .,·

.·,., ,·

~ '

UNIX is a registered trademark of AT&T in ~ USA and. other
countries. ~ · ~1 -

4.2BSD and 4.3BSD we.re developed by the Regents of the Univ.-&~ty
of California (Berke_ley), El~ai9UJ~i~i· .. ~ ... : ~ C~tf'.r _Sciences
Departments.· .
DEC, VAX, and ... LSI-11 are trademarks of Digital £quipment

· Corporation. · · '' ·· · · · · , ·
NFS (the Sun Netw<d File System) is a product created and developed
by Sun Micrmystems, Inc. NFS is a trademark of Sun Microsystems,
Inc.

\',_ .
! ._ .• ·

. ~2\.J ('

UNIX User's Supplementary Documents (USD)

4.3 Berkeley Software Distribution, Virtual v AX-11 Version

February, 1986

This volume cor.&::im OOcWla:.;~u wh!;.:t i::w;e.-:.1eut cm manual ~ges in The Unix User's Reference
Manual fer the Vh -.ual ·/AX.,, 11 ·1eri~ of Jie :;y;.;~11'tit ~ distrib~ted by U .C. Berk~iey, antl Volumes 2a and
2b as provided by ~ell L~.~.-~~.

Getting Started

Unix for Beginners - Second :t:.dition USD:l

An introducri.Qn fl> th~ mnu b~ic vse.~ llf the system~
Learn - Computer--Ai~~tbro9!-1r!:tttlou "oo ... JN1X (~nd P/.liticn) USD:2

Describes a cvr ' ,deect instructloo · Pro&T•-n tlaat walks new uscIS ~.rough J'te basics of
files, the editor, ..ocument prepararation sofr;i&a'e.

Basic Utilities
c.. ~'

An Introduction to " UNIX Shell USD:3

Steve Boumt- ~ introduction to the capabilities of sh, a command interpreter especially popular
for writing shell scripts.

An Introduction to a~·; c d~li USD:4

This introduction to csn, (a commanci interpreter popular for intt.."l'acti\e work) ~cribes many
commonly used 'liNIX commands, assumes little prior knowledge of UNI;{, c.nd has a glossary
useful for beginners.

DC - An InteractiYP. f'PSk Ca1.c•1,.a"lv.' USD:S

A super HP ·~td~.cufaIDt. if yoa •o no~ ?:if. ~ .. :mti&g point

BC - An Arbitrary Precision Desk-Calculatm' Language USD:6

A front end for DC that provides infix notation, control flow, and built-in functions.

Communicatmg with the World

Mail Reference Mr.aw.~~
;}I

USD:7

Complete detc.r . .; 011 <>00 of~~ 14..:;~~'-i& ::~'1r;~J reading yow: mail.

The Rand MH Message Hm•dling Sy$tem USD:8

This system f<r managing your computer mail uses lots of small programs~ instead of one large
one.

How to Read the Ne,wc1k New! USD:9

Describes how news works (generally) and some alternatives for reading it, readnews and
vnews.

How to Use USENET Effecth·ely USD:lO

USD Contents ..

De~ribes the customs, protocols, and etiquette of network news, plus an~~~ to ~e CUX,rftjo{(]1 111~ ,;;
most frequendy asked by newcomers to the network. .. ·· · . ,

·c.,;.. • .•. ._. "r:'.~'C'.')?~
Notesfile Reference Manual · · USD:ll

This feature-packed system fm- maintaining coinputer-aided .. diScussion grOups ·is ·also useful , .
for reading netnews. ·· · ·HY ·

Text Ed.itin1

A Tut<xial Introduction to the Unix Text Editor

An ~Y. ~ay to get started with the line editor, et!" ..
Advanced Editing on Unix

The next step.

Edit: A T~~al

·USD:12

USD:13

USDi14

An inttoduction to edit, a line-aiented editm which is a Version of ex,· assuming no preVi0us
knowledge of UNIX or text editing. · J · ·, .,

An Introduction to Display Editing with V' USD:lS

The document to learn to use the vi screen editor.

Ex Reference Manual (Version 3.7) USD:16

The final reference for the ex editm, which underlies both edit and vi.

Jove Manual for UNIX Users USD:17
'"

Jove is a small, self-documenting, customizable display editor, based on EMACS. A plausible
alternative to vi.) ~·•. · '-1 •• ·

•'j,' ·, -•;..

SED - A Non-interactive Text Editor USD: 18

Describes a one-pass variant of ed useful as a filter for process~g large files~.

A WK - A Pattern Scanning and Processing Language (Seco~d ~non) '
;;'; ":'~~ HOY

USD:l9

A program for data selection and transformation.

Document Preparation

Typing Documents on UNIX: Using the -ms Macros with Troff and Nroff USD:20

Describes and gives examples of the basic use of the typesetting tools and ''-ms'', a frequently
used package of formatting requests that make it easier to lay out most documents.

A Revised Version of-ms USD:21

A brief description of the Berkeley revisions made to the -ms formatting macros for nroff and
troff.

Writing Papers with nroff using -me

Another popular macro package for nroff.

-me Reference Manual

The final word on -me.

NROFF/TROFF User's Manual

Extremely detailed information about these document formatting programs.

A TROFF Tutorial

USD:22

USD:23

USD:24

USD:25

An introduction to the most basic uses of troff for those· who really want to know such things,
or want to write their own macros.

A Sysu.MJj, • . y~etth'lg Mathematics

pe:;~d~ -.;qn, an easy-to-learn language for high-quality mathematical type~tting.

Typesetting Mathematics - User's Guide (Second Edition)

More details about how to use eqn.

Tbl - A Progra.n tc Format Tables

A program for eaily typesetting tabul• material.

USO Contents

lJSD:26

USD:27

USD:28

Refer - A Bibliography System USD:29

An introduction to one set of tools used to maintain bibliographic databases. The major pk'O

grar,lt refer, is used to automatically retrieve and format the references based on ckx:um..: .. at
citations.

Some Applications of Inverted Indexes on the UNIX System

Mike Lesk's paper ~~.hes the rtfllr ,~.a FI! tf, somewhat l~er contex~,

BIB - A Progr~ for Formatting Biblioglaphies

This is. an alternative to refer for expanding citations in documenu.
Writing Tools - The STYLE and DICTION Prognutw

: 7h.ese are progr~s which can help you understand and improve your writing sty le.

Am~ments

USD:31

USD:32

A Guide tO the Dungeons of Doom USD:33

An introduction to the popul• ganx; of rogiu, a fantasy game which is one of the "igg:st
known users of VAX cycles.

Star Trek USD:34

,,,YqJl are the Captain of the Starship F t~'l>riJe. Wipe out the Klingons and save the Federa-
'·tion.

UNIX For Beginners - Second Edition

Brian W. Kernighan

(Updated for 4.3BSD by Marie Seiden)

ABSTRACT

This paper is meant to help new users get started on the UNIXt operating system. It
includes:

• basics needed for day-to-day use of the system - typing commands, correcting typ
ing mistakes, logging in and out, mail, inter-terminal communication, the file system,
printing files, redirecting 1/0, pipes, and the shelL

• document preparation - a brief discussion of the major formatting programs and
macro packages, hints on preparing documents, and capsule descriptions of some sup
porting software.

• UNIX programming - using the editor, programming the shell, programming in C,
other languages and tools.

• An annotated UNIX bibliography.

INTRODUCTION

From the user's point of view, the UNIX operating
system is easy to learn and use, and presents few of the
usual impediments to getting the job done. It is hard,
however, for the beginner to know where to start, and
how to make the best use of the facilities available.
The purpose of this introduction is to help new users
get used to the main ideas of the UNIX system and start
making effective use of it quickly.

You should have a couple of other documents with
you for easy reference as you read this one. The most
important is TM UNIX Programme's Manual; it's
often easier to tell you to read about something in the
manual than to repeat its contents here. The other use
ful document is A Tutorial lntrodMction to tM UNIX
Text Editor, which will tell you how to use the editor to
get text - programs, data, documents - into the com
puter.

A word of warning: the UNIX system has become
quite popular, and there are several major variants in
widespread use. Of course details also change with
time. So although the basic structure of UNIX and how
to use it is common to all versions, there will certainly
be a few things which are different on your system
from what is described here. We have tried to minim-

t tfl'll1X is a trademark of Bell Laboratories.

ize the problem, but be aware of it In cases of doubt,
this paper describes Version 7 UNIX.

This paper has five sections:

1. Getting Started: How to log in, how to type, what
to do about mistakes in typing, how to log out.
Some of this is dependent on which system you
log into (phone numbers, for example) and what
terminal you use, so this section must necessarily
be supplemented by local information.

2. Day-to-day Use: Things you need every day to
use the system effectively: generally useful com
mands; the file system.

3. Document Preparation: Preparing manuscripts is
one of the most common uses for UNIX systems.
This section contains advice, but not extensive
instructions on any of the formatting tools.

4. Writing Programs: UNIX is an excellent system
for developing programs. This section talks about
some of the tools, but again is not a tutorial in any
of the programming languages provided by the
system.

5. A UNIX Reading List. An annotated bibliography
of documents that new users should be aware of.

USD:l-2

I. GEITING STARTED

Logglngln

You must have a UNIX login name, which you can
get from whoever administers yo1D' system. You also
need to know the phone number, unleu your system
uses permanently connected terminala. The UNIX sys
tem is capable of dealing with a wide vuiety of termi
nals: Terminet 300's; Execuport, TI and similar port
ables; video (CRT) terminall lite the HP2640, etc.;
high-priced graphics terminals lite the Tektronix 4014;
plotting terminals like thole from GSI and DASI; and
even the venerable Teletype in its various forms. But
note: UNIX ii strongly oriented towarda devica with
lower c~. If your terminal produces only upper case
(e.g., model 33 Teletype, some video and portable ter
minals), life will be so difficult that you should look for
another terminal.

Be sure to set the switches appropriately on your
device. Switches that might need to be adjusted
include the speed, upper/lower case mode, full duplex,
even parity, and any others that local wisdom advises.
Establish a connection using whatever magic is needed
for your terminal; this may involve dialing a telephone
call or merely ftipping a switch. In either case, UNIX
should type "login:" at you. If it types garbage, you
may be at the wrong speed; check the switches. If that
fails, push the "break" or "intenupt" key a few times,
slowly. If that fails to produce a login message, consult
a guru.

When you get a login: message, type your login
name in lower case. Follow it by a RETURN; the sys
tem will not do anything until you type a RETIJRN. If a
password is required, you will be asked for it, and (if
possible) printing will be turned off while you type it.
Don't forget RETURN.

The culmination of your login efforts is a ''prompt
character," a single character that indicates that the
system is ready to accept commands from you. The
prompt character is usually a dollar sign $ or a percent
sign 91>. (You may also get a message of the day just
before the prompt character, or a notification that you
have mail.)

Typing Commands
Once you've seen the prompt character, you can

type commands, which are requests that the system do
something. Try typing

date

followed by RETURN. You should get back something
like

Mon Jan 1614:17:10 EST 1978

Don't forget the RETURN after the command, or noth
ing will happen. If you think you're being ignored,
type a RETURN; something should happen. RE11JRN
won't be mentioned again, but don't forget it- it has

UNIX For Beginners

to be thete at the end of each line.

Another command you might try is who, which
tells you everyone who is cwrently logged in:

who

gives something like

mb ttyOl
ski tty05
1am tty11

Jan 1' 09:11
Jan 1' 09:33
Jan 1' 13:07

The time is when the user logged in; "ttyxx" is the
system's idea of what terminal the user is on.

If you make a mistake typing the command name,
and refer to a non~xistent command, you will be told.
For example, if you type

whom

you will be told

whom: not round

Of course, if you inadvertently type the name of some
other command, it will run, with more or less mysteri
ous iesults.

Strange Terminal Behavior

Sometimes you can get into a state where your ter
minal acts strangely. For example, each letter may be
typed twice, or the RETIJRN may not cause a line feed
or a return to the left margin. You can often fix this by
logging out and logging back in. t
Or you can read the description of the command stty in
section 1 of the manual. To get intelligent treatment of
tab characters (which are much used in UNIX) if your
terminal doesn't have tabs, type the command

stty-tabs

and the system will convert each tab into the right
number of blanks for you. If your terminal does have
computer-settable tabs, the command tabs will set the
stops correctly for you.

Mktakes In Typing

If you make a typing mistake, and sec it befoie
RETURN has been typed, there are two ways to recover.
The sharJH:haracter # erases the last character typed; in
fact successive uses of # erase characters back to the
beginning of the line (but not beyond). So if you type
badly, you can correct as you go:

t In BerDley Unil, the command "reaet<eoatrol-j>" will often
reaet a tmmna1 apparently in a stnnae state because a fWJ.screen
editor c:rasbed.

UNIX For Beginners

dd#atte##e

is the wne as date.*

The at-sign @ erases all of the characten typed so
far on the current input line, so if the line is irretriev
ably fouled up, type an@ and start the line over.

What if you must enter a sharp or at-sign as part of
the text? If you precede either# or @ by a backslash\
it loses its erase meaning. So to enter a sharp or at-sign
in something, type\# or\@. The system will always
echo a newline at you after your at-sign, even if pre
ceded by a backslash. Don't worry - the at-sign bu
been recorded.

To erase a backslash, you have to type two shup1
or two at-signs, as in '##. The backslash ii used exten
sively in UNIX to indicate that the following ~haracter
is in some way special.

Read-ahead

UNIX has full read-ahead, which means that you
can type as fast as you want, whenever you want, even
when some command is typing at you. If you type dur
ing output, your input characten will appear intermixed
with the output characters, but they will be stored away
and interpreted in the correct order. So you can type
several commands one after another without waiting
for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the charac
ter "DEL" (perhaps called "delete" or "rubout" on
your terminal). The "interrupt" or "break" key found
on most terminals can also be used. t In a few pro
grams, like the text editor, DEL stops whatever the pro
gram is doing but leaves you in that program. Hanging
up the phone will stop most programs.*

Logging Out

The easiest way to log out ii to hang up the phone.
You can also type

login

and let someone else use the terminal you were on.• It
is usually not sufficient just to tum off the terminal.
Most UNIX systems do not use a time-out mechanism,
so you'll be there forever unless you hang up.

* Many illltallltiona let the eme cbancter for display termiuJa
to the delete or backspace key. "atty all" tell• yc:u wbll it ICtually
ii.
t In Berkeley Unix, "control-c• ii the UIUll way to atop
prognuna. "atty all" tel1I you the value of your "Uatr" key.
* If you uae the c lhell, prop11111 running in the backpowld
continue Nmting even if you ban& up.
• "control-d" and "logout" aie other alternative&.

USD:l-3

Mall

When you log in, you may sometimes get the mes
sage

You have mall.

UNIX provides a postal system so you can comm.uni~
cate with other usen of the system. To read your mail,
type the command

mall

Your mail will be printed, one message at a time, most
recent message first.* After each message, mall waits
for you to say what to do with iL The two basic
responses are d, which deletes the message, and
RB'IURN, which does not (so it will still be there the
next time you read your mailbox). Other responses are
described in the manual. (Earlier venions of mall do
not process one message at a time, but are otherwise
similar.)

How do you send mail to someone else? Suppose
it is to go to "joe" (assuming "joe" is someone's
login name). The easiest way is this:

mall Joe
now ty~ in tM tal of tM letter
on tLf many linu as you like ...
After tM la.fl liM of tM letter
type the character ''control-tr'.
that i.f, ltold down "control" and type
a letto' ''d''.

And that's iL The "control-d" sequence, often called
"EOF" for end-of-file, is used throughout the system
to mark the end of input from a terminal, so you might
as well get used to il

For practice, send mail to yourself. (fhis isn't as
strange as it might sound - mail to oneself is a handy
reminder mechanism.)

There are other ways to send mail - you can send
a previously prepared letter, and you can mail to a
number of people all at once. For more details see
mall(l). (The notation mall(l) means the command
mall in section 1 of the UNIX Programmer's Manual.)

Writln& to other userst

At some point, out pf the blue will come a mes
sage like

Messqe from Joe tty07-.

accompanied by a startling beep. It means that Joe
wants to talk to you, but unless you take explicit action
you won't be able to talk back. To respond, type the

* The Berbley IDlil propm lilts the headm c:I aome number
of umad piecs of IDlil ill the older of their receipt.
t Although "write" worb on Berbley UNIX, there ii a rmch
Dicer way c:I commmic:lliJla uama di1play-terminall - "talk"
splita the screen into two ledio1111 and bdh of you can type
sinmltaneoualy (aee talk(l)).

USD:l-4

command

write Joe
This establishes a two-way communication path. Now
whatever Joe types on his terminal will appear on yours
and vice versa. The path is slow, rather lite talking to
the moon. (If you are in the middle of something, you
have to get to a state where you can type a command.
Normally, whatever program you are l'UllDiDa h• to
terminate or be terminated If you 're editing, you can
escape temporarily from the edit.er - read the editor
tutorial.)

A protocol is needed to keep what you type from
getting garbled up with what Joe typcl. Typically it's
like this:

Joe types write smith and waits.
Smith types write Joe and waits.
Joe now types his message (as many lines as he
likes). When he's ready for a reply, he signals
it by typing (o), which stands for "over".
Now Smith types a reply, also terminated by
(o).
This cycle repeats until someone gets tired; he
then signals his intent to quit with (oo), for
''over and out''.
To terminate the conversation, each side must
type a ''control-ct" character alone on a line.
(''Delete'' also works.) When the other person
types his 11 control-ct", you will get the message
EOF on your terminal.

If you write to someone who isn't logged in, or
who doesn't want to be disturbed, you'll be told. If the
target is logged in but doesn't answer after a decent
interval, simply type "control-ct".

On-llne Manual

The UNIX ProgrtllNllU' s MQIUIQJ is typically kept
on-line. If you get stuck on something, and can't find
an expert to assist you, you can print on your terminal
some manual section that might help. This is also use
ful for getting the most up-to-date information on a
command. To print a manual section, type "man
command-name". Thus to read up on the who com
mand, type

man who

and, of course,

man man

tells all about the man command.

Computer Aided Instrucdon

Your UNIX system may have available a program
called learn, which provides computer aided instruc
tion on the file system and basic commands, the editor,
document preparation, and even C programming. Try
typing the command

UNIX For Beginners

learn

If learn exists on your system, it will tell you what to
do from there.

II. DAY -TO-DAY USE

Creatlna Flies- The Editor

If you have to type a paper or a letter or a pro
gram, how do you get the information stored in the
machine? Most of theae tasks are done with the UNIX
•'text editor'' ed. Since eel is thoroughly documented
in ed(l) and explained in A TMIOrial lntrodllction to tM
UNIX Tat Editor, we won't spend any time here
deteribing how to use it. All we want it for right now
is to make aome ftlu. (A file is just a collection of
information stored in the machine, a simplistic but ade
quate definition.)

To create a file called Junk with some text in it, do
the following:

eel Junk (invokes the text editor)
a (command to "ed", to add text)
nowtyp~in

whatever text you want ...
(signals the end or adding text)

The • '.'' that signals the encl of adding text must be at
the beginning of a line by itself. Don't forget it, for
until it is typed, no other eel commands will be recog
nized - everything you type will be treated as text to
be added.

At this point you can do various editing operations
on the text you typed in, such as correcting spelling
mistakes, rearranging paragraphs and the like. Finally,
you must write the information you have typed into a
file with the editor command w:

w

eel will respond with the number of characten it wrote
into the file Junk.

Until the w command, nothing is stored per
manently, so if you hang up and go home the informa
tion is lost. t But after w the information is there per
manently; you can re-access it any time by typing

eel Junk
Type a q command to quit the editor. (If you try to quit
without writing, eel will print a ? to remind you. A
second q gets you out regardless.)

Now create a second file called temp in the same
manner. You should now have two files, Junk and
temp.

t Thia ii not strictly tn.e - if you hug up while editing. the
data you were WOttin& on ii saved in a file called ed.bup, whicb
you can continue with at your DtJlt seaaion.

UNIX For Beginners

What files are out then?

The Is (for •'list'') command lists the names (not
contents) of any of the files that UNIX knows about. If
you type

Is

the response will be

Junk
temp

which are indeed the two files just aeatecl. The namea
are sorted into alphabetical order automatically, but
other variations are possible. For example, the com
mand

ls-t

causes the files to be listed in the order in which they
were last changed, most recent first. The -I option
gives a 1110'l1g" listing:

ls-I

will produce something like

-rw-rw-rw- 1 bwk 41Jul22 2:56 Junk
-rw-rw-rw- 1 bwk 78 Jul 22 2:57 temp

The date and time are of the last change to the file. The
41 and 78 are the number of characters (which should
agree with the numbers you got from eel). bwk is the
owner of the file, that is, the person who created it. The
-rw-rw-rw..;. tells who has permission to read and
write the file, in this case everyone.

Options can be combined: Is -It gives the same
thing as Is -1, but sorted into time order. You can also
name the files you 're interested in, and Is will list the
information about them only. More details can be
found in ls(l).

The use of optional arguments that begin with a
minus sign, like -t and -It, is a common convention for
UNIX programs. In general, if a program accepts such
optional arguments, they precede any filename argu
ments. It is also vital that you separate the various
arguments with spaces: ls-I is not the same as Is -L

Printing Flies

Now that you've got a file of text, how do you
print it so people can look at it? There are a host of
programs that do that, probably more than are needed.

One simple thing is to use the editor, since print
ing is often done just before making changes anyway.
You can say

edJunk
1,.Sp

ed will reply with the count of the characters in Junk
and then print all the lines in the file. After you learn
how to use the editor, you can be selective about the
parts you print

USD:l-S

There are times when it's not feasible to u.se the
edit« for printing. For example, there is a limit OD

how big a file eel can handle (several thousand lines).
Secondly, it will only print one file at a time, and some
times you want to print several, one after another. So
here are a couple of alternatives.

Fint is cat, the simplest of all the printing pro
grams. cat simply prints OD the terminal the contents
of all the files named in a list. Thus

cat junk

prints one file, and

cat Junk temp

prints two. The files are simply concatenated (hence
the name ••cat'') onto the terminal.

pr produces formatted printouts of files. As with
cat, pr prints all the files named in a list. The differ
ence is that it produces headings with date, time, page
number and file name at the top of each page, and extra
lines to skip over the fold in the paper. Thus,

pr Junk temp

will print Junk neatly, then skip to the top of a new
page and print temp neatly.

pr can also produce multi~lumn output:

pr-3Junk

prints Junk in 3-column format You can use any rea
sonable number in place of '•3'' and pr will do its best.
pr has other capabilities as well; see pr(l).

It should be noted that pr is not a formatting pro
gram in the sense of shuffling lines around and justify
ing margins. The true formatters are nroff and troff,
which we will get to in the section on document
preparation.

There are also programs that print files on a high
speed printer. Look in your manual under opr and Jpr.
Which to use depends on what equipment is attached to
your machine.

Shufftln1 Flies About

Now that you have some files in the file system
and some experience in printing them, you can try
bigger things. For example, you can move a file from
one place to another (which amounts to giving it a new
name), like this:

mv Junk precious

This means that what used to be "junk" is now 11pre
cious". If you do an Is command now, you will get

precious
temp

Beware that if you move a file to another one that
already exists, the already existing contents are lost for
ever.

USD:l-6

If you want to mate a copy of a file (that is, to
have two versions of something), you can 111e the cp
command:

cp precious tempi

makes a duplicate copy of preclom in tempL

Finally, when you get tired of creating IDd moving
files, there is a command to remove files from the file
system, called rm.

rm temp tempi

will remove both of the files named.

You will get a warning meuage if one of the
named files wasn't there, but otherwile rm, like most
UNIX commands, does its wort silendy. Tbae is DO

prompting or chatter, and error messages are occasion
ally curt. This terseness is sometimes disconcerting to
newcomers, but experienced users find it desirable.

What's In a Filename

So far we have used filenames without ever saying
what's a legal name, so it's time for a couple of rules.
First, filenames are limited to 14 characters, which is
enough to be descriptive. t Second, although you can
use almost any character in a filename, common sense
says you should stick to ones that are visible, and that
you should probably avoid characters that might be
used with other meanings. We have already seen, for
example, that in the Is command, Is -t means to list in
time order. So if you had a file whose name wu -t,
you would have a tough time listing it by name.
Besides the minus sign, there are other characters
which have special meaning. To avoid pitfalls, you
would do well to use only letten, numbers and the
period until you 're familiar with the situation.

On to some more positive suggestions. Suppose
you're typing a large document like a book. Logically
this divides into many small pieces, like chapters and
perhaps sections. Physically it must be divided too, for
ed will not handle really big files. Thus you should
type the document as a number of files. You might
have a separate file for each chapter, called

cha pl
chap2
etc ...

Or, if each chapter were broken into several files, you
might have

t In 4.2 BSD the limit was elltcllded to 2'5 cbanlcterL

chapl.1
chapl.2
cbapl.3

cbap2.I
cbap2.2

UNIX For Beginnm

You can DOW tell at a glance where a particular file fits
into the whole.

There are advantages to a systematic naming con
vendon which are not obvious to the novice UNIX 111cr.

What if you wanted to print the whole boot? You
could say

pr cbapl.1 chapl.2 chapl.3 ·--

but you would get tired pretty fut, and would probably
even make mistakes. Fortunately, there is a shortcut.
You can say

pr chap*

The • means "anything at an." so this translates into
"print all files whose names begin with chap", listed
in alphabetical order.

This shorthand notation is not a property of the pr
command, by the way. It is system-wide, a service of
the program that interprets commands (the "shell,"
sb(l)). Using that fact, you can see how to list the
names of the files in the book:

ls chap•

produces

cbapl.1
chapl.2
chapl.3

The • is not limited to the last position in a filename -
it can be anywhere and can occur several times. Thus

rm •junk* •temp•

removes all files that contain junk or temp u any part
of their name. As a special case, • by itself matches
every filename, so

pr•

prints all your files (alphabetical order), and

rm•

removes all filu. (You had better be very sure that's
what you wanted to say!)

The • is not the only pattern-matching feature
available. Suppose you want to print only chapters 1
through 4 and 9. Then you can say

pr chap[ll349]*

The [...] means to match any of the characters inside
the brackets. A range of consecutive letters or digits

UNIX For Beginners

can be abbreviated, so you can also do this with

pr chap[l-49)*

Letters can also be used within brackets: [a-z]
matches any character in the range a through z.

The ? pattern matches any single character, so

Is 1

lists all files which have single-character names, and

ls-I cbap?.1

lists information about the first file of each chapter
(chapl.1, chap2.l, etc.).

Of these niceties, • is certainly the most useful,
and you should get used to iL The others are frills, but
worth knowing.

If you should ever have to tum off the special
meaning of •, ?, etc., enclose the entire argument in
single quotes, as in

Is'?'

We'll see some more examples of this shortly.

What's In a Filename, Continued

When you first made that file called Junk, how did
the system know that there wasn't another Junk some
where else, especially since the person in the next
office is also reading this tutorial? The answer is that
generally each user has a private directory, which con
tains only the files that belong to him. When you log
in, you are ''in'' your directory. Unless you take spe
cial action, when you create a new file, it is made in the
directory that you are currently in; this is most often
your own directory, and thus the file is umelatecl to any
other file of the same name that might exist in someone
else's directory.

The set of all files is organized into a (usually big)
tree, with your files located several branches into the
tree. It is possible for you to "walk" around this tree,
and to find any file in the system, by starting at the root
of the tree and walking along the proper set of
branches. Conversely, you can start where you are and
walk toward the root.

Let's try the latter firsL The basic tools is the
command pwd (''print working directory''), which
prints the name of the directory you are currently in.

Although the details will vary according to the
system you are on, if you give the command pwd, it
will print something like

/usr/your-name

This says that you are cwrently in the directory
your-name, which is in tum in the directory /usr,
which is in turn in the root directory called by conven
tion just/. (Even if it's not called /usr on your system,
you will get something analogous. Make the
corresponding mental adjustment and read on.)

USD:l-7

If you now type

Is /usr/your-name

you should get exactly the same list of file names as
you get from a plain Is: with no arguments, Is lists the
contents of the current directory; given the name of a
directory, it lists the contents of that directory.

Next, try

ls/usr

This should print a long series of names, among which
is your own login name your-name. On many sys
tems, usr is a directory that contains the directories of
all the normal users of the system, like you.

The next step is to try

'ts I

You should get a response something like this
(although again the details may be different):

bin
dev
etc
lib
tmp
usr

This is a collection of the basic directories of files that
the system knows about; we are at the root of the tree.

Now try

cat /usr/your-name/junk

(if junk is still around in your directory). The name

/usr/your-name/junk

is called the pathname of the file that you normally
think of as "junk". "Pathname" has an obvious
meaning: it represents the full name of the path you
have to follow from the root through the tree of direc
tories to get to a particular file. It is a universal rule in
the UNIX system that anywhere you can use an ordinary
filename, you can use a pathname.

Here is a picture which may make this clearer:

(root)
11 \

I I \
I I \

bin etc usr dev tmp
II\ II\ II\ II\ II\

I I \
I I \

adam eve mary
I I \ \

I \ junk
junk temp

Notice that Mary's Junk is unrelated to Eve's.

This isn't too exciting if all the files of interest are
in your own directory, but if you work with someone
else or on several projects concurrently, it becomes

USD:l-8

handy indeed. For example, your friends can print your
book by saying

pr /usr/your-name/chap•

Similarly, you can find out what files your neighbor has
by saying

Is /usr/neipbor-name

or make your own copy of one of his files by

cp /usr/your-nelpborlhll-ftle yourllle

If your neighbor docsn 't want you poking around
in his files, or vice vena, privacy ca be manged.
Each file and directory has read-write-execute permil
sions for the owner, a group, and everyone ebe, which
can be set to control acceu. See 11(1) IDCl cbmod(l)
for details. As a matter of observed fact, most usen
most of the time find openness of more benefit than
privacy.

As a final experiment with pathnames, tly

Is /bin /usr/bln

Do some of the names look familiar? When you run a
program, by typing it. name after the prompt character,
the system simply looks for a file of that name. It nor
mally looks first in your directory (where it typically
doesn't find it), then in /bin and finally in /usr/bln.
There is nothing magic about commands like cat or Is.
except that they have been collected into a couple of
places to be easy to find and administa'.

What if you wort regularly with someone else on
common information in his directory? You could just
log in as your friend each time you want to, but you can
also say ••I want to work on his files instead of my
own''. This is done by changing the directory that you
are currently in:

cd /usr/your-frlend

(On some systems, cd is spelled chdlr.) Now when
you use a filename in something like cat or pr, it refers
to the file in your friend's directory. Changing direc
tories doesn't affect any permissions associated with a
file - if you couldn't access a file from your own
directory, changing to another directory won't alt.er that
facl Of course, if you forget what directory you're in,
type

pwd

to find out.

It is usually convenient to arrange your own .files
so that all the files related to one thing are in a directory
separate from other projects. For example, when you
write your book, you might want to keep all the text in
a directory called book. So make one with

mkdlrbook

then go to it with

UNIX For Beginners

cdbook

then start typing chapters. The book is now found in
(presumably)

/am/your-name/book

To remove the directory book, type

rm boo.U-
rmdlrbook

The first command removes all files from the directory;
the second removes the empty directory.

You can go up one level in the tree of files by say-
ing

ed ..

'' .. '' is the name of the parent of whatever directory
you are currently in. For completeness, • •. '' is an alter
nate name for the directory you are in.

Using Flies Instead or the Terminal

Most of the commands we have seen so fir pro
duce output on the terminal; some, like the editor, also
take their input from the terminal. It is universal in
UNIX systems that the terminal can be replaced by a file
for either or both of input and output As one example,

Is

makes a list of files on your terminal. But if you say

Is >fllellst

a list of your files will be placed in the file nteUst
(which will be created if it doesn't already exist, or
overwritten if it does). The symbol > means •'put the
output on the following file, rather than on the termi
nal." Nothingisproduccdontheterminal. Asanother
example, you could combine several files into one by
capturing the output of cat in a file:

cat n r.2 rJ >temp

The symbol >> operates very much like > does,
except that it means ••add to the end of.'' That is,

cat n r.2 tJ >>temp

means to concatenate n, r.2 and f3 to the end of what
ever is already in temp, instead of overwriting the
existing contents. As with >, if temp doesn't exist, it
will be created for you.

In a similar way, the symbol < means to take the
input for a program from the following file, instead of
from the terminal. Thus, you could make up a script of
commonly used editing commands and put them into a
file called script. Then you can run the script on a file
by saying

eel rue <SCrlpt

As another example, you can use eel to prepare a letter

UNIX For Beginners

in file let, then send it to several people with

mall adam eve mary Joe <let

Pipes

One of the novel contributions of the UNIX system
is the idea of a pipe. A pipe is simply a way to connect
the output of one program to the input of another pro
gram, so the two run u a sequence of processes - a
pipeline.

For example,

prf1h

will print the files r, 1, and h, beginning each on a new
page. Suppose you want them run together instead.
You could say

cat f & b >temp
pr<temp
rm temp

but this is more work than necessary. Clearly what we
want is to take the output of cat and connect it to the
input of pr. So let us use a pipe:

catr1h I pr

The vertical bar I means to take the output from cat,
which would normally have gone to the terminal, and
put it into pr to be neatly formatted.

There are many other examples of pipes. For
example,

1s I pr-3

prints a list of your files in three columns. The program
we counts the number of lines, words and characters in
its input, and u we saw earlier, who prints a list of
currently-logged on people, one per line. Thus

who I we

tells how many people are logged on. And of course

Is I WC

counts your files.

Any program that reads from the terminal can read
from a pipe instead; any program that writes on the ter
minal can drive a pipe. You can have u many ele
ments in a pipeline as you wish.

Many UNIX programs are written so that they will
take their input from one or more files if file arguments
are given; if no arguments are given they will read from
the terminal, and thus can be used in pipelines. pr is
one example:

pr-3 a be

prints files a, band c in order in three columns. But in

cat a b c I pr -3

pr prints the information coming down the pipeline,

USD:l-9

still in three columns.

The Shell

We have already mentioned once or twice the
myst.erious "shell," which is in fact sb(l).t The shell
is the program that interprets what you type u com
mands and arguments. It also looks after translating •,
etc., into lists of filenames, and <, >, and I into changes
of input and output streams.

The shell baa other capabilities too. For example,
you can run two programs with one command line by
separating the commands with a semicolon; the shell
recognizes the semicolon and breaks the line into two
commands. Thus

date; who

does both commands before returning with a prompt
character.

You can also have more than one program running
sUrudtaMously if you wish. For example, if you are
doing something time-consuming, like the editor script
of an earlier section, and you don't want to wait around
for the results before starting something else, you can
say

ee1 rue <8Crlpt &

The ampersand at the end of a command line says
''start this command running, then take further com
mands from the terminal immediately," that is, don't
wait for it to complete. Thus the script will begin, but
you can do something else at the same time. Of course,
to keep the output from interfering with what you're
doing on the terminal, it would be better to say

eel rue <SCrlpt >script.out &

which saves the output lines in a file called script.out.

When you initiate a command with &, the system
replies with a number called the process number, which
identifies the command in case you later want to stop iL
If you do, you can say

kill process-number

If you forget the process number, the command ps will
tell you about everything you have running. (If you are
desperate, kill 0 will kill all your processes.) And if
you 're curious about other people, ps a will tell you
about all programs that are currently running.

You can say

(command-I; command-2; command-3) &

to start three commands in the background, or you can
start a background pipeline with

t On Bmteley Unix l)'lteml, the usual shell for interactive Ille ii
the c shell, ah(l).

USD:l-10

command-I I command-2 a

Just as you can tell the edit« or some simil• pro
gram to take its input from a file instead of from the ter
minal, you can tell the shell to read a file to get com
mands. (Why not? The shell, after all, ii just a pro
gram, albeit a cleva one.) For instance, suppose you
want to set tabs on your taminal, and find out the date
and who's on the system every time you log in. Then
you can put the three neceamy commands (tam, date,
who) into a file, let's call it startup, and then nm it
with

sh startup

This says to run the shell with the file startup u input.
The effect is as if you had typed the contents of startup
on the terminal.

If this is to be a regular thing, you can eliminate
the need to type sh: simply type, once only, the com
mand

chmod +:1 startup

and thereafter you need only say

startup

to run the sequence of commands. The cbmod(l) com
mand marks the file executable; the shell recognizes
this and runs it as a sequence of commands.

If you want startup to nm automatically every
time you log in, create a file in your login directory
called .prollle, and place in it the line startup. When
the shell first gains control when you log in, it looks for
the .profile file and does whateva commands it finds in
it t We'll get back to the shell in the section on pro
gramming.

ill. DOCUMENT PREPARATION

UNIX systems are used extensively for document
preparation. There are two major formatting programs,
that is, programs that produce a text with justified right
margins, automatic page numbering and titllng.
automatic hyphenation, and the like. nroff is designed
to produce output on terminals and line-printers. troff
(pronounced .. tee-roff'') instead drives a photo
typesetter, which produces very high quality output on
photographic paper. This paper was formatted with
troff.

Formatting.Packages

The basic idea of nroff and troff is that the text to
be formatted contains within it ''formatting com
mands'' that indicate in detail how the formatted text is
to look. For example, there might be commands that
specify how long lines are, whether to use single or

t The c shell inltead reads a file called .lcJ&la

UNIX For Beginners

double spacing, and what running titles to use on each
page.

Because nroff and troff me relatively hard to
learn to UIC effectively, several ''packages'' of canned
formatting requests are available to let you specify
paragrapba, running titles, fooln<>tes, multi-column out
put, IDd so on, with little effort and without having to
lema nralf and troff. These packages take a modest
effort to learn, but the rewards for using them are so
great that it is time well spent.

In this section, we will provide a hasty look at the
11mmucript'' package known u -ms. Formatting
requests typically consist of a period and two upper
case letters, such u • TL, which is used to introduce a
title, er .PP to begin a new paragraph.

A document is typed so it looks something like
this:

.TL
title of document
.AU
author name
.8H
section heading
.PP
paragraph ...
.PP
another paragraph ...
.SH
another section headJng
.PP
etc.

The lines that begin with a period are the formatting
requests. For example, .PP calls for starting a new
paragraph. The precise meaning of .PP depends on
what output device is being used (typesetter or termi
nal, for instance), and on what publication the docu
ment will appe• in. For example, -ms normally
assumes that a paragraph is preceded by a space {one
line in nroff, ~ line in troll), and the first word is
indented. These rules can be changed if you like, but
they me changed by changing the interpretation of .PP,
not by re-typing the document.

To actually produce a document in standard for
mat using -ms. use the command

troff -ms ftles -

for the typesetter, and

nroff -ms ftles ...

for a terminal. The -ms argument tells troll' and nroff
to use the manuscript package of formatting requests.

There are several similar packages; check with a
local expert to determine which ones are in common
use on your machine.

UNIX For Beginnen

Supportlna Tools

In addition to the basic formaucn, there is a host
of supporting programs that help with document
preparation. The list in the next few paragraphs is far
from complete, so browse through the manual and
check with people around you for otha' possibilitieL

eqn and neqn let you integrate mathematics into
the text of a document, in an euy-to-lelm language
that closely resembles the way you would speak it
aloud. For example, the eqn input

sum from 1::0 ton I sub I -=- pl over 2

produces the output

The program tbl provides an analogous service for
preparing ~bular material; it does all the computations
necessary to align complicated columns with elements
of varying widths.

refer prepares bibliographic citations from a data
base, in whatever style is defined by the formatting
package. It looks after all the details of numbering
references in sequence, filling in page and volume
numben, getting the author's initials and the journal
name right, and so on.

spell and typo detect possible spelling mistakes in
a document t spell works by comparing the words in
your document to a dictionary, printing those that are
not in the dictionary. It knows enough about English
spelling to detect plurals and the like, so it does a very
good job. typo looks for words which are "unusual",
and prints those. Spelling mistakes tend to be more
unusual, and thus show up early when the most unusual
words are printed first

grep looks through a set of files for lines that con
tain a particular text pattern (rather like the editor's
context search does, but on a bunch of files). For
ex.ample,

grep 'Ina$' chap•

will find all lines that end with the letters Inc in the files
chap•. (It is almost always a good practice to put sin
gle quotes around the patt.em you're searching for, in
case it contains characters like • or S that have a special
meaning to the shell.) arep is often useful for finding
out in which of a set of files the misspelled words
detected by spell are actually located.

dlfr prints a list of the differences between two
files, so you can compare two versions of something
automatically (which certainly beats proofreading by
hand).

we counts the words, lines and characters in a set
of files. tr translates characters into other characters;

t "typo"' is not provided with Bert.eley Unix.

USD:l-11

for example it will convert upper to lower case and vice
versa. This tnnslatea upper into lower:

tr A-Z a-z <Input >0utput

sort sorts files in a variety of ways; cnf makes
cross-references; pa makes a permuted index
(keyword-in-context listing). sect provides IDID)' of the
editing f.:ilitiel of eel, but can apply them to arbitrarily
long inputs. awk provides the ability to do both pattern
matching and numeric computatiom, and to con
veniently process fields within linel. Thele propllDI
are for more advanced users, and they 1re not limited to
document preparation. Put them on your list of things
to learn about.

Most of these programs are either independently
documented (like eqn and tbl), or are sufficiently siln
ple that the description in the UNIX Programma' s
MtllUUll is adequate explanation.

Hints for Preparln& Documents

Most documents go through several versions
(always more than you expected) before they are finally
finished. Accordingly, you should do whatever possi
ble to make the job of changing them euy.

First, when you do the purely mechanical opera
tions of typing, type so that subsequent editing will be
easy. Start each sentence on a new line. Make lines
short, and break lines at natural places, such u after
commas and semicolons, rather than randomly. Since
most people change documents by rewriting phrases
and adding, deleting and rearranging sentences, these
precautions simplify any editing you have to do later.

Keep the individual files of a document down to
modest size, perhaps ten to fifteen thousand characters.
Larger files edit more slowly, and of course if you
make a dumb mistake it's better to have clobbered a
small file than a big one. Split into files at natural
boundaries in the document, for the same reasons that
you start each sentence on a new line.

The second aspect of making change easy is to not
commit yourself to formatting details too early. One of
the advantages of formatting packages like -ms is that
they permit you to delay decisions to the tut possible
moment Indeed, until a document is printed, it is not
even decided whether it will be typeset or put on a line
printer.

As a rule of thumb, for all but the most trivial
jobs, you should type a document in terms of a set of
requests like .PP, and then define them appropriately,
either by using one of the canned packages (the better
way) or by defining your own nroff and trotr com
mands. As long as you have entered the text in some
systematic way, it can always be cleaned up and re
formatted by a judicious combination of editing com
mands and request definitions.

USD:l-12

IV. PROGRAMMING

There will be no alt.empt made to teach any of the
programming languages available but a few words of
advice are in order. One of the reuom why the UNIX
system is a productive programming environment is
that there is already a rich set of tools available, and
facilities like pipes, IJO redinction, ml the capabilities
of the shell often make it pom"ble to do a job by pasting
together programs that already exist instead of writing
from scratch.

The Shell

The pipe mechanism lets you fabricate quite com
plicated operations out of spare pads that already exist.
For example, the first drift of the spell program wu
(roughly)

cat ••
I tr ...
I tr_.
I sort
I unlq
I comm

coll«t tM f&/.u
put each word on a new liM
de/de punctuali.on. de.

into dictionary orda
discard dllplicala
print words in tat
bllt not in dictionary

More pieces have been added subsequently, but this
goes a long way for such a small effort.

The editor can be made to do things that would
normally requite special programs on other systems.
For example, to list the fint and last lines of each of a
set of files, such as a book, you could laboriously type

eel
e cbapl.1
Ip
$p
e cbapl.2
Ip
$p
etc.

But you can do the job much more easily. One way is
to type

Is chap• >temp

to get the list of filenames into a file. Then edit this file
to make the necessary series of editing commands
(using the global commands of eel), and write it into
script. Now the command

ed <SCrlpt

will produce the same output as the laborious hand typ
ing. Alternately (and more easily), you can use the fact
that the shell will perform loops, repeating a set of
commands over and over again for a set of arguments:

for I In chap•
do

eel $1 <script
done

UNIX For Beginners

This sets the shell variable I to each file name in tum,
then does the command. You can type this command
at the terminal, or put it in a file for later execution.

J>roarammlna the Shell

An option often overlooked by newcomers is that
the shell is itself a programming 1anguaae, with vari
ables, control flow (If-else, while, for, c ..), subrou
tines, and intmupt handling. Since there are many
building-block programs, you can sometimes avoid
writing a new program merely by piecing together
some of the building blocks with shell command files.

We will not go into any details here; examples and
rules can be found in An lnlTodMCtion to IM UNIX SuU,
by S. R. Bourne.

Proarammtna 1n c
If you are undertaking anything substantial, C is

the only reasonable choice of programming language:
everything in the UNIX system is tuned to it The sys
tem itself is written in C, as are most of the programs
that run on it It is also a easy language to use once you
get started. C is introduced and fully described in The
C Programming Languag~ by B. W. Kernighan and D.
M. Ritchie (Prentice-Hall, 1978). Several sections of
the manual describe the system interfaces, that is, how
you do 110 and similar functions. Read UNIX Pro
gramming for more complicated things.

Most input and output in C is best handled with
the standard 1/0 library, which provides a set of l/O
functions that exist in compatible form on most
machines that have C compilers. In general, it's wisest
to confine the system interactions in a program to the
facilities provided by this library.

C program. that don't depend too much on special
features of UNIX (such as pipes) can be moved to other
computers that have C compilers. The list of such
machines grows daily; in addition to the original PDP-
11, it currently includes at least Honeywell 6000, IBM
370 and PC families, Interdata 8132, Data General
Nova and Eclipse, HP 2100, Hmis n, Motorola 68000
family (including machines like Sun Microsystems and
Apple Macintosh), VAX 11 family, SEL 86, and Zilog
Z80. Calls to the standard 1/0 library will worlc on all
of these machines.

There are a number of supporting programs that
go with C. lint checks C programs for potential porta
bility problems, and detects errors such as mismatched
argument types and uninitialized variables.

For larger program. (anything whose source is on
more than one file) make allows you to specify the
dependencies among the source files and the processing
steps needed to make a new version; it then checks the
times that the pieces were last changed and does the
minimal amount of recompiling to create a consistent
updated version.

UNIX For Beginners

The debugger adb is useful for digging through
the dead bodies of C programs, but is rather hard to
learn to use effectively. The most effective debugging
tool is still careful thought, coupled with judiciously
placed print statements.t

The C compiler provide& a limited instrumentation
service, so you can find out where programs spend their
time and what parts are warth optimizing. Compile the
routines with the -p option; after the teat nm. use prof
to print an execution profile.. The command time will
give you the gross run-time statist:ica of a program, but
they are not supa accurate er reproducible.

Other Lanpqes

If you have to use Fortran, there are two possibili
ties. You might consider Ratfor, which gives you the
decent control structures and flee-form input that
characterize C, yet lets you write code that is still port
able to other environments. Bear in mind that UNIX
Fortran tends to produce large and relatively slow
running programs. Furthermore, supporting software
like adb, prof, etc., are all virtually useless with For
tran programs. There may also be a Fortran n com
piler on your system. If so, this is a viable alternative
to Ratfor, and has the non-trivial advantage that it is
compatible with C and related programs. (The Ratfor
processor and C tools can be used with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another language, you
are in effect building a compiler, though probably a
small one. In that case, you should be using the yacc
compiler-compiler, which helps you develop a com
piler quickly. The lex lexical analyzer generator does
the same job for the simpler languages that can be
expressed as regular expressions. It can be used by
itself, or as a front end to recognize inputs for a
yacc-based program. Both yacc and la require some
sophistication to use, but the initial effort of learning
them can be repaid many times over in programs that
are easy to change later on.

Most UNIX systems also make available other
languages, such as Algol 68, APL, Basic, Usp, Pascal,
and Snobol. Whether these are useful depends largely
on the local environment if someone cares about the
language and has worked on it, it may be in good
shape. If not, the odds are strong that it will be more
trouble than it's worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, The UNIX.
Programmer's Manual, Bell Laboratories, 1978
(PS2:3)* lists commands, system routines and inter-

t The "dbx" debuger, supplied ltartin& with 4.2BSD, hal
e.x.tenaive facilities for hip-level debugin& of C propama and
ii much easier to use than "adb".

USD:l-13

faces, file formats, and some of the maintenance pro
cedures. You can't live without this, although you will
probably only need to read section 1.

D. M. Ritchie and K. L Thompson, "The UNIX Time
sharing System," CACM, July 1974. (PS2:1)* An
overview of the system, for people interested in operat
ing systems. Worth reading by anyone who programs.
Contains a remarkable number of one-sentence obser
vations on how to do things right.

The Bell System Teclmical Journal (BSTJ) Special
Issue on UNIX, July/August, 1978, contains many
papen describing recent developments, and some
retrospective material.

The 2nd International Conference on Softwan:
.Engineering (October, 1976) contains several papers
describing the use of the Programmer's Workbench
(PWB) version of UNIX.

Document Preparadon:

B. W. Kernighan, ''A Tutorial Introduction to the UNIX
Text Editor" (USO: 12) and "Advanced Editing on
UNIX," (USD:13) Bell Laboratories, 1978.t Beginners
need the introduction; the advanced material will help
you get the most out of the editor.

M. E. Lest, "Typing Documents on UNIX," Bell
Laboratories, 1978. (USD:20)t Describes the -ms
macro package, which isolates the novice from the
vagaries of nrolr and troff, and takes care of most for
matting situations. If this specific package isn't avail
able on your system, something similar probably is.
The most likely alternative is the PWB/UNIX macro
package -mm; see your local guru if you use
PWBIUNIX.•

B. W. Kernighan and L L. Cherry, "A System for
Typesetting Mathematics,'' Bell Laboratories Comput
ing Science Tech. Rep. 17. (USD:26)t

M. E. Lest, "Tbl - A Program to Format Tables,"
Bell Laboratories CSTR 49, 1976. (USD:28)t

J. F. Ossanna, Jr., "NROFF/fROFF User's Manual,"
Bell Laboratories CSTR 54, 1976. (USD:24)t troff is
the basic formatter used by -ms, eqn and tbl. The
reference manual is indispensable if you are going to
write or maintain these or similar programs. But start
with:

B. W. Kernighan, "A TROFF Tutorial," Bell Labora
tories, 1976. (USD:2S)t An attempt to umavcl the intri
cacies of troff.

t 1'bele doc:umenll (previously in Volume 2 of the Bell Labl
Unix dUltn'bution) 119 provided amona the "U1er Supplemelllary"
Dacumenta for 4.3BSD, available from the Usenix Aaociatioa. * These 119 mnong the "Programmer Supplementary" Documenta
for 4.3BSD. PSI ia Volwm 1, PS2 ii Volume 2.
~ 1D1CrO J*Uge ·!DIS ii additionaUy available on Berkeley
Unix Systems. -mm ii typically not available.

USD:l-14

Programmlna:

B. W. Kernighan and D. M. Rit.chie, TM C Progra.
ming Language, Prentice-Hall, 1978. Contains a
tutorial introduction, complete discussions of all
language features, and the reference manual.

B. W. Kernighan and R. Pike, TM Unbc Programming
Envil'onmat, Prentico-Hall, 1984. Contains many
examples of C programs which use the system inter
faces, and explanations of "why".

B. W. Kernighan and D. M. Rit.cbie, 11UNIX Program
ming," Bell Laboratories, 1978. (PS2:3)* Describes
how to interface with the system from C programs: l/O
calls, signals, processes.

S. R. Bourne, ••An Introduction to the UNIX Shell,"
Bell Laboratories, 1978. (USD:3)t An introduction and
reference manual for the Version 7 shell. Mandatory
reading if you intend to make effective use of the pro
gramming power of this shell.

S. C. Johnson, .. Yacc - Yet Another Compiler
Compiler,'' Bell Laboratories CSTR 32, 1978.
(PSl:lS)*

M. E. Lesk, .. Lex - A Lexical Analyzer Generator,"
Bell Laboratories CSTR 39, 1975. (PS1:16)*

S. C. Johnson, .. Lint, a C Program Checker," Bell
Laboratories CSTR 65, 1977. (PS1:9)*

S. I. Feldman, •'MAKE - A Program for Maintaining
Computer Programs," Bell Laboratories CSTR S1,
1977. (PS1:12)*

J. F. Maranzano and S. R. Bourne, .. A Tutorial Intro
duction to ADB," Bell Laboratories CSTR 62, 1977.
(PS 1: 1 O)* An introduction to a powerful but complex
debugging toot
S. I. Feldman and P. J. Weinberger, .. A Portable For
tran 77 Compiler," Bell Labora~ries, 1978. (PS1:2)*
A full Fortran 77 for UNIX systems.

UNIX For Beginners

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

MicNMl E. us/c

ABSTRACT

This paper describes the second version of the karn program for interpreting CAI
scripts on the UNI.Xt operating system, and a set of scripts that provide a computerized
introduction to the system.

Six current scriptS cover basic commaruh and file handling, the editor, additional
file handling commands, the eqn program for mathematical typing, the ''-ms'' package
of formatting macros, and an introduction to the C programming language. These scripts
now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to acquire basic
UNIX skills. Most usage involves the first two scripts, an introduction to UNIX files and
commands, and the UNIX editor.

The second version of learn is about four times faster than the previous one in
CPU utilization, and much faster in perceived time because of better overlap of comput
ing and printing. It also requires less file space than the first version. Many of the les
sons have been revised; new material has been added to refiect changes and enhance
ments in UNIX itself. Script-writing is also easier because of revisions to the script
language.

1. Introduction.

Learn is a driver for CAI scripts. It is intended to permit the easy composition of lessons and lesson
fragments to teach people computer skills. Since it is teaching the same system on which it is imple
mented, it makes direct use of UNIX facilities to create a controlled UNIX environment The system
includes two main parts: (1) a driver that interprets the lesson scripts; and (2) the lesson scripts themselves.
At present there are seven scripts:

basic file handling commands

the UNIX text editors ed and vi

advanced file handling

the eqn language for typing. mathematics

the ''ms'' macro package for document formatting
the C programming language

The purported advantages of CAI scripts for training in computer skills include the following:

(a) students are forced to perfonn the exercises that are in fact the basis of training in any case;

(b) students receive inunediate feedback and confirmation of progress;

t UNIX is a trademark of Bell Laboratories.

USD:2-2 LEARN - Computer-Aided Instruction on UNIX

(c) students may progress at their own rate;
(d) no schedule requirements are imposed; students may study at any time convenient for them;

(e) the lessons may be improved individually and the improvements are immediately available to
new users;

(f) since the student ha access to a computer for the CAI script there is a place to do exercises;

(g) the use of high technology will improve student motivation and the interest of their manage
menL

Opposed to this, of course, is the absence of anyone to whom the student may direct questions. If
CAI is used without a ''counselor'' or other a.uistance, it should properly be compared to a textbook, lec
ture series, or taoed course, rather than to a seminar. CAI has been used for many years in a variety of edu
cational areas. ll,3 The use of a computel' to teach computel' use itself, however, offers unique advantages.
The skills developed to get through the script are exactly those needed to use the computer; there is no
waste effort.

The scripts written so far are based on some familiar assumptions about education; these assumptions
are outlined in the next section. The remaining sections describe the operation of the script driver and the
particular scripts now available. The driver puts few restrictions on the script writer, but the current scripts
are of a rather rigid and stereotyped form in accordance with the theory in the next section and practical
limitations.

2. Educational ~umptions and Design.

First, the way to teach people how to do something is to have them do. iL Scripts should not contain
long pieces of explanation; they should instead frequently ask the student to do some task. So teaching is
always by example: the typical script fragment shows a small example of some technique and then asks the
user to either repeat that example or produce a variation on iL All are intended to be easy enough that most
students will get most questions right, reinforcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks fa a yes or no
answer to a question. The student is given a chance to experiment before replying. The script checks for
the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files might say

How many files are there in the current directory? Type "answer N'', where N is the number of
files.

The student is expected to respond (perhaps after experimenting) with

answer 17

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing N by 17) is
difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended - a task is set for the student, appropriate parts of the input
or output are monitored, and the student types ready when the task is done. Figure 1 shows a sample dia
log that illustrates the last of these, using two lessons about the cat (concatenate, i.e., print) command
taken from early in the script that teaches file handling. Most learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the lesson number
that has just been completed, permitting the student to restart the script after that lesson. If the answer is
wrong, the student is offered a chance to repeat the lesson. The ''speed'' rating of the student (explained
in section 5) is given after the lesson number when the lesson is completed successfully; it is printed only
for the aid of script authors checking out possible em>rs in the lessons.

It is assumed that there is no foolproof way to determine if the student truly "understands'' what he
or she is doing; accordingly, the current learn scripts only measure performance, not comprehension. If the
student can perform a given task, that is deemed to be ''learning.''

The main point of using the computer is that what the student does is checked for correctness
immediately. Unlike many CAI scripts, however, these scripts provide few facilities for dealing with
wrong answers. In practice, if most of the answers are not right the script is a failure; the universal solution

LEARN - Computer-Aided Instruction on UNIX

Figure 1: Sample dialog from basic files script

(Student responses in italics; '$' is the prompt)

A file can be printed on your terminal
by using the "cat" command Just say
"cat file" where "file" is the file name.
For example, there is a file named
"food" in this direct«y. List it
by saying "cat food"; then type "ready".
$ catfood
this is the file
named food.

$ready

Good. Lesson 3.3a (1)

Of course, you can print any file with "cat".
In particular, it is common to first use
"ls" to find the name of a file and then "cat"
to print iL Note the difference between
"ls", which tells you the name of the file,
and "cat", which tells you the contents.
One file in the current directory is named for
a PresidenL Print the file, then type "ready".
$ cat President
cat: can't open President
$ready

Sorry, that's not right Do you want to try again? yes
Try the problem again.
$ls
.ocopy
Xl
roosevelt
$ cat roosevelt

this file is named roosevelt
and contains three lines of
texL

$ready

Good. Lesson 3.3b (0)

The "cat" command can also print several files
at once. In fact, it is named "cat" as an abbreviation
for "concatenate" ••••

USD:2-3

to student error is to provide a new, easier script.· Anticipating possible wrong answers is an endless job,
and it is really easier as well as better to provide a simpler scripl

Along with this goes the assumption that anything can be taught to anybody if it can be broken into
sufficiently small pieces. Anything not absorbed in a single chunk is just subdivided.

USD:2-4 LEARN - Computer-Aided Instruction on UNIX

To avoid boring the faster students, however, an effon is made in the files and editor scripts to pro
vide three ttacks of different difficulty. The fastest sequence of lessons is aimed at roughly the bulk and
speed of a typical tutmial manual and should be adequate for review and for well-prepared students. The
next track is intended for most users and is roughly twice as long. Typically, for example, the fast track
might present an idea and ask for a variation on the example shown; the normal track will first ask the stu
dent to repeat the example that was shown before attempting a variation. The third and slowest track,
which is often three m- four times the length of the fast track, is intended to be adequate for anyone. (The
lessons of Figure 1 are from the third track.) The multiple tracks also mean that a student repeating a
course is unlikely to hit the same series of lessons; this makes it profitable fm a shaky user to back up and
try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct answers the
student has given for the last few lessons, the program may switch tracks. The driver is actually capable of
following an arbitrary directed graph of lesson sequences, as discussed in section S. Some more structured
arrangement, however, is used in all current scripts to aid the script writer in organizing the material into
lessons. It is sufficiently difficult to write lessons that the three-track theory is not followed very closely
except in the files and edit<X' scripts. Accordingly, in some cases, the fast track is produced merely by skip
ping lessons from the slower track. In others, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material as a work
book is not the selection of tracks, but actual hands-on experience. Leaming by doing is much more effec
tive than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would not let the
student proceed unless it received correct answers to the questions it set and it would not tell a student the
right answer. This somewhat Draconian approach has been moderated in version 2. Lessons are some
times badly worded or even just plain wrong; in such cases, the student has no recourse. But if a student is
simply unable to complete one lesson, that should not prevent access to the resl Accordingly, the current
version of learn allows the student to skip a lesson that he cannot pass; a "no" answer to the "Do you
want to try again?" question in Figure 1 will pass to the next lesson. It is still uue that learn will not tell
the student the right answer.

Of course, there are valid objections to the assumptions above. In particular, some students may
object to not understanding what they are doing; and the procedure of smashing everything into small
pieces may provoke the reton "you can't cross a ditch in two jumps." Since writing CAI scripts is consid
erably more tedious than ordinary manuals, however, it is safe to assume that there will always be alterna
tives to the scripts as a way of learning. In fact, for a reference manual of 3 or 4 pages it would not be
surprising to have a tutorial manual of 20 pages and a (multi-track) script of 100 pages. Thus the reference
manual will exist long before the scripts.

3. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus little of the
potential complexity of the possible directed graph is employed, since care must be taken in lesson con
struction to see that every necessary fact is presented in every possible path through the units. In addition,
it is desirable that every unit have alternate successors to deal with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For example,
before the student is allowed to proceed through the editor script the script verifies that the student under
stands files and is able to type. It is felt that the sooner lack of student preparation is detected, the easier it
will be on the student Anyone proceeding through the scripts should be getting mostly correct answers;
otherwise, the system will be unsatisfactory both because the wrong habits are being learned and because
the scripts make little effort to deal with wrong answers. Unprepared students should not be encouraged to
continue with scripts.

There ~e some preliminary items which the student must know before any scripts can be tried. In
particular, the student must know how to connect to a UNIX system, set the terminal properly, log in, and
execute simple commands (e.g., learn itself). In addition, the character erase and line kill conventions(#
and@) should be known. It is hard to see how this much could be taught by computer-aided instruction,

LEARN - Computer-Aided Instruction on UNIX USD:2-S

since a student who does not know these basic skills will not be able to run the learning program. A brief
description on paper is provided (see Appendix A), although assistance will be needed for the first few
minutes. This assistance, however, need not be highly skilled

The first script in the current set deals with files. It assumes the basic knowledge above and teaches
the student about the ls, cat, mv, rm, cp and diff commands. It also deals with the abbreviation characters
*, ? , and [] in file names. It does not cover pipes or 1/0 redirection, nor does it present the many options
on the ls command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks, seven are
review exercises. There are a total of 1S lessons in all three ttacks, and the instructional passages typed at
the student to begin each lesson total 4,476 words. The average lesson thus begins with a (J()..word mes
sage. In general, the fast track lessons have somewhat longer introductions, and the slow ttacks somewhat
shorter ones. The longest message is 144 words and the sh<Xtest 14.

The second script trains studenas in the use of the UNIX context editor ed, a sophisticated editor
using regular expressions for searching. 5 All editor features except encryption, mark names and ';' in
addressing are covered. The fut track contains 2 prerequisite checks, 93 lessons, and a review lesson. It is
supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interesL The ed description in the reference manual is 2,572 words
long. The ed tutorial 6 is 6, 138 words long. The fast ttack through the ed ~cript is 7 ,407 words of explana
tory messages, and the total ed script, 242 lessons, has 15,615 words. The average ed lesson is thus also
about 60 words; the largest is 171 words and the smallest 10. The original ed script represents about three
man-weeks of effort.

The advanced file handling script deals with ls options, 1/0 diversion, pipes, and supporting pro
grams like pr, we, tail, spell and grep • (The buic file handling script is a prerequisite.) It is not as
refined as the first two scripts; this is reflected at least partly in the fact that it provides much less of a full
three-ttack sequence than they do. On the other hand, since it is perceived as "advanced," it is hoped that
the student will have somewhat more sophistication and be better able to cope with it at a reasonably high
level of performance.

A founh script covers the eqn language for typing mathematics. This script must be run on a termi
nal capable of printing mathematics, for instance the DASI 300 and similar Diablo-based terminals, or the
nearly extinct Model 37 teletype. Again, this script is relatively short of ttacks: of 76 lessons, only 17 are
in the second ttack and 2 in the third ttack. Most of these provide additional practice for students who are
having trouble in the first ttack.

The -ms script for formatting macros is a short one-ttack only script. The macro package it
describes is no longer the standard, so this script will undoubtedly be superseded in the future. Further
more, the linear style of a single learn script is somewhat inappropriate for the macros, since the macro
package is composed of many independent features, and few users need all of them. It would be better to
have a selection of short lesson sequences dealing with the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on C, but that
document has since become obsolete. The current script has been partially converted to follow the order of
presentation in The C Programming Language, 7 but this job is not complete. The C script wu never
intended to teach C; rather it is supposed to be a series of exercises for which the computer provides check
ing and (upon success) a suggested solution.

This combination of scripts covers much of the material which any UNIX user will need to know to
make effective use of the system. With enlargement of the aclvanced files course to include more on the
command interpreter, there will be a relatively complete inttoduction to UNIX available via learn.
Although we make no pretense that learn will replace other insttuctional materials, it should provide a use
ful supplement to existing tutorials and reference manuals.

4. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the first two
scripts, so these are more thoroughly debugged and polished As a (random) sample of user experience,
the learn program has been used at Bell Labs at Indian Hill for 10,500 lessons in a four month period.

USD:2-6 LEARN - Computer-Aided Instruction on UNIX

About 3600 of these are in the files script, 4100 in the editor, and 1400 in advanced files. The passing rate
is about 80%, that is, about 4 lessons are passed for every one failed. There have been 86 distinct users of
the files script, and SS of the editor. On our system at Murray Hill, there have been nearly 2000 lessons
over two weeks that include Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts; many instances exist of someone doing
one or two lessons and then logging out, as do instances of someone pausing in a script for twenty minutes
or more. In the earlier version of learn, the average session in the files course took 32 minutes and
covered 23 lessons. The distribution is quite broad and skewed, however; the longest sessim was 130
minutes and there were five sessions shorter than five minutes. The average lesson took about 80 seconds.
These numbers are roughly typical for non-programmers; a UNIX expert can do the scripts at approxi
mately 30 seconds per lesson, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4 seconds of pro
cessor time per lesson, and a system expert typing quickly took IS seconds of real time per lesson. A
novice would probably take at least a minute. Thus a UNIX system could support ten students working
simultaneously with some spare capacity.

S. The Script Interpreter.

The learn program itself merely interprets scripts. It provides facilities for the script writer to cap
ture student responses and their effects, and simplifies the job of passing control to and recovering control
from the student. This section describes the operation and usage of the driver program, and indicates what
is required to produce a new script. Readers only interested in the existing scripts may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory (named lib) con
taining the script data. Within this directory are subdirectories, one for each subject in which a course is
available, one for logging (named log), and one in which user sub-directories are created (named play).
The subject directory contains master copies of all lessons, plus any supporting material for that subject. In
a given subdirectory, each lesson is a single text file. Lessons are usually named systematically; the file
that contains lesson n is called Ln.

lib

Figure 2: Directory structure for learn

play

files

editor

(other courses)

log

studentl
files for studentl ...

student2
files for student2 ...

LO.la lessons for files course
LO.lb

When learn is executed, it makes a private directory for the user to work in, within the learn portion
of the file system. A fresh copy of all the files used in each lesson (mostly data for the student to operate
upon) is made each time a student starts a lesson, so the script writer may assume that everything is reini
tialized each··time a lesson is entered. The student directory is deleted after each session; any permanent

LEARN - Computer-Aided Instruction on UNIX

records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:

(1) the text of the lesson;

(2) the set-up commands to be executed befcn the user gets control;

(3) the data. if any, which the user is supposed to edit, transform, or otherwise process;

USD:2-7

(4) the evaluating commands to be executed after the user has finished the lesson, to decide whether the
answer is right; and

(5) a list of possible successor lessons.

Learn tries to minimize the wort of bookkeeping and installation, so that most of the effort involved in
script production is in planning lessons, writing tutorial paragraphs, and coding tests of student perfor
mance.

The basic sequence of events is as follows. First, kar11 creates the working directory. Then, for
each lesson, learn reads the saipt for the lesson and processes it a line at a time. The lines in the script
are: (1) commands to the script interpreter to print something, to create a files, to test something, etc.; (2)
text to be printed or put in a file; (3) other lines, which are sent to the shell to be executed. One line in each
lesson turns control over to the user; the user can run any UNIX commands. The user mode terminates
when the user types yes, no, ready, or answer. At this point, the user's work is tested; if the lesson is
passed, a new lesson is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in Figure 3.

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print iL Note the difference between
"Is", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President Print the file, then type "ready".
#create roosevelt
this file is named roosevelt
and contains three lines of
text.

#copyout
#user
#uncopyout
tail -3 .ocopy >Xl
#cmp Xl roosevelt
#log
#next
3.2b2

Lines which begin with # are commands to the learn script interpreter. For example,

#print

causes printing of any text that follows, up to the next line that begins with a sharp.

#print file

USD:2-8 LEARN - Computer-Aided Instruction on UNIX

prints the contents of file ; it is the same as cat file but has less overhead Both fonm of #print have the
added property that if a lesson is failed, the #print will not be executed the second time through; this avoids
annoying the student by repeating the preamble to a lesson.

#create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This is used for
creating and initializing working files and reference data for the lessons.

#user

gives control to the student; each line he or she types is passed to the shell for execution. The #user mode
is terminated when the student types one of yes, no, ready or answer. At that time, the driver resumes
interpretation of the scripL

#copyin
#uncopyin

Anything the student types between these commands is copied onto a file called .copy. This lets the script
writer interrogate the student's responses upon regaining conttoL

#copyout
#uncopyout

Between these commands, any material typed at the student by any program is copied to the file .ocopy.
This lets the script writer interrogate the effect of what the student typed, which true believers in the perfor
mance theory of learning usually prefer to the student's actual inpuL

#pipe
#unpipe

Normally the student input and the script commands are fed to the UNIX command interpreter (the
"shell") one line at a time. This won't do if, for example, a sequence of editor commands is provided,
since the input to the editor must be handed to the editor, not to the shell. Accordingly, the material
between #pipe and #unpipe commands is fed continuously through a pipe so that such sequences work. If
copyout is also desired the copyout brackets must include the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.

#cmp filel file2

is an in-line implementation of cmp, which compares two files for identity.

#match stuff

The last line of the student's input is compared to stuff, and the success or fail status is set according to iL
Extraneous things like the word answer are stripped before the comparison is made. There may be several
#match lines; this provides a convenient mechanism for handling multiple "right" answers. Any text up
to a # on subsequent lines after a successful #match is printed; this is illustrated in Figure 4, another sam
ple lesson.

#bad stuff

This is similar to #match, except that it corresponds to specific failure answers; this can be used to produce
hints for particular wrong answers that have been anticipated by the script writer.

#succeed
#fail

print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the "commands" yes, no, ready, or answer, the driver terminates
the #user command, and evaluation of the student's work can begin. This can be done either by the built
in commands above, such as #match and #cmp, or by status returned by normal UNIX commands, typically
grep and test. The last command should return status true (0) if the task was done successfully and false
(non-zero) otherwise; this status return tells the driver whether or not the student has successfully passed
the lesson.

LEARN - Computer-Aided Instruction on UNIX

Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command.
#cop yin
#user
#uncopyin
#matchnd
#match .m$
"nd" is easier.
#log
#next
63.ld 10

Performance can be logged:

#log file

USD:2-9

writes the date, lesson, user name and speed rating, and a success/failure indication on file. The command
#log

by itself writes the logging information in the logging directory within the learn hierarchy, and is the nor
mal form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it A typical
set might read

25.la 10
25.2a 5
25.3a 2

indicating that unit 25.la is a suitable follow-on lesson for students with a speed rating of 10 units, 25.2a
for student with speed near 5, and 25.3a for speed near 2. Speed ratings are maintained for each session
with a student; the rating is increased by one each time the student gets a lesson right and decreased by four
each time the student gets a lesson wrong. Thus the driver tries to maintain a level such that the users get
80% right answers. The maximum rating is limited to 10 and the minimum to 0. The initial rating is zero
unless the student specifies a different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the student fails, a
false status is returned and the program reverts to the previous lesson and tries another alternative. If it can
not find another alternative, it skips forward a lesson. bye, bye, which causes a graceful exit from the learn
system. Hanging up is the usual novice's way out.

The lessons may fonn an arbitrary directed graph, although the present program imposes a limitation
on cycles in that it will not present a lesson twice in the same session. If the student is unable to answer
one of the exercises correctly, the driver searches for a previous lesson with a set of alternatives as succes
sors (following the #next line). From the previous lesson with alternatives one route was taken earlier; the
program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student's speed of response, or
try to estimate the elegance of the answer, or provide detailed analysis of wrong answers. Lesson writing
is so tedious already, however, that most of these abilities are likely to go unused.

The driver program depends heavily on features of UNIX that are not available on many other operat
ing systems. These include the ease of manipulating files and directories, file redirection, the ability to use
the command interpreter as just another program (even in a pipeline), command status testing and

USD:2-10 LEARN - Computer-Aided Instruction on UNIX

branching, the ability to catch signals like interrupts, and of course the pipeline mechanism itself.
Although some parts of learn might be transferable to other syste~ some generality will probably be lost.

A bit of history: The first version of karn had fewer built-in words in the driver program, and made
more use of the facilities of UNIX. For example, file comparison was done by creating a cmp process,
rather than comparing the two files within learn. Lessons were not stored as text files, but as archives.
There was no concept of the in-line document; even llprint had to be followed by a file name. Thus the ini
tialization for each lesson was to extract the arehive into the working directory (typically 4-8 files), then
#print the lesson text.

The combination of such things made karn slower. The new version is about 4 or S times faster.
Furthermore, it appears even faster to the user because in a typical lesson, the printing of the message
comes first, and file setup with #create can be overlapped with the prinblg, so that when the program
finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text files. They
can be edited without any difficulty, and UNIX text manipulation tools can be applied to them. The result
has been that there is much less resistance to going in and fixing substandard lessons.

6. Conclusions

The following observations can be made about secretaries, typists, and other non-programmers who
have used learn:

(a) A novice must have assistance with the mechanics of communicating with the computer to get
through to the first lesson or two; once the first few lessons are passed people can proceed on their
own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with computers. It
would help if there were a low level reference card for UNIX to supplement the existing programmer
oriented bulky manlial and bulky reference card.

(c) The concept of "substitutable argument" is hard to grasp, and requires help.

(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time for a reason
ably intelligent and motivated novice to proceed from ignorance to a reasonable ability to create new files
and manipulate old ones seems to be a few days, with perhaps half of each day spent on the machine.

The normal way of proceeding has been to have students in the same room with someone who knows
UNIX and the scripts. Thus the student is not brought to a halt by difficult questions. The burden on the
counselor, however, is much lower than that on a teacher of a course. Ideally, the students should be
encouraged to proceed with instruction immediately prior to their actual use of the computer. They should
exercise the scripts on the same computer and the same kind of terminal that they will later use for their
real work, and their first few jobs for the computer should be relatively easy ones. Also, both training and
initial work should take place on days when the UNIX hardware and software are working reliably. Rarely
is all of this possible, but the closer one comes the better the resulL For example, if it is known that the
hardware is shaky one day, it is better to attempt to reschedule training for another one. Students are very
frustrated by machine downtime; when nothing is happening, it takes some sophistication and experience to
distinguish an infinite loop, a slow but functioning program, a program waiting for the user, and a broken
machine.•

One disadvantage of training with learn is that students come to depend completely on the CAI sys
tem, and do not try to read manuals or use other learning aids. This is unfortunate, not only because of the
increased demands for completeness and accuracy of the scripts, but because the scripts do not cover all of
the UNIX system. New users should have manuals (appropriate for their level) and read them; the scripts
ought to be altered to recommend suitable documents and urge students to read them.

• We have even known an expert programmer to decide the computer was broken when he had simply left his tenninal in
local mode. Novices have great difficulties with such problems.

LEARN - Computer-Aided Instruction on UNIX USD:2-ll

There are several other difficulties which are clearly evidenL From the student's viewpoint, the most
serious is that lessons still crop up which simply can't be passed. Sometimes this is due to poor explana
tions, but just as often it is some error in the lesson itself - a botched setup, a missing file, an invalid test
for correctness, or some system facility that doesn't work on the local system in the same way it did on the
development system. It takes knowledge and a certain healthy arrogance on the part of the user to recog
nize that the fault is not his or hers, but the script writer's. Pennitting the student to get on with the next
lesson regardless does alleviate this somewhat, and the logging facilities make it easy to watch for lessons
that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) - it was often excruciat
ingly slow and made a significant drain on the system. The current version so far does not seem to have
that difficulty, although some scripts, notably eqn , are intrinsically slow. eqn , for example, must do a lot
of work even to print its introductions, let alone check the student responses, but delay is perceptible in all
scripts from time to time.

Another potential problem is that it is possible to break learn inadvertently, by pushing interrupt at
the wrong time, m ·by removing critical files, or any number of similar slips. The defenses against such
problems have steadily been improved, to the point where most students should not notice difficulties. Of
course, it will always be possible to break learn maliciously, but this is not likely to be a problem.

One area is more fundamental - some UNIX commands are sufficiently global in their effect that
learn currently does not allow them to be executed at all. The most obvious is cd, which changes to
another directory. The prospect of a student who is learning about directories inadvertently moving to
some random directory and removing files has deterred us from even writing lessons on cd, but ultimately
lessons on such topics probably should be added

7. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their sugges
tions and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P.A. Fox, and M. J. McAlpin
have provided substantial feedback. Conversations with E. Z. Rothkopf also provided many of the ideas in
the system. We are also indebted to Don Jackowski for serving as a guinea pig for the second version, and
to Tom Plum for his efforts to improve the C script.

References

1. DL. Bitzer and D. Skaperdas, "The Economics of a Large Scale Computer Based Educational
System: Plato IV," in Computer Assisted Instruction, Testing and Guidance, ed. Wayne Holtz
man, pp. 17-29, Harper and Row, New York, 1970.

2. D.C. Gray, J.P. Hulskamp, J.H. Kumm, S. Lichtenstein, andN.E. Nimmervoll, "COALA-A Mini
computer CAI System," IEEE Trans. Education, vol. E-20(1), pp. 73-77, February 1977.

3. P. Suppes, "On Using Computers to Individualize Instruction," in The Computer in American Edu
cation, ed. D.D. Bushnell andD.W. Allen, pp. 11-24, John Wiley, New York, 1967.

4. B.F. Skinner, "Why We Need Teaching Machines," Harv. Educ. Review, vol. 31, pp. 377-398,
1961. Reprinted in Educational Technology, ed. J.P. DeCecco, Holt Rinehart & Winston (New
York 1964).

5. K. Thompson and D.M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, 1978. See sec
tioned (1).

6. B.W. Kernighan, A Tutorial Introduction to the UNIX text editor, 1974. Bell Laboratories internal
memorandum.

USD:2-12 LEARN - Computer-Aided Instruction on UNIX

7. B.W. Kernighan and D.M. Ritchie, TM C Programming Language, Prentice-Hall, Englewood
Cliffs, New Jersey, 1978.

An Introduction to the UNIX Shell

S.R.BourM

(Updated for 4.3BSD by Marie Seiden)

ABSTRACT

The shellt is a command programming language that provides an interface to the UNIXt
operating system. Its features include control-ft.ow primitives, parameter passing, vari
ables and stting substitution. Constructs such as while, if then else. case and for are
available. Two-way communication is possible between the shell and commands.
Stting-valued parameters, typically file names or flags, may be passed to a command. A
return code is set by commands that may be used to determine control-flow, and the stan
dard output from a command may be used as shell input.

The shell can modify the environment in which commands run. Input and output can be
redirected to files, and processes that communicate through 'pipes' can be invoked.
Commands are found by searching directories in the file system in a sequence that can be
defined by the user. Commands can be read either from the terminal or from a file, which
allows command procedures to be stored for later use.

1.0 Introduction

The shell is both a command language and a programming language that provides an interface to the UNIX
operating system. This memorandum describes, with examples, the UNIX shell. The first section covers
most of the everyday requirements of terminal users. Some familiarity with UNIX is an advantage when
reading this section; see, for example, "UNIX for beginners". unix beginn kemigh 1978 Section 2
describes those features of the shell primarily intended for use within shell procedures. These include the
control-flow primitives and stting-valued variables provided by the shell. A knowledge of a programming
language would be a help when reading this section. The last section describes the more advanced features
of the shell. References of the form "see pipe (2)" are to a section of the UNIX manual. seventh 1978
ritchie thompson

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the name of the
command to be executed; any remaining words are passed as arguments to the command. For example,

who

is a command that prints the names of users logged in. The command

ls-I

prints a list of files in the current directory. The argument -I tells ls to print status information, size and the
creation date for each file.

i This paper describes sh(l). If it's the c shell (csh) you're interested in, a good place to begin is William Joy's paper "An
Introduction to the C shell" (USD:4).
t UNIX is a trademark: of Bell Laboratories.

USD:3-2 An Introduction to the UNIX Shell

1.2 Background commands

To execute a command the shell normally creates a new process and waits for it to finish. A command
may be run without waiting for it to finish. For example,

ccpgm.c &

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the shell not to
wait for the command to finish. To help keep track of such a process the shell reports its process number
following its creation. A list of currently active processes may be obtained using the ps command.

1.3 Input output redirection

Most commands produce output on the standard output that is initially coMected to the terminal. This out
put may be sent to a file by writing, for example,

ls-I >file

The notation >fik is interpreted by the shell and is not passed as an argument to Is. If file does not exist
then the shell creates it; otherwise the original contents of file are replaced with the output from ls. Output
may be appended to a file using the notation

ls -1 »file

In this case file is also created if it does not already exisL

The standard input of a command may be taken from a file instead of the terminal by writing, for example,

WC <file

The command wc reads its standard input (in this case redirected from file) and prints the number of char
acters, words and lines found. If only the number of lines is required then

we-I <file

could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by writing the
'pipe' operator, indicated by I , as in,

ls-11 we

Two commands connected in this way constitute a pipeline and the overall effect is the same as

Is -I >file; WC <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2)) and are run in
parallel. Pipes are unidirectional and synchronization is achieved by halting wc when there is nothing to
read and halting ls when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the result as out
put. One such filter, grep, selects from its input those lines that contain some specified string. For exam
ple,

ls I grepold

prints those lines, if any, of the output from ls that contain the string old. Another useful filter is sort. For
example,

who I sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

An Introduction to the UNIX Shell USD:3-3

ls I grep old I wc -1

prints the number of file names in the current directory containing the string old.

1.5 File name generation

Many commands accept arguments which are file names. For example,

ls-lmain.c

prints information relating to the file main.c.

The shell provides a mechanism for generating a list of file names that match a pattern. For example,

ls-I •.c
generates, as arguments to ls. all file names in the cummt directory that end in .c . The character • is a pat
tern that will match any stting including the null stting. In general pat~rns are specified as follows.

• Matches any stting of characters including the null string.

? Matches any single character.

[•••] Matches any one of the characters enclosed. A pair of characters separated by a minus will
match any character lexically between the pair.

For example,

[a-z]•

matches all names in the current directory beginning with one of the letters a through z.

/usr/fred/testl?

matches all names in the directory /usr/fredltest that consist of a single character. If no file name is found
that matches the pattern then the pattern is passed, unchanged, as an argument

This mechanism is useful both to save typing and to select names according to some pattern. It may also be
used to find files. For example,

echo /usr/fred/•/core

finds and prints the names of all core files in sub-directories of /usr/fred. (echo is a standard UNIX com
mand that prints its arguments, separated by blanks.) This last feature can be expensive, requiring a scan of
all sub-directories of /usr/fred.

There is one exception to the general rules given for patterns. The character '.' at the start of a file name
must be explicitly matched.

echo•

will therefore echo all file names in the current directory not beginning with '.' .

echo·*

will echo all those file names that begin with '.' • This avoids inadvertent matching of the names '.' and ' •• '
which mean 'the current directory' and 'the parent directory' respectively. (Notice that ls suppresses infor
mation for the files '.' and ' •• ' .)

1.6 Quoting

Characters that have a special meaning to the shell, such as < > • ? I & , are called metacharacters. A
complete list of metacharacters is given in appendix B. Any character preceded by a \ is quoted and loses
its special meaning, if any. The \ is elided so that

echo\?

will echo a single ? , and

USD:3-4 An Introduction to the UNIX Shell

echo\\

will echo a single \. To allow long strings to be continued over more than one line the sequence \newline
is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the above
mechanism is clumsy and error prone. A string of characters may be quoted by enclosing the string
between single quotes. For example,

echo xx'••••'xx
will echo

The quoted string may not contain a single quote but may contain newlines, which are preserved. This
quoting mechanism is the most simple and is recommended for casual use.
A third quoting mechanism using double quotes is also available that prevents interpretation of some but
not all metacharacters. Discussion of the details is deferred to section 3.4 .

1. 7 Prompting

When the shell is used from a terminal it will issue a prompt before reading a command. By default this
prompt is '$ ' . It may be changed by saying, for example,

PSl=yesdear

that sets the prompt to be the string yesdear. If a newline is typed and further input is needed then the shell
will issue the prompt '> ' . Sometimes this can be caused by mistyping a quote mark. If it is unexpected
then an interrupt (DEL) will return the shell to read another command. This prompt may be changed by
saying, for example,

PS2=more

1.8 The shell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If the user's
login directory contains the file .profile then it is assumed to contain commands and is read by the shell
before reading any commands from the terminal.

1.9 Summary

• Is
Print the names of files in the current directory.

• ls >file
Put the output from ls into file.

• ls I we-I
Print the number of files in the current directory.

• ls I grep old
Print those file names containing the string old.

• ls I grep old I we -I
Print the number of files whose name contains the string old.

• ccpgm.c &.
Run cc in the background

An Introduction to the UNIX Shell USD:3-S

2.0 Shell procedures

The shell may be used to read and execute commands contained in a file. For example,

sh file [args ••• 1
calls the shell to read commands fromfile. Such a file is called a command procedure or shell procedure.
Arguments may be supplied with the call and are referred to in file using the positional parameters $1, $2,
• • • • For example, if the file wg contains

who I grep St

then

sh wg fred

is equivalent to

who I grep fred

UNIX files have three independent attributes, read, write and execute. The UNIX command chmod (1)
may be used to make a file executable. For example,

chmod+x wg

will ensure that the file wg has execute status. Following this, the command

wg fred

is equivalent to

shwg~

This allows shell procedures and programs to be used interchangeably. In either case a new process is
created to run the command.

As well as providing names f<r the positional parameters, the number of positional parameters in the call is
available as $#. The name of the file being executed is available as $0.

A special shell parameter $• is used to substitute for all ~itional parameters except $0. A typical use of
this is to provide some default arguments, as in,

nroff -T450-ms $•

which simply prepends some arguments to those already given.

2.1 Control ftow • for

A frequent use of shell procedures is to loop through the arguments ($1, $2, •••) executing commands once
for each argument. An example of such a procedure is tel that searches the file /usr/lib/telnos that contains
lines of the fonn

fredmh0123
bertmh0789

The text of tel is

for i
do grep Si /usr/lib/telnos; done

The command

tel fred

prints those lines in /usr/lib/telnos that contain the string/red.

USD:3-6 An Introduction to the UNIX Shell

tel fred bert

prints those lines containing/red followed by those for bert.

The ror loop notation is recognized by the shell and has the general form

for name in wl w2 •••
do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a newline or
semicolon. Furthenn<e, reserved words like do and done are only recognized following a newline or
semicolon. 1U11M is a shell variable that is set to the wmts wl w2 ••• in tum each time the command-list
following do is executed. If in wl w2 ••• is omitted then the loop is executed once fer each positional
parameter; that is, in $• is assumed.

Another example of the use of the for loop is the create command whose text is

for i do >$i; done

The command

create alpha beta

ensures that two empty files alpha and beta exist and are empty. The notation >file may be used on its own
to create or clear the contents of a file. Notice also that a semicolon (or newline) is required before done.

2.2 Control ftow - case
A multiple way branch is provided for by the case notation. For example,

case$# in
1)
2)
*)

esac

cat »$1 ;;
cat »$2 <$1 ;;
echo 'usage: append [from] to' ;;

is an append command. When called with one argument as

append file

$# is the string 1 and the standard input is copied onto the end of file using the cat command.

append file 1 file2

appends the contents of ftlel onto ftle2. If the number of arguments supplied to append is other than 1 or 2
then a message is printed indicating proper usage.

The general form of the case command is

case word in
pattern) command-list ;;

esac

The shell attempts to match word with each pattern, in the order in which the patterns appear. If a match is
found the associated command-list is executed and execution of the case is complete. Since * is the pattern
that matches any stting it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argument The first
match found defines the set of commands to be executed. In the example below the commands following
the second * will never be executed.

An Introduction to the UNIX Shell USD:3-7

case S# in
•) ... ;;
•) ... ;;

esac

Another example of the use of the case construction is to distinguish between different forms of an argu
ment The following example is a fragment of a cc command.

fori
do case Si in

-[ocs]) ••• "
-•) echo "unknown flag Si";;
•.c) /lib/cO Si ••• ;;
*) echo "unexpected argument Si" ;;
esac

done

To allow the same comman~ to be associated with more than one pattern the case command provides for
alternative patterns separated by a I . For example,

case Si in

esac

is equivalent to

-xf-y) •••

case Si in
-[xy]) •••

esac

The usual quoting conventions apply so that

case Si in
\?)

will match the character ? •

2.3 Here documents

The shell procedure tel in section 2.1 uses the file /usr/lib/telnos to supply the data for grep. An alternative
is to include this data within the shell procedure as a here document, as in,

for i
do grep $i «!

fredmh0123
bertmh0789

!
done

In this example the shell takes the lines between «! and ! as the standard input for grep. The string ! is
arbitrary, the document being terminated by a line that consists of the string following «.
Parameters are substituted in the document before it is made available to grep as illustrated by the follow
ing procedure called edg .

USD:3-8

The call

ed$3«%
g/$1/s//$'1/g
w
%

edg string 1 string2 file

is then equivalent to the command

edfile «%
g/string 1/s/ /string'1Jg
w
%

An Introduction to the UNIX Shell

and changes all occurrences of stringl infile to string2. Substitution can be prevented using\ to quote the
special characte.r $ as in

ed$3 «+
l,\$s/$1/$'1Jg
w
+

(This version of edg is equivalent to the first except that ed will print a ? if there are no occurrences of the
string $1.) Substitution within a here document may be prevented entirely by quoting the terminating
string, for example,

grep Si«\#

The document is presented without modification to grep. If parameter substitution is not required in a here
document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of letters, digits
and underscores. Variables may be given values by writing, for example,

user=fred box=mOOO acct-mhOOOO

which assigns values to the variables user, box and acct. A variable may be set to the null string by say
ing, for example,

null=

The value of a variable is substituted by preceding its name with $; for example,

echo $user

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For example,

b=/usr/fred/bin
mvpgm$b

will move the file pgm from the current directory to the directory /usr/rred/bin. A more general notation
is available for parameter (or variable) substitution, as in,

echo ${user}

which is equivalent to

An Introduction to the UNIX Shell

echo$user

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmplps
ps a >S{tmp}a

will direct the output of ps to the file /tmp/psa, wlle.reu,

ps a>Stmpa

would cause the value of the variable tmpa to be substituted.

Except for $? the following are set initially by the shell. $? is set after executing each command.

USD:3-9

$? The exit status (return code) of the last command executed as a decimal string. Most com
mands return a zero exit status if they complete successfully, otherwise a non-zero exit
status is returned. Testing the value of return codes is dealt with later under ii and while
commands.

$# The number of positional parameters (in decimal). Used, for example, in the append com
mand to check the number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are unique among
all existing processes, this suing is frequently used to generate unique temporary file
names. For example,

ps a >lbnp/ps$$

rm /tmplps$$

$! The process number of the last process run in the background (in decimal).

$- The current shell flags, such as -:x and -v.
Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL When used interactively the shell looks at the file specified by this variable before it issues
a prompt. If the specified file has been modified since it was last looked at the shell prints
the message you have mail before prompting for the next command. This variable is typi
cally set in the file .profile, in the user's login directory. For example,

MAIL:-/usr/spool/mail/fred

$HOME The default argument for the cd command. The current directory is used to resolve file
name references that do not begin with a /, and is changed using the cd command. For
example,

cd /usr/fred/bin

makes the current directory /usr/lred/bin.

catwn

will print on the terminal the file wn in this directory. The command cd with no argument
is equivalent to

cd$HOMB

This variable is also typically set in the the user's login profile.

$PATH A list of directories that contain commands (the search path). Each time a command is

USD:3-10 An Introduction to the UNIX Shell

executed by the shell a list of directories is seaiched for. an executable file. If $PA TH is not
set then the cwrent directory, /bin, and /usr/bin are searched by defaulL Otherwise
$PATH consists of directory names separated by : • For example,

PA TH·:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :), /usr/tredlbin, /bin and
/usr/bin are to be searched in that order. In this way individual users can have their own
'private' commands that are accessible independently of the current directory. If the com
mand name contains a I then this directory search is not used; a single attempt is made to
execute the command.

$PSI The primary shell prompt string, by default, '$ '.
$PS2 The shell prompt wheD further input is needed, by default, '> '.

$IFS The set of characten used by blan/c i~rpretation (see section 3.4).

2.S The test command

The test command, although not part of the shell, is intended for use by shell programs. For example,

test-f file

returns zero exit status if file exists and non-zero exit status othetwise. In general test evaluates a predicate
and returns the result as its exit status. Some of the more frequently used test arguments are given here, see
test (1) for a complete specification.

test s true if the argument s is not the null string
test -f file true if fik exists
test -r file true if fik is readable
test-w file true ifjik is writable
test-d file true ifjik is a directory

2.6 Control ftow • while

The actions of the for loop and the case branch are determined by data available to the shell. A while or
until loop and an if then else branch are also provided whose actions are determined by the exit status
returned by commands. A while loop has the general form

while command-list1
do command-list2
done

The value tested by the while command is the exit status of the last simple command following while.
Each time round the loop command-list1 is executed; if a zero exit status is returned then command-list2 is
executed; othetwise, the loop terminates. For example,

while test $1
do •••

shift
done

is equivalent to

for i
do •••
done

shift is a shell command that renames the positional parameters $2, $3, ••• as $1, $2, • • • and loses $1.

Another kind of use for the while/until loop is to wait until some external event· occurs and then run some
commands. In an until loop the termination condition is reversed. For example,

An Introduction to the UNIX Shell

until test -f file
do sleep 300; done
commands

USD:3-ll

will loop untilfile exists. Each time round the loop it waits fer S minutes before trying again. (Presumably
another process will eventually create the file.)

2.7 Control ftow ·if

Also available is a general conditional branch of the foon,

ii command-list
then command-list
else command-list
ft

that tests the value returned by the last simple command following if.

The it command may be used in conjunction with the test command to test f<X" the existence of a file as in

if test-f file
then process file
else do sotMthing else
fi

An example of the use of it, case and for constructions is given in section 2.10.

A multiple test it command of the form

if •••
then
else if •••

then
else if •••

fi
fi

fi

may be written using an extension of the if notation as,

if ..•
then
elif
then
elif

fi

The following example is the touch conimand which changes the 'last modified' time for a list of files. The
command may be used in conjunction with 111/JU (1) to force recompilation of a list of files.

USD:3-12

ftag
for i
do case Si in

-c) ftag-N ;;
*) iftest-f Si

then In Si junk$$; rm junk$$
elif test Sftag
then echo file \'Si\' does not exist
eJse >Si
fi

esac
done

An Inttoduction to the UNIX Shell

The -c ftag is used in this command to force subsequent files to be created if they do not already exist.
Otherwise, if the file does not exist, an error message is printed. The shell variable flag is set to some non
null string if the -c argument is encountered. The commands

In ••• ; nn •••

make a link to the file and then remove it thus causing the last modified date to be updated.

The sequence

may be written

Conversely,

if comrnandl
then command2
fi

commandl && command2

commandl 11 command2

executes command2 only if commandl faiJs. In each case the value returned is that of the last simple com
mand executed.

2.8 Command grouping

Commands may be grouped in two ways,

{ command-list ; }

and

(command-list)

In the first command-list is simply executed. 1be second form executes command-list as a separate pro
cess. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking shell.

The commands

cdx; rmjunk

have the same effect but leave the invoking shell in the directory x.

An Introduction to the UNIX Shell USD:3-13

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first is invoked
within the procedure as

set-v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to help isolate
syntax errors. It may be invoked without modifying the procedure by saying

sh-v proc •••

where proc is the name of the shell procedure. This flag may be used in conjunction with the -n flag which
prevents execution of subsequent commands. (Note that saying set -n at a terminal will render the terminal
useless until an end-of-file is typed.)

The command

set-x

will produce an execution trace. Following parameter substitution each command is printed as it is exe
cuted (Try these at the terminal to see what effect they have.) Both flags may be turned off by saying

set-

and the current setting of the shell flags is available as $- •

2.10 The man command
The following is the man command which is used to diplay sections of the UNIX manual on your terminal.
It is called, for example, as

man sh
man-ted
man 2fork

In the first the manual section for sh is displayed.. Since no section is specified, section 1 is used The
second example will typeset (-t option) the manual section for ed. The last prints the fork manual page
from section 2, which covers system calls.

USD:3-14

cd/usr/man

: 'colon is the comment command'
: 'default is nroff ($N), section I ($s)'
N-ns-1

fori
do case Si in

[1-9)•) s-Si ;;

-t)N•t ;;

-n) N-n ;;

-•) echo unknown ftag \'$i\' ;;

*) if test -f man$s/$i.$s
then S{N}roff man0/${N}aa man$s/$i.$s
else : 1ook through all manual sections'

found-no

fi
esac

done

forjinl234S6789
do if test -f man$j/$i.$j

then man Sj Si
found-yes

fi
done
case $found in

no) echo 'Si: manual page not found'
esac

An Introduction to the UNIX Shell

Figure 1. A version of the man command

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An argument to a
shell procedure of the form 11a1M=WJlue that precedes the command name causes value to be assigned to
name before execution of the procedure begins. The value of name in the invoking shell is not affected
For example,

user=fred command

will execute command with user set to fred. The -k ftag causes arguments of the form name= value to be
interpreted in this way anywhere in the argument list Such names are sometimes called keyword parame
ters. If any arguments remain they are available as positional parameters $1, $2, ••••

The set command may also be used to set pmitional parameters from within a procedure. For example,

set-•

will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that the first argu
ment, -, ensures correct treatment when the first file name begins with a - .

3.1 Parameter transmmion

When a shell procedure is invoked both positional and keyword parameters may be supplied with the call.
Keyword parameters are also made available implicitly to a shell procedure by specifying in advance that
such parameters are to be exported For example,

An Introduction to the UNIX Shell USD:3-1S

export user box

marks the variables user and box for exp<xt. When a shell procedure is invoked copies are made of all
exportable variables for use within the invoked procedure. Modification of such variables within the pro
cedure does not affect the values in the invoking shell It is generally true of a shell procedure that it may
not modify the state of its caller without explicit request on the part of the caller. (Shared file descriptors
are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly. The form of this command
is the same as that of the export command,

readonly name •••

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the variable d is not
set

echo $d

or

echo ${d}

will echo nothing. A default string may be given as in

echo ${d-.}

which will echo the value of the variable d if it is set and '.' otherwise. The default string is evaluated
using the usual quoting conventions so that

echo ${d-'•'}

will echo * if the variable d is not set. Similarly

echo S{d-$1}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be assigned a
default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d were not previously set then it will be set to the string '.' . (The notation${ ••• = ••• } is not available
for positional parameters.)

If there is no sensible default then the notation

echo ${ d?message}

will echo the value of the variable d if it has one, othetwise message is printed by the shell and execution
of the shell procedure is abandoned. If message is absent then a standard message is printed A shell pro
cedure that requires some parameters to be set might start as follows.

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have been
evaluated. If any of the variables user, acct or bin are not set then the shell will abandon execution of the
procedure.

USD:3-16 An Introduction to the UNIX Shell

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The command
pwd prints on its standard output the name of the current directory. f<X' example, if the current directory is
/usr/fred/bin then the command

da'pwd'

is equivalent to

d·/usr/fredlbin

The entire string between grave accents r ... ') is taken as the command to be executed and is replaced with
the output from the command. The command is written using the usual quoting conventions except that a ..
must be escaped using a\. For example,

ls 'echo "$1"'

is equivalent to

ls $1

Command substitution occurs in all contexts where parameter substitution occurs (including here docu
ments) and the treatment of the resulting text is the same in both cases. This mechanism allows string pro
cessing commands to be used within shell procedures. An example of such a command is basename which
removes a specified suffix from a string. For example,

basename main.c .c

will print the string main • Its use is illustrated by the following fragment from a cc command.

case SA in

•.c) B-'basename $A .c'

esac

that sets B to the part of SA with the suffix .c stripped.

Here are some composite examples.

• for i in 'Is -f; do •••
The variable i is set to the names of files in time order, most recent first.

• set "date .. ; echo $6 $2 $3, $4
will print, e.g., 1977 Nov J, 23 :59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and file name
generation for the arguments to commands. This section discusses the order in which these evaluations
occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a command is exe·
cuted the following substitutions occur.

• parameter substitution, e.g. $user

• command substitution, e.g ... pwd'

Only one evaluation occurs so that if, for example, the value of the variable X is the string $y
then

echo$X

will echo $y.

An Introduction to the UNIX Shell USD:3-17

• blank interpretation

Following the above substitutions the resulting characters are broken into non-blank words
(blan/c interpretation). For this purpose 'blanks' are the characters of the string $IFS. By
default, this string consists of blank, tab and newline. The null string is not regarded as a word
unless it is quoted. For example,

echo"'

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable null is not set or set to the null string.

• file name generation

Each word is then scanned for the file pattern characters •, ? and [•••] and an alphabetical list
of file names is generated to replace the word. Each such file name is a separate argumenL

The evaluations just described also occur in the list of wools associated with a for loop. Only substitution
occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and ' •• .' a third quoting mechanism is pro
vided using double quotes. Within double quotes parameter and command substitution occurs but file
name generation and the interpretation of blanks does noL The following characters have a special mean
ing within double quotes and may be quoted using \.

Forexampl~

s

"
\

parameter substitution
command substitution
ends the quoted string
quotes the special characters S ' " \

echo "Sx"

will pass the value of the variable x as a single argument to echo. Similarly,

echo"$•"

will pass the positional parameters as a single argument and is equivalent to

echo "$1 $2 ••• "

The notation $@ is the same as S• except when it is quoted.

echo"$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" •••

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated.

USD:3-18 An Introduction to the UNIX Shell

tMtacharacter
\ $ • "
n n n n n t
y n n t n n

" y y n y t n

t terminator
y interpreted
n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in command eval may be used.
For example, if the variable X has the value $y, and if y has the value pqr then

evalecho$X

will echo the string pqr.

In general the eval command evaluates its arguments (as do all commands) and treats the result as input to
the shell. The input is read and the resulting command(s) executed. For example,

wg='eval wholgrep'
$wg fred

is equivalent to

who I grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as I , following
substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the shell is being
used interactively. An interactive shell is one whose input and output are connected to a terminal (as deter
mined by gtty (2)). A shell invoked with the -i flag is also interactive.

Execution of a command (see also 3. 7) may fail for any of the following reasons.

• Input output redirection may fail. For example, if a file does not exist or cannot be created.

• The command itself does not exist or cannot be executed.
• The command terminates abnormally, for example, with a "bus error" or "memory fault". See Figure

2 below for a complete list of UNIX signals.

• The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case an error
message will be printed by the shell. All remaining errors cause the shell to exit from a command pro
cedure. An interactive shell will return to read another command from the terminal. Such errors include
the following.

• Syntax errors. e.g., if ••• then ••• done

• A signal such as interrupt. The shell waits for the current command, if any, to finish execution and
then either exits or returns to the terminal.

• Failure of any of the built-in commands such as ed.

The shell flag -e causes the shell to terminate if any error is detected.

An Introduction to the UNIX Shell

1 hangup
2 interrupt
3* quit
4 • illegal instruction
s• trace trap
6* IOT instruction
7* EMT instruction
s• floating point exception
9 kill (cannot be caught <X' ignored)
10• bus error
11 • segmentation violation
12• bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill (1))

Figure 3. UNIX signalst

USD:3-19

Those signals marked with an asterisk produce a core dump if not caught. However, the shell itself ignores
quit which is the only external signal that can cause a dump. The signals in this list of potential interest to
shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap command is
used if some cleaning up is required, such as removing temporary files. For example,

trap 'rm /tmp/ps"; exit' 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the commands

rm /tmplps$$; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is required; other
wise, after the trap has been taken, the shell will resume executing the procedure at the place where it was
interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the signal is never
sent to the process. They can be caught, in which case the process must decide what action to take when
the signal is received. Lastly, they can be left to cause termination of the process without it having to take
any further action. If a signal is being ignored on entry to the shell procedure, for example, by invoking it
in the background (see 3.7) then trap commands (and the signal) are ignored

The use of trap is illustrated by this modified version of the touch command (Figure 4). The cleanup action
is to remove the file junk$$.

t Additional signals have been added in Berkeley Unix. See sigvec(2) or signal(3C) for an UJ>'lo-date list.

USD:3-20

ftag-
trap 'rm -f junk$$; exit' 1 2 3 IS
fori
do case Si in

-<:) ftag-N ;;
•)if test-f Si

then In Si junk$$; rm junk$$
elif test Sftag
then echo file\ 'Si\' does not exist
else >Si
fi

esac
done

Figure 4. The touch command

An Introduction to the UNIX Shell

The trap command appears before the creation of the temporary file; otherwise it would be possible for the
process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be executed on exit
from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to trap. The
following fragment is taken from the nohup command

trap " 1 2 3 lS

which causes hangup, interrupt, quit and kill to be ignored both by the procedure and by invoked com
mands.

Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of traps may be
obtained by writing

trap

The procedure scan (Figure S) is an example of the. use of trap where there is no exit in the trap command
scan takes each directory in the current directory, prompts with its name, and then executes commands
typed at the terminal until an end of file or an interrupt is received Interrupts are ignored while executing
the requested commands but cause termination when scan is waiting for input.

d•'pwd'
foriin•
do iftest-d $d/Si

then cd $d/$i
while echo "Si:"

trap exit 2
readx

fi
done

do trap : 2; eval Sx; done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in the variable

An Introduction to the UNIX Shell USD:3-21

x. It returns a non-zero exit status if either an end-of-file is read a an interrupt is received.

3. 7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system callfork.
The execution environment fa the command includes input, output and the states of signals, and is esta
blished in the child process before the command is executed. The built-in command exec is used in the
rare cases when no fork is required and simply replaces the shell with a new command. For example, a
simple version of the nohup command looks like

trap " 1 2 3 lS
exec$•

The trap turns off the signals specified so that they are ignored by subsequently created commands and
exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is only subject
to parameter and ci>mmand substitution •. No file name generation or blank interpretation takes place so
that, for example,

echo ••• >•.c

will write its output into a file whose name is •.c • Input output specifications are evaluated left to right as
they appear in the command.

>word

»word

<word

«word

>&digit

<&digit

<&-

The standard output (file descriptor 1) is sent to the file word which is created if it does not
already exisL

The standard output is sent to file word. If the file exists then output is appended (by seek
ing to the end); otherwise the file is created.

The standard input (file descriptor 0) is taken from the file word.

The standard input is taken from the lines of shell input that follow up to but not including a
line consisting only of word. If word is quoted then no interpretation of the document
occurs. If word is not quoted then parameter and command substitution occur and \ is used
to quote the characters \ $ ' and the first character of word. In the latter case \newline is
ignored (c.f. quoted strings).

The file descriptor digit is duplicated using the system call dup (2) and the result is used as
the standard output

The standard input is duplicated from file descriptor digit.

The standard input is closed.

>&- The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that specified by
the digit instead of the default 0 or 1. For example,

••• 2>file

runs a command with message output (file descriptor 2) directed to file .

••• 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file descriptor 2 is
created by duplicating file descriptor 1 but the effect is usually to merge the two streams.)

The environment for a command run in the background such as

list •.c I lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty file /dev/null.
This prevents two processes (the shell and the command), which are running in parallel, from trying to read
the same input. Chaos would ensue if this were not the case. For example,

USD:3-22 An lnttoduction to the UNIX Shell

eel file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to tum off the QUIT and INTER
RUPT signals so that they are ignored by the command. This allows these signals to be used at the termi
nal without causing background commands to terminate. For this reason the UNIX convention for a signal
is that if it is set to 1 (ignored) then it is never changed even f<r a short time. Note that the shell command
trap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of argument zero is
a minus, then commands me read from the file .profile.
--c string

If the -c flag is present then commands are read from string.

-s If the -s ftag is present <r if no arguments remain then commands are read from the standard input.
Shell output is written to file descriptCI' 2.

-i If the -i ftag is present or if the shell input and output are attached to a terminal (as told by gtty) then
this shell is interactive. In this case TERMINATE is ign<nd (so that kill 0 does not kill an interac
tive shell) and INTERRUPT is caught and ign<nd (so that wait is interruptable). In all cases QUIT
is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell unix command language thompson and
the PWB/UNIX shell, pwb shell mashey unix some features having been taken from both. Similarities also
exist with the command interpreters of the Cambridge Multiple Access System cambridge multiple access
system hartley and of CTSS. ctss

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design of the shell.
I am also grateful to the members of the Computing Science Research Center and to Joe Maranzano for
their comments on drafts of this document.

$LIST$

An Introduction to the UNIX Shell

Appendix A - Grammar

item: word
inpUl-output

1Ul1n4 - va11"

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list}
for 1"l1n4 do command-list done
for 1"l1n4 In word ••• do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ••• esac
ii command-list then command-list else-part fi

pipeline: command
pipeline I command

andor: pipeline
and.or && pipeline
and.or I I pipeline

command-list: and.or
command-list ;
command-list &
command-list; and.or
command-list & and.or

input-output: >file
<file
:»word
«word

file: word
& digit
&-

case-part: pattern) command-list ;;

pattern: word
pattern I word

else-part: elif command-list then command-list else-part
else command-list
empty

empty:

word: a sequence of non-blank characters

name: a sequence of letters, digits or underscores starting with a letter

digit: 0123456789

USD:3-23

USD:3-24

Appendix B • Meta-characters and Reserved Words
a) syntactic

I pipe symbol

&& 'andf' symbol

11 'orf' symbol

command separator

;; case delimiter

& background commands
() command grouping

< input redirection

« input from a here document

> output creation

» output append

b) patterns

• match any character(s) including none

? match any single character

[...] match any of the enclosed characters

c) substitution

${ ... } substitute shell variable

substitute command output

d) quoting

\

" "

quote the next character

quote the enclosed characters except for '

quote the enclosed characters except for $ ' \ "

e) reserved words

if then else elif fi
case in esac
for while until do done
{ }

An Introduction to the UNIX Shell

An Introduction to the C shell

William Joy
(revised/or 4.3BSD by Marie Seiden)

Computer Science Division
Department of Electtical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Csh is a new command language interpreter for UNIXt systems. It incorporates
good features of other shells and a history mechanism similar to the redo of INTERLISP.

While incorporating many features of other shells which make writing shell programs
(shell scripts) easier, most of the features unique to csh are designed more for the
interactive UNIX user.

UNIX users who have read a general introduction to the system will find a valuable
basic explanation of the shell here. Simple tenninal interaction with csh is possible after
reading just the first section of this document. The second section describes the shell's
capabilities which you can explore after you have begun to become acquainted with the
shell. Later sections introduce features which are useful, but not necessary for all users
of the shell.

Additional information includes an appendix listing special characters of the shell
and a glossary of terms and commands introduced in this manual.

Introduction

A shell is a command language interpreter. Csh is the name of one particular command interpreter
on UNIX. The primary purpose of csh is to translate command lines typed at a terminal into system actions,
such as invocation of other programs. Csh is a user program just like any you might write. Hopefully, csh
will be a very useful program fm you in interactin~ with the UNIX system.

In addition to this document, you will want to refer to a copy of the UNIX User Reference Manual.
The csh documentation in section 1 of the manual provides a full description of all features of the shell and
is the definitive reference for questions about the shell.

Many words in this document are shown in italics. These are important words; names of commands,
and words which have special meaning in discussing the shell and UNIX. Many .of the wot& are defined in
a glossary at the end of this document. If you don't know what is meant by a word, you should look for it
in the glossary.

Acknowledgements

Numerous people have provided good input about previous versions of csh and aided in its debug
ging and in the debugging of its documentation. I would especially like to thank Michael Ubell who made
the crucial observation that history commands could be done well over the word structure of input text, and
implemented a prototype history mechanism in an older version of the shell. Eric Allman has also pro
vided a large number of useful comments on the shell, helping to unify those concepts which are present

t UNIX is a tradenwt of Bell Laboratories.

USD:4-2 An lnttoduction to the C shell

and to identify and eliminate useless and nwginally useful features •. Mike O'Brien suggested the path
name hashing mechanism which speeds command execution. Jim Kulp added the job control and directory
stack primitives and added their documentation to this introduction.

An Introduction to the C shell USD:4-3

1. Terminal usage of the shell

1.1. The basic notion of commands

A shell in UNIX acts mosdy as a medium through which other programs are invoked. While it has a
set of builtin functions which it performs direcdy, most commands cause execution of programs that are, in
fact, external to the sbell. The shell is thus distinguished from the command interpreters of other systems
both by the fact that it is just a user program, and by the fact that it is used almost exclusively as a mechan
ism for invoking other programs.

Commands in the UNIX system comist of a list of strings or words interpreted as a command 1IQ1M

followed by arg~nts. Thus the command

mail bill

consists of two words. 1be first word mail names the command to be executed, in this cue the mail pro
gram which senm messages to other users. 1be shell uses the name of the command in attempting to exe
cute it for you. It will look in a number of directories for a file with the name mail which is expected to
contain the mail program.

The· rest of the words of the command are given as argUml!nts to the command itself when it is exe
cuted. In this case we specified also the argument bill which is interpreted by the mail program to be the
name of a user to whom mail is to be senL In normal terminal usage we might use the mail command as
follows.

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bill
EQT
%

Here we typed a message to send to bill and ended this message with a "D which sent an end-of-file
to the mail program. (Here and throughout this document, the notation "".x" is to be read "control-.x" and
represents the striking of the .x key while the control key is held down.) The mail program then echoed the
characters 'EQT' and transmitted our message. The characters '% ' were printed before and after the mail
command by the shell to indicate that input was needed.

After typing the'% 'prompt the shell was reading command input from our terminal. We typed a
complete command 'mail bill'. The shell then executed the mail program with argument bill and went
dormant waiting for it to complete. The mail program then read input from our terminal until we signalled
an end-of-file via typing a "D after which the shell noticed that mail had completed and signaled us that it
was ready to read from the terminal again by printing another '% ' prompt.

This is the essential pattern of all interaction with UNIX through the shell. A complete command is
typed at the terminal. the shell executes the command and when this execution completes, it prompts for a
new command. If you run the editor for an hour, the shell will patiendy wait for you to finish editing and
obediently prompt you again whenever you finish editing.

An example of a useful command you can execute now is the tset command, which sets the default
erase and kill characters on your terminal - the erase character erases the last character you typed and the
kill character erases the entire line you have entered so far. By default, the erase character is the delete key
(equivalent to '"?') and the kill character is '"U'. Some people prefer to make the erase character the
backspace key (equivalent to '"H'). You can make this be true by typing

tset-e

which tells the program tset to set the erase character to tset's default setting for this character (a back
space).

USD:4-4 An Introduction to the C shell

1.2. Flag arguments
A useful notion in UNIX is that of a flag argument. While many arguments to commands specify file

names or usa- names, some arguments rather specify an optional capability of the command which you
wish to invoke. By convention, such arguments begin with the character '-' (hyphen). Thus the command

Is

will produce a list of the files in the current working directory. The option -s is the size option, and

ls-s

causes ls to also give, for each file the size of the file in blocks of 512 characters. The manual section for
each command in the UNIX reference manual gives the available options f<X each command. The ls com
mand has a large number of useful and interesting options. Most otha' commands have either no options or
only one or two options. It is hard to remember options of commands which are not used very frequently,
so most UNIX utilities perform only one or two functions rather than having a large number of hard to
remember options.

1.3. Output to files

Commands that normally read input <X write output on the terminal can also be executed with this
input and/or output done to a file.

Thus suppose we wish to save the current date in a file called 'now'. The command

date

will print the current date on our terminal. This is because our terminal is the default standard output for
the date command and the date command prints the date on its standard output The shell lets us redirect
the standard output of a command through a notation using the metacharacter '>' and the name of the file
where output is to be placed. Thus the command

date >DOW

runs the date command such that its standard output is the file 'now' rather than the terminal. Thus this
command places the current date and time into the file 'now'. It is important to know that the date com
mand was unaware that its output was going to a file rather than to the terminal. The shell perfonned this
redirection before the command began executing.

One other thing to note here is that the file 'now' need not have existed before the date command
was executed; the shell would have created the file if it did not exist And if the file did exist? If it had
existed previously these previous contents would have been discarded! A shell option noclobber exists to
prevent this from happening accidentally; it is discussed in section 2.2.

The system normally keeps files which you create with'>' and all other files. Thus the default is for
files to be permanent If you wish to create a file which will be removed automatically, you can begin its
name with a '#' character, this 'scratch' character denotes the fact that the file will be a scratch file.• The
system will remove such files after a couple of days, or sooner if file space becomes very tight Thus, in
running the date command above, we don't really want to save the output forever, so we would more
likely do

date>#now

*Note that if your ense character is a '#', you will have to pRCede the '#' with a '\'. The fact that the '#' character ia the
old (pre-CR.T) standard ense cbaraeter means that it seldom appears in a file name, and allows this convention to be used for
scratch files. If you are using a CllT, your erase character should be a "H, as we demonstrated in section 1.1 how this could
be set up.

An Introduction to the C shell USD:4-S

1.4. Metacbaracters in the shell

The shell has a large number of special characten (like '>')which indicate special functiom. We
say that these notations have syntactic and semantic meaning to the shell. In general, most characters
which are neither letters nor digits have special meaning to the shell. We shall shortly learn a means of
quotation which allows us to use rMtacharactus without the shell treating them in any special way.

Metacharacten normally have effect only when the shell is reading our input. We need not worry
about placing shell metacharacten in a letter we are sending via mail, or when we are typing in text or data
to some other program. Note that the shell is ooly reading input when it has prompted with 'CJ>' (although
we can type our input even before. it prompes).

1.5. Input from files; pipelines

We learned above how to r~diT~ct the sttJNlard output of a command to a file. It is also possible to
redirect the standard inpUl of a command from a file. This is not often necessary since most commands
will read from a file whose name is given u an argument. We can give the command

sort< data

to run the sort command with standard input, where the command normally reads its input, from the file
'data'. We would more likely say

sort data

letting the sort command open the file 'data' for input itself since this is less to type.

We should note that if we just typed

sort

then the sort program would sort lines from its standard input. Since we did not redirect the standard
input, it would sort lines as we typed them on the terminal until we typed a "D to indicate an end-of-file.

A most useful capability is the ability to combine the standard output of one command with the stan
dard input of another, i.e. to run the commands in a sequence known as a pipeline. For instance the com
mand

ls-s

normally produces a list of the files in our directory with the size of each in blocks of 512 characters. If we
are interested in learning which of our files is largest we may wish to have this sorted by size rather than by
name, which is the default way in which ls sorts. We could look at the many options of ls to see if there
was an option to do this but would eventually discover that there is not. Instead we can use a couple of
simple options of the sort command, combining it with ls to get what we want

The -n option of sort specifies a numeric sort rather than an alphabetic sort. Thus

ls -s I sort -n

specifies that the output of the ls command run with the option -s is to be piped to the command sort run
with the numeric sort option. This would give us a sorted list of our files by size, but with the smallest first.
We could then use the -r reverse s<Xt option and the head command in combination with the previous
command doing

ls -s I sort -n -r I head -5

Here we have taken a list of our files sorted alphabetically, each with the size in blocks. We have run this
to the standard input of the sort command asking it to sort numerically in reverse order (largest first). This
output has then been run into the command head which gives us the first few lines. In this case we have
asked head for the first S lines. Thus this command gives us the names and sizes of our 5 largest files.

The notation introduced above is called the pipe mechanism. Commands separated by ' I ' characters
are connected together by the shell and the standard output of each is run into the standard input of the
next. The leftmost command in a pipeline will normally take its standard input from the terminal and the

USD:4-6 An Introduction to the C shell

rightmost will place its standard output on the terminal. 0th« examples of pipelines will be given later
when we discuss the histmy mechanism; one impatant use of pipes which is illustrated there is in the rout
ing of information to the line printel'.

1.6. Filenames

Many commands to be executed will need the names of files as arguments. UNIX pathnanvs consist
of a number of compoMnts separated by '/'. Each component except the last names a directmy in which
the next component resides, in effect specifying the path of directories to follow to reach the file. Thus the
pathname

/etc/motd

specifies a file in the directory 'etc' which is a subdirectory of the root directory 'I'. Within this directory
the file named is 'mold' which stands for 'message of the day'. A patlat&alM that begins with a slash is
said to be an absolut6 pathname since it is specified from the absolute top of the entire directory hierarchy
of the system (the root). Pathnanws which do not begin with'/' are interpreted as starting in the current
working directory, which is, by default, your home directory and can be changed dynamically by the cd
change directory command. Such pathnames are said to be relative to the working directory since they are
found by starting in the working directory and descending to lower levels of directories for each com
ponent of the pathname. ff the pathname contains no slashes at all then the file is contained in the working
directory itself and the pathname is merely the name of the file in this directory. Absolute pathnames have
no relation to the working directory.

Most filenames consist of a number of alphanumeric characters and' .'s (periods). In fact, all print
ing characters except'/' (slash) may appear in filenames. It is inconvenient to have most non-alphabetic
characters in filenames because many of these have special meaning to the shell. The character '.' (period)
is not a shell-metacharacter and is often used to separate the extension of a file name from the base of the
name. Thus

prog.c prog.o prog.em prog.output

are four related files. They share a base portion of a name (a base portion being that part of the name that
is left when a ttailing '.' and following characters which are not '.' are stripped oft). The file 'prog.c'
might be the source for a C program, the file 'prog.o' the corresponding object file, the file 'prog.em' the
errors resulting from a compilation of the program and the file 'prog.output' the output of a run of the pro
gram.

ff we wished to refer to all four of these files in a command, we could use the notation

prog.•

This expression is expanded by the shell, before the command to which it is an argument is executed, into a
list of names which begin with 'prog.'. The character'•' here matches any sequence (including the empty
sequence) of characters in a file name. The names which match are alphabetically sorted and placed in the
argument list of the command. Thus the command

echoprog.•

will echo the names

prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, and a different order than we listed them above. The echo
command receives four words as arguments, even though we only typed one word as as argument directly.
The four words were generated by filename expansion of the one input word.

Other notations for filename expansion are also available. The character '?' matches any single
character in a filename. Thus

echo? ?? ???

will echo a line of filenames; first those with one character names, then those with two character names,

An Introduction to the C shell USD:4-7

and finally those with three character names. The names of each length will be independendy sorted.

Another mechanism consists of a sequence of characters between '[' and ']'. This metasequence
matches any single character from the enclosed set. Thus

prog.[co]

will match

prog.c prog.o

in the example above. We can also place two characters around a'-' in this notation to denote a range.
Thus

chap.[1-5]

might match files

chap.I chap.2 chap.3 chap.4 chap.5

if they existed. This is shorthand for

chap.[12345]

and otherwise equivalenL

An important point to note is that if a list of argument words to a command (an arg~nt list) con
tains filename expansion syntax, and if this filename expansion syntax fails to match any existing file
names, then the shell considers this to be an error and prints a diagnostic

No match.

and does not execute the command.

Another very important point is that files with the character '.' at the beginning are treated specially.
Neither '•' or '?' or the '[' ']' mechanism will match it This prevents accidental matching of the
filenames'.' and' .. ' in the working directory which have special meaning to the system, as well as other
files such as .cshrc which are not normally visible. We will discuss the special role of the file .cshrc later.

Another filename expansion mechanism gives access to the pathname of the home directory of other
users. This notation consists of the character ,_, (tilde) followed by another user's login name. For
instance the word '~ill' would map to the pathname '/usr/bill' if the home directory for 'bill' was
'/usr/bill'. Since, on large systems, users may have login directories scattered over many different disk
volumes with different prefix directory names, this notation provides a convenient way of accessing the
files of other users.

A special case of this notation consists of a ,_, alone, e.g. ,_/mbox'. This notation is expanded by the
shell into the file 'mbox' in your home directory, i.e. into '/usr/bill/mbox' for me on Ernie Co-vax, the
UCB Computer Science Department VAX machine, where this document was prepared This can be very
useful if you have used cd to change to another directory and have found a file you wish to copy using cp.
If I give the command

cp thatfile -

the shell will expand this command to

cp thatfile /usr/bill

since my home directory is /usr/bilL

There also exists a mechanism using the characters ' {' and '}' for abbreviating a set of words which
have common parts but cannot be abbreviated by the above mechanisms because they are not files, are the
names of files which do not yet exist, are not thus conveniently described. This mechanism will be
described much later, in section 4.2, as it is used less frequendy.

USD:4-8 An Introduction to the C shell

1. 7. Quotation

We have already seen a number of metacharacters used by the shell. These metacharacters ~e a
problem in that we cannot use them directly as parts of wonts. Thus the command

echo•

will not echo the character'*'. It will either echo an sorted list of filenames in the current working direc
tory, or print the message 'No match' if there aie no files in the working directory.

The recommended mechanism fm placing characters which are neither numbers, digits, 'I', '.' <r '-'
in an argument word to a command is to enclose it with single quotation characters ''', i.e.

echo'•'

There is one special character '!' which is used by the history mechanism of the shell and which cannot be
escaped by placing it within''' characters. It and the character''' itself can be preceded by a single'\' to
prevent their special meaning. Thus

echo\\!

prints

'!

These two mechanisms suffice to place any printing character into a word which is an argument to a shell
command They can be combined, as in

echo\"•'

which prints ,.
since the first'\' escaped the first''' and the'•' was enclosed between''' characters.

1.8. Terminating commands

When you are executing a command and the shell is waiting for it to complete there are several ways
to force it to stop. For instance if you type the command

cat /etc/passwd

the system will print a copy of a list of all users of the system on your terminal. This is likely to continue
for several minutes unless you stop it. You can send an INTERRUPT signal to the cat command by typing
"C on your tenninal. • Since cat does not take any precautions to avoid or otherwise handle this signal the
INTERRUPT will cause it to terminate. The shell notices that cat has terminated and prompts you again with
'% '. If you hit INTERRUYf again, the shell will just repeat its prompt since it handles INTERRUPT signals
and chooses to continue to execute commands rather than terminating like cat did, which would have the
effect of logging you out.

Another way in which many programs terminate.is when they get an end-of-file from their standard
input. Thus the mail program in the first example above was terminated when we typed a "'D which gen
erates an end-of-file from the standard input The shell also terminates when it gets an end-of-file printing
'logout'; UNIX then logs you off the system. Since this means that typing too many "D's can accidentally
log us off, the shell has a mechanism for preventing this. This ignoreeof option will be discussed in sec
tion 2.2.

ff a command has its standard input redirected from a file, then it will normally terminate when it
reaches the end of this file. Thus if we execute

mail bill < prepared.text

•on some older Unix systems the Dl!L orRUBOOT key has the same effect. "stty all" will tell you the INTR key value.

An Introduction to the C shell USD:4-9

the mail command will terminate without our typing a "D. This is because it read to the end-of-file of our
file 'prepared.text' in which we placed a message for 'bill' with an editor program. We could also have
done

cat prepared.text I mail bill

since the cal command would then have written the text through the pipe to the standard input of the mail
command. When the cal command completed it would have terminated, closing down the pipeline and the
mail command would have received an end-of-file from it and terminated. Using a pipe here is mo:e com
plicated than redirecting input so we would more likely use the first form. These commands could also
have been stopped by sending an INTERRUPr.

Another possibility for stopping a command is to suspend its execution temp<nrily, with the possi
bility of continuing execution later. This is done by sending a STOP signal via typing a "Z. This signal
causes all commands running on the tenninal (usually one but more if a pipeline is executing) to become
suspended. The shell notices that the command(s) have been suspended, types 'Stopped' and then prompts
for a new command. The previously executing command has been suspended, but otherwise unaffected by
the STOP signal. Any other commands can be executed while the original command remains suspended.
The suspended command can be continued using the f g command with no arguments. The shell will then
retype the command to remind you which command is being continued, and cause the command to resume
execution. Unless any input files in use by the suspended command have been changed in the meantime,
the suspension has no effect whatsoever on the execution of the command. This feature can be very useful
during editing, when you need to look at another file before continuing. An example of command suspen
sion follows.

% mail harold
Someone just copied a big file into my directory and its name is
"Z
Stopped
%ls
funnyfile
prog.c
prog.o
%jobs
[1] + Stopped mail harold
%fg
mail harold
funny.file. Do you know who did it?
EQT
%

In this example someone was sending a message to Harold and forgot the name of the file he wanted to
mention. The mail command was suspended by typing "Z. When the shell noticed that the mail program
was suspended, it typed 'Stopped' and prompted for a new command. Then the ls command was typed to
find out the name of the file. The jobs command was run to find out which command was suspended. At
this time the/g command was typed to continue execution of the mail program. Input to the mail program
was then continued and ended with a 't> which indicated the end of the message at which time the mail
program typed EOT. The jobs command will show which commands are suspended. The £ should only
be typed at the beginning of a line since everything typed on the current line is discarded when a signal is
sent from the keyboard. This also happens on INTERRUPT, and QUIT signals. More information on suspend
ing jobs and controlling them is given in section 2.6.

If you write or run pr~ which are not fully debugged then it may be necessary to stop them
somewhat ungracefully. This can be done by sending them a QUIT signal, sent by typing a"\. This will
usually provoke the shell to produce a message like:

Quit (Core dumped)

indicating that a file 'core' has been created containing information about the running program's state when

USD:4-10 An Inttoduction to the C shell

it terminated due to the QUIT signal. You can· examine this file yourself, or forward informatim to the
maintainer of the program telling himlher where the core file is.

If you run background commands (as explained in section 2.6) then these commands will ignore
INTERRUPT and QUIT signals at the terminal. To stop them you must use the lcill command. See section 2.6
for an example.

If you want to examine the output of a command without having it move off the screen as the output
of the

cat /etc/passwd

command will, you can use the command

more /etc/passwd

The more program pauses after each complete screenful and types '-Men-' at which point you can hit
a space to get another screenfuJ, a return to get another line, a '?' to get some help on other commands, or a
'q' to end the more program. You can also use more as a filter, i.e.

cat /etc/passwd I more

works just like the more simple more command above.

For stopping output of commands not involving more you can use the "S key to stop the typeouL
The typeout will resume when you hit "Q or any other key, but "Q is normally used because it only restarts
the output and does not become input to the program which is running. This works well on low-speed ter
minals, but at 9600 baud it is hard to type "Sand "Q fast enough to paginate the output nicely, and a pro
gram like more is usually used.

An additional possibility is to use the "O flush output character; when this character is typed, all out
put from the current command is thrown away (quickly) until the next input read occun or until the next
shell prompt This can be used to allow a command to complete without having to suffer through the out
put on a slow terminal; ·o is a toggle, so flushing can be turned off by typing "O again while output is
being flushed.

1.9. What now?

We have so far seen a number of mechanisms of the shell and learned a lot about the way in which it
operates. The remaining sections will go yet further into the internals of the shell, but you will surely want
to try using the shell before you go any further. To try it you can log in to UNIX· and type the following
command to the system:

chsh mynarne /bin/csh

Here 'myname' should be replaced by the name you typed to the system prompt of 'login:' to get onto the
system. Thus I would use 'chsh bill /bin/csh'. You only have to do this once; it takes effect at next
login. You are now ready to try using csh.

Before you do the 'chsh' command, the shell you are using when you log into the system is '/bin/sh'.
In fact, much of the above discussion is applicable to '/bin/sh'. The next section will inttoduce many
features particular to csh so you should change your shell to csh before you begin reading it.

An Introduction to the C shell USD:4-11

2. Details on the shell for terminal users

2.1. Shell startup and termination

When you login, the shell is started by the system in your hotM directory and begins by reading
commands from a file .cshrc in this directory. All shells which you may start during your terminal session
will read from this file.. We will later see what kinds of commands are usefully placed there. F<X' now we
need not have this file and the shell does not complain about its absence.

A lo gin sMll, executed after you login to the system, will, after it reads commands from .cs Ive, read
commands from a file .login also in your home directory. This file contains commands which you wish to
do each time you login to the UNIX system. My .login file looks something like:

set ignoreeof
set mail-(/usr/spool/mail/bill)
echo "S{prompt}users"; users
alias ts\

'set noglob; eval 'tset-s -m dialup:c100rv4pna-m plugboard:?hp2621nl •' ';
ts; stty intr "C kill "U crt
set tirne=15 history-IO
msgs-f
if (-e $mail) then

endif

echo "S{prompt}mail"
mail

This file contains several commands to be executed by UNIX each time I login. The first is a set com
mand which is interpreted directly by the shell. It sets the shell variable ignoreeo/ which causes the shell
to not log me off if I hit "D. Rather, I use the logout command to log off of the system. By setting the
mail variable, I ask the shell to watch for incoming mail to me. Every 5 minutes the shell looks for this file
and tells me if more mail has arrived there. An alternative to this is to put the command

biffy

in place of this set,· this will cause me to be notified immediately when mail arrives, and to be shown the
first few lines of the new message.

Next I set the shell variable 'time' to '15' causing the shell to automatically print out statistics lines
for commands which execute for at least 15 seconds of CPU time. The variable 'history' is set to 10 indicat
ing that I want the shell to remember the last 10 commands I type in its history list, (described later).

I create an alias "ts" which executes a tset(l) command setting up the modes of the terminal. The
parameters to tset indicate the kinds of terminal which I usually use when not on a hardwired port. I then
execute "ts" and also use the stty command to change the interrupt character to "C and the line kill char
acter to"U.

I then run the 'msgs' program, which provides me with any system messages which I have not seen
before; the '-r option here prevents it from telling me anything if there are no new messages. Finally, if
my mailbox file exists, then I run the 'mail' program to process my mail.

When the 'mail' and 'msgs' programs finish, the shell will finish processing my .login file and begin
reading commands from the tenninal, prompting for each with '% '. When I log off (by giving the logout
command) the shell will print 'logout' and execute commands from the file '.logout' if it exists in my home
directory. After that the shell will terminate and UNIX will log me off the system. If the system is not going
down, I will receive a new login message. In any case, after the 'logout' message the shell is committed to
terminating and will take no further input from my terminal.

USD:4-12 An Introduction to the C shell

2.2. Shell variables

The shell maintains a set of variables. We saw above the variables history and titM which had
values '10' and '15'. In fact, each shell variable hu u value an array of zero c.- more strings. Shell vari
ables may be usigned values by the set command. It hu several forms, the most useful of which was
given above and is

set name-value

Shell variables may be used to sue values which are to be used in commands later through a substi
tution mechanism. 1be shell variables most commonly referenced are, however, those which the shell
itself refers to. By changing the values of these variables one can di.reedy affect the behavior of the shell.

One of the most important variables is the variable path. This variable contains a sequence of direc
tory names where the shell searches for commands. The set command with no arguments shows the value
of all variables currently defined (we usually say set) in the shell. The default value for path will be shown
by set to be

% set
argv
cwd
home
path
prompt
shell
status
term
user
%

()
/usr/bill
/usr/bill
(. /usr/ucb /bin /usr/bin)
%
/binlcsh
0
c100rv4pna
bill

This output indicates that the variable path points to the current directory'.' and then '/usr/ucb', '/bin' and
'/usr/bin'. Commands which you may write might be in'.' (usually one of your directories). Commands
developed at Berkeley, live in '/usr/ucb' while commands developed at Bell Laboratories live in '/bin' and
'/usr/bin'.

A number of locally developed programs on the system live in the directory '/usr/local'. If we wish
that all shells which we invoke to have access to these new programs we can place the command

set path=(. /usr/ucb /bin /usr/bin /usr/local)

in our file .cshrc in our home directory. Try doing this and then logging out and back in and do

set

again to see that the value assigned to path has changed.

One thing you should be aware of is that the shell examines each directory which you insert into your
path and determines which commands are contained there. Except for the current directory '.', which the
shell treats specially, this means that if commands are added to a directory in your search path after you
have started the shell, they will not necessarily be found by the shell. If you wish to use a command which
has been added in this way, you should give the command

rehash

to the shell, which will cause it to recompute its internal table of command locations, so that it will find the
newly added command. Since the shell has to look in the current directory'.' on each command, placing it
at the end of the path specification usually works equivalently and reduces overhead.

t Another directory that· might interest ycu is /usr/new, which contains many useful user-contributed programs
provided with Berkeley Unix.

An Introduction to the C shell USD:4-13

Other useful built in variables are the variable horM which shows your home directory, cwd which
contains your current working directory, the variable ignoreeof which can be set in your .login file to tell
the shell not to exit when it receives an end-of-file from a terminal (as described above). The variable
'ignoreeor is one of several variables which the shell does not care about the value of, only whether they
are set or unset. Thus to set this variable you simply do

set ignoreeof

and to unset it do

unset ignoreeof

These give the variable 'ignoreeor no value, but none is desired or required.

Finally, some other built-in shell variables of use are the variables noclobbu and mail. The
metasyntax

>filename

which redirects the standard output of a command will overwrite and destroy the previous contents of the
named file. In this way you may accidentally overwrite a file which is valuable. If you would prefer that
the shell not overwrite files in this way you can

set noclobber

in your .lo gin file. Then trying to do

date>now

would cause a diagnostic if 'now' existed already. You could type

date>! now

if you really wanted to overwrite the contents of 'now'. The '>!' is a special metasyntax indicating that
clobbering the file is ok.t

2.3. The shell's history list

The shell can maintain a history list into which it places the words of previous commands. It is pos
sible to use a notation to reuse commands or words from commands in forming new commands. This
mechanism can be used to repeat previous commands or to correct minor typing mistakes in commands.

The following figure gives a sample session involving typical usage of the history mechanism of the
shell. In this example we have a very simple C program which has a bug (or two) in it in the file 'bug.c',
which we 'cat' out on our terminal. We then tty to run the C compiler on it, referring to the file again as
'!$', meaning the last argument to the previous command. Here the '!' is the history mechanism invocation
metacharacter, and the'$' stands for the last argument, by analogy to'$' in the editor which stands for the
end of the line. The shell echoed the command, as it would have been typed without use of the history
mechanism, and then executed iL The compilation yielded error diagnostics so we now run the editor on
the file we were ttying to compile, fix the bug, and run the C compiler again, this time referring to this
command simply as '!c', which repeats the last command which started with the letter 'c'. If there were
other commands starting with 'c' done recently we could have said '!cc' or even '!cc:p' which would have
printed the last command starting with 'cc' without executing iL

After this recompilation, we ran the resulting 'a.out' file, and then noting that there still was a bug,
ran. the editor again. After fixing the program we ran the C compiler again, but tacked onto the command
an extra '-o bug' telling the compiler to place the resultant binary in the file 'bug' rather than 'a.out'. In
general, the history mechanisim may be used anywhere in the formation of new commands and other char
acters may be placed before and after the substituted commands.

tThe space between the'!' and the word 'now' is critical here, as '!now' would be an invocation oftbe history mechanism,
and have a totally different effect.

USD:4-14

% cat bug.c
main()

{
printf("hello);

}
%cc!$
cc bug.c
"bug.c", line 4: newline in string or char comtant
"bug.c", line S: syntax error
%ed!$
ed bug.c
29
4s/)"J"&/p

w
30

printf("hello");

q
%!c
cc bug.c
% a.out
hello% !e
ed bug.c
30
4s/lollo\ \nip

printf("hello\n");
w
32
q
% !c-obug
cc bug.c -o bug
% size aout bug
a.out 2784+364+1028 = 4176b = Ox1050b
bug: 2784+364+1028 = 4176b = OxlOSOb
% ls-I!*
Is -I a.out bug
-rwxr-xr-x 1 bill 3932 Dec 19 09:41 a.out
-rwxr-xr-x 1 bill 3932 Dec 19 09:42 bug
%bug
hello
% num bug.c I spp
spp: Command not found.
% "spp"ssp
num bug.c I ssp

1 mainO
3 {
·4 printf("hello\n");
s }

% !! llpr
num bug.c I ssp I lpr
%

An Introduction to the C shell

An Introduction to the C shell USD:4-1S

We then ran the 'size' command to see how large the binary program images we have created were,
and then an 'ls -I' command with the same argument list, denoting the argument list '•'. Finally we ran
the program 'bug' to see that its output is indeed correct.

To make a numbered listing of the program we ran the 'num' command on the file 'bug.c'. In order
to compress out blank lines in the output of 'num' we ran the output through the filt.er 'ssp', but misspelled
it as spp. To correct this we used a shell substitute, placing the old text and new text between'"' charac
ters. This is similar to the substitute command in the editor. Finally, we repeated the same command with
' !! ', but sent its output to the line pinter.

There are other mechanisms available f<r repeating commands. The history command prints out a
number of previous commands with numbers by which they can be referenced. There is a way to refeJ" to a
previous command by searching for a string which appeared in it, and there are other, less useful, ways to
select arguments to include in a new command. A complete description of all these mechanisms is given in
the C shell manual pages in the UNIX Programmer's Manual.

2.4. Aliases
The shell has an alias mechanism which can be used to make transformations on input commands.

This mechanism can be Used to simplify the commands you type, to supply default arguments to com
mands, or to perform transformations on commands and their arguments. The alias facility is similar to a
macro facility. Some of the features obtained by aliasing can be obtained also using shell command files,
but these take place in another instance of the shell and cannot directly affect the current shells environ
ment or involve commands such • cd which must be done in the cwrent shell.

As an example, suppose that there is a new version of the mail program on the system called
'newmail' you wish to use, rather than the standard mail program which is called 'mail'. If you place the
shell command

alias mail newmail

in your .cshrc file, the shell will transform an input line of the form

mail bill

into a call on 'newmail'. More generally, suppose we wish the command 'ls' to always show sizes of files,
that is to always do '-s'. We can do

alias ls ls -s

or even

alias dir Is -s

creating a new command syntax 'dir' which does an 'ls-s'. If we say

dir 'Dill

then the shell will translate this to

ls -s /mntlbill

Thus the alias mechanism can be used to provide short names for commands, to provide default
arguments, and to define new short commands in terms of other commands. It is also possible to define
aliases which contain multiple commands or pipelines, showing where the arguments to the original com
mand are to be substituted using the facilities of the history mechanism. Thus the definition

alias cd 'cd \!* ; ls '

would do an ls command after each change directory cd command We enclosed the entire alias definition
in ''' characters to prevent most substitutions from occurring and the character ';' from being recognized as
a metacharacter. The'!' here is escaped with a'\' to prevent it from being interpreted when the alias com
mand is typed in. The '\!•' here substitutes the entire argument list to the pre-aliasing cd command,
without giving an error if there were no arguments. The';' separating commands is used here to indicate

USD:4-16

that one command is to be done and then the next Similarly the definitioo

alias whois 'grep \!" /etc/passwd'

defines a command which looks up its first argument in the password file.

An Introduction to the C shell

Warnin1: The shell currently reads the .cshrc file each time it starts up. If you place a large
number of commands there, shells will tend to start slowly. A mechanism for saving the shell environment
after reading the .cshrc file and quickly restaing it is under development, but for now you should try to
limit the number of aliases you have to a reasonable number ... 10 or 1S is reasonable, SO or 60 will cause a
noticeable delay in starting up shells, and make the system seem sluggish when you execute commands
from within the editor and other progrmm.

2.5. More redirection; >> and >&

There are a few ma:e notations useful to the terminal user which have not been introduced yet.

In addition to the standard output, commands also have a diagnostic outpUI which is normally
directed to the tenninal even when the standard output is redirected to a file or a pipe. It is occasionally
desirable to direct the diagnostic output along with the standard output For instance if you want to redirect
the output of a long running command into a file and wish to have a record of any error diagnostic it pro
duces you can do

command >& file

The '>&' here tells the shell to route both the diagnostic output and the standard output into 'file'. Simi
larly you can give the command

command I & lpr

to route both standard and diagnostic output through the pipe to the line printer daemon lpr.t

Finally, it is possible to use the form

command » file

to place output at the end of an existing file. t

2.6. Jobs; Background, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of commands
separated by semicolons, a single job is created by the shell consisting of these commands together as a
unil Single commands without pipes or semicolons create the simplest jobs. Usually, every line typed to
the shell creates a job. Some lines that create jobs (one per line) are

sort< data
ls -s I sort -n I head -5
mailharold

If the metacharacter '&' is typed at the end of the commands, then the job is started as a background
job. This means that the shell does not wait for it.to complete but immediately prompts and is ready for
another command The job runs in t~ background at the same time that normal jobs, called foreground
jobs, continue to be read and executed by the shell one at a time. Thus

du >usage &

* A command of the form
command>&! file

exists, and is used when noclobbu is set andjik already exists.
t If noclobbcr is set, then an error will result if fil• does n<lt exist, otherwise the shell will create fil• if it doesn't exist A
fonn

command»! file
makes it not be an error for file to not exist when noclobbcr is set.

An Introduction to the C shell USD:4-17

would run the du program, which reports on the disk usage of your working directory (as well as any
directories below it), put the output into the file 'usage' and return immediately with a prompt for the next
command without out waiting for du to finish. The du program would continue executing in the back
ground until it finished, even though you can type and execute more commands in the mean time. When a
background job terminates, a message is typed by the shell just before the next prompt telling you that the
job has completed. In the following example the du job finishes sometime during the execution of the
mail command and its completion is rep<X1ed just before the prompt after the mail job is finished.

%du>usage&
[1] 503
% mail bill
How do you know when a background job is finished?
EOT
[1] - Done du > usage
%

H the job did not terminate nonnally the 'Done' message might say something else like 'Killed'. If you
want the terminations of background jobs to be reported at the time they occur (possibly interrupting the
output of other foreground jobs), you can set the notify variable. In the previous example this would mean
that the 'Done' message might have come right in the middle of the message to Bill. Background jobs are
unaffected by any signals from the keyboard like the STOP, INTERRUPT, or QUIT signals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell remembers
the command names, arguments and the process numbers of all commands in the job as well as the work
ing directory where the job was started. Each job in the table is either running in the foreground with the
shell waiting for it to terminate, running in the background, or suspended. Only one job can be running in
the foreground at one time, but several jobs can be suspended or running in the background at once. As
each job is started, it is assigned a small identifying number called the job number which can be used later
to refer to the job in the commands described below. Job numbers remain the same until the job terminates
and then are re-used.

When a job is started in the backgound using ' & ', its number, as well as the process numbers of all
its (top level) commands, is typed by the shell before prompting you for another command. For example,

% ls -s I sort -n > usage &
[2] 2034 2035
%

runs the 'ls' program with the '-s' options, pipes this output into the 'sort' program with the '-n' option
which puts its output into the file 'usage'. Since the '&' was at the end of the line, these two programs
were started together as a background job. After starting the job, the shell prints the job number in brackets
(2 in this case) followed by the process number of each program started in the job. Then the shell immedi
ates prompts for a new command, leaving the job running simultaneously.

As mentioned in section 1.8, foreground jobs become suspentkd by typing "Z which sends a STOP
signal to the currently running foreground job. A background job can become suspended by using the stop
command described below. When jobs are suspended they merely stop any further progress until started
again, either in the foreground or the backgound. The shell notices when a job becomes stopped and
reports this fact, much like it reports the termination of background jobs. For foreground jobs this looks
like

%·du>usage
"Z
Stopped
%

'Stopped' message is typed by the shell when it notices that the du program stopped. For background jobs,
using the stop command, it is

USD:4-18

% sort usage &
[1] 2345
%stop%1
[1] +Stopped (signal)
%

An Introduction to the C shell

sort usage

Suspending foreground jobs can be very useful when you need to temporarily change what you are doing
(execute other commands) and then return to the suspended job. Also, foregrowid jobs can be suspended
and then continued as background jobs using the bg command, allowing you to continue other work and
stop waiting for the foregrowid job to finish. Thus

%du>usage
"Z
Stopped
%bg
[1] du> usage &
%

starts 'du' in the foreground, stops it before it finishes, then continues it in the background allowing more
foreground commands to be executed. This is especially helpful when a foreground job ends up taking
longer than you expected and you wish you had started it in the backgound in the beginning.

All job control commands can take an argument that identifies a particular job. All job name argu
ments begin with the character '%', since some of the job conttol commands also accept process numbers
(printed by the ps command) The default job (when no argument is given) is called the currenJ job and is
identified by a '+' in the output of the jobs command, which shows you which jobs you have. When only
one job is stopped or rwming in the background (the usual case) it is always the current job thus no argu
ment is needed. If a job is stopped while running in the foreground it becomes the current job and the
existing current job becomes the previous job- identified by a'-' in the output of jobs. When the current
job terminates, the previous job becomes the current job. When given, the argument is either'%-' (indi
cating the previous job); '%#', where # is the job number; '%prer where pref is some unique prefix of the
command name and arguments of one of the jobs; or '% ?' followed by some string found in only one of the
jobs.

The jobs command types the table of jobs, giving the job number, commands and status ('Stopped'
or 'Running') of each backgound or suspended job. With the '-1' option the process numbers are also
typed.

% du> usage&
[1] 3398
% ls -s I sort -n > myfile &
[2] 3405
% mail bill
"Z
Stopped
%jobs
[1] - Running
[2] Running
[3] + Stopped
% fg %Is
Is -s I sort -n > myfile
% more myfile

du> usage
Is -s I sort -n > myfile
mail bill

The fg command runs a suspended or background job in the foreground It is used to restart a previ
ously suspended job or change a background job to run in the foreground (allowing signals or input from
the terminal). In the above example we used/g to change the 'ls' job from the background to the fore
ground since we wanted to wait for it to finish before looking at its output file. The bg command runs a
suspended job in the background. It is usually used after stopping the currently running foreground job

An Introduction to the C shell . USD:4-19

with the STOP signal. The combination of the STOP signal and the bg command changes a foreground job
into a background job. The stop command suspends a background job.

The ldll command terminates a background or suspended job immediately. In addition to jobs, it
may be given process numbers u arguments, as printed by ps. Thus, in the example abov~ the running du
command could have been terminated by the command

% kill %1
[1] Terminated du> usage
%

The notify command (not the variable mentioned earlier) indicates that the termination of a specific
job should be reported at the time it finishes instead of waiting f<X" the next prompt.

If a job running in the background tries to read input from the terminal it is automatically stopped.
When such a job is then nm in the foreground, input can be given to the job. If desired, the job can be nm
in the background again until it requests input again. This is illustrated in the following sequence where
the 's' command in the text editor might take a long time.

% ed bigfile
120000
l ,$s/thisword/thatwordl
·z
Stopped
%bg
(1] ed bigfile &
%
. . . some foreground commands
[1] Stopped (tty input) ed bigfile
%fg
ed big.file
w
120000
q
%

So after the 's' command was issued, the 'ed' job wu stopped with ·z and then put in the background
using bg. Some time later when the 's' command was finished, ed tried to read another command and was
stopped because jobs in the backgound cannot read from the terminal. The/g command returned the 'ed'
job to the foreground where it could once again accept commands from the terminal.

The command

stty tostop

causes all background jobs run on your terminal to stop when they are about to write output to the terminal.
This prevents messages from background jobs from interrupting foreground job output and allows you to
run a job in the background without losing terminal output. It also can be used for interactive programs
that sometimes have long periods without interaction. Thus each time it outputs a prompt for more input it
will stop before the prompt. It can then be run in the foreground using fg, more ir.put can be given and, if
necessary stopped and returned to the background. This stty command might be a good thing to put in
your .login file if you do not like output from background jobs interrupting your work. It also can reduce
the need for redirecting the output of background jobs if the output is not very big:

USD:4-20

% stty tostop
% wc hugefile &
[1] 10387
%edtext
... some time later
q
[1] Stopped (tty output)
%fgwc
wc hugefile

13371 30123 302577
% stty -tostop

An Introduction to the C shell

we hugefiJe

Thus after some time the 'we' command, which counts the lines, words and characters in a file, had one
line of output. When it tried to write this to the terminal it stopped. · By restarting it in the foreground we
allowed it to write on the terminal exactly when we were ready to look at its output Progrmw which
attempt to change the mode of the terminal will also block, whether or not tostop is set, when they are not
in the foreground, as it would be very unpleasant to have a background job change the state of the terminal.

Since the jobs command only prints jobs started in the currently executing shell, it knows nothing
about background jobs started in other login sessions or within shell files. The ps can be used in this case
to find out about background jobs not started in the current shell.

2. 7. Working Directories

As mentioned in section 1.6, the shell is always in a particular working directory. The 'change direc
tory' command chdir (its short form cd may also be used) changes the working directory of the shell, that
is, changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files related to
that project in that direcicxy. The 'make directory' command, mkdir, creates a new directory. The pwd
('print working directory') command reports the absolute pathname of the working directory of the shell,
that is, the directory you are located in. Thus in the example below:

%pwd
/usr/bill
% mkdir newpaper
% chdir newpaper
%pwd
/usr/bill/newpaper
%

the user has created and moved to the directory newpaper. where, for example, he might place a group of
related files.

No matter where you have .moved to in a directory hierarchy, you can return to your 'home' login
directory by doing just

cd

with no arguments. The name' .. ' always means the directory above the current one in the hierarchy, thus

ed ..

changes the shell's working directory to the one directly above the current one. The name' . .' can be used
in any pathname, thus,

cd .Jprograms

means change to the directory 'programs' contained in the directory above the current one. If you have
several directories for different projects under, say, your home directory, this shorthand notation permits
you to switch easily between them.

An Introduction to the C shell USD:4-21

The shell always remembers the pathname of its current working directory in the variable cwd. The
shell can also be requested to remember the previous directory when you change to a new waking direc
tory. If the 'push directory' command pushd is used in place of the cd command, the shell saves the name
of the current working directory on a directory stack before changing to the new one. You can see this list
at any time by typing the 'directories' command dirs.

% pushd newpaper/references
-1newpaper/references -
% pushd /usr/libltmac
/usr/lib/tmac -1newpaper/references -
%dirs
/usr/lib/tmac -inewpaper/references -
%popd
-1newpaper/references -
%popd

%

The list is printed in a horizontal line, reading left to right, with a tilde n as shorthand for your home
directory-in this case '/usr/bill'. The directory stack is printed whenever there is more than one entry on
it and it changes. It is also printed by a dirs command. Dirs is usually faster and more informative than
pwd since it shows the cumnt working directory as well as any other directories remembered in the stack.

The pushd command with no argument alternates the current directory with the first directory in the
list. The 'pop directory' popd command without an argument returns you to the directory you were in
prior to the current one, discarding the previous current directory from the stack (forgetting it). Typing
po pd several times in a series takes you backward through the directories you had been in (changed to) by
pushd command. There are other options to pushd and popd to manipulate the contents of the directory
stack and to change to directories not at the top of the stack; see the csh manual page for details.

Since the shell remembers the working directory in which each job was started, it warns you when
you might be confused by restarting a job in the foreground which has a different working directory than
the current working directory of the shell. Thus if you start a background job, then change the shell's
working directory and then cause the background job to run in the foreground, the shell warns you that the
worldng directory of the currently running foreground job is different from that of the shell.

% dirs-1
/mnt/bill
% cd myproject
% dirs
-1myproject
% edprog.c
1143
"Z
Stopped
%ed .•
%ls
myproject
textfile
%fg
ed prog.c (wd: -1myproject)

This way the shell warns you when there is an implied change of working directory, even though no cd
command was issued. In the above example the 'ed' job was still in '/mnt/biWproject' even though the
shell had changed to '/mnt/bill'. A similar warning is given when such a foreground job tenninates or is
suspended (using the STOP signal) since the return to the shell again implies a change of working directory.

USD:4-22

%fg
ed prog.c (wd: ·1myproject)
••. aft.er some editing

q
(wdnow:1
%

An Introduction to the C shell

These messages are sometimes confusing if you use programs that change their own w<X'ldng directories,
since the shell only remembers which directory a job is started in, and assumes it. stays there. The '-1'
option of jobs will type the working directory of suspended or background jobs when it is different from
the current worldng directory of the shell.

2.8. Useful built-in commands

We now give a few of the useful built-in commands of the shell describing how they are used.
The alias command described above is used to assign new aliases and to show the existing aliases.

With no arguments it prints the current aliases. It may also be given only one argument such as

alias ls

to show the current alias for, e.g., 'ls'.

The echo command prints its aiguments. It is often used in shell scripts or as an interactive com
mand to see what filename expansions will produce.

The history command will show the contents of the history list The numbers given with the history
events can be used to reference previous events which are difficult to reference using the contextual
mechanisms introduced above. There is also a shell variable called prompt. By placing a '!' character in
its value the shell will there substitute the number of the current command in the history list You can use
this number to refer to this command in a history substitution. Thus you could

set prompt="\! % '

Note that the'!' character had to be escaped here even within''' characters.

The limit command is used to restrict use of resources. With no arguments it prints the current limi
tations:

cputime
filesize
datasize
stacksize
coredumpsize

Limits can be set, e.g.:

unlimited
unlimited
5616kbytes
512kbytes
unlimited

limit coredumpsize 128k

Most reasonable units abbreviations will work; see the csh manual page for more details.

The logout command can be used to terminate a login shell which has ignoreeof set.

The rehash command causes the shell to recompute a table of where commands are located. This is
necessary if you add a command to a directory in the current shell's search path and wish the shell to find
it, since otherwise the hahing algorithm may tell the shell that the command wasn't in that directory when
the hash table was computed. · ·

The repeat command can be used to repeat a command several times. Thus to make S copies of the
file one in the file five you could do

repeat 5 cat one >> five

The setenv command can be used to set variables in the environment. Thus

An Introduction to the C shell USD:4-23

setenv TERM adm3a

will set the value of the environment variable TERM to 'adm3a'. A user program printenv exists which will
print out the environment It might then show:

% printenv
HOME=/usr/bill
SHELL-/bin/csh
PA TH-:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a
USER-bill
%

The source command can be used to force the current shell to read commands from a file. Thus

source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect right away.

The time command can be used to cause a command to be timed no matter how much CPU time it
takes. Thus

% time cp /etr:Jre /usr/bill/re
O.Ou O.ls 0:01 8% 2+lk 3+2io lpf+Ow
% time wc /etc/re /usr/bill/rc

52 178 1347 /etc/re
52 178 1347/usr/bill/re
104 356 2694 total

O.lu O.ls 0:00 13% 3+3k 5+3io 7pf+Ow
%

indicates that the cp command used a negligible amount of user time (u) and about I/10th of a system time
(s); the elapsed time was 1 second (0:01), there was an average memory usage of 2k bytes of program
space and lk bytes of data space over the cpu time involved (2+ lk); the program did three disk reads and
two disk writes (3+2io), and took one page fault and was not swapped (lpf+Ow). The word count com
mand we on the other hand used 0.1 seconds of user time and 0.1 seconds of system time in less than a
second of elapsed time. The percentage '13%' indicates that over the period when it was active the com
mand 'we' used an average of 13 percent of the available CPU cycles of the machine.

The unalias and unset commands can be used to remove aliases and variable definitions from the
shell, and unsetenv removes variables from the environment

2.9. What else?

This concludes the basic discussion of the shell for terminal users. There are mae features of the
shell to be discussed here, and all features of the shell are discussed in its manual pages. One useful
feature which is discussed later is the foreach built-in command which can be used to run the same com
mand sequence with a number of different arguments.

If you intend to use UNIX a lot you you should look through the rest of this document and the csh
manual pages (sectionl) to 00oome familiar with the other facilities which are available to you.

USD:4-24 An Introduction to the C shell

3. Shell control structures and command scripts

3.1. Introduction

It is possible to place commanm in files and to cause shells to be invoked to read and execute com
mands from these files, which are called shell scripts. We here detail those features of the shell useful to
the writers of such scripts.

3.2. Make

It is important to first note what shell scripts are not useful for. There is a program called make
which is very useful for maintaining a group of related files or performing sets of operations on related
files. For instance a large program consisting of one or more files can have its dependencies described in a
ma/cefik which contains definitions of the commands used to create these different files when changes
occur. Definitions of the meam for printing listings, cleaning up the directory in which the files reside, and
installing the resultant prognum are easily, and most appropiately placed in this malufile. This format is
superior and preferable to maintaining a group of shell procedures to maintain these files.

Similarly when working on a document a ma/cefik may be created which defines how different ver
sions of the document are to be created and which options of nroff or troff are appropriate.

3.3. Invocation and the argv variable

A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of csh commands and ' ... ' is replaced by a sequence
of arguments. The shell places these arguments in the variable argv and then begins to read commands
from the script. These parameters are then available through the same mechanisms which are used to refer
ence any other shell variables.

If you make the file 'script' executable by doing

chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with a'#' character) then a
'/bin/csh' will automatically be invoked to execute 'script' when you type

script

If the file does not begin with a'#' then the standard shell '/bin/sh' will be used to execute it. This allows
you to convert your older shell scripts to use csh at your convenience.

3.4. Variable substitution

After each input line is broken into words and history substitutions are done on it, the input line is
parsed into distinct commands. Before each command is executed a mechanism know as variable substitu
tion is done on these words. Keyed by the character '$' this substitution replaces the names of variables by
their values. Thus

echo Sargv

when placed in a command script would cause the current value of the variable argv to be echoed to the
output of the shell script It is an error for argv to be unset at this point

A number of notations are provided for accessing components and attributes of variables. The nota-
ti on

$?name

expands to 'l' if name is set or to 'O' if name is not set. It is the fundamental mechanism used for check
ing whether particular variables have been assigned values. All other forms of reference to undefined vari
ables cause errors.

An Introduction to the C shell

The notation

$#name

expands to the number of elements in the variable name. Thus

% set argv=(a b c)
% echo $?argv
1
% echo $#argv
3
% unsetargv
% echo $?argv
0
%echo$argv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several values. Thus

$argv[l]

gives the first component of argv or in the example above 'a'. Similarly

$argv[$#argv]

would give 'c', and

$argv[l-2]

would give 'ab'. Other notations useful in shell scripts are

$n

where n is an integer as a shorthand for

$argv[n]

the nth parameter and

$*

which is a shorthand for

$argv

The form

$$

USD:4-25

expands to the process number of the current shell. Since this process number is unique in the system it
can be used in generation of unique temporary file names. The form

$<

is quite special and is replaced by the next line of input read from the shell's standard input (not the script it
is reading). This is useful for writing shell scripts that are interactive, reading commands from the termi
nal, or even writing a shell script that acts as a filter, reading lines from its input file. Thus the sequence

echo 'yes or no?\c'
set a=($<)

would write out the prompt 'yes or no?' without a newline and then read the answer into the variable 'a'.
In this case '$#a' would be 'O' if either a blank line or end-of-file CD) was typed

One minor difference between '$n' and '$argv[n]' should be noted here. The form '$argv(n]' will
yield an error if n is not in the range 'l-$#argv' while 'Sn' will never yield an out of range subscript error.

USD:4-26 An Introduction to the C shell

This is for compatibility with the way older shells handled parameters.

Another important point· is that it is never an error to give a subrange of the form 'n-'; if there are
less than n components of the given variable then no words are substituted. A range of the form 'm-n'
likewise returns an empty vector without giving an error when m exceeds the number of elements of the
given variable, provided the subscript n is in range.

3.5. Expreaions

In order f<X' interesting shell scripts to be constructed it must be possible to evaluate expressions in
the shell based on the values of variables. In fact, all the arithmetic operations of the language C are avail
able in the shell with the same precedence that they have in C. In particular, the operations '==' and'!='
compare strings and the operators '&&' and 'I I' implement the boolean and/or operations. The special
operators , __ , and '!-' are similar to'••' and'!•' except that the string on the right side can have pattern
matching characters (like • ' ? or m and the test is whether the string on the left matches the pattern on the
righL

The shell also allows file enquiries of the form

-? filename

where '?' is replace by a number of single characters. For instance the expression primitive

-e filename

tell whether the file 'filename' exists. Other primitives test for read, write and execute access to the file,
whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form ' { command
} ' which returns true, i.e. '1' if the command succeeds exiting norrnally with exit status 0, or 'O' if the
command terminates abnormally or with exit status non-zero. If more detailed information about the exe
cution status of a commapd is required, it can be executed and the variable '$status' examined in the next
command. Since '$status' is set by every command, it is very transienL It can be saved if it is incon
venient to use it only in the single immediately following command.

For a full list of expression components available see the manual section for the shell.

3.6. Sample shell script

A sample shell script which makes use of the expression mechanism of the shell and some of its con
trol structure follows:

An Introduction to the C shell

% catcopyc

Copyc copies those C programs in the specified list
to the directory -/backup if they differ from the files
#already in _/backup

setnoglob
foreach i ($argv)

end

if ($i !- • .c) continue #not a .c file so do nothing

if(! -r -/backup1$i:t) then
echo $i:t not in backup ... not cp\ 'ed
continue

endif

cmp -s $i -/backup1$i:t # to set $status

if ($status != 0) then
echo new backUp of Si
cp Si -1backupl$i:t

endif

USD:4-27

This script makes use of the foreach command, which causes the shell to execute the commands
between the foreach and the matching end for each of the values given between '(' and ')' with the named
variable, in this case 'i' set to successive values in the list Within this loop we may use the command
brealc to stop executing the loop and contin1'4 to prematurely terminate one iteration and begin the next
After the f oreac h loop the iteration variable (i in this case) has the value at the ·1ast iteration.

We set the variable noglob here to prevent filename expansion of the members of argv. This is a
good idea, in general, if the arguments to a shell script are filenames which have already been expanded or
if the arguments may contain filename expansion metacharacters. It is also possible to quote each use of a
'$'variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression) then
command

endif

The placement of the keywords here is not flexible due to the current implementation of the shell. t
The shell does have another form of the if statement of the form

tThe following two formats are not cumntly acceptable to the shell:

and

II (expression)
then

endJf

Won't work!

II (expression) then command endlf #Won't work

USD:4-28

if (expression) command

which can be written

if (expression) \
command

An Introduction to the C shell

Here we have escaped die newline for the sake of appearance. The command must not involve ' I ', ' & ' or
';' and must not be anodaer control command. The second form requires the final '\' to immediately pre
cede the end-of-line.

The more general if statements above also admit a sequence of else-if pairs followed by a single
else and an endif, e.g.:

if (expression) then
commands

el1e if (expression) then
commands

else
commands

endif

Another important mechanism used in shell scripts is the':' modifier. We can use the modifier ':r'
here to extract a root of a filename or ':e' to extract the extension. Thus if the variable i has the value
'/mnt/foo.bar' then

% echo $i $i:r $i:e
/mnt/foo.bar /mnt/foo bar
%

shows how the ':r' modifier strips off the trailing '.bar' and the the ':e' modifier leaves only the 'bar'.
Other modifiers will take off the last component of a pathname leaving the head ':h' or all but the last com
ponent of a pathname leaving the tail ':t'. These modifiers are fully described in the csh manual pages in
the User's Reference Manual. It is also possible to use the command substitution mechanism described in
the next major section to petform modifications on strings to then reenter the shell's environment. Since
each usage of this mechanism involves the creation of a new process, it is much more expensive to use than
the ':' modification mechanism.* Finally, we note that the character '#' lexically introduces a shell com
ment in shell scripts (but not from the terminal). All subsequent characters on the input line after a'#' are
discarded by the shell. This character can be quoted using ''' or'\' to place it in an argument word.

3.7. Other control structures

The shell also has control structures while and switch similar to those of C. These take the forms

while (expression)
commands

end

t It is also important to note that the cunent implemematio~ of the shell limits the number of ':' modifiers on a 'S'
substitution to 1. Thus

'{, echo Si Si:b:t
/a/b/c /a/b:t .,

does not do what one would expect.

An Introduction to the C shell

and

switch (word)

case strl:
commands
breaksw

case stm:
commands
breaksw

default:
commands
breaksw

endsw

USD:4-29

For details see the manual section for csh. C programmers should note that we use breaksw to exit from a
switch while break exits a while or foreach loop. A common mistake to make in csh scripts is to use
break rather than brealcsw in switches.

Finally, csh allows a goto statement, with labels looking like they do in C, i.e.:

loop:
commands
goto loop

3.8. Supplying input to commands

Commands run from shell scripts receive by default the standard input of the shell which is running
the scripl This is different from previous shells running under UNIX. It allows shell scripts to fully partici
pate in pipelines, but mandates extta notation for commands which are to take inline data.

Thus we need a metanotation for supplying inline data to commands in shell scripts. As an example,
consider this script which runs the editor to delete leading blanks from the lines in each argument file:

% cat deblank
deblank - remove leading blanks
foreach i ($argv)
ed- $i << 'EOF'
1,$sr[]*//
w
q
'EOF'
end
%

The notation '« 'EOF'' means that the standard input for the ed command is to come from the text in the
shell script.file up to the next line consisting of exactly ''EOF''. The fact that the 'EOF' is enclosed in'''
characters, i.e. quoted, causes the shell to not perfmn variable substitution on the intervening lines. In
general, if any part of the word following the '«' which the shell uses to terminate the text to be given to
the command is quoted then these substitutions will not be performed. In this case since we used the form
'1,$' in our editor script we needed to insure that this '$' was not variable substituted. We could also have
insured this by preceding the '$' here with a '\', i.e.:

USD:4-30 An Introduction to ~ C shell

l,\$sl"[1•11

but quoting the 'EOF' terminatm is a more reliable way of achieving the same thing.

3.9. Catching interrupts

If our shell script creates temporary files, we may wish to catch interruptions of the shell script so
that we can clean up these files. We can then do

onintt label

where label is a label in our program. If an interrupt is received the shell will do a 'goto label' and we can
remove the tempcnry files and then do an ait command (which is built in to the shell) to exit from the
shell script. If we wish to exit with a non-zero status we can do

exit(l)

e.g. to exit with status 'l '.

3.10. What else?

There are other features of the shell useful to writers of shell procedures. The verbose and echo
options and the related -v and -.x command line options can be used to help trace the actions of the shell.
The -n option causes the shell only to read commands and not to execute them and may sometimes be of
use.

One other thing to note is that csh will not execute shell scripts which do not begin with the charac
ter'#', that is shell scripts that do not begin with a comment. Similarly, the '/bin/sh' on your system may
well defer to 'csh' to interpret shell scriplS which begin with'#'. This allows shell scripts for both shells to
live in harmony.

There is also another quotation mechanism using '"' which allows only some of the expansion
mechanisms we have so far discussed to occur on the quoted string and serves to make this string into a
single word as ''' does.

An Introduction to the C shell USD:4-31

4. Other, less commonly used, shell features

4.1. Loops at the terminal; variables as vecton

It is occasionally useful to use the foreach control structure at the terminal to aid in performing a
number of similar commands. For instance, there were at one point three shells in use on the Cory UNIX
system at Cory Hall, '/bin/sh', '/bin/nsh', and '/bin/csh'. To count the number of persons using each shell
one could have issued the commands

% grep -c csh$ /etc/passwd
27
% grep -c nsh$ /etc/passwd
128
% grep -c -v sh$ /etc/passwd
430
%

Since these commands are very similar we can useforeach to do this more easily.

% foreach i ('sh.$' 'csh$' '-v sh.$')
? grep -c $i /etc/passwd
?end
27
128
430
%

Note here that the shell prompts for input with'?' when reading the body of the loop.

Very useful with loops are variables which contain lists of filenames or other words. You can, for
example, do

% set a=('ls')
% echo$a
csh.n csh.rm
% ls
csh.n
csh.rm
% echo$#a
2
%

The set command here gave the variable a a list of all the filenames in the current directory as value. We
can then iterate ove.r these names to perform any chosen function.

The output of a command within ''' characters is converted by the shell to a list of words. You can
also place the ''' quoted string within'"' characters to take each (non-empty) line as a component of the
variable; preventing the lines from being split into words at blanks and tabs. A modifier ':x• exists which
can be used later to expand each component of the variable into another variable splitting it into separate
words at embedded blanks and tabs.

4.2. Braces { ... } in argument expansion

Another fonn of filename expansion, alluded to before involves the characters '{' and'}'. These
characters specify that the contained sttings, separated by ',' are to be consecutively substituted into the
containing characters and the results expanded left to right Thus

A { strl ,stt2, ... stm} B

expands to

USD:4-32 An Introduction to the C shell

AstrlB Astr2B ••• AstrnB

This expansion occurs before the other filename expansions, and.may be applied recursively (i.e~ nested).
The results of each expanded string are sorted separately, left to right order being preserved. The resulting
filenames are not required to exist if no other expansion mechanisms are used. This means that this
mechanism can be used to generate arguments which are not filenames, but which have common parts.

A typical use of this would be

mkdir-1 {hdrs,retrofit,csh}

to make subdirectories 'hdrs', 'retrofit' and 'csh' in your home directory. This mechanism is most useful
when the common prefix is longer than in this example, i.e.

chown root /usr/ {ucb/{ ex,edit},lib/{ ex?.?• ,how_ ex}}

4.3. Command substitution

A command enclosed in"" characters is replaced, just before filenames are expanded, by the output
from that command. Thus it is possible to do

set pwd= 'pwd'

to save the current directory in the variable pwd or to do

ex 'grep -1 TRACE • .c'

to run the edit<X' ex supplying as arguments those files whose names end in '.c' which have the string
'TRACE' in them.*

4.4. Other details not covered here

In particular circumstances it may be necessary to know the exact nature and order of different sub
stitutions performed by the shell. The exact meaning of certain combinations of quotations is also occa
sionally importanl These are detailed fully in its manual section.

The shell has a number of command line option ftags mostly of use in writing UNIX programs, and
debugging shell scripts. See the csh(l) manual section for a list of these options.

•Command expansion also occ:un in input redirected with '<<' and within "" quotations. Refer to the shell manual section
for full details.

An Introduction to the C shell USD:4-33

Glcmary

This glossary lists the most imponant terms introduced in the introduction to the shell and gives
references to sections of the shell document for further information about them. References of the form 'pr
(l)' indicate that the command pr is in the UNIX User Reference manual in section 1. You can look at an
online copy of its manual page by doing

man 1 pr

References of the form (2.S) indicate that more information can be found in section 2.S of this manual.

a.out

Your current directory has the name '.' as well as the name printed by the command
pwd; see also dirs. The cwrent directory '.' is usually the first component of the search
path contained in the variable path, thus commands which are in '.' are found first (2.2).
The character '.' is also used in separating components of filenames (1.6). The charac
ter '.' at the beginning of a component of a pa1"1aa1M is treated specially and not
matched by thefile11111M expansion metacharacters "!', '•',and'[' ']'pairs (1.6).

Each directory has a file '~.' in it which is a reference to its parent directory. After
changing into the directory with chdir, i.e.

chdirpaper

you can return to the parent directory by doing

chdir ..

The current directory is printed by pwd (2.7).

Compilers which create executable images create them, by default, in the file a.out. for
historical reasons (2.3).

absolute pathname

alias

argument

background

base

bg

bin

Apat~ which begins with a'/' is absolute since it specifies the path of directories
from the beginning of the entire directory system - called the root directory. Pathna.m4 s
which are not absolute are called relative (see definition of relative pathname) (1.6).

An alias specifies a shorter or different name for a UNIX command, or a transformation
on a command to be performed in the shell. The shell has a command alias which
establishes aliases and can print their current values. The command unalias is used to
remove aliases (2.4).

Commands in UNIX receive a list of argument words. Thus the command

echo ab c

consists of the command name 'echo' and three argument words 'a', 'b' and 'c'. The
set of arguments after the command name is said to be the argument list of the com
mand (1.1).

The list of arguments to a command written in the shell language (a shell script or shell
procedure) is stored in a variable called argv within the shell. This name is taken from
the conventional name in the C programming language (3.4).

Commands started without waiting for them to complete are called background com
mands (2.6).

A filename is sometimes thought of as consisting of a base part, before any '.' character,
and an extension - the part after the '.'. See filename and extension (1.6) and basename
(1).

The bg command causes a suspended job to continue execution in the background
(2.6).

A directory containing binaries of programs and shell scripts to be executed is typically
called a bin directory. The standard system bin directories are '/bin' containing the
most heavily used commands and '/usr/bin' which contains most other user programs.

USD:4-34

break

breaksw

builtin

case

cat

cd

chdir

chsh

cmp

command

command name

An Inttoduction to the C shell

Programs developed at UC Berkeley live in '/usr/ucb', while locally written~
live in '/usr/local'. Games are kept. in the directory '/usr/games'. You can place
binaries in any directory. If you wish to execute them often, the name of the directories
should be a component of the variable path.

Brealr. is a builtin command used to exit from loops within the control structure of the
shell (3. 7). ·

The brealcsw builtin command is used to exit from a switch control structure, like a
brealr. exits from loops (3.7).

A command executed direcdy by the shell is called a builtin command. Most com
mands in UNIX are not built into the shell, but rather exist as files in bin directories.
These commands are accessible because the directories in which they reside are named
in the path variable.

A ca. command is used as a label in a switch statement in the shell's conttol structure,
similar to that of the language C. Details are given in the shell documentation 'csh (1)'
(3.7).

The cat program catenates a list of specified files on the standard output. It is usually
used to look at the contents of a single file on the terminal, to 'cat a file' (1.8, 2.3).

The cd command is used to change the working directory. With no arguments, cd
changes your working directory to be your horM directory (2.4, 2.7).

The chdir command is a synonym for cd. Cd is usually used because it is easier to
type.

The chsh command is used to change the she11 which you use on UNIX. By default, you
use an different version of the shell which resides in '/bin/sh'. You can change your
shell to '/bin/csh' by doing

chsh your-login-name /bin/csh

Thus I would do

chsh bill /bin/csh

It is only necessary to do this once. The next time you log in to UNIX after doing this
command, you will be using csh rather than the shell in '/bin/sh' (1.9).

Cmp is a program which compares files. It is usually used on binary files, or to see if
two files are identical (3.6). For comparing text files the program di.If, described in 'diff
(l)' is used.

A function performed by the system, either by the shell (a builtin command) or by a pro
gram residing in a file in a directory within theUNIX system, is called a command (1.1).

When a command is issued, it consists of a command ~, which is the first word of
the command, followed by arguments. The convention on UNIX is that the first word of a
command names the function to be performed (1.1).

command substitution

component

continue

The replacement of a command enclosed in ''' characters by the text output by that com
mand is called command substitution (4.3).

A part of a pathname between "/' characters is called a component of that pathname. A
variable which has multiple strings as value is said to have several components; each
string is a component of the variable.

A builtin command which causes execution of the enclosing/oreach or while loop to
cycle prematurely. Similar to the contin1U command in the programming language C
(3.6).

An Introduction to the C shell USD:4-35

control-

core dump

cp

csh

.cshrc

cwd

date

debugging

default:

DELETE

detached

diagnostic

directory

directory stack

dirs

du

Certain special characters, called control characters, are produced by holding down the
CONTROL key on your terminal and simultaneously pressing another character, much like
the SHIFT key is used to produce upper case characters. Thus control- c is produced by
holding down the CONTROL key while pressing the 'c' key. Usually UNIX prints an caret
(")followed by the corresponding letter when you type a control character (e.g. '"C' for
control-c (1.8).

When a program terminates abnormally, the system places an image of its current state
in a file named 'core'. This core dump can be examined with the system debugger 'adb
(l)' m 'sdb (1)' in order to determine what went wrong with the program (1.8). If the
shell produces a message of the form

filegal instruction (core dumped)

(where 'filegal imtruction' is only one of several possible messages), you should report
this to the author of the program or a system administrator, saving the 'core' file.

The cp (copy) program is used to copy the contents of one file into another file. It is one
of the most commonly used UNIX commands (1.6).

The name of the shell program that this document describes.

The file .cshrc in your hotM directory is read by each shell as it begins execution. It is
usually used to change the setting of the variable path and to set alias parameters which
are to take effect globally (2.1).

The cwd variable in the shell holds the absolute pathname of the current working direc
tory. It is changed by the shell whenever your current working directory changes and
should not be changed otherwise (2.2).

The date command prints the current date and time (1.3).

Debugging is the process of correcting mistakes in programs and shell scripts. The shell
has several options and variables which may be used to aid in shell debugging (4.4).

The label default: is used within shell switch statements, as it is in the C language to
label the code to be executed if none of the case labels matches the value switched on
(3.7).

The DELETE or RUBOUT key on the terminal normally causes an interrupt to be sent to the
current job. Many users change the interrupt character to be "C.
A command that continues running in the background after you logout is said to be
detached.

An error message produced by a program is often referred to as a diagnostic . Most
error messages are not written to the standard output, since that is often directed away
from the terminal (1.3, 1.5). Error messsages are instead written to the diagnostic out
put which may be directed away from the terminal, but usually is not. Thus diagnostics
will usually appear on the terminal (2.5).
A structure which contains files. At any time you are in one particular directory whose
names can be printed by the command pwd. The chdir command will change you to
another directory, and make the files i., that directory visible. The directory in which
you are when you first login is your home dlrectory (1.1, 2.7).

The shell saves the names of previous working directories in the directory stacle when
you change your current working directory via the pushd command. The directory
stack can be printed by using the dirs command, which includes your current working
directory as the first directory name on the left (2.7).

The dirs command prints the shell's directory stacle (2.7).

The du command is a program (described in 'du.(1)') which prints the number of disk
blocks is all directories below and including your current working directory (2.6).

USD:4-36

echo

else

endif

EOF

escape

/etc/passwd

exit

exit status

expansion

expressions

extension

An Introduction to the C shell

The echo command prints its arguments (1.6, 3.6).

The else command is part of the 'if-then-else-endif' control command construct (3.6).

If an if statement is ended with the word tMn, all lines following the if up to a line start
ing with the word endif or else are executed if the condition between parentheses after
the if is true (3.6).

An end-of-fik is generated by the terminal by a control-d, and whenever a command
reads to the end of a file which it has been given u input. Commands receiving input
from a pipe receive an end-of-file when the command sending them input completes.
Most commands terminate when they receive an end-of-jik . The shell has an option to
ignore end-of-fik from a terminal input which may help you keep from logging out
accidentally by typing too many control-d's (1.1, 1.8, 3.8).

A character '\' used to prevent the special meaning of a metacharacter is said to escape
the character from its special meaning. Thus

echo*

will echo the character'*' while just

echo•

will echo the names of the file in the current directory. In this example,\ escapes '*'
(1.7). There is also a non-printing character called escape, usually labelled ESC or ALT
MODE on terminal keyboards. Some older UNIX systems use this character to indicate
that output is to be suspended. Most systems use control-s to stop the output and
conttol-q to start it.

This file contains information about the accounts currently on the system. It consists of
a line f<X each account with fields separated by':' characters (1.8). You can look at this
file by saying

cat /etc/passwd

The comman& finger and grep are often used to search for information in this file. See
'finger (1)', 'passwd(S)', and 'grep (l)' for more details.

The exit command is used to force termination of a shell script, and is built into the shell
(3.9).

A command which discovers a problem may reftect this back to the command (such as a
shell) which invoked (executed) it. It does this by returning a non-zero number as its
exit status, a status of zero being considered 'normal termination'. The exit command
can be used to force a shell command script to give a non-zero exit status (3.6).

The replacement of strings in the shell input which contain metacharacters by other
strings is referred to as the process of expansion. Thus the replacement of the word '*'
by a sorted list of files in the cunent directmy is a 'filename expansion'. Similarly the
replacement of the characters '!!' by the text of the last command is a 'history expan
sion'. Expansions are also referred to as substitutions (l.6, 3.4, 4.2).

Expressions are used ·in the shell to control the conditional structures used in the writing
of shell scripts and in calculating values for these scripts. The operators available in
shell expressions are those of the language C (3.5).

Filenames often consist of a ba.se name and an extension separated by the character '.'.
By convention, groups of related files often share the same root name. Thus if 'prog.c'
were a C program, then the object file for this program would be stored in 'prog.o'.
Similarly a paper written with the '-me' nroff macro package might be stored in
'paper.me' while a formatted version of this paper might be kept in 'paper.out' and a list
of spelling errors in 'paper.errs' (1.6).

An Introduction to the C shell USD:4-37

fg

filename

The job control command f g is used to run a background or suspetukd job in the fore
ground (1.8, 2.6).

Each file in UNIX has a name consisting of up to 14 characters and not including the
character '/' which is used in pathname building. Mostftle111l1Ms do not begin with the
character '. ', and contain only letters and digits with perhaps a '.' separating the base
portion of the filename from an utension (1.6).

filename expansion

flag

foreach

foreground

goto

grep

head

history

home directory

FilelltllM expansion uses the metacharacters '*', '?' and '[' and ']' to provide a con
venient mechanism for naming files. Usingfile111l1M expansion it is easy to name all the
files in the current directory, m- all files which have a common root name. Other
filename expansion mechanisn use the metacharacter ,_, and allow files in <>th« users'
directories to be named easily (1.6, 4.2).

Many UNIX commands accept arguments which are not the names of files or other users
but are used to modify the action of the commanm. These are referred to u flag
options, and by convention consist of one m- more letters preceded by the character'-'
(1.2). Thus the ls (list files) command has an option '-s' to list the sizes of files. This is
specified

ls-s

Theforeach command is used in shell scripts and at the terminal to specify repetition of
a sequence of commands while the value of a certain shell variable ranges through a
specified list (3.6, 4.1).

When commands are executing in the normal way such that the shell is waiting for them
to finish before prompting for another command they are said to be foreground jobs or
running in the foreground. This is as opposed to background. Fore ground jobs can be
stopped by signals from the terminal caused by typing different control characters at the
keyboard (1.8, 2.6).

The shell has a command goto used in shell scripts to transfer control to a given label
(3.7).

The grep command searches through a list of argument files for a specified string. Thus

grep bill /etc/puswd

will print each line in the file letclpasswd which contains the string 'bill'. Actually,
grep scans for regular expressions in the sense of the editors 'ed (l)' and 'ex (l)'.
Grep stands for 'globally find regular expression and print' (2.4).

The head command prints the first few lines of one or more files. If you have a bunch
of files containing text which you are wondering about it is sometimes useful to run
head with these files u arguments. This will usually show enough of what is in these
files to let you decide which you are interested in (1.S).
Head is also used to describe the part of a pathname before and including the last'/'
character. The tail of a pat~ is the part after the last '/'. The ':h' and ':t'
modifiers allow. the head or tail of a pathname stored in a shell variable to be used
(3.6).

The history mechanism of the shell allows previous commands to be repeated, possibly
after modification to correct typing mistakes m- to change the meaning of the command.
The shell has a history list where these commands are kept, and a history variable
which controls how large this list is (2.3).

Each user has a hom11 directory, which is given in your entry in the password file,
letclpasswd. This is the directory which you are placed in when you first login. The cd
or chdir command with no arguments takes you back to this directory, whose name is
recorded in the shell variable hom11. You can also access the hom11 directories of other

USD:4-38

if

ignoreeof

input

interrupt

job

job control

job number

jobs

kill

.login

login shell

logout

.logout

An Introduction to the C shell

users in forming filenames using a file111J1M expansion notation and the character ,_,
(1.6).

A conditional command within the shell, the if command is used in shell command
scripts to make decisions about what course of action to take next (3.6).

Normally, your shell will exit, printing 'logout' if you type a control-d at a prompt of'%
'. This is the way you usually log off the system. You can set the ignoreeof variable if
you wish in your .login file and then use the command logout to logout. This is useful
if you sometimes accidentally type too many control-d characters, logging yowself off
(2.2).

Many commands on UNIX take information from the terminal or from files which they
then act on. This information is called input. Commands normally read f<X' input from
their standard input which is, by default, the terminal. This standard input can be
redirected from a file using a shell metanotation with the character '<'. Many com
mands will also read from a file specified as argument. Commands placed in pipellnes
will read from the output of the previous command in the pipeline • The leftmost com
mand in a p~liM reads from the terminal if you neither redirect its input nor give it a
filename to use as standard input. Special mechanisms exist for supplying input to com
mands in shell scripts (1.5, 3.8).

An inte"upt is a signal to a program that is generated by typing "C. (On older versions
of UNIX the RUBOUT or DELETE key were used for this purpose.) It causes most pro
grams to stop execution. Certain programs, such as the shell and the editors, handle an
inte"Mpt in special ways, usually by stopping what they are doing and prompting for
another command. While the shell is executing another command and waiting for it to
finish, the shell does not listen to inte"upts. The shell often wakes up when you hit
inte"upt because many commands die when they receive an inte"upt (1.8, 3.9).

One ot more commands typed on the same input line separated by 'I' or';' characters
are run togethez and are called a job. Simple commands run by themselves without any
'I' or ';' characters are the simplest jobs. Jobs are classified as foreground, back
ground, or suspended (2.6).

The builtin functions that control the execution of jobs are called job control commands.
These are bg,fg, stop, kill (2.6).

When each job is started it is assigned a small number called a job number which is
printed next to the job in the output of the jobs command. This number, preceded by a
'%' character, can be used as an argument to job control commands to indicate a
specific job (2.6).

The jobs command prints a table showing jobs that are either running in the background
<X' are suspended (2.6).

A command which sends a signal to ajob causing it to terminate (2.6) .

The file .login in your horM directory is read by the shell each time you login to UNIX

and the commalids there are executed. There are a number of commands which are use
fully placed here, especially set commands to the shell itself (2.1).

The shell that is started on your terminal when you login is called your login shell. It is
different from other shells which you may run (e.g. on shell scripts) in that it reads the
.login file before reading commands from the terminal and it reads the .logout file after
you logout (2.1).

The logout command causes a login shell to exit. Normally, a login shell will exit when
you hit control-d generating an end-of-file, but if you have set ignoreeof in you .login
file then this will not work and you must use logout to log off the UNIX system (2.8) .

When you log off of UNIX the shell will execute commands from the file .lo gout in your
home directory after it prints 'logout'.

An Introduction to the C shell USD:4-39

lpr

ls

mail

make

makefile

manual

metacharacter

'rnkdir

modifier

more

noclobber

noglob

notify

The command lpr is the line printer daemon. The standard input of lpr spooled and
printed on the UNIX line printer. You can also give lpr a list of filenames u arguments
to be printed. It is most common to use lpr u the last component of a pipeline (2.3).

The ls (list files) command is one of the most commonly used UNIX commands. With no
argument filenames it prints the names of the files in the current directory. It has a
number of usefuljlag arguments, and can also be given the names of directories as argu
ments, in which case it lists the names of the files in these directories (1.2).

The mail program is used to send and receive messages from other UNIX users (1.1, 2.1),
whether they are logged on or not.

The maa command is used to maintain one or more related files and to organize func
tions to be perfmned on these files. In many ways maa is easier to use, and more help
ful than shell command saipts (3.2).

The file containing commands for maJce is called makefile <r Malcefile (3.2).

The manual often referred to is the 'UNIX manual'. It contains 8 numbered sections
with a description of each UNIX program (section 1), system call (section 2), subroutine

· (section 3), device (section 4), special data structure (section 5), game (section 6), mis
cellaneous item (section 7) and system administration program (section 8). There are
atso supplementary documents (tutorials and reference guides) for individual programs
which require explanation in more detail. An online version of the manual is accessible
through the man command Its documentation can be obtained online via

man man

If you can't decide what manual page to look in, try the apropos(l) command The sup
plementary documents are in subdirectories of /usr/doc.

Many characters which are neither letters nor digits have special meaning either to the
shell or to UNIX. These characters are called metacharactera . If it is necessary to place
these characters in arguments to commands without them having· their special meaning
then they must be quoted. An example of a metacharacter is the character '>' which is
used to indicate placement of output into a file. For the purposes of the history mechan
ism, most unquoted metacharacters form separate words (1.4). The appendix to this
user's manual lists the metacharacters in groups by their function.

The mlcdir command is used to create a new directory.

Substitutions with the history mechanism, keyed by the character '!' or of variables
using the metacharacter '$', are often subjected to modifications, indicated by placing
the character ':' after the substitution and following this with the modifier itself. The
command substitution mechanism can also be used to perform modification in a similar
way, but this notation is less clear (3.6).

The program more writes a file on your terminal allowing you to control how much text
is displayed at a time. More can move through the file screenful by screenful, line by
line, search f<»"Ward for a string, or start again at the beginning of the file. It is generally
the easiest way of viewing a file (1.8).

The shell has a variable noclobber which may be set in, the file .lo gin to prevent
accidental destruction of files by the'>' output redirection metasyntax of the shell (2.2,
2S).
The shell variable no glob is set to suppress the file111J1M expansion of arguments con
taining the metacharacters ,_,, '•', '?', '[' and']' (3.6).

The notify command tells the shell to report on the termination of a specific background
job at the exact time it occurs as opposed to waiting until just before the next prompt to
report the termination. The notify variable, if set, causes the shell to always report the
termination of background jobs exactly when they occur (2.6).

USD:4-40

onintr

output

path

pathname

pipeline

po pd

port

pr

An Inttoduction to the C shell

The onintr command is built into the shell and is used to control the action of a shell
command script when an interrupt signal is received (3.9).

Many commands in UNIX result in some lines of text which are called their outpUl. This
output is usually placed on what is known as the standard outpUI which is normally
connected to the user's terminal. The shell has a syntax using the metacbaracter '>' for
redirecting the standard oUlput of a command to a file (1.3). Using the p~ mechanism
and the metacharacter 'I' it is also possible fo: the standard outpUl of one command to
become the standard inplll of another command (1.5). Certain commands such as the
line printer daemon p do not place their results on the standard outpUl but rather in
more useful places such as on the line printer (2.3). Similarly the write command places
its output on another user's terminal rather than its standard outpUl (2.3). Commands
also have a diagnostic outpUl where they write their emr messages. Nonnally these go
to the terminal even if the standard output has been sent to a file o: another command,
but it is possible to direct error diagnostics along with standard output using a special
metanotation (2.5).

The shell has a variable path which gives the names of the directories in which it
searches for the commands which it is given. It always checks first to see if the com
mand it is given is built into the shell. If it is, then it need not search for the command as
it can do it internally. If the command is not builtin, then the shell searches for a file
with the name given in each of the directories in the path variable, left to righL Since
the normal definition of the path variable is

path (. /usr/ucb /bin /usr/bin)

the shell normally looks in the current directory, and then in the standard system direc
tories '/usr/ucb', '/bin' and '/usr/bin' for the named command (2.2). If the command
cannot be found the shell will print an error diagnostic. Scripts of shell commands will
be executed using another shell to interpret them if they have 'execute' permission seL
This is normally true because a command of the form

chmod 755 script

was executed to tum this execute permission on (3.3). If you add new commands to a
directory in the path, you should issue the command rehash (2.2).

A list of names, separated by '/' characters, forms a pathname. Each component,
between successive 'I' characters, names a directory in which the next component file
resides. Pathnames which begin with the character 'I' are interpreted relative to the
root directory in the filesystem. Other pathnames are interpreted relative to the current
directory as reported by pwd. The last component of a pathname may name a directory,
but usually names a file.

A group of commands which are connected together, the standard output of each con
nected to the standard inpUl of the next, is called a pipeliM. The p~ mechanism used
to c01mect these commands is indicated by the shell metacharacter 'I' (1.5, 2.3).

The po pd command changes the shell's working directory to the directory you most
recently left using the pushd command. It. returns to the direct<X}' without having to
type its name, forgetting the name of the current working directory before doing so
(2.7).

The part of a computer system to which each terminal is connected is called a port.
Usually the system has a fixed number of ports, some of which are connected to tele
phone lines for dial-up access, and some of which are permanently wired directly to
specific terminals.

The pr command is uSed to prepare listings of the contents of files with headers giving
the name of the file and the date and time at which the file was last modified (2.3).

An Introduction to the C shell USD:4-41

printenv

process

program

prompt

pushd

ps

pwd

quit

quotation

redirection

. rehash

relative pathname

repeat

root

RUBOlIT

The prinlenv command is used to print the current setting of variables in the environ
ment (2.8).

An instance of a running program is called a process (2.6). UNIX assigns each process a
unique number when it is started - called the process number. Process numbers can be
used to stop individual processes using the kill or stop commands when the processes
are part of a detached background job.

Usually synonymous with command; a binary file or shell command script which per
fonns a useful function is often called a program.

Many programs will print a prompt on the tenninal when they expect input. Thus the
editor 'ex (1) • will print a ':' when it expects input. The shell prompts for input with '96
• and occasionally with'?• when reading commands from the terminal (1.1). The shell
has a variable prompt which may be set to a different value to change the shell's main
prompt. This is mosdy used when debugging the shell (28).

The p11Shd command, which means 'push directory', changes the shell's working direc
tory and also remembers the current working directory before the change is made,
allowing you to return to the same directory via the popd command later without retyp
ing its name (2. 7).

The ps command is used to show the processes you are currently running. Each process
is shown with its unique process number, an indication of the terminal name it is
attached to, an indication of the state of the process (whether it is running, stopped,
awaiting some event (sleeping), and whether it is swapped out), and the amount of CPU

time it has used so far. The command is identified by printing some of the words used
when it was invoked (2.6). Shells, such as the csh you use to run the ps command, are
not normally shown in the output.

The pwd command prints the full pathname of the current working directory. The dirs
builtin command is usually a better and faster choice.

The quit signal, generated by a control-\, is used to terminate programs which are
behaving unreasonably. It normally produces a core image file (1.8).

The process by which metacharacters are prevented their special meaning, usually by
using the character '' in pairs, or by using the character '\', is referred to as quotation
(1.7).

The routing of input or output from or to a file is known as redirection of input or output
(1.3).

The rehash command tells the shell to rebuild its internal table of which commands are
found in which directories in your path . This is necessary when a new program is
installed in one of these directories (2.8).

A pathna!M which does not begin with a '/' is called a relative pathname since it is
interpreted relative to the current working directory. The first component of such a
pathname refers to some file or directory in the working directory, and subsequent com
ponenls between '/' charac.ters refer to directories below the working directory. Path
names that are not relative are called absolute pathnames (1.6).

The repeat command iterates another command a specified number of times.

The directory that is at the top of the entire directory structure is called the root direc
tory since it is the 'root' of the entire tree structure of directories. The name used in
pathnames to indicate the root is'/'. Pathnames starting with'/' are said to be absolute
since they start at the root directory. Root is also used as the part of a pathname that is
left after removing the extension. See filename for a further explanation (1.6).

The RUBour or DELETE key is often used to erase the previously typed character; some
users prefer the BACKSPACE for this purpose. On older versions of UNIX this key served

USD:4-42

scratch file

script

set

setenv

shell

shell script

signal

sort

source

special character

standard

status

stop

string

stty

substitution

suspended

switch

An Introduction to the C shell

as the INTR charact«.

Files whQSe names begin with a '#' are referred to as scratch fiks, since they are
automatically removed by the system after a couple of days of non-use, or more fre
quently if disk space becomes tight (1.3).

Sequences of shell commands placed in a file are called shell command scripts. It is
often possible to perform simple tasks using these scripts without writing a program in a
language such as C, by using the shell to selectively run other progrum (3.3, 3.10).

The builtin ut command is used to assign new values to shell variables and to show the
values of the current variables. Many shell variables have special meaning to the shell
itself. Thus by using the set command the behavior of the shell can be affected (2.1).

Variables in the environment 'environ (5)' can be changed by using the setenv bull tin
command (2.8). The printenv command can be used to print the value of the variables
in the environment.

A sMll is a command language interpreter. It is possible to write and run your own
sMll, as sMlls are no different than any other programs as far as the system is con
cerned. This manual deals with the details of one particular shell, called csh.

See script (3.3, 3.10).

A signal in UNIX is a short message that is sent to a running program which causes
something to happen to that process. Signals are sent either by typing special control
characters on the keyboard or by using the kill or stop commands (1.8, 2.6).

The sort program sorts a sequence of lines in ways that can be conttolled by argument
flags (1.5).

The source command causes the shell to read commands from a specified file. It is most
useful for reading files such as .cshrc after changing them (2.8).

See metacharacters and the appendix to this manual.

We refer often to the standard input and standard output of commands. See input and
output (1.3, 3.8).

A command normally returns a status when it finishes. By convention a status of zero
indicates that the command succeeded. Commands may return non-zero status to indi
cate that some abnormal event has occurred. The shell variable status is set to the
status returned by the last command. It is most useful in shell commmand scripts (3.6).

The stop command causes a background job to become suspended (2.6).

A sequential group of characters taken together is called a string . Strings can contain
any printable characters (2.2).

The stty program changes certain parameters inside UNIX which determine how your ter
minal is handled. See 'stty (1)' for a complete description (2.6).

The shell implements a number of substitutions where sequences indicated by metachar
acters are replaced by other sequences. Notable examples of this are history substitution
keyed by the metacharacter '!' and variable substitution indicated by'$'. We also refer
to substitutions as expansions (3.4).

A job becomes suspended after a STOP signal is sent to it, either by typing a control -z at
the terminal (for foreground jobs) or by using the stop command (for background jobs).
When suspentkd, a job temporarily stops running until it is restarted by either the f g or
bg command (2.6).

The switch command of the shell allows the shell to select one of a number of sequences
of commands based on an argument string. It is similar to the switch statement in the
language C (3. 7).

An Introduction to the C shell USD:443

termination

then

time

ts et

tty

unalias

UNIX

When a command which is being executed finishes we say it undergoes termination or
terminates. Commands normally terminate when they read an end-of-fih from their
standard input. It is also possible to terminate commands by sending them an inte"upt
<r quit signal (1.8). The kill program terminates specified jobs (2.6).

The tMn command is part of the shell's 'if-then-else-end.if' control construct used in
command saipts (3.6).

The tinw command can be used to measure the amount of CPU and real time consumed
by a specified command as well as the amount of disk i/o, mem<X}' utilized, and number
of page faults and swaps taken by the command (2.1, 2.8).

The IMt program is used to set standard erase and kill characters and to tell the system
what kind of terminal you are using. It is often invoked in a .login file (2.1).

The word tty is a historical abbreviation for 'teletype' which is frequently used in UNIX
to indicate the port to which a given terminal is connected. The tty command will print
the name of the tty or port to which your 1enninal is presently connected.

The ruaalias command removes aliases (2.8).

UNIX is an operating system on which csh runs. UNIX provides facilities which allow
csh to invoke other programs such as editors and text formatters which you may wish to
use.

unset The unset command removes the definitions of shell variables (2.2, 2.8).

variable expansion

variables

verbose

we

while

See variables and expansion (2.2, 3.4).

Variables in csh hold one or more strings as value. The most common use of variables
is in controlling the behavior of the shell. See path, noclobber, and ignoreeof for
examples. Variables such as argv are also used in writing shell programs (shell com
mand scripts) (2.2).

The verbose shell variable can be set to cause commands to be echoed after they are his
tory expanded. This is often useful in debugging shell scripts. The verbose variable is
set by the shell's -v command line option (3.10).

The we program calculates the number of characters, words, and lines in the files whose
names are given as arguments (2.6).

The while builtin control construct is used in shell command scripts (3.7).

word A sequence . of characters which forms an argument to a command is called a word.

working directory

write

Many characters which are neither letters, digits,'-','.' nor'/' form words all by them
selves even if they are not surrounded by blanks. Any sequence of characters may be
made into a word by surrounding it with ''' characters except for the characters ''' and
'!' which require special treatment (1.1). This process of placing special characters in
words without their special meaning is called quoting .

At any given time you are in one particular directory, called your working directory.
This directory's name is printed by the pwd command and the files listed by ls are the
ones in this directory. You can change working directories using chdir.

The write command is an obsolete way of communicating with other users who are
logged in to UNIX (you have to take turns typing). If you are both using display termi
nals, use talk(t), which is much more pleasanL

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

ABSTRACT

DC is an interactive desk calculator program implemented on the UNIXt time
sharing system to do arbittary-precision integer arithmetic. It has provision for manipu
lating scaled fixed-point numbers and for input and output in bases other than decimal.

The size of numbers that can be manipulated is limited only by available core
storage. On typical implementations of UNIX, the size of numbers that can be handled
varies from several hundred digits on the smallest systems to several thousand on the
largesL

DC is an arbitrary precision arithmetic package implemented on the UNIX time-sharing system in the
form of an interactive desk calculatcr. It works like a stacking calculator using reverse Polish notation.
Ordinarily DC operates on decimal integers, but one may specify an input base, output base, and a number
of fractional digits to be maintained.

A language called BC [1] bas been developed which accepts programs written in the familiar style of
higher-level programming languages and compiles output which is interpreted by DC. Some of the com
mands described below were designed for the compiler interface and are not easy for a human user to
manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by taking the
top number or two off the stack, performing the desired operation, and pushing the result on the stack. If
an argument is given, input is taken from that file until its end, then from the standard inpuL

SYNOPTIC DESCRIPfION

Here we describe the DC commands that are intended for use by people. The additional commands
that are intended to be invoked by compiled output are described in the detailed description.

Any number of commands are permitted on a line. Blanks and new-line characters are ignored
except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string o(the digits
0-9 and the capital letters A-F which are treated as digits with values 10-15 respectively. The
number may be preceded by an underscore to input a negative number. Numbers may contain
decimal points.

t UNIX is a trademark of Bell Laboratories.

USD:S-2 DC - An Interactive Desk Calculator

+-*%"

The top two values on the stack are added(+), subtracted(-), multiplied(*), divided(/), remaindered
(%), or exponentiated ("). The two entties are popped off the stack; the result is pushed on the stack
in their place. The result of a division is an integer truncated toward zero. See the detailed descrip
tion below for the treatment of numben with decimal points. An exponent must not have any digits
after the decimal point

The top of the main stack is popped and stored into a register named x, where x may be any charac
ter. If thesis capitalized, xis treated as a stack and the value is pushed onto it Any character, even
blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the I is capitalized,
register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command I and is treated as an error
by the command L.

d

p

f

x

[·-]

q

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and executes it as a
string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is capitalized, the
top value on the stack is popped and the string execution level is popped by that value.

<X >X ~ !<X !>% !~

v

The top two elements of the stack· are popped and compared. Register x is executed if they obey the
stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root The square root of an integer is truncated to
an integer. For the treatment of numbers with decimal points, see the detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX command
terminates.

DC - An Interactive Desk Calculator USD:S-3

c

0

k

z

?

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number radix for further input. If i is capital
ized, the value of the input base is pushed onto the stack. No mechanism has been provided for the
input of arbitrary numbers in bues less than 1 or greater than 16.

The top value on the stack is popped and used as the number radix for further output. If o is capital
ized, the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value is used as a scale factor that influences the number of
decimal places that are maintained during multiplication, division, and exponentiation. The scale
factor must be greater than or equal to zero and less than 100. If k is capitalized, the value of the
scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPfION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the form of a
string of digits to the base 100 stored one digit per byte (centennial digits). The string is stored with the
low-order digit at the beginning of the string. For example, the representation of 157 is 57,1. After any
arithmetic operation on a number, care is taken that all digits are in the range (}-99 and that the number has
no leading zeros. The number zero is represented by the empty string.

Negative numbers are represented in the lOO's complement notation, which is analogous to two's
complement notation for binary numbers. The high order digit of a negative number is always -1 and all
other digits are in the range (}-99. The digit preceding the high order-1 digit is never a 99. The represen
tation of -157 is 43,98,-1. We shall call this the canonical form of a number. The advantage of this kind
of representation of negative numbers is ease of addition. When addition is performed digit by digit, the
result is formally correct. The result need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addition can be
carried out and the handling of cames done later when that is convenient, as it sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the number of
assumed decimal digits after the decimal point. The representation of .001 is 1,3 where the scale has been
italicized to emphasize the fact that it is not the high order digit. The value of this extra byte is called the
scale factor of the number.

The Allocator
DC uses a dynamic string storage allocator for all of its internal storage. All reading and writing of

numbers internally is done through the allocat<r. Associated with each string in the allocator is a four
word header containing pointers to the beginning of the string, the end of the string, the next place to write,
and the next place to read. Communication between the allocator and DC is done via pointers to these
headers.

USD:S-4 DC - An Interactive Desk Calculator

The allocator initially has one large string oo ·a list of free strings. All headers except the one point
ing to this string are on a list of free headers. Requests for strings are made by size. The size of the string
actually supplied is the next higher power of 2. When a request for a string is made, the allocator first
checks the free list to see if there is a string of the desired size. If none is found, the allocator finds the next
larger free string and splits it repeatedly until it has a string of the right size. Left-over strings are put on
the free list If there are no larger strings, the allocator tries to coalesce smaller free strings into larger
ones. Since all strings are the result of splitting large strings, each string hu a neighbor that is next to it in
core and, if free, can be combined with it to make a string twice as long. This is an implementation of the
'buddy system' of allocation described in (2).

Failing to find a string of the proper length after coalescing, the allocat<x' asks the system for more
space. The amount of space on the system is the only limitation on the size and number of strings in DC.
If at any time in the process of trying to allocate a string, the allocator runs out of headers, it also asks the
system for more space.

There are routines in the allocator fCX" reading, writing, copying, rewinding, forward-spacing, and
backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the characters of
a string are read or written in succession by a series of read or write calls. The write pointer is interpreted
as the end of the infonnation-containing portion of a string and a call to read beyond that point returns an
end-of-string indication. An attempt to write beyond the end of a string causes the allocator to allocate a
larger space and then copy the old string into the larger block.

Internal Arithmetic

All arithmetic.operations are done on integers. The operands (or operand) needed for the operation
are popped from the main stack and their scale factors stripped off. Zeros are added or digits removed as
necessary to get a properly scaled result from the internal arithmetic routine. For example, if the scale of
the operands is different and decimal alignment is required, as it is for addition, zeros are appended to the
operand with the smaller scale. After performing the required arithmetic operation, the proper scale factor
is appended to the end of the number before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is the bound on
the number of decimal places retained in arithmetic computations. scale may be set to the number on the
top of the stack truncated to an integer with the k command. K may be used to push the value of scale on
the stack~ scale must be greater than or. equal to 0 and less than 100. The descriptions of the individual
arithmetic operations will include the exact effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number with the .
lower scale to give both numbers the same scale. The number with the smaller scale is multiplied by 10 if
the difference of the scales is odd. The scale of the result is then set to the larger of the scales of the two
operands.

Subtraction is performed by .negating the number to be subtracted and proceeding as in addition.

Finally, the addition is performed digit by digit from the low order end of the number. The carries
are propagated in the usual way. The resulting number is brought into canonical. form, which may require
stripping of leading zeros, or for negative numbers replacing the high-order configuration 99,-1 by the
digit -1. In any case, digits which are not in the range 0-99 must be brought into that range, propagating
any carries or borrows that result

Multiplication

The scales are removed from the two operands and saved. The operands are both made positive.
Then multiplication is performed in a digit by digit manner that exactly mimics the hand method of multi
plying. The first· number is multiplied by each digit of the second number, beginning with its low order
digit. The intermediate products are accumulated into a partial sum which becomes the final product The
product is put into the canonical form and its sign is computed from the signs of the original operands.

DC - An Interactive Desk Calculator USD:S-S

The scale of the result is set equal to the sum of the scales of the two operands. If that scale is larger
than the internal register scale and also larger than both of the scales of the two operands, then the scale of
the result is set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. 7.eros are appended er digits removed from the divi
dend to make the scaJe of the result of the integer division equal to the internal quantity scale. The signs
are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengw of the two
numbers is computed. If the divis<r is longer than the dividend, 7.ero is returned. Otherwise the top digit of
the divisor is divided into the top two digits of the dividend. The result is used as the first (high-order) digit
of the quotient It may tum out be one unit too low, but if it is, the next trial quotient will be larger than 99
and this will be adjusted at the end of the process. The trial digit is multiplied by the divisor and the result
subtracted from the dividend and the process is repeated to get additional quotient digits until the remaining
dividend is smaller than the divisor. At the end, the digits of the quotient are put into the canonical form,
with propagation of carry u needed. The sign is set from the sign of the operands.

Remainder .
The division routine is called and division is performed exactly u described. The quantity returned

is the remains of the dividend at the end of the divide process. Since division truncates toward zero,
remainders have the same sign as the dividend. The scale of the remainder is set to the maximum of the
scale of the dividend and the scale of the quotient plus the scale of the divisor.

Square Root

The scale is sttipped from the operand. Zeros are added if necessary to make the integer result have
a scale that is the larger of the internal quantity scale and the scale of the operand

The method used to compute sqrt(y) is Newton's method with successive.approximations by the rule

X11+t = Yl(x,. +...!..) x,.

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with 7.eIO scale factor are handled. If the exponent is zero, then the result is 1. If the
exponent is negative, then it is made positive and the bue is divided into one. The scale of the base is
removed

The integer exponent is viewed as a binary number. The bue is repeatedly squared and the result is
obtained u a product of those powers of the bue that correspond to the positions of the one-bits in the
binary representation of the exponent Enough digits of the result are removed to make the scale of the
result the same as if the indicated multiplication had been performed

Input Conversion and Base

Numbers are converted to the internal representation u ·they are read in. The scale stored with a
number is simply the number of fractional digits input Negative numbers are indicated by preceding the
number with a_ (an underscore). The hexadecimal digits A~F correspond to the numbers 10-15 regard
less of input base. The i command can be used to change the base of the input numbers. This command
pops the stack, truncates the resulting number to an integer, and uses it as the input base for all further
input. The input base is initialized to 10 but may, for example be changed to 8 or 16 to do octal or hexade
cimal to decimal conversions. The command I will push the value of the input base on the stack.

USD:5-6 DC - An Interactive Desk Calculator

Output Commands

The command p causes the top of the stack to be printed. It does not remove the top of the stack.
All of the stack and internal registers can be output by typing the command r. The o command can be used
to change the ·ootput base. This command uses the top of the stack, truncated to an integer as the base for
all further output. The output bue in initialized to 10. It will work correctly f<X' any base. The command
0 pushes the v~ue of the output base oo the stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output; they have
no effect on arithmetic computations. Large numbers are output with .70 characters per line; a\ indicates a
continued line. All choices of, input and ootput bases work correctly, although not all are useful. A partic

. ularly useful output base is 100000, which has the effect of, grouping digits in fives. Bases of 8 and 16 can
be used for decimal-octal or decimal-hexadecimal conversions.

Internal Repten

Numbers or strings may be stored in internal registers or loaded on the stack from registers with the
commands s and I. The command sx pops the top of the stack and stores the result in register x. x can be
any character. Ix puts the contents of register x on the top of the stack. The I command has no effect on
the contents of register x. The s command, however, is destructive.

Stack Commands

The command c clears the stack. The command d pushes a duplicate of the number on the top of the
stack on the stack. The command z pushes the stack size on the stack. The command X replaces the
number on the top of the stack with its scale factor. The command Z replaces the top of the stack with its
length.

Subroutine Definitions and C&DI

Enclosing a string in [] pushes the ascii stting on the stack. The q command quits or in executing a
string, pops the recursion levels by two.

Internal Reg~ten - Programming DC

The load and store commands together with [] to store strings, x to execute and the testing com
mands'<','>',' ... ','!<','!>','!•' can be used to program DC. The x command assumes the top of the
stack is an string of DC commands and executes it. The testing commands compare the top two elements
on the stack and if the relation holds, execute the register that follows the relation. For example, to print
the numbers 0-9,

[lipl+ si lilO>a]sa
Osi lax

Push-Down Reg~en and Arrays

These commands were designed f<X' used by a compiler, not by people. They involve push-down
registers and arrays. In addition to the stack that commands work on, DC can be thought of as having indi
vidual stacks for each register. These registers are operated on by the commands S and L. Sx pushes the
top value of the main stack onto the stack f<X' the register x. Lx J>ops the stack for register x and puts the
result on the main stack. The commands sand 1·a1so wmk on registers but not as push-down stacks. I
doesn't effect the top of the register stack, ands destroys what was there befme.

The commands to work on arrays are : and ;. :x pops the stack and uses this value as an index into
the array x. The next element on the stack is stored at this index in x. An index must be greater than or
equal to 0 and less than 2048. ;x is the oommand to load the main stack from the array x. The value on the
top of the stack is the index into the array x of the value to be loaded.

DC - An Interactive Desk Calculator USD:S-7

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX command and passes it to UNIX to execute.
One other compiler command is Q. This command uses the top of the stack as the number of levels of
recursion to skip.

DESIGN CHOICES

The real reason f<r the use of a dynamic storage allocator was that a general purpose program could
be (and in fact has been) used for a variety of other tasks. The allocator has some value for input and for
compiling (i.e. the bracket [...] commands) where it cannot be known in advance how long a string will be.
The result was that at a modest cost in execution time, all considerations of string allocation and sizes of
strings were removed from the remainder of the program and debugging was made easier. The allocation
method used wastes approximately 25'1> of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advantage. Yet the
base cannot exceed 127 because of hardware limitations and at the cost of 5% in space, debugging was
made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addition to sub
routine execution to be implemented in essentially the same way. The result was a considerable degree of
logical separation of the final program into modules with very little communication between modules.

The rationale for the lack of interaction between the scale and the bases . was to provide an under
standable means of proceeding after a change of base or scale when numbers had already been entered. An
earlier implementation which had global notions of scale and base did not work out well. If the value of
scale were to be interpreted in the current input or output base, then a change of base or scale in the midst
of a computation would cause great confusion in the interpretation of the results. The current scheme has
the advantage that the value of the input and output bases are only used for input and output, respectively,
and they are ignored in all other operations. The value of scale is not used for any essential purpose by any
part of the program and it is used only to prevent the number of decimal places resulting from the arith
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in no case
should any significant digits be thrown away if, on appearances, the user actually wanted them. Thus, if
the user wants to add the numbers 1.S and 3.517, it seemed reasonable to give him the result 5.017 without
requiring him to unnecessarily specify his rather obvious requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more digits than
their operands and it seemed reasonable to give as a minimum the number of decimal places in the
operands but not to give more than that number of digits unless the user asked for them by specifying a
value for scale. Square root can be handled in just the same way as multiplication. The operation of divi
sion gives arbitrarily many decimal places and there is simply no way to guess how many places the user
wants. In this case only, the user must specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the quotient and
remainder. This is easy to implement; no digits are thrown away.

References

[l] L. L. Cheriry, R. Morris, BC - An Arbitrary Precision De sic-Calculator Language.

[2] K. C. Knowlton, A Fast Storage Allocator, Comm. ACM 8, pp. 623-625 (Oct 1965).

BC - An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Morris

AB SI RA CI

BC is a language and a compiler for doing arbitrary precision arithmetic on the
PDP-11 under the UNIXt time-sharing system. The output of the compiler is interpreted
and executed by a collection of routines which can input, output, and do arithmetic on
indefinitely large integers and on scaled fixed-point numbers.

These routines are themselves based on a dynamic storage allocator. Overfl.ow
does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode opera
tion. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digit result in
about ten seconds.

A small collection of library functions is also available, including sin, cos, arctan,
log, exponential, and Bessel functions of integer order.

Introduction

Some of the uses of this compiler are
to do computation with large integers,

to do computation accurate to many decimal places,

conversion of numbers from one base to another base.

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIX time-sharing
system [1]. The compiler was written to make conveniently available a collection of routines (called DC
[5]) which are capable of doing arithmetic on integers of arbitrary size. The compiler is by no means
intended to provide a complete programming language. It is a minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is made for
input and output in bases other than decimal. Numbers can be converted.from decimal to octal by simply
setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of storage avail
able on the machine. Manipulation of numbers with many hundreds of digits is possible even on the smal
lest versions of UNIX.

The syntax of BC has been deliberately selected to. agree substantially with the C language [2].
Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For instance, if you
type in the line:

t L'Jl.i1X is a trademark of Bell Laboratories.

USD:6-2

142857 + 285714

the program responds immediately with the line

428571

BC - An Arbitrary Precision Desk-Calculator Language

The operators -, •, I, %, and " can also be used; they indicate subtraction, multiplication, division,
remaindering, and exponentiation, respectively. Division of integers produces an integer result truncated
toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be negated (the
'unary' minus sign). The expression

7+-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operaun and with parentheses are interpreted just as in For
tran, with " having the greatest binding power, then • and % and/, and finally + and-. Contents of
parentheses are evaluated before material outside the parentheses. Exponentiations are performed from
right to left and the other operators from left to right. The two expressions

a .. b"c and a .. (b"c)

are equivalent, as are the two expressions

a*b*c and (a*b)*c

BC shares with Fortran and C the undesirable convention that

a/b*c is equivalent to (alb)*c

Internal storage registers to hold numbers have single lower-case letter names. The value of an
expression can be assigned to a register in the usual way. The statement

x=x+3

has the effect of increasing by three the value of the contents of the register named x. When, as in this
case, the outermost operator is an =, the assignment is performed but the result is not printed. Only 26 of
these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see scaling below).
The lines

x = sqrt(191)
x

produce the printed result

13

Bases

There are special internal quantities, called 'ibase' and 'obase'. The contents of 'ibase', initially set
to 10, determines the base used for interpreting numbers read in. For example, the lines

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change the input
base back to decimal by typing

BC - An Arbitrary Precision Desk-Calculator Language USD:6-3

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those who deal in
hexadecimal notation, the characters A-F are permitted in numbers (no matter what base is in effect) and
are interpreted as digits having values 1{}-15 respectively. The statement

ibase =A

will change you back to decimal input base no matter what the current input base is. Negative and large
positive input bases are permitted but useless. No mechanism has been provided for the input of arbitrary
numbers in bases less than 1 and greater than 16.

The contents of 'obase', initially set to 10, are used as the base for output numbers. The lines

obase = 16
1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permitted, and
they are sometimes useful For example, large numben can be output in groups of five digits by setting
'obase' to 100000. Strange (i.e. 1, 0, or negative) output bases are handled appropriately.

Very large numbers are split across lines with 70 characten per line. Lines which are continued end
with \. Decimal output conversion is practically instantaneous, but output of very large numbers (i.e., more
than 100 digits) with other bases is rather slow. Non-decimal output conversion of a one hundred digit
number takes about three seconds.

It is best to remember that 'ibase' and 'obase' have no effect whatever on the course of internal com
putation or on the evaluation of expressions, but only affect input and output conversion, respectively.

Sealing

A third special internal quantity called 'scale' is used to determine the scale of calculated quantities.
Numbers may have up to 99 decimal digits after the decimal point. This fractional part is retained in
further computations. We refer to the number of digits after the decimal point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations, the result has
a scale determined by the following rules. For addition and subtraction, the scale of the result is the larger
of the scales of the two operands. In this case, there is never any truncation of the result. For multiplica
tions, the scale of the result is never less than the maximum of the two scales of the operands, never more
than the sum of the scales of the operands and, subject to those two restrictions, the scale of the result is set
equal to the contents of the internal quantity 'scale'. The scale of a quotient is the contents of the internal
quantity 'scale'. The scale of a remainder is the sum of the scales of the quotient and the divisor. The
result of an exponentiation is scaled as if the implied multiplications were performed. An exponent must
be an integer. The scale of a square root is set to the maximum of the scale of the argument and the con
tents of 'scale'.

All of the internal operations are actually carried out in terms of integers, with digits being discarded
when necessary. In every case where digits are discarded, truncation and not rounding is performed.

The contents of 'scale' must be no greater than 99 and no less than 0. It is initially set to 0. In case
you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities 'scale', 'ibase', and 'obase' can be used in expressions just like other vari-
ables. The line ·

scale = scale + 1

increases the value of 'scale' by one, and the line

scale

USD:6-4 BC - An Arbitrary Precision Desk-Calculator Language

causes the current value of 'scale' to be printed.

The value of 'scale' retains its meaning as a number of decimal digits to be retained in internal com
putation even when 'ibase' or 'obase' are not equal to 10. The internal computations (which are still con
ducted in decimal, regardless of the bases) are perfonned to the specified number of decimal digits, never
hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are pennitted to collide with
simple variable names. Twenty-six different defined functions are permitted in addition to the twenty-six
variable names. The line

define a(x){

begins the definition of a function with one argument This line must be followed by one or more state
ments, which make up the body of the function, ending with a right brace } • Return of control from a func
tion occurs when a return statement is executed or when the end of the function is reached. The return
statement can take either of the two forms

return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the expression in parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one 'auto' statement in a function and it must be the first statement in the definition.
These automatic variables are allocated space and initialized to zero on entry to the function and thrown
away on return. The values of any variables with the same names outside the function are not disturbed.
Functions may be called recursively and the automatic variables at each level of call are protected. The
parameters named in a function definition are treated in the same way as the automatic variables of that
function with the single exception that they are given a value on entry to the function. An example of a
function definition is

define a(x,y){

}

autoz
z = x•y
return(z)

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments enclosed in
parentheses and separated by commas. The result is unpredictable if the wrong number of arguments is
used.

b().
Functions with no arguments are defined and called using parentheses with nothing between them:

If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the iine

x = a(a(3,4),5)

would cause the value of x to become 60.

BC - An Arbitrary Precision Desk-Calculat<x' Language USD:6-5

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a subscripted
variable (an array element). The variable name is called the array name and the expression in brackets is
called the subscript. Only one-dimensional arrays are permitted The names of arrays are permitted to col
lide with the names of simple variables and function names. Any fractional part of a subscript is discarded
before use. Subscripts must be greater than or equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return statements.

An array name may be used as an argument to a function, or may be declared as automatic in a func-
tion definition by the use of empty brackets:

f(a[])
define f(a[D
auto a[1

When an array name is so used, the whole contents of the array are copied f~ the use of the function, and
thrown away on exit from the function. Array names which refer to whole arrays cannot be used in any
other contexts.

Control Statements

The 'if', the 'while', and the 'f~' statements may be used to alter the flow within programs or to
cause iteration. The range of each of them is a statement or a compound· statement consisting of a collec
tion of statements enclosed in braces. They are written in the following way

or

if(relation) statement
while(relation) statement
for(expressionl; relation; expression2) statement

if(relation) {statements}
while(relation) {statements}
ror(expressionl; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

X>Y

where two expressions are related by one of the six relational operators <, >, <=, >=,==,or!=. The rela
tion == stands for 'equal to' and != stands for 'not equal to'. The meaning of the remaining relational
operators is clear.

BEW ARE of using = instead of == in a relational. Unfortunately, both of them are legal, so you will
not get a diagnostic message, but = really will not do a comparison.

The 'if' statement causes execution of its range if and only if the relation is true. Then control passes
to the next statement in sequence.

The 'while' statement causes execution of its range repeatedly as long as the relation is true. The
relation is tested before each execution of its range and if the relation is false, control passes to the next
statement beyond the range of the while.

The 'for' statement begins by executing 'expressionl '. Then the relation is tested and, if true, the
statements· in the range of the 'for' are executed. Then 'expression2' is executed. The relation is tested,
and so on. The typical use of the 'for' statement is for a controlled iteration, as in the statement

for(i=l; i<=lO; i=i+l) i

which will print the integers from 1 to 10. Here are some examples of the use of the control statements.

USD:6-6

The line

define l(n){
auto i,x
x=l
lor(i=l; i<=n; i=i+l) x=x•i
return(x)
}

l(a)

BC- An Arbitrary Precision Desk-Calculator Language

will print a factorial if a is a positive integer. Here is the definition of a function which will compute
values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m){
autox,j
x=l
ror(j=l; j<=m; j=j+l) x=x•(n-j+l)/j
return(x)
}

The following function computes values of the exponential function by summing the appropriate series
without regard for possible truncation errors:

scale= 20
define e(x){

}

Some Details

auto a, b, c, d, n
a=l
b=l
c=l
d=O
n=l
while(l==l){

}

a=a•x
b=b*n
c=c+a/b
n=n+l
if(c==d) return(c)
d=c

There are some language features that every user should know about even if he will not use them.

Normally statements are typed o~e to a line. It is also permissible to type several statements on a
line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used anywhere that an
expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = a[i=i+l]

BC - An Arbitrary Precision Desk-Calculata Language USD:6-7

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C language. Con
sult the appendix or the C manuals [2] for their exact workings.

x=y=z is the same as
x=+y
x=-y
x=• y
x=ly
x=%y
x=" y
x++
x-
++x
-x

x=(y=z)
x=x+y
x=x-y
x=x•y
x=xly
x=x%y
x=x"y
(x=x+l)-1
(x=x-1)+1
x=x+l
x=x-1

Even if you don't intend to use the constructs, if you type one inadvertently, something correct but unex
pected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real difference
between x =- y and x= -y. The first replaces x by x-y and the second by-y.

Three Important Things

1. To exit a BC program, type 'quit'.

2. There is a comment convention identical to that of C and of PUI. Comments begin with 'I*' and
end with'*/'.

3. There is a library of math functions which may be obtained by typing at command level

be-I

This command will load a set of library functions which, at the time of writing, consists of sine (named
's'), cosine ('c'), arctangent ('a'), natural logarithm ('l'), exponential ('e') and Bessel functions of integer
order ('j(n,x)'). Doubtless more functions will be added in time. The library sets the scale to 20. You can
reset it to something else if you like. The design of these mathematical library routines is discussed else
where [3].

If you type

be file ...

BC will read and execute the named file or files before accepting commands from the keyboard. In this
way, you may load your favorite programs and function definitions.

Acknowledgement

The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

References

(l] K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, 1978.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

[3] R. Morris, A Library of Reference Standard Mathematical Subroutines, Bell Laboratories internal
memorandum, 1975.

(4] S. C. Johnson, YACC - Yet Another Compiler-Compiler. Bell Laboratories Computing Science
Technical Repon #32, 1978.

[5] R. Morris and L. L. Cherry, DC -An Interactive Desk Calculator.

USD:6-8 BC - An Arbitrary Precision Desk-Calculator Language

Appendix

1. Notation

In the following pages syntactic categories are in italics; literals are in bold; material in brackets [] is
optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators may
be blanks, tabs or comments. Newline characters or semicolons separate statements.

2.1. Comments

Comments are introduced by the characters 1• and terminated by •1.

2.2. Identifiers

There are three kinds of identifiers - ordinary identifiers, array identifiers and function identifiers.
All three types consist of single lower-case letters. Array identifiers are followed by square brackets, pos
sibly enclosing an expression describing a subscript. Arrays are singly dimensioned and may contain up to
2048 elements. Indexing begins at zero so an array may be indexed from 0 to 2047. Subscripts are trun
cated to integers. Function identifiers are followed by parentheses, possibly enclosing arguments. The
three types of identifiers do not conflict; a program can have a variable named x, an array named x and a
function named x, all of which are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase it
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point The hexadecimal digits
A-Fare also recognized as digits with values 10-15, respectively.

3. Expregions

The value of an expression is printed unless the main operator is an assignment. Precedence is the
same as the order of presentation here, with highest appearing first. Left or right associativity, where appli
cable, is discussed with each operator.

BC - An Arbitrary Precision Desk-Calculator Language USD:6-9

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions are legal
on the left side of an assignment. The value of a named expression is the value stored in the place named.

3.1.1.1. identifius

Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name [expression]

Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the number of digits
after the decimal point to be retained in arithmetic operations. scale has an initial value of zero. ibase and
obase are the input and output number radix respectively. Both ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. function-name ([expression[, expression ...]])

A function call consists of a function name followed by parentheses containing a comma-separated
list of expressions, which are the function arguments. A whole array passed as an argument is specified by
the array name followed by empty square brackets. All function arguments are passed by value. As a
result, changes made to the formal parameters have no effect on the actual arguments. If the function ter
minates by executing a return statement, the value of the function is the value of the expression in the
parentheses of the return statement or is zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)

The result is the square root of the expression. The result is truncated in the least significant decimal
place. The scale of the result is the scale of the expression or the value of scale, whichever is larger.

3.1.2.3. length (expression)

The result is the total number of significant decimal digits in the expression. The scale of the result
is zero.

3.1.2.4. scale (expression)

The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants

Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are used to alter
the normal precedence.

3.2. Unary operators

The unary operators bind right to left

USD:6-10 BC - An Arbitrary Precision Desk-Calculator Language

3.2.1. -expression

The result is the negative of the expression.

3.2.2. ++ named-expression

The named expression is incremented by one. The result is the value of the named expression after
incrementing.

3.2.3. - tuUned-expression

The named expression is decremented by one. The result is the value of the named expression after
decrementing.

3.2.4. named-expression ++

The named expression is incremented by one. The result is the value of the named expression before
incrementing.

3.2.S. named-expression -

The named expression is decremented by one. The result is the value of the named expression
before decrementing.

3.3. Exponentiation operator

The exponentiation operator binds right to left

3.3.1. expression "' expression

The result is the first expression raised to the power of the second expression. The second expression
must be an integer. If a is the scale of the left expression and bis the absolute value of the right expres
sion, then the scale of the result is:

min (axb, max (scale, a))

3.4. Multiplicative operators

The operators •, /, % bind left to right

3.4.1. expression• expression

The result is the product of the two expressions. If a and b are the scales of the two expressions, then
the scale of the result is:

min (a+b, max (scale, a, b))

3.4.2. expression I expression

The result is the quotient of the two expressions. The scale of the result is the value of scale.

3.4.3. expression % expression

The% operator produces the remainder of the division of the two expressions. More precisely, a%b
is a-alb*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

3.5. Additive operators

The additive operators bind left to right

BC - An Arbitrary Precision Desk-Calculaur Language USD:6-11

3.S.l. expression+ expression

The result is the sum of the two expressions. The scale of the result is the maxirnun of the scales of
the expressions.

3.5.2. expression - expression

The result is the difference of the two expressions. The scale of the result is the maximum of the
scales of the expressions.

3.6. assignment operators

The assignment operators bind right to left.

3.6.1. named-expression= expression

This expression results in assigning the value of the expression on the right to the named expression
on the left.

3.6.2. named-expression =+ expression

3.6.3. named-expression =- expression

3.6.4. named-expression =• expression

3.6.S. named-expression =I expression

3.6.6. named-expression = % expression

3.6.7. named-expression=" expression

The result of the above expressions is equivalent to "named expression = named expression OP
expression'', where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if, while, or
inside a for statement

4.1. expression < expression

4.2. expression > expression

4.3. expression <= expression

4.4. expression >= expression

4.S. expression == expression

4.6. expression!= expression

5. Storage cluses

There are only two storage classes in BC, global and automatic (local). Only identifiers that are to be
local to a function need be declared with the auto command. The arguments to a function are local to the
function. All other identifiers are assumed to be global and available to all functions. All identifiers, global
and local, have initial values of zero. Identifiers declared as auto are allocated on entry to the function and
released on returning from the function. They therefore do not retain values between function calls. auto
arrays are specified by the array name followed by empty square brackets.

USD:6-12 BC - An Arbitrary Precision Desk-Calculator Language

Automatic variables in BC do not work in exactly the same way as in either C or PUI. On entry to a
function, the old values of the names that appear as parameters and as automatic variables are pushed onto
a stack. Until return is made from the function, reference to these names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control statements,
execution is sequential.

6.1. Expreaion statements

When a statement is an expression, unless the main operator is an assignment, the value of the
expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by surrounding them
with { }.

6.3. Quoted string statements

"any string"

This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement

The substatement is executed if the relation is true.

6.5. While statements

while (relation) statement

The statement is executed while the relation is true. The test occurs before each execution of the
statement

6.6. For statements

for (expression; relation; expression) statement

The for statement is the same as
first-expression
while (relation) {

}

statement
last-expression

All three expressions must be present

6.7. Break statements

break

break causes termination of a ror or while statement.

6.8. Auto statements

auto identifier [,identifier]

The auto statement causes the values of the identifiers to be pushed down. The identifiers can be
ordinary identifiers or array identifiers. Array identifiers are specified by following the array name by
empty square brackets. The auto statement must be the first statement in a function definition.

BC-An Arbittary Precision Desk-Calculator Language

6.9. Define statements

define([parameter [,parameter . ..]]) {
statemenJs}

USD:6-13

The define statement defines a function. The parameters may be ordinary identifiers or array names.
Array names must be followed by empty square brackets.

6.10. Return statements

return

return(expression)

The return statement causes termination of a function, popping of its auto variables, and specifies the
result of the function. The first form is equivalent to return(O). The result of the function is the result of
the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it is first
encountered. Because it is not treated as an executable statement, it cannot be used in a function definition
or in an if, for, or while statement.

MAIL REFERENCE MANUAL

1. Introduction

KurtShoens

Revised by

CraigLeres

Version 5.2

June 24, 1987

Mail provides a simple and friendly environment for sending and receiving mail. It divides incoming
mail into its constituent messages and allows the user to deal with them in any order. In addition, it pro
vides a set of ed-like commands for manipulating messages and sending mail. Mail offers the user simple
editing capabilities to ease the composition of outgoing messages, as well as providing the ability to define
and send to names which address groups of users. Finally, Mail is able to send and receive messages
across such networks as the ARPANET, UUCP, and Berkeley network.

This document describes how to use the Mail program to send and receive messages. The reader is
not assumed to be familiar with other message handling systems, but should be familiar with the UNIX1

shell, the text editor, and some of the common UNIX commands. ''The UNIX Programmer's Manual,'' ''An
Introduction to Csh," and "Text Editing with Ex and Vi" can be consulted for more information on these
topics.

Here is how messages are handled: the mail system accepts incoming messages for you from other
people and collects them in a file, called your system mailbox. When you login, the system notifies you if
there are any messages waiting in your system mailbox. If you are a csh user, you will be notified when
new mail arrives if you inform the shell of the location of your mailbox. On version 7 systems, your sys
tem mailbox is located in the directory /usr/spooVmail in a file with your login name. If your login name is
''sam,'' then you can make csh notify you of new mail by including the following line in your .cshrc file:

set mail=/usr/spool/maiVsam

When you read your mail using Mail, it reads your system mailbox and separates that file into the indivi
dual messages that have been sent to you. You can then read, reply to, delete, or save these messages.
Each message is marked with its author and the date they sent it.

1 UNIX is··a trademark of Bell Laboratories.

USD:7-2 Mail Reference Manual

2. Common usage

The Mail command has two distinct usages, according to whether one wants to send or receive mail.
Sending mail is simple: to send a message tQ a user whose login name is, say, "root," use the shell com
mand:

% Mail root

then type your message. When you reach the end of the message, type an EOT (control-d) at the begin
ning of a line, which will cause Mail to echo "EQT" and return you to the Shell. When the user you sent
mail to next logs in, he will receive the message:

You have mail.

to alert him to the existence of your message.
If, while you are composing the message you decide that you do not wish to send it after all, you can

abort the letter with a RUBOUT. Typing a single RUBOUT causes Mail to print

(Interrupt -- one more to kill letter)
Typing a second RUBOUT causes Mail to save your partial letter on the file "dead.letter" in your home
directory and abort the letter. Once you have sent mail to someone, there is no way to undo the act, so be
careful.

The message your recipient reads will consist of the message you typed, preceded by a line telling
who sent the message (your login name) and the date and time it was sent.

If you want to send the same message to several other people, you can list their login names on the
command line. Thus,

% Mail sam bob john
Tuition fees are due next Friday. Don't forget!!
<Control-d>
EOT
%

will send the reminder to sam, bob, and john.

If, when you log in, you see the message,

You have mail.
you can read the mail by typing simply:

%Mail

Mail will respond by typing its version number and date and then listing the messages you have waiting.
Then it will type a prompt and await your command. The messages are assigned numbers starting with 1 -
you refer to the messages with these numbers. Mail keeps tack of which messages are new (have been sent
since you last read your mail) and read (have been read by you). New messages have an N next to them in
the header listing and old, but unread messages have a U next to them. Mail keeps track of new/old and
read/unread messages by putting a header field called ''Status'' into your messages.

To look at a specific message, use the type command, which may be abbreviated to simply t. For
example, if you had the following messages:

N 1 root Wed Sep 21 09:21 "Tuition fees"
N 2 sam Tue Sep 20 22:SS

you could examine the first message by giving the command:

type 1

which might cause Mail to respond with, for example:

Message 1:
From root Wed Sep 21 09:21:45 1978
Subject Tuition fees
Status: R

Mail Reference Manual USD:7-3

Tuition fees are due next Wednesday. Don't forget!!

Many Mail commands that operate on messages take a message number as an argument like the type com
mand. For these commands, there is a notion of a current message. When you enter the Mail program, the
current message is initially the first one. Thus, you can often omit the message number and use, for exam
ple,

t

to type the current message. As a further shorthand, you can type a message by simply giving its message
number. Hence,

1

would type the first message.

Frequently, it is useful to read the messages in your mailbox in order, one after another. You can
read the next message in Mail by simply typing a newline. As a special case, you can type a newline as
your first command to Mail to type the first message.

If, after typing a message, you wish to immediately send a reply, you can do so with the reply com
mand. Reply, like type, takes a message number as an argument. Mail then begins a message addressed to
the user who sent you the message. You may then type in your letter in reply, followed by a <control-cl> at
the beginning of a line, as before. Mail will type EQT, then type the ampersand prompt to indicate its
readiness to accept another command. In our example, if, after typing the first message, you wished to
reply to it, you might give the command:

reply

Mail responds by typing:

To: root
Subject Re: Tuition fees

and waiting for you to enter your letter. You are now in the message collection mode described at the
beginning of this section and Mail will gather up your message up to a control-d. Note that it copies the
subject header from the original message. This is useful in that correspondence about a particular matter
will tend to retain the same subject heading, making it easy to· recognize. If there are other header fields in
the message, the information found will also be used. For example, if the letter had a ''To:'' header listing
several recipients, Mail would arrange .to send your replay to the same people as well. Similarly, if the ori
ginal message contained a "Cc:" (carbon copies to) field, Mail would send your reply to those users, too.
Mail is careful, though, not too send the message to you, even if you appear in the "To:" or "Cc:" field,
unless you ask to be included explicitly. See section 4 for more details.

After typing in your letter, the dialog with Mail might look like the following:

reply
To: root
Subject Tuition fees

Thanks for the reminder
EOT
&

The reply command is especially useful for sustaining extended conversations over the message sys
te:m, with other "listening" users receiving copies of the conversation. The reply command can be abbre
viated tor.

Sometimes you will receive a message that has been sent to several people and wish to reply only to
the person who sent it Reply with a capital R replies to a message, but sends a copy to the sender only.

If you wish, while reading your mail, to send a message to someone, but not as a reply to one of your
messages, you can send the message directly with the mail command, which takes as arguments the names
of the recipients you wish to send to. For example, to send a message to ''frank,'' you would do:

mail frank

USD:7-4

This is to confirm our meeting next Friday at 4.
EOT
&

The mail command can be abbreviated tom.

Mail Reference Manual

Normally, each message you receive is saved in the file mbox in your login directory at the time you
leave Mail. Often, however, you will not want to save a particular message you have received because it is
only of passing interesL To avoid saving a message in mbox you can delete it using the delete command.
In our example,

delete 1

will prevent Mail from saving message 1 (from root) in mbox. In addition to not saving deleted messages,
Mail will not let you type them, either. The effect is to make the message disappear altogether, along with
its number. The delete command can be abbreviated to simply d.

Many features of Mml can be tailored to your liking with the set command. The set command has
two forms, depending on whether you are setting a binary option or a valued option. Binary options are
either on or off. For example, the ''ask'' option informs Mail that each time you send a message, you want
it to prompt you for a subject header, to be included in the message. To set the "ask" option, you would
type

set ask

Another useful Mail option is "hold." Unless told otherwise, Mail moves the messages from your
system mailbox to the file mbox in your home directory when you leave Mail. If you want Mail to keep
your letters in the system mailbox instead, you can set the ''hold'' option.

Valued options are values which Mail uses to adapt to your tastes. For example, the "SHEIL"
option tells Mail which shell you like to use, and is specified by

set SHELL-/bin/csh

for example. Note that no spaces are allowed in ''SHEIL-/bin/csh.'' A complete list of the Mail options
appears in section S.

Another important valued option is "crt." If you use a fast video terminal, you will find that when
you print long messages, they fty by too quickly for you to read them. With the ''crt'' option, you can
make Mail print any message larger than a given number of lines by sending it through the paging program
more. For example, most CRT users with 24-line screens should do:

setcrt=24

to paginate messages that will not fit on their screens. More prints a screenful of information, then types -
MORE--. Type a space to see the next screenful.

Another adaptation to user needs that Mail provides is that of aliases. An alias is simply a name
which stands for one or more real user names. Mail sent to an alias is really sent to the list of real users
associated with iL For example, an alias can be defined for the members of a project, so that you can send
mail to the whole project by sending mail to just a single name. The alias command in Mail defines an
alias. Suppose that the users in a project are named Sam, Sally, Steve, and Susan. To define an alias called
''project'' for them, you would use the Mail command:

alias project sam sally steve susan

The alias command can also be used to provide a convenient name for someone whose user name is incon
venient. For example, if a user named ''Bob Anderson'' had the login name ''anderson,"'' you might want
to use:

alias bob anderson

so that you could send mail to the shorter name, ''bob.''

While the alias and set commands allow you to customize Mail, they have the drawback that they
must be retyped each time you enter Mail. To make them more convenient to use, Mail always looks for
two files when it is invoked. It first reads a system wide file '' /usr/lib/Mail.rc,'' then a user specific file,
".mailrc," which is found in the user's home directory. The system wide file is maintained by the system

Mail Reference Manual USD:7-S

administrator and contains set commands that are applicable to all users of the system. The '' .mailrc'' file
is usually used by each user to set options the way he likes and define individual aliases. For example, my
.mailrc file looks like this:

set ask nosave SHELL=/bin/csh

As you can see, it is possible to set many options in the same set command. The "nosave" option is
described in section S.

Mail aliasing is implemented at the system-wide level by the mail delivery system sendmail. These
aliases are stored in the file /usr/lib/aliases and are accessible to all users of the system. The lines in
/usr/lib/aliases are of the fonn:

alias: name1, name2, name3

where alias is the mailing list name and the lltUM; are the members of the list. Long lists can be continued
onto the next line by starting the next line with a space or tab. Remember that you must execute the shell
command newaliases after editing /usr/lib/aliases since the delivery system uses an indexed file created by
newaliases.

We have seen that Mail can be invoked with command line arguments which are people to send the
message to, or with no arguments to read mail. Specifying the -I flag on the command line causes Mail to
read messages from a file other than your system mailbox. For example, if you have a collection of mes
sages in the file ''letters'' you can use Mail to read them with:

% Mail -f letters

You can use all the Mail commands described in this document to examine, modify, or delete messages
from your "letters" file, which will be rewritten when you leave Mail with the quit command described
below.

Since mail that you read is saved in the file mbox in your home directory by default, you can read
mbox in your home directory by using simply

% Mail-f

Normally, messages that you examine using the type command are saved in the file "mbox" in your
home directory if you leave Mail with the quit command described below. If you wish to retain a message
in your system mailbox you can use the preserve command to tell Mail to leave it there. The preserve
command accepts a list of message numbers, just like type and may be abbreviated to pre.

Messages in your system mailbox that you do not examine are normally retained in your system
mailbox automatically. If you wish to have such a message saved in mbox without reading it, you may use
the mbox command to have them so saved. For example,

mbox2

in our example would cause the second message (from sam) to be saved in mbox when the quit command
is executed. Mbox is also the way to direct messages to your mbox file if you have set the "hold" option
described above. Mbox can be abbreviated to mb.

When you have perused all the messages of interest, you can leave Mail with the quit command,
which saves the messages you have typed but not deleted in the file mbox in your login directory. Deleted
messages are discarded irretrievably, and messages left untouched are preserved in your system mailbox so
that you will see them the next time you type:

%Mail

The quit command can be abbreviated to simply q.

H you wish for some reason to leave Mail quickly without altering either your system mailbox or
mbox, you can type the x command (short for exit), which will immediately return you to the Shell without
changing anything.

If, instead, you want to execute a Shell command without leaving Mail, you can type the command
preceded by an exclamation point, just as in the text editor. Thus, for instance:

!date

USD:7-6 Mail Reference Manual

will print the current date without leaving Mail.

Finally, the help command is available to print out a brief summary of the Mail commands, using
only the single character command abbreviations.

3. Maintaining folders

Mail includes a simple facility for maintaining groups of messages together in folders. This section
describes this facility.

To use the folder facility, you must tell Mail where you wish to keep your folders. Each folder of
messages will be a single file. For convenience, all of your folders are kept in a single directory of your
choosing. To tell Mail where your folder directory is, put a line of the fonn

set folder-letters

in your .mailrc file. If, as in the example above, your folder directory does not begin with .a'/,' Mail will
assume that your folder directory is to be found starting from your home directory. Thus, if your home
directory is /usr/person the above example told Mail to find your folder directory in /usr/person/letters.

Anywhere· a file name is expected, you can use a folder name, preceded with '+.' For example, to
put a message into a folder with the save command, you can use:

save +classwork

to save the current message in the classwork folder. If the classwork folder does not yet exis~ it will be
created. Note that messages which are saved with the save command are automatically removed from your
system mailbox.

In order to make a copy of a message in a folder without causing that message to be removed from
your system mailbox, use the copy command, which is identical in all other respects to the save command.
For example,

copy +classwork

copies the current message into the classwork folder and leaves a copy in your system mailbox.

The folder command can be used to direct Mail to the contents of a different folder. For example,

folder +classwork

directs Mail to read the contents of the classwork. folder. All of the commands that you can use on your
system mailbox are also applicable to folders, including type, delete, and reply. To inquire which folder
you are currently editing, use simply:

folder

To list your current set of folders, use the folders command.

To start Mail reading one of your folders, you can use the -r option described in section 2. For
example:

% Mail -f +classwork

will cause Mail to read your classwork folder without looking at your system mailbox.

Mail Reference Manual USD:7-7

4. More about sending mail

4.1. Tilde escapes

While typing in a message to be sent to others, it is often useful to be able to invoke the text editor on
the partial message, print the message, execute a shell command, or do some other auxiliary function. Mail
provides these capabilities through tilde escapes, which consist of a tilde n at the beginning of a line, fol
lowed by a single character which indicates the function to be performed. For example, to print the text of
the message so far, use:

-p

which will print a line of dashes, the recipients of your message, and the text of the message so far. Since
Mail requires two consecutive RUBOur's to abort a letter, you can use a single RUBOUf to abort the output
of -p or any other - escape without killing your letter.

If you are dissatisfied with the message as it stands, you can invoke the text editor on it using the
escape

-e

which causes the message to be copied into a temporary file and an instance of the editor to be spawned.
After modifying the message to your satisfaction, write it out and quit the editor. Mail will respond by typ
ing

(continue)

after which you may continue typing text which will be appended to your message, or type <control-d> to
end the message. A standard text editor is provided by Mail. You can override this default by setting the
valued option ''EDITOR'' to something else. For example, you might prefer:

set EDITOR=/usr/ucb/ex

Many systems offer a screen editor as an alternative to the standard text editor, such as the vi editor
from UC Berkeley. To use the screen, or visual editor, on your current message, you can use the escape,

-v
-v works like -e, except that the screen editor is invoked instead. A default screen editor is defined by
Mail. If it does not suit you, you can set the valued option ''VISUAL'' to the path name of a different edi
tor.

It is often useful to be able to include the contents of some file in your message; the escape
-r filename

is provided for this purpose, and causes the named file to be appended to your current message. Mail com
plains if the file doesn't exist or can't be reaci. If the read is successful, the number of lines and characters
appended to your message is printed, .. after which you may continue appending text. The filename may
contain shell metacharacters like • and ? which are expanded according to the conventions of your shell.

As a special case of -r, the escape
-d

reads in the file "dead.letter" in your home directory. This is often useful since Mail copies the text of
your message there when you abort a message.with RUBour.

To save the current text of your message on a file you may use the

-w filename

escape. Mail will print out the number of lines and characters written to the file, after which you may con
tinue appending text to your message. Shell metacharacters may be used in the filename, as in-rand are
expanded with the conventions of your shell.

If you are sending mail from within Mail's command mode you can read a message sent to you into
the message you are constructing with the escape:

-m4

USD:7-8 Mail Reference Manual

which will read message 4 into the current message, shifted right by one tab stop. You can name any non
deleted message, or list of messages. Messages can also be forwarded without shifting by a tab stop with
-f. This is the usual way to forward a message.

If, in the process of composing a message, you decide to add additional people to the list of message
recipients, you can do so with the escape

-t name 1 name2 ...
You may name as few or many additional recipients as you wish. Note that the users originally on the reci
pient list will still receive the message; you cannot remove someone from the recipient list with -t.

If you wish, you can associate a subject with your message by using the escape
-s Arbitrary string of text

which replaces any previous subject with ''Arbitrary string of texL'' The subject, if given, is sent near the
top of the message prefixed with ''Subject:'' You can see what the message will look like by using -p.

For political reasons, one occasionally prefers to list certain people as recipients of carbon copies of
a message rather than direct recipients. The escape

·c namel name2 ..•

adds the named people to the "Cc:" list, similar to •t. Again, you can execute ·p to see what the message
will look like.

The recipients of the message together constitute the "To:" field, the subject the "Subject:" field,
and the carbon copies the "Cc:" field If you wish to edit these in ways impossible with the •t, ·s, and ·c
escapes, you can use the escape

11

which prints ''To:'' followed by the current list of recipients and leaves the cursor (or printhead) at the end
of the line. If you type in ordinary characters, they are appended to the end of the current list of recipients.
You can also use your erase character to erase back into the list of recipients, or your kill character to erase
them altogether. Thus, for example, if your erase and kill characters are the standard (on printing termi
nals) # and @ symbols,

11
To: root kurt####bill

would change the initial recipients "root kurt" to "root bill." When you type a newline, Mail advances to
the "Subject" field, where the same rules apply. Another newline brings you to the "Cc:" field, which
may be edited in the same fashion. Another newline leaves you appending text to the end of your message.
You can use ·p to print the current text of the header fields and the body of the message.

To effect a temporary escape to the shell, the escape
-!command

is used, which executes command and returns you to mailing mode without altering the text of your mes
sage. If you wish, instead, to filter the body of your message through a shell command, then you can use

·1command

which pipes your message through the command and uses the output as the new text of your message. If
the command produces no output, Mail.assumes that something is amiss and retains the old version of your
message. A frequently-used filter is the command/mt, designed to format outgoing mail.

To effect a temporary escape to Mail command mode instead, you can use the
·:Mail command

escape. This is especially useful for retyping the message you are replying to, using, for example:
•:t

It is also useful for setting options and modifying aliases.
If you wish (for some reason) to send a message that contains a line beginning with a tilde, you must

double it. Thus, for example,

Mail Reference Manual

-nus line begins with a tilde.

sends the line

'"This line begins with a tilde.

Finally, the escape

-1

prints out a brief summary of the available tilde escapes.

USD:7-9

On some tenninals (particularly ones with no lower case) tilde's are difficult to type. Mail allows
you to change the escape character with the "escape'' option. For example, I set

set escape-]

and use a right bracket instead of a tilde. If I ever need to send a line beginning with right bracket, I double
it, just as for -. Changing the escape character removes the special meaning of -.

4.2. Network acces..

This section describes how to send mail to people on other machines. Recall that sending to a plain
login name sends mail to that person on your machine. If your machine is directly (or sometimes, even,
indirectly) connected to the Arpanet, you can send messages to people on the Arpanet using a name of the
form

name@host.do main

where name is the login name of the person you're trying to reach, host is the name of the machine on the
Arpanet, and domain is the higher-level scope within which the hostname is known, e.g. EDU (for educa
tional institutions), COM (for commercial entities), GOV (for governmental agencies), ARPA for many
other things, BITNET or CSNET for those networks.

If your recipient logs in on a machine connected to yours by UUCP (the Bell Laboratories supplied
network that communicates over telephone lines), sending mail can be a bit more complicated. You must
know the list of machines through which your message must travel to arrive at his site. So, if his machine
is directly connected to yours, you can send mail to him using the syntax:

host!narne

where, again, host is the name of the machine and name is the login name. If your message must go
through an intermediary machine first, you must use the syntax:

intermediary !host!name

and so on. It is actually a feature of UUCP that the map of all the systems in the network is not known any
where (except where people decide to write it down for convenience). Talk to your system administrator
about good ways to get places; the uuname command will tell you systems whose names are recognized,
but not which ones are frequently called or well-connected.

When you use the reply command to respond to a letter, there is a problem of figuring out the names
of the users in the "To:" and. "Cc:" lists relative to the current machine. If the original letter was sent to
you by someone on the local machine, then this problem does not exist, but if the message came from a
remote machine, the problem must be dealt with. Mail uses a heuristic to build the correct name for each
user relative to the local machine. So, when you reply to remote mail, the names in the ''To:'' and ''Cc:''
lists may change somewhat.

4.3. Special recipients

As described previously, you can send mail to either user names or alias names. It is also possible to
send messages directly to files or to programs, using special conventions. If a recipient name has a'/' in it
or begins with a'+', it is assumed to be the path name of a file into which to send the message. If the file
already exists, the message is appended to the end of the file. If you want to name a file in your current
directory (ie, one for which a '/' would not usually be needed) you can precede the name with 'J' So, to
send mail to the file "memo" in the current directory, you can give the command:

% Mail Jmemo

USD:7·10 Mail Reference Manual

If the name begins with a '+,' it is expanded into the full path name of the folder name in your folder direc
tory. This ability to send mail to files can be used for a variety of purposes, such as maintaining a journal
and keeping a record of mail sent to a certain group of users. The second example can be done automati
cally by including the full pathname of the record file in the alias command for the group. Using our previ
ous alias example, you might give the command:

alias project sam sally steve susan /usr/projectlmlil _record

Then, all mail sent to "project" would be saved on the file ''/usr/project/mail_record'' as well as being sent
to the members of the project. This file can be examined using Mail-/.

It is sometimes useful to send mail direcdy to a program, for example one might write a project bill
board program and want to access it using Mail. To send messages to the billboard program, one can send
mail to the special name '!billboard' f<X example. Mail treats recipient names that begin with a 'I' as a pro
gram to send the mail to. An alias can be set up to reference a 'I' prefaced name if desired. Caveats-. the
shell treats 'I' specially, so it must be quoted on the command line. Also, the 'I program' must be presented
as a single argument to mail. 1be safest course is to surround the entire name with double quotes. This
also applies to usage in the alias command. For example, if we wanted to alias 'rmsgs' to 'rmsgs -s' we
would need to say:

alias rmsgs "I rmsgs -s"

Mail Reference Manual USD:7-11

5. Additional features

This section describes some additional commands useful for reading your mail, setting options, and
handling lists of messages.

5.1. Me$age lists

Several Mail commands accept a list of messages as an argument. Along with type and delete,
described in section 2, there is the from command, which prints the message headers associated with the
message list passed to it. The from command is particularly useful in conjunction with some of the mes
sage list features described below.

A message list consists of a list of message numbers, ranges, and names, separated by spaces or tabs.
Message numbers may be either decimal numbers, which directly specify messages, or one of the special
characters "f" "." or "$" to specify the first relevant, current, or last relevant message, respectively.
Relevant here means, for most commands "not deleted" and "deleted" for the undelete command.

A range of messages consists of two message numbers (of the form described in the previous para
graph) separated by a dash. Thus, to print the first four messages, use

type 1-4

and to print all the messages from the current message to the last message, use

type.-$

A nantl! is a user name. The user names given in the message list are collected together and each
message selected by other means is checked to make sure it was sent by one of the named users. If the
message consists entirely of user names, then every message sent by one those users that is relevant (in the
sense described earlier) is selected. Thus, to print every message sent to you by ''root,'' do

type root

As a shorthand notation, you can specify simply "•" to get every relevant (same sense) message.
Thus,

type.

prints all undeleted messages,

delete*

deletes all undeleted messages, and

undelete*

undeletes all deleted messages.

You can search for the presence of a word in subject lines with/. For example, to print the headers
of all messages that contain the word ''PASCAL,'' do:

from /pascal

Note that subject searching ignores upper/lower case differences.

5.2. List or commands

This section describes all the Mail commands available when receiving mail.

Used to preface a command to be executed by the shell.

The - command goes to the previous message and prints it The - command may be given a decimal
number n as an argument, in which case the nth previous message is gone to and printed.

Print Like print, but also print out ignored header fields. See also print and ignore.

Reply
Note the capital R in the name. Frame a reply to a one or more messages. The reply (or replies if
you are using this on multiple messages) will be sent ONLY to the person who sent you the message
(respectively, the set of people who sent the messages you are replying to). You can add people
using the •t and ·c tilde escapes. The subject in your reply is formed by prefacing the subject in the

USD:7-12 Mail Reference Manual

original message with "Re:" unless it already began thus. If the original message included a
"reply-to" header field, the reply will go only to the recipient named by "reply-to." You type in
your message using the same conventions available to you through the mail command. The Reply
command is especially useful for replying to messages dtat were sent to enormous distribution
groups when you really just want to send a message to the originator. Use it often.

Type Identical to the Print command.

alias Define a name to stand for a set of other names. This is used when you want to send messages to a
certain group of people and want to avoid retyping their names. For example

alias project john sue willie kathryn

creates an alias project which expands to the four people John, Sue, Willie, and Kathryn.
alternates

If you have accounts on several machines, you may find it convenient to use the /usrlliblaliases on all
the machines except one to direct your mail to a single account. The alternates command is used to
inform Mail that each of these other addresses is really you. Alternates takes a list of user names and
remembers that they are all actually you. When you reply to messages that were sent to one of these
alternate names, Mail will not bother to send a copy of the message to this other address (which
would simply be directed back to you by the alias mechanism). If alternates is given no argument, it
lists the current set of alternate names. Alternates is usually used in the .mailrc file.

chdir The chdir command allows you to change your current directory. Chdir takes a single argument,
which is taken to be the pathname of the directory to change to. If no argument is given, chdir
changes to your home directory.

copy The copy command does the same thing that save does, except that it does not mark the messages it
is used on for deletion when you quit.

delete
Deletes a list of messages. Deleted messages can be reclaimed with the undelete command.

dp These

commands delete the current message and print the next message. They are useful for quickly read
ing and disposing of mail.

edit To edit individual messages using the text editor, the edit command is provided. The edit command
takes a list of messages as described under the type command and processes each by writing it into
the file Messagex where x is the message number being edited and executing the text editor on it.
When you have edited the message to your satisfaction, write the message out and quit, upon which
Mail will read the message back and remove the file. Edit may be abbreviated toe.

else Marks the end of the then-part of an if statement and the beginning of the part to take effect if the
condition of the if statement is false.

endif Marks the end of an if statement.

exit Leave Mail without updating the system mailbox or the file your were reading. Thus, if you acciden
tally delete several messages, you can use exit to avoid scrambling your mailbox.

file The same as folder.

folders
List the names of the folders in your folder directory.

folder
The folder command switches to a new mail file or folder. With no arguments, it tells you which file
you are currently reading. If you give it an argument, it will write out changes (such as deletions)
you have made in the current file and read the new file. Some special conventions are recognized for
the name:

Mail Reference Manual

Name

%
%name
&
+folder

Meaning
Previous file read
Your system mailbox
Name's system mailbox
Your -1mbox file
A file in your folder directory

USD:7-13

from The from command takes a list of messages and prints out the header lines for each one; hence

fromjoe

is the easy way to display all the message headers from ''joe.''

headers
When you start up Mai.I to read your mail, it lists the message headers that you have. These headers
tell you who each message is from, when they were sent, how many lines and characters each mes
sage is, and the "Subject:" header field of each message, if present In addition, Mail tags the mes
sage header of each message that has been the object of the preserve command with a "P." Mes
sages that have been saved or written are flagged with a "•." Finally, deleted messages are not
printed at all. If you wish to reprint the current list of message headers, you can do so with the
headers command. The headers command (and thus the initial header listing) only lists the first so
many message headers. The number of headers listed depends on the speed of your terminal. This
can be overridden by specifying the number of headers you want with the window option. Mail
maintains a notion of the current "window" into your messages for the purposes of printing headers.
Use the z command to move forward and back a window. You can move Mail's notion of the
current window directly to a particular message by using, for example,

headers 40

to move Mail's attention to the messages around message 40. The headers command can be abbre
viated to h.

help Print a brief and usually out of date help message about the commands in Mail. The man page for
mail is usually more up-to-date than either the help message or this manual.

hold Arrange to hold a list of messages in the system mailbox, instead of moving them to the file mbox in
your home directory. If you set the binary option hold, this will happen by default

if Commands in your '' .mailrc'' file can be executed conditionally depending on whether you are send
ing or receiving mail with the if command. For example, you can do:

if receive
commands ...

endif

An else form is also available:

if send
commands ...

else
commands ...

endif

Note that the only allowed conditions are receive and send.

ignore
Add the list of header fields named to the ignore list. Header fields in the ignore list are not printed
on your terminal when you print a message. This allows you to suppress printing of certain
machine-generated header fields, such as Via which are not usually of interest. The Type and Print
commands can be used to print a message in its entirety, including ignored fields. If ignore is exe
cuted with no arguments, it lists the current set of ignored fields.

list List the vaild Mail commands.

USD:7-14 Mail Reference Manual

mail Send mail to one or more people. If you have the ask option set, Mail will prompt you for a subject
to your message. Then you can type in your message, using tilde escapes as described in section 4 to
edit, print, or modify your message. To signal your satisfaction with the message and send it, type
control-d at the beginning of a line, or a. alone on a line if you set the option dot. To abort the mes
sage, type two interrupt characters (RUBOUT by default) in a row or use the .. q escape.

mboxlndicate that a list of messages be sent to mbox in your home directory when you quit. This is the
default action for messages if you do not have the hold option set

next The next command goes to the next message and types it If given a message list, next goes to the
first such message and types it Thus,

next root

goes to the next message sent by "root" and types it The next command can be abbreviated to sim
ply a newline, which means that one can go to and type a message by simply giving its message
number or one of the magic characters "'"'" "." or"$". Thus,

prints the current message and

4

prints message 4, as described previously.

preserve
Same as hold. Cause a list of messages to be held in your system mailbox when you quit.

print Takes a message list and types out each message on the terminal.

quit Leave Mail and update the file, folder, or system mailbox your were reading. Messages that you
have examined are marked as "read" and messages that existed when you started are marked as
''old.'' If you were editing your system mailbox and if you have set the binary option hold, all mes
sages which have not been deleted,. saved, or mboxed will be retained in your system mailbox. If
you were editing your system mailbox and you did not have hold set, all messages which have not
been deleted, saved, or preserved will be moved to the file mbox in your home directory.

reply Frame a reply to a single message. The reply will be sent to the person who sent you the message to
which you are replying, plus all the people who received the original message, except you. You can
add people using the-, and -c tilde escapes. The subject in your reply is formed by prefacing the
subject in the original message with ''Re:'' unless it already began thus. If the original message
included a "reply-to" header field, the reply will go only to the recipient named by "reply-to." You
type in your message using the same conventions available to you through the mail command.

save It is often useful to be able to save messages on related topics in a file. The save command gives you
ability to do this. The save command takes as argument a list of message numbers, followed by the
name of the file on which to save the messages. The messages are appended to the named file, thus
allowing one to keep several messages in the file, stored in the order they were put there. The save
command can be abbreviated to s. An example of the save command relative to our running exam
ple is:

s 1 2 tuitionmail

Saved messages are not automatically saved in mbox at quit time, nor are they selected by the next
command described above, unless explicitly specified.

set Set an option or give an option a value. Used to customize Mail. Section 5.3 contains a list of the
options. Options can be binary, in which case they are on or off, or valued. To set a binary option
option on, do

set option

To give the valued option option the value value, do

set option=value

Several options can be specified in a single set command.

Mail Reference Manual USD:7-15

shell The shell command allows you to escape to the shell. Shell invokes an interactive shell and allows
you to type commands to it. When you leave the shell, you will return to Mail. The shell used is a
default assumed by Mail; you can override this default by setting the valued option "SHELL," eg:

set SHELL=/bin/csh

source
The source command reads Mail commands from a file. It is useful when you are trying to fix your
'' .mailrc'' file and you need to re-read it.

top The top command takes a message list and prints the first five lines of each addressed message. It
may be abbreviated to to. If you wish, you can change the number of lines that top prints out by set
ting the valued option ''toplines.'' On a CRT terminal,

set toplines-10

might be preferred.

type Print a list of messages on your terminal. If you have set the option crt to a number and the total
number of lines in the messages you are printing exceed that specified by crt, the messages will be
printed by a terminal paging program such as more.

undelete
The undelete command causes a message that had been deleted previously to regain its initial status.
Only messages that have been deleted may be undeleted. This command may be abbreviated to u.

unset Reverse the action of setting a binary or valued option.

visuallt is often useful to be able to invoke one of two editors, based on the type of terminal one is using.
To invoke a display oriented editor, you can use the visual command. The operation of the visual
command is otherwise identical to that of the edit command.

Both the edit and visual commands assume some default text editors. These default editors can be
overridden by the valued options "EDITOR" and "VISUAL" for the standard and screen editors.
You might want to do:

set EDITOR=/usr/ucb/ex VISUAL=/usr/ucb/vi

write The save command always writes the entire message, including the headers, into the file. If you
want to write just the message itself, you can use the write command. The write command has the
same syntax as the save command, and can be abbreviated to simply w. Thus, we could write the
second message by doing:

w 2 file.c

As suggested by this example, the write command is useful for such tasks as sending and receiving
source program text over the message system.

z Mail presents message headers in windowfuls as described under the headers command. You can
move Mail's attention forward to the next window by giving the

z+

command. Analogously, you can move to the previous window with:

z-

5.3. Custom options

Throughout this manual, we have seen examples of binary and valued options. This section
describes each of the options in alphabetical order, including some that you have not seen yet To avoid
confusion, please note that the options are either all lower case letters or all upper case letters. When I start
a sentence such as: "Ask" causes Mail to promp·t you for a subject header, I am only capitalizing "ask"
as a courtesy to English.

EDITOR
The valued option "EDITOR" defines the pathname of the text editor to be used in the edit com
mand and -e. If not defined, a standard editor is used.

USD:7-16 Mail Rererence Manual

SHELL
The valued option "SHE~" gives the path name of your shell. This shell is used for the! com
mand and ·! escape. In addition, this shell expands file names with shell metacharacters like * and ?
in them.

VISUAL
The valued option "VISUAL" defines the pathname of your screen editor for use in the visual com
mand and ·v escape. A standard screen editor is used if you do not define one.

append
The "append" option is binary and causes messages saved in mbox to be appended to the end rather
than prepended. Normally, Mailwill mbox in the same order that the system puts messages in your
system mailbox. By setting "append," you are requesting that mbox be appended to regardless. It is
in any event quicker to append.

ask ''Ask'' is a binary option which causes Mail to prompt you for the subject of each message you
send. If you respond with simply a newline, no subject field will be sent.

askcc ''Askcc'' is a binary option which causes you to be prompted for additional carbon copy recipients
at the end of each message. Responding with a newline shows your satisfaction with the current list.

auto print
"Autoprint" is a binary option which causes the delete command to behave like dp - thus, after
deleting a message, the next one will be typed automatically. This is useful to quickly scanning and
deleting messages in your mailbox.

debug
The binary option "debug" causes debugging information to be displayed. Use of this option is the
same as useing the

-d command line flag.

dot "Dot" is a binary option which, if set, causes Mail to interpret a period alone on a line as the termi
nator of a message you are sending.

escape
To allow you to change the escape character used when sending mail, you can set the valued option
"escape." Only the first character of the' "escape" option is used, and it must be doubled if it is to
appear as the first character of a line of your message. If you change your escape character, then •
loses all its special meaning, and need no longer be doubled at the beginning of a line.

rolder
The name of the directory to use for storing folders of messages. If this name begins with a'/' Mail
considers it to be an absolute pathname; otherwise, the folder directory is found relative to your
home directory.

hold The binary option "hold" causes messages that have been read but not manually dealt with to be
held in the system mailbox. This prevents such messages from being automatically swept into your
mbox.

ignore
The binary option "ignore" causes RUBOtrr characters from your terminal to be ignored and echoed
as @'s while you are sending mail. RUBOtrr characters retain their original meaning in Mail com
mand mode. Setting the "ignore'' option is equivalent to supplying the -i flag on the command line
as described in section 6.

ignoreeor
An option related to "dot" is "ignoreeor' which makes Mail refuse to accept a control-d as the end
of a message. ''Ignoreeor' also applies to Mail command mode.

keep The "keep" option causes Mail to truncate your system mailbox instead of deleting it when it is
empty. This is useful if you elect to protect your mailbox, which you would do with the shell com
mand:

chmod 600 /usr/spool/mail/yourname

where yourname is your login name. If you do not do this, anyone can probably read your mail,

Mail Reference Manual

although people usually don't

keepsave

USD:~-17

When you save a message, Mail usually discards it when you quit. To retain all saved messages, set
the "keepsave" option.

metoo
When sending mail to an alias, Mail makes sure that if you are included in the alias, that mail will
not be sent to you. This is useful if a single alias is being used by all members of the group. If how
ever, you wish to receive a copy of all the messages you send to the alias, you can set the binary
option ''metoo.''

no header
The binary option "noheader" suppresses the printing of the version and headers when Mail is first
invoked. Setting this option is the same as using -N on the command line.

nosave
Normally, when you abort a message with two RUBOurs, Mail copies the partial letter to the file
''dead.letter'' in your home directory. Setting the binary option ''nosave'' prevents this.

quiet The binary option "quiet" suppresses the printing of the version when Mail is first invoked, as well
as printing the for example "Message 4:'' from the type command.

record
If you love to keep records, then the valued option "record'' can be set to the name of a file to save
your outgoing mail. Each new message you send is appended to the end of the file.

screen
When Mail initially prints the message headers, it determines the number to print by looking at the
speed of your terminal. The faster your terminal, the more it prints. The valued option "screen"
overrides this calculation and specifies how many message headers you want printed. This number is
also used for scrolling with the z command.

sendmail
To alternate delivery system, set the ''send.mail'' option to the full pathname of the program to use.
Note: this is not for everyone! Most people should use the default delivery system.

toplines
The valued option "toplines" defines the number of lines that the "top" command will print out
instead of the default five lines.

verbose
The binary option "verbose" causes Mail to invoke send.mail with the -v flag, which causes it to go
into versbose mode and announce expansion of aliases, etc. Setting the "verbose" option is
equivalent to invoking Mail with the -v ftag as described in section 6.

USD:7-18 Mail Reference Manual

6. Command line options

This section describes command line options for Mail and what they are used for.

-N Suppress the initial printing of headers.

-d Tum on debugging information. Not of general interest

-f file.Show the messages in file instead of your system mailbox. If file is omitted, Mail reads mbox in your
home directory.

-i Ignore tty interrupt signals. Useful on noisy phone lines, which generate spurious RUBOUT or
DELETE characters. It's usually more effective to change your interrupt character to control-c, for
which see the stty shell command.

-n Inhibit reading of /usr/lib/Mail.rc. Not generally useful, since /usr/lib/Mail.rc is usually empty.

-s string
Used for sending mail. String is used as the subject of the message being composed. If string con
tains blanks, you must surround it with quote marks.

-u name
Read names' s mail instead of your own. Unwitting others often neglect to protect their mailboxes,
but discretion is advised. Essentially, -u user is a shorthand way of doing -r /usr/spool/user~

-v Use the -v flag when invoking sendmail. This.feature may also be enabled by setting the the option
"verbose".

The following command line flags are also recognized, but are intended for use by programs invok
ing Mail and not for people.

-T file
Arrange to print on file the contents of the article-id fields of all messages that were either read or
deleted. -T is for the readnews program and should NOT be used for reading your mail.

-h number
Pass on hop count information. Mail will take the number, increment it, and pass it with -b to the
mail delivery system. -h only has effect when sending mail and is used for network mail forward
ing.

-rname
Used for network mail forwarding: interpret name as the sender of the message. The name and -r
are simply sent along to the mail delivery system. Also, Mail will wait for the message to be sent
and return the exit status. Also restricts formatting of message.

Note that-h and-r, which are for network mail forwarding, are not used in practice since mail for
warding is now handled separately. They may disappear soon.

7. Format of me~ges

This section describes the format of messages. Messages begin with a from line, which consists of
the word "From" followed by a user name, followed by anything, followed by a date in the format
returned by the ctime library routine described in section 3 of the Unix Programmer's Manual. A possible
ctime format date is:

Tue Dec 1 10:58:23 1981

The ctime date may be optionally followed by a single space and a time zone indication, which should be
three capital letters, such as PDT. ·

Following the from line are zero or more header field lines. Each header field line is of the form:

name: information

Name can be anything, but only certain header fields are recognized as having any meaning. The recog
nized header fields are: article-id, bee, cc, from, reply-to, sender, subject, and to. Other header fields are
also significant to other systems; see, for example, the current Arpanet message standard for much more on
this topic. A header field can be continued onto following lines by making the first character on the follow
ing line a spaee or tab character.

Mail Reference Manual USD:7-19

If any headers are present, they must be followed by a blank line. The part that follows is called the
body of the message, and must be ASCII text, not containing null characters. Each line in the message
body must be terminated with an ASCII newline character and no line may be longer than 512 characters.
If binary data must be passed through the mail system, it is suggested that this data be encoded in a system
which encodes six bits into a printable character. For example, one could use the upper and lower case
letters, the digits, and the characters comma and period to make up the 64 characters. Then, one can send a
16-bit binary number as three characters. These characters should be packed into lines, preferably lines
about 70 characters long as long lines are transmitted more efficiently.

The message delivery system always adds a blank line to the end of each message. This blank line
must not be deleted.

The UUCP message delivery system sometimes adds a blank line to the end of a message each time
it is forwarded through a machine.

It should be noted that some network transport protocols enforce limits to the lengths of messages.

USD:7·20

8. Glosmry

This section contains the definitions of a few phrases peculiar to Mail.

alias An alternative name for a person or list of people.

Mail Reference Manual

flag An option, given on the command line of Mail, prefaced with a-. For example, -r is a flag.

header field
At the beginning of a message, a line which contains information that is part of the structure of the
message. Popular header fields include to, cc, and subject.

mail A collection of messages. Often used in the phrase, ''Have you read your mail?''

mailbox
The place where your mail is stored, typically in the directory /usr/spool/mail.

message
A single letter from someone, initially stored in your mailbox.

message list
A string used in Mail command mode to describe a sequence of messages.

option
A piece of special purpose information used to tailor Mail to your taste. Options are specified with
the set command.

Mail Reference Manual USD:7-21

9. Summary or commands, options, and escapes

This section gives a quick summary of the Mail commands, binary and valued options, and tilde
escapes.

The following table describes the commands:

Command

Print
Reply
Type
alias
alternates
chdir
copy
delete
dt
end if
edit
else
exit
file
folder
folders
from
headers
help
hold
if
ignore
list
local
mail
mbox
next
preserve
quit
reply
save
set
shell
top
type
undelete
unset
visual
write
z

Description
Single command escape to shell
Back up to previous message
Type message with ignored fields
Reply to author of message only
Type message with ignored fields
Define an alias as a set of user names
List other names you are known by
Change working directory, home by default
Copy a message to a file or folder
Delete a list of messages
Delete current message, type next message
End of conditional statement; see if
Edit a list of messages
Start of else part of conditional; see if
Leave mail without changing anything
Interrogate/change current mail file
Same as file
List the folders in your folder directory
List headers of a list of messages
List current window of messages
Print brief summary of Mail commands
Same as preserve
Conditional execution of Mail commands
Set/examine list of ignored header fields
List valid Mail commands
List other names for the local host
Send mail to specified names
Arrange to save a list of messages in mbox
Go to next message and type it
Arrange to leave list of messages in system mailbox
Leave Mail; update system mailbox, mbox as appropriate
Compose a reply to a message
Append messages, headers included, on a file
Set binary or valued options
Invoke an interactive shell
Print first so many (5 by default) lines of list of messages
Print messages
Undelete list of messages
Undo the operation of a set
Invoke visual editor on a list of messages
Append messages to a file, don't include headers
Scroll to next/previous screenful of headers

USD:7-22 Mail Reference Manual

The following table describes the options.
valued option.

Each option is shown as being either a binary or

Option
EDITOR
SHEIL
VISUAL
append
ask
askcc
autoprint
en
debug
dot
escape
folder
hold
ignore
ignoreeof
keep
keeps ave
me too
noheader
nosave
quiet
record
screen
sendmail
top lines
verbose

T~
valued
valued
valued
binary
binary
binary
binary
valued
binary
binary
valued
valued
binary
binary
binary
binary
binary
binary
binary
binary
binary
valued
valued
valued
valued
binary

Description
Pathname of editor for -e and edit
Pathname of shell for shell, -! and !
Pathname of screen editor for -v, visual
Always append messages to end of mbox
Prompt user for Subject field when sending
Prompt user for additional Cc's at end of message
Print next message after delete
Minimum number of lines before using more
Print out debugging information
Accept . alone on line to tenninate message input
Escape character to be used instead of -
Directory to store folders in
Hold messages in system mailbox by default
Ignore RUBOUT while sending mail
Don't terminate letters/command input with iD
Don't unlink system mailbox when empty
Don't delete saved messages by default
Include sending user in aliases
Suppress initial printing of version and headers
Don't save partial letter in dead.letter
Suppress printing of Mail version and message numbers
File to save all outgoing mail in
Size of window of message headers for z, etc.
Choose alternate mail delivery system
Number of lines to print in top
Invoke sendmail with the -v flag

The following table summarizes the tilde escapes available while sending mail.

Escape Arguments Description
-! command Execute shell command
-c nanie ... Add names to Cc: field
-d Read dead.letter into message
-e Invoke text editor on partial message
-r messages Read named messages
n Edit the header fields
-m messages Read named messages, right shift by tab
-p Print message entered so far
-q Abort entry of letter; like RUBOUT
-r filenanie Read file into message
-s string Set Subject: field to string
-t nal71e ••• Add names to To: field
-v Invoke screen editor on message
-w filenanie Write message on file -, command Pipe message through command

string Quote a - in front of string

Mail Reference Manual USD:7-23

The following table shows the command line flags that Mai.I accepts:

Flag Description
-N Suppress the initial printing of headers
-T file Article-id's of read/deleted messages to file
-d Turn on debugging
-f file Show messages in file or 7mbox
-h number Pass on hop count for mail forwarding
-i Ignore tty interrupt signals
-n Inhibit reading of /usr/lib/Mail.rc
-r name Pass on name for mail forwarding
-s string Use string as subject in outgoing mail
-u name Read llll11U' s mail instead of your own
-v Invoke send.mail with the -v flag

Notes: -T, -d, 7h, and-rare not for human use.

THERANDMH
MESSAGE HANDLING

SYSTEM:
USER'S MANUAL

UCI/UCB Version

Marshall T. Rose
John L. Romine

Based on the original manual by
Borden, Gaines, and Shapiro

July 2, 1987
6.4 #2[UCI]

CONTENTS

READ IBIS•........•.................•.......•..

FOREWORD•.........•.........................•......................................•............ ii

ACKNOWI..EDGMENTS ...•..•.............. iii

PREFACE .. iv

SUMMARY•....•..•......•...•..••...•.•••.........•.••.••••.•..•.•..............••.••..•....•......•.•.........•...•............•...................... v

Section

1. IN'1'RODUCTION ... 1

2. OVER.VIEW .. 3

3. TUTORIAL ... 5

4. DET~ DESCRIPilON .. 7

1lIB USER PROFU ... 7

MESSAGE NAMING ... ~... 9

OTIIER MlI CONVENTIONS ... 10

MlICO~S .. 11
ALI.. 12
ANNO... 13
BURST ... 14
COMP... 16
DIST ... 18
FOWER... 20
FORW ... ~... 22
IN'C ... 25
MARK .. 27
~•................•...•...........•......•..•.•.....•....................................... 29
M1IMAIL•..•......................................•........•......•..•...........................•..••................. 33
MIIOOK :.. 34
MlIP A Tii 38
MSGCHK ... 40
MSH .. 41
NEXT.. 44
PACKF ... 45
PICK ... 46
PREY .. 49
PROt.1PTER 50

RCVSTORE •..•.••..••••.•.•..... ..•••.......•••....... ..•.••......•. .•. 52
REFII..E ••.••..•..•••..••••.•••••..•.••...••••••.•••.•.•••••••..•.••••••••••.••.•..•..••..•.••.•.•••.•..•••.......•.............•....•......... 53

REP!.. .•...••••.....•.••.•..•••••••...•••.•..•••••.••••••••.•.••..•.•••••••.•••••.•••...••....•.••.......••.•..•....•.•..•••...........•.......•. SS
RMF •..•••••......••....•...•.•......•.•.......•••......•..•.....•.......•..........................•.•....•..••......•..•..•......•............ 58
RMM .•.•.•................•....••.......•...•••.....••.....••.....•.........••.............................•................................... 59
SCAN' •••.•. 6()

SEND .. 62

SHOW ··••·······•·····•··•·•····•············••·•·•·········•····•••·····•·················•··••····•··· 64
SOR1'M ... 66
VMII ... :... 67
WHA1NOW .••••••••••••••••.••••••••..•••.••••••...•••••..•••••••••••••••••.•.••••.••.•.••••.•••.•••••....•...•....•...•....••........... 69
WHOM ... 71

MORE DET Ail.S•••.•••••••.••••••..•••.••••••••••..•..•....•. 72
:Mil-ALIAS•......................................•..•... 73

:Mil-FORMAT... 76

:MII-MAil.. ••·•·•••••••·•••••••·•·••••·••••••·•·••·•·····•·••·••·•· 79
:MII-PROFII..E •.••.•..••..•••••••.••....••..••.•..••.•••...••••.•.••.••••••.•...•••...•••....•......•......••........•................... 82
AP ... 87
CONFLICT 88
DP... 89
IN"ST ALL-:MII 90
rosT ... 91

5. REroRTIN"G PROBLEMS ... 93

6. ADVANCED FEATlJRES .. 94

USER-DEFINED SEQUENCES ... 94
Pick 8lld User-I>efined Sequences ... 94
Mark and User-I>efined Sequences ... 95
Public and Private User-I>efined Sequences .. 95
Sequence Negatioo ... 95
The Previous Seciuence 96

The Unseen Sequence 96

COMroSmON OF MAa .. 96

The Draft Folder ... 96

What Happens if the Draft Exists 98

The Push Option at What now? l.evel .. 98

Options at What now? l.evel .. 98

Digests .. 99

FOLDER HANDLIN'G ... 100
Relative Folder Addressing ...•.•..•...•................•.............................. 100
The Folder-Stack•.•...•...•..............•.......•.•.•...................... 100

Appendix

A. Command Summary ... 102
B. Message Name BNF ... 105

REFEREN'CES ••.••..•••.•..••••.•.•••••••••....••••••••.••....••.•..•.•.. 106

READTffiS

Although the MH system was originally developed by the Rand Corporation, and is now in the public domain,
the Rand Corporation assumes no responsibility for MH or this particular version of MH.

In addition, the Regents of the University of California issue the following disclaimer in regard to the
UCI/UCB version of MH:

''Although each program has been tested by its contributor, no warranty, express <r implied, is made by the
contribuur or the University of California, as to the accuracy and functioning of the program and related
program material, nor shall the fact of distribution constitute any such wananty, and no responsibility is
assumed by the contributor <X the University of California in connection herewith.''

This version of MH is in the public domain, and as such, there are no real rattictions on its use. The MH
source code and documentation have no licensing restrictions whatsoever. As a courtesy, the authors ask only that
you provide appropriate credit to the Rand Corporation and the University of California for having developed the
software.

MH is a software package that is supported neither by the Rand C<Xporation nor the University of California
However, since we do use the software ourselves and plan to continue using (and improving) MH, bug reports and
their associated fixes should be reported back to us so that we may include them in future releases. The current
computer mailbox for MH is Bug-MH@UCLEDU (in the ARPA Internet), and ·-!ucbvax!ucivax!bug-mh
(UUCP). Presently, there are two Internet discussion groups, MH-Users@UCI.EDU and
MH-Workers@UCI.EDU. H there is sufficient interest, corresponding Usenet news groups may be established
along with the appropriate gateways.

The Rand MH MeWlge Handling System USD:8-i

FOREWORD

This document describes the Rand MH Message Handling System. Its primary purpose is to serve as a user's
manual. It has been heavily bued on a previous version of the manual, prepared by Bruce Borden, Stockton
Gaines, and Norman Shapiro.

MH is a particularly novel system, and thus it is often more prone to change than other pieces of production
software. As such, some specific points in this manual may not be cmect in the future. In all cases, the on-line
sections of this manual, available through the UNIX1 man command, should present the most current information.

When reading this document as a user's manual, certain sections are more interesting than others. The Pre
face and Summary are not particularly interesting to those interested in learning MH. The Introduction is slightly
more interesting, as it touches upon the cqanization of the remainder of this document. The most useful sections
are the Overview, Tutcrial, and Detailed Description. The Overview should be read by all MH users, regardless of
their expertise (beginning, novice, advanced, or hacker). The Tutorial should be read by all beginning and novice
MH users, as it presents a nice description of the MH system. The Detailed Description should be read by the
day-to-day user of MH, as it spells out all of the realities of the MH system. The Advanced Features section
discusses some powerful MH capabilities for advanced users. Appendix A is particularly useful for novices, as it
summarizes the invocation syntax of all the MH commands.

There are also several other documents which may be useful to you: The Rand MH Message Handling Sys
tem: Tutorial, which is a tutorial for MH; The Rand MH Message Handling System: The UC/ BBoards Facility,
which describes the BBoards handling under MH; MH.5: How to process 200 ~ssages a day and still get soml! real
work doM, which was presented at the 1985 Summer Usenix Conference and Exhibition in P<Xtland, Oregon; MH:
A Multifarious User Agent, which has been accepted for publication by Computer Networks; MZnet: Mail Service
for Personal Micro-Computer Systems, which was presented at the First International Symposium on Computer
Message Systems in Nottingham, U .K.; and, Design of the IT/ Prototype Trusted Mail Agent, which describes a
proprietary ''trusted'' mail system built on MH. All of these documents exist in the mh.6 distribution sent to your
site. There's also a document, Changes to the Rand MH Message Handling System: MH.6, which describes
user-visible changes made to MH since the last major release.

This manual is very large, as it describes a large, powerful system in gruesome detail. The important thing to
remember is:

DON'T P ANIC2

As explained in the tutorial, you really need to know only S commands to handle most of your mail.

Very advanced users may wish to consult The Rand MH Message Handling System: Administrator's Guide,
which is also present in the mh.6 disttibution sent to your site.

1 UNIX is a trademark of AT&. T Bell Laboratories.
2 Note the large,friendly letters.

USD:8-ii The Rand MH Me~ge Handling System

ACKNOWLEDGMENTS

The MH system ~ribed herein is hued on the original Rand MH system. It has been extensively developed
(perhaps too much so) by Marshall T. Rose and John L. Romine at the University of California, Irvine. Einar A.
Stefferud, Jerry N. Sweet, and Terry P. Domae provided numerous suggestions to improve the UCI ve.rsion of MH.
Of course, a large number of people have helped MH/ along. The list of ''MH immortals'' is too long to list here.
However, Van Jacobson deserves a special acknowledgement for his tireless work in improving the performance of
MH. Some programs have been speeded-up by a factor of 10 or 20. All of users of MH, everywhere, owe a special
thanks to van.

This manual is hued on the original MH manual written at Rand by Bruce Borden, Stockton Gaines, and Nor
man Shapiro.

The Rand MH Me~ge Handling System USD:8-iii

PREFACE

This report desaibes a system for dealing with messages ttansmiaed oo a computer. Suda messages might
originate with other users of the same computer or might come from an outside source through a network to which
the user's computer is connected. Such computer-b.ecl message systems• becoming increasingly widely used,
both within and outside the Depstment of Defense.

The message handling system MH was developed for two reasons. One wa to investigate some research
ideas concerning how a message system might take advantage of the architecture of the UNIX time-sharing ope.rat
ing system for Digital Equipment Cmporatioo PDP-11 and VAX computers, and the special features of UNIX's
command-level interface with the usec (the ''shell''). 1be other reason was to provide a better and more adaptable
base than that of cooventional designs on which to build a command and control message system. 1be effort has
succeeded in both regards, although this report mainly desaibes the message system itself and how it fits in with
UNIX.

The present report should be of interest to three groups of readers. First, it is a complete reference manual for
the users of MH. Second, it should be of interest to those who have a general knowledge of computer-based mes
sage systems, both in civilian and military applications. Finally, it should be of interest to th~e who build large
subsystems that interface with users, since it illustrates a new approach to such interfaces.

The original MH system was developed by Bruce Borden, using an approach suggested by Stockton Gaines
and Norman Shapiro. Valuable assistance was provided by Phyllis Kantar in the later stages of the system's imple
mentation. Several colleagues conttibuted to the ideas included in this system, particularly Robert Anderson and
David Crocker. In addition, valuable experience in message systems, and a valuable sOUICe of -., was available
to us in the form of a previous message system fer UNIX called MS, designed at Rand by David Crocker.

This report was originally prepared as part of the Rand project entitled ''Data Automation Research'', spon
sored by Project AIR FORCE.

USD:8-iv The Rand MH Me~ge Handling System

SUMMARY

Electronic communication of text messages is becoming commonplace. Computer-based message
systems-software packages that provide tools for dealing with messages-are used in many contexts. In particular,
message systems are becoming increaingly important in command and control and intelligence applications.

This report desaibes a message handling system called MH. This system provides the user with tools to com
pose, send, receive, store, retrieve, fcrward, and reply to messages. MH has been built on the UNIX time-sharing
system, a Jq>ular operating system developed for the DEC PDP-11 and VAX classes of computers.

A complete description of MH is given for users of the system. For those who do not intend to use the sys
tem, this description gives a general idea of what a message system is like. The system involves some new ideas
about how large subsystea can be constructed.

The interesting and unusual features of MH include the following: The user command interface to MH is the
UNIX ''shell'' (the standard UNIX command interpreter). Each separable component of message handling, such as
message composition or message display, is a separate command. Each program is driven from and updates a
private user environment, which is stored as a file between program invocations. This private environment also con
tains information to "custom tailor" MH to the individual's i.tes. MH stcxes each message as a separate file under
UNIX, and it utilizes the tree-sttuctured UNIX file system to organize groups of files within separate directories or
''folders''. All of the UNIX facilities for dealing with files and directories, such as renaming, copying, deleting,
cataloging, off-line printing, etc., are applicable to messages and directories of messages (folders). Thus, important
capabilities needed in a message system are available in MH without the need (often seen in other message systems)
for code that duplicates the facilities of the supporting operating system. It also allows users familiar with the shell
to use MH with minimal effort.

The Rand MH Mes.uge Handling System USD:8-v

1. INTRODUCTION

Although people can travel cross-countiy in houn and can reach odlen by telephone in seconds, communica
tions still depend heavily upon paper, most of which is distributed lhrough the mails.

There are several majcr reasons fm- this cootinued dependence on written documents. First, a written docu
ment may be proofread and corrected prior to ill distribution, giving the author complete control over his w<rtis.
Thus, a wriuen document is better than a telephone conversation in this respect. Secmd, a caiefully written docu
ment is far less likely to be misinterpreted or pocxiy translated thin a phone conversation. Third, a signature offers
reasonable verification of authorship, which cannot be provided with media such as telegrams.

However, the need for fl& accurate, and ieproducible doc~ distribution is obvious. One solution in
widespread use is the telefax. Another that is rapidly gaining popularity is electrooic mail. Electtonic mail is simi
lar to telefax in that the data to be sent are digitized, transmitted via phone lines, and turned back into a document at
the receiver. The advantage of electtonic mail is in its compesSion fact«. Whereas a telefax must scan a page in
very fine lines and send all of the black and white information, electronic mail assigns characters fixed codes which
can be transmitted as a few bits of information. Telefax presendy has the advantage of being able to transmit an
arbitrary page, including pictures, but electronic mail is beginning to deal with this problem. Electronic mail also
integrates well with current directions in office automation, allowing documents prepared with sophisticated equip
ment at one site to be quickly transferred and pinted at another site.

Currently, most electronic mail is inttaorganizational, with mail ttansfer remaining within one computer. As
computer networking becomes more common, however, it is becoming more feasible to communicate with anyone
whose computer can be linked to your own via a network.

The pioneering efforts on general-purpose electronic mail were by organizations using the DoD ARPAnet[l].
The capability to send messages between computers existed before the ARP Anet was developed, but it was used
only in limited ways. With the advent of the ARP Anet, tools began to be developed which made it convenient for
individuals or organizations to distribute messages over broad geographic areas, using diverse computer facilities.
The interest and activity in message systems Im now reached such proportions that steps have been taken within the
DoD to coordinate and unify the development of military message systeim. The use of electronic mail is expected
to increase dramatically in the next few years. The utility of such systems in the command and control and intelli
gence environments is clear, and applications in these areas will probably lead the way. As the costs for sending
and handling electronic messages continue their rapid decrease, such uses can be expected to spread rapidly into
other areas and, of course, will not be limited to the DoD.

A message system provides tools that help users (individuals or organizations) deal with messages in various
ways. Messages must be composed, sent, received, stcnd, retrieved, forwarded, and replied to. Today's best
interactive computer systems provide a variety of word-processing and information handling capabilities. The mes
sage handling facilities should be well integrated with the rest of the system, so as to be a graceful extension of
overall system capability.

The message system described in this report, MH, provides most of the features that can be found in other
message systems and also incorporates some new ones. It has been built on the UNIX time-sharing system[2], a
popular operating system for the DEC PDP-111 and V AX-11 clases of computers. A "secure" operating system
similar to UNIX is currently being developed[3], and that system will also nm MH.

This report provides a complete description of MH and thus may serve • a user's manual, although parts of
the report will be of interest to non-users as well. Sections 2 and 3, the Overview and Tutorial, present the key ideas
of MH and will give those not familiar with message systems an idea of what such systeim are like.

MH consists of a set of commands which use some special files and conventions. The final section is divided
into three parts. The first part covers the information a user needs to know in addition to the commands. Then, each
of the MH commands is described in detail. Finally, other obscure details are revealed. A summary of the com
mands is given in Appendix A, and the syntax of message sequences is given in Appendix B.

1 PDP and VAX are trademarks <X Digital Equipment Corporation.

The Rand MH Messaae Haadl1q system· USD:l-2

A novel approach has been taken in the design of MH. Imtead of creating a large subsystem that appears as a
single command to the user (such as MS[4]), MH is a collection of separate commands which are run as separate
programs. The file -1 directory system of UNIX are used directly. Messages are stored • individual files
(cSat.ets), and collections of them are grouped into directories. In contrast, most other message systems store mes
sages in a complicated data structure within i monolithic file. With the MH approach, UNIX conunands can be
interleaved with comiDands invoking the functions of the message handlu. Convenely, existin& UNIX commands
can be used in connection with messages. For example, all the usual UNIX editing. text-fmnatting, and printing
facilities can be applied directly to individual messages. MH, therefore, consists of a relatiwly small amount of
new code; it makes extensive use of other UNIX software to provide the capabilities found in other message sys
tems.

2.0VERVIEW

There are three main aspects of MH : the way messages are sued (the message database), the user's
profile (which dllects how certain actions of the message handler take place), and the commands for dealing with
messages.

Under MH, each message is stored as a separate file. A user can take mty action widl a message that he could
with an m1inary file in UNIX. A UNIX dinctm"y in which messages n SUftd is called a folder. Each folder con
tains some standard entries to support the message-handling functions. The messages in a folder have numerical
names. These folden (directories) are entries in a particul• directory path, described in the user profile, through
which MH can find message folders. Using the UNIX "lint'' facility, it is possible f<X" one copy of a message to be
"filed" in more than one folder, providing a message index facility. Also, using the UNIX tree-structured file sys
tem, it is possible to have a folder within a folder, nested arbitrarily deep, and have the full power of the MH com
mands available.

Each user of MH has a user profile, a file in his $HOME (initial login) directmy called .mh_profile. This
profile contains several pieces of information used by the MH commands: a path name to the directory that contains
the message folders and parameten that tailor MH commands to the individual user's requirements. There is also
another file, called the user context, which contains infmmation concerning which folder the user lut referenced
(the ''current'' folder). It also contains most of the necessary state information concerning how the user is dealing
with his messages, enabling MH to be implemented • a set of individual UNIX commands, in contrut to the usual
approach of a monolithic subsystem.

In MH, incoming mail is appended to the end of a file in a system spooling area f<X" the user. This area is
called the mail drop directory, and the file is called the user's mail drop. Normally when the user logins in, s/he is
informed of new mail (<X' the MH program msgchk may be run). 'The user ad& the new messages to his/her collec
tion of MH messages by invoking the command inc. The inc (incorporate) command adds the new messages to a
folder called "inbox", assigning them names which are consecutive integers starting with the next highest integer
available in inbox. inc also produces a scan summary of the messages thus incorpcnted. A folder can be com
pacted into a single file, for easy storage, by using the pack/ command. Also, messages within a folder can be sorted
by date and time with the sortm command

There are four commands for examining the messages in a folder: show, prev, next, and scan. The show
command displays a message in a folder, prev displays the message preceding the current message, and next
displays the message following the current message. MH lets the user choose the program that displays individual
messages. A special program, mhl, can be used to display messages according to the user's preferences. The scan
command summarizes the messages in a folder, nonnally producing one line per message, showing who the mes
sage is from, the date, the subject, etc.

The user may move a message from one folder to another with the ·command refile. Messages may be
removed from a folder by means of the command mun. In addition, a user may query what the current folder is and
may specify that a new folder become the current folder, through the conunandfolder. All folders may be summar
ized with the folders command A message folder (or subfolder) may be removed by means of the command rmf.

A set of messages based on content may be selected by use of the command piclc. This command searches
through messages in a folder and selects those that match a given set of criteria. These messages are then bound to
a "sequence" name for use with other MH commands. 1be mar/c command manipulates these sequences.

There are five comman& enabling the user to create new messages and send them: comp, dist,forw, repl, and
send. The comp command provides the facility fer the user to compose a new message; dist redistributes mail to
additional addressees; forw enables the user to forward messages; and repl facilitates the generation of a reply to an
incoming message. The last three commands may optionally annotate the original message. Messages may be arbi
trarily annotated with the anno command. Once a draft has been constructed by one of the four above composition
programs, a user-specifiable program is run to query the user u to the disposition of the draft prior to sending. MH
provides the simple whatnow program to st.art users off. H a message is not sent directly by one of these commands,
it may be sent at a later time using the command send. MH allows the use of any UNIX editor when composing a
message. For rapid entry, a special editor, prompter, is provided. For programs, a special mail-sending program,

USD:8·3 The Rand MH Mesuge Handling System

The Rand Mii Message Hancllin1 System USD:8-4

mhmail, is provided.

MH supports a personal aliasing facility which gives users the capability to considerably shorten address
typein and use meaningful names for addresses. The ali program can be used to query MH a to the expansioo of a
list of aliases. After composing a message, but prior to sending, the whom command can be used to determine
exactly who a message woukl go to.

MH povides a natural interface fcr telling the user's shell the names of MH messages and folders. The
mhpath program achieves this capability.

The burst command can be used to ''shred'• digests of messages into individual messages.
All of the elements summarized above are described in more detail in the following sectiool. Many of the

normal facilities of UNIX povide additional capabilities for dealing with messages in various ways. For example,
it is possible to pint messages on the line-printer without requiring 111y additional code within MH • Using stan
dard UNIX facilities, any terminal output can be redirected to a file for repeated cr future viewina. In general, the
flexibility and capabilities of the UNIX interface with the user are preserved as a iesult of the integration of MH into
the UNIX structure.

3. TUTORIAL

This tutorial provides a brief introductioo to the MH commands. It should be sufficient to allow the user to
read his mail, do some simple manipulations of it, and create and send messages.

A message has two major pieces: the header and the body. The body consists of the text of the message
(whatever you care to type in). It follows the header and is separated from it by an empty line. (When you compose
a message, the form that appears on your terminal shows a line of &.bes after the header. This is f<X" convenience
and is replaced by an empty line when the message is sent.) The header is composed of several components, includ
ing the subject of the message and the person ., whom it is addressed. Each component starts with a name and a
colon; components must not stmt with a blank. The text of the component may take more than one line, but each
continuation line must stan with a blank. Messages typically have "To:", "cc:", and "Subject:" components.
When composing a message, you should include the "To:" and "Subject" components; the "cc:,, (for people you
want to send copies to) is not necessary.

The basic MH commands are inc, scan, show, next, prev, rmm, comp, and repl. These are described below.

inc

When you get the message "You have mail", type the command inc. You will get a "scan listing" such as:

7+ 7/13 Cas revival of measurement work
8 1 OI 9 Norm NBS people and publications
9 11/26 To:nonn question <Are there any functions

This shows the messages you received since the last time you executed this command (inc adds these new
messages to your inbox folder). You can see this list again, plus a list of any other messages you have, by using the
scan command.

scan

The scan listing shows the message number, followed by the date and the sender. (If you are the sender, the
addressee in the "To:" component is displayed. You may send yourself a message by including your name among
the "To:" or "cc:" addressees.) It also shows the message's subject; if the subject is short, the first part of the
body of the message is included after the characters c:.

show

This command shows the current message, that is, the first one of the new messages after an inc. H the mes
sage is not specified by name (number), it is generally the last message referred to by an MH command. For exam
ple,

show S will show message S.

You can use the show command to copy a message or print a message.

show > .x will copy the message to file x.
show I lpr will print the message, using the lpr command.
next will show the message that follows the current message.
prev will show the message previous to the current message.
rmm will remove the current message.
rmm 3 will remove message 3.

USD:8-5 The Rand MH Mesgge Handling System

The Rand MH Meaage Handling System USD:8-6

comp

The comp command puts you in the editor to write or edit a message. Fill in or delete the "To:", "cc:", and
''Subject:'' fields, as appropriate, and type the body of the message. Then exit normally from the editor. You will
be asked ''What now?''. Type a carriage return to see the options. Typing send will cause the message to be sent;
typing quit will cause an exit from comp, with the message draft saved.

If you quit without sending the message, it will be saved in a file called <name>IMail/draft (where <name> is
your $HOME directory). You can resume editing the message later with."comp -use"; <r you can send the mes
sage later, using the and command.

comp -editor prompter

This command uses a different editor and is useful for preparing "quick and dhty" messages. It prompts you
for each component of the heada'. Type the information for that component, or type a cmiage return to omit the
compooent. After that, type the body of the message. Backspacing is the only form of editing allowed with this edi
tm'. When the body is complete, type a caniage return followed by <BOT> (usually <CTRL-D>). This completes
the initial preparation of the message; from then on, use the same procedures a with comp (above).

re pl
repl n

This command makes up an initial message form with a header that is appropriate for replying to an existing
message. The message being answered is the current message if no message number is mentioned, or n if a number
is specified. After the header is completed, you can finish the message as in comp (above).

This is enough information to get you going using MH. There are more commands, and the commands
described here have more features. Subsequent sections explain MH in complete detail. The system is quite power
ful if you want to use its sophisticated features, but the foregoing commands suffice for sending and receiving mes
sages.

There are numerous additional capabilities you may wish to explore. For example, the pick command will
select a subset of messages based on specified criteria such as sender and/or subject. Groups of messages may be
designated, as described in Sec. IV, under Message Naming. The file .mh_profile can be used to tailor your use of
the message system to your needs and preferences, as described in Sec. IV, under The User Profile. In general, you
may learn additional features of the system selectively, according to your requirements, by studying the relevant
sections of this manual. There is no need to learn all the details of the system at once.

4. DETAILED DESCRIPTION

This section desaibes the MH system in detail, including the compooents of the user profile, the conventions
for message naming, and some of the other MH conventions. Readers who are generally familiar with computer
systems will be able to follow the principal ideas, although some details may be meaningful only to those familiar
with UNIX.

THE USER PROFILE

The first time an MH command is issued by a new usei-, the system prompts for a "Pach" and creates an MH
''profile''.

Each MH user has a profile which contains tailoring infonnation for each individual program. Other profile
entries control the MH path (where folders and special files are kept), folder and message protections, editor selec
tion, and default arguments for each MH program. Each user of MH also has a cootext file which contains current
state information for the MH package (the location of the context file is kept in the user's MH directory, or may be
named in the user profile). When a folder becomes the current folder, it is recorded in the usei-'s context. (Other
state information is kept in the context file, see the manual entry for mlt-profile (S) for more details.) In general,
the term "profile entry" refer to entries in either the p-ofile m context file. Users of MH needn't worry about the
distinction, MH handles these things automatically.

The MH profile is stored in the file .mh..profile in the user's $HOME directory1• It has the fmnat of a mes
sage without any body. That is, each profile entry is on one line, with a keyword followed by a colon(:) followed
by text particular to the keyword.
~ This file must not have blank liMs.
The keywor~ may have any combination of upper and lower case. (See the information of mh-mail later on in this
manual for a description of message formats.)

For the average MH user, the only profile entry of impmtance is "Path". Path specifies a directcxy in which
MH folders and certain files such as ''draft'' are found. The argument to this keyword must be a legal UNIX path
that names an existing directory. If this path is not absolute (i.e., does not begin with a I), it will be presumed to
start from the user's $HOME directory. All folder and message references within MH will relate to this path unless
full path names are used.

Message protection defaults to 644, and folder protection to 711. These may be changed by profile entries
"Msg-Protect" and "Folder-Protect", respectively. The argument to these keywords is an octal number which is
used as the UNIX file mode2.

When an MH program starts running, it looks through the user's profile for an entry wich a keyword matching
the program's name. Fm example, when comp is run, it looks for a "comp" profile entry. If one is found, the text
of the profile entry is used as the default switch setting until all defaults are overridden by explicit switches passed
to the program as arguments. Thus the profile entry ''comp: -form standard.list'' would direct comp to use the file
''standard.list'' as the message skeleton. If an explicit form switch is given to the comp command, it will override
the switch obtained from the profile.

In UNIX, a program may exist under several names, either by linking or aliasing. The actual invocation name
is used by an MH program when scanning for its profile defaults3• Thus, each MH program may have several names
by which it can be invoked, and each name may have a different set of default switches. For example, if comp is
invoked by the name icomp, the profile entry "icomp" will control the default switches for chis invocation of the

1 By defining the environment variable SMll, you can specify an alternate profile to be med by MH commands.
2 See clurtod (1) in the UNIX Programm1r' s Mal&U4l [S].

' Unfortunately, the shell does not preserve aliasing information when calling a program. hence if a program is invoked by an aliu different
than its name, the program will examine the profile entry for its name, not the alias that the mer invoked it aa. The correct solution is to cieate a
(soft) link in your SHOMElbUa directory to the MH program IX your choice. By giving this lint a different name, you can me an alternate set of
defaults for the command.

USD:S-7 The Rand MH Meaage Handling System

The Rand MH Meaage Handling System USD:8-8

comp program. This provides a powerful definitional facility for commonly used switch settings.

The default editor for editing within comp, repl,forw, and dist, is usually prompter, but might be something
else at your site, such as lusr/11eblex or lbin!e. A different editor may be used by specifying the profile entry "Edi
tor: ''. The argument to ''Editor'' is the name of an executable program or shell command file which can be found
via the user's $PATii defined search path, excluding the current directory. The ''Editor:'' profile specification may
in turn be overridden by a '-editor <editor>' profile switch associated with comp, repl,forw, <X' dist. Finally, an
explicit editor switch specified with any of these four commands will have ultimate precedence.

During message composition, mae than one editor may be used. For example, one editor (such as
prompter) may be used initially, and a second editor may be invoked later to revise the message being composed
(see the discussion of comp in Section S for details). A pofile entry u<luteditor>-;next <editor>" specifies the
name of the editor to be used after a particular editor. Thus ''comp: -e prompter'' causes the initial text to be col
lected by prompter, and the profile entry ''prompter-next: ed'' names ed as the editor to be invoked for the next
round of editing.

Some of the MH commands, such as show, can be used on message folders owned by others, if those folders
are readable. However, you cannot write in someone else's folder. All the MH command actions not requiring
write permission may be used with a "read-only" folder.

Table 1 lists examples of some of the currently defined profile entries, typical arguments, and the programs
that reference the entries.

USD:8-9

Keyword and Argument

Table 1

PROFILE COMPONENTS

MH Programs that
use Component

PatJi: Mail All
Current-Folder: inbox Most
Editor. /usr/ucblex comp, dist,forw, repl
Msg-Protect: 644 inc
Folder-Protect: 711 inc, piclc, refik
<J)l'Ogl'llD>: default switches All
prompter-next: eel comp, dist,forw, repl

The Rand MH Meaage Handling System

Path should be present. Current-Folder is maintained automatically by many MH commands (see the Con
text sections of the individual commands in Sec. IV). All other entties are optional, defaulting to the values
described above.

MESSAGE NAMING
Messages may be referred to explicitly or implicitly when using MH commands. A formal syntax of message

names is given in Appendix B, but the following description should be sufficient for most MH users. Some details
of message naming that apply only to certain commands are included in the description of those commands.

Most of the MH commands accept arguments specifying one or more folders, and one or more messages to
operate on. The use of the word ''img'' • an argument to a command means that exactly one message name may
be specified. A message name may be a number, such • 1, 33, or 234, or it may be one of the "reserved" message
names: first, last, prev, next, and cur. (As a shorthand, a period (.) is equivalent to cur.) The meanings of these
names are straightforward: "first" is the first message in the folder; "last" is the l•t message in the folder;
''prev'' is the message numerically previous to the current message; ''next'' is the message numerically following
the current message; "cur" (or ".") is the current message in the folder. In addition, MH supports
user-defined-sequences; see the description of the mar le command for more infonnation.

The default in commands that take a "msg" argument is always "cur".

The word ''msgs'' indicates that several messages may be specified. Such a specification consists of several
message designations separated by spaces. A message designation is either a message name or a message range. A
message range is a specification of the form namel-name2 or namel:n, where namel and name2 are message
names and n is an integer. The first fonn designates all the messages from namel to name2 inclusive; this must be a
non-empty range. The second form specifies up ton messages, starting with namel if namel is a number, or first,
cur, or next, and ending with namel if namel is l•t or prev. This interpretation of n is overridden if n is preceded
by a plus sign or a minus sign; +n always means up ton messages starting with namel, and -n always means up ton
messages ending with name 1. Repeated specifications of the same message have the same effect as a single
specification of the message. Examples of specifications are:

157-1122
first 6 8 next
first-10
l•t5

The message name "all" is a shorthand for "first-l•t", indicating all of the messages in the folder.

In commands that accept ''msgs'' arguments, the default is either cur or all, depending on which makes more
sense.

The Rand MH Message Handling System USD:S-10

In all of the MH commands, a plus sign preceding an argument indicates a folder name. Thus, ''+inbox'' is
the name of the user's standard inbox. If an explicit folder argument is given to an MH command, it will become
the current folder (that is, the "Current-Folder:" entry in the user's profile will be changed to this folder). In the
case of the refile command, which can have multiple output folders, a new source folder (other than the default
current folder) is specified by '-src +folder'.

OTHER MH CONVENTIONS
One very powerful feature of MH is that the MH commands may be issued from any current directory, and the

proper path to the appropriate folder(s) will be taken from the user's profile. If the MH path is not appropriate for a
specific folder or file, the automatic prepeoding of the MH path can be avoided by beginning a folder or file name
with /, or with J <X" .J component Thus any specific absolute path may be specified along with any path relative to
the current worldng directory.

Arguments to the various programs may be given in any order, with the exception of a few switches whose
arguments must follow immediately, such as '-src +folder' for refile.

Whenever an MH command prompts the user, the valid options will be listed in response to a <RETURN>.
(The first of the listed options is the default if end-of-file is encountered, such as from a command file.) A valid
response is any W'liq~ abbreviation of one of the listed options.

Standard UNIX documentation conventions are used in this report to describe MH command syntax. Argu
ments enclosed in brackets ([]) are optional; exactly one of the arguments enclosed within braces ({ }) must be
specified, and all other arguments are required. The use of ellipsis dots (...) indicates zero or more repetitions of the
previous item. For example, "+folder ..• " would indicate that one <X" more "+folder" arguments is required and
'' [+folder ...]'' indicates that 0 or more ''+folder'' arguments may be given.

MH departs from UNIX standards by using switches that consist of more than one character, e.g. '-header'.
To minimize typing, only a unique abbreviation of a switch need be typed; thus, for '-heade.r', '-hea' is probably
sufficient, depending on the other switches the command accepts. Each MH program accepts the switch '-help'
(which must be spelled out fully) and produces a syntax description and a list of switches. In the list of switches,
parentheses indicate required characters. For example, all '-help' switches will appear as ''-(help)'', indicating
that no abbreviation is accepted. Furthermore, the '-help' switch tells the version of the MH program you invoked.

Many MH switches have both on and off forms, such as '-format' and '-noformat'. In many of the descrip
tions which follow, only one form is defined; the other form, often used to nullify profile switch settings, is assumed
to be the opposite.

USD:S-11 The Rand MH Message Handling System

MHCOMMANDS

The MH package comprises several progrmm:

all (1)
anno (1)
burst (1)
comp(l)
dist (1)
folder (1)
folders (1)
forw (1)
inc (1)
mark (1)
mhl (1)
mhrnail (1)
mhook(l)
mhpath (1)
msgchk (1)
msh (1)
next(l)
packf (1)
pick (1)
prev (1)
prompter (1)
rcvstore (1)
refile (1)
repl (1)
rmf (1)
nnm(l)
scan (1)
send (1)
show (1)
sortm (1)
vmh (1)
whatnow (1)
whom (1)

- list mail aliases
- annotate messages
- explode digests into messages
- compose a message
- redistribute a message to additional addresses
- set/list current folder/message
- list all folders
- fOIWard messages
- incorporale new mail
- mark messages
- produce fmnatted listings of MH messages
- send or read mail
- MH receive-mail hooks
- print full patlmarnes of MH messages and folders
- check fa:- messages
- MH shell (and BBoard reader)
- show the next message
- compress a folder into a single file
- select messages by content
- show the previous message
- prompting editor front end
- incorporate new mail asynchronously
- file messages in other folders
- reply to a message
- remove folder
- remove messages
- produce a one line per message scan listing
- send a message
- show (list) messages
- s<rt messages
- visual front-end to MH
- prompting front-end for send
- report to whom a message would go

These programs are described below. The form of the descriptions conforms to the standard form for the
description of UNIX commands.

ALl(l) The Rabd MH Message Handlin& System USD:8-12

NAME
all - list mail aliases

SYNOPSIS
all [-alias aliasfile] [-list] [-nolist] [-nonnalize] [-nonormaliz.e] [-user] [-nouser] aliases ... [-help]

DF.SC.RIPrION

Flies

Ali searches the named mail alias files for each of the given aliases. It ~ a list of addresses for those
aliases, and writes that list on standard output. If the '-list' option is specified, each address appears on a
separate line; otherwise, the addresses are separated by comnm and printed on as few lines as possible.

The '-user' option directs ali to perform its processing in an inverted fashion: instead of listing the
addresses that each given alias ·expands to, ali will list the aliases that expand to each given address. If the
'-normalize' switch is given, ali will try to track down the official hostname of the address.

Each alias is processed as described in mh-alias (5).

$HOMFJ.mh_profile
/etc/passwd
/etc/group

The user profile
List of users
List of groups

Profile Components

None

See Also

Defaults

Context

Bugs

[mh.6]

mh-alias(S)

'-alias /usr/new/lib/mh/MailAliases'
'-nolist'
'-nonormalize'
'-nouser'

None

The '-user' option with '-nonormalize' is not entirely accurate, as it does not replace local nicknames for
hosts with their official site names.

MH UCl/UCB version

USD:S-13 The Rand MH Mesage Handling System ANNO(l)

NAME
anno - annotate messages

SYNOPSIS
anno [+folder] [imgs] [-component field] [-inplace] [-noinplace] [-text body] [-help]

DESCRWfION

Files

AMO amotates the specified messages in the named folder using the field and body. Annotation is option
ally perfoi'med by dist,forw, and repl, to keep track of your distribution of, forwarding of, and replies to a
message. By using anno, you can perform arbitrary annotations of your own. ~h message selected will
be annotated with the lines

field: date
field: body

The '-inplace' switch causes annotation to be done in place in order to preserve links to the annotated mes
sage.

The field specified should be a valid 822-style message field name, which means that it should consist of
alphanumerics (or dashes) only. The body specified is arbitrary texL

If a '-component field' is oot specified when anno is invoked, anno will prompt the user for the name of
field for the annotation.

$HOMFJ .mh_profile The user profile

Profile Components

See Also

Defaults

Context

[mh.6]

Path: To determine the user's MH directory
Current-Folder: To find the default current folder

dist (1), forw (1), repl (1)

'+folder' defaults to the current folder
'msgs' defaults to cur
'-noinplace'

If a folder is given, it will become the current folder. The first message annotated will become the current
message. ·

MH UCI/UCB version

BURST(l) The Rand MH MeBtge Handling System USD:8-14

NAME
burst - explode digests into messages

SYNOPSIS
burst [+folder] [msgs] [-inplace] [-noinplace] [-quiet] [-noquiet] [-verbose] [-noverbose] [-help]

DF.SCRIPfION

Flies

Burst considers the specified messages in the named folder to be Internet digests, and explodes them in that
folder.

ff '-inplace' is given, each digest is replaced by the "table of contents" for the digest (the original digest
is removed). Burst then renumbers all of the messages following the digest in the folder to make room for
each of the messages contained within the digest. These messages are placed immediately after the digest

ff '-noinplace' is given, each digest is preserved, no taMe of contents is produced, and the messages con
tained within the digest are placed at the end of the folder. Other messages are not tampered with in any
way.

The '-quiet' switch directs bwst to be silent about reporting messages that are not in digest format

The '-verbose' switch directs bwst to tell the user the general actions that it is taking to explode the digest

It turns out that burst works equally well on forwarded messages and blind-carbon-copies as on Internet
digests, provided that the former two were generated by forw or send.

$HOME/.mh_profile The user profile

Profile Components

Path: To determine the user's MH diiectory
To find the default current folder

See Also

Defaults

Context

[mh.6]

Current-Folder:
Msg-Protect: To set mode when creating a new message

Proposed Standard/or Message Encapsulation (aka RFC-934),
inc(l), msh(l), pack(l)

'+folder' defaults to the current folder
'msgs' defaults to cur
'-noinplace'
'-noquiet'
'-noverbose'

ff a folder is given, it will become the current folder. ff '-inplace' is given, then the first message burst
becomes the current message. This leaves the context ready for a show of the table of contents of the
digest, and a next to see the first message of the digest ff '-noinplace' is given, then the first message
extracted from the first digest burst becomes the cwrent message. This leaves the context in a similar, but
not identical, state to the context achieved when using '-inplace'.

MH UCI/UCB version

USD:S-15 The Rand MH Meaage Handling System BURST(l)

Bugs

[mh.6]

The burst program enforces a limit on the number of messages which may be burst from a single message.
This number is on the order of 1000 messages. There is usually no limit on the number of messages which
may reside in the folder after the bursting.

Although burst uses a sophisticated algcxithm to determine where one encapsulated message ends and
another begim, not all digestifying programs use an encapsulation algorithm. In degenerate cases, this
usually results in burst finding an encapsulation boundary prematurely and·splitting a single encapsulated
message into two or more messages. These erroneous digestifying programs should be fixed.

Furthermore, any text which appears after the last encapsulated message is not placed in a seperate
message by b11rst. In the case of digestifiecl messages, this text is usally an ''End of digest'' string. As a
result of this possibly un-friendly behavior on the part of blll'st, note that when the '-inplace' option is
used, this ttailing inf<rmation is losL In practice, this is not a problem since cmespondents usually place
remarks in text prior to the first encapsulated message, and this information is not lost

MH UCI/UCB version

COMP(l) The Rand MH Meaage Handling System USD:S-16

NAME
comp - compose a message

SYNOPSIS
comp [+folder] [img] [-draftfolder +folder] [-draftmessage img] [-nodraftfolder] [-editor editor]

[-noedit] [-file file] [-fmn formfile] [-use] [-nouse] [-whatnowproc program]
[-nowhatnowproc] [-help]

DF.SCRIPl'ION

Flies

[mh.6]

Comp is used to create a new message to be mailed. It copies a message form to the draft being composed
and then invokes an ediur on the draft (unless '-noedit' is given, in which c.e the initial edit is
suppressed).

The default message form contains the following elements:

To:
cc:
Subject:

If the file named ''components'' exists in the user's MH directory, it will be used instead of this form. The
file specified by '-form fonnfile' will be used if given. You may also start comp using the contents of an
existing message as the form. If you supply either a '+folder' « 'msg' argument, that message will be
used as the form. You may not supply both a '-form formfile' and a '+folder' or 'msg' argument The line
of dashes or a blank line must be left between the header and the body of the message for the message to be
identified properly when it is sent (see send (1)). The switch '-use' directs comp to continue editing an
already started message. That is, if a comp (or dist, repl, or forw) is terminated without sending the draft,
the draft can be edited again via "comp-use".

If the draft akeady exists, comp will ask you as to the disposition of the draft A reply of quit will abort
comp, leaving the draft intact; replace will replace the existing draft with the appropriate form; list will
display the draft; use will use the draft for further composition; and refile +folder will file the draft in the
given folder, and give you a new draft with the appropriate form. (The '+folder' argument to refile is
required.)

The '-draftfolder +folder' and '-draftmessage msg' switches invoke the MH draft folder facility. This is
an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more information.

The '-file file' switch says to use the named file as the message draft

Upon exiting from the editor, comp will invoke the whatnow program. See whatnow (1) for a discussion
of available options. The invocation of this program can be inhibited by using the '-nowhatnowproc'
switch. (In truth of fact, it is the whatnow program which starts the initial edit Hence, '-nowhatnowproc'
will prevent any edit from occurring.)

/usr/new/lib/mh/components
or <mh-dir>/components
$HOME/ .mh_profile
<mh-dir>/draft

The message skeleton
Rather than the standard skeleton
The user profile
The draft file

MH UCI/UCB version

USD:S-17 The Rand MH Meaage Handling System COMP(l)

Proftle Com,...a.

See Also

Defaults

Context

Bup

[mh.6]

Path:
Draft-Folder.
Edittr.
Msg-Protect:
fileproc:
whatnowproc:

To detennine the user's MH directory
To find the default draft-folder
To override the default edit«
To set mode when creating a new message (draft)
Program to refile the message
Program to ask the ''What now?'' questions

dist(t), forw(t), repl(t), send(t), whatnow(t)

'+folder' defaults to the current folder
'msg' defaults to the current message
'-nodraftfolder'
'-nouse'

None

If whatnowproc is whatnow, then comp uses a built-in whatnow, it does not actually run the whatnow
program. Hence, if you define your own whatnowproc, don't call it whatnow since comp won't run it.

MH UCI/UCB version

DIST(l) The Rand Mii Meaage Hanclling System USD:S-18

NAME
dist - redistribute a message to additional addresses

SYNOPSIS
dist [+folder] [msg] [-annotate] [-noannotate] [-draftfolder +folder] [-draftmessage img] [-nodraftfolder]

[-edit<x' editor] [-noedit] [-form fonnfile] [-inplace] [-noinplace] [-whatnowproc program]
[-nowhatnowproc] [-help]

DF.SCRIPl'ION

[mh.6]

Dist is similar to forw. It prepares the specified message for redistribution to addresses that (presumably)
are not on the original address list

The default message form contains the following elements:

Distribution-to:
Disttibution-cc:

If the file named "distcomps" exists in the user's MH directory, it will be used instead of this form. In
either case, the file specified by '-form formfile' will be used if given. The form used will be prepended to
the message being resent.

If the draft already exists, dist will ask you as to the disposition of the draft. A reply of quit will abort dist,
leaving the draft intact; replace will replace the existing draft with a blank skeleton; and l~t will display
the draft.

Only those addresses in "Resent-To:", "Resent-cc:", and "Resent-Bee:" will be sent. Also, a
"Resent-Fee: folder" will be honored (see send (1)). Note that with dist, the draft should contain only
''Resent-xxx:'' fiel& and no body. The headers and the body of the original message are copied to the
draft when the message is sent. Use care in constructing the headers for the redistribution.

If the '-annotate' switch is given, the message being distributed will be annotated with the lines:

Resent: date
Resent: addrs

where each address list contains as many lines as required. This annotation will be done only if the mes
sage is sent directly from dist. If the message is not sent immediately from dist, "comp -use" may be
used to re-edit and send the constructed message, but the annotations won't take place. The '-inplace'
switch causes annotation to be done in place in order to preserve links to the annotated message.

See comp (1) for a description of the '-editor' and '-noedit' switches. Note that while in the editor, the
message being resent is available through a link named "@" (assuming the default whatnowproc). In
addition, the actual pathname of the message is stored in the environment variable $editalt, and the path
name of the folder containing the message is stored in the environment variable $mhfolder.

The '-draftfolder +folder' and '-drafunessage msg' switches invoke the MH draft folder facility. This is
an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more information.

Upon exiting from the editor, dist will invoke the whatnow program. See whatnow (1) for a discussion of,
available options. The invocation of this program can be inhibited by using the '-nowhatnowproc' switch.
(In truth of fact, it is the whatnow program which starts the initial edit. Hence, '-nowhatnowproc' will
prevent any edit from occurring.)

MH UCI/UCB version

USD:S-19 The Rand MH Message Handling System DIST(l)

Flies

/usr/new/liblmh/distcompa
or <mh-dir>/distcomps
$HOME' .mh..profile
<mh-dir>ldraft

The message skeleton
Rather than the standard skeleton
The user profile
The draft file

Pro&lec .. ,_....

SeeAllO

Defaults

Contest

History

Bugs

[mh.6]

Path:
Current-Folder:
Draft-Folder:
Ediur.
fileproc:
whatnowproc:

To detennine the user's MH directory
To find the default current folder
To find the default draft-folder
To override the default editcr
Program to refile the message
Program to ask the "What now?" questions

coJnp(l),forw(l),repl(l),send(l), whatnow(l)

'+folder' defaults to the current folder
'msg' defaults to cur
'-noannotate'
'-nodraftfolder'
'-noinplace'

If a folder is given, it will become the current folder. The message distributed will become the current
message.

Dist originally used headers of the forJn "Distribute-xxx:" instead of "Resent-xxx:". In order to
conforJn with the ARPA Internet standard, RFC-822, the "Resent-xxx:" foon is now used. Dist will
recognize "Distribute-xxx:" type headers and automatically convert thelll to "Resent-xxx:".

Dist does not rigorously check the message being distributed for adherence to the transport standard, but
post called by send does. The post prograJn will balk (and rightly so) at poorly formatted messages, and
dist won't correct things for you.

If whatnowproc is whatnow, then dist uses a built-in whatnow, it does not actually run the whatnow
prograJn. Hence, if you define your own whatnowproc, don't call it whatnow since dist won't run it.

If your current working directory is not writable, the link named ''@'' is not available.

MH UCI/UCB version

FOLDER(l) The Rand MH Mes.uge Handling System USD:S-20

NAME
folder, folders - set/list current folder/message

SYNOPSIS
folder [+folder] [msg] [-all] [-fast] [-nofast] [-header] [-noheader] [-pack] [-nopack] [-recurse]

[-norecurse] [-total] [-nototal] [-print] [-noprint] [-list] [-nolist] [-push] [-pop] [-help]

folders

DF3CR.IPTION

[mh.6]

Since the MH environment is the shell, it is easy to lose track of the current folder from day to day.

When/older is given the '-print' switch (the default), the cunent folder and/or message may be set, or all
folders may be listed. When a '+folder' argument is given, this corresponds to a "cd" operation in the
CShell; when no '+folder' argument is given, this cmesponds roughly to a "pwd'' operation in the CShell.

Folder will list the current folder, the number of messages in it, the range of the messages (low-high), and
the current message within the folder, and will flag extra files if they exist An example of the output is:

inbox+ has 16 messages (3- 22); cur= S.

If a '+folder' and/or 'msg' are specified, they will become the current folder and/or message. Specifying
'-all' will produce a line for each folder in the user's MH directory, sorted alphabetically. These folders
are preceded by the read-only folders, which occur as "atr-cur-" entries in the user's MH context. For
example,

Folder #of messages (range) cur msg (other files)
/fsd/rs/m/tacc has 3S messages (1- 3S); cur- 23.
/md/phyl/Mail/EP has 82 messages (1-108); cur- 82.
ff has no messages.
inbox+ has 16 messages (3- 22); cur- S.
mh has 76 messages (1- 76); cur= 70.
notes has 2 messages (1- 2); cur= 1.
ucom has 124 messages (1-124); cur- 6; (others).

TOTAL= 339 messages in 7 folders

The "+" after inbox indicates that it is the current folder. The "(others)" indicates that the folder 'ucom'
has files which aren't messages. These files may either be sub-:folders, or files -that don't belong under the
MH file naming scheme.

1be header is output if either an '-all' or a '-header' switch is specified; it is S8ppressed by '-noheader'.
Also, if folder is invoked by a name ending with "s" (e.g.,/oltUrs), '-all' is usumed. A '-total' switch
will produce only the summary line.

If a '+folder' and/or 'msg' is given along with the '-all' switch. foldl!r will, in addition to setting the
cunent folder and/m- message, list the top-level folden for the cunmt folder (with '-norecurse') or list all
folders under the current folder recursively (with '-recurse').

If '-fast' is given, only the folder name (or names in the case of '-all') will be listed (This is faster
because the folders need not be read.)

The '-pack' switch will compress the message names in a folder, removing holes in message numbering.

The '-recurse' switch will list each folder recursively. Use of this option effectively defeats the speed
enhancement of the '-fast' option, since each folder must be saacbed for subfolders. Nevertheless, the
combination of these options is useful.

MH UCVUCB version

USD:S-21 The Rand MH Message Handlin& System FOLDER(l)

Files

If the specified (or default) folder doesn't exist, the user will be queried if the folder should be created.
(This is the easy way to create an empty folder f<r use later.)

The '-push' switch directs/older to push the current folder ooto thefol~r-stack, and make the '+folder'
argument the cunent folder. If '+folder' is not given, the current folder and the top of the fol<Ur-staclc are
exchanged. This corresponds to the upusbd'' operation in the CSMll.

The '-pop' switch directs folder to discard the top m the folder-stack, after setting the current folder to
that value~ No '+folder' argument is allowed. This corresponds to the "popd" operation in the CSMll.
The '-push' switch and the '-pop' switch are mutually exclusi¥e: the last occurrence of either one over
rides any previous occurrence m the other.

The '-list' switch ctirects/oldu to list the contents of tbe/older-staclc. No '+folder' argument is allowed.
After a successful '-push' or '-pop', the '-list' action is taken. This cmresponds to the "dirs" operation
in the CSMll.

$HOME/ .mlLprofile The user profile

Profile Components

Path: To detennine the user's MH dllectory
To find the default current folder

See Also

Defaults

Context

History

[mh.6]

Current-Folder:
Folder-Protect:
Folder-Stack:
lsproc:

refile(1), mhpath(1)

To set mode when creating a new folder
To determine the folder stack
Program to list the contents of a folder

'+folder' defaults to the cunent folder
'msg' defaults to none
'-nofast'
'-noheader'
'-nototal'
'-nopack'
'-norecurse'
'-print' is the default if no '-list', '-push', or '-pop' is specified

If '+folder' and/or 'msg' are given, they will become the cunent folder and/or message.

In previous versions of MH, the '-fast' switch prevented context changes from occurring for the current
folder. This is no longer the case: if '+folder' is given, then/older will always change the current folder to
that.

MH UCI/UCB version

FORW(l) The Rand MH Mes.ge Handling System USD:8-22

NAME
forw - forward messages

SYNOPSIS
forw [+folder] [msgs] [-annotate] [-noannotate] [-draftfolder +folder] [-draftmessage msg]

[-nodraftfolder] [-editor editor] [-noedit] [-filtel' filterfiJe] [-fonn forrnfile] [-format]
[-nofoonat] [-inplace] [-noinplace] [-whatnowproc program] [-nowhatnowproc] [-help]

forw [+folder] [imgs] [-digest list] [-issue number] [-volume number] [other switches for forw] [-help]

DESCRIPfION

[mh.6]

F orw may be used to prepare a message containing other messages. It constructs the new message from
the components file CX' '-form formfile' (see comp), with a body composed of the message(s) to be for
warded. An editor is invoked as in comp, and after editing is complete, the user is prompted before the
message is senL

The default message form contains the following elements:

To:
cc:
Subject:

If the file named ''forwcomps'' exists in the user's MH directory, it will be used instead of this form. In
either case, the file specified by '-form formfile' will be used if given.

If the draft already exists, forw will ask you as to the disposition of the draft. A reply of quit will abort
f orw, leaving the draft intact; replace will replace the existing draft with a blank skeleton; and list will
display the draft.

If the '-annotate' switch is given, each message being forwarded will be annotated with the lines

Forwarded: date
Forwarded: addrs

where each address list contains as many lines as required. This annotation will be done only if the mes
sage is sent directly fromforw. If the message is not sent immediately fromforw, "comp-use" may be
used to re-edit and send the constructed message, but the annotations won't take place. The '-inplace'
switch causes annotation to be done in place in order to preserve links to the annotated.message.

See comp (1) fm a description of the '-editor' and '-noedit' switches.

Although forw uses the '-form fonnfile' switch to direct it how to construct the beginning of the draft, the
'-filter filterfile', '-format', and '-noformat' switches direct forw as to how each forwarded message
should be formatted in the body of the draft If '-noformat' is specified, then each forwarded message is
output exactly as it appears. If '-format' or '-filter filterfile' is specified, then each forwarded message is
filtered (re-formatted) prior to being output to the body of the draft The filter file for forw should be a
standard form file for mhl, as forw will invoke mhl to format the forwarded messages. 1be default message
filter (what you get with '-format') is:

MH UCI/UCB version

USD:8-23 The Rand Mii Mes.uge Handling System FORW(l)

F11es

width-80,overflowtext-,overflowoffset-10
leftadjust,compress,compwidth-9
From:
Date:fonnatfield=-" %<(nodate{ text})%{ text }%1%(putstr(tws {text}))%>"
To:
cc:
Subject:

body:nocomponent,overflowoffset-0,noleftadjust,nocompress

If the file named "mhl.forward'' exists in the user's MH directory, it will be used instead of this form. In
either case, the file specified by '-filter filterfile' will be used if given. To summarize: '-nofonnat' will
reproduce each forwarded message exactly, '-format' will use mJal and a default filterfile, ''mhl.forward'',
to format each fOIWarded message, and '-filter filterfile' will use the named filterfile to format each for.
wanted message with mhl.

Each forwarded message is separated with an encapsulation delimiter so that when received, the message is
suitable for bursting by burst (1).

For users of prompter (1), by specifying prompter's '-prepend' switch in the .mh_profile file, any com-
mentary text is entered before the forwarded messages. (A major win!) ·

The '-draftfolder +folder' and '-draftmessage msg' switches invoke the MH draft folder facility. This is
an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more information.

Upon exiting from the editor,/orw will invoke the whatnow program. See whatnow (1) for a discussion of
available options. The invocation of this program can be inhibited by using the '-nowhatnowproc' switch.
(In truth of fact, it is the whatnow program which starts the initial edit Hence, '-nowhatnowproc' will
prevent any edit from occurring.)

The '-digest list', '-issue number', and '-volume number' switches implement a digest facility for MH.
See the MH user's manual for more information.

/usr/new/lib/mh/forwcomps
or <mh-dir>/forwcomps
/usr/new/lib/mh/digestcomps
or <rnh-dir>/digestcomps
/usr/new/lib/mh/mhl.forward
or <mh-dir>/mhl.forward
$HOME/.mh_profile
<mh-dir>/draft

The message skeleton
Rather than the standard skeleton
The message skeleton if '-digest' is given
Rather than the standard skeleton
The message filter
Rather than the standard filter
The user profile
The draft file

Profile Components

Path: To determine the user's MH directory
To find the default current folder

See Also

[mh.6]

Current-Folder:
Draft-Folder:
Editcr:
Msg-Protect:
fileproc:
mhlproc:
whatnowproc:

To find the default draft-folder
To override the default editcr
To set mode when creating a new message (draft)
Program to refile the message
Program to filter messages being forwarded
Program to ask the ''What now?'' questions

Proposed Standard/or Message Encapsulation (aka RFC-934),
comp(l), dist(l), repl(l), send(l), whatnow(l)

MH UCI/UCB version

FORW(l) The Rand MH Meaage Handling System USD:S-24

Defaults

Contut

Bup

[mh.6]

'+folder' defaults to the current folder
'ms gs' defaults to cur
'-noannotate'
'-nodraftfolder'
'-nofmmat'
'-noinplace'

If a fold«. is given, it will become the current folder. 1be first message fmwarded will become the current
message.

If whatnowproc is whatnow, then forw uses a built-in whatnow, it does not actually run the whatnow
program. Hence, if you define your own whatnowproc, don't call it whatnow since forw won't run it.

When/orw is told to annotate the messages it forwards, it doesn't actually annotate them until the draft is
successfully sent. If from the whatnowproc, you push instead of send, it's possible to cqnfuse forw by
re-ordering the file (e.g., by using 'folder -pack') before the message is successfully sent Dist and rep/
don't have this problem.

MH UCI/UCB version

USD:S-25 The Rand MH Meaage Hancllin1 System INC(l)

NAME
inc - incorporate new mail

SYNOPSIS

inc [+folder] [-audit audit-file] [-noaudit] [-changecur] [-nochangecur] [-form formatfile]
[-format string] [-file name] [-silent] [-nosilent] [-truncate] [-nottuncate] [-width columns]
[-help]

DF.sCRIPI'ION

[mh.6]

Inc incorporates mail from the user's incoming mail drop into mi MH folder. If '+folder' isn't specified,
the folder named ''inbox'' in the user's MH directory will be used. The new messages being incmporated
are assigned numbers starting with the next highest number in the folder. If the specified (or default) folder
doesn't exist, the user will be queried prior to its creation. As the messages are processed, a scan listing of
the new mail is produced.

If the user's profile contains a ''Msg-Protect mm'' entry, it will be used• the protection on the newly
created messages, otherwise the MH default of 0644 will be used. During all operations on messages, this
initially msigned protection will be preserved for each message, so chmod(1) may be used to set a protec
tion on an individual message, and its protection will be preserved thereafter.

If the switch '-audit audit-file' is specified (usually• a default switch in the profile), then inc will append
a header line and a line per message to the end of the specified audit-file with the format:

cine» date
<scan line for first message>
<scan line for second message>

<etc.>

This is useful for keeping track of volume and source of incoming mail. Eventually, repl,forw, comp, and
dist may also produce audits to this (or another) file, perhaps with "Message-Id:" information to keep an
exact correspondence history. "Audit-file" will be in the user's MH directory unless a full path is
specified.

Inc will incorporate even improperly formatted messages into the user's MH folder, inserting a blank line
prior to the offending component and printing a comment identifying the bad message.

In all cases, the user's mail drop will be zeroed, unless the '-notruncate' switch is given.

If the profile entry "Unseen-Sequence" is present and non-empty, then inc will add each of the newly
incorporated messages to each sequence named by the profile entry. This is similar to the
"Previous-Sequence" profile entry supported by all MH commands which take 'msgs' or 'msg' argu
ments. Note that inc will not zero each sequence prior to adding messages.

The interpretation of the '-fonn formatfile', '-format stting', and '-width columns' switches is the same as
in scan (1).

By using the '-file name' switch, one can direct inc to incoporate messages from a file other than the
user's maildrop. Note that the name file will NOT be zeroed, unless the '-ttuncate' switch is given.

If the environment variable $MAILDROP is set, then inc uses it• the location of the user's rnaildrop
instead of the default (the '-file name' switch still overrides this, however). If this environment variable is
not set, then inc will consult the profile entry "MailDrop" for this infonnation. If the value found is not
absolute, then it is interpreted relative to the user's MH directory. If the value is not found, then inc will
look in the ·standard system location for the user's maildrop.

The '-silent' switch directs inc to be quiet and not ask any questioos at all. This is useful for putting inc in

MH UCI/UCB version

INC(l)

Files

The Rand MH Mesage Handling System

the background and going on to other things.

$HOMEJ.m1Lprofile
/usr/new/lib/mhlmtstailor
/usr/spoo1/maill$USER

The user profile
tailor file
Location of mail drop

USD:8-26

Profile cem,_....

See Also

Defaults

Context

Bugs

[mh.6]

Path: To determine the user's MH dilectory
Alternate-Mailboxes: To determine the user's mailboxes
Folder-Protect: To set mode when aeating a new folder
Msg-Protect: To set mode when creating a new message and audit-file
Unseen-Sequence: To name sequences denoting unseen messages

mhmail(l), scan(l), mh-mail(S), post(8)

'+folder' defaults to '' inbox''
'-noaudit'
'-changecur'
'-format' defaulted as described above
'-nosilent'
'-truncate' if '-file name' not given, '-notruncate' otherwise
'-width' defaulted to the width of the terminal

The folder into which messages are being inccxporated will become the current folder. The first message
incorpcnted will become the current message, unless the '-nochangecur' option is specified. This leaves
the context ready for a show of the first new message.

The argument to the '-format' switch must be interpreted as a single token by the shell that invokes inc.
Therefore, one must usually place the argument to this switch inside double-quotes.

MH UCI/UCB version

USD:8-27 The Rand MH Meaage Handling System MARK(l)

NAME
mark - mark messages

SYNOPSIS
mark [+folder] [msgs] [-sequence name ...] [-add] [-delete] [-list] [-public] [-nopublic] [-zero]

[-nouro] [-help]

DESCRIPrION

[mh.6]

The mark command manipulates message sequences by adding or deleting message numbers from
folder-specific message sequences, m by listing those sequences and messages. A message sequence is a
keyword, just like one of the "reserved" message names, such • "first" or "next". Unlike the
''reserved'' message names, which have a fixed semantics on a per-folder b•is, the semantics of a mes
sage sequence may be defined, modified, and removed by the user. Message sequences are folder-specific,
e.g., the sequence name "seen" in the context of folder "+inbox" need not have any relation whatsoever
to the sequence of the same name in a folder of a different name.

Three action switches direct the operation of mark. These switches are mutually exclusive: the last
occurrence of any of them overrides any previous occurrence of the other two.

The '-add' switch tells marlc to add messages to sequences or to create a new sequence. For each sequence
named via the '-sequence name' argument (which must occur at least once) the messages named via
'rnsgs' (which defaults to "cur" if no 'rnsgs' are given), are added to the sequence. The messages to be
added need not be absent from the sequence. If the '-lBo' switch is specified, the sequence will be emp
tied prior to adding the messages. Hence, '-add -zero' means that each sequence should be initialized to
the indicated messages, while '-add -nozero' means that each sequence should be appended to by the indi
cated messages.

The '-delete' switch tells mark to delete messages from sequences, and is the dual of '-add'. For each of
the named sequences, the named messages are removed from the sequence. These messages need not be
already present in the sequence. If the '-zero' switch is specified, then all messages in the folder are
appended to the sequence prior to removing the messages. Hence, '-delete -zero' means that each
sequence should contain all messages except those indicated, while '-delete -nozero' means that only the
indicated messages should be removed from each sequence. As expected, the command
'mark -sequence seen -delete all' deletes the sequence "seen" from the current folder.

When creating (or modifying) a sequence, the '-public' switch indicates that the sequence should be made
readable for other MH users. In contrast, the '-nopublic' switch indicates that the sequence should be
private to the user's MH environment

The '-list' switch tells mark to list both the sequences defined for the folder and the messages associated
with those sequences. Marie will list each sequence named via '-sequence name' (or all of them if
'-sequence' isn't used), and the messages associated with that sequence. The '-zero' switch does not
affect the operation of '-list'.

The current restrictions on sequences are:

The name used to denote a message sequence must consist solely of alphabetic characters, and can not
be one of the "reserved" message names (e.g., "first'\ "cur", and so forth).

Only a certain number of sequences may be defined for a given folder. This number is usually limited
to 10.

The name used to denote a message sequence can not occur as part of a message range, e.g., constructs
like "seen:20" or "seen-10" are forbidden.

MH UCI/UCB version

MARK(l) Tile Rand MH Mmage Handling System

Flies

SHOMFJ .mlL.p'Ofile The us« profile

Profile Companena

SeeAllO

Defaultl

Context

[mh.6]

Path: Todetennine the user's MH directory
Current-Folder: To find the default current folder

pick (1) .

'+folder' defaults to the current folder
'-add' if 'imgs' is specified, '-list' otherwise
'imgs' defaults to cur (or all if '-list' is specified)
'-nopublic' if the folder is read-only, '-public' otherwise
'-nozero'

If a folder is given, it will become the current folder.

MH

USD:8-28

UCI/UCB version

USD:8-29 The Rand MH Meuage Handlin& System MHL(l)

NAME
rnh1 - produce formaued listings of MH messages

SYNOPSIS
/usr/new/lib/mhlrnhl [-bell] [-nobell] [-clear] [-noclear] [-folder +folder] [-form fonnfile] [-length lines]

[-width columns] [-moreproc program] [-nomoreproc] [files •••] [-help)

DESCRIPI'ION

[mh.6)

Mhl is a formatted message listing program. It can be Used• a replacement for more (1) (the default
showproc). As with 11tOre, each c1 the messages specified as arguments (or the standard input) will be
output If more than one message file is specified, the user will be prompted prior to each one, and a
<RETIJRN> or <EOT> will begin the output, with <REWRN> clearing the screen (if appropriate), and
<EOT> (usually CTRL-D) suppressing the screen clear. An <INTERRUPT> (usually CTRL-C) will
abort the current message output, prompting for the next message (if there is one), and a <QUIT> (usi;ally
CTRL-\) will tenninate the program (without core dump).

The '-bell' option tells mhl to ring the terminal's bell at the end of each page, while the '-clear' option
tells mhl to clear the scree at the end of each page (or output a fcxmfeed after each message). Both of these
switches (and their inverse counterparts) take effect only if the profile entry moreproc is defined but empty,
and mhl is outputting to a terminal. If the moreproc entry is defined and non-empty, and mhl is outputting
to a terminal, then mhl will cause the moreproc to be placed between the terminal and mhl and the switches
are ignored. Furthermore, if the '-clear' switch is used and mhl' s output is directed to a terminal, then mhl
will consult the $TERM and $TERMCAP environment variables to determine the user's terminal type in
order to find out how to clear the screen. If the '-clear' switch is used and mhl' s output is not directed to a
terminal (e.g., a pipe or a file), then mhl will send a fonnfeed after each message.

To override the default moreproc and the profile entry, use the '-rnoreproc program' switch.

The '-length length' and '-width width' switches set the screen length and width, respectively. These
default to the values indicated by $TERMCAP, if appropriate, otherwise they default to40 and 80, respec
tively.

The default format file used by mhl is called mhlformat (which is first searched for in the user's MH direc
tory, and then sought in the !usrlnew!liblmh directory), this can be changed by using the '-form formatfile'
switch.

Finally, the '-folder +folder' switch sets the MH folder name, which is used for the "messagename:" field
described below. The environment variable $mhfolder is consulted for the default value, which show,
next, and prev initialize appropriately.

Mhl operates in two phases: 1) read and parse the format file, and 2) process each message (file). During
phase 1, an internal description of the format is produced as a structured list In phase 2, this list is walked
for each message, outputting message information under the format constraints from the format file.

The "mhl.fonnat" form file contains information controlling screen clearing, screen size, wrap-around
control, transparent text, component ordering, and component formatting. Also, a list of components to
ignore may be specified, and a couple of "special" components are defined to provide added functionality.
Message output will be in the order specified by the order in the format file.

Each line of mhl.fonnat has one of the formats:

;comment
:cleartext
variable[, variable ...]
component:[variable, ...]

MH UCI/UCB version

MHL(l) The Rand MH Message Handling System USD:S-30

[mh.6]

A line beginning with a';' is a comment, and is ignored. A line beginning with a':' is clear text, and is
output exactly as is. A line containing only a ':' produces a blank line in the output A line beginning with
''component:'' defines the format for the specified component, and finally, remaining lines define the glo
bal environment

For example, the line:

width-80,length-40,clearscreen,overftowtext•"•••" ,overllowoffset-S

defines the screen size to be 80 colunms by 40 rows, specifies that the screen should be cleared prior to
each page, that the ovedlow indentation is 5, and that ovedlow text should be flagged with "•••' '.

Following are all of the current variables and their arguments. If they follow a component, they apply only
to that component, otherwise, ·their affect is global. Since the whole format is parsed before any output
processing, the last global switch setting for a variable applies to the whole message if that variable is used
in a global context (i.e., bell, clearscreen, width, length).

variabk
width
length
offset
over:tlowtext

ty~
integer
integer
integer
stting

over:tlowoffset integer
compwidth integer

uppercase flag

nouppercase flag
clearscreen flag/G
noclearscreen flag/G
bell flag/G
nobell flag/G
component stting/L

nocomponent flag

center flag

nocenter flag
leftadjust flag

noleftadjust flag
compress flag
nocompress flag
formatfield stting
addrfield flag
datefield flag

semantics
screen width or component width
screen length m component length
positions to indent ''component:''
text to use at the beginning of an
over:tlow line
positions to indent overflow lines
positions to indent component text
after the first line is output
output text of this component in all
uppercase
don't uppercase
clear the screen prior to each page
don't clearscreen
ring the bell at the end of each page
don't bell
name to use instead of "component" for
this component
don't output ''component '' for this
component
center component on line (works for
one-line components only)
don't center
strip off leading whitespace on each
line of text
don't leftadjust
change newlines in text to spaces
don't compress
format string for this component
field contains addresses
field contains dates

To specify the value of integer-valued and string-valued variables, follow their name with an equals-sign
and the value. Integer-valued variables are given decimal values, while string-valued variables are given
arbirtray text bracketed by double-quotes. If a value is suffixed by "/G" or "IL", then its value is useful
in a global-only or local-only context (respectively).

A line of the form:

ignores=component, ...

MH UCl/UCB version

USD:8-31 The Rand MH Meaage Handling System MHL(l)

Files

specifies a list of components which are never outpuL

The component "MessageName" (cue-insensitive) will output the actual message name (file name) pre
ceded by the foldec name if one is specified or found in the environment The fmnat is identical to that
produced by the '-header' option to show.

The component ''Extras'' will output all of the components of the message which were not matched by
explicit components, or included in the ignore lisL If this component is not specified, an ignore list is not
needed since all non-specified compooents will be ignored.

If ''nocomponent'' is NOT specified, then the component name will be output as it appears in the format
file.

The default format is:

:--using template mhl.fonnat
ovedlowtext-" •••" ,overtlowoffset-5
leftadjust,compwidth=9
ignores=msgid,message-id,received
Date:formatfield-"%<(nodate{text})%{text}%1%(putstr(pretty{text}))%>"
To:
cc:

From:
Subject:

extras:nocomponent

body:nocomponent,overftowtext=,overftowoffset=O,noleftadjust

The variable "fonnatfield" specifies a format string (see mlt-format(S)). The variables "addrfield" and
"datefield" (which are mutually exclusive), control the interpretation of the escapes.

By default, mhl does not apply any formatting string to fields containing address or dates (see mh-mail (5)
for a list of these fields). Note that this results in faster operation since mhl must parse both addresses and
dates in order to apply a format string to them. If desired, mhl can be given a default format string for
either address or date fields (but not both). To do this, on a global line specify either the variable addrfield
or the variable datefield, along with the variable formatfield.

/usr/new/lib/mh/mhl.format
or <mh-dir>/mhl.format
$HOMFJ .mh_profile

The message template
Rather than the standard template
The user profile

Prome Components
moreproc: Program to use as interactive front-end

See Also

Defaults

[mh.6]

show(1), ap(8), dp(8)

'-bell'
'-noclear'
'-length 40'
'-width 80'

MH UCI/UCB version

MHL(l) Tbe Rand MH Message Handling System USD:S-32

Context
None

Bup

There should be some way to pass 'bell' and 'clear' informatioo to the front-end.

On hosts where MH was configured with the BERK option, address parsing is not enabled.

[mh.6] MH UCI/UCB version

USD:S-33 The Rand MH Message Handling System MHMAIL(l)

NAME

rnhmail - send or read mail

SYNOPSIS

mhmail [addrs ..• [-body text] [-cc addn •.•] [-from addr] [-subject subject]] [-help]

DESCIUPrlON

Flies

MHmail is. intended as a replacement for the standard Bell mail program (bellmail (1)), compatible with
MH. When invoked without arguments, it simply inv<*es inc (1) to incorporate new messages from the
user's maildrop. When me <X' more users is specified, a message is read from the standard input and
spooled to a temporary file. MHmail then invokes post (8) with the name of the temporary file as its argu
ment to deliver the message to the specified user.

TI.e '-subject subject' swicch can be used to specify the "Subject:" field of the message. The '-body text'
switch can be used to specify the text of the message; if it is specified, then the standard input is not read.
Normally, addresses appearing as arguments are put in the ''To:'' field. If the '-cc' switch is used, all
addresses following it are placed in the ''cc:'' field.

By using '-from addr', you can specify the "From:" header of the draft. Naturally, post will fill-in the
"Sender:" header correctly.

This program is intended for the use of progmm such as at (1), which expect to send mail automatically
to various users. Normally, real people (as opposed to the ''unreal'' ones) will prefer to use comp (1) and
send (1) to send messages.

/usr/new/mh/inc
/usr/new/lib/mh/post
/trnp'mhmail*

Program to incorporate a maildrop into a folder
Program to deliver a message
Temporary copy of message

Prome Components
None

See Also

inc(1), post(8)

Defaults

None

Context
If inc is invoked, then inc's context changes occur.

[mh.6] MU UCI/UCB version

MHOOK(l) The Rand MH Mesage Handling System USD:8-34

NAME
mhook - MH receive-mail hoots

SYNOPSIS
$HOMFJ.maildelivery

/usr/new/lib/mh/rcvdist address ••• [-help]

/usr/new/liblmb/rcvpack file [-help]

/usr/new/lib/mh/rcvtty [command •••] [-help]

D~CRIPl'ION

[mh.6]

A receive-mail hook is a program that is run whenever you receive a mail message. You do NOT invoke
the hook yourself, rather the hook is invoked on your behalf by SendMail, when you include the line

''I /usr/new/lib/mh/slocal''
in your .forward file in your home directory.

The .maildelivery file, which is an ordinary ASCII file, controls how local delivery is performed. This file
is read by slocal.

The format of each line in the .maildelivery file is

field pattern action result string

where

field:
The name of a field that is to be searched for· a pattern. This is any field in the headers of the mes
sage that might be present In addition, the following special fields are also defined:

sowce: the out-of-band sender information
addr: the address that was used to cause delivery to the recipient
default: this matches only if the message hasn't been delivered yet
•: this always matches

pattern: ,
The sequence of characters to match in the specified field. Matching is case.:..insensitive but not
RE-based.

action:
The action to take to deliver the message. This is one of

file or>:

pipe or/:

Append the message to the file named by string. The standard maildrop delivery process
is used. If the message can be appended to the file, then this action succeeds.

When writing to the file, a new field is added:

Delivery-Date: date

which indicates the date and time that message was appended to the file.

Pipe the message as the standard input to the command named by string, using the
Bourne shell sh (1) to interpret the string. Prior to giving the string to the shell, it is
expanded with the following built-in variables:

MH UCI/UCB version

USD:S-35 The Rand MH Meaage Handling System MHOOK(l)

[mh.6]

$(sender): the return address for the message
$(address): the address that wa used to cause delivery to the recipient
$(siz.e): the size of the message in bytes
$(reply-to): either the "Reply-To:" or "From:" field of the message
$(info): miscellaneous out-of-band informatioo

When a process is invoked, its environment is: the user/group id:s are set to recipient's
id:s; the working directory is the recipient's direclOl'y; the umask is 0077; the process has
no /dev/tty; the standard input is set to the message; the standard output and diagnostic
output are set to /dev/null; all other file-descripun are closed; the environment variables
$USER, $HOME, ~HELL are set appropriately, and no other envirooment variables
exist

The process is given a certain amount of time to execute. If the process does not exit
within this limit, the process will be terminated with extreme prejudice. The amount of
time is calculated as ((size x 60) + 300) seconds, where size is the number of bytes in the
message.

The exit status of the process is consulted in determining the success of the action. An
exit status of zero means that the actioo succeeded Any other exit status (or abnormal
termination) means that the action failed.

In order to avoid any time limitations, you might implement a process that began by fork
ing. The parent would return the appropriate value immediately, and the child could con
tinue on, doing whatever it wanted f<X' as long as it wanted. This approach is somewhat
risky if the parent is going to return an exit status of zero. If the parent is going to return
a non-zero exit status, then this approach can lead to quicker delivery into your mail
drop.

qpipe or <caret>:

destroy:

result:

Similar to pipe, but executes the command directly, after built-in variable expansion,
without assistance from the shell.

This action always succeeds.

Indicates how the action should be performed:

A:

R:

?:

Perform the action. If the action succeeded, then the message is considered delivered.

Perform the action. Regardless of the outcome of the action, the message is not con
sidered delivered

Perform the action only if the message has not been delivered. If the action succeeded,
then the message is considered delivered.

The file is always read completely, so that several matches can be made and several actions can be taken.
The .maildelivery file must be owned either by the user or by root, and must be writable only by the owner.
If the .maildelivery file can not be found, or does not perform an action which delivers the message, then
the file /usr/new/lib/mh/maildelivery is read according to the same rules. This file must be owned by the
root and must be writable only by the rooL If this file can not be found or does not perform an action
which delivers the message, then standard delivery to the user's maildrop, /usr/spooVmail/$USER, is per
formed.

MH UCI/UCB version

MHOOK(l) The Raiad MH Mesaae Handlin& System USD:8-36

Flies

See Also

Context

[mh.6]

Arguments in the .mailtUlivery file are separated by white-space or comma. Since double-quotes are
hontted, these characters may be included in a single argument by enclosing the entile argument in
double-qu~. A double-quote can be included by preceeding it with a backslash.

To summariz.e, here's an example:

#Mid pattern action r~sult string
#lines starting with a'#' are ignored, as are blank lines
#·
#file mail with mrndf2 in the "To:" line into file mmdf2Jog
To mmdf2 file A mmdf2Jog
Messages from mmdf pipe to the program err-message-archive
From mmdf pipe A err-message-archive
#Anything with the ''Sender:'' address ''uk-mmdf-workers''
file in mrndf2Jog if not filed already
Sender uk-mmdf-workers file ? mmdf2.log
#"To:" unix-put in file unix-news
To Unix > A unix-news
if the address is jpo=mmdf - pipe into mmdf-redist
addr jpo=mmdf I A nundf-redist
if the address is jpo=ack - send an acknowledgement copy back
addr jpo=ack I R "resend -r $(reply-to)"
anything from steve - destroy!
From steve destroy A-
anything not matched yet - put into mailbox
default - > ? mailbox
always run rcvalert
• R rev alert

Four programs are currently standardly available, rcvdist (redistribute incoming messages to additional
recipients), rcvpack (save incoming messages in a paclcf'd file), and rcvtty (notify user of incoming mes
sages). The fourth program, rcvstore (1) is described separately. They all reside in the lusrlnewlliblmhl
directory.

The rcvdist program will resend a copy of the message to all of the addresses listed on its command line.

The rcvpack program will append a copy of the message to the file listed on its command line. Its use is
obsoleted by the .maildelivery.

The rcvtty program executes the named file with the message as its standard input, and gives the resulting
output to the terminal access daemon for display on your terminal. If the terminal access daemon is una
vailable on your system, then rcvtty will write the output to your terminal if, and only if, your terminal has
"world-writable" permission. If no file is specified, or is bogus, ete., then the rcvtty program will give a
one-line scan listing to the terminal access daemon.

/usr/new/lib/mh/mtstailor
$HOME/ .maildelivery
/usr/new/lib/mh/maildelivery

rcvstore (1)

None

tailor file
The file controlling local delivery
Rather than the standard file

MH UCI/UCB version

USD:S-37 The Rand MH Messa1e Handlin1 System MHOOK(l)

History

Bup

[mh.6]

For compatibility with older versions of MH, if slocal can't find the user's .maildelivery file, it will attempt
to execute an old-style rcvmail hook in the user's $HOME directory. In particular, it will first attempt to
execute

.mh...receive file maildrop direcuxy user

failing that it will attempt to execute

SHOMFJbinlrcvmail user file sender

before giving up and writing to the user's maildrop.

In additioo, whenever a hook or process is invoked, file-descriptor three (3) is set to the message in
addition to the standard input

Only two return codes are me~ngful, others should be.

MH UCI/UCB version

MHPATH(l) The Rand MH Mesage Handling System USD:8-38

NAME
mhpath - print full pathnames of MH messages and folders

SYNOPSIS
mhpath [+folder] [msgs] [-help]

DESCRDTION

[mh.6]

Mhpath expands and sorts the message list 'msgs' and writes the full pathnames of the messages to the
standard output separated by newlines. If no 'msgs' are specified, mhpath outputs the folder pathname
imtead.

Contrasted with other MH commands, a message argument to mhpath may often be intended for writing.
Because of this: 1) the name "new" hu been added to mhpath's list of reserved message names (the oth
ers are "first", "last", "prev", "next", "cur", and "all"). 1be new message is equivalent to the mes
sage after the lut message in a folder (and equivalent to 1 in a folder without messages). The "new" mes
sage may not be used u part of a message range. 2) Within a message list, the following designations may
refer to messages that do not exist a single numeric message name, the single message name ''cur'', and
(obviously) the single message name "new". All other message designations must refer to at least one
existing message. 3) An empty folder is not in itself an error.

Message numbers greater than the highest existing message in a folder as part of a range designation are
replaced with the next free message number.

Examples: The current folder foo contains messages 3 5 6. Cur is 4.

% mhpath
/r/phyl/Mail/foo

% mhpath all
/r/phyl/Mail/foo/3
/r/phyl/Mail/foo/5
/r/phyl/Mail/foo/6

% mhpath 2001
/r/phyl/Mail/foo17

% mhpath 1-2001
/r/phyl/Mail/foo/3
/r/phyl/Mail/foo/5
/r/phyl/Mail/foo/6

% mhpathnew
/r/phyl/Mail/foo17

% mhpath last new
/r/phyl/Mail/foo/6
/r/phyl/Mail/fool7

% mhpath last-new
bad message list "last-new''.

% mhpathcur
/r/phyl/Mail/foo/4

% mhpath 1-2
no messages in range "1-2".

MH UCI/UCB version

USD:S-39 The Rand MH Mesage Handling System

Flies

% mhpath first2
/r/phyl/Mail/foo13
/r/phyl/Mail/foolS

% mhpath 12
/r/phyl/Mail/fooll
/r/phyl/Mail/fool2

MHpath iS also useful in back-quoted operations:

% cd 'mhpath +inbox'

% echo 'mhpath +'
/r/phyl/Mail

$HOME/ .mfLprofile The user profile

Proftle Compcments

See Also

Defaults

Context

Bup

Path: To determine the user's MH directory
Current-Folder: To find the default current folder

folder(!)

'+folder' defaults to the current folder
'msgs' defaults to none

None

Like all MH commands, mhpalh expands and sorts [msgs]. So don't expect

mv 'mhpath 501 500'

to move 501 to 500. Quite the reverse. But

mv 'mhpath 501' 'mhpath 500'

will do the trick.

MHPATH(l)

Out of range message 0 is treated far more severely than large out of range message numbers.

[mh.6] MH UCI/UCB version

MSGCHK(l) The Rand MH Meaage Handlin& System USD:8-40

NAME
msgchk- check for messages

SYNOPSIS
msgchk [users ...] [-help]

DF3CRIPrION

The msgchk program checks all known mail drops fm mail waiting for you to receive. For those drops
which have mail for you, msgchk will indicate if it believes that you have seen the mail in question before.

Flies

SHOMFJ.mlLprofile
/usr/new/lib/mh/mtstailor
/usr/spool/mail/$USER

Profile Compouaa
None

See Also
inc(l)

Defaults

'user' defaults to the current user

Context
None

[mh.6]

The user profile
tailor file
Location of mail drop

MH UCI/UCB version

USD:S-41 The Rand MH Mesage Handling System MSH(l)

NAME

msh - MH shell (and BBoard reader)

SYNOPSIS

msh [-prompt string] [-scan] [-noscan] [-topcur] [-notopcur] [file] [-help]

DESCRIPrION

[mh.6]

msh is an interactive program that implements a subset of the normal MH commands operating on a single
file in padf d formaL That is, mslt is used to read a file that contains a number of messages, as opposed to
the standard MH style of reading a number of files, each file being a separate message in a folder. msh's
chief advantage is that the normal MH style does not allow a file to have more thm one message in it
Hence, msh is ideal f<X' reading BBoards, as these files are delivered by the transport system in this format
In addition, msh can be used on other files, such as message archives which have been packed (see
packf (1)). Finally, msh is an excellent MH tutor. As the only commands available to the user are MH
co~ds, this allows MH beginners to concentrate on how commands to MH are formed and (more or
less) what they mean.

When invoked, msh reads the named file, and enters a command loop. The user may type most of the nor
mal MH commands. The syntax and semantics of these commands typed to msh are identical to their MH
counterparts. In cases where the nature of msh would be inconsistent (e.g., specifying a '+folder' with
some commands), msh will duly inform the user. The commands that msh currently supports (in some
slightly modified or restricted forms) are:

ali
burst
comp
dist
folder
forw
inc
mark
mhmail
msgchk
next
packf
pick
prev
refile
repl
rmm
scan
send
show
sortm
whatnow
whom

In addition, msh has a "help" command which gives a brief overview. To terminate msh, type CTRL-D,
or use the ''quit'' command If msh is being invoked from bbc, then typing CTRL-D will also tell bbc to
exit as well, while using the "quit" command will return control to bbc, and bbc will continue examining
the list of BBoar& that it is scanning.

If the file is writable and has been modified, then using "quit" will query the user if the file should be
updated.

The '-prompt string' switch sets the prompting string for msh.

MH UCI/UCB version

MSH(l)

Files

The Rand MH MeSDge Handling System USD:S-42

You may wish to use an alternate MH profile for the commands that msh executes; see mh-profile (5) for
details about the SMH environment variable.

When invoked from bbc, two special features are enabled: First, the '-scan' switch directs msh to do a
'scan unseen' on start-up if new items are present in the BBoard. This feature is best used from bbc,
which correctly sets the stage. Second, lhe marl command in msla acts specially when you are reading a
BBoard, since msh will consult the sequence ''unseen'' in determining what messages you have actually
read. When msh exits, it reports this information to bbc. In addition, if you give the mark command with
no arguments, msh will interpret it as 'mark -sequence unseen -delete -nozero all' Hence, to discard all
of the meisages in the cunent BBoard)'OU're reading, just use the 1ffOT1 command with no arguments.

When invoked from vmh, another special feature is enabled: The 'topcur' switch directs msla to have the
current message "track" the top line of the wnlt scan window. Normally, msh has the current message
''track'' lhe center of the window (under '-notopcur', which is the default).

msh supports an output redirection facility. Commands may be followed by one of

> fik write output to fik
>>file append output to file
I command pipe output to UNIX command

If file starts with a ,_, (tilde), then a csh-like expansion takes place. Note that command is interpreted by
sh (1). Also note that msh does NOT support history substitutions, variable substitutions, or alias substitu
tions.

When parsing commands to the left of any redirection symbol, msh will honor'\' (back-slash) as the quote
next~haracter symbol, and '"' (double-quote) as quote-word delimiters. All other input tokens are
separated by whitespace (spaces and tabs).

$HOME/.m1Lprofile
/usr/new/lib/mh/mtstailor

The user profile
tailor file

Profile Components
Path: To determine the user's MH directory

To set mode when creating a new 'file'
Program to file messages

See Also

Defaults

Context

[mh.6]

Msg-Protect:
fileproc:
showproc: Program to show messages

bbc(l)

'file' defaults to '' Jmsgbox''
'-prompt (msh) '
'-noscan'
'-notopcur'

None

MH UCI/UCB version

USD:8-43 The Rand MH Meaage Handling System MSH(l)

Bup

[mh.6]

The argument to the '-prompt' switch must be interpreted • a single token by the shell that invokes msh.
Therefore, one must usually place the argument to this switch inside double-quotes.

There is a strict limit of messages per file in packfd fmnat which msh can handle. Usually, this limit is
1000 messages.

Please remember that msh is not the CSMll, and that a lot of the nice facilities provided by the latter are not
present in the former.

In particular, 11tSla does not understand back-quoting, so the only effective way to use piclc inside msh is to
always use the '-seq select' switch. Clever users of MH will put the line

pick: -seq select -list

in their .mh...profile file so that piclc waks equally well from both the shell and msh.

The msh program inherits most (if not all) of the bugs from the MH commands it implements.

MH UCI/UCB version

NEXT(l) The Rand MH Meaage Handling System USD:l-44

NAME
next - show the next message

SYNOPSIS
next [+folder] [-header] [-noheader] [-showproc program] [-noshowproc] [switches fer showproc]

[-help]

DFSCRIPl'ION

Flies

Next pe.rfonm a show on the next message in the specified (or current) folder. Like show, it passes any
switches on to the program showproc, which is called to list the message. This command is almost exactly
equivalent to "show next". Consult the manual entty fer show (1) fer all the details.

$HOMFJ.mh_profile The user profile

Profile Components
Path: To detennine the user's MH directory

To find the default current folder
Program to show the message

SeeAllO

Defaults

Context

Bugs

[mh.6]

Current-Folder:
showproc:

show(l), prev(l)

'+folder' defaults to the current folder
'-format'
'-header'

If a folder is specified, it will become the current folder. The message that is shown (i.e., the next message
in sequence) will become the current message.

next is really a link to the show program. As a result, if you make a link to next and that link is not called
next, your link will act like show instead. To circumvent this, add a profile-entty for the link to your MH
profile and add the argument next to the entry.

MH UCI/UCB version

USD:S-45 The Rand MH Mesage Handlin& System PACKF(1)

NAME
packf - compress a folder into a single file

SYNOPSIS

packf [+folder] [msgs] [-file name] [-help]

DF.SCRIPrION

Flies

Paclrf takes messages from a folder and copies them to a single file. Each message in the file is separated
by four CTRL-A's and a newline. Messages packed can be unpacked using inc.

ff the ~given to the '-file name' switch exists, then the messages specified will be appended to the end
of the file, otherwise the file will be created and the messages appended.

$HOMFJ .rnlL.profile The user profile

Profile Components

Path: To determine the user's MH directory
To find the default current folder

See Also

Defaults

Context

[mh.6]

Current-Folder:
Msg-Protect: To set mode when creating a new 'file'

inc(l)

'+folder' defaults to the current folder
'ms gs' defaults to all
'-file Jmsgbox'

ff a folder is given, it will become the current folder. The first message packed will become the current
message.

MH UCI/UCB version

PICK(l) The Rand Mii Mesage Handlln1 System USD:l-46

NAME
pick - select messages by concent

SYNOPSIS
pick -cc

-date
-from
-semh
-subject
-to
--component

typically:

[+folder] [imgs] [-help]
[-before date] [-after date] [-datefield field]

pattern [-and •..] [-or .•.] [-not •..] [-lbrace ... -rbrace]

[-sequence name •••] [-public] [-nopublic] [-zero] [-nozero]
[-list] [-nolist]

scan 'pick -from jones'
pick -to holloway -sequence select
show 'pick -before friday'

DF.sCRIPTION

[mh.6]

Pick searches messages within a folder for the specified contents, and then identifies those messages. Two
types of search primitives are available: pattern matching and date constraint operations.

A modified grep(l) is used to perform the matching, so the full regular expression (see ed(l)) facility is
available within 'pattern'. With '-search', 'pattern' is used directly, and with the others, the grep pattern
constructed is:

"component[\t]•:. •pattern"

This means that the pattern specified for a '-search' will be found everywhere in the message, including
the header and the body, while the other pattern matching requests are limited to the single specified com
ponent. The expression

'---component pattern'

is a shorthand for specifying

'-search ''component[\t]•:.•pattem'' '

It is used to pick a component which is not one of "To:", "cc:", "Date:", "From:", or "Subject:". An
example is 'pick -reply-to pooh'.

Pattern matching is performed on a per-line basis. Within the header of the message, each component is
treated as one long line, but in the body, each line is separate. Lower-case letters in the search pattern will
match either lower or upper case in the message, while upper case will match only upper case.

Independent of any pattern matching operations requested, the switches '-after date' or '-before date' may
also be used to inttoduce date/time contraints on all of the messages. By default, the ''Date:'' field is con
sulted, but if another date yielding field (such as "BB-Posted:" or "Delivery-Date:") should be used, the
'-datefield field' switch may be used. Pick will actually parse the date fields in each of the messages
specified in 'imgs' (unlike the '-date' switch described above which does a pattern matching operation),
and compare them to the date/time specified by use of the '-after' and '-before' switches. If '-after' is
given, then only those messages whose ''Date:'' field value is chronologically after the date specified will
be considered. The '-before' switch specifies the complimentary action.

Both the '-after' and '-before' switches take legal 822-style date specifications as arguments. Pick will
default certain missing fiel& so that the entire date need not be specified. These fields are (in order of
defaulting): timezone, time and timezone, date, date and timezone. All defaults are taken from the current

MH UCI/UCB version

USD:S-47 The Rand MH Mesuge Handling System PICK(l)

Files

date, time, and timezone. In addition to 822-style dates, pick will also recognize any of the days of the
week ("sunday", "monc:lay", and so on), and the special dates "today", "yesterday", and "tomorrow".
All days of the week are judged to refer to a day in the past (e.g., telling pick ''saturday'' on a ''tuesday''
means "last saturday" not "this saturday"). Finally, in addition to these special specifications, pick will
also honor a specification of the f<Xlll ''-dd' ', which means '' dd days ago''.

Pick supports complex boolean operatk>m on the searching primitives with the '-and', '-«', '-not', and
'-lbrace ... -rbrace' switches. For example,

pick -after yesterday -and -lbrace -from freida -or -from fear -rbrace

identifies messages recently sent by ''frieda'' or ''fear''.

The matching primitives take precedence over the '-not' switch, which in turn takes precedence over
'-and' which in tum takes precedence over '-or'. To override the default precedence, the '-lbrace' and
'-rbrace' switches are provided, which act just like opening and closing parentheses in logical expressions.

Once the search has been performed, if the '-list' switch is given, the message numbers of the selected
messages are written to the standard output separated by newlines. This is extremely useful for quickly
generating arguments for other MH programs by using the "back.quoting" syntax of the shell. For exam-
ple, the command ·

scan 'pick +todo -after ''31Mar83 0123 PST'''

says to scan those messages in the indicated folder which meet the appropriate criterion. Note that since
pick 's context changes are written out prior to scan 's invocation, you need not give the folder argument
to scan as well.

Regardless of the operation of the '-list' switch, the '-sequence name' switch may be given once for each
sequence the user wishes to define. For each sequence named, that sequence will be defined to mean
exactly those messages selected by piclc. For example,

pick -from frated -seq fred

defines a new message sequence for the current folder called "fred" which contains exactly those mes
sages that were selected.

Note that whenever pick processes a '-sequence name' switch, it sets '-nolist'.

By default, pick will zero the sequence before adding il This action can be disabled with the '-n<,>zero'
switch, which means that the messages selected by piclc will be added to the sequence, if it already exists,
and any messages already a part of that sequence will remain so.

The '-public' and '-nopublic' switches are used by pick in the same way mar/c uses them.

$HO:ME/ .mh_profile The user profile

Profile Components

Path: To determine the user's MH directory
Current-Folder: To find the default current folder

See Also

mark(l)

[mh.6] MH UCI/UCB version

PICK(l) The RaDd MH Message Hanclling System USD:8-48

Defaults

Contot

History

Bugs

[mh.6]

'+folder' defaults to the current folder
'msgs' defaults to all
'-datefield date'
'-nopublic' if the folder is read-only, '-public' otherwise
'-zero'
'-list' is the default if no '-sequence', '-nolist' otherwise

If a folder is given, it will become the current folder.

In previous versions of MH, the pick command would show, scan, or refile the selected messages. This
was rather ''inverted logic'' from the UNIX point of view, so pick was changed to define sequences and
output those sequences. Hence, pick can be used to generate the arguments for all other MH commands,
instead of giving pick endless switches for invoking those commands itself.

Also, previous versions of pick balked if you didn't specify a search string or a date/time constraint. The
current version does not, and merely matches the messages you specify. This lets you type something like:

show 'pick last:20 -seq fear'

instead of typing

mark -add -nozero -seq fear last:20
show fear

Finally, timezones used to be ignored when comparing dates: they aren't any more.

The argument to the '-after' and '-before' switches must be interpreted as a single token by the shell that
invokes piclc. Therefore, one must usually place the argument to this switch inside double-quotes.
Furthermore, any occurance of '-datefield' must occur prior to the '-after' or '-before' switch it applies to.

If pick is used in a back-quoted operation, such as

scan 'pick -from jones'

and piclc fails (e.g., no messages are from ''jones''), then the shell will still run the outer command (e.g.,
"scan"). Since no messages were matched, pick produced no output, and the argument given to the outer
command as a result of backquoting pick is empty. In the case of MH programs, the outer command now
acts as if the default 'msg' or 'msgs' should be used (e.g., "all" in the case of scan). To prevent this
unexpected behavior, if '-list' was given, and if its standard output is not a tty, then pic/c outputs the illegal
message number ''O'' when it fails. This lets the outer command fail 8racefully as well.

MH UCI/UCB version

USD:S-49 The Rand MH Mesuge Handling System PREV(l)

NAME
prev - show the previous message

SYNOPSIS
prev [+folder] [-header] [-noheader] [-sbowproc program] [-nosbowproc] [-switches for showproc]

[-help]

D~CRIP110N

F1lel

Prev perfonm a show on the previous message in the specified (or current) folde.r. like show, it passes any
switches on to the program named by showproc, which is called to list the message. This command is
almost exactly equivalent to "show prev". Consult the manual entry for show (1) for all the details.

$HOMFJ.mh_pofile The user profile

Profile Compcmentl
Path: To detennine the user's MH directory

To find the default current folder
Program to show the message

SeeAl80

Defaults

Context

Bugs

[mh.6]

Current-Folder:
showproc:

show(l), next(l)

'+folder' defaults to the current folder
'-format'
'-header'

If a folder is specified, it will become the current folder. The message that is shown (i.e., the previous
message in sequence) will become the current message.

prev is really a link to the show program. As a result, if you make a link to prev and that link is not called
prev, your link will act like show instead. To circumvent this, add a profile-entry for the link to your MH
profile and add the argument prev to the entry.

MH UCI/UCB version

PROMPTER(!) Tbe Rand MH Mesage Handling System USD:8-SO

NAME
prompter - prompting editor front-end

SYNOPSIS
prompter [--el'Me chr] [-kill chr] [-prepend] [-noprepend] [-rapid] [-norapid] file [-help]

DF.sCRIPrION

[mh.6]

This program is normally not invoked direcdy by users but takes the place of an editor and acts as an editor
front~ It operates on an 822-style message draft skeleton specified by file, normally provided by
comp, dist,forw, or repl.

Prompter is an editor which allows rapid composition of messages. It is particularly useful to network and
low-speed (Jess than 2400 baud) users of MH. It is ·an MH program in that it can have its own profile entty
with switches, but it is not invoked dUectly by the user. The commands comp, dist, forw, and repl invoke
prompter as an editor, either when invoked with '-editor prompter', or by the profile entty
''Editor: prompter'', or when given the command 'edit prompter' at ''What now?'' level.

For each empty component prompter finds in the draft, the user is prompted for a response; A <RETURN>
will cause the whole component to be left out. Otherwise, a '\' preceding a <lIBTIJRN > will continue the
response on the next line, allowing fo- multiline components. Continuation lines must begin with a space
or tab.

Each non-empty component is copied to the draft and displayed on the terminal.

The start of the message body is denoted by a blank line or a line of dashes. If the body is non-empty, the
prompt, which isn't written to the file, is

''--------Enter additional text'',

or (if '-prepend' was given)

''--------Enter initial text''.

Message-body typing is terminated with an end-of-file (usually CTRL-D). At this point control is
returned to the calling program, where the user is asked ''What now?''. See whatMw for the valid options
to this query.

By using the '-prepend' switch, the user can add type-in to the beginning of the message body and have
the rest of the body follow. This is useful for the forw command

By using the '-rapid' switch, if the draft already contains text in the message-body, it is not displayed on
the user's tenninal. This is useful for low-speed terminals.

The line editing characters for kill and erase may be specified by the user via the arguments '-kill chr' and
'-erase chr', where chr may be a character; or '\nnn', where "nnn" is the octal value for the character.

An interrupt (usually CTRL-c) during component typing will abort prompter and the MH command that
invoked iL An interrupt during message-body typing is equivalent to CIRL-D, for historical reasons.
This means that prompter should finish up and exiL

The first non-ftag argument to prompter is taken as the name of the draft file, and subsequent non-flag
arguments are ignored.

MH UCI/UCB version

USD:S-51

Flies

$HOME/ .mh...profile
/tmp1prompte~

Profile CompGMllU

prompter-next:
Msg-Protect:

See Also

The Rand MH Meuage Handling System

The user profile
Temporary copy of message

To name the editor to be used on exit from prompter
To set mode when creating a new draft

comp(1), dist(1), forw(1), repl(1), whatnow(1)

Defaults

Context

Bup

[mh.6]

'-prepend'
'-norapid'

None

Prompter uses stdio (3), so it will lose if you edit iles with nulls in them.

MH

PROMPrER(l)

UCI/UCB version

RCVSTORE(l) Tile Rand MH Message Handling System USD:l-52

NAME
rcvstore - incoporate new mail asynchronously

SYNOPSIS
/usr/new/lib/mh/rcvstm'e [+folder] [-create] [-nocreate] [-sequence name ...] [-public] [-nopublic]

[-zero] [-nozero] [-help)

DF.SCRIPl'ION

Flies

Rcvstore incorporates a message from lhe standard input into an MH folder. If' +folder' isn't specified, the
folder named ''inbox'' in the user's MH directory will be used instead. The new message being incor
porated is assigned the next highest number in the folder. If the specified (or default) folder doesn't exist,
then it will be created if the '-create' option is specified, otherwise rcvstore will exit

If the user's profile contains a "Msg-Protect nnn" entty, it will be used as the protection on the newly
created messages, otherwise the MH default of 0644 will be used. During all operations on messages, this
initially assigned protection will be preserved for each message, so chmod(1) may be used to set a protec
tion on an individual message, and its protection will be preserved thereafter.

Rcvstore will incorporate anything except zero length messages into the user's MH folder.

If the profile entty ''Unseen-Sequence'' is present and non-empty, then rcvstore will add the newly incor
porated message to each sequence named by the profile entry. This is similar to the ''Previous-Sequence''
profile entry supported by all MH commands which take '~gs' or 'msg' arguments. Note that rcvstore
will not zero each sequence prior to adding messages.

Furthermore, the incoming messages may be added to user-defined sequences as they arrive by appropriate
use of the '-sequence' option. As with pick, use of the '-zero' and '-nozero' switches can also be used to
zero old sequences or oot. Similarly, use of the '-public' and '-nopublic switches may be used to force
additions to public and private sequences.

SHOME/.mh_profile The user profile

Proftle Componena

Path: To determine the user's MH directory

See Also

Deraultl

Context

[mh.6]

Folder-Protect
Msg-Protect
Unseen-Sequence:

To set mode when creating a new folder
To set mode when creating a new message
To name sequences denoting unseen messages

inc(l), pick(l), mh-mail(S)

'+folder' defaults to "inbox"
'-create'
'-nopublic' if the folder is read-only, '-public' otherwise
'-nozero'

No context changes will be attempted, with the exception of sequence manipulation.

MH UCI/UCB version

USD:S-53 The Rand MH Meaage Handling System REFILE(l)

NAME
refile - file message in other folders

SYNOPSIS

refile [msgs] [-draft] [-link] [-nolink] [-preserve] [-nopreserve] [-src +folder] [-file file] +folder ...
[-help]

DFSCRIPrION

Flies

Refile moves (mv (1)) or links (In (1)) messages from a source folder into one or more destination folders.
If you think of a message as a sheet of paper, this operation is not unlike filing the sheet of paper (or
copies) in file cabinet folden. When a message is filed, it is linked into the destination folder(s) if possible,
and is copied otherwise. As long as the destination folders are all on the same file system, multiple filing
causes little storage overhead. This facility provides a good way to cross-file or multiply-index messages.
For example, if a message is received from Jones about the ARP A Map Project, the command

refile cur +jones +Map

would allow the message to be found in either of the two folders 'jones' or 'Map'.

The option '-file file' directs refile to use the specified file as the source message to be filed, rather than a
message from a folder. Note that the file should be a validly formatted message, just like any other MH
message. It should NOT be in mail drop format (to convert a file in mail drop format to a folder of MH
messages, see inc (1)).

If a destination folder doesn't exist, refile will ask if you want to create it A negative response will abort
the file operation.

The option '-link' preserves the source folder copy of the message (ie., it does a ln(l) rather than a mv(l)),
whereas, '-nolink' deletes the filed messages from the source folder. Normally, when a message is filed, it
is assigned the next highest number available in each of the destination folders. Use of the '-preserve'
switch will override this message renaming, but name conflicts may occur, so use this switch cautiously.

If '-link' is not specified (or '-nolink' is specified), the filed messages will be removed (unlink (2)) from
the source folder, similar to the way mv (1) works.

If the user has a profile component such as

rmmproc: /bin/rm

then instead of simply renaming the message file, refile will call the named program to delete the file.

The '-draft' switch tells refile to file the <mh-d.iDldraft.

$HOMFJ .mlLprofile The user profile

Profile Components

Path: To detennine the user's MH directory
To find the default current folder

See Also

[mh.6]

Current-Folder.
Folder-Protect:
rmmproc:

folder(l)

To set mode when creating a new folder
Program to delete the message

MH UCI/UCB version

REFILE(l) The Rand MH Meaage Handling System USD:S-54

Defaults

Context

[mh.6]

'-src +folder' defaults to the current folder
'msgs' defaults to cur
'-nolink'
'-nopreserve'

If '-src +folder' is given, it will become the current folder. If neither '-link' nor 'all' is specified, the
current message in the source folder will be set to the last message specified; otherwise, the current
message won't be changed.

If the Previous-Sequence profile entry is set, in addition to defining the named sequences from the soqrce
folder, refik will also define those sequences fer the destination folders. See mh-profile (1) for
information concerning the previous sequence.

MH UCI/UCB version

USD:8-S5 The Rand MH Mesage Handling System REPL(l)

NAME
repl - reply to a message

SYNOPSIS
repl [+folder] [msg] [-annotate] [-noannotate] [-cc all/tolcc/me] [-nocc all/tolcc/me]

[-draftfolder +folder] [-draftmessage img] [-nodraftfolder] [~tor editor] [-noedit]
[-fee +folder] [-filter filterfile] [-form formfile] [-fcxmat] [-noformat] [-inplace] [-noinplace]
[-query] {-noquery] [-width columm] [-whatnowproc program] [-nowhalnowproc] [-help]

DESCRIPrlON

[mh.6]

Repl aids a user in producing a reply to an existing message. Repl uses a reply template to guide its actions
when constructing the message draft of the ieply. In its simplest fmn (with no arpments), it will set up a
message-fmn skeleton in reply to the current message in the current folder, and invoke the whatnow shell.
The default reply template will direct repl to construct the composed message u follows:

To: <Reply-To> or <from>
cc: <CC>, <TO>, and yourself
Subject: Re: <Subject>
In-reply-to: Your message of <Date>.

<Message-Id>

where field names enclosed in angle brackets (< >) indicate the contents of the named field from the mes
sage to which the reply is being made. The '-cc type' switch takes an argument which specifies who gets
placed on the "cc:" list of the reply. The '-query' switch modifies the action of '-cc type' switch by
interactively asking you if each address that namally would be placed in the "To:" and "cc:" list should
actually be sent a copy. (This is useful for special-purpose replies.) Note that the position of the '-cc' and
'-nocc' switches, like all other switches which take a positive and negative fmn, is important.

If the file named "replcomps" exists in the user's MH directay, it will be used instead of the default fonn.
In either case, the file specified by '-form formfile' will be used if given.

If the draft already exists, repl will ask you as to the dispositioo of the draft. A reply of quit will abort
repl, leaving the draft intact; replace will replace the existing draft with a blank skeleton; and list will
display the draft.

See comp (1) for a description of the '-editor' and '-noedit' switches. Note that while in the editor, the
message being replied to is available through a link named"@" (assuming the default whatnowproc). In
addition, the actual pathname of the message is stored in the environment variable $editalt, and the path
name of the folder containing the message is stored in the environment variable $mbfolder.

Although repl uses the '-form formfile' switch to direct it how to construct the beginning of the draft, the
'-filter filterfile' switch directs repl as to how the message being replied-to should be fonnatted in the
body of the draft. If '-filter' is not specified, then the message being replied-to is not included in the body
of the draft. If '-filter filterfile' is specified, then the message being replied-to is filtered (re-formatted)
prior to being output to the body of the draft. The filter file for repl should be a standard form file f<X mhl,
as repl will invoke mhl to format the message being replied-to. There is no default message filter ('-filter'
must be followed by a file name). A filter file that is commonly used is:

body:nocomponent,compwidth-9,offset-9

which says to output a blank line and then the body of the message being replied-to, indented by one
tab-stop.

If the '-annotate' switch is given, the message being replied-to will be annotated with the lines

MH UCI/UCB version

REPL(l) The Rand MH Mesage Handling System USD:8-56

Flies

Replied: date
Replied: addrs

where the address list contains one line for each addressee. The annotation will be done only if the mes
sage is sent direcdy from repl. If the message is not sent immediately from repl, ''comp-use'' may be
used to re-edit and send the constructed message, but the annotations won't take place. The '-inplace'
switch causes annotation to be done in place in order to preserve links to the annotated message.

With the '-format' switch one can indicate if Internet-style formatting should be used (or not be used with
'-noformat'). If present (the default), then lines beginning with the fields "To:", "cc:", and "Bee:" will
be standardized and have duplicate addresses removed. In addition, the '-width columns' switch will
guide repl's formatting of these fields.

The '-fee +folder' switch can be used to automatically specify a folder' to receive Fcc:s. More than one
folder, each preceeded by '-fee' can be named.

A reply template is simply a format file. See mh-format (S) for the details.

In addition to the standard escapes, repl also recognizes the following additional escape:
escape substitution
fee any '-fee folder' switches

The '-draftfolder +folder' and '-draftmessage msg' switches inv<*e the MH draft folder facility. This is
an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more information.

Upon exiting from the editor, repl will invoke the whatnow program. See whatnow (1) for a discussion of
available options. The invocation of this program can be inhibited by using the '-nowhatnowproc' switch.
(In truth of fact, it is the whalnow program which starts the initial edit Hence, '-nowhatnowproc' will
prevent any edit from occurring.)

/usr/new/lib/rnh/replcomps
or <mh-dir>/replcomps
$HOMFJ.mh_profile
<mh-dir>ldraft

The reply template
Rather than the standard template
The user profile
The draft file

Profile Components

Path: To detennine the user's MH directory
Alternate-Mailboxes: To detennine the user's mailboxes
Current-Folder: To find the default current folder
Draft-Folder: To find the default draft-folder
Editor: To override the default editor
Msg-Protect: To set mode when creating a new message (draft)
fileproc: Program to refile the message ;
mhlproc: Program to filter message being replied-to'
whatnowproc: Program to ask the ''What now?'' questions

See Also
comp(l), dist(l), forw(l), send(l), whatnow(l), mh-format(S)

[mh.6] MH UCI/UCB version

USD:S-57 The Rand MH Message Handlin& System REPL(l)

Defaultl

Contest

Bup

[mh.6]

'+folder' defaults to the current folder
'msg' defaults to cur
'-nocc all' at ATHENA sites,'-« all' otherwise
'-format'
'-noannotate'
'-nodraftfolder'
'-noinplace'
'-noquery'
'-width 72'

If a folder is given, it will become the current folder. The message replied-to will become the current
message.

If any addresses occur in the reply template, addresses in the template that do not contain hosts are
defaulted incorrectly. Instead of using the localhost for the default, repl uses the sender's host Moral of
the story: if you're going to include addresses in a reply template, include the host pcxtion of the address.

If whalnowproc is whatnow, then repl uses a built-in whatnow, it does not actually run the whatnow
program. Hence, if you define your own whatnowproc, don't call it whatnow since repl won't run it

If your current working directory is not writable, the link named''@'' is not available.

MH UCI/UCB version

RMF(l) The Rand MH Mesage Handling System USD:S-58

NAME
maf - remove folder

SYNOPSIS
maf [+folder] [-inte1'aetive] [-nointeractive] [-help]

DESCRIPrlON

Flies

Rm/removes all of the messages (files) within the specified (or default) folder, and then removes the folder
(directory) itself. If there are any files within the folder which n not a part of MH, they will not be
removed, and an error will be produced. If the folder is given explicitly or the '-nointeractive' option is
given, then die folder will be removed without confirmation. Othetwise, the user will be asked for
confirmation. If m(can't find the current folder, for some reason, the folder to be removed defaults to
'+inbox' with confirmation.

Rm/irreversibly deletes messages that don't have other links, so use it with caution.

If the folder being removed is a subfolder, the parent folder will become the new current folder, and rmf
will produce a message telling the user this has happened. This provides an easy mechanism for selecting a
set of messages, operating on the list, then removing the list and returning to the current folder from which
the list was exttacted.

Rm/ of a read-only folder will delete the private sequence and cur information (i.e., '' att-seq-folder''
entries) from the profile without affecting the folder ibelf.

$HOME/ .mh_profile The usa- profile

Profile Components

See Also

Defaults

Context

Bup

[mh.6]

Path: To determine the user's MH directory
Current-Folder: To find the default current folder

rmm(l)

'+folder' defaults to the current folder, usually with confirmation
'-interactive' if +folder' not given, '-nointeractive' otha'wise

Rm/ will set the current folder to the parent folder if a subfolder is removed; or if the current folder is
removed, it will make "inbox" currenL Otherwise, it doesn't change the current folder or message.

Although intuitively one would suspect that rmf works recursively, it does not. Hence if you have a
sub-folder within a folder, in order to rmfthe parent, you must first nnf each of the children.

MH UCI/UCB version

USD:8-59 The Rand MH Messa1e Handlin& System RMM(l)

NAME
rmm - remove messages

SYNOPSIS
rmm [+folder] [imgs] [-help]

DF.SCRIPrION

Flies

Rmm removes the specified messages by renaming the message files with preceding COllUIW. Many sites
consider files that start with a comma to be a temporary backup, and arrange for cron (8) to remove such
files once a day.

If the user has a profile component such •

nnmproc: /bin/rm

then instead of simply renaming the message file, rmm will call the named program to delete the file. Note
that at most installations, cron (8) is told to remove files that begin with a comma once a night.

Some users of csh prefer the following:

alias nnm 'refile +d'

where folder +d is a folder for deleted messages, and

alias mexp 'rm 'mhpath +d all"

is used to "expunge" deleted messages.

The current message is not changed by rmm, so a next will advance to the next message in the folder as
expected.

SHOME/.mh...profile The user profile

Profile Components

Path: To determine the user's MH directory
To find the default current folder
Program to delete the message

See Also

Defaults

Context

[mh.6]

Current-Folder:
nnmproc:

rmf(l)

'+folder' defaults to the current folder
'imgs' defaults to cur

If a folder is given, it will become the current folder.

MH UCI/UCB version

SCAN(l) The RaDd MH Mesage Handling System USD:8-60

NAME
scan - produce a one line per message scan listing

SYNOPSIS
scan [+folder] [msgs] [-dear] [-noclear] [-form fmmatfile] [-format string] [-header] [-nohead«]

[-width colunms] [-help]

DF.sCRIPfION

[mh.6]

Scan produces a on&-line-per-message listing of the specified messages. Each scan line contains the mes
sage numb« (name), the date, the "From:" field, the "Subject~' field, and, if room allows, some of the
body of the message. Fm" example:

lS+ 71 S Dcrocker nned cl..ast week I aKed some of
16 - 11 S dcroc:ter message id format c:I recommend
18 11 6 Obrien Re: Exit status from mkdir
19 11 7 Obrien "scan" listing fmnat in MH

The'+' on message IS indicates that it is the current message. 1be '-' on message 16 indicates that it has
been replied to, as indicated by a "Replied:" component produced by an '-annotate' switch to the repl
command

If there is sufficient room left on the scan line after the subject, the line will be filled with text from the
body, preceded by «, and terminated by » if the body is sufficiently short. Scan actually reads each of
the specified messages and parses them to extract the desired fields. During parsing, appropriate error mes
sages will be produced if there are format errors in any of the messages.

The '-header' switch produces a header line prior to the scan listing. Currently, the name of the folder and
the current date and time are output (see the HISTORY section for more information).

If the '-clear' switch is used and scan' s output is directed to a terminal, then scan will consult the $TERM
and $TERMCAP environment variables to determine your terminal type in order to find out how to clear
the screen prior to exiting. If the '-clear' switch is used and scan' s output is not directed to a terminal
(e.g., a pipe or a file), then scan will send a fmnfeed prior to exiting.

For example, the command:

(scan -clear -header; show all -show pr -f) 1 lpr

produces a scan listing of the current folder, followed by a formfeed, followed by a formatted listing of all
messages in the folder, one per page. Omitting '-show pr -r will cause the messages to be concatenated,
separated by a one--line header and two blank lines.

If scan encounters a message without a ''Date:'' field, rather than leaving that portion of the scan listing
blank, the date is filled-in with the l•t write date of the rnessageJ and post-fixed with a '*'. This is partic
ularly handy for scanning a draftfoltkr, as message drafts usually aren't allowed to have dates in them.

To override the output format used by scan, the '-format string'1or '-format file' switches are used. This
permits individual fields of the scan listing to be extracted with ease. The string is simply a format string
and the file is simply a format file. See mh-format (S) f<X' the details.

In addition to the standard escapes, scan also recognizes the following additional escape:
escape substitution
body the (compressed) first part of the body

On ·hosts where MH wu configured with the BERK option, scan hu two other switches: '-reverse', and
'-noreverse'. These make scan list the messages in reverse order. In addition, scan will update the MH

MH UCl/UCB version

USD:8-61 The Rand MH Meaage Handlin& System SCAN(l)

Files

context prior to starting the listing, so interrupting a long scan listing preserves the new context. MH pur
ism hate both of these ideu.

SHOMFJ.mlL.pofile The user profile

Profile com,......

SeeAllO

Defaults

Conto:t

History

Bugs

[mh.6]

Path: To determine the user's MH dilectory
Altemate-Mailboxei: To determine the user's mailboxes
Current-Folder: To find the default current folder

inc(l), pick(l), show(l), mh-format(S)

'+foldec' defaults to the folder current
'rm gs' defaults to all
'-format' defaulted as described above
'-noheader'
'-width' defaulted to the width of the terminal

If a folder is given, it will become the current folder.

Prior to using the format string mechanism, '-header' used to generate a heading saying what each column
in the listing was. Format strings prevent this from happening.

The argument to the '-format' switch must be interpreted as a single token by the shell that invokes scan.
Therefore, one must usually place the argument to this switch inside double-quotes.

MH UCI/UCB version

SEND(l) Tbe Rand MH Message Handlin& System USD:S-62

NAME
send- send a message

SYNOPSIS
send [-alias aliasfile] [-draft] [-draftfolder+folder] [-draftmessage msg] [-nodraftfolder] [-filter filterfile]

[-nofilter] [-format] [-noformat] [-forward] [-noforward] [-msgid] [-nomsgid] [-push]
[-nopush] [-verbose] [-noverbose] [-watch] [-nowatch] [-width columns] [file ...] [-help]

DESClllPTION

[mb.6]

Send will cause each of the specified files to be delivered (via post (8)) to each of the destinations in the
"To:", "cc:", "Bee:", and "Fee:" fields of the message. If send is re-disttibuting a message, as
invoked from dist, then the corresponding "Resent-xxx" fields are examined instead.

If '-push' is specified, s~nd will detach itself from the user's terminal and perform its actions in the back
ground. If push 'd and the draft can't be sent, then the '-forward' switch says that draft should be for
warded with the failure notice sent to the user. This differs from putting send in the background because
the output is trapped and analyzed by MH.

H '-verbose' is specified, send will indicate the interactions occurring with the transport system, prior to
actual delivery. H '-watch' is specified send will monitor the delivery of local and network mail. Hence,
by specifying both switches, a large detail of information can be gathered about each step of the message's
entry into the transport system.

The '-draftfolder +folder' and '-draftmessage msg' switches inv<*e the MH draft folder facility. This is
an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more informatiOn.

Send with no file argument will query whether the draft is the intended file, whereas '-draft' will suppress
this question. Once the transport system has successfully accepted custody of the message, the file will be
renamed with a leading comma, which allows it to be retrieved until the next draft message is sent H there
are errors in the formatting of the message, send will abort with a (hopefully) helpful error message.

If a "Bee:" field is encountered, its addresses will be used for delivery, and the "Bee:" field will be
removed from the message sent to sighted recipients. The blind recipients will receive an entirely new
message with a minimal set of headers. Included in the body of the message will be a copy of the message
sent to the sighted recipients. If '-filter filterfile' is specified, then this copy is filtered (re-formatted) prior
to being sent to the blind recipients.

Prior to sending the message, the fields "From: user@local", and "Date: now" will be appended to the
headers in the message. H the environment variable $SIGNATURE is set, then its value is used as your
personal name when constructing the ''From:'' line of the message. If this environment variable is not set,
then send will consult the profile entry "Signature" for this information. On hosts where MH was
configured with the UCI option, if $SIGNATURE is not set and the "Signature" profile entry is not
present, then the file $HOME'.signature is consulted. If '-msgid' is specified, then a "Message-ID:"
field will also be added to the message.

If send is re-distributing a message (when invoked by dist), then "Resent-" will be prepended to each of
these fields: "From:", "Date:", and "Message-ID:". If the message already contains a "From:" field,
then a "Sender: user@local" field will be added as well. (An already existing "Sender:" field is an
error!)

By using the '-format' switch, each of the entries in the "To:" and "cc:" fields will be replaced with
''standard'' format entries. This standard format is designed to be usable by all of the message handlers on
the various systems around the Internet. If '-noformat' is given, then headers are output exactly as they
appear in the message draft

MH UCI/UCB version

USD:B-63 The Rand MH Meaage Handling System SEND(l)

Flies

If an ''Fee: folder'' is encountered, the message will be copied to the specified folder for the sender in the
format in which it will appear to any non-Bee.receivers of the message. That is, it will have the appended
fields and field reformatting. The ''Fee:'' fields will be removed from all outgoing copies of the message.

By using the '-width columns' switch, the user can direct send as to how long it should make header lines
containing addresses.

By using the '-alias aliasfile' switch, the user can direct send to consult the named files for alias definitions
(nue than one file, each preceded by '-alias', can be named). See mh-alias (S) for more information.

$HOMFJ.mh...profile The user profile

Profile com.,. ...

See Also

Defaults

Context

fmh.61

Path: To determine the user's MH diJectory
Draft-Folder: To find the default draft-folder
Signature: To determine the user's mail signature
mailproc:-i>rogram to post failure notices
postproc: Program to post the message

comp(l), dist(l), forw(l), repl(l), mh-alias(5), post(8)

'file' defaults to <rnh-dir>ldraft
'-alias /usr/new/lib/mh/MailAliases'
'-nodraftfolder'
'-nofilter'
'-format'
'-forward'
'-nornsgid'
'-nopush'
'-noverbose'
'-nowatch'
'-width 72'

None

MH UCI/UCB version

SHOW(l) The Rand MH Mesage Handlin1 SJ*m USD:S-64

NAME
show - show (list) messages

SYNOPSIS

show [+folder] [msgs] [-draft] [-header] [-noheader] [-showproc program] [-noshowproc]
[switches for showproc] [-help]

DF.SCIUFrION

Files

Show lists each of the specified messages to the standard output (typically, the terminal). Typically, the
messages are listed exactly as they are, with no reformatting. A program named by the showproc profile
component is invoked to do the listing, and any switches not recognized by show are J>Msed along to that
program. The default program is known as more (1). To override the default and the showproc profile
component, use the '-showproc program' switch. For example, '-show pr' will cause the pr (1) program
to list the messages. The MH command mhl can be used as a showproc to ~how messages in a more uni
form format Normally, this program is specified as the showproc is the us«'s .mh_Jrofile. See mJal (1)
for the details. If the '-noshowproc' option is specified, '/bin/cat' is used instead of showproc.

The '-header' switch tells show to display a one-line description of the message being shown. This
description includes the folder and the message number.

If no 'msgs' are specified, the current message is used. If more than one message is specified, more will
prompt for a <RETURN> prior to listing each message. more will list each message, a page at a time.
When the end of page is reached, more will ring the bell and wait f<r a <SPACE> or <RETURN>. If a
<RETURN> is entered, more will print the next line, whereas <SPACE> will print the next screenful. To
exit more, type "q".

If the standard output is not a terminal, no queries are made, and each file is listed with a one-line header
and two lines of separation.

''show -draft'' will list the file <mh-dir>/draft if it exists.

If the profile entry "Unseen-Sequence" is present and non-empty, then show will remove each of the
messages shown from each sequence named by the profile entry. This is similar to the
"Previous-Sequence" profile entry supported by all MH commands which take 'msgs' or 'msg' argu
ments.

$HOME/ .rnh_profile The user profile

Profile Components

Path: To detennine the user's MH directory
To find the default current folder

See Also

Defaults

[mb.6]

Current-Folder:
Unseen-Sequence:
showproc:

To name sequences denoting unseen messages
Program to show messages

mhl(1), more(1), next(1), pick(l), prev(1), scan(1)

'+folder' defaults to the current folder
'msgs' defaults to cur
'-format'
'-header'

MH UCI/UCB version

USD:S-65 The Rand MH Messa1e Handlin& System SHOW(l)

Con tat

Bugs

[mh.6]

If a folder is given, it will become the current folder. The last message shown will become the current
message.

1be '-header' switch doesn't work when 'nwgs' expands to more than one message. If the showproc is
mhl, then is problem can be circumvented by referencing the ''messagename'' field in the mN format file.

Show updates the user's context before showing the message. Hence if show will mart messages as seen
prior to the user actually seeing them. This is generally not a problem, unless the user relies on the
"unseen" messages mechanism, and interrupcs show while it is showing "unseen" messages.

If showproc is mJal, then show uses a built-in mhl: it does not actually nm the mhl program. Hence, if you
define your own showproc, don't call it mJal since show won't nm it.

If more (1) is your showproc (the default), then avoid running show in the background with only its
standard output piped to another process, as in

show I imprint &

Due to a bug in more, show will go into a "tty input" state. To avoid this problem, re-direct show's
diagn~tic output as well. For users of csh:

show I& imprint &

For users of sh:

show 2>& 1 I imprint &

MH UCI/UCB version

SORTM(l) Tlae Rand MR Message Handlin& System USD:l-66

NAME
sortm - sort messages

SYNOPSIS .
sortm [+folder] [msgs] [-datefield field] [-verbose] [-noverbose] [-help]

DF.SCJllPl'ION

Flies

Sortm sorts the specified messages in the named folder according to die chrmological order of the ''Date:''
field of each message. Messages which are in the folder, but not specified by 'msgs', me moved to the end

. of the folder. If a message does not exist (the folder has a gap), sortw1 may fill the gap if convenient

The '-verbose' switch directs sortm to tell die user the general actiom that it is taking to place the folder in
sorted ooler.

The '-datefield field' switch tells sortm the name of the field to use when making the date comparison. If
the user has a special field in each message, such as "BB-Posted:" or "Delivery-Date:", then the
'-datefield' switch can be used to direct sortm which field to examine.

$HOMF1.mh_profile The user profile

Profile Components

See Also

Defaults

Context

History

Bup

[mh.6]

Path: To detennine the user's MH directory
Current-Folder: To find the default current folder

folder (1)

'+folder' defaults to the current folder
'ms gs' defaults to all
'-datefield date'
'-noverbose'

If a folder is given, it will become the current folder. If the current message is moved, sortm will preserve
its status as current

Timezones used to be ignored when comparing dates: they aren't any more.

If sortm encounters a message without a date-field, or if the message has a date-field that sortm cannot
parse, then sortm attempts to keep the message in the same relative position. This does not always work.
For instance, if the first message encountered lacks a date which can be parsed, then it will usually be
placed at the end of the messages being sorted.

When sortln complains about a message which it can't temporarlly order, it complains about the message
number prior to sorting. It should indicate what the message number will be after sorting.

MH UCI/UCB version

USD:8-67 The Rand MH Message Handlin& System VMH(l)

NAME
vmh - visual front-end to MH

SYNOPSIS

vmh [-prompt suing] [-vmhproc program] [-novmhproc] [switches for vmhproc] [-help]

DESCRIPTION

Flies

vmh is a program which implements the server side of the MH window management protocol and uses
curses (3) routines to maintain a split-screen interface to any program which implements the client side of
the protocol This latter program, called the vmhproc, is specified using the '-vmhproc program' switch.

The upshot of all this is that one can run msh on a display terminal and get a nice visual interface. To do
this, fer example, just add the line

mshproc:vmh

to your .mh...profile. (This takes advantage of the fact that msh is the default vmhproc fa vmh.)

In order to facilitate things, if the '-novmhproc' switch is given, and vmh can't run on the user's termin~
the vmhproc is run directly without the window management protocol.

After initializing the protocol, vmh prompts the user for a command to be given to the client. Usually, this
results in output being sent to one or more windows. H a output to a window would cause it to scroll, vmh
prompts the user for instructions, roughly permitting the capabilities of less or more (e.g., the ability to
scroll backwards and forwards):

SPACE advance to the next windowful
RETURN • advance to the next line
y • retreat to the previous line
d • advance to the next ten lines
u • retreat to the previous ten lines
g • go to an arbitrary line

(preceed g with the line number)
G • go to the end of the window

(if a line number is given, this acts like 'g')
C1RL-L refresh the entire screen
h print a help message
q abort the window

(A'*' indicates that a numeric prefix is meaningful for this command.)

Note that if a command resulted in more than one window's worth of information being displayed, and you
allow the command which is generating information for the window to gracefully finish (i.e., you don't use
the 'q' command to abort information being sent to the window), then vmh will give you one last change to
peruse the window. This is useful for scrolling back and forth. Just type 'q' when you're done.

To abnormally terminate vmh (without core dump), use <QUIT> (usually CTRL-\). For instance, this does
the ''right'' thing with bbc and msh.

$HOME/.mh_profile The user profile

Profile Components
Path: To determine the user's MH directory

[mh.6] MH UCI/UCB version

VMH(l) The Rand MH Meaage Handlin& System USD:l-68

SeeAllO

Defaults

Context

Bup

[mh.6]

msh(l)

'-prompt (vmh)'
'-vmhproc ah'

None

The argument to the '-prompt' switch must be interpreted as a single token by the shell that invokes vmh.
Therefore, one must usually place the argument to this switch inside double-quotes.

At present, there is no way to pass signals (e.g., interrupt, quit) to the client However, generating QUIT
when wnh is reading a command from the terminal is sufficient to tell the client to go away quickly.

Acts strangely (loses peer or botches window management protocol with peer) on random occasions.

MH UCI/UCB version

USD:S-69 The Rand MR Messa1e Handlin& System WHATNOW(l)

NAME
whatnow - prompting front~d fm send

SYNOPSIS
whatnow [-draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [-editor editor] [-noedit]

[-prompt string] [file] [-help]

DESCIUPrION

Flies

[mh.6]

Whatnow is the default program that queries the user about the disposition of a composed draft. It is nor
mally invoked by one of comp, dist,forw, or repl after the initial edit

When started, the editor is started on the draft (unless '-noedit'·is given, in which case the initial edit is
suppressed). Then, whatnow repetitively JX'Ompts the user with ''What now?'' and awaits a response. The
valid responses are
display to list the message being distributed/replied-to on

the terminal
edit to re-edit using the same editor that was used on the

preceding round unless a profile entry
'' <lasteditor>-next <editor>'' names an alternate editor

edit <editor> to invoke <editor> for further editing
l~t to list the draft on the terminal
push to send the message in the background
quit to terminate the session and preserve the draft
quit -delete to terminate, then delete the draft
refile +folder to refile the draft into the given folder
send to send the message
send -watch to cause the delivery process to be monitored
whom to list the addresses that the message will go to
whom -check to list the addresses and verify that they are

acceptable to the transport service

For the edit response, any valid switch to the editor is valid. Similarly, for the send and whom responses,
any valid switch to send (1) and whom (1) commands, respectively, are valid. For the push response, any
valid switch to send (1) is valid (as this merely invokes send with the '-push' option). For the refile
response, any valid switch to the fileproc is valid. For the display and list responses, any valid argument to
the lproc is valid. If any non-switch arguments are present, then the pathname of the draft will be
excluded from the argument list given to the lproc (this is useful for listing another MH message).

See mh-profile (5) for further information about how editors are used by MH. It also discusses how com
plex environment variables can be used to direct whatnow's actions.

The '-prompt string' switch sets the prompting string for whatnow.

The '-draftfolder +folder' and '-draftmessage msg' switches invoke the MH draft folder facility. This is
an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more information.

$HOME/ .mh_profile
<mh-dir>/draft

The user profile
The draft file

MH UCI/UCB version

WHATNOW(l) The Rand MH Mesage Handling System· USD:S-70

Pro81eC-.,__..

See.Also

Defaults

Contot

Bugs

[mh.6]

Path:
Draft-Folder:
Ediur.
<lasteditor>-next:
fileproc:
lproc:
sendproc:
whomproc:

send(l), whom(l)

To detennine the user's MH directory
To find the default draft-folder
To override the default editm'
To name an editm' to be used after exit from <lasteditor>
Program to refile the message
Program to list the contents of a message
Program to use to send the message
Program to determine who a message would go to

'-prompt "What Now?'"

None ·

The argument to the '-prompt' switch must be interpreted as a single token by the shell that invokes
whatnow. Therefore, one must usually place the argument to this switch inside double-quotes.

If sendproc is send, then whatnow uses a built-in send, it does not actually run the send program. Hence, if
you define your own sendproc, don't call it send since whatnow won't run it

MH UCl/UCB version

USD:8-71 The Rand MH Message Handling System WHOM(l)

NAME
whom - report to whom a message would go

SYNOPSIS
whom [-alias aliasfile] [-check] [-nocheck] [-draft] [-draftfolder +folder] [-draftmessage msg]

[-nodraftfolder] [file] [-help]

DF.sCIUYrlON

Flies

Whom is used to expand the headers of a message into a set of addresses and optiooally verify that those
addresses are deliverable at that time (if '-check' is given).

The '-draftfolder +folder' and '-draftmessage msg' switches invoke the MH drnft folder facility. This is
an advanced (and highly useful) feature. Consult the Advanced Features section of the MH manual for
more information.

By using the '-alias aliasfile' switch, the user can direct send to comult the named files for alias definitions
(more than one file, each preceeded by '-alias', can be named). See mh-alias (5) for more information.

$HOME/.m1Lprofile The user profile

Profile Components

See Also

Defaults

Context

Bugs

[mh.6]

Draft-Folder: To find the default draft-folder
postproc: Program to post the message

mh-alias(5), post(8)

'file' defaults to <mh-dil'>/draft
'-nocheck'
'-alias /usr/new /lib/mh/MailAliases'

None

With the '-check' option, whom makes no guarantees that the addresses listed as being ok are really
deliverable, rather, an address being listed as ok means that at the time that whom was run the address was
thought to be deliverable by the transport service. For local addresses, this is absolute; for network
addresses, it means that the host is known; for uucp addresses, it (often) means that the UUCP network is
available for use.

MH UCI/UCB version

The Rand MH Mesuae llanclllng System USD:l-72

MORE DETAILS

This section describes some of the mce intense points of the MH system, by expanding on topics previously
discussed The f<X'lllat presented conforms to the standard form for the description of UNIX documentatioo.

USD:8-73 The Rand MH Message Handlin& System MH-ALIAS(S)

NAME
mh-alias - alias file for MH message system

SYNOPSIS
any MH command

DF.SCRIPI'ION

[mh.6]

This desaibes both MH personal alias files and the (primary) alias file for mail delivery, the file

/usr/new/lib/mh/MailAliases

It does not describe aliases files used by the message ttansport ·system. Each line of the alias file has the
format

or

or

where:

alias : ~s-group

alias ; ~s-group

<alias-file

address-group := address-list
I "<" file
I "="UNIX-group
I '' +'' UNIX-group
I "•"

address-list := address
I address-list, address

Continuation lines in alias files end with'\' followed by the newline character.

Alias-file and file are UNIX file names. UNIX-group is a group name (or number) from !etc/group. An
address is a "simple" Internet-style address. Througout this file, case is ignored, except for alias-file
names.

If the line starts with a '<', then the file named after the '<' is read for more alias definitions. The reading
is done recursively, so a '<' may occur in the beginning of an alias file with the expected results.

If the address-group starts with a'<', then the file named after the'<' is read and its contents are added to
the address-list for the alias.

If the address-group starts with an '=',then the file !etc/group is consulted for the UNIX-group named
after the '='. Each login name occurring as a member of the group is added to the address-list for the alias.

In contrast, if the address-group starts with a '+', then the file !etc/group is consulted to determine the
group-id of the UNIX-group named after the '+'. Each login name occuning in the letclpasswd file whose
group-id is indicated by this group is added to the address-list for the alias.

If the address-group is simply '•',then the file letclpasswd is consulted and all login names with a userid
greater than some magic number (usually 200) are added to the address-list for the alias.

In match, a trailing • on an alias will match just about anything appropriate. (See example below.)

An approximation of the way aliases are resolved at posting time is (it's not really done this way):

MH UCl/UCB version

MH-ALIAS(5) The Rand MH Message Handling System USD:S-74

1) Build a list of all addresses from the message to be delivered, eliminating duplicate addresses.

2) If this draft originated on the local host, then for those addresses in the message that have no
host specified, perform alias resolution.

3) Fm each line in the alias file, compare "alias" against all of the existing addresses. If a match, ,
remove the matched ''alias'' from the address list, and add each new address in the address-group
to the address list if it is not already on the list. The alias itself is not usually output, rather the
address-group that the alias maps to is output instead. If "alias" is terminated with a';' instead
of a ':', then both the "alias" and the address are output in the conect format. (This makes
replies possible since MH aliases and personal aliases are unknown to the mail transport system.)

Since the alias file is read line by line, forward references work, but backward references are not recog
nized, thus, there is no recursion.

Example:
<lusr/new/lib/mh/BBoardAliases
sgroup: fred, fear, freida
fred: frated@UCI
UNIX-committee: <Unix.aliases
staff: =Staff
wheels: +wheel
everyone:•
news.•: news

The first line says that more aliases should immediately be read from the file
lusrlnewlliblmhlBBoardAliases. Following this, "fred" is defined as an alias fa "frated@UCI", and
"sgroup" is defined as an alias for the three names "frated@UCI", "fear", and "freida". Next, the
definition of "UNIX-committee" is given by reading the file unix.aliases in the users MH directory,
"staff' is defined as all users who are listed as members of the group "staff' in the !etc/group file, and
"wheels" is defined as all users whose group-id in letclpasswd is equivalent to the "wheel" group.
Finally, "everyone" is defined as all users with a user-id in letclpasswd greater than 200, and all aliases of
the form "news.<anything>" are defined to be "news".

The key thing to understand about aliasing in MH is that aliases in MH alias files are expanded into the
headers of messages posted. This aliasing occurs first, at posting time, without the knowledge of the mes
sage transport system. In contrast, once the message transport system is given a message to deliver to a list
of addresses, for each address that appears to be local, a system-wide alias file is consulted. These aliases
are NOT expanded into the headers of messages delivered.

Helpful Hints

[mh.6]

To use aliasing in MH quickly, do the following:

First, in your .mh....profile, choose a name for your primary alias file, say ''aliases'', and add three
lines:

ali: -alias aliases
send: -alias aliases
whom: -alias ailases

Second, create the file "aliases" in your MH directory.

Third, start adding aliases to your ''aliases'' file as appropriate.

MH UCI/UCB version

USD:8-75 The Rand MH Message Handling System MH-ALIAS(S)

Fllea

/usr/new/lib/mh/MailAliases Primary alias file

Profile CompameM8
None

SeeAllO

Defaults

Contat

History

Bugs

[mh.6]

ali(l), send(l), whom(l), group(S), passwd(S), conftict(8), post(8)

None

None

In previous releases of MH, only a single, system-wide mh-alias file was supported. This led to a number
of problems, since only mail-system administrators were capable of (un)defining aliases. Hence, the
semantics of mh-alias were extended to support personal alias files. Users of MH no longer need to bother
mail-system administrators for keeping information in the system-wide alias file, as each MH user can
create/modify/remove aliases at will from any number of personal files.

Although the forward-referencing semantics of mh-alias files prevent recursion, the '' < alias-file''
command may defeat this. Since the number of file descriptors is finite (and very limited), such infinite
recursion will terminate with a meaningless diagnostic when all the fds are used up.

MH UCl/UCB version

MH-FORMAT(5) Tile Rand MH Meaage llaadllng System USD:l-76

NAME
mh-format- format file fm MH message system

SYNOPSIS

some MH commands

DF.SCRIPrlON

[mh.6]

Several MH commands utilize either a format suing m a format file during their execution. For example,
scan (1) uses a fmnat string which directs it how to generate the scan listing for each message; repl (1)
uses a format file which directs it how to generate the reply to a message, and so on.

Format strings are designed to be efficiently parsed by MH since they represent an integral part of MH.
This means lhat novice, caual. or even advanced users of MH should deal_ with them. It suffices to have
your local MH expert actually write new format commands or modify existing ones. This manual section
explains how to do just that.

A format string is similar to a print/ (3) string, but uses multi-letter '%'-escapes. When specifying a
string, the usual C backslash characters are honored: '\b', '\r, '\n ', '\r', and '\t'. Continuation lines in for
mat files end with'\' followed by the newline character.

The interpretation model is based on a simple machine with two registers, num and str~ The former con
tains an integer value, the latter a string value. When an escape is processed, if it requires an argument, it
reads the current value of either num or str; and, if it returns a value, it writes either num or str.

Escapes are of three types: components, functions, and, control. A component escape is ·specified as
'%{name}', and is created for each header found in the message being processed. For example '%{date}
refers to the ''Date:'' field of the appropriate message. A component escape is always string valued.

A control escape is one of: '%<escape', '%1', and'%>', which correspond to if-~lse constructs: if
'escape' is non-zero (for integer-valued escapes), or non-empty (for string-valued escapes), then every
thing up to '%1' or '%>' (whichever comes first) is interpreted; otherwise, then skip to '%1' or '%>'
(whichever comes first) and start interpreting again.

A function escape is specified as '%(name)', and is statically defined. Here is the list:
escape
nonzero
zero
eq
ne
gt
null
nonnull
puts tr
putstrf

putnum
putnumf

msg
cur
size
strlen
me
plus
minus
charleft

argument returnsinterpretation
integer integer num is· non-zero
integer integer num is zero
integer integer num == width
integer integer num !=width
integer integer width > num
string integer str is empty
string integer str is non-empty
string print str
string print str in the specified width

integer
integer

(e.g., %20(putstrf{subject})
printnum
print num in the specified width
(e.g., %4(putnumf(msg))

integer messagenumber
integer message is current
integer size of message

string integer length of str
string the user's mailbox
integer add width to num
integer subtract num from width
integer space left in output buffer

MH UCI/UCB version

USD:S-77 Tlae Rand MH Messaae Handlin& System MH-FORMA T(5)

[mh.6]

timenow integer seconds since the UNIX epoch

When str is a date, these escapes are useful:
esc~

sec
min
hour
mday
mon
wday
year
yday
dst
zone
sday

clock
relock
month
lmonth
tzone
day
weekday
tws
pretty
nodate

argument returnsi~rpretation
string integer seconds of the minute
string integer minutes of the day
string integer hours of the day (24 hour clock)
string integer day of the month
string integer month of the year
string integer day of the week (Sunday-0)
string integer year of the century
string integer day of the year
string integer daylight savings in effect
string integer timezone
string integer day of the week known

1 for explicit in date
0 for implicit (MH figured it out)
-1 for unknown (MH couldn't figure it out)

string integer seconds since the UNIX epoch
string integer seconds prior to current time
string string month of the year
string string month of the year (long form)
string string timezone
string string day of the week
string string day of the week (long)
string string official 822 rendering of the date
string string a more user-friendly rendering
string date wasn't parseable

When str is an address, these escapes are useful:
escape argument returnsinterpretation
pers string string the personal name of the address
mbox string string the local part of the address
host string string the domain part of the address
path string string the route part of the address
type string integer the type of host

-1 for uucp
0 for local
1 for network
2 for unknown

nohost
ingrp
gnarne

string integer no host was present in the address
string integer the address appeared inside a group
string string name of the group (present f<X" first

note string
proper string
friendly string
mymbox string
formataddr string

address only)
string commentary text
string official 822 rendering of the address
string a more user-friendly rendering

the address refers to the user's mailbox
print str in an address list

With all this in mind, here's the default format string for scan. It's been divided into several pieces for rea
dability. The first part is:

%4(putnumf(msg))%<(cur)+%1 %>%<{replied}-%!%>

which says that the message number should be printed in four digits, if the message is the current message
then a'+' else a space should be printed, and if a ''Replied:'' field is present then a'-' else a space should

MH UCI/UCB version

MH-FORMAT(S) The Rand MH Meaa1e llandlln1 System USD:l-78

Files

be printed. Next

~tnumf(mon{ date}))1%02(putnumf(mday{ date}))

the hours and minutes are printed in two digits (zero filled). Next,

%<{date} %1•>

If no ''Date:'' field was present, then· a '•' is printed, otherwise a space. Next,

%<(mymbox {from})To:% 14(putstrf(friencDy{to}))

if the message is from me, print 'To:' followed by a ''user-friendly'' rendering of the first address in the
''To:'' field Continuing,

%1%17(putstrf(friendly{from}))%>

if the message isn't from me, then the print the ''From:'' address is printed. And finally,

%{subject}«%{body}»

the subject and initial body are printed.

Although this seems complicated, in point of fact, this method is ftexible enough to ex~t individual fields
and print them in any format the user desires.

H the '-form formatfile' switch is given, scan will treat each line in the named file u a format string and
act accordingly. This lets the user employ canned scan listing fonnats. Take a look at the three· files
/usr/new/lib/mh/scan.time, /usr/new/lib/mh/scan.size, and /usr/new/lib/mh/scan.timely.

None

Profile Components

None

See Also

ap(8), dp(8)

Defaults

None

Context

None

Bugs
On hosts where MH was configured with the BERK option, address parsing is not enabled.

[mh.6] MH UCI/UCB version

USD:8-79 Tile Rand Mii Messaae Handlin& System Mll-MAIL(5)

NAME
mh-mail - message format f<X" MH message system

SYNOPSIS
any MH command

DF.SC1UPI10N

[mb.6]

MH processes messages in a particul• format. It should be noted that although neither Bell ncr Berkeley
mailers produce message files in the fmnat that MH pefers, MH can read message files in that antiquated
format.

Each user possesses a mail drop box which initially receives all messages processed by post (8). Inc (1)
will read from that drop box and incorporate the new messages found there into the user's own mail folders
(typically '+inbox'). The mail drop box consists of one or more messages.

Messages are expected to consist of lines of texL Graphics and binary data are not handled. No data
compression is accepted. All text is clear ASCil 7-bit data.

The general "memo" framework of RFC-822 is used. A message consists of a block of information in a
rigid format, followed by general text with no specified format. The rigidly fonnatted first part of a mes
sage is called the header, and the free-fonnat portion is called the body. The header must always exist, but
the body is optional. These parts are separated by an empty line, i.e., two consecutive newline characters.
Within MH, the header and body may be separated by a line consisting of dashes:

To:
Cc:
Subject:

The header is composed of one or more header items. Each header item can be viewed as a single logical
line of ASCil characters. If the text of a header item extends across several real lines, the continuation
lines are indicated by leading spaces or tabs.

Each header item is called a component and is composed of a keyword or name, along with associated text.
The keyword begins at the left margin, may NOT contain spaces or tabs, may not exceed 63 characters (as
specified by RFC-822), and is terminated by a colon(':'). Certain components (as identified by their key
words) must follow rigidly defined formats in their text portions.

The text for most formatted components (e.g., "Date:" and "Message-Id:") is produced automatically.
The only ones entered by the user are address fields such as "To:", "cc:", etc. Internet addresses are
assigned mailbox names and host computer specifications. The rough format is ''local@domain' ', such as
"MH@UCI", or "MH@UCl-ICSA.ARPA". Multiple addresses are separated by commas. A missing
host/domain is assumed to be the local host/domain.

As mentioned above, a blank line (or a line of cmhes) signals that all following text up to the end of the file
is the body. No formatting is expected or enfon-.ed within the body.

Following is a list of header components that are considered meaningful to various MH programs.
Date:

From:

Added by post (8), contains date and time of the message's entry into the transport system.

Added by post (8), contains the address of the author or authors (may be more than one if a
"Sender:" field is present). Replies are typically directed to addresses in the "Reply-To:" or
''From:'' field (the former has precedence if present).

MH UCI/UCB version

MH-MAIL(5) The Rand MH Message Handlin& System USD:l-80

[mh.6]

Sender:
Added by post (8) in the event that the message already has a ''From:'' line. This line contains
the address of the actual sender. Replies are never sent to addresses in the ''Sender:'' field.

To:
Contains addresses of primary recipients.

cc:
Contains addresses of seconclary recipients.

Bee:
Still more recipients. However, the "Bee:" line is not copied onto the message as delivered, so
these recipients are not listed. MH uses an encapsulation method for blind copies, see send (1).

Fee:
Causes post (8) to copy the message into the specified folder f<X the sender, if the message was
successfully given to the ttansport system.

Message-ID:
A unique message identifier added by post (8) if the '-msgid' ftag is set.

Subject:
Sender's commentary. It is displayed by scan (1).

!~Reply-To:
A commentary line added by repl (1) when replying to a message.

Resent-Date:
Added when redistributing a message by post (8).

Resent-From:
Added when redistributing a message by post (8).

Resent-To:
New recipients for a message resent by dist (1).

Resent-«:
Still more recipients. See "cc:" and "Resent-To:".

Resent-Bee:
Even more recipients. See "Bee:" and "Resent-To:".

Resent-Fee:
Copy resent message into a folder. See "Fee:" and "Resent-To:".

Resent-Message-Id:
A unique identifier glued on by post (8) if the '-msgid' ftag is set. See "Message-Id:" and
''Resent-To:''.

Resent
Annotation for dist (1) under the '-annotate' option.

Forwarded:
Annotation forforw (1) under the '-annotate' option.

Replied:
Annotation for repl (1) under the '-annotate' option.

MH UCI/UCB version

USD:S-81

Flla

/usr/spool/mail/SUSER

Profile CompmeMI
None

See Also

The Rand MH Meaage Handling System

Location of mail drop

Standard/or the Formal of ARPA l~rMt Tat Messages (aka RFC-822)

Default.
None

Con tot
None

[mh.6] MH

MH-MAIL(S)

UCI/UCB version

MH-PROFILE(S) The Rand MH Message Hancllin1 System USD:l-82

NAME
.mlLprofile - user customization for MH message system

SYNOPSIS

any MH command

DF.sCRIPI'ION

[mh.6]

Each user of MH is expected to have a file named .mlt._profik in bis or her home directmy. 'Ibis file con
tains a set of user parameters used by some or all of the MH family of progrmm. Each line of the file is of
the format

profile-compoMnt: valw

The possible profile components are exemplified below. Only 'Path:' is. mandarory. The others are
optional; some have default values if they are not present. In the notation used below, (profile, default)
indicates whether the information is kept in the user's MH profile or MH context, and indicates what the
default value is.

Path: Mail

context: context

Locates MH ttansactions in directory ''Mail''. (profile, no default)

Declares the location of the MH context file, see the IUSTORY section below. (profile,
default <mh-dir>/context)

Current-Folder: inbox
Keeps ttack of the current open folder. (context, default: +inbox)

Previous-Sequence: pseq .
Names the sequences which should be defined as the 'msgs' or 'msg' argument given to
the program. If not present, or empty, no sequences are defined. Otherwise, for each
name given, the sequence is first zero'd and then each message is added to the sequence.
(profile, no default)

Sequence-Negation: not
Defines the string which, when prefixed to a sequence name, negates that sequence.
Hence, "notseen" means all those messages that are not a member of the sequence
"seen". (profile, no default)

Unseen-Sequence: unseen
Names the sequences which should be defined as those messages recently incorporated
by inc. Show knows to remove messages from this sequence once it thinks they have
been seen. If not present, or empty, no sequences are defined. Otherwise, for each name
given, the sequence is first zero'd and then each message is added to the sequence.
(profile, no default)

mh-sequences: .mlLSequences
The name of the file in each folder which defines public sequences. To disable the use of
public sequences, leave the value portion of this entry blank. (profile, default:
.mb._sequences)

arr-seq-folder. 172 178-181 212
Keeps ttack of the private sequence called seq in the specified folder. (context, no
default)

Editor: /usr/ucb/ex

MH UCI/UCB version

USD:8-83 The Rand MH Meaage llancllin1 System MH-PROFIL~S)

Defines editor to be used by comp (1), dist (1),/orw (1), and repl (1). (profile, default
prompter)

Msg-Protect: 644
Defines octal protection bits for message files. See chmod (1) for an explanation of the
octal number. (profile, default: 0644)

Folder-Protect: 711
Defines protection bits for folder directories. (profile, default 0711)

program: default switches
Sets default switches to be used whenever the mh program program is invoked. For
example, one could override me Editor. profile component when replying to messages
by adding a component such as:

repl: -editor /bin/eel
(profile, no defaults)

lasteditor-next nexteditor

bboards: system

Names ''nexteditor'' to be the default editor after using ''last.editor''. This takes effect at
"What now?" level in comp, dist,forw, and repl. After editing the draft with "lastecli
ta", the default editor is set to be "nexteditor". If the user types "edit" without any
arguments to "What now?", then "nexteditor" is used. (profile, no default)

Tells bbc which BBoards you are interested in. (profile, default system)

Folder-Stack: folders

mhe:

The contents of the folder-stack for the folder command. (context, no default)

If present, tells inc to compose an MHE auditfile in addition to its other tasks. MHE is
Brian Reid's Emacs front-end for MH. An early version is supplied with the mh.6 distri
bution. {profile, no default)

Alternate-Mailboxes: mh@uci-750a, bug-mh*

[mh.6]

Tells repl and scan which addresses are really yours. In this way, repl knows which
addresses should be included in the reply, and scan knows if the message really ori
ginated from you. Addresses must be separated by a comma, and the hostnames listed
should be the ''official'' hostnames for the mailboxes you indicate, as local nicknames
for hosts are not replaced with their official site names. For each address, if a host is not
given, then that address on any host is considered to be you. In addition, an asterisk('*')
may appear at either or both ends of the mailbox and host to indicate wild-card match
ing. (profile, default: your user-id)

Draft-Folder: drafts
Indicates a default draft folder for comp, dist,forw, and repl. {profile, no default)

digest-issue-list: 1
Tellsforw the last issue of the last volume sent f<X" the digest list. (context, no default)

digest-volume-list: 1

MailDrop: .mail

Tellsforw the last volume sent for the digest list. (context, no default)

Tells inc your maildrop, if different from the default This is superceded by the $MAIL
DROP environment variable. (profile, default: /usr/spooVmail/$USER)

MH UCI/UCB version

MH-PROFILE(S) The Rand MH Messaae llancllin1 System USD:l-84

[mb.6]

Signature: Rand MH System (agent: Marshall Rose)
Tells s~nd your mail signature. This is superceded by the $mGNATURE environment
variable. On hosts where MH was configured with the UCI option, if $mGNA TURE is
not set and this profile entty is not present, the file SHOMFJ .signature is consulted.
(profile, no default) ·

The following profile elements are used whenever an MH program inv<*es some other program such as
mor~ (1). The .rnlL.profik can be used to select alternate programs iftbe user wishes. The default values
are given in the examples.

fileproc: /usr/new/mh/refile
incproc: /usr/new/mh/iw:,
imtallproc: /usr/new/lib/mh/install-mb
lproc: /usr/ucb/more
mailproc: /usr/new/mh/mhmail
mhlproc: /usr/new/lib/mh/mhl
moreproc: /usr/ucb/more
mshproc: /usr/new/mh/msh
packproc: /usr/new/mh/packf
postproc: /usr/new/lib/mh/post
rmmproc: none
rmfproc: /usr/new/mh/rmf
sendproc: /usr/new/mh/send
showproc: /usr/ucb/more
whatnowproc: /usr/new/mh/whatnow
whomproc: /usr/new/mh/whom

If you define the environment variable $MH, you can specify a profile other than .mh....profile to be read by
the MH programs that you invoke. If the value of $MH is not absolute, (i.e., does not begin with a I), it
will be presumed to start from the current working directory. This is one of the very few exceptions in MH
where non-absolute pathnames are not considered relative to the user's MH directory.

Similarly, if you define the environment variable $MHCONTEXT, you can specify a context other than
the normal context file (as specified in the MH profile). As always, unless the value of $MHCONTEXT is
absolute, it will be presumed to start from your MH directory.

MH programs also support other environment variables:

$MAILDROP : tells inc the default maildrop
This supercedes the uMailDrop:" profile entty.

$SIGNATURE : tells send and post your mail signature
This supercedes the "Signature:" profile entry.

$HOME : tells all MH programs your home directory

$SHELL : tells bbl the default shell to run

$TERM : tells MH your terminal type •
The $TERMCAP environment variable is also consulted. In particular, these tells scan and mhl
how to clear your terminal, and how many columns wide your terminal is. They also tell mhl how
many lines long your terminal screen is.

$editalt : the alternate message
This is set by dist and repl during edit sessions so you can peruse the message being distributed or
replied-to. The message is also available through a link called ''@'' in the current directory if
your current working directory and the folder the message lives in are on the same UNIX

MH UCI/UCB version

USD:S-85 The Rand MH Mesage Handlin& System MH-PROFILE(S)

Flies

filesystem.

$mhdnft : the path to the working draft
This is set by comp, dist, forw, and repl to tell the what1t0Wproc which file to ask ''What now?''
questions about. In addition, dist, forw, and repl set $mbfolder if appropriate. Further, dist and
repl set $mbaltms1 to tell the wlrabwwproc about an alternate mess11e asocilted with the draft
(the message being disaibuted or replied-to), and dist sets $mbdist to tell the wltatnowproc that
message re-distributim is occuning. Also, $mbeditor is set to tell the wltatnowproc the user's
choice of edit« (unless overridden by '-noedit'). Similarly, $mla111e may be set by comp.
Finally, $mbmessages is set by dist,forw, and repl if annotations are to occur (along with $mhan
notate, and $mbinplace). It's amazing all the information that has to get pmed via environment
variables to make the "What now?" interface look squeaky clean to the MH user, isn't it? The
reason for all this is that the MH user can select any prOgram as the wltatnowproc, including one
of the standard shells. As a result, it's not possible to pas information via an argument list
If the WHATNOW option was set during MH configuration (type '-help' to an MH command to
find out), and if this environment variable is set, if the commands refile, send, sltow, or wltom are
not given any 'msgs' arguments, then they will default to using the file indicated by $mhdraft.
This is useful for getting the default behavior supplied by the default whatnowproc.

$mhfolder : the folder containing the alternate message
This is set by dist and repl during edit sessions so you can peruse other messages in the current
folder besides the one being distributed or replied-to. The $mhfolder environment variable is also
set by show, prev, and next for use by mhl.

$MHBBRC:
If you define the environment variable SMHBBRC, you can specify a BBoards information file
other than .bbrc to be read by bbc. If the value of SMHBBRC is not absolute, (i.e., does not
begin with a I), it will be presumed to start from the current working directory.

$MHFD :
If the OVERHEAD option was set during MH configuration (type '-help' to an MH command to
find out), then if this environment variable is set, MH considers it to be the number of a
file-descriptor which is opened, read-only to the MH profile. Similarly, if the environment vari
able $MHCONTEXTFD is set, this is the number of a file-descriptor which is opened read-only
to the MH context This feature of MH is experimental, and is used to examine possible speed
improvements for MH startup. Note that these environment variables must be set and non-empty
to enable this feature. However, if OVERHEAD is enabled during MH configuration, then when
MH programs call other MH programs, this scheme is used. These file-descriptors are not closed
throughout the execution of the MH program, so children may take advantage of this. This
approach is thought to be completely safe and does result in some performance enhancements.

$HOME/ .mh_profile
or$MH
<mh-dir>/context
or$CONTEXT
<folder>/ .mh...sequences

The user profile
Rather than the standard profile
The user context
Rather than the standard context
Public sequences for <folder>

Profile Components
All

See Also

mh(l), environ(5)

Defaults

None

[mh.6] MH UCI/UCB version

MH-PROFILE(5) The Rand MB Message Handlin& System USD:B-86

Contat

Bugs

[mh.6]

All

In previous versions of MH, the current-message value of a writable folder was kept in a file called "cur"
in the folder iuelf. In mh.3, the .mh_projik contained the current-message values for all folders,
regardless of their writability.

In all versions of MH since mh.4, the .mh_projik contains only static information, which MH programs
will NOT update. Changes in context are made to the contu:t file kept in the users MH directory. This
includes, but is not limited to: the ''Current-Folder'' entty and all private sequence information. Public
sequence information is kept in a file called .mhJeq~nces in each folder.

To convert from the format used in releases of MH prior to the format used in the mh.4 release, install-mh
should be invoked with the '-compat' switch. This generally happens automatically on MH systems
generated with the ''COMP AT'' option during MH configuration.

The .mh_JJrofile may override the path of the context file, by specifying a "context" entty (this must be in
lower-case). If the entty is not absolute (does not start with a I), then it is interpreted relative to the user's
MH directory. As a result, you can actually have more than one set of private sequences by using different
context files.

The shell quoting conventions are not available in the .mh_profile. Each token is separated by whitespace.

There is some question as to what kind of arguments should be placed in the profile as options. In order to
provide a clear answer, recall command line semantics of all MH programs: conflicting switches (e.g.,
'-header and '-noheader') may occur more than one time on the command line, with the last switch taking
effect Other arguments, such as message sequences, filenames and folders, are always remembered on the
invocation line and are not superseded by following arguments of the same type. Hence, it is safe to place
only switches (and their arguments) in the profile.

If one finds that an MH program is being invoked again and again with the same arguments, and those
arguments aren't switches, then there are a few possible solutions to this problem. The first is to create a
(soft) link in your $HOME/bin directory to the MH program of your choice. By giving this link a different
name, you can create a new entty in your profile and use an alternate set of defaults for the MH command
Similarly, you could create a small shell script which called the MH program of your choice with an
alternate set of invocation line switches (using links and an alternate profile entry is preferable to this
solution).

Finally, the csh user could create an alias for the command of the form:

alias cmd 'cmd arg 1 arg2 .. .'

In this way, the user can avoid lengthy type-in to the shell, and still give MH commnb safely. (Recall
that some MH commands invoke others, and that in all cases, the profile is read, meaning that aliases are
disregarded beyond an initial command invocation)

MH UCI/UCB version

USD:B-87 The Rand MH Mesuge Handling System AP(8)

NAME
ap - parse addresses 822-style

SYNOPSIS

/usr/new/lib/mhlap [-form foonatfile] [-fc:rmat string] [-normalize] [-nonormaliz.e] [-width colunms]
addrs ••• [-help]

DDCRIPflON

Flies

Ap is a program that parses addresses according to the ARP A Internet standard. It also understands many
non-standard formats. It is useful for seeing how MH will interpet an address.

The ap program treats each argument as one or more addresses, and prints those addresses out in the
official 822-format Hence, it is usually best to enclose each argument in double-quotes for the shell.

To override the output fmmat used by ap, the '-format string' or '-format file' switches are used. This
permits individual fields of the address to be extracted with ease. The string is simply a format stringand
thefile is simply a format file. See mh-/ ormat (5) for the details.

In addition to the standard escapes, scan also recognizes the following additional escape:
escape substitution
error a diagn~tic if the parse failed

If the '-normalize' switch is given, ap will try to track down the official hostname of the address.

Here is the default format string used by ap:

%<{error}%{error}: %{text}%1%(putstr(proper{text}))%>

which says that if an error was detected, print the error, a ': ', and the address in error. Otherwise, output
the 822-proper format of the address.

$HOME/.mh_profile
/usr/new/lib/mh/mtstailor

The user profile
tailor file

Profile Components

None

See Also

Defaults

Context

Bugs

[mh.6]

dp(8),
Standard/or the Format of ARPA Internet Text Messages (aka RFC-822)

'-format' defaults as described above
'-normalize'
'-width' defaults to the width of the terminal

None

The argument to the '-fonnat' switch must be interpreted as a single token by the shell that invokes ap.
Therefore, one must usually place the argument to this switch inside doubl~uotes.

On hosts where MH was configured with the BERK option, address parsing is not enabled.

MH UCl/UCB version

CONFLICT(&) The Rand MH Messa1e Handlin& System USD:l-88

NAME
conflict - search for aliulpusword conflicts

SYNOPSIS

/usr/new/lib/mhlconftict [-mail name] [-search directory] [aliasfiles •••] [-help]

DF.SCIUPl'ION

Flies

Conflict is a program that checks to see if the interface between MH and transpmt system is in good shape

Conflict also checks fm maildrops in /usr/spool/mail which do not belong to a valid user. It assumes that
no user name will stan with '.', and thus ignores files in /usr/spool/mail which begin with '.'. It also checks
for entries in the group (S) file which do not belong to a valid user, -1 for users who do not have a valid
group number. In addition duplicate users and groups me noted.

If the '-mail name' switch is used, then the results will be sent to the specified~. Otherwise, the
results ire sent to the standard output

The '-search directory' switch can be used to search directories other than /usr/spool/mail and to report
anomalies in those directories. The '-search directory' switch can appear more than one time in an invoca
tion to conflict.

Conflict should be run under cron (8), or whenever system accounting takes place.

/usr/new/lib/mh/mtstailor
/etc/passwd
/etc/group
/usr/new/mh/mhmail
/usr/spool/mail/

tailor file
List of users
List of groups
Program to send mail
Directory of mail drop

Profile Components
None

See Also

mh-alias(5)

Defaults

'aliasfiles' defaults to /usr/new/lib/mh/MailAliases

Context

None

[mh.6] MH UCI/UCB version

USD:S-89 The Rand MH Message Handling System DP(8)

NAME
dp - parse dates 822-style

SYNOPSIS

/usr/new/lib/mhldp [-form foonatfile] [-format string] [-width colwnns] dates ... [-help]

D~RIPl'ION

Flies

Dp is a program that parses dates according to the ARP A Internet standard. It also understands many
non-standard formats, such a those produced by TOPS-20 sites and some UNIX sites using ctitM (3). It
is useful for seeing how MH will interpret a date.

The dp program treats each argument a a single date, and prints the date out in the official 822-format.
Hence, it is usually best to enclose each argument in double-quotes fer the shell.

To override the output fcrmat used by dp, the '-format string' or '-format file' switches are used. This
permits individual fields of the address to be extracted with ease. The string is simply a format stringand
thefile is simply a format file. See mh-format (S) for the details.

Here is the default format string used by dp:

%<(nodate{text})error: %{text}%1%(putstr(pretty{text}))%>

which says that if an error was detected, print the error, a ':', and the date in error. Otherwise, output the
822-proper format of the date.

$HOME/.rn1Lprofile The user profile

Proftle Components

None

See Also

Defaults

Context

Bugs

[mh.6]

ap(8)
Standard for the Format of ARPA Internet Text Messages (aka RFC-822)

'-format' default as described above
'-width' default to the width of the terminal

None

The argument to the '-format' switch must be interpreted as a single token by the shell that invokes dp.
Therefore, one must usually place the argument to this switch inside double-quotes.

MH UCI/UCB version

INST ALL·Mll(8) Tile Rand MH Messa1e llandlln1 System USD:l-90

NAME
imtall-mh - initialize the MH environment

SYNOPSIS

/usr/new/lib/mh/install-mh [-auto] [-compat]

DESCIUPfION

Flies

When a user runs any MH program for the first time, the program will invoke install-mJa (with the '-auto'
switch) to query the user for the initial MH environment The user does NOT invoke this program directly.
The user is asked for the name of the directory that will be designated as the user's MH ~tory. If this
directory does not exist, the user is asked if it should be created. Normally, this directory should be under
the user's home directory, and ha the default name of Mail/. After install-mh ha written the initial
.mh....profile f« the user, cmtrol returns to the mginal MH program.

As with all MH commands, install-mJa first consulu the $HOME environment variable to determine the
user's home directory. lf$HOME is not set, then the l~tclpasswd file is comulted.

When converting from mh.3 to mh.4, install-mh is automatically invoked with the '-compat' switch.

$HOME/ .mh_profile The user profile

Profile Components

Path: To set the user's MH directory

Context

With '-auto', the current folder is changed to ''inbox' '.

[mh.6] MH UCI/UCB version

USD:8-91 The Rand MH Meaage Handling System POST(8)

NAME
post - deliver a message

SYNOPSIS

/usr/new/lib/mh/post [-alias aliasfile] [-filter filterfile] [-nofilter] [-format] [-noformat] [-msgid]
[-nomsgid] [-verbose] [-noverbose] [-watch] [-nowatch] [-width columns] file [-help]

DF3CRIPl'ION

Flies

Post is the program called by und (1) to deliver the message injile to local and remote users. In fact, all
of the functions attributed to send on its manual page are pt.donned by post, with und acting • a rela
tively simple preprocessor. Thus, it is post which parses the various header fields, appends From: and
Date: lines, and interacts with the SendMail transport system. P()st will not nmmally be called directly by
the user.

Post searches the "To:", "cc:", "Bee:", "Fee:", and "Resent-xxx:" header lines of the specified mes
sage for destination addresses, checks these addresses for validity, and formats them so u to conform to
ARP Anet Internet Message Format protocol, unless the '-noformat' ftag is set. This will normally cause
''@local-site'' to be appended to each local destination address, as well as any local return addresses. The
'-width columns' switch can be used to indicate the preferred length of the header components that contain
addresses.

If a "Bee:" field is encountered, its addresses will be used f<X" delivery, and the "Bee:" field will be
removed from the message sent to sighted recipients. The blind recipients will receive an entirely new
message with a minimal set of headers. Included in the body of the message will be a copy of the message
sent to the sighted recipients. If '-filter filterfile' is specified, then this copy is filtered (re-formatted) prior
to being sent to the blind recipients.

The '-alias aliasfile' switch can be used to specify a file that post should take aliases from. More than one
file can be specified, each being preceded with '-alias'. In any event, the primary alias file is read first

The '-rnsgid' switch indicates that a "Message-ID:" or "Resent-Message-ID:" field should be added to
the header.

The '-verbose' switch indicates that the user should be informed of each step of the posting/filing process.

The '-watch' switch indicates that the user would like to watch the transport system's handling of the mes
sage (e.g., local and "fast" delivery).

Post consults the environment variable $SIGNATURE to determine the sender's personal name in con
structing the ''From:'' line of the message.

/usr/new/lib/mh/mtstailor
/usr/new/mh/refile
/usr/new/lib/mh/mhl
/usr/new/lib/mh/MaiWiases

tailor file
Program to process Fcc:s
Program to process Bcc:s
Primary alias file

Profile Components

See Also

[mh.6]

post does NOT consult the user's .mh_profile

Standard/or the Format of ARPA Internet Text Messages (aka RFC-822),
mhmail(l), send(l), mlrmail(5), mh-alias(S)

MH UCI/UCB version

POST(8) Tlae Rand MH Message Handlin& System USD:l-92

Detaultl

Bup

[mh.6]

'-alia /usr/new/lib/mh/MailAliases'
'-format'
'-noimgid'
'-noverbose'
'-width 72'
'-nofilter'

None

"Reply-To:" fields are allowed to have groups in them according to the 822 specification, but post won't
let you use them.

MH UCI/UCB version

S. REPORTING PROBLEMS

If problems are encountered with an MH program, the problems should be reported to the local maintainers of
MH. When doing this, the name of the program should be reported, along with the venioo information for the pro
gram. To find out what version of an MH program is being run, inv<*e the program with the '-help' switch. In
addition to listing the syntax of the command, the proiram will list information penaining to its version. This infor
mation includes the version of MH, the host it was generated on, and the date the program wa loaded. A second
line of infcxmation, found on versions of MH after #5.380 include MH configuration options. For example,

version: MH 6.1 #l[UCI] (nrtc-gremlin) of Wed Nov 6 01:13:53 PST 1985
options: [BSD42] [MHE] [NE'IWORK] [SENDMTS] [MMDFil] [SMTP] [POP]

The '6.1 #l[UCI]' indicates that the program is from the UCI mlt.6 version of MH. The program was generated on
the host 'nrtc-gremlin' on 'Wed Nov 6 01:13:53 PST 1985'. It's usually a good idea to send the output of the
'-help' switch along with your report.

If there is no local MH maintainer, tty the address Bug-MH. If that fails, use the Internet mailbox Bug
MH@UCI.EDU.

USD:8-93 The Rand MH Mesgge Handling System

6. ADVANCED FEATURES

This section desaibes some features of MH that were included stricdy for advanced MH users. These capa
bilities permit MH to exhibit more powerful behavior fCX' the seasoned MH users.

USER-DEFINED SEQUENCES
User-defined sequences allow the MH user a tremendous amount « power in dealing with groups of mes

sages in the same folder by allowing the user to bind a group of messages to a meaningful symbolic name. 1be user
may choose any name for a message sequence, as long a it consists of alphanumeric characters and does not
conflict with the standard MH reserved message names (e.g., "first", etc). After defining a sequence, it can be used
wherever an MH command expects a 'msg' or 'msgs' argument. Although all MH commands expand user-defined
sequences as apPropriate, there are two commands that allow the user to define and manipulate them: pick and
mark.

Pick and User-Defined Sequences

Most users of MH will use user-defined sequences only with the pick command. By giving the
'-sequence name' switch to pick (which can occur more than once on the command line), each sequence named is
defined as those messages which pick matched acconling the the selection criteria it was given. Hence,

pick -from frated -seq fred

finds all those messages in the current folder which were from ''frated' ', creates a sequence called ''fred' ', and then
adds them to the sequence. The user could then invoke

scan fred

to get a scan listing of those messages. Note that by default, pick creates the named sequences before it adds the
selected messages to the sequence. Hence, if the named sequence already existed, the sequence is destroyed prior to
being re-defined (nothing happens to the messages that were a part of this sequence, they simply cease to be
members of that sequence). By using the '-nozero' switch, this behavior can be inhibited, as in

pick -from frated -seq sgroup
pick -from fear -seq sgroup -nozero
pick -from freida -seq sgroup -nozero

finds all those mes-sages in the current folder which . were from ''frated' ', ''fear'', or ''freida' ', and defines the
sequence called "sgroup" as exactly those messages. These operations amounted to an "inclusive-or" of three
selection criteria, using pick, one can also generate the ''and''. of some selection criteria as well:

pick -from frated -seq fred
pick -before friday -seq fred fred

This example defines the sequence called "fred" as exactly those messages from "frated" that were dated prior to

''friday' '.1

1 Of course. it is mich easier to simply use the built-in boolean operation of pic/c to get the desired results:

pick -from frated -or -from fear -or -from freida -seq sgroup

and

pick -from frated -and -before friday -seq fred

The Rand MH M~age Handling System USD:S-94

USD:l-95 The Rand MH Message Handling System

Pick is normally used as a back-quoted command, for example,

scan 'pick -from posunaster'

Now suppose that the user decides that another command should be issued, using exactly those messages. Since,
pick wasn't given a '-sequence name' argument in this example, the user would end-up typing the entire
back-quoted command again. A simpler way is to add a default sequence name to the .mh...profile. For example,

pick: -seq select -list

will tell pick to always define the sequence "select" whenever it's run. The '-list' is necessary since the
'-sequence name' switch sets '-nolist' whenever the former is encountered. Hence, this pofile entry makes pick
define the "select" sequence and otherwise behave exactly as if there was no profile entry at all.

Mark and User-Defined Sequences

The mark command lets the user perform low-level manipulation of sequences, and also povides a
well-needed debug facility to the implementors/developers/maintainers of MH (the MR-hacks). In the future, a
user-friendly "front-end" for mar/c will probably be developed to give the MH user a way to take better advantage
of the underlying facilities.

Public and Private User-Defined Sequences

There are two kinds of sequences: public sequences, and private sequences. Public sequences of a folder are
accessible to any MH user that can read that folder and are kept in the .mh.....sequences file in the folder. Private
sequences are accessible only to the MH user that defined those sequences and are kept in the user's MH context
file. By default, pick (and mar/c) create public sequences if the folder for which the sequences are being defined is
writable by the MH user. Otherwise, private sequences are created. This can be overridden with the '-public' and
'-private' switches.

Sequence Negation

In addition to telling an MH conuruUid to use the messages in the sequence ''seen'', as in

refile seen +old

it would be useful to be easily able to tell an MH command to use all messages except those in the sequence. One
way of doing this would be to use mark and define the sequence explicitly, as in

mark -delete -zero seen -seq notseen

which, owing to mark 's cryptic interpretation of '-delete' and '-zero', defines the sequence "notseen" to be all
messages not in the sequence "seen". Naturally, anytime the sequence "seen" is changed, "notseen" will have to
be updated. Another way to achieve this is to define the entry "Sequence-Negation:" in the .mlLprofile. If the
entry was

Sequence-Negation: not

then anytime an MH command was given "notseen" as a 'msg' or 'msgs' argument, it would substitute all mes
sages that are not a member of the sequence ''seen''. That is,

refile notseen +new

does just that. The value of the ''Sequence-Negation:'' entry in the profile can be any string. Hence, experienced
users of MH do not use a word, but rather a special character which their shell does not interpret (users of the CShell
use a single caret or circumftex (usually shift-6), while users of the Bourne shell use an exclamation-mark). This is
because there is nothing to prevent a user of MH from defining a sequence with this string as its prefix, if the string
is nothing by letters and digits. Obviously, this could lead to confusing behavior if the "Sequence-Negation:"

do exactly the same thing as the five commands listed above. Hence, the '-nozero' option to pick. is only useful to manipulate existing sequences.

The Rand MH Messaae llandliq System USD:S-96

entry leads MH to believe that two sequences are opposites by virtue of their names differing by the prefix stting.

The Previous Sequence

Many times users find themselves issuing a series of commands on the same sequences of messages. If the
user first defined these messages as a sequence, then considerable typing may be saved. H the user doesn't have this
foresight, MH provides a handy way of having MH iemember the 'msgs' or 'img' argument last given to an MH
command. If the entry "Previous-Sequence:" is defined in the .mlLprofile, then when the command finishes, it
will define the sequence(s) named in the value of this entry as being exactly those messages that were specified.
Hence, a profile entry of

Previous-Sequence: pseq

directs any MH command that accepts a 'msg' or 'msgs' argument to define the sequence "pseq" as those messages
when it finishes. More than one sequence name may be placed in dais entry, separated with spaces. The one disacl
vantage of this approach is that the MH progaim have to update the sequence information for the folder each time
they run (although most programs read this information, usually only pick and marlc have to write this information
out) .

. The Unseen Sequence

Finally, some users like to distinguish between messages which have been previously seen by them. Both inc
and show honorthe profile entry "Unseen-Sequence" to support this activity. Whenever inc places new messages
in a folder, if the entry "Unseen-Sequence" is defined in the .mh_profile, then when the command finishes, inc will
add the new messages to the sequence(s) named in the value of this entry. Hence, a profile entry of

Unseen-Sequence: unseen

directs inc to add new messages to the sequence "unseen". Unlike the behavior of the "Previous-Sequence" entry
in the profile however, the sequence(s) will not be zero'd.

Similarly, whenever show (or next or prev) displays a message, they remove those messages from any
sequences named by the ''Unseen-Sequence'' entry in the profile.

COMPOSmON OF MAIL

There are a number of interesting advanced facilities for the composition of outgoing mail.

The Draft Folder

The comp, dist, forw, and repl commands have two switches, '-draftfolder +folder' and
'-draftrnessage msg'. If '-draftfolder +folder' is used, these commands are directed to construct a draft message
in the indicated folder. (The ''Draft-Folder:'' profile entry may be used to declare a default draft folder for use
with comp, dist, forw, and rep/) If '-drafunessage msg' is oot used, it defaults to 'new' (unless the user invokes
comp with '-use', in which case the default is 'cur'). Hence, the user may have several message compositions in
progress simultaneously. Now, all of the MH tools are available on each of the user's message drafts (e.g., show,
scan, pick, and so on). If the folder does not exist, the user is uked if it should be created (just like with refile).
Also, the lat draft message the user was composing is known u 'cur' in the draft folder.

Furthermore, the send command· has these switches as well. Hence, from the shell, the user can send off
whatever drafts desired using the standard MH 'msgs' convention with '-draftmessage msgs'. If no 'msgs' are
given, it defaults to 'cur'.

In addition, all five programs have a '-nodraftfolder' switch, which undoes the last occurrence of
'-draftfolder folder' (useful if the latter occurs in the user's MH profile).

If the user does not give the '-draftfolder +folder' switch, then all these commands act "nonnally". Note
that the '-draft' switch to send and show still refers to the file called 'draft' in the user's MH directory. In the
interests of economy of expression, when using comp or send, the user needn't prefix the draft 'msg' or 'msgs' with
'-draftmessage'. Both of these commands accept a 'file' or 'files' argument, and they will, if given

USD:S-97 The Rand MR Mesuge Handlin& System

'-draftfolder +folder' treat these arguments as 'msg' or 'msgs'.2 Hence,

send -draftf +drafts first

is the same u

send -draftf +drafts -draftm first

To make all this a bit more clear, here are some examples. Let's assume that the following entries are in the
MHprofile:

Draft-Folder: +drafts
sendf: -draftfolder +drafts

Furthermore, let's assume that the program send/is a (symbolic) link in the user's SHOMFJbin/ directay to Mnd.
Then, any of the commands

comp
dist
forw
repl

constructs the message draft in the 'draft' folder using the 'new' message number. Furthermore, they each define
'cur' in this folder to be that message draft If the user were to use the quit option at 'What now?' level, then later
on, if no other draft composition was done, the draft could be sent with simply

sendf

Or, if more editing was required, the draft could be edited with

comp-use

Instead, if other drafts had been composed in the meantime, so that this message draft was no longer known as 'cur'
in the 'draft' folder, then the user could scan the folder to see which message draft in the folder should be used for
editing or sending. Clever users could even employ a back-quoted pick to do the work:

comp -use 'pick +drafts -to bug-mh'

or

sendf 'pick +drafts -to bug-mh'

Note that in the comp example, the output from pick must resolve to a single message draft (it makes no sense to
talk about composing two or more drafts with one invocation of comp). In contrast, in the send example, as many
message drafts as desired can appear, since send doesn't mind sending more than one draft at a time.

Note that the argument '-draftfolder +folder' is not included in the profile entry for send, since when comp,
et al., invoke send directly, they supply send with the UNIX pathname of the message draft, and not a
'draftmessage msg' argument As far as send is concerned, a draft/older is not being used.

It is imponant to realize that MH treats the draft folder like a standard MH folder in nearly all respects. There
are two exceptions: first under no circumstancs will the '-draftfolder folder' switch cause the named folder to
become the current folder.3 Second. although conceptually send deletes the 'msgs' named in the draft folder, it does

2 This may appear to be inconsistent, at first, but it saves a lot of typing.
3 Obviously, if the folder appeared in the context of a standard '+folder' argwnent to an MH program, as in

The Rand Mii Mesace Handliq System USD:8·98

not call 'delete-prog' to perform the deletion.

What.Happens if the Draft Exists

When the comp, dist, forw, and re pl commands are invoked and the draft you indicated already exists, these
programs will prompt the user fm a reponse directing the program's action. The prompt is

Draft '' /usr/srt/uci/mh/mhboxldraft'' exists (xx bytes).
Disposition?

The appropriate responses and their meanings are: nmJ.s: deletes the draft and starts afresh; !W: lists the draft;
refile: files the draft into a folder and starts afresh; and, ggll: leaves the draft intact and exits. In addition, if you
specified '-<iraftfolder folder' to the command, then one oth« response will be accepted: new: finds a new draft,
just as if '-draftmessage new' had been given. Finally, the comp command will sxept one more response: ~:
re-uses the draft, just as if '-use' had been given.

The Push Option at What now? Level

The push option to the "What now?" query in the comp, dist,forw, and repl commands, directs the command
to send the draft in a special detached fashion, with all normal output discarded. If push is used and the draft can
not be sent, then MH will send the user a message, indicating the name of the draft file, and an explanation of the
failure.

The user can also invoke send from the shell with the '-push' switch, which makes send act like it had been
push 'd by one of the composition commands.

By using push, the user can free the shell to do other things, because it appears to the shell that the MH com
mand has finished. As a result the shell will immediately prompt for another command, despite the fact that the
command is really still running. Note that if the user indicates that annotations are to be performed (with '-anno
tate' to dist, forw, or rep(), the annotations will be performed after the message has been successfully sent This
action will appear to occur asynchronously. Obviously, if one of the messages that is to be annotated is removed
before the draft has been successfully sent, then when MH tries to make the annotations, it won't be able to do so.
In previous versions of MH, this resulted in an error message mysteriously appearing on the user's terminal. In
mh.5 and later versions, in this special circumstance, no error will be generated.

If send is push 'd, then the '-forward' switch is examined if a failure notice is generated. If given, then the
draft is forwarded with the failure notice sent to the user. This allows rapid burst 'ing of the failure notice to
retrieve the unsent draft.

Options at What now? Level

By default, the message composition programs call a program called whatnow before the initial draft compo
sition. The MH user can specify any program for this. Following is some information about the default ''What
now?'' level. More detailed infonnation can be found in the whatnow (1) manual entry.

When using the comp, dist,forw, and repl commands at "What now?" level, the edit, list, headers, refile, and
(for the dist and repl commands) the display opt.ions will pass on any additional arguments given them to whatever
program they invoke.

In mh.l (the original Rand MH) and mh.2 (the first UCI version of MH), MH used a complicated heuristic
to determine if the draft should be deleted or preserved after an unsuccessful edit. In mh.3, MH was changed to
preserve the draft always, since comp, et. al., could usually look at a draft, apply another set . of heuristics, and
decide if it was important <X not. With the notion of a draft folder, in which one by default gets a 'new' message
draft, the edit deletion/preservation algorithm was re-implemented, to keep the draft folder from being cluttered with
aborted edits.

Also, note· that by default, if the draft cannOt be successfully sent, these commands return to "What now?"
level. But, when push is used, this does not happen (obviously). Hence, if these commands were expected to

scan +drafts

it might become the current folder, depending on the context changes of the MH program in question.

USD:l-99 Tlae Raad Mii Meaaae Haaclllq System

annotate any messages, this will have to be done by hand, later on, with the QllllO command.

Finally, if the '-delete' swileh is not given to the quit option, then these commands will inform the user of the
name of the unsent draft file.

Digests

Theforw command Im die beginnings rl a digestifying facility, with the '-digest list', '-issue number', and
'-volume number' switches.

If forw is given "list" to the '-digest' switch as the name of the discussion group, and the '-issue number' switch is
not given, thenforw looks fm an entry in the user's MH context called "digest-issue-list" and increments its value
to use as the issue number. Similarly, if the '-volume number' switch is not given, then forw looks for
''digest-volume-list'' (but does not increment its value) to use as the volume number.

Having calculated the name of the digest and the volume and issue numbers, forw will now process the components
file using the same format suing mechanism used by repl. The current '%'-escapes are:

escape type substitution
digest string digest name
issue integer issue number
volume integer volume number

In addition, to capture the current date, any of the escapes valid for dp (8) are also valid for/orw.

The default components file used by forw when in digest mode is:

\" .so /usr/new/lib/mh/digestcomps included inline here so it looks good
From: % {digest }-Request
To: %{digest} Distribution: dist-%{ digest};
Subject: %{digest} Digest V%(putnum(msg)) #%(putnum(cur))
Reply-To: %{digest}

%{digest} Digest %(putstr(weekday{ date})), %2(putnumf(mday{ date}))\
%(putstr(month{date})) 19%02(putnumf(year{date}))

Volume %(putnum(msg)): Issue %(putnum(cur))

Today's Topics:

Hence, when the '-digest' switch is present, the first step taken by forw is to expand the format strings in the com
ponent file. The next step is to compose the draft using the standard digest encapsulation algorithm (even putting an
"End of list Digest" trailer in the draft). Once the draft is composed by forw,forw writes out the volume and issue
profile entries for the digest, and then invokes the edit<r.

Naturally, when composing the draft, forw will honor the '-filter filterflle' switch, which is given to mhl to filter
each message being forwarded prior to encapsulation in the draft. A good filter file to use, which is called
mhl.digest, is:

The Rand MH Meuage Handllq Systena

width-80,overftowoffset-10
leftadjust,compress,compwidth-9
Date:formatfield-"9&<(nodate{text})9&{text}9&19&(putstr(tws{text}))9&>"
From:
Subject:

body:nocomponent,overflowoffset-0,noleftadjust,nocom.press

FOLDER HANDLING

USD:S-100

There are two interesting facilities fm manipulating folders: ielative folder addressing, which allows a user to
shorten the typing of long folder names; and the folder-stack, which pennits a user to keep a stack of current fold
ers.

Relative FolderAddr~g

By default, when '+folder' is given, and the folder name is not absolute (does not start with/, J, or .J), then
the UNIX pathname of the folder is interpreted relative to the user's MH directory. Although this mechanism works
fine for top-level folders and their immediate sub-folders, once the depth of the sub-folder tree grows, it becomes
rather unwieldly:

scan +mh/mh.4/draft/ftames

is a lot of typing. MH can't do anything if the current folder was "+inbox", but if the current folder was, say,
'' +mh/mh.4/draft' ', MH has a sh<X't-hand notation to reference a sub-folder of the current folder. Using the
'@folder' notation, the MH user can direct any MH program which expects a '+folder' argument to look for the
folder relative to the current folder instead of the user's MH directory. Hence, if the current folder was
'' +mh/mh.4/draft' ', then

scan @flames

would do the trick handily. In addition, if the current folder was '' +mh/mh.4/draft' ',

scan @ . ./pick

would scan the folder "+mh/mh.4/pick", since, in the UNIX fashion, it references the folder "pick" which is a
sub-folder of the folder that is the parent of the current folder. Since most advanced MH users seem to exhibit a
large degree of locality in referencing folders when they process mail, this convention should receive a wide range
of uses.

The Folder-Stack

The folder-stack mechanism in MH gives the MH user a facility similar to the CSMll 's directory-stack.
Simply put,

folder -push +foo

makes ''foo'' the current folder, saving the folder that was previously the current folder on the folder-stack. As
expected,

folder -pop

takes the top of the folder-stack and makes it the current folder. Each of these switches lists the folder-stack when
they execute. It is simple to write a pus hf command as a shell script. It's one line:

USD:S-101 11ae Rud Mii Messqe Handling System

exec folder -push $@

Probably a better way is to linkfol<ID' to the SHOMFJbin/ directory under the name of pushf and then add the entry

pushf: -push

to the .mh_profile.

The manual page for follkr discusses the analogy between the CS/tell directory stack commands and the
switches infollkr which manipulate thefollkr-staclc. Thefol•r command uses the context entry 'Folder-Stack:'
to keep ttack of the folders in the user's stack of folders.

Appendix A Tlae Raad MH Messap llaacllin& System

Appendix A
COMMAND SUMMARY

USD:S-102

all [-alias aliasfile] [-list] [-nolist] [-normalize] [-nononnali7.e] [-user] [-nouser] names ••. [-help]

anno [+folder] [imgs] [-component field] [-inplace] [-nomplace] [-text body] [-help]

burst [+folder] [imgs] [-inplace] [-noinplace] [-quiet] [-noquiet] [-verbose] [-noverbose] [-help]

comp [+folder] [img] [-draftfolder +folder] [-draftmesnge img] [-nodraftfolder] [-editor editor]
[-noedit] [-file file) [-fmn formfile) [-use] [-noose] [-wbatnowproc program]
[-nowhatnowproc] [-help]

dist [+folder] [msg] [-annotate] [-noannotate] [-draftfolder +folder] [--draftmessage msg] [-nodraftfolder]
[-ediu.. editor] [-noedit] [-form formfile] [-inplace] [-noinplace] [-whatnowproc program]
[-nowhatnowproc] [-help]

folder [+folder] [msg] [-all] [-fast] [-nofast] [-header] [-noheader] [-pack] [-nopack] [-recurse]
[-norecurse] [-total] [-nototal] [-print] [-noprint] [-list] [-nolist] [-push] [-pop] [-help]

folders

forw [+folder] [imgs] [-annotate] [-noannotate] [-draftfolder +folder] [-draftmessage msg]
[-nodraftfolder] [-editor ediu..] [-noedit] [-filter filterfile] [-form formfile] [-format]
[-nofmnat] [-inplace] [-noinplace] [-whatnowproc program] [-nowhatnowproc] [-help]

forw [+folder] [msgs] [-digest list] [-issue number] [-volume number] [other switches forforw] [-help]

inc [+folder] [-audit audit-file] [-noaudit] [-changecur] [-nochangecur] [-file name] [-form formatfile]
[-format string] [-silent] [-nosilent] [-truncate] [-notruncate] [-width columns] [-help]

mark [+folder] [msgs] [-sequence name •.•] [-add] [-delete] [-list] [-public] [-nopublic] [-zero]
[-nozero] [-help]

/usr/new/lib/mh/mhl [-bell] [-nobell] [-clear] [-noclear] [-folder +folder] [-form formfile] [-length lines]
[-width columns] [-moreproc program] [-nomoreproc] [files ...] [-help]

mhmail [addrs ... [-body text] [-cc addrs ...] [-from addr] [-subject subject]] [-help]

mhpath [+folder] [msgs] [-help]

msgchk [users •..] [-help]

msh [-prompt string] [-scan] [-noscan] [-topcur] [-notopcur] [file] [-help]

next [+folder] [-header] [-noheader] [-showproc program] [-noshowproc] [switches for showproc]
[-help]

USD:S-103 The Rand MH Mesage Handling System

packf [+folder] [msgs] [-file name] [-help]

pick -cc
-date
-from
-search
-subject
-to
--component

[+folder] [msgs] [-help]
[-before date] [-after date] [-datefield field]

pattern [-and ...] [-or ...] [-not •.•] [-lbrace ... -rbrace]

[-sequence name ...] [-public] [-nopublic] [-7.el'O] [-nozero]
[-list] [-nolist]

Appendix A

prev [+folder] [-header] [-noheader] [-showproc program] [-nosbowproc] [switches for sllowproc]
[-help]

prompter [-erue chr] [-kill chr] [-prepend] [-noprepend] [-rapid] [-norapid] file [-help]

/usr/new/lib/mh/rcvstae [+folder] [-create] [-nocreate] [-sequence name ...] [-public] [-nopublic]
[-zero] [-no7.ero] [-help]

refile [msgs] [-draft] [-link] [-nolink] [-preserve] [-nopreserve] [-src +folder] [-file file] +folder ...
[-help]

repl [+folder] [msg] [-annotate] [-noannotate] [-cc all/to/cc/me] [-nocc all/to/cc/me]
[-draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [-editor editor] [-noedit]
[-fee +folder] [-filter filterfile] [-form fonnfile] [-format] [-noformat] [-inplace] [-noinplace]
[-query] [-noquery] [-whatnowproc program] [-nowhatnowproc] [-width columns] [-help]

rmf [+folder] [-interactive] [-nointeractive] [-help]

mun [+folder] [msgs] [-help]

scan [+folder] [msgs] [-clear] [-noclear] [-form formatfile] [-format string] [-header] [-noheader]
[-width columns] [-help]

send [-alias aliasfile] [-draft] [-draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [-filter filterfile]
[-nofilter] [-fonnat] [-noformat] [-forward] [-noforward] [-msgid] [-nomsgid] [-push]
[-nopush] [-verbose] [-noverbose] [-watch] [-nowatch] [-width columns] [file ...] [-help]

show [+folder] [msgs] [-draft] [-header] [-noheader] [-showproc program] [-noshowproc]
[switches for showproc] [-help]

sortrn [+folder] [msgs] [-datefield field] [-verbose] [-noverbose] [-help]

vmh [-prompt string] [-vmhproc program] [-novmhproc] [switches for vmhproc] [-help]

whatnow [-draftfolder +folder] [-draftmessage msg] [-nodraftfolder] [-editor editor] [-noedit]
[-prompt string] [file] [-help]

whom [-alias aliasfile] [-check] [-nocheck] [-draft] [-draftfolder +folder] [-draftmessage msg]
[-nodraftfolder] [file] [-help]

Appendix A Tlae Rand MH Message llaadlin& System USD:S-104

/usr/new/liblmh/ap [-form fmnadile] [-f<mnat siring] (-normalize] [-nonormalize] [-width columns]
addrs .•• [-help 1

/usr/new/liblmhlcotiftict [-mail name] [-search directory] [ali•fiJes ...] [-help]

/usr/new/lib/mb/dp [-form foonatfile] [-format siring] [-width columns] dates .•. [-help]

/usr/new/lib/mb/install-mh [-auto] [-compat]

/usr/new/lib/mb/post [-alias aliasfile] [-filter filterfile] [-nofilter] [-format] [-noformat] [-msgid]
[-noimgid] [-verbose] [-noverbose] [-watch] [-nowatch] [-width columns] file [-help]

USD:l-105

tmgs

msgspec

msg

msg-name

msg-range

The Rand Mii Mes.uge Handling System

Appendix B
MESSAGE NAME BNF

:- tmgspec
msgs msgspec

:- msg I
msg-range I
msg-sequence I
user-defined-sequence

:- msg-name
<number>

:= "first"
''last''
"cur"
'' "
''next''
"prev"

:= msg"-"msg
''all"

msg-sequence := msg":"signed-number

signed-number:= "+"<number>
'' -''<number>
<number>

Where <number> is a decimal number greater than zero.

Msg-range specifies all of the messages in the given range and must not be empty.

AppendixB

Msg-sequence specifies up to <number> of messages, beginning with "msg" (in the case of first, cur, next, or
<number>), or ending with "msg" (in the case of prev or last). +<number> forces "starting with msg", and
-<number> forces "ending with number". In all cases, "msg" must exist.

User-defined sequences are defined and manipulated with the pick and mark commands.

AppendixB Tile Rand MH Maage Handlin& System USD:S-106

REFERENCES

1. Crocker, D. H., J. J. Vittal, K. T. Pogran, and D. A. Hendenon, Jr., "Standard for the Format of ARPA Network
Text Messages,'' RFC733, November 1977.

2. Thompson, K., and D. M. Ritchie, "1'be UNIX Time-sharing System," Communications of tM ACM, Vol. 17,
July 1974, pp. 36S-37S.

3. McCauley, E. J., and P. J. Drongowski, "KSOS-The Design of a Secwe Operating System," AF/PS Conference
Proceedings, National Computer Conference, Vol. 48, 1979, pp. 34S-3S3.

4. Crocker, David H., FratMWorlc and Functions of tM "MS" Personal Message System, The Rand Corporation,
R-2134-ARP A, December 1977. -

S. Thompson, K:., and D. M. Ritchie, UNIX Progr~r· s Manual, 6th ed., Western Electric Company, May 1975
(available only to UNIX licensees).

6. Crocker, D. H., "Standard for the Format of ARPA Internet Text Messages," RFC822, August 1982.

THERANDMH
MESSAGE HANDLING

SYSTEM:
ADMINISTRATOR'S GUIDE

UCI Version

Marshall T. Rose

First Edition:
MR Classic

(Not to be confused with a well-known soft drink)

June 17, 1987
6.4 #2[UCI]

CONTENTS

Section

1. INTRODUCTION ... 1

Scope of this document•....•...............•....••....•.•..•............................ 1

Summary.. 1

2. TIIE MTS IN1ERF ACE ...•.•.......•.•........•.•.....•.•..•..•.•.••.•.•.••.......•...•....•.......•.... 3
MH-T~R ..•...•.................................. 4
MH-MTS .. 6

3. BBOAR.DS ... 8
BBOARDS .. 10
BBAKA ... 11
BBEXP•............•.........•..•.•..................................... 12
BBOARDS•...........................•..................................... 13
BBTAR ... 14

4. POP .. 15
roP ... 17
}l()P ... 18
}l()PAKA ... 19
roPD... 20
roPWRD ... 21

5. MAil.. Fil. TERIN'G 22
MF... 23
RMAil... .. 24

6. MH HACKING .. 25
MH-HACK•.••................•...•...............•.................... 26

7. HIDDEN FEATURES•.......................•.....................••....•.....•............... 27

r>ebug Facilities•....••••••....•.•.•.•..•.•.........•.••.•.•••.••••••.•.••••••••..•...•........•....... 27

Send•.........................•......•..••........•..••..•••••.•.................................. 27

Posting Mail 27

8. CONFIGURATION OPI10NS•.....•.....••................•.................... 28

1. INTRODUCTION

Scope ol this document

Thia is the Administrator's Guide to MH. If you don't maintain an MH system, don't
read this; the infmnation is entirely too technical. If you are a maintainer, then read this guide
until you Understand it, follow the advice it gives, and then faget about the guide.

Before continuing, I'll point out two facts:

This document will never contain all the inf onnati.on
you need to maintain MH.

Furthermore, this document will never contain everything
I know about maintaining MH.

MH, and mailsystems in general, are more complex than most people realize. A combination
of experience, intuition, and tenacity is required to maintain MH properly. This document can
provide only guidelines for bringing up an MH system and maintaining it There is a sufficient
amount of customization possible that not all events or problems can be forseen.

Summary

During MH generation, you specify several configuration constants to the mhconfig pro
gram. These directives take into consideration such issues as hardware and operating system
dependencies in the source code. They also factor out some major mailsystem administrative
decisions that are likely to be made consistantly at sites with more than one host The manual
entry mh-gen (8) describes all the static configuration directives.

However, when you install MH you may wish to make some site-specific or
host-specific changes which aren't hardware or even software related. Rather, they are admin
istrative decisions. That's what this guide is for: it describes all of the dynamically tailorable
directives.

Usually, after installing MH, you'll want to edit the /usr/new/lib/mh/mmtailor file. This
file fine-tunes the way MH interacts with the message transport system (MTS). Section 2 talks
about the MTS interface and MTS tailoring.

After that, if you're running the UCI BBoards facility, or the POP facility, you'll need to
know how to maintain those systems. Sections 3 and 4 talk about these.

If for some reason you're not running an MTS that can handle both Internet and UUCP
traffic, you should read-up on mail filtering in Section 5. Although this is considered ''old
technology" now, the mechanisms described in Section 5 were really quite useful when first
introduced way back in 1981.

Finally, you may want to know how to modify the MH source tree. Section 6 talks (a lit
tle bit) about that.

-2-

The lut two sections describe a few hidden features in MH, and the configuration
options that were in effect when this guide was generated.

After MH is installed, you should define the address ''Bug-MH'' to map to either you or
the PostMaster at your site.

In addition, if you want to tailor the behavior of MH for new users, you can create and
edit the file /usr/new/lib/mh/mh.profile. When the install-mlt program is run for a user, if this
file exists, it will copy it into the user's .mh_profile file.

2. THE MTS INTERFACE

The file /usr/new/lib/mb/mtstailor customizes certain host-specific parameters of MH
related pimarily to interactioos with the transport system. The parameters in this file override
the compiled-in defaults given during MH configuration. Rather than recompiling MH on each
host to make minor customizatiom, it is easier simply to modify the mtstallor file. All hosts at
a given site normally use the same mtstailor file, though this need not be the case.

It is a good idea to run the conflict (8) program each morning under cron. The following
line usually suffices:

00 OS • • • /usr/uci/lib/mh/conflict -mail PostMuter

-3-

Mll-T AILOR(5) MH-T AILOR(S)

NAME
/usr/new/lib/mh/mtstailor- system customization for MH message system

SYNOPSIS
any MH command that interacts with the MTS

DDCRIPI'ION

[mh.6]

The file /usr/newllib/mh/mtstailor defines run-time options f<X" those MH programs which interact (in some
form) with the message transport system. At present, these (user) programs are: ap, conflict, inc, msgchlc,
msh, post, rcvdist, and rcvpaclc.

The options available along with default values and a description of their meanings are listed below:

localname: .
The host name MH considers local. If not set, depending on the version of UNIX you 're running,
MH will query the system for this value (e.g., <whoami.h>, gethostname, etc.). This has no
equivalent in the MH configuration file.

systemname:
The name of the local host in the UUCP "domain". If not set, depending on the version of UNIX
you're running, MH will query the system for this value. This has no equivalent in the MH
configuration file.

mmdftdir: /usr/spool/mail
The directory where maildrops are kept If this is empty, the user's home directory is used. This
overrides the "mail" field in the MH configuration file.

mmdftfil:
The name of the maildrop file in the directory where maildrops are kept If this is empty, the
user's login name is used. This overrides the "mail" field in the MH configuration file.

mmdeliml: \001\001\001\001\n
The beginning-of-message delimiter for maildrops.

mmdelim2: \001\001\001\001\n
The end-of-message delimiter for maildrops.

mmailid: 0
If non-zero, then support for MMailids in /etc/p~d is enabled Basically, the pw _gecos field in
the password file is of the form

My Full Name <mailid>

The MH internal routines that deal with user and full names will return "mailid" and "My Full
Name" respectively.

lockstyle: 0

lockldir:

The locking-discipline to perform. A value of ''O'' means to use floclc if available, standard
BellMail locking otherwise. A value of "1" means to use BellMail locking always (the name of
the lock is based on the file name). A value of "2" means to use MMDF locking always (the
name of the lock is based on device/inode pairs).

The name of the directory for making locks. If your system doesn't have the flock syscall, then

MH UCI version

MH-T AILOR(5) -5- MH-T AILOR(5)

Flies

this directory is used when creating locks. If the value is empty, then the directory of the file to be
locked is used.

sendmail: /usr/lib/sendmail
The pathname to the sendmail program.

maildelivery: /usr/new/lib/mh/maildelivecy
The name of the system-wide default .mailMlivery file. See mlwolc (1) f<X" the details.

everyone: 200

noshell:

The highest user-id which should NOT receive mail addressed to ''everyone''.

If set, then each user-id greater than "everyone" that has a login shell equivalent to the given
value (e.g., "/binlcsh") indicates that mail for "everyone" should not be sent to them. This is
useful for handling admin, dummy, and guest logins.

A few words on locking: MH has a flexible locking system for making locks on files. There are two
mtstailor variables you should be aware of "lockstyle" and "lockldir". The first controls the method of
locking, the second says where lock files should be created. The "lockstyle" variable can take on three
values: 0, 1, 2. A value of 0 says to use the flock syscall if you're running on 4.2BSD, (otherwise use a
locking style of 1). A value of 1 or 2 specifies that a file should be created whose existance means
"locked" and whose non-existence means "unlocked". A value of 1 says to construct the lockname by
appending ''.lock'' to the name of the file being locked. A value of 2 says to construct the locknarne by
looking at the device and inode numbers of the file being locked. If the "lockldir" variable is not
specified, lock files will be created in the directory where the file being locked resides. Otherwise, lock
files will be created in the directory specified by "lockldir". Prior to installing MH, you should see how
locking is done at your site, and set the appropriate values.

/usr/new/lib/rnh/mtstailor tailor file

Profile Components

None

See Also

mh-gen(8), mh-mts(8)

Defaults

As listed above

Context

None

[mh.6] MH UCI version

MH-MTS(8) Mll-MTS(8)

NAME
mh-mts - the MH intmface to the message transport system

SYNOPSIS

SendMail

MMDF (any release)

stand-alone

DF.sCRIPrION

Flies

MH can use a wide range of message transpm systen to deliver mail. Although the MH administrator
usually doesn't get to choose which MTS to use (since it's already in place), this document briefly
describes the intmfaces.

When communicating with SendMail, MH always uses the SMTP to post mail. Depending on the MH
configuration, Send.Mail may be invoked directly (via aforlc and an exec), or MH may open a TCP/IP con
nection to the SMTP server on the localhost

When communicating with MMDF, normally MH uses the "mm_" routines to post mail. However,
depending on the MH configuration, MH instead may open a TCP/IP connection to the SMTP server on the
localhost.

When using the stand-alone system (NOT recommended), MH delivers local mail itself and queues UUCP
and netwcxt mail. The network mail portion will probably have to be modified to reflect the local host's
~tes, since there is no well-known practice in this area for non-4.2BSD hosts.

If you are running a 4.2BSD UNIX system, then it is felt that the best interface is achieved by using either
SendMail or MMDF with the SMTP option. This gives greater flexibility. To enable this option you
append the /smtp suffix to the mts option in the MH configuration. This yields two primary advantages:
First, you don't have to know where submit or SendMail live. This means that MH binaries (e.g., post)
don't have to have this information hard-coded, or can run different programs altogether; and, second, you
can post mail with the server on different systems, so you don't need either MMDFor SendMail on your
local host. Big win in conserving cycles and disk space. Since MH supports the notion of a server
search-list in this respect, this approach can be tolerant of faults.

There are four disadvantages to using the SMTP option: First, only 4.2BSD UNIX is supported. Second,
you need to have an SMTP server running somewhere on any network your local host can reach. Third,
this bypasses any authentication mechanisms in MMDF or SendMail. Fourth, the file /etc/hosts is used for
hostname lookups (although there is an exception file). In response to these disadvantages though: First,
4.2BSD UNIX is the best UNIX around for networking. When other UNIXes get TCP/IP and real net
working, MH can be modified. Second, there's got to be an SMTP server somewhere around if you're in
the Internet or have a local network. Since the server search-list is very general, a wide-range of options
are possible. Third, SMTP should be fixed to have authentication mechanisms in it, like POP. Fourth, MH
won't choke on mail to hosts whose official names it can't verify, it'll just plug along (and besides if you
enable the BERK or DUMB configuration options, MH ignores the hosts file altogether).

/usr/new /lib/rnh/mtstailor tailor file

Profile Components

None

[mh.6] MH UCI version

MH-MTS(8) .7. MH-MTS(8)

SeeAllO

Defaults

Contat

Bup

MMDF-11: A Technical Review, Proceedings, Usenix Summer '84 Conference
SENDMAIL -An l~rnetworlc Mail Router
mh-tailor(8), post(8)

None

None

The /usr/new/lib/mh/mtstail<X' file ignores the infmnation in the MMDF-11 tailoring file. It should not.

[mh.6] MH UCI version

3.BBOARDS

If you enable die UCI BBa.ds facility during configuration, then the initial environment
for bboards was set-up during installation. A BBoard called "system" is established, which is
the BBoanl f« general discussion.

To add men BBoards, become die "bboards" user, and edit the
/usr/spool/hboards/BBoards file. The file support/bboards/Example is a copy of the
/usr/spool/bboards/BBoards file that we use at UCI. When you add a BBoard, you don't have
to create die files associated with it, the BBoards delivery system will do that automatically.

Private BB<>m'ds may be aeated. To add the fictitious private BBoard "hacks", add the
appropriate entry to the BBoards file, create the empty file /usr/spooVbboarclslhacks.mbox (or
whatever), change the mode of this file to 0640, and change the group of the file to be the
groupid of the people that you want to be able to read it Also be sure to add the ''bboards''
user to this group (in /etc/group), so the archives can be owned correctly.

By using the special INVIS ftag for a BBoard, special purpose BBoards may be set-up
which are invisible to the MH user. For example, if a site distributes a BBoard both locally to a
number of machines and to a number of distant machines. It might be useful to have two distri
bution lists: one for all machines on the list, and the other for local machines only. This is
actually very simple to do. For the main list, put the standard entry of information in the
/usr/spool/bboards/BBoards file, with the complete distribution list For the local machines
list, and add a similar entry to the /usr/spool/bboards/BBoards file. All the fields should be
the same except three: the BBoard name should reftect a local designation (e.g., "I-hacks"),
the distribution list should contain only machines at the local site, and the ftags field should
contain the INVIS ftag. Since the two entries share the same primary and archive files, mes
sages sent to either list are read by local users, while only thoses messages sent to the main list
are read by all users.

Two automatic facilities for dealing with BBoards exist automatic archiving and
automatic aliasing. The file support/bboards/crontab contains some entries that you should
add to your /usr/lib/crontab file to run the specified programs at times that are convenient for
you. The bboards.daily file is run once a day and generates an alias file for MH. By using this
file, users of MH can use, for example, ''unix-wizards'' instead of ''unix-wizards@brl-vgr''
when they want to send a message to the ''unix-wizards'' discussion group. This is a major
win, since you just have to know the name of the group, not the address where it's located.

The bboards.weekly file is run once a week and handles old messages (those received
more than 12 days ago) in the BBoards area. In short, those BBoards which are marked for
automatic archiving will have their old messages placed in the /usr/spool/bboards/arcbive/
area, or have their old messages removed. Not only does this make BBoards faster to read, but
it conveniently partitions the new messages from the old messages so you can easily put the old
messages on tape and then remove them. It turns out that this automatic archiving capability is
also a major win.

At UCI, our policy is to save archived messages on tape (every two months or so). We
use a program called bbtar to implement our particular policy. Since some BBoards are private
(see above), we save the archives on two tapes: one containing the world-readable archives
(this tape is read-only accessible to all users by calling the operator), and the other cootaining
the non-world-readable ones (this tape is kept locked-up somewhere).

If POP is enabled with BBoards, a third directive, POPBBoards, may be enabled. This
allows the MH user to read BBoards on a server machine instead of the local host (thus saving
disk space). For completely transparent behavior, the administrator may set certain variables in
the mtstailor file on the client hosl The variable "bbpophost" indicates the host where
BBoards are kept (it doesn't have to be the POP service host, but this host must run both a POP

-8-

.9.

server and the BBoards system). The variable ''bbpopuser'' indicates the guest account on this
host f<X" BBoards. This usemame should not be either the POP user <X" the BBoards user. Usu
ally the anonymous FIP user (ftp) is the best choice. Finally, the variable "popbblist" indi
cates the name of a file which contains a list of hosts (one to a line, official host names only)
which should be allowed to use the POP facility to access BBoards via the guest account (If
the file is not present, then no check is made.)

The ''popbbus«'' variable should be set on both the client and service host. The
''popbbhost'' variable need be set only on the client host (the value, of course, is the name of
the service host). The ''popbblist'' variable need be set only on the service host.

BBOARDS(5) ·10- BBOARDS(5)

NAME
BBoards - BBoards database

SYNOPSIS
/usr/spool/bboards/BBoards

DF.SCRIPl10N

Flies

See Also

Bugs

[mh.6]

The BBoards database contains for each BBoard the folloWing information:

field
name
aliases

val1"
the name of the BBoard
local aliues fm the BBoard
(separated by commas)

primary file the .mbox file
encrypted password leadership password
leaders local list maintainers (separated by commas)

usernames from the passwd (5) file,

network address
request address
relay
distribution sites
flags

or groupnames preceded by ' .. ' from the
group (5) file
the list address
the list maintainer's address
the host acting as relay for the local domain
(separated by commas)
special flags (see <bboards.h>)

This is an ASCII file. Each field within each BBoard's entry is separated from the next by a colon. Each
BBoard entry is separated from the next by a new-line. If the password field is null, no password is
demanded; if it contains a single asterisk, then no password is valid.

This file resides in the home directory of the login ''bboards''. Because of the encrypted passwords, it can
and does have general read permission.

/usr/spool/bboards/BBoards BBoards database

bbaka(8), bbexp(8), bboards (8), bbtar(8)

A binary indexed file format should be available for fast access.

Appropriate precautions must be taken to lock the file against changes if it is to be edited with a text editor.
A vibb program is needed.

MH UCI version

BBAKA(8) -11- BBAKA(8)

NAME
bbaka - generate an alias list for BBoards

SYNOPSIS
/usr/spool/bboardslbbaka [system]

DF.sCRIPl'ION

The bbaka program reads the BBoards database and produces on its standard output a file suitable for
inclusion in either the MMDF-11 aliases file (if the argument 'system' is given). H the argument is not
given, then bbaJca produces on its standard output a file suitable for becoming the
/usr/new/lib/mb/BBoardsAliases file.

Flies

/usr/spool/bboards/BBoards BBoards database
/usr/new/lib/mh/BBoardsAliases BBoards aliases file f« MH

Profile Components

None

See Also

bboards(S)

Defaults

None

Context

None

[mh.6] MH UCI version

·BBEXP(8) -12- BBEXP(8)

NAME
bbexp - expunge the BBoards area

SYNOPSIS
/usr/spool/bboardslbbexp [-first-metric] [-second-metric] [bboards ...]

DF.SClllPl"ION

Flies

The b/Mxp program reads the BBoards database and-calls msh to archive the named BBoards (CX' all
BBoards if none are specified).

The first-metric (which defaults to 12) gives the age in days of the "BB-Posted:" field fCX" messages
which should be expunged. The second-metric (which defaults to 20) gives the age in days of the "Dat.e:"
field for messages which should be expunged. Any message which meets either metric will be either
mchived or removed, depending oo what the BBoards (S) file says.

/usr/spooJ/bboards/BBoards BBoards database

Profile Components
None

See Also

msh(l), bboards(5)

Defaults
None

Context
None

[mh.6] MH UCI version

BBOARDS(8) -13- BBOARDS(8)

NAME
bboards - BBoards channel/mailer

SYNOPSIS
/usr/mmdf/chans/bboards fdl fd2 [y]

/usr/new/lib/mh/sbboards bboard •.•

/usr/new/liblmh/sbboards file maildrop directory bboards.bboard

DF.sCIUPl10N

F11es

For MMDF, the BBoards channel delivers mail to the BBoards system. For Send.Mail and stand-alone
MH, the SBBoards mailer performs this task.

For each address given, these programs consult the bboards (5) file to ascertain information about the
BBoard named by the address. The programs then perfonn local delivery, if appropriate. After that, with
the exception of sbboards running under stand-alone MH, the programs perform redistribution, if appropri
ate.

For redistribution, the return address is set to be the request address at the local host, so bad addresses
down the line return to the nearest point of authority. If any failures occur during redistribution, a mail
message is sent to the local request address.

/usr/new/lib/mh/mtstailor
/usr/spool/bboards/BBoards

tailor file
BBoards database

Proftle Components
None

See Also

bboards(S), bbaka(8)

Defaults
None

Context
None

[mh.6] MH UCI version

BBTAR(I) -14- BBTAR(8)

. NAME
bbtar - generate the names of archive files to be put to tape

SYNOPSIS
/usr/spool/bboardslbbtar [private] (public]

DESCIUPrlON

Fllel

The bbtar program reads the BBoards databue and produces on its standard output the names of BBoards
archives which should be put to tape, fm- direct use in a tar (1) command.

If the argument 'private' is given, only private BBoards are considered. If the argument 'public' is given,
only public BBoards are considered. This lets the BBoards administrator write two tapes, one for general
read-access (the public BBoards), and one for resuicted access. The default is all BBoards

For example:

cd archive
tar cv 'bbtar private'

change to the archive directory
save all private BBoard archives

After the archives have been saved to tape, they are usually removed. The archives are then filled again,
usually automatically by cron jobs which run bbexp (8).

/usr/spool/bboards/BBoards BBoards database

Profile Components

None

See Also
bboards(5), bbexp(8)

Defaults
None

Context

None

[mh.6] MH UCI version

4.POP

For POP (Post Office Protocol) client hosts, you need to edit the
/usr/new/liblmb/mtstailor file to know about two hosts: the SMTP service host and the POP
service host. Normally, these are the same. Change the "localname" field of the mtstailor
file of MH in the file to be the name of the POP service hosL Also set the value of ''pophost''
to this value. Finally, make sure the value of "servers" includes the name of the SMTP ser
vice hosL 1be recommended value f« "servers" is:

servers: SMTI>-service-host localhost \Ollocalnet

If you want more infcmtation on the Post Office Protocol used by MH, consult the file
support/pop/pop.rte, which is the MH revision to RFC918.

For POP service hosts, you need to run a daemon, popd (8). The daemon should start at
multi-user boot time, so adding the lines:

if [-f /etc/popd] ; then
/et.c/popd & echo -n ' pop'

fi
>/dev/console

to the /etc/re.local file is sufficient In addition, on both the POP client and service hosts, you
need to define the port that the POP service uses. Add the line

pop 109/tcp #experimental
to the /etc/services file (if it's not already there).

There are two ways to administer POP: In "naive" mode, each user-id in the
passwd (S) file is considered a POP subscriber. No changes are required for the mailsystem on
the POP service host However, this method requires that each POP subscriber have an entry
in the password file. The POP server will fetch the user's mail from wherever maildrops are
kept on the POP service host This means that if maildrops are kept in the user's home direc
tory, then each POP subscriber must have a home directory.

In "smart" mode (enabled via "DPOP" being given as a configuration option), the list of POP
subscribers and the list of login users are completely separate name spaces. A separate data
base (simple file similar to the BBoards (S) file) is used to record information about each POP
subscriber. Unfortunately, the local mailsystem must be changed to reftect this. This requires
two changes (both of which are simple): First, the aliasing mechanism is augmented so that
POP subscriber addresses are diverted to a special delivery mechanism. MH comes with a pro
gram, popaka (8), which generates the additional information to be put in the mailsystem's
alias file. Second, a special POP channel (for MMDF-11) or POP mailer (for SendMail) per
forms the actual delivery (mh.6 supplies both). All it really does is just place the mail in the
POP spool area.

These two different philosophies are not compatible on the same POP service host one
or the other, but not both may be run. Clever mailsystem people will note that the POP
mechanism is really a special case of the more general BBoar& mechanism.

In addition, there. is one user-visible difference, which the administrator controls the
availability of. The difference is whether the POP subscriber must supply a passwooi to the
POP server: The first method uses the standard ARP A technique of sending a username and a
password. The appropriate programs (inc, msgchk, and possibly bbc) will prompt the user for
this information.

The second method (which is enabled via "RPOP" being given as a configuration
option) uses the Berkeley UNIX reserved port method for authentication. This requires that the
two or three mentioned above programs be setuid to root. (There are no known holes in any of

-15-

-16-

these programs.)
These two different philosophies are compatible on the same POP service host to selec

tively disable RPOP fm hosts which aren't trusted, either modify the .rhosts file in the case of
POP subscribers being UNIX logim, or zero the contents of network address field of the
pop (S) file for the desired POP subscribers.

POP(S) -17- POP(S)

NAME
POP - POP database of subscribers

SYNOPSIS
/usr/spooVpoplPOP

DFSCRIPl'ION

Flies

See Also

Bup

[mh.6]

The POP datab•e h• exactly the same fonnat u the BBoards (S) database, although many fields are
unused. Currently, only four fields are examined:

field value
name the POP subscriber
primary file the maildrop f<r the POP subscriber

(relative to the POP directory)
encrypted password the POP subscriber's password
network address the remote user allowed to RPOP

This is an ASCII file. Each field within each POP subscriber's entry is separated from the next by a colon.
Each POP subscriber is separated from the next by a new-line. If the password field is null, then no pass
word is valid.

To add a new POP subscriber, edit the file adding a line such as

mrose::mrose:::::::O

Then, use popwrd to set the password for the POP subscriber. If you wish to allow POP subscribers to
access their maildrops without supplying a password (by using privileged ports), fill-in the network
address field, as in: '

mrose::mrose:: :mrose@nrtc-isc::: :0

which permits "mrose@nrtc-isc" to access the maildrop for the POP subscriber "mrose". Under the
current implementation, only one network address may be given rpop access to a maildrop for a POP sub
scriber.

To disable a POP subscriber from receiving mail, set the primary file name to the empty string. To prevent
a POP subscriber from picking-up mail, set the encrypted password to '' *'' and set the network address to
the empty string.

This file resides in home directory of the login ''pop''. Because of the encrypted passwords, it can and
does have general read permission.

/usr/spool/pop/POP POP database

bboards(S), pop(8), popaka(8), popd(8), popwrd(8)

A binary indexed file format should be available for fast access.

Appropriate precautions must be taken to lock the file against changes if it is to be edited with a text editor.
A vipop program is needed.

MH UCI version

POP(8) ·18- POP(8)

NAME
pop - POP channel/mailer

SYNOPSIS

/usr/mmdf/chans/pop fdl fd2 [y]

/usr/new/lib/mh/spop POP~ubscrib« ...

DF.sCllIPrION

Flies

For MMDF-11, the POP channel delivers mail to the POP spool area f<X' later retrieval by POP subscribers.
For SendMail, the SPOP mailer pedonm this task.

For each address given, these programs consult the pop (S) file to obtain information about the
POP-subscriber named by the address. The programs then deliver the message to the spool area for the
POP-subscriber.

/usr/new/lib/mh/mtstailor
/usr/spool/poplPOP

tailor file
POPdatabue

Profile Components

None

See Also
bboards(5), bbaka(8)

Defaults

None

Context
None

[mh.6] MH UCI version·

POPAKA(8) .19.

NAME
popaka - generate POP entties for MMDF-Il alias file

SYNOPSIS

/usr/new/liblrnh/popaka

DF.sCRIPrlON

POPAKA(8)

The popaJca program reads the POP databae and produces on its standard output a file suitable f<X" inclu
sion in the MMDF-11 aliases file. The contents of this file divert mail for POP subscribers to the POP
channel.

Flies
/usr/spool/pop/POP

Profile Componeats

None

See Also

pop(S)

Defaults

None

Context

None

[mh.6]

POPdatabae

MH UCI version

POPD(8) -20- POPD(8)

NAME
popd- the POP server

SYNOPSIS
/etc/popd [-p portno] (under /etc/re.local)

DF.8CIUPl'ION

Flies

The popd server implements the Post Office protocol, • described in RFC819 (revised, MH internal).
B•ically, the server listens on TCP port 109 for connections and enters the POP upon establishing a con
nection. The '-p' option overrides the default TCP port.

/usr/spooJ/poplPOP POPdatabue

Profle Components
None

See Also

Defaults

Contest

History

[mb.6]

Post Office Protocol (revised) (aka RFC-819 with revisions),
pop(S)

None

None

Previous versions of the server (10/28/84) had the restriction that the POP client may retrieve messages for
login users only. This restriction h• been lifted, and true POB support is available (sending mail to a
mailbox on the POP service host which does not map to a user-id in the password file).

MH UCI version

POPWRD(8) ·21- POPWRD(8)

NAME
popwrd - set password for a POP subscriber

SYNOPSIS

/usr/new/lib/mh/popwrd POP-subscriber

DF3CRIPl'ION

Flies

The popwrd program lets the super-user or the master POP user or a ''leader'' of a POP subscriber change
the password field for the POP subscribel' in the POP database. This program is very similar to the
passwd (1) program.

Since only the super-user and the master POP user may change any other fields of the POP database (using
an ordinary editor), it is possible for the system administrator to delegate responsibility to others to manage
groups of POP subscribers.

/usr/spool/pop/POP POP database

Profile Component.I

None

See Also

Defaults

Context

Bugs

pop(5)

None

None

Although popwrd does locking against other invocations of popwrd, editor locking for the POP database in
general is not implemented. A vipop program is needed.

[mh.6] MH UCI version

S. MAIL FILTERING

There was a time when users on a UNIX host might have had two maildrops: one from
MMDF and the other from UUCP. This was really a bad problem since it prevented using a
single user-interface on all of your mail. Furthermore, if you wanted to send a message to
addresses on different mailsyste~ you couldn't send just one message. To solve all these
problea, the notion of mail filtering was developed that allowed sophisticated munging and
relaying between the two pseudo-domains.

MH will perform mail filtering, transparendy, if given the MF configuration option.
However, with the advent of SendMail and further maturation of MMDF, MH doesn't really
need to do this anymore, since these message transpcxt agents handle it. -

The mail-filtering stuff is too complicated. It should be simpler, but, protocol ttanslation
really is difficult.

-22-

MF(l) .23. MF(l)

NAME
muinc, musift, uminc, umsift - mail filters

SYNOPSIS

/usr/new/lib/mh/muinc

/usr/new/lib/mhlmusift [files •••]

/usr/new/lib/mh/uminc

/usr/new/lib/mh/umsift [files •••]

D~CRJPl'ION

Flies

The mail filters are a set of programs that filter mail from one format to another. In particular, UUCP- and
MMDF-style mail files are handled.

muinc filters mail from the user's MMDF maildrop into the user's UUCP maildrop; similarly, uminc filters
mail from the user's UUCP maildrop into the user's MMDF maildrop. These two programs respect each
system's maildrop locking protocols.

musift filters each file on the command line (or the standard input if no arguments are given), and places the
result on the standard output in UUCP format. The files (or standard input) are expected to be in MMDF
format. umsift does the same thing filtering UUCP formatted files (or input), and places the MMDF for
matted result on the standard output. No locking protocols are used by these programs.

If the files aren't in the expected format, the mail filters will try to recover. In really bad cases, you may
lose big.

/usr/spool/mail/
/usr/spool/mail/$USER

UUCP spool area for maildrops
Location of standard maildrop

Profile Components
None

See Also

Defaults

Context

Bugs

[mh.6]

Proposed Standard/or Message Header Munging (aka RFC-886),
inc(l)

Numerous; protocol translation is very difficult.

MH UCI version

RMAIL(8) RMAIL(8)

NAME
rmail - UUCP interface to mail

SYNOPSIS

rmail address •••

DF.sCRIPfION

Flies

Rmail is intended as a replacement for those systea w.ithout SendMail or MMDF. It is normally invoked
by wa on behalf of the remote UUCP site. For each address, it decides where to send it: either locally, via
another UUCP link, or via the Internet

Rmail implements a crude access control facility by consulting the files RmaiLOkHosts and
Rmail.OkDests in the /usr/new/lib/mb/ directory. Hosts listed in the former file can send messages to
anywhere they pleue. Hosts listed in the latter file can receive messages from anywhere. Note that a host
listed in the first file is implicitly listed in the second file.

/usr/new/lib/mh/mtstailor
/usr/new/lib/mh/Rmail.OkHosts
/usr/new/lib/mh/Rmail.Ok:Dests

tailor file
list of privileged hosts
list of privileged destinations

Profile Componentl
None

See Also

mf(l)

Defaults

None

Context
None

[mh.6] MH UClversion

6. MH HACKING

Finally, here's a little information on modifying the MH sources. A word of advice how-
ever:

DON'T

If you really want new MH capabilities, write a shell script instead. After all, that's what
UNIX is all about, isn't it?

Here's the organization of the MH source tree.

conf/
config/
dist/
doc/
hi
mts/

configurator tree
compiled configuration constants
distributor
manual entries
include files
MTS-specific areas
mh/ standalone delivery
mmdf/ MMDF-1, MMDF-II
sendmail/ Send.Mail, SMTP

miscellany/ various sundries
papers/ papers about MH
sbr/ subroutines
support/ support programs and files

bboards/ UCI BBoards facility
general/ templates

uipl
zotnet/

pop/ POP facility
programs
MTS-independent areu
bboards/ UCI BBoards facility
mfl Mail Filtering
mts/ MTS constants
tws/ date routines

-25-

MH-HACK(8) MH-HACK(8)

NAME
mh-hack- how to hack MH

SYNOPSIS
bighack~k

DF.SCRIPrION

Flies

See Also

Bugs

This is a description of how one can modify the MH system. The MH distribution has a lot of complex
inter-relations, so before you go modifying any code, you should read this and understand what is going
on.

ADDING A NEW PROGRAM
Suppose you want to create a new MH command called "pickle". First, create and edit
"pickle.c" in the uip/ directory. Next edit conf/makeftles/uip to include "pickle". This file has
directions at the end of it which explain how it should be modified. Next, update any documenta
tion (described below). At this point you can re-configure MH. See mh-gen(8) for instructions
on how to do this (basically, you want "mhconfig MH").

ADDING A NEW SUBROUTINE
Suppose you want to create a new MH routine called "pickle". First, create and edit "pickle.c"
in the sbr/ directory. Next edit conf/makefiles/sbr to include "pickle". This file has directions at
the end of it which explain how it should be modified. You should modify config/mh.h to define
"pickle ();". Similarly, sbr/llib-~br should be modified for lint. At this point you can
re-configure MH.

UPDATING DOCUMENTATION
Edit whatever files you want in cont/doc/. When documenting a new program, such as "pickle",
you should create a manual page with the name "pickle.rf". The file cont/doc/template has a
manual page template that you can use. If you are documenting a new program, then you should
also update three other files: The file conf/doc/mb.rf should be modified to include the ''.NA''
section from ''pickle.rt''. The file conf/doc/mb-chart.rf should be modified to include the
".SY" section from "pickle.rf''. Finally, the file conf/doc/MH.rf should be modified to include
a ".so pickle.me". Naturally, none of these changes will be reflected in the configuration until
you actually run mhconfig.

Too numerous to mention. Honest

mh-gen(8)

Hacking is an art, but most programmers are butchers, not artists.

[mh.6] MH UCI version

7. HIDDEN FEATURES

The capabilities discussed here should not be used on a production basis, as they are
either experimental or are useful for debugging MH.

Debug Facilities

The mark command has a '-debug' switch which essentially prints out all the internal
MH data sttuctures fer the folder you're looking at.

The post command has a '-debug' switch which does everything but actually post the
message fer you. Instead of posting the draft, it sends it to the standard output Similarly, send
has a '-debug' switch which gets passed to post.

Some MH commands look at environment variables to determine debug-mode operation
of certain new facilities. The current list of environment variables is:

Send

MHFDEBUG
Mlil.DEBUG
MHPDEBUG
MHPOPDEBUG
MHVDEBUG
MHWDEBUG

OVERHEAD facility
mhl
pick
POP transactions
window management transactions
alternate-mailboxes

The send command has two switches, '-unique' and '-nounique', which are useful to
certain individuals who, for obscure reasons, do not use draft-folders.

Posting Mail

If you're running a version of MH which talks directly to an SMTP server (or perhaps an
advanced MMDF submit process), there are lots of interesting switches for your amusement
which send and post understand:

-mail Use the MAIL command (default)
-saml Use the SAML command
-send Use the SEND command
-soml Use the SOML command
-snoop Watch the SMTP transaction
-client host Claim to be ''h~t'' when posting mail
-server host Post mail with "host"

The last switch is to be useful when MH resides on small workstations (or PC:s) in a
network-they can post their outgoing mail with a local relay, and reduce the load on the local
system. On POP client hosts, the '-server host' switch is defaulted appropriately using the
SMTP search-list mechanism. The whom command understands the last three switches.

-27-

8. CONFIGURATION OPTIONS

This manual was generated with the following configuration optiom in effect

Generation Date
Primary Directory
Secondary Directory
Maildrop Location
Transport System

-28-

June 17, 1987
/usr/new/rrdJ/
/usr/new/lib/mh/
/usr/spoo1/mail/$USER
SendMail .

What is the Network News?

How to Read the Network News

MarlcR. Horton
AT&T Bell lAboratories
Columbus, OH 43213

Revised by Ric le Adams for 2 .10.3

USENET (Users' Network) is a bulletin board shared among many computer systems around the world
USENET is a logical network, sitting on top of several physical networks, among them UUCP, BUCN, BERKNET,
X.25, and the ARP ANET. Sites on USENET include many universities, private companies and research organiza
tions. Most of the members of USENET are either university computer science departments or part of AT&T.
Currently, there are over 2000 USENET sites in the USA, Canada, Europe, Japan and Korea with more joining
every day. Most are running the UNIXt operating system.

The network news, or simply netnews, is the set of programs that provide access to the news and transfer it
from one machine to the next Netnews was originally written at Duke University and has been modified extensive
ly by the University of California at Berkeley and others. Netnews allows articles to be posted for limited or very
wide distribution. This document contains a list of newsgroups that were active at the time the document was writ
ten. It exists to assist you in determining which newsgroups you may want to subscribe to. When creating a new ar
ticle, the level of distribution can be controlled by use of the "Distribution" field. This will prevent notices of
apartments for rent in New Jersey being broadcast to California (or even Europe).

Any user can post an article, which will be sent out to the network to be read by persons interested in that to
pic. You can specify which topics are of interest to you by putting them in a subscription list. Then, whenever you
ask to read news, the news reading program will present all unread articles of interest. There are also facilities for
browsing through old news, posting follow-up articles, and sending direct electronic mail replies to the author of an
article.

This paper is a tutorial, aimed at the user who wants to read and possibly post news. The system administra
tor who must install the software should see the companion document USENET Version B Installation.

Why USENET?

USENET is useful in a number of ways. Someone wishing to announce a new program or product can reach
a wide audience. A user can ask ''Does anyone have an x?'' and will usually get several responses within a day or
two. Bug reports and their fixes can be made quickly available without the usual overhead of sending out mass
mailings. Discussions involving many people at different locations can take place without having to get everyone
together.

Another facility with similar capabilities to netnews is the electronic mailing list . . A mailing list is a collection
of electronic mailing addresses of users who are interested in a particular topic. By sending electronic mail to the
list, all users on the list receive a copy of the article. While the mailing list facility is quite useful, USENET offers a
number of advantages not present in mailing lists. Getting yourself on a mailing list is not always easy. You have
to figure out who maintains the list and ask them to put you on it Often these people are out of town or busy, and

tUNIX is a trademark of AT&T Bell Laboratories.

How to Read the Network News USD:9-1

USD:9-2 How to Read the Network News

don't put you on the list for several days. Sometimes you have to send mail to the entire mailing list, hoping that
one· of the readers will tell you who maintains the list Once you are on the list, you often find yourself in the middle
of a discussion. Netnews keeps old articles around until they expire (usually about two weeb) so you can browse
through old news to catch up on what you missed. Similarly, referring to an old article is easy, without having to
keep a personal file of all old mail to the list

Another advantage is appreciated by the other users of the system. There is less overhead in having only one
copy of each message sent to each machine, rather than having separate copies sent to each of sevenl users on the
same machine. This cuts down on computer time to process the messages, and on-line costs for 1elephone calls to
transfer messages from one machine to another (when phone lines are used). Another advantage is in the disk space
consumed. When only one message is sent to each system, only one copy of the message is kept on disk. In a mail~
ing list environment, each user has a copy in a mailbox.

How do I Read News?

In the USENET jargon, interest topics are called newsgroups. A newsgroup list appears in a later section,
current as this paper was written. You have your own subscription list of newsgroups to which you are said to sub
scribe.

The simplest way to read news is to type the command:

readnews

Other possibilities include: a full-screen-oriented news reading program, vnews(l), (described in the Appendix) and
the notesfile system, which can also be used for news (described in a separate paper.) Each newsgroup to which you
subscribe will be presented, one article at a time. As each article is presented, you will be shown the ~ader (con
taining the name of the author, the subject, and the length of the article) and you will be asked if you want more.
There are a number of possible choices you can make at this point. The three most common (y, n, and q) are sug
gested by the program. (To see a complete list of possible responses, type? for help.) You can type y for "yes"
(or simply hit <RETURN>) and the rest of the message will be displayed. (If the message is long, it may stop before
it runs off the top of the screen. Type <SPACE> or <RETURN> to see more of the message. Another choice you can
make is n for ''no''. This means you are not interested in the message - it will not be offered to you again. A third
option is q for "quit". This causes a record to be made of which articles you read (or refused) and you will exit
netnews. When you have read all the news, this happens automatically. The q command is mainly useful if you are
in a huny and don't have time to read all the news right now. (Many users put a readnews(l) or c~cknews(l) com
mand in their .profile or .login files so that they will see new news each time they log in.)

If you are reading news for the first time, you may find yourself swamped by the volume of unread news,
especially if the default subscription is all. Don't let this bother you. If you are getting newsgroups in which you
have no interest, you can change your subscription list (see below). Also, bear in mind that what you see is prob
ably at least two weeks' accumulation of news. If you want to just get rid of all old news and start anew, type

readnews -p -n all > /dev/null &

which will throw away all old news, recording that you have seen it all. (The & puts it in the background; chances
are that there is so much old news on your machine that you won't want to wait for it all.) Or, you can use the K
command to mark all articles in the current newsgroup as read.

Once you catch up with (or ignore) all the old news, the news will come in daily at a more manageable rate.
(If the daily rate is still too much you may wish to unsubscribe to some of the higher volume, less useful news
groups.) Finally, note that while an article is printing, you can hit your interrupt character (usually <CONTROL-C>

or <DELETE>), which will throw away the rest of the article.

Among the other commands you can type after seeing the header of an article are:

x Exit readnews. This is different from q in that the q command will update the record of which arti
cles you have read, but x will pretend you never started readnews.

N Go on to the next newsgroup. The remaining articles in the current newsgroup are considered un
read, and will be offered to you again the next time you read news.

s file The article is saved in a disk file with the given name. In practice, what usually happens is that an
article is printed, and then readnews goes on to print the header of the next article before you get a

News Version B2.10.3 February 26, 1986

How to Read the Network News USD:9-3

e

r

f

+

b

u

?

chance to type anything. So you usually want to write out the previous message (the last one you
have read in full); in this case, use the forms- filenaTTll!.

Erase the memory of having seen this article. It will be offered to you again next time, as though
you had never seen it Thee- case variation (erase memory of the previously read article instead
of the current article) is useful for checking follow-ups to see if anyone has already said what you
wanted to say.

Reply to the author of the message. You will be placed in the editor, with a set of headers derived
from the message you are replying to. Type in your message after the blank line. If you wish to
edit the header list to add more recipients or send carbon copies, for instance, you can edit the
header lines. Anyone listed on a line beginning with ''To'' or ''Cc'' will receive a copy of your re
ply. Note that the path used to receive a piece of news may not be the fastest way to reply by mail.
If speed is important and you know a faster way, edit it in place of what the reply command sup
plied. A mail command will then be started up, addressed to the persons listed in the header. You
are then returned to readnews. The case r- is also useful to reply to the previous message. Another
variation on this is rd- which puts you in $MAILER (or mail(l) by default) to type in your reply
directly.

Post a follow-up message to the same newsgroup. This posts an article on this newsgroup with the
same title as the original article. Use common sense when posting follow-ups. (Read Matt Bishop's
paper "How to use USENET Effectively" for extended discussion of when and when not to post -
many follow-up articles should have just been replies.) You will be placed in the editor. Enter your
message and exit The case f- is also useful to follow up the previous message. In each case, the
editor you are placed in will be vi(l) unless you set EDITOR (in your environment) to some other
editor. You should enter the text of the follow-up after the blank line.

The article is skipped for now. The next time you read news, you will be offered this article again.

Go back to the previous article. This toggles, so that two-'s get you the current article.

Back up one article in the current group. This is not necessarily the previous article.

Unsubscribe from this newsgroup. Your .newsrc(5) file will be edited to change the : for that
newsgroup to an ! preventing you from being shown that newsgroup again.

If you type any unrecognized command, a summary of valid commands will be printed.

Changing your Subscription List

If you take no special action you will subscribe to a default subscription list This default varies locally. To
find out your local default, type

read.news -s

Typically this list will include all newsgroups ending in "general", such as general,. and net.general. (As distribut
ed, the default is general,all.general. Another popular default is all.) You can change this by creating a file in your
home directory named .newsrc which contains as its first line a line of the form:

options -n newsgroup,newsgroup,newsgroup ...

If your lines get too long, you can continue them on subsequent lines by beginning those lines with a space. (The
netnews system will put extra lines in this file to record which articles you have read. You should ignore these lines
unless you want to edit them.) For example, if you are creating a subscription list for the first time, and have already
read news, you will find some text already in your .newsrc file, recording which articles you have read. You should
put your options line before the first line of the file.) Thus,

options -n general,net.general,mod.human-nets

will subscribe to those three newsgroups.

An ! can be used to exclude certain newsgroups and the word all can be used as a wild card, representing any
newsgroup. You can also use all as a prefix or suffix to match a class of newsgroups. For example,

options -n all,!mod.all,!net.jokes,!all.unix-all

News Version B2.10.3 February 26, 1986

USD:9-4 How to Read the Network News

will result in a subscription to all newsgroups except for ARP ANET news, jokes, and any UNIX information. The
metacharacter • is like I to the shell, and all is like •.

A simpler way to subscribe to news is to subscribe to all, and then use the U readnews command to unsub
scribe to newsgroups you don't want to read. This way you will see new newsgroups that are created, get a chance
to evaluate them, and then unsubscribe to those that don't interest you.

The order of the newsgroups in your .newsrc (after the options line) is the order in which newsgroups will be
shown. If you want something other than the default, move the lines around until you are satisfied with the order.
Be careful to keep the options line as the first line in the file.

Submitting Articles

To submit a new news article type

postnews

First, it will ask you if this is a follow-up to an article. Answer yes or no. If yes, you really should have done an f
from readnews, but it will try and figure out which article you are following up to. It will ask for the newsgroup in
which you read the article and the article number. If you can't remember, go back to readnews and find out. It is
important that discussions are kept together. It is very frustrating for someone to read a follow-up that says: "I
agree. It's very dangerous to leave that program as distributed.'' and not have any idea what the poster was refer
ring to.

If you answer no, postnews(1) will ask you for the subject of the new article. This should be as inforrnati ve as
possible. For example, '''67 Porsche for sale in New Jersey'' is much better than ''Car for sale'' or even ''For
sale". It will then ask which newsgroups you want the article posted in. If you are unsure, type ? instead of a
specific newsgroup and it will show you the list of currently available groups. Then, you will be asked how far your
article should be distributed. It is important to keep this as small as possible to accomplish the purpose of your arti
cle. Remember that many newsgroups are read in Europe, Australia, and Asia in addition to the United States and
Canada. It does no good (to use the previous example) to post a "Car for sale in New Jersey" article with a distri
bution of world. There is almost no chance that a person in Sweden or Korea would be interested in buying your
car (even if it is a Porsche). It is a waste of money and computer resources to transmit the article that far. For this
specific case, the appropriate distribution would be nj or only in New Jersey. If there were no local distribution
available, at least it should be confined to usa. If you are unsure of the distributions available at your site, type ?
instead of a distribution and you will receive a list of distributions valid for your site. If the distribution is world,
your article will be read {perhaps with disgust) by thousands of people around the world.

Then you will be placed in the editor. Enter the text of your article, after the blank line, and exit the editor.
The article will be posted to the newsgroups specified. If you change your mind about the headers while you are
still in the editor, you can edit them as well. Extra headers can also be added before the blank line.

Browsing through Old News

There are a number of command line options to the readnews command to help you find an old article you
want to see again. The -n newsgroups option restricts your search to certain newsgroups. The -x option arranges
to ignore the record of articles read, which is kept in your .newsrc file. This will cause all articles in all newsgroups
to which you subscribe to be displayed, even those which you have already seen. It also causes readnews to not up
date the .newsrc file. The -a date option asks for news received after the given date. Note that even with the -a
option, only articles you have not already seen will be printed, unless you combine it with the -x option. (Articles
are kept on file until they expire, typically after two weeks.) The -t keywords option restricts the query to articles
mentioning one of the keywords in the title of the article. Thus, the command

read.news -n net.unix -x -a last thursday -t setuid

asks for all articles in newsgroup net.unix since last Thursday about the setuid feature. (Be careful with the-top
tion. The above example will not find articles about "suid", nor will it find articles with no title or whose author
did not use the word ''setuid'' in the title.)

Other useful options include the -I option (which lists only the headers of articles - a useful form for brows
ing through ..lots of messages.) The -p option prints the messages without asking for any input; this is similar to

News Version B2.10.3 February 26, 1986

How to Read the Network News USD:9-5

some older news programs on many UNIX systems and is useful for directing output to a printer. The-r option pro
duces articles in reverse order, from newest to oldest

User Interfaces

The user interface of a program is the view it presents to the user, that is, what it prints and what it allows you
to type. Readnews has options allowing you to use different user interfaces. The interface described above is called
the "msgs" interface because it mimics the style of the Berkeley msgs(l) program. (This program, in turn, mimics
a program at MIT of the same name.) The key element of the rnsgs interface is that after printing the header, you
are asked if you want the rest of the message.

Another interface is available with the -c option. In this case, the entire message is printed, header and body,
and you are prompted at the end of the message. The command options are the same as the rnsgs interface, but it is
usually not necessary to use the - suffix on the r, s, or r commands. This interface is called the "/bin/mail" (pro
nounced "bin mail") interface, because it mimics the UNIX program of that name.

A third interface is the Mail(l) (pronounced "cap mail") interface, available with the -M option. This in
vokes the Mail program directly, and allows you to read news with the same commands as you read mail. (This in
terface may not work on your system - it requires a special version of Mail with a -T option.)

A fourth interface, is the MH news/mail program from Rand. That program can be used directly to read net-
work news.

A fifth interface, vnews, which works well on display terminals, is described in the Appendix.

A sixth possibility is the notesfile system, described in a separate paper. It is also display-oriented.

A seventh possibility is to use your favorite mail system as an interface. There are a number of different mail
reading programs, including lbinlma.il(l), Mail, msg(l), and :MH. Any mail system with an option to specify an al
ternative mailbox can be used to read news. For example, to use Mail without the-M option, type

readnews -c "Mail -f % "

The shell command in quotes is invoked as a child of readnews. The -r option to Mail names the alternative mail
box. Readnews will put the news in a temporary file, and give the name of this file to the mailer in place of the %.
There is an important difference when using this kind of interface. The mailers do not give any indication of which
articles you read and which ones you skipped. Readnews will assume you read all the articles, even if you didn't,
and mark them all read. By contrast, the -M option uses the -T option to Mail, asking Mail to tell readnews which
articles you read.

Getting News when you Log In

Most users like to be told when they first log in if there is any news. This way they are reminded of news, but
are not interrupted by it during the day. If you log in once in the morning, you can think of getting the news as read
ing the morning newspaper. It is common to put a chi!cknews or readnews command in your .profile or .login file of
commands that are executed when you log in.

Since there might not be any news, and since the readnews command goes to a considerable amount of work
to find all unread news (assuming you are going to read it), there is another command, called checknews, which tells
you if there is any news. The checknews command is smaller and faster than readnews, and was designed especial
ly for a login file. There are also options to be silent if there is (or is not) news, and to start up readnews automati
cally if there is news.

The options to checknews are:

-y Print "There is news" if there is any unread news.

-v If -y is also given, instead of printing "There is news", prints "News: newsgroup ... " giving the name
of the first newsgroup containing unread news. If general is the first newsgroup presented, this can be
used to tell users whether the unread news is important.

-n Print ''No news'' if there is no unread news.

-e If there is any unread news, start up readnews. Any additional arguments after the -e will be passed to
readnews.

News Version B2.10.3 February 26, 1986

USD:9-6 How to Read the Network News

Thus,

checknews -yn

tells you whether there is any unread news.

checknews -e -M

starts up readnews with the Mail interface if there is news, and otheiwise does nothing.

checknews -y

tells you if there is news, and is silent if there is no news.

Creating New Newsgroups

New newsgroups are proposed by the users and created by site administrators. To create a newsgroup, first
make sure this is the right thing to do .. Normally a suggestion is first posted to net.news.group,net.relatedgroup
for a net newsgroup (net.relatedgroup should be the group which you are proposing to subdivide.) For example, to
propose creating net.tv.soaps, post the original article to net.tv,net.news.group). Followups are made to
net.news.group only. (You can force this by putting the line:

Followup-To: netnews.group

in the headers of your original posting). If it is established that there is general interest in such a group, and a name
is agreed on, then ask your local netnews administrator to create the newsgroup. (It can actually be created by any
netnews administrator anywhere on the net, within the scope of the newsgroup.) Once the newsgroup is created and
the first article has been posted, the newsgroup is available for all interested persons to post to.

List of Newsgroups

This section lists the newsgroups that are currently active. It is intended to help you decide what you want to
subscribe to. Note that the list is constantly changing. Note also that this list only describes those groups available
on a network-wide basis. Since not all installations choose to receive all newsgroups, it is recommended that each
installation edit the list of local newsgroups to be correct before distributing this document to their users. If this is
not possible, a local appendix can be created.

Local

Local groups are kept on the current machine only. Local names can be identified by the lack of a prefix, that
is, there are no periods in local newsgroup names.

general News to be read by everyone on the local machine. For example: ''The system will be down Monday
morning for PM." Or, "A new version of program x has been installed." This newsgroup is usually
mandatory - you are required to subscribe to this newsgroup. (The list of mandatory newsgroups varies
locally.) This requirement assures that important announcements reach all users. (Formerly msgs.)

Network Wide

These are the groups as of the last editing of this manual. The list is undoubtably already out of date. A
current list can be obtained by typing ? to the "Newsgroups? " prompt in postnews.
net.abortion
net.ai
net.analog
net.announce
net.announce.newusers
netannounce.arpa-intemet
net.arch
net.astro
net.astro.expert
net.audio
net.auto
net.auto.tech

News Version B2.10.3

All sorts of discussions on abortion.
Artificial intelligence discussions.
Analog design developments, ideas, and components.
Moderated, general announcements of interest to all.
Moderated, explanatory postings for new users.
Announcements from the Arpa world.
Computer architecture.
Astronomy discussions and information.
Discussion by experts in astronomy.
High fidelity audio.
Automobiles, automotive products and laws.
Technical aspects of automobiles, et. al.

February 26, 1986

How to Read the Network News

net.aviation
net.bicycle
net.bio
net.books
net.bugs
net.bugs.2bsd
net.bugs.4bsd
net.bugs.usg
net.bugs.uucp
net.bugs.v7
net.cog-eng
net.college
net.columbia
net.comics
net.consumers
net.cooks
net.crypt
net.cse
net.cycle
net.database
net.dcom
net.decus
net.emacs
net.eunice
net.followup
net.games
net.games.board
net.games.chess
net.games.emp
net.games.frp
net.games.go
net.games.hack
net.games.pbm
net.games.rogue
net.games.trivia
net.games.video
net.garden
net.general
net.graphics
net.ham-radio
net.ham-radio.packet
net.info-terms
net.intern at
net.invest
net.jobs
net.jokes
net.jokes.d
net.kids
net.Ian
net.tang
net.lang.ada
net.lang.apl
net.lang.c

News Version B2.10.3

Aviation rules, means, and methods.
Bicycles, related products and laws.
Biology and related sciences.
Books of all genres, shapes, and sizes.
General bug reportS and fixes.
Repom of UNIX* version 2BSD related bugs.
Repom of UNIX version 4BSD related bugs.
Repom of USG (System ill, V, etc.) bugs.
Repom of UUCP related bugs.
Repom of UNIX V7 related bugs.
Cognitive engineering.
College, college activities, campus life, etc.
The space shuttle and the STS program.
The funnies, old and new.
Consumer interests, product reviews, etc.
Food, cooking, cookbooks, and recipes.
Different methods of data en/decryption.
Computer science education.
Motorcycles and related products and laws.
Database and data management issues and theory.
Data communications hardware and software.
DEC* Users' Society newsgroup.
EMACS editors of different flavors.
The SRI Eunice system.
Followups to articles in net.general.
Games and computer games.
Discussion and hints on board games.
Chess & computer chess.
Discussion and hints about Empire.
Discussion about Fantasy Role Playing games.
Discussion about Go.
Discussion, hints, etc. about the Hack game.
Discussion about Play by Mail games.
Discussion and hints about Rogue.
Discussion about trivia.
Discussion about video games.
Gardening, methods and results.
Important and timely announcements of interest to all.
Computer graphics, art, animation, image processing.
Amateur Radio practices, contests, events, rules, etc.
Discussion about packet radio setups.
All sorts of terminals.
Discussion about international standards
Investments and the handling of money.
Job announcements, requests, etc.
Jokes and the like. May be somewhat offensive.
Discussions on the content of net.jokes articles
Children, their behavior and activities.
Local area network hardware and software.
Different computer languages.
Discussion about Ada*.
Discussion about APL.
Discussion about C.

USD:9-7

February 26, 1986

USD:9-8

net.Iang.t77
net.Jang.forth
net.Jang.lisp
net.lang.mod2
net.Jang.pascal
net.Iang.prolog
net.Iang.st80
net.legal
net.lsi
net.mag
net.mail
net.mail.headers
net.math
net.math.stat
net.math.symbolic
net.med
net.micro
net.micro.16k
net.micro.6809
net.micro.68k
net.micro.apple
net.micro.amiga
net.micro.atari
net.micro.att
net.micro.chm
net.micro.cpm
net.micro.hp
net.micro.mac
net.micro.pc
net.micro.ti
net.micro.trs-80
net.misc
net.motss
net.movies
net.music
net.music.classical
net.music.folk
net.music.gdead
net.music.synth
net.net-people
net.news
net.news.adm
net.news.b
net.news.config
net.news.group
net.news.newsite
net.news.notes
net.news.sa
net.news.stargate
net.nlang
net.nlang.africa
net.nlang.celts
net.nlang.greek

News Version B2.10.3

How to Read the Network News

Discussion about FORTRAN.
Discussion about Forth.
Discussion about LISP.
Discussion about Modula-2.
Discussion about Pascal.
Discussion about PROLOG.
Discussion about Smalltalk 80.
Legalities and the ethics of law.
Large scale integrated circuits.
Magazine summaries, tables of contents, etc.
Proposed new mail/network standards.
Gatewayed from the ARP A header-people list
Mathematical discussions and puzzles.
Statistics discussion.
Symbolic algebra discussion.
Medicine and its related products and regulations.
Micro computers of all kinds.
National Semiconductor 32000 series chips
Discussion about 6809's.
Discussion about 68k' s.
Discussion about Apple micros.
Talk about the new Amiga micro.
Discussion about Atari micros.
Discussions about AT&T microcomputers .
Discussion about Commodore micros.
Discussion about the CP/M operating system.
Discussion about Hewlett/Packard's.
Material about the Apple Macintosh & Lisa.
Discussion about IBM personal computers.
Discussion about Texas Instruments.
Discussion about TRS-80's.
Various discussions too short-lived for other groups.
Issues pertaining to homosexuality.
Reviews and discussions of movies.
Music lovers' group.
Discussion about classical music.
Folks discussing folk music of various sorts.
A group for (Grateful) Dead-heads.
Synthesizers and computer music.
Announcements, requests, etc. about people on the net
Discussions of USENET itself.
Comments directed to news administrators.
Discussion about B news software.
Postings of system down times and interruptions.
Discussions and lists of newsgroups
Postings of new site announcements.
Notesfile software from the Univ. of Illinois.
Comments directed to system administrators.
Discussion about satellite transmission of news.
Natural languages, cultures, heritages, etc.
Discussions about Africa & things African.
Group about Celtics.
Group about Greeks.

February 26, 1986

How to Read the Network News

net.nlang .india
net.origins
net.periphs
net.pets
net.philosophy
net.physics
net.poems
net.politics
net.politics.theory
net.puzzle
net.railroad
net.rec
net.rec. birds
net.rec. boat
net.rec. bridge
net.rec.nude
net.rec. photo
net.rec.scuba
net.rec.ski
net.rec.skydive
net.rec. wood
net.religion
net.religion.christian
net.religion.j ewish
net.research
net.roots
net.rumor
net.sci
net.sf-lovers
net.singles
net.social
net.sources
net.sources. bugs
net.sources.games
net.sources.mac
net.space
net.sport
net.sport.baseball
net.sport.football
net.sport.hockey
net.sport.hoops
net.s tartrek
net.suicide
net.taxes
net.test
net.text
net.travel
net.tv
net.tv .drwho
net.tv .soaps
net.unix
net. unix-wizards
net.usenix

News Version B2.10.3

Group for discussion about India & things Indian
Evolution versus creationism (sometimes hot!).
Peripheral devices.
Pets, pet care, and household animals in general.
Philosophical discussions.
Physical laws, properties, etc.
For the posting of poems.
Political discussions. Could get hot
Theory of politics and political systems.
Puzzles, problems, and quizzes.
Real and model train fans' newsgroup.
Recreational/participant sports.
Hobbyists interested in bird watching.
Hobbyists interested in boating.
Hobbyists interested in bridge.
Hobbyists interested in naturist/nudist activities.
Hobbyists interested in photography.
Hobbyists interested in SCUBA diving.
Hobbyists interested in skiing.
Hobbyists interested in skydiving.
Hobbyists interested in woodworking.
Religious, ethical, and moral implications of actions.
Discussion about form and nature of Christianity
Information and discussion about Judaism.
Research and computer research.
Genealogical matters.
For the posting of rumors.
General purpose scientific discussions.
Science fiction lovers' newsgroup.
Newsgroup for single people, their activities, etc.
Like net.singles, but for everyone.
For the posting of software packages & documentation.
For bug fixes and features discussion.
Postings of recreational software.
Software for the Apple Macintosh.
Space, space programs, space related research, etc.
Spectator sports.
Discussion about baseball.
Discussion about football.
Discussion about hockey.
Discussion about basketball.
Star Trek, the TV show and the movies.
Suicide, laws, ethics, and its causes and effects (!).
Tax laws and advice.
For testing of network software. Very boring.
Text processing.
Traveling all over the world.
The boob tube, its history, and past and current shows.
Discussion about Dr. Who.
Postings about soap operas.
UNIX neophytes group.
Discussions, bug reports, and fixes on and for UNIX.
USENIX Association events and announcements.

USD:9-9

February 26, 1986

USD:9-10

net.veg
net.video
net.wanted
net. wanted.sources
net.wines
net. wobegon
net.women
net.works
mod.ai
mod.compilers
mod.computers
mod.computers.apollo
mod.computers.ibm-pc
mod.computers.laser-printers
mod.computers.macintosh
mod.computers.pyramid
mod.computers.ridge
mod.computers.sequent
mod.computers.sun
mod.computers. vax
mod.computers. workstations
mod.graphics
mod.human-nets
mod.legal
mod.map
mod.motss
mod.movies
mod.music
mod.newprod
mod.newslists
mod.os
mod.os.os9
mod.os.unix
mod.politics
mod.politics.arms-d
mod.protocols
mod.protocols .appletalk
mod.protocols .kermit
mod.protocols.tcp-ip
mod.rec
mod.rec.guns
mod.recipes
mod.risks
mod.sources
mod.sources.doc
mod.std
mod.std.c
mod.std.mumps
mod.std.unix
mod.techreports
mod.telecom
mod.test
mod.vlsi

News Version B2.10.3

How to Read the Network News

Vegetarians.
Video and video components.
Requests for things that are needed.
Requests for software, termcap entries, etc.
Wines and spirits.
"A Prairie Home Companion" radio show discussion.
Women's rights, discrimination, etc.
Assorted workstations.
Discussions about Artificial Intelligence
Discussion about compiler construction, theory, etc.
Discussion about various computers and related.
Apollo computer systems.
The IBM PC, PC-XT, and PC-AT.
Laser printers, hardware and software.
Apple Macintosh micros.
Pyramid 90x computers.
Ridge 32 computers and ROS.
Sequent systems, (esp. Balance 8000).
Sun "workstation" computers
DEC's VAX* line of computers & VMS.
Various workstation-type computers.
Graphics software, hardware, theory, etc.
Computer aided communications digest.
Discussions of computers and the law.
Various maps, including UUCP maps.
Moderated newsgroup on gay issues and topics.
Moderated reviews and discussion of movies.
Moderated reviews and discussion of things musical.
Announcements of new products of interest to readers.
Postings of news-related statistics and lists.
Disussions about operating systems and related areas.
Discussions about the os9 operating system.
Moderated discussion of Unix* features and bugs.
Discussions on political problems, systems, solutions.
Arms discussion digest.
Various forms and types of FTP protocol discussions.
Applebus hardware & software discussion.
Information about the Kermit package.
TCP and IP network protocols.
Discussions on pastimes (not currently active).
Discussions about firearms.
A "distributed cookbook" of screened recipes.
Risks to the public from computers & users.
Moderated postings of public-domain sources.
Archived public-domain documentation.
Moderated discussion about various standards.
Discussion about C language standards.
Discussion for the Xll.l committee on Mumps.
Discussion for the P1003 committee on Unix.
Announcements and lists of technical reports.
Telecommunications digest.
Testing of moderated newsgroups -- no moderator.
Very large scale integrated circuits.

February 26, 1986

How to Read the Network News USD:9-11

Appendix - How to use vnews

Overview

Vnews is a program for reading USENET news. It is based on readnews but has a CRT-oriented (full screen)
user interface. The command line options are identical. The list of available commands is quite similar, although
since vnews is a visual interface, most vnews commands do not have to be terminated by a newline.

Vnews uses all but the last two lines of the screen to display the current article. The next to the last line is the
secondary prompt line, and is used to input string arguments to commands. The last line contains several fields.
The first field is the prompt field. If vnews is at the end of an article, the prompt is ''next?''; otherwise the prompt is
''more?''. The second field is the newsgroup field, which displays the current newsgroup, the number of the current
article, and the number of the last article in the newsgroup. The third field contains the current time, and the last
field contains the word ''mail'' if you have mail. When you receive new mail, the bell on the terminal is rung and
the word ''MAIL'' appears in capital letters for 30 seconds.

Commands

Most of the readnews commands have vnews counterparts and vice versa. Some differences are:

• It lacks a "digest" command (to deal specially with collections of articles bundled together). This
would be nice to have, but it does not seem to be a major deficiency since you can move around in the
digest with vnews commands.

• To get to the previous group, use the N command with a - argument.

• Vnews has commands for moving around in the article which readnews does not have since they aren't
applicable.

• It has a ''parent'' command which will go to the article that the current article is a follow-up to, and a
"write" command that writes out the body of an article without the header.

• You can refer to the current article from the shell or while writing a follow-up as $A.

• The "decrypt" command (for decoding possibly offensive material) always does rotl 3 which seems to
be the default standard but the readnews version of it occasionally gets confused.

Commands that differ from read.news

Each vnews command may be preceded by a count. Some commands use the count; others ignore it. If count
is omitted, it defaults to one. Some commands prompt for an argument on the second line from the bottom of the
screen. Standard UNIX erase and kill processing is done on this argument. The argument is terminated by a return.
An interrupt (<DELETE> or <BREAK>) gets you out of any partially entered command.

<CR> A carriage return prints more of the current article, or goes on to the next article if you are at the end of the
current article. A <SPACE> is equivalent to <CR>.

<CO:llffROL-B>

Go backwards count pages.

<COl\'TROL-F>
Go forward count pages.

<CONTROL-D>

Go forwards half a page.

<COl\'TROL-U>
Go backwards half a page.

<COl'ffROL-N>
Go forwards count lines.

<C01''TROL·Z>
Go backwards count lines.

News Version B2.10.3 February 26, 1986

USD:9-12 How to Read the Network News

<CONTROL·L>

Redraw the screen. <CONTROL·L> may be typed at any time.

b Back up one article in the current group.

Redisplay the article after you have sent a follow-up or reply.

n Move on to the next item in a digest. "." is equivalent to n. This is convenient if your terminal has a
keypad

p Show the parent article (the article that the current article is a follow-up to). This doesn't work if the current
article was posted by A-news or notesfiles. To switch between the current and parent articles, use the - com
mand. Unfortunately, if you use several p commands to trace the discussion back further, there is no com
mand to return to the original level.

ug Unsubscribe to the current group. This is a two character command to ensure that it is not typed accidentally
and to leave room for other types· of unsubscribes (e.g., unsubscribe to discussion).

v Print the current version of the news software.

D Decrypts a joke. It only handles rotl 3 jokes. The D command is a toggle; typing another D re-encrypts the
joke.

News Version B2.10.3 February 26, 1986

1. Introduction

How to Use USENET Effectively

Matt Bishop
Research Institute for Advanced Computer Science

Mail Stop 230-5
NASA Ames Research Center

Moffett Field, CA 94035

USENET is a worldwide bulletin board system in which thousands of computers pass articles back and forth.
Of necessity, customs have sprung up enabling very diverse people and groups to communicate peaceably and ef
fectively using USENET. These customs are for the most part written, but are scattered over several documents that
can be difficult to find; in any case, even if a new user can find all the documents, he most likely will have neither
the time nor the inclination to read them all. This document is intended to collect all these conventions into one
place, thereby making it easy for new users to learn about the world of USENET. (Old-timers, too, will benefit
from reading this.)

You should read this document and understand it thoroughly before you even think about posting anything. If
you have questions, please ask your USENET administrator (who can usually be reached by sending mail to usenet)
or a more knowledgeable USENET user. Believe me, you will save yourself a lot of grief.

The mechanics of posting an article to USENET are explained in Mark Horton's excellent paper How to Read
the Network News; if you have not read that yet, stop here and do so. A lot of what follows depends on your know
ing (at least vaguely) the mechanics of posting news.

Before we discuss these customs, we ought to look at the history of USENET, what it is today, and why we
need these conventions.

2. All About USENET

USENET began on a set of computers in North Carolina's Research Triangle. The programs involved
(known as "netnews" then, and "A news" now) exchanged messages; it was a small, multi-computer bulletin
board system. As time passed, administrators of other systems began to connect their computers to this bulletin
board system. The network: grew. Then, at Berkeley, the news programs were rewritten (this version became
known as "B news") and the format changed to conform to ARPA standards (again, this became the "B protocol
for news''. t) This version of news was very widely distributed, and at this point USENET began to take on its
current shape.

USENET is a logical network (as opposed to a physical network.) It is also a very amorphous network, in
that there is no central administration or controlling site. There is not even an official list of members, although
there is a very complete unofficial one. A site gets access to USENET by finding some other site already on
USENET that it can connect to and exchange news articles. So long as this second site (called a neighbor of the
first site) remains willing and able to pass articles to and from the first site, the first site is on USENET. A site
leaves the USENET only when no one is willing or able to pass articles to, or accept articles from, it.

As a result, USENET has no equivalent of a "sysop" or central authority controlling the bulletin board.
What little control is exercised is wielded by the person at each site who is responsible for maintaining the USENET

t See Standard for Interchange of USENEf Messages for a description of the two fonnats.

How to Use USENET Effectively USD:l0-1

USD:l0-2 How to Use USENET Effectively

connecions (this person is called the "USENET administrator.") Because most USENET administrators are (rela
tively) new to USENET, and because administering USENET locally involves a great deal of work, most USENET
administrators tend to follow the lead of other, more experienced, administrators (often known somewhat irreverent
ly as "net gurus.") This is not an abdication of responsibility, but a means of keeping the amount of work little
enough so it can be done without interfering with the local USENET administrator's job. An example of this is the
list of currently active newsgroups circulated every month or so. It is not ''official'' - no one has that authority
but as the maintainer is doing the work that every other USENET administrator would have to do otherwise, it is ac
cepted as a valid list If the maintainer changes the list in a way another USENET administrator finds unacceptable,
that administrator can simply ignore the list (Incidentally, the ''net gurus'' became known as such because of the
work they have contributed to USENET. Their experience is a valuable resource for each USENET administrator.)

Because the USENET has grown so wildly, a number of problems have appeared. One of these problems is
technical, and a number of the conventions this document describes spring from attempts to keep this problem under
control.

The technical problem arises due to the transport mechanism used by most USENET sites. Most computers
on USENET do not have access to large-area networks like ARP ANET. As a result the only viable transport
mechanism these sites can use is a set of programs collectively known as UUCP and which communicate over dial
up telephone lines. Initially, news programs generated one UUCP command per article. With the explosion of the
USENET, the number of articles simply swamped many sites; phone lines would be tied up all day transmitting
news, and many articles would be processed at the same time, slowing down the computers noticeably.

The solution was to batch messages. This way, many articles are sent via UUCP with one command, and the
command on the receiving machine would split the file into separate articles, which could then be processed indivi
dually. While this increased the size of the files being sent, it cut down on the number of UUCP commands sent,
and since sending a command involves quite a bit of overhead, this decreased the duration of phone calls, and to a
lesser degree the load on the computer. At some sites, such as Purdue, this was not quite enough, so a simple
spooler was implemented to process the individual articles one at a time. This reduced the system load to a very ac
ceptable amount.

However, the problem has not gone away by any means. In one sense it has become worse; as more articles
are posted to the network, phone costs and system load averages increase, and system administrators require
USENET administrators to cut back or eliminate newsgroups and to transmit news only at night (which means long
propagation delays). In short, everyone who has anything to do with administering any USENET site is very con
cerned about the future of USENET, both in general and at his own site.

Many of the rules you will read address this concern. The fear that USENET may collapse is not a bogey
man, but very real. We hope it will not collapse, and the rules below outline some ways to prevent problems and in
crease the likelihood that enough sites will remain on USENET to keep it alive. There is no central authority that
can force you to follow them, but by doing so you will help keep USENET a valuable resource to the computer
community.

3. Deciding to Post

Before you decide to post an article, you should consider a few things.

3.1. Do not repeat postings

This applies even if you did not post the information the first time around. If you know the answer to a ques
tion someone asked, first read the followups, and if you have something more to contribute, mail it to the questioner;
if you think it should be seen by others, ask the questioner to summarize the answers he receives in a subsequent ar
ticle. One of the biggest problems on USENET is that many copies of the same answer to a simple question are
posted.

If you want to repost something because you believe it did not get to other USENET sites due to transmission
problems (this happens sometimes, but a lot less often than commonly believed), do some checking before you re
post If you have a friend at another USENET site, call him and ask if the article made it to his site. Ask your
USENET administrator if he knows of any problems in the USENET; there are special newsgroups to which
USENET administrators subscribe in which problems are reported, or he can contact his counterparts at other sites

News Version B2.10.3 February 24, 1986

How to Use USENET Effectively USD:l0-3

for information. Finally, if you decide you must repost it, indicate in the article subject that it is a reposting, and say
why you are reposting it (if you don't, you'll undoubtedly get some very nasty mail.)

Reposting announcements of products or services is ftatly forbidden. Doing so may convince other sites to
turn off your USENET access.

When school starts, hoards of new users descend upon the USENET asking questions. Many of these ques
tions have been asked, and answered, literally thousands of times since USENET began. The m~t common of
these questions, and their answers, have been collected in the hope that the new users will read them and not re-post
the same questions. So, if you want to ask a question, check Appendix I (Answers to Frequently Asked Ques
tions) to be sure it isn't one that has been asked and answered literally hundreds of times befcn you started reading
the USENET.

3.2. Do not post anything when upset, angry, or intoxicated

Posting an article is a lot like driving a car - you have to be in control of yourself. Postings which begin
"Jane, you ignorant slut, ... " are very definitely considered in poor tastet. Unfortunately, they are also far too
common.

The psychology of this is interesting. One popular belief is that since we interact with USENET via comput
ers, we all often forget that a computer did not do the posting; a human did. A contributing factor is that you don't
have to look the target of abuse in the eye when you post an abusive message; eye-to-eye contact has an amazing ef
fect on inhibiting obnoxious behavior. As a result, discussions on the USENET often degenerate into a catfight far
more readily than would a face-to-face discussion.

Before you post an article, think a minute; decide whether or not you are upset, angry, or high. If you are,
wait until you calm down (or come down) before deciding to post something. Then think about whether or not you
really want to post it. You will be amazed what waiting a day or even a few hours can do for your perspective.

Bear in mind that shouting hasn't convinced anyone of anything since the days of Charlemagne, and being
abusive makes people hold even more tenaciously to their ideas or opinions. Gentleness, courtesy, and eloquence
are far more persuasive; not only do they indicate you have enough confidence in your words to allow them to speak
for you, but also they indicate a respect for your audience. This in turn makes it easier for your audience to like or
respect you - and people tend to be far more interested in, and receptive to, arguments advanced by those they like
or respect than by writers who are abusive. Finally, remember that some discussions or situations simply cannot be
resolved. Because people are different, agreed-upon facts often lead to wildly different feelings and conclusions.
These differences are what makes life so wonderful; were we all alike, the world would be a very boring place. So,
don't get frantic; relax and enjoy the discussion. Who knows, you might even learn something!

3.3. Be sure your posting is appropriate to USENET

Some things are inappropriate to post to USENET. Discussing whether or not some other discussion is ap
propriate, or if it is in the right newsgroup, is an example. Invariably, the "meta-discussion" generates so many ar
ticles that the discussion is simply overwhelmed and vanishes; but the meta-discussiOn lingers on for several weeks,
driving most of the readers of that newsgroup out of their collective minds. Help preserve the sanity of your fellow
USENET readers by mailing such comments to the people involved, rather than posting them.

Another example of inappropriate postings is the infamous "spelling ftame." Every few months someone
takes another poster to task for poor spelling or grammar. Soon, everyone jumps on the bandwagon, tearing apart
one another's postings for such errors. To put it mildly, this angers almost everyone involved for no real reason.
Please remember that we all make mistakes, and there are a lot of people for whom English is a second language.
So, try to keep your spelling and grammar comments to yourself - but if you find you simply cannot, mail them to
the poster rather than posting them.

Far more insidious are requests similar to ''How can I splice into the local cable TV transmission line?''
Posting to USENET is akin to publishing, so don't ask for or post instructions on how to do something illegal. And
please don't quote the First Amendment, or the laws allowing freedom of speech in your country; while the posting

t Unless you are critiquing Saturday Nighl Live.

News Version B2.10.3 February 24, 1986

USD:l0-4 How to Use USENET Effectively

programs will not stop you, the aftermath could be very unpleasant - lawsuits and court trials usually are, and the
USENET would certainly collapse as sites dropped from it to protect themselves from legal liability. You wouldn't
want that on your conscience, would you? Of course not.

Related to this is the next rule.

3.4. Do not post other people's work without permission

Posting something to USENET puts it in the public domain for all practical purposes. So, be careful about
posting things like UNIXt-related material (specifically source code) or company documents; consider licensing and
nondisclosure agreements first. Some people regard the posting of "diffs" based on licensed code to be a suitable
compromise, as they are only useful to those who have the base code already.

Copyrighted works are a separate problem. Both United States and international law provide protection for
copyrighted works; other than short extracts for purposes of criticism, you cannot copy a copyrighted work in whole
or in part without permission of the copyright holder (who may, or may not, be the author.) Without this protection,
artists could not make any money and hence would have limited incentive to make the fruits of their art available at
all. Posting a copyrighted work without permission is theft, even though the property stolen is not tangible in most
cases. Hence, posting movie and book reviews, song lyrics, or anything else which is copyrighted without the per
mission of the copyright holder, could cause you personally, your company, or the USENET itself to be held liable
for damages. Please be very careful that you obey the law when posting such material!

3.S. Don't forget that opinions are those of the poster and not his employer.

Every so often, someone will post a particularly disgusting article, and a number of responses will ask if all
employees of the original poster's company share his (revolting) opinion, or suggest that action be taken against that
company. Please remember that all opinions or statements in articles are to be attributed to the poster only, and in
particular, do not necessarily represent the opinions of the poster's employer, the owner of the computer on which
the article originated, or anyone involved with any aspect of USENET - and consequently the responsibility for any
USENET message rests with the poster and with no one else. The appropriate response is not to attack the company
or its other employees; let the poster know what you think of his posting via mail. If the postings continue, take ad
vantage of the news software's presenting you with the author's name and the subject line and then asking if you
want to see the article; start looking for the poster's name or the offensive subject in the articles presented to you
and skip them. If you really get offended, you can unsubscribe from a newsgroup.

Part of the price of freedom is allowing others to make fools of themselves. You wouldn't like to be cen
sored, so don't advocate censorship of others. No one is forcing you to read the postings.

In some countries, posting or receiving certain types of articles may be a criminal offense. As a result, certain
newsgroups which circulate freely within the United States may not be circulated in other nations without risking
civil or criminal liabilities. In this case, the appropriate action for sites in that country is neither to accept nor to
transmit the newsgroup. No site is ever forced to accept or pass on any newsgroup.

4. Where to Post

The various newsgroups and distributions have various rules associated with their use. This section will
describe these rules and offer suggestions on which newsgroups to post your message.

4.1. Keep the distribution as limited as possible

A basic principle of posting is to keep the distribution of your article as limited as possible. Like our modem
society, USENET is suffering from both an information glut and information pollution. It is widely believed that
the USENET will cease to function unless we are able to cut down the quantity of articles. One step in this direction
is not to post something to places where it will be worthless. For example, if you live in Hackensack, New Jersey,
the probability of anyone in Korea wanting to buy your 1972 Toyota is about as close to zero as you can get. So
confine your posting to the New Jersey area.

tUNIX is a trademark of AT&T Bell Laboratories.

News Version B2.10.3 February 24, 1986

How to Use USENET Effectively USD:l0-5

To do this, you can either post to a local group, or post to a net-wide group and use the distribution feature to
limit how widely your article will go. When you give your posting program (usually postnews(l)) a distribution,
you are (in essence) saying that machines which do not recognize that distribution should not get the article. (Think
of it as a subgroup based on locality and you'll get the idea.) For example, if you are posting in the San Francisco
Bay Area, and you post your article to net.auto but give ba as the distribution, the article will not be sent beyond the
San Francisco Bay Area (to which the ha distribution is local) even though you put it in a net-wide newsgroup. Had
you given the distribution as ca (the California distribution), your article would have been sent to all Californian
sites on USENET. Had you given the distribution as net, your article would have been sent to all sites on USENET.

4.2. Do not post the same article twice to difrerent groups

If you have an article that you want to post to more than one group, post to both at the same time. Newer ver
sions of the news software will show an article only once regardless of how many newsgroups it appears in. But if
you post it once to each different group, all versions of news software will show it once for each newsgroup. This
angers a lot of people and wastes everybody's time.

4.3. Do not post to "mod." or "net.announce" newsgroups

You may not post directly to certain newsgroups; you cannot post to some at all. Newer versions of the news
software will inform you when either of these restrictions apply, but older versions of news software will not

The mod. newsgroups are bona fide moderated newsgroups. If you want to have the appropriate moderator
post something, mail it to him. (If you do not know his address, ask your USENET administrator. In some cases,
the software will automatically mail, rather than post, your article to the moderator.)

The newsgroup net.announce and its subgroups are moderated newsgroups designed for important announce
ments. It is used to post important announcements that everyone on USENET can read. (Net.general was meant to
provide such a place, but so many inappropriate messages have been posted there that a lot of people began to un
subscribe; hence, this moderated newsgroup was set up. Very few messages are posted to it, so don't be afraid to
subscribe; you will not be overwhelmed.) To post to this group, mail your announcement to the moderator, and he
will either post it or suggest an alternative (such as a more appropriate newsgroup.) Messages for net.announce
should be short, important enough so that everyone on USENET should see the headers, not cross-posted to any oth
er newsgroup, and signed; messages which are political, commercial, or religious in nature will be rejected.

4.4. Do not post to "net.general"

Of course, there are exceptions to this rule, but almost all articles posted to net.general do not belong there.
Only articles of general interest and importance to everyone on USENET should be posted there. ''Everyone'' in
cludes the USENET readers in Europe, Asia, Australia, Canada, the United States, and possibly other places.

This means that announcements of services or products, test messages, seminar announcements, program
sources and bug reports, requests for addresses, and so forth do not go to net.general. If you wish to post a follow
up to an article you saw in net.general, put the followup posting in net.followup. (Again, newer versions of news·
software will do this automatically, but do not rely on this feature as your software may be old.)

Similarly, never post to net.general and another newsgroup. If your article belongs in any other newsgroup,
put it there, and not in net.general. (There is one exception to this rule - articles may be cross-posted to
net.general and net.announce. Since net.announce is moderated, though, the exception does not matter to you.)

4.5. Ask someone if you can't figure out where to post your article

If you cannot figure out where to post something, look in net.announce.newusers for the list of active news
groups. (This is posted biweekly. If you can't find it, look at the list in How to Read the Network News; but be
aware that list is undoubtedly out of date already.) If your article does not seem to fit in any of the listed groups,
post it to net.misc or don't post it

If you still are not sure which newsgroup to post your article to, ask an old-timer. If your site doesn't have
any old-timers (or none of the old-timers will admit to being old-timers), contact any of the following people:

News Version B2.10.3 February 24, 1986

USD:l0-6 How to Use USENET Effectively

Gene Spafford (spaf@gatech.CSNET, spaf@gatech.UUCP)
Mark Horton (mark@cbosgd.UUCP)
Rick Adams (rick@seismo.CSS.GOV, rick@seismo.UUCP)
Chuq Von Rospach (chuq@sun.UUCP)
Matt Bishop (mab@riacs.ARPA, mab@riacs.UUCP)

We will be happy to help you. But, please, do not post the article to the net before you ask us!

4.6. Be sure there is a consensus before creating a new newsgroup

Creating a new newsgroup is, in general, a very bad idea. Currently, there are so many articles being posted
that the USENET is in dange of collapse as site after site decides to cease to accept and retransmit certain news
groups. Moreover, there is no established procedure for deleting a newsgroup, so once created, newsgroups tend to
stay around. They also tend to encourage people to think up new newsgroups, and the cycle repeats. Try to avoid
thinking up new newsgroups.

If, however, you believe a new group should be created, be sure you have a consensus that the group is need
ed (either a mailing list has enough traffic and readers to justify turning it into a newsgroup, or a discussion in· a
current newsgroup becomes so large for a period of time long enough to warrant splitting it into a newsgroup.)
Then post an article to net.news.group as well as any other groups related to your proposed new group, and discuss
the topics you are proposing be covered in your new group; what it should be called, whether it is really needed, and
so forth. Try ·to resolve all objections, and take into account all suggestions and comments; finally, have everyone
mail you a "yes" or "no" vote on whether the group should be created Try to get at least 40 or 50 "yes" votes
before creating the group; if you want to be safe, get around 100.

4. 7. Watch out for newsgroups which have special rules about posting

Some newsgroups have special rules. This section summarizes them.

net.books Do not post anything revealing a plot or a plot twist without putting the word ''spoiler''
somewhere in the "Subject" field. This will let those who do not wish to have a surprise
spoiled skip the article.

net.followup

net.jokes

net.movies

net.news.group

net.sources

net.sources. bugs

net.test

net.wanted

net. wanted.sources

S. Writing the Article

This group is for followups to articles posted in net.general or for results of surveys. No
discussions are allowed.

If you want to post an offensive joke (this includes racial, religious, sexual, and scatalogi
cal humor, among other kinds) rotate it (If you do not know what this means, look in the
section Writing Your Posting.)

Do not post anything revealing a plot or a plot twist without putting the word ''spoiler'' in
the ''Subject'' field. This will let those who do not wish to have a surprise spoiled skip the
article.

Discussions about whether or not to create new groups, and what to name them, go here.
Please mail your votes to the proposer; don't post them. ·

Source code postings go here. Discussions are not allowed. Do not post bug fixes here.

Bug reports and bug fixes to sources posted in net.sources go here.

Use the smallest distribution possible. In the body of the message, say what you are test
ing.

Requests for things other than source code go here. Please use the smallest distribution
possible. Post offers here, too.

Requests for sources go here.

Here are some suggestions to help you communicate effectively with others on the USENET. Perhaps the
best advice is not to be afraid to consult a book on writing style; two of the best are How to Write for the World of
Work by Cunningham and Pearsall, and Elements of Style by Strunk and Wl)ite.

News Version B2.10.3 February 24, 1986

How to Use USENET Effectively USD:l0-7

5.1. Write ror your audience

USENET is an international network, and any article you post will be very widely read. Even more impor
tantly, your future employers may be among the readers! So, try to make a good impression.

A basic principle of all writing is to write at your readers' reading level. It is better to go below than above.
Aiming where ''their heads ought to be'' may be fine if you are a college professor (and a lot of us would dispute
even that), but it is guaranteed to cause people to ignore your article. Studies have shown that the average American
reads at the fifth grade level and the average professional reads at the twelfth grade level.

5.2. Be clear and concise

Remember that you are writing for a very busy audience; your readers will not puzzle over your article. So be
very clear and very concise. Be precise as well; choose the least ambiguous word you can, taking into account the
context in which you are using the word. Split your posting into sections and paragraphs as appropriate. Use a
descriptive title in the ''Subject'' field, and be sure that the title is related to the body of the article. If the title is not
related, feel free to change it to a title that is.

5.3. Proofread your article

This is a matter of courtesy; since you want others to read your article, the least you can do is check that it
says what you mean in a clear, concise manner. Check for typographical errors, silly grammar errors, and misspel
lings; if you have a spelling checking program, use it. Also be sure the article is easy to read. Use white space -
blanks, tabs, and newlines - and both upper and lower case letters. Do not omit the definite and indefinite articles,
either; not only do "a", "an", and "the" make a posting much easier to read, their omission can make a posting
ambiguous.

5.4. Be extra careful with announcements of products or services

When writing a product or service announcement, bear in mind that others will be paying most of the tele
phone bills. So, if you are announcing several things, combine all the announcements into one article. Mark the
posting as a product or service announcement in the title in the ''Subject'' field. Advertising hyperbole is not ap
propriate here; remember that your audience is to a large degree technically literate, and your product will stand or
fall on its technical merits. Be aware that posting obnoxious or inappropriate advertisements is very serious and if
you do it, you may find your neighbors yanking your USENET access.

5.5. Indicate sarcasm and humor

Remember that people cannot see you when they read your posting; hence, all the subtle nuances of body and
facial motion are hidden. It can be quite difficult to tell when you are being sarcastic or humorous. To deal with
this problem, the USENET readers and posters have developed a special sign. Mark passages you intend to be taken
as humorous with the "smiley face", while looks like this: ":-)". (Think of a head facing you lying on its right
side and look again if you don't understand why that symbol was chosen.) As for sarcasm, there is no universal
symbol for that (unless the sarcasm is meant humorously, in which case use the smiley face again.) But mark your
passage so everyone will realize you are being sarcastic.

5.6. Mark postings which spoil surprises

High on the list of obnoxious messages are those that spoil the plot of a book or movie by giving away an
unexpected detail. If you post such an article, please put the word ''spoiler'' in the ''Subject'' field of your posting,
so people who do not wish to have a surprise ruined can skip the article.

5.7. Rotate offensive postings

If you feel you must post a message that may offend people, you can do one of two things. You can post it to
the newsgroup net.flame or you can take steps to be sure the message will only be read by those who explicitly ask
for it to be shown to them. In the latter case, the USENET convention is to encrypt these messages by shifting each
letter 13 characters, so that (for example) ''a'' becomes ''n' '. (In more precise terms, this is a Caesar cipher of shift
13; on the USENET, it is called rotl3.) When you do this, put the word "rot13" in the "Subject" field. The news

News Version B2.10.3 February 24, 1986

USD:l0-8 How to Use USENET Effectively

reader you are using almost certainly has a command to encrypt and decrypt such messages; if not, use the UNIX
command

tr a-zA-Z n-za-mN-ZA-M ,

5.8. The shorter your signature, the better

Keep signatures concise; 2 or 3 lines are usually plenty. Include your name and addresses on any major net
works (such as ARPANET, BITNET, or CSNET). This helps people contact you quickly and easily, usually more
so than by following the return path of the article. Do not include pictures, graphics or clever quotations that make
the signature longer; this is not the appropriate place for them, and many sites resent paying the phone bills for such
signatures.

6. Conclusion and Summary

Here is a list of the rules given above:

=> Deciding to post

•Do not repeat postings

•Do not post anything when upset, angry, or intoxicated

•Be sure your posting is appropriate to USENET

•Do not post other people's work without permission

•Don't forget that opinions are those of the poster and not his company

=> Where to Post

• Keep the distribution as limited as possible

•Do not post the same article twice to different groups

•Do not post to mod., or net.announce newsgroups

•Do not post to net.general

•Ask someone if you can't figure out where to post your article

•Be sure there is a consensus before creating a new newsgroup

•Watch out for newsgroups which have special rules about posting

=> Writing the Article

•Write for your audience

• Be clear and concise

•Proofread your article

•Be extra careful with announcements of products or services

• Indicate sarcasm and humor

•Mark postings which spoil surprises

•Rotate offensive postings

•The shorter your signature, the better

The USENET can be a great place for us all. Sadly, not enough people are following the customs that have
been established to keep the USENET civilized. This document was written to educate all users of the USENET on
their responsibilities. Let's clean up the USENET, and turn it into a friendly, helpful community again!

Acknowledgements: The writing of this document was inspired by Chuq von Rospach's posting on USENET eti
quette, and it draws on previous work by Mark Horton, A. Jeff Offutt, Gene Spafford, and Chuq von Rospach.

News Version B2.10.3 February 24, 1986

How to Use USENET Effectively

Appendix I. Answers to Frequently Asked Questions

originally from Jerry Schwarz (jerry@eagle.UUCP)
modified by Gene Spafford (spaf@gatech.UUCP)
modified by Matt Bishop (mab@riacs.ARPA)

USD:l0-9

This document discusses some items that occur repeatedly on USENET. They frequently are submitted by
new users, and result in many followups, sometimes swamping groups for weeks. The purpose of this note is to
head off these annoying events by answering some questions and warning about the inevitable consequence of ask
ing others. If you don't like my answers, let me know and I may include revisions in future versions of this note.

1. What does UNIX stand for?

It is not an acronym, but is a pun on "MULTICS." MULTICS is a large operating system that was being
developed shortly before UNIX was created.

2. What is the derivation of "foo" as a filler word?

The favorite story is that it comes from ''fubar'' which is an acronym for ''fouled up beyond all recognition,''
which is supposed to be a military term. (Various forms of this exist, "fouled" usually being replaced by a
stronger word.) "Foo" and "Bar" have the same derivation.

3. Is a machine at "foo" on the net?

These questions belong in net.news.config if anywhere, but in fact your best bet is usually to phone somebody at
"foo" to find oul If you don't know anybody at "foo" you can always try calling and asking for the "comput
er center.'' Also, see the newsgroup mod.map, where maps of USENET and the UUCP network are posted
regularly.

4. What does ''re'' at the end of files like .newsrc mean?

According to Dennis Ritchie, "The name re comes from RUNCOM, which was the rough equivalent on the
MIT CTSS system of what UNIX calls shell scripts. Of course RUN COM derives from run commands.''

5. What do"- (nf)" and "Orphaned Response" in an item's title mean?

It means that the item was created by "notefiles," an alternative news handling interface that many people
prefer. If you want to find out more you can read the "Notesfile System Reference Manual" or contact
uiucdcs! essick.

6. What does":-)" mean?

This is the net convention for a "smiley face." It means that something is being said in jest If it doesn't look
like a smiley face to you, flop your head over to the left and look again.

7. How do I decrypt jokes in net.jokes?

The standard cipher used in net.jokes in called "rot13." Each letter is replaced by the letter 13 further along in
the alphabet (cycling around at the end). Most systems have a built in command to decrypt such articles; read
news(l) and vnews(l) have the D command, rn(l) (another popular public-domain full screen news reader) has
the X or <CONTROL·X> commands, notes(l) has% or R. If your system doesn't have a program to encrypt and
decrypt these, you can quickly create a shell script using tr(l):

tr A-Za-z N-ZA-Mn-za-m

On some versions of UNIX, the tr command should be written as:
tr "[a-m][n-z][A-M][N-Z]" "[n-z][a-m][N-Z][A-M]"

8. net.general: Is John Doe out there anywhere?

I suspect that these items are people looking for freshman roommates that they haven't seen in ten years. If you
have some idea where the person is you are usually better off calling the organization. For example, if you call
any Bell Labs location and request John Doe's number. They can give it to you even if he works at a different
location. If you must try the net, use newsgroup net.net-people, not net.general.

9. net.math: Proofs that 1=0.

News Version B2.10.3 February 24, 1986

USD:l0-10 How to Use USENET Effectively

Almost everyone has seen one or more of these in high school. They are almost always based on either division
by 0 or taking the square root of a negative number.

10. net.games: Where can I get the source for empire(6) or rogue(6)?

You can't. The authors of these games, as is their right, have chosen not to make the sources available.

11. net.unix-wizards: How do I remove files with non-AScn characters in their names?

You can try to find a pattern that uniquely identifies the file. This sometimes fails because a peculiarity of some
shells is that they strip off the high-order bit of characters in command lines. Next, you can try an ''rm -i' ', or
"rm-r" (see nn(l).) Finally, you can mess around with i-node numbers and.find(l).

12. net.unix-wizards: There is a bug in the way UNIX handles protection for programs that run setuid.

There are indeed problems with the treatment of protection in setuid programs. When this is brought up, sugges
tions for changes range from implementing a full capability list arrangement to new kernel calls for allowing
more control over when the effective id is used and when the real id is used to control accesses. Sooner or later
you can expect this to be improved. For now you just have to live with it.

13. net.women: What do you think about abortion?

Although abortion might appear to be an appropriate topic for net.women, more heat than light is generated
when it is brought up. Since the newsgroup net.abortion has been created, all abortion-related discussion
should take place there.

14. net.singles: What do "MOTOS," "MOTSS,", "MOTAS", and "SO" stand for?

Member of the opposite sex, member of the same sex, member of the appropriate sex, and significant other,
respectively.

15 net.columbia: Shouldn't this name be changed?

The name was devised to honor the first space shuttle. It was realized at the time the group began that the name
would quickly become out of date. The intent was to create a bit of instant nostalgia.

16. net.columbia: Shouldn't this group be merged with net.space? No. Net.columbia is for timely news bulletins.
Net.space is for discussions.

17. How do I use the "Distribution" feature?

When postnews(l) prompts you for a distribution, it's asking how widely distributed you want your article. The
set of possible replies is different, depending on where you are, but at Bell Labs in Murray Hill, New Jersey,
possibilities include:

mh3bcl
mh
nj
btl
att
usa
na
net

local to this machine
Bell Labs, Murray Hill Branch
all sites in New Jersey
All Bell Labs machines
All AT&T machines
Everywhere in the USA
Everywhere in North America
Everywhere on USENET in the world (same as "world")

If you hit <RETURN>, you'll get the default, which is the first part of the newsgroup name. This default is often
. not appropriate - please take a moment to think about how far away people are likely· to be interested in what

you have to say. Used car ads, housing wanted ads, and things for sale other than specialized equipment like
computers certainly shouldn't be distributed to Europe and Korea, or even to the next state.

The newsgroup na.rorsale exists for postings of sale announcements. Its distribution is limited to North Ameri
ca; posters should restrict this distribution even further, if possible and appropriate.

18. Why do some people put funny lines ("bug killers") at the beginning of their articles?

Some earlier versions of news had a bug which would drop the first 512 or 1024 bytes of text of certain articles.
The bug was triggered whenever the article started with whitespace (a blank or a tab). A fix many people adopt
ed was to begin their articles with a line containing a character other than white space. This gradually evolved
into the habit of including amusing first lines.

News Version B2.10.3 February 24, 1986

How to Use USENET Effectively USD:l0-11

The original bug has since been fixed in newer version of news, and sites running older versions of news have
applied a patch to prevent articles from losing text. The "bug-killer" lines are therefore probably no longer
needed, but they linger on.

19. What is the address or phone number of the "foo" company?

Try the white and yellow pages of your phone directory, first; a sales representative will surely know, and if
you're a potential customer they will be who you're looking for. Phone books for other cities are usually avail
able in libraries of any size. Whoever buys or recommends things for your company will probably have some
buyer's guides or national company directories. Call <X' visit the reference desk of your library; they have
several company and organization directories and many will answer questions like this over the phone.
Remember if you only know the city where the company is, you can telephone to find out their full address or a
dealer. The network is not a free resource, although it may look like that to some people. It is far better to
spend a few minutes of your own time researching an answer rather than broadcast your laziness and/or inepti
tude to the net.

News Version B2.10.3 February 24, 1986

Report No. UIUCDCS-R-82-1081

NOTESFILE REFERENCE MANUAL
(abridged)

by

Raymond B. Essick IV
Rob Kolstad

February 14, 1983
(Revised: October 20, 1985)

(Printed: June 30, 1987)

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

1304 W. SPRINGFIELD A VENUE
URBANA, ILLINOIS 61801-2987

Supported in part by NASA Project NAS-1-138

TABLE OF CONTENTS

1 Introduction .. 1

2 Using Notesfiles .. 1
2.1 Invocation. ... 1
2.2 Notesfile Nanties aild Wildcards .. 2
2.3 The -f Option ... 2
2.4 General ... 3

2.4.1 Help ... 3
2.4.2 Exiting ... 3
2.4.3 Shells ... 4
2.4.4 Comnients & Suggestions ... 4

2.S The Index Page .. 4
2.5.1 Scrolling the Index Page ... 5
2.S.2 Choosing Notes & Responses ... 5

2.6 Notes & Responses .. 5
2.6.1 Reading Notes ... 5
2.6.2 Reading Resp<>nses .. : 6
2.6.3 Writing Notes & Responses .. 7
2.6.4 Mailing Notesfile Text ... 7
2.6.5 Forwarding Text To Other Notesfiles ... 7
2.6.6 Saving Text in l..c>cal Files .. 8
2.6. 7 Deletion ... 8
2.6.8 Online Communication ... 8
2.6.9 Editing Note Titles .. 8
2.6.10 Editing Notes/Responses ... 8

2.7 Other Commands ... 8
2. 7 .1 Returning to the Index Page ... 8
2. 7 .2 Searching Titles for Keywords ... 8
2. 7. 3 Searching for Authors ... 9
2.7.4 Stacking Notesfiles ... 9
2.7.5 Accessing Archives .. 9
2.7.6 Policy Note ... 9

2.8 The Sequencer ... 9
2.8.1 Seeing New Notes and Responses ... 10
2.8.2 Alternate Sequencers ... 10
2.8.3 Automatic Sequencing .. · ~ .. -.... ~ 11

2.9 Environment Variables ... 12

3 Other Notesfi.le Utilities .. 12
3.1 Hard Copy Output ... 12
3.2 Piped. Insertion of Notes ... 12
3.3 User Subroutines ... 13

3.3.1 Nfcomnlent. ... 13
3.3.2 Nfabort .. 13

3.4 Statistics .. 14
3.5 Checking for New Notes .. 14

APPENDICES

Notesfile Reference Manual USD:ll-2

the extended sequencer. The "-i" flag selects yet another sequencing mode. 1be "-a" option specifies a particular
subsequencer. This allows several users sharing a signon to maintain their own sequencing timestamp information.

The -t option directs the notesfile system to use ''termtype'' • the user's terminal type, overriding the
TERM shell variable.

The -f option directs the notesfile system to read the contents of the file ''nfile'' for a list of notesfiles to
read. See section 2.3 (''The -f Option'') for more information on the fmnat of. this file.

2.2 Notesfile Names and Wildcards.

Notesfiles can be specified in several ways. The most common way is to merely give the name of the
notesfile, such u ''general''. 'These notesfiles typically reside in the direcury '' /usr/spool/notes' '. N otesfiles may
also be specified by their complete· pathname; thus you_ could also refer to ''general'' by its full pathname
"/usr/spool/notes/general". Using complete naming, notesfiles can be placed anywhere in the filesystem. This
allows ''private'' notesfiles to be stored in personal directmies.

The notesfile system supports pattern matching for names in the same manner• the shell. By using the
shell meta-characters "*", "?", "[" and "]",the user can specify a number of notesfiles with a single entry. To
read all the notesfiles that pertain to unix, enter the following line (the quotes are required to protect the metacharac
ters from interpretation by the shell):

notes '' •unix •''

There are several ways to read the notesfiles testl, test2, test3 and test4:

notes testl test2 test3 test4
notes "test?"
notes "test[l234]"

Entries can also be eliminated from the list of notesfiles to look at By prefixing a notesfile name (possibly
containing wildcard characters) with a '! ', the notesfiles are excluded from the list to be examined. If one wished to
look at all of the ''test'' notesfiles except test3, one could specify:

notes "test?" !test3

If you use the c shell, you will have to escape the '! ', the history character:

notes "test?" \!test3

These features are available from the normal entry (notes) and the· automatic sequencer entry (see section
2.8). Most notesfile programs recognize this format. Among those which do not are programs which must receive
exactly one notesfile name.

2.3 The -f Option.

The "-r' option of the notesfile system specifies a file of notesfile names to read. The file consists of lines
containing notesfile names:

nfgripes
net.unix-wizards
net.general
fa.telecom

USD:ll-3 Notesfile Reference Manual

The names start at the left margin; they are indented here for readability. Wildcard characters("•", "'!", "[", and
"]") are acceptable in this context Full names such as "/usr/spool/notes/general" are also accepted. Notesfiles
can be eliminated through the ''!'' feature as described in section 2.2. The sequencer mode can be changed (see
section 2.8) by inserting a line of the form:

-s

Again, this starts at the left margin. The "s" can be any of: "s", "x", "i", or "n". When a line of this
form is read from the file, the sequencer mode is set to the corresponding mode: The normal "s"equencer, the
e"x"tended sequencer, the "i"ndex sequencer, and "n"o sequencer.

To always enter nfgripes, micronotes, and bicycle while only entering the networked notesfiles ''net•''
when new notes are present, one might use "notes -f myfile" with this "myfile":

-x
nfgripes
micronotes
bicycle
-s
net.•

2.4 General.

Almost all notesfile commands consist of exactly one character (no carriage return). Only commands that
are longer than one character require a terminating carriage return (currently, choosing a note to read is the only
non-single character command).

The commands were chosen to be easy to remember. Upper case forms of commands usually function like
their lower case counterparts but with some additional feature or power (i.e., "w" writes a response, "W" includes
the current displayed text in the response).

Some commands are available almost everywhere in the notesfile system. These include those for help,
exiting, forking a shell, and making a comment for the suggestion box.

2.4.1 Help.

Typing "?" anywhere will list the available options in an abbreviated format.

2.4.2 Exiting.

Type "q" ("quit") to leave the current notesfile. Capital "Q" leaves the current notesfile and refrains
from entering your last entry time into the sequencer table (see section "The Sequencer''). The notesfile system
proceeds to the next topic in the invocation list The "k" and "K" keys function exactly as "q" and "Q".

Use control-D ("signoff'') to leave the notesfile system completely (without updating entry time informa
tion). The "z" command (which functions only when reading notes or responses or when on the index page)
behaves similarly to control-D: the user exits the notesfile system immediately, but unlike control-D, updates the
entry time information for the current notesfile.

Notesfile Reference Manual USD:ll-4

2.4.3 Shells.

Fork a shell at any time by typing "!" (just like many other Unix programs).

2.4.4 Comments & Suggestions.

Type capital "B" ("suggestion Box") while on the index page or reading notes to make a comment or
suggestion about the notesfile pogram. Your suggestion will be sund in another not.esfile reviewed frequently by
the notesfile system manager.

2.5 The Index Page.

When the notes system is invoked without the -s option, the user sees an index of the most recent notes. A
sample page is shown below:

Work.station Discussion 2:03 pm Jan 4, 1982

12/9/81 2 Stanford SUN 4 horton
3*WICAT 68000 kolstad
4M68000 1 horton
5 Dolphin 3 duke!johnson

12/10 6 CDC Standalone 1 smith
8 IBM Personal Computer henry
9 Personal computers harmful? 8 Anonymous
10 Ethernet interfaces 3 mhz? 23 es sick
11 Requirements for uiucdcs 10 botten

1/1/82 12 Happy New Year! 5 mjk

The upper left corner shows the notesfile' s title. In this example, the. notesfile discusses personal worksta
tions. The current time and date are displayed in the upper right comer. Approximately ten note titles are displayed
(if available). More notes are displayed on longer screens (such as the Ann Arbor Ambassador). Each note is
displayed with its date (if different from the previous date), note number, title, number of responses (if any), and
author. The first note above was written by user ''horton'' on December 9th, is entitled ''Stanford SUN'' and has
four responses. Note 7 has been deleted for some reason (by either its author or a notesfile director). Note 5 was
written by user ''johnson'' whose signon resides on the ''duke'' system. Note 9 was written by an author who pre
ferred to remain unidentified. Notes with director messages (sometimes denoting importance) are displayed.with a
"*"next to the note number (see note 3 above).

From the index page the user may:

•Scroll the index forward or backward.
•Read a note.
•Write a note.
•Go to the next unread note.
•Search for notes or responses after a specific date/time.
•Search for keywords within notes' titles.
•Search for notes/responses by a specific author.
•Go to another notesfile.
•Consult the notesfile's archive.
•Read the policy note.
•Check on anonymous and networked status.
•Register a complaint/suggestion about notesfiles.

USD:ll-S

•Fork a shell.
•Exit the notes program.
• Invch notesfile dllector options (if the user is a director).

2.5.1 Scrolling the Index Page.

Scroli'itie index page by:
~

+, <niwn>, <Space> forward one page
• forward to the most recent page(* is multiple +'s)

backward one page
backward all the way (== is multiple -'s)

2.5.2 Choosing Notes & Responses.

Notesfile Reference Manual

While on the index page, choose a note to read by typing its number followed by a carriage return. (This is
the only command that requires a carriage return after it) Usually the space bar is used to scan text To skip to a
particular note 0r response, use the features below.

While reading a note,'';'' or''+'' advances to the first response of the note. The next note is displayed if
there are no responses. The number keys (" 1 ", "2", ... , "9") advance that many responses. If there are fewer
responses, the last response is displayed. The return key skips the responses and goes to the next note. Press''-'' or
backspace to see the previous page of the current note; if the page currently displayed is the first, the notesfile pro
gram displays the first page of the previous note.

While a response is on the screen, the '' ;'' and '' +'' keys display the next response. As with reading a
note, if there are no further responses these keys advance to the next note. The number keys ('' 1' ', ... , ''9' ') will
advance the appropriate number of responses. ff there are fewer responses, the last response is displayed. The '' -''
or backspace keys display the previous page of the current response. If the current page is the first page of the
response, these keys display the first page of the previous response. Enter '' ='' to see the base note of the current
note string. Press the return key to proceed to the next note.

2.6 Notes & Responses.

2.6.1 Reading Notes.

After selecting a note from the index page (or entering the notesfile with your "sequencer" on), the note is
displayed. A sample display is shown below:

Note 15
horton

Wicat System 150

Workstation Discussion 2 responses
WICAT 150 4:03 pm Dec 11, 1981

8 MHz 68000, Mem. mgmt, Multibus architecture, 256k to 1.5 Mb RAM,16132J64Kbyte EPROM,
10 ms interval timer, 2 RS232 (19.6k async, 56k sync), 16 bit parallel intelligent disk controller,
10 Mbyte winchester (5.25", 3600 rpm, access: 3 ms trk-trk, 70 avg, 150 max),
960Kb ftoppy (S~25", 300 rpm, access 10 ms trk-trk, 267 avg, 583 max)
Options: battery backed clock, graphics with touch panel, video disk control,
High Speed Serial Network Interface
UnWV7 avail, Pascal, C, APL, ADA, Cobol, Fortran, Lisp, Basic, Asm

Notesfile Reference Manual USD:ll-6

This is note number lS in the "Workstation Discussion" file. User "horton" wrote this note at 4:03 pm
on December 11th, 1981. Two responses have been written. The note's ti.de is "WICAT 150". If a director had
written the note, the "director message" might have been displayed beneath the note's title. Director's notes some
times contain important inf<Xmation er new policies.

Since notes and responses can each be up to 3 Mbytes long, the display routine breaks text into pages
automatically. For all but the last page of a long note or response, the lower right comer of the display shows the
percentage of the note that has been shown. For all but the first page <X long text, the message ''[Continued]''
appears in the upper left portion of the display. Use the space bar to see the next page of a long note or response.
When the last page is displayed, the space key functions as the '';'' key: it proceeds to the next response. The '' -''
and backspace keys back up the display to the previous page. Only the first SO pages of text are managed this way;
typing '' -'' from the fifty-second page will return to the fiftieth page. The '' •'' key returns to the first page of the
note.

While reading a note, it is possible to:
•Display the next, previous, or first page of the note.
•Write a response to the displayed note.
•Read next note or previous note.
•Read next unread response or note.
•Return to the index page.
• Skip to a given response.
•Delete the note (if you are its author or a file director).
•Edit the note's ti.de (if it is yours).
•Edit the note (if it is yours and there are no responses).
•Copy the note to another notesfile.
• Save the note in your file space.
•Mail the note to someone.
•Talk (''write'') to the author of the note.
• Search for keywords in note titles.
•Search for notes/responses by a particular author.
•Toggle the director message (if privileged).
•Fork a shell.
•Go to another notesfile.
•Make a comment or suggestion about notesfiles.
•Exit the notesfile program.

2.6.2 Reading Responses.

Response displays are similar to those of main notes with the exception that ''Response x of y'' replaces
the note's title. The first response to note 15 is shown below:

Note 15
koehler

Workstation Discussion
Response 1 of2 11:53 pm Dec 11, 1981

Does anyone have any insight about the relative speeds of the Winchester disks available
on these systems? The previous disk seems to have track to track response times commensurate
with reasonably fast 8" ftoppies. I wonder if some of the manufacturers are using disks that
will not meet reasonable specifications for response time for these kinds of applications.

On the other hand, with intelligent layout of file sectors, the 1/0 system
could romp and stomp on often used files ...

The commands for manipulating the text of a long response are the same as those for looking at long notes.

USD:ll-7 Notesfile Reference Manual

Typing space will move to the next page. Typing '' -'' or backspace will display the previous page, within the same
limitations as for reading notes (only SO pages are kept). Press"•" to go back to the first page of the text

The options available while reading responses include:
•Display the next, previous, or first page of the response.
•Go to a different response (usually the next one).
•Go to the next unread note/response.
•Reread the base note.
•Reread the previous note.
•Return to the index page.
•Copy the response to another notesfile.
•Mail the response to someone.
•Save the response in your file space.
•Talk to the response's author.
•Write another response to the note.
•Search for keywords in note titles.
•Search for notes/responses by particular authors.
•Delete the response (if you are its author c:r a file director).
•Edit the response (if it is yours and there are no later responses).
•Fork a shell
•Go to another notesfile.
•Register a suggestion or complaint about the notesfile program.
•Exit the notesfile program.

2.6.3 Writing Notes & Responses.

Write new base notes by hitting ''w'' while reading the index page. The notesfile system will then invoke
an editor (''ed'' by default; use either of the shell variables NFED or EDITOR to change it). After the prompt,
compose the text you wish to enter, then write the text to the disk and leave the editor. The system will prompt you
for various options if they are available: anonymity, director message status, and the note's title.

To write a response to a note type ''w'' while that note er any of its responses is displayed. The same steps
used to write a base note should then be followed.

2.6.4 Mailing Notesfile Text.

Both notes and responses can be mailed to other users (with optional appended text). The capital "M"
(''mail'') command gives you the opportunity to edit the text then send it to anyone. Its inferior counterpart, ''m'',
allows you to mail a message to anyone. To mail to the author of the text, use capital "P" ("Personal comment")·
to send the text and your comments; use ''p'' for a simple letter.

To use a specific mail program, set the environment variable MAILER. If this is not set, a standard mail
program is used

2.6.S Forwarding Text To Other Notesfiles.

There are several methods for forwarding text from one notesfile to another. Single notes or responses can
be copied with the "c" or "C" command while entire note strings can be forwarded with the "f' and "F" com
mands.

The "f' ("forward") command is given when a base note is displayed on the screen. When given, the
''f' command causes the base note and all of its responses to be copied to another notes file. The user is prompted
for the destination notesfile. The copied note and all of the copied responses contain header information detailing
their origin. Where ''f' copies the note string without change, the ''F'' command allows the user to edit the text of

Notesfile Reference Manual USD:ll-8

the note and each response before inserting it into the target notesfile.

The "c" ("copy") command prompts for a destination notesfile then copies the currently displayed note
or response to the target notesfile. The user is allowed to choose between forwarding the note as a response or as a
new base note. The ''c'' command does not give the user a chance to edit the text before inserting it in the new
notesfile. The extended copying command ''C'' allows editing of the note text before it is copied to the other
notesfile.

Both the "c" and "C" commands provide for the forwan:led text to be entered as eith« a new note or as a
response to an existing note. In the latter case, an index page is given to the user for choosing the appropriate note
to which to respond

2.6.6 Saving Text in Local Files.

The "s" ("save") command ippends the current displayed text to a file of your choice (which is created if
not present). Notesfiles prompts for the file name; typing only a carriage return aborts the command -- no text. is
saved. Capital ''S'' appends the base note and all its responses. The number of Ii~ saved and the name of the file
written are printed when the command completes.

2.6.7 Deletion.

Capital ''D'' (''delete'') deletes a note or response if it is yours and has no subsequent responses. Notes
already sent to the network can not be deleted by non-directors. Directors can delete any note or response with the
"Z" ("zap") command.

2.6.8 Online Communication.

Typing "t" ("talk") attempts to page the author of the current displayed text The Unix "write" com
mand to him/her is issued if the author is local and non-anonymous. If the environment variable WRITE is defined,
the program it specifies is used to write to the author.

2.6.9 Editing Note Titles.

While reading a base note, type "e" ("edit") to change the note's title (provided you are the author of the
note or a notesfile director).

2.6.10 Editing Notes/Responses.

''E'' allows editing of the text of a note or response. It is not permitted to edit an article if it has subse
quent responses or if it has been sent to the network. If the "later responses" are deleted, it is possible to edit the
original text.

2.7 Other Commands.

2. 7 .1 Returning to the Index Page.

Type "i" ("index") while reading notes or responses to return to the index page.

2. 7.2 Searching Titles for Keywords.

While reading, you can search backwards for keywords appearing in note titles. Typing "x" ("x is the
unknown title") prompts for the substring to be found. Searching begins at the current note (or from the last note
shown on the index page) and proceeds towards note 1. The search is insensitive to upper/lowercase distinctions.
Use upper case "X" to continue the search. The search can be aborted by hitting the RUBOUT (or DELETE) key.

USD:ll-9 Notesfile Reference Manual

2. 7.3 Searching for Authors.

The "a" command searches backwards for notes or responses written by a specific author. Notesfiles
prompts for the auth<x'' s name. The ''A'' command continues the search backwards. The author name may be pre
ceded by an optional 'system!'. Abort the search by hitting the RUBOUT (or DELETE) key.

The entire name need not be specified when searching for articles by a particular auth<x'. Author searching
uses substring searching. Searching for the auth<r "jolm" will yield articles written by a local user "john", a
remote user "somewhere!johnston", and any articles from the "uiucjohnny" machine. Author searching is case
sensitive.

2. 7.4 Stacking Notesfiles.

Sometimes it is useful to be able to glance at another notesfile while reading notes. Using ''n' ', the user
can save (stack) his current place and peruse another notesfile.

When on the index page or while reading notes/responses, type "n" ("nest") to read another notesfile.
Notesfiles prompts for the notesfile to read. H the notesfile exists, the place is marked in the old notesfile and the
new one's index is displayed.

Type any of the standard keys to leave the nested notesfile. Both "q" and "Q" leave the nested notesfile
and return to the previously stacked notesfile. Control-d ("signoff'') causes the notesfile program to exit regardless
of the depth of nesting.

Sequencing is turned off in the new notesfile regardless of its state in the old notesfile. The depth of the
stack of notesfiles is limited only by the amount of memory available to the user.

2.7.S Acc~ing Archives.

As notesfiles grow, it becomes impractical to keep every discussion. In some cases, the old discussions are
deleted; other cases require these old discussions to be saved somewhere. Each active notesfile can have an archive
notesfile. An archive notesfile contains the old discussions from the active notesfile.

The archive of an active notesfile is accessed by explicitly naming the notesfile
(/usr/spooVoldnotes/micronotes for example) or through the "N" command from the active notesfile.

2.7.6 Policy Note.

A notesfile director can write an optional policy note to describe the purpose of a notesfile. Read the policy
note by typing "p" ("policy") from the index page.

2.8 The Sequencer.

Most users prefer to scan notesfiles and see only those notes written since their last reading. The notesfile
"sequencer" provides this capability. It is activated by the "-s" option ("sequencer") on the command line.
When the sequencer is activated, the notesfile system automatically remembers the last time the user read notes in
each notesfile. Subsequent entries to the notesfile can use the "last time" information to show only new notes and
responses. H there is nothing new in a notesfi.le, the sequencer proceeds to the next notesfile specified in the com
mand line.

The normal sequencer does not give the user a chance to read the notesfile if there are no new notes or
responses; sometimes it is desirable to be able to do so. Use the "-x" option to enable the sequencer and enter the
notesfile even if there are no new notes.

Notesfile Reference Manual USD:ll-10

No keys need be pressed if there are no new notes in the entire list and the normal (' '-s' ') sequencer mode
is selected. With the extended ("-x") sequencer, the user must type "q", "Q", or conttol-d for each notesfile
regardless of whether there are new notes.

The "-i" mode of sequencing is similar to the "-s" mode. Using the "-i" mode, notesfiles without new
entties are passed over. The user starts reading on the index page of notesfiles which contain new notes.

2.8.1 Seeing New Notes and Responses.

The sequencer always shows the base note of a modified note string, whether or not is has been shown
before, in order to establish the context of the new response(s). The "j" command skips to the next modified text
(note or response).

If the rest of a particular note string seems uninteresting, skip to the next modified note stting with the ''J''
("big Jump") command. This skips any new responses on the current note string. It is common to follow closely
only a few note sttings, skipping others using the '' J'' command.

The ''last time'' information is kept in a special file for each user. When the sequencer is enabled, the time
for the notesfile is loaded into a variable and used to specify which notes and responses are new. If the sequencer is
not enabled, this variable is initialized to January 1, 1970. The "j" and "J" keys use this variable to determine
which notes and responses are ''new''.

If the sequencer is enabled, after exiting a notesfile the "last time" information is updated to the time that
the user entered this notesfile. The entry time is used rather than the exit time to ensure that all notes are seen,
including ones written during the just completed session. If the sequencer is disabled, the "last time" information
is not modified. The ''last time'' information for a particular notesfile is updated as that notesfile is exited; using
''Q'' or control-D later will have no effect on the sequencer information for notesfiles already read.

The "o" and "O" commands allow the user to modify the variable used to determine whether notes and
responses are "new". The "o" command allows the user to set this variable to any date he wishes. Use the "O"
command to set this variable to show only notes and responses written that day. The "last time" file kept for each
user is never modified by the "o" and "O" commands.

When no more new notes or responses exist, both the ''j'' and '' J'' commands will take the user to the
index page. To exit the notesfile, use the "q" command Exiting with "q" will update the user's "last entry"
time. Exiting with capital ''Q'' will NOT modify the ''last entry'' time for that notesfile (neither will control-D).

The "l" and "L" command behave similarly to "j" and "J". The difference is that while "j" and "J'
take the user to the last index page when no more new notes or responses exist, the "l" and "L" commands will
leave the notesfile as if a "q" had been typed Thus when no more new notes exist, the "I" command is like typing
"jq".

2.8.2 Alternate Sequencers.

If several people share a login account, it is convenient for each to have a set of sequencing timestamps.
This is accomplished through the use of the subsequencer option of notesfiles.

Specifying the -a option and a subsequencer name causes notes to use a different sequencing timestamp
file. Many different subsequencer names can be used with each login account.

The main sequencer file for a given account is distinct from each of its subsequencer files. Each of the sub
sequencer files is normally distinct If the subsequencer names are not unique in their first 6 characters, subse
quencer files may collide.

USD:ll-11 Notesfile Reference Manual

2.8.3 Automatic Sequencing.

An alternate entry to the notes program allows the user to invoke notes with the sequencer enabled and a
list of notesfiles to be scanned with a single, simple command. The '' autoseq'' command is invoked by typing

autoseq

and reads the environment variable ''NFSEQ'' to find the names of all notesfiles to be scanned. On some systems,
the "autoseq" command may be known as "readnotes", "autonotes" or some similar variant; substitute the
appropriate name in the following paragraphs. The ''NFSEQ'' variable should be defined in .profile for Bourne
shell usei:s as follows:

NFSEQ=' 'pbnotes,micronotes,helpnotes, worts''
export NFSEQ

For users of the C shell, the following line should be added to the .login file:

setenv · NFSEQ ''pbnotes,micronotes,helpnotes, works''

With NFSEQ assigned this value, a call to autoseq will process the notesfiles ''pbnotes' ', ''micronotes' ',
"helpnotes", and "works" with the sequencer turned on.

The full naming conventions, pattern matching capabilities, and '!' exclusion described in section 2.2
("Notesfile Names and Wildcards") are available in autoseq. To read all notesfiles with "unix" in their names,
and the four test notesfiles ("testl" though "test4"), the NFSEQ variable might be defined as:

NFSEQ="*unix* ,test[l234]''

If the first character of an entry in the NFSEQ list is '':' ', the notesfile system reads the file name following
for a list of notesfiles. To have the automatic sequencer read the file ''/usr/essick/.nfseq'' for a list of notesfiles to
scan, define NFSEQ as:

NF SEQ=" :/usr/essick/ .nfseq''

For this feature to work:, the file must have group read privileges. The notesfile program runs "set-uid"
and can not read files which are readable only by the owner.

The following definitions are also valid. The first one reads the notesfiles specified in the file
"/usr/essick/.nfseq" and then reads the notesfiles pbnotes and micronotes. The second definition will read the
notesfile pbnotes, th~e specified in "/usr/essick/.nfseq", micronotes and the ones specified in "/usr/essick/.other".
If the notesfile program is unable to read the file specified, it skips to the next entry. For a description of the format
of these files, see the section 2.3, "The -f Option". ·

NFSEQ=' ':/usr/essick/ .nfseq,pbnotes,micronotes''

NFSEQ=' 'pbnotes,:/usr/essick/ .nfseq,micronotes,:/usr/essick/ .other''

The automatic sequencer uses the '' -s'' mode of sequencing. The user does not enter notes files which have
no new text. By specifying "-x" or "-i" on the command line, the user can use the appropriate sequencer mode.

The subsequencer option of notes is available from the autoseq program by specifying "-a name" on the
command line, and has identical semantics with use of this option when invoking notes.

Notesfile Reference Manual USD:ll-12

2.9 Environment Variables.

The notesfile program reads several environment variables to tailor the system to the user's preferences.
Below is a list of the variables, their purpose, and their default values. These defaults are for UNIX 4.xBSD and
may be slightly different for other versions of UNIX.

• "NFED" specifies which editor will be invoked when the user writes a note or response. If this
variable is not specified, the notesfile system looks for the environment variable "EDI
TOR" (which many other programs use). If neither "NFED" nor "EDITOR" are
defined, a default edit<r is used (/binled).

• ''NFSEQ'' is a list of notesfiles that the user wishes to scan using the automatic sequencing entry to
notesfiles. The use of this variable is described in the section on sequencing. If
unspecified, the system uses a standard set which usually includes ''general'' and
''net.general''.

•"PAGER" is the paging program ("more", "pg") which is used for scrolling the help files. The
default paging program is /usr/ucb/more.

• ''MAILER'' determines the mail program to use. This defaults to /usr/ucb/mail.
•"WRITE" is used to specify the program for communication between users. If undefined, the

Unix program "write" is used.
•''TERM'' determines the type of terminal in use. This must be set for notes to know what screen

handling conventions to use. In most cases the value will be correctly initialized by the sys
tem at login time.

• ''SHELL'' specifies which shell the user is running. This will almost always be set by the operat
ing system.

3 Other Notesfile Utilities.

The notesfile distribution includes utility programs to provide hard copy output, additional interfaces to
user programs, and statistics. They are described below.

3.1 Hard Copy Output.

The program ''nfprint'' sends to standard output a nicely formatted listing of the notesfile in its command
line. Its format is:

nfprint [-Inn] [-p] [-t] topic [note#] [note#-note#] [...]

The ''-I'' option specifies an alternate page size (the default is 66). The optional note number list specifies that only
certain notes of the notesfile are to be printed. The list can specify individual notes and ranges. The notes are
printed in the order specified.

. The -p option specifies that each notestring is to begin on a new page. The -t option signifies that only a
table of contents is to be generated.

3.2 Piped Insertion of Notes.

The nfpipe program enters text from the standard input into a notesfile:

nfpipe topic [-t title] [-d] [-a]

The -t option allows specification of a title. The -d and -a options specify the director and anonymous flags

USD:ll-13 Notesfile Reference Manual

respectively (if available). H no title is specified, one is manufactured from the first line of the note.

3.3 User Subroutines.

3.3.1 Nfcomment.

The nfcomment subroutine is callable from a user's C program. It allows any user program to enter text
into a notesfile:

nfcomment (nfname, text, title, dirftag, anonflag)

The parameters are:

char *nfname;
char •text;
char *title;
int dirflag;
int anonflag;

/* name of notesfile */
I* null terminated text to be entered*/
I* if non-null, title of note*/
/* != 0 -> director ftag on (if allowed) */
I* != 0 ->anonymous note (if allowed) */

H the text pointer is NULL, the text of the note will be read from standard input If no title is specified the
subroutine will manufacture a title from the first line of the note. This routine is useful for error reports, user com
ments about programs, and automatic logging of statistics or internal states.

This routine can be loaded with a C program by specifying '-lnfcom' on the 'cc' command line.

3.3.2 Nfabort.

Nfabort allows users to generate core images of their process, save the core image in a ''known'' place,
and log that fact in a notesfile. This proves useful for intermittent failures; The programmer regularly scans the
notesfile and can examine the core dump at leisure. Some of the problems of recreating conditions which cause
errors are eliminated by this approach.

Nfabort is callable from the user program. It accepts the following parameters:

nfabort (nfname, message, title, cname, exitcode)

The parameters are:

char *nfname;
char *message;
char *title;
char *cname;
int exitcode;

I* name of notesfile */
I* text string to insert*/
I* title of the message */
I* prefix for core image destination*/
I* code for exit() */

The core image is placed in the file specified by concatenating the "cname" argument and a unique integer
(the process id of the current process). The notesfile specified by the "nfname" parameter receives a note whose
body consists of the text pointed to by ''message'' and a line telling the complete pathname of the core image. The
title of the note is specified by the "title" parameter. After the core image is generated and the note has been writ
ten, nfabort terminates with the exit code specified by the "exitcode" parameter.

Nfabort generates default values for each of the string parameters if NULL pointers are passed. This rou
tine can be loaded with a C program by specifying '-Inf com' on the 'cc' command line.

Notesfile Reference Manual USD:ll-14

3.4 Statistics.

The notesfile system keeps statistics on where notes and responses originate, the number of network
accesses, duplications and orphaned responses. Combined with the use of the log maintained by the notesfile net
working software, monitoring notesfile traffic is quite easy.

The -s option specifies that only a summary is to be produced, skipping the individual reports. Wildcard
constructs with'•','?','[', and']' are recognized by nfstats. Invoke the statistics program with:

nfstats [-s] topic 1 [...]

Typical output is:

rbenotes on uiucdcs at 6:24 pm May 7, 1982
NOTES RESPS TOTALS

Local Reads 359 . 115 474
Local Written 53 55 108
Networked in 0 0 0
Networked out 0 0 0
Network Dropped 0 0 0
Network Transmissions: 0 Netwcxk Receptions: 0
Orphaned Responses Received: 0 Entries into notesfile: lOCJ
Total time in notesfile: 66.57 minutes Average Time/entry: 0.61 minutes
Created at 10:04 pm May 5, 1982, Used on 3 days

A combined set of statistics is produced at the end of listings of more than one notesfile. The statistics are
largely self explanatory.

3.5 Checking for New Notes.

The checknotes program checks the notesfiles specified by the NFSEQ environment variable to determine
if there are new notes. The exit code is arranged to make the program useful in shell scripts: 0 (TRUE) is there are
new notes, 1 (FALSE) otherwise.

Use the ''-q'' option to receive a message

There are new notes

if one or more of the notesfiles have notes/responses written since the user's last eritry time into that notesfile.

The "-n" option is similar to the "-q" option, with the exception that it yields output when there are no
new notes. The output of checknotes with the '' -n'' option is:

There are no new notes

Use '' -v'' to print the name of each notesfile with new notes/responses. The '' -s'' option is suitable for use
in conditional expressions in shell scripts; no output is generated by this option.

A.1 Installing Notesfile Code.

APPENDIX A
Notesfile Installation Checklist

You can be sure that you have modified all necessary comtants in the notesfile system by following this
simple checklist.

__ change to the notesfile souree directory
__ tar x [reads the notesfile tape]

cdsrc
_ [edit] panm.h
__ ARCHTIME. Default f<r how long unmodified note strings hang around.
__ WORKSETSIZE. The default number of notes to leave in a notesfile when archiving.
_ DFLTSH. This should be left as the Bourne shell, /bin/sh -RBE

DFL TED. The editor to use if no NFED or EDITOR environment variable exists.
__ SEQFILE. This is the name of a file in the utility directory which contains a list of notesfiles for

users without an NFSEQ environment variable. The default is probably just fine.
__ DFL TSEQ. For users without an NFSEQ environment variable and when the file specified by the

SEQFILE definition above doesn't exist, we finally fall back to using the notesfiles
specified by this string. The nice thing about having things in SEQFILE is that you don't
have to recompile the notesfile software everytime you wish to change the default set of
notesfiles; instead you edit a file.

__ MAU.ER. The program which will do mailing. If you are in a networked environment, this
mailer should manage to route letters to far away places for you. The notesfile system only
retains the name of the destination site; a path to that site is not kept.

__ SUPERMAILER. This should be defined if you have an intelligent mail program. Intelligent
here means that you can edit the letter and other fun things.

__ PAGER. A program which shows 1 screenful of information at a time.
__ WRITE. A program which allows online user-user communication (such as /bin/write).
__ FULLDOMAIN. This defines the domain name of your local systems. For many USENET sites,

this should be "UUCP". Other examples include "ARP A" and "Uiuc.ARP A". This
should not include the system name. In the UIUC Computer Science Department, we have
machines named "uiucdcs", "uiucdcsb", and so on; our value for FUILDOMAIN is
"Uiuc.ARPA". The notesfile code puts things together to yield "uiucdcsb.Uiuc.ARPA"
as a full domain name for one of our machines. Note that you do NOT need to place a''.''
at the beginning of the domain name; the notesfile software does this for you.

• IDOOMAIN. This switch is (for now) undefined. When defined it indicates the the unique id's
associated with notes are to have a system component containing the system name and the
string defined by FULLDOMAIN. The eventual goal is that this will be defined.
Currently, there are problems with using long strings for unique identifiers. This is related
to the old notesfile structure which used a 10 character maximum and didn't check for
overflow.
So for now, leave this undefined. I'm not sure when it will be good to enable this option.

__ Select a kernel type for your machine. If no kernel is selected, the code may compile but most
likely will not run.

__ PROMPT. If you wish the system to give a command prompt Otherwise the notesfile system is
promptless. ·

__ USERHOST. If this is defined, the notesfi~ system uses the convention ''user@host'' to indicate
where an article originated. If undefined, the notesfile system uses a "host!user'' notation.
If you are running in an environment which supports Internet style names, you may choose
to use this.

__ DYNADIR. When defined, the notesfile system will determine the default spool directory
notesfiles from /etc/passwd. The home directory for the user "notes'' (actually whatever is

Notesfile Reference Manual SMM:ll-A-2

specified in die Makefile) is read from /etc/passwd and the parent directory is used as the
default spool directory. Thus if notes' home directory is "/usr/spool/notes/.utilities", the
default directory is '' /usr/spool/notes''. This assumes that notes' home directory is in the
.utilities directay.

This is useful for the case where a single binary will be run on several machines with
differing disk layouts. On one, the database might live in /usr/spool/notes; another host
might have the data bae in /mnt/notes. By using DYNADIR and moving the "notes"
home directory on various machines, only one binary is needed.

If the notes database lives in the same place on all of your machines, a better approach is to
use the MS'IDIR definition in the Makefile.

__ K_KEY. When defined, the "k" and "K" keys act similarly to the "q" and "Q' keys respec
tively. 1be choice is up to you. Defining them allows reading of notes with one hand.
However some people get aggravated when the miss the "j" key and hit the "k" key. All
the documentation considers the ''k'' key to be active.

BIG TEXT. Define this is you want to allow notes longer than 65000 bytes. Note that if you have
-- old notesfiles, you will have to dump and reload them with the "nfdump" and "nfload"

programs befoie the new code will work on them.
The following definitions are pretty much "stock" and usually aren't changed. = NFMAINT. This is the name of the notesfile which receives control messages, error reports and

other notesfile logging functions. I do not recommend #undef'ing this.
__ AUTOCREA TE. When defined, network receptions of previously undefined notesfiles will cause

the creation of that notesfile. If undefined, the reception will fail if the notesfile doesn't
exist This is used in environments such u USENET where new notesfiles are often
created iemotely.

__ STATS. If defined, the statistics keeping code is enabled. If undefined, the notesfile system will
not keep statistics. Keeping statistics involves no space overhead and relatively little time
overhead; I recommend leaving this defined.

__ F ASTSEQ. Enables code which "fails-quickly" by determining in an inexpensive operation if
there can't be any new articles. When there might be new anicles, a more thorough and
time consuming algorithm is used.

__ DUMPCORE. This defines a subdirectory of the notesfile utility directory where core images
generated by internal consistency checks are placed. If undefined, the errors will be logged
but no core image is generated.

__ F ASTFORK. This definition enables a quick forking algorithm which exec's the desired program
immediately instead of going through the system(ill) interface. It avoids an extra
fork()/execl() and shell startup costs. However some functionality is lost

_ [finished editing parms.h]
[edit] Makefile

-- select BIN. The directory where user commands are kepl The Makefile will NOT create this
-- directory. At UIUC, we use /usr/bin. Another common choice is /usr/local.

MS1DIR. The default directory for notesfiles. The Makefile Wil..L make this directory for you.
-- This is typically /usr/spool/notes.
__ ARCHDIR. Old notes never die, they go here instead; the Makefile WILL make this directory for

you.
NET. This is the directory where the notesfile networking p~ "nfxmit" and "nfrcv" will

-- be placed. In most cases, "/usr/bin" is a good choice. You may wish to change it if your
UUCP or other networking mechanisms use other directories. This directory must already
exist; the Makefile will not create il

AUTOSEQ. The invocation name for the automatic sequencer. For multiple names like
-- 'autoseq', 'readnotes' and 'autonotes', make links to the file "/usr/bin/notes" with the

appropriate names (assuming that BIN= '/usr/bin').
NOTES. The usemame of the user who "owns" all the notesfiles.
NOTESUID. The numeric userid of the notesfile "owner". For example NOTES = notes,

SMM:ll-A-3 Notesfile Reference Manual

NOTESUID - 10.
_ NOTESGRP. The name of the group to which the "NOTES" signon belongs. It is strongly

recommended that this be a special group just for the notes database and programs.
__ ANON. The name of the "anonymous" user.
__ ANONUID. The numeric userid of the "anonymous" user; this should be an idle user id since it

is not allowed to run the notesfile program.
__ LIBDIR. The directory to contain "libnfcom.a' ', a user accessible library of routines. This is dis

ttibuted as /usr/local/lib.
_ CFLAGS. You may wish to arrange for split l/D loading oo a PDP-11 (the -i ftag). It may also be

prudent to optimize the code (-0 ftag). If code size is an issue, remove the RCSIDENT
definition; when defined, version control information is included in the binaries and they
are correspondingly larger.

_ [finished editing] Makefile
__ [may need to become super-user at this point]
__ type ''make base'' and assess iu completion. It will tell you if all went welt U you are merely

installing a new version of the notesfile code, you should type "touch base" instead of
"make base".

__ Signon as-notesfile "owner". While remaining super-user isn't a fatal ftaw at this point, it does
mean that several default notesfiles won't be generated. These can be created by hand if
you forgeL Nothing from this point on (including future code updates) requires super-user
privileges. ,

cdsrc
__ If you are merely installing a new version of the code, type "touch spool" now. This tells the

makefile that the spool directories already exist.
__ make boot This is the final step, it should complete with a message that the system is installed.

An error message when doing the "mknf -on nfmaint nfgripes" probaby means you are
still super-user. Don't sweat it; just become notes and type the "mknr' command line
over. Everything is now fine.

__ You may have to be Super-User for the next step depending on the modes of your manual direc
tory, /usr/man.

__ cd .. /man. [the man page directory for notesfiles]
__ make install. to install the man(I) pages for the notesfile system. They are placed, by default, in

the directories /usr/man/manl, /usr/rnantman3, and /usr/man/man8.
__ Examine the ''Samples'' directory for templates of files normally in the notesfile utility directory.

These files include shell scripts to run through cron(8) which queue network transmissions,
expire old notes, and map between notesfiles and news.

__ Modify UUCP's "uuxqtc" to allow remote execution of "nfrcv". This is unnecessary if no
notesfile networking will be done CX' if another remote execution mechanism will be used.
Some versions of UUCP have a file "/usr/libluucp/L.cmds'' which contains names of per
mitted commands.

__ Modify /etc/re· to remove notesfile locks at boot time. [4.2 BSD machines might prefer to use
/etc/re.local.] Add the command ''rm -f /usr/spool/notes/.locks/*''.

A.2 Upgrading Existing Notesfile Databases.

Revision 1.7 of the notesfile system requires converting existing notesfile databases to a new format A set
of programs to accomplish this task are included in the disttibution. The ''nfdump'' program converts notesfiles
into an ASCII representation. The "nfload" program converu this ASCil representation back into a properly for
matted notesfile. To convert an existing notesfile database, these steps aie what I follow:

__ Compile ''nfdump'' with the OLD notes distribution. If your version of the software is old
enough not to have a copy of nfdump, I suggest you either try to adapt the version in the
current distribution or using the networking programs "nfxmit" and "nfrcv" to get the
information between the old and new databases.

Notesfile Reference Manual

__ Compile ''nftoad'' with the NEW notes distribution.
__ cd /usr/spooJ/notes

mkdir.OLD
mv• .OLD

__ run the following script
#! /bin'csh -f
foreach i ('ls .OLD')
echo Si start
nfdump-old /usr/spool/notes/ .OLD/Si - I nftoad-new Si
echo Si done

end
echo AIL DONE

rm-rf .OLD

SMM:ll-A-4

You will also have to conven the sequencer information. In the "utility/seq-cvt" directory there are a pair
of programs "seqtoascii" and "seqtobinary". To convert the sequencer information:

__ make "seqtoascii" using the OLD structs.h and parms.h.
__ make ''seqtobinary'' using the NEW structs.h and parms.h.
__ cd /usr/spooJ/notes/ .sequencer

mkdir.OLD
mv• .OID

__ run this shell script:
#!/bin/csh -f
foreach i ('ls .OLD')
echo $i
seqtoascii .OLD/$i I seqtobinary Si

end
echo ALL DONE

rm-rf .OLD
__ If you are going to use the FULLDOMAIN option, you may want to go ahead and perform the

following steps:
__ run this shell script, appropriately modified to reflect your domain setup. This one reflects the

naming at UIUC.
#!/binlcsh -f
foreach i (Sy:*)
echo Si
In Si Si.UUCP
In Si $i.Uiuc.ARP A

end
echo ALL DONE

__ You have now convened your notesfile database to 1.7 format. Install the new binaries and fire
away.

A.3 Hints on Installing Notesfiles on Multiple Systems.

Notesfile binaries are portable across similar machines. User-id's and hostnames are deter
mined by examining /etc/passwd and through system calls.

To install the Notesfile system on a network of like machines (a collection of 68000 worksta
tions for example) one machine must go through the procedure detailed above. A shell script ''rinstall''
is included in the notesfile source directory. This shell script will propagate copies across the network.
Rinstall is a simple script that assumes the COll'eCt hierarchies exist on the target machines. It was

SMM:ll-A-5 Notesfile Reference Manual

written to use the 4.2 BSD "rep" and "rsh" prognuiw to copy files and remotely execute commands.
Different networking commands will require changes to the shell script.

To generate the proper hierarchies on other systew, copy the Makefile to each of the
machines and make bodl ''base'' and ''spool''. This will create the proper files and directories for the
notesfile system. Then :return to the master machine and run the rinstall script to send binaries to each
of the other machines.

1be ''Samples'' directory of the Notesfile distribution contains example cron scripts for send
ing information between a network of systems running notesfiles. These shell scripts can prove helpful
in setting up notesfile transmissions around your local network.

A.4 Mail to Notesfiles.

To use the nfmail program with the 4.1 BSD /etc/delivermail or the 4.2 BSD /usr/lib/sendrnail
insert lines of the following form in the file /usr/lib/aliases.

somenotes: '' Vusr/spool/notes/ .utilities/nfmail somenotes''
gripes: "Vusr/spool/notes/ .utilities/nfrnail problems"

A.5 The Notesfiles/News Gateway.

The notesfile/news gateway may need a little mo:re tickling to convince it to work properly.
For more information on how to set this up properly, see section 3.5 ("Interfacing to News'') and look
at the file 'Src/newsgate.h'. Appendix B ("Interfacing Notesfiles to News") is another source of infor
mation for connecting the two systems.

APPENDIXB
Interfacing Notesfiles to News

The News system provides functions similar to those provided by the Notesfile system. It is possible to
gateway articles between the two syste~. In USENET, a common configuration is for several notesfiles sites to
form a subnetwork of USENET and gateway articles between the local notesfile network and the rest of USENET.
These articles propogate across USENET in the news system. Article originating in the news system are gatewayed
into the notesfile netwott. When several notesfile networks exist as subnetwOlks of a larger news netw<X'.k (such as
USENET), articles written in one notesfile netwmt will be conectly interpreted when arriving at another notesfile
network. ''Correctly'' interpreted includes proper linking of responses to their true parents; this is sometimes not
possible with articles written in the news system.

The notesfile gateway code recognU.es articles meeting the USENET standards. Additionally, the A-news
protocol and older B-news protocols are recogni7.ed. Incoming (news-+ notes) articles are parsed and placed in the
appropriate notesfiles. Articles written within a notesfile subnetwork are formatted according to USENET standards
and transmitted to the news system.

B.1 Configurations for Sites without News.

Sites running notesfiles without the news program have several possible configuations. If your site is part
of a notesfile subnetwork and you wish to have your articles gatewayed to the news system and the rest of USENET,
you must find a site who will act as a gateway for your articles. The gateway code perfmns its task in such a way
as to allow several sites to gateway the same article into the news system; the multiple copies will have identical
unique identifiers and one copy will be canceled when they meet on a remote system.

B.1.1 Sites with no News Neighbors.

If you have no immediate neighbor running news, there is no particular action you should take other than to
reassure yourself that some site in the notesfile subnetwork is gatewaying notes-generated articles to the news sys
tem. This can be done in one of several ways. If the site wants to gateway articles specifically from your machine,
the following command should be executed on that site occasionally. This is typically done through cron(8).

newsoutput -syoursite notesfile-list

A more typical arrangement is where the gateway site sends all notes-generated articles that arrive on its system into
the news system. In this case, the gateway site will execute a command such as the following:

newsoutput -a notesfile-list

A site gate using this command line will automatically gateway articles written at your site and eliminates the need
of running a command similar to the first command line. ·

B.1.2 Sites with Neighbors running News.

If a neighboring system runs both notes and news, you have the option of gatewaying your own articles or
allowing the neighbor to gateway articles for you. If the neighbor does not run the notesfile system, you must pro
vide your own gateway functions.

Gatewaying can be done similarly to the site without a news neighbor. You can let your articles propogate
across a notesfile network to a gateway site which will send them to the news system. Another option is to gateway
your articles, and possibly any notesfile-generated articles, into the· news system at the neighboring site. This gets
your articles into USENET as quickly as possible. The two options are not mutually exclusive; you can gateway
your own articles and allow another site to gateway them. When copies of the same article meet on a news system,

Notesfile Reference Manual SMM:ll-B-2

the extra copy will be removed from the network.

To gateway articles into news, you must modify the file /usr/spool/notes/ .utilities/nethow to tell the
newsoutput program how to get to the news system. More information on this can be found in the section ''Copying
Notesfiles to News'' later in this appendix.

To gateway from the news system to the notesfile system, you must arrange to have the news system at the
remote site send articles as standard input to the program /usr/spool/notes/ .utilities/newsinput on your system.

Infmnation on mapping functions between notesfiles and news, how to configure a news system to send
articles to a notesfile system, and how to have a notesfile system send articles to a news system can be found later in
this appendix.

B.2 Configurations for Sites running News.

A site running both notesfiles and news will typically perfonn gateway functions in both directions, from
the notesfile system to the news system and from the news system to the notesfile system. In these cases all the
operations are local.

B.3 Gatewaying between Notesfiles and News.

The two notesfile programs ''newsoutput'' and ''newsinput'' perform gatewaying between notesfile and
news systems. Newsoutput takes notesfile-generated articles, formats them, and hands them to the news system.
Newsinput takes articles from the news system and inserts them in the notesfile system.

B.3.1 Copying News to Notesfiles.

The news system maintains "subscription lists" for each neighboring system. The subscription list is
stored in the file /usr/lib/news/sys on a B-news system. On an A-news system, the subscription list is in
/usr/spool/news/ .sys

News feetb articles to neighboring systems as they arrive. In many cases, the article is queued for
transmission. In other cases, the article is given to a batching program which collects a number of articles for
transfer and sends them to an appropriate un-batching program at the receiving end

In the case where the notesfile system resides on another machine, the news subscription line should be
generated similarly to that for a normal news feed with several exceptions. The first is that the newsinput program
does not understand about batching; articles must be sent one at a time. Also, one must specify the method of
transmitting the article. To feed the system ''somesite'' with news, the neighbor will add a line of the following
form to his /usr/lib/news/sys:

somesite:subscription: :uux - -n somesite!/usr/spool/notes/ .utilities/newsinput

Of course, networks other than UUCP can be used.

To forward to a notesfile system on the same machine as the news system, create a pseudo site which
doesn't exist elsewhere (a sitename such as "nf _sys" works), and add a line like:

nf _ sys:subscription: :/usr/spool/notes/ .utilities/newsinput

Articles arriving at the local system will now be forwarded to the notesfile system. By default, news articles are
placed in notesfiles with the same name. To map newsgroups to particular notesfi.les, see the later section "Naming
Notesfi.les and Newsgroups''.

SMM:ll-B-3 Notesfile Reference Manual

B.3.2 Copying Notesfiles to News.

The newsoutput program transfen notesfile-generated articles from the notesfile system to a news system.
The news system does not have to be on the same machine.

Newsoutput accepts parameters telling it to gateway articles from specific systems <r any system. Addi
tional options allow backwards compatible headers for older versions of the notesfile software. A typical newsout
put invocation looks like:

newsoutput -a notesfile-list

The -a paramet« indicates that notesfile genented articles from any site are to be sent to the news system. Under
no circwmtances will newsoutput transfer an article to the news system if it has passed through the news system
before. Thus if a not.es generated article passes from one notesfile subnetwod: to another through the news system,
the article will not be sent into the news system by anyone in the second notesfile subnetwork.

The ''notesfile-list'' can contain a mixture of specific notesfiles, wild-card specifications (net.•), or ''-f
file'' parameters which specifies a file containing a list of notesfiles to send.

Alternatively, articles for only one system can be gatewayed with a command line of the form:

newsoutput-ssitename notesfile-list

This invocation method maintains a sequencer for each system; the -a option maintains a single global sequencer.

A third invocation method of newsoutput uses the ''-c'' option and specifies a specific set of systems to
gateway articles for. The command looks like:

newsoutput -c gateway-site-file notesfile-list

The "gateway-site-file" specifies a file containing a list of sitenames. Articles written at any of these sites are
gatewayed to the news system. Thus newsoutput has the ability to send articles to news for a single system, several
systems, or any system.

Newsoutput assumes that a news system is installed on the local system. If the news system is in a non
standard location on the local system or the news system is on a different machine, newsoutput can be told where to
send articles. The file /usr/spool/notes/.utilities/net.how contains command templates for notesfile networking. To
specify a non-standard place for the "mews" program, add a line of the form:

Usenet:x:::uux - -n myneighbor!/usr/bin/rnews

Non-UUCP connections and the like can be specified.

B.3.3 Naming Notesfiles and Newsgroups.

Notesfiles and newsgroups for the same topic can have different names. Notesfiles are currently limited in
the last component of their name to the length of a filename; under V7, System m, System V, and 4.1 Bsd this is 14
characters. 4.2 Bsd extends the length of a filename to a maximum of 255 characters per component Newsgroup
names are no longer limited in total length; the only restriction in current news versions is that each component
(between .'s) is unique in the first 14 characters.

The file "/usr/spool/notes/.utilities/newsgroups" defines the relationships between notesfiles and news
groups. Lines in the file have the general form:

notesfile:base _ newsgroup:respone _newsgroup

Notesfile Reference Manual SMM:ll-B-4

Lines beginning with the "#" character are considered comment lines. The "response_newsgroup" field and the
colon separating it from the base_ newsgroup field are optional.

Entries in this file need be made for only a few reasons: (1) The newsgroup which matches the notesfile is
longer than fourteen characters, (2) the notesfile and the newsgroup are different names (e.g. the notesfile 'Bnews'
can be linked to the newsgroup 'netnews.b' with an entty of 'Bnews:net.news.b'), (3) you want several newsgroups
linked to a single notesfile, and (4) notes and responses from a notesfile should go to different newsgroups
(net.general/netfollowup is one example). The file is scanned from the beginning until EOF or a match is found
When no match is found, the code returns the <Xiginal argument u if it had matched itself. The process is similar to
having placed a sentinel line of the fmn:

myarg:myarg

at the end of the file.

The optional third field in the line is used to send notes and responses from a not.esfile to separate news
groups. The netgeneral/net.followup convention is an example of how this would be used. Typically the
net.general and net.followup newsgroups are mapped into the same notesfile. To preserve peace with news users,
responses written in a notesfile 'net.general, should go to the newsgroup 'netfollowup'. The following pair of lines
will map all news from net.general and net.followup into the notesfile net.general. Base notes from the notesfile
net.general will go to the newsgroup net.general; responses in the net.general notesfile will be sent to the
net.followup newsgroup.

net.general:net.general:net.followup
net.general:netfollowup

The first line maps news in net.general to the notesfile net.general. It also does the mapping from notesfiles to news
groups. The second line maps news from netfollowup into the notesfile net.general. Note that the response field is
not used in the mapping from newsgroups to notesfiles; it is used only for mapping notesfile responses into a dif
ferent newsgroup.

file:
To map several newsgroups into the same notesfile, place lines of the following form in the "newsgroups"

somenotesfile:newsgroup 1
somenotesfile:newsgroup2

If you wish to have articles from the notesfile "somenotesfile" go to both of the newsgroups, insert a line before the
above lines to map articles going to notesfiles. The result would look like:

somenotesfile:newsgroup 1,newsgroup2
somenotesfile:newsgroup 1
somenotesfile:newsgroup2

The first line is the one used for articles going from notesfiles to news; the newsgroups specification
"newsgroup1,newsgroup2" is used on those articles. Articles coming from the newsgroup "newsgroupl" will fail
to match the first line, since the program expects exact matching. They will match the second line and be mapped to
the notesfile "somenotesfile".

B.4 Typical Configurations.

A typical notesfile subnetwork contains a number of pure notesfile sites and several sites running both news
and notesfiles. In these situations, some subset of the sites running both notes and news act as gateway sites. The
pure notesfile sites don't concern themselves with gateway operations. The gateway sites typically gateway all

SMM:ll-B-S Notesfile Reference Manual

notes-generated articles to news. Duplicate articles, gatewayed at several sites, will propagate across the news net
work. When two <X' more of these articles meet at some site, the superftous copy will be removed from the network.

If none of the sites in the notesfile subnetwork run the news program, the gateway site will be one or more
of the sites having neighbors that do run news. These gateway sites will run newsoutput and direct the output to the
news site by making the appropriate entry in /usr/spool/notes/.utilities/nethow f<r the pseudo-site "Usenet".

B.5 News Gateway Installation Checklist.

The following checklist covers the variables in the ''newsgate.h'' file which may need to be changed on
your system. It also mentions which files to modify to automate the transfer of articles between the two systems.

_ [edit] src/newsgate.h
__ MYOOMAIN. This should be set to the domain your site is in. Typical domains are "UUCP"

and "ARPA".
DFL TRNEWS. The news receiving program. This can normally be left as is; alternate news

-- insertion methods can be specified with more flexibility through the net.how file.
EXP ANDPA TH. If defined, the code looks in the file specified by PA THMAP for a route to an

-- author's system. The code which does this is in ''src/newspath.c'' and expects a particular
format in the PA TIIMAP file. You may wish to replace it with code of your own if your
data base is in a different format

PATHMAP. This is the full pathname of the routing tables used if EXP ANDPA TH is defined. = [finished editing] src/newsgate.h '
__ make newsouput newsinput This will recompile the notesfile/news gateway programs.
__ Check /usr/lib/news/sys to see that news will be forwarded to the notesfile system.

Make entries in /usr/lib/crontab to invoke newsoutput occcasionally. We use every 6 hours.
-- If the news system is on another machine or in a non-standard place, modify

/usr/spool/notes.1.utilities/nethow. Add a pseudo-site ''Usenet'' which specifies how to get
to the remote machine. One example is:

Usenet:x:::uux - -z neighbor!/usr/bin/rnews
__ Check /usr/spool/notes/.utilities/newsgroups. A sample of how this file will look is included in the

''Samples'' directory of the distribution.
__ Everything should be configured now. You will probably want to run several tests on local or lim

ited distribution newsgroups to satisfy yourself that it works.

APPENDIXC
Distributed Regions of the Notesfile System

Several revisions of the Notesfile System are available. This ~ attempts to desaibe the differences
between each revision and the previous one.

C.1 Previous Ren.ions.

The Notesfile System was first distributed in June 1982. Since then it has gooe through a number of inter
nal revisions and several major revisions. The initial 1.0 revision had numerous bugs in the code and inadequacies
for interfacing with the news system. Releue 1.3 (the most recently "announced" releue) became available in
March 1983.

Revisions are maintained with the RCS system. Major releases are number 1.1, 1.2, 1.3 ... 1.x. Internal
modifications are numbered off of the base revision. Internal revisions between 1.2 and 1.3 are of the form 1.2.1.x.
All files in a distribution will have the same major revision number; files modified since the major releue will an
internal revision number based off the major revision number.

C.2 Revision 1.5.

Revision 1.5 is an intermediate revision. Revision 1.4 was stillborn. It's primary purpose was to integrate
a number of useful modifications sent in by notesfile users. A number of recent 1.5+ distributions have almost the
same functional differences from previous revisions as the newer revision 1.6 code.

C.3 Revision 1.6.

Revisions 1.6 of the Notesfile system includes a number of changes. Numerous bugs in the code were
repaired. Several functional differences are also evident in this revision of the code. Major changes are listed
below in chronological order. To see what has changed since you received your copy of the code, find the first date
after you received your distribution and read from there.

Fall 1983:

•Archival techniques are more refined. Previous revisions determined the age at which to expire
notesfiles from the nfarchive command line. Each notesfile now contains its own 'expira
tion threshold'. This threshold can be set to an arbitrary time (3 days), default to the value
specified on the nfarchive command line, or specify never to archive the. notesfile. These ·
options allow expiration of the entire ''net.*'' collection of notesfiles with the single com
mand line 'nfarchive net.*'. Shorter duration notesfiles (maybe net.jokes) can be explicitly
set to a few days; notesfiles like net.bugs can be set to 'never'. 1be remaining notesfiles
might be set to 'default'. A program 'expirechange' is provided in the utility subdirectory
of the distribution to initialize the expiration threshold of existing notesfiles. This is recom
mended becau8e the previously unused field may contain garbage values.

•A simple program 'namechange' is included in the utility directory to change the name within the
data bue. If you pick up copies of the data base and set them down on other systems this
program will change the name of the system the data base thinks it is on for you.

•Alignment within the notesfile descriptor structure caused me to remove 6 bytes of filler when
adding a 'long' to the structure. The size of the structure must be constant. The program in
utility/structsizes.c prints the sizes of each of the possibly affected structures. It would be
prudent to compile and execute this program once with the old structure definitions and
once with the new definitions to ensure that the structures are the same size. Someday a
notesfile dump/load program will be written that makes this worry disappear.

Notesfile Reference Manual SMM:ll-C-2

•Mapping notes out to the news system is more sophisticated. 'The new scheme allows a notesfile to
send bae notes to one newsgroup and respomes to another newsgroup. This is solely for
the net.general/neLfollowup pair. See the section "Copying Notesfiles to News" for a
nue detailed explanation of this feature.

•Binaries are pmtable. With Unix kernels supporting the "uname" or "gethostname" system call
the code determines the host at runtime. The code now also looks for the notesfile owner in
/etc/passwd to dynamically detamine the 'notesuid'. As an example, a local network of
Vaxen all running 4.la Bsd can run the same binary even if the 'notes' user id varies
between machines. Eventually it would be nice to have a single bin.-y handle all 4.la
Vaxen, anodler for all 4.2 Vaxen, a third be adequate for all USG S.0 3b-20's. (This does
not mean that distributions will be binary only but rather that a local administrator will be
able to compile once and ship copies of the binaries around with a simple shell script).

•The "rinstall" shell script updates the notesfile binaries on a remote system. It assumes that the
local binaries .will wort on the remote machine (don't rinstall from a Vax to a PDP-11).
The script uses the 4.la 'rep' and 'rsh' facilities to perform the FfP and set modes on the
remote files.

December 1983:

January 1984:

• Notesfiles can be specified as absolute pathnames. Commands such as ''notes
/somelplace/mynotes'' are now legal. An anticipated modification will allow search rules
for notesfiles similar to those command search rules used by many shells.

•Archives are stored as notesfiles. Now that a notesfile can be specified by an absolute pathname,
archives are stored in notesfile format. Access to archives can be either by explicit refer
ence or through the new ''N'' command which automatically nests to the archive of the
current notesfile.

• Nfarchive now understands about "working sets". The working set is the minimum number of
notes left in the active notesfile after an archive run.

•Archive destinations are mapped. A file in the notes utility directory (.utilities/net.aliases/ Archive
into) maps from active notesfiles to their respective archives. This file contains absolute
pathnames. (/usr/spool/notes/somenotes instead of somenotes).

•The beginnings of pennission modes for an archive are there. Currently only directors are allowed
to write in an archive notesfile. Some more work on copying pennission lists and other
information particular to the notesfile must be done.

•The director page now contains information about the number of "holes" (deleted notes and
responses) in a notesfile. This is useful for determining the need to compress a notesfile.

•Each notesfile can now override the nfarchive command line options for archiving/deleting expired
notes and for expiring notes on the basis of the <firector message status. The director
options page offers options to modify these fields. The "default" value specifies using the
value supplied on the nfarchive command line.

•The director option page has been rearranged. More information is displayed, more options are
processed. Many of the changes are cosmetic and oriented towards helping the user figure
out what is happening.

•The 4.2 Bsd release of Unix now has its own kernel definition. Some of the new features of 4.2 Bsd
are thus included This includes longer filenames and (faster) advisory locking.

•4.2 Bsd (and 4.la) allow processes to belong to multiple groups. The notesfile code now uses all of
these groups to determine access rights. For example, a user belongs to groups ''alpha'',
"beta" and "gamma". Group "alpha" has read permission, group "beta" has write per
mission, and group "gamma" has no specific permissions (it's covered in the "Other"
clause). The user is given the inclusive OR of his permissions: in this case he is given
read/write privileges. The default ''Other'' group is used only when none of the user's
groups are explicitly named in the permission list. Explicit permissions for users still takes

SMM:ll-C-3 Notesfile Reference Manual

precedence over group permissions.

February 1984:

March 1984:

•The netw<Xking software and the statistics printing package now keep track of how many orphans
are adopted by their true parent This lets us determine how many base notes are actually
lost and how many show up behind their children.

•The nfaccess program allows simple and quick editing of access lists fer a number of notesfiles.
Nfaccess functions similarly to chmod(l), you supply an access right and a list of notesfiles
to apply it to. The new access right is placed in the access list of each notesfile specified.
In the event of an existing access right, the new right replaces the old one.

•The code now understands about the extta work it must to to function properly under the 4.2 Bsd
signal semantics.

• Nfabort provides user programs with a means of leaving core dumps in specified places and logging
the fact with an arbitrary message in a notesfile. The notesfile code itself uses this routine
when ttapping internal elTOl'S.

•Finally added the 'I', 'L' and 'z' commands from Lou Salldnd and Rick Spickelmier. The 'l'-'L'
pair mimic the 'j' -'J' pair with the exception that when no unread notes are left, the l/L
commands leave the notesfile. Thus 'I' is almost a 'jq' command.

•The ! notesfile exclusion feature first implemented by Salkind and Spickelmier is now in this revi
sion. Constructs like:

notes "net*" !net.general
are possible. This example specifies all ''net'' notesfiles except net.general.

•Alternate sequencers are now available. An alternate sequencer allows users sharing the same sig-
non to maintain separate sequencer files. '

•Revision 1.6.2 created. Needed some distinction since 1.6 was getting rather long lived and we
weren't ready to call it 1.7 yet

•Each notesfile now enforces its own limit on the size of single notes and responses. This is initial
ized to a default value when the notesfile is created and can be changed from the director
options page. Articles longer than the permitted maximum are truncated and have a mes
sage appended detailing how many bytes were ignored and the name of the site where it
occurred.

•Customized access lists are generated when each notesfile is created. The file
'/usr/spool/notes/.utilities/access-template', if it exists, is used to modify the default access
list when a notesfile is created. This file contains ASCII specifications of access rights in
the same form as used on the nfaccess command line. Lines in this file beginning with '#'
are considered comments.

•Author searching now understands about substrings. You no longer have to match exactly an
author. Thus an author search would find articles written by a user ''mark'' on any
machine, a user "hallmark" on any machine, and any user on the "market" machine.

•The notes/news interface has been rewritten. The news->notes code now understands all of the
USENET standards for B-news 2.10. Newsinput understands about the References line.
The notes->news code generates articles acceptable to the rest of USENET.

December 1984:

•The nfmail program has been re-written to understand about how to link responses into a notesfile.
This means nfmail is now a viable way to have your incoming mail handled. After a little
more work is done, it will handle outgoing mail via the ''p'' command equaly well.

•Notes now runs set-gid. This solves some privilege problems with set-uid programs such as signal
delivery. It also makes it easier for users to kill their jobs. Thanks go to Lou Salkind for
pointing this out long ago; I just took a long time to realize it

Notesfile Reference Manual SM}.{: l l-C4

C.4 Revision 1.7.

The long ago promised revision 1. 7 of the notesfile code is finally a reality. This version incorporates
many of the features promised, and a few that weren't. I thought about merely changing things from revision 1.6.2
to 1.6.3, but there was a change in the database format and I. decided a more drastic change in name was called for
to match the database.format change.

To upgrade to revision 1.7 from a previous revision (even the last 1.6.2 revisions) requires a dumplload
sequence with the ''nfdump'' and ''nfload'' prograrns. The man pages for these programs give more information
on how to carry out this procedure.

In addition to changing the format of the notesfile database, you must convert the format of the sequencer
files. To do this, look at the programs "seqtoascii" and "seqtobinary" in the "utility/seq-cvt" directory of the
notesfile distribution. Appendix A also contains information on how to convert the sequencer files and database.

These changes took place during December of 1984 and include the following differences from the 1.6.2
revision of the notesfile code.

•The author structure for a note/response now contains the home system name. This provides the
ability for gateway machines to assign message-id's as needed without worrying about cor
rupting the author's home system. It also comes in handy within the context of the nfmail
program: nfmail can now report a true author for letters and still assign a unique identifier
based on the local system.

•Timestamps for articles are now stored in the standard UNIX format: seconds since 00:00 GMT,
January 1, 1970. The code recognizes (and stores) both formats and will present either for
mat as needed.

•Notes now supports full domain based addressing. The nfxmit program expects a full doman
address (e.g., "uiucdcs.uiuc.arpa"), unique id and system information is generated with
full domain information, and the notesfile/news gateway now generates complete domain
addressing information. These changes require some care in upgrading from previous
releases of the notesfile system.

C.5 On the Blackboard.

The primary motivation for more work on the code is to eliminate known bugs. Integrating other's
modifications into my code has taken a lower priority.

Sometime down the road, I hope to gather up all the lessons learned from this first version and design a
second implementation. Issues to be considered in the second implementation include: ·shared notesfile data: bases
between several hosts, different user-interfaces (notes-like, readnews-like), notesfile servers, and interfacing with
extant systems.

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

ABSTRACT

Almost all text input on the UNIXt operating system is done with the text-editor ed.
This memorandum is a tutorial guide to help beginnen get started with text editing.

Although it does not cover everything, it does discuss enough for most users' day-to
day needs. This includes printing, appending, changing, deleting, moving and inserting
entire lines of text; reading and writing files; context seaiching and line addressing; the
substitute command; the global commands; and the use of special characters for
advanced editing.

Introduction

Ed is a "text editor", that is, an interactive pro
gram for creating and modifying •'text'', using direc
tions provided by a user at a terminal. The text is often
a document like this one, or a program or perhaps data
for a program.

This introduction is meant to simplify learning ed.
The recommended way to learn ed is to read this docu
ment, simultaneously using ed to follow the examples,
then to read the description in section I of the UNIX
Programmer's Manual, all the while experimenting
with ed. (Solicitation of advice from experienced users
is also useful.)

Do the exercises! They cover material not com
pletely discussed in the actual text. An appendix sum
marizes the commands.

Disclaimer

This is an introduction and a tutorial. For this rea
son, no attempt is made to cover more than a part of the
facilities that ed offers (although this fraction includes
the most useful and frequently used parts). When you
have mastered the Tutorial, try Advanced Editing on
UNIX. Also, there is not enough space to explain basic
UNIX procedures. We will assume that you know how
to log on to UNIX, and that you have at least a vague
understanding of what a file is. For more on that, read
UNIX for Beginners.

You must also know what character to type as the
end-of-line on your particular terminal. This character
is the RETURN key on most terminals. Throughout, we
will refer to this character, whatever it is, as RETURN.

t UNIX is a trademark of Bell Laboratories.

Getting Started

We'll assume that you have logged in to your sys
tem and it has just printed the prompt character, usually
either a $ or a CJf>. The easiest way to get ed is to type

eel (followed by a return)

You are now ready to go - ed is waiting for you to tell
it what to do.

Creating Text - the Append command "a"

As your first problem, suppose you want to create
some text starting from scratch. Perhaps you are typing
the very first draft of a paper; clearly it will have to
start somewhere, and undergo modifications later. This
section will show how to get some text in, just to get
started. Later we '11 talk about how to change it

When ed is first started, it is rather like working
with a blank piece of paper - there is no text or infor
mation present. This must be supplied by the person
using ed,· it is usually done by typing in the text, or by
reading it into ed from a file. We will start by typing in
some text, and return shortly to how to read files.

First a bit of terminology. In ed jargon, the text
being worked on is said to be "kept in a buffer."
Think of the buffer as a work space, if you like, or sim
ply as the information that you are going to be editing.
In effect the buffer is like the piece of paper, on which
we will write things, then change some of them, and
finally file the whole thing away for another day.

The user tells ed what to do to his text by typing
instructions called "commands." Most commands
consist of a single letter, which must be typed in lower

USD:l2-2

case. Each command ia typed on a aeparate line.
(Sometimes the command ia preceded by information
about what line or lines of text are to be affected - we
will discuss these shortly.) Ed mates DO respome to
most commands - there ia DO prompting or typing of
messages like "Ieldy". (Ibis silence is preferred by
experienced users, but sometimes a hangup for
beginners.)

The first command ia append, writt.en II the letter

a

all by itself. It means ''append (or add) text lines to the
buffer, 11 I type them in.'' Appending ia rather like
writing fresh material on a piece of paper.

So to enter lines of text into the buffer, just type ID

a followed by a RETIJRN, followed by the lines of text
you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a line
that contains only a period. The • •., • is used to tell ed
that you have finished appending. (Even experienced
users forget that terminating • •. •, sometimes. If ed
seems to be ignoring you, type an extra line with just
.. .', on it. You may then find you've added some gar
bage lines to your text, which you'll have to take out
later.)

After the append command has been done, the
buffer will contain the three lines

Now is the time
for all good men
to come to the aid of their party.

The ... " and ... " aren't there, because they are not
text

To add more text to what you already have, just
issue another a command, and continue typing.

Error Messages - "?"
If at any time you make an error in the commands

you type to ed, it will tell you by typing

?

This is about as cryptic as it can be, but with practice,
you can usually figure out how you goofed.

Writing text out as a file-the Write command "w"
It's likely that you'll want to save your text for later

use. To write out the contents of the buffer onto a file,
use the write command

w

followed by the filename you want to write on. This

A Tutoriat Introduction to the UNIX Text Editor

will copy the buffer's contents onto the specified file
(destroying any previous information on the file). To
save the text on a file named Junk, for example, type

wjunt

l..cave a space between w and the file name. Ed will
respond by printing the number of chancten it wrote
out. In this cue, ed would respond with

68

(Remember that blanks and the return character at the
end of each line me included in the chll'ICter count)
Writina a file just makes a copy of the text - the
buffer's contents ~ not disturbed, so you can go on
adding lines to it Thia is ID important point Ed It all
times worts on a copy of a file, not the file itself. No
chqe in the contents of a file takes place until you
give aw command. (Writing out the text onto a file
from time to time 11 it is being created is a good idea,
since if the system crashes or if you make some horri
ble mistake, you will lose all the text in the buffer but
any text that wu written onto a file is relatively safe.)

Leaving eel - the Quit comman~ "q"
To terminate a session withed, save the text you're

working on by writing it onto a file using the w com
mand, and then type the command

q

which stands for quit. The system will respond with
the prompt character ($ or "). At this point your
buffer vanishes, with all its tex~ which is why you want
to write it out before quitting.t

Exercise 1:

Enter ed and create some text using

•
••. text ..•

Write it out using w. Then_ leave ed with the q com
mand, and print the file,· to see that everything worlced.
(To print a file, say

pr filename

or

cat filename

in response to the prompt character. Try both.)

Readln& text from a file - the Edit command "e"

A common way to get text into the buffer is to read
it from a file in the file system. This is what you do to
edit text that you saved with the w command in a previ-

t Actually, Ml will print 7 if you try to quit without writing. At
that point. write if you want; if not, another q will get you out

reaudl•.

A Tutorial Introduction to the UNIX Text Editor

ous session. The edil command e fetches the entire
contents of a file into the buffer. So if you had saved
the three lines "Now is the time", etc., with aw com
mand in an earlier session, the ed command

ejunt

would fetch the entire contents of the file Junk into the
buffer, and respond

68

which is the number of chancten in Junk. If anything
was already in the b"1fer, ii is aided first.

If you use the e command to read a file into the
buffer, then you need not uae a file name after a sub1e
quent w command; ed remembers the lut file name
used in an e command, and w will write on this file.
Thus a good way to operate is

eel
e file
[editing session]
w
q

This way, you can simply say w from time to time, and
be secure in the knowledge that if you got the file name
right at the beginning, you are writing into the proper
file each time.

You can find out at any time what file name ed is
remembering by typing the ~ command f. In this
example, if you typed

f

ed would reply

junk

Reading text from a file - the Read command "r"

Sometimes you want to read a file into the buffer
without destroying anything that is already there. This
is done by the read command r. The command

r junk

will read the file junk into the buffer; it adds it to the
end of whatever is already in the buffer. So if you do a
read after an edit:

ejunt
rjunk

the buffer will contain two copies of the text (six lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e commands, r prints the number of
characters read in, after the reading operation is com-

USD:12-3

plete.

Generally speaking, r is much less used than e.

Exercise 2:

Experiment with the e command - try reading and
printing various files. You may get an error ?name,
where aame is the name of a file; this means that the
file doem 't exist, typically because you spelled the file
name wrong, or perhaps that you are not allowed to
read or write iL Try alternately reading and appending
to see that they wort similarly. Verify that

eel filename

is exactly equivalent to

eel
e filename

What does

ffilename

do?

Prlntlnc the contents of the burrer - the Print com
mand "p"

To print or list the contents of the buffer (or parts
of it) on the terminal, use the print command

p

The way this is done is as follows. Specify the lines
where you want printing to begin and where you want
it to end, separated by a comma, and followed by the
letter p. Thus to print the first two lines of the buffer,
for example, (that is, lines 1 through 2) say

l,2p (starting line=l, ending line=2 p)

Ed will respond with

Now is the time
for all good men

Suppose you want to print all the lines in the
buffer. You could use 1,Jp as above if you knew there
were exactly 3 lines in the buffer. But in general, you
don't know how many there are, so what do you use for
the ending line number? Ed provides a shorthand sym
bol for "line number of last line in buffer" - the dollar
sign $. Use it this way:

l,Sp

This will print all the lines in the buffer (line 1 to last
line.) If you want to stop the printing before it is
finished, push the DEL or Delete key; ed will type

'l

and wait for the next command.

To print the last line of the buffer, you could use

$,Sp

USD:l2-4

but ed lets you abbreviate this to

Sp

You can print any single line by typing the line number
followed by a p. Thus

lp

produces the response

Now ii the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further: you
can print any single line by typing just the line number
- no need to type the letter p. So if you say

$

ed will print the last line of the buffer.

You can also use $ in combinations like

S-1,Sp

which prints the last two lines of the buffer. This helps
when you want to see how far you got in typing.

Exerclse3:

As before, create some text using the a command
and experiment with the p command. You will find,
for example, that you can't print line 0 or a line beyond
the end of the buffer, and that attempts to print a buffer
in reverse order by saying

3,lp

don't work.

The current line - "Dot" or "."

Suppose your buffer still contains the six lines as
above, that you have just typed

l,3p

and· ed has printed the three lines for you. Try typing
just

p (no line numbers)

This will print

to come to the aid of their party.

which is the third line of the buffer. In fact it is the last
(most recent) line that you have done anything with.
(You just printed it!) You can repeat this p command
without line numbers, and it will continue to print line
3.

The reason is that ed maintains a record of the last
line that you did anything to (in this case, line 3, which
you just printed) so that it can be used instead of an
explicit line number. This most recent line is referred
to by the shorthand symbol

A Tutorial Introduction to the UNIX Text Editor

(pronoaced "dot").

Dot is a line number in the same way that $ is; it means
exactly "the current line", or loosely, "the line you
most recently did aomething to.'' You can use it in
several ways - one possibility is to say

.,$p

Thia will print all the lines from (including) the current
line to the end of the buffer. In our example these are
lines 3 through 6.

Some commands change the value of dot, while
others do not 1bc p command sets dot to the number
of the lut line printed; the last command will set both •
and$to6.

Dot is most useful when used in combinations like
this one:

.+1 (or equivalently, .+lp)

This means "print the next line" and is a handy way to
step slowly through a buffer. You can also say

.-1 (or.-lp)

which means ''print the line before the current line.''
This enables you to go backwards if you wish. Another
useful one is something like

.-3,.-lp

which prints the previous three lines.

Don't forget that all of these change the value of
dot You can find out what dot is at any time by typing

·=
Ed will respond by printing the value of dot.

Let's summarize some things about the p command
and dot Essentially p can be preceded by 0, 1, or 2
line numbers. If there is no line number given, it prints
the '"cmrent line", the line that dot refers to. If there is
one line number given (with or without the letter p), it
prints that line (and dot is set there); and if there are
two line numbers, it prints all the ·lines in· that range
(and sets dot to the last line printed.) If two line
numben are specified the tint can't be bigger than the
second (see Exercise 2.)

Typing a single return will cause printing of the
next line- it's equivalent to .+tp, Try it Try typing a
-; you will find that it's equivalent to .-tp.

Deleting lines: the ''d'' command

Suppose you want to get rid of the three extra lines
in the buffer. This is done by the delete command

d

Except that d deletes lines instead of printing them, its
action is similar to that of p. The lines to be deleted are
specified for d exactly as they are for p:

A Tutorial Introduction to the UNIX Text Editor

starting line, ending lined

Thus the command

4,Sd

deletes lines 4 through the encl. There are now thtee
lines left, as you can check by using

1,Sp

And notice that $ now is line 3 ! Dot is set to the next
line after the last line deleted, unless the last line
deleted is the last line in the buffrr. In that case, dot is
set to$.

Exercise 4:

Experiment with a, e, r, w, p and d until you are
sure that you know what they do, and until you under
stand how dot, $, and line numbm are used.

If you are adventurous, try using line numbers with
a, r and w as well. You will find that a will append
lines ~r the line number that you specify (rather than
after dot); that r reads a file in ~r the line number
you specify (not necessarily at the end of the buffer);
and that w will write out exactly the lines you specify,
not necessarily the whole buffer. These variations are
sometimes handy. For instance you can insert a file at
the beginning of a buffer by saying

Or filename

and you can enter lines at the beginning of the buffer
by saying

Oa
•.• text ••.

Notice that .w is very different from

w

Modifying text: the Substitute command "s"

We are now ready to try one of the most important
of all commands - the substitute command

s

This is the command that is used to change individual
words or letters within a line or group of lines. It is
what you use, for example, for correcting spelling mis
takes and typing errors.

Suppose that by a typing error, line 1 says

Now is th time

- the e has been left off tM. You can use s to fix this
up as follows:

ls/th/the/

This says: "in line 1, substitute for the characters th the

USD:12-5

charactcn the." To verify that it works (ed will not
print the result automatically) say

p

and get

Now is the time

which is what you wanted. Notice that dot must have
been set to the line where the substitution took place,
since the p command printed that line. Dot is always
set this way with the 1 command.

The general way to use the substitute command is

starting-IN, ending-UM slchange this/to this/

WhlteVer string of chanlcten is between the first pair
of slashel is replaced by whateva is between the
second pair, in all the lines between starting-line and
ending-UM. Only the first occurrence on each line is
changed, however. If you want to change every
occurrence, see Exercise S. The rules for line numbers
are the same as those for p, except that dot is set to the
last line changed. (But there is a trap for the unwary: if
no substitution took place, dot is not changed. This
causes an error ? as a warning.)

Thus you can say

1,$5/speling/spelling/

and correct the first spelling mistake on each line in the
text. (This is useful for people who are consistent
misspellers!)

If no line numbers are given, the s command
assumes we mean .. make the substitution on line dot",
so it changes things only on the current line. This leads
to the very common sequence

s/something/something else/p

which makes some correction on the current line, and
then prints it, to make sure it worked out right If it
didn't, you can try again. (Notice that there is a p on
the same line as the s command. With few exceptions,
p can follow any command; no other multi-command
lines are legal.)

It's also legal to say

s/ •.. II

which means ''change the first string of characters to
"nothing", i.e., remove them. This is useful for delet
ing extra words in a line or removing extra letters from
words. For instance, if you had

Nowxx is the time

you can say

s/xxl/p

to get

Now is the time

USD:12~

Notice that II (two adjacent slashes) means "no chanc
ters", not a blank. There is a diffemice! (See below
for another meaning of//.)

Exercise 5:

Experiment with the substitute command. See
what happens if you substitute for some word on a line
with several occwrences of that word. For example, do
this:

a
the other side of the coin

s/thelon thelp

You will get

on the other side of the coin

A substitute command changes only the first
occurrence of the first string. You can change all
occurrences by adding a 1 (for "global") to the s com
mand, like this:

s/ ... I •.• lgp

Try other characters instead of sluhes to delimit the
two sets of characters in the s command - anything
should work except blanks or tabs.

(If you get funny results using any of the characters

.. • $ [• \ &

read the section on ''Special Characters''.)

Context searching-''/ ••• I"

With the substitute command mastered, you can
move on to another highly important idea of ed - con
text searching.

Suppose you have the original three line text in the
buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains thi!ir so
you can change it to th/!. Now with only three lines in
the buffer, it's pretty easy to keep track of what line the
word their is on. But if the buffer contained several
hundred lines, and you'd been making changes, delet
ing and rearranging lines, and so on, you would no
longer really know what this line number would be.
Context ~bing is simply a method of specifying the
desired line, regardless of what its number is, by speci
fying some context on it

The way to say ''search for a line that contains this
particular string of characters'' is to type

/string of characters we want to find/

For example, the ed command

A Tutorial Inaocluction to the UNIX Text Editor

/their/

is a context search which is sufficient to find the desired
line - it will locate the next occurrence of the charac
ters between slashes ("their"). It also sets dot to that
line and prints the line for verification:

to come to the aid of their party.

1 'Next occurrence'' means that etl starts looking for the
string at line .+ 1, seuches to the end of the buffer, then
continues at line 1 and searches to line dot (That is,
the search "wraps around" from$ to 1.) It scans all
the lines in the buffer until it either finds the desired
line or gets back to dot again. If the given string of
chancten can't be found in any line, t!ll types the error
message

?

Otherwise it prints the line it found.

You can do both the search for the desired line and
a substitution all at once, like this:

/their/sltheir/the/p

which will yield

to come to the aid of the party.

There were three parts to that last command: context
search for the desired line, make the substitution, print
the line.

The expression /their/ is a context search expres
sion. In their simplest form, all context search expres
sions are like this - a string of characters surrounded by
slashes. Context searches are interchangeable with line
numben, so they can be used by themselves to find and
print a desired line, or as line numbers for some other
command, like s. They were used both ways in the
examples above.

Suppose the buffer contains the three familiar lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers

/Now/+l
/good/
/party/-1

are all context search expressions, and they all refer to
the same line (line 2). To make a change in line 2, you
could say

/Now/+ls/good/bld/

or

/goodls/good/bad/

or

A Tutorial Introduction to the UNJX Text Editor

/party/-11/goodlbad/

The choice is dictated only by convenience. You could
print all three lines by, for instance

/Now/.,lparty/p

or

/Now/ ,/Now/+2p

or by any number of similar combinations. The first
one of these might be better if you don't know how
many lines are involved. (Of course, if there were only
three lines in the buffer, you'd use

l,Sp

but not if there were several hundred.)

The basic rule is: a context search exptession is IM
s~ as a line number, so it can be used wherever a
line number is needed.

Exercise 6:

Experiment with context searching. Try a body of
text with several occurrences of the same string of
characters, and scan through it using the same context
search.

Try using context searches as line numbers for the
substitute, print and delete commands. (They can also
be used with r, w, and a.)

Try context searching using ?text? instead of
/text/. This scans lines in the buffer in reverse order
rather than normal. This is sometimes useful if you go
too far while looking for some string of characters -
it's an easy way to back up.

(If you get funny results with any of the characters

".$ [•\&

read the section on "Special Characters".)

Ed provides a shorthand for repeating a context
search for the same string. For example, the ed line
number

/string/

will find the next occurrence of string. It often hap
pens that this is not the desired line, so the search must
be repeated. This can be done by typing merely

II

This shorthand stands for "the most recently used con
text search expression." It can also be used as the first
string of the substitute command, as in

/string l/s/ /1tring2/

which will find the next occurrence of strfngl and
replace it by string2. This can save a lot of typing.
Similarly

USD:l2-7

means ''scan backwards for the same expression.''

Chanae and Insert - "c" and "I"

This section discusses the change commmd

c:

which is used to change or replace a group of one or
more lines, and the in.tut command

i

which is used for inserting a group of one or more
lines.

"Change", written as

c:

is used to replace a number of lines with different lines,
which are typed in at the terminal. For example, to
change lines .+ 1 through $ to something else, type

.+1,Sc
••• type tlu! lines of texl Y°" want here •..

The lines you type between the c command and the •
will take the place of the original lines between start
line and end line. This is most useful in replacing a
line or several lines which have errors in them.

If only one line is specified in the c command, then
just that line is replaced. (You can type in as many
replacement lines as you like.) Notice the use of • to
end the input - this worts just like the • in the append
command and must appear by itself on a new line. If
no line number is given, line dot is replaced. The value
of dot is set to the last line you typed in.

•'Insert'' is similar to append - for instance

/st:ring/i
••. type tlu! lines to be inserted lu!re ...

will insert the given text be/ ore· the next line that con- ·
tains "string". The text between I and • is inserted
before the specified line. If no line number is specified
dot is used. Dot is set to the last line inserted.

Exercise 7:

•'Change'' is rather like a combination of delete
followed by insert. Experiment to verify that

start, end d
i
... texl •..

is almost the same as

USD:12-I

start, endc
... text ...

These are not precisely the same if line S gets deleted.
Check this oUL What is clot?

Experiment with a and I, to see that they are simi
lar, but not the same. You will observe that

line-ruunba •
••• text •••

appends after the given line, while

Une-nwnber i
... text ...

inserts /Jef ore il Observe that if no line number is
given, I inserts before line dot, while a appends after
line dot.

Moving text around: the ''m'' command

The move command m is used for cutting and past
ing - it lets you move a group of lines from one place
to another in the buffer. Suppose you want to put the
first three lines of the buffer at the end instead. You
could do it by saying:

l,3w temp
Sr temp
l,3d

(Do you see why?) but you can do it a lot easier with
them command:

l,3m$

The general case is

start line, end line m after this line

Notice that there is a third line to be specified - the
place where the moved stuff gets put Of course the
lines to be moved can be specified by context searches;
if you had

Fint paragraph

end of first paragraph.
Second paragraph

end of second paragraph.

you could reverse the two paragraphs like this:

/Second/ ,lend of second/m/First/-1

Notice the -1: the moved text goes after the line men
tioned. Dot gets set to the last line moved.

A Tutorial Introduction to the UNIX Text Editor

The &lobal commands "&" and "v"

The global command a is used to execute one or
more e4 commands on all those lines in the buffer that
mat.ch some specified string. For example

glpeling/p

prints all lines that contain pellna. More usefully,

glpelingllllpelling/gp

makes the substitution everywhere on the line, then
prints each corrected line. Compare this to

l ,Sslpelinglpellinglgp

which only prints the last line substituted. Another
subtle difference is that the I colDJDIDd does not give a
? if pellna is not found where the s command will.

There may be several commands (including a, c, I,
r, w, but not I); in that case, every line except the last
must end with a backslash \:

g/xxxl .-ls/abcldef/\
.+211ghi/jkl/\
.-2,.p

makes changes in the lines before and after each line
that contains m, then prints all three lines.

The v command is the same as g, except that the
commands are executed on every line that does not
match the string following v:

v//d

deletes every line that does not contain a blank.

Special Characters

You may have noticed that things just don't wort:
right when you used some characters like ., •, $, and
othen in context searches and the substitute command.
The reason is rather complex, although the cure is sim
ple. Basically, ed treats these characters as special,
with special meanings. For instance, in a context
search or the first string of the substitute command
only,. means "any character," not a period, so

/x.y/

means "a line with an x, any character, and a y," not
just .. a line with an x, a period, and a y." A complete
list of the special characters that can cause trouble is
the following:

.. . s [• \
Warning: The backslash character \ is special to ed.
For safety's sake, avoid it where possible. If you have
to use one of the special characters in a substitute com
mand, you can tum off its magic meaning temporarily
by preceding it with the backslash. Thus

11\\\.\•/backsluh dot star/

will change \.• into ••backslash dot star''.

A Tutorial Introduction to the UNIX Text Editor

Here is a hurried synopsis of the other special char
acters. First, the circumflex " signifies the beginning of
aline. Thus

rstringl

finds strtna only if it is at the beginning of a line: it
will find

string

but not

the string ...

The dollar-sign $ is just the opposite of the circumflex;
it means the end of a line:

/string$/

will only find an occurrence of string that is at the end
of some line. This implies, of course, that

rstringSI

will find only a line that contains just strfna, and

r.SI
finds a line containing exactly one character.

The character ., as we mentioned above, matches
anything;

/x.y/

matches any of

x+y
x-y
xy
x.y

This is useful in conjunction with •, which is a repeti
tion character; a• is a shorthand for "any number of
a's," so .• matches any number of anythings. This is
used like this:

sl.•/stuffl

which changes an entire line, or

sl.•,11

which deletes all characters in the line up to and includ
ing the last comma. (Since .• finds the longest possible
match, this goes up to the last comma.)

[is used with] to form "character classes"; for
example,

/[0123456789]/

matches any single digit - any one of the characters
inside the braces will cause a match. This can be .
abbreviated to [0-9).

Finally, the & is another shorthand character- it is
used only on the right-hand part of a substitute com
mand where it means ''what.ever was matched on the
left-hand side''. It is used to save typing. Suppose the

USD:12-9

cunent line contained

Now is the time

and you wanted to put parentheses around iL You
could just retype the line, but this is tedious. Or you
could say

sr'/(/
t/$/V

using your knowledge of" and$. But the easiest way
uses the&:

11.•/(&)J

This says ''match the whole line, and replace it by
itself surrounded by parentheses.'' The & can be used
several times in a line; consider using

11.•I&? &!!/

to produce

Now is the time? Now is the time!!

You don't have to match the whole line, of course:
if the buffer contains

the end of the world

you could type

/world/II/& is at hand/

to produce

the end of the world is at hand

Observe this expression carefully, for it illustrates how
to take advantage of ed to save typing. The string
/world/ found the desired line; the shorthand II found
the same word in the line; and the & saves you from
typing it again.

The & is a special character only within the
replacement text of a substitute command, and has no
special meaning elsewhere. You can tum off the spe
cial meaning of & by preceding it with a \:

slampersand/\&/

will convert the word "ampersand" into the literal
symbol & in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the command
name, perhaps preceded by one or two line numbers,
and, in the case of e, r, and w, followed by a file name.
Only one command is allowed per line, but a p com
mand may follow any other command (except for e, r,
wandq).

a: Append, that is, add lines to the buffer (at line dot,
unless a different line is specified). Appending contin
ues until. is typed on a new line. Dot is set to the last

USD:12-10

line appended.

c: Change the specified lines to the new text which fol
lows. The new lines are terminated by a ., u with a. If
no lines are specified, replace line dot. Dot is set to last
line changed.

d: Delete the lines specified. If none are specified,
delete line dot Dot is 1et to the first undeleted line,
unless $ is deleted, in which cue dot is set to $.

e: Edit new file. Any previous contents of the buffer
are thrown away, so issue aw beforehand.

f: Print remembered filename. If a name follows f the
remembered name will be set to it

g: The command

g/-/commands

will execute the commands on those lines that contain
--, which can be any context search expression.

I: Insert lines before specified line (or dot) until a . is
typed on a new line. Dot is set to last line inserted.

m: Move lines specified to after the line named after
m. Dot is set to the last line moved.

p: Print specified lines. If none specified, print line
dot. A single line number is equivalent to liM-number
p. A single return prints .+1, the next line.

q: Quit ed. Wipes out all text in buffer if you give it
twice in a row without first giving aw command.

r: Read a file into buffer (at end unless specified else
where.) Dot set to last line read.

s: The command

s/string l/string2/

substitutes the characters strlngl into strlng2 in the
specified lines. If no lines are specified, make the sub
stitution in line dot. Dot is set to last line in which a
substitution took place, which means that if no substitu
tion took place, dot is not changed. s changes only the
first occurrence of strlngl on a line; to change all of
them, type a g after the final slash.

v: The command

v/-/commands

executes commands on those lines that do not contain
....
w: Write out buffer onto a file. Dot is not changed .

.=: Print value of dot. (= by itself prints the value of
$.)

!: The line

!command-line

causes command-line to be executed as a UNIX com
m.and.

/-----/: Context search. Search for next line which con
. tains this string of characters. Print it. Dot is set to the

line where string was found. Search starts at .+ 1, wraps

A Tutorial Introduction to the UNIX Text Editor

around from$ to 1, and continues to dot, if necessary.

?---?: Context search in reverse direction. Start
search at .-1, scan to 1, wrap around to$.

Advanced Editing on UNIX

Brian W. Kernighan

(Updated/or 4.3BSD by Marie Seiden)

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make effective
use of the . UNIXt facilities for preparing and editing t.ext. It provides explanations and
examples of

• special characters, line addressing and global commands in the editor ed;

• commands for "cut and past.e" operations on files and parts of files, including the
mv, cp, cat and rm commands, and the r, w, m and t commands of the editor;

• editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new users with any back
ground should find helpful hints on how to get their jobs done more easily.

1. INTRODUCTION

Although UNIX provides remmably effective
tools for text editing, that by itself is no guarantee that
everyone will automatically make the most effective
use of them. In particular, people who are not com
puter specialists - typists, secretaries, casual users -
often use the system less effectively than they might
(There is a good argument that new users would better
use their time learning a display editor, like vi, or
perhaps a version of emacs, like jove, rather than an
editor as ignorant of display terminals as ed.)

This document is intended as a sequel to A
Tutorial /nJroduction to th/! UNIX Tat Editor [1], pro
viding explanations and examples of how to edit using
ed with less effort. (You should also be familiar with
the material in UNIX For Beginners [2].) Further infor
mation on all commands discussed here can be found in
section 1 of the TM UNIX User's MDIUUIL [3].

Examples are based on observations of users and
the difficulties they encounter. Topics covered include
special characters in searches and substitute commands,
line addressing, the global commands, and line moving
and copying. There are also brief discussions of effec
tive use of related tools, like those for file manipula
tion, and those based on ed, like grep and sect.

A word of caution. There is only one way to
learn to use something, and that is to use it Reading a

t UNIX is a trademark of Bell Laboratories.

description is no substitute for trying something. A
paper like this one should give you ideas about what to
try, but until you actually try something, you will not
learn it

2. SPECIAL CHARACTERS

The editor eel is the primary interface to the sys
tem for many people, so it is worthwhile to know how
to get the most out of eel for the least effort.

Thc next few sections will discuss shortcuts and
labor-saving devices. Not all of these will be instantly
useful to any one person, of course, but a few will be,
and the others should give you ideas to store away for
future use. And as always, until you try these things,
they will remain theoretical knowledge, not something
you have confidence in.

The List command 'I'

eel provides two commands for printing the con
tents of the lines you're editing. Most people are fami
liar with p, in combinations like

l,$p

to print all the lines you 're editing, or

s/abc/def/p

to change 'abc' to 'der on the current line. Less fami
liar is the list command I (the letter 'l '), which gives

USD:13-2

slightly more information than p. In particular, I makes
visible characters that are normally invisible, such as
tabs and backspaces. If you list a line that contains
some of these, I will print each tab as • and each back
space as •· t This makes it much easier to correct the
sort of typing mistake that inserts extra spaces adjacent
to tabs, or inserts a backspace followed by a space.

The I command also 'folds' long lines for print
ing - any line that exceeds 72 chancters is printed on
multiple lines; each printed line except the last is ter
minated by a backslash \, so you can tell it was folded.
This is useful for printing long lines on short terminals.

Occasionally the I command will print in a line a
string of numbers preceded by a backslash, such as \07
or \ 16. 1bese combinations are used to make visible
characters that normally don't print, like form feed or
vertical tab or bell. Each such combination is a single
character. When you see such characters, be wary -
they may have surprising meanings when printed on
some terminals. Often their presence means that your
finger slipped while you were typing; you almost never
want them.

The Substitute Command's'

Most of the next few sections will be taken up
with a discussion of the substitute command s. Since
this is the command for changing the contents of indi
vidual lines, it probably has the most complexity of any
ed command, and the most potential for effective use.

As the simplest place to begin, recall the mean
ing of a trailing g after a substitute command. With

slthis/that/

and

s/this/that/g

the first one replaces the first 'this' on the line with
'that'. If there is more than one 'this' on the line, the
second form with the trailing g changes all of them.

Either form of the s command can be followed
by p or I to 'print' or 'list' (as described in the previous
section) the contents of the line:

s/thislthatlp
s/thislthatll
s/thislthatlgp
s/thislthat/gl

are all legal, and mean slightly different things. Make
sure you know what the differences are.

Of course, any s command can be preceded by
one or two 'line numbers' to specify that the substitu
tion is to take place on a group of lines. Thus

t These composite characters are created by overstriking
a minus and a > or <, so they only appear as < or > on
display terminal.~

Advanced Editing on UNIX

l ,Sslmispell/misspelll

changes the first occmrence of 'mispell' to 'misspell'
on every line of the file. But

1,Sslmispell/misspelllg

changes every occurrence in every line (and this is
more likely to be what you wanted in this particular
case).

You should also notice that if you ldd a p or I to
the end of any of thele substitute commands, only the
last line that got changed will be printed, not all the
lines. We will talk later about how to print all the lines
that were modified.

The Undo Command 'u'

Occasionally you will make a substitution in a
line, only to realize too late that it was a ghastly mis
take. 1be 'undo' command u lets you 'undo' the last
substitution: the last line that was substituted can be
restored to its previous state by typing the command

u

The Metacharacter '.'

As you have undoubtedly noticed when you use
eel, certain characters have unexpected meanings when
they occur in the left side of a substitute command, or
in a search for a particular line. In the next several sec
tions, we will talk about these special characters, which
are often called 'metacharacters'.

1be first one is the period '.'. On the left side of
a substitute command, or in a search with '/ .. ./', '.'
stands for any single character. Thus the search

/x.y/

finds any line where 'x' and 'y' occur separated by a
single character, as in

x+y
x-y
xoy
x.y

and so on. (We will use o to stand for a space when
ever we need to make it visible.)

Since '.' matches a single character, that gives
you a way to deal with funny characters printed by I.
Suppose you have a line that, when printed with the I
command, appears as

.... th\07is

and you want to get rid of the \07 (which represents the
bell character, by the way).

The most obvious solution is to try

s/\07//

but this will fail. (fry it) The brute force solution,

Advanced P.diting on UNIX

which most people would now take, is to re-type the
entire line. This is guaranteed, and is actually quite a
reasonable tactic if the line in question isn't too big, but
for a very long line, re-typing is a bore. This is where
the metacharacter •.• comes in handy. Since '\(]'!'
really reprelCllts a single cb.-actcr, if we say

slth.islthisl

the job is done. The •.' matches the mysterious charac
ter between the 'h' and the 'i', wltalever ii is.

Bear in mind that since •.' matches any single
character, the command

slJ,J

converts the first character on a line into a •, ', which
very often is not what you intended.

As is true of many characters in eel, the •. • has
several meanings, depending on its context. This line
shows all three:

.s/JJ

The first •.' is a line number, the number of the line we
are editing, which is called "line dot'. (We will discuss
line dot more in Section 3.) The second ".' is a meta
character that matches any single character on that line.
The third •.' is the only one that really is an honest
literal period. On the righl side of a substitution, •.' is
not special. If you apply this command to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

The Backslash '\'

Since a period means •any character', the ques
tion naturally arises of what to do when you really want
a period. For example, how do you convert the line

Now is the time.

into

Now is the time?

The backslash "\' does the job. A backslash turns off
any special meaning that the next character might have;
in particular, "\.' converts the •.' from a "match any
thing' into a period, so you can use it to replace the
period in

Now is the time.

like this:

sl\J'!I

The pair of characters "\.' is considered by eel to be a
single real period.

USD:13-3

The backslash can also be used when searching
for lines that contain a special character. Suppose you
arc looking for a line that contains

.PP

The search

I.PP/

isn't adequate, for it will find a line like

THE APPLICATION OF ...

because the •.' matches the letter •A'. But if you say

/\.l'P/

you will find only lines that contain •.PP'.

The backslash can also be used to tum off spe
cial meanings for characters other than •.'. For exam
ple, consider finding a line that contains a backslash.
The search

N

won't work, because the"\' isn't a literal"\', but instead
means that the second • r no longer delimits the search.
But by preceding a backslash with another one, you can
search for a literal backslash. Thus

/\V

does work. Similarly, you can search for a forward
slash "/' with

NI

The backslash turns off the meaning of the immediately
following "/' so that it doesn't terminate the l .. J con
struction prematurely.

As an exercise, before reading further, find two
substitute commands each of which will convert the
line

\x\.\y

into the line

\x\y

Here are several solutions; verify that each
works as advertised.

sl\\\JI
s/x.Jx/
sl •• y/y/

A couple of miscellaneous notes about
backslashes and special characters. First, you can use
any character to delimit the pieces of an s command:
there is nothing sacred about slashes. (But you must
use slashes for context searching.) For instance, in a
line that contains a lot of slashes already, like

//exec //sys.fort.go II etc ...

you could use a colon as the delimiter - to delete all

USD:13-4

the slashes, type

s:/::g

Second, if# and @ are your character erase and
line kill characters, you have to type \# and \@; this is
true whether you 're talking to eel or ay other program.

When you are adding text with a or I or c,
backslash is not special, and you should only put in one
backslash for each one you really want.

The Dollar Sip '$'

The next metacharacter, the '$', stands for 'the
end of the line'. As its moat obvious use, suppose you
have the line

Now is the

and you wish to add the word 'time' to the end. Use
the S like this:

s/$/ctime/

to get

Now is the time

Notice that a space is needed before 'time' in the sub
stitute command, or you will get

Now is thetime

As another example, replace the second comma
in the following line with a period without altering the
first:

Now is the time, for all good men,

The command needed is

sl,$/J

The $ sign here provides context to make specific
which comma we mean. Without it, of course, the s
command would operate on the first comma to produce

into

Now is the time. for all good men,

As another example, to convert

Now is the time.

Now is the time'?

as we did earlier, we can use

sl.$1'?1

Like •.', the '$' has multiple meanings depend
ing on context. In the line

$s/$/$/

the first '$' refers to the last line of the file, the second
refers to the end of that line, and the third is a literal
dollar sign, to be added to that line.

Advanced Editing on UNIX

The Clrcmnlles '"'
The circum6ex (or hat or caret) '"' stands for the

beginning of the line. For example, suppose you are
looking for a line that begins with 'the'. H you simply
say

/the/

you will in all likelihood find several lines that contain
'the' in the middle before arriving at the one you want.
But with

rthel

you namw the context, and thus arrive at the desired
one more easily.

The other use of '"'' is of coune to enable you to
insert something at the beginning of a line:

s/"'/c/

places a space at the beginning of the current line.

Metacharacten can be combined. To search for
a line that contains only the characters

.PP

you can use the command

/"'\.PP$/

The Star'•'

Suppose you have a line that looks like this:

text x y text

where text stands for lots of text, and there are some
indeterminate number of spaces between the x and the
y. Suppose the job is to replace all the spaces between
x and y by a single space. The line is too long to
retype, and there are too many spaces to count. What
now'?

This is where the metacharacter '•' comes in
handy. A character followed by a star stands for as
many consecutive occurrences of that character as pos ..
sible. To refer to all the spaces at once, say

s/xc•ylxcy/

The construction 'c•' means 'as many spaces as possi
ble'. Thus 'xc•y' means 'an x, as many spaces as pos
sible, then a y'.

The star can be used with any character, not just
space. H the original example was instead

text x y text

then all'-' signs can be replaced by a single space with
the command

s/x-•y/xcy/

Finally, suppose that the line was

Advanced Editing on UNIX

teJCt x.--------Y tat

Can you sec what trap lies in wait for the unwary? If
you blindly type

slx.•y/xcy/

what will happen? The answer, naturally, is that it
depends. If there are no other x's m.- y's on the line,
then everything works, but it's blind luck, not good
management. Remember that •.' matches any single
character? Then • .•' matches 11 many single chlr'IC
ters as possible, md unleu you 're careful, it can eat up
a lot more of the line than you expected. If the line
was, fm.- example, like this:

teJCt x tat x.-------Y text y t.ext

then saying

slx.•ylxcy/

will take everything from the first 'x' to the last 'y',
which, in this example, is undoubtedly more than you
wanted.

The solution, of course, is to tum off the special
meaning of'.' with'\.':

s/xVy/xcy/

Now everything works, for '\.•' means 'as many
periods as possible'.

There are times when the pattern '.•' is exactly
what you want For example, to change

Now is the time for all good men

into

Now is the time.

use • .•' to eat up everything after the 'for':

slcfor.•IJ

There are a couple of additional pitfalls associ
ated with '•' that you should be aware of. Most not
able is the fact that •as many as possible' means zero or
more. The fact that zero is a legitimate possibility is
sometimes rather surprising. For example, if our line
contained

text xy text x

and we said

s/xc•y/xcy/

y text

the first •xy' matches this pattern, for it consists of an
'x', uro spaces, and a 'y'. The result is that the substi
tute acts on the first 'xy', and does not touch the later
one that actually contains some intervening spaces.

The way around this, if it matters, is to specify a
pattern like

/xcc•y/

USD:13-S

which says •an x, a space, then as many more spaces as
possible, then a y', in other words, one or more spaces.

The other startling behavior of '•' is again
related to the fact that zero is a legitimate number of
occurrences of something followed by a star. The com
mand

slx•ly/g

when applied to the line

abcdef

produces

yaybycydyeyfy

which ii almost certainly not what was intended. The
reason for this behavior is that zero is a legal number of
matches, and there are no x's at the beginning of the
line (so that gets converted into a 'y'), nor between the
'a' and the 'b' (so that gets converted into a 'y'), nor ...
and so on. Make sure you really want zero matches; if
not, in this case write

slxx•/y/g

'xx•' is one or more x's.

The Brackets'[]'

Suppose that you want to delete any numbers
that appear at the beginning of all lines of a file. You
might first think of trying a series of commands like

1,$sf'l•//
1,$sf'2•//
1,$sr3•//

and so on, but this is clearly going to take forever if the
numbers are at all long. Unless you want to repeat the
commands over and over until finally all numbers are
gone, you must get all the digits on one pass. This is
the purpose of the brackets [and] .

The construction

[0123456789]

matches any single digit - the whole thing is called a
'character class'. With a character class, the job is
easy. The pattern '[0123456789]•' matches zero or
more digits (an entire number), so

l,$s/"[01234S6789]•//

deletes all digits from the beginning of all lines.

Any characters can appear within a character
class, and just to confuse the issue there are essentially
no special characters inside the brackets; even the
backslash doesn't have a special meaning. To search
for special characters, for example, you can say

/[. \$"[]/

Within [...], the '[' is not special. To get a ']' into a
character class, make it the first character.

USD:13-6

It's a nuisance to have to spell out the digits, so
you can abbreviate them u [0-9); similarly, [a-z)
stands for the lower case lettas, and [A-ZJ for upper
case.

As a final frill on character clasaes, you can
specify a clus that meana •none of the following char
acters'. This is done by beginning the clua with a '"':

["0-9)

stands for 'any character acept a digit'. Thus you
might find the first line that doesn't begin with a tab or
space by a search lite

r("(space)(tab)JI

Within a character class, the circumflex has a
special meaning only if it occurs at the beginning. Just
to convince yourself, verify that

r["")/

finds a line that doesn't begin with a circumflex.

The Ampersand '&'
The ampersand ' & ' is used primarily to save

typing. Suppose you have the line

Now is the time

and you want to make it

Now is the best time

Of course you can always say

s/the/the best/

but it seems silly to have to repeat the 'the'. The ' & • is
used, to eliminate the repetition. On the right side of a
substitute, the ampersand means 'whatever was just
matched', so you can say

s/the/& best/

and the '&' will stand for 'the'. Of course this isn't
much of a saving if the thing matched is just 'the', but
if it is something truly long or awful, or if it is some
thing like '.•' which matches a lot of text, you can save
some tedious typing. There is also much less chance of
making a typing error in the replacement text. For
example, to parenthesi7.e a line, regardless of its length,

sl.•/(&)/

The ampersand can occur more than once on the
right side:

s/the/& best and & worst/

makes

Now is the best and the worst time

and

sl.•1&? &!!/

Advanced F.diting on UNIX

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, naturally the
backslash is used to tum off the special meaning:

slampasandl\&I

converts the word into the symbol. Notice that ' & ' is
not special on the left side of a substitute, only on the
right side.

Subsdtuf:lna Newlines

eel provides a facility for splitting a single line
into two or more shorter lines by 'substituting in a new
line'. As the simplest example, suppose a line has got
ten unmanageably long because of editing (or merely
because it was unwisely typed). If it looks like

text xy tat

you can break it between the 'x' and the 'y' like this:

s/xy/x\
y/

This is actually a single command, although it is typed
on two lines. Bearing in mind that '\' turns off special
meanings, it seems relatively intuitive that a '\' at the
end of a line would make the newline there no longer
special.

You can in fact make a single line into several
lines with this same mechanism. As a large example,
consider underlining the word 'very' in a long line by
splitting 'very' onto a separate line, and preceding it by
the rotr or nroff formatting command '.ul'.

text a very big text

The command

s/cveryo/\
.ul\
very\
I

converts the line into four shorter lines, preceding the
word 'very' by the line '.ul', and eliminating the spaces
around the 'very', all at the same time.

When a newline is substituted in, dot is left
pointing at the last line created.

Joining Lines
Lines may also be joined together, but this is

done with the J command instead of s. Given the lines

Now is
othe time

and supposing that dot is set to the first of them, then
the command

Advanced Editing on UNIX

j

joins them together. No blanks are added, which is
why we carefully showed a blank at the beginning of
the second line.

All by itself, a J command joins line dot to line
dot+l, but any contiguous set of lines can be joined.
Just specify the stm1ing and ending line numbers. For
example,

l,Sjp

joins all the lines into one big one and prints it (More
on line numbers in Section 3.)

Rea1Tqlna a Line with\(... \)

(Ibis section should be skipped on first reading.)
Recall that '&.' is a shorthand that stands for whatever
was matched by the left side of an s command. In
much the same way you can capture separate pieces of
what was matched; the only difference is that you have
to specify on the left side just what pieces you're
interested in.

Suppose, for instance, that you have a file of
lines that consist of names in the form

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede the
name, as in

A. B.Smith
C.Jones

It is possible to do this with a series of editing com
mands, but it is tedious and error-prone. (It is instruc
tive to figure out how it is done, though.)

The alternative is to 'tag' the pieces of the pat
tern (in this case, the last name, and the initials), and
then rearrange the pieces. On the left side of a substitu
tion, if part of the pattern is enclosed between \(and \),
whatever matched that part is remembered, and avail
able for use on the right side. On the right side, the
symbol '\l' refers to whatever matched the first \(... \)
pair, '\2' to the second \(... \), and so on.

The command

1,$s/"\([" ,]•\),c•\(.•\)/\20\l/

although hard to read, does the job. The first \(... \)
matches the last name, which is any string up to the
comma; this is referred to on the right side with '\l '.
The second\(... \) is whatever follows the comma and
any spaces, and is referred to as '\2'.

Of course, with any editing sequence this com
plicated, it's foolhardy to simply run it and hope. The
global commands g and v discussed in section 4 pro
vide a way for you to print exactly those lines which
were affected by the substitute command, and thus ver
ify that it did what you wanted in all cases.

USD:13-7

3. LINE ADDRESSING IN THE EDITOR

The next general area we will di.:uss is that of
line addressing in ed., that is, how you specify what
lines are to be affected by editing commands. We have
already used constructions like

l,$slx/y/

to specify a change on all lines. And most users are
long since familiar with using a single newline (or
return) to print the next line, and with

/thing/

to find a line that contains 'thing'. Less familiar,
surprisingly enough, is the use of

?thing?

to scan 'backwards for the previous occurrence of
'thing'. This is especially handy when you realize that
the thing you want to operate on is back up the page
from where you are cunently editing.

The slash and question mark are the only charac
ters you can use to delimit a context search, though you
can use essentially any character in a substitute com
mand.

Addrell Arithmetic

The next step is to combine the line numbers
like'.','$', 'l .. J' and'? ... ?' with'+' and'-'. Thus

$-1

is a command to print the next to last line of the current
file (that is, one line before line '$'). For example, to
recall how far you got in a previous editing session,

$-5,Sp

prints the last six lines. (Be sure you understand why
it's six, not five.) If there aren't six, of coune, you'll
get an error message.

As another example,

.-3,.+3p

prints from three lines before where you are now (at
line dot) to three lines after, thus giving you a bit of
context. By the way, the'+' can be omitted:

.-3,.3p

is absolutely identical in meaning.

Another area in which you can save typing effort
in specifying lines is to use'-' and'+' as line numbers
by themselves.

by itself is a command to move back up one line in the
file. In fact, you can string several minus signs together
to move back up that many lines:

USD:l3-8

moves up three lines, as does '-3'. Thus

-3,+3p

is also identical to the examples above.

Since '-' is shorter than • .-1 ', constructions like

-,.slbadlgood/

are useful. This changes 'bad' to 'good' on the previous
line and on the current line.

• +' and '-' can be used in combination with
searches using 'l .. J' and '? ... ?', and with '$'. The
search

/thing/-

finds the line containing 'thing', and positions you two
lines before il

Repeated Searches

Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it isn't
the horrible thing that you wanted, so it is necessary to
repeat the search again. You don't have to re-type the
search, for the construction

II

is a shorthand for 'the previous thing that was searched
for', whatever it was. This can be repeated as many
times as necessary. You can also go backwards:

??

searches for the same thing, but in the reverse direction.

Not only can you repeat the search, but you can
use '//' as the left side of a substitute command, to
mean 'the most recent pattern'.

/horrible thing/
.... ed prinls line with 'horrible thing' ...

s//good/p

To go backwards and change a line, say

??s//good/

Of course, you can still use the • & ' on the right hand
side of a substitute to stand for whatever got matched:

//s//&a&/p

finds the next occurrence of whatever you searched for
last, replaces it by two copies of itself, then prints the
line just to verify that it worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up your
editing is always to know what lines will be affected by
a command if you don't specify the lines it is to act on,
and on what line you will be positioned (i.e., the value
of dot) when a command finishes. If you can edit

Advanced Editing on UNIX

without specifying unnecessary line numbers, you can
save a lot of typing.

As the most obvious example, if you issue a
search command like

/thing/

you me left pointing at the next line that contains
'thing'. Then no address is required with commands
like 1 to make a substitution on that line, or p to print it,
or I to list it, or d to· delete it, or a to append text after
it, or c to change it, or I to insert text before il

What happens if there was no 'thing'? 1ben you
are left right where you were - dot is unchanged. This
is also true if you were sitting on the only 'thing' when
you issued the command. The same rules hold for
searches that use'? ... ?'; the only difference is the direc
tion in which you search.

The delete command d leaves dot pointing at the
line that followed the last deleted line. When line •s•
gets deleted, however, dot points at the new line '$'.

The line-changing commands a, c and I by
default all affect the current line - if you give no line
number with them,· a appends text after the current line,
c changes the current line, and I inserts text before the
current line.

a, c, and I behave identically in one respect -
when you stop appending, changing or inserting, dot
points at the last line entered. This is exactly what you
want for typing and editing on the tly. For example,
you can say

a
... text ...
... botch ...

s/botch/correct/
a
... more text ...

(minor error)

(fix botched line)

without specifying any line number for the substitute
command or for the second ;tppend command. Or you
can say

a
... text ...
•.. horrible botch .•.

c
... fixed up line ..•

(major error)

(replace entire line)

You should experiment to determine what hap
pens if you add no lines with a, c or I.

The r command will read a file into the text
being edited, either at the end if you give no address, or
after the specified line if you do. In either case, dot
points at the last line read in. Remember that you can
even say Or to read a file in at the beginning of the text.
(You can also say Oa or 11 to start adding text at the
beginning.)

Advanced F.diting on UNIX

The w command writes out the entire file. If
you precede the command by one line number, that line
is written, while if you precede it by two line numbers,
that range of lines is written. The w command does llOt

change dot: the current line remains the same, regmd
less of what lines are written. This is true even if you
say something like

f\.ABI ,f\.AEJW abstract

which involves a context search.

Since the w command is so easy to use, you
should save what you are editing regularly u you go
along just in case the system cruhel, or in cue you do
something foolish, like clobbering what you 're editing.

The least intuitive behavior, in a sense, is that of
the s command. The rule is simple - you are left sit
ting on the last line that got changed. If there were no
changes, then dot is unchanged.

To illustrate, suppose that there are three lines in
the buffer, and you are sitting on the middle one:

xl
x2
x3

Then the command

-,+s/xly/p

prints the third line, which is the last one changed. But
if the three lines had been

xl
y2
y3

and the same command had been issued while dot
pointed at the second line, then the result would be to
change and print only the first line, and that is where
dot would be set

Semicolon';'

Searches with 1
/ .. J' and'? .. .'!' start at the current

line and move forward or backward respectively until
they. either find the pattern or get back to the currmt
line. Sometimes this is not what is wanted. Suppose,
for example, that the buffer contains lines like this:

ab

be

Starting at line 1, one would expect that the command

USD:13-9

lal/blp

prints all the lines from the 'ab' to the 'be' inclusive.
Actually this is not what happens. Botll 1Ca1Ches (for
•a' and for 'b ') start from the same point, and thus they
both find the line that contains 'ab'. The result is to
print a single line. W one, if there bid been a line with
a 'b' in it before the 'ab' line, then the print command
would be in error, since the aecond line number would
be leas than the first, and it is illegal to by to print lines
inrevene~.

This is because the comma separator for line
numben doesn't set dot u each addras is processed;
each sean:h sWtl from the same place. In eel, the 1emi
cokm • ;' cm be uaed just like comma, with the single
differmce that use of a semicolon forces dot to be set at
that point u the line numbers are being evaluated. In
effect, the semicolon 'moves' dot Thus in our exam
ple above, the command

/a/',/b/p

prints the range of lines from 'ab' to 'be', bec81lse after
the 'a' is found, dot is set to that line, and then 'b' is
searched for, starting beyond that line.

This property is most often useful in a very sim
ple situation. Suppose you want to find the second
occurrence of 'thing'. You could say

/thing/
II

but this prints the first occurrence as well as the second,
and is a nuisance when you know very well that it is
only the second one you're interested in. The solution
is to say

/thing/',//

This says to find the first occurrence of 'thing', set dot
to that line, then find the second and print only that

Closely related is searching for the second previ
ous occurrence of something, as in

?something?;??

Printing the third or fourth or ... in either direction is
left as an exercise.

Finally, bear in mind that if you want to find the
first occwrence of something in a file, starting at an
arbitrary place within the file, it is not sufficient to say

1;/thing/

because this fails if 'thing• occurs on line 1. But it is
possible to say

O;lthing/

(one of the few places where 0 is a legal line number),
for thiJ starts the search at line 1.

USD:13-10

Interruptlnc the Editor

As I final note OD What dot &ets ICt to, you
should be awm that if you hit the intmupt or delete or
rubout or break key while ed is doing a command,
things m put back together again and your state is
restoMCI u much aa possible to whit it wu before the
command began. Naturally, 10me changes are inew
cable - if you m readiq or writin& a file or mating
substitutions or deleting lines, thelC will be stopped in
some clean but unpredictable state in the middle (which
is why it is not usually wile to stop them). Dot may or
may not be changed.

Printing is more clear cut. Dot is not changed
until the printin1 is done. Thus if you print until you
see an interesting line, then hit delete, you me not sit
ting on that line or even near it Dot is left where it wu
when the p command wu started.

4. GLOBAL COMMANDS

The global commands 1 and v m used to per
form one or more editing commands OD all lines that
either contain (g) or don't contain (v) a specified pat
tern.

As the simplest example, the command

g!UNIX/p

prints all lines that contain the word 'UNIX'. The pat
tern that goes between the slashes can be anything that
could be used in a line search or in a substitute com
mand; exactly the same rules and limitations apply.

As another example, then,

gfVp

prints all the formatting commands in a file (lines that
begin with '. ').

The v command is identical to g, except that it
operates on those line that do not contain an occurrence
of the pattern. (Don't look too hard for mnemonic
significance to the letter 'v' .) So

vrvp

prints all the lines that don't begin with'.' -the actual
text lines.

The command that follows g or v can be any
thing:

gNd

deletes all lines that begin with •. ', and

gr$/d

deletes all empty lines.

Probably the most useful command that can fol
low a global is the substitute command, for this can be
used to make a. change and print each affected line for
verification. For example, we could change the word
'Unix' to 'UNIX' everywhere, and verify that it really

Advanced Editing OD UNIX

worked. with

g/Unix/sl/UNIX/gp

Notice that we used W' in the substitute COIDIDIDd to
mean 'the previous pattern', in this c11e, 'Unix'. 'lbe p
command is done on every line that matches the pat
tern, not just thole on which a substitution took place.

The global command operates by mating two
pmea over the file. On the first paa, all lines that

. match the paUa'D are marked. On the aecond pus,
each mmked line in tum is examined, dot is set to that
line, IDd the command executed. This mems that it is
pouible for the colDIDIDd that follows a 1 or v to 111e

addlaaes, set dot, and SO OD, quite freely.

gf"\j)PI+

prints the line that follows each '.PP' command (the
signal for a new paragraph in some formatting pack
ages). Remember that '+' means •one line past dot'.
And

gltopictr\.SH?l

searches for each line that contains 'topic', scans back
wards until it finds a line that begins 1.SH' (a section
heading) and prints the line that follows that, thus
showing the section headings under which •topic' is
mentioned. Finally,

gl\J!.Ql+,l\.ENl-p
;

prints all the lines that lie between lines beginning with
'.EQ' and '.EN' formatting commands.

The I and V commands can also be preceded by
line numbers, in which case the lines searched are only
those in the range specified.

Multi-line Global Commands

It is possible to do more than one command
under the control of a global command, although the
syntax for expressing the operation is not especially
natural or pleasant As an example, suppose the task is
to change 'x' to 'y' and 'a' to 'b' on all lines thatcon
tain 'thing'. Then

g/thing/s/xly/\ .
s/a/b/

is sufficient The'\' signals the 1 command that the set
of commands continues OD the next line; it terminates
on the first line that does not end with '\'. (As a minor
blemish, you can't'use a substitute command to insert a
newline within a g command.)

You should watch out for this problem: the
command

g/xls//y/\
s/a/b/

does not worlc as you expect The remembered pattern
is the last pattern that was actually executed, so some
times it will be 'x' (as expected), and sometimes it will

Advanced Editing on UNIX

be 'a' (not expected). You must spell it out, like this:

g/x/s/x/y/\
slalbl

It is also possible to execute a, c and I com
mands under a global command; u with other multi
line constructions, all that ia needed ia to add a '\' at the
end of each line except the Jut. Thus to add a • .nf' and
• .sp' command before each • .EQ' line, type

g/\.EQ/i\
.nf\
.sp

There is no need for a final line containing a •.' to ter
minate the I command, unless there are further com
mands being done under the global. On the other hand,
it does no harm to put it in either.

S. CUT AND PASTE WITH UNIX COMMANDS

One editing area in which non-programmers
seem not very confident is in what might be called 'cut
and paste' operations - changing the name of a file,
making a copy of a file somewhere else, moving a few
lines from one place to another in a file, inserting one
file in the middle of another, splitting a file into pieces,
and splicing two or more files together.

Yet most of these operations are actually quite
easy, if you keep your wits about you and go cau
tiously. The next several sections talk about cut and
paste. We will begin with the UNIX commands for
moving entire files around, then discuss eel commands
for operating on pieces of files.

Changing the Name of a File

You have a file named 'memo' and you want it
to be called 'paper' instead. How is it done?

The UNIX program that renames files is called
mv (for 'move'); it 'moves' the file from one name to
another, like this:

mv memo paper

That's all there is to it: mv from the old name to the
new name.

mv oldname newname

Warning: if there is already a file around with the new
name, its present contents will be silently clobbered by
the information from the other file. The one exception
is that you can't move a file to itself -

mv xx

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a file -
an entirely fresh version. This might be because you
want to work on a file, and yet save a copy in case

USD:l3-ll

something gets fouled up, or just because you're
paranoid.

In any case, the way to do it is with the cp com
mmd. (cp stands for 'copy'; the system is big on short
command names, which are appreciated by heavy
users, but sometimes a strain for novices.) Suppose
you have a file called 'good' and you want to save a
copy before you make some dramatic editing changes.
Choose a name - 'savegood' might be acceptable -
then type

cp good savcgood

This copies 'good' onto 'savegood', and you now have
two identical copies of the file 'good'. (If 'savegood'
previously contained something, it gets overwritten.)

Now if you decide at some time that you want to
get back to the original state of 'good', you can say

mv savcgood good

(if you're not interested in 'savegood' any more), or

cp savegood good

if you still want to retain a safe copy.

In summary, mv just renames a file; cp makes a
duplicate copy. Both of them clobber the 'target' file if
it already exists, so you had better be sure that's what
you want to do before you do it

Removing a File

If you decide you are really done with a file for
ever, you can remove it with the rm command:

rm savegood

throws away (irrevocably) the file called 'savegood'.

Putting Two or More Flies Together

The next step is the familiar one of collecting
two or more files into one big one. This will be needed,
for example, when the author of a paper decides that
several sections need to be combined into one. There
arc several ways to do it, of which the cleanest, once
you get used to it, is a program called cat. (Not all pro
grams have two-letter names.) cat is short for 'con
catenate', which is exactly what we want to do.

Suppose the job is to combine the files 'filel'
and 'file2' into a single file called 'bigfile'. If you.say

cat file

the contents of 'file' will get printed on your terminal.
If you say

cat filel file2

the contents of 'filel' and then the contents of 'file2'
will both be printed on your terminal, in that order. So
cat combines the files, all right, but it's not much help
to print them on the terminal - we want them in
'bigfile'.

USD:l3-12

Fortunately, there is· a way. You can tell the sys
tem that instead of printing on your terminal, you want
the same information put in a file. The way to do it is to
add to the command line the character > and the name
of the file where you want the output to go. Then you
can say

cat filel file2 >bigfile

and the job is done. (As with cp and mv, you're put
ting something into 'bigfile', and anything that was
already there is destroyed.)

This ability to 'capture' the output of a program
is one of the most useful aspects of the system. For
tunately it's not limited to the cat program - you can
use it with any program that prints on your terminal.
We'll see some more uses for it in a moment

Naturally, y~u can combine several files, not just
two:

cat filel file2 file3 ... >bigfile

collects a whole bunch.

Question: is there any difference between

cp good savegood

and

cat good >savegood

Answer: for most purposes, no. You might reasonably
ask why there are two programs in that case, since cat
is obviously all you need. The answer is that cp can do
some other things as well, which you can investigate
for yourself by reading the manual. For now we'll
stick to simple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the end of
another. We have enough building blocks now that you
can do it; in fact before reading further it would be
valuable if you figured out how. To be specific, how
would you use cp, mv and/or cat to add the file 'goodl'
to the end of the file 'good'?

You could try

cat good goodl >temp
mv temp good

which is probably most direct You should also under
stand why

cat good goodl >good

doesn't work. (Don't practice with a good 'good'!)

The easy way is to use a variant of>, called >>.
In fact, >> is identical to > except that instead of
clobbering the old file, it simply tacks stuff on at the
end. Thus you could say

cat goodl »good

and 'goodl' is added to the end of 'good'. (And if

Advanced Editing on UNIX

'good' didn't exist, this mates a copy of 'goodl' called
'good'.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces of files
- individual lines or groups of lines. This is another
area where new users seem unsure of themselves.

Filenames

The first step is to ensure that you know the ed
commands for mlding and writing files. Of course you
can't go very far without knowing rand w. Equally
useful, but less well known, is the 'edit' command e.
Within eel, the command

e newfile

says 'I want to edit a new file called MWft/e, without
leaving the editor.' The e command discards whatever
you 're currently working on and starts over on newfil,e.
It's exactly the same as if you had quit with the q com
mand, then re-entered eel with a new file name, except
that if you have a pattern remembered, then a command
like II will still work.

If you entered with the command

ed file

eel remembers the name of the file, and any subsequent
e, r or w commands that don't contain a filename will
refer to this remembered file. Thus

ed filel
... (editing) ...

w (writes back in filel)
e file2 (edit new file, without leaving editor)
... (editing on file2) ...

w (writes back on file2)

(and so on) does a series of . edits on various files
without ever leaving eel and without typing the name of
any file more than once. (As an aside, if you examine
the sequence of commands here, you can see why many
UNIX systems use e as a synonym for ed.)

You can find out the remembered file name at
any time with the f command; just type f without a file
name. You can also change the name of the remem
bered file name with f; a useful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file, then uses f to
guarantee that a careless w command won't clobber the
original.

Inserting One File Into Another

Suppose you have a file called 'memo', and you
want the file called 'table' to be inserted just after the
reference to Table 1. That is, in 'memo' somewhere is

Advanced F.diting OD UNIX

a line that says

Table 1 shows that ..•

and the data contained in 'table' has to go there, prob
ably so it will be formatted properly by nroff or troff.
Now what?

This one is easy. F.dit 'memo', find 'Table l ',
and add the file 'table' right there:

eel memo
/fable l/
Table 1 shows thal ... {response from ed]
.z table

The critical line is the last one. As we said earlier, the
r command reads a file; here you asked for it to be read
in right after line dol An r command without any
address adds lines at the end, so it is the same as $r.

Writing out Part or a File

The other side of the coin is writing out part of
the document you 're editing. For example, maybe you
want to copy out into a separate file that table from the
previous example, so it can be formatted and tested
separately. Suppose that in the file being edited we
have

.TS
... [lots of stuff]
.TE

which is the way a table is set up for the tbl program.
To isolate the table in a separate file called 'table', first
find the start of the table (the •.TS' line), then write out
the interesting part:

n.TS/
• TS fed prints the line it found]
.,n.TE/w table

and the job is done. If you are confident, you can do it
all at once with

n.TS/;l'\.TE/w table

and now you have two copies, one in the file you 're
still editing, one in the .file 'table' you've just written.

The point is that the w command can write out a
group of lines, instead of the whole file. In fact, you
can write out a single line if you like; just give one line
number instead of two. For example, if you have just
typed a horribly complicated line and you know that it
(or something like it) is going to be needed later, then
save it- don't re-type iL In the editor, say

USD:13-13

a
. . .lots of stuff .. .
... horrible line .. .

.w temp
a
·-more stuff-.

.rtemp
a
·-IDOl'C stuff-•

This last example is worth studying, to be sure you
appreciate what's going on.

Moving Lines Around

Suppose you want to move a paragraph from its
present position in a paper to the end. How would you
do it? As a concrete example, suppose each paragraph
in the paper begins with the formatting command '.PP'.
Think about it and write down the details before read
ing on.

The brute force way (not necessarily bad) is to
write the paragraph onto a temporary file, delete it from
its current position, then read in the temporary file at
the end. Assuming that you are sitting on the '.PP'
command that begins the paragraph, this is the
sequence of commands:

.,f"\,J>P/-w temp

.,11-d
Sr temp

That is, from where you are now ('. ') until one line
before the next '.PP' ('r\.PPI-') write onto 'temp' .
Then delete the same lines. Finally, read 'temp' at the
end.

As we said, that's the brute force way. The
easier way (often) is to use the move command m that
ed provides - it lets you do the whole set of opera
tions at one crack, without any temporary file.

The m command is like many other eel com
mands in that it takes up to two line numben in front
that tell what lines are to be affected. It is also followed
by a line number that tells where the lines are to go.
Thus

linel, line2 m line3

says to move all the lines between 'linel' and 'line2'
after 'line3'. Naturally, any of 'linel' etc., can be pat
terns between slashes, $ signs, or other ways to specify
lines.

Suppose again that you 're sitting at the fint line
of the paragraph. Then you can say

./'\.PP/-m$

That's all.

USD:13-14

As another example of a frequent operation, you
can reverse the older of two adjacent lines by moving
the first one to after the second. Suppose that you are
positioned at the first. Then

m+

does it. It says to move line dot to after one line after
line dot. If you are positioned on the second line,

m-

does the interchange.

As you can see, the m command is more suc
cinct and direct than writin& deleting and re-reading.
When is brute force better anyway? This is a matter of
personal taste - do what you have most confidence in.
The main difficulty with the m command is that if you
use patterns to specify both the lines you are moving
and the target, you have to take care that you specify
them properly, or you may well not move the lines you
thought you did. The result of a botched m command
can be a ghastly mess. Doing the job a step at a time

. makes it easier for you to verify at each step that you
accomplished what you wanted to. It's also a good
idea to issue a w command before doing anything com
plicated; then if you goof, it's easy to back up to where
you were.

Marks

ed provides a facility for marking a line with a
particular name so you can later reference ii by name
regardless of its acwal line number. This can be handy
for moving lines, and for keeping track of them even
after they've been moved. The mark command is k;
the command

kx

marks the current line with the name 'x '. If a line
number precedes the k, that line is marked. (fhe mark
name must be a single lower case letter.) Now you can
ref er to the marked line with the address

'x

Marks are most useful for moving things around.
Find the first line of the block to be moved, and mart it
with 'a. Then find the last line and mart it with 'b.
Now position yourself at the place where the stuff is to
go and say

'a,'bm.

Bear in mind that only one line can have a par
ticular mark name associated with it at any given time.

Copying Lines

We mentioned earlier the idea of saving a line
that· was hard to type or used often, so as to cut down
on typing time. Of course this could be more than one
line; then the saving is presumably even greater.

Advanced Editing on UNIX

ed provides another command, called t (for
'transfer') for making a copy of a group of one or more
lines at any point. This is often easier than writing and
reading.

The t command is identical to the m command,
except that instead of moving lines it simply duplicates
them at the place you named. Thus

1,t

duplicates the entire contents that you are editing. A
more common use for t is for creating a $Cries of lines
that differ only slightly. For example, you can say

a
.......... x (long line)

t.
s/x/y/

t.
s/y/7./

and soon.

(make a copy)
(change it a bit)
(make third copy)
(change it a bit)

The Temporary Escape '!'
Sometimes it is convenient to be able to tem

porarily escape from the editor to do some other UNIX
command, perhaps one of the file copy or move com
mands discussed in section 5, without leaving the edi
tor. The 'escape' command ! provides a way to do
this.

If you say

!any UNIX command

your current editing state is suspended, and the UNIX
command you asked for is executed. When the com
mand finishes, ed will signal you by printing another ! ;
at that point you can resume editing.

You can really do any UNIX command, includ
ing another ed. (This is quite common, in fact.) In this
case, you can even do another !.

On Berkeley UNIX systems, there is an addi
tional (and preferable) mechanism called job control
which lets you suspend your edit session (or, for that
matter, any program), return to the shell from which
you invoked that program, and issue any commands,
then resume the program from the point where it was
stopped. See An Introduction to the C Shell for more
details.

7. SUPPORTING TOOLS

There are several tools and techniques that go
along with the editor, all of which are relatively easy
once you know how ed works, because they are all
based on the editor. In this section we will give some
fairly cursory examples of these tools, more to indicate
their existence than to provide a complete tutorial.
More information on each can be found in [3].

Advanced Editing on UNIX

Grep

Sometimes you want to find all occurrences of
some word or pattern in a set of files, to edit them or
perhaps just to verify their presence or absence. It may
be possible to edit each file separately and look for the
pattern of interest, but if there are many files this can
get very tedious, and if the files are really bi& it may be
impossible because of limits in eel.

The program &nP was invented to get around
these limitations. The search patterns that we have
described in the paper are often called 'regular expra
sions', and 'grep' stands for

g/re/p

That describes exactly what pep does - it prints
every line in a set of files that contains a particular pat
tern. Thus

grep 'thing' filel file2 file3 ...

finds 'thing' wherever it occurs in any of the files
'filel ', 'file2', etc. grep also indicates the file in which
the line was found, so you can later edit it if you like.

The pattern represented by 'thing' can be any
pattern you can use in the editor, since grep and eel use
exactly the same mechanism for pattern searching. It is
wisest always to enclose the pattern in the single quotes
' ... ' if it contains any non-alphabetic characters, since
many such characters also mean something special to
the UNIX command interpreter (the 'shell'). If you
don't quote them, the command interpreter will try to
interpret them before grep gets a chance.

There is also a way to find lines that don't con
tain a pattern:

grep -v 'thing' filel file2 ...

finds all lines that don't contains 'thing'. The -v must
occur in the position shown. Given grep and grep -v,
it is possible to do things like selecting all lines that
contain some combination of patterns. For example, to
get all lines that contain 'x' but not 'y':

grep x file ... I grep -v y

(The notation I is a 'pipe', which causes the output of
the first command to be used as input to the second
command; see [2].)

Editing Scripts

If a fairly complicated set of editing operations
is to be done on a whole set of files, the easiest thing to
do is to make up a 'script', i.e., a file that contains the
operations you want to perform. then apply this script
to each file in tum.

For example, suppose you want to change every
'Unix' to 'UNIX' and every ·~s· to 'GCOS' in a
large number of files. Then put into the file 'script' the
lines

g/Unix/s//UNIX/g
g/Gcos/sl/GCOS/g
w
q

Now you can say

ed filel <script
ed file2 <script

USD:13-15

This causes eel to take its commands from the prepared
script. Notice that the whole job has to be planned in
advance.

And of course by using the UNIX command
interpreter, you can cycle through a set of files automat
ically, with varying degrees of ease.

Seel

sed ('stream editor') is a version of the editor
with restricted capabilities but which is capable of pro
cessing unlimited amounts of input. Basically sed
copies its input to its output, applying one or more edit
ing commands to each line of input.

As an example, suppose that we want to do the
'Unix' to 'UNIX' part of the example given above, but
without rewriting the files. Then the command

sed 's!Unix/UNIX/g' filel file2 ...

applies the command 's/Uni.x/UNIX/g' to all lines from
'filel ', 'file2', etc., and copies all lines to the output.
The advantage of using sed in such a case is that it can
be used with input too large for eel to handle. All the
output can be collected in one place, either in a file or
perhaps piped into another program.

H the editing transformation is so complicated
that more than one editing command is needed, com
mands can be supplied from a file, or on the command
line, with a slightly more complex syntax. To take
commands from a file, for example,

sed -f cmdfile input-files ...

sed has further capabilities, including condi
tional testing and branching, which we cannot go into
here, but which are described in detail in Sed - A Non
interactive Text Edilor.

Acknowledgement

I am grateful to Ted Dolotta for his careful read
ing and valuable suggestions.

References

[1] Brian W. Kernighan, A Tutorial /nJroduction to
the UNIX Text Edilor, Bell Laboratories internal
memorandum.

USD:l3-16

[2] Brian W. Kernighan, UNIX For Beginnus, Bell
Laboratories internal memorandum.

[3] Ken L Thompson and Dennis M. Ritchie, The
UNIX Programmer's Manual. Bell Labora
tories.

Advanced Editing OD UNIX

Edit: A Tutorial

Ricki Blau

J aml!s Joyce

Computing Services
University of California

Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editor edit assumes no prior familiarity with computers or
with text editing. Its aim is to lead the beginning UNIXt user through the fundamental steps of writing and
revising a file of text Edit, a version of the text editor ex, was designed to provide an informative environ
ment for new and casual users.

We welcome comments and suggestions about this tutorial and the UNIX documentation in general.

September 1981

tUNI.X is a trademark of Bell Laboratories.

USD:14-2

Introduction 3

Session 1 4
Making contact with UNIX 4
Logging in 4
Asking f<X' edit 4
The "Command not found" message S
Asummary S
Entering text S
Messages from edit S
Text input mode S
Making COO'eCtions 6
Writing text to disk 6
Signing off 7

Session 2 8
Adding more text to the file 8
Interrupt 8
Makingcorrections 8
Listing what's in the buffer (p) 9
Finding things in the buffer 9
The current line 10
Numbering lines (nu) 10
Substitute command (s) 10

Contents

Another way to list what's in the buffer (z) 11
Saving the modified text 11

Session 3 13
Bringing text into the buffer (e) 13
Moving text in the buffer (m) 13
Copying lines (copy) 14
Deleting lines (d) 14
A word or two of caution 1 S
Undo (u) to the rescue 15
More about the dot(.) and buffer end($) 15
Moving around in the buffer (+ and -) 16
Changing lines (c) 16

Session 4 18
Making commands global (g) 18
More about searching and substituting 18
Special characters 19
Issuing UNIX commands from the editor 20
Filenames and file manipulation 20
The file (f) command 20
Reading additional files (r) 20
Writing parts of the buffer 21
Recovering files 21
Other recovery techniques 21
Further reading and other information 22
Using ex 22

Edit A Tutorial

Edit: A Tutorial USD:14-3

Introduction
Text editing using a terminal connected to a computer allows you to create, modify, and print text easily. A

text editor is a program that assists you as you create and modify text 1be text editor you will learn here is named
edit. Creating text using edit is as easy as typing it on an electtic typewriter. Modifying text involves telling the text
editor what you want to add, change, or delete. You can review your text by typing a command to print the file con
tents as they are currently. Another program (which we do not discuss in this document), a text formatter, rear
ranges your text for you into ''finished form.''

These lessons assume no prior familiarity with computers or with text editing. They consist of a series of text
editing sessions which lead you through the fundamental steps of creating and revising text. After scanning each
lesson and before beginning the next, you should try the examples at a terminal to get a feeling for the actual pro
cess of text editing. If you set aside some time for experimentation, you will soon become familiar with using the
computer to write and modify text In addition to the actual use of the text editor, other features of UNIX will be very
important to your work. You can begin to learn about these other features by reading one of the other tutcxials that
provide a general introduction to the system. You will be ready to proceed with this lesson as soon as you are fami
liar with (1) your terminal and its special keys, (2) how to login, (3) and the ways of correcting typing errors. Let's
first define some terms:

program

UNIX

edit

file

filename

disk

buffer

A set of instructions, given to the computer, describing the sequence of steps the computer performs
in order to accomplish a specific task. The task must be specific, such as balancing your checkbook
or editing your text A general task, such as working for world peace, is something we can all do, but
not something we can currently write programs to do.

UNIX is a special type of program, called an operating system, that supervises the machinery and all
other programs comprising the total computer system.

edit is the name of the UNIX text editor you will be learning to use, and is a program that aids you in
writing or revising text. Edit was designed for beginning users, and is a simplified version of an edi
tor named ex.

Each UNIX account is allotted space for the permanent storage of information, such as programs, data
or text. A file is a logical unit of data, for example, an essay, a program, or a chapter from a book,
which is stored on a computer system. Once you create a file, it is kept until you instruct the system
to remove it. You may create a file during one UNIX session, end the session, and return to use it at a
later time. Files contain anything you choose to write and store in them. The sizes of files vary to
suit your needs; one file might hold only a single number, yet another might contain a very long
document or program. The only way to save information from one session to the next is to store it in
a file, which you will learn in Session 1.

Filenames are used to distinguish one file from another, serving the same purpose as the labels of
manila folders in a file cabinet In order to write or access information in a file, you use the name of
that file in a UNIX command, and the system will automatically locate the file.

Files are stored on an input/output device called a disk, which looks something like a stack of phono
graph records. Each surf ace is coated with a material similar to that on magnetic recording tape, and
information is recorded on it.

A temporary work space, made available to the user for the duration of a session of text editing and
used for creating and modifying the text file. We can think of the buffer as a blackboard that is
erased after each class, where each session with the editor is a class.

USD:14-4 Edit A Tutorial

Seaion 1

Making contact with UNIX
To use the editor you must first make contact with the computer by logging in to UNIX. We'll quickly review

the standard UNIX login procedure for the two ways you can make contact on a terminal that is directly linked to
the computer, or over a telephone line where the computer answen your call.

Directly-linked terminals

Tum on your terminal and press the RETURN key. You are now ready to login.

Dial-up terminals

If your terminal connects with the computer over a telephone line, turn on the terminal, dial the system access
number, and, when you hear. a high-pitched tone, place the telephone handset in the acoustic coupler, if you are
using one. You are now ready to login.

Logging in

The message inviting you to login is:

login:

Type your login name, which identifies you to UNIX, on the same line as the login message, and press RETURN. If
the terminal you are using has both upper and lower case, be sure you enter your login name in lower case; other
wise UNIX assumes your terminal has only upper case and will not recognize lower case letters you may type. UNIX
types ''login:'' and you reply with your login name, for example ''susan'':

login: susan (and press the REIVRN key)

(In the examples, input you would type appears in bold face to distinguish it from the responses from UNIX.)

UNIX will next respond with a request for a password as an additional precaution to prevent unauthorized peo
ple from using your account. The password will not appear when you type it, to prevent others from seeing it. The
message is:

Password: (type your password and press REIVRN)

If any of the information you gave during the login sequence was mistyped or incorrect, UNIX will respond with

Login incorrect.
login:

in which case you should start the login process anew. Assuming that you have successfully logged in, UNIX will
print the message of the day and eventually will present you with a % at the beginning of a fresh line. The % is the
UNIX prompt symbol which tells you that UNIX is ready to accept a command.

Asking for edit

You are ready to tell UNIX that you want to work with edit, the text editor. Now is a convenient time to
choose a name for the file of text you are about to create. To begin your editing session, type edit followed by a
space and then the filename you have selected; for example, ''text''. After that, press the RETIJRN key and wait for
edit's response:

% edit text (followed by a REWRN)

"text" No such file or directory

If you typed the command correctly, you will now be in communication with edit. Edit has set aside a buffer for use
as a temporary working space during your current editing session. Since "text'' is a new file we are about to create
the editor was unable to find that file, which it confirms by saying:

Edit: A Tutorial USD:14-S

"text" No such file or directory

On the next line appears edit's prompt ": ", announcing that you are in command mode and edit expects a command
from you. You may now begin to create the new file.

The "Command not found" message

If you misspelled edit by typing, say, ''editor'', this might appear:

%editor
editor: Command not found
%

Your mistake in calling edit ''editor'' was treated by UNIX as a request for a program named ''editor''. Since there
is no program named "editor", UNIX rep<rted that the program was "not found". A new % indicates that UNIX is
ready for another command, and you may then enter the correct command.

A summary

Your exchange with UNIX as you logged in and made contact with edit should look something like this:

Entering text

login: susan
Password:
... A Message of General Interest ...
% edit text
"text" No such file or directory

You may now begin entering text into the buffer. This is done by appending (or adding) text to whatever is
currently in the buffer. Since there is nothing in the buffer at the moment, you are appending text to nothing; in
effect, since you are adding text to nothing you are creating text. Most edit commands have two equivalent forms:
a word that suggests what the command does, and a shorter abbreviation of that word. Many beginners find the full
command names easier to remember at first, but once you are familiar with editing you may prefer to type the
shorter abbreviations. The command to input text is "append". (It may be abbreviated "a".) Type append and
press the RETURN key.

% edit text
:append

Messages from edit

If you make a mistake in entering a command and type something that edit does not recognize, edit will
respond with a message intended to help you diagnose your error. For example, if you misspell the command to
input text by typing, perhaps, ''add'' instead of ''append'' or ''a'', you will receive this message:

:add
add: Not an editor command

When you receive a diagnostic message, check what you typed in order to determine what part of your command
confused edit. The message above means that edit was unable to recognize your mistyped command and, therefore,
did not execute it. Instead, a new'':'' appeared to let you know that edit is again ready to execute a command.

Text input mode

By giving the command "append" (or using the abbreviation "a"), you entered text input mode, also known
as append mode. When you enter text input mode, edit stops sending you a prompt You will not receive any
prompts or error messages while in text input mode. You can enter pretty much anything you want on the lines.

USD:l4-6 :Edit A Tutorial

The lines are transmitted one by one to the buffer and held there during the editing session. You may append as
much text as you want, and when you wish to stop entering text lines you should type a period as the only character
on the line and press the REIVRN key. When you type the period and press RETURN, you signal that you want to stop
appending text, and edit· responds by allowing you to exit text input mode and reenter command mode. Edit will
again prompt you for a command by printing '':' '.

Leaving append mode does not desttoy the text in the buffer. You have to leave append mode to do any of
the other kinds of editing, such • changing, adding, or printing texl If you type a period as the first character and
type any other character on the same line, edit will believe you want to remain in append mode and will not let you
ouL As this can be very frustrating, be sure to type only the period and the RETURN key.

This is a good place to learn an·important lesson about computers and text: a blank space is a character as far
as a computer is concerned. If you so much as type a period followed by a blank (that is, type a period and then the
space bar on the keyboard), you will remain in append mode with the last line of text being:

Let's say that you enter the lines (try to type exactly what you see, including "thiss"): ·

· This is some sample text.
And th~ is some more text.
Text editing is strange, but nice.

The last line is the period followed by a RE11JRN that gets you out of append mode.

Making corrections

If you have read a general introduction to UNIX, you will recall that it is possible to erase individual letters that
you have typed. This is done by typing the designated erase character as many times as there are characters you
want to erase.

The usual erase character varies from place to place and user to user. Often it is the backspace (control-H), so
you can correct typing errors in the line you are typing by holding down the CTRL key and typing the "H" key.
(Sometimes it is the DEL key.) If you type the erase character you will notice that the terminal backspaces in the
line you are on. You can backspace over your error, and then type what you want to be the rest of the line.

If you make a bad start in a line and would like to begin again, you can either backspace to the beginning of
the line or you can use the at-sign"@" to erase everything on the line:

Text edtiing is strange, but@
Text editing is strange, but nice.

When you type the at-sign(@), you erase the entire line typed so far and are given a fresh line to type on. You may
immediately begin to retype the line. This, unfortunately, does not work after you type the line and press RETURN.

To make corrections in lines that have been completed, it is necessary to use the editing commands covered in the
next sessions.

Writing text to disk

You are now ready to edit the text. One common operation is to write the text to disk as a file for safekeeping
after the session is over. This is the only way to save information from one session to the next, since the editor's
buffer is temporary and will last only until the end of the editing session. Leaming how to write a file to disk is
second in importance only to entering the text To write the contents of the buffer to a disk file, use the command
"write" (or its abbreviation "w"):

:write

Edit will copy the contents of the buffer to a disk file~ If the file does not yet exist, a new file will be created
automatically and the presence of a "[New file]" will be noted. The newly-created file will be given the name
specified when you entered the editor, in this case ''text''. To confirm that the disk file has been successfully writ
ten, edit will repeat the filename and give the number of lines and the total number of characters in the file. The
buffer remains unchanged by the ''write'' command. All of the lines that were written to disk will still be in the

Edit: A Tutorial USD:14-7

buffer, should you want to modify or add to them.

Edit must have a name for the file to be written. If you forgot to indicate the name of the file when you began
to edit, edit will print in response to your write command:

No current filename

If this happens, you can specify the filename in a new write command:

:write text

After the "write,, (or "w"), type a space and then the name of the file.

Signing off

We have done enough for this first lesson on using the UNIX text editor, and are ready to quit the session with
edit. To do this we type "quit,, (or "q") and press REnJRN:

:write
"text" [New file] 3 lines, 90 characters
:quit
%

The% is from UNIX to tell you that your session with edit is over and you may command UNIX further. Since we
want to end the entire session at the tenninal, we also need to exit from UNIX. In response to the UNIX prompt of
'' % '' type the command

% logout

This will end your session with UNIX, and will ready the terminal for the next user. It is always important to type
logout at the end of a session to make absolutely sure no one could accidentally stumble into your abandoned ses
sion and thus gain access to your files, tempting even the most honest of souls.

This is the end of the first session on UNIX text editing.

USD:14-8

Login with UNIX as in the first session:

login: susan (carriage return)

s~ion2

Password: (give password and carriage return)
... A Message of General Interest .•.
%

Edit A Tutorial

When you indicate you want to edit, you can specify· the name of the file you worked on last time. This will start
edit working, and it will fetch the contents of the file into the buffer, so that you can resume editing the same file.
When edit has copied the file into the buffer, it will repeat its name and tell you the number of lines and characters it
contains. Thus,

% edit text
"text" 3 lines, 90 characters

means you asked edit to fetch the file named ''text'' for editing, causing it to copy the 90 characters of text into the
buffer. Edit awaits your further instructions, and indicates this by its prompt character, the colon(:). In this session,
we will append more text to our file, print the contents of the buffer, and learn to change the text of a line.

Adding more text to the file

If you want to add more to the end of your text you may do so by using the append command to enter text
input mode. When "append" is the first command of your editing session, the lines you enter are placed at the end
of the buffer. Here we'll use the abbreviation for the append command, "a":

:a
This ~ text added in ~ion 2.
It doesn't mean much here, but
it does illustrate the editor.

You may recall that once you enter append mode using the "a" (or "append") command, you need to type a line
containing only a period(.) to exit append mode.

Interrupt

Should you press the RUB key (sometimes labelled DELETE) while working with edit, it will send this message
to you:

Interrupt

Any command that edit might be executing is terminated by rub or delete, causing edit to prompt you for a new
command If you are appending text at the time, you will· exit from append mode and be expected to give another
command The line of text you were typing when the append command was interrupted will not be entered into the
buffer.

Making corrections

If while typing the line you hit an incorrect key, recall that you may delete the incorrect character or cancel
the entire line of input by erasing in the usual way. Refer either to the last few pages of Session 1 if you need to
review the procedures for making a correction. The most important idea to remember is that erasing a character or
cancelling a line must be done before you press the RETURN key.

Edit A Tutorial USD:14-9

Listing what's in the bull'er (p)

Having appended text to what you wrote in Session 1, you might want to see all the lines in the buffer. To
print the contents of the buffer, type the command:

: 1,Sp

The "1 "t stands for line 1 of the buffer, the "$" is a special symbol designating the lut line of the buffer, and
"p" (or print) is the command to print from line 1 to the end of the buffer. The command "1,$p" gives you:

This is some sample text
And thiss is some more text
Text editing is sttange, but nice.
This is text added in Session 2.
It doesn't mean much here, but
it does illustrate the editcr.

Occasionally, you may accidentally type a character that can't be printed, which can be done by striking a key while
the CTRL key is pressed. In printing lines, edit uses a special notation to show the existence of non-printing charac
ters. Suppose you had introduced the non-printing character "control-A" into the word "illustrate" by accidently
pressing the CTRL key while typing "a". This can happen on many terminals because the CTRL key and the "A"
key are beside each other. If your finger presses between the two keys, control-A results. When asked to print the
contents of the buffer, edit would display

it does illustr" Ate the editor.

To represent the control-A, edit shows ""A". The sequence """ followed by a capital letter stands for the one
character entered by holding down the CTRL key and typing the letter which appears after the""''. We'll soon dis
cuss the commands that can be used to correct this typing error.

In looking over the text we see that ''this'' is typed as ''thiss'' in the second line, a deliberate error so we can
learn to make corrections. Let's correct the spelling.

Finding things in the buff'er

In order to change something in the buffer we first need to find it. We can find "thiss" in the text we have
entered by looking at a listing of the lines. Physically speaking, we search the lines of text looking for "thiss" and
stop searching when we have found it The way to tell edit to search for something is to type it inside slash marks:

:/thi.W

By typing /thiss/ and pressing RETURN, you instruct edit to search for "thiss". If you ask edit to look for a pattern
of characters which it cannot find in the buffer, it will respond "Pattern not found". When edit finds the characters
'' thiss' ', it will print the line of text for your inspection:

And thiss is some more text

Edit is now positioned in the buffer at the line it just printed, ready to make a change in the line.

tThe numeral "one" is the top left-most key, and should not be confused with the letter "el".

USD:14-10 Edit A Tutmal

The current line

Edit keeps track of the line in the buffer where it is located at all times during an editing session. In general,
the line that has been most recently printed, entered, or changed is the current location in the buffer. The editor is
prepared to make changes at the current location in the buffer, unless you direct it to another location.

In particular, when you bring a file into the buffer, you will be located at the last line in the file, where the edi
tCX' left off copying the lines from the file to the buffer. If your first editing command is ''append'', the lines you
enter are added to the end of the file, after the current line -- the last line in the file.

You can refer to your current location in the buffer by the symbol period(.) usually known by the name
''dot''. If you type ''.'' and carriage return you will be instructing edit to print the current line:

And thiss is some more texL

If you want to know the number of the current line, you can type .= and press RETURN, and edit will respond
with the line number:

. -··-
2

If you type the number of any line and press RETIJRN, edit will position you at that line and print its contents:

:2
And thiss is some more text

You should experiment with these commands to gain experience in using them to make changes.

Numbering lines (nu)

The number (nu) command is similar to print, giving both the number and the text of each printed line. To
see the number and the text of the current line type

:nu
2 And thiss is some more text.

Note that the shortest abbreviation for the number command is "nu" (and not "n", which is used for a different
command). You may specify a range of lines to be listed by the number command in the same way that lines are
specified for print. For example, 1,$nu lists all lines in the buffer with their corresponding line numbers.

Substitute command (s)

Now that you have found the misspelled word, you can change it from "thiss" to "this". As far as edit is
concerned, changing things is a matter of substituting one thing for another. As a stood for append, sos stands for
substitute. We will use the abbreviation "s" to reduce the chance of mistyping the substitute command. This com
mand will instruct edit to make the change:

2s/thm/this/

We first indicate the line to be changed, line 2, and then type an ''s'' ·to indicate we want edit to make a substitution.
Inside the first set of slashes are the characters that we want to change, followed by the characters to replace them,
and then a closing slash mark. To summarize:

2s/ what is to be changed I what to change it to I

If edit finds an exact match of the characters to be changed it will make the change only in the first occurrence of
the characters. If it does not find the characters to .be changed, it will respond:

Substitute pattern match failed

indicating that your instructions could not be carried out. When edit does find the characters that you want to
change, it will make the substitution and automatically print the changed line, so that you can check that the correct
substitution was made. In the example,

Edit: A Tutorial USD:14-11

: 2s/tbissltbis/
And this is some more text

line 2 (and line 2 only) will be searched fcx- the characters "thiss", and when the first exact match is found, "thiss"
will be changed to ''this''. Strictly speaking, it was not necessary above to specify the number of the line to be
changed. In

: s/dlls&'this/

edit will assume that we mean to change the line where we are currently located (" ."). In this case, the command
without a line number would have produced the same result because we were already located at the line we wished
to change.

For another illusttation of the substitute command, let us choose the line:

Text editing is strange, but nice.

You can make this line a bit more positive by taking out the characters ''strange, but '' so the line reads:

Text editing is nice.

A command that will first position edit at the desired line and then make the substitution is:

: /strange/s/strange, but II

What we have done here is combine our search with our substitution. Such combinations are perfectly legal, and
speed up editing quite a bit once you get used to them. That is, you do not necessarily have to use line numbers to
identify a line to edit. Instead, you may identify the line you want to change by asking edit to search for a specified
pattern of letters that occurs in that line. The parts of the above command are:

/strange/ tells edit to find the characters "strange" in the text
s tells edit to make a substitution
/strange, but II substitutes nothing at all for the characters "strange, but"

You should note the space after ''but'' in ''/strange, but/''. If you do not indicate that the space is to be taken
out, your line will read:

Text editing is nice.

which looks a little funny because of the extra space between "is" and "nice". Again, we realize from this that a
blank space is a real character to a computer, and in editing text we need to be aware of spaces within a line just as
we would be aware of an "a" or a "4".

Another way to list what's in the buffer (z)

Although the print command is useful for looking at specific lines in the buff er, other commands may be more
convenient for viewing large sections of text. You can ask to see a screen full of text at a time by using the com
mand z. If you type

: lz

edit will start with line 1 and continue printing lines, stopping either when the screen of your terminal is full or when
the last line in the buffer has been printed. If you want to read the next segment of text, type the command

:z

If no starting line number is given for the z command, printing will start at the ''current'' line, in this case the last
line printed. Viewing lines in the buffer one screen full at a time is known as paging. Paging can also be used to
print a section of text on a hard-copy terminal.

Saving the modified text

This seems to be a good place to pause in our work, and so we should end the second session. If you (in
haste) type "q" to quit the session your dialogue with edit will be:

USD:14-12 Edit A Tutorial

:q
No write since lut change (:quit! overrides)

This is edit' s warning that you have not written the modified contents of the buffer to disk. You run the risk of los
ing the work you did during the editing session since you typed the latest write command. Because in this lesson we
have not written to disk at all, everything we have done would have been lost if edit had obeyed the q command. H
you did not want to save the work done during this editing session, you would have to type ''q!'' or (''quit!'') to
confirm that you indeed wanted to end the session immediately, leaving the file u it wu after the most recent
''write'' command However, since you want to save what you have edited, you need to type:

:w
"text" 6lines,171 characters

and then follow with the commands to quit and logout

:q
. % logout

and hang up the phone or turn off the terminal when UNIX uks for a name. Terminals connected to the port selector
will stop after the logout command, and pressing keys on the keyboard will do nothing.

This is the end of the second session on UNIX text editing.

Edit: A Tutorial USD:14-13

Session 3

Bringing text into the bufl'er (e)

Login to UNIX and make contact with edit You should try to login without looking at the notes, but if you
must then by all means do.

Did you remember to give the name of the file you wanted to edit? That is, did you type

% edit text

or simply

%edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named ''text'' into the buffer. If
you did forget to tell edit the name of your file, you can get it into the buffer by typing:

:e text
"text" 6 lines, 171 characters

The command edit, which may be abbreviated e, tells edit that you want to erase anything that might already be in
the buffer and bring a copy of the file ''text'' into the buffer for editing. You may also use the edit (e} command to
change files in the middle of an editing session, or to give edit the name of a new file that you want to create.
Because the edit command clears the buffer, you will receive a warning if you try to edit a new file without having
saved a copy of the old file. This gives you a chance to write the contents of the buffer to disk before editing the
next file.

Moving text in the buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means of the move (m)
command The first two examples are for illustration only, though after you have read this Session you are welcome
to return to them for practice. The command

: 2,4m$

directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for the move command is that you
specify the first line to be moved, the last line to be moved, the move command "m", and the line after which the
moved text is to be placed So,

: 1,3m6

would instruct edit to move lines 1 through 3 (inclusive) to a location after line 6 in the buffer. To move only one
line, say, line 4, to a location in the buffer after line 5, the command would be "4m5''.

Let's move some text using the command:

:5,$ml
2 lines moved
it does illustrate the editor.

After executing a command that moves more than one line of the buffer, edit tells how many lines were affected by
the move and prints the last moved line for your inspection. If you want to see more than just the last line, you can
then use the print {p}, z, or number (nu} command to view more text The buffer should now contain: ·

This is some sample text
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.

You can resu,>re the original order by typing:

USD:14-14 Edit A Tutorial

:4,$m1

or, combining context searching and the move command:

: I And this is some//fbis is text/m/This is some sample/

(Do not type both examples here!) The problem with combining context searching with the move command is that
your chance of making a typing enor in such a long command is greater than if you type line numbers.

Copying lines (copy)

The copy command is used to make a second copy of specified lines, leaving the original. lines where they
were. Copy has the same format as the move command, for example:

:2,Scopy$

makes a copy of lines 2 through S, placing the added lines after the buffer's end ($). Experiment with the copy
command so that you can become familiar with how it works. Note that the shortest abbreviation for copy is co
(and not the letter "c", which has another meaning).

Deleting lines (d)

Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number followed by delete or
d. This example deletes line 4, which is "This is text added in Session 2.'' if you typed the commands suggested
so far.

:4d
It doesn't mean much here, but

Here "4" is the number of the line to be deleted, and "delete" or "d" is the command to delete the line. After
executing the delete command, edit prints the line that has become the current line (''.' ').

If you do not happen to know the line number you can search for the line and then delete it using this
sequence of commands:

: /added in Session 2J
This is text added in Session 2.
:d
It doesn't mean much here, but

The ''/added in Session 2J'' asks edit to locate and print the line containing the indicated text, starting its search at
the current line and moving line by line until it finds the text. Once you are sure that you have correctly specified
the line you want to delete, you can enter the delete (d) command. In this case it is not necessary to specify a line
number before the '' d' '. If no line number is given, edit deletes the current line (' '.' '), that is, the line found by our
search. After the deletion, your buffer should contain:

This is some sample text.
And this is some more text.
Text editing is nice.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.
It doesn't mean much here, but

To delete both lines 2 and 3:

Edit: A Tutorial

you type

And this is some more text.
Text editing is nice.

:2,3d
2 lines deleted

USD:14-15

which specifies the range of lines from 2 to 3, and the operatioo on those lines - ''d'' for delete. If you delete
more than one line you will receive a message telling you the number of lines deleted, as indicated in the example
above.

The previous example assumes that you know the line numbers for the lines to be deleted. If you do not you
might combine the search command with the delete command:

: I And this is mme/ If ext editing is niceJd

A word or two of caution
In using the search function to locate lines to be deleted you should be absolutely sure the characters you

give as the basis for the search will take edit to the line you want deleted Edit will search for the first occurrence of
the characters starting from where you last edited - that is, from the line you see printed if you type dot(.).

A search based on too few characters may result in the wrong lines being deleted, which edit will do as easily
as if you had meant it. For this reason, it is usually safer to specify the search and then delete in two separate steps,
at least until you become familiar enough with using the editor that you understand how best to specify searches.
For a beginner it is not a bad idea to double-check each command before pressing RETURN to send the command on
its way.

Undo (u) to the rescue

The undo (u) command has the ability to reverse the effects of the last command that changed the buffer. To
undo the previous command, type "u" or "undo". Undo can rescue the contents of the buffer from many an
unfortunate mistake. However, its powers are not unlimited, so it is still wise to be reasonably careful about the
commands you give.

It is possible to undo only commands which have the power to change the buffer - for example, delete,
append, move, copy, substitute, and even undo itself. The commands write (w) and edit (e), which interact with
disk files, cannot be undone, nor can commands that do not change the buffer, such as print Most importantly, the
only command that can be reversed by undo is the last "undo-able" command you typed. You can use control-H
and @ to change commands while you are typing them, and undo to reverse the effect of the commands after you
have typed them and pressed RETIJRN.

To illustrate, let's issue an undo command. Recall that the last buffer-changing command we gave deleted the
lines formerly numbered 2 and 3. Typing undo at this moment will reverse the effects of the deletion, causing those
two lines to be replaced in the buffer.

:u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of the line which is now
"dot" (the current line).

More about the dot (.) and bun'er end ($)

The function assumed by the symbol dot depends on its context. It can be used:

1. to exit from append mode; we type dot (and only a dot) on a line and press RETIJRN;

2. to refer to the line we are at in the buffer.

USD:14-16

Dot can also be combined with the equal sign to get the number of the line currently being edited:

. -··-

Edit A Tutorial

If we type '' •• '' we are asking for the number of the line, and if we type '' .'' we are asking for the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the buffer in commands such
as print, copy, and move. The dollar sign as a command asks edit to print the last line in the buffer. If the dollar
sign is combined with the equal sign($=) edit will print the line number corresponding to the last line in the buffer.

''.'' ·and ''$' ', then, represent line numbers. Whenever appropriate, these symbols can be used in place of line
numbers in commands. For example

:.,$cl

instructs edit to delete all lines from the current line(.) to the end of the buffer.

Moving around in the bull'er (+ and-)

When you are editing you often want to go back and re-read a previous line. You could specify a context
search for a line you want to read if you remember some of its text, but if you simply want to see what was written a
few, say 3, lines ago, you can type

-3p

This tells edit to move back to a position 3 lines before the current line(.) and print that line. You can move for
ward in the buffer similarly:

+2p

. instructs edit to print the line that is 2 ahead of your current position.

You may use"+" and"-" in any command where edit accepts line numbers. Line numbers specified with
"+" or"-" can be combined to print a range of lines. The command

: -1,+2copy$

makes a copy of 4 lines: the current line, the line before it, and the two after it The copied lines will be placed
after the last line in the buffer($), and the original lines referred to by "-1'' and "+2'' remain where they are.

Try typing only "-"; you will move back one line just as if you had typed "-1 p". Typing the command
"+" works similarly. You might also try typing a few plus or minus signs in a row (such as"+++") to see edit's
response. Typing RETIJRN alone on a line is the equivalent of typing ''+lp''; it will move you one line ahead in the
buffer and print that line.

If you are at the last line of the buffer and try to move further ahead, perhaps by typing a '' +'' or a carriage
return alone on the line, edit will remind you that you are at the end of the buffer:

At end-of-file
or

Not that many lines in buffer

Similarly, if you try to move to a position before the first line, edit will print one of these messages:

Nonzero address required on this command
or

Negative address - first buffer line is 1

· The number associated with a buffer line is the line's "address", in that it can be used to locate the line.

Changing lines (c)

You can also delete certain lines and insert new text in their place.· This can be accomplished easily with the
change (c) command. The change command instructs edit to delete specified lines and then switch to text input
mode to accept the text that will replace them. Let's say you want to change the first two lines in the buffer:

Edit: A Tutorial

to read

This is some sample text
And this is some more text

This text was created with the UNIX text editor.

To do so, you type:

: 1,2c
2 lines changed
This text was created with the UNIX text editor.

USD:14-17

In the command 1,2c we specify that we want to change the range of lines beginning with 1 and ending with 2 by
giving line numbers as with the print command. These lines will be deleted. After you type RETURN to end the
change command, edit notifies you if more than one line will be changed and places you in text input mode. Any
text typed on the following lines will be inserted into the position where lines were deleted by the change command
You will remain in text input mode until you exit in the usual way, by typing a period alone on a line. Note
that the number of lines added to the buffer need not be the same as the number of lines deleted.

This is the end of the third session on text editing with UNIX.

USD:14-18 Edit A Tutorial

Session 4

This lesson covers several topics, starting with commands that apply throughout the buffer, characters with
special meanings, and how to issue UNIX commands while in the editor. The next topics deal with files: more on
reading and writing, and methom of recovering files lost in a crash. The final section suggesu sources of further
information.

Making commands global (g)

One disadvantage to the commands we have used f<r searching or substituting is that if you have a number of
instances of a word to change it appears that you have to type the command repeatedly, once for each time the
change needs to be made. Edit, however, provides a way to make commands apply to the entire contents of the
buffer - the global (g) command.

To print all lines containing a certain sequence of characters (say, "text") the command is:

: g/text/p

The "g" instructs edit to make a global search for all lines in the buffer containing the characters "text". The
"p" prinu the lines found

To issue a global command, start by typing a "g" and then a search pattern identifying the lines to be
affected. Then, on the same line, type the command to be executed for the identified lines. Global substitutions are
frequently useful. For example, to change all instances of the word ''text'' to the word ''material'' the command
would be a combination of the global search and the substitute command:

: g/text/s/text/material/g

Note the "g" at the end of the global command, which instructs edit to change each and every instance of "text" to
"material". If you do not type the "g" at the end of the command only the first instance of "text'' in each line
will be changed (the normal result of the substitute command). The "g" at the end of the command is independent
of the "g" at the beginning. You may give a command such as:

: Ss/text/material/g

to change every instance of "text" in line 5 alone. Further, neither command will change "text" to "material" if
''Text'' begins with a capital rather than a lower-case t.

Edit does not automatically print the lines modified by a global command If you want the lines to be printed,
type a "p" at the end of the global command:

: g/text/s/text/material/ gp

You should be careful about using the global command in combination with any other - in essence, be sure of what
you are telling edit to do to the entire buffer. For example,

:g/ /d
72 less lines in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your document, since most
lines have spaces between words and thus would be deleted. After executing the global command, edit will print a
warning if the command added or deleted more than one line. Fortunately, the undo command c~ reverse the
effects of a global command. You should experiment with the global command on a small file of text to see what it
can do for you.

More about searching and substituting

In using slashes to identify a character string that we want to search for or change, we have always specified
the exact characters. There is a less tedious way to repeat the same string of characters. To change "text" to
"texts" we may type either

: /text/s/text/texts/

as we have done in the past, or a somewhat abbreviated command:

Edit: A Tutorial USD:14-19

: /text/s//texts/

In this example, the characters to be changed are not specified - the.re are no characters, not even a space, between
the two slash marks that indicate what is to be changed. This lack of characters between the slashes is taken by the
editor to mean ''use the characters we last searched for as the characters to be changed.''

Similarly, the last context search may be repeated by typing a pair of slashes with nothing between them:

:/does/
It doesn't mean much here, but
://
it does illustrate the editor.

(You should note that the search command found the characters "does" in the word "doesn't" in the first search
request) Because no characters are specified for the second search, the editor scam the buffer for the next
occurrence of the characters ''does''.

Edit normally searches forward through the buffer, wrapping around from the end of the buffer to the begin
ning, until the specified character string is found. If you want to search in the reverse direction, use question marks
(?)instead of slashes to surround the characters you are searching for.

It is also possible to repeat the last substitution without having to retype the entire command. An ampersand
(&) used as a command repeats the most recent substitute command, using the same search and replacement pat
terns. After altering the current line by typing

: sf text/texts/

you type

: /text/&

or simply

://&

to make the same change on the next line in the buffer containing the characters "text".

Special characters

Two characters have special meanings when used in specifying searches: "$" and , ... ,,. "$" is taken by the
editor to mean ''end of the line'' and is used to identify strings that occur at the end of a line.

: g/text.$/s//materialJp

tells the editor to search for all lines ending in ''text.'' (and nothing else, not even a blank space), to change each
final ''text.'' to ''material.'', and print the changed lines.

The symbol ''"'' indicates the beginning of a line. Thus,

: s/"/1. I

instructs the editor to insert '' 1.'' and a space at the beginning of the current line.

The characters "$" and""" have special meanings only in the context of searching. At other times, they are
ordinary characters. If you ever need to search for a character that has a special meaning, you must indicate that the
character is to lose temporarily its special significance by typing another special character, the backslash {\),before
it

: s/\$1dollar/

looks for the character '' $'' in the current line and replaces it by the word ''dollar''. Were it not for the backslash,
the '' $'' would have represented ''the end of the line'' in your search rather than the character ''$' '. The backslash
retains its special significance unless it is preceded by another backslash.

USD:14-20 Edit A Tutorial

Issuing UNIX commands from the editor

After creating several files with the editor, you may want to delete files no longer useful to you or ask for a list
. of your files. Removing and listing files are not functions of the editor, and so they require the use of UNIX system

commands (also refened to as ''shell'' commands, as ''shell'' is the name of the program that processes UNIX com
mands). You do not need to quit the ediur to execute a UNIX command as long as you indicate that it is to be sent to
the shell for execution. To use the UNIX command rm to remove the file named ''junk'' type:

:!rmjunk
!

The exclamation mark (!) indicates that the rest of the line is to be processed as a shell command. If the buffer con
tents have not been written since the last change, a warning will be printed before the command is executed:

[No write since last change]

The editor prints a''!'' when the command is completed. Other tutorials describe useful features of the system, of
which an editor is only one part.

Filenames and file manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as the current filename.
·Edit rememben as the current filename the name given when you entered the editor. The current filename changes
whenever the edit (e) command is used to specify a new file. Once edit has recorded a current filename, it inserts
that name into any command where a filename has been omitted. If a write command does not specify a file, edit, as
we have seen, supplies the current filename. If you are editing a file named ''draft3'' having 283 lines in it, you can
have the editor write onto a different file by including its name in the write command:

:w cbapter3
"chapter3" [new file] 2~3 lines, 8698 characters

The current filename remembered by the editor will not be changed as a result of the write command. Thus, if the
next write command does not specify a name, edit will write onto the current file ("draft3") and not onto the file
'' chapter3''.

The file (f') command

To ask for the current filename, type file (or f). In response, the editor provides current information about the
buffer, including the filename, your current position, the number of lines in the buffer, and the percent of the dis
tance through the file your current location is.

:r
"text" [Modified] line 3 of 4 --75%--

If the contents of the buffer have changed since the last time the file was written, the editor will tell you that the file
has been ''[Modified]''. After you save the changes by writing onto a disk file, the buffer will no longer be con
sidered modified:

:w
"text" 4 lines, 88 characters
:r
"text" line 3 of 4 --75%--

Reading additional files (r)

The read (r) command allows you to add the contents of a file to the buffer at a specified location, essentially
copying new lines between two existing lines. To use i~ specify the line after which the new text will be placed, the
read (r) command, and then the name· of the file. If you have a file named ''example'', the command

Edit: A Tutorial USD:14-21

: Sr example
"example" 18 lines, 473 characters

reads the file "example'' and ad& it to the buffer after the last line. The current filename is not changed by the read
command

Writing parts of the butrer

The write (w) command can write all or part of the buffer to a file you specify. We are already familiar with
writing the entire contents of the buffer to a disk file. To write only part of the buffer onto a file, indicate the begin
ning and ending lines before the write command, for example

: 45,Sw ending

Here all lines from 45 through the end of the buffer are written onto the file named ending. The lines remain in the
buffer as part of the document you are editing, and you may continue to edit the entire buffer. Your original file is
unaffected by your command to write part of the buffer to another file. Edit still remembers whether you have
saved changes to the buffer in your original file or not

Recovering files

Although it does not happen very often, there are times UNIX stops working because of some malfunction.
This situation is known as a crash. Under most circumstances, edit's crash recovery feature is able to save work to
within a few lines of changes before a crash (or an accidental phone hang up). If you lose the contents of an editing
buffer in a system crash, you will normally receive mail when you login that gives the name of the recovered file.
To recover the file, enter the editor and type the command recover (rec), followed by the name of the lost file. For
example, to recover the buffer for an edit session involving the file ''chap6' ', the command is:

: recover chap6

Recover is sometimes unable to save the entire buffer successfully, so always check the contents of the saved buffer
carefully before writing it back onto the original file. For best results, write the buffer to a new file temporarily so
you can examine it without risk to the original file. Unfortunately, you cannot use the recover command to retrieve
a file you removed using the shell command rm.

Other recovery techniques

If something goes wrong when you are using the editor, it may be possible to save your work by using the
command preserve (pre), which saves the buffer as if the system had crashed. If you are writing a file and you get
the message ''Quota exceeded'', you have tried to use more disk storage than is allotted to your account. Proceed
with caution because it is likely that only a part of the editor's buffer is now present in the file you tried to write. In
this case you should use the shell escape from the editor(!) to remove some files you don't need and try to write the
file again. If this is not possible and you cannot find someone to help you, enter the command

:preserve

and wait for the reply,

File preserved.

If you do not receive this reply, seek help immediately. Do not simply leave the editor. If you do, the buffer will be
lost, and you may not be able to save your file. H the reply is ''File preserved.'' you can leave the editor (or logout)
to remedy the situation. After a presme, you can use the recover command once the problem has been correcte~
or the -r option of the edit command if you leave the editor and want to return.

If you make an undesirable change to the buffer and type a write command before discovering your mistake,
the modified version will replace any previous version of the file. Should you ever lose a good version of a docu
ment in this way, do not panic and leave the editor. As long as you stay in the editor, the contents of the buffer
remain accessible. Depending on the nature of the problem, it may be possible to restore the buffer to a more com
plete state with the undo command. After fixing the damaged buffer, you can again write the file to disk.

USD:14-22 Edit A Tutorial

Further reading and other information

Edit is an editor designed for beginning and casual users. It is actually a version of a more powerful editor
called ex. These lessons are intended to introduce you to the editor and its more commonly-used commands. We
have not covered all of the editor's commands, but a selection of commands that should be sufficient to accomplish
most of your editing tasks. You can find out more about the editor in the Ex Reference Manual, which is applicable
to both u and edit~ One way to become familiar with the manual is to begin by reading the description of com
mands that you already know.

Usingu

As you become more experienced with using the editor, you may still find that edit continues to meet your
needs. However, should you become interested in using ex, it is easy to switch. To begin an editing session with
ex, use the name ex in your command instead of edit.

Edit commands also work in ex, but the editing environment is somewhat different. You should be aware of
a few differences between ex and edit. In edit, only the characters ""'", "$",and "\" have special meanings in
searching the buffer <X' indicating characters to be changed by a substitute command. Several additional characters
have special meanings in ex, as described in the Ex Reference Manual. Another feature of the edit environment
prevents users from accidently entering two alternative modes of editing, open and visual, in which the editor
behaves quite differently from normal command mode. If you are using ex and you encounter strange behavior, you
may have accidently entered open mode by typing ''o''. Type the ESC key and then a ''Q'' to get out of open or
visual mode and back into the regular editor command mode. The document An Introduction to Display Editing
with Vi provide full details of visual mode.

An Introduction to Display Editing with Vi

William Joy

Mark Horton

Computer Science Division
Department of Electrical F.ngineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Vi (visual) is a display oriented interactive text editor. When using vi the screen
of your terminal acts as a window into the file which you are editing. Changes which you
make to the file are reflected in what you see.

Using vi you can insert new text any place in the file quite easily. Most of the
commands to vi move the cursor around in the file. There are commands to move the
cursor forward and backward in units of characters, words, sentences and paragraphs. A
small set of operators, like d for delete and c for change, are combined with the motion
commands to form operations such as delete word or change paragraph, in a simple and
natural way. This regularity and the mnemonic assignment of commands to keys makes
the editor command set easy to remember and to use.

Vi will work on a large number of display terminals, and new terminals are easily
driven after editing a terminal description file. While it is advantageous to have an intel
ligent terminal which can locally insert and delete lines and characters from the display,
the editor will function quite well on dumb terminals over slow phone lines. The editor
makes allowance for the low bandwidth in these situations and uses smaller window sizes
and different display updating algorithms to make best use of the limited speed available.

It is also possible to use the command set of vi on hardcopy terminals, storage
tubes and "glass tty's" using a one line editing window; thus vi's command set is avail
able on all terminals. The full command set of the more traditional, line oriented editor
ex is available within vi; it is quite simple to switch between the two modes of editing.

1. Getting started

This document provides a quick introduction to vi. (Pronounced vee-eye.) You should be running vi
on a file you are familiar with while you are reading this. The first part of this document (sections 1
through 5) describes the basics of using vi. Some topics of special interest are presented in section 6, and
some nitty-gritty details of how the editor functions are saved for section 7 to avoid cluttering the presenta
tion here.

There is also a short appendix here, which gives for each character the special meanings which this
character has in vi. Attached to this document should be a quick reference card. This card summarizes the
commands of vi in a very compact format. You should have the card handy while you are learning vi.

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants MCS74-07644-A03
and MCS78-07291 is gratefully acknowledged.

USD:lS-2 An Introduction to Display Editing with Vi

1.1. Specifying terminal type

Before you can start vi you· must tell the system what kind of terminal you are using. Here is a
(necessarily incomplete) list of terminal type codes. If your terminal does not appear here, you should con
sult with one of the staff members on your system to find out the code for your terminal. If your terminal
does not have a code, one can be assigned and a description for the terminal can be created.

Code Full name Type
2621 Hewlett-Packard 2621A/P Intelligent
264S Hewlett-Packard 264x Intelligent
act4 Microtenn ACT-IV Dumb
actS Microtenn ACT-V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
clOO Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2SOO Datamedia 2500 Intelligent
dm302S Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
hl500 Hazeltine lSOO Intelligent
hl9 Heathkit hl9 Intelligent
ilOO Infoton 100 Intelligent
mime Imitating a smart act4 Intelligent
t1061 Teleray 1061 Intelligent
vtS2 Dec VT-52 Dumb

Suppose for example that you have a Hewlett-Packard HP2621A tenninal. The code used by the
system for this terminal is '2621'. In this case you can use one of the following commands to tell the sys-
tem the type of your terminal: ·

% setenv TERM 2621

This command works with the csh shell. If you are using the standard Bourne shell sh then you should
give the commands

$TERM=2621
$ export TERM

If you want to arrange to have your terminal type set up automatically when you log in, you can use
the tset program. If you dial in on a mime, but often use hardwired ports, a typical line for your .login file
(if you use csh) would be

setenv TERM "tset - -d mime"

or for your .profile file (if you use sh)

TERM= "tset - -d mime'

Tset knows which terminals are hardwired to each port and needs only to be told that when you dial in you
are probably on a mime. Tset is usually used to change the erase and kill characters, too.

1.2. Editing a file
After telling the system which kind of terminal you have, you should make a copy of a file you are

familiar with, and run vi on this file, giving the command

% vi name

replacing. name with the name of the copy file you just created. The screen should clear and the text of
your file should appear on the screen, If something else happens refer to the footnote.:!:

; If you gave the system an incorrect tenninal type code then the editor may have just made a mess out of your screen.
This happens when it sends control codes for one kind of tenninal to some other kind of tenninal. In this case hit the keys

An Introduction to Display Editing with Vi USD:lS-3

1.3. The editor's copy: the buffer

The editor does not directly modify the file which you are editing. Rather, the editor makes a copy of
this file, in a place called the buffer, and remembers the file's name. You do not affect the contents of the
file unless and until you write the changes you make back into the <Xiginal file ..

1.4. Notational conventions
In our examples, input which must be typed as is will be presented in bold face. Text which should

be replaced with appropriate input will be given in italics. We will ~resent special characters in SMALL
CAPITALS.

1.5. Arrow keys

The editor command set is independent of the terminal you are using. On most terminals with cursor
positioning keys, these keys will also work within the editor. If you don't have cursm positioning keys, or
even if you do, you can use the h j k and I keys as curscr positioning keys (these are labelled with arrows
on an adm3a). •

(Particular note for the HP2621: on this terminal the function keys must be shi.fted (ick) to send to the
machine, otherwise they only act locally. Unshifted use will leave the cursor positioned incorrectly.)

1.6. Special characters: r.sc, CR and DEL

Several of these special characters are very important, so be sure to find them right now. Look on
your keyboard for a key labelled ESC er ALT. It should be near the upper left corner of your terminal. Try
hitting this key a few times. The editor will ring the bell to indicate that it is in a quiescent state.; Partially
formed commands are cancelled by ESC, and when you insert text in the file you end the text insertion with
ESC. This key is a fairly harmless one to hit, so you can just hit it if you don't know what is going on until
the editor rings the bell.

The CR or RETURN key is important because it is used to terminate certain commands. It is usually at
the right side of the keyboard, and is the same command used at the end of each shell command.

Another very useful key is the DEL or RUB key, which generates an interrupt, telling the editor to stop
what it is doing. It is a forceful way of making the editor listen to you, or to return it to the quiescent state
if you don't know or don't like what is going on. Try hitting the'/' key on your terminal. This key is used
when you want to specify a string to be searched for. The cursor should now be positioned at the bottom
line of the terminal after a '/'printed as a prompt You can get the cursor back to the current position by
hitting the DEL or RUB key; try this now.• From now on we will simply refer to hitting the DEL or RUB key
as "sending an interrupt."••

The editor often echoes your commands on the last line of the terminal. If the cursor is on the first
position of this last line, then the editor is performing a computation, such as computing a new position in
the file after a search or running a command to reformat part of the buffer. When this is happening you can
stop the editor by sending an interrupt.

:q (colon and the q key) and then hit the JUmJRN key. This should get yw back to the command level interpreter. Figure
out what yw did wrong (ask someone else if necessary) and try again.

Another thing which can go wrong is that you typed the wrong file name and the editor just printed an error diagnostic.
In this case you should follow the above procedwe for getting wt of the editor, and try again this time spelling the file
name correctly.

If the editor doesn't seem to respond to the commands which you type here, try sending an interrupt to it by hitting the
DEL or R.UB key on your terminal, and then hitting the :q command again followed by a carriage return.

• As we will see later, It moves back to the left (like control-h which is a backspace),j moves down (in the same column),
k moves up (in the same column), and I moves to the righL
t On smart terminals where it is possible, the editor will quietly flash the screen rather than ringing the bell.
•Backspacing over the'/' will also cancel the search.
•• On some systems, this interruptibility comes at a price: you cannot type ahead when the editor is computing with the
cursor on the bottom line.

USD:lS-4 An Inttoduction to Display Editing with Vi

1. 7. Getting out of the editor

After you have worked with this introduction for a while, and you wish to do something else, you
can give the command "CL to the editor .. This will write the contents of the editor's buffer back into the file
you are editing, if you made any changes, and then quit from the editor. You can also end an editor session
by giving the command :q!CR;t this is a dangerous but occasionally essential command which ends the
editor session and discards all your changes. You need to know about this command in case you change
the editor's copy of a file you wish only to look at. Be vecy careful not to give this command when you
really want to save the changes you have made.

2. Moving around in the file

2.1. Scrolling and paging

The editor has a number of commands for moving around in the file. The most useful of these is
generated by hitting the control and D keys at the same time, a control-D or '"D'. We will use this two
character notation for referring to these control keys from now on. You may have a key labelled'"' on
your terminal. This key will be represented as 'i' in this document; '"' is exclusively used as part of the
'"x' notation for control characters.*

As you know now if you tried hitting "D, this command scrolls down in the file. The D thus stands
for down. Many editor commands are mnemonic and this makes them much easier to remember. For
instance the command to scroll up is '''U. Many dumb terminals can't scroll up at all, in which case hitting
"U clears the screen and refreshes it with a line which is farther back in the file at the top.

If you want to see more of the file below where you are, you can hit "E to expose one more line at
the bottom of the screen, leaving the cursor where it is. The command "Y (which is hopelessly non
mnemonic, but next to "U on the keyboard) exposes one more line at the top of the screen.

There are other ways to move around in the file; the keys "F and "B move forward and backward a
page, keeping a couple of lines of continuity between screens so that it is possible to read through a file
using these rather than "D and "U if you wish.

Notice the difference between scrolling and paging. If you are trying to read the text in a file, hitting
"F to move forward a page will leave you only a little context to look back at Scrolling on the other hand
leaves more context, and happens more smoothly. You can continue to read the text as scrolling is taking
place.

2.2. Searching, goto, and previous context

Another way to position yourself in the file is by giving the editor a string to search for. Type the
character I followed by a string of characters terminated by CR. The editor will position the cursor at the
next occurrence of this string. Try hitting n to then go to the next occurrence of this string. The character
? will search backwards from where you are, and is otherwise like /. t

If the search string you give the editor is not present in the file the editor will print a diagnostic on the
last line of the screen, and the cursor will be returned to its initial position.

ff you wish the search to match only at the beginning of a line, begin the search string with an i. To
match only at the end of a line, end the search string with a $. Thus /i searchCR will search for the word
'search' at the beginning of a line, and /last$CR searches for the word 'last' at the end of a line.•

t All commands which read from the last display line can also be terminated with a ESC as well as an CR.

+If you don't have a 'A' key on your terminal then there is probably a key labelled 'i'; in any case these characters are one
and the same.
t These searches will normally wrap around the end of the file, and thus find the string even if it is not on a line in the
direction you search provided it is anywhere else in the file. You can disable this wraparound in scans by giving the
command :se nowrapscanCR, or more briefly :se noWICR.
*Actually, the string you give to search for here can be a regular expression in the sense of the editors ex(l) and ed(l). If
you don't wish to learn about this yet, you can disable this more general facility by doing :se nomagk:a; by putting this
command in EXINIT in your environment, you can have this always be in effect (more about EX/NIT later.)

An Introduction to Display Editing with Vi USD:lS-S

The command G, when preceded by a number will position the cursor at that line in the file. Thus
1 G will move the cursor to the first line of the file. If you give G no count, then it moves to the end of the
file.

If you are near the end of the file, and the last line is not at the bottom of the screen, the editor will
place only the character ,_, on each remaining line. This indicates that the last line in the file is on the
screen; that is, the ,_, lines are past the end of the file.

You can find out the state of the file you are editing by typing a "G. The editor will show you the
name of the file you are editing, the number of the current line, the number of lines in the buffer, and the
percentage of the way through the buffer which you are. Try doing this now, and remember the number of
the line you are on. Give a G command to get to the end and then another G command to get back where
you were.

You can also get back to a previous position by using the command (two back quotes). This is
often more convenient than G because it requires no advance preparation. Try giving a Gora search with
I or ? and then a to get back to where you were. If you accidentally hit n or any command which moves
you far away from a context of interest, you can quickly get back by hitting ".

2.3. Moving around on the screen

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4 or 5 keys
with arrows going in each direction) tty them and convince yourself that they work. If you don't have
working arrow keys, you can always use h, j, k, and I. Experienced users of vi prefer these keys to arrow
keys, because they are usually right underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next line in the file, at the first
non-white position on the line. The -key is like+ but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if you go off the
bottom or top with these keys then the screen will scroll down (and up if possible) to bring a line at a time
into view. The RETURN key has the same effect as the + key.

Vi also has commands to take you to the top, middle and bottom of the screen. H will take you to
the top (home) line on the screen. Try preceding it with a number as in 3H. This will take you to the third
line on the screen. Many vi commands take preceding numbers and do interesting things with them. Try
M, which takes you to the middle line on the screen, and L, which takes you to the last line on the screen.
L also takes counts, thus SL will take you to the fifth line from the bottom.

2.4. Moving within a line

Now tty picking a word on some line on the screen, not the first word on the line. move the cursor
using RETURN and- to be on the line where the word is. Try hitting thew key. This will advance the cur
sor to the next word on the line. Try hitting the b key to back up words in the line. Also try the e key
which advances you to the end of the current word rather than to the beginning of the next word. Also try
SPACE (the space bar) which moves right one character and the BS (backspace or "H) key which moves left
one character. The key h works as "H does and is useful if you don't have a BS key. (Also, as noted just
above, I will move to the right)

If the line had punctuation in it you may have noticed that that the w and b keys stopped at each
group of punctuation. You can also go back and forwards words without stopping at punctuation by .using
Wand B rather than the lower case equivalents. Think of these as bigger words. Try these on a few lines
with punctuation to see how they differ from the lower case w and b.

The word keys wrap around the end of line, rather than stopping at the end Try moving to a word
on a line below where you are by repeatedly hitting w.

2.5. Summary

SPACE
"B
"D

advance the cursor one position
backwards to previous page
scrolls down in the file

USD:lS-6

"E
"F
"G
"H
"N
"P
"U
"Y
+

I
?
B
G
H
M
L
w
b
e
n
w

2.6. View

exposes another line at the bottom
forward to next page
tell what is going on
backspace the cursor
next line, same column
previous line, same column
scrolls up in the file
exposes another line at the top
next line, at the beginning
previous line, at the beginning
scan for a following string forwards
scan backwards
back a word, ignoring punctuation
go to specified line, last default

· home screen line
middle screen line
last screen line
forward a word, ignoring punctuation
back a word
end of current word
scan for next instance of I or ? pattern
word after this word

An Introduction to Display Editing with Vi

If you want to use the editor to look at a file, rather than to make changes, invoke it as view instead
of vi. This will set the readonly option which will prevent you from accidently overwriting the file.

3. Making simple changes

3.1. Inserting

One of the most useful commands is the i (insert) command. After you type i, everything you type
until you hit ESC is inserted into the file. Try this now; position yourself to some word in the file and try
inserting text before this word. If you are on an dumb terminal it will seem, for a minute, that some of the
characters in your line have been overwritten, but they will reappear when you hit ESC.

Now try finding a word which can, but does not, end in an 's'. Position yourself at this word and
type e (move to end of word), then a for append and then 'sESC' to terminate the textual insert. This
sequence of commands can be used to easily pluralize a word.

Try inserting and appending a few times to make sure you understand how this works; i placing text
to the left of the cursor, a to the right

It is often the case that you want to add· new lines to the file you are editing, before or after some
specific line in the file. Find a line where this makes sense and then give the commando to create a new
line after the line you are on, or the command 0 to create a new line before the line you are on. After you
create a new line in this way, text you type up to an ESC is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only in that one is given
by a lower case key and the other is given by an upper case key. In these cases, the upper case key often
differs from the lower case key in its sense of direction, with the upper case key working backward and/or
up, while the lower case key moves forward and/or down.

Whenever you are typing in text, you can give many lines of input or just a few characters. To type
in more than one line of text, hit a RETIJRN at the middle of your input. A new line will be created for text,
and you can continue to type. If you are on a slow and dumb terminal the editor may choose to wait to
redraw the tail of the screen, and will let you type over the existing screen lines. This avoids the lengthy
delay which would occur if the editor attempted to keep the tail of the screen always up to date. The tail of

An Introduction to Display Editing with Vi . USD:lS-7

the screen will be fixed up, and the missing lines will reappear, when you hit ESC.

While you are inserting new text, you can use the characters you n<xmally use at the system com
mand level (usually "H m #) to backspace over the last character which you typed, and the character which
you use to kill input lines (usually @, "X, or "U) to erase the input you have typed on the current line. t The
character "W will erase a whole word and leave you after the space after the previous word; it is useful for
quickly backing up in an imert.

Notice that when you backspace during an imertion the characters you backspace over are not
erased; the cursor moves backwards, and the characters remain on the display. This is often useful if you
are planning to type in something similar. In any case the characters disappear when when you hit ESC; if
you want to get rid of them immediately, hit an ESC and then a again.

Notice also that you can't erase characters which you didn't insert, and that you can't backspace
around the end of a line. If you need to back up to the previous line to make a correction, just hit ESC and
move the cursor back to the previous line. After making the correction you can return to where you were
and use the insert or append command again.

3.2. Making small corrections

You can make small corrections in existing text quite easily. Find a single character which is wrong
or just pick any character. Use the arrow keys to find the character, or get near the character with the word
motion keys and then either backspace (hit the BS key or "Hor even just h) or SPACE (using the space bar)
until the cursor is on the character which is wrong. If the character is not needed then hit the x key; this
deletes the character from the file. It is analogous to the way you x out characters when you make mistakes
on a typewriter (except it's not as messy).

If the character is incorrect, you can replace it with the correct character by giving the command re,
where c is replaced by the correct character. Finally if the character which is incorrect should be replaced
by more than one character, give the command s which substitutes a string of characters, ending with ESC,
for it. If there are a small number of characters which are wrong you can precede s with· a count of the
number of characters to be replaced. Counts are also useful with x to specify the number of characters to
bede~d .

3.3. More corrections: operators

You already know almost enough to make changes at a higher level. All you need to know now is
that the d key acts as a delete operator. Try the command dw to delete a word Try hitting. a few times.
Notice that this repeats the effect of the dw. The command. repeats the last command which made a
change. You can remember it by analogy with an ellipsis '-·'.

Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE. This deletes
a single character, and is equivalent to the x command.

Another very useful operator is c or change. The command cw thus changes the text of a single
word. You follow it by the replacement text ending with an ESC. Find a word which you can change to
another, and try this now. Notice that the end of the text to be changed was marked with the character '$'
so that you can see this as you are typing in the new material.

3.4. Operating on lines
It is often the case that you want to operate on lines. Find a line which you want to delete, and type

dd, the d operator twice. This will delete the line. If you are on a dumb terminal, the editor may just erase
the line on. the screen, replacing it with a line with only an @ on it. This line does not correspond to any
line in your file, but only acts as a place holder. It helps to avoid a lengthy redraw of the rest of the screen
which would be necessary to close up the hole created by the deletion on a terminal without a delete line
capability.

t In fact, the character AH (backspace) always works to erase the last input character here, regardless of what your erase
character is.

USD:lS-8 An Introduction to Display Editing with Vi

Try repeating the c operatm twice; this will change a whole line, erasing its previous contents and
replacing them with text you type up to an ESC. t

You can delete or change more than one line by preceding the dd or cc with a count, i.e. 5dd deletes
S ~s. You can also give a command like clL to delete all the lines up to and including the l•t line on the
screen, or d3L to delete through the third from the bottom line. Try some commands like this now.•
Notice that the editor lets you know when you change a large number of lines so that you can see the extent
of the change. The editor will also always tell you when a change you make affects text which you cannot
see.

3.5. Undoing

Now suppose that the last change which you made was inc<XreCt; you could use the insert, delete and
append commands to put the correct material back. However, since it iS often the case that we regret a
change or make a change incorrectly, the editor provides a u (undo) command to reverse the l•t change
which you made. Try this a few times, and give it twice in a row to notice that an u also undoes a u.

The undo command lets you reverse only a single change. After you make a number of changes to a
line, you may decide that you would rather have the original state of the line back. The U command
restores the current line to the state before you started changing it.

You can recover text which you delete, even if undo will not bring it back; see the section on recov
. ering lost text below.

3.6. Summary

SPACE

"H
"W
erase
kill

0
u
a
c
d

0

u

advance the cursor one position
backspace the cursor
erase a word during an insert
your erase (usually "H or #), erases a character during an insert
your kill (usually @:"x, or "U), kills the insert on this line
repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor
changes the object you specify to the following text
deletes the object you specify
inserts text before the cursor
opens and inputs new lines, below the current
undoes the last change

4. Moving about; rearranging and duplicating text

4.1. Low level character motions

Now move the cursor to a line where there is a punctuation or a bracketing character such as a
parenthesis or a comma or period. Try .the command fx where x is this character. This command finds the
next x character to the right of the cursor in the current line. Try then hitting a ;, which finds the· next
instance of the same character. By using the r command and then a sequence of ;'s you can often get to a
particular place in a line much faster than with a sequence of word motions or SPACES. There is also a F
command, which is like r, but searches backward. The ; command repeats F also.

t The command S is a convenient synonym for for cc, by analogy with s. Think of S as a substitute on lines, while s is a
substitute on characters.
* One subtle point here involves using the I search after a d. This will normally delete characters from the current position
to the point of the match. If what is desired is to delete whole lines including the two points, give the pattern as /patl +O, a
line address.

An Introduction to Display Editing with Vi USD:lS-9

When you are operating on the text in a line it is often desirable to deal with the characters up to, but
not including, the first instance of a character. Try dfx for some x now and notice that the x character is
deleted. Undo this with u and then try dtx; the t here stands for to, i.e. delete up to the next x, but not the
x. The command T is the reverse oft.

When working with the text of a single line, an i moves the cursor to the first non-white position on
the line, and a $ moves it to the end of the line. Thus $a will append new text at the end of the current line.

Your file may have tab ("I) characters in it These characters are represented as a number of spaces
expanding to a tab stop, where tab stops are evecy 8 positions.• When the cursor is at a tab, it sits on the
last of the seven! spaces which represent that tab. Try moving the cUrsor back. and fmh over tabs so you
understand how this worts.

On rare occasions, your file may have nonprinting characters in it. These characters are displayed in
the same way they are represented in this document, that is with a two character code, the first character of
which is '"'. On the screen non-printing characters resemble a'"' character adjacent to another, but spac
ing or backspacing over the character will reveal that the two characters are, like the spaces representing a
tab character, a single character.

The editor sometimes discards control characters, depending on the character and the setting of the
beautify opt.ion, if you attempt to insert them in your file. You can get a control character in the file by
beginning an insert and then typing a "'V before the control character. The "V quotes the following charac
ter, causing it to be inserted directly into the file.

4.2. Higher level text objects

In working with a document it is often advantageous to work in terms of sentences, paragraphs, and
sections. The operations (and) move to the beginning of the previous and next sentences respectively.
Thus the command d) will delete the rest of the current sentence; likewise d(will delete the previous sen
tence if you are at the beginning of the current sentence, or the current sentence up to where you are if you
are not at the beginning of the current sentence.

A sentence is defined to end at a '.', '!' or '?' which is followed by either the end of a line, or by two
spaces. Any number of closing ')', ']', "" and ''' characters may appear after the '.', '!' or '?' before the
spaces or end of line.

The operations { and} move over paragraphs and the operations [[and]] move over sections. t
A paragraph begins after each empty line, and also at each of a set of paragraph macros, specified by

the pairs of characters in the definition of the string valued option paragraphs. The default setting for this
option defines the paragraph macros of the -ms and -mm macro packages, i.e. the '.IP', '.LP', '.PP' and
'.QP', '.P' and 'LI' macros.; Each paragraph boundary is also a sentence boundary. The sentence and
paragraph commands can be given counts to operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option, normally '.NH', '.SH', '.H' and
'.HU', and each line with a formfeed "L in the first column. Section boundaries are always line and para
graph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how they work. If
you have a large document, try looking through it using the section commands. The section commands
interpret a preceding count as a different window size in which to redraw the screen at the new location,
and this window size is the base size for newly drawn windows until another size is specified. This is very
useful if you are on a slow terminal and are looking for a particular section. You can give the first section
command a small count to then see each successive section heading in a small window.

• This is settable by a command of the fonn :se ts=.xcR, where .x is 4 to set tabstops every four columns. This has effect oo
the screen representation within the editor.
t The [(and]] operations require the operation character tO be doubled because they can move the cursor far from where it
currently is. While it is easy to get back with the command ", these commands would still be frustrating if they were easy
to hit accidentally.
:j: You can easily change or extend this set of macros by assigning a different string to the paragraphs option in your
EXINIT. See section 6.2 for details. The '.bp' directive is also considered to start a paragraph.

USD:lS-10 An lntrocluction to Display Editing with Vi

4.3. Rearranging and duplicating text

The editor has a single unnamed buffer where the last deleted or changed away text is saved, and a
set of named buffers a-z which you can use to save copies of text and to move text around in your file and
between files.

The operator y yanks a copy of the object which follows into the unnamed buffer. If preceded by a
buffer name, "x y, where x here is replaced by a letter a-z, it places the text in the named buffer. The text
can then be put back in the file with the commands p and P; p puts the text after or below the cursor, while
P puts the text before or above the cursor.

If the text which you yank forms a part of a line, or is an object such as a sentence which partially
spans more than one line, then when you put the text back, it will be placed after the cursor (or before if
you use P). If the yanked text forms whole lines, they will be put back as whole lines, without changing
the current line. In this case, the put acts much like a o or 0 command.

Try the command YP. This makes a copy of the current line and leaves you on this copy, which is
placed before the current line. The command Y is a convenient abbreviation for yy. ·The command Yp
will also make a copy of the current line, and place it after the current line. You can give Y a count of lines
to yank, and thus duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place, and put it back in another. You
can precede a delete operation by the name of a buffer in which the text is to be stored as in "aSdd deleting
5 lines into the named buffer a. You can then move the cursor to the eventual resting place of the these
lines and do a ti ap or ti aP to put them back. In fact, you can switch and edit another file before you put the
lines back, by giving a command of the form :e nameCR where name is the name of the other file you want
to edit You will have to write back the contents of the current editor buffer (or discard them) if you have
made changes before the editor will let you switch to the other file. An ordinary delete command saves the
text in the unnamed buffer, so that an ordinary put can move it elsewhere. However, the unnamed buffer is
lost when you change files, so to move text from one file to another you should use an unnamed buffer.

4.4. Summary.

i first non-white on line
$ end of line
) forward sentence
} forward paragraph
]] forward section
(backward sentence
{ backward paragraph
[[backward section
rx find x forward in line
p put text back, after cursor or below current line
y yank operator, for copies and moves
tx up to x forward, for operators
Fx f backward in line
P put text back, before cursor or above current line
Tx t backward in line

S. High level commands

5.1. Writing, quitting, editing new files

So far we have seen how to enter vi and to write out our file using either ZZ or :wCR. The first exits
from the editor, (writing if changes were made), the second writes and stays in the editor.

If you have changed the editor's copy of the file but do not wish to save your changes, either because
you messed up the file or decided that the changes are not an improvement to the file, then you can give the
command :q!CR to quit from the editor without writing the changes. You can also reedit the same file

An Introduction to Display Editing with Vi USD:lS-11

(starting over) by giving the command :e!CR. These commands should be used only rarely, and with cau
tion, as it is not possible to recover the changes you have made after you discard them in this manner.

· You can edit a different file without leaving the editor by giving the command :e namecR. ff you
have not written out your file before you try to do this, then the editor will tell you this, and delay editing
the other file. You can then give the command :wCR to save your work and then the :e namecR command
again, or carefully give the command :e! namecR., which edits the other file discarding the changes you
have made to the current file. To have the edit« automatically save changes, include set autowrite in your
EXINIT, and use :n instead of :e.

5.2. EKaping to a shell

You can get to a shell to execute a single command by giving a vi command of the form :!cmdCR.
The system will run the single command cmd and when the command finishes, the editor will ask you to
hit a RETURN to continue. When you have finished looking at the output on the screen, you should hit
RE1URN and the edit« will clear the screen and redraw it. You can then continue editing. You can also
give another : command when it asks you for a RETURN; in this case the screen will not be redrawn.

ff you wish to execute more than one command in the shell, then you can give the command :sbCR.
This will give you a new shell, and when you finish with the shell, ending it by typing a "D, the editor will
clear the screen and continue.

On systems which support it, "Z will suspend the editor and return to the (top level) shell. When the
editor is resumed, the screen will be redrawn.

S.3. Marking and returning

The command returned to the previous place after a motion of the cursor by a command such as I,
? or G. You can also mark lines in the file with single letter tags and return to these marks later by naming
the tags. Try marking the current line with the command m.x, where you should pick some letter for x, say
'a'. Then move the cursor to a different line (any way you like) and hit 'a. The cursor will return to the
place which you marked. Marks last only until you edit another file.

When using operators such as d and referring to marked lines, it is often desirable to delete whole
lines rather than deleting to the exact position in the line marked by m. In this case you can use the form 'x
rather than 'x. Used without an operator, 'x will move to the first non-white character of the marked line;
similarly " moves to the first non-white character of the line containing the previous context mark ".

S.4. Adjusting the screen

If the screen image is messed up because of a transmission error to your terminal, or because some
program other than the editor wrote output to your terminal, you can hit a .. L, the ASCII form-feed character,
to cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line deletion, you
may get rid of these lines by typing "R to cause the editor to retype the screen, closing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of the screen,
you can position the cursor to that line, and then give a z command. You should follow the z command
with a RETURN if you want the line to appear at the top of the window, a. if you want it at the center, or a
if you want it at the bottom.

6. Special topics

6.1. Editing on slow terminals

When you are on a slow terminal, it is important to limit the amount of output which is generated to
your screen so that you will not suffer long delays, waiting for the screen to be refreshed. We have already
pointed out how the editor optimizes the updating of the screen during insertions on dumb terminals to
limit the delays, and how the editor erases lines to @ when they are deleted on dumb terminals.

USD:lS-12 An Introduction to Display Editing with Vi

The use of the slow terminal insertion mode is controlled by the slowopen option. You can force the
editor to use this mode even on faster terminals by giving the command :se sloWCR. If your system is slug
gish this helps lessen the amount of output coming to your terminal. You can disable this option by :se
noslowcR.

The editor can simulate an intelligent terminal on a dumb one~ Try giving the command :se
redrawCR. This simulation generates a great deal of output and is generally tolerable only on lightly
loaded systems and fast terminals. You can disable this by giving the command
:se noredrawCR.

The editor also makes editing. more pleasant at low speed by starting editing in a small window, and
letting the window expand as you ediL This works particularly well on intelligent terminals. The editor
can expand the window easily when you insert in the middle of the screen on these terminals. If possible,
try the editor on an intelligent terminal to see how this works.

You can control the size of the window which is redrawn each time the screen is cleared by giving
window sizes as argument to the commands which cause large screen motions:

:/?[[]]''

Thus if you are searching for a particular instance of a common string in a file you can precede the first
search command by a small number, say 3, and the editor will draw three line windows around each
instance of the string which it locates.

You can easily expand or contract the window, placing the current line as you choose, by giving a
number on a z command, after the z and before the following RETURN,' • or - . Thus the command z5.
redraws the screen with the current line in the center of a five line window. t

If the editor is redrawing or otherwise updating large portions of the display, you can interrupt this
updating by hitting a DEL or RUB as usual. If you do this you may partially confuse the editor about what is
displayed on the screen. You can still edit the text on the screen if you wish; clear up the confusion by hit
ting a AL; or move or search again, ignoring the current state of the display.

See section 7 .8 on open mode for another way to use the vi command set on slow terminals.

6.2. Options, set, and editor startup files

The editor has a set of options, some of which have been mentioned above. The most useful options
are given in the following table.

Name Default Description
autoindent
auto write
ignorecase
lisp
list
magic
number
paragraphs
redraw
sections
shiftwidth
showmatch
slow open
term

noai
noaw
noic
no lisp
nolist
no magic
nonu
para=IPLPPPQPbpP LI
no re
sect=NHSllli HU
SW=8
nosm
slow
dumb

Supply indentation automatically
Automatic write before :n, :ta, Ai, !
Ignore case in searching
({) } commands deal with S-expressions
Tabs print as AI; end of lines marked with $
The characters . [and • are special in scans
Lines are displayed prefixed with line numbers
Macro names which start paragraphs
Simulate a smart terminal on a dumb one
Macro names which start new sections
Shift distance for <, > and input AD and "T ·
Show matching (or { as) or } is typed
Postpone display updates during inserts
The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You can set
numeric and string options by a statement of the form

t Note that the command Sz. bas an entirely different effect. placing line S in the center of a new window.

An Introduction to Display Editing with Vi

setopt=val

and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

USD:lS-13

These statements can be placed in your EXINIT in your environment, or given while you are running vi by
preceding them with a : and following them with a CR.

You can get a list of all options which you have changed by the command :setCR, or the value of a
single option by the command :set opt?CR. A list of all possible options and their values is generated by
:set allCR. Set can be abbreviated se. Multiple options can be placed on one line, e.g. :se ai aw nUCR.

Options set by the set command only last while you stay in the editor. It is common to want to have
certain options set whenever you use the editor. This can be accomplished by creating a list of ex com
mandst which are to be run evecy time you start up ex, edit, or vi. A typical list includes a set command,
and possibly a few map commands. Since it is advisable to get these commands on one line, they can be
separated with the I character, for example:

set ai aw tersejmap @ ddlmap # x

which sets the options autoindent, autowrite, terse, (the set command), makes @ delete a line, (the first
map), and makes# delete a character, (the second map). (See section 6.9 for a description of the map
command) This string should be placed in the variable EXINIT in your environment If you use the shell
csh, put this line in the file .login in your home directory:

setenv EXINIT 'set ai aw tersejmap@ ddlmap # x'

If you use the standard shell sh, put these lines in the file .profile in your home directory:

EXINIT='set ai aw terselmap@ddlmap # x'
export EXINIT

Of course, the particulars of the line would depend on which options you wanted to set

6.3. Recovering lost lines

You might have a serious problem if you delete a number of lines and then regret that they were
deleted Despair not, the editor saves the last 9 deleted blocks of text in a set of numbered registers 1-9.
You can get the n'th previous deleted text back in your file by the command "n p. The" here says that a
buffer name is to follow, n is the number of the buffer you wish to try (use the number 1 for now), and pis
the put command, which puts text in the buffer after the cursor. If this doesn't bring back the text you
wanted, hit u to undo this and then • (period) to repeat the put command. In general the • command will
repeat the last change you made. As a special case, when the last command refers to a numbered text
buffer, the • command increments the number of the buffer before repeating the command. Thus a
sequence of the form

"lpu.u.u.

will, if repeated long enough, show you all the deleted text which has been saved for you. You can omit
the u commands here to gather up all this text in the buffer, or stop after any. command to keep just the
then recovered text. The command P can also be used rather than p to put the recovered text before rather
than after the cursor.

6.4. Recovering lost files

If the system crashes, you can recover the work you were doing to within a few changes. You will
normally receive mail when you next login giving you the name of the file which has been saved for you.
You should then change to the directory where you were when the system crashed and give a command of

t All commands which start with : are u commands.

USD:lS-14

the form:

%vi-rname

An lnttoduction to Display Editing with Vi

replacing name with the name of the file which you were editing. This will recover your work to a point
near where you left off. t

You can get a listing of the files which are saved f<r you by giving the command:

%vi-r

If there is more than one instance of. a particular file saved, the editor gives you the newest instance each
time you recover iL You can thus get an older saved copy back by first recovering the newer copies.

For this feature to work, vi must be correctly installed by a super user on your system, and the mail
program must exist to receive mail. The invocation ''vi -r'' will not always list all saved files, but they can
be recovered even if they are· not listed.

6.S. Continuous text input
When you are typing in large amounts of text it is convenient to have lines broken near the right mar

gin automatically. You can cause this to happen by giving the command :se wm=lOcR. This causes all
lines to be broken at a space at least 10 columns from the right hand edge of the screen.

If the editor breaks an input line and you wish to put it back together you can tell it to join the lines
with J. You can give J a count of the number of lines to be joined as in 3J to join 3 lines. The editor sup
plies white space, if appropriate, at the juncture of the joined lines, and leaves the cursor at this white
space. You can kill the white space with x if you don't want it

6.6. Features for editing programs

The editor has a number of commands for editing programs. The thing that most distinguishes edit
ing of programs from editing of text is tlle desirability of maintaining an indented structure to the body of
the program. The editor has a autoindent facility for helping you generate correctly indented programs.

To enable this facility you can give the command :se aiCR. Now try opening a new line with o and
type some characters on the line after a few tabs. If you now start another line, notice that the editor sup
plies white space at the beginning of the line to line it up with the previous line. You cannot backspace
over this indentation, but you can use "D key to backtab over the supplied indentation.

Each time you type "D you back up one position, normally to an 8 column boundary. This amount is
settable; the editor has an option called shiftwidth which you can set to change this value. Try giving the
command :se sw::4CR and then experimenting with autoindent again.

For shifting lines in the program left and right, there are operators < and >. These shift the lines you
specify right or left by one shiftwidth. Try « and>> which shift one line left or right, and <L and >L
shifting the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses match, put the cursor at a
left or right parenthesis and hit %. This will show you the matching parenthesis. This works also for
braces {and}, and brackets [and].

If you are editing C programs, you can use the [[and]] ·keys to advance or retreat to a line starting
with a{, i.e. a function declaration at a time. When]] is used with an operator it stops after a line which
starts with } ; this is sometimes useful with y]].

t In rare cases, some of the lines of the file may be lost. 1be editor will give you the numbers of these lines and the text of
the lines will be replaced by the string 'LOST'. lbese lines will almost always be among the last few which you changed.
You can either choose to discard the changes which you made (if they are easy to remake) or to replace the few lost lines by
hand.

An Introduction to Display Editing with Vi USD:lS-lS

6. 7. Filtering portions of the bull'er

You can run system commands over portions of the buffer using the ~ator ! . You can use this to
sort lines in the buffer, <X' to reformat portions of the buffer with a pretty-printer. Try typing in a list of ran
dom words, one per line and ending them with a blank line. Back up to the beginning of the list, and then
give the command !}sortcR. This says to sort the next paragraph of material, and the blank line ends a
paragraph.

6.8. Commands for editing LISP

H you are editing a USP program you should set the option lisp by doing :se lispcR. This changes
the (and) commands to move backward and forward over s-expressions. The { and } commands are like (
and) but don't stop at atoim. These can be used to skip to the next list, or through a comment quickly.

The autoindent option works differendy for USP, supplying indent to align at the first argument to
the last open list If there is no such argument then the indent is two spaces more than the last level.

There is another option which is useful for typing in USP, the showmatch option. Try setting it with
:se smCR and then try typing a'(' some words and then a')'. Notice that the cursor shows the position of
the '(' which matches the')' briefly. This happens only if the matching '(' is on the screen, and the cursor
stays there for at most one second.

The editor also has an operator to realign existing lines as though they had been typed in with lisp
and autoindent set. This is the= operator. Try the command=% at the beginning of a function. This will
realign all the lines of the function declaration.

When you are editing USP,, the [[and]] advance and retreat to lines beginning with a (, and are use
ful for dealing with entire function definitions.

6.9. Macros

Vi has a parameterless macro facility, which lets you set it up so that when you hit a single keys
troke, the editor will act as though you had hit some longer sequence of keys. You can set this up if you
find yourself typing the same sequence of commands repeatedly.

Briefly, there are two flavors of macros:

a) Ones where you put the macro body in a buffer register, say x. You can then type @x to invoke the
macro. The @ may be followed by another @ to repeat the last macro.

b) You can use the map command from vi (typically in your EX/NIT) with a command of the form:

:map lhs rhsCR.

mapping lhs into rhs. There are restrictions: lhs should be one keystroke (either 1 character or one
function key) since it must be entered within one second (unless notimeout is set, in which case you
can type it as slowly as you wish, and vi will wait for you to finish it before it echoes anything). The
lhs can be no longer than 10 characters, the rhs no longer than 100. To get a space, tab or newline
into lhs or rhs you should escape them with a "V. (It may be necessary to double the "V if the map
command is given inside vi, rather than in ex.) Spaces and tabs inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, you can give the command

:map q :wq"V"V CR CR

which means that whenever you type q, it will be as though you had typed the four characters :wqCR. A
"V's is needed because without it the CR would end the: command, rather than becoming part of the map
definition. There are two "V's because from within vi, two "V's must be typed to get one. The first CR is
part of the rhs, the second terminates the : command.

Macros can be deleted with

unmap lhs

If the lhs of a macro is ''#0'' through ''#9'', this maps the particular function key instead of the 2
character '' #'' sequence. So that terminals without function keys can access such definitions, the form

USD:lS-16 An Introduction to Display Editing with Vi

''#x'' will mean.function key x on all terminals (and need not be typed within one secOnd.) The character
''#''can be changed by using a macro in the usual way:

:map "V"V"I #

to use tab, for example. (This won't affect the map command, which still uses #, but just the invocation
from visual mode.

The undo command revenes an entire macro call as a unit, if it made any changes.

Placing a'!' after the word map causes the mapping to apply to input mode, rather than command
mode. Thus, to arrange for "T to be the same as 4 spaces in input mode, you can type:

:map "T "VIHI

where i is a blank. The "V is necessary to prevent the blanks from being ·taken as white space between the
lhs andrhs.

7. Word Abbreviations

A feature similar to macros in input mode is word abbreviation. This allows you to type a short word
and have it expanded into a longer word or words. The commands are :abbreviate and :unabbreviate
(:ab and :una) and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word 'eecs' to always be changed into the phrase 'Electrical Engineering and Computer Sci
ences'. Word abbreviation is different from macros in that only whole words are affected. If 'eecs' were
typed as part of a larger word, it would be left alone. Also, the partial word is echoed as it is typed. There
is no need for an abbreviation to be a single keystroke, as it should be with a macro.

7.1. Abbreviations

The editor has a number of short commands which abbreviate longer commands which we have
introduced here. You can find these commands easily on the quick reference card. They often save a bit of
typing and you can learn them as convenient

8. Nitty-gritty details

8.1. Line representation in the display

The editor folds long logical lines onto many physical lines in the display. Commands which
advance lines advance logical lines and will skip over all the segments of a line in one motion. The com
mand I moves the cursor to a specific column, and may be useful for getting near the middle of a long line
to split it in half. Try 801 on a line which is more than 80 columns long. t

The editor only puts full lines on the display; if there is not enough room on the display to fit a logi
cal line, the editor leaves the physical line empty, placing only an@ on the line as a place holder. When
you delete lines on a dumb terminal, the editor will often just clear the lines to @ to save time (rather than
rewriting the rest of the screen.) You can always maximize the information on the screen by giving the AR
command

If you wish, you can have the· editor place line numbers before each line on the display. Give the
command :se nuCR to enable this, and the command :se nonuCR to turn it off. You can have tabs
represented as "I and the ends of lines indicated with '$' by giving the command :se IiStCR; :se nolistcR
turns this off.

Finally, lines consisting of only the character ,_, are displayed when the last line in the file is in the
middle of the screen. These represent physical lines which are past the logical end of file.

t You can make long lines very easily by using J to join t<>gether short lines.

An lnttoduction to Display Editing with Vi USD:lS-17

8.2. Counts

Most vi commands will use a preceding count to affect their behavior in some way. The following
table· gives the common ways in which the counts are used:

new window size
scroll amount
line/colunm number
repeat effect

:/?([]]''
"D "U
zGI
most of the rest

The editor maintains a notion of the current default window size. On terminals which run at speeds
greater than 1200 baud the editor uses the full terminal screen. On terminals which are slower than 1200
baud (most dialup lines are in this group) the editor uses 8 lines as the default window size. At 1200 baud
the default is 16 lines.

This size is the size used when the editor clears and refills the screen after a search or other motion
moves far from the edge of the current window. The commands which take a new window size as count all
often cause the screen to be redrawn. If you anticipate this, but do not need as large a window as you are
currently using, you may wish to change the screen size by specifying the new size before these com
mands. In any case, the number of lines used on the screen will expand if you move off the top with a - or
similar command or off the bottom with a command such as RETURN or "D. The window will revert to the
last specified size the next time it is cleared and refilled. t

The scroll commands "D and "U likewise remember the amount of scroll last specified, using half the
basic window size initially. The simple insert commands use a count to specify a repetition of the inserted
text. Thus lOa+--ESC will insert a grid-like string of text A few commands also use a preceding count
as a line or column number.

Except for a few commands which ignore any counts (such as "R), the rest of the editor commands
use a count to indicate a simple repetition of their effect Thus Sw advances five words on the current line,
while SRETURN advances five lines. A very useful instance of a count as a repetition is a count given to the
• command, which repeats the last changing command. If you do dw and then 3., you will delete first one
and then three words. You can then delete two more words with 2 •.

8.3. More file manipulation commands

The following table lists the file manipulation commands which you can use when you are in vi. All
of these commands are followed by a CR or ESC. The most basic commands are :w and :e. A normal edit
ing session on a single file will end with a ZZ command. If you are editing for a long period of time you
can give :w commands occasionally after major amounts of editing, and then finish with a ZZ. When you
edit more than one file, you can finish with one with a :w and start editing a new file by giving a :e com
mand, or set autowrite and use :n <file>.

If you make changes to the editor's copy of a file, but do not wish to write them back, then you must
give an ! after the command you would otherwise use; this forces the editor to discard any changes you
have made. Use this carefully.

The :e command can be given a + argument to start at the end of the file, or a +n argument to start at
line n. In actuality, n may be any editor command not containing a space, usefully a scan like +/pat or
+?pat. In fonning new names to the e command, you can use the character % which is replaced by the
current file name, or the character # which is replaced by the alternate file name. The alternate file name is
generally the last name you typed other than the current file. Thus if you try to do a :e and get a diagnostic
that you haven't written the file, you can give a :w command and then a :e #command to redo the previous
:e.

You can write part of the buffer to a file by finding out the lines that bound the range to be written
using "G, and giving these numbers after the: and before thew, separated by ,'s. You can also mark these

t But not by a '"L which just redraws the screen as it is.

USD:lS-18

:w
:wq
:x
:ename
:e!
:e +name
:e +n
:e#
:wname
:w!name
:x,ywname
:r name
:r !cmd
:n
:n!
:n args·
:ta tag

write back changes
write and quit

An Introduction to Display Editing with Vi

write (if necessary) and quit (same as ZZ).
edit file name
reedit, discanting changes
edit, starting at end
edit, starting at line n
edit alternate file
write file name
overwrite file name
write lines x through y to name
read file name into buffer
read output of cmd into buffer
edit next file in. argument list
edit next file, discanting changes to current
specify new argument list
edit file containing tag tag, at tag

lines with m and then use an address of the form "x,"y on thew command here.

You can read another file into the buffer after the current line by using the :r command. You can
similarly read in the output from a command, just use !cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names on the command line, and
then edit each one in turn using the command :n. It is also possible to respecify the list of files to be edited
by giving the :n command a list of file names, or a pattern to be expanded as you would have given it on
the initial vi command.

If you are editing large programs, you will find the :ta command very useful. It utilizes a data base
of function names and their locations, which can be created by programs such as ctags, to quickly find a
function whose name you give. If the :ta command will require the editor to switch files, then you must :w
or abandon any changes before switching. You can repeat the :ta command without any arguments to look
for the same tag again.

8.4. More about searching for strings

When you are searching for strings in the file with I and?, the editor normally places you at the next
or previous occurrence of the string. If you are using an operator such as d, c or y, then you may well wish
to. affect lines up to the line before the line containing the pattern. You can give a search of the form
lpat/.;_n to refer to the n'th line before the next line containing pat, or you can use+ instead of - to refer to
the lines after the one containing pat. If you don't give a line offset, then the editor will affect characters
up to the match place, rather than whole lines; thus use ''+O'' to affect to the line which matches.

You can have the editor ignore the case of words in the searches it does by giving the command :se
iccR. The command :se noiCCR turns this off.

Strings given to searches may actually be regular expressions. If you do not want or need this facil
ity, you should

set nomagic

in your EXINIT. In this case, only the characters i and$ are special in patterns. The character\ is also
then special (as it is most everywhere in the system), and may be used to get at the an extended pattern
matching facility. It is also necessary to use a\ before a I in a forward scan or a? in a backward scan, in
any case. The following table gives the extended forms when magic is set.

An Introduction to Display Editing with Vi

i
$

\<
\>
[str]
[istr]
[.x-y]
•

atbeginningofpattern,matchesbeginningofline
at end of pattern, matches end of line
matches any character
matches the beginning of a word
matches the end of a word
matches any single character in str
matches any single character not in str
matches any character between .x and y
matches any number of the preceding pattern

If you use nomagic mode, then the • [and • primitives are given with a preceding \.

8.S. More about input mode

USD:lS-19

There are a number of characters which you can use to make corrections during input mode. These
are summarized in the following table.

"H deletes the last input character
"W deletes the last input word, defined as by b
erase your erase character, same as "H
kill your kill character, deletes the input on this line
\ escapes a following "H and your erase and kill
ESC ends an insertion
DEL interrupts an insertion, terminating it abnormally
CR starts a new line
"D backtabs over autoindent
O"D kills all the autoindent
i"D same as O"D, but restores indent next line
"V quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing "H to correct a single character, or by
typing one or more "W's to back over incorrect words. If you use # as your erase character in the normal
system, it will work like "H.

Your system kill character, normally @, "X or "U, will erase all the input you have given on the
current line. In general, you can neither erase input back around a line boundary nor can you erase charac
ters which you did not insert with this insertion command To make corrections on the previous line after a
new line has been started you can hit ESC to end the insertion, move over and make the correction, and then
return to where you were to continue. The command A which appends at the end of the current line is
often useful for continuing.

If you wish to type in your erase or kill character (say# or@) then you must precede it with a\, just
as you would do at the normal system command level. A more general way of typing non-printing charac
ters into the file is to precede them with a "V. The "V echoes as a t character on which the cursor rests.
This indicates that the editor expects you to type a control character. In fact you may type any character
and it will be inserted into the file at that point•

If you are using autoindent you can backtab over the indent which it supplies by typing a "D. This
backs up to a shiftwidth boundary. This only works immediately after the supplied autoindent.

• This is not quite true. The implementation of the editor does not allow the NUU. ("@) character to appear in files. Also
the u: (linefeed or "J) character is used by the editor to separate lines in the file, so it cannot appear in the middle of a line.
You can insert any other character, however, if you wait for the editor to echo the i before you type the character. In fact,
the editor will treat a following letter as a request for the corresponding control character. This is the only way to type AS or
"Q, since the system nonnally uses them to suspend and reswne output and never gives them to the editor to process.

USD:15-20 An Introduction to Display Editing with Vi

When you are using autoin<Unt you may wish to place a label at the left margin of a line. The way to
do this easily is to type i and then "D. The edit<r will move the cursor to the left margin for one line, and
restore the previous indent on the next You can also type a 0 followed hnmediately by a "D if you wish to
kill all the indent and not have it·come back on the next line.

8.6. Upper case only terminals

If your terminal has only upper case, you can still use vi by using the normal system convention for
typing on such a terminal. Characters which you normally type are converted to lower case, and you can
type upper case letters by preceding them with a \. The characters { - } I ' are not available on such termi
nals, but you can escape them as\(\i \) \! \'. These characters are represented on the display in the same
way they are typecU ·

8. 7. Vi and ex

Vi· is actually one mode of editing within the editor ex. When you are running vi you can escape to
the line oriented editor of ex by giving the command Q. All of the : commands which were introduced
above are available in ex. Likewise, most ex commands can be invoked from vi using:. Just give them
without the : and follow them with a CR.

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic and be left
in the command mode of ex. You can then save your work and quit if you wish by giving a command x
after the : which ex prompts you with, or you can reenter vi by giving ex a vi command.

There are a number of things which you can do more easily in ex than in vi. Systematic changes in
line oriented material are particularly easy. You can read the advanced editing documents for the editor ed
to find out a lot more about this style of editing. Experienced users often mix their use of ex command
mode and vi command mode to speed the work they are doing.

8.8. Open mode: vi on hardcopy terminals and "glMS tty's" *
If you are on a hardcopy terminal or a terminal which does not have a cursor which can move off the

bottom line, you can still use the command set of vi, but in a different mode. When you give a vi com
mand, the editor will tell you that it is using open mode. This name comes from the open command in ex,
which is used to get into the same mode.

The only difference between visual mode and open mode is the way in which the text is displayed.

In open mode the editor uses a single line window into the file, and moving backward and forward in
the file causes new lines to be displayed, always below the current line. Two commands of vi work dif
ferently in open: z and AR. The z command does not take parameters, but rather draws a window of con
text around the current line and then returns you to the current line.

If you are on a hardcopy terminal, the "R command will retype the current line. On such terminals,
the editor normally uses two lines to represent the current line. The first line is a copy of the line as you
started to edit it, and you work on the line below this line. When you delete characters, the editor types a
number of \'s to show you the characters which are deleted. The editor also reprints the current line soon
after such changes so that you can see what the line looks like again.

It is sometimes useful to use this mode on very slow terminals which can support vi in the full screen
mode. You can do this by entering ex and using an open command.

Acknowledgements

Bruce Englar encouraged the early development of this display editor. Peter Kessler helped bring
sanity to version 2's command layout Bill Joy wrote versions 1 and 2.0 through 2.7, and created the
framework that users see in the present editor. Mark Horton added macros and other features and made the
editor work on a large number of terminals and Unix systems.

:j: The \ character you give will not echo until yru type another key.

An lnttoduction to Display F.diting with Vi USD:lS-21

Appendix: character functions

This appendix gives the uses the editor makes of each character. The characters are presented in
their order in the ASCII character set Control characters come first, then most special characters, then the
digits, upper and then lower case characters.

For each character we tell a meaning it has as a command and any meaning it has during an insert. If
it has only meaning as a command, then only this is discussed. Section numbers in parentheses indicate
where the character is discussed; a 'f after the section number means that the character is mentioned in a
footnote.

"@

"A

"B

"E

"F

"G

"H (BS)

"I (TAB)

"J (LF)

"K

"L

"M (CR)

"N

"O

"P

"Q

"R

Not a command character. If typed as the first character of an insertion it is replaced
with the last text inserted, and the insert terminates. Only 128 characters are saved from
the last insert; if more characters were inserted the mechanism is not available. A"'@
cannot be part of the file due to the editor implementation (7 .Sf).

Unused.

Backward window. A count specifies repetition. Two lines of continuity are kept if pos
sible (2.1, 6.1, 7.2).

Unused.

As a command, scrolls down a half-window of text. A count gives the number of (logi
cal) lines to scroll, and is remembered for future "D and "U commands (2.1, 7.2). Dur
ing an insert, backtabs over autoindent white space at the beginning of a line (6.6, 7.5);
this white space cannot be backspaced over.

Exposes one more line below the current screen in the file, leaving the cursor where it is
if possible. (Version 3 only.)

Forward window. A count specifies repetition. Two lines of continuity are kept if possi
ble (2.1, 6.1, 7.2).

Equivalent to :fCR, printing the current file, whether it has been modified, the current
line number and the number of lines in the file, and the percentage of the way through
the file that you are.

Same as left arrow. (See h). During an insert, eliminates the last input character, back
ing over it but not erasing it; it remains so you can see what you typed if you wish to
type something only slightly different (3.1, 7 .5).

Not a command character. When inserted it prints as some number of spaces. When the
cursor is at a tab character it rests at the last of the spaces which represent the tab. The
spacing of tabstops is controlled by the tabstop option (4.1, 6.6).

Same as down arrow (seej).

Unused.

The ASCII formfeed character, this causes the screen to be cleared and redrawn. This is
useful after a transmission error, if characters typed by a program other than the editor
scramble the screen, or after output is stopped by an interrupt (5.4, 7.2t).

A carriage return advances to the next line, at the first non-white position in the line.
Given a count, it advances that many lines (2.3). During an insert, a CR causes the insert
to continue onto another line (3.1).

Same as down arrow (seej).

Unused.

Same as up arrow (see k).

Not a command character. In input mode, "Q quotes the next character, the same as "V,
except that some teletype drivers will eat the "Q so that the editor never sees it

Redraws the current screen, eliminating logical lines not corresponding to physical lines
(lines with only a single @ character on them). On hardcopy terminals in open mode,

USD:lS-22

"S

"T

"U

"V

"W

"X

"Y

"Z

"[(ESC)

"\

"]

SPACE

"

An Introduction to Display Editing with Vi

retypes the cwrent line (5.4, 7.2, 7.8).

Unused. Some teletype drivers use "S to suspend output until "'Qis

Not a command character. During an insert, with autoindent set and at the beginning of
the line, inseru shiftwidth white space.

Scrolls the screen up, inverting "D which scrolls down. Coun~ work as they do for "D,
and the previous scroll amount is common to both. On a dumb terminal, "U will often
necessitate clearing and redrawing the screen further back in the file (2.1, 7 .2).

Not a command character. In input mode, quotes the next character so that it is possible
to insert non-printing and special characters into the file (4.2, 7 .5).

Not a command character. During an insert, backs up as b would in command mode;
the deleted characters remain on the display (see "H) (7 .5).

Unused.

Exposes one more line above the current screen, leaving the cursor where it is if possi
ble. (No mnemonic value for this key; however, it is next to "U which scrolls up a
bunch.) (Version 3 only.)

If supported by the Unix system, stops the editor, exiting to the top level shell. Same as
:stopCR. Otherwise, unused

Cancels a partially formed command, such as a z when no following character has yet
been given; terminates inputs on the last line (read by commands such as : I and ?); ends
insertions of new text into the buffer. If an ESC is given when quiescent in command
state, the editor rings the bell or flashes the screen. You can thus hit ESC if you don't
know what is happening till the editor rings the bell. If you don't know if you are in
insert mode you can type ESca, and then material to be input; the material will be
inserted correctly whether or not you were in insert mode when you started (1.5, 3.1,
7.5).

Unused.

Searches for the word which is after the cursor as a tag. Equivalent to typing :ta, this
word, and then a CR. Mnemonically, this command is "go right to'' (7.3).

Equivalent to :e #CR, returning to the previous position in the last edited file, or editing a
file which you specified if you got a 'No write since last change diagnostic' and do not
want to have to type the file name again (7.3). (You have to do a :w before "i will work
in this case. If you do not wish to write the file you should do :e! #CR instead.)

Unused. Reserved as the command character for the Tektronix 4025 and 4027 terminal.

Sarne as right arrow (see I).

An operator, which processes lines from the buffer with reformatting commands. Fol
low ! with the object to be processed, and then the command name terminated by CR.

Doubling ! and preceding it by a count causes count lines to be filtered; otherwise the
count is passed on to the object after the ! . Thus 2!}.fmlCR reformats the next two para
graphs by running them through the program/mt. If you are working on USP, the com
mand ! % grindCR, • given at the beginning of a function, will run the text of the function
through the LISP grinder (6.7, 7.3). To read a file or the output of a command into the
buffer use :r (7.3). To simply execute a command use:! (7.3).

Precedes a named buffer specification. There are named buffers 1-9 used for saving
deleted text and named buffers ~z into which you can place text (4.3, 6.3)

The macro character which, when followed by a number, will substitute for a function
key on terminals without function keys (6.9). In input mode, if this is your erase charac
ter, it will delete the last character you typed in input mode, and must be preceded with a

*Bothfint and grind are Berkeley programs and may not be present at all installations.

An Inttoduction to Display Editing with Vi USD:lS-23

$

&

(

•
+

I

\ to insert it, since it noon.ally backs over the last input character you gave.

Moves to the end of the current line. If you :se listCR, then the end of each line will be
shown by printing a S after the end of the displayed text in the line. Given a count,
advances to the count'th following end of line; thus 2$ advances to the end of the fol
lowing line.

Moves to the parenthesis o: brace { } which balances the parenthesis or brace at the
current cursor position.

A synonym for :&CR, by analogy with the a & command.

When followed by a ' returns to the previous context at the beginning of a line. The pre
vious context is set whenever the cwrent line is moved in a non-relative way. When fol
lowed by a letter a-z, returns to the line which was marked with this letter with a m
command, at the first non-white character in the line. (2.2, S.3). When used with an
operator such as cl, the opention takes place over complete lines; if you use ', the opera
tion takes place from the exact marked place to the current cursor position within the
line.

Retreats to the beginning of a sentence, or to the beginning of a LISP s-expression if the
lisp option is set. A sentence ends at a • ! or ? which is followed by either the end of a
line or by two spaces. Any number of closing)]" and' characters may appear after the
. ! or ? , and before the spaces or end of line. Sentences also begin at paragraph and sec
tion boundaries (see {and [[below). A count advances that many sentences (4.2, 6.8).

Advances to the beginning of a sentence. A count repeats the effect. See (above for the
definition of a sentence (4.2, 6.8) .

Unused.

Same as CR when used as a command.

Reverse of the last r F t or T command, looking the other way in the current line. Espe
cially useful after hitting too many ; characters. A count repeats the search.

Retreats to the previous line at the first non-white character. This is the inverse of + and
RETURN. If the line moved to is not on the screen, the screen is scrolled, or cleared and
redrawn if this is not possible. If a large amount of scrolling would be required the
screen is also cleared and redrawn, with the current line at the center (2.3).

Repeats the last command which changed the buffer. Especially useful when deleting
words or lines; you can delete some words/lines and then hit. to delete more and more
words/lines. Given a count, it passes it on to the command being repeated. Thus after a
2dw, 3. deletes three words (3.3, 6.3, 7.2, 7.4).

Reads a string from the last line on the screen, and scans forward for the next occurrence
of this string. The normal input editing sequences may be used during the input on the
bottom line; an returns to command state without ever searching. The search begins
when you hit CR to terminate the pattern; the cursor moves to the beginning of the last
line to indicate that the search is in progress; the search may then be terminated with a
DEL or RUB, or by backspacing when at the beginning of the bottom line, returning the
cursor to its initial position. Searches normally wrap end-around to find a string any-
where in the buffer. ·

When used with an operator the enclosed region is normally affected. By mentioning an
offset from the line matched by the pattern you can force whole lines to be affected. To
do this give a pattern with a closing a closing I and then an offset +n or -n.

To include the character I in the search string, you must escape it with a preceding \. A
i at the beginning of the pattern forces the match to occur at the beginning of a line
only; this speeds the search. A$ at the end of the pattern forces the match to occur at
the end of a line only. More extended pattern matching is available, see section 7.4;
unless you set nomagic in your .exrc file you will have to preceed the characters . [•

USD:lS-24

0

1-9

<

=
>

?

@

A

B

c
D

E

F

G

H

I

J

K

L

M

An Introduction to Display Editing with Vi

and - in the search pattern with a \ to get them to work as you would naively expect (l .S,
2,2, 6.1, 7 .2, 7 .4).

Moves to the first character on the current line. Also used, in forming numbers, after an
initial 1-9.
Used to form numeric arguments to commands (2.3, 7 .2).

A prefix to a set of commands for file and option manipulation and escapes to the sys
tem. Input is given on the bottom line and terminated with an CR, and the command then
executed. You can return to where you were by hitting DEL or RUB if you hit : acciden
tally (see primarily 6.2 and 7 .3).

Repeats the last single character find which used f F t or T. A count iterates the basic
scan (4.1).

An operator which shifts lines left one shiftwidJh, normally 8 spaces. Like all operators,
affects lines when repeated, as in <<. Counts are passed through to the basic object, thus
3<< shifts three lines (6.6, 7 .2).

Reindents line for USP, as though they were typed in with lisp and autoindent set (6.8).

An operator which shifts lines right one shiftwidth, normally 8 spaces. Affects lines
when repeated as in>>. Counts repeat the basic object (6.6, 7.2).

Scans backwards, the opposite of I. See the I description above for details on scanning
(2.2, 6.1, 7.4).

A macro character (6.9). If this is your kill character, you must escape it with a\ to type
it in during input mode, as it normally backs over the input you have given on the
current line (3.1, 3.4, 7.5).

Appends at the end of line, a synonym for $a (7 .2).

Backs up a word, where words are composed of non-blank sequences, placing the cursor
at the beginning of the word. A count repeats the effect (2.4).

Changes the rest of the text on the current line; a synonym for c$.

Deletes the rest of the text on the current line; a synonym for d$.

Moves forward to the end of a word, defined as blanks and non-blanks, like B and W. A
count repeats the effecl

Finds a single following character, backwards in the current line. A count repeats this
search that many times (4.1).

Goes to the line number given as preceding argument, or the end of the file if no preced
ing count is given. The screen is redrawn with the new current line in the center if
necessary (7 .2).

Home arrow. Homes the cursor to the top line on the screen. If a count is given, then
the cursor is moved to the count' th line on the screen. In any case the cursor is moved to
the first non-white character on the line. If used as the target of an operator, full lines
are affected (2.3, 3.2).

Inserts at the beginning of a line; a synonym for ii.
Joins together lines, supplying appropriate white space: one space between words, two
spaces after a ., and no spaces at all if the first character of the joined on line is). A
count causes that many lines to be joined rather than the default two (6.5, 7. lf).

Unused.

Moves the cursor to the first non-white character of the last line on the screen. With a
count, to the first non-white of the count' th line from the bottom. Operators affect whole
lines when used with L (2.3).

Moves the cursor to the middle line on the screen, at the first non-white position on the
line (2.3).

An Introduction to Display Editing with Vi USD:lS-25

N

0

p

Q

R

s

T

u
v
w

x

y

zz

[[

\

11
i

Scans for the next match of the last pattern given to I or?, but in the reverse direction;
this is the reverse of n.

Opens a new line above the current line and inputs text there up to an ESC. A count can
be used on dumb terminals to specify a number of lines to be opened; this is generally
obsolete, as the slowopen option works better (3.1).

Puts the last deleted text back before/above the cursor. The text goes back as whole
lines above the cursor if it was deleted as whole lines. Otherwise the text is inserted
between the characters before and at the curs<r. May be preceded by a named buffer
specification "x to retrieve the contents of the buffer; buffers 1-9 contain deleted
material, buffers a-z are available for general use (6.3).

Quits from vi to u command mode. In this mode, whole lines form commands, ending
with a RE1URN. You can give all the : commands; the editor supplies the : as a prompt
(7.7).

Replaces characters on the screen with characters you type (overlay fashion). Ter
minates with an ESC.

Changes whole lines, a synonym for cc. A count substitutes for that many lines. The
lines are saved in the numeric buffers, and erased on the screen before the substitution
begins.

Takes a single following character, locates the character before the cursor in the current
line, and places the cursor just after that character. A count repeats the effect Most
useful with operators such as d (4.1).

Restores the current line to its state before you started changing it (3.5).

Unused.

Moves forward to the beginning of a word in the current line, where words are defined
as sequences of blank/non-blank characters. A count repeats the effect (2.4).

Deletes the character before the cursor. A count repeats the effect, but only characters
on the current line are deleted.

Yanks a copy of the current line into the unnamed buffer, to be put back by a later p or
P; a very useful synonym for yy. A count yanks that many lines. May be preceded by a
buff er name to put lines in that buffer (7 .4).

Exits the editor. (Same as :xCR.) If any changes have been made, the buffer is written
out to the current file. Then the editor quits.

Backs up to the previous section boundary. A section begins at each macro in the sec
tions option, normally a '.NH' or '.SH' and also at lines which which start with a
formfeed "L. Lines beginning with {also stop[[; this makes it useful for looking back
wards, a function at a time, in C programs. If the option lisp is set, stops at each (at the
beginning of a line, and is thus useful for moving backwards at the top level LISP objects.
(4.2, 6.1, 6.6, 7 .2).

Unused.

Forward to a section boundary, see [(for a definition (4.2, 6.1, 6.6, 7.2).

Moves to the first non-white position on the current line (4.4).

Unused.

When followed by a ' returns to the previous context. The previous context is set when
ever the current line is moved in a non-relative way. When followed by a letter a-z,
returns to the position which was marked with this letter with a m command. When
used with an operator such as d, the operation takes place from the exact marked place
to the current position within the line; if you use ', the operation takes place over com
plete lines (2.2, 5.3).

USD:IS-26

a

b

c

d

e

r

·g

h

j

k

m

n

0

p

q

r

s

t

u

An Introduction to Display Editing with Vi

Appencb arbitrary text after the current cursor position; the insert can continue onto mul
tiple lines by using RETURN within the insert. A count causes the inserted text to be
replicated, but only if the inserted text is all on one line. The insertion terminates with
an BSC (3.1, 7.2).

Backs up to the beginning of a word in the current line. A word is a sequence of
alphanumerics, or a sequence of special characters. A count repeats the effect (2.4).

An opentor which changes the following object, replacing it with the following input
text up to an BSC. If more than part of a single line is affected, the text which is changed
away is saved in the numeric named buffers. If only part of the current line is affected,
then the last character to be changed away is marked with a $. A count causes that many
objects to be affected, thus both 3c) and c3) change the following three sentences (7.4).

An operator which deletes the following objecL If more than part of a line is affected,
the text is saved in the numeric buffers. A count causes that many objects to be affected;
thus 3dw is the same as d3w (3.3, 3.4, 4.1, 7.4).

Advances to the end of the next word, defined as for b and w. A count repeats the effect
(2.4, 3.1).

Finds the first instance of the next character following the cursor on the current line. A
count repeats the find (4 .1).

Unused.

Arrow keys b, j, k, I, and H.

Left arrow. Moves the cursor one character to the left. Like the other arrow keys,
either b, the left arrow key, or one of the synonyms CH) has the same effect On v2
editors, arrow keys on certain kinds of tenninals (those which send escape sequences,
such as vt52, clOO, or hp) cannot be used A count repeats the effect (3.1, 7.5).

Inserts text before the cursor, otherwise like a (7 .2).

Down arrow. Moves the cursor one line down in the same column. If the position does
not exist, vi comes as close as possible to the same column. Synonyms include "J
(linefeed) and "N.

Up arrow. Moves the cursor one line up. "Pis a synonym.

Right arrow. Moves the cursor one character to the right. SPACE is a synonym.

Marks the current position of the cursor in the mark register which is specified by the
next character a-z. Return to this position or use with an operator using' or' (5.3).

Repeats the last I or ? scanning commands (2.2).

Opens new lines below the current line; otherwise like 0 (3.1).

Puts text after/below the cursor; otherwise like P (6.3).

Unused.

Replaces the single character at the cursor with a single character you type. The new
character may be a ~; this is the easiest way to split lines. A count replaces each
of the following count characters with the single character given; see R above which is
the more usually useful iteration of r (3.2).

Changes th.e single character under the cursor to the text which follows up to an ESC;

given a count, that many characters from the current line are changed. The last charac
ter to be changed is marked with $ as in c (3.2).

Advances the cursor upto the character before the next character typed. Most useful
with operators such as d and c to delete the characters up to a following character. You
can use. to delete more if this doesn't delete enough the first time (4.1).

Undoes the last change made to the current buffer. If repeated, will alternate between
these two states, thus is its own inverse. When used after an insert which inserted text on

An Introduction to Display Editing with Vi USD:15-27

v
w

x

y

z

{

}

"?(DEL)

more than one line, the lines are saved in the numeric named buffers (3.5).

Unused.

Advances to the beginning of the next word, as defined by b (2.4).

Deletes the single character under the cursor. With a cow:it deletes deletes that many
characters forward from the cursor position, but only on the current line (6.5).

An operatoc, yanks the following object into the unnamed temporary buffer. ff preceded
by a named buffer specification, "x, the text is placed in that buffer also. Text can be
recovered by a later p or P (7.4).

Redraws the screen with the current line placed as specified by the following character:
RETURN specifies the top of the screen, • the center of the screen, and - at the bottom of
the screen. A count may be given after the z and bef<n the following character to
specify the new screen size for the redraw. A count before the z gives the number of the
line to place in the center of the screen instead of the default current line. (5.4)

Retreats to the beginning of the beginning of the preceding paragraph. A paragraph
begins at each macro in the paragraphs option, normally '.IP', '.LP', '.PP', '.QP' and
'.bp'. A paragraph also begins after a completely empty line, and at each section boun
dary (see [[above) (4.2, 6.8, 7.6).

Places the cursor on the character in the column specified by the count (7 .1, 7 .2).

Advances to the beginning of the next paragraph. See { for the definition of paragraph
(4.2, 6.8, 7.6).

Unused.

Interrupts the editor, returning it to command accepting state (1.5, 7.5)

Ex Reference Manual
Version 3.7

William Joy

Mark Horton

Computer Science Division
Department of Electtical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Ex a line oriented text editor, which supports both command and display oriented
editing. This reference manual describes the command oriented part of ex; the display
editing features of ex are described in An Introduction to Display Editing with Vi. Other
documents about the editor include the introduction Edit: A tutorial, the Ex/edit Com
mand Summary, and a Vi Quick Reference card.

1. Starting ex

Each instance of the editor has a set of options, which can be set to tailor it to your liking. The com
mand edit invokes a version of ex designed for more casual or beginning users by changing the default set
tings of some of these options. To simplify the description which follows we assume the defa~lt settings of
the options.

When invoked, ex determines the terminal type from the TERM variable in the environment It there
is a TERMCAP variable in the environment, and the type of the terminal described there matches the TERM
variable, then that description is used. Also if the TERMCAP variable contains a pathname (beginning with a
/) then the editor will seek the description of the terminal in that file (rather than the default /etc/termcap).
If there is a variable EXINIT in the environment, then the editor will execute the commands in that variable,
otherwise if there is a file .exrc in your HOME directory ex reads commands from that file, simulating a
source command. Option setting commands placed in EXINIT or .exrc will be executed before each editor
session.

A command to enter ex has the following prototype: t
ex [-] [-v] [-t tag] [-r] [-I] [-wn] [-x] [-R] [+command] name ...

The most common case edits a single file with no options, i.e.:

ex name

The - command line option option suppresses all interactive-user feedback and is useful in processing edi
tor scripts in command files. The -v option is equivalent to using vi rather than ex. The -t option is
equivalent .to an initial tag command, editing the file containing the tag and positioning the editor at its
definition. The -r option is used in recovering after an editor or system crash, retrieving the last saved ver
sion of the named file or, if no file is specified, typing a list of saved files. The -I option sets up for editing
LISP, setting the showmatch and lisp options. The -w option sets the default window size to n, and is

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants MCS74-07644-A03
and MCS78-07291 is gratefully acknowledged.
t Brackets'[' T surround optional parameters here.

USD:16-2 Ex Reference Manual

useful on dialups to start in small windows. The -:-x option causes ex to prompt for a key, which is used to
encrypt and decrypt the contents of the file, which should already be encrypted using the same key, see
crypt(l). The -R option sets the readonly option at the start. NatM arguments indicate files to be edited.
An argument of the form +command indicates that the editor should begin by executing the specified com
mand. If command is omitted, then it defaults to"$", positioning the editor at the last line of the first file
initially. Other useful commands here are scanning patterns of the form "/pat" or line numbers, e.g.
"+100" starting at line 100.

2. File manipulation

2.1. Current file

Ex is normally editing the contents of a single file, whose name is recorded in the cu"ent file name.
Ex performs all editing actions in a buffer (actually a temporary file) into which the text of the file is ini
tially read. Changes made to the buffer have no effect on the file being edited unless and until the buffer
contents are written out to the file with a write command. After the buffer contents are written, the previ
ous contents of the written file are no longer accessible. When a file is edited, its name becomes the
current file name, and its contents are read into the buffer.

The current file is almost always considered to be edited. This means that the contents of the buffer
are logically connected with the current file name, so that writing the current buffer contents onto that file,

. even if it exists, is a reasonable action. If the current file is not edited then ex will not normally write on it
if it already exists.*

2.2. Alternate file

Each time a new value is given to the current file name, the previous current file name is saved as the
alternate file name. Similarly if a file is mentioned but does not become the current file, it is saved as the
alternate file name.

2.3. Filename expansion

Filenames within the editor may be specified using the normal shell expansion conventions. In addi
tion, the character'%' in filenames is replaced by the current file name and the character '#' by the alter
nate file name. t

2.4. Multiple files and named buffers

If more than one file is given on the command line, then the first file is edited as described above.
The remaining arguments are placed with the first file in the argument list. The current argument list may
be displayed with the args command The next file in the argument list may be edited with the next com
mand. The argument list may also be . respecified by specifying a list of names to the next command
These names are expanded, the resulting list of names becomes the new argument list, and ex edits the first
file on the list

For saving blocks of text while editing, and especially when editing more than one file, ex has a
group of named buffers. These are similar to the normal buffer, except that only a limited number of
o~ations are available on them. The b~ffers have names a through z.:t

2.S. Read only

It is possible to use ex in read only mode to look at files that you have no intention of modifying.
This mode protects you from accidently overwriting the file. Read only mode is on when the read.only

• The file command will say '•[Not edited] 11 if the current file is not considered edited.
t This makes it easy to deal alternately with two files and eliminates the need for retyping the name supplied on an edit
command after a No write since last change diagnostic is received.
:I: It is also possible to ref er to A through Z; the upper case buffers are the same as the lower but commands append to

named buffers rather than replacing if upper case names are used.

Ex Refenmce Manual USD:16-3

option is set. It can be turned on with the -R command line opdon, by the view command line invocation,
or by setting the readonly option. It can be cleared by setting nor~adonly. It is possible to write, even
while in read only mode, by indicating that you really know what you are doing. You can write to a dif
ferent file, or can use the ! form of write, even while in read only mode.

3. Exceptional Conditions

3.1. Errors and Interrupts

When errors occur ex (optionally) rings the terminal bell and, in any case, prints an error diagnostic.
If the primary input is from a file, editor processing will terminate. If an inten"Upt signal is received, ex
prints ''Interrupt'' and returns to its command level If the primary input is a file, then ex will exit when
this occurs.

3.2. Recovering from hangups and crashes

If a hangup signal is received and the buffer has been modified since it was last written out, or if the
system crashes, either the editor (in the first case) or the system (after it reboots in the second) will attempt
to preserve the buffer. The next time you log in you should be able to recover the work you were doing,
losing at most a few lines of changes from the last point before the hangup or editcr crash. To recover a
file you can use the -r option. If you were editing the file reswne, then you should change to the directory
where you were when the crash occurred, giving the command

ex-r reswne

After checking that the retrieved file is indeed ok, you can write it over the previous contents of that file.

You will normally get mail from the system telling you when a file has been saved after a crash. The
command

ex-r

will print a list of the files which have been saved for you. (In the case of a hangup, the file will not appear
in the list, although it can be recovered.)

4. Editing modes

Ex has five distinct modes. The primary mode is command mode. Commands are entered in com
mand mode when a':' prompt is present, and are executed each time a complete line is sent In text input
mode ex gathers input lines and places them in the file. The append, insert, and change commands use
text input mode. No prompt is printed when you are in text input mode. This mode is left by typing a '.'
alone at the beginning of a line, and command mode resumes.

The last three modes are open and visual modes, entered by the commands of the same name, and,
within open and visual modes text insertion mode. Open and visual modes allow local editing operations
to be performed on the text in the file. The open command displays one line at a time on any terminal
while visual works on CRT tenninals with random positioning cursors, using the screen as a (single) win
dow for file editing changes. These modes are described (only) in An Introduction to Display Editing with
Vi.

5. Command structure

Most command names are English words, and initial prefixes of the words are acceptable abbrevia
tions. The ambiguity of abbreviations is resolved in favor of the more commonly used commands.•

• As an example, the command substitut~ can be abbreviated 's' while the shortest available abbreviation for the set
command is 'se'.

USD:16-4 Ex Reference Manual

5.1. Command parameten

Most commands accept prefix addresses specifying the lines in the file upon which they are to have
effect. The forms of these addresses will be discussed below. A number· of commands also may take a
trailing count specifying the number of lines to be involved in the command. t Thus the command "lOp"
will print the tenth line in the 6uffer while "delete S" will delete five lines from the buffer, starting with
the current line.

Some commands take othez infonnation or parameters, this information always being given after the
command name.*

5.2. Command variants

A number of commands have two distinct variants. The variant fonn of the command is invoked by
placing an '!' immediately after the command name. Some of the default variants may be controlled by
options; in this case, the'!' serves to toggle the default

5.3. Flags after commands

The characters '#', 'p' and 'l' may be placed after many commands.** In this case, the command
abbreviated by these characters is executed after the command completes. Since ex normally prints ·the
new current line after each change, 'p' is rarely necessary. Any number of'+' or'-' characters may also
be given with these flags. If they appear, the specified offset is applied to the current line value before the
printing command is executed.

5.4. Comments

It is possible to give editor conunands which are ignored. This is useful when making complex edi
tor scripts for which comments are desired. The comment character is the double quote: ". Any command
line beginning with 11 is ignored. Comments beginning with 11 may also be placed at the ends of commands,
except in cases where they could be confused as part of text (shell escapes and the substitute and map com
mands).

5.5. Multiple commands per line

More than one command may be placed on a line by separating each pair of commands by a 'I' char
acter. However the global commands, comments, and the shell escape'!' must be the last command on a
line, as they are not terminated by a 'I'.

S.6. Reporting large changes

Most commands which change the contents of the editor buffer give feedback if the scope of the
change exceeds a threshold given by the report option. This feedback helps to detect undesirably large
changes so that they may be quickly and easily reversed with an undo. After commands with more global
effect such as global or visual, you will be infonned if the net change in the number of lines in the buffer
during this command exceeds this threshold.

6. Command addr~ing

6.1. Addressing primitives

The current line. Most commands leave the current line as the last line which they
affect. The default address for most commands is the current line, thus '.' is rarely
used alone as an address.

t Counts are rounded down if necessary.
t Examples would be option names in a set conunand i.e. "set number", a file name in an edit command, a regular
expression in a substitute conunand, or a target address for a copy command, i.e. "1,5 copy 25".
•• A 'p' or 'l' must be precedecl'by a blank or tab except in the single special case 'dp'.

Ex Reference Manual USD: 16-S

n The nth line in the editor's buffer, lines being numbered sequentially from 1.

S The last line in the buffer.

% An abbreviation for "1,$", the entire buffer.

+n -n An offset relative to the cUITent buffer line.t

/pat/ ?pat? Scan forward and backward respectively for a line containing pat, a regular
expression (as defined below). The scans normally wrap around the end of the
buffer. If all that is ~ is to print the next line containing pat, then the trailing
I or ? may be omitted. If pat is omitted or explicitly empty, then the last regular
expression specified is located.*

,, 'x Before each non-relative motion of the current line '.',the previous current line is
marked with a tag, subsequently referred to as '"'. This makes it easy to refer or
return to this previous contexl Marks may also be established by the mark com
mand, using single lower case letters x and the marked lines referred to as '' x'.

6.2. Combining addressing primitives

Addresses to commands consist of a series of addressing primitives, separated by ',' or ';'. Such
address lists are evaluated left-to-righL When addresses are separated by ';' the current line '.' is set to the
value of the previous addressing expression before the next address is interpreted. If more addresses are
given than the command requires, then all but the last one or two are ignored. If the command takes two
addresses, the first addressed line must precede the second in the buffer. t

7. Command descriptions

The following form is a prototype for all ex commands:

address command ! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in the file. For
sanity with use from within visual mode, ex ignores a '':'' preceding any command.

In the following command descriptions, the default addresses are shown in parentheses, which are
not, however, part of the command.

abbreviate word rks abbr: ab

Add the named abbreviation to the current list When in input mode in visual, if word is typed as a
complete word, it will be changed to rhs.

(.)append
text

abbr: a

a!
text

Reads the input text and places it after the specified line. After the command, '.' addresses the last
line input or the specified line if no lines were input If address 'O' is given, text is placed at the
beginning of the buffer.

The variant flag to append toggles the setting for the autoindent option during the input of text.

t The fonns '.+3' '+3' and'+++' are all equivalent; if the current line is tine 100 they all address line 103.
i The fonns V and\? scan using the last regular expression used in a scan; after a substitute II and?? would scan using the
substitute's regular expression.
t Null address specifications are permitted in a list of addresses, the default in this case is the current line '.'; thus ',100' is
equivalent to '.,100'. It is an error to give a prefix address to a command which expects none.

USD:l6-6 Ex Reference Manual

args

The members of the argument list are printed, with the current argument delimited by'[' and']'.

(• , •) change count
text

abbr:c

c!
text

Replaces the specified lines with the input text. The current line becomes the last line input; if no
lines were input it is left as for a delete.

The variant toggles autoindent during the change.

(• , •) copy addr flags abbr: co

A copy of the specified lines is placed after addr, which may be 'O'. The current line '.' addresses.
the last line of the copy. The command t is a synonym for copy.

(• , •) delete buff er count flags abbr: d

Removes the specified lines from the buffer. The line after the last line deleted becomes the current
line; if the lines deleted were originally at the end, the new last line becomes the current line. If a
named buffer is specified by giving a letter, then the specified lines are saved in that buffer, or
appended to it if an upper case letter is used.

edit file
ex file

abbr:e

e!file

Used to begin an editing session on a new file. The editor first checks to see if the buffer has been
modified since the last write command was issued. If it has been, a warning is issued and the com
mand is aborted. The command otherwise deletes the entire contents of the editor buffer, makes the
named file the current file and prints the new filename. After insuring that this file is sensiblet the
editor reads the file into its buffer.

If the read of the file completes without error, the number of lines and characters read is typed. If
there were any non-ASCII characters in the file they are stripped of their non-ASCII high bits, and any
null characters in the ·file are discarded. If none of these errors occurred, the file is considered
edited. If the last line of the input file is missing the trailing newline character, it will be supplied and
a complaint will be issued. This command leaves the current line '.' at the last line read.+

The variant form suppresses the complaint about modifications having been made and not written
from the editor buffer, thus discarding all changes which have been made before editing the new file.

e +nfile

Causes the editor to begin at linen rather than at the last line; n may also be an editor command·con
taining no spaces, e.g.: ''+/pat''.

t I.e., that it is not a binary file such as a directory, a block or character special file other than !tkvltty, a terminal, or a
binary or executable file (as indicated by the first word).
t If executed from within open or visual, the current line is initially the first line of the file.

Ex Reference Manual USD:l6-7

file abbr: I

Prints the current file name, whether it has been '[Modified]' since the last write command, whether
it is read only, the current line, the number of lines in the buffer, and the percentage of the way
through the buffer of the current line.•

file file

The current file name is changed ft) file which is conside.red '[Not edited]'.

(1, $)global /pat/ cmds abbr: I
First marks each line among those specified which matches the given regular expression. Then the
given command list is executed with '.' initially set ft) each marked line.

The command list consists of the remaining commands on the current input line and may continue ft)
multiple lines by ending all but the last such line with a '\'. If cmds (and possibly the trailing I del
inliter) is omitted, each line matching pat is printed. Append, insert, and cliange commands and
associated input are permitted; the '.· terminating input may be omitted if it woold be on the last line
of the command list. Open and visual commands are permitted in the command list and take input
from the terminal.

The global command itself may not appear in cmds. The undo command is also not permitted there,
as undo instead can be used to reverse the entire global command. The options autoprint and
autoindent are inhibited during a global, (and possibly the trailing I delimiter) and the value of the
report option is temporarily infinite, in deference to a report for the entire global. Finally, the con
text mark ,,,, is set to the value of'.' before the global command begins and is not changed during a
global command, except perhaps by an open or visual within the global.

g! /pat/ cmds abbr: v

The variant form of global runs cmds at each line not matching pat.

(.)insert
text

abbr: i

.,
l.

text

Places the given text before the specified line. The current line is left at the last line input; if there
were none input it is left at the line before the addressed line. This command differs from append
only in the placement of text.

The variant toggles autoindent during the insert.

(• , .+ 1) join count flags abbr: j

Places the text from a specified range of lines together on one line. White space is adjusted at each
junction to provide at least one blank character, two if there was a '.' at the end of the line, or none if
the first following character is a ')'. If there is already white space at the end of the line, then the
white space at the start of the next line will be discarded.

* In the rare case that the current file is '[Not edited]' this is noted also; in this case you have to use the fonn w! to write to
the file, since the editor is not sure that a write will not destroy a file unrelated to the current contents of the buffer.

USD:16-8 Ex Reference Manual

.,
J.

The variant causes a simpler join with no white space processing; the characters in the lines are sim
ply concatenated.

(.) kx

The le command is a synonym for mark. It does not require a blank or tab before the following letter.

(• , •) list cowat flags

Prints the specified lines in a mcxe unambiguous way: tabs are printed as '"I' and the end of each
line is marked with a trailing'$'. The current line is left at the last line printed.

map lhsrhs

The map command is used to define macros fer use in visual mode. Lhs should be a single charac
ter, or the sequence "#n", fern a digit, referring to function key n. When this character or function
key is typed in visual mode, it will be as though the ccrresponding rhs had been typed. On terminals
without function keys, you can type ''#n''. See section 6.9 of the ''Introduction to Display Editing
with Vi'' for more details.

(.) markx

Gives the specified line mark x. a single lower case letter. The x must be preceded by a blank or a
tab. The addressing form ''x' then addresses this line. The current line is not affected by this com
mand.

(• , •) move addr abbr: m

next

n!

The move command repositions the specified lines to be after addr. The first of the moved lines
becomes the current line.

abbr: n

The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buffer not having been written out,
discarding (irretrievably) any changes which may have been made.

nfilelist
n +command filelist

The specifiedfilelist is expanded and the resulting list replaces the current argument list; the first file
in the new. list is then edited. If command is given (it must contain no spaces), then it is executed
after editing the first such file.

(• , •) number count flags abbr:# or nu

Prints each specified line preceded by its buffer line number. The current line is left at the last line
printed.

(•) open.flags
(.)open /pat/ flags

abbr: o

Enters intraline editing open mode at each· addressed line. If pat is given, then the cursor will be
placed initially at the beginning of the string matched by the pattern. To exit this mode use Q. See
An Introduction to Display Editing with Vi for more details.

Ex Reference Manual . USD:16-9

preserve

The current editor buffer is saved as though the system had just crashed. This command is for use
only in emergencies when a write command has resulted in an error and you don't know how to save
your work. After a preserve you should seek help.

(• , •) print colll&I abbr: p or P

Prints the specified lines with non-printing characters printed as control characters '"x ';delete (octal
177) is represented as '""!'. The current line is left at the last line printed.

(•) put buffer abbr: pu

quit

q!

Puts back previously dekted or yanked lines. Nonnally used with delete to effect movement of
lines, or with 'yank to effect duplication of lines. If no buffer is specified, then the last dekted or
yanked text is restored.• By using a named buffer, text may be restored that was saved there at any
previous time.

abbr: q

Causes ex to terminate. No automatic write of the editor buffer to a file is performed. However, ex
issues a warning message if the file has changed since the last write command was issued, and does
not quit. t Normally, you will wish to save your changes, and you should give a write command; if
you wish to discard them, use the q! command variant

Quits from the editor, discarding changes to the buffer without complaint

(•) read file abbr: r

Places a copy of the text of the given file in the editing buffer after the specified line. If no file is
given the current file name is used. The current file name is not changed unless there is none in
which case file becomes the current name. The sensibility restrictions for the edit command apply
here also. If the file buffer is empty and there is no current name then ex treats this as an edit com
mand.

Address 'O' is legal for this command and causes the file to be read at the beginning of the buffer.
Statistics are given as for the edit command when the read successfully terminates. After a read the
current line is the last line read.+

(.)read !command

Reads the output of the command command into the buffer after the specified line. This is not a
variant form of the command, rather a read specifying a command rather than afilename; a blank or
tab before the ! is mandatory.

recover file

Recovers file from the system save area. Used after a accidental hangup of the phone** or a system
crash** or preserve command. Except when you use preserve you will be notified by mail when a
file is saved.

*But no modifying commands may intervene between the delete or y<mJc and the put, nor may lines be moved between
files without using a named buffer.
t Ex will also issue a diagnostic if there are more files in the argument list
t Within open and visual the current line is set to the first line read rather than the last.
* * The system saves a copy of the file you were editing only if you have made changes to the file.

USD:16-10 Ex Reference Manual

rewind abbr: rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

set parame~r

shell

With no arguments, prints those options whose values have been changed from their defaults; with
parameter all it prints all of the option values.

Giving an option name followed by a'?' causes the current value of that option to be printed. The
'?' is ullllecessary unless the option is Boolean valued. Boolean 91>tions are given values either by
the form 'set option' to tum them on or 'set nooption' to tum them off; string and numeric options
are assigned via the form 'set option=-value'.

More than one parametec may be given to set ; they are interpreted left-to-right.

abbr: sh

A new shell is created. When it tenninates, editing resumes.

source file abbr: so

Reads and executes commands from the specified file. Source commands may be nested.

(. , •) substitute /pat lrepl I options count flags abbr: s

stop

On each specified line, the first instance of pattern pat is replaced by replacement pattern repl. If the
global indicator option character 'g' appears, then all instances are substituted; if the confirm indica
tion character 'c' appears, then before each substitution the line to be substituted is typed with the
string to be substituted marked with 'i' characters. By typing an 'y' one can cause the substitution
to be performed, any other input causes. no change to take place. After a substitute the current line is
the last line substituted

Lines may be split by substituting new-line characters into them. The newline in repl must be
escaped by preceding it with a '\'. Other metacharacters available in pat and re pl are described
below.

Suspends the editor, returning control to the top level shell. If autowrite is set and there are unsaved
changes, a·write is done first unless the form stop! is used. This commands is only available where
supported by the teletype driver and operating system.

(• , •) substitute options count flags abbr:s

If pat and repl are omitted, then the last substitution is repeated. This is a synonym for the & com
mand.

(. , •) t addr flags

ta tag

The t command is a synonym for copy.

The focus of editing switches to the locatiQn of tag, switching to a different line in the current file
where it is defined, or if necessary to another file.;

t If you have modified the current file before giving a tag command, you must write it out; giving another tag command,
specifying no tag will reuse the previous tag.

Ex Reference Manual USD:16-11

The tags file is normally created by a program such as ctags, and consists of a number of lines with
three fields separated by blanks or tabs. The first field gives the name of the tag, the second the name

·of the file where the tag resides, and the third gives an addressing form which can be used by the edi
tor to find the tag; this field is usually a contextual scan using '!pat/' to be immune to minor changes
in the file. Such scans are always performed as if nomagic was set.

The tag names in the tags file must be sorted alphabetically.

unabbreviate word abbr: una
Delete word from the list of abbreviatioos.

undo abbr: u

Reverses the changes made in the buffer by the last buffer editing command Note that global com
mands are considered a single command for the purpose of undo (as are open and visual.) Also, the
commands write and edit which interact with the file system cannot be undone. Undo is its own
inverse.

Undo always marks the previous value of.the current line'.' as'"'. After an undo the current line
is the first line restored or the line before the first line deleted if no lines were restored. For com
mands with moce global effect such as global and visual the current line regains it's pre-command
value after an undo.

unmap lhs

The macro expansion associated by map for lhs is removed.

(1 , $) v /pat/ cmds

A synonym for the global command variant g!, running the specified cmds on each line which does
not match pat.

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last changed.

(•) visual type count flags abbr: vi

Enters visual mode at the specified line. Type is optional and may be'-', 'i' or'.' as in the z com
mand to specify the placement of the specified line on the screen. By default, if type is omitted, the
specified line is placed as the first on the screen. A count specifies an initial window size; the default
is the value of the option window. See the document An Introduction to Display Editing with Vi for
more details. To exit this mode, type Q.

visual file
visual +n file

From visual mode, this command is the same as edit

(1 , $) write file abbr: w

Writes changes made back to file, printllig the number of lines and characters written. Normally file
is omitted and the text goes back where it came from. If a file is specified, then text will be written to
that file.* If the file does not exist it is created. The current file name is changed only if there is no
current file name; the current line is never changed

If an error occurs while writing the current and edited file, the editor considers that there has been
''No write since last change'' even if the buffer had not previously been modified.

* The editor writes to a file only if it is the current file and is ediled, if the file does not exist, or if the file is actually a
teletype, /Mv/tty, IMvlnuJl. Otherwise, you must give the variant fonn w! to force the write.

USD:16-12 Ex Reference Manual

(1 , $) write>> file abbr: W>>

Writes the buffer contents at the end of an existing file.

w!name

OverrideS the checking of the normal write command, and will write to any file which the system
pennits.

(1 , $) w !command

Writes the specified lines into command. Note the difference between w! which overrides checks
and w ! which writes to a command.

wq~

Like a write and then a quit command.

wq!~

The variant overrides checking on the sensibility of the write command, as w! does.

xit name

If any changes have been made and not written, writes the buffer out. Then, in any case, quits.

(• , •) yank buff er count abbr: ya

Places the specified lines in the named buffer, for later retrieval via put. If no buffer name is
specified, the lines go to a more volatile place; see the put command description.

(.+1) z count

Print the next count lines, default window.

(•) z type count

Prints a window of text with the specified line at the top. If type is '-' the line is placed at the bot
tom; a '.' causes the line to be placed in the center.• A count gives the number of lines to be
displayed rather than double the number specified by the scroll option. On a CRT the screen is
cleared before display begins unless a count which is less than the screen size is given. The current
line is left at the last line printed.

! command

The remainder of the line after the '!' character is sent to a shell to be executed. Within the text of
command the characters '%' and '#' are expanded as in filenames and the character '!' is replaced
with the text of the previous command. Thus, in particular, '!!'repeats the last such shell escape. If
any such expansion is performed, the expanded line will be echoed. The current line is unchanged
by this command.
If there has been "[No write]" of the buffer contents since the last change to the editing buffer, then
a diagnostic will be printed before the command is executed as a warning. A single '!' is printed
when the command completes.

• Fonns 'z•' and •z1" also exist; 'z•' places the ament line in the center, surrounds it with lines of'-' characters and
leaves the current line at this line. The fonn 'zi' prints the window before 'z-' would. The characters'+', 'i' and'-' may
be repeated for cwnulative effect On some v2 editors, no type may be given.

Ex Reference Manual USD:16-13

(addr , addr) ! command

Takes the specified address range and supplies it as standard input to command; the resulting output
then replaces the input lines.

($)=

Prints the line number of the addressed line. The current line is unchanged.

(.,.)>count flags
(.,.)<count flags

"D

Perform intelligent shifting on the specified lines;< shifts left and> shift right The quantity of shift
is determined by the shiftwidth option and the repetition of the specification character. Only white
space (blanks and tabs) is shifted; no non-white characters are discarded in a left-shift The current
line becomes the last line which changed due to the shifting.

An end-of-file from a terminal input scrolls through the file. The scroll option specifies the size of
the scroll, normally a half screen of text

(.+1 '.+1)
(.+1 , .+1) I

An address alone causes the addressed lines to be printed. A blank line prints the next line in the file.

(. , •) & options count flags

Repeats the previous substitute command.

(• , •) - options count flags

Replaces the previous regular expression with the previous replacement pattern from a substitution.

8. Regular expre~ions and substitute replacement patterns

8.1. Regular expr~ions

A regular expression specifies a set of strings of characters. A member of this set of strings is said to
be matched by the regular expression. Ex remembers two previous regular expressions: the previous reg
ular expression used in a substitute command and the previous regular expression used elsewhere (referred
to as the previous scanning regular expression.) The previous regular expression can always be referred to
by a null re, e.g.'//' or'??'.

8.2. Magic and nomagic

The regular expressions allowed by ex are consttucted in one of two ways depending on the setting
of the magic option. The ex and vi default setting of magic gives quick access to a powerful set of regular
expression metacharacters. The disadvantage of magic is that the user must remember that these meta
characters are magic and precede them with the character'\' to use them as "ordinary" characters. With
nomagic, the default for edit, regular expressions are much simpler, there being only two metacharacters.
The power of the other metacharacters is still available by preceding the (now) ordinary character with a
'\'. Note that'\' is thus always a metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of this option is
magic.t

t To discern what is true with nomagic it suffices to remember that the only special characters in this case will be •j• at the
beginning of a regular expression, '$' at the end of a regular expression, and'\'. With nomagic the characters,-, and '&'
also lose their s~ial meanings related to the replacement pattern of a substiblte.

USD:16-14 Ex Reference Manual

8.3. Basic regular expreuion summary

The following basic constructs are used to construct magic mode regular expressions.

char An ordinary character matches itself. The characters 't' at the beginning of a line, '$' at

t
$

[string]

the end of line, '•' as any character other than the first, '.', '\', '[', and ,-, are not ordi
nary characters and must be escaped (preceded) by '\' to be treated as such.

At the beginning of a pattern forces the match to succeed only at the beginning of a line.

At the end of a regular expression f<X'CeS the match to succeed only at the end of the line.

Matches any single character except the new-line character.

Forces the match to occur only at the beginning of a ''variable'' or ''word''; that is,
either at the beginning of a line, or just before a letter, digit, or underline and after a
character not one of these.

Similar to '\<', but matching the end of a "variable" or "word", i.e. either the end of
the line or before character which is neither a letter, nor a digit, nor the underline charac
ter.

Matches any (single) character in the class defined by string. Most characters in string
define themselves. A pair of characters separated by '-' in string defines the set of
characters collating between the specified lower and upper bounds, thus '[a-z]' as a reg
ular expression matches any (single) lower-case letter. If the first character of string is
an 'i' then the construct matches those characters which it otherwise would not; thus
'[ia-z]' matches anything but a lower-case letter (and of course a newline). To place
any of the characters 'f', '[',or'-' in string you must escape them with a preceding '\'.

8.4. Combining regular expression primitives

The concatenation of two regular expressions matches the leftmost and then longest string which can
be divided with the first piece matching the first regular expression and the second piece matching the
second. Any of the (single character matching) regular expressions mentioned above may be followed by
the character '*' to form a regular expression which matches any number of adjacent occurrences (includ
ing 0) of characters matched by the regular expression it follows.

The character ,-, may be used in a regular expression, and matches the text which defined the
replacement part of the last substitute command. A regular expression may be enclosed between the
sequences '\(' and '\)' with side effects in the substitute replacement patterns.

8.5. Substitute replacement patterns

The basic metacharacters for the replacement pattern are ' & ' and ,_,; these are given as '\&' and '\-'
when nomagic is set Each instance of ' & ' is replaced by the characters which the regular expression
matched. The metacharacter ,_, stands, in the replacement pattern, for the defining text of the previous
replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the escaping char
acter '\'. The sequence '\n' is replaced by the text matched by the n-th regular subexpression enclosed
between'\(' and'\)' .t The sequences '\u' and '\l' cause the immediately following character in the replace
ment to be converted to upper- or lower-case respectively if this character is a letter. The sequences '\U'
and '\L' turn such conversion on, either until '\E' or '\e' is encountered, or until the end of the replacement
pattern.

t When nested, parenthesized subexpressions are present, n is detennined by counting occurrences of '\(' starting from the
left.

Ex Reference Manual USD:16-15

9. Option descriptions

autoindent, ai default noai

Can be used to ease the preparation of structured program text. At the beginning of each append,
change or insert command or when a new line is opened or created by an append, change, insert,
or substitute operation within open or visual mode, a l<ds at the line being appended after, the
first line changed or the line inserted before and cakulates the amount of white space at the start of
the line. It then aligns the cursor at the level of indentation so determined.

If the user then types lines of text in, they will continue to be justified at the displayed indenting
level. If more white space is typed at the beginning of a line, the following line will start aligned
with the first non-white character of the previous line. To back the cursor up to the preceding tab
stop one can hit "D. The tab stops going backwards are defined at multiples of the shiftwidth option.
You cannot backspace over the indent, except by sending an end-of-file with a "D.

Specially processed in this mode is a line with no characters added to it, which turns into a com
pletely blank line (the white space provided for the autoindent is discarded.) Also specially pro
cessed in this mode are lines beginning with an 'i' and immediately followed by a "D. This causes
the input to be repositioned at the beginning of the line, but retaining the previous indent for the next
line. Similarly, a 'O' followed by a "D repositions at the begirming but without retaining the previous
indent.

Autoindent doesn't happen in global commands or when the input is not a terminal.

autoprint, ap default ap

Causes the current line to be printed after each delete , copy , join, move , substitute , t, undo or shift
command. This has the same effect as supplying a trailing 'p' to each such command. Autoprint is
suppressed in globals, and only applies to the last of many commands on a line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the current file if you have modified it and give a
next, rewind, stop, tag, or ! command, or a "f (switch files) or "] (tag goto) command in visual.
Note, that the edit and e:x commands do not autowrite. In each case, there is an equivalent way of
switching when autowrite is set to avoid the autowrite (edit for next, rewind! for .I rewind, stop!
for stop, tag! for tag, shell for!, and :e #and a :ta! command from within visual).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the input A
complaint is registered the first time a backspace character is discarded Beautify does not apply to
command input.

directory, dir default: dir=/trnp

Specifies the directory in which a places its buffer file. If this directory in not writable, then the
editor will exit abruptly when it fails to be able to create its buffer there.

edcompatible default noedcompatible

Causes the presence of absence of g and c suffixes on substitute commands to be remembered, and to
be toggled by repeating the suffices. The suffix r makes the substitution be as in the - command,
instead of like &.

errorbells, eh default: noeb

Error messages are preceded by a bell.* If possible the editor always places the error message in a

• Bell ringing in open and visual on errors is not suppressed by setting noeb.

USD:16-16 Ex Reference Manual

standout mode of the terminal (such as inverse video) instead of ringing the bell.

hardtabs, ht default: ht=8

Gives the boundaries on which termmal hardware tabs are set (or on which the system expands tabs).

ignorecase, ic default: noic

lisp

list

All upper case characters in the text are mapped to lower case in regular expression matching. In
addition, all upper case characters in regular expressions are mapped to lower case except in charac
ter class specifications.

default: nolisp

Autoindent indents appropriately for lisp code, and the () { } [[and]] commands in open and visual
are modified to have meaning for lisp.

default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines as in the
list command.

magic default: magic for ex and vit

mesg

If nomagic is set, the number of regular expression metacharacters is greatly reduced, with only 'i'
and'$' having special effects. In addition the metacharacters ,_, and'&' of the replacement pattern
are treated as normal characters. All the normal metacharacters may be made magic when nomagic
is set by preceding them with a '\'.

default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode, if nomesg is
set.

modeline default: nomodeline

If modeline is set, then the first 5 lines and the last five lines of the file will be checked for ex com
mand lines and the comands issued. To be recognized as a command line, the line must have the
string ex: or vi: preceeded by a tab or a space. This string may be anywhere in the line and any
thing after the : is interpeted as editor commands. This option defaults to off because of unexpected
behavior when editting files such as !etc!passwd.

number, nu default: nonumber

Causes all output lines to be printed with their line numbers. In addition each input line will be
prompted for by supplying the line number it will have.

open default: open

If noopen, the commands open and visual are not permitted. This is set for edit to prevent confu
sion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage returns when
printing more than one (logical) line of output, greatly speeding output on terminals without address
able cursors when text with leading white space is printed.

t Nomagic for edi.J.

Ex Reference Manual USD:16-17

paragraphs, para default: para=IPLPPPQPP Llbp

Specifies the paragraphs for the { and } operations in open and visual. The pairs of characters in the
option's value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a ':'.

redraw default noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb terminal (e.g.
during insertions in visual the characters to the right of the cursor position are refreshed ~ each
input character is typed.) Useful only at very high speed.

remap default remap

If on, macros are repeatedly tried until they are unchanged. For example, if o is mapped to 0, and 0
is mapped to I, then if remap is set, o will map to I, but if noremap is set, it will map to 0.

report default: report=5t

Specifies a threshold for feedback from commands. Any command which modifies more than the
specified number of lines will provide feedback ~ to the scope of its changes. For commands such
~ global , open, undo , and visual which have potentially more far reaching scope, the net change in
the number of lines in the buffer is presented at the end of the command, subject to this same thres
hold. Thus notification is suppressed during a global command on the individual commands per
formed.

scroll default: scroll=1h window

Determines the number of logical lines scrolled when an end-of-file is received from a terminal input
in command mode, and the number of lines printed by a command mode z command (double the
value of scroll).

sections default: sections=SHNHH HU

Specifies the section macros for the [[and]] operations in open and visual. The pairs of characters
in the options's value are the names of the macros which start paragraphs.

shell, sh default: sh=lbinlsh

Gives the path name of the shell forked for the shell escape command '! ', and by the shell command.
The default is taken from SHELL in the environment, if present

shiftwidth, SW default: sw=8

Gives the width a software tab stop, used in reverse tabbing with "D when using autoindent to
append text, and by the shift commands.

showmatch, sm default: nosm

In open and visual mode, when a) or } is typed, move the cursor to the matching (or { for one
second if this matching character is on the screen. Extremely useful with lisp.

slowopen, slow terminal dependent

Affects the display algorithm used in visual mode, holding off display updating during input of new
text to improve throughput when the terminal in use is both slow and unintelligent See An Introduc
tion to Display Editing with Vi for more details.

t 2 for edit.

USD:16-18 Ex Reference Manual

tabstop, ts default: ts=8

The editor expands tabs in the input file to be on tabstop boundaries for the purposes of display.

taglength, d default: d=O

tags

term

terse

warn

Tags are not significant beyond this many characters. A value of zero (the default) means that all
characters are significant

default: tags=tags /usr/libltags

A path of files to be used as tag files f« the tag command. A requested tag is searched f« in the
specified files, sequentially. By default, files called tags are searched for in the current directory and
in /usr/lib (a master file for the entire system).

from environment TERM

The terminal type of the output device.

default: noterse

Shorter error diagnostics are produced for the experienced user.

default: warn

Warn if there has been '[No write since last change]' before a'!' command escape.

window default: window=speed dependent

The number of lines in a text window in the visual command The default is 8 at slow speeds (600
baud or less), 16 at medium speed (l~ baud), and the full screen (minus one line) at higher speeds.

w300, w1200, w9600

These are not true options but set window only if the speed is slow (300), medium (1200), or high
(9600), respectively. They are suitable for an EXINIT and make it easy to change the 8/16/full
screen rule.

wrapscan, ws default: ws

Searches using the regular expressions in addressing will wrap around past the end of the file.

wrapmargin, wm default: wm=O

Defines a margin for automatic wrapover of text during input in open and visual modes. See An
Introduction to Text Editing with Vi for details.

writeany, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file which the sys
tem protection mechanism will allow.

10. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line, 256 charac
ters per global command list, 128 characters per file name, 128 characters in the previous inserted and
deleted text in open or visual. 100 characters in a shell escape command, 63 characters in a string valued
option, and 30 characters in a tag name, and a limit of 250000 lines in the file is silently enforced.

The visual implementation limits the number of macros defined with map to 32, and the total number
of characters in macros to be less than 512.

Acknowledgments. Chuck Haley contributed greatly to the early development of ex. Bruce Englar
encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0 through 2.7, and
created the framework that users see in the present editor. Marie Horton added macros and other features

Ex Reference Manual USD:16-19

and made the editor work on a large number of terminals and Unix systems.

JOVE Manual for UNIX Users

Jonathan PayM
(revised for 4.3BSD by Doug Kingston and Mark Seiden)

1. Introduction

JOVE• is an advanced, self-documenting, customizable real-time display editor. It (and this tutorial introduction) are
based on the original EMACS editor and user manual written at Ml.T. by Richard Stallman+.

JOVE is considered a display editor because normally the text being edited is visible on the screen and is updated
automatically as you type your commands.

It's considered a real-titM editor because the display is updated very frequently, usually after each character or pair
of characters you type. This minimlles the amount of information you must keep in your head as you edil

JOVE is advanced because it provides facilities that go beyond simple insertion and deletion: filling of text;
automatic indentations of programs; view more than one file at once; and dealing in terms of characters, words,
lines, sentences and paragraphs. It is much easier to type one command meaning "go to the end of the paragraph"
than to find the desired spot with repetition of simpler commands.

Self-documenting means that at almost any time you can easily find out what a command does, or to find all the
commands that pertain to a topic.

Customizable means that you can change the definition of JOVE commands in little ways. For example, you can
rearrange the command set; if you prefer to use arrow keys for the four basic cursor motion commands (up, down,
left and right), you can. Another sort of customization is writing new commands by combining built in commands.

2. The Organization or the Screen

JOVE divides the screen up into several sections. The biggest of these sections is used to display the text you are
editing. The terminal's cursor shows the position of point, the location at which editing takes place. While the cur
sor appears to point at a character, point should be thought of as between characters; it points before the character
that the cursor appears on top of. Terminals have only one cursor, and when output is in progress it must appear
where the typing is being done. This doesn't mean that point is moving; it is only that JOVE has no way of showing
you the location of point except when the terminal is idle.

The lines of the screen are usually available for displaying text but sometimes are pre-empted by typeout from cer
tain commands (such as a listing of all the editor commands). Most of the. time, output from commands like these is
only desired for a short period of time, usually just long enough to glance at it. When you have finished looking at
the output, you can type Space to make your text reappear. (Usually a Space that you type inserts itself, but when
there is typeout on the screen, it does nothing but get rid of that). Any other command executes normally, after
redrawing your text

2.1. The Message Line

The bottom line on the screen, called the message line, is reserved for printing messages and for accepting input
from the user, such as filenames or search strings. When JOVE prompts for input, the cursor will temporarily appear
on the bottom line, waiting for you to type a string. When you have finished typing your input, you can type a
Return to send it to JOVE. If you change your mind about running the command that is waiting for input, you can
type Control-G to abort, and you can continue with your editing.

When JOVE is prompting for a filename, all the usual editing facilities can be used to fix typos and such; in addition,
JOVE has the following extra functions:

"N Insert the next filename from the argument list

*JOVE stands for Jonathan's Own Version of Emacs.
+Although JOVE is meant to be compatible with EMACS, and indeed many of the basic commands are very similar, there
are some major differences between the two editors, and you should not rely on their behaving identically.

USD:17-2 JOVE Manual for UNIX Users

"P Insert the previous filename from the argument list.

"R Insert the full pathname of the file in the current buffer.

Sometimes you will see .;..more- on the message line. This happens when typeout from a command is too long to
fit in the screen. It means that if you type a Space the next screenful of typeout will be printed. H you are not
interested, typing anything but a Space will cause the rest of the output to be discarded. Typing C-0 will discard the
output and print Aborted where the --more-· was. Typing any other command will discard the rest of the output and
also execute the command.

The message line and the list of filenames from the shell command that invoked JOVE are kept in a special buffer
called Minibuf that can be edited like any other buffer.

2.2. The Mode Line

At the bottom of the screen, but above the message line, is the mode line. The mode line format looks like this:

JOVE (major minor) Buffer: bufr "file" •

ma.jor is the name of the current major mode. At any time, JOVE can be in only one major mode at a time. Currently
there are only four major modes: Fundamental, Text, Lisp and C.

minor is a list of the minor modes that are turned on. Abbrev means that Word Abbrev mode is on; AI means that
Auto Indent mode is on; Fill means that Auto Fill mode is on; OvrWt means that Over Write mode is on. Def
means that you are in the process of defining a keyboard macro. This is not really a mode, but it's useful to be rem
inded about it. The meanings of these modes are described later in this document.

bufr is the name of the currently selected buffer. Each buffer has its own name and holds a file being edited; this is
how JOVE can hold several files at once. But at any given time you are editing only one of them, the selected buffer.
When we speak of what some command does to "the buffer", we are talking about the currently selected buffer.
Multiple buffers makes it easy to switch around between several files, and then it is very useful that the mode line
tells you which one you are editing at any time. (You will see later that it is possible to divide the screen into multi
ple windows, each showing a different buffer. If you do this, there is a mode line beneath each window.)

file is the name of the file that you are editing. This is the default filename for commands that expect a filename as
input

The asterisk at the end of the mode line means that there are changes in the buffer that have not been saved in the
file. H the file has not been changed since it was read in or saved, there is no asterisk.

3. Command Input Conventions

3.1. Notational Conventions for ASCil Characters

In this manual, "Control" characters (that is, characters that are typed with the Control key and some other key at the
same time) are represented by "C-" followed by another character. Thus, C-A is ·the character you get when you
type A with the Control key (sometimes labeled CTRL) down. Most control characters when present in the JOVE

buffer are displayed with a caret; thus, "A for C-A. Rubout (or DEL) is displayed as"?, escape as"[.

3.2. Command and Filename Completion

When you are typing the name of a JOVE command, you need type only enough letters to make the name unambigu
ous. At any point in the course of typing the name, you can type question mark (?) to see a list of all the commands
whose names begin with the characters you've already typed; you can type Space to have JOVE supply as many
characters as it can; or you can type Return to complete the command if there is only one possibility. For example,
if you have typed the letters "au" and you then type a question mark, you will see the list

auto-execute-command
auto-execute-macro
auto-fill-mode
auto-indent-mode

If you type a Return at this point, JOVE will complain by ringing the bell, because the letters you've typed do not

JOVE Manual for UNIX Users USD:17-3

unambiguously specify a single command. But if you type Space, JOVE will supply the characters "to-" because all
commands that begin "au" also begin "auto-". You could then type the letter "f followed by either Space or Return,
and JOVE would complete the entire command.

Whenever JOVE is prompting you for a filename, say in the find-file command, you also need only type enough of
the name to make it unambiguous with respect to files that already exist. In this case, question mark and Space
work just as they do in command completion, but Return always accepts the name just as you've typed it, because
you might want to create a new file with a name similar to that of an existing file.

4. Commands and Variables

JOVE is composed of commands which have long names such as next-line. Then keys such as C-N are connected to
commands through the command dispatch tab~. When we say that C-N moves the cursor down a line, we are
glossing over a distinction which is unimportant for ordinary use, but essential for simple customization: it is the
command next-line which knows how to move a down line, and C-N moves down a line because it is connected to
that command. The name fC»" this connection is a binding; we say that the key C-N is bound to the command next
line.

Not all commands are bound to keys. To invoke a command that isn't bound to a key, you can type the sequence
ESC X, which is bound to the command execute-named-command. You will then be able to type the name of what
ever command you want to execute on the message line.

Sometimes the description of a command will say "to change this, set the variable mumble-Joo". A variable is a
name used to remember a value. JOVE contains variables which are there so that you can change them if you want to
customize. The variable's value is examined by some command, and changing that value makes the command
behave differently. Until you are interesting in customizing JOVE, you can ignore this infonnation.

4.1. Prefix Characters

Because there are more command names than keys, JOVE provides prefix characters to increase the number of com
mands that can be invoked quickly and easily. When you type a prefix character JOVE will wait for another charac
ter before deciding what to do. If you wait more than a second or so, JOVE will print the prefix character on the mes
sage line as a reminder and leave the cursor down there until you type your next character. There are two prefix
characters built into JOVE: Escape and Control-X. How the next character is interpreted depends on which prefix
character you typed. For example, if you type Escape followed by B you'll run backward-word, but if you type
Control-X followed by B you'll run select-buffer. Elsewhere in this manual, the Escape key is indicated as "ESC",
which is also what JOVE displays on the message line for Escape.

4.2. Help

To get a list of keys and their associated commands, you type ESC X describe-bindings. If you want to describe a
single key, ESC X describe-key will work. A description of an individual command is available by using ESC X
describe-command, and descriptions of variables by using ESC X describe-variable. If you can't remember the
name of the thing you want to know about, ESC X apropos will tell you if a command or variable has a given string
in its name. For example, ESC X apropos describe will list the names of the four describe commands mentioned
briefly in this section.

S. Basic Editing Commands

5.1. Inserting Text

To insert printing characters into the text you are editing, just type them. All printing characters you type are
inserted into the text at the cursor (that is, at point), and the cursor moves forward. Any characters after the cursor
move forward too. If the text in the buffer is FOOBAR, with the cursor before the B, then if you type XX, you get
FOOXXBAR, with the cursor still before the B.

To correct text you have just inserted, you can use Rubout Rubout deletes the character before the cursor (not the
one that the cursor is on top of or under; that is the character after the cursor). The cursor and all characters after it
move backwards. Therefore, if you typing a printing character and then type Rubout, they cancel out.

USD:17-4 JOVE Manual for UNIX Users

To end a line and start typing a new one, type Return. Return operates by inserting a line-separator, so if you type
Return in the middle of a line, you break the line in two. Because a line-separator is just a single character, you can
type Rubout at the beginning of a line to delete the line-separator and join it with the preceding line.

As a special case, if you type Return at the end of a line and there are two or more empty lines just below it, JOVE
does not insert a line-separator but instead merely moves to the next (empty) line. This behavior is convenient when
you want to add several lines of text in the middle of a buffer. You can use the Conttol-0 (newliM-and-backup)
command to "open" several empty lines at once; then you can insert the new text, filling up these empty lines. The
advantage is that JOVE does not have to redraw the bottom part of the screen for each Return you type, as it would
ordinarily. That "redisplay" can be both slow and distracting.

If you add too many characters to one line, without breaking it with Return, the line will grow too long to display on
one screen line. When this happens, JOVE puts an"!" at the extreme right margin, and doesn't bother to display the
rest of the line unless the cursor happens to be in iL The "!" is not part of your text; conversely, even though you
can't see the rest of your line, it's still there, and if you break the line, the "!" will go away.

Direct insertion woits for printing characters and space, but· other characters act as editing commands and do not
insert themselves. If you need to insert a control character, Escape, or Rubout, you must first quote it by typing the
Control-Q command first.

5.2. Moving the Cursor

To do more than insert characters, you have to know how to move the cursor. Here are a few of the commands for
doing that.

C-A Move to the beginning of the line.

C-E

C-F

C-B

C-N

C-P

ESC<

ESC>

ESC,

ESC.

Move to the end of the line.

Move forward over one character.

Move backward over one character.

Move down one line, vertically. If you start in the middle of one line, you end in the middle of
the next.

Move up one line, vertically.

Move to the beginning of the entire buffer.

Move to the end of the entire buffer.

Move to the beginning of the visible window.

Move to the end of the visible window.

5.3. Erasing Text

Rubout

C-D

C-K

Delete the character before the cursor.

Delete the character after the cursor.

Kill to the end of the line.

You already know about the Rubout command which deletes the character before the cursor. Another command,
Control-D, deletes the character after the cursor, causing the rest of the text on the line to shift left. If Control-Dis
typed at the end of a line, that line and the next line are joined together.

To erase a larger amount of text, use the Control-K command, which kills a line at a time. If Control-K is done at
the beginning or middle of a line, it kills all the text up to the end of the line. If Control-K is done at the end of a
line, it joins that line and the next line. If Control-K is done twice, it kills the rest of the line and the line separator
also.

5.4. Files - Saving Your Work

The commands above are sufficient for creating text in the JOVE buffer. The more advanced JOVE commands just
make things easier. But to keep any text permanently you must put it in afile. Files are the objects which UNIXt

t UNIX is a trademark of Bell Laboratories.

JOVE Manual for UNIX Users USD:17-5

uses for storing data for a length of time. To tell JOVE to read text into a file, choose a filename, such as Joo.bar, and
type C-X C-RJoo.bar<return>. This reads the file Joo.bar so that its contents appear on the screen for editing. You
can make changes, and then save the file by typing C-X C-S (save-file). This makes the changes permanent and
actually changes the file Joo.bar. Until then, the changes are only inside JOVE, and the file Joo.bar is not really
changed. If the file Joo.bar doesn't exist, and you want to create it, read it as if it did exist. When you save your
text with C-X C-S the file will be created.

S.S. Exiting and Pausing - Leaving JOVE

The command C-X C-C (exit-jove) will terminate the JOVE session and return to the shell. If there are modified but
unsaved buffers, JOVE will ask you for confirmation, and you can abort the command, look at what buffers are
modified but unsaved using C-X C-B (list-buffers), save the valuable ones, and then exit. If what you want to do, on
the other hand, is preserve the editing session but return to the shell temporarily you can (under Berkeley UNIX
only) issue the command ESC S (pause-jove), do your UNIX work within the c-shell, then return to JOVE using the/g
command to resume editing at the point where you paused. For this sort of situation you might consider using an
interactive shell (that is, a shell in a JOVE window) which lets you use editor commands to manipulate your UNIX
commands (and their output) while never leaving the editor. (The interactive shell feature is described below.)

5.6. Giving Numeric Arguments to JOVE Commands

Any JOVE command can be given a numeric argument. Some commands interpret the argument as a repetition
count For example, giving an argument of ten to the C-F command (forward-character) moves forward ten charac
ters. With these commands, no argument is equivalent to an argument of 1.

Some commands use the value of the argument, but do something peculiar (or nothing) when there is no argument.
For example, ESC G (goto-line) with an argument n goes to the beginning of the n'th line. But ESC G with no
argument doesn't do anything. Similarly, C-K with an argument kills that many lines, including their line separa
tors. Without an argument, C-K when there is text on the line to the right of the cursor kills that text; when there is
no text after the cursor, C-K deletes the line separator.

The fundamental way of specifying an argument is to use ESC followed by the digits of the argument, for example,
ESC 123 ESC G to go to line 123. Negative arguments are allowed, although not all of the commands know what to
do with one.

Typing C-U means do the next command four times. Two such C-U's multiply the next command by sixteen.
Thus, C-U C-U C-F moves forward sixteen characters. This is a good way to move forward quickly, since it moves
about 114 of a line on most terminals. Other useful combinations are: C-U C-U C-N (move down a good fraction of
the screen), C-U C-U C-0 (make "a lot" of blank lines), and C-U C-K (kill four lines - note that typing C-K four
times would kill 2 lines).

There are other, terminal-dependent ways of specifying arguments. They have the same effect but may be easier to
type. If your terminal has a numeric keypad which sends something recognizably different from the ordinary digits,
it is possible to program JOVE to to allow use of the numeric keypad for specifying· arguments.

5.7. The Mark and the Region

In general, a command that processes an arbitrary part of the buffer must know where to start and where to stop. In
JOVE, such commands usually operate on the text between point and the mark. This body of text is called the
region. To specify a region, you set point to one end of it and mark at the other. It doesn't matter which one comes
earlier in the text

C-@ Set the mark where point is.

C-X C-X Interchange mark and point.

For example, if you wish to convert part of the buffer to all upper-case, you can use the C-X C-U command, which
operates on the text in the region. You can first go to the beginning of the text to be capitalized, put the mark there,
move to the end, and then type C-X C-U. Or, you can set the mark at the end of the text, move to the beginning, and
then type C-X C-U. C-X C-U runs the command case-region-upper, whose name signifies that the region, or every
thing between i)oint and mark, is to be capitalized.

USD:17-6 JOVE Manual for UNIX Users

The way to set the marlc is with the C-@ command or (on some terminals) the C-Space command They set the
mark where point is. Then you can move point away, leaving mark behind. When the mark is set, "[Point pushed]"
is printed on the message line.

Since terminals have only one cursor, there is no way for JOVE to show you where the mark is located. You have to
remember. The usual solution to this problem is to set the mark and then use it soon, before you forget where it is.
But you can see where the mark is with the command C-X C-X which puts the mark where point was and point
where mark was. The extent of the region is unchanged, but the cursor and point are now at the previous location of
the mark.

5.8. The Ring of Marks

Aside from delimiting the region, the mark is also useful for remembering a spot that you may want to go back to.
To make this feature more useful, JOVB remembers 16 previous locations of the mark. Most commands that set the
mark push the old mark onto this stack. To return to a marked location, use C-U C-@. This moves point to where
the mark was, and restores the mark from the stack of former marks. So repeated use of this command moves point
to all of the old marks on the stack, one by one. Since the stack is actually a ring, enough uses of C-U C-@ bring
point back to where it was originally.

Some commands whose primary purpose is to move point a great distance take advantage of the stack of marks to
give you a way to undo the command The best example is ESC <, which moves to the beginning of the buffer. If
there are more than 22 lines between the beginning of the buffer and point, ESC < sets the mark first, so that you can
use C-U C-@ or C-X C-X to go back to where you were. You can change the number of lines from 22 since it is
kept in the variable mark-threshold. By setting it to 0, you can make these commands always set the mark. By set
ting it to a very large number you can prevent these commands from ever setting the mark. If a command decides to
set the mark, it prints the message [Point pushed].

5.9. Killing and Moving Text

The most common way of moving or copying text with JOVE is to kill it, and get it back again in one or more places.
This is very safe because the last several pieces of killed text are all remembered, and it is versatile, because the
many commands for killing syntactic units can also be used for moving those units. There are also other ways of
moving text for special purposes.

5.10. Deletion and Killing

Most commands which erase text from the buffer -save it so that you can get it back if you change your mind, or
move or copy it to other parts of the buffer. These commands are known as kill commands. The rest of the com
mands that erase text do not save it; they are known as delete commands. The delete commands include C-D and
Rubout, which delete only one character at a time, and those commands that delete only spaces or line separators.
Commands that can destroy significant amounts of nontrivial data generally kill. A command's name and descrip
tion will use the words kill or delete to say which one it does.

C-D Delete next character.

Rubout

ESC\

C-XC-0

C-K

C-W

ESCO

ESCRubout

ESCK

C-XRubout

Delete previous character.

Delete spaces and tabs around point.

Delete blank lines around the current line.

Kill rest of line or one or more lines.

Kill region (from point to the mark).

Kill word

Kill word backwards.

Kill to end of sentence.

Kill to beginning of sentence.

JOVE Manual for UNIX Users USD:17-7

5.11. Deletion

The most basic delete commands are C-D and Rubout. C-D deletes the character after the cursor, the one the cursor
is "on top of' or "underneath". The cursor doesn't move. Rubout deletes the character before the cursor, and moves
the cursor back. Une separators act like normal characters when deleted. Actually, C-D and Rubout aren't always
delete commands; if you give an argument, they kill instead. This prevents you from losing a great deal of text by
typing a large argument to a C-D er Rubout.

The other delete commands are those which delete only formatting characters: spaces, tabs, and line separators.
ESC \(delete-white-space) deletes all the spaces and tab characters before and after point C-X C-0 (delete-blank
lines) deletes all blank lines after the current line, and if the current line is blank deletes all the blank lines preceding
the current line as well (leaving one blank line, the current line).

5.12. Killing by Lines

The simplest kill command is the C-K command. If issued at the beginning of a line, it kills all the text on the line,
leaving it blank. If given on a line containing only white space (blanks and tabs) the line disappears. As a conse
quence, if you go to the front of a non-blank line and type two C-K' s, the line disappears completely.

More generally, C-K kills from point up to the end of the line, unless it is at the end of a line. In that case, it kills
the line separator following the line, thus merging the next line into the current one. Invisible spaces and tabs at the
end of the line are ignored when deciding which case applies, so if point appears to be at the end of the line, you can
be sure the line separator will be killed.

C-K with an argument of zero kills all the text before point on the current line.

S.13. Other Kill Commands

A kill command which is very general is C-W (kill-region), which kills everything between point and the mark.*
With this command, you can kill and save contiguous characters, if you first set the mark at one end of them and go
to the other end.

Other syntactic units can be killed, too; words, with ESC Rubout and ESC D; and, sentences, with ESC Kand C-X
Rubout.

S.14. Un-killing

Un-killing (yanking) is getting back text which was killed. The usual way to move or copy text is to kill it and then
un-kill it one or more times.

C-Y

ESCY

ESCW

Yank (re-insert) last killed text.

Replace re-inserted killed text with the previously killed text.

Save region as last killed text without killing.

Killed text is pushed onto a ring buffer called the kill ring that remembers the last 10 blocks of text that were killed ..
(Why it is called a ring buffer will be explained below). The command C-Y (yank) reinserts the text of the most
recent kill. It leaves the cursor at the end of the text, and puts the mark at the beginning. Thus, a single C-Y undoes
theC-W.

If you wish to copy a block of text, you might want to use ESC W (copy-region), which copies the region into the
kill ring without removing it from the buffer. This is approximately equivalent to C-W followed by C-Y, except that
ESC W does not mark the buffer as "changed" and does not cause the screen to be rewritten.

There is only one kill ring shared among all the buffers. After visiting a new file, whatever was last killed in the
previous file is still on top of the kill ring. This is important for moving text between files.

S.15. Appending Kills

Normally, each kill command pushes a new block onto the kill ring. However, two or more kill commands immedi
ately in a row (without any other intervening commands) combine their text into a single entry on the ring, so that a

*Often users switch this binding from C-W to C-X C-K because it is too easy to hit C-W accidentally.

USD:17-8 JOVE Manual for UNIX Users

single C-Y command gets it all back as it was before it was killed. This means that you don't have to kill all the text
in one command; you can keep killing line after line, or word after word, until you have killed it all, and you can
still get it all back at once.
Commands that kill forward from point add onto the end of the previous killed text Commands that kill backward
from point add onto the beginning. This way, any sequence of mixed forward and backward kill commands puts all
the killed text into one entry without needing rearrangement.

5.16. Un-killing Earlier Kills

To recover killed text that is no longer the most recent kill, you need the ESC Y (yank-pop) command. The ESC Y
command can be used only after a C-Y (yank) command or another ESC Y. It takes the un-killed text inserted by
the C-Y and replaces it with the text from an earlier kill. So, to recover the text of the next-to-the-last kill, you first
·use C-Y to recover the last kill, and then discard it by use of ESC Y to move back to the previous kill.

You can think of all the last few kills a5 living on a ring. After a C-Y command, the text at the front of the ring is
also present in the buffer. ESC Y "rotates" the ring bringing the previous string of text to the front and this text
replaces the other text in the buffer as well. Enough ESC Y commands can rotate any part of the ring to the front,
so you can get at any killed text so long as it is recent enough to be still in the ring. Eventually the ring rotates all
the way around and the most recently killed text comes to the front (and into the buffer) again. ESC Y with a nega
tive argument rotates the ring backwards.

When the text you are looking for is brought into the buffer, you can stop doing ESC Y's and the text will stay
there. It's really just a copy of what's at the front of the ring, so editing it does not change what's in the ring. And
the ring, once rotated, stays rotated, so that doing another C-Y gets another copy of what you rotated to the front
withESC Y.

If you change your mind about un-killing, C-W gets rid of the un-killed text, even after any number of ESC Y's.

6. Searching

The search commands are useful for finding and moving to arbitrary positions in the buffer in one swift motion. For
example, if you just ran the spell program on a paper and you want to correct some word, you can use the search
commands to move directly to that word. There are two flavors of search: string search and incremental search.
The former is the default flavor-if you want to use incremental search you must rearrange the key bindings (see
below).

6.1. Conventional Search

C-S

C-R

Search forward.

Search backward.

To search for the string "FOO" you type .. C-S FOO<retum>". If JOVE finds FOO it moves point to the end of it; oth
eiwise JOVE prints an error message and leaves point unchanged C-S searches forward from point so only
occurrences of FOO after point are found. To search in the other direction use C-R. It is exactly the same as C-S
except it searches in the opposite direction, and if it finds the string, it leaves ·point at the beginning of it, not at the
endasinC-S.

While JOVE is searching it prints the search string on the message line. This is so you know what JOVE is doing.
When the system is heavily loaded and editing in exceptionally large buffers, searches can take several (sometimes
many) seconds.

JOVE remembers the last search string you used, so if you want to search for the same string you can type "C-S
<return>". If you mistyped the last search string, you can type C-S followed by C-R. C-R, as usual inserts the
default search string into the minibuffer, and then you can fix it up.

6.2. Incremental Search

This search command is unusual in that is is incremental; it begins to search before you have typed the complete
search string. As you type in the search string, JOVE shows you where it would be found When you have typed
enough characters to identify the place you want, you can stop. Depending on what you will do next, you may or
may not need to terminate the search explicitly with a Return first.

JOVE Manual for UNIX Users USD:17-9

The command to search is C-S (i-s~arch-forward). C-S reads in characters and positions the cursor at the first
occurrence of the characters that you have typed so far. If you type C-S and then F, the cursor moves in the text just
after the next "F'. Type an "O", and see the cwsor move to after the next "FO". After another "O", the cursor is
after the next "FOO". At the same time, the "FOO" has echoed on the message line.

If you type a mistaken character, you can rub it out. After the FOO, typing a Rubout makes the "O" disappear from
the message line, leaving only "FO". The cursor moves back in the buffer to the "FO". Rubbing out the "O" and
"F' moves the cursor back to where you started the search.

When you are satisfied with the place you have reached, you can type a Return, which stops searching, leaving the
cursor where the search brought iL Also, any command not specially meaningful in searches stops the searching
and is then executed. Thus, typing C-A would exit the search and then move to the beginning of the line. Return is
necessary only if the next character you want to type is a printing character, Rubout, Return, <X' another search com
mand, since those are the characters that have special meanings inside the search.

Sometimes you search for "FOO" and find it, but not the one you hoped to find. Perhaps there is a second FOO that
you forgot about, after the one you just found. Then type another C-S and the cwsor will find the next FOO. This
can be done any number of times. If you overshoot, you can return to previous finds by rubbing out the C-S's.

After you exit a search, you can search for the same string again by typing just C-S C-S: one C-S command to start
the search and then another C-S to mean "search again for the same string".

If your string is not found at all, the message line says "Failing I-search". The cursor is after the place where JOVE

found as much of your string as it could. Thus, if you search for FOOT and there is no FOOT, you might see the
cursor after the FOO in FOOL. At this point there are several things you can do. If your string was mistyped, you
can rub some of it out and correct it If you like the place you have found, you can type Return or some other JOVE

command to "accept what the search offered". Or you can type C-G, which undoes the search altogether and posi
tions you back where you started the search.

You can also type C-R at any time to start searching backwards. If a search fails because the place you started was
too late in the file, you should do this. Repeated C-R's keep looking backward for more occurrences of the last
search string. A C-S starts going forward again. C-R's can be rubbed out just like anything else.

6.3. Searching with Regular Expre~ions

In addition to the searching facilities described above, JOVE can search for patterns using regular expressions. The
handling of regular expressions in JOVE is like that of ed(1) or vi(1), but with some notable additions. The extra
metacharacters understood by JOVE are \<, \>, \I and\ {. The first two of these match the beginnings and endings of
words; Thus the search pattern, "\<Exec" would match all words beginning with the letters "Exec".

An \I signals the beginning of an alternative - that is, the pattern "foo\ lbar" would match either "foo" or "bar".
The "curly brace" is a way of introducing several sub-alternatives into a pattern. It parallels the D construct of regu
lar expressions, except it specifies a list of alternative words instead of just alternative characters. So the pattern
"foo\ {bar,baz\ }bie" matches "foobarbie" or "foobazbie".

JOVE only regards metacharacters as special if the variable match-regular-expressions is set to "on". The ability to
have JOVE ignore these characters is useful if you're editing a document about patterns and regular expressions or
when a novice is learning JOVE.

Another variable that affects searching is case-ignore-search. If this variable is set to "on" then upper case and
lower case letters are considered equal.

7. Replacement Commands

Global search-and-replace operations are not needed as often in JOVE as they are in other editors, but they are avail
able. In addition to the simple Replace operation which is like that found in most editors, there is a Query Replace
operation which asks, for each occurrence of the pattern, whether to replace it.

7.1. Global replacement

To replace every occurrence of FOO after point with BAR, you can do, e.g., "ESC R FOO<return>BAR" as the
replace-string command is bound to the ESC R. Replacement takes place only between point and the end of the
buffer so if you want to cover the whole buffer you must go to the beginning first.

USD:17-10 JOVE Manual for UNIX Users

7.2. Query Replace

If you want to change only some of the occurrences of FOO, not all, then the global replace-string is inappropriate;
Instead, use, e.g., "ESC Q FOCkreturn>BAR", to run the command query-replace-string. This displays each
occurrence of FOO and waits for you to say whether to replace it with a BAR. The things you can type when you
are shown an occurrence of FOO are:
Space to replace the FOO.

Rubout

Return

Period

!orP

C-RorR

C-W

u

to skip to the next FOO without replacing this one.

to stop without doing any more replacements.

to replace this FOO and then stop.

to replace all remaining FOO' s without asking.

to enter a recursive editing level, in case the FOO needs to be edited rather than just replaced with
a BAR. When you are done, exit the recursive editing level with C-X C-C and the next FOO will
be displayed.

to delete the FOO, and then start editing the buffer. When you are finished editing whatever is to
replace the FOO, exit the recursive editing level with C-X C-C and the next FOO will be
displayed.

move to the last replacement and undo it.

Another alternative is using replace-in-region which is just like replace-string except it searches only within the
region.

8. Commands for English Text

JOVE has many commands that work on the basic units of English text: words, sentences and paragraphs.

8.1. Word Commands

JOVE has commands for moving over or operating on words. By convention, they are all ESC commands.

ESC F Move Forward over a word.

ESC B Move Backward over a word

ESC D Kill forward to the end of a word.

ESCRubout Kill backward to the beginning of a word.

Notice how these commands form a group that parallels the character- based commands, C-F, C-B, C-D, and
Rubout.

The commands ESC F and ESC B move forward and backward over words. They are thus analogous to Control-F
and Control-B, which move over single characters. Like their Control- analogues, ESC F and ESC B move several
words if given an argument. ESC F with a negative argument moves backward like ESC B, and ESC B with a nega
tive argument moves forward. Forward motion stops right after the last letter of the word, while backward motion
stops right before the first letter.

It is easy to kill a word at a time. ESC D kills the word after point. To be precise, it kills everything from point to
the place ESC F would move to. Thus, if point is in the middle of a word, only the part after point is killed. If some
punctuation comes after point, and before the next word, it is killed along with the word. If you wish to kill only the
next word but not the punctuation, simply do ESC F to get to the end, and kill the word backwards with ESC
Rubout. ESC D takes arguments just like ESC F.

ESC Rubout kills the word before point. It kills everything from point back to where ESC B would move to. If
point is after the space in "FOO, BAR", then "FOO, " is killed. If you wish to kill just "FOO", then do a ESC B and
a ESC D instead of a ESC Rubout.

JOVE Manual for UNIX Users USD:l7-11

8.2. Sentence Commands

The JOVE commands fc.- manipulating sentences and paragraphs are mostly ESC commands, so as to resemble the
word-handling commands.

ESC A Move back to the beginning of the sentence.

ESC E Move forward to the end of the sentence.

ESC K Kill forward to the end of the sentence.

C-XRubout Kill back to the beginning of the sentence.

The commands ESC A and ESC E move to the beginning and end of the current sentence, respectively. They were
chosen to resemble Control-A and Control-E, which move to the beginning and end of a line. Unlike them, ESC A
and ESC E if repeated or given numeric arguments move over successive sentences. JOVE considers a sentence to
end wherever there is a".","?", or"!" followed by the end of a line or by one or more spaces. Neither ESC A nor
ESC E moves past the end of the line or spaces which delimit the sentence.

Just as C-A and C-E have a kill command, C-K, to go with them, so ESC A and ESC E have a corresponding kill
command ESC K which kills from point to the end of the sentence. With minus one as an argument it kills back to
the beginning of the sentence. Positive arguments serve as a repeat count.

There is a special command, C-X Rubout for killing back to the beginning of a sentence, because this is useful when
you change your mind in the middle of composing text

8.3. Paragraph Commands

The JOVE commands for handling paragraphs are
ESC [Move back to previous paragraph beginning.

ESC] Move forward to next paragraph end.

ESC [moves to the beginning of the current or previous paragraph, while ESC] moves to the end of the current or
next paragraph. Paragraphs are delimited by lines of differing indent, or lines with text formatter commands, or
blank lines. JOVE knows how to deal with most indented paragraphs correctly, although it can get confused by one
or two-line paragraphs delimited only by indentation.

8.4. Text Indentation Commands

Tab

LineFeed

ESCM

Indent "appropriately" in a mode-dependent fashion.

Is the same as Return, except it copies the indent of the line you just left.

Moves to the line's first non-blank character.

The way to request indentation is with the Tab command. Its precise effect depends on the major mode. In Text
mode, it indents to the next tab stop. In C mode, it indents to the "right" position for~ programs.

To move over the indentation on a line, do ESC M (first-non-blank). This command, given anywhere on a line,
positions the cursor at the first non-blank, non-tab character on the line.

8.S. Text Filling

Auto Fill mode causes text to be filled (broken up into lines that fit in a specified width) automatically as you type it
in. If you alter existing text so that it is no longer properly filled, JOVE can fill it again if you ask.

Entering Auto Fill mode is done with ESC X auto-fill-mode. From then on, lines are broken automatically at spaces
when they get longer than the desired width. To leave Auto Fill mode, once again execute ESC X auto-fill-mode.
When Auto Fill mode is in effect, the word Fill appears in the mode line.

If you edit the middle of a paragraph, it may no longer correctly be filled. To refill a paragraph, use the command
ESC J <fill-paragraph). It causes the paragraph that point is inside to be filled. All the line breaks are removed and
new ones inserted where necessary.

The maximum line width for filling is in the variable right-margin. Both ESC J and auto-fill make sure that no line
exceeds this width. The value of right-margin is initially 72.

USD:17-12 JOVE Manual for UNIX Users

Normally ESC J figures out the indent of the paragraph and uses that same indent when filling. If you want to
change the indent of a paragraph you set left-margin to the new position and type C-U ESC J. fill-paragraph, when
supplied a numeric argument, uses the value of left-margin.

If you know where you want to set the right margin but you don't know the actual value, move to where you want to
set the value and use the right-margin-here command. left-margin-here does the same for the left-margin variable.

8.6. Case Conversion Commands

ESCL

ESCU

ESCC

Convert following word to lower case.
Convert following word to upper case.

Capitali1.e the following word.

The word conversion commands are most useful. ESC L converts the word after point to lower case, moving past it.
Thus, successive ESC L's convert successive words. ESC U converts to all capitals instead, while ESC C puts the
first letter of the word into upper case and the rest into lower case. All these commands convert several words at
once if given an argument They are especially convenient for converting a large amount of text from all upper case
to mixed case, because you can move through the test using ESC L, ESC U or ESC C on each word as appropriate.

When given a negative argument, the word case conversion commands apply to the appropriate number of words
before point, but do not move point. This is convenient when you have just typed a word in the wrong case. You
can give the case conversion command and continue typing.

If a word case conversion command is given in the middle of a word, it applies only to the part of the word which
follows the cursor, treating it as a whole word

The other case conversion functions are case-region-upper and case-region-lower, which convert everything
between point and mark to the specified case. Point and mark remain unchanged.

8.7. Commands for Fixing Typos

In this section we describe the commands that are especially useful for the times when you catch a mistake on your
text after you have made it, or change your mind while composing text on line.

Rubout Delete last character.

ESC Rubout Kill last word.

C-XRubout

C-T

C-XC-T

ESC Minus ESC L

ESC Minus ESC U

ESC Minus ESC C

8.8. Killing Your Mistakes

Kill to beginning of sentence.

Transpose two characters.

Transpose two lines.

Convert last word to lower case.

Convert last word to upper case.

Convert last word to lower case with capital initial.

The Rubout command is the most important correction command. When used among printing (self-inserting) char
acters, it can be thought of as canceling the last character typed.

When your mistake is longer than a couple of characters, it might be more convenient to use ESC Rubout or C-X
Ruboul ESC Rubout kills back to the start of the last word, and C-X Rubout kills back to the start of the last sen
tence. C-X Rubout is particularly useful when you are thinking of what to write as you type it, in case you change
your mind about phrasing. ESC Rubout and C-X Rubout save the killed text for C-Y and ESC Y to retrieve.

ESC Rubout is often useful even when you have typed only a few characters wrong, if you know you are confused
in your typing and aren't sure what you typed. At such a time, you cannot correct with Rubout except by looking at
the screen to see what you did. It requires less thought to kill the whole word and start over again, especially if the
system is heavily loaded.

JOVE Manual for UNIX Users USD:17-13

If you were typing a command or command parameters, C-G will abort the command with no further processing.

8.9. Transposition

The common error of transposing two characters can be fixed with the C-T (transpose-characters) command Nor
mally, C-T transposes the two characters on either side of the cursor and moves the cursor forward one character.
Repeating the command several times "drags" a character to the right (Remember that point is considered to be
between two characters, even though the visible cursor in your terminal is on only one of them.) When given at the
end of a line, rather than switching the last character of the line with the line separator, which would be useless, C-T
transposes the last two characters on the line. So, if you catch your transposition error right away, you can fix it
with just a C-T. If you don't catch it so fast, you must move the cursor back to between the two characters.

To ttanspose two lines, use the C-X C-T (transpose-lines) command. The line containing the cursor is exchanged
with the line above it; the cursor is left at the beginning of the line following its original position.

8.10. Checking and Correcting Spelling

When you write a paper, you should correct its spelling at some point close to finishing it To correct the entire
buffer, do ESC X spell-buffer. This invokes the UNIX spell program, which prints a list of all the misspelled words.
JOVE catches the list and places it in a JOVE buffer called Spell. You are given an opportunity to delete from that
buffer any words that aren't really errors; then JOVE looks up each misspelled word and remembers where it is in the
buffer being corrected. Then you can go forward to each misspelled word with C-X C-N (next-e"or) and backward
with C-X C-P (previous-e"or). See the section entitledE"or Message Parsing.

9. File Handling

The basic unit of stored data is the file. Each program, each paper, lives usually in its own file. To edit a program
or paper, the editor must be told the name of the file that contains it. This is called visiting a file. To make your
changes to the file permanent on disk, you must save the file.

9.1. Visiting Files

C-X C-V Visit a file.

C-XC-R SameasC-XC-V.

C-XC-S
Esc-

Save the visited file.

Tell JOVE to forget that the buffer has been changed.

Visiting a file means copying its contents into JOVE where you can edit them. JOVE remembers the name of the file
you visited. Unless you use the multiple buffer feature of JOVE, you can only be visiting one file at a time. The
name of the current selected buffer is visible in the mode line.

The changes you make with JOVE are made in a copy inside JOVE. The file itself is not changed. The changed text is .
not permanent until you save it in a file. The first time you change the text, an asterisk appears at the end of the
mode line; this indicates that the text contains fresh changes which will be lost unless you save them.

To visit a file, use the command C-X C-V. Follow the command with the name of the file you wish to visit, ter
minated by a Return. You can abort the command by typing C-G, or edit the filename with many of the standard
JOVE commands (e.g., C-A, C-E, C-F, ESC F, ESC Rubout). If the filename you wish to visit is similar to the
filename in the mode line (the default filename), you can type C-R to insert the default and then edit it. If you do
type a Return to finish the command, the new file's text appears on the screen, and its name appears in the mode
line. In addition, its name becomes the new default filename.

If you wish to save the file and make your changes permanent, type C-X C-S. After the save is finished, C-X C-S
prints the filename and the number of characters and lines that it wrote to the file. If there are no changes to save
(no asterisk at the end of the mode line), the file is not saved; otherwise the changes saved and the asterisk at the end
of the mode line will disappear.

What if you want to create a file? Just visit it. JOVE prints (New file) but aside from that behaves as if you had
visited an existing empty file. If you make any changes and save them, the file is created. If you visit a nonexistent
file unintentionally (because you typed the wrong filename), go ahead and visit the file you meant. If you don't save

USD:17-14 JOVE Manual for UNIX Users

the unwanted file, it is not created.

If you alter one file and then visit another in the same buffer, JOVE offers to save the old one. If you answer YES,
the old file is saved; if you answer NO, all the changes you have made to it since the last save are lost You should
not type ahead after a file visiting command, because your type-ahead might answer an unexpected question in a
way that you would regret

Sometimes you will change a buffer by accident Even if you undo the effect of the change by editing, JOVE still
knows that "the buffer has been changed". You can tell JOVE to pretend that there have been no changes with the
ESC - command (1'lllU-buffer-unmodified). This command simply clears the "modified" flag which says that the
buffer contains changes which need to be saved. Even if the buffer really is changed JOVE will still act as if it were
not.

If JOVE is about to save a file and sees that the date of the version on disk does not match what JOVE last read or
wrote, JOVE notifies you of this fact, and asks what to do, because this probably means that something is wrong. For
example, somebody else may have beeD editing the same file. If this is so, there is a good chance that your work or
his work will be lost if you don't take the proper steps. You should first find out exactly what is going on. If you
determine that somebody else has modified the file, save your file under a different filename and then DIFF the tWo
files to merge the two sets of changes. (The "patch" command is useful for applying the results of context cliffs
directly). Also get in touch with the other person so that the files don't diverge any further.

9.2. How to Undo Drastic Changes to a File

If you have made several extensive changes to a file and then change your mind about them, and you haven't yet
saved them, you can get rid of them by reading in the previous version of the file. You can do this with the C-X C
V command, to visit the unsaved version of the file.

9.3. Recovering from system/editor crashes

JOVE does not have Auto Save mode, but it does provide a way to recover your work in the event of a system or
editor crash. JOVE saves information about the files you're editing every so many changes to a buffer to make
recovery possible. Since a relatively small amount of information is involved it's hardly even noticeable when
JOVE does this. The variable "sync-frequency" says how often to save the necessary information, and the default is
every 50 changes. 50 is a very reasonable number: if you are writing a paper you will not lose more than the last 50
characters you typed, which is less than the average length of a line.

9.4. Miscellaneous File Operations

ESC X write-file <file><return> writes the contents of the buffer into the file <file>, and then visits that file. It can
be thought of as a way of "changing the name" of the file you are visiting. Unlike C-X C-S, write-file saves even if
the buffer has not been changed. C-X C-W is another way of getting this command.

ESC X insert-file <file><return> inserts the contents of <file> into the buffer at point, leaving point unchanged
before the contents. You can also use C-X C-I to get this command.

ESC X write-region <file><return> writes the region (the text between point and mark) to the specified file. It does
not set the visited filename. The buff er is not changed.

ESC X append-region <file><return> appends the region to <file>. The text is added to the end of <file>.

10. Using Multiple Buffers

When we speak of "the buffer", which contains the text you are editing, we have given the impression that there is
only one. In fact, there may be many of them, each with its own body of text At any time only one buffer can be
selected and available for editing, but it isn't hard to switch to a different one. Each buffer individually remembers
which file it is visiting, what modes are in effect, and whether there are any changes that need saving.

C-X B Select or create a buffer.

C-XC-F

C-XC-B

Visit a file in its own buffer.

List the existing buffers.

JOVE Manual for UNIX Users USD:17-15

C-XK Kill a buffer.

Each buffer in JOVE has a single name, which normally doesn't change. A buffer's name can be any length. The
name of the currently selected buffer and the name of the file visited in it are visible in the mode line when you are
at top level A newly started JOVE has only one buffer, named Main, unless you specified files to edit in the shell
command that started JOVE.

10.1. Creating and Selecting Buffers

To create a new buffer, you need only think of a name for it (say, FOO) and then do C-X B FOO<retum>, which is
the command C-X B (select-buffer) followed by the name. This makes a new, empty buffer (if one by that name
didn't previously exist) and selects it for editing. The new buffer is not visiting any file, so if you try to save it you
will be asked for the filename to use. Each buffer has its own major mode; the new buffer's major mode is Text
mode by default.

To return to buffer FOO later after having switched to another, the same command C-X B FOO<return> is used,
since C-X B can tell whether a buffer named FOO exists already or not. C-X B Main<retum> reselects the buffer
Main that JOVE started out with. Just C-X B<retum> reselects the previous, buffer. Repeated C-X B<return>'s alter
nate between the last two buffers selected.

You can also read a file into its own newly created buffer, all with one command: C-X C-F <find-file), followed by
the filename. The name of the buffer is the last element.of the file's pathname. C-F stands for "Find", because if the
specified file already resides in a buffer in your JOVE, that buffer is reselected. So you need not remember whether
you have brought the file in already or not A buffer created by C-X C-F can be reselected later with C-X B or C-X
C-F, whichever you find more convenient. Nonexistent files can be created with C-X C-F just as they can with C-X
C-V.

10.2. Using Ex~ting Buffers

To get a list of all the buffers that exist, do C-X C-B (list-buffers). Each buffer's type, name, and visited filename is
printed. An asterisk before the buffer name indicates a buffer which contains changes that have not been saved. The
number that appears at the beginning of a line in a C-X C-B listing is that buffer's buffer number. You can select a
buffer by typing its number in place of its name. If a buffer with that number doesn't already exist, a new buffer is
created with that number as its name.

If several buffers have modified text in them, you should save some of them with C-X C-M (write-modified-files).
This finds all the buffers that need saving and then saves them. Saving the buffers this way is much easier and more
efficient (but more dangerous) than selecting each one and typing C-X C-S. If you give C-X C-M an argument,
JOVE will ask for confinnation before saving each buffer.

ESC X renaml!-bujfer <11ew name><return> changes the name of the currently selected buffer.

ESC X erase-buffer <buffer name><return> erases the contents of the <buffer name> without deleting the buffer
entirely.

10.3. Killing Buffers

After you use a JOVE for a while, it may fill up with buffers which you no longer need. Eventually you can reach a
point where trying to create any more results in an "out of memory" or "out of lines" error. When this happens you
will want to kill some buffers with the C-X K (delete-buffer) command. You can kill the buffer FOO by doing C-X
K FOO<return>. If you type C-X K <return> JOVE will kill the previously selected buffer. If you try to kill a
buffer that needs saving JOVE will ask you to confirm it.

If you need to kill several buffers, use the command kill-soml!-buffers. This prompts you with the name of each
buffer and asks for confirmation before killing that buffer.

11. Controlling the Display

Since only part of a large file will fit on the screen, JOVE tries to show the part that is likely to be interesting. The
display control commands allow you to see a different part of the file.

C-L Reposition point at a specified vertical position, OR clear and redraw the screen with point in the
same place.

USD:17-16

C-V

ESCV

C-Z

ESCZ

Scroll forwards (a screen or a few lines).

Scroll backwards.

Scroll forward some lines.

Scroll backwards some lines.

JOVE Manual for UNIX Users

The terminal screen is rarely large enough to display all of your file. If the whole buffer doesn't fit on the screen,
JOVE shows a contiguous portion of it, containing point. It continues to show approximately the same portion until
point moves outside of what is displayed; then JOVE chooses a new portion centered around the new point. This is
JOVE' s guess as to what you are most interested in seeing, but if the guess is wrong, you can use the display control
commands to see a different portion. The available screen area through which you can see part of the buffer is
called the window, and the choice of where in the buffer to start displaying is also called the window. (When there
is only one window, it plus the mode line and the input line take up the whole screen).

First we describe how JOVE chooses a new window position on its own. The goal is usually to place point half way
down the window. This is controlled by the variable scroll-step, whose value is the number of lines above the bot
tom or below the top of the window that the line containing point is placed. A value of 0 (the initial value) means
center point in the window.

The basic display control command is C-L (redraw-display). In its simplest form, with no argument, it tells JOVE to
choose a new window position, centering point half way from the top as usual.

C-L with a positive argument chooses a new window so as to put point that many lines from the top. An argument
of zero puts point on the very top line. Point does not move with respect to the text; rather, the text and point move
rigidly on the screen.

If point stays on the same line, the window is first cleared and then redrawn. Thus, two C-L's in a row are
guaranteed to clear the current window. ESC C-L will clear and redraw the entire screen.

The scrolling commands C-V, ESC V, C-Z, and ESC Z, let you move the whole display up or down a few lines. C
V (next-page) with an argument shows you that many more lines at the bottom of the screen, moving the text and
point up together as C-L might C-V with a negative argument shows you more lines at the top of the screen, as
does ESC V (previous-page) with a positive argument

To read the buffer a window at a time, use the C-V command with no argument. It takes the last line at the bottom
of the window and puts it at the top, followed by nearly a whole window of lines not visible before. Point is put at
the top of the window. Thus, each C-V shows the "next page of text", except for one line of overlap to provide con
text To move backward, use ESC V without an argument, which moves a whole window backwards (again with a
line of overlap).

C-Z and ESC Z scroll one line forward and one line backward, respectively. These are convenient for moving in
units of lines without having to type a numeric argument.

11.1. Multiple Windows

JOVE allows you to split the screen into two or more windows and use them to display parts of different files, or dif
ferent parts of the same file.

C-X 2 Divide the current window into two smaller ones.

C-X 1 Delete all windows but the current one.

C-XD

C-XN

C-XP

C-XO

C-X"

ESCC-V

Delete current window.

Switch to the next window.

Switch to the previous window.

Same as C-X P.

Make this window bigger.

Scroll the other window.

When using multiple window mode, the text portion of the screen is divided into separate parts called windows,
which can display different pieces of text Each window can display different files, or parts of the same file. Only
one of the windows is active; that is the window which the cursor is in. Editing normally takes place in that

JOVE Manual for UNIX Users USD:l7-17

window alone. To edit in another window, you would give a command to move the cursor to the other window, and
then edit there.

Each window displays a mode line for the buffer it's displaying. This is useful to keep track of which window
corresponds with which file. In addition, the mode line serves as a separator between windows. By setting the vari
able mode-line-should-standout to "on" you can have JOVE display the mode-line in reverse video (assuming your
particular tenninal has the reverse video capability).

The command C-X 2 (split-current-window) enters multiple window mode. A new mode line appears across the
middle of the screen, dividing the text display area into two halves. Both windows contain the same buffer and
display the same position in it, namely where point was at the time you issued the command. The cursor moves to
the second window.

To return to viewing only one window, use the command C-X 1 (delete-other-windows). The current window
expands to fill the whole screen, and the other windows disappear until the next C-X 2. (The buffers and their con
tents are unaffected by any of the window operations).

While there is more than one window, you can use C-X N (nut-window) to switch to the next window, and C-X P
(previous-window) to switch to the previous one. If you are in the bottom window and you type C-X N, you will be
placed in the top window, and the same kind of thing happens when you type C-X Pin the top window, namely you
will be placed in the bottom window. C-X 0 is the same as C-X P. It stands for "other window" because when
there are only two windows, repeated use of this command will switch between the two windows.

Often you will be editing one window while using the other just for reference. Then, the command ESC C-V
(page-next-window) is very useful. It scrolls the next window, as if you switched to the next window, typed C-V,
and switched back, without your having to do all that. With a negative argument, ESC C-V will do an ESC V in the
next window.

When a window splits, both halves are approximately the same size. You can redistribute the screen space between
the windows with the C-X"' (grow-window) command. It makes the currently selected window grow one line
bigger, or as many lines as is specified with a numeric argument. Use ESC X shrink-window to make the current
window smaller.

11.2. Multiple Windows and Multiple Buffers

Buffers can be selected independently in each window. The C-X B command selects a new buffer in whichever
window contains the cursor. Other windows' buffers do not change.

You can view the same buff er in more than one window. Although the same buff er appears in both windows, they
have different values of point, so you can move around in one window while the other window continues to show
the same text. Then, having found one place you wish to refer to, you can go back into the other window with C-X
0 or C-X P to make your changes.

If you have the same buffer in both windows, you must beware of trying to visit a different file in one of the win
dows with C-X C-V, because if you bring a new file into this buffer, it will repla~d the old file in both windows.
To view different files in different windows, you must switch buffers in one of the windows first (with C-X B or C
X C-F, perhaps).

A convenient "combination" command for viewing something in another window is C-X 4 (window-find). With this
command you can ask to see any specified buffer, file or tag in the other window. Follow the C-X 4 with either B
and a buffer name, F and a filename, or T and a tag name. This switches to the other window and finds there what
you specified. If you were previously in one-window mode, multiple-window mode is entered. C-X 4 Bis similar
to C-X 2 C-X B. C-X 4 Fis similar to C-X 2 C-X C-F. C-X 4 Tis similar to C-X 2 C-X T. The difference is one
of efficiency, and also that C-X 4 works equally well if you are already using two windows.

12. Processes Under JOVE

Another feature in JOVE is its ability to interact with UNIX in a useful way. You can run other UNIX commands
from JOVE and catch their output in JOVE buffers. In this chapter we will discuss the different ways to run and
interact with UNIX commands.

USD:17-18 JOVE Manual for UNIX Users

12.1. Non-interactive UNIX commands

To run a UNIX command from JOVE just type "C-X !" followed by the name of the command terminated with
Return. For example, to get a list of all the users on the system, you do:

C-X ! whO<I'eturn>

Then JOVE picks a reasonable buffer in which the output from the command will be placed. E.g., "who" uses a
buffer called who; "ps alx." uses ps; and "fgrep -n foo • .c" uses lgrep. If JOVE wants to use a buffer that already
exists it first erases the old contents. If the buffer it selects holds a file, not output from a previous shell command,
you must first delete that buffer with C-XK.

Once JOVE has picked a buffer it puts that buffer in a window so you can see the command's output as it is running.
If there is only one window JOVB will automatically make another one. Otherwise, JOVB tries to pick the most con
venient window which isn't the current one.

It's not a good idea to type anything while the command is running. There are two reasons for this:

(i) JOVB won't see the characters (thus won't execute them) until the cC>mmand finishes, so you may forget what
you've typed

(ii) Although JOVE won't know what you've typed, it will know that you've typed something, and then it will try
to be "smart" and not update the display until it's interpreted what you've typed. But, of course, JOVE won't
interpret what you type until the UNIX· command completes, so you 're left with the uneasy feeling you get
when you don't know what the hell the computer is doing•.

If you want to interrupt the command for some reason (perhaps you mistyped it, or you changed your mind) you can
type C-]. Typing this inside JOVE while a process is running is the same as typing C-C when you are outside JOVE,

namely the process stops in a hurry.

When the command finishes, JOVE puts you back in the window in which you started. Then it prints a message indi
cating whether or not the command completed successfully in its (the command's) opinion. That is, if the command
had what it considers an error (or you interrupt it with C-]) JOVE will print an appropriate message.

12.2. Limitations of Non-Interactive Proc~es

The reason these are called non-interactive processes is that you can't type any input to them; you can't interact
with them; they can't ask you questions because there is no way for you to answer. For example, you can't run a
command interpreter (a shell), or mail or crypt with C-X ! because there is no way to provide it with input.
Remember that JOVE (not the process in the window) is listening to your keyboard, and JOVE waits until the process
dies before it looks at what you type.

C-X ! is useful for running commands that do some output and then exit. For example, it's very useful to use with
the C compiler to catch compilation error messages (see Compiling C Programs), or with the grep commands.

12.3. Interactive Procews - Run a Shell in a Window

Some versions of JOVEt have the capability of running interactive processes. This is more useful than non
interactive processes for certain types of jobs:

(i) You can go off and do some editing while the command is running. This is useful for commands that do
sporadic output and run for fairly long periods of time.

(ii) Unlike non-interactive processes, you can type input to these. In addition, you can edit what you type with
the power of all the JOVE commands before you send the input to the process. This is a really important
feature, and is especially useful for running a shell in a window.

(iii) Because you can continue with normal editing while one of the processes is running, you can create a bunch
of contexts and manage them (select them, delete them, or temporarily put them aside) with JOVE'S window
and buffer mechanisms.

*This is a bug and should be fixed, but probably won't be for a while.
t For example, ~e version provided with 4.3BSD.

JOVE Manual for UNIX Users USD:l7-19

Although we may have given an image of processes being attached to windows, in fact they are attached to buffers.
Therefore, once an i-process is running you can select another buffer into that window, or if you wish you can
delete the window altogether. If you reselect that buffer later it will be up to date. That is, even though the buffer
wasn't visible it was still receiving output from the process. You don't have to worry about missing anything when
the buffer isn't visible.

12.4. Advantages of Running Processes in JOVE Windows.

There are several advantages to running a shell in a window. What you tYJ>e isn't seen immediately by the process;
instead JOVB waits until you type an entire line before passing it on to the process to read. This means that before
you type <return> all of JOVB's editing capabilities are available for fixing errors on your input line. If you discover
an error at the beginning of the line, rather than erasing the whole line and starting over, you can simply move to the
error, correct it, move back and continue typing.

Another feature is that you have the entire history of your session in a JOVE buffer. You don't have to worry about
output from a command moving past the top of the screen. If you missed some output you can move back through it
with ESC V and other commands. In addition, you can save yourself retyping a command (or a similar one) by
sending edited versions of previous commands, or edit the output of one command to become a list of commands to
be executed ("immediate shell scripts").

12.5. Diff'erences between Normal and 1-proceu Buff'ers

JOVE behaves differently in several ways when you are in an i-process buffer. Most obviously, <return> does dif
ferent things depending on both your position in the buffer and on the state of the process. In the normal case, when
point is at the end of the buffer, Return does what you'd expect: it inserts a line-separator and then sends the line to
the process. If you are somewhere else in the buffer, possibly positioned at a previous command that you want to
edit, Return will place a copy of that line (with the prompt discarded if there is one) at the end of the buffer and
move you there. Then you can edit the line and type Return as in the normal case. If the process has died for some
reason, Return does nothing. It doesn't even insert itself. If that happens unexpectedly, you should type ESC X
list-processes<retum> to get a list of each process and its state. If your process died abnormally, list-processes may
help you figure out why.

12.6. How to Run a Shell in a Window

Type ESC X i-shell<.retum> to start up a shell. As with C-X !, JOVE will create a buffer, called shell-1, and select a
window for this new buffer. But unlike C-X ! you will be left in the new window. Now, the shell process is said to
be attached to shell-I, and it is considered an i-process buffer.

13. Directory Handling

To save having to use absolute pathnames when you want to edit a nearby file JOVE allows you to move around the
UNIX filesystemjust as the c-shell does. These commands are:

cd dir Change to the specified directory.

pushd [dir] Like cd, but save the old directory on the directory stack. With no directory argument, simply
exchange the top two directories on the stack and cd to the new top.

popd Take the current directory off the stack and cd to the directory now at the top.

dirs Display the contents of the directory stack.

The names and behavior of these commands were chosen to mimic those in the c-shell.

14. Editing C Programs

This section details the support provided by JOVE for working on C programs.

14.1. Indentation Commands

To save having to lay out C programs "by hand", JOVE has an idea of the correct indentation of a line, based on the
surrounding context. When you are in C Mode, JOVE treats tabs specially - typing a tab at the beginning of a new
line means "indent to the right place". Closing braces are also handled specially, and are indented to match the

USD:17-20 JOVE Manual for UNIX Users

corresponding open brace.

14.2. Parenthesis and Brace Matching

To check that parentheses and braces match the way you think they do, tum on Show Match mode (ESC X show
match-mode). Then, whenever you type a close brace or parenthesis, the cursor moves momentarily to the matching
opener, if it's currently visible. If it's not visible, JOVE displays the line containing the matching opener on the mes
sage line.

14.3. C Tags

Often when you are editing a C program, especially someone else's code, you see a function call and wonder what
that function does. You then search for the function within the current file and if you're lucky find the definition,
finally returning to the original spot when you are done. However, if are unlucky, the function turns out to be exter
nal (defined in another file) and you have to suspend the edit, grep for the function name in every .c that might con
tain it, and finally visit the appropriate file.

To avoid this diversion or the need to remember which function is defined in which file, Berkeley UNIX has a pro
gram called ctags(1), which takes a set of source files and looks for function definitions, producing a file called tags
as its output.

JOVE has a command called C-X T (find-tag) that prompts you for the name of a function (a tag), looks up the tag
reference in the previously constructed tags file, then visits the file containing that tag in a new buff er, with point
positioned at the definition of the function. There is another version of this command, namely find-tag-at-point, that
uses the identifier at point.

So, when you've added new functions to a module, or moved some old ones around, run the ctags program to regen
erate the tags file. JOVE looks in the file specified in the tag-file variable. The default is "Jtags", that is, the tag file
in the current directory. If you wish to use an alternate tag file, you use C-U C-X T, and JOVE will prompt for a file
name. If you find yourself specifying the same file again and again, you can set tag-file to that file, and run find-tag
with no numeric argument.

To begin an editing session looking for a particular tag, use the -t tag command line option to JOVE. For example,
say you wanted to look at the file containing the tag SkipChar, you would invoke JOVE as:

% jove -t SkipChar

14.4. Compiling Your Program

You've typed in a program or altered an existing one and now you want to run it through the compiler to check for
errors. To save having to suspend the edit, run the compiler, scribble down error messages, and then resume the
edit, JOVE allows you to compile your code while in the editor. This is done with the C-X C-E (compile-it) com
mand. If you run compile-it with no argument it runs the UNIX make program into a buffer; If you need a special
command or want to pass arguments to make, run compile-it with any argument (C-U is ·goOd enough) and you will
be prompted for the command to execute.

If any error messages are produced, they are treated specially by JOVE. That treatment is the subject of the next sec
tion.

14.S. Error M~age Parsing and Spelling Checking

JOVE knows how to interpret the error messages from many UNIX commands; In particular, the messages from cc,
grep and lint can be understood. After running the compile-it command, the parse-errors command is automatically
executed, and any errors found are displayed in a new buffer. The files whose names are found in parsing the error
messages are each brought into JOVE buffers and the point is positioned at the first error in the first file. The com
mands current-error, C-X C-N (next-error), and C-X C-P (previous-error) can be used to traverse the list of errors.

If you already have a file called errs containing, say, c compiler messages then you can get JOVE to interpret the
messages by invoking it as:

% jove -p errs

JOVE Manual for UNIX Users USD:17-21

JOVE has a special mechanism for checking the the spelling of a document; It runs the UNIX spell program into a
buffer. You then delete from this buffer all those words that are not spelling errors and then JOVE runs the parse
spelling-e"ors command to yield a list of errors just as in the last section.

15. Simple Customization

15.1. Major Modes

To help with editing particular types of file, say a paper or a C program, JOVE has several major modes. These are
as follows:

15.1.1. Text mode

This is the default major mode. Nothing special is done.

15.1.2. C mode

This mode affects the behavior of the tab and parentheses characters. Instead of just inserting the tab, JOVE deter
mines where the text "ought" to line up for the C language and tabs to that position instead. The same thing happens
with the close brace and close parenthesis; they are tabbed to the "right" place and then inserted. Using the auto
execute-command command, you can make JOVE enter C Mode whenever you edit a file whose name ends in .c.

15.1.3. Lisp mode

This mode is analogous to C Mode, but performs the indentation needed to lay out Lisp programs properly. Note
also the grind-s-expr command that prettyprints an s-expression and the kill-mode-expression command.

15.2. Minor Modes

In addition to the major modes, JOVE has a set of minor modes. These are as follows:

15.2.1. Auto Indent

In this mode, JOVE indents each line the same way as that above it That is, the Return key in this mode acts as the
Linefeed key ordinarily does.

15.2.2. Show Match

Move the cursor momentarily to the matching opening parenthesis when a closing parenthesis is typed.

15.2.3. Auto Fill

In Auto Fill mode, a newline is automatically inserted when the line length exceeds the right margin. This way, you
can type a whole paper without having to use the Return key.

15.2.4. Over Write

In this mode, any text typed in will replace the previous contents. (The default is for new text to be inserted and
"push" the old along.) This is useful for editing an already-formatted diagram in which you want to change some
things without moving other things around on the screen.

15.2.S. Word Abbrev

In this mode, every word you type is compared to a list of word abbreviations; whenever you type an abbreviation,
it is replaced by the text that it abbreviates. This can save typing if a p,articular word or phrase must be entered
many times. The abbreviations and their expansions are held in a file that looks like:

abbrev: phrase

This file can be set up in your -1.joverc with the read-word-abbrev-file command. Then, whenever you are editing a
buffer in Word Abbrev mode, JOVE checks for the abbreviations you've given. See also the commands read-word
abbrev-file, write-word-abbrev-file, edit-word-abbrevs, define-global-word-abbrev, define-mode-word-abbrev, and

USD:17-22 JOVE Manual for UNIX Users

bind-macro-to-word-abbrev, and the variable awo-case-abbrev.

15.3. Variables

JOVE can be tailored to suit your needs by changing the values of variables. A JOVE variable can be given a value
with the set command, and its value displayed with the print command.

The variables JOVE understands are listed along with the commands in the alphabetical list at the end of this docu
ment.

15.4. Key Re-binding

Many of the commands built into JOVE are not bound to specific keys. The command handler in JOVE is used to
invoke these commands and is activated by the eucwe-extended-command command (ESC X). When the name of
a command typed in is unambiguous, that command will be executed. Since it is very slow to have to type in the
name of each command every time it is needed, JOVE makes it possible to bind commands to keys. When a com
mand is bound to a key any future hits on that key will invoke that command. All the printing characters are ini
tially bound to the command self-insert. Thus, typing any printing character causes it to be inserted into the text.
Any of the existing commands can be bound to any key. (A key may actually be a control character or an escape
sequence as explained previously under Command Input Conventions).

Since there are more commands than there are keys, two keys are treated as prefix commands. When a key bound to
one of the prefix commands is typed, the next character typed is interpreted on the basis that it was preceded by one
of the prefix keys. Initially "X and ESC are the prefix keys and many of the built in commands are initially bound to
these "two stroke" keys. (For historical reasons, the Escape key is often referred to as "Meta").

15.5. Keyboard Macros

Although JOVE has many powerful commands, you often find that you have a task that no individual command can
do. JOVE allows you to define your own commands from sequences of existing ones "by example"; Such a sequence
is termed a macro. The procedure is as follows: First you type the start-remembering command, usually bound to
C-X (. Next you "perform" the commands which as they are being executed are also remembered, which will con
stitute the body of the macro. Then you give the stop-remembering command, usually bound to C-X). You now
have a keyboard macro. To run this command sequence again, use the command execute-keyboard-macro, usually
bound to C-X E. You may find this bothersome to type and re-type, so there is a way to bind the macro to a key.
First, you must give the keyboard macro a name using the name-keyboard-macro command. Then the binding is
made with the bind-macro-to-key command. We're still not finished because all this hard work will be lost if you
leave JOVE. What you do is to save your macros into a file with the write-macros-to-file command. There is a
corresponding read-macros-from-file command to retrieve your macros in the next editing session.

15.6. Initialization Files

Users will likely want to modify the default key bindings to their liking. Since it would be quite annoying to have to
set up the bindings each time JOVE is started up, JOVE has the ability to read in a "startup" file. Whenever JOVE is
started, it reads commands from the file .joverc in the user's home directory. These commands are read as if they
were typed to the command handler (ESC X) during an edit. There can be only one command per line in the startup
file. If there is a file /usr!libljoveljoverc, then this file will be read before the user's .joverc file. This can be used to
set up a system-wide default startup mode for JOVE that is tailored to the needs of that system.

The source command can be used to read commands from a specified file at any time during an editing session, even
from inside the .joverc file. This means that a macro can be used to change the key bindings, e.g., to enter a mode,
by reading from a specified file which contains all the necessary bindings.

JOVE Manual for UNIX Users USD:17-23

16. Alphabetical List or Commands and Variables

16.1. Prefix-1 (&cape)

This reads the next character and runs a command based on the character typed If you wait for more than a second
or so before typing the next character, the message "ESC" will be printed on the message line to remind you that
JOVE is waiting for another character.

16.2. Prefix-2 (C-X)

This reads the next character and runs a command based on the character typed If you wait f<X' more than a second
or so before typing another character, the message "C-X" will be printed on the message line to remind you that
JOVE is waiting for another character.

16.3. Pre6x-3 (Not Bound)

This reads the next character and runs a command based on the character typed. If you wait f« more than a second
or so before typing the next character, the character that invoked Prefix-3 will be printed on the message line to rem
ind you that JOVE is waiting for another one.

16.4. allow-"S-and· "Q (variable)

This variable, when set, tells JOVE that your terminal does not need to use the characters C-S and C-Q for flow con
trol, and that it is okay to bind things to them. This variable should be set depending upon what kind of terminal
you have.

16.S. allow-bad-filenames (variable)

If set, this variable permits filenames to contain "bad" characters such as those from the set *&%!"'0{}. These files
are harder to deal with, because the characters mean something to the shell. The default value is "off'.

16.6. append-region (Not Bound)

This appends the region to a specified file. If the file does not already exist it is created.

16.7. apropos (Not Bound)

This types out all the commands, variables and macros with the specific keyword in their names. For each com
mand and macro that contains the string, the key sequence that can be used to execute the command or macro is
printed; with variables, the current value is printed So, to find all the commands that are related to windows, you
type

ESC X apropos window<Retum>

16.8. auto-case-abbrev (variable)

When this variable is on (the default), word abbreviations are adjusted for case automatically. For example, if
"jove" were the abbreviation for "jonathan's own version of emacs", then typing "jove" would give you "jonathan's
own version of emacs", typing "Jove" would give you "Jonathan's own version of emacs", and typing "JOVE"
would give you "Jonathan's Own Version of Emacs". When this variable is "off', upper and lower case are dis
tinguished when looking for the abbreviation, i.e., in the example above, "JOVE" and "Jove" would not be expanded
unless they were defined separately.

16.9. auto-execute-command (Not Bound)

This tells JOVE to execute a command automatically when a file whose name matches a specified pattern is visited.
The first argument is the command you want executed and the second is a regular expression pattern that specifies
the files that apply. For example, if you want to be in show-match-mode when you edit C source files (that is, files
that end with" .c" or" .h") you can type

ESC X auto-execute-command show-match-mode . *.[ch]$

USD:17-24 JOVE Manual for UNIX Users

16.10. auto-execute-macro (Not Bound)

This is like auto-~cute-command except you use it to execute macros automatically instead of built-in commands.

16.11. auto-fill-mode (Not Bound)

This turns on Auto Fill mode (or off if it's currently on) in the selected buffer. When JOVB is in Auto Fill mode it
automatically breaks lines for you when you reach the right margin so you don't have to remember to hit Return.
JOVE uses 78 • the right margin but you can change that by setting the variable right-margin to another value. See
the set command to leam how to do this.

16.12. auto-indent-mode (Not Bound)

This turns on Auto Indent mode (or off if it's currently on) in the selected buffer. When JOVB is in Auto Indent
mode, Return indents the new line to the same position • the line you were just on. This is useful for lining up C
code (or any other language (but what else is there besides C?)). This is out of date because of the new command
called newline-and-indent but it remains because of several "requests" on the part of, uh, enthusiastic and excitable
users, that it be left as it is.

16.13. backward-character (C-B)

This moves point backward over a single character. If point is at the beginning of the line it moves to the end of the
previous line.

16.14. backward-paragraph (ESC [)

This moves point backward to the beginning of the current or previous paragraph. Paragraphs are bounded by lines
that begin with a Period or Tab, or by blank lines; a change in indentation may also signal a break between para
graphs, except that JOVB allows the first line of a paragraph to be indented differently from the other lines.

16.15. backward-s-expression (ESC C-B)

This moves point backward over as-expression. It is just likeforward-s-expression with a negative argument.

16.16. backward-sentence (ESC A)

This moves point backward to the beginning of the current or previous sentence. JOVE considers the end of a sen
tence to be the characters ".", "!" or "?" followed by a Return or by one or more spaces.

16.17. backward-word (ESC B)

This moves point backward to the beginning of the current or previous word.

16.18. bad-filename-extensions (variable)

This contains a list of words separated by spaces which are to be considered bad filename extensions, and so will not
be counted in filename completion. The default is ".o" so if you have jove.c and jove.o in the same directory, the
filename completion will not complain of an ambiguity because it will ignore jove.o.

16~19. beginning-of-file (ESC <)

This moves point backward to the beginning of the buffer. This sometimes prints the "Point Pushed" message. If
the top of the buffer isn't on the screen JOVE will set the mark so you can go back to where you were if you want.

16.20. beginning-of-line (C·A)

This moves point to the beginning of the current line.

16.21. beginning-of-window (ESC ,)

This moves point to the beginning of the current window. The sequence "ESC ,"is the same as "ESC <"(beginning
of file) except without the shift key on the"<", and can thus can easily be remembered.

JOVE Manual for UNIX Users USD:17-25

16.22. bind-to-key (Not Bound)

This attaches a key to an internal JOVE command so that future hits on that key invoke that command. For example,
to make "C-W" erase the previous word, you type "ESC X bind-to-key kill-previous-word C-W".

16.23. bind-macro-to-key (Not Bound)

This is like bind-to-key except you use it to attach keys to named macros.

16.24. bind-macro-to-word-abbrev (Not Bound)

This command allows you to bind a macro to a previously defined word abbreviation. Whenever you type the
abbreviation, it will first be expanded as an abbreviation, and then the macro will be executed. Note that if the
macro moves around, you should set the mark first (C-@) and then exchange the point and mark last (C-X C-X).

16.25. bull'er-position (Not Bound)

This displays the current file name, current line number, total number of lines, percentage of the way through the
file, and the position of the cursor in the current line.

16.26. c-mode (Not Bound)

This turns on C mode in the currently selected buffer. This is one of currently four possible major modes: Fun<ia
mental, Text, C, Lisp. When in C or Lisp mode, Tab,"}"~ and")" behave a little differently from usual: They are
indented to the "right" place for C (or Lisp) programs. In JOVE, the "right" place is simply the way the author likes it
(but I've got good taste).

16.27. case-character-capitalize (Not Bound)

This capitalizes the character after point, i.e., the character undo the cursor. If a negative argument is supplied that
many characters before point are upper cased.

16.28. case-ignore-search (variable)

This variable, when set, tells JOVE to treat upper and lower case as the same when searching. Thus "jove" and
"JOVE" would match, and "JoVe" would match either. The default value of this variable is "off'.

16.29. case-region-lower (Not Bound)

This changes all the upper case letters in the region to their lower case equivalent

16.30. case-region-upper (Not Bound)

This changes all the lower case letters in the region to their upper case equivalent

16.31. case-word-capitalize (ESC C)

This capitalizes the current word by making the current letter upper case and making the rest of the word lower
case. Point is moved to the end of the word. If point is not positioned on a word it is first moved forward to the
beginning of the next word. If a negative argument is supplied that many words before point are capitalized. This is
useful for correcting the word just typed. without having to move point to the beginning of the word yourself.

16.32. case-word-lower (ESC L)

This lower-cases the current word and leaves point at the end of it If point is in the middle of a word the rest of the
word is converted. If point is not in a word it is first moved forward to the beginning of the next word. If a negative
argument is supplied that many words before point are converted to lower case. This is useful for correcting the
word just typed without having to move point to the beginning of the word yourself.

US0:17-26 JOVE Manual for UNIX Users

16.33. case-word-upper (ESC U)

This upper-cases the current wool and leaves point at the end of iL If point is in the middle of a word the rest of the
word is converted. If point is not in a word it is first moved forward to the beginning of the next word. If a negative
argument is supplied that many words before point are converted to upper case. This is useful for correcting the
word just typed without having to move point to the beginning of the word yourself.

16.34. character-to-octal-insert (Not Bound)

This inserts a Back-slash followed by the ascii value of the next character typed. For example, "C-0" inserts the
string "\007".

16.35. cd (Not Bound)

This changes the current directory.

16.36. clear-and-redraw (ESC C·L)

This clears the entire screen and redraws all the windows. Use this when JOVE gets confused about what's on the
screen, or when the screen gets filled with garbage characters or output from another program.

16.37. comment-format (variable)

This variable tells JOVE how to format your comments when you run the command fill-comment. Its format is this:

<open pattern>% !<line header>%c<line trailer>% !<close pattern>

The % !, %c, and % ! must appear in the format; everything else is optional. A newline (represented by %n) may
appear in the open or close patterns. %% is the representation for %. The default comment format is for C com
ments. See.fill-comment for more.

16.38. compile-it (C-X C-E)

This compiles your program by running the UNIX command "make" into a buffer, and automatically parsing the
error messages that are created (if any). See the parse-e"ors and parse-special-e"ors commands. To compile a C
program without "make", use "C-U C-X C-E" and JOVE will prompt for a command to run instead of make. (And
then the command you type will become the default command.) You can use this to parse the output from the C
compiler or the "grep" or "lint" programs.

16.39. continue-proc~ (Not Bound)

This sends SIGCONT to the current interactive process, if the process is currently stopped.

16.40. copy-region (ESC W)

This takes all the text in the region and copies it onto the kill ring buffer. This is just like running kill-region fol
lowed by the yank command. See the kill-region and yank commands.

16.41. current-error (Not Bound)

This moves to the current error in the list of parsed errors. See the next-error and previous-e"or commands for
more detailed information.

16.42. date (Not Bound)

This prints the date on the message line.

16.43. define-mode-word-abbrev (Not Bound)

This defines a mode-specific abbreviation.

JOVE Manual for UNIX Users

16.44. define-global-word-abbrev (Not Bound)

This defines a global abbreviation.

16.45. delete-blank-lines (C-X C-0)

USD:17-27

This deletes all the blank lines around poinL This is useful when you previously opened many lines with "C-0" and
now wish to delete the unused ones.

16.46. delete-bufl'er (C-X K)

This deletes a buffer and frees up all the memory associated with iL Be careful! Once a buffer has been deleted it is
gone forever. JOVE will ask you to confirm if you try to delete a buffer that needs saving. This command is useful
for when JOVE runs out of space to store new buffers.

16.47. delete-macro (Not Bound)

This deletes a macro from the list of named macros. It is an error to delete the keyboard-macro. Once the macro is
deleted it is gone forever. If you are about to save macros to a file and decide you don't want to save a particular
one, delete iL

16.48. delete-next-character (C·D)

This deletes the character that's just after point (that is, the character under the cursor). If point is at the end of a
line, the line separator is deleted and the next line is joined with the current one.

16.49. delete-other-windows (C·X 1)

This deletes all the other windows except the current one. This can be thought of as going back into One Window
mode.

16.SO. delete-previous-character (Rubout)

This deletes the character that's just before point (that is, the character before the cursor). If point is at the begin
ning of the line, the line separator is deleted and that line is joined with the previous one.

16.Sl. delete-white-space (ESC \)

This deletes all the Tabs and Spaces around point

16.52. delete-current-window (C-X D)

This deletes the current window and moves point into one of the remaining ones. It is an error to try to delete the
only remaining window.

16.53. describe-bindings (Not Bound)

This types out a list containing each bound key and the command that gets invoked every time that key is typed. To
make a wall chart of JOVE commands, set send-typeout-to-buffer to "on" and JOVE will store the key bindings in a
buffer which you can save to a file and then print.

16.54. describe-command (Not Bound)

This prints some info on a specified command.

16.SS. describe-key (Not Bound)

This waits for you to type a key and then tells the name of the command that gets invoked every time that key is hit.
Once you have the name of the command you can use the describe-command command to find out exactly what it
does.

USD:17-28

16.56. describe-variable (Not Bound)

This prints some info on a specified variable.

16.57. digit (ESC [0·9])

JOVE Manual for UNIX Users

This reads a numeric argument. When you type "ESC" followed by a number, "digit" keeps reading numbers until
you type some other command Then that command is executes with the numeric argument you specified

16.58. digit-1 (Not Bound)

This pretends you typed "ESC 1". This is useful for terminals that have keypads that send special sequences for
numbers typed on the keypad as opposed to numbers typed from the keyboard. This can save having type "ESC"
when you want to specify an argument.

16.59. digit-2 (Not Bound)

This pretends you typed "ESC 2". This is useful for terminals that have keypads that send special sequences for
numbers typed on the keypad as opposed to numbers typed from the keyboard. This can save having type "ESC"
when you want to specify an argument.

16.60. digit-3 (Not Bound)

This pretends you typed "ESC 3". This is useful for terminals that have keypads that send special sequences for
numbers typed on the keypad as opposed to numbers typed from the keyboard. This can save having type "ESC"
when you want to specify an argument.

16.61. digit-4 (Not Bound)

This pretends you typed "ESC 4". This is useful for terminals that have keypads that send special sequences for
numbers typed on the keypad as opposed to numbers typed from the keyboard. This can save having type "ESC"
when you want to specify an argument.

16.62. digit·S (Not Bound)

This pretends you typed "ESC S". This is useful for terminals that have keypads that send special sequences for
numbers typed on the keypad as opposed to numbers typed from the keyboard. This can save having type "ESC"
when you want to specify an argument

16.63. digit-6 (Not Bound)

This pretends you typed "ESC 6". This is useful for terminals that have keypads that send special sequences for
numbers typed on the keypad as opposed to numbers typed from the keyboard. This can save having type "ESC"
when you want to specify an argument.

16.64. digit-7 (Not Bound)

This pretends you typed "ESC 7". This is useful for terminals that have keypads that send special sequences for
numbers typed on the keypad as opposed to numbers typed from the keyboard. This can save having type "ESC"
when you want to specify an argument.

16.65. digit-8 (Not Bound)

This pretends you typed "ESC 8". This is useful for terminals that have keypads that send special sequences for
numbers typed on the keypad as opposed to numbers typed from the keyboard. This can save having type "ESC"
when you want to specify an argument.

16.66. digit-9 (Not Bound)

This pretends you typed "ESC 9". This is useful for terminals that have keypads that send special sequences for
numbers typed on the keypad as opposed to numbers typed from the keyboard. This can save having type "ESC"
when you want to specify an argument.

JOVE Manual for UNIX Users USD:17-29

16.67. digit-0 (Not Bound)

This pretends you typed "ESC O". This is useful for terminals that have keypads that send special sequences for
numbers typed on the keypad as opposed to numbers typed from the keyboard. This can save having type "ESC"
when you want to specify an argument.

16.68. dirs (Not Bound)

This prints out the directory stack. See the "cd", "pushd", "popd" commands for more info.

16.69. disable-bitr (variable)

When this is set, JOVE disables biff when you're editing and enables it again when you get out of JOVE, or when you
pause to the parent shell or push to a new shell. (This means arrival of new mail will not be immediately apparent
but will not cause indiscriminate writing on the display). The default is "off'.

16.70. dstop-process (Not Bound)

Send the "dsusp" character to the current process. This is the character that suspends a process on the next read
from the terminal. Most people have it set to C-Y. This only works if you have the interactive process feature, and
if you are in a buffer bound to a process.

16.71. edit-word-abbrevs (Not Bound)

This creates a buffer with a list of each abbreviation and the phrase it expands into, and enters a recursive edit to let
you change the abbreviations or add some more. The format of this list is "abbreviation:phrase" so if you add some
more you should follow that format. It's probably simplest just to copy some already existing abbreviations and edit
them. When you are done you type "C-X C-C" to exit the recursive edit.

16.72. end-of-file (ESC >)

This moves point forward to the end of the buffer. This sometimes prints the "Point Pushed" message. If the end of
the buffer isn't on the screen JOVE will set the mark so you can go back to where you were if you want.

16.73. end-of-line (C-E)

This moves point to the end of the current line. If the line is too long to fit on the screen JOVE will scroll the line to
the left to make the end of the line visible. The line will slide back to its normal position when you move backward
past the leftmost visible character or when you move off the line altogether.

16.74. end-of-window (ESC .)

This moves point to the last character in the window.

16.75. eof-process (Not Bound)

Sends EOF to the current interactive process. This only works on versions of JOVE which run under 4.2-3 BSD
VAX UNIX. You can't send EOF to processes on the 2.9 BSD PDP-11 UNIX.

16.76. erase-buffer (Not Bound)

This erases the contents of the specified buffer. This is like delete-buffer except it only erases the contents of the
buffer, not the buffer itself. If you try to erase a buffer that needs saving you will be asked to confirm it.

16.77. error-window-size (variable)

This is the percentage of the screen to use for the error-window on the screen. When you execute compile-it,
error-window-size percent of the screen will go to the error window. If the window already exists and is a different
size, it is made to be this size. The default value is 20%.

USD:17-30 JOVE Manual for UNIX Users

16.78. exchange-point-and-mark (C·X C·X)

This moves point to mark and makes mark the old poinL This is for quickly moving from one end of the region to
another.

16.79. execute-named-command (ESC X)

This is the way to execute a command that isn't bound to any key. When you are prompted with":" you can type
the name of the command. You don't have to type the entire name. Once the command is unambiguous you can
type Space and JOVE will fill in the rest for you. If you are not sure of the name of the command, type "?" and JOVE

will print a list of all the commands that you could possibly match given what you've already typed. If you don't
have any idea what the command's name is but you know it has something to do with windows (for example), you
can do "ESC X apropos window" and JOVE will print a list of all the commands that are related to windows. If you
find yourself constantly executing the same commands this way you probably want to bind them to keys so that you
can execute them more quickly. See the bind-to-key command.

16.80. execute-keyboard-macro (C-X E)

This executes the keyboard macro. If you supply a numeric argument the macro is executed that many times.

16.81. execute-macro (Not Bound)

This executes a specified macro. If you supply a numeric argument the macro is executed that many times.

16.82. exit-jove (C·X C·C)

This exits JOVE. If any buffers need saving JOVE will print a warning message and ask for confirmation. If you
leave without saving your buffers all your work will be lost. If you made a mistake and really do want to exit then
you can. If you are in a recursive editing level exit-jove will return you from that.

16.83. file-creation-mode (variable)

This variable has an octal value. It contains the mode (see chmnd(1)) with which files should be created. This
mode gets modified by your current umask setting (see umask(l)). The default value is usually 0666 or 0644.

16.84. files-should-end-with-newline (variable)

This variable indicates that all files should always have a newline at the end. This is often necessary for line printers
and the like. When set, if JOVE is Writing a file whose last character is not a newline, it will add one automatically.

16.85. fill-comment (Not Bound)

This command fills in your C comments to make them pretty and readable. This filling is done according the vari
able comment1ormat. ,.
• the default format makes comments like this • . ,

This can be changed by changing the format variable. Other languages may be supported by changing the format
variable appropriately. The formatter looks backwards from dot for an open comment symbol. If found, all inden
tation is done relative the position of the first character of the open symbol. If there is a matching close symbol, the
entire comment is formatted. If not, the region between dot and the open symbol is reformatted.

16.86. fill-paragraph (ESC J)

This rearranges words between lines so that all the lines in the current paragraph extend as close to the right margin
as possible, ensuring that none of the lines will be greater than the right margin. The default value for right-margin
is 78, but can be changed with the set and right-margin-here commands. JOVE has a complicated algorithm for
determining the beginning and end of the paragraph. In the normal case JOVE will give all the lines the same indent
as they currently have, but if you wish to force a new indent you can supply a numeric argument to fill-paragraph
(e.g., by typing C-U ESC J) and JOVE will indent each line to the column specified by the left-margin variable. See

JOVE Manual for UNIX Users USD:17-31

also the left-margin variable and left-margin-Mre command.

16.87. fill-region (Not Bound)

This is like fill-paragraph, except it operates on a region instead of just a paragraph.

16.88. filter-region (Not Bound)

This sends the text in the region to a UNIX command, and replaces the region with the output from that command.
For example, if you are lazy and don't like to take the time to write properly indented C code, you can put the region
around your C file andfilter-region it through cb, the UNIX C beautifier. H you have a file that contains a bunch of
lines that need to be sorted you can do that from inside JOVE too, by filtering the region through the sort UNIX com
mand. Before output from the command replaces the region JOVE stores the old text in the kill ring, so if you are
unhappy with the results you can easily get back the old text with "C-Y".

16.89. find-file (C·X C·F)

This visits a file into its own buffer and then selects that buffer. H you've already visited this file in another buffer,
that buffer is selected. If the file doesn't yet exist, JOVE will print "(New file)" so that you know.

16.90. find-tag (C-X T)

This finds the file that contains the specified tag. JOVE looks up tags by default in the "tags" file in the C1,UTent direc
tory. You can change the default tag name by setting the tag-file variable to another name. If you specify a numeric
argument to this command, you will be prompted for a tag file. This is a good way to specify another tag file
without changing the default If the tag cannot be found the error is reported and point stays where it is.

16.91. find-tag-at-point (Not Bound)

This finds the file that contains the tag that point is currently on. See find-tag.

16.92. first-non-blank (ESC M)

This moves point back to the indent of the current line.

16.93. forward-character (C-F)

This moves forward over a single character. If point is at the end of the line it moves to the beginning of the next
one.

16.94. forward-paragraph (ESC])

This moves point forward to the end of the current or next paragraph. Paragraphs are bounded by lines that begin
with a Period or Tab, or by blank lines; a change in indentation may also signal a break between paragraphs, except .
that JOVE allows the first line of a paragraph to be indented differently from the other Imes. · ·

16.95. forward-s-expression (ESC C-F)

This moves point forward over a s-expression. If the first significant character after point is "(", this moves past the
matching ")". If the character begins an identifier, this moves just past it. This is mode dependent, so this will move
over atoms in LISP mode and C identifiers in C mode. JOVE also matches "{".

16.96. forward-sentence (ESC E)

This moves point forward to the end of the current or next sentence. JOVE considers the end of a sentence to be the
characters ".", "!" or"?" followed by a Return, or one or more spaces.

16.97. forward-word (ESC F)

This moves point forward to the end of the current or next word.

USD:17-32 JOVE Manual for UNIX Users

16.98. fundamental-mode (Not Bound)

This sets the major mode to Fundamental. This affects what JOVE considers as characters that make up words. For
instance, Single-quote is not part of a word in Fundamental mode, but is in Text mode.

16.99. &Oto-line (ESC G)

If a numeric argument is supplied point moves to the beginning of that line. If no argument is supplied, point
remains where it is. This is so you don't lose your place unintentionally, by accidentally hitting the "G" instead of
"F.

16.100. grind-s-expr (Not Bound)

When point is positioned on a "(", this re-indents that LISP expression.

16.101. &row-window (C·X ")

This makes the current window one line bigger. This only wo.rks when there is more than one window and provided
there is room to change the size. ·

16.102. paren-flash O }])
This handles the C mode curly brace indentation, the Lisp mode paren indentation, and the Show Match mode
paren/curly brace/square bracket flashing.

16.103. handle-tab (Tab)

This handles indenting to the "right" place in C and Lisp mode, and just inserts itself in Text mode.

16.104. i-search-forward (Not Bound)

Incremental search. Like search-forward except that instead of prompting for a string and searching for that string
all at once, it accepts the string one character at a time. After each character you type as part of the search string, it
searches for the entire string so far. When you like what it found, type the Return key to finish the search. You can
take back a character with Rubout and the search will back up to the position before that character was typed. C-G
aborts the search.

16.105. i-search-reverse (Not Bound)

Incremental search. Like search-reverse except that instead of prompting for a string and searching for that string
all at once, it accepts the string one character at a time. After each character you type as part of the search string, it
searches for the entire string so far. When you like what it found, type the Return key to finish the search. You can
take back a character with Rubout and the search will back up to the position before that character was typed. C-G
aborts the search.

16.106. insert-file (C-X C-1)

This inserts a specified file into the current buff er at point. Point is positioned at the beginning of the inserted file.

16.107. internal-tabstop (variable)

The number of spaces JOVE should print when it displays a tab character. The default value is 8.

16.108. interrupt-process (Not Bound)

This sends the interrupt character (usually C-C) to the interactive process in the current buffer. This is only for ver
sions of JOVE that have the interactive processes feature. This only works when you are inside a buffer that's
attached to a process.

JOVE Manual for UNIX Users USD:17-33

16.109. I-shell (Not Bound)

This starts up an interactive shell in a window. JOVE uses "shell-1" as the name of the buffer in which the interact
ing takes place. See the manual for information on how to use interactive processes.

16.110. i-shell-command (Not Bound)

This is like shell-command except it lets you continue with your editing while the command is running. This is
really useful for long running commands with sporadic output See the manual for information on how to use
interactive processes.

16.111. kill-next-word (ESC D)

This kills the text from point to the end of the current or next word.

16.112. kill-previous-word (ESC Rubout)

This kills the text from point to the beginning of the current or previous word.

16.113. kill-process (Not Bound)

This command prompts for a buffer name or buffer number (just as select-buffer does) and then sends the process in
that buffer a kill signal (9).

16.114. kill-region (C-W)

This deletes the text in the region and saves it on the kill ring. Commands that delete text but save it on the kill ring
all have the word "kill" in their names. Type "C-Y" to yank back the most recent kill.

16.115. kill-s-expression (ESC C-K)

This kills the text from point to the end of the current or next s-expression.

16.116. kill-some-buffers (Not Bound)

This goes through all the existing buffers and asks whether or not to kill them. If you decide to kill a buffer, and it
turns out that the buffer is modified, JOVE will offer to save it first This is useful for when JOVE runs out of memory
to store lines (this only happens on PDP-11 's) and you have lots of buffers that you are no longer using.

16.117. kill-to-beginning-of -sentence (C-X Rubout)

This kills from point to the beginning of the current or previous sentence.

16.118. kill-to-end-of-line (C·K)

This kills from point to the end of the current line. When point is at the end of the line the line separator is deleted
and the next line is joined with current one. If a numeric argument is supplied that many lines are killed; if the argu
ment is negative that many lines before point are killed; if the argument is zero the text from point to the beginning
of the line is killed.

16.119. kill-to-end-of-sentence (ESC K)

This kills from point to the end of the current or next sentence. If a negative numeric argument is supplied it kills
from point to the beginning of the current or previous sentence.

16.120. left-margin (variable)

This is how far lines should be indented when auto-indent mode is on, or when the newline-and-indent command is
run (usually by typing Linefeed). It is also used by fill-paragraph and auto-fill mode. If the value is zero (the
default) then the left margin is determined from the surrounding lines.

USD:17-34 JOVE Manual for UNIX Users

16.121. left-margin-here (Not Bound)

This sets the left-margin variable to the current position of point. This is an easy way to say, "Make the left margin
begin here," without having to count the number of spaces over it actually is.

16.122. lisp-mode (Not Bound)

This turns on Lisp mode. Usp mode is one of four mutually exclusive major modes: Fundamental, Text, C, and
Lisp. In Lisp mode, the characters Tab and) are treated specially, similar to the way they are treated in C mode.
Also, Auto Indent mode is affected, and handled specially.

16.123. list-butrers (C·X C-B)

This types out a list containing various information about each buffer. Right now that list looks like this:

(* means the buffer needs saving)
NO Lines Type Name File

1 File Main [No file]
1 Scratch • Minibuf

1
2
3 519 File • commands.doc

[No file]
commands.doc

The first column lists the buffer's number. When JOVE prompts for a buffer name you can either type in the full
name, or you can simply type the buffer's number. The second column is the number of lines in the buffer. The
third says what type of buffer. There are four types: "File", "Scratch", "Process", "I-Process". "File" is simply a
buffer that holds a file; "Scratch" is for buffers that JOVE uses internally; "Process" is one that holds the output from
a UNIX command; "I-Process" is one that has an interactive process attached to it. The next column contains the
name of the buffer. And the last column is the name of the file that's attached to the buffer. In this case, both Mini
buf and commands.doc have been changed but not yet saved. In fact Minibuf won't be saved since it's an internal
JOVE buffer that I don't even care about.

16.124. list-proces.ws (Not Bound)

This makes a list somewhat like "list-buffers" does, except its list consists of the current interactive processes. Right
now the list looks like this:

Buffer

shell-1
fgrep

Status

Running
Done

Command name

i-shell
fgrep -n Buffer • .c

The first column has the name of the buffer to which the process is attached. The second has the status of the pro
cess; if a process has exited normally the status is "Done" as in fgrep; if the process exited with an error the status is
"Exit N" where N is the value of the exit code; if the process was killed by some signal the status is the name of the
signal that was used; otherwise the process is running. The last column is the name of the command that is being
run.

16.125. mailbox (variable)

Set this to the full pathname of your mailbox. JOVE will look here to decide whether or not you have any unread
mail. This defaults to /usr/spool/mail/$USER, where $USER is set to your login name.

16.126. mail-check-frequency (variable)

This is how often (in seconds) JOVE should check your mailbox for incoming mail. See also the mailbox and
disable-bi.ff variables.

16.127. make-backup-files (variable)

If this variable is set, then whenever JOVE writes out a file, it will move the previous version of the file (if there was
one) to "#filename". This is often convenient if you save a file by accident. The default value of this variable is

JOVE Manual for UNIX Users USD:17-35

"off'. Note: this is an optional part of JOVE, and your guru may not have it enabled, so it may not work.

16.128. make-bulf'er-unmodified (ESC -)

This makes JOVE think the selected buffer hasn't been changed even if it has. Use this when you accidentally
change the buffer but don't want it considered changed. Watch the mode line to see the• disappear when you use
this command.

16.129. make-macro-interactive (Not Bound)

This command is meaningful only while you are defining a keyboard macro. Ordinarily, when a command in a
macro definition requires a trailing text argument (file name, search string, etc.), the argument you supply becomes
part of the macro definition. H you want to be able to supply a different argument each time the macro is used, then
while you are defining it, you should give the make-macro-interactive command just before typing the argument
which will be used during the definition process. Note: you must bind this command to a key in order to use it; you
can't say ESC X make-macro-interactive.

16.130. mark-threshold (variable)

This variable contains the number of lines point may move by before the mark is set. H, in a search or something,
point moves by more than this many lines, the mark is set so that you may return easily. The default value of this
variable is 22 (one screenful, on most terminals).

16.131. marks-should-float (variable)

When this variable is "off', the position of a mark is remembered as a line number within the buffer and a character
number within the line. H you add or delete text before the mark, it will no longer point to the text you marked ori
ginally because that text is no longer at the same line and character number. When this variable is "on", the position
of a mark is adjusted to compensate for each insertion and deletion. This makes marks much more sensible to use,
at the cost of slowing down insertion and deletion somewhat The default value is "on".

16.132. match-regular-expressions (variable)

When set, JOVE will match regular expressions in search patterns. This makes special the characters ., •, [,], ", and
$, and the two-character sequences \<, \>, \ {, \} and\ 1. See the ed(1) manual page, the tutorial "Advanced Editing
in UNIX", and the section above "Searching with Regular Expressions" for more information.

16.133. meta-key (variable)

You should set this variable to "on" if your terminal has a real Meta key. If your terminal has such a key, then a key
sequence like ESC Y can be entered by holding down Meta and typing Y.

16.134. mode-line (variable)

The format of the mode line can be determined by setting this variable. The items in the line are specified using a
printf(3) format, with the special things being marked as "%x". Digits may be used between the 'x' may be:

USD:l7-36

c

F
M
b
c
d
e
f
I
m
n
s
t
[]
()

check for new mail, and displays "[New mail]" if there
is any (see also the mail-check-interval and disable-biff
variables)
the current file name, with leading path stripped
the current list of major and minor modes
the current buffer name
the fill character (-)
the current directory
end of string--this must be the last item in the string
the current file name
the current load average (updated automatically)
the buffer-modified symbol (•)
the current buffer number
space, but only if previous character is not a space
the current time (updated automatically)
the square brackets printed when in a recursive edit
items enclosed in %(.•• %) will only be printed on
the bottom mode line, rather than copied when the
window is split

JOVE Manual for UNIX Users

In addition, any other character is simply copied into the mode line. Characters may be escaped with a backslash.
To get a feel for all this, try typing "ESC X print mode-line" and compare the result with your current mode line.

16.135. mode-line-should-standout (variable)

If set, the mode line will be printed in reverse video, if your terminal supports it The default for this variable is
"off'.

16.136. name-keyboard-macro (Not Bound)

This copies the keyboard macro and gives it a name freeing up the keyboard macro so you can define some more.
Keyboard macros with their own names can be bound to keys just like built in commands can. See the read
macros-file-file and write-macros-to-file commands.

16.137. newline (Return)

This divides the current line at point moving all the text to the right of point down onto the newly created line. Point
moves down to the beginning of the new line.

16.138. newline-and-backup (C-0)

This divides the current line at point moving all the text to the right of point dowil onto the newly created line. The
difference between this and "newline" is that point does not move down to the beginning of the new line.

16.139. newline-and-indent (LineFeed)

This behaves the same was as Return does when in Auto Indent mode. This makes Auto Indent mode obsolete but it
rerilains in the name of backward compatibility.

16.140. next-error (C·X C-N)

This moveS to the next error in the list of errors that were parsed with parse-e"ors or parse-special-errors. In one
window the list of errors is shown with the current one always at the top. In another window is the file that contains
the error. Point is positioned in this window on the line where the error occurred.

16.141. next-line (C-N)

This moves d,own to the next line.

JOVE Manual for UNIX Users USD:17-37

16.142. next-page (C· V)

This displays the next page of the buffer by taking the bottom line of the window and redrawing the window with it
at the top. If there isn't another page in the buffer JOVE rings the bell. If a numeric argument is supplied the screen
is scrolled up that many lines; if the argument is negative the screen is scrolled down.

16.143. next-window (C·X N)

This moves into the next window. Windows live in a circular list so when you're in the bottom window and you try
to move to the next one you are moved to the top window. It is an errcx to use this command with only one window.

16.144. number-lines-in-window (Not Bound)

This displays the line numbers for each line in the buffer being displayed. The number isn't actually part of the text;
it's just printed before the actual buffer line is. To turn this off you run the command again; it toggles.

16.145. over-write-mode (Not Bound)

This turns Over Write mode on (or off if it's currently on) in the selected buffer. When on, this mode changes the
way the self-inserting characters work. Instead of inserting themselves and pushing the rest of the line over to the
right, they replace or over-write the existing character. Also, Rubout replaces the character before point with a
space instead of deleting it. When Over Write mode is on "OvrWt" is displayed on the mode line~

16.146. page-next-window (ESC C· V)

This displays the next page in the next window. This is exactly the same as "C-X N C-V C-XP".

16.147. paren-flash-delay (variable)

How long, in tenths of seconds, JOVE should pause on a matching parenthesis in Show mode. The default is 5.

16.148. parse-errors (Not Bound)

This takes the list of C compilation errors (or output from another program in the same format) in the current buffer
and parses them for use with the next-error and previous-e"or and current-e"or commands. This is a very useful
tool and helps with compiling C programs and when used in conjunction with the "grep" UNIX command very help
ful in making changes to a bunch of files. This command understands errors produced by cc, cpp, and lint; plus any
other program with the same format (e.g., "grep -n"). JOVE visits each file that has an error and remembers each line
that contains an error. It doesn't matter if later you insert or delete some lines in the buffers containing errors; JOVE

remembers where they are regardless. next-e"or is automatically executed after one of the parse commands, so you
end up at the first error.

16.149. parse-special-errors (Not Bound)

This parses errors in an unknown format. Error parsing works with regular expression search strings with \(' s
around the the file name and the line number. So, you can use parse-special-errors to parse lines that are in a
slightly different format by typing in your own search stting. If you don't know how to use regular expressions you
can't use this command.

16.150. parse-spelling-errors-in-buffer (Not Bound)

This parses a list of words in the current buffer and looks them up in another buffer that you specify. This will
probably go away soon.

16.151. pause-jove (ESC S)

This stops JOVE and returns control to the parent shell. This only works for users using the C-shell, and on systems
that have the job control facility. To return to JOVE you type "fg" to the C-shell.

USD:17-38 JOVE Manual for UNIX Users

16.152. physical-tabstop (variable)

How many spaces your tenninal prints when it prints a tab character.

16.153. pop-mark (Not Bound)

This gets executed when you run set-mark with a numeric argument. JOVE remembers the last 16 marks and you use
pop-mark to go backward through the ring of marks. If you execute " pop-mark enough times you will eventually
get back to where you started.

. 16.154. popcl (Not Bound)

This pops one entry off the directory stack. Entries are pushed with the pushd command. The names were stolen
from the C-shell and the behavior is the same.

16.155. previous-error (C·X C-P)

This is the same as nuJ-error except it goes to the previous em:r. See nut~"or for documentation.

16.156. previous-line (C-P)

This moves up to the previous line.

16.157. previous-page (ESC V)

This displays the previous page of the current buffer by taking the top line and redrawing the window with it at the
bottom. If a numeric argument is supplied the screen is scrolled down that many lines; if the argument is negative
the screen is scrolled up.

16.158. previous-window (C-X P and C-X 0)

This moves into the next window. Windows live in a circular list so when you're in the top window and you try to
move to the previous one you are moved to the bottom window. It is an error to use this command with only one
window.

16.159. print (Not Bound)

This prints the value of a JOVE variable.

16.160. print-m~age (Not Bound)

This command prompts for a message, and then prints it on the bottom line where JOVE messages are printed.

16.161. process-bind-to-key (Not Bound)

This command is identical to bind-to-key, except that it only affects your bindings when .you are in a buffer attached
to a process. When you enter the·process buffer, any keys bound with this command will automatically take their
new values. When you switch to a non-process buffer, the old bindings for those keys will be restored. For exam
ple, you might want to execute

process-bind-to-key stop-process "Z
process-bind-to-key interrupt-process AC

Then, when you start up an interactive process and switch into that buffer, C-Z will execute stop-process and C-C
will execute interrupt- process. When you switch back to a non-process buffer, C-Z will go back to executing
scroll-up (or whatever you have it bound to).

16.162. process-newline (Return)

This this only gets executed when in a buffer that is attached to an interactive-process. JOVE does two different
things depending on where you are when you hit Return. When you're at the end of the I-Process buffer this does
what Return normally does, except it also makes the line available to the process. When point is positioned at some
other position that line is copied to the end of the buffer (with the prompt stripped) and point is moved there with it,

JOVE Manual for UNIX Users USD:17-39

so you can then edit that line before sending it to the process. This command must be bound to the key you usually
use to enter shell commands (Return), or else you won't be able to enter any.

16.163. process-prompt (variable)

What a prompt looks like from the i-shell and i-shell-command processes. The default is "% ", the default C-shell
prompt. This is actually a regular expression search string. So you can set it to be more than one thing at once
using the \I operator. For instance, for LISP hackers, the prompt can be

"% -> <[0-9]>: ".

16.164. push-shell (Not Bound)

This spawns a child shell and relinquishes control to iL This works on any version of UNIX, but this isn't as good
as pause-jove because it takes time to start up the new shell and you get a brand new environment every time. To
return to JOVE you type "C-D".

16.165. pushd (Not Bound)

This pushes a di.rectory onto the directory stack and cd's into it. It asks for the directory name but if you don't
specify one it switches the top two entries no the stack. It purposely behaves the same as C-shell' s pushd.

16.166. pwd (Not Bound)

This prints the working directory.

16.167. quadruple-numeric-argument (C·U)

This multiplies the numeric argument by 4. So, "C-U C-F" means forward 4 characters and "C-U C-U C-N" means
down 16 lines.

16.168. query-replace-string (ESC Q)

This replaces the occurrences of a specified string with a specified replacement string. When an occurrence is found
point is moved to it and then JOVE asks what to do. The options are:

Space
Period
Rubout
C-R

C-W

u
Por !

Return

to replace this occurrence and go on to the next one.
to replace this occurrence and then stop.
to skip this occurrence and go on to the next one.
to enter a recursive edit. This lets you temporarily
suspend the replace, do some editing, and then return
to continue where you left off. To continue with the
Query Replace type "C-X C-C" as if you were trying to
exit JOVE. Normally you would but when you are in a
recursive edit all it does is exit that recursive
editing level.
to delete the matched string and then enter a recursive
edit.
to undo the last replacement
to go ahead and replace the remaining occurrences without
asking.
to stop the Query Replace.

The search for occurrences starts at point and goes to the end of the buffer, so to replace in the entire buffer you
must first go to the beginning.

16.169. quit-process (Not Bound)

This is the same as typing "C-\" (the Quit character) to a normal UNIX process, except it sends it to the current pro
cess in JOVE. This is only for versions of JOVE that have the interactive processes feature. This only works when

USD:l7-40 JOVE Manual for UNIX Users

you are inside a buffer that's attached to a process.

16.170. quoted-insert (C-Q)

This lets you insert characters that normally would be executed as other JOVE commands. For example, to insert
"C-F" you type "C-Q C-F" ~

16.171. read-word-abbrev-file (Not Bound)

This reads a specified file that contains a bunch of abbreviation definitions, and makes those abbreviations available.
If the selected buffer is not already in Word Abbrev mode this command puts it in that mode.

16.172. read-macros-from-file (Not Bound)

This reads the specified file that contains a bunch of macro definitions, and defines all the macros that were currently
defined when the file was created. See write-macros-to-file to see how to save macros.

16.173. redraw-display (C-L)

This centers the line containing point in the window. If that line is already in the middle the window is first cleared
and then redrawn. If a numeric argument is supplied, the line is positioned at that offset from the top of the window.
For example, "ESC 0 C-L" positions the line containing point at the top of the window.

16.174. recursive-edit (Not Bound)

This enters a recursive editing level. This isn't really very useful. I don't know why it's available for public use. I
think I'll delete it some day.

16.175. rename-buffer (Not Bound)

This lets you rename the current buffer.

16.176. replace-in-region (Not Bound)

This is the same as replace-string except that it is restricted to occurrences between Point and Mark.

16.177. replace-string (ESC R)

This replaces all occurrences of a specified string with a specified replacement string. This is just like query
replace-string except it replaces without asking.

16.178. right-margin (variable)

Where the right margin is for Auto Fill mode and the justify-paragraph andjustify-region commands. The default is
78.

16.179. right-margin-here (Not Bound)

This sets the right-margin variable to the current position of point. This is an easy way to say, "Make the right mar
gin begin here," without having to count the number of spaces over it actually is.

16.180. save-file (C-X C-S)

This saves the current· buffer to the associated file. This makes your changes permanent so you should be sure you
really want to. If the buffer has not been modified save-file refuses to do the save. If you really do want to write the
file you can use "C-X C-W" which executes write-file.

16.181. scroll-down (ESC Z)

This scrolls the screen one line down. If the line containing point moves past the bottom of the window point is
moved up to the center of the window. If a numeric argument is supplied that many lines are scrolled; if the argu
ment is negative the screen is scrolled up instead.

JOVE Manual for UNIX Users USD:17-41

16.182. scroll-step (variable)

How many lines should be scrolled if the previous-line or next-line commands move you off the top or bottom of the
screen. You may wish to decrease this variable if you are on a slow terminal.

16.183. scroll-up (C·Z)

This scrolls the screen one line up. If the line containing point moves past the top of the window point is moved
down to the center of the window. If a numeric argument is supplied that many lines are scrolled; if the argument is
negative the screen is scrolled down instead.

16.184. search-exit-char (variable)

Set this to the character you want to use to exit incremental search. The default is Newline, which makes i-search
compatible with normal string search.

16.185. search-rorward (C·S)

This searches forward for a specified search string and positions point at the end of the string if it's found. If the
string is not found point remains unchanged. This searches from point to the end of the buffer, so any matches
before point will be missed.

16.186. search-reverse (C-R)

This searches backward for a specified search string and positions point at the beginning if the string if it's found. If
the string is not found point remains unchanged. This searches from point to the beginning of the buff er, so any
matches after point will be missed.

16.187. select-buffer (C·X B)

This selects a new or already existing buffer making it the current one. You can type either the buffer name or
number. If you type in the name you need only type the name until it is unambiguous, at which point typing Escape
or Space will complete it for you. If you want to create a new buffer you can type Return instead of Space, and a
new empty buffer will be created.

16.188. self-insert (Most Printing Characters)

This inserts the character that invoked it into the buffer at point. Initially all but a few of the printing characters are
bound to self-insert.

16.189. send-typeout-to-buffer (variable)

When this is set JOVE will send output that normally overwrites the screen (temporarily) to a buffer instead. This
affects commands like list-buffers, list-processes, and other commands that use command.completion. The default
value is "off'.

16.190. set (Not Bound)

This gives a specified variable a new value. Occasionally you'll see lines like "set this variable to that value to do
this". Well, you use the set command to do that

16.191. set-mark (C·@)

This sets the mark at the current position in the buffer. It prints the message "Point pushed" on the message line. It
says that instead of "Mark set" because when you set the mark the previous mark is still remembered on a ring of 16
marks. So "Point pushed" means point is pushed onto the ring of marks and becomes the value of "the mark". To
go through the ring of marks you type "C-U C-@", or execute the pop-mark command. If you type this enough
times you will get back to where you started.

USD:l7-42 JOVE Manual for UNIX Users

16.192. shell (variable)

The shell to be used with all the shell commands command If your SHEU.. environment variable is set, it is used as
the value of shell; otherwise "/bin/csh" is the default

16.193. shell-command (C-X !)

This runs a UNIX command and places the output from that command in a buffer. JOVE creates a buffer that
matches the name of the command you specify and then attaches that buffer to a window. So, when you have only
one window running this command will cause JOVE to split the window and attach the new buffer to that window.
Otherwise, JOVE finds the most convenient of the available windows and uses that one instead If the buffer already
exists it is first emptied, except that if it's holding a file, not some output from a previous command, JOVE prints an
error message and refuses to execute the command If you really want to execute the command you should delete
that buffer (saving it first, if you like) or use shell-command-to-buffer, and try again.

16.194. shell-command-to-bufTer (Not Bound)

This is just like shell-command except it lets you specify the buffer to use instead of JOVE.

16.195. shell-Bags (variable)

This defines the flags that are passed to shell commands. The default is "-c". See the shell variable to change the
default shell.

16.196. show-match-mode (Not Bound)

This turns on Show Match mode (or off if it's currently on) in the selected buffer. This changes"}" and")" so that
when they are typed the are inserted as usual, and then the cursor flashes back to the matching "{" or "(" (depending
on what was typed) for about half a second, and then goes back to just after the"}" or")" that invoked the com
mand This is useful for typing in complicated expressions in a program. You can change how long the cursor sits
on the matching paren by setting the "paren-flash-delay" variable in tenths of a second. If the matching"{" or"("
isn't visible nothing happens.

16.197. shrink-window (Not Bound)

This makes the current window one line shorter, if possible. Windows must be at least 2 lines high, one for the text
and the other for the mode line.

16.198. source (Not Bound)

This reads a bunch of JOVE commands from a file. The format of the file is the same as that in your initialization file
(your ".joverc") in your main directory. There should be one command per line and it should be as though you
typed "ESC X" while in JOVE. For example, here's part of my initialization file:

bind-to-key i-search-reverse "R
bind-to-key i-search-forward "S
bind-to-key pause-jove "[S

What they do is make "C-R" call the i-search-reverse command and "C-S" call i-searchforward and "ESC S" .call
pa':'Se-jove.

16.199. spell-buffer (Not Bound)

This runs the current buffer through the UNIX spell program and places the output in buffer "Spell". Then JOVE lets
you edit the list of words, expecting you to delete the ones that you don't care about, i.e., the ones you know are
spelled correctly. Then the parse-spelling-e"ors-in-buff er command comes along and finds all the misspelled
words and sets things up so the error commands work.

JOVE Manual for UNIX Users USD:17-43

16.200. split-current-window (C·X 2)

This splits the cUITent window into two equal parts (providing the resulting windows would be big enough) and
displays the selected buffer in both windows. Use "C-X l" to go back to 1 window mode.

16.201. start-remembering (C·X O
This starts remembering your key strokes in the Keyboard macro. To stop remembering you type "C-X)". Because
of a bug in JOVE you can't stop remembering by typing "ESC X stop-remembering"; stop-re~mbering must be
bound to "C-X)" in order to make things work correctly. To execute the remembered key strokes you type "C-X E"
which runs the execute-keyboard-macro command. Sometimes you may want a macro to accept different input
each time it runs. To see how to do this, see the make-macro-interactive command

16.202. stop-process (Not Bound)

This sends a stop signal (C-Z, for most people) to the current process. It only works if you have the interactive pro
cess feature, and you are in a buffer attached to a process.

16.203. stop-remembering (C-X))

This stop the definition of the keyboard macro. Because of a bug in JOVE, this must be bound to "C-X)". Anything
else will not work properly.

16.204. string-length (Not Bound)

This prints the number of characters in the string that point sits in. Strings are surrounded by double quotes. JOVE
knows that "\007" is considered a single character, namely "C-G", and also knows about other common ones, like
"\r" (Return) and "\n" (LineFeed). This is mostly useful only for C programmers.

16.205. suspend-jove (ESC S)

This is a synonym for pause-jove.

16.206. sync-frequency (variable)

The temporary files used by JOVE are forced out to disk every sync1requency modifications. The default is 50,
which really makes good sense. Unless your system is very unstable, you probably shouldn't fool with this.

16.207. tag-file (variable)

This the name of the file in which JOVE should look up tag definitions. The default value is "Jtags".

16.208. text-mode (Not Bound)

This sets the major mode to Text. Currently the other modes are Fundamental, C and Lisp mode.

16.209. transpose-characters (C· T)

This switches the character before point with the one after point, and then moves forward one. This doesn't work at
the beginning of the line, and at the end of the line it switches the two characters before point Since point is moved
forward, so that the character that was before point is still before point, you can use "C-T' to drag a character down
the length of a line. This command pretty quickly becomes very useful.

16.210. transpose-lines (C-X C· T)

This switches the current line with the one above it, and then moves down one so that the line that was above point
is still above point. This, like transpose-characters, can be used to drag a line down a page.

16.211. unbind-key (Not Bound)

Use this to unbind any key sequence. You can use this to unbind even a pre.fix command, since this command does
not use "key-map completion". For example, "ESC X unbind-key ESC [" unbinds the sequence "ESC [". This is
useful for "turning off' something set in the system-wide" .joverc" file.

USD:17-44 JOVE Manual for UNIX Users

16.212. update-time-frequency (variable)

How often the mode line is updated (and thus the time and load average, if you display them). The default is 30
seconds.

16.213. use-i/d-char (variable)

If your terminal has insert/delete character capability you can tell JOVE not to use it by setting this to "off'. In my
opinion it is only worth using insert/delete character at low baud rates. WARNING: if you set this to "on" when
your terminal doesn't have insert/delete character capability, you will get weird (perhaps fatal) results.

16.214. version (Not Bound)

Displays the version number of this JOVE.

16.215. visible-bell (variable)

Use the terminal's visible bell instead of beeping. This is set automatically if your terminal has the capability.

16.216. visible-spaces-in-window (Not Bound)

This displays an underscore character instead of each space in the window and displays a greater-than followed by
spaces for each tab in the window. The actual text in the buffer is not changed; only the screen display is affected.
To turn this off you run the command again; it toggles.

16.217. visit-file (C-X C-V)

This reads a specified file into the current buffer replacing the old text If the buffer needs saving JOVE will offer to
save it for you. Sometimes you use this to start over, say if you make lots of changes and then change your mind. If
that's the case you don't want JOVE to save your buffer and you answer "NO" to the question.

16.218. window-find (C-X 4)

This lets you select another buffer in another window three different ways. This waits for another character which
can be one of the following:

T Finds a tag in the other window.
F Finds a file in the other window.
B Selects a buffer in the other window.

This is just a convenient short hand for "C-X 2" (or "C-X O" if there are already two windows) followed by the
appropriate sequence for invoking each command. With this, though, there isn't the extra overhead of having to
redisplay. In addition, you don't have to decide whether to type "C-X 2" or "C-X O" since "C-X 4" does the right
thing.

16.219. word-abbrev-mode (Not Bound)

This turns on Word Abbrev mcxle (or off if it's currently on) in the selected buffer. Word Abbrev mode lets you
specify a word (an abbreviation) and a phrase with which JOVE should substitute the abbreviation. You can use this
to define words to expand into long phrases, e.g., "jove" can expand into "Jonathan's Own Version of Emacs";
another common use is defining words that you often misspell in the same way, e.g., "thier" =>"their" or "teh" =>
"the". See the information on the auto-case-abbrev variable.

There are two kinds of abbreviations: mode specific and global. If you define a Mode specific abbreviation in C
mode, it will expand only in buffers that are in C mode. This is so you can have the same abbreviation expand to
different things depending on your context Global abbreviations expand regardless of the major mode of the
buffer. The way it works is this: JOVE looks first in the mode specific table, and then in the global table. Whichever
it finds it in first is the one that's used in the expansion. If it doesn't find the word it is left untouched. JOVE tries to
expand words as they are typed, when you type a punctuation character or Space or Return. If you are in Auto Fill
mode the expansion will be filled as if you typed it yourself.

JOVE Manual for UNIX Users USD:17-45

16.220. wrap-search (variable)

If set, searches will "wrap around" the ends of the buffer instead of stopping at the bottom or top. The default is
"off".

16.221. write-files-on-make (variable)

When set, all modified files will be written out before calling make when the compile-it command is executed. The
default is "on".

16.222. write-word-abbrev-file (Not Bound)

This writes the currently defined abbreviations to a specified file. They can be read back in and automatically
defined with read-word-abbrev-file.

16.223. write-file (C-X C-W)

This saves the current buffer to a specified file, and then makes that file the default file name for this buffer. If you
specify a file that already exists you are asked to confirm over-writing it.

16.224. write-macros-to-file (Not Bound)

This writes the currently defined macros to a specified file. The macros can be read back in with read-macros
from-file so you can de.fine macros and still use them in other instantiations of JOVE.

16.225. write-modified-files (C-X C-M)

This saves all the buffers that need saving. If you supply a numeric argument it asks for each buffer whether you
really want to save it

16.226. write-region (Not Bound)

This writes the text in the region to a specified file. If the file already exists you are asked to confirm over-writing it.

16.227. yank (C-Y)

This undoes the last kill command. That is, it inserts the killed text at point. When you do multiple kill commands
in a row, they are merged so that yanking them back with "C-Y" yanks back all of them.

16.228. yank-pop (ESC Y)

This yanks back previous killed text JOVE has a kill ring on which the last 10 kills are stored. Yan/c yanks a copy of
the text at the front of the ring. If you want one of the last ten kills you use "ESC Y" which rotates the ring so
another different entry is now at the front You can use "ESC Y" only immediately following a "C-Y" or another
"ESC Y". If you supply a negative numeric argument the ring is rotated the .other way. If you use this command
enough times in a row you will eventually get back to where you started. Experiment with this. It's extremely use
ful.

SED - A Non-interactive Text Editor

Lee E. McMahon

ABSTRACT

Sed is a non-interactive context editor that runs on the UNIXt operating system.
Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too compli

cated to be comfortably typed in interactive mode.
3) To petform multiple 'global' editing functions efficiently in one pass through

the inpuL

This memorandum constitutes a manual for users of sed.

Introduction

Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated to be comfort

ably typed in interactive mode;
3) To perform multiple 'global' editing functions efficiently in one pass through the input.

Since only a few lines of the input reside in core at one time, and no temporary files are used, the effective
size of file that can be edited is limited only by the requirement that the input and output fit simultaneously
into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For complex
edits, this saves considerable typing, and its attendant errors. Sed running from a command file is much
more efficient than any interactive editor known to the author, even if that editor can be driven by a pre
written scripL

The principal loss of functions compared to an interactive editor are lack of relative addressing (because of
the line-at-a-time operation), and lack of immediate verification that a command has done what was
intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interactive and
non-interactive operation, considerable changes have been made between ed and sed; even confirmed users
of ed will frequently be surprised (and probably chagrined), if they rashly use sed without reading Sections
2 and 3 of this document. The most striking family resemblance between the two editors is in the class of
patterns ('regular expressions') they recognize; the code for matching patterns is copied almost verbatim
from the code for ed, and the description of regular expressions in Section 2 is copied almost verbatim
from the UNIX Programmer's Manual[l]. (Both code and description were written by Dennis M. Ritchie.)

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps petforming one or more editing
commands on each line before writing it to the output This behavior may be modified by flags on the com
mand line; see Section 1.1 below.

t UNIX is a trademark of Bell Laboratories.

USD:18-2 SED- A Non-interactive Text Editor

The general format of an editing command is:

[addressl,address2][function][arguments]

One <r both addresses may be omitted; the format of addresses is given in Section 2. Any number of
blanks or tabs may separate the addresses from the function. The function must be present; the available
commands are discussed in Section 3. The arguments may be required or optional, according to which
function is given; again, they are discussed in Section 3 under each individual function.

Tab characters and spaces at the beginning of lines are ignored.

1.1. Command-line Flags

Three fiags are recognized on the command line:
-n: tells sed not to copy all lines, but only those specified by p functions or p flags after s func

tions (see Section 3.3);
-e: tells sed to take the next argument as an editing command;
-f: tells sed to take the next argument as a file name; the file should contain editing commands,

one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing commands are
compiled into a form which will be moderately efficient during the execution phase (when the commands
are actually applied to lines of the input file). The commands are compiled in the order in which they are
encountered; this is generally the order in which they will be attempted at execution time. The commands
are applied one at a time; the input to each command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the ft.ow-of-control com
mands, t and b (see Section 3). Even when the order of application is changed by these commands, it is
still true that the input line to any command is the output of any previously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Otdinarily, the pattern space is one line of the
input text, but more than one line can be read into the pattern space by using the N command (Section 3.6.).

1.4. Examples

Examples are scattered throughout the text Except where otherwise noted, the examples all assume the
following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:

The command

2q
will quit after copying the first two lines of the input The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

SEO - A Non-interactive Text Editor USD:18-3

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by addresses.
Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by grouping the
commands with curly braces (' { } ')(Sec. 3.6.).

2.1. Line-number Addres.ws

A line number is a decimal integer. As each line is read from the input, a line-number counter is incre
mented; a line-number address matches (selects) the input line which causes the internal counter to equal
the address line-number. The counter runs cumulatively through multiple input files; it is not reset when a
new input file is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern ('regular expression') enclosed in slashes ('/'). The regular expressions
recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression, and matches
that character.

2) A circumflex '"' at the beginning of a regular expression matches the null character at the
beginning of a line.

3) A dollar-sign '$' at the end of a regular expression matches the null character at the end of a
line.

4) The characters '\n' match an imbedded newline character, but not the newline at the end of the
pattern space.

5) A period '.' matches any character except the terminal newline of the pattern space.
6) A regular expression followed by an asterisk'*' matches any number (including 0) of adjacent

occurrences of the regular expression it follows.
7) A string of characters in square brackets ' []' matches any character in the string, and no others.

If, however, the first character of the string is circumfiex , .. , , the regular expression
matches any character except the characters in the string and the terminal newline of the
pattern space.

8) A concatenation of regular expressions is a regular expression which matches the concatenation
of strings matched by the components of the regular expression.

9) A regular expression between the sequences '\(' and'\)' is identical in effect to the unadorned
regular expression, but has side-effects which are described under the s command below
and specification 10) immediately below.

10) The expression '\d' means the same string of characters matched by an expression enclosed in
'\(' and'\)' earlier in the same pattern. Here dis a single digit; the string specified is that
beginning with the d th occurrence of '\(' counting from the left. For example, the
expression '"\(. *\)\1' matches a line beginning with two repeated occurrences of the same
string.

11) The null regular expression standing alone (e.g., '//') is equivalent to the last regular expres-
sion compiled.

To use one of the special characters (" $. • [] \ /) as a literal (to match an occurrence of itself in the input),
precede the special character by a backslash '\'.

For a context address to 'match' the input requires that the whole pattern within the address match some
portion of the pattern space.

2.3. Number of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the maximum
number of allowed addresses is given. For a command to have more addresses than the maximum allowed
is considered an error.

USD:l8-4 SED - A Non-interactive Text Editor

If a command has no addresses, it is applied to every line in the inpuL

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address, and to all sub
sequent lines until (and including)·the first subsequent line which matches the second address. Then an
attempt is made on subsequent lines to again match the first address, and the process is repeated.

Two addresses are separated by a comma.

Examples:

/an/
/an.•ant
ran1
IJ
l\J

matches lines 1, 3, 4 in our sample text
matches line 1
matches no lines
matches all lines
matches line 5

/r*'an/
/\(an\).*\l/

matches lines 1,3, 4 (number - zero!)
matches line 1

3. FUNCTIONS
All functions are named by a single character. In the following summary, the maximum number of allow
able addresses is given enclosed in parentheses, then the single character function name, possible argu
ments enclosed in angles (< >), an expanded English translation of the single-character name, and finally a
description of what each function does. The angles around the arguments are not part of the argument, and
should not be typed in actual editing commands.

3.1. Whole-line Oriented Functions
(2)d -- delete lines

The d function deletes from the file (does not write to the output) all those lines matched
by its address(es).

It also has the side effect that no further commands are attempted on the corpse of a
deleted line; as soon as the d function is executed, a new line is read from the input, and
the list of editing commands is re-started from the beginning on the new line.

(2)n -- next line

(l)a\

The n function reads the next line from the input, replacing the current line. The current
line is written to the output if it should be. The list of editing commands is continued fol
lowing the n command.

<text> -- append lines

(l)i\

The a function causes the argument <text> to be written to the output after the line
matched by its address. The a command is inherently multi-line; a must appear at the
end of a line, and <text> may contain any number of lines. To preserve the one
command-to-a-line fiction, the interior newlines must be hidden by a backslash character
('\')immediately preceding the newline. The <text> argument is terminated by the first
unhidden newline (the first one not immediately preceded by backslash).

Once an a function is successfully executed, <text> will be written to the output regard
less of what later commands do to the line which triggered it The triggering line may be
deleted entirely; <text> will still be written to the output.

The <text> is not scanned for address matches, and no editing commands are attempted
on it It does not cause any change in the line-number counter.

SEO - A Non-interactive Text Editor USD:18-S

<text> -- insert lines

(2)c\

The i function behaves identically to the a function, except that <text> is written to the
output before the matched line. All other comments about the a function apply to the i
function as well.

<text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them with the
lines in <text>. Like a and i, c must be followed by a newline hidden by a backslash; and
interior new lines in <text> must be hidden by backslashes.

The c command may have two addresses, and therefore select a range of lines. If it does,
all the lines in the range are deleted, but only one copy of <text> is written to the output,
not one copy per line deleted. As with a and i, <text> is not scanned for address matches,
and no editing commands are attempted oo it. It does not change the line-number
counter.

After a line has been deleted by a c function, no further commands are attempted on the
corpse.

If text is appended after a line by a or r functions, and the line is subsequently changed,
the text inserted by the c function will be placed before the text of the a or r functions.
(The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disappear, as
always in sed commands. To get leading blanks and tabs into the output, precede the first desired blank or
tab by a backslash; the backslash will not appear in the output.

Example:

The list of editing commands:

n
a\
xxxx
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
xxxx
Where Alph, the sacred river, ran
xxxx
Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following command lists:

n
i\
xxxx
d

n
c\
xxxx

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the line.

(2)s<Pattern><replacement><ilags> -- substitute

The s function replaces part of a line (selected by <Pattern>) with <replacement>. It can
best be read:

Substitute for <pattern>, <replacement>

USD:18-6

Examples:

SED- A Non-interactive Text Editor

The <J)attern> argument contains a pattern, exactly like the patterns in addresses (see 2.2
above). The only difference between <Pattern> and a context address is that the context
address must be delimited by slash('/') characters; <Pattern> may be delimited by any
character other than space or newline.

By default, only the first string matched by <Pattern> is replaced, but see the g flag
below.

The <replacement> argument begins immediately after the second delimiting character of
<J)attem>, and must be followed immediately by another instance of the delimiting char
acter. (Thus there are exactly three instances of the delimiting character.)

The <replacement> is not a pattern, and the characters which are special in patterns do
not have special meaning in <replacement>. Instead, other characters are special:

& is replaced by the string matched by <Pattern>

\d (where d is a single digit) is replaced by the dth substring matched by parts of
q>attem> enclosed in '\(' and '\)'. If nested substrings occur in <Pat
tern>, the dth is determined by counting opening delimiters('\(').

As in patterns, special characters may be made literal by preceding
them with backslash('\').

The <flags> argument may contain the following flags:

g -- substitute <replacement> for all (non-overlapping) instances of <Pattern> in
the line. After a successful substitution, the scan for the next instance
of <Pattern> begins just after the end of the inserted characters; charac
ters put into the line from <replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag causes the
line to be written to the output if and only if a substitution was actually
made by the s function. Notice that if several s functions, each fol
lowed by a p flag, successfully substitute in the same input line, multi
ple copies of the line will be written to the output: one for each suc
cessful substitution.

w <filename> -- write the line to a file if a successful replacement was done.
The w flag causes lines which are actually substituted by the s function
to be written to a file named by <filename>. If <filename> exists
before sed is run, it is overwritten; if not, it is created.

A single space must separate w and <filename>.

The possibilities of multiple, somewhat different copies of one input
line being written are the same as for p.

A maximum of 10 different file names may be mentioned after w flags
and w functions (see below), combined.

The follow~ng command, applied to our standard input,

s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

SED - A Non-interactive Text Editor

and, on the file 'changes':

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,;?:]/•p&•/gp

produces:

A stately pleasure dome decree•P:•
Where Alph•P,• the sacred riv~P,• ran
Down to a sunless sea•P. •

Finally, to illustrate the effect of the g flag, the command:

/Xis/an/ AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khan

and the command:

/Xis/an/ AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. Input-output Functions

(2)p -- print

USD:18-7

The print function writes the addressed lines to the standard output file. They are written
at the time the p function is encountered, regardless of what succeeding editing com
mands may do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the file named by <filename>. If the file
previously existed, it is overwritten; if not, it is created. The lines are written exactly as
they exist when the write function is encountered for each line, regardless of what subse
quent editing commands may do to them.

Exactly one space must separate the w and <filename>.

A maximum of ten different files may be mentioned in write functions and w flags after s
functions, combined

(1)r <filename> - read the contents of a file

The read function reads the contents of <filename>, and appends them after the line
matched by the address. The file is read and appended regardless of what subsequent
editing commands do to the line which matched its address. If r and a functions are exe
cuted on the same lin~, the text from the a functions and the r functions is written to the
output in the order that the functions are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by a r function
cannot be opened, it is considered a null file, not an error, and no diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care should be
taken that no more than ten files be mentioned in w functions or flags; that number is reduced by one if any
r functions are present. (Only one read file is open at one time.)

USD:18-8 SED - A Non-interactive Text Editor

EXamples

Assume that the file 'notel' has the following contents:

Note: Kubla Khan (more· properly Kublai Khan; 1216-1294) was the grandson and most
eminent successor of Genghiz (Chingiz) Khan, and founder of the Mongol dynasty in
China.

Then the following command:

/Kublalr notel

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson and most
eminent successor of Genghiz (Chingiz) Khan, and founder of the Mongol dynasty in
China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing imbedded
newlines; they are intended principally to provide pattern matches across lines in the input.

(2)N -- Next line

The next input line is appended to the current line in the pattern space; the two input lines
are separated by an imbedded newline. Pattern matches may extend across the imbedded
newline(s).

(2)0 -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern space. If the
pattern space becomes empty (the only newline was the terminal newline), read another
line from the input. In any case, begin the list of editing commands again from its begin
ning.

(2)P -- Print first part of the pattern space

Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded newlines in
the pattern space.

3.5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

(2)h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (destroying the
previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the hold area;
the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the cont ats of the hold area into the pattern space (destroying the
previous contents of the pattern space).

SEO - A Non-interactive Text Editor USD:18-9

(2)0 -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the pattern space;
the former and new contents are separated by a newline.

(2)x -- exchange

The exchange command interchanges the contents of the pattern space and the hold area.

Example

The commands

lh
ls/ did. •11
lx
G
s/\n/ :/

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but control the application of functions to the lines
selected by the address part.

(2)! -- Don't

The Don't command causes the next command (written on the same line), to be applied
to all and only those input lines not selected by the adress part.

(2){ -- Grouping

The grouping command ' {' causes the next set of commands to be applied (or not
applied) as a block to the input lines selected by the addresses of the grouping command.
The first of the commands under control of the grouping may appear on the same line as
the ' {' or on the next line.

The group of commands is terminated by a matching'}' standing on a line by itself.

Groups can be nested.

(O):<labeb -- place a label

The label function marks a place in the list of editing commands which may be referred
to by b and t functions. The <label> may be any sequence of eight or fewer characters; if
two different colon functions have identical labels, a compile time diagnostic will be gen
erated, and no execution attempted.

(2)b<labeb -- branch to label

The branch function causes the sequence of editing commands being applied to the
current input line to be restarted immediately after the place where a colon function with
the same <label> was encountered. If no colon function with the same label can be
found after all the editing commands have been compiled, a compile time diagnostic is
produced, and no execution is attempted.

A b function with no <label> is taken to be a branch to the end of the list of editing

USD:l8-10 SEO - A Non-interactive Text Editor

comman&; whatever should be done with the current input line is done, and another
input line is read; the list of editing comman& is restarted from the beginning on the new
line.

(2)t<label> -- test substitutions

The t function tests whether any successful substitutions have been made on the current
input line; if so, it branches to <label>; if not, it does nothing. The flag which indicates
that a successful substitution has been executed is reset by:

1) reading a new input line, or
2) executing a t function.

3. 7. Miscellaneous Functions

(l)= -- equals

The = function writes to the standard output the line number of the line matched by its
address.

(l)q -- quit

Reference

The q function causes the current line to be written to the output (if it should be), any
appended or read text to be written, and execution to be terminated

[l] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer's Manual. Bell Laboratories, 1978.

Awk -A Pattern Scanning and Proce~ing Language
(Second Edition)

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

ABSTRACT

Awk is a programming language whose basic operation is to search a set of files for
patterns, and to perfonn specified actions upon lines or fields of lines which contain
instances of those patterns. Awk makes certain data selection and transformation opera
tions easy to express; for example, the awk program

length> 72

prints all input lines whose length exceeds 72 characters; the program

NF%2==0

prints all lines with an even number of fields; and the program

{ $1 = log($1); print}

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular expressions
and of relational operators on strings, numbers, fields, variables, and array elements.
Actions may include the same pattern-matching constructions as in patterns, as well as
arithmetic and string expressions and assignments, if-else, while, for statements, and
multiple output streams.

This report contains a user's guide, a discussion of the design and implementation
of awk, and some timing statistics.

1. Introduction
Awk is a programming language designed to

make many common information retrieval and text
manipulation tasks easy to state and to perform.

The basic operation of awk is to scan a set of
input lines in order, searching for lines which match
any of a set of patterns which the user has specified.
For each pattern, an action can be specified; this action
will be performed on each line that matches the pattern.

Readers familiar with the UNIXt program grep
unix program manual will recognize the approach,
although in awk the patterns may be more general than

t UNIX is a trademarlc. of Bell Laboratories.

in grep, and the actions allowed are more involved
than merely printing the matching line. For example,
the awk program

{print $3, $2}

prints the third and second columns of a table in that
order. The program

$2 - /AIBIC/

prints all input lines with an A, B, or C in the second
field. The program

$1 != prev { print; prev = $1 }

prints all lines in which the first field is different from

USD:l9-2

the previous first field.

1.1. Usace

The command

awk procram [ftles]

executes the awl commands in the string program on
the set of named files, or on the standard input if dae
are no files. The statements can also be placed in a file
pllle, and executed by the command

awk -r pftle [files]

1.2 •. PnJeram Structure
An awk program is a sequence of statements of

the form:

paltem
pattern

{action}
{action}

Each line of input is matched against each of the pat
terns in tum. For each pattern that matches, the associ
ated action is executed. When all the patterns have
been tested, the next line is . fetched and the matching
starts over.

Either the pattern or the action may be left out,
but not both. If there is no action for a pattern, the
matching line is simply copied to the output. (Thus a
line which matches several patterns can be printed
several times.) If there is no pattern for an action, then
the action is performed for every input line. A line
which matches no pattern is ignored.

Since patterns and actions are both optional,
actions must be enclosed in braces to distinguish them
from patterns.

1.3. Records and Fields

Awk input is divided into "records" terminated
by a record separator. The default record separator is a
newline, so by default awk processes its input a line at
a time. The number of the current record is available in
a variable named NR.

Each input record is considered to be divided
into ''fields.'' Fields are normally separated by white
space - blanks or tabs - but the input field separator
may be changed, as described below. Fields are
referred to as $1, $2, and so forth, where $1 is the first
field, and $0 is the whole input record itself. Fields
may be assigned to. 1be number of fields in the current
record is available in a variable named NF.

The variables FS and RS refer to the input field
and record separators; they may be changed at any time
to any single character. The optional command-line
argument-Fe may also be used to set FS to the charac
ter c.

If the record separator is empty, an empty input
line is taken as the record separator, and blanks, tabs

Awk -A Pattern Scanning and Processing Language

and newlines are treated as field separators.

The variable FILENAME contains the name of
the current input file.

1.4. Prlntlq

An action may have no pattern, in which case
the action is executed for all linel. The simplest action
is to print aome or all of a record; this is accomplished
by the awl command print. The awl program

{print}

prints each record, thus copying the input to the output
intact. More useful is to print a fiekl or fields from
each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement will be
separated by the current output field separator when
output. Items not separated by commas will be con
catenated, so

print $1 $2

runs the first and second fields togethec.

The predefined variables NF and NR can be
used; for example

{ print NR, NF, $0 }

prints each record preceded by the record number and
the number of fields.

Output may be diverted to multiple files; the

PT?gram

{ print $1 >"foot"; print $2 >" foo2" }

writes the first field, $1, on the file fool, and the second
field on file foo2. The >> notation can also be used:

print $1 >>"foo"

appends the output to the file foo. (In each case, the
output files are created if necessary.) ·The file name can
be a variable or a field as well as a constant; for exam
ple,

print $1 >$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of out
put files; currently it is 10.

Similarly, output can be piped into another pro
cess (on UNIX only); for instance,

print I "mall bwk"

mails the output to bwk.

The variables OFS and ORS may be used to
change the current output field separator and output
record separator. The output record separator is
appended to the output of the print statement.

Awk - A Pattern SclllDing and Processing Language

Awk also provides the prlntt statement for out
put formatting:

prlntt format apr, expr, ...

formats the expressions in the list according to the
specification in format and prints them. For example,

prlntf "CJ,8.21 CJ,lOld\n", $1, $2

prints $1 u a floating point number 8 digits wide, with
two after the decimal point, and $2 u a 10-digit long
decimal number, followed by a newline. No output
separat.ora are produced automatically; you must add
them yourself, u in this example. The version of
prlntt is identical to that used with C. C prognmm
language prentice ball 1978

2. Patterns

A pattern in front of an action acts as a selector
that determines whether the action is to be executed. A
variety of expressions may be used as patterns: regular
expressions, arithmetic relational expressions, string
valued expressions, and arbitrary boolean combinations
of these.

2.1. BEGIN and END

The special pattern BEGIN matches the begin
ning of the input, before the first record is read. The
pattern END matches the end of the input, after the last
record has been processed. BEGIN and END thus pro
vide a way to gain control before and after processing,
for initialization and wrapup.

As an example, the field separator can be set to a
colon by

BEGIN { FS = ":" }
... rest of program ...

Or the input lines may be counted by

END { print NR }

If BEGIN is present, it must be the first pattern; END
must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal string
of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which will
print all lines which contain any occunence of the
name "smith". If a line contains "smith" as part of a
larger word, it will also be printed, as in

blacksmithing

Awk regular expressions include the regular
expression forms found in the UNIX text editor ed unix
program manual and grep (without back-referencing).
In addition, awk allows parentheses for grouping, I for

USD:l9-3

alternatives, + for "one or more", and ? for "zero or
one", all u in la. Character cluses may be abbrevi
ated: [a-zA-Z~9] is the set of all letters and digits.
As an example, the awk program

/[Aa]ho l[Ww]elnberger j[Kk]ernlghan/

will print all lines which contain any of the names
"Aho," "Weinberger'' or "Kernighan," whether cap
italized or not.

Regular expressions (with the extensions listed
above) must be enclosed in sluhes, just u in ed and
sell. Within a regular expression, blanks and the regu
lar expression metacharacters are significanL To tum
of the magic meaning of one of the regular expression
characters, precede it with a backslash. An example is
the pattern

/V.•V/

which matches any string of characters enclosed in
slashes.

One can also specify that any field or variable
matches a regular expression (or does not match it)
with the operators-and!-. The program

$1 - /ijJ)ohn/

prints all lines where the first field matches ''john'' or
"John." Notice that this will also match "Johnson",
"St. Johnsbury", and so on. To restrict it to exactly
UJ]ohn, use

$1 - tUJJohn$/
The caret .. refers to the beginning of a line or field; the
dollar sign $ refers to the end.

2.3. Relational Exprealons

An awk pattern can be a relational expression
involving the usual relational operators <, <=, ==, !=,
>=, and >. An example is

$l > $1+100

which selects lines where the second field is at least
100 greater than the first field. Similarly,

NFCJ,2::0

prints lines with an even number of fields.

In relational tests, if neither operand is numeric,
a string comparison is made; otherwise it is numeric.
Thus,

$1 >= "s"

selects lines that begin with an s, t, u, etc. In the
absence of any other information, fields are treated as
strings, so the program

$1 > $2

will perform a string comparison.

USD:l9-4

2.4. Comblnadons of Patterns

A pattern can be any boolean combination of
patterns, using the opaaton 11 (or), && (and), and !
(not). For example,

$t >= "s" && $t < "t" && St I= "smith"

selects lines when the first field begins with 111", but is
not •'smith''. && and 11 guarantee that their operands
will be evaluated from left to right; evaluation stops u
soon as the truth or falsehood is determined.

2.5. Pattern Ranaes

The "pattern" that selects an action may also
consist of two patterns separated by a comma, as in

patt, patl { - }

In this case, the action is performed for each line
between an occurrence of patl and the next occunence
of patl (inclusive). For example,

/start/, /stop/

prints all lines between start and stop, while

NR =too, NR == 200 { ... }

does the action for lines 100 through 200 of the input.

3. Acdons

An awk action is a sequence of action state
ments terminated by newlines or semicolons. These
action statements can be used to do a variety of book
keeping and string manipulating tasks.

3.1. Built-In Functions

Awk provides a "length" function to compute
the length of a string of characters. This program prints
each record, preceded by its length:

{print length, $0}

length by itself is a "pseudo-variable" which yields
the length of the current record; lengtb(argument) is a
function which yields the length of its argument, as in
the equivalent

{print length($0), $0}

The argument may be any expression.

Awk also provides the arithmetic functions sqrt,
log, exp, and Int, for square root, base e logarithm,
exponential, and integer part of their respective argu
ments.

The name of one of these built-in functions,
without argument or parentheses, stands for the value
of the function on the whole record. The program

length < 10 II length > 20

prints lines whose length is less than 10 or greater than
20.

Awk-A Pattern Scanning and Processing Language

The function substr(s, m, n) produces ·t11e sub
string of s that begins at position m (origin 1) and is at
most n characters long. If n is omitted, the substring
goes to the end of s. The function lnclex(st, sl) returns
the position where the string s2 occurs in st, or :r.ero if
it does not.

The function sprlntf(f, et, e2,-) produces the
value of the expressions el, el,· etc., in the prlntf for
mat specified by r. Thus, for example,

I: sprlntf("'IJLlf '1Jt01d", $1, $2)

sets x to the string produced by formatting the values of
$1 and $2.

3.2. V arlables, Expressions, and AlslpmenCB

Awk variables take on numeric (floating point)
or string values according to context. For example, in

X:l

x is clearly a number, while in

x ="smith"

it is clearly a string. Strings are converted to numbers
and vice versa whenever context demands it. For
instance,

I= "3" + "4"

assigns 7 to x. Strings which cannot be interpreted as
numbers in a numerical context will generally have
numeric value zero, but it is unwise to count on this
behavior.

By default, variables (other than built-ins) are
initialized to the null string, which has numerical value
zero; this eliminates the need for most BEGIN sec
tions. For example, the sums of the first two fields can
be computed by

{ sl += $1; s2 += $2 }
END { print sl, s2 }

Arithmetic is done internally in floating point.
The arithmetic operators are +, -, •, /, and % (mod).
The C increment ++ and decrement - operators are
also available, and so are the assignment operators+=,
-=. •=, /=, and %=. These operators may all be used
in expressions.

3.3. Field Variables

Fields in awk share essentially all of the proper
ties of variables - they may be used in arithmetic or
string operations, and may be assigned to. Thus one
can replace the first field with a sequence number like
this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 }

Awk- A Pattern Scanning and Processing Language

or assign a string to a field:

{ If ($3 > 1000)

}

$3 = "too bf&"
print

which replaces the third field by "too big" when it is,
and in any case prints the mx>rd.

Field references may be numerical expressions,
asin

{ print $1, $(1+1), $(1+D) }

Whether a field ia deemed numeric or airing depends on
context; in ambiguous cases like

If ($1 == $2) ·- .

fields are 1reated ~ strings.

Each input line is split into fields automatically
as necessary. It is also possible to split any variable or
string into fields:

n = spllt(s, array, sep)

splits the the string s into array[l], ... , array[n]. The
number of elements found is retumcd. If the sep argu
ment is provided, it is used as the field separator; other
wise FS is used as the separator.

3.4. String Concatenation

Strings may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in a print
statement,

print $1 " Is " $2

prints the two fields separated by 11 is ''. Variables and
numeric expressions may also appear in concatena
tions.

3.S. Arrays

Array elements are not declared; they spring into
existence by being mentioned. Subscripts may have
any non-null value, including non-numeric strings. As
an example of a conventional numeric subscript, the
statement

:x[NR] = $0

assigns the current input record to the NR-th element of
the array x. In fact, it is possible in principle (though
perhaps slow) to process the entire input in a random
order with the awk program

{ x[NR] = $0}
END { ... program ... }

The first action merely records each input line in the
array x.

USD:19-S

Array elements may be named by non-numeric
values, which gives awk a capability rather like the
associative memory of Snobol tables. Suppose the
input contains fields with values like apple, orange,
etc. Then the program

/apple/ { s["apple"]++ }
/oranp/ { s["orance"J++ }
END { print s["apple"J, sl"oranae"] }

increments counts for the named array elements, and
prints them at the end of the input

3.6. Flow-d-Control Statements

Awk provides the basic flow-of-control state
ments 11-elle, whlle, for, and statement grouping with
braces, as in C. We showed the If statement in section
3.3 without describing it. The condition in parentheses
is evaluated; if it is true, the statement following the If
is done. The else part is optional.

The while statement is exactly like that of C.
For example, to print all input fields one per line,

I= 1
while (I <= NF) {

print $1
++I

}

The for statement is also exactly that of C:

for (I = 1; I <= NF; I++)
print $1

does the same job as the while statement above.

There is an alternate form of the for statement
which is suited for accessing the elements of an associ
ative array:

for (I In array)
statement

does statement with I set in turn to each element of
array. The elements are accessed in. an apparenUy ran
dom order. Chaoi will ensue if I is altered, or if any
new elements are accessed during the loop.

The expression in the condition part of an If,
while or for can include ~lational operaton like <, <=,
>, >=. == ("is equal to"), and != ("not equal to");
~gular expression matches with the match operators -
and !-; the logical operators II, &&, and !; and of
course parentheses for grouping.

The break statement causes an immediate exit
from an enclosing whlle or for; the continue statement
causes the next iteration to begin.

The statement nest causes awl to skip immedi
ately to the next record and begin scanning the patterns
from the top. The statement exit causes the program to
behave as if the end of the input had occurred.

USD:19-6

Comments may be placed in awk programs:
they begin with the character# and end with the end of
the line, as in

print s, y # this Is a comment

4. Deslp

The UNIX system already provides several pro
grams that operate by passing input through a selection
mechanism. Grep, the first and simplest, merely prints
all lines which match a aiDgle specified pattern. Egrep
provides more general pattcms, i.e., regular expressions
in full generality; /grep searches for a set of keywords
with a particularly fast algorithm. Sell unix programm
manual provides most of the editing . facilities of the
editor ed, applied to a stream of input. None of these
programs provides numeric capabilities, logical rela
tions, or variables.

Lex lesk lexical analyzer cstt provides general
regular expression recognition capabilities, and, by
serving as a C program generator, is essentially open
ended in its capabilities. The use of la, however,
requires a knowledge of C programming, and a la pro
gram must be compiled and loaded before use, which
discourages its use for one-shot applications.

Awlc is an attempt to fill in another part of the
mattix of possibilities. It provides general regular
expression capabilities and an implicit input/output
loop. But it also provides convenient numeric process
ing, variables, more general selection, and control flow
in the actions. It does not require compilation or a
knowledge of C. Finally, aw/c provides a convenient
way to access fields within lines; it is unique in this
respect.

Awlc also tties to integrate sttings and numbers
completely, by treating all quantities as both stting and
numeric, deciding which representation is appropriate
as late as possible. In most cases the user can simply
ignore the differences.

Most of the effort in developing aw/c went into
deciding what aw/c should or should not do (for
instance, it doesn't do string substitution) and what the
syntax should be (no explicit operator for concatena
tion) rather than on writing or debugging the code. We
have ttied to make the syntax powerful but easy to use
and well adapted to scanning files. For example, the
absence of declarations and implicit initializations,
while probably a bad idea for a general-purpose pro
gramming language, is desirable in a language that is
meant to be used for tiny programs that may even be
composed on the command line.

In practice, aw/c usage seems to fall into two
broad categories. One is what might be called •'report
generation" - processing an input to extract counts,
swns, sub-totals, etc. This also includes the writing of
ttivial data validation programs, such as verifying that a
field contains only numeric information or that certain

Awk - A Pattern Scanning and Processing Language

delimiters are properly balanced. The combination of
textual and numeric processing is invaluable here.

A second area of use is as a data transformer,
converting data from· the form produced by one pro
gram into that expected by another. The simplest
examples merely select fields, perhaps with rearrange
ments.

5. Implementation

The actual implementation of awk uses the
language development tools available on the UNIX
operating system. The grammar is specified with yacc ;
yacc johnson cstr the lexical analysis is done by la;
the regular expression recogniun are deterministic
finite automata constructed directly from the expres
sions. An awk program is translated into a parse tree

which is then directly executed by a simple interpreter.

Awk was designed for ease of use rather than
processing speed; the delayed evaluation of variable
types and the necessity to break input into fields makes
high speed difficult to achieve in any case. Nonethe
less, the program has not proven to be unworkably
slow.

Table I below shows the execution (user + sys
tem) time on a PDP-11no of the UNIX programs we,
grep, egrep ,fgrep, sed, la, and aw/c on the following
simple tasks:

1. count the number of lines.

2. print all lines containing .. doug".

3. print all lines containing "doug", "ken" or
"dmr".

4. print the third field of each line.

S. print the third and second fields of each line, in
that order.

6. append all lines containing "doug", "ken", and
"dmr" to files "jdoug", "jken", and "jdmr",
respectively.

7. print each line prefixed by •'line-number : ''.

8. sum the fourth column of a table.

The program we merely counts words, lines and char
acters in its input; we have already mentioned the oth
ers. In all cases the input was a file containing 10, 000
lines as created by the command ls -l; each line has the
form

-rw-rw-rw- 1ava123 Oct 15 17:05 xn

The total length of this input is 452,960 characters.
Times for la do not include compile or load.

As might be expected, awk is not as fast as the
specialized tools wc, sed, or the programs in the grep
family, but is faster than the more general tool lex. In
all cases, the tasks were about as easy to express as
awk programs as programs in these other languages;
tasks involving fields were considerably easier to
express as aw/c programs. Some of the test programs

Awt - A Pattern Scanning and Processing Language

are shown in awk, sed and la.

References

1. K. Thompson and D.M. Ritchie, UNIX
Progrt11Nn6's MDl'llMll, Bell Laboratories, May 197S.
Sixth Edition.

2. B.W. Kernighan and D.M. Ritchie, TM C Pro
grtl11111&ing LangMage, Prentice-Hall, Englewood Cliffs,
New Jersey, 1978.

3. M.E. Lest, "Lex -A Lexical Anal)'7.el' Generator,"
Comp. Sci. Tech. Rep. No. 30, Bell Labontoriea, Mur
ray Hill, New Jersey, October 197S. Reprinted u
PS1:16 in UNIX Progr""""6's MQllllQJ, Usenix Auo
ciation, (1986).

4. S.C. Johnson, "Yacc - Yet Another Compiler
Compiler," Comp. Sci. Tech. Rep. No. 32, Bell
Laboratories, MWTay Hill, New Jersey, July 1975.
Reprinted as PS 1: 15 in UNIX Progrtllllml!T' s MDl'llMll,
Usenix Association, (1986).

USD:l9-7

USD:19-8 Awk - A Pattern Scanning and Proceuing Language

Task
Program 1 2 3 4 5 6 7 8

WC 8.6
grep 11.7 13.1
egrep 6.2 11.5 11.6
fgrep 7.7 13.8 16.1

-' 10.2 11.6 15.8 29.0 30.5 16.1
la 6S.1 150.1 144.2 67.7 70.3 104.0 81.7 92.8
awk 15.0 25.6 29.9 33.3 38.9 46.4 71.4 31.l

Table L Execution Times of Programs. (Times are in 1ee.)

The programs for some of these jobs ~ shown LEX:
below. The la programs ~generally too long to
show.

AWK:

1. END {print NR}

2. /doug/

3. /kenldougldmr/

4. {print $.1}

5. {print $.1, $2}

6. /ken/ {print >"Jken"}
/doug/ {print >"Jdouc"}
/dmr/{prlnt >"Jdmr"}

7. {print NR ": " $0}

8. {sum = sum + $4}
END {print sum}

SEO:

1. $=

2. /doug/p

3. /douglp
/dougtd
/ken/p
/ken/d
tdmrlp
tdmrtd

4. tr 1• c 1•r 1• c 1*\<r 1•\> .•tsJAttp

s. tr 1• c 1•\<r 1•'> c l*\<r 1•\> .•1s1ra. \ttp

6. /ken/w Jken
/doug/w Jdoug
tdmr/w Jdmr

L 'JI,{
Int I;
'JI,} ,....,
\n I++;

...,...,
yywrapO {

prlntf(" CJl,cl\n"' I);
}

2. ...,...,

".•doug.•$ prlntf(" CJIJs\n", yytext);

\n

Typing Documents on the UNIX System:
Using the -nn Macros with Troff and Nroff

M.E.usk

ABSTRACT

This document describes a set of easy-to-use macros for preparing documents on
the UNIX system. Documents may be produced on either the phototypesetter or a on a
computer terminal, without changing the input

The macros provide facilities for paragraphs, sections (optionally with automatic
numbering), page titles, footnotes, equations, tables, two-column format, and cover pages
for papers.

This memo includes, as an appendix, the text of the ''Guide to Preparing Docu
ments with -ms'' which contains additional examples of features of -ms.

This manual is a revision of, and replaces, "Typing Documents on UNIX," dated
November 22, 1974.

Introduction. This memorandum describes a package of commands to produce papers using the
troff and nroff formatting programs on the UNIX system. As with other raff-derived programs, text is
prepared interspersed with formatting commands. However, this package, which itself is written in troff
commands, provides higher-level commands than those provided with the basic troff program. The com
mands available in this package are listed in Appendix A.

Text. Type normally, except that instead of indenting for paragraphs, place a line reading ".PP"
before each paragraph. This will produce indenting and extra space.

Alternatively, the command .LP that was used here will produce a left-aligned (block) paragraph. The
paragraph spacing can be changed: see below under "Registers."

Beginning. For a document with a paper-type cover sheet, the input should start as follows:

[optional overall format .RP- see below]
.TL
Title of document (one or more lines)
.AU
Author(s) (may also be several lines)
.AI
Author's institution(s)
.AB
Abstract; to be placed on the cover sheet of a paper.
Line length is 516 of normal; use .II here to change .
. AE (abstract end)
text ... (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no author's institution) just omit the
corresponding fields and command lines. The word ABSTRACT can be suppressed by writing ''.AB no'' for
''.AB''. Several interspersed .AU and .AI lines can be used for multiple authors. The headings are not
compulsory: beginning with a .PP command is perfectly OK and will just start printing an ordinary para
graph. Warning: You can't just begin a document with a line of text. Some -ms command must precede
any text input. When in doubt, use LP to get proper initialization, although any of the commands .PP, LP,

USD:20-2 Using the -ms Macros with Troff and Nroff

.TI., .SH, .NH is good enough. Figure 1 shows the legal mangement of commands at the start of a docu
ment

Cover Sheets and First Page1. The first line of a document signals the general format of the first
page. In particular, if it is ".RP" a cover sheet with tide and abstract is prepared. The default format is use
ful for scanning drafts.

In general -ms is arranged so that only one form of a document need be stored, containing all infor
mation; the fhst command gives the format, and unnecessary items for that format are ignored.

Warning: don't put extraneous material between the .1L and .AE commands. Processing of the
titling items is special, and other data placed in them may not behave as you expect. Don't forget that
some -ms command must precede any input text.

Page headings. The -ms niacrc., by default, will print a page heading containing a page number (if
greater than 1). A default page footer is provided only in nroff, where the date is used. The user can make
minor adjustments to the page headings/footings by redefining the strings Ui, CH, and RH which are the
left, center and right portions of the page headings, respectively; and the strings LP, CF, and RF, which are
the left, center and right portions of the page footer. f<X' more complex formats, the user can redefine the
macros Pr and BT, which are invoked respectively at the top and bottom of each page. The margins (taken
from registers HM and FM for the top and bottom margin respectively) are normally 1 inch; the page
header/footer are in the middle of that space. The user who redefines these macros should be careful not to
change parameters such as point size or font without resetting them to default values.

Multi-column formats. If you place the 1. Care and Feeding of Department Heads
command ".2C" in your document, the docu
ment will be printed in double column format
beginning at that point This feature is not too
useful in computer terminal output, but is often
desirable on the typesetter. The command ".lC"
will go back to one-column format and also skip
to a new page. The ''.2C'' command is actually a
special case of the command

.MC [column width [gutter width]]

which makes multiple columns with the specified
column and gutter width; as many columns as
will fit across the page are used. Thus triple, qua
druple, ... column pages can be printed. When
ever the number of columns is changed (except
going from full width to some larger number of
columns) a new page is started.

Headings. To produce a special heading,
there are two commands. If you type

.NH
type section heading here
may be several lines

you will get automatically numbered section
headings (1, 2, 3, ...), in boldface. For example,

.NH
Care and Feeding of Department Heads

produces

Alternatively,

.SH
Care and Feeding of Directors

will print the heading with no number added:

Care and Feeding of Directors

Every section heading, of either type,
should be followed by a paragraph beginning
with .PP or .LP, indicating the end of the heading.
Headings may contain more than one line of text.

The .NH command also supports more
complex numbering schemes. If a numerical
argument is given, it is taken to be a "level"
number and an appropriate sub-section number is
generated. Larger level numbers indicate deeper
sub-sections, as in this example:

.NH
Erie-Lackawanna
.NH2
Morris and Essex Division
.NH3
Gladstone Branch
.NH3
Montclair Branch
.NH2
Boonton Line

generates:

l!sing the -ms Macros with Troff and Nroff

2. Erie-Lackawanna

2.1. Morris and Euex Division

2.1.1. Gladstone Branch

2.1.2. Montclair Branch

2.2. Boonton Line

An explicit ''.NH O'' will reset the number
ing of level 1 to one, as here:

.NHO
Penn Central

1. Penn Central

Indented paragraphs. (Paragraphs with
hanging numbers, e.g. references.) The sequence

.IP [l]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
. IP [2]
Text for second paragraph, ...

produces

[1] Text for first paragraph, typed norinally for
as long as you would like on as many lines
as needed.

[2] Text for second paragraph, ...

A series of indented paragraphs may be followed
by an ordinary paragraph beginning with .PP or
LP, depending on whether you wish indenting or
not The command LP was used here.

More sophisticated uses of .IP are also pos
sible. H the label is omitted, for example, a plain
block indent is produced.

.IP
This material will
just be turned into a
block indent suitable for quotations or
such matter.
.LP

will produce ·

This material will just be turned into a
block indent suitable for quotations or such
matter.

If a non-standard amount of indenting is required,
it may be specified after the label (in character
positions) and will remain in effect until the next
.PP or LP. Thus, the general form of the .IP

USD:20-3

command contains two additional fields: the label
and the indenting length. For example,

.IP first 9
Notice the longer label, requiring larger
indenting for these paragraphs .
.IP second:
And so forth .
.LP

produces this:

first Notice the longer label, reqwnng
larger indenting for these paragraphs .

second: And so forth.

It is also possible to produce multiple nested
indents; the command .RS indicates that the next
.IP stans from the current indentation level. Each
.RE will eat up one level of indenting so you
should balance .RS and .RE commands. The .RS
command should be thought of as "move right"
and the .RE command as ''move left''. As an
example

.IP 1 .
Bell Laboratories
.RS
.IP 1.1
Murray Hill
.IP 1.2
Holmdel
.IP 1.3
Whippany
.RS
.IP 1.3.1
Madison
.RE
.IP 1.4
Chester
.RE
.LP

will result in

1. Bell Laboratories

1.1 Murray Hill

1.2 Holmdel

1.3 Whippany

1.3.1 Madison

1.4 Chester

All of these variations on LP leave the right mar
gin untouched. Sometimes, for purposes such as
setting off a quotation, a paragraph indented on
both right and left is required.

USD:20-4

A single paragraph like this is
obtained by preceding it with .QP.
More complicated material (several
paragraphs) should be bracketed with
.QS and.QE.

Emphasis. To get italics (on the typesetter) or
underlining (on the terminal) say

.I
as much text as you want
can be typed here
.R

as was done for these three words. The .R com
mand restores the normal (usually Roman) font
If only one word is to be italicized, it may be just
given on the line with the .I command,

.I word

and in this case no .R is needed to restore the pre
vious font Boldface can be produced by

.B
Text to be set in boldface
goes here
.R

and also will be underlined on the terminal or line
printer. As with .I, a single word can be placed in
boldface by placing it on the same line as the .B
command

A few size changes can be specified simi
larly with the commands .LG (make larger), .SM
(make smaller), and .NL (return to normal size).
The size change is two points; the commands may
be repeated for increased dfect (here one .NL can
celed two .SM commands).

If actual underlining as opposed to italiciz
ing is required on the typesetter, the command

.UL word

will underline a word There is no way to under
line multiple words on the typesetter.

Footnotes. Material placed between lines
with the commands .FS (footnote) and .FE (foot
note end) will be collected, remembered, and
finally placed at the bottom of the current page•.
By default, footnotes are 1 l/12th the length of
normal text, but this can be changed using the FL
register (see below).

Displays and Tables. To prepare displays
of lines, such as tables, in which the lines should

* Like this.

Using the-im Macros with Troff and Nroff

not be re-manged, enclose them in the com
mands DS and DE

DS
table lines, like the
examples here, are placed
between DS and DE
DE

By default, lines between DS and DE are
indented and left-adjusted. You can also center
lines, or retain the left margin. Unes bracketed
by DSC and DE commands are centered (and
not re-arranged); lines bracketed by DS L and
.DE are left-adjusted, not indented, and not re
arranged. A plain .DS is equivalent to .DS I,
which indents and left-adjusts. Thus,

these lines were preceded
by .DS C and followed by

a .DE command;

whereas

these lines were preceded
by .DS L and followed by
a .DE command

Note that.DSC centers each line; there is a vari
ant .DS B that makes the display into a left
adjusted block of text, and then centers that entire
block. Normally a display is kept together, on
one page. If you wish to have a long display
which may be split across page boundaries, use
.CD, .LD, or .ID in place of the commands .DS C,
.DS L, or .DS I respectively. An extra argument
to the .DS I or .DS command is taken as an
amount to indent Note: it is tempting to assume
that .DS R will right adjust lines, but it doesn't
work.

Boxing words or lines. To draw rectangu
lar boxes around words the command

.BX word

will print lwordl as shown. The boxes will not be
neat on a terminal, and this should not be used as
a substitute for italics.
Longer pieces of text may be boxed by enclosing
them with .B 1 and .B2:

.Bl
text ..
.B2

as has been done here.

Keeping blocks together. If you wish to
keep a table or other block of lines together on a
page, there are "keep - release" commands. If a

;,

Using the -ms Macros with Troff and Nroff

block of lines preceded by .KS and followed by
.KE does not fit on the remainder of the current
page, it will begin on a new page. Lines brack
eted by .DS and .DE commands are automatically
kept together this way. There is also a ''keep
floating'' command: if the block to be kept
together is preceded by .KF instead of .KS and
does not fit on the current page, it will be moved
down through the text until the top of the next
page. Thus, no large blank space will be intto
duced in the docwnenL

Nroff/Troff commands. Among the useful
commands from the basic formatting prograw
are the following. They all work with both
typesetter and computer terminal output

.bp - begin new page.

. br - ''break'', stop running text
from line to line.

.sp n - insert n blank lines.

.na - don't adjust right margins.

Date. By default, documents produced on
computer terminals have the date at the bottom of
each page; documents produced on the typesetter
don't. To force the date, say ".DA". To force
no date, say ".ND". To lie about the date, say
"DA July 4, 1776" which puts the specified date
at the bottom of each page. The command

.ND May 8, 1945

in ".RP" format places the specified date on the
cover sheet and nowhere else. Place this line
before the title.

Signature line. You can obtain a signature
line by placing the command .SO in the docu
ment The authors' names will be output in place
of the .SO line. An argument to .SO is used as a
typing identification line, and placed after the sig
natures. The .SO command is ignored in released
paper formaL

Registers. Certain of the registers used by
-ms can be altered to change default settings.
They should be changed with .nr commands, as
with

.nrPS 9

to make the default point size 9 point If the
effect is needed immediately, the normal troff
command should be used in addition to changing
the number register.

Register Defines

PS point size

Takes
effect

Default

next para. 10

USD:20-5

vs line spacing next para. 12pts
LL line length next para. 6"
LT title length next para. 6"
PD para. spacing next para. 0.3VS
PI para. indent next para. Sens
FL footnote length next PS 11112 LL
cw column width next2C 7115 LL
OW intercolumn gap next2C 1115 LL
PO page offset next page '1.JJZ7"
HM top margin next page 1"
FM bottom margin next page 1"

You may also alte.r the strings LH, CH, and RH
which are the left, center, and right headings
respectively; and similarly LF, CF; and RF which
are strings in the page footer. The page number
on output is taken from register PN, to pennit
changing its output style. For more complicated
headers and footers the macros Pr and BT can be
redefined, as explained earlier .

Accents. To simplify typing certain
foreign words, strings representing common
accent marks are defined They precede the letter
over which the mark is to appear. Here are the
strings:

Input Output Input Output
*'e 6 *-a a

e *Ce
y

*'e e
*:u ll *,c c
*"'e a

Use. After your document is prepared and
stored on a file, you can print it on a terminal with
the command*

nroff -ms file

and you can print it on the typesetter with the
command

troff -ms file

(many options are possible). In each case, if your
document is stored in several files, just list all the
filenames where we have used "file". If equa
tions or tables are used, eqn and/or tbl must be
invoked as preprocessors.

References and further study. If you have
to do Greek or mathematics, see eqn [1] for
equation setting. To aid eqn users, -ms provides
definitions of .EQ and .EN which normally center
the equation and set it off slightly. An argument
on .EQ is taken to be an equation number and
placed in the right margin near the equation. In

• If .2C was used, pipe the nroff output through col;
make the first line of the input ''.pi /usr/bin/col.''

USD:20-6

addition, there are three special arguments to EQ:
the letters C, I, and L indicate centered (default),
indented, and left adjusted equations, respec
tively. -If there is both a format argument and an
equation number, give the format argument first,
as in

.EQ L (1.3a)

for a left-adjusted equation numbered (1.3a).

Similarly, the macros .TS and .TE are
defined to separate tables (see [2]) from text with
a little space. A very long table with a heading
may be broken across pages by beginning it with
.TS H instead of .TS, and placing the line.rain
the table data after the heading. If the table has
no heading repeated from page to page, just use
the ordinary .TS and .TE macros.

To learn more about troff see [3] for a gen
eral introduction, and [4] for the full details
(experts only). Information on related UNIX
commands is in [5]. For jobs that do not seem
well-adapted to -ms, consider other macro pack
ages. It is often far easier to write a specific
macro packages for such tasks as imitating partic
ular journals than to try to adapt -ms.

Aclnowledgmi!nt. Many thanks are due to
Brian Kernighan for his help in the design· and
implementation of this package, and for his assis
tance in preparing this manual.

References

[1] B. W. Kernighan and L. L. Cherry,
Typesetting Mathematics - Users Guide
(2nd edition), Bell Laboratories Computing
Science Report no. 17.

[2] M. E. Lesk, Tbl - A Program to Format
Tables, Bell Laboratories Computing Sci
ence Report no. 45.

[3] B. W. Kernighan, A Troff Tutorial, Bell
Laboratories, 197 6.

[4] J. F. Ossanna, Nroff/Troff Reference
Manual, Bell Laboratories Computing Sci
ence Report no. 51.

[5] K. Thompson and D. M. Ritchie, UNIX
Programmer's Manual, Bell Laboratories,
1978.

Using the -ms Macros with Troff and Nroff

Using the -ms Macros with Troff and Nroff USD:20-7

Appendix A
List of Commands

lC Return to single column format LG Increase type size.
2C Start double column format. LP Left aligned block paragraph.
AB Begin abstract.
AE End abstract
AI Specify author's institution.
AU Specify author. ND Change or cancel date.
B Begin boldface. NH Specify numbered heading.
DA Provide the date on each page. NL Return to normal type size.
DE End display. PP Begin paragraph.
DS Start display (also CD, lD, ID).
EN End equation. R Return to regular font (usually Roman).
EQ Begin equation. RE End one level of relative indenting.
FE End footnote. RP Use released paper format.
FS Begin footnote. RS Relative indent increased one level.

SG Insert signature line.
I Begin italics. SH Specify section heading.

SM Change to smaller type size.
IP Begin indented paragraph. 1L Specify title.
KE Release keep.
KF Begin floating keep. UL Underline one word
KS Start keep.

Register Names

The following register names are used by -ms internally. Independent use of these names in one's
own macros may produce incorrect output. Note that no lower case letters are used in any -ms internal
name.

Number registers used in -ms
DW GW HM IQ LL NA OJ PO T. TV

#T EF Hl HT IR LT NC PD PQ TB vs
IT FL H3 IK KI MM NF PF PX TD YE
AV FM H4 IM Ll MN NS Pl RO TN yy
cw FP HS IP LE MO OI PN ST TQ ZN

String registers used in -ms
AS CB DW FZ I KF MR Rl RT 1L
AB cc DY FA 11 KQ ND R2 so TM
AE CD El FE 12 KS NH R3 SI TQ
AI CF E2 FJ 13 LB NL R4 S2 TS
AU CH E3 FK 14 lD NP RS so TT

' B CM E4 FN IS LG OD RC SH UL
lC BG cs ES FO ID LP OK RE SM WB
2C BT CT EE FQ IE ME pp RF SN WH
Al c D EL FS IM MF PT RH SY WT
A2 Cl DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF
A4 CA DS EQ HO KE MO R RS TH XK

USD:20-8 Using the -ms Macros with Troff and Nroff

Order of Commands in Input

RP

PP,LP

i
text ...

r

Figure 1

A Revised Version of-im

Bill TuJhill

Computing Services
University of Calif<mia

Berkeley, CA 94720

The -ms macros have been slightly revised and rearranged f<X' the Berkeley Unix distribution. Because of the
rearrangement, the new macros can be read by the computer in about half the time required by the previous version
of -ms. This means that output will begin to appear between ten seconds and several minutes more quickly,
depending on the system load. On long files, however, the savings in total time are not substantial. The old version
of -ms is still available as -mos.

Several bugs in -ms have been fixed, including a bad problem with the .1C macro, minor difficulties with
. boxed text, a break induced by .EQ before initialization, the failure to set tab stops in displays, and several bother

some errors in the ref er macros. Macros used only at Bell Laboratories have been removed. There are a few exten
sions to previous -ms macros, and a number of new macros, but all the documented -ms macros still work exactly
as they did before, and have the same names as before. Output produced with -ms should look like output produced
with-mos.

One important new feature is automatically numbered footnotes. Footnote numbers are printed by means of a
pre-defined string (\••),which you invoke separately from .FS and .FE. Each time it is used, this string increases
the footnote number by one, whether or not you use .FS and .FE in your text Footnote numbers will be super
scripted on the phototypesetter and on daisy-wheel terminals, but on low-resolution devices (such as the lpr and a
crt}, they will be bracketed. If you use, .. to indicate numbered footnotes, then the .FS macro will automatically
include the footnote number at the bottom of the page. This footnote, for example, was produced as follows: 1

This footnote, for example, was produced as follows:\••
.FS

.FE

If you are using\•• to number footnotes, but want a particular footnote to be marked with an asterisk or a dagger,
then give that mark as the first argument to .FS: t

then give that mark as the first argument to .FS: \(dg
.FS \(dg

.FE

Footnote numbering will be temporarily suspended, because the** string is not used. Instead of a dagger, you
could use an asterisk• or double dagger :I:, represented as \(dd.

Another new feature is a macro for printing theses according to Berkeley standards. This macro is called
.TM, which stands for thesis mode. (It is much like the .th macro in -me.) It will put page numbei-s in the upper
right-hand comer; number the first page; suppress the date; and doublespace everything except quotes, displays, and
keeps. Use it at the top of each file making up your thesis. Calling .TM defines the .CT macro for chapter titles,
which skips to a new page and moves the pagenumberto the center footer. The .Pl (Pone) macro can be used even

1 If you never use the .. , string, no footnote numbers will appear anywhere in the text, including down here. The output
footnotes will look exactly like footnotes produced with-mos.

t In the footnote, the dagger will appear where the footnote number would otherwise appear. as on the left.

USD:21-2 A Revised Version of -ms

without thesis mode to print the header on page 1, which is suppressed except in thesis mode. If you want roman
numeral page numbering, use an ".af PN i" request.

There is a new macro especially for bibliography entries, called JCP, which stands for exdented paragraph. It
will exdent the first line of the paragraph by \n(PI units, usually Sn (the same as the indent for the first line of a .PP).
Most bibliographies are printed this way. Here are some examples of exdented paragraphs:

Lumley, Lyle S., Sex in Cnutac~ans: SMll Fish Habits, Harbinger Press, Tampa Bay and San Diego, October
1979. 243 pages. The pioneering work in this field.

Leffadinger, Harry A., "Mollusk Mating Season: S2 Weeks, or All Year?" in Acta Biologica, vol. 42, no. 11,
November 1980. A provocative thesis, but the conclusions are wrong.

Of course, you will have to take care of italicizing the book title and journal, and quoting the title of the journal arti
cle. Indentation or exdentation can be changed by setting the value of number register PI.

If you need to produce endnotes rather than footnotes, put the references in a file of their own. This is similar
to what you would do if you were typing the paper on a conventional typewriter. Note that you can use automatic
footnote numbering without actually having .FS and .FE pairs in your text. If you place footnotes in a separate file,
you can use .IP macros with \•• as a hanging tag; this will give you numbers at the left-hand margin. With some
styles of endnotes, you would want to use .PP rather then .IP macros, and specify \•• before the reference begins.

There are four new macros to help produce a table of contents. Table of contents entries must be enclosed in
.XS and .XE pairs, with optional JCA macros for additional entries; arguments to .XS and .XA specify the page
number, to be printed at the right. A final .PX macro prints out the table of contents. Here is a sample of typical
input and output text:

.XS ii
Introduction
.XA 1
Chapter 1: Review of the Literature
.XA 23
Chapter 2: Experimental Evidence
.XE
.PX

Table of Contents

Introduction ii
Chapter 1: Review of the Literature ... 1
Chapter 2: Experimental Evidence 23

The .XS and .XE pairs may also be used in the text, after a section header for instance, in which case page numbers
are supplied automatically. However, most documents that require a table of contents are too long to produce in one
run, which is necessary if this method is to work. It is recommended that you do a table of contents after finishing
your document. To print out the table of contents, use the .PX macro; if you forget it, nothing will happen.

As an aid in producing text that will fonnat correctly with both nrorr and trorr, there are some new string
definitions that define quotation marks and dashes for each of these two fonnatting programs. The\•- string will
yield two hyphens in nrorr, but in trorr it will produce an em dash- like this one. The \•Q and \• U strings will
produce'' and'' in troff, but" in nrorr. (In typesetting, the double quote is traditionally considered bad form.)

There are now a large number of optional foreign accent marks defined by the -ms macros. All the accent
marks available in -mos are present, and they all work just as they always did. However, there are better definitions
available by placing .AM at the beginning of your document. Unlike the -mos accent marks, the accent strings
should come after the letter being accented. Here is a list of the diacritical marks, with examples of what they look
like.

A Revised Version of -ms USD:21-3

name of accent input output

acute accent e\•' ~
grave accent e\•' ~
circumflex o\• .. t>
cedilla c\•, ~
tilde n\•- ft
question \•? A
exclamation \•!
umlaut u\•: ii
digraphs \•8 ~
haeek c\•v c
macron a\• i
underdot s\•. ~
o-slash o\•I " angstrom a\•o i
yogh kni\•3t kni)t
Thom \•(Th p
thorn \•(th p
Eth \•(D- D
eth \•(d- a
hookedo \•q Q
ae ligature \•(ae z
AE ligature \•(Ae IE
oe ligature \•(oe re
OE ligature \•(Oe CE

If you want to use these new diacritical marks, don't forget the .AM at the top of your file. Without it, some will not
print at all, and others will be placed on the wrong letter.

It is also possible to produce custom headers and footers that are different on even and odd pages. The .OH
and .EH macros define odd and even headers, while .OF and .EF define odd and even footers. Arguments to these
four macros are specified as with .tl. This document was produced with:

.OH '\fIThe -mx Macros"Page %\fp'

.EH '\flPage % "The -mx Macros\fP'

Note that it would be a error to have an apostrophe in the header text; if you need one, you will have to use a dif
ferent delimiter around the left, center, and right portions of the title. You can use any character as a delimiter, pro
vided it doesn't appear elsewhere in the argument to .OH, .EH, .OF, or EF.

The -ms macros work in conjunction with the tbl, eqn, and ref er preprocessors. Macros to deal with these
items are read in only as needed, as are the thesis macros (.TM), the special accent mark definitions (.AM), table of
contents macros (.XS and .XE), and macros to format the optional cover page. The code for the -ms package lives
in /usr/lib/tmac/tmac.s, and sourced files reside in the directory /usr/ucb/lib/ms.

June 16, 1987

Writing Papers with NROFF using -me

Eric P. Allman*

Project INGRES
BectronicsR~earchLaboratcry

University of California, Berkeley
Berkeley, California 94720

This document describes the text processing faciliti~ available on the UNIXt operating system via NROFFt
. and the -me macro package. It is assumed that the reader already is generally familiar with the UNIX operating sys
tem and a text editor such as ex. This is intended to be a casual introduction, and as such not all material is covered.
In particular, many variations and additional features of the -me macro package are not explained. For a complete
discussion of this and other issu~, see The -me Reference Manual and The NROFFrIROFF Reference Manual.

NROFF, a computer program that runs on the UNIX operating syste~ reads an input file prepared by the user
and outputs a formatted paper suitable for publication or framing. The input consists of text, or words to be printed,
and requests, which give instructions to the NROFF program telling how to format the printed copy.

Section 1 describes the basics of text processing. Section 2 describes the basic requests. Section 3 introduces
displays. Annotations, such as footnotes, are handled in section 4. The more complex requests which are not dis
cussed in section 2 are covered in section 5. Finally, section 6 discuss~ things you will need to know if you want to
typeset documents. If you are a novice, you probably won't want to read beyond section 4 until you have tried some
of the basic features out

When you have your raw text ready, call the NROFF formatter by typing as a request to the UNIX shell:

nroff -me -Ttype files

where type describes the type of terminal you are outputting to. Common values are dtc for a DTC 300s (daisy
wheel type) printer and lpr for the line printer. If the -T flag is omitted, a ''lowest common denominator'' terminal
is assumed; this is good for previewing output on most terminals. A complete description of options to the NROFF
command can be found in The NROFFffROFF Reference Manual.

The word argument is used in this manual to mean a word or number which appears on the same line as a
request which modifies the meaning of that request. For example, the request

.Sp
spaces one line, but

.sp4

spaces four lines. The number 4 is an argument to the .sp request which says to space four lines instead of one.
Arguments are separated from the request and from each other by spaces.

1. Basics of Text Proc~ing
The primary function of NROFF is to collect words from input lines, fill output lines with those words, jus

tify the right hand margin by inserting extra spaces in the line, and output the result For example, the input:

*Author's current address: Britton Lee, Inc., 1919 Addison Suite 105, Berkeley, California 94704.

tUNIX is a trademark of AT&T Bell Laboratories

Writing Papers with NROFF using -me USD:22-1

USD:22-2

Now is the time
for all good men
to come to the aid
of their party.
Four sccn and seven
years ago, ...

will be read, packed onto output lines, and justified to produce:

Writing Papers with NROFF usin1 -me

Now is the time for all good men to come to the aid of their party. Four seen and seven years ago, ...

Sometimes you may want to start a new output line even though the line you are on is not yet full; for example,
at the end of. a paragraph. To do this you can cause a break, which starts a new output line. Some requests
cause a break automatically, as do blank input lines and input lines beginning with a sp~.

Not all input lines are text to be formatted. Some of. the input lines are requests which describe how to
format the text Requests always have a period or an apostrophe (" '") as the first character of the input line.

The text formatter also does more complex things, such as automatically numbering pages,. skipping over
page folds, putting footnotes in the correct place, and so forth. .

I can offer you a few hints for preparing text for input to NROFF. First, keep the input lines short. Short
input lines are easier to edit, and NROFF will pack words onto longer lines for you anyhow. In keeping with
this, it is helpful to begin a new line after every period, comma, or phrase, sioce common corrections are to add
or delete sentences or phrases. Second, do not put spaces at the end of lines, since this can sometimes confuse
the NROFF processor. Third, do not hyphenate words at the end of lines (except words that should have hyphens
in them, such as ''mother-in-law''); NROFF is smart enough to hyphenate words for you as needed, but is not
smart enough to take hyphens out and join a word back together. Also, words such as "mother-in-law" should
not be broken over a line, since then you will get a space where not wanted, such as ''mother- in-law''.

2. Basic Requests

2.1. Paragraphs

Paragraphs are begun by using the .pp request For example, the input:

.pp
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago,... ,

produces a blank line followed by an indented first line. The result is:

Now is the time for all good men to come to the aid of their party. Four score and seven
years ago, ...

Notice that the sentences of the paragraphs must not begin with a space, since blank lines and lines
beginning with spaces cause a break. For example, if I had typed:

.pp
Now is the time for all good men

to come to ·the aid of their party.
Four score and seven years ago, ...

The output would be:

Now is the time for all good men
to come to the aid of their party. Four score and seven years ago, ...

A new line begins after the word "men" because the second line began with a space character.

There are many fancier types of paragraphs, which will be described later.

2.2. Headers and Footers

Arbitrary headers and footers can be put at the top and bottom of every page. Two requests of. the
form .he title and .fo title define the titles to put at the head and the foot of every page, respectively. The

Writing Papen with NROFF using -me USD:22-3

titles are called three-part tides, that is, there is a left-justified pan, a centered part, and a right-justified part.
To separate these three pmU the first character of title (whatevez it may be) is used as a delimiter. Any char
acter may be used, but backslash and double quote marks should be avoided. The percent sign is replaced by
the current page number whenevez found in the tide. For example, the input

.he "'Jb"

.fo 'Jane Jones"My Book'

results in the page number centered at the top of each page, "Jane Jones" in the lows left ccrner, and "My
Book" in the lower right cornez.

2.3. Double Spacing

NROFF will double space output text automatically if you lise the request .Is 2, as is done in this sec-

tion. You can revert to single spaced mode by typing .Is 1.

2.4. Page Layout

A number of requests allow you to change the way the printed copy looks, sometimes called the layout
of the output page. Most of these requests adjust the placing of ''white space'' (blank lines or spaces). In
these explanations, characters in italics should be replaced with values you wish to use; bold characters
represent characters which should actually be typed.

The .bp request starts a new page.

The request .sp N leaves N lines of blank space. N can be omitted (meaning skip a single line) or can
be of the form Ni (for N inches) or Ne (for N centimeters). For exarnple,-the input:

.Sp 1.5i
My thoughts on the subject
.Sp

leaves one and a half inches of space, followed by the line ''My thoughts on the subject'', followed by a sin
gle blank line.

The .in +N request changes the amount of white space on the left of the page (the indent). The argu
ment N can be of the form +N (meaning leave N spaces more than you are already leaving), -N (meaning
leave less than you do now), or justN (meaning leave exactly N spaces). N can be of the form Ni or Ne also.
For example, the input:

initial text
.in 5
some text
.in +li
more text
.in-2c
final text

produces "some text" indented exactly five spaces from the left margin, "more text" indented five spaces
plus one inch from the left margin (fifteen spaces on a pica typewriter), and "final text" indented five spaces
plus one inch minus two centimeters from the margin. That is, the output is:

initial text
some text

more text
final text

The .ti +N (temporary indent) request is used like Jn +N when the indent should apply to one line
only, after which it should revert to the previous indent For example, the input:

USD:22-4

.in 1i

.ti 0
Ware, James R. The Best of Confucius,
Halcyon House, 1950.
An excellent book containing translati~ of
most m Cmfucius' most delightful sayings.
A definite must for anyone interested in the early foundations
of Cllinese philosophy.

produces:

Writing Papers with NROFF using-me

Ware, James R. The Best of Confucius, Halcyon House, 1950. An excellent book containing translations of
most of Confucius' most delightful sayings. A definite must for anyone interested in the
early foundations of Chinese philosophy. ·

Text lines can be centered by using the .ce request. The line after the .ce is centered (horizontally) on
the page. To cent« more than one line, use .ce N (where N is the number of lines to cent«), followed by the
N lines. If you want to center many lines but don't want to count them, type:

.ce 1000
lines to center
.ceO

The .ce 0 request tells NROFF to center zero more lines, in other words, stop centering.

All of these requests cause a break; that is, they always start a new line. If you want to start a new line
without performing any other action, use .hr.

2.5. Underlining

Text can be underlined using the .ul request. The .ul request causes the next input line to be under
lined when output. You can underline multiple lines by stating a count of input lines to underline, followed
by those lines (as with the .ce request). For example, the input

.ul 2
Notice that these two input lines
are underlined.

will underline those eight words in NROFF. (In TROFF they will be set in italics.)

3. Displays

Displays are sections of text to be set off from the body of the paper. Major quotes, tables, and figures are
types of displays, as are all the examples used in this document All displays except centered blocks are output
single spaced.

3.1. Major Quotes

Major quotes are quotes which are several lines long, and hence are set in from the rest of the text
without quote marks around them. These can be generated using the commands .(q and .)q to surround the
quote. For example, the input:

As Weizenbaum points out:
.(q
It is said that to explain is to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming, ...
.)q

generates as output:

As Weizenbaum points out:
It is said that to explain is to explain away. This maxim is nowhere so well fulfilled as in the areas of
computer programming, ...

Writing Papers with NROFF using-me USD:22-S

3.2. Lists

A list is an indented, single spaced, unfilled display. Lists should be used when the material to be
printed should not be filled and justified like nmnal text, such as columns of figures or the examples used in
this paper. Lists are surrounded by the requests .(I and .)I. For example, type:

Alternatives to avoid deadlock are:
.(I
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding
.)I

will produce:
Alternatives to avoid deadlock are:

Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

3.3. Keeps

A keep is a display of lines which are kept on a single page if possible. An example of where you
would use a keep might be a diagram. Keeps differ from lists in that lists may be broken over a page boun
dary whereas keeps will not.

Blocks are the basic kind of keep. They begin with the request .(b and end with the request .)b. If
there is not room on the current page for everything in the block, a new page is begun. This has the
unpleasant effect of leaving blank space at the bottom of the page. When this is not appropriate, you can use
the alternative, called.floating keeps.

Floating keeps move relative to the text. Hence, they are good for things which will be referred to by
name, such as ''See figure 3' '. A fioating keep will appear at the bottom of the current page if it will fit; oth
eiwise, it will appear at the top of the next page. Floating keeps begin with the line .(z and end with the line
.)z. For an example of a fioating keep, see figure 1. The .hi request is used to draw a horizontal line so that
the figure st.ands out from the text.

3.4. Fancier Displays

Keeps and lists are normally collected in nofill mode, so that they are good for tables and such. If you
want a display in fill mode (for text), type .(I F (Throughout this section, comments applied to .(I also apply
to .(b and .(z). This kind of display will be indented from both margins. For example, the input:

.(z

.hi
Text of keep to be fioated.
.Sp
.ce
Figure 1 .. Example of a Floating Keep .
. hi
.)z

Figure 1. Example of a Floating Keep.

USD:22-6

.(IF
And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have one of these modem
data proce.uing devices.
You too can produce beautifully formatted papers
without even batting an eye!
.)I

Writing Papers with NROFF using -me

will be output as:

And now boys and girls, a newer, bigger, better toy than ever before! Be the first on your block to
have your own computer! Yes kids, you too can have one of these modem data processing
devices. You too can produce beautifully formatted papers without even l;>atting an eye!

Lists and blocks are also normally indented (floating keeps are normally left justified). To get a left
justified list, type .(IL. To get a list centered line-for-line, type .(I C. For example, to get a filled, left
justified list, enter:

.(lLF
text of block
.)1

The input

.(1
first line of unfilled display
more lines
.)1

produces the indented text:

first line of unfilled display
more lines

Typing the character L after the .(I request produces the left justifi~ result:

first line of unfilled display ·
more lines

Using C instead of L produces the line-at-a-time centered output:

first line of unfilled display
more lines

Sometimes it may be that you want to center several lines as a group, rather than centering them one
line at a time. To do this use centered blocks, which are surrounded by the requests .(c and .)c. All the lines
are centered as a unit, such that the longest line is centered and the rest are lined up around that line. Notice
that lines do not move relative to each other using centered blocks, whereas they do using the C argument to
keeps.

Centered blocks are not keeps, and may be used in conjunction with keeps. For example, to center a
group of lines as a unit and keep them on one page, use:

.(bL

.(c
. first line of unfilled display

more lines
.)c
.)b

to produce:

first line of unfilled display
more lines

Writing Papers with NROFF using-me USD:22-7

If the block requests (.(band .)b) had been omitted the result would have been the same, but with no guaran
tee that the lines of the centered block would have all been on one page. Note the use of the L argument to
.(b; this causes the centered block to center within the entire line rather than within the line minus the indent.
Also, the center requests must be nested insitk the keep requests.

4. Annotations

1bele are a number of requests to save text for later printing. Footnotes are printed at the bottom of the
current page. Delayed tuJ is intended to be a variant fmn of footnote; the text is printed only when explicitly
called for, such as at the end of each chaptec. J'lllleus are a type of delayed text having a ta&.(usually the page
number) attached to each entty after a row of dots. Indexes are also saved until called for explicitly.

4.1. Footnotes

Footnotes begin with the request .(I and end with the request .)f. The current footnote number is main
tained automatically, and can be used by typing\••, to produce a fOOUK>te nurnber1• The number is automat
ically incremented after every footnote. For example, the input:

.(q
A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.**
.(f
**James R. Ware,
.ul
The Best of Confucius,
Halcyon House, 1950.
Page 77 .
.)f
.)q

generates the result:
A man who is not upright and at the same time is presumptuous; one who is not diligent and at the same time
is ignorant; one who is untruthful and at the same time is incompetent; such men I do not count among
acquaintances.1

It is important that the footnote appears inside the quote, so that you can be sure that the footnote will appear
on the same page as the quote.

4.2. Delayed Text

Delayed text is very similar to a footnote except that it is printed when called for explicitly. This
allows a list of references to appear (for example) at the end of each chapter, as is the convention in some
disciplines. Use*# on delayed text instead of\•• as on footnotes.

If you are using delayed text as your standard reference mechanism, you can still use footnotes, except
that you may want to reference them with special characters* rather than numbers.

4.3. Indexes

An "index" (actually more like a table of contents, since the entries are not sorted alphabetically)
resembles delayed text, in that it is saved until called for. However, each entry has the page number (or
some other tag) appended to the last line of the index entry after a row of dots.

1Llke this.
2James R. Ware. The Best of Confucius, Halcyon House, 1950. Page 77.
•such as an asterisk.

USD:22-8 Writin1 Papers witla NROFF usin1-me

Index entries begin with the request .(x and end with .)x. The .)x request may have a argument, which
is the value to print as the ''page number''. It defaults to the current page number. If the page number given
is an underscore (' '_' ') no page number or line of dots is printed at all. To get the line of dots without a page
number, type .)x "", which specifies an explicitly null page number.

The .xp request prints the index.

For example, the input:

.(x
Sealing wax
.)x
.(x
Cabbages and kings
.)x
.(x -
Why the sea is boiling hot
.)x 2.Sa
.(x
Whether pigs have wings
.)x ""
.(x
This is a terribly long index entry, such as might be used
for a list of illustrations, tables, or figures; I expect it to
take at least two lines .
•)x
.xp

generates:

Sealing wax 8
Cabbages and kings

Why the sea is boiling hot 2.5a
Whether pigs have wings .. .
This is a terribly long index entry, such as might be used for a list of illustrations, tables, or

figures; I expect it to take at least two lines. ... 8

The .(x request may have a single character argument, specifying the "name" of the index; the normal
index is x. Thus, several "indices" may be maintained simultaneously (such as a list of tables, table of con
tents, etc.).

Notice that the index must be printed at the end of the paper, rather than at the beginning where it will
probably appear (as a table of contents); the pages may have to be physically rearranged after printing.

5. Fancier Features

A large number of fancier requests exist, notably requests to provide other sorts of paragraphs, numbered
sections of the form 1.2.3 (such as used in this document), and multicolumn output.

5.1. More Paragraphs

Paragraphs generally start with a blank line and with the first line indented. It is possible to get left
justified block-style paragraphs by using Jp instead of .pp, as demonsttated by the next paragraph.

Sometimes you want to use paragraphs that have the body indented, and the first line ex dented (opposite of
indented) with a label. This can be done with the .ip request. A word specified on the same line as .ip is
printed in the margin, and the body is lined up at a prespecified position (normally five spaces). For exam
ple, the input:

Writing Papers with NROFF using -me

.ipone
This is the first paragraph.
Notice how the first line
of the resulting paragraph lines up
with the other lines in the paragraph.
.ip two
And here we are at the second paragraph already.
You may notice that the argument to Jp
appears
in the margin .
. Ip
We can continue texL •.

produces as output

USD:22-9

one This is the first paragraph. Notice how the first line of the resulting paragraph lines up with the other
lines in the paragraph.

two And here we are at the second paragraph already. You may notice that the argument to .ip appears in
the margin.

We can continue text without starting a new indented paragraph by using the .Ip request.

If you have spaces in the label of a Jp request, you must use an ''unpaddable space'' instead of a reg
ular space. This is typed as a backslash character(''\'') followed by a space. For example, to print the label
"Part 1 ", enter:

.ip "Part\ 1"

If a label of an indented paragraph (that is, the argument to .ip) is longer than the space allocated for
the label, Jp will begin a new line after the label. For example, the input:

.ip longlabel
This paragraph had a long label.
The first character of text on the first line
will not line up with the text on second and subsequent lines,
although they will line up with each other.

will produce:

longlabel
This paragraph had a long label. The first character of text on the first line will not line up with the
text on second and subsequent lines, although they will line up with each other.

It is possible to change the size of the label by using a second argument which is the size of the label.
For example, the above example could be done correctly by saying:

.ip longlabel 10

which will make the paragraph indent 10 spaces for this paragraph only. If you have many paragraphs to
indent all the same amount, use the number register ii. For example, to leave one inch of space for the labe4
type:

.nr ii 1i

somewhere before the first call to Jp. Refer to the reference manual for more information.

If Jp is used with no argument at all no hanging tag will be printed. For example, the input:

.ip [a]
This is the first paragraph of the example.
We have seen this sort of example before .
.ip
This paragraph is lined up with the previous paragraph,
but it has no tag in the margin.

produces as output:

USD:22-10 Writing Papers with NROFF using-me

[a] 1bis is the first paragraph of the example. We have seen this s<Xt of example before.

1bis paragraph is lined up with the previous paragraph, but it has no tag in the margin.

A special case of .ip is .np, which automatically numbers paragraphs sequentially from 1. The
numbering is reset at the next .pp, .Ip, or .sh (to be described in the next section) request. For example, the
input

.np
This is the first point.
.np
This is the second poinl
Points are just regular paragraphs
which are given sequence numbers automatically
by the .np requesl
.pp
This paragraph will reset numbering by .np •
• np
F<X' example,
we have reverted to numbering from one now.

generates:

(1) This is the first point.

(2) This is the second point. Points are just regular paragraphs which are given sequence numbers
automatically by the .np requesl

This paragraph will reset numbering by .np.

(1) For example, we have revetted to numbering from one now.

The .bu request gives lists of this sort that are identified with bullets rather than numbers. The para-
graphs are also crunched together. For example, the input:

.bu
One egg yolk
.bu
One tablespoon cream or top milk
.bu
Salt, cayenne, and lemon juice to taste
.bu
A generous two tablespoonfuls of butter

produces3: One egg yolk One tablespoon cream or top milk Salt, cayenne, and lemon juice to taste A gen
erous two tablespoonfuls of butter

5.2. Section Headinp

Section numbers (such as the ones used in this document) can be automatically generated using the .sh
requesl You must tell .sh the depth of the section number and a section title. The depth specifies how many
numbers are to appear (separated by decimal points) in the section number. For example, the section number
4.2.5 has a depth of three.

Section numbers are incremented in a fairly intuitive fashion. If you add a number (increase the
depth), the new number starts out at one. If you subtract section numbers (or keep the same number) the
final number is incremented. For example, the input

3By the way. if you put the first three ingredients in a a heavy, deep pan and whisk the ingredients madly over a medium flame (never
taking your hand off the handle of the pot) until the mixture reaches the consistency of custard (just a minute or two), then mix in the butter off
beat, you will have a wonderful Hollandaise sauce.

Writing Papers with NROFF using -me

.sh 1 "The Preprocen<X'"

.sh 2 "Basic Concepts"

.sh 2 "Control Inputs"

.sh 3

.sh 3

.sh 1 "Code Generation"

.sh 3
produces as output the ~ult:

1. The Preprocessor
1.1. Baic Concepts
1.2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

USD:ll-11

You can specify the section number to begin by placing the section number after the section title,
using spaces instead of dots. For example, the request

.sh 3 "Another section" 7 3 4

will begin the section numbered 7.3.4; all subsequent ~h requests will number relative to this number.

There are more complex features which will cause each section to be indented proportionally to the
depth of the section. For example, if you enter:

.nr siN

each section will be indented by an amount N. N must have a scaling factor attached, that is, it must be of
the form Nx, where x is a character telling what units N is in. Common values for x are i for inches, c for
centimeters, and n for ens (the width of a single character). For example, to indent each section one-half
inch, type:

.nr si 0.5i

After this, sections will be indented by one-half inch per level of depth in the section number. For example,
this document was produced using the request

.nr si 3n

at the beginning of the input file, giving three spaces of indent per section depth.

Section headers without automatically generated numbers can be done using:

.uh "Title"

which will do a section heading, but will put no number on the section.

5.3. Parts of the Basic Paper

There are some requests which assist in setting up papers. The .tp request initializes for a title page.
There are no headers or footers on a title page, and unlike other pages you can space down and leave blank
space at the top. For example, a typical title page might appear as:

USD:22-12

.tp

.sp2i

.(IC
THE GROWTH OF TOENAil..S
IN UPPER PRIMATES
.sp
by
.sp
Frank N. Purter
.)I
.bp

Writing Papers with NROFF using-me

The request .th sets up the environment of the NROFF process<r to do a thesis, using the rules esta
blished at Berkeley. It defines the correct headers and footers (a page number· in the upper right hand comer
only), sets the margins e<rrecdy, and double spaces. ·

The .+c T request can be used to start chapters. Each chapter is automatically numbered from one, and·
a heading is printed at the top of each chapter with the chapter number and the chapter name T. For exam
ple, to begin a chapter called "Conclusions", use the request:

.+c "CONCLUSIONS"

which will produce, on a new page, the lines

CHAPrER5
CONCLUSIONS

with appropriate spacing for a thesis. Also, the header is moved to the foot of the page on the first page of a
chapter. Although the .+c request was not designed to work only with the .th request, it is tuned for the for
mat acceptable for a PhD thesis at Berkeley.

If the tide parameter T is omitted from the .+c request, the result is a chapter with no heading. This
can also be used at the beginning of a paper; for example, .+c was used to generate p~ge one of this docu
ment

Although papers traditionally have the abstract, table of contents, and so forth at the front of the paper,
it is more convenient to format and print them last when using NROFF. This is so that index entries can be
collected and then printed for the table of contents (or whatever). At the end of the paper, issue the.++ P
request, which begins the preliminary part of the paper. After issuing this request, the .+c request will begin
a preliminary section of the paper. Most notably, this prints the page number restarted from one in lower
case Roman numbers. .+c may be used repeatedly to begin different parts of the front material for example,
the abstract, the table of contents, acknowledgments, list of illustrations, etc. The request .++ B may also be
used to begin the bibliographic section at the end of the paper. For example, the paper might appear as out
lined in figure 2. (In this figure, comments begin with the sequence\".)

S.4. Equations and Tables

Two special UNIX programs exist to format special types of material. Eqn and neqn set equations for
the phototypesetter and NROFF respectively. Thi arranges to print extremely pretty tables in a variety of for
mats. This document will only describe the embellishments to the standard features; consult the reference
manuals for those processors for a description of their use.

The eqn and neqn programs are described fully in the document Typesetting Mathematics - User's
Guide by Brian W. Kernighan and Lorinda L. Cherry. Equations are centered, and are kept on one page.
They are·introduced by the .EQ request and terminated by the .EN request

The .EQ request may take an equation number as an optional argument, which is printed vertically
centered on the right hand side of the equation. If the equation becomes too long it should be split between
two lines. To do this, type:

Writing Papers with NROFF usin1 -me

.th

.fo "DRAFf"

.tp

.(IC
THE GROW1H OF TOEN~
IN UPPER PRIMA TES
.Sp
by
.sp
Frank Purter
.)1
.+c INTRODUCTION
.(x t
Introduction
.)x
text of chapter one
.+c "NEXT CHAPTER"
.(x t
Next Chapter
.)x
text of chapter two
.+c CONCLUSIONS
.(x t
Conclusions
.)x
text of chapter three
.++B
.+c BIBLIOGRAPHY
.(x t
Bibliography
.)x
text of bibliography
.++P
.+c "TABLE OF CONTENTS"
.xp t
.+cPREFACE
text of preface

\" set for thesis mode
\" define footer for each page
\" begin title page
\" center a large block

\" end centered part
\" begin chapter named "INTRODUCTION"
\" make an entty into index 't'

\" end of index entry

\" begin another chapter
\"enter into index 't' again

\" begin bibliographic information
\"begin another 'chapter'

\" begin preliminary material

\" print index 't' collected above
\" begin another preliminary section

Figure 2. Outline of a Sample Paper

.EQ (eq 34)
text of equation 34
.ENC
.EQ
continuation of equation 34
.EN

The Con the .EN request specifies that the equation will be continued.

USD:22-13

The tbl program produces tables. It is fully described (including numerous examples) in the document
Tbl -A Program to Format Tables by M. E. Lesk. Tables begin with the .TS request and end with the .TE
request Tables are normally kept on a single page. If you have a table which is too big to fit on a single

USD:22-14 Writing Papers with NROFF using-me

page, so that you know it will. extend to several pages, begin the table with the request .TS H and put the
request .TH after the part of the table which you want duplicated at the top of every page that the table is
printed on. For example, a table definition for a long table might look ~e:

.TSH
css
~DD.

TiiE TABLE TITI.E
.1H
text of the table
.'IE

S.S. Two Column Output
You can get two colunm output automatically by using the request .2c. This causes everything after it

to be output in two-column form. The request .be will start a new column; it differs from .bp in that .bp may
leave a totally blank colunm when it starts a new page. To revert to single column output, use .le.

S.6. Defining Macros

A macro is a collection of requests and text which may be used by stating a simple request. Macros
begin with the line .de .a (where .a is the name of the macro to be defined) and end with the line consisting
of two dots. After defining the macro, stating the line ..a is the same as stating all the other lines. For exam
ple, to define a macro that spaces 3 lines and then centers the next input line, enter:

.de SS

.sp3

.ce

and use it by typing:

.SS
Title Line
(beginning of text)

Macro names may be one or two characters. In order to avoid conflicts with names in -me, always
use upper case letters as names. The only names to avoid are TS, TH, TE, EQ, and EN.

S. 7. Annotations Inside Keeps

Sometimes you may want to put a footnote or index entry inside a keep. For example, if you want to
maintain a "list of figures" you will want to do something like:

.(z

.(c
text of figure
.)c
.ce
Figure S •
. (x f
Figure S
.)x
.)z

which you may hope will give you a figure with a label and an entry in the index f (presumably a list of
figures index). Unfortunately, the index entry is read and interpreted when the keep is read, not when it is
printed, so the page number in the index is likely to be wrong. The solution is to use the magic string \! at
the beginning of all the lines dealing with the index. In other words, you should use:

Writin1 Papers with NROFF using -me

.(z

.(c
Text of figure
.)c
.ce
Figure S.
\!.(x f
\!Figure S
\!.)x
.)z

USD:22-15

which will defer the processing of the index until the figure is ()Utput. This will guarantee that the page
number in the index is correct The same comments apply to blocks (with .(band .)b) as well.

6. TROFF and the Pbotosetter

With a little care, you can prepare documents that will print nicely on either a regular terminal or when
phototypeset using the TROFF formatting program.

6.1. Fonts

Afont is a style of type. There are three fonts that are available simultaneously, Times Roman, Times
Italic, and Times Bold, plus the special math font. The nonnal font is Roman. Text which would be under
lined in NROFF with the .ul request is set in italics in TROFF.

There are ways of switching between fonts. The requests .r, J, and .b switch to Roman, italic, and
bold fonts respectively. You can set a single word in some font by typing (for example):

.i word

which will set word in italics but does not affect the surrounding text In NROFF, italic and bold text is
underlined.

Notice that if you are setting more than one word in whatever font, you must surround that word with
double quote marks('"') so that it will appear to the NROFF processor as a single word. The quote marks
will not appear in the formatted text. If you do want a quote mark to appear, you should quote the entire
string (even if a single word), and use two quote marks where you want one to appear. For example, if you
want to produce the text:

"Master Control"

in italics, you must type:

.i """Master Control\!"""

The~ produces a very narrow space so that the ''I'' does not overlap the quote sign in TROFF, like this:

"Master Control"

There are also several ''pseudo-fonts'' available. The input:

.(b

. u underlined

.bi "bold italics"

.bx "words in a box"

.)b

generates

underlined
bold italics
I words in a box I

In NROFF these all just underline the text Notice that pseudo font requests set only the single parameter in
the pseudo font; ordinary font requests will begin setting all text in the special font if you do not provide a
parameter. No more than one word should appear with these three font requests in the middle of lines. This
is because of the way TROFF justifies text For example, if you were to issue the requests:

USD:22-16

.bi "some bold italics"
and
.bx "words in a box"

Writing Papers with NROFF using-me

in the middle of a line TROFF would produce so'ISBml:>olhlltalialics and I words in a box I,
which I think you will agree does not look good.

The second parameter of all font requests is set in the original font For example, the font request

.b boldface

generates ''bold'' in bold font, but sets ''face'' in the font of the surrounding text, resulting in:

boldface.

To set the two words bold and race both in bold race, type:

.b "bold face"

You can mix fonts in a word by using the special sequence \c at the end of a line to indicate ''continue
text processing''; this allows input lines to be joined together without a space between them. For example,
the input:

.u under\c

.i italics

generates underitalics, but if we had typed:

.u under

.i italics

the result would have been under italics as two words.

6.2. Point Sizes

The phototypesetter suppons different sizes of type, measured in points. The default point size is 10
points for most text, 8 points for footnotes. To change the pointsize, type:

.sz +N

where N is the size wanted in points. The vertical spacing (distance between the bottom of most letters (the
baseline) between adjacent lines) is set to be proportional to the type size.

These pointsize changes are temporary!!! For example, to reset the pointsize of basic text to twelve
point, use:

.nrpp 12

.nr sp 12

.nr tp 12

to reset the default pointsize of paragraphs, section headers, and titles respectively. If you only want to set
the names of sections in a larger pointsize, use:

.nr sp 11

alone- this sets section titles (e.g., Point Sius above) in a larger font than the default

A single word or phrase can be set in a smaller pointsize than the surrounding text using the .sm
request This is especially convenient for words that are all capitals, due to the optical illusion that makes
them look even larger than they actually are. For example:

.sm UNIX

prints as rather than UNIX.

Warning: changing point sizes on the phototypesetter is a slow mechanical operation. On laser
printers it may require loading new fonts. Size changes should be considered carefully.

6.3. Quotes

It is conventional when using the typesetter to use pairs of grave and acute accents to generate double
quotes, rather than the double quote character ('" '). This is because it looks better to use grave and acute

Writing Papers with NROFF ming -me USD:22-17

accents; for example, compare "quote" to "quote".

In order to make quotes compatible between the typesetter and terminals, you may use the sequences
*Oq and *(rq to stand for the left and right quote respectively. These both appear as " on most tenninals,
but are typeset as " and " respectively. For example, use:

\ *(lqSome things aren't true
even if they did happen.\ *(rq

to generate the result

''Some things aren't true even if they did happen.''

As a shorth3nd, the special font request

.q "quoted text"

will generate "quoted text". Notice that you must surround the material to be quoted with double quote
marks if it is more than one word.

Acknowledgments

I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use the -me macros to
produce non-trivial papers during the development stages; Ricki Blau, Pamela Humphrey, and Jim Joyce for their
help with the documentation phase; peter kessler fer numerous complaints years after I was "done" with this pro
ject, most accompanied by fixes (hence fcrcing me to fix several small bugs); and the plethora of people who have
contributed ideas and have given support for the project

This document was TROFF'ed on July 1, 1987 and applies to version 2.27 of the -me macros.

-ME REFERENCE MANUAL

Release 2.27

Eric P. Allman*

Project INGRES
EectronicsResemchLaborat<xy

University of California, Berkeley
Bakeley, California 94720

This document describes in extremely terse form the features of the -me macro package for version seven
. NROFF/fROFF. Some familiarity is assumed with those programs. Specifically, the reader should understand

breaks, fonts, pointsizes, the use and definition of number registers and strings, how to define macros, and scaling
factors for ens, points, v's (vertical line spaces), etc.

For a more casual introduction to text processing using NROFF, refer to the document Writing Papers with
NROFF using -me.

There are a number of macro parameters that may be adjusted. Fonts may be set to a font number only. Font
8 means bold font in TROFF; in NROFF font 8 is underlined unless the -rb3 ftag is specified to use ''true bold'' font
(most versions of NROFF do not interpret bold font nicely). Font 0 is no font change; the font of the surrounding
text is used instead. Notice that fonts 0 and 8 are ''pseudo-fonts''; that is, they are simulated by the macros. This
means that although it is legal to set a font register to zero or eight, it is not legal to use the escape character form,
such as:

\f8

All distances are in basic units, so it is nearly always necessary to use a scaling factor. For example, the
request to set the paragraph indent to eight one-en spaces is:

.nrpi Sn

and not

.nr pi 8

which would set the paragraph indent to eight basic units, or about 0.02 inch. Default parameter values are given in
brackets in the remainder of this document

Registers and strings of the form $x may be used in expressions but should not be changed. Macros of the
form $x perform some function (as described) and may be redefined to change this function. This may be a sensi
tive operation; look at the body of the original macro before changing it

All names in -me follow a rigid naming convention. The user may define number registers, strings, and mac
ros, provided that s/he uses single character upper case names or double character names consisting of letters and
digits, with at least one upper case letter. In no case should special characters be used in user-defined names.

On daisy wheel type printers in twelve pitch, the -rxl ftag can be stated to make lines default to one eighth
inch (the normal spacing for a newline in twelve-pitch). This is normally too small for easy readability, so the
default is to space one sixth inch.

*Author's current address: Britton Lee, Inc., 1919 Addison Suite 105, Berkeley, California 94704.
tNROFF and TROFF may be trademarks of AT&T Bell Laboratories.

-me Reference Manual USD:23-1

USD:23-2 -me Reference Manual

The -rv2 flag will indicates that this is being output on a Cl NT phototypesetter; this changes the page offset
and inserts cut marlcs.

This documentation was TROFF'ed on June lS, 1987 and applies to version 2.27 of the -me macros.

1. Paragraphing

These macros me used to begin paragraphs. The standard paragraph macro is .pp; the others are all variants
to be used f« special purposes.

The first call to one of the paragraphing macros defined in this section or the .sh macro (defined in the next
session) initializes the macro processor. After initialiZation it is not possible to use any of the following requests:
.sc, Jo, .th, or .ac. Also, the effeca of changing parameters which will have a global effect on the format of the
page (notably page length and header and footer margins) are not well defined and should be avoided.
Jp Begin left-justified paragraph. Centering and underlining are turned off if they were on,

the font is set to \n(pf [1] the type size is set to \n(pp [lOp], and a \n(ps space is inserted
before the paragraph [0.3Sv in TROFF, 1 v or O.Sv in NROFF depending on device resolu
tion]. The indent is reset to \n($i [OJ plus \n(po [OJ unless the paragraph is inside a
display. (see .ba). At least the first two lines of the paragraph are kept together on a
page.

.pp

JpT/

.np

.bu

2. Section Headings

Like .Ip, except that it puts \n(pi [5n] units of indent This is the standard paragraph
macro.
Indented paragraph with hanging tag. The body of the following paragraph is indented I
spaces (or \n(ii [5n] spaces if I is not specified) more than a non-indented paragraph
(such as with .pp) is. The title Tis exdented (opposite of indented). The result is a para
graph with an even left edge and T printed in the margin. Any spaces in T must be
unpaddable. If Twill not fit in the space provided, .ip will start a new line.

A variant of .ip which numbers paragraphs. Numbering is reset after a .Ip, .pp, or .sh .
The current paragraph number is in \n($p.

_Like .np except that paragraphs are marked with bullets(•). Leading space is eliminated
to create compact lists.

Numbered sections are similar to paragraphs except that a section number is automatically generated for each
one. The section numbers are of the form 1.2.3. The depth of the section is the count of numbers (separated by
decimal points) in the section number.

Unnumbered section headings are similar, except that no number is attached to the heading .
.sh +NT a b c def Begin numbered section of depth N. If N is missing the current depth (maintained in the

number register \n($0) is used The values of the individual parts of the section number
are maintained in \n($1 through \n($6. There is a \n(~ [lv] space before the section. T
is printed as a section title in font \n(sf [8] and size \n(sp [lOp]. The "name" of the sec
tion may be accessed via *($n. If \n(si is non-zero, the base indent is set to \n(si times
the section depth, and the section title is exdented. (See .ba.) Also, an additional indent
of \n(so [0] is added to the section title (but not to the body of the section). The font is
then set to the paragraph font, so that more information may occur on the line with the
section number and title. .sh insures that there is enough room to print the section head
plus the beginning of a paragraph (about 3 lines total). If a through fare specified, the
section number is set to that number rather than incremented automatically. If any of a
through/ are a hyphen that number is not reset If Tis a single underscore("_") then
the section depth and numbering is reset, but the base indent is not reset and nothing is
printed out. This is useful to automatically coordinate section numbers with chapter
numbers .

.sx +N Go to section depth N [-1], but do not print the number and title, and do not increment
the section number at level N. This has the effect of starting a new paragraph at level N.

-me Reference Manual USD:23-3

.uh T Unnumbered section heading. The tide Tis printed with the same rules for spacing, font,
etc., as for .sh.

.$p TB N Print sectioo heading. May be redefined to get fancier headings. Tis the tide passed on
the .sh or .ob line; B is the section number for this section, and N is the depth of this sec
tion. These parameters are not always present; in particular, .sh passes all three, .uh
passes only the first, and .sx passes three, but the first two are null strings. Care should
be taken if this macro is redefined; it is quite complex and subtle .

.$0 TB N This macro is called automatically after every call to .Sp. It is normally undefined, but
may be used to automatically put every section tide into the table of contents or for some
similar function. Tis the section tide f<X" the section tide which was just printed, B is the
section number, and N is the section depth •

• $1 - .$6 Traps called just before printing that depth section. May be defined to (for example) give
variable spacing before sections. These macros are called from .Sp, so if you redefine
that macro you may lose this feature.

3. Headers and Footers
Headers and footers are put at the top and bottom of every page automatically. They are set in font \n(tf [3]

and size \n(tp [lOp]. Each of the definitions apply as of the next page. Three-part titles must be quoted if there are
two blanks adjacent anywhere in the title or more than eight blanks total.

The spacing of headers and footers are controlled by three number registers. \n(hm [4v] is the distance from
the top of the page to the top of the header, \n(fm [3v] is the distance from the bottom of the page to the bottom of
the footer, \n(tm [7v] is the distance from the top of the page to the top of the text, and \n(bm [6v] is the distance
from the bottom of the page to the bottom of the text (nominal). The macros .ml, .m2, .m3, and .m4 are also sup
plied for compatibility with ROFF documents .

• he 1 'm 'r'

. ro 'l 'm 'r'

• eh 1 'm 'r'

• oh 'I'm 'r'

. er 'I'm 'r'

• or 'I'm 'r'

• bx

.ml +N

.m2 +N

• m3 +N

• m4 +N

.ep

.$h

• $r

.$H

4. Displays

Define three-part header, to be printed on the top of every page .

Define footer, to be printed at the bottom of every page .

Define header, to be printed at the top of every even-numbered page .

Define header, to be printed at the top of every odd-numbered page .

Define footer, to be printed at the bottom of every even-numbered page .

Define footer, to be printed at the bottom of every odd-numbered page.

Suppress headers and footers on the next page .

Set the space between the top of the page and the header [4v] .

Set the space between the header and the first line of text [2v] .

Set the space between the bottom of the text and the footer [2v].

Set the space between the footer and the bottom of the page [4v] .

End this page, but do not begin the next page. Useful for forcing out footnotes, but other
than that hardly every used Must be followed by a .bp or the end of input

Called at every page to print the header. May be redefined to provide fancy (e.g., multi
line) headers, but doing so loses the function of the .he, .ro, .eh, .oh, .el, and .or requests,
as well as the chapter-style title feature of .+c.

Print footer; same comments apply as in .$h .

A normally undefined macro which is called at the top of each page (after putting out the
header, initial saved floating keeps, etc.); in other words, this macro is called immediately
before printing text on a page. It can be used for column headings and the like.

All displays except centered blocks and block quotes are preceded and followed by an extra \n(bs [same as
\n(ps] space. Quote spacing is stored in a separate register; centered blocks have no default initial or trailing space.
The vertical spacing of all displays except quotes and centered blocks is stored in register \n($R instead of \n($r.

USD:23-4

.(Im/

.)I

.(q

•)q

• (bm/

•)b

.(zm/

•)z

• (c

•)c

5. Annotations

.(d

.)d n

.pd

. er

.)fn

.$s

• (xx

.)xPA

-me Reference Manual

Begin list lists. are single spaced, unfilled text If/ is F, the list will be filled. If m [I] is
I the list is indented by \n(bi [4m]; if M the list is indented to the left margin; if L the list
is leftjustified with respect to the text (different from M only if the base indent (stored in
\n($i and set with .ha) is not zero); and if C the list is centered on a line-by-line basis.
The list is set in font \n(df [0]. Must be matched by a .)I. This macro is almost like .(b
except dlat no attempt is made to keep the display on one page.

End list

Begin major quote. These are single spaced, filled, moved in from the text on both sides
by \n(qi [4n], preceded and followed by \n(qs [same as \n(bs] space, and are set in point
size \n(qp [one point smaller than surrounding text] •

End major quote •

Begin block. Blocb are a form of uep, where the text of a keep is kept together on one
page if possible (keeps are useful for tables and figures which should not be broken over
a page). If the block will not fit on the current page a new page is begun, unless that
would leave more than \n(bt [0] white space at the bottom of the text If \n(bt is zero,
the threshold feature is turned off. Blocks are not filled unless/is F, when they are filled.
The block will be left-justified if mis L, indented by \n(bi [4m] if mis I or absent, cen
tered (line-for-line) if m is C, and left justified to the margin (not to the base indent) if m
is M. The block is set in font \n(dr [0] .

End block.

Begin floating keep. Like .(b except that the keep is floated to the bottom of the page or
the top of the next page. Therefore, its position relative to the text changes. The ftoating
keep is preceded and followed by \n(zs [l v] space. Also, it defaults to mode M .

End floating keep .

Begin centered block. The next keep is centered as a block, rather than on a line-by-line
basis as with .(b C. This call may be nested inside keeps .

End centered block.

Begin delayed text Everything in the next keep is saved for output later with .pd, in a
manner similar to footnotes.

End delayed text The delayed text number register \n($d and the associated string*#
are incremented if*# has been referenced.

Print delayed text. Everything diverted via .(dis printed and truncated This might be
used at the end of each chapter .

Begin footnote. The text of the footnote is floated to the bottom of the page and set in
font \n(fr [l] and size \n(fp [Sp]. Each entty is preceded by \n(fs [0.2v] space, is
indented \n(fi [3n] on the first line, and is indented \n(fu [0] from the right margin. Foot
notes line up underneath two column output. If the text of the footnote will not all fit on
one page it will be carried over to the next page.

End footnote. The number register \n($r and the associated string \•• are incremented if
they have been referenced.

The macro to output the footnote separator. This macro may be redefined to give other
size lines or other types of separators. Currently it draws a 1.5i line.

Begin index entry. Index entries are saved in the index x [x] until called up with .xp .
Each entry is preceded by a \n(xs [0.2v] space. Each entry is "undented" by \n(xu
[0.5i]; this register tells how far the page number extends into the right margin.

End index entry. The index entry is finished with a row of dots with A [null] right
justified on the last line (such as for an author's name), followed by P [\n%]. If A is
specified, P must be specified; \n% can be used to print the current page number. If Pis

-me Reference Manual

.xp.x

6. Columned Output

.2c +SN

.le

.be

7. Fonts and Siies

~z +P

.rWX

JWX

• bWX

.rbWX

.uWX

.qWX

• biWX

.bxWX

smWX

8. Roff Support

• ix +N

• blN

. pa +N

. ro

USD:23-5

an underscore, no page number and no row of dots are printed.

Print index x [x]. The index is foonatted in the font, size, and so forth in effect at the
time it is printed, rather than at the time it is collected.

Enter two-column mode. The column separation is set to +S [4n, 0.Si in ACM mode]
(saved in \n(~). The colunm width, calculated to fill the single colunm line length with
both colunms, is stored in \n($l The current column is in \n($c. You can test register
\n($m (1) to see if you are in single column or double column mode. Actually, the
request enters N (2) colunm output

Revert to single-colunm mode.

Begin column. This is like .bp except that it begins a new column on a new page only if
necessary, rather than forcing a whole new page if there is another column left on. the
current page.

The pointsize is set to P [lOp], and the line spacing is set proportionally. The ratio of line
spacing to pointsize is stored in \n($r. The ratio used internally by displays and annota
tions is stored in \n($R (although this is not used by .sz). This size is not sticky beyond
many macros: in particular, \n(pp (paragraph pointsize) modifies the pointsize every
time a new paragraph is begun using the .pp, Jp, .ip, .np, or .bu macros. Also, \n(rp
(footnote pointsize), \n(qp (quote pointsize), \n(sp (section header pointsize), and \n(tp
(title pointsize) may modify the pointsize .

Set W in roman font, appending X in the previous font. To append different font
requests, use X = \c. If no parameters, change to roman font

Set Win italics, appending X in the previous font If no parameters, change to italic font.
Underlines in NROFF •

Set Win bold font and append X in the previous font. If no parameters, switch to bold
font In NROFF, underlines.

Set W in bold font and append X in the previous font. If no parameters, switch to bold
font .rb differs from.bin that .rb does not underline in NROFF.

Underline Wand append X. This is a true underlining, as opposed to the .ul request,
which changes to "underline font" (usually italics in TROFF). It won't work right if Wis
spread or broken (including hyphenated). In other words, it is safe in no.fill mode only.

Quote Wand append X. In NROFF this just surrounds W with double quote marks (' " '),
but in TROFF uses directed quotes.

Set W in bold italics and append X. Actually, sets Win italic and overstrikes once .
Underlines in NROFF. It won't work right if W is spread or broken (including
hyphenated). In other words, it is safe in nofill mode only.

Sets Win a box, with X appended. Underlines in NROFF. It won't work right if Wis
spread or broken (including hyphenated). In other words, it is safe in nofill mode only.

Sets Win a smaller pointsize, with X appended.

Indent, no break. Equivalent to 'in N .

Leave N contiguous white space, on the next page if not enough room on this page .
Equivalent to a ~p N inside a block.

Equivalent to .hp .

Set page number in roman numerals. Equivalent to .ar % i .

USD:23-6

.ar

.nl

.n2N

.sk

9. Preprocessor Support

.EQmT

.EN c

.TS h

.TH

• TE

• PShw

.PE

JS
JE

JF
GS

GE
GF

10. Miscellaneous

. re

.ba +N

.xi +N

.II +N

• hi

Set page number in Arabic. Equivalent to .al 'IJ 1 •

Number lines in margin from one on each page •

Number lines from N, stop if N - 0.

-me Reference Manual

Leave the next output page blank, except for headers and footers. This is used to leave
space f<r a full-page diagram which is produced externally and pated in later. To get a
partial-page paste-in display, say 11 N, where N is the amount of space to leave; this
space will be output immediately if there is room, and will otherwise be output at the top
of the next page. However, be warned: if N is greater than the amount of available space
on an empty page, no space will ever be outpuL

Begin equation. The equation is centered if m is C or omitted, indented \n(bi [4m] if m is
I, and left justified if m is L. T is a title printed on the right margin next to the equation.
See Typesetting Mathematics - User's Guide by Brian W. Kernighan and Lorinda L.
Cherry •

End equation. If c is C the equation must be continued by immediately following with
another .EQ, the text of which can be centered along with this one. Otherwise, the equa
tion is printed, always on one page, with \n(es [0.Sv in TROFF, lv in NROFF] space above
and below iL

Table start. Tables are single spaced and kept on one page if possible. If you have a
large table which will not fit on one page, use h = Hand follow the header part (to be
printed on every page of the table) with a .TH. See Tbl -A Program to Format Tables
by M. E. Lesk.

With .TS H, ends the header portion of the table .

Table end Note that this table does not ft.oat, in fact, it is not even guaranteed to stay on
one page if you use requests such as .sp intermixed with the text of the table. If you want
it to ft.oat (or if you use requests inside the table), surround the en~ table (including the
.TS and .TE requests) with the requests .(z and .)z .

Begin pie picture. His the height and w is the width, both in basic units. Ditroffonly .

End picture.

Begin ideal picture.

End ideal picture.

End ideal picture (alternate form).

Begin gremlin picture.

End gremlin picture.

End gremlin picture (alternate form).

Reset tabs. Set to every O.Si in TROFF and every 0.Si in NROFF •

Set the base indent to +N [0] (saved in \n($i). All paragraphs, sections, and displays
come out indented by this amount. Titles and footnotes are unaffected. The .sh request
performs a .ba request if \n(si [0] is not zero, and sets the base indent to \n(si*\n($0.

Set the line length to N [6.0i]. This differs from .U because it only affects the current
environmenL
Set line length in all environments to N [6.0i]. This should not be used after output has
begun, and particularly not in two-column output The current line length is stored in
\n($1.

Draws a horizontal line the length of the page. This is useful inside ftoating keeps to dif- .
ferentiate between the text and the figure.

-me Reference Manual

Jh

Jo

11. Standard Papers

.tp

• th

.++mH

.+c T

• $c T

.$CKNT

.acAN

USD:23-7

Print a letterhead at the current position on the page. The format of the letterhead must
be defined in the file /usr/lib/me/letterhead.me by your local syst.erm staff. Some
environments may require ditrojffor this macro to function properly.

This macro loads another set of macros (in /usr/Jib/me/local.me) which is intended to be
a set of locally defined macros. These macros should all be of the fonn • •x, where X is
any letter (upper or lower cue) or digit

Begin tide page. Spacing at the top of the page can occur, and headers and footers are
suppressed. Also, the page number is not incremented for this page •

Set thesis mode. This defines the modes acceptable for a doctoral dissertation at Berke
ley. It double spaces, defines the header to be a single page number, and changes the
margins to be 1.S inch on the left and one inch on the top. .++ and .+c should be used
with it. This macro must be stated before initialization, that is, before the first call of a
paragraphing macro or .m.
This request defines the section of the paper which we are entering. The section type is
defined by m. C means that we are entering the chapter portion of the paper, A means
that we are entering the appendix portion of the paper, P means that the material follow
ing should be the preliminary portion (abstract, table of contents, etc.) portion of the
paper, AB means that we are entering the absttact (numbered independently from 1 in
Arabic numerals), and B means that we are entering the bibliographic portion at the end
of the paper. Also, the variants RC and RA are allowed, which specify renumbering of
pages from one at the beginning of each chapter or appendix, respectively. The H
parameter defines the new header. If there are any spaces in it, the entire header must be
quoted. If you want the header to have the chapter number in it, Use the string \\\\n(ch.
For example, to number appendixes A.1 etc., type.++ RA ""\\\\n(cb.%'. Each section
(chapter, appendix, etc.) should be preceded by the .+c request. It should be mentioned
that it is easier when using TROFF to put the front material at the end of the paper, so that
the table of contents can be collected and put out; this material can then be physically
moved to the beginning of the paper.

Begin chapter with title T. The chapter number is maintained in \n(cb. This register is
incremented every time .+c is called with a parameter. The title and chapter number are
printed by .$c. The header is moved to the footer on the first page of each chapter. If T
is omitted, .$c is not called; this is useful for doing your own ''title page'' at the begin
ning of papers without a title page proper . .$c calls .$C as a hook so that chapter titles
can be inserted into a table of contents automatically. The footnote numbering is reset to
one .

Print chapter number (from \n(ch) and T. This macro can be redefined to your liking. It
is defined by default to be acceptable for a PhD thesis at Berkeley. This macro calls $C,
which can be defined to make index entries, or whatever.

This macro is called by .$c. It is normally undefined, but can be used to automatically
insert index entries, or whatever. K is a keyword, either "Chapter" or "Appendix"
(depending on the .++ mode); N is the chapter or appendix number, and Tis the chapter
or appendix title.

This macro (short for .acm) sets up the NROFF environment for camera-ready papers as
used by the ACM. This format is 25% larger, and has no headers or footers. The
author's name A is printed at the bottom of the page (but off the part which will be
printed in the conference proceedings), together with the current page number and the
total number of pages N. Additionally, this macro loads the file /usr/lib/me/acm.me,
which may later be augmented with other macros useful for printing papers for ACM
conferences. ltshould be noted that this macro will not work correctly in version 7
TROFF, since it sets the page length wider than the physical width of the Cl AIT photo
typesetter roll.

USD:23-8

12. Predefined Strings , ..
*#
\•[

*]

\•<

\•>
\•(dw

*(mo

*(td

*Oq

*(rq ,._

-me Reference Manual

Footnote number, actually \•(\n($f\•]. This macro is incremented after each call to .)f.

Delayed text number. Actually [\n($d].

Superscript. This string gives upward movement and a change to a smaller point size if
possible, otherwise it gives the left bracket character (' ['). Extra space is left above the
line to allow room for the superscript
Unsuperscript. Inverse to \•[. For example, to produce a supersaipt you might type
x\•[2\•], which will produce r. .
Subscript Defaults to'<' if half-carriage motion not possible. Extta space is left below
the line to allow for the subscript.

Inverse to \•<.
The day of the week, as a word.

The month, as a word.

Today's date, directly printable. The date is of the form June lS, 1987. Other forms of
the date can be used by using \n(dy (the day of the month; for example, 15), \•(mo (as
noted above) or \n(mo (the same, but as an ordinal number; for example, June is 6), and
\n(yr (the last two digits of the current year).

Left quote marks. Double quote in NROFF.

Right quote.
3A em dash in TROFF; two hyphens in NROFF.

13. Special Characters and Marks

There· are a number of special characters and diacritical marks (such as accents) available through -me. To
reference these characters, you must call the macro .sc to define the characters before using them .

.sc Define special characters and diacritical marks, as described in the remainder of this sec
tion. This macro must be stated before initialization. The special characters available are

Acknowledgments

listed below.
Name
Acute accent
Grave accent
Umlat
Tilde
Caret
Cedilla
Czech
Circle
There exists
For all

Usage ,., ,
*: ,.-, ,.,
*v
*o
*(qe
*(qa

Example
a\•'
e\•'
u\•:
n\•-
e\•"'
c\•,
e*v
A*o

ii

c
" e
X
3
'rt

I would like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage to use the -me macros to
produce non-trivial papers during the development stages; Ricki Blau, Pamela Humphrey, and Jim Joyce for their
help with the documentation phase; peter kessler for numerous complaints, most accompanied by fixes; and the
plethora of people who have contributed ideas and have given support for the project.

-me Rererence Manual USD:23-9

Summary

This alphabetical list summarizes all macros, strings, and number registers available in the -me macros.
Selected troff commands, registers, and functions are included as well; those listed can generally be used with
impunity.

The colunms are the name of the command, macro, register, or string; the type of the object, and the descrip
tion. Types are M for macro or builtin command (invoked with • <X - in the first input column), S for a string
(invoked with \• or *0, R for a number register (invoked with \n or \nQ, and F for a trof/builtin function (invoked
by preceding it with a single backswh).

Lines marked with I are troff internal codes. Lines marked with t or * may be defined by the user to get spe
cial functions; * indicates that these are defined by default and changing them may have unexpected side effects.
Lines marked with 0 are specific to ditrojf (device-independent troff).

NAME TYPE DESCRIPTION
\(space) F§ unpaddable space
\" Fl comment (to end of line)
*# S optional delayed text tag string
\$N F§ interpolate argument N
\n($0 R section depth
.$0 Mt invoked after section title printed
\n($1 R first section number
.$1 Mt invoked before printing depth 1 section
\n($2 R second section number
.$2 Mt invoked before printing depth 2 section
\n($3 R third section number
.S3 Mt invoked before printing depth 3 section
\n($4 R fourth section number
.$4 Mt invoked before printing depth 4 section
\n($5 R fifth section number
.SS Mt invoked before printing depth 5 section
\n($6 R sixth section number
.$6 Mt invoked before printing depth 6 section
.SC Mt called at beginning of chapter
.SH Mt text header
\n($R R+ relative vertical spacing in displays
\n($c R current column number
.$c M+ print chapter title
\n($d R delayed text number
\n($f R footnote number
.$f M+ print footer
.$h M+ print header
\n($i R paragraph base indent
\n($1 R column width
\n($m R number of columns in effect
\ *($n S section name
\n($p R numbered paragraph number
.$p M+ print section heading (internal macro)
\n($r Rt relative vertical spacing in text
\n($s R column indent
.$s M+ footnote separator (from text)
\n% R§ current page number
\& F§ zero width character, useful for hiding controls
\(.a F§ interpolate special character .a
.(b M begin block
.(c M begin centered block
.(d M begin delayed text
.(f M begin footnote

USD:23-10 -me Reference Manual

NAME TYPE DESCRIPrION
.(l M begin list
~(q M begin quote
.(x M begin index entry
.(z M begin floating keep
.)b M end block
.)c M end centered block
.)d M end delayed text
.)f M end footnote
.)1 M end list
.)q M end quote
.)x M end index entry
.)z M end floating keep
*x F§ interpolate string x
*(.a Fl interpolate string .a , .. s optional footnote tag string
.++ M set paper section type
.+c M begin chapter ,., s cedilla
\- F§ minus sign ,._ s 3/4 em dash
\0 Fl unpaddable digit-width space
.le M revert to single column output
.2c M begin two column output
*: s umlat
*< s begin subscript
*> s end subscript
.EN M end equation
.EQ M begin equation
\L'd' F§ vertical line drawing function for distance d
.GE Mo end gremlin picture
.OF Mo end gremlin picture (with ftyback)
.GS Mo start gremlin picture
.IE Mo end ideal picture
.IF Mo end ideal picture (with ftyback)
.IS Mo start ideal picture
.PE Mo end pie picture
.PF Mo end pie picture (with ftyback)
.PS Mo start pie picture
.TE M end table
.TII M end header of table
.TS M begin table
*[s begin superscript
\n(.$ R§ number of arguments to macro
\n(.i R§ current indent
\n(.l R§ current line length
\n(.s R§ current point size
*(' s acute accent
*(' s grave accent
\(' F§ acute accent
\(' F§ grave accent
*] s end superscript
\"' F§ 1/12 em narrow space , ... s caret
.ac M ACM mode
.ad M§ set text adjustment
.af M§ assign format to register

-me Reference Manual USD:23-11

NAME TYPE DESCRIPI10N
.am Ml append to macro
.ar M set page numbezs in Arabic
.as Ml append to stting
.b M bold font
.ba M set base indent
.be M begin new colunm
.bi M bold italic
\n(bi R display (block) indent
.bl M blank lines (even at top of page)
\n(bm R bottom ti.de margin
.bp M§ begin page
.hr M§ break (start new line)
\n(bs R display (block) pre/post spacing
\n(bt R block keep threshold
.bx M boxed
\c F§ continue input
.ce M§ center lines
\n(ch R current chapter number
.de M§ define macro
\n(clf R display font
.ds M§ define string
\n(dw R§ current day of week
*(dw s current day of week
\n(dy R§ day of month
\e F§ printable version of\
.ef M set footer (even numbered pages only)
.eh M set header (even numbered pages only)
.el M§ else part of conditional
.ep M end page
\n(es R equation pre/post space
\fj F§ inline font change to font/
\fif! F§ inline font change to fontjf
.fc M§ set field characters
\n(ff R footnote font
Ji M§ fill output lines
\n(fi R footnote indent (first line only)
\n(fm R footer margin
.fo M set footer
\n(fp R footnote pointsize
\n(fs R footnote prespace
\n(fu R footnote undent (from right margin)
\h'd' F§ local horizontal motion for distance d
.he M§ set hyphenation character
.he M Set header
.hi M draw horizontal line
\n(hm R header margin
.hx M suppress headers and footers on next page
.hy M§ set hyphenation mode
.i M italic font
.ie M§ conditional with else
.if M§ conditional
\n(ii R indented paragraph indent
.in M§ indent (transient, use .ba for pervasive)
.ip M begin indented paragraph
.ix M indent, no break
\I'd' F§ horizontal line drawing function for distance d

USD:23-12 -me Reference Manual

NAME TYPE DESCRIPI'ION
.Jc Ml set leader repetition character
.lb Mo interpolate local letterhead
.11 M set line length
.lo M load local macros
.Ip M begin left justified paragraph
\•(lq s left quote marb
.ls Ml set multi-line spacing
.ml M set space from top of page to header
.m2 M set space from header to text
.m3 M set space from text to footer
.m4 M set space from footer to bottom of page
.me Ml insert margin character
.mk Ml mark vertical position
\n(mo RI month of year
*(mo s current month
\nx F§ interpolate number register x
\n(.xx Ft interpolate number register .a
.nl M number lines in margin
.n2 M number lines in margin
.na M§ turn off text adjustment
.ne Mt need vertical space
.nf M§ don't fill output lines
.nh M§ tum off hyphenation
.np M begin numbered paragraph
.nr M§ set number register
.ns M§ no space mode
*o s circle (e.g., for Norse A)
.of M set footer (odd numbered pages only)
.oh M set header (odd numbered pages only)
.pa M begin page
.pd M print delayed text
\n(pf R paragraph font
\n(pi R paragraph indent
.pl M§ set page length
.pn M§ set next page number
.po M§ page offset
\n(po R simulated page offset
.pp M begin paragraph
\n(pp R paragraph pointsize
\n(ps R paragraph prespace
.q M quoted
*(qa s for all
*(qe s there exists
\n(qi R quote indent (also shortens line)
\n(qp R quote pointsize
\n(qs R quote pre/post space
.r M roman font
.rb M real bold font
.re M reset tabs
.rm M§ remove macro or string
.m M§ rename macro or string
.ro M set page numbers in roman
*(rq s right quote marks
.rr M§ remove register
.rs M§ restore spacing
.rt M§ return to vertical position

-me Reference Manual USD:23-13

NAME TYPE DESCRIP110N
\sS Fl inline size change to siz.e S
.SC M load special characters
\n(sf R section title font
.sh M begin numbered section
\n(si R relative base indent per section depth
.sk M skip next page
.sm M set argument in a smaller pointsize
.so Ml source input file
\n(so R additional section title offset
.Sp Ml vertical space
\n(sp R section title pointsize
\n(ss R section prespace
.sx M change section depth
.sz M set pointsize and vertical spacing
.ta Ml set tab stops
.tc M§ set tab repetition character
*(td s today's date
\n(tf R title font
.th M set thesis mode
.ti M§ temporary indent (next line only)
.ti M§ three part title
\n(un R top title margin
.tp M begin title page
\n(tp R title pointsize
.tr M§ translate
.u M underlined
.uh M unnumbered section
.ul M§ underline next line,
\v'd' F§ local vertical motion for distance d
*v s inverted 'v' for czeck "e"
\w'S' F§ return width of string S
.xi M set line length (local)
.xp M print index
\n(xs R index entry prespace
\n(xu R index undent (from right margin)
\n(yr R§ year (last two digits only)
\n(zs R ftoating keep pre/post space
\{ F§ begin conditional group ,, F§ 116 em narrow space
\} F§ end conditional group , .. s tilde

Introduction

NROFFffROFF User's Manual

Joseph F. Ossanna
(updated/or 4.3BSD by Mark Seiden)

Bell Laboratories
Murray Hill, New Jersey 07'174

NROFF and TROFF are text processors under the UNIX Time-Sharing System that format text for typewriter-like ter
minals and for a Graphic Systems phototypesetter, respectively. (Device-independent TROFF, part of the
Documenter's Workbench, suppons additional output devices.) They accept lines of text interspersed with lines of
format control information and format the text into a printable, paginated document having a user-designed style.
NROFF and TRqFF offer unusual freedom in document styling, including: arbitrary style headers and footers; arbi
trary style footnotes; multiple automatic sequence numbering for paragraphs, sections, etc; multiple column output;
dynamic font and point-size control; arbitrary horizontal and vertical local motions at any point; and a family of
automatic overstriking, bracket construction, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare input accept
able to both. Conditional input is provided that enables the user to embed input expressly destined for either pro
gram. NROFF can prepare output directly for a variety of terminal types and is capable of utilizing the full resolu
tion of each terminal.

Usage

The general form of invoking NROFF (or TROFF) at UNIX command level is

nrotT options files (or troff' options files)

where options represents any of a number of option arguments and files represents the list of files containing the
document to be formatted. An argument consisting of a single minus(-) is taken to be a file name corresponding to
the standard input If no file names are given input is taken from the standard input. The options, which may appear
in any order so long as they appear before the files, are:

Option Effect

-i Read standard input after the input files are exhausted.

-mname Prepends the macro file /usrmb/tmac.name to the inputfiles.

-nN Number first generated page N.

-olist Print only pages whose page numbers appear in list, which consists of comma-separated
numbers and number ranges. A number range has the form N-M and means pages N
through M; a initial -N means from the beginning to page N; and a final N- means from N to
the end.

-q Invoke the simultaneous input-output mode of the rd request.

-raN Number register a (one-character) is set to N.

-sN Stop every N pages. NROFF will halt prior to every N pages (default N=l) to allow paper
loading or changing, and will resume upon receipt of a newline. TROFF will stop the photo
typesetter every N pages, produce a trailer to allow changing cassettes, and will resume after
the phototypesetter ST ART button is pressed.

-z Efficiently suppress formatted output Only produce output to standard error (from tm
requests or diagnostics).

USD:24-2 NROFFffROFF User's Manual

NROFF Only

-Tname Specifies the name of the output terminal type. Currently defined names are 37 for the
(default) Model 37 Teletype®, tn300 for the GE TermiNet 300 (or any terminal without
half-line capabilities), 300S for the DASl-3005, 300 for the DASI-300, and 450 for the DASl-
450 (Diablo Hyterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

-h On output, use tabs during horizontal spacing to increase speed. Device tabs setting are
assumed to be (and input tabs are initially set to) every 8 character widths.

TROFF Only

-a Send a printable (ASCII) approximation of the results to the standard output.

-b TROFF will report whether the phototypesetter is busy or available. No text processing is
done.

-t Refrain from feeding out paper and stopping phototypesetter at the end of the run.

-t . Direct output to the standard output instead of the phototypesetter.

-w Wait until phototypesetter is available, if currently busy.

Each option is invoked as a separate argument; for example,

nroff -o4 ,8-10 -T 300S -mabc file] file2

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files namedfilel andfile2, specifies the
output terminal as a DASl-3005, and invokes the macro package abc.

Vari6us pre- and post-processors are available for use with NROFF and TROFF. These include the equation prepro
cessors NEQN and EQNl (for NROFF and TROFF respectively), and the table-construction preprocessor TBL2. A
reverse-line postprocessor COL3 is available for multiple-colunm NROFF output on terminals without reverse-line
ability; COL expects the Model 37 Teletype escape sequences that NROFF produces by default TK.3 is a 37 Teletype
simulator postprocessor for printing NROFF output on a Tektronix 4014. Tes is a phototypesetter-simulator postpro
cessor for TROFF that produces an approximation of phototypesetter output on a Tektronix 4014. For example, in

tbl files I eqn I troff -t options I tc

the first I indicates the piping of TBL's output to EQN's input; the second the piping of EQN's output to TROFF's
input; and the third indicates the piping ofTROFF's output to TC.

The remainder of this manual consists of: a Summary and outline; a Reference Manual keyed to the outline; and a
set of Tutorial Examples. Another tutorial is [5].

References

[1] B. W. Kernighan, L. L. Cherry, Typesetting Mathematics- User's Guide (Second Edition), Bell Laboratories.

[2] M. E. Lesk, Tbl-A Program to Format Tables, Bell Laboratories internal memorandum;

[3] Intemai on-line documentation (man pages) on UNIX.

[4] B. W. Kernighan, A TROFF Tutoria~ Bell Laboratories.

[5] Your site may have similar programs for more modem displays.

NROFF/TROFF User's Manual

SUMMARY OF REQUESTS AND OUTUNE OF THIS MANUAL

R~qlU!st Initial I/No
Form VallU!* Ar g1urumt Notes# Explanation

1. General Explanation

2. Font and Character Size Control

.ps±N 10point previous E
• fzF±N off E
JzSFW off E
.ssN 12'36em ignored E
.csFNM off p
.bdFN off p
.bdSF N off p
JtF Roman previous E
• fpNF R,l,B,S ignored

3. Page Control

.pl '±N 11 in llin v

.bp '±N N=l B+,v

.pn '±N N=l ignored

.po±N O; 26/27 in previous v

.neN N=lV D,v

.mkR none internal D

.rt±N none internal D,v

4. Text Filling, Adjusting, and Centering

~r B
.Ii fill · B ,E
.nf fill B,E
.ad c adj,both adjust E
. na adjust E
• ce N off N=l B,E

S. Vertical Spacing

.vs N 1/6in; 12pts
• lsN N=l
.spN
.svN
• OS

.ns space

.rs

previous
previous
N=lV
N=lV

6. Line Length and Indenting

E,p
E
B,v
v

D
D

Point she; also 'vrl:N. t
font F to point she ±N .
Special Font characters to point size 'IN.
Space-character size set to N/36 em. t
Constant character space (width) mode (font F). t
Embolden font F by N-1 units. t
Embolden Special Font when current font is F. t
Change to font F = x, .u, or 1-4. Also \fx, \f'(xx, \fN.
Font named F mounted on physical position lSN~ .

Page length.
Eject current page; next page number N.
Next page number N.
Page offset
Need N vertical space (V = vertical spacing) .
Mark current vertical place in register R.
Return (upward only) to marked vertical place.

Break.
Fill output lines.
No filling or adjusting of output lines .
Adjust output lines with mode c .
No output line adjusting .
Center following N input text lines .

Vertical base line spacing (V).
OutputN-1 Vs after each text output line .
Space vertical distance Nin either direction .
Save vertical distance N .
Output saved vertical distance .
Turn no-space mode on.
Restore spacing; turn no-space mode off.

JI ±N 6.5 in previous E,m Line length.
.in ±N N= 0 previous B,E,m Indent
.ti '±N ignored B,E,m Temporary indent

7. Macros, Strings, Diversion, and Position Traps

.de xx yy .yy=.. Define or redefine macro xx; end at call of yy .

.am xx yy .yy= •• Append to a macro.

*Values separated by";" are for NROFF and TROFF respectively.

#Notes are explained at the end of this Summary and Index

tNo effect in NROFF.

:j:The use of" '" as control character (instead of".") suppresses the break function.

USD:24-3

USD:24-4 NROFF/TROFF User's Manual

Reqiust Initial I/No
Form Valiu Arguwnt No16s Explanation

.els xx string - ignored Define a string .a containing string.

.as xx string -

.rm.a

.rn.uyy

.di.a

.daxx
• whN.a
• ch.uN
.dtNxx
JtN.a
.em.a none

8. Number Registers

JJ.rR±NM -
.af R c arabic
• rr R

ignored
ignored
ignored
end
end

off
off
none

9. Tabs, Leaders, and Fields

• taNt ... 0.8; 0.5in none
.tc c
.le c
Jc ab

none

off

none
none
off

D
D
v
v
D,v
E

u

E,m
E
E

Append string to string xx ..
Remove reques~ macro, or string.
Rename reques~ macro, or string .u to yy.
Divert output to macro xx .
Divert and append to xx.
Set location trap; 'negative is w.r.t. page bottom .
Change trap location .
Set a diversion trap.
Set an input-line count trap.
End macro is .a.

Define and set number register R; auto-increment by M.
Assign format to register R (c= 1, i, I, a, A) .
Remove register R •

Tab settings; left type, unless t=R(right), C(centered) .
Tab repetition character.
Leader repetition character.
Set field delimiter a and pad character b.

10. Input and Output Conventions and Character Translations

.ec c Set escape character .
• eo on Tum off escape character mechanism.
.lg N -; on on Ligature mode on if N>O •
• ul N off N=l E Underline (italicize in TROFF) N input lines .
• cuN off N=l E Continuous underline in NROFF; like ul in TROFF .
. ur F Italic Italic Underline font set to F (to be switched to by ul) .
• cc c E Set conttol character to c .
• c2 c E Set nobreak control character to c .
• tr abed.... none 0 Translate a to b, etc. on output

11. Local Horizontal and Vertical Motions, and the Width Function

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

13. Hyphenation.

• nh hyphenate E No hyphenation .
• by N hyphenate hyphenate E Hyphenate; N = mode •

Hyphenation indicator character c .
Exception words.

• he c \% \% E
.hwwordl ... ignored

14. Three Part Titles.

• ti 'left 'center 'right ' Three part title .
• pc c % off Page number character .
• It -±N 6.5 in previous E,m Length of title .

15. Output Line Numbering.

. nm -±NM SI off E Number mode on or off, set parameters .
• nnN N=l E Do not number next N lines .

NR.OFFITROFF User's Manual

I/No Reqiust
Fonn

Initial
Valiu Arg,,,_111 No~s Explanatio11

16. Conditional Acceptance of Input

JI c anything -

• if !c anything-
. ii N anything - u
JI !N anything

H condition c true, accept anything as input,
for multi-line use \{anything\} .

H condition c false, accept anything .
If expression N > 0, accept anything.
u If expression N ~ 0, accept anything.

• if 'string} 'string2 'anything If string} identical to string2, accept anything .
• if! 'string} 'string2 ~anything If stringl not identical to string2, accept anything .
Je c anything - u If portion of if-else; all above forms (like if).
.el anything Else portion of if-else~

17. Environment Switching •

. ev N N=O previous Environment switched (push down).

18. Insertions from the Standard Input

. rd prompt
• ex

prompt=BEL Read insertion .

19. Input/Output File Switching

.so filenam£
• DX filenam£
• pi program

20. Miscellaneous

. mccN

end-of-file

E,m

Exit from NROFFffROFF .

Switch source file (push down) .
Next file.
Pipe output to program (NROFF only) .

Set margin character c and separation N .
. tm string
.igyy
.pmt

off
newline
. yy= ••

Print string on terminal (UNIX standard error output) .
Ignore till call of yy .

.ab string
n

all

B

Print macro names and sizes;
if t present, print only total of sizes.
Print a message and abort
Flush output buffer.

21. Output and Error M~ges

Notes·

B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
0 Must stay in effect until logical output.
p Mode must be still <X' again in effect at the time of physical output.

v,p,m,u Default scale indicator; if not specified, scale indicators are ignored.

i\lphabetkal Request and Section Number Cross Reference

ab 20 c2 10 di 7 ex 18 hw 13 lg 10 ne 3 OS 5 rd 18
ad 4 cc 10 ds 7 fc 9 hy 13 li 10 nf 4 pc 14 nn 7
af 8 ce 4 dt 7 fi 4 ie 16 11 6 nh 13 pi 19 m 7
am 7 ch 7 ec 10 ft 20 if 16 ls 5 nm 15 pl 3 rr 8
as 7 cs 2 el 16 fp 2 ig 20 lt 14 DD 15 pm 20 rs 5
bd 2 cu 10 em 7 ft 2 in 6 me 20 nr 8 pn 3 rt 3
bp 3 da 7 eo 10 fz 2 it 7 mk 3 ns 5 po 3 so 19
br 4 de 7 ev 17 he 13 le 9 na 4 nx 19 ps 2 sp 5

SS 2
SV 5
ta 9
tc 9
ti 6
tl 14
tm 20
tr 10

USD:24-S

uf 10
uJ 10
VS 5
wh 7

USD:24-6

~cape Sequences for Characters, Indicators, and Functions

Section Escape
Reference ~qlll!nce

10.1 \\
10.1 \e
2.1 \'
2.1 \"
2.1 \-
7 \.

11.1 \(space)
11.1 \0
11.1 \I
11.1 \"
4.1 \&

10.6 \!
10.7 \"
7.3 ~

13 \%
2.1 \(xx
7.1 \•x, \•(xx
9.1 \a

12.3 \b 'abc ... ,
4.2 \c

11.1 \d
2.2 'lx,\l(xx,\IN

11.1 \h'N'
11.3 \kx
12.4 \I 'Ne'
12.4 \L 'Ne'
8 \nx,\n(xx

12.1 '-l>'abc ... '
4.1 \p

11.1 \r
2.3 \sN, \s-±N
9.1 \t

11.1 \u
11.1 \v'N '
11.2 \w 'string '
5.2 ~'N,

12.2 \zc
16 \{
16 \}
10.7 \(newline)

\X

Meaning

\ (to prevent or delay the interpretation of\)
Printable version of the current escape character.
' (acute accent); equivalent to \(aa
.. (grave accent); equivalent to \(&a
- Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size space character
Digit width space
l/6em narrow space character (zero width in NROFF)
1/12em half-narrow space character (zero width in NROFF)
Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument 1SNS9
Default optional hyphenation character
Character named xx
Interpolate string x or xx
Non-intetpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2em vertical motion (112 line in NROFF)
Change to font named x or xx, or position N
Local horizontal motion; move rightN (negative left)
Mark horizontal input place in register x
Horizontal line drawing function (optionally with c)
Vertical line drawing function (optionally with c)
Interpolate number register x or xx
Overstrike characters a, b, c, ...
Break and spread output line
Reverse 1 em vertical motion (reverse line in NROFF)
Point-size change function
Non-intetpreted horizontal tab
Reverse (up) l/2em vertical motion (112 line in NROFF)
Local vertical motion; move down N (negative up)
lnterpOlate width of string
Extra line-space function (negative before, positive after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X, any character not listed above

NROFF/TROFF User's Manual

The escape sequences \\, \., \",\$,\•,\a, \n, \t, and \(newline) are intetpreted in copy mode (§7 .2).

NROFFffROFF User's Manual

Predefined General Number Registers

Section Register
Reference Name Description

3 % Current page number.
19 c. Number of liMs read from current input file.
11.2 ct Character type (set by width function).
7.4 di Width (maximum) of last completed diversion.
7.4 dn Height (vertical size) of last completed diversion.

dw Current day of the week (1-7).
dy Current day of the month (1-31).

11.3 hp Current horizontal place on input line (not in ditroft)
15 In Output line number.

mo Current month (1-12).
4.1 nl Vertical position of last printed text base-line.

11.2 sb Depth of string below base line (generated by width function).
11.2 st Height of string above base line (generated by width function).

yr Last two digits of current year.

Predefined Read-Only Number Registers

Section
Reference

7.3

11.1
5.3

11.1
5.2

19
7.4
2.2
4
6
4.2
4.1
6
4
3
3
2.3
7.5
4.1
5.1

11.2

7.4

Register
Name

.$

.A

. H

.L

.P

. T

. v

.a

.c

. d

.f

.h

.i

.j

.k
J
.n
.o
• p
.s
.t
.u
.v
.w
.x
• y
.z

Description

Number of arguments available at the current macro level.
Set to 1 in TROFF, if -a option used; always 1 in NROFF .
Available horizontal resolution in basic units.
Set to current line-spacing (Is) parameter
Set to 1 if the current page is being printed; otherwise 0 .
Set to 1 in NROFF, if-T option used; always 0 in TROFF .
Available vertical resolution in basic units.
Post-line extra line-space most recently utilized using \x 'N '.
Number of lines read from current input file .
Current vertical place in current diversion; equal to nl, if no diversion .
Current font as physical quadrant (1-4).
Text base-line high-water mark on current page or diversion.
Current indent
Current adjustment mode and type.
Length of text portion on current partial output line.
Current line length.
Length of text portion on previous output line .
Current page offset.
Current page length .
Current point size.
Distance to the next trap.
Equal to 1 in fill mode and 0 in nofill mode.
Current vertical line spacing.
Width of previous character.
Reserved version-dependent register .
Reserved version-dependent register .
Name of current diversion.

USD:24-7

USD:24-8 NROFF/TROFF User's Manual

REFERENCE MANUAL

1. General Explanation

1.1.Form of input. Input consists of text lines, which are destined to be printed, interspersed with control lines,
which set parameters or otherwise control subsequent processing. Control lines begin with a control character
normally • {period) or ' (acute accent)-followed by a one or two character name that specifies a basic request or the
substitution of a user-defined macro in place of the control line. The control character ' suppresses the break
function-the forced output of a partially filled line-<:aused by certain requests. The conttol character may be
separated from the request/macro name by white space (spaces and/or tabs) for esthetic reasons. Names must be
followed by either space or newline. Control lines with unrecognized names are igmed.

Various special functions may be inttoduced anywhere in the input by ~s of an esc~ character, normally\.
For example, the function \nR causes the interpolation (insertioo in place) of the contents of the number register R
in place of the function; here R is either a single character name as in \nx, or left-parenthesis-introduced, two-
character name as in \n(.a. ·

1.2. Formatter and device resolution. TROFF internally uses 432 units/inch, (for historical reasons, corresponding to
the Graphic Systems phototypesetter which had a horizontal resolution of 1/432 inch and a vertical resolution of
1/144 inch.) NROFF internally uses 240 units/inch, corresponding to the least common multiple of the horizontal
and vertical resolutions of various typewriter-like output devices. TROFF rounds horizontal/vertical numerical
parameter input to its own internal horizontal/vertical resolution. NROFF similarly rounds numerical input to the
actual resolution of the output device indicated by the -T option (default Model 37 Teletype).

1.3.Numerical param£ter input. Both NROFF and TROFF accept numerical input with the scale indicator suffixes
shown in the following table, where S is the current type size in points, Vis the current vertical line spacing in basic
units, and C is a nominal character width in basic units.

Scale Number of basic units
Indicator Meaning TROFF NROFF

i Inch 432 240
c Centimeter 432x50/127 240x50/127
p Pica - 1/6 inch 72 240/6
m Em= Spoints 6xS c
n En= Ern/2 3xS C,sameasEm
p Point = 1172 inch 6 24on2
u Basic unit 1 1
v Vertical line space v v

none Default, see below

In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent; common values
are 1110 and 1112 inch. Actual character widths in NROFF need not be all the same and constructed characters such
as -> (~) are often extra wide. The default scaling is ems for the horizontally-oriented requests and functions ll, in,
ti, ta, It, po, me, \h, and \I; Vs for the vertically-oriented requests and functions pl, wb, ch, dt, sp, sv, ne, rt, \v, \x,
and \L; p for the vs request; and u for the requests nr, if, and ie. All other requests ignore any scale indicators.
When a number register containing an already appropriately scaled number is interpolated to provide numerical
input, the unit scale indicator u may need to be appended to prevent an additional inappropriate default scaling. The
number, N, may be specified in decimal-fraction form but the parameter finally stored is rounded to an integer
number of basic units.

The absolute position indicator I may be prefixed to a number N to generate the distance to the vertical or horizontal
place N. For vertically-oriented requests and functions, IN becomes the distance in basic units from the current
vertical place on the page or in a diversion (§7.4) to the vertical place N. For all other requests and functions, IN
becomes the distance from the current horizontal place on the input line to the horizontal place N. For example,

~p l3.2c

will space in.the required direction to 3.2 centimeters from the top of the page.

NROFF/TR.OFF User's Manual USD:24-9

1.4. NJ.11Mrical expressions. Wherever numerical input is expected, an expression involving parentheses, the arith
metic operators +, -, /, •, 'I> (mod), and the logical operators <, >, <=, >=, = (or=), & (and), : (or) may be used.
Except where controlled by parentheses, evaluation of expressions is left-to-right; there is no operator precedence.
In the case of certain requests, an initial+ or - is stripped and interpreted as an increment or decrement indicator
respectively. In the presence of default scaling, the desired scale indicator must be attached to every number in an
expression for which the desired and default scaling differ. For example, if the number register x contains 2 and the
current point size is 10, then

JI (4.2S"i+\mP+3)12u

will set the line length to 1/2 the sum of 4.2S inches + 2 pica + 30 points.

1.5.Notation. Numerical parameters are indicated in this manual in two ways. ±N means that the argument may
take the f~ N, +N, or -N and that the corresponding effect is to set the affected parameter to N, to increment it by
N, or to decrement it by N respectively.· Plain N means that an initial algebraic sign is not an increment indicator,
but merely the sign of N. Generally, unreuonable numerical input is either ignored or truncated to a reasonable
value. For example, most requests expect to set parameten to non-negative values; exceptions are sp, wh, ch, nr,
and it. The requests ps, ft, po, vs,~ D, in, and It restore the previous parameter value in the absence of an argu
ment.

Single character arguments are indicated by single lower case letters and one/two character arguments are indicated
by a pair of lower case letters. Character string arguments are indicated by multi-character mnemonics.

· 2. Font and Character Size Control

2.1. Character set. The TROFF character set consists of a typesetter-dependent basic character set plus a Special
Mathematical Font character set-each having 102 characters. An example of these character sets is shown in the
Appendix Table I. All printable ASCII characters are included, with some on the Special Font With three excep
tions, these ASCII characters are input as themselves, and non-ASCII characters are input in the form \(xx where xx is
a two-character name given in the Appendix Table II. The three ASCII exceptions are mapped as follows:

ASCII Input Printed by TROFF
Character Name Character Name

,
acute accent ' close quote .. grave accent ' open quote

- minus - hyphen

The characters ',',and - may be input by\',\', and\- respectively or by their names (Table Il). The ASCII charac
ters @, #, ", ', ", <, >, \ {, } , -, ", and _ exist only on the Special Font and are printed as a 1-em space if that font is
not mounted.

NROFF understands the entire TROFF character set, but can in general print only ASCII characters, additional charac
ters as may be available on the output device, such characters as may be able to be consuucted by overstriking or
other combination, and those that can reasonably be mapped into other printable characters. The exact behavior is
determined by a driving table prepared for each device. The characters ',',and_ print as themselves.

2.2.Fonts. The default mounted fonts are Times Roman (R}, Times Italic (I), Times Bold (B), and the Special
Mathematical Font (S) on physical typesetter positions l, 2, 3, and 4 respectively. These fonts are used in this docu
ment. The current font, initially Roman, may be changed (among the mounted fonts) by use of the ft request, or by
imbedding at any desired point either \fx, \f(xx, or \IN where x and xx are the name of a mounted font and N is a
numerical font position. It is not necessary to change to the Special Font; characters on that font are automatically
handled. A request for a named but not-mounted font is ignored. TROFF can be informed that any particular font is
mounted by use of the fp request. The list of known fonts is installation dependent. In the subsequent discussion of
font-related requests, F represents either a one/two-character font name or the numerical font position, 1-4. The
current font is available (as numerical position) in the read-only number register .f.

NROFF understands font control and normally underlines Italic characters (see § 10.5).

2.3. Character size. Character point sizes available are typesetter dependent, but often include 6, 7, 8, 9, 10, 11, 12,
14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1112 inch to 1/2 inch. The ps request is used to change or
restore the point size. Alternatively the point size may be changed between any two characters by imbedding a \sN

USD:24·10 NROFFITROFF User's Manual

at the desired point to set the size toN, or a 'UN (ls.YS9) to increment/decrement the size by N; \sO restores the pre
vious size. Requested point size values that are between two valid sizes yield the larger of the two. The current. size
is available in the .s register. NROFF ignores type size control

Reqiust Initial If No
Form Valiu ArgWMnt Notes• Explallatio11

.psf:N IO point previous

.fzFf:N off

. rz S F f:N off

.ssN 12/36em ignored

.csFNM off

.bdF N off

.bd SF N off

.ftF Roman previous

.rpNF R,I,B,S ignored

E

E

E

E

p

p

p

E

Point size set to f:N. Alternatively imbed \sN or 's±N. Any
positive size value may be requested; if invalid, the next larger
valid size will result, with a maximum of 36. A paired sequence
+N, -N will w~ beCause the previous requested value is also
remembered. Ignored in NROFF •

The characters in font F will be adjusted to be in size f:N. Char
acters in the Special Font encountered during the use of font F
will have the same size modification. (Use the .fz S request if
different tteatment of Special Font characters is required). .rz
must follow any .fp request for the position .

The characters in the Special Font will be in size f:N indepen
dent of previous .fz requests.

Space-character size is set to N/36 e~. This size is the
minimum word spacing in adjusted text Ignored in NROFF.

Constant character space (width) mode is set on for font F (if
mounted); the width of every character will be taken to be N/36
e~. If M is absent, the em is that of the character's point size;
if M is given, the em is M-points. All affected characters are
centered in this space, including those with an actual width
larger than this space. Special Font characters occurring while
the current font is F are also so treated. If N is absent, the mode
is turned off. The mode must be still or again in effect when the
characters are physically printed. Ignored in NROFF.

The characters in fontF will be artificially emboldened by print
ing each one twice, separated by N-1 basic units. A reasonable
value for N is 3 when the character size is in the vicinity of 10
points. If N is missing the embolden mode is . turned off. The
column heads above were printed with .bd I 3. The mode must
be still or again in effect when the characters are physically
printed. Ignored in NROFF.

The characters in the Special Font will be emboldened when
ever the current font is F. This manual was printed with
.bd S B 3. The mode must be still or again in effect when the
characters are physically printed.

Font changed to F. Alternatively, imbed \IF. The font name P
is reserved to mean the previous font

Font position. This is a statement that a font named F is
mounted on position N (1-4). It is a fatal error if F is not
known. The phototypesetter has four fonts physically mounted.
Each font consists of a film strip which can be mounted on a
numbered quadrant of a wheel. The default mounting sequence
assumed by TROFF is R, I, B, and Son positions 1, 2, 3 and 4.

*Notes are explained at the end of the Summary and Index above.

NROFFfrROFF User's Manual USD:24-ll

3. Page control

Top and bottom margins are not automatically provided; it is conventional to define two macros and to set traps for
them at vertical positions 0 (top) and-N (N from the bottom). See §7 and Tutorial Examples §T2. A pseudo-page
transition onto the first page occurs either when the first break occurs or when the first non-diverted text processing
occurs. Arrangements f<X' a trap to occur at the top of the first page must be completed before this transition. In the
following, references to the current diversion (§7.4) mean that the mechanism being described works during both
ordinary and diverted output (the former considered as the top diversion level).

The usable page width on the Graphic Systems phototypesetter was about 7 .54 inches, beginning about 1/27 inch
from the left edge of the 8 inch wide, continuous roll paper, but these characteristics are typesetter- dependenL The
physical limitations on NROFF output are output-de.vice dependent

Request Initial If No
Form Value ArgJUMnt Nous Explanation

.pl ±N 11 in 11 in

.bp±N N=l

.pn±N N=l ignored

.po±N O; 26'27 int previous

.neN N=lV

.mkR none internal

.rt±N none internal

v Page length set to ±N. The internal limitatioo is about 75 inches
in TROFF and about 136 inches in NROFF. The current page
length is available in the .p register.

B •, v Begin page. The current page is ejected and a new page is
begun. If ±N is given, the new page number will be ±N. Also
see request ns.

Page number. The next page (when it occurs) will have the
page number ±N. A pn must occur before the initial pseudo
page transition to affect the page number of the first page. The
current page number is in the% register.

v Page offset. The current left margin is set to ±N. The TROFF
initial value provides about 1 inch of paper margin including the
physical typeSetter margin of 1127 inch. In TROFF the max
imum (line-length)+(page-offset) is about 7 .54 inches. See §6.
The current page offset is available in the .o register.

D,v Need N vertical space. If the distance, D, to the next trap posi
tion (see §7 .5) is less than N, a forward vertical space of size D
occurs, which will spring the trap. If there are no remaining
traps on the page, D is the distance to the bottom of the page. If
D < V, another line could still be output and spring the trap. In a
diversion, D is the distance to the diversion trap, if any, or is
very large.

D

D,v

Mark the current vertical place in an internal register (both
associated with the current diversion level), or in register R, if
given. See rt request.

Return upward only to a marked vertical place in the current
diversion. If ±N (w.r.t current place) is given, the place is ±N
from the top of the page or diversion or, if N is absent, to a place
marked by a previous mk. Note that the sp request (§5.3) may
be used in all cases instead of rt by spacing to the absolute place
stored in a explicit register; e. g. using the sequence .mk R ..•
• sp l\nRu.

4. Text Filling, Adjusting, and Centering

4.1. Filling and adjusting. Normally,· words are collected from input text lines and assembled into a output text line
until some word doesn't fit An attempt is then made to hyphenate the word to assemble a part of it into the output

*The use of" ' " as control character (instead of".") suppresses the break function.

tValues separated by";" are for NROFF and TROFF respectively.

USD:24-12 NROFF!fROFF User's Manual

line. The spaces between the words on the output line are then increased. to spread out the line to the current line
length minus any current iluknt. A word is any string of characters delimited by the space character or the
beginning/end of the input line. Any adjacent pair of words that must be: kept together (neither split across output
lines nor spread apart in the adjustment process) can be tied together by separating them with the unpaddable space
character . "\ " (backslash-space). The adjusted word spacings are uniform in TROFF and the. minimum interword
spacing can be controlled with the a request (12). In NROFF, they are normally nonuniform because of quantiza
tion to character-size spaces; however, the command line option -e causes uniform spacing with full output device
resolution. Filling, adjustment, and hyphenatioo (§ 13) can all be prevented or controlled. The texJ length on the last
line output is available in the .n register, and text bue-line position on the page for this line is in the nl register. The
text bue-line high-water mirk (lowest place) on the current page is in the .h register. The .k register (read-only)
contains the horiwntal size of the text portion (without indent) of the current partially-collected output line (if any)
in the current environment.

An input text line ending with., ?, or! is taken to be the end of a·sen1ence, and an additional space character is
automatically provided during filling. Multiple inter-word space characters found in the input are retained, except
for trailing spaces; initial spaces also cause a break.

When filling is in effect, a \p may be irnbedded or attached to a word to cause a break at the end of the word and
have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character (§10.4) can be made to not look like a control line by
preceding it by the non-printing, zero-width filler character \&. Still another way is to specify output translation of
some convenient character into the control character using tr (§10.S).

4.2.Inte"upted text. The copying of a input line in no/ill (non-fill) mode can be inte"upted by terminating the par
tial line with a \c. The next encountered input text line will be considered to be a continuation of the same line of
input text. Similarly, a word within filled text may be interrupted by terminating the word (and line) with \c; the
next encountered text will be taken as a continuation of the interrupted word If the intervening control lines cause a
break, any partial line will be forced out along with any partial word.

Request Initial If No
Form Value Argwnent Notes Explanation

.br B Break. The filling of the line currently being collected is
stopped and the line is output without adjustment Text lines
beginning with space characters and empty text lines (blank
lines) also cause a break.

.fi fill on B,E

. nr fill on B,E

.ad c adj,both adjust E

Fill subsequent output lines. The register .u is 1 in fill mode and
0 in nofill mode.

Nofill. Subsequent output lines are neither filled nor adjusted .
Input text lines are copied directly to output lines without regard
for the current line length.

Line adjustment is begun. If fill mode is not on, adjustment will
be deferred until fill mode is back on. If the type indicator c is
present, the adjustment type is changed as shown in the follow
ing table. The type indicator can also be a value saved from the
read-only .j number register, which is set to contain the current
adjustment mode and type.

Indicator Adjust Type
I adjust left margin only
r adjust right margin only
c center

born adjust both margins
absent unchanged

NROFF/TROFF User's Manual

.na adjust

.ceN off N=l

S. Vertical Spacing

E

B,E

USD:24-13

NoadjusL Adjustment is turned off; the right margin will be
ragged. The adjustment type for ad is not changed. Output line
filling still occurs if fill mode is on.

Center the next N input text lines within the current (line-length
minus indent). If N=O, any residual count is cleared. A break
occurs after each of the N input lines. If the input line is too
long, it will be left adjusted.

5.1.Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can be set using
the vs request with a resolution of 1/144inch=1/2 point in TROFF, and to the output device resolution in NROFF. V
must be large enough to accommodate the character sizes on the affected output lines. For the common type sizes
(9-12 points), usual typesetting practice is to set V to 2 points greater than the point size; TROFF default is 10-point
type on a 12-point spacing (u in this document). The cwrent Vis available in the .v register. Multiple-V line
separation (e.g. double spacing) may be requested with ls.

5.2.Extra line-space. If a word contains a vertically tall construct requiring the output line containing it to have
extra vertical space before and/or after it, the extra-line-space function \x 'N 'can be imbedded in or attached to that
word. In this and other functions having a pair of delimiters around their parameter (here '), the delimiter choice is
arbitrary, except that it can't look like the continuation of a number expression for N. If N is negative, the output
line containing the word will be preceded by N extra vertical space; if N is positive, the output line containing the
word will be followed by N extra vertical space. If successive requests for extra space apply to the same line, the
maximum values are used. The most recently utilized post-line extra line-space is available in the .a register.

5.3.Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors the no-space
mode and which does not space past a trap. A contiguous block of vertical space may be reserved using sv.

Request Initial If No
Form Value ArgW1U!nt Notes Explanation

.vs N l/6in;12pts previous E,p Set vertical base-line spacing size V. Transient extra vertical
space available with \x.'N '(see above) .

• lsN N=l previous

.spN N=lV

.svN N=lV

.os

.ns space

E

B,v

v

D

Line spacing set to ±N. N-1 Vs (blank lines) are appended to
each output text line. The (read-only) number register .L is set
to contain the current line-spacing value. Appended blank lines
are omitted, if the text or previous appended blank line reached
a trap position.

Space vertically in either direction. If N is negative, the motion
is backward (upward) and is limited to the distance to the top of
the page. Foiward (downward) motion is truncated to the dis
tance to the nearest trap. If the no-space mode is on, no spacing
occurs (see ns, and rs below).

Save a contiguous vertical block of size N. If the distance to the
next trap is greater than N, N vertical space is output No-space
mode hu no effect. If this distance is less than N, no vertical
space is immediately output, but N is remembered for later out
put (see os). Subsequent sv requests will overwrite any still
remembered N.

Output saved vertical space. No-space mode has no effect
Used to finally output a block of vertical space requested by an
earlier sv request.

No-space mode turned on. When on, the no-space mode inhi
bits sp requests and bp requests without a next page number.
The no-space mode is turned off when a line of output occurs,
or with rs.

USD:24-14 NROFFffROFF User's Manual

.rs space D

B

Restore spacing. The no-space mode is turned off.

Causes a break and outputs a blank line just lite sp 1. Blank text line.

6. Line Length and Indenting

The maximum line length for fill.mode may be set with U. The indent may be set with in; an indent applicable to
only the next output line may be set with ti. The line length includes indent space but not page offset space. The
line-length minus the indent is the basis for centering with ce. The effect of II, in, or ti is delayed, if a partially col
lected line exists, until after that line is output. In fill mode the length of text on an output line is less than <r equal
to the line length minus the indent. The current line length and indent are available in registers J and J respectively.
The length of three-part titles produced by ti (see I 14) is inekpelllkntly set by It.

Reqlll!st Initial If No
Form Vallll! ArgWMnt Notes Explanation

.ll±N

• in±N

.ti±N

6.Sin

N=O

previous

previous

ignored

E,m Line length is set to ±N. In TROFF the maximum (line
length)+(page-offset) is about 7 .54 inches.

B,E,m Indent is set to ±N. The indent is prepended to each output line .

B,E,m Temporary indent. The next output text line will be indented a
distance ±N with respect to the current indent The resulting
total indent may not be negative. The current indent is not
changed.

7. Macros, Strings, Diversion, and Position Traps

7.1.Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with a trap. A
string is a named string of characters, not including a newline character, that may be interpolated by name at any
point Request, macro, and string names share the stlml! name list. Macro and string names may be one or two
characters fong and may usurp previously defined request, macro, or string names. Any of these entities may be
renamed with m or removed with rm. Macros are created by de and di, and appended to by am and da; di and da
cause normal output to be stored in a macro. Strings are created by ds and appended to by as. A macro is invoked
in the same way as a request; a control line beginning .u will interpolate the contents of macro xx. The remainder
of the line may contain up to nine arguments. The strings x and xx are interpolated at any desired point with \•x and
\•(xx respectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by diversion)
the input is read in copy mode. The input is copied without interpretation except that

•The contents of number registers indicated by \n are interpolated.
• Strings indicated by \• are interpolated.
• Arguments indicated by \$ are interpolated.
•Concealed newlines indicated by \(newline) are eliminated.
•Comments indicated by\" are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
• \\ is interpreted as \.
•\.is interpreted as ".".

These interpretations can be suppressed by prepending a\. Fer example, since\\ maps into a\ \\n will copy as \n
which will be interpreted as a number register indicator when the macro or' string is reread.

7.3.Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to nine argu
ments. The argument separator is the space character, and arguments may be surrounded by double-quotes to per
mit imbedded space characters. Pairs of double-quotes may be imbedded in double-quoted arguments to represent a
single double-quote. If the desired arguments won't fit on a line, a concealed newline may be used to continue on
the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous level become
unavailable until the macro is completely read and the previous level is restored. A macro's own arguments can be
interpolated at any point within the macro with \$N, which interpolates the Nth argument (1~~9). If an invoked
argument doesn't exist, a null string results. For example, the macro xx may be defined by

NROFF/TR.OFF User's Manual

.de xx \"begin definition
Today is \ \$1 the \ \$2.

\"end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

USD:24-1S

Note that the\$ was concealed in the definition with a prepended \. The number of currently available arguments is
in the .$ register.

No arguments are available at the top (non-macro) level in this implementation. Because string referencing is
implemented as a input-level push down, no arguments are available from within a string. No arguments are avail
able within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechanism does not
allow an argument to contain a direct reference to a long string (interpolated at copy time) and it is advisable to con
ceal string references (with an extra\) to delay interpolation until argument reference time.

7.4.Diversions. Processed output may be diverted into a macro for purposes such as footnote processing (see
Tutorial §TS) or determining the horizontal and vertical size of some text for conditional changing of pages or

. columns. A single diversion trap may be set at a specified vertical position. The number registers dn and di respec
tively contain the vertical and horizontal size of the most recently ended diversion. Processed text that is diverted
into a macro retains the vertical size of each of its lines when reread in nofill mode regardless of the current V.
Constant-spaced (cs) or emboldened (bd) text that is diverted can be reread correctly only if these modes are again
or still in effect at reread time. One way to do this is to imbed in the diversion the appropriate cs or bd requests with
the transparent mechanism described in § 10.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion level (the
top non-diversion level may be thought of as the 0th diversion level). These are the diversion trap and associated
macro, no-space mode, the internally-saved marked place (see mk and rt), the current vertical place (.d register),
the current high-water text base-line (.h register), and the current diversion name (.z register).

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input-line-count trap.
Macro-invocation traps may be planted using wh at any page position including the top. This trap position may be
changed using ch. Trap positions at or below the bottom of the page have no effect unless or until moved to within
the page or rendered effective by an increase in page length. Two traps may be planted at the same position only by
first planting them at different positions and then moving one of the traps; the first planted trap will conceal the
second unless and until the first one is moved (see Tutorial Examples §T5). If the first one is moved back, it again
conceals the second trap. The macro associated with a page trap is automatically invoked when a line of text is out
put whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the top-of
page trap, if any, provided there is a next page. The distance to the next trap position is available in the .t register; if
there are no traps between the current position and the bottom of the page, the distance returned is the distance to
the page bottom.

A macro-invocation trap effective in the current diversion may be planted using dt. The .t register works in a diver
sion; if there is no subsequent trap a large distance is returned. For a description of input-line-count traps, see the it
request below.

Request
Form

.de xxyy

Initial
ValJU

I/No
Argument

·YY=··

Notes Explanation

Define or redefine the macro xx. The contents of the macro
begin on the next input line. Input lines are copied in copy
mode until the definition is terminated by a line beginning with
.yy, whereupon the macro yy is called. In the absence of yy, the
definition is terminated· by a line beginning with " .• ". A macro
may contain de requests provided the terminating macros differ
or. the contained definition terminator is concealed. " •. " can be

USD:24-16

.amxxyy

.ds .xx string -

.as xx string -

.rmxx

.mxxyy

.di xx

• daxx

.whNxx

.chxxN

. dtN xx

• itN xx

.em xx none

8. Number Registers

·YY==··
ignored

ignored

ignored

ignored

end

end

off

off

none

D

D

v

v

D,v

E

NttOFFffJlOFF User's Manual

concealed as \\.. which will copy as \.. and be reread as " .. ".

Append to macro (append version of de) •

Define a string .u containing string. Any initial double-quote in
string is stripped off to permit initial blanks .

Append string to string xx (append version of ds).

Remove request, macro, or string. 1be name xx is removed
from the name list and any related staage space is freed. Sub
sequent ref~ will have no effect.

Rename request, macro, or suing xx to yy. If yy exists, it is first
removed.

Divert output to maao .u. Nc.-mal text processing occurs dur
ing diversion except that page offsetting is not done. The diver
sion ends when the request di or da is encountered without an
argument; extraneous requests of this type should not appear
when nested diversions are being used .

Divert, appending to xx {append version of di).

Install a trap to invoke xx at page position N; a negative N will
be interpreted with respect to the page bottom. Any macro pre
viously planted at N is replaced by xx. A zero N refers to the
top of a page. In the absence of xx, the first found trap at N, if
any, is removed.

Change the trap position for macro xx to be N. In the absence of
N, the trap, if any, is removed .

Install a diversion trap at position Nin the current diversion to
invoke macro xx. Another dt will redefine the diversion trap. If
no arguments are given, the diversion trap is removed .

Set an input-line-count trap to invoke the macro xx after N lines
of text input have been read (control or request lines don't
count). The text may be in-line text or text interpolated by
inline or trap-invoked macros.

The macro xx will be invoked when all input has ended. The
effect is the same as if the contents of xx had been at the end of
the last file processed.

A variety of parameters are available to the user as predefined, named number registers (see Summary and Index,
page 7). In addition, the user may define his own named registers. Register names are one or two characters long
and do not conflict with request, macro, or string names. Except for certain predefined read-only registers, a number
register can be read, written, automatically incremented or decremented, and interpolated into the input in a variety
of formats. One common use of user-defined registers is to automatically number sections, paragraphs, lines, etc. A
number register may be used any time numerical input is expected or desired and may be used in numerical expres
sions (§1.4).

Number registers are created and modified using nr, which specifies the name, numerical value, and the auto
increment size. Registers are also modified, if accessed with an auto-incrementing sequence. If the registers x and
xx both contain N and have the auto-increment size M, the following access sequences have the effect shown:

NROFF/TROFF User's Manual USD:24-17

Effect on Value
~uence Re_g_ister Interpolated
\at none N
\n(.a none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+(.a .a incremented by M N+M
\n-(.a .a decremented by M N-M

When interpolated, a number register is converted to decimal (default), decimal with leading zeros, lower-case
Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alphabetic according to the
format specified by ar.

I/No Request
Form

Initial
Value Arguvlll No~s Explanation

.nrR'±NM - u

.af R c arabic

. rr R ignored

9. Tabs, Leaders, and Fields

The number register R is assigned the value ±N with respect to
the previous value, if any. The increment for auto-incrementing
is set to M .

Assign format c to register R. The available formats are:

Numbering
Format Sequence

1 0,1,2,3,4,5, ...
001 000,001,002,003,004,005, ...

i 0,i,ii,iii,iv, v , ...
I 0,l,II,ill,IV, V , ...
a O,a,b,c, ... ,z,aa,ab, ... ,zz,aaa, ...
A 0,A,B,C, ... ,Z,AA,AB, ... ;zz,AAA, ...

An arabic format having N digits specifies a field width of N
digits (example 2 above). The read-only registers and the width
function (§ 11.2) are always arabic .

Remove register R. If many registers are being created dynami
cally, it may become necessary to remove no longer used regis
ters to recapture internal storage space for newer registers.

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the leader charac
ter) can both be used to generate either horizontal motion or a string of repeated characters. The length of the gen
erated entity is governed by internal tab stops specifiable with ta. The default difference is that tabs generate
motion and leaders generate a string of periods; tc and le offer the choice of repeated character or motion. There are
three types of internal tab stops-left adjusting, right adjusting, and centering. In the following table: Dis the dis
tance from the current position on the input line (where a tab or leader was found) to the next tab stop; next-string
consists of the input characters following the tab (or leader) up to the next tab (or leader) or end of line; and Wis the
width of next-string.

Tab Length of motion or Location of
type repeated characters next-string
Left D FollowingD

Right D-W Right adjusted within D
Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string cannot be.

USD:24-18 NROFFffROFF User's Manual

Repeated character strings contain an integer number of characters, and any residual distance is prepended as
motion. Tabs or leaders found after the last tab stop are ignored, but may be used as Mxt-string tenninators.

Tabs and leaders are not interpreted in copy motk. \t and \a always generate a non-interpreted tab and leader
respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. Afield is contained between a pair of field tklimitu characters, and consists of sub-strings separated by
padding indicator characters. The field length is the distance on the input line from the position where the field
begins to the next tab stop. The difference between the total length of all the sub-strings and the field length is
incorporated as hmizontal padding space that is diVided among the indicated padding places. The incorpcnted pad
ding is allowed to be negative. For example, if the field delimiter is# and the padding indicator is·, #"xxx"right#
specifies a right-adjusted string with the string xu centered in the remaining space.

Reqiust Initial If No
Form Valiu ArgWMnt Notes Explanation

.ta Nt ... 8n; 0.5in none E,m Set tab stopS and types. t=R, right adjusting; t=C, centering; t
absent, left adjusting. TROFF tab stops are preset every 0.5in.;
NROFF every 8 character widths. The stop values are separated
by spaces, and a value preceded by + is treated as an increment
to the previous stop value.

.tc c none none

• le c none

• fcab off off

E

E

The tab repetition character becomes c, or is removed specify
ing motion .

The leader repetition character becomes c, or is removed speci
fying motion .

The field delimiter is set to a; the padding indicator is set to the
space character or to b, if given. In the absence of arguments
the field mechanism is turned off.

10. Input and Output Conventions and Character Translations

10.1.Input character translations. Ways of inputting the graphic character set were discussed in §2.1. The ASCII
control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed elsewhere. The newline
delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted, and may be used as delimiters or
translated into a graphic with tr (§ 10.5). All others are ignored.

The escape character \ introduces escape sequences--causes the following character to mean another character, or
to indicate some function. A complete list of such sequences is given in the Summary and Index on page 6. \
should not be confused with the ASCil control character ESC of the same name. The escape character \ can be input
with the sequence \\. The escape character can be changed with ec, and all that has been said about the default\
becomes true for the new escape character. \e can be used to print whatever the current escape character is. If
necessary or convenient, the escape mechanism may be turned off with eo, and restored with ec.

Request
Form

Initial
Value

I/No
Argument Notes Explanation

.ec c \ \ Set escape character to\ or to c, if given .

• eo on Tum escape mechanism off.

10.2. Ligatures. Five ligatures are available in the current TROFF character set - fi, fl, , , and . They may be
input (even in NROFF) by \(fi, \(fl, \(ff, \(Fi, and \(Fl respectively. The ligature mode is normally on in TROFF, and
automatically invokes ligatures during input

Request Initial If No
Form Value Argument Notes Explanation

.lgN off; on on Ligature mode is turned on if N is absent or non-zero, and
turned off if N=O. If N=2, only the two-character ligatures are
automatically invoked. Ligature mode is inhibited for request,
macro, string, register, or file names, and in copy mode. No
effect in NROFF.

NROFF/TROFF User's Manual

10.3. Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character is replaced
by a backward horizontal motion having the width of the space character. Underlining as a fonn of line-drawing is
discussed in §12.4. A generalized overstriking function is described in §12.1.

NROFF automatically underlines characters in the underline font, specifiable with uf, normally Times Italic on font
position 2 (see §2.2). In addition to rt and 'IF, the underline font may be selected by ul and cu. Underlining is res
tricted to an output-device-dependent subset of reasonable characters.

Request Initial If No
Form Value Argument No~s Explanation

.ulN off N=l E Underline in NROFF (italicize in TROFF) the next N input text
lines. Actually, switch to underline font, saving the current font
for later restoration; otMr font changes within the span of a ul
will take effect, but the restoration will undo the last change.
Output generated by ti (§14) is affected by the font change, but
does not decrement N. If N> 1, there is the risk that a trap inter
polated macro may provide text lines within the span; environ
ment switching can prevent this.

.cuN off

• urF Italic

N=l E

Italic

A variant of ul that causes every character to be underlined in
NROFF. Identical to ul in TROFF .

Underline font set to F. In NROFF, F may not be on position 1
(initially Times Roman).

10.4. Control characters. Both the control character • and the no-break control character ' may be changed, if
desired. Such a change must be compatible with the design of any macros used in the span of the change, and par
ticularly of any trap-invoked macros.

Request Initial If No
Form Value Argument Notes Explanation

.cc c E The basic control character is set to c, or reset to".".

.c2 c E The no break control character is set to c, or reset to "'".

10.5. Output translation. One character can be made a stand-in for another character using tr. All text processing
(e.g. character comparisons) takes place with the input (stand-in) character which appears to have the width of the
final character. The graphic translation occurs at the moment of output (including diversion).

Request Initial If No
Form Value Argument Not~s Explanation

.tr abed.... none 0 Translate a into b, c into d, etc. If an odd number of characters
is given, the last one will be mapped into the space character.
To be consistent, a particular translation must stay in effect from
input to output time.

10.6. Transparent throughput. An input line beginning with a\! is read in copy mode and transparently output
(without the initial\!); the text processor is otherwise unaware of the line's presence. This mechanism may be used
to pass control information to a post-processor or to imbed control lines in a macro created by a diversion.

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g. a string
definition, or nofilled text) can be split into many physical lines by ending all but the last one with the escape \. The
sequence \(newline) is always ignored-except in a comment Comments may be imbedded at the end of any line
by prefacing them with\". The newline at the end of a comment cannot be concealed. A line beginning with\"
will appear as a blank line and behave like .sp 1; a comment can be on a line by itself by beginning the line with.\".

11. Local Horizontal and Vertical Motions, and the Width Function

11.1. Local Motions. The functions \v' N' and 'Ji 'N' can be used for local vertical and horizontal motion respec
tively. The distance N may be negative; the positive directions are rightward and downward. A local motion is one
contained within a line. To avoid unexpected vertical dislocations, it is necessary that the net vertical local motion
within a word in filled text and otherwise within a line balance to zero. The above and certain other escape

USD:24-20 NROFF/TROFF User's Manual

sequences providing local motion are summarized in the following table.

Vertical Effect in Horizontal Effect in
Local Motion TROFF NROFF Local Motion TROFF NROFF

\v'N" Move distance N 'JJ.'N" Move distance N
\(space) Unpaddable space-size space

\u 1hemup Yi line up \0 Digit-size· space
\d 1hemdown Yi line down
\r lemup 1 line up \I 1/6emspace ignored

\" 1/12 em space ignored

As an example, E2 could be generated by the sequence E\s-2\v"-0.4m'2\v"0.4m'\s+2; it should be noted in this
example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \w" string" generates the numerical width of string (in basic units). Size
and font changes may be safely imbedded in string, and will not affect the current environment. For example,
.ti -\w'l. 'u could be used to temporarily indent leftward a distance equal to the size of the string "1. ".

The width function also sets three number registers. The registers st and sb are set respectively to the highest and
lowest extent of string relative to the baseline; then, for example, the total height of the string is \n(stu-\n(sbu. In
TROFF the number register ct is set to a value between 0 and 3: 0 means that all of the characters in string were
short lower case characters without descenders (like e); 1 means that at least one character has a descender (like y);
2 means that at least one character is tall (like H); and 3 means that both tall characters and characters with des
cenders are present.

11.3. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the input line to
be stored in register x. As an example, the construction \kxword\h' I \nxu+2u'word will embolden word by backing
up to almost its beginning and overprinting it, resulting in word.

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

12.1. Overstriking. Automatically centered overstriking of up to nine characters is provided by the overstrike func
tion \o' string '. The characters in string are overprinted with centers aligned; the total width is that of the widest
character. string should not contain local vertical motion. As examples, \o'e\" produces e, and \o'\(mo\(sl' pro
duces"-.

12.2. Zero-width characters. The function \zc will output c without spacing over it, and can be used to produce
left-aligned overstruck combinations. As examples, \z\(ci\(pl will produce-{) and \(br\z\(rn\(ul\(br will produce the
smallest possible constructed box n.
12.3.Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
< r L l J ~ ~ I L J r 1) that can be combined into various bracket styles. The function \b, string , may be used
to pile up vertically the characters in string (the first character on top and the last at the bottom); the characters are
vertically separated by 1 em and the total pile is centered 1/2 em above the current baseline (Y2 line in NROFF). For

example, \b' \Oc\Of 'E\ I \b' \(rc\(rf '\x' -0.Sm' \x'O.Sm' produces [EJ .

12.4.Line drawing. The function \I 'Ne' will draw a string of repeated c 's towards the right for a distance N. (\I is
\(lower case L). If c looks like a continuation of an expression for N, it may insulated from N with a \&. If c is not
specified, the _ (baseline rule) is used (underline character in NROFF). If N is negative, a backward horizontal
motion of size N is made before drawing the string. Any space resulting from N /(size of c) having a remainder is
put at the beginning (left end) of the string. In the case of characters that are designed to be connected such as
baseline-rule _, underrule _, and root-en - , the remainder space is covered by over-lapping. If N is less than the
width of c, a single c is centered on a distance N. As an example, a macro to underscore a string can be written

.de us
\\$1\ I' I 0\(ul'

NROFFII'ROFF User's Manual

or one to draw a box around a string

.de bx
\(br\ I \\$1\ I \(br\I 'I O\(m '\I' I O\(ul'

such that

.us "underlined words"

and

.bx "words in a box"

yield underlined words and I words in a box~

USD:24-21

The function \L' Ne' will draw a vertical line consisting of the (optional) character c stacked vertically apart 1 em (1
line in NROFF), with the first two characters overlapped, if n~sary, to form a continuous line. The default charac
ter is the box rule I (\(br); the other suitable character is the bold vertical I (\(bv). The line is begun without any
initial motion relative to the current base line. A positive N specifies a line drawn downward and a negative N
specifies a line drawn upward. After the line is drawn no compensating motions are made; the instantaneous base
line is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce large boxes. The zero
width box-rule and the 112-em wide underrule were designed to form comers when using 1-em vertical spacings.

· For example the macro

.deeb

.sp -1 \"compensate for next automatic base-line spacing

.nr \"avoid p~ibly overflowing word buffer
\h' -.Sn'\L' I \\nau-1 '\l\\n(Ju+ln\(ul'\L'-I \\nau+l '\I' I Ou-.Sn\(ul' \"draw box
.fi

will draw a box around some text whose beginning vertical place was saved in number register a (e.g. using .mk a)
as done for this.Q.ara_grat>h.

13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with by, several variants may be set. A
hyphenation indicator character may be imbedded in a word to specify desired hyphenation points, or may be
prepended to suppress hyphenation. In addition, the user may specify a small exception word list.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic strings are con
sidered candidates for automatic hyphenation. Words that were input containing hyphens (minus), em-dashes
(\(em), or hyphenation indicator characters-such as mother-in-law-are always subject to splitting after those
characters, whether or not automatic hyphenation is on or off.

Request Initial
Form Value

.nh hyphenate

.hyN on,N=l

.he c \%

.hwwordl ...

I/No
Argument

on,N=l

\%

ignored

Notes

E

E

E

Explanation

Automatic hyphenation is turned off.

Automatic hyphenation is turned on for N '2:.1, or off for N = 0. If
N= 2, last lines (ones that will cause a trap) are not hyphenated.
For N= 4 and 8, the last and first two characters respectively of a
word are not split off. These values are additive; i.e. N= 14
will invoke all three restrictions.

Hyphenation indicator character is set to c or to the default \ % .
The indicator does not appear in the output

Specify hyphenation points in words with imbedded minus
signs. Versions of a word with terminal s are implied; i.e.
dig-it implies dig-its. This list is examined initially and after
each suffix stripping. The space available is small-about 128

USD:24-22 NROFFtrllOFF User's Manual

characters.

14. Three Part Titles.

The titling function ti provides for automatic placement of three fields at the left, center, and right of a line with a
title-length specifiable with It. ti may be used anywhere, and is independent of the normal text collecting process.
A common use is in header and footer macros.

Request Initial If No
Form Value Arglm'U!nt No"s Explanatio11

.ti 'left 'center 'right '

.pc c off

.lt±N 6.5in previous

15. Output Line Numbering.

E,m

1be sttings left, center, and right are respectively left-adjusted,
centered, and right-adjusted in the current title-length. Any of
the strings may be empty, and overlapping is permitted. If the
page-number character (initially %) is found within any of the
fields it is replaced by the current page number having the for
mat usigned to register % . Any character may be used as the
string delimiter.

The page number character is set to c, or removed. The page
number register remains % .

Length of title set to ±N. The line-length and the title-length are
indepentknt. Indents· do not apply to titles; page-offsets do.

Automatic sequence numbering of output lines may be requested with nm. When in effect, a three-digit, arabic
number plus a digit-space is prepended to output text lines. The text lines are thus offset by four digit-spaces,

3 and otherwise retain their line length; a reduction in line length may be desired to keep the right margin aligned
with an earlier margin. Blank lines, other vertical spaces, and lines generated by ti are not numbered.
Numbering can be temporarily suspended with nn, or with an .nm followed by a later .nm +0. In addition, a

6 line number indent/, and the number-text separation S may be specified in digit-spaces. Further, it can be
specified that only those line numbers that are multiples of.some number Mare to be printed (the others will
appear as blank number fields).

Request Initial If No
Form Value Argument Notes Explanation

.nm ±N M S I off E Line number mode. If ±N is given, line numbering is turned on, and the
next output line numbered is numbered ±N. Default values are
M= 1, S= 1, and /= 0. Parameters corresponding to missing
arguments are unaffected; a non-numeric argument is con
sidered missing. In the absence of all arguments, numbering is
turned off; the next line number is preserved for possible further
use in number register In .

• on N N = 1 E The next N text output lines are not numbered.

9 As an example, the paragraph portions of this section are numbered with M= 3: .nm 13 was placed at the
beginning; .nm was placed at the end of the first paragraph; and .nm +O was placed in front of this paragraph;
and .nm finally placed at the end Line lengths were also changed (by \w'OOOO'u) to keep the right side

12 aligned. Another example is .nm +S S x 3 which turns on numbering with the line number of the next line to
be 5 greater than the last numbered line, with M= 5, with spacing S untouched, and with the indent/ set to 3.

16. Conditional Acceptance of Input

In the following, c is a one-character, built-in condition name, ! signifies not, N is a numerical expression, string]
and string2 are strings delimited by any non-blank, non-numeric character not in the strings, and anything represents
what is conditionally accepted.

NROFFffROFF User's Manual

ReqJUst
Form

Initial
ValJU

I/No
Argwnt!nt Notes Explanation

USD:24-23

.if c anything - If condition c true, accept anything as input; in multi-line case use \{any
thing\}.

Jf !c anything-

• it N anything -

.if '.N anything

u

.if 'stringl 'string2 'anything

. if! 'string] 'string2 'anything

• ie c anything -

.el anything

u

The built-in condition names are:

If condition c false, accept anything .

If expression N > 0, accept anything.

u If expression NS 0, accept anything.

If stringl identical to string2, accept anything .

If string] not identical to string2, accept anything .

If portion of if-else; all above fonns (like if).

Else portion of if-else.

Condition
Name True If

0 Current page number is odd
e Current page number is even
t Formatter is TROFF
n Formatter is NROFF

If the condition c is true, or if the number N is greater than zero, or if the strings compare identically (including
motions and character size and font), anything is accepted as input. If a ! precedes the condition, number, or string
comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can be either a sin
gle input line (text, macro, or whatever) or a number of input lines. In the multi-line case, the first line must begin
with a left delimiter \{ and the last line must end with a right delimiter \}.

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent and matching
el (else) request then uses the reverse sense of that state. ie - el pairs may be nested.

Some examples are:

.ife .ti' Even Page%,,,

which outputs a title if the page number is even; and

.ie \n%>1 \{\
'sp O.Si
.ti' Page % ,,,
'sp I 1.2i \}
.el .sp I 2.Si

which treats page 1 differently from other pages.

17. Environment Switching.

A number of the parameters that control the text processing are gathered together into an environment, which can be
switched by the user. The environment parameters are those associated with requests noting E in their Notes
column; in addition, partially collected lines and words are in the environment. Everything else is global; examples
are page-oriented parameters, diversion-oriented. parameters, number registers, and macro and string definitions.
All environments are initialized with default parameter values.

USD:24-24

Request
Form

.evN.

Initial
Yalu

N:::JJ

NROFFffROFF User's Manual

I/No
Arg1UM11t Nous Explanation

previous Environment switched to environment 05NS2. Switching is
done in push-down fashion so that restoring a previous environ
ment must be done with .ev rather than specific reference.

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard inpllt with rd, which will switch back when two new
lines in a row are found (the extra blank line is not used). Th.is mechanism is intended for insertions in form-letter
like documentation. On UNIX, the standard inpllt can be the user's keyboard, a pipe, or afik.

Request Initial If No
Form Value Arg1UM11t Nous Ezplanatio11

.rd prompt

.ex

prompt=BEL Read insertion from the standard input until two newlines in a row are
found. If the standard input is the user's keyboard, prompt (or a
BEL) is written onto the user's terminal. rd behaves like a
macro, and arguments may be placed after prompt.

Exit from NROFFrrROFF. Text processing is terminated exactly
as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal, the command
line option -q will tum off the echoing of keyboard input and prompt only with BEL. The regular input and inser
tion input can.not simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the copies in one
file to be used as the standard input, and causing the file containing the letter to reinvoke itself using nx (§ 19); the
process would ultimately be ended by an ex in the insertion file.

19. Input/Output File Switching

The (read-only) number register .c contains the input line number in the current input file. The number register c. is
a general register serving the same purpose.

Request Initial If No
Form Value Argument Notes Explanation

.sofilename Switch source file. The top input (file reading) level is switched
to filename. The effect of an so encountered in a macro occurs
immediately. When the new file ends, input is again taken from
the original file. so's may be nested .

. nx filename

.pi program

20. Miscellaneous

Request
Form

.mccN

Initial
Value

end-of-file

I/No
Argument

off

Next file is filename. The current file is considered ended, and
the input is immediately switched to filename.

Pipe output to program (NROFF only). This request must occur
before any printing occurs. No arguments are transmitted to
program.

Notes Explanation

E,m Specifies that a margin character c appear a distance N to the
right of the right margin after each non-empty text line (except
those produced by ti). If the output line is too-long (as can hap
pen in nofill mode) the character will be appended to the line. If
N is not given, the previous N is used; the initial N is 0.2 inches
in NROFF and 1 em in TROFF. The margin character used with
this paragraph was a 12-point box-rule.

NROFFfl'ROFF User's Manual

.tm string newline

.igyy ·YY=··

.pmt all

.ab string

.n

21. Output and.Error M~ges.

B

USD:24-25

After skipping iliitial blanks, string (rest of the line) is read in
copy mode and written on the user's terminal. (see §21).

Ignore input lines. ig behaves exactly like de (§7) except that
the input is discarded. The input is read in copy mode, and any
auto-incremented registers will be affected.

Print macros. The names and sizes of all of the defined macros
and strings are printed on the user's terminal; if t is given, only
the total of the sizes is printed. The sizes is given in bloc/cs of
128 characters.

Print string on standard error and terminate immediately. The
default string is "User Abort". Does not cause a break. Only
output preceding the last break is written.

Flush output buffer. Used in interactive debugging to force out
put.

The output from tm, pm, ab and the prompt from rd, as well as various error messages are written onto UNIX's
standard error output The latter is different from the standard output, where NROFF formatted output goes. By
default, both are written onto the user's terminal, but they can be independently redirected.

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious errors having
only local impact do not cause processing to terminate. Two examples are word overflow, caused by a word that is
too large to fit into the word buffer (in fill mode), and line overflow, caused by an output line that grew too large to
fit in the line buff er; in both cases, a message is printed, the offending excess is discarded, and the affected word or
line is marked at the point of truncation with a * in NROFF and a ¢= in TROFF. The philosophy is to continue pro
cessing, if possible, on the grounds that output useful for debugging may be produced If a serious error occurs,
processing terminates, and an appropriate message is printed. Examples are the inability to create, read, or write
files, and the exceeding of certain internal limits that make future output unlikely to be useful.

USD:24-26 NROFF/TR.OFF User's Manual

TUTORIAL EXAMPLES

Tl. Introduction

Although NROFF and TR.OFF have by design a syntax
reminiscent of earlier text processors• with the intent
of easing their use, it is almost always necessary to
prepare at least a small set of macro definitions to
describe most . documents. Such common f<XJDatting
needs as page margins and footnotes are deliberately
not built into NROFF and TR.OFF. Instead, the macro
and string definition, number register, diversion,
environment switching,. page-position trap, and condi
tional input mechanisms provide the basis for user
defined implementations.

The examples to be discussed are intended to be useful
and somewhat realistic, but won't necessarily cover all
relevant contingencies. Explicit numerical parameters
are used in the examples to make them easier to read
and to illustrate typical values. In many cases, number
registers would really be used to reduce ·the number of
places where numerical information is kept,· and to
concentrate conditional parameter initialization like
that which depends on whether TROFF or NROFF is
being used.

T2. Page Margins

As discussed in §3, header andfooter macros are usu
ally defined to describe the top and bottom page mar
gin areas respectively. A trap is planted at page posi
tion 0 for the header, and at -N (N from the page bot
tom) for the footer. The simplest such definitions
might be

.de hd \"define header
'sp 1i

.defo
'bp

.wh 0 hd

.wh-li ro

\"end definition
\"define rooter

\"end definition

which provide blank 1 inch top and bottom margins.
The header will occur on the first page, only if the
definition and trap exist prior to the initial pseudo-page
transition (§3). In fill mode, the output line that springs
the footer trap was typically forced out because some
part or whole word didn't fit on it If anything in the

•For example: P. A. Crisman, Ed., The Compatible TUlv-Sharing
System, MIT Press, 1965, Section AH9.01 (Description of RUNOFF
program on MIT's CTSS system).

footer and header that follows causes a break, that
word or part word will be faced out In this and other
examples, requests like bp and sp that normally cause
breaks are invoked using the no-br«lk control charac
ter " to avoid this. When the header/footer design con
tains material requiring independent text processing,
the environment may be switched, avoiding most
interaction with the running text

A more realistic example would be

.de hd \"header
Jlt .d '\(rn'"\(rn' \"troff' cut mark
.it\\n%>1 \{\
"sp IO.Si-1
.ti,,_%_,,

.ps
Jt
.vs \)
'sp 11.0i
.ns

.de ro

.ps 10

.tt R

.vs 12p
Jr\\n%=1 \{\

\"ti base at O.Si
\"centered page number
\"restore size
\"restore font
\"restore \IS

\"space to 1.0i
\"turn on no-space mode

\"footer
\"set rooter/header size
\"set font .
\"set b~e-line spacing

'sp l\\n(.pu-0.Si-1 \"ti base O.Si up
.ti"- % -" \} \"first page number
'bp

.wh 0 hd

.wh-li ro

which sets the size, font, and base-line spacing for the
header/footer material, and ultimately restores them.
The mate.rial in this case is a page number at the bot
tom of the first page and at the top of the remaining
pages. If TROFF is used, a cut mark is drawn in the
fonn of root-en's at each margin. The sp's refer to
absolute positions to avoid dependence on the base-line
spacing. Another reason for this in the footer is that
the footer is invoked by printing a line whose vertical
spacing swept past the trap position by possibly as
much as the base-line spacing. The no-space mode is
turned on at the end of bd to render ineffective
accidental occurrences of sp at the top of the running
text

The above method of restoring size, font, etc. presup
poses that such requests (that set previous value) are
not· used in the running text. A better scheme is save

NROFFfl'ROFP User's Manual

and restore both the current and previous values as
shown for size in the following:

.defo

.nr sl \\n(.s

.ps
• nr s2 \\n(.s
. --
.dehd
. --
.ps \\n(sl
.ps \\n(sl

\"current size

\"previous size
\"rest or rooter

\"header stuff
\"restore previous size
\"restore current size

Page numbers may be printed in the bottom margin by
a separate macro triggered during the footer's page
ejection:

.debn

.ti,,_%_,,
\"bottom number
\"centered page number

• wh -O.Si-1 v bn \"ti base O.Si up

T3. Paragraphs and Headings

The housekeeping associated with starting a new para
graph should be collected in a paragraph macro that,
for example, does the desired preparagraph spacing,
forces the correct font, size, base-line spacing, and
indent, checks that enough space remfilns for more
than one line, and requests a temporary indent.

.de pg \"paragraph

.br \"break

.rt R \"force font,
• ps 10 \"size,
.vs 12p \"spacing,
.in 0 \"and indent
.sp 0.4 \"prespace
.ne 1+\\n(.Vu \"want more than l line
.ti 0.2i \"temp indent

The first break in pg will force out any previous partial
lines, and must occur before the vs. The forcing of
font, etc. is partly a defense against prior emx and
partly to permit things like section heading macros to
set parameters only once. The prespacing parameter is
suitable for TROFF; a larger space, at least as big as the
output device vertical resolution, would be more suit
able in NROFF. The choice of remaining space to test
for in the ne is the smallest amount greater than one
line (the.Vis the available vertical resolution).

A macro to automatically number section headings
might look like:

.de sc \"section
• ·- \"force font, etc.
.sp 0.4 \ "prespace
.ne 2.4+\\n(.Vu \"want 2.4+ lines
.ft
\\n+S •

.nrSOl \"init s

USD:24-27

The usage is .sc, followed by the section heading text,
followed by .pg. The ne test value includes one line of
heading, 0.4 line in the following pa, and one line of
the paragraph text A word consisting of the next sec
tion number and a period is produced to begin the
heading line. The format of the number may be set by
al (§8).

Another common form is the labeled, indented para
graph, where the label protrudes left into the indent
space.

.de Ip

.pg

.in O.Si

.ta 0.2i O.Si

.ti 0
\t\\$1\t\c

\"labeled paragraph

\"paragraph indent
\"label, paragraph

\"flow into paragraph

The intended usage is ".Ip label"; label will begin at
0.2 inch, and cannot exceed a length of 0.3 inch without
intruding into the paragraph. The label could be right
adjusted against 0.4 inch by setting the tabs instead
with .ta 0.4iR O.Si. The last line of Ip ends with \c so
that it will become a part of the first line of the text that
follows .

T4. Multiple Column Output

The production of multiple column pages requires the
footer macro to decide whether it was invoked by other
than the last column, so that it will begin a new colunm
rather than produce the bottom margin. The header
can initialize a column register that the footer will
increment and test. The following is arranged for two
columns, but is easily modified for more.

.de hd \"header

....

.nr cl 0 1

.mk

.de fo

.ie \\n+(cl<2 \{\

.po +3.4i

.rt

.ns \}

.el\{\

.po \\nMu

\"init column count
\"mark top of text

\"footer

\"next column; 3.1+0.3
\"back to mark
\"no-space mode

\"restore left margin

USD:24-28

. --
'bp \}

.ll 3.li \"column width

.nr M \\n(.o \"save left margin

Typically a portion of the tq> of the first page cootains
full width text; the request for the nmower line.length,
as well as another .mk would be made where the two
column output wa5 to begin.

TS. Footnote Processing

The footnote mechanism to be described is used by
imbedding the footnotes in the input text at the point of
reference, demarcated by an initial .tn and a terminal
.er:

.fn
Footnote text and control lines ...
.er

In the following, footnotes are processed in a separate
environment and diverted for later printing in the space
immediately prior to the bottom margin. There is pro
vision for the case where the last collected footnote
doesn't completely fit in the available space.

.de hd \"header

. ·-

.nrxOl

.nr y 0-\\nb

.ch ro -\ \nbu

.if\\n(dn Jz

\"init footnote count
\"current footer place
\"reset rooter trap
\"leftover footnote

.de fo \"footer

.nr dn 0 \"zero last diversion size

.if \\nx \{\

.ev 1 \"expand footnotes in evl

.nf \"retain vertical size

.FN \"footnotes

.rm FN \"delete it

.if "\\n(.z"fy" .di \"end overftow diversion

.nr x 0 \"disable rx

.ev \} \"pop environment

. --
'bp

.de rx

.if \ \nx .di fy

.de rn

.daFN

.ev 1

.if \\n+x=l Js

.n

.de er

.br

\" proce~ footnote over ft ow
\"divert overftow

\"start footnote
\"divert (append) footnote
\"in environment 1
\"if first, include separator

\"fill mode

\"end footnote
\"finish output

NROFFfl'ROFF User's Manual

.nr z \\n(.v \"save spacing

.ev \"pop ev

.di \"end diversion

.nr y-\\n(dn \"new footer position,

.if\\nx=l .nr y-(\\n(.v-\\nz) \
\"uncertainty correction

.ch fo \\nyu \"y is negative

.if (\\n(nl+lv)>(\\n(.p+\\ny) \

.ch fo \\n(nlu+lv \"it didn't fit

.de rs \"separator
\I' li' \"1 inch rule
.br

.de fz \"get leftover footnote

.fn

.nf \"retain vertical size

.fy \"where fx put it

.el

.nr b 1.0i

.whOhd

.wh 12i ro

.wh -\\nbu fx

.ch fo -\\nbu

\"bottom margin size
\"header trap
\"footer trap, temp position
\"rx at rooter position
\"conceal rx with fo

The header hd initializes a footnote count register x,
and sets both the current footer trap position register y
and the footer trap itself to a nominal position specified
in register b. In addition, if the register dn indicates a
leftover footnote, fz is invoked to reprocess it. The
footnote start macro fn begins a diversion (append) in
environment 1, and increments the count x; if the count
is one, the footnote separator rs is interpolated. The
separator is kept in a separate macro to permit user
redefinition. The footnote end macro er restores the
previous environment and ends the diversion after sav
ing the spacing size in register z. y is then decre
mented by the size of the footnote, available in dn;
then on the first footnote, y is further decremented by
the difference in vertical base-line spacings of the two
environments, to prevent the late triggering the footer
trap from causing the last line of the combined foot
notes to overflow. The footer trap is then set to the
lower (on the page) of y or the current page position
(nl) plus one line, to allow for printing the reference
line. If indicated by x, the footer fo rereads the foot
notes from FN in nofill mode in environment 1, and
deletes FN. If the footnotes were too large to fit, the
macro fx will be trap-invoked to redivert the overflow
into ry, and the register dn will later indicate to the
header whether fy is empty. Both fo and rx are planted
in the nominal footer trap position in an order that
causes fx to be concealed unless the fo trap is moved
The footer then terminates the overflow diversion, if
necessary, and zeros x to disable fx, because the

NROFF/TROFF User's Manual

uncertainty correction together with a not-too-late
triggering of the footer can result in the footnote
rereading finishing before reaching the fx trap.

A good exercise for the student is to combine the
multiple-column and footnote mechanisms.

T6. The Last Page

After the last input file has ended, NROFF and TROFF
invoke the end.macro (§7), if any, and when it finishes,
eject the remainder of the page. During the eject, any
traps encountered are processed normally. At the end
of this last page, processing terminates unless a partial
line, woo:I, or partial word remains. If it is desired that
another page be started, the end-macro

.de en \"end-macro
\c
"bp

.em en

will deposit a null partial word, and effect another last
page.

USD:24-29

USD:24-30 NROFF/TROFF User's Manual

Table I

Font Style Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point, and with non-alphanumeric charac
ters separated by 1A em space (all memmements on 8.S x 11 inch paper prior to phoox'eduction). This font sample
is printed on an APS-S phototypesetter at University of Califonia, Berkeley.

Times Roman

abcdefghijldmnopqrstuvwxyz
ABCDEFGIIlJKLMNOPQRSTUVWXYZ
1234567890
!$%&()' '*+-.,/: ;=?[11
•D--_ 1..4'h.3..4fift 0 t'¢®©

Times Italic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSI'UVWXYZ
1234567890
!$%&()"*+-.,!:;=?[]/
• 0- - - lj., lh 3j., fl fl 0 t ' ¢ ® ©

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+-.,/:;=?[11
•D--_1/4~%fift 0 t'¢®©

Special Mathematical Font

"'\A_,_/<>{}#@+-=*
a~yae~n01KAµv~onpa~tu$xvro
r ~9AEIII:Y<l>'l'O
"1-~S=-=~-H- i J.x+±unc:::>~~ooa
§V-,Joc0e +~<=•I q'LlJ~ ~I LJ rl I

NROFF/TROFF User's Manual

Table II

Input Naming Conventions for ', ', and -
and for Non-ASCII Special Characters

Non-ASCII characters and mina on the standard fonts.

lnpllt Character /npllt Character
Claar Name NOllM Claar NtllU NIDM

close quote fi \(fi fi
open quote fl \(fl fl

\(em 3/4 Em dash \(ff ff
hyphen or . \(Fi ffi

\(hy ·hyphen \(Fl fft
\- current font minus 0 \(de degree

• \(bu bullet t \(dg dagger
0 \(sq square \(fin foot mark

\(ru rule ¢ \(ct cent sign
~ \(14 1/4 ® \(rg registered
Y2 \(12 1/2 © \(co copyright

* \(34 3/4

Non-ASC:U characters and ', ', _, +, -, =, and • on the special font.

USD:24-31

The ASCII characters @, #, ", ', ', <, >, \, {, }, -, ", and_ exist only on the special font and are printed as a 1-em
space if that font is not mounted. The following characters exist only on the special font except for the upper case
Greek letter names followed by t which are mapped into upper case English letters in whatever font is mounted on
font position one (default Times Roman). The special math plus, minus, and equals are provided to insulate the
appearance of equations from the choice of standard fonts.

Input Character Inplll Character
Char Name Name Char N~ Name

+ \(pl math plus A. \(*l lambda
\(mi math minus µ \(*m mu

= \(eq math equals v \(*n nu
* \(** math star ~ \(*c xi
§ \(SC section 0 \(*o omicron

\(aa acute accent 7t \(*p pi
\(ga grave accent p \(*r rho
\(ul underrule CJ \(*s sigma
\(sl slash (matching backslash) ~ \(ts terminal sigma

a \(*a alpha 't \(*t tau

~ \(*b beta u \(*u upsilon
y \(*g gamma q, \(*f phi
~ \(*d delta x \(*x chi
e \(*e epsilon 'V \(*q psi

~ \(*z zeta (I) \(*w omega

'Tl \(*y eta A \(*A Alp hat
e \(*h theta B \(*B Betat
l \(*i iota r \(*G Gamma
1C \(*k kappa 6 \(*D Delta

USD:24-32 NR.OFFtrllOFF User's Manual

Input Characur Input Characur
Char Nanw Nanw Char Nt»ne Nt»ne

E \(•E Epsilont <= \(lh left hand
z \(•Z Zetat • \(bs Bell System logo (typesetter-dependent)
H \(•Y Etat I \(or or
8 \(•H Theta 0 \(ci circle
I \(•I Iotat r \(It left top of big curly bracket
K \(•K Kappat L \(lb left bottom
A \(•L Lambda l \(rt right top
M \(•M Mut J \(rb right bot
N \(•N Nut ~ \(lk left center of big curly bracket
::: \(•C Xi ~ \(rk right center of big curly bracket
0 \(*0 Omicront I \(bv bold vertical
11 \(*P Pi L \(If left floor (left bottom of big
p \(*R Rhot square bracket)
:t \(*S Sigma J \(rf rightfloor(rightbottom)
T \(*T Taut r \(le left ceiling (left top)
y \(*U Upsilon 1 \(re right ceiling (right top)
cl» \(*F Phi
x \(*X Chit
'I' \(*Q Psi
a \(*W Omega
~ \(sr square root -

\(m root en extender
~ \(>= >=
~ \(<= <=
= \(== identically equal - \C= approx=

\(ap approximates
'¢ \(!= not equal
--+ \(-> right arrow
+-- \(<- left arrow
i \(ua up arrow
i \(da down arrow
x \(mu multiply
+ \(di divide
± \(+- plus-minus
u \(cu cup (union)
n \(ca cap (intersection)
c \(sb subset of
:::> \(sp superset of
~ \(ib improper subset
:2 \(ip improper superset
00 \(if infinity
a \(pd partial derivative
v \(gr gradient
..., \(no not
I \(is integral sign

oc \(pt proportional to
0 \(es empty set
E \(mo member of
I \(br box vertical rule
+ \(dd double dagger

=> \(rh· right hand

A TROFF Tutorial

Brian W. Kernighan
(updated/or 4.3BSD by Marie Seiden)

ABSTRACT

troff is a text-fonnatting program for typesetting on the UNIXt operating system.
This device is capable of producing high quality text; this paper is an example of troff
output.

The phototypesetter itself nmnally runs with four fonts, containing roman, italic
and bold letters (as on this page), a full greek alphabet, and a substantial number of spe
cial characters and mathematical symbols. Characters can be printed in a range of sizes,
and placed anywhere on the page.

troff allows the user full control over fonts, sizes, and character positions, as well
as the usual features of a formatter - right-margin justification, automatic hyphenation,
page titling and numbering, and so on. It also provides macros, arithmetic variables and
operations, and conditional testing, for complicated formatting tasks.

This document is an introduction to the most basic use of troff. It presents just
enough information to enable the user to do simple formatting tasks like making view
graphs, and to make incremental changes to existing packages of troff commands. In
most respects, the UNIX formatter nroff and a more recent version (device-independent
troff) are identical to the version described here, so this document also serves as a
tutorial for them as well.

1. Introduction

troff [l] is a text-formatting program, written origi
nally by J. F. Ossanna, for producing high-quality printed
output from the phototypesetter on the UNIX operating sys
tem. This document is an example of troff outpul

The single most important rule of using troff is not
to use it directly, but through some intermediary. In many
ways, troff resembles an assembly language - a remark
ably powerful and flexible one - but nonetheless such that
many operations must be specified at a level of detail and in
a form that is too hard for most people to use effectively.

For two special applications, there are programs that
provide an interface to troff for the majority of users. eqn
[2] provides an easy to learn language for typesetting
mathematics; the eqn user need know no troff whatsoever
to typeset mathematics. tbl [3] provides the same conveni
ence for producing tables of arbitrary complexity.

For producing straight text (which may well contain
mathematics or tables}, there are a number of 'macro pack-

t UNIX is a trademark of Bell Laboratories.

ages' that define formatting rules and operations for specific
styles of documents, and reduce the amount of direct con
tact with troff. In particular, the '-ms' [4], PWB/MM [5],
and '-me' [6] packages for internal memoranda and exter
nal papers provide most of the facilities needed for a wide
range of document preparation.t (Ibis memo was prepared
with '-ms'.) There are also packages for viewgraphs, for
simulating the older roff formatters, and for other special
applications. Typically you will find these packages easier
to use than troff once you get beyond the most trivial opera
tions; you should always consider them first

In the few cases whCIC existing packages don't do
the whole job, the solution is not to write an entirely new set
of troff instructions from scratch, but to make small
changes to adapt packages that already exist.

t Most Berkeley Unix sites only have -ms and-me.

USD:25-2

In accordance with this philosophy of letting so~
one else do the wort, the part of troff delcribed hae is only
a small part of the whole, although it triel to concentrate on
the more useful parts. In any case, there is no attempt to be
complete. Rather, the emphasis is on showing how to do
simple things, and how to make incremental changes to
what already exists. The contents of the remaining sections
are:

2. Point sizes and line spacing
3. Fonts and special characters
4. Indents and line length
S. Tabs
6. Local motions: Drawing lines and characters
7. Strings
8. Introduction to macros
9. Titles, pages and numbering

10. Number registers and arithmetic
11. Macros with arguments
12. Conditionals
13. Environments
14. Diversions

Appendix: Typesetter character set

The troff described here is the C-language version supplied
with UNIX Version 7 and 32V as documcoted in (1).

To use troff you have to prepare not only the actual
text you want printed, but some information that tells how
you want it printed. (Readers who use rolf will find the
approach familiar.) For troff the text and the formatting
information are often intertwined quite intimately. Most
commands to troff are placed on a line separate from the
text itself, beginning with a period (one command per line).
For example,

Some text.
.ps 14
Some more text.

will change the 'point size', that is, the size of the letters
being printed, to' 14 point' (one point is 1n2 inch) like this:

Some text. Some more text.

Occasionally, though, something special occurs in
the middle of a line - to produce

Area= w 2

you have to type

Area= \(*P\flr\fR\l\s8\u2\d\sO

(which we will explain shortly). The backslash character\
is used to inlroduce troff commands and special characters
within a line of text.

2. Point Sizes; Line Spacing

As mentioned above, the command .ps sets the point
size. One point is 1n2 inch, so 6-point characters are at
most 1112 inch high, and 36-point characters arc Yz inch.

A TROFF Tutorial

There are 15 point sizes, listed below.

CSJM*I: Pd_,bca wtlb h.._Urpar jllp.
7 poiat: Pick my bol. with five dora liquar ju ..
8 poi.-: Pact my box with five dozen liquor juga.
9 point Pack my box with five dozen liquor jugs.
10 point Pack my box with five dozen liquor
11 point Pack my box with five doi.en
12 point: Pack my box with five dozen
14 point: Pack my box with five

16 point 18 point 20 point

2224 28 36
If the number after .ps is not one of these legal sizes,

it is rounded up to the next valid value, with a maximum of
36. If no number follows .ps, troff reverts to the previous
size, whatever it was. troff begins with point size 10, which
is usually fine. The original of this document (on 8.5 by 11
inch paper) is in 9 point.

The point size can also be changed in the middle of a
line or even a word with the in-line command \s. To pro
duce

UNIX runs on a PDP-11145

type

\s8UNIX\sl0 runs on a \sSPDP-\slOll/45

As above, \s should be followed by a legal point size, except
that \sO causes the size to revert to its previous value.
Notice that \slOll can be understood correctly as 'size 10,
followed by an 11 ', if the size is legal, but not otherwise.
Be cautious with similar constructions.

Relative size changes arc also legal and useful:

\s-2UNIX\s+2

temporarily decreases the size, whatever it is, by two points,
then restores it. Relative size changes have the advantage
that the size difference is· independent of the startmg size. of
the document. The amount of the relative change is res
tricted to a single digit.

The other parameter that determines what the type
looks like is the spacing between lines, which is set
independently of the point size. Vertical spacing is meas
ured from the bottom of one line to the bottom of the next.
The command to control vertical spacing is . vs. For running
text, it is usually best to set the vertical spacing about 20%
bigger than the character size. For example, so far in this
document, we have used • •9 on 11 '', that is,

.ps9

.vs llp

If we changed to

A TROFF Tutorial

.ps9

. vs9p

the running text would loot like this. After a few lines, you
will agree it loots a little cramped. The right vertical spac
ing is partly a matter of taste, depending on how much text
you want to squeeze into a given space, and partly a matter
of traditional printing style. By default, tron uses 10 on 12.

Point size and vertical spacing make a
substantial difference in the amount of text
per square inch. This is 12 on 14.

ro..• md ftrdall....., ..a a-i 4Ullnalll ID 1111 _.ol
tat per ladl. Fw alllple, 10 - 12 - _.. 7 - •.
11Ulil&cm7,wbicllilmm..a.. lpMllaalotmmwanll,.U..lllllym-F
blJDd lrJiD& IDnld IL

When used without arguments, .ps and .VI revert to
the previous size and vertical spacing respectively.

The command .sp is used to get extra vertical space.
Unadorned, it gives you one extra blank line (one .vs, what
ever that has been set to). Typically, that's more or less
than you want, so .sp can be followed by information about
how much space you want-

.sp 2i

means 'two inches of vertical space'.

.sp2p

means 'two points of vertical space'; and

.sp2

means 'two vertical spaces' -two of whatever .vs is set to
(this can also be made explicit with .sp 2v); troff also
understands decimal fractions in most places, so

. Sp l.Si

is a space of 1.5 inches. These same scale factors can be
used after . vs to define line spacing, and in fact after most
commands that deal with physical dimensions.

It should be noted that all size numbers are converted
internally to 'machine units', which are 11432 inch (116
point). For most purposes, this is enough resolution that
you don't have to worry about the accuracy of the represen
tation. The situation is not quite so good vertically, where
resolution is 11144 inch (112 point).

3. J'.onts and Special Characters

tron and the typesetter allow four different fonts at
any one time. Normally three fonts (Times roman, italic
and bold) and one collection of special characters are per
manently mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHUKLMNOPQRSTUVWXVZ
abcdefghijkllnnopqrstuvwxyz0123456789
ABCDEFGH/JKLMNOPQRSI'UVWXYZ
abcdefghljklmnopqrstuvwxyz 0113456789
ABCDEFGlllJKLMNOPQRSTUVWXYZ

USD:2S-3

The greet, mathematical symbols and miscellany of the spe
cial font are listed in Appendix A .

tron prints in roman unless told otherwise. To
switch into bold, use the .ft command

.ftB

and for italics,

jtl

To return to roman, use .ft R; to return to the previous font,
whatever it was, use either .ft P or just .ft. The 'underline'
command

.ul

causes the next input line to print in italics. .ul can be fol
lowed by a count to indicate that more than one line is to be
italicized.

Fonts can also be changed within a line or word with
the in-line command \f:

boldface text

is produced by

\fBbold\flface\fR text

If you want to do this so the previous font, whatever it was,
is left undisturbed, insert extra \fP commands, like this:

\fBbold\fP\flface\fP\fR text\fP

Because only the immediately previous font is remembered,
you have to restore the previous font after each change or
you can lose it. The same is true of .ps and . vs when used
without an argument

There are other fonts available besides the standard
set, although you can still use only four at any given time .
The command .fp tells troff what fonts are physically
mounted on the typesetter:

.fp3H

says that the Helvetica font is mounted on position 3. (The
complete list of font sizes and styles depends on)'Our _
typesetter or laser printer.) Appropriate .fp comm.ands
should appear at the beginning of your document if you do
not use the standard fonts.

It is possible to make a document relatively indepen
dent of the actual fonts used to print it by using font
numbers instead of names; for example, \f3 and .ft 3 mean
'whatever font is mounted at position 3 ', and thus work for
any setting. Normal settings are roman font on 1, italic on
2, bold on 3, and special on 4.

There is also a way to get 'synthetic' bold fonts by
overstriking letters with a slight offset. Look at the .bd
command in [l].

Special characters have four-character names begin
ning with \(, and they may be inserted anywhere. For exam
ple,

USD:25-4

is produced by

\(14 + \(12 = \(34

In particular, greet letters are all of the form\(*-, where -
is an upper or lower case roman letter reminiscent of the
greet. Thus to get

ICW<P> ..,.._
in bare troff we have to type

\(•S(\(•a\(mu\(•b) \(->\(if

That line is unscrambled as follows:

\(•S l:
((
\(•a a
\(mu x
\(•b Ji
))
\(->
\(if -

A complete list of these special names occurs in Appendix
A.

In eqn [2] the same effect can be achieved with the
input

SIGMA (alpha times beta) -> inf

which is less concise, but clearer to the uninitiated.

Notice that each four-character name is a single char
acter as far as troff is concerned - the 'translate' command

.tr \(mi\(em

is perfectly clear, meaning

. tr-

that is, to translate - into -.

Some characters are automatically translated into
others: grave ' and acute ' accents (apostrophes) become
open and close single quotes • ' ; the combination of " ... " is
generally preferable to the double quotes " ... ". Similarly a
typed minus sign becomes a hyphen -. To print an explicit
- sign, use\-. To get a backslash printed, use \e.

4. Indents and Line Len&ths

troff starts with a line length of 6.S inches, which
some people think is too wide for 8~11 paper. To reset
the line length, use the .ll command, as in

.ll 6i

As with .sp, the actual length can be specified in several
ways; inches are probably the most intuitive.

The maximum line length provided by the typesetter
is 7.5 inches, by the way. To use the full width, you will
have to reset the default physical left margin c· 'page
off set''), which is normally slightly less than one inch from

A TROFF Tutorial

the left edge of the paper. This is done by the .po com
mand.

.poO

sets the offset as far to the left as it will go.

The indent commancl .in causes the left margin to be
indented by some specified amount from the page offseL If
we use .in to move the left margin in, and .U to move the
right margin to the left, we can make offset blocks of text:

.in 0.3i

.ll-0.3i
text to be set into a block
.n +0.3i
.in-0.3i

will create a block that looks like this:

Pater noster qui est in caelis sanctificetur nomen
tuum; adveniat regnum tuum; fiat voluntas tua,
sicut in caelo, et in terra. ... Amen.

Notice the use of '+' and '-' to specify the amount of
change. These change the previous setting by the specified
amount, rather than just overriding it. The distinction is
quite important JI + li makes lines one inch longer; .ll li
makes them one inch long.

With .in, .ll and .po, the previous value is used if no
argument is specified.

To indent a single line, use the 'temporary indent'
command .ti. For example, all paragraphs in this memo
effectively begin with the command

.ti 3

Three of what? The default unit for .ti, as for most horizon
tally oriented commands (JI, .in, .po), is ems; an em is
roughly the width of the letter 'm' in the current point size .
(Precisely, a em in size pis p points.) Although inches are
usually clearer than ems to people who don't set type for a
living, ems have a place: they are a measure of size that is
proportional to the current point size. If you want to make
text that keeps its proportions. regardless of point size, you ·
should use ems for all dimensions. Ems can be specified as
scale factors directly, as in .ti 2.Sm.

Lines can also be indented negatively if the indent is
already positive:

.ti-0.3i

causes the next line to be moved back three tenths of an
inch. Thus to make a decorative initial capital, we indent
the whole paragraph, then move the letter 'P' back with a .ti
command:

E
ater noster qui est in caelis sanctificetur
nomen tuum; adveniat regnum tuum; fiat

ntas tua, sicut in caelo, et in terra. . ..
Amen.

Of course, there is also some trickery to make the 'P' bigger
(just a '\s36P\s0'), and to move it down from its normal

A TROFF Tutorial

position (see the section on local motions).

S. Tabs

Tabs (the ASCII 1horizontal tab' character) can be
used to produce output in columns, or to set the horizontal
position of output. Typically tabs are used only in unfilled
text. Tab stops are set by default every half inch from the
cuncnt indent, but can be changed by the .ta command. To
set stops every inch, for example,

.ta 1i 2i 3i 4i Si 6i

Unfortunately the stops are left-justified only (u on a
typewriter), so lining up columns of right-justified numbers
can be painful. If you have many nu~ or if you need
more complicated table layout, don't use troff direcdy; use
the tbl program dCscrlbed in [3].

For a handful of numeric columns, you can do it this
way: Precede every number by enough blanks to make it
line up when typed.

.nf

.ta 1i 2i 3i
1 tab 2 tab 3

40 tab so tab 60
700 tab 800 tab 900
.fi

Then change each leading blank into the string \0. This is a
character that does not print, but that has the same width as
a digit When printed, this will produce

1
40

700

2
so

800

3
60

900

It is also possible to fill up tabbed-over space with
some character other than blanks by setting the 'tab replace
ment character' with the .tc command:

.ta I.Si 2.Si

.tc \(ru (\(ru is "_")
Name tab Age tab

produces

Name 7777777777777777777 Age 77777777777

To reset the tab replacement character to a blank. use .tc
with no argument. (Lines can also be drawn with the \l
command, described in Section 6.)

troff also provides a very general mechanism called
'fields' for setting up complicated columns. (This is used
by tbl). We. will not go into it in this paper.

6. Local Motions: Drawlna lines and characters

Remember •Area = irl-• and the big 'P' in the Pater
noster. How are they done? troff provides a host of com
mands for placing characters of any size at any place. You
can use them to draw special characters or to tune your out
put for a particular appearance. Most of these commands
are straightforward, but messy to read and tough to type

USD:25-S

comedy.

If you won't use eqn, subscripts and superscripts are
most easily done with the half-line local motions \u and \d.
To go back up the page half a point-size, insert a \u at the
desired place; to go down, insert a \d. (\u and \d should
always be used in pairs, u explained below.) Thus

Area = \(•pr\u2\d

produces

Area-xl-
To make the •2• smaller, bracket it with \1-2 ••• \sO. Since \u
and \d refer to the current point size, be sure to put them
either both inside or both outside the size changes, or you
will get an unbalanced vertical motion.

Sometimes the space given by \u and \d isn't the
right amount. The \v command can be used to request an
arbitrary amount of vertical motion. The in-line command

\v'(amount)"

causes motion up or down the page by the amount specified
in 1(amount)'. For example, to move the 'P' down, we used

.in +0.6i (move paragraph in)

.ll-0.3i (shorten lines)

.ti -0.3i (move P back)
\v'2'\s36P\s0\v' -2'ater noster qui est
in caelis ...

A minus sign causes upward motion, while no sign or a plus
sign means down the page. Thus \v'-2' causes an upward
vertical motion of two line spaces.

There are many other ways to specify the amount of
motion-

\v'O.li'
\v'3p'
\v'--0.Sm'

and so on are all legal. Notice that the scale specifier i or p
or m goes inside the quotes. Any character can be used in
place of the quotes;. this is also true of all other troff com
mands described in this section.

Since troll does not take within-the-line vertical
motions into account when figuring out where it is on the
page, output lines can have unexpected positions if the left
and right ends aren't at the same vertical position. Thus \v,
like \u and \d, should always balance upward vertical
motion in a line with the same amount in the downward
direction.

Arbitrary horizontal motions are also available - \h
is quite analogous to \v, except that the default scale factor
is ems instead of line spaces. As an example,

\h'--0.li'

causes a backwards motion of a tenth of an inch. As a prac
tical matter, consider printing the mathematical symbol
'»'. The default spacing is too wide, so eqn replaces this
by

USD:25-6

>\h' -0.3m'>

to produce >.

Frequently \his used with the 'width function' \w to
generate motions equal to the width of some character
string. The construction

\w'thing'

is a number equal to the width of 'thing' in machine units
(11432 inch). All troll' computations arc ultimately done in
these units. To move horizontally the width of an •x •, we
can say

\h'\w'x'u'

As we mentioned above, the default scale factor for all hor
izontal dimensions is m, ems, so here we must have the u
for machine units, or the· motion produced will be far too
large. troff is quite happy with the nested quotes, by the
way, so long as you don't leave any out.

As a live example of this kind of construction, all of
the command names in the text, like .sp, were done by over
striking with a slight offsel The commands for .sp are

.sp\h'-\w'.sp'u'\h'lu'.sp

That is, put out • .sp', move left by the width of • .sp', move
right 1 unit, and print • .sp' again. (Of course there is a way
to avoid typing that much input for each command name,
which we will discuss in Section 11.)

There are also several special-purpose troff com
mands for local motion. We have already seen \0, which is
an unpaddable white space of the same width as a digit
'Unpaddable' means that it will never be widened or split
across a line by line justification and filling. There is also
\(blank), which is an unpaddable character the width of a
space, \I, which is half that width, \"', which is one quarter of
the width of a space, and \&, which has zero width. (This
last one is useful, for example, in entering a text line which
would otherwise begin with a •.' .)

The command \o, used like

\o'set of characters'

causes (up to 9) characters to be overstruck, centered on the
widesl This is nice for accents, as in

syst\o"e\(ga"me t\o"e\(aa"l\o"e\(aa"phonique

which makes

sys~me ~lq,honique

The accents are \(ga and \(aa, or\' and \';remember that
each is just one character to troll'.

You can make your own overstrikes with another
special convention, \z, the zero-motion command. \zx
suppresses the normal horizontal motion after printing the
single character x, so another character can be laid on top of
it. Although sizes can be changed within \o, it centers the
characters on the widest, and there can be no horimntal or

A TROFF Tutorial

vertical motions, so \z may be the only way to get what you
want

is produced by

.sp2
\s8\z\(sq\sl4\z\(sq\s22\z\(sq\s36\(sq

The .sp is needed to leave room for the result

As another example, an extra-heavy semicolon that
looks lie

; instead of ; or ;

can be constructed with a big comma and a big period above
it

\s+6\z, \ v' -0.25m'. \v'0.25m'\s0

'0.25m' ~ an experimentally-derived constant.

A· more ornate overstrike is given by the bracketing
function \b, which piles up characters vertically, centered on
the current baseline. Thus we can get big brackets, con
structing them with piled-up smaller pieces:

by typing in only this:

.sp
\b'\(lt\(lk\(lb' \b'\(lc\(J.r x \b'\(rc\(rf \b'\(rt\(rk\(rb'

troff also provides a convenient facility for drawing
horimntal and vertical lines of arbitrary length with arbi
trary characters. \l'li' draws a line one inch long, like this:
------. The length can be followed by the
character to use if the _ isn't appropriate; \l'O.SL' draws a
half-inch line of dots: The construction \L is
entirely analogous, except that it draws a vertical line
instead of horimntal.

7. Strings

Obviously if a paper contains a large number of
occurrences of an acute accent over a letter 'e', typing
\o"e\"' for each E would be a great nuisance.

Fortunately, troff provides a way in which you can
store an arbitrary collection of text in a 'string', and
thereafter use the string name as a shorthand for its contents.
Strings are one of several troff mechanisms whose judi
cious use lets you type a document with less effort and
organize it so that extensive format changes can be made
with few editing changes.

A reference to a string is replaced by whatever text
the string was defined as. Strings are defined with the com
mand .ds. The line

A TROFF Tutorial

.ds e \o"e\'"

defines the string e to have the value \o"e\"'

String names may be either one or two characters
long; and are referred to by \• x for one character names or
\•(xy for two character names. Thus to get ~lq>hone, given
the definition of the string e as above, we can say
t\•el\•ephone.

If a string must begin with blanks, define it as

.ds xx" text

The double quote signals the beginning of the definition.
There is no trailing quote; the end of the line terminates the
string.

A string may actually be several lines long; if trotr
encounters a \ af the end of mry line, it is thrown away and
the next line added to the current one. So you can make a
long string simply by ending each line but the last with a
backslash:

.ds xx this\
is a very\
long string

Strings may be defined in terms of other strings, or
even in terms of themselves; we will discuss some of these
possibilities later.

8. Introduction to Macros

Before we can go much further in troff, we need to
learn a bit about the macro facility. In its simplest form, a
macro is just a shorthand notation quite similar to a string.
Suppose we want every paragraph to start in exactly the
same way - with a space and a temporary indent of two
ems:

.sp

.ti+2m

Then to save typing, we would like to collapse these into
one shorthand line, a troff 'command' like

.PP

that would be treated by troff exactly as

.sp

.ti +2m

.PP is called a macro. The way we tell troff what .PP
means is to deftM it with the .de command:

. de PP

.sp

.ti +2m

The first line names the macro (we used 1.PP' for 'para
graph', and upper case so it wouldn't confiict with any name
that troff might already know about). The last line .. marks
the end of the definition. In between is the text, which is
simply inserted whenever troff sees the 'command' or

USD:25-7

macro call

.PP

A macro can contain any mixture of text and formatting
commands.

The definition of .PP has to precede its first use;
undefined macros are simply ignored. Names are restricted
to one or two characten.

Using macros for commonly occurring sequences of
commands is critically importanl Not only does it save typ
ing, but it mates later changes much euirc. Suppose we
decide that the paragraph indent ii too small, the vertical
space is much too big, and roman font should be forced.
Instead of changing the whole document, we need only
change the definition of .PP to something like

.de PP \" paragraph macro

.sp2p

.ti +3m

.ftR

and the change takes effect everywhere we used .PP.

\" is a troff command that causes the rest of the line
to be ignored. We use it here to add comments to the macro
definition (a wise idea once definitions get complicated}.

As another example of macros, consider these two
which start and end a block of offset, unfilled text, like most
of the examples in this paper.

.de BS \" start indented block

.Sp

.nf

.in +0.3i

.de BE

.sp

.fi

.in-0.3i

\" end indented block

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

by the commands .BS and .BE, and it will come out as it did
above. Notice that we indented by .in +0.3i instead of
.in 0.3i. This way we can nest our uses of .BS and BE to get
blocks within blocks .

If later on we decide that the indent should be O.Si,
then it is only necessary to change the definitions of .BS and
.BE, not the whole paper.

9. Titles, Pages and Numbering

This is an area where things get tougher, because
nothing is done for you automatically. Of necessity, some
of this section is a cookbook, to be copied literally until you

USD:2S-8

get some experience.

Suppose you want a title at the top of each page, say
ing just

left top center top right top

In rorr, one can say

.he 1eft top' center top'right top'
Jo 1eft bouom'center boUOm'right boUOm'

to get headers and footers automatically on eve:ry page.
Alas, this doesn't work so easily in trorr, a serious hardship
for the novice. Instead you have to do a lot of specification
(or use a macro package, which makes it effortless).

You have to say what the actual title is (easy); when
to print it (easy enough); and what to do at and around the
title line (harder). Taking these in revene order, first we
define a macro .NP (for 'new page') to process titles and the
like at the end of one page and the beginning of the next:

.de NP
'bp
'sp O.Si
. tl 'left top'center top'right top'
'sp 0.3i

To make sure we're at the top of a page, we issue a 'begin
page' command 'bp, which causes a skip to top-of-page
(we'll explain the 'shortly). Then we space down half an
inch, print the title (the use of .tl should be self explanatory;
later we will discuss parameterizing the titles), space
another 0.3 inches, and we're done.

To ask for .NP at the boUOm of each page, we have
to say something like 'when the text is within an inch of the
bottom of the page, start the processing for a new page.'
This is done with a 'when' command .wh:

.wh -li NP

(No '.' is used before NP; this is simply the name of a
macro, not a macro call.) The minus sign means 'measure
up from the bottom of the page', so '-Ii' means 'one inch
from the bottom'.

The . wh command appears in the input outside the
definition of .NP; typically the input would be

.de NP

. wh-li NP

Now what happens? As text is actually being output,
trol't keeps track of its vertical position on the page, and
after a line is printed within one inch from the bottom, the
.NP macro is activated. (In the jargon, the . wh command
sets a trap at the specified place, which is 'sprung' when
that point is passed.) .NP causes a skip to the top of the
next page (that's what the 'bp was for), then prints the title
with the appropriate margins.

Why 'bp and 'sp instead of .bp and .sp? The answer
is that .sp and .bp, like several other commands, cause a

A TROFF Tutorial

bra to take place. That is, all the input text collected but
not yet printed is flushed out 11 soon u possible, and the
next input line is guaranteed to start a new line of output If
we had used .ap or .bp in the .NP macro, this would cause a
break in the middle of the current output line when a new
page is started. The effect would be to print the left-over
part of that line at the top of the page, followed by the next
input line on a new output line. This is not what we want
Using ' instead of • for a command tells troff that no break
is to take place - the output line cummtly being filled
should not be forced out before the space or new page.

The list of commands that cause a break is short and
natural:

.bp .br .ce .fi .nf .sp .in .ti

All others cause no break, regardless of whether you use a .
or a '. If you really need a break, add a .br command at the
appropriate place.

One other thing to beware of - if you 're changing
fonts or point sizes a lot, you may find that if you cross a
page boundary in an unexpected font or size, your titles
come out in that size and font instead of what you intended .
Furthenmre, the length of a title is independent of the
current line length, so titles will come out at the default
length of 6.S inches unless you change it, which is done
with the Jt command.

There are several ways to fix the problems of point
sizes and fonts in titles. For the simplest applications, we
can change .NP to set the proper size and font for the title,
then restore the previous values, like this:

.de NP
'bp
'sp O.Si
.ft R \"set title font to roman
.ps 10 \" and size to 10 point
Jt 6i \" and length to 6 inches
.tl 'left'center'right'
.ps \"revert to previous size
.ft P \" and to previous font
'sp 0.3i

This version of .NP does not work if the fields in the
.tl command contain size or font changes. To cope with that
requires troff's 'environment' mechanism, which we will
discuss in Section 13 .

To get a footer at the bottom of a page, you can
modify .NP so it does some processing before the 'bp com
mand, or split the job into a footer macro invoked at the bot
tom margin and a header macro invoked at the top of the
page. These variations are left as exercises .

Output page numbers are computed automatically as
each page is produced (starting at 1), but no numbers are
printed unless you ask for them explicitly. To get page
numbers printed, include the character Cf> in the .ti line at the
position where you want the number to appear. For exam-

A TROFF Tutorial

pie

. ti,,_'*'_,,

centers the page number inside hyphens, u on this page.
You can set the page number at any time with either .bp n,
which immediately starts a new page numbered n, or with
.pn n, which sets the page number for the next page but
doesn't cause a skip to the new page. Again, .bp +n sets the
page number to n more than its current value; .bp means
.bp +1.

10. Number Reglsten and Arithmetic

troff has a facility for doing arithmetic, and for
defining and using variables with numeric values, called
numbu registl!rs. Number registers, like strings and mac
ros, can be use(Jll in setting up a document so it is easy to
change later. And of course they serve for any sort of arith
metic computation.

Like strings, number registers have one or two char
acter names. They are set by the .nr command, and are
referenced anywhere by \nx (one character name) or \n(xy
(two character name).

There are quite a few pre-defined number registers
maintained by troff, among them 'I> for the current page
number; nl for the current vertical position on the page; dy,
mo and yr for the current day, month and year; and .s and .f
for the current si7.e and font. (The font is a number from 1
to 4.) Any of these can be used in computations like any
other register, but some, like .s and .f, cannot be changed
with .nr.

As an example of the use of number registers, in the
-ms macro package [4], most significant parameters are
defined in terms of the values of a handful of number regis
ters. These include the point size for text, the vertical spac
ing, and the line and title lengths. To set the point size and
vertical spacing for the following paragraphs, for example, a
user may say

.nrPS9

.nrVS 11

The paragraph macro .PP is defined (roughly) as follows:

.de PP

.ps \\n(PS

.vs \\n(VSp

.ftR

.sp O.Sv

.ti+3m

\" reset size
\"spacing
\"font
\" half a line

This sets the font to Roman and the point size and line spac
ing to whatever values are stored in the number registers PS
and VS.

Why are there two backslashes? This is the eternal
problem of how to quote a quote. When troff originally
reads the macro definition, it peels off one backslash to see
what's coming next To ensure that another is left in the
definition when the macro is used, we have to put in two
backslashes in the definition. If only one backslash is used,

USD:25-9

point size and vertical spacing will be frozen at the time the
macro is defined, not when it is used •

Protecting by an extra layer of backslashes is only
needed for \n, \•,\$(which we haven't come to yet), and\
itself. Things like \I, \f, \h, \v, and so on do not need an
extra backslash, since they are converted by troff to an
internal code immediately upon being seen.

Arithmetic expressions can appear anywhere that a
number is expected. As a trivial example,

.nr PS \\n(PS-2

decmnents PS by 2. Expressions can use the arithmetic
operators+,-,•,/, 'I> (mod), the relational operators>,>•,
<, <•, .. , and !· (not equal), and parentheses.

Although the arithmetic we have done so far has
been straightforward, more complicated things are some
what tricky. First, number registers hold only integers.
troff arithmetic uses truncating integer division, just like
Fortran. Second, in the absence of parentheses, evaluation
is done left-to-right without any operator precedence
(including relational operators). Thus

7*-4+3/13

becomes '-1 '. Number registers can occur anywhere in an
expression, and so can scale indicators like p, i, m, and so
on (but no spaces). Although integer division causes trun
cation, each number and its scale indicator is converted to
machine units (11432 inch) before any arithmetic is done, so
li/2u evaluates to O.Si correctly.

The scale indicator u often has to appear when you
wouldn't expect it - in particular, when arithmetic is being
done in a context that implies horizontal or vertical dimen
sions. For example,

.ll 712i

would seem obvious enough - 3V2 inches. Sorry.
Remember that the default units for horiwntal parameters
like .11 are ems. That's really '7 ems 12 inches', and when
translated into machine units, it becomes zero. How about

.ll 7il2

Sorry, still no good - the '2' is '2 ems', so '7i/2' is small,
although not zero. You 1'1UISI use

.117i/2u

So again, a safe rule is to attach a scale indicator to every
number, even constants.

For arithmetic done within a .m command, there is
no implication of horizontal or vertical dimension, so the
default units are 'units', and 7i/2 and 7i/2u mean the same
thing. Thus

.nr ll 7i/2

.11 \\n(llu

does just what you want, so long as you don't forget the u
on the .11 command.

USD:2S-10

11. Macros with arpments

The next step is to define macros that can change
from one use to the next according to parameters supplied
as arguments. To make this wort, we need two. things:
first, when we define the macro, we have to indicate that
some parts of it will be provided as arguments when the
macro is called. Then when the macro is called we have to
provide actual arguments to be plugged into the definition.

Let us illustrate by defining a macro .SM that will
print its argument two points smaller than the surrounding
text That is, the macro call

.SM TROFF

will produce TROFF.

The de~tion of .SM is

.deSM .
\s-2\\$1\s+2

Within a macro definition, the symbol \\Sn refers to the nth
argument that the macro was called with. Thus \\$1 is the
string to be placed in a smaller point size when .SM is
called.

As a slightly more complicated version, the follow
ing definition of .SM permits optional second and third
arguments that will be printed in the normal size:

.de SM
\\$3\s-2\\$1 \s+2\\$2

Arguments not provided when the macro is called are
treated as empty, so

.SM TROFF),

produces TROFF), while

.SM TROFF). (

produces (TROFF). It is convenient to reverse the order of
arguments because trailing punctuation is much more com
mon than leading.

By the way, the number of arguments that a macro
was called with is available in number register .$.

The following macro .BD is the one used to make the
'bold roman' we have been using for trotr command names
in text It combines horizontal motions, width computa
tions, and argument rearrangement

• deBD
\&.\\$3\fl \\$1 \h"-\w'\\$1 "u+lu'\\$1 \fP\\$2

The \h and \w commands need no extra backslash, as we
discussed above. The \&. is there in case the argument
begins with a period.

Two backslashes are needed with the \\$n com
mands, though, to protect one of them when the macro is
being defined. Perhaps a second example will make this

A TROFF Tutorial

clearer. Consider a macro called .sH which produces sec
tion headings rather like those in this paper, with the sec
tions numbered automatically, and the title in bold in a
smaller size. The use is

.SH "Section title ••• "

(If the argument to a macro is to contain blanks, then it must
be s111TOIUUktl by double quotes, unlike a string, where only
one leading quote is permitted.)

Here is the definition of the .sH macro:

.nr SH 0 \" initializ.e section number

.de SH

.sp 0.3i

.ftB

.m SH \\n(SH+l \"increment number

.ps \\n(PS-1 \"decrease PS
\\n(SH. \\$1 \" number. title
.ps \\n(PS \" restore PS
.Sp 0.3i
JtR

The section number is kept in number register SH, which is
incremented each time just before it is used. (A number
register may have the same name as a macro without
conflict but a string may not)

We used \\n(SH instead of \n(SH and \\n(PS instead
of \n(PS. If we had used \n(SH, we would get the value of
the register at the time the macro was tkfined, not at the
time it was used. If that's what you want, fine, but not here.
Similarly, by using \\n(PS, we get the point size at the time
the macro is called.

As an example that does not involve numbers, recall
our .NP macro which had a

.U 1eft'center"right"

We could make these into parameters by using instead

.U \\•(LT\\•(CT'\\•(RT"

so the tide comes from three· strings called LT, CT and RT.
If these are empty, then the title will be a blank line. Nor
mally CT would be set with something like

.ds CT - % -

to give just the page number between hyphens (as on the top
of this page), but a user could supply private definitions for
any of the strings .

12. Conditionals

Suppose we want the .SH macro to leave two extra
inches of space just before section 1, but nowhere else. The
cleanest way to do that is to test inside the .SH macro
whether the section number is 1, and add some space if it is.
The .if command provides the conditional test that we can
add just before the heading line is output:

A TROFF Tutorial

.if \\n(SH·l .sp 2i \"first section only

The condition after the .if can be any arithmetic or
logical expression. If the condition is logically true, or
arithmetically greater than r.ero, the rest of the line is treated
as if it were text - here a command. If the condition is
false, or r.ero or negative, the rest of the line is skipped.

It is possible to do more than one command if a con
dition is true. Suppose several operations are to be done
before section 1. One possibility is to define a macro .Sl
and invoke it if we are about to do section 1 (as determined
by an .if).

.deSl
- processing for section 1 -

.de SH

. if\\n(SH=l .Sl

An alternate way is to use the extended form of the
.if, like this:

.if\\n(SH=l \{--processing
for section 1 -\}

The braces \{ and \} must occur in the positions shown or
you will get unexpected extra lines in your output troff
also provides an 'if-else' construction, which we will not go
into here.

A condition can be negated by preceding it with ! ;
we get the same effect as above (but less clearly) by using

.if !\\n(SH>l .Sl

There are a handful of other conditions that can be
tested with .if. For example, is the cUITent page even or
odd?

.if o .tl "odd page title" - % - "

.if e .tl " - % -""even page title'

gives facing pages different titles and page numbers on the
outside edge when used inside an appropriate new page
macro.

Two other conditions are t and n, which tell you
whether the formatter is troff or nroff.

.if t troff stuff .. .

.if n nroff stuff .. .

Finally, string comparisons may be made in an .if:

.if 'stringl 'string2' stuff

does 'stufr if string] is the same as string2. The character
separating the strings can be anything reasonable that is not
contained in either string. The strings themselves can refer
ence strings w_~th \•,arguments with\$, and so on.

USD:25-11

13. Environments

As we mentioned, there is a potential problem when
going across a page boundary: parameters like size and font
for a page title may well be different from those in effect in
the text when the page boundary occurs. troff provides a
very general way to deal with this and similar situations.
There are three 'environments', each of which has indepen
dently settable versions of many of the parameten associ
ated with processing, including size, font, line and title
lengths, fiWnofill mode, tab stops, and even partially col
lect.eel lines. Thus the titling problem may be readily solved
by processing the main text in one environment and titles in
a separate one with its own suitable parameters .

The command .cv n shifts to environment n; n must
be 0, 1 or 2. The command .cv with no argument returns to
the previous environment Environment names are main
tained in a stack, so calls for different environments may be
nested and unwound consistently .

Suppose we say that the main text is processed in
environment 0, which is where trorr begins by default.
Then we can modify the new page macro .NP to process
titles in environment 1 like this:

.de NP

.ev 1

.lt 6i

.ftR

.ps 10

\''shift to new environment
\" set parameten here

... any other processing ...

.ev \"return to previous environment

It is also possible to initialize the parameters for an environ
ment outside the .NP macro, but the version shown keeps all
the processing in one place and is thus easier to understand
and change.

14. Diversions

There are numerous occasions in page layout when it
is necessary to store some text for a period of time without
actually printing it. Footnotes are the most obvious exam
ple: the text of the footnote usually appears in the input
well before the place on the page where it is to be printed is
reached. In fac~ the place where it is output normally
depends on how big it is, which implies that there must be a
way to process the footnote at least enough to decide its size
without printing it

troff provides a mechanism called a diversion for
doing this processing. Any part of the output may be
diverted into a macro instead of being printed, and then at
some convenient time the macro may be put back into the
input

The command .di xy begins a diversion - all subse
quent output is collected into the macro xy until the com
mand .di with no arguments is encountered. This terminates
the diversion. The processed text is available at any time
thereafter, simply by giving the command

USD:25-12

.xy

The vertical si7.c of the last finished diversion is contained
in the built-in number register dn.

As a simple example, suppose we want to implement
a 'keep-release• operation, so that text between the com
mands .KS and .KE will not be split acrosa a page bounduy
(as for a figure or table). Clearly, when a .KS is encoun
tered, we have to begin diverting the output so we can find
out how big it is. Then when a .KE is seen, we decide
whether the diverted text will fit on the current page, and
print it either there if it fits, or at the top of the next page if it
doesn't. So:

.de KS

.br

.ev 1

.fi

.di XX

\" start keep
\" start fresh line
\" «:0llect in new environment
\" make it filled text
\" collect in XX

.de KE \" end keep

.br \"get last partial line

.di \"end diversion

.if \\n(dn>=\\n(.t .bp \" bp if doesn"t fit

.nf \"bring it back in no-fill

.XX \"text

.ev \" return to normal environment

Recall that number register nl is the current position on the
output page. Since output was being diverted, this remains
at its value when the diversion started. dn is the amount of
text in the diversion; .t (another built-in register) is the dis
tance to the next trap, which we assume is at the bottom
margin of the page. If the diversion is large enough to go
past the trap, the .if is satisfied, and a .bp is issued. In either
case, the diverted output is then brought back with .XX. It is
essential to bring it back in no-fill mode so troff will do no
further processing on it.

This is not the most general keep-release, nor is it
robust in the face of all conceivable inputs, but it would
require more space than we have here to write it in full gen
erality. This section is not intended to teach everything
about diversions, but to sketch out enough that you can read
existing macro packages with some comprehension.

Acknowledgements

I am deeply indebted to J. F. Ossanna, the author of
troff, for his repeated patient explanations of fine points,
and for his continuing willingness to adapt troff to make
other uses easier. I am also grateful to Jim Blinn, Ted
Dolotta, Doug Mcilroy, Mike Lest and Joel Sturman for
helpful comments on this paper.

References

[1] J. F. Ossanna, NROFF/TROFF User's Manual, Bell
Laboratories Computing Science Technical Report
54, 1976.

A TROFF Tutorial

(2) B. W. Kernighan, A Sy*1n for Typesetting
Matltcmatia - U:ID'' s GllitM (Second Edition), Bell
Laboratories Computing Science Technical Report
17, 1977.

(3) M. E. Lest, TBL - A Program to Format Tables,
Bell Laboratories Computing Science Technical
Report 49, 1976.

(4) M. E. Lest, Typing DOClllllDllS on UNIX, Bell
Laboratories, 1978.

[SJ J. R. Mashey and D. W. Smith, PWB!MM -
ProgrammD''s Workbench Memorandum Macros,
Bell Laboratories internal memorandum.

(6) Eric P. Allman, Writing Papl!l's with NROFF using
-1114, University of California, Berkeley.

A TROFF Tutorial USD:25-13

Append.Ix A: Phototypesetter Character Set (APS-5)

These characters exist in roman, italic, and bold. To get the one on the left, type the four-character name on the righl

\(ff fi \(fi fl \(fl \(Fi \(Fl

- \(ru - \(em ~ \(14 Yl \(12 ~ \(34
e \(co 0 \(de t \(dg

,
\(fin ¢ \(ct

~ \(rg • \(bu D \(sq - \(by

(In bold, \(sq is 0.)

The following are special-font characters:

+ \(pl \(mi x \(mu + \(di

= \(eq • \(·· ~ \(>• ~ \(<•
:/: \(!- ± \(+- ..., \(no I \(sl

~ap - \(-- oc \(pt v \(gr
-+ \(-> +- \(<- t \(ua J, \(da

I \(is a \(pd - \(if " \(sr

c \(sb :::> \(sp u \(cu "' \(ca

t: \(ib =2 \(ip e \(mo 0 \(es
\(aa \(ga 0 \(ci • \(bs

§ \(SC * \(dd ~ \(lh ~ \(rh

r \(It 1 \(rt r \(le 1 \(re

L \(lb J \(rb L \(If J \(rf

~ \(lk ~ \(rk I \(bv ~ \(ts

I \(br I \(or \(ul \(m

• \(••

These four characters also have two-character names. The ' is the apostrophe on terminals; the ' is the other quote mark.

\' \' \- '-
These characters exist only on the special font, but they do not have four-character names:

{ } < > # @

For greek, precede the roman letter by\(• to get the corresponding greet; for example, \(•a is a.

abgdezyhiklmncoprs tufxqw
apyae~~91K~µv;oxpo~u~xvm

ABGDEZYHIKLMNCOPRSTUFXQW
ABr~EZH81KAMNEOilPITY~X~n

A System for Typesetting Mathematics

Brian W. Kernighan and Lorinda L. Cherry

ABSTRACT

This paper describes the design and implementation of a system for typesetting mathematics.
The language has been designed to be easy to learn and to use by people (for example, secretaries
and mathematical typists) who know neither mathematics nor typesetting. Experience indicates
that the language can be learned in an hour or so, for it hu few rules and fewer exceptions. For
typical expressions, the sil.c and font changes, positioning, line drawing, and the like necessary to
print according to mathematical conventions arc all done automatically. For example, the input

sum from i::O to infinity x sub i = pi over 2

produces

The syntax of the language is specified by a small context-free grammar; a compiler
compiler is used to make a compiler that translates this language into typesetting commands. Out
put may be produced on either a phototypesetter or on a terminal with forward and reverse half-line
motions. The system interfaces directly with text formatting programs, so mixtures of text and
mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM, March, 1975.

1. Introduction

''Mathematics is known in the trade as difficult,
or penalty, copy because it is slower, more difficult, and
more expensive to set in type than any other kind of
copy normally occurring in books and journals.'' [1]

One difficulty with mathematical text is the mul
tiplicity of characters, sizes, and fonts. An expression
such as

lim (tan.x)lin2z = 1
Jr~

requires an intimate mixture of roman, italic and greek
letters, in three siz.es, and a special character or two.
(''Requires'' is perhaps the wrong word, but mathemat
ics has its own typographical conventions which arc
quite different from those of ordinary text) Typeset
ting such &Q. expression by traditional methods is still
an essentially manual operation.

A second difficulty is the two dimensional char
acter of mathematics, which the superscript and limits
in the preceding example showed in its simplest form.
This is carried further by

b1
ao+----b-2--

a1+ b
az+ 3

a3+ · · ·

and still further by

These examples also snow line-drawing, built-up char
acters like braces and radicals, and a spectrum of posi
tioning problems. (Section 6 shows what a user has to
type to produce these on our system.)

2. Photocomposltlon

Photocomposition techniques can be used to
solve some of the problems of typesetting mathematics.
A phototypesetter is a device which exposes a piece of
photographic paper or film, placing characters wher
ever they are wanted. The Graphic Systems photo
typesetter[2] on the UNIX operating system[3] works
by shining light through a character stencil. The char
acter is made the right size by lenses, and the light
beam directed by fiber optics to the desired place on a
piece of photographic paper. The exposed paper is
developed and typically used in some form of photo-

USD:U.2

offset reproduction.

On UNIX, the phototypesetter is driven by a for
matting program called TROFF (4). TROFF WU

designed for setting running text. It also provides all of
the facilities that one needs for doing mathematics,
such u arbitrary horizontal and vertical motions, line
drawing, size changin& but the syntax for describing
these special operationa is difficult to learn, and
difficult even for experiencecl users to type conectly.

For this reuon we decided to use TROFF u an
''assembly language," by designing a language for
describing mathematical expressions, and compiling it
into TR.OFF.

3. Language Design

The fundamental principle upon which we based
our language design is that the language should be easy
to use by people (for example, secretaries) who know
neither mathematics nor typesetting.

This principle implies several things. F'mt,
"normal" mathematical conventions about operator
precedence, parentheses, and the like cannot be used,
for to give special meaning to such characters means
that the user has to understand what he or she is typing.
Thus the language should not assume, for instance, that
parentheses are always balanced, for they are not in the
half-open interval (a ,b]. Nor should it assume that that
..Ja+b can be replaced by (a+b)~, or that 1/(1-x) is

better written as ~ (or vice versa).
.l-%

Second, there should be relatively few rules,
keywords, special symbols and operators, and the like.
This keeps the language easy to learn and remember.
Furthermore, there should be few exceptions to the
rules that do exist: if something works in one situation,
it should work everywhere. If a variable can have a
subscript, then a subscript can have a subscript, and so
on without limit.

Third, ''standard'' things should happen
automatically. Someone who types "x=y+z+l"
should get "x=y+z+l". Subscripts and superscripts
should automatically be printed in an appropriately
smaller size, with no special intervention. Fraction bars
have to be made the right length and positioned at the
right height. And so on. Indeed a mechanism for over
riding default actions has to exist, but its application is
the exception, not the rule.

We assume that the typist has a reasonable pic
ture (a two-dimensional representation) of the desired
final form, as might be handwritten by the author of a
paper. We also assume that the input is typed on a
computer terminal· much like an ordinary typewriter.
This implies an input alphabet of perhaps 100 charac
ters, none of them special.

A secondary, but still important, goal in our
design was that the system should be easy to imple
ment, since neither of the authors had any desire to

A System for Typesetting Mathematics

make a long-term project of it. Since our design wu
not firm, it WU also necessary that the program be euy
to change at any time.

To make the program easy to build and to
change, and to guarantee regularity ("it should work
everywhere"), the language is defined by a context-flee
gJ'llDIDll', deacn1>ecl in Section S. The compiler for the
lllJIUlle wu built using a compiler-compiler.

A priori, the pammarlcompiler-compiler
approach seemed the right thing to do. Our subsequent
experience leads us to believe that any other course
would have been foDy. The original lquge was
designed in a few days. Construction of a woddng sys
tem sufficient to try significant examples required
perhaps a pcnon-month. Since then, we have spent a
modest amount of ldditional time over several years
tunin& adding facilities, and occuionally changing the
language as users make criticisms and suggestions.

We also decided quite early that we would let
TROFF do our work for us whenever possible. TR.OFF
is quite a powerful program, with a macro facility, text
and arithmetic variables, numerical computation and
testin& and conditional branching. Thus we have been
able to avoid writing a lot of mundane but tricky
software. For example, we store no text strings, but
simply pass them on to TROFF. Thus we avoid having
to write a storage management package. Furthermore,
we have been able to isolate ourselves from most
details of the particular device and character set
currently in use. For example, we let TROFF compute
the widths of all strings of characters; we need know
nothing about them.

A third design goal is special to our environ
ment. Since our program is only useful for typesetting
mathematics, it is necessary that it interface cleanly
with the underlying typesetting language for the benefit
of users who want to set intermingled mathematics and
text (the usual case). The standard mode of operation
is that when a document is typed, mathematical expres
sions are input as part of the text, but marked by user
settable delimit.ets. The program reads thiS input arid.
treats u comments those things which are not
mathematics, simply passing them through untouched.
At the same time it converts the mathematical input
into the necessary TROFF commands. The resulting
ioutput is passed directly to TR.OFF where the com
ments and the mathematical parts both become text
and/or TR.OFF commands.

4. The Language

We will not try to describe the language pre
cisely here; interested readers may refer to the appendix
for more details. Throughout this section, we will write
expressions exactly as they are handed to the typeset
ting program (hereinafter called • 'EQN' '), except that
we won't show the delimiters that the user types to
mark the beginning and end of the expression. The
interface between EQN and TROFF is described at the

A System for Typesetting Mathematics

end of this section.

As we said, typing X•y+z+l should produce
x=y +z + 1, and indeed it does. Variables are made
italic, operators and digits become roman, and normal
spacings between letters and operators are altered
slightly to give a more pleasing appearance.

Input is free-form. Spaces and new lines in the
input are used by EQN to separate pieces of the input;
they are not used to cteate space in the outpuL Thus

x • y
+z+l

also gives .x=y+z+l. Free-form input is easier to type
initially; subsequent editing is also easier, for an
expression may be typed u many short linea.

Extra whii.e space can be forced into the output
by several characters of various sizes. A tilde " - "
gives a space equal to the normal word spacing in text;
a circumflex gives half this much, and a tab charcter
spaces to the next tab stop.

Spaces (or tildes, etc.) also serve to delimit
pieces of the inpuL For example, to get

f (t >=2:1tJsin(ov)dt

we write

f (t) = 2 pi int sin (omega t)dt

Here spaces are necessary in the input to indicate that
sin, pi, int, and omega are special, and potentially
worth special treatmenL EQN looks up each such string
of characters in a table, and if appropriate gives it a
translation. In this case, pi and omega become their
greek equivalents, int becomes the integral sign (which
must be moved down and enlarged so it looks "right"),
and sin is made roman, following conventional
mathematical practice. Parentheses, digits and opera
tors arc automatically made roman wherever found.

Fractions are specified with the keyword over:

a+b over c+d+e = 1

produces

a+b _1 c+d+e-

Similarly, subscripts and superscripts are intro
duced by the keywords sub and sup:

.x1+y2=z2

is produced by

x sup 2 + y sup 2 = z sup 2

The spaces after the 2's are necessary to mark the end
of the superscripts; similarly the keyword sup has to be
marked off by spaces or some equivalent delimiter.
The return to the proper baseline is automatic. Multiple
levels of subscripts or superscripts are of course
allowed: "x sup y sup z" is .x,.. The construct

USD:26-3

"something sub something sup aomething" is recog
nized u a special case, so ••x sub i sup 2'' is .xr instead
of .x;2•

More complicated expressiom can now be
formed with these primitives:

;J2/ .x2 r.
p=Q2"+ b'l.

is produced by

{partial sup 2 f} over {partial x sup 2} ..
x sup 2 over a sup 2 + y sup 2overbsup 2

Braces {} are used to group objects together; in this
cue they indicate unambiguously what goes over what
on the left-hand side of the expression. 1be language
defines the precedence of sup to be higher than that of
over, so no braces are needed to get the correct associa
tion on the right side. Braces can always be used when
in doubt about precedence.

1be braces convention is an example of the
power of using a recursive grammar to define the
language. It is part of the language that if a construct
can appear in some context, then any expression in
braces can also occur in that context

1bere is a sqrt operator for making square roots
of the appropriate size: "sqrt a+b" produces 1'a+b,
and

x = {-b +- sqrt{b sup 2 -4ac}} over 2a

is

-b±-.r;;c;;:;
% 2Q

Since large radicals look poor on our typesetter, sqrt is
not useful for tall expressions.

Limits on summations, integrals and similar
constructions are specified with the keywords from and
to. To get

we need only type

sum from i=O to inf x sub i -> 0

Centering and making the l: big enough and the limits
smaller are all automatic. The from and to parts are
both optional, and the central part (e.g., the l:) can in
fact be anything:

fun from {x ->pi 12} (tan•x) = inf

is

.s~(tan %)=oo

Again, the braces indicate just what goes into the from
part.

There is a facility for making braces, brackets,
parentheses, and vertical bars of the right height, using
the keywords left and righl:

USD:26-4

left [x+y over 2a right r .. -1

makes

[~] =l

A left need not have a corresponding right, u we shall
see in the next example. Any characters may follow
left and right, but generally only various parentheses
and bars are meaningfuL

Big brackets, etc., are often used with another
facility, called piles, which make vertical piles of
objects. For example, to get

1ign(x) •(A ~ ~~
-1 if X<O

we can type

sign (x)-==- left {
rpile { 1 above 0 above -1}
·1pile {if above if above if}
·1pile {x>O above x-0 above X<O}

The construction "left {" makes a left brace big
enough to enclose the "rpile { ... } ", which is a right-
justified pile of "above ... above ... ". "lpile" makes a
left-justified pile. There are also centered piles.
Because of the recursive language definition, a pile can
contain any number of elements; any element of a pile
can of course contain piles.

Although EQN makes a valiant attempt to use
the right sizes and fonts, there are times when the
default assumptions are simply not what is wanted. For
instance the italic sign in the previous example would
conventionally be in roman. Slides and transparencies
often require larger characters than normal text Thus
we also provide size and font changing commands:
"size 12 bold {Kx·=-y}" will produce A X = y.
Size is followed by a number representing a character
size in points. (One point is 1172 inch; this paper is set
in 9 point type.)

If necessary, an input string can be quoted in
" ... ", which turns off grammatical significance, and any
font or spacing changes that might otherwise be done
on it. Thus we can say

lim- roman "sup" ·x sub n = 0

to ensure that the supremum doesn't become a super
script

limsupx~=O

Diacritical marks, long a problem in traditional
typesetting, are straightforward:

~+i+f +i +Y=z+z

is made by typing

A System for Typesetting Mathematics

x dot under + x hat + y tilde
+ X hat+ Y dotdot = z+Z bar

There are also facilities for globally changing
default sizes and fonts, for example for making view
graphs or for setting chemical equations. The language
allows for matrices, and for lining up equations at the
same horizontal position.

Finally, there is a definition facility, so a user
can say

define name " ... "

at any time in the document; henceforth, any
occurrence of the token •'name'' in an expression will
be explllcled into whatever wu inside the double
quotes in its definition. This lets usen tailor the
language to their own specifications, for it is quite pos
sible to redefine keywords like SMp or over. Section 6
shows an example of definitions.

The EQN preprocessor reads intermixed text and
equations, and passes its output to TROFF. Since TR.OFF
uses lines beginning with a period u control words
(e.g., ".ce" means "center the next output line"), EQN
uses the sequence ".EQ" to mark the beginning of an
equation and ".EN" to mark the end. The ".EQ" and
".EN" are passed through to TROFF untouched, so
they can also be used by a knowledgeable user to center
equations, number them automatically, etc. By default,
however, ".EQ" and ".EN" are simply ignored by
TROFF, so by default equations are printed in-line.

".EQ" and ".EN" can be supplemented by
TROFF commands as desired; for example, a centered
display equation can be produced with the input:

.ce

.EQ
x sub i = y sub i ...
.EN

Since it is tedious to type ".EQ" and ".EN"
around very short. expressions (single-. letters, for
instance), the user can also define two characters to
serve u the left and right delimiters of expressions.
These characters are recognized anywhere in subse
quent text For example if the left and right delimiters
have both been set to"#", the input

Let #x sub i#, #y# and #alpha# be positive

produces:

Let x;, y and ex be positive

Running a preprocessor is strikingly easy on
UNIX. To typeset text stored in file ''f '',one issues the
command:

eqn fl troff

The vertical bar connects the output of one process
(EQN) to the input of another (TROFF).

A System for Typesetting Mathematica

5. Language Theory

The basic struc~ of the language is not a par
ticularly original one. Equations are pictured as a set of
"boxes," pieced together in various ways. For exam
ple, something with a subscript is just a box followed
by another box moved downward and lhnmk by an
appropriate amount. A fnction is just a box centen:d
above another box, at the right altitude, with a line of
correct length drawn between them.

The grammar for the language ii shown below.
For purposes of exposition, we have collapsed some
productiom. In the original grammar, there are about
70 productions, but many of these are simple ones used
only to guarantee that some keyword is recognized
early enough in the parsing procelL Symbols in capital
letters are tcrmmal symbols; lower cue symbols are
non-terminals, i.e., syntactic categories. The vertical
bar I indicates an alternative; the brackets [] indicate
optional material. A TEXT is a string of non-blank
characters or any string inside double quotes; the other
terminal symbols represent literal occurrences of the
corresponding keyword.

eqn : box I eqn box

box text
{ eqn}
box OVER box
SQRT box
box SUB box I box SUP box
[LI CI R]PILE {list}
LEFT text eqn [RIGIIT text]
box [FROM box] [TO box]
SIZE text box
[ROMAN I BOLD I ITALIC] box
box[HATI BARI DOTI OOTOOTI TllDE]
DEFINE text text

list eqn I list ABOVE eqn

text : TEXT

The grammar makes it obvious why there are
few exceptions. For example, the observation that
something can be replaced by a more complicated
something in braces is implicit in the productions:

eqn : box I eqn box
box : textl { eqn}

Anywhere a single character could be used, any legal
construction can be used.

Clearly, our grammar is highly ambiguous.
What, for instance, do we do with the input

aoverb overc ?

Is it

{a over b} over c

or is it

USD:26-S

a over {b over c} ?

To answer questions like this, the grammar is
supplemented with a small set of rules that describe the
precedence and associativity of operators. In particu
lar, we specify (more or less arbitrarily) that OWtT asso
ciates to the left, so the first alternative above ii the one
cbo1en. On the other hand, 6llb ml sup bind to the
right, beca111e this ii closer to standanl mathematical
practice. That is, we assume z•• is z{tlt >, not (z• >" .

The piecedence rules re10lve the ambiguity in a
conmuction like

asup2overb

We define sup to have a higher precedence than over,

so this construction is parsed as .f instead of a j.

Naturally, a user can always force a particular
parsing by placing braces around expressions.

The ambiguous grammar approach seems to be
quite useful. The grammar we use is small enough to
be easily understood, for it contains none of the produc
tions that would be normally used for resolving ambi
guity. Instead the supplemental information about pre
cedence and associativity (also small enough to be
understood) provides the compiler-compiler with the
information it needs to make a fast, deterministic parser
for the specific language we want. When the language
is supplemented by the disambiguating rules, it is in
fact LR(l) and thus easy to parse[S].

The output code is generated as the input is
scanned. Any time a production of the grammar is
recognized, (potentially) some TROFF commands are
output. For example, when the lexical analyzer reports
that it has found a TEXT (i.e., a string of contiguous
characters), we have recognized the production:

t.ext : TEXT

The translation of this is simple. We generate a local
name for the string, then hand the name and the string
to TROFF, and let TROFF perform the storage manage
ment. All we save is the name of the string, its height,
and its baseline.

As another example, the translation associated
with the production

box : box OVER box

is:

USD:26-6

Width of output box •
slightly more than largest input width

Height of output box •
slightly more than sum of input heights

Base of output box •
slightly more than height of bottom input box

String describing output box •
move down;
move right enough to center bottom box;
draw bottom box (i.e., copy siring fer bottom box);
move up; move left enough to cent.er top box;
draw top box (i.e., copy string for top box);
move down and left; draw line full width;
return to proper base line.

Most of the other productions have equally simple
semantic actions: Picturing the output as a set of prop
erly placed boxes i,iakes the right sequence of position
ing commands quite obvious. The main difficulty is in
finding the right numbers to use for esthetically pleas
ing positioning.

With a grammar, it is usually clear how to
extend the language. For instance, one of our users
suggested a TENSOR operator, to make constructions
like

Grammatically, this is easy: it is sufficient to add a
production like

box : TENSOR { list }

Semantically, we need only juggle the boxes to the
right places.

6. Experience

There are really three aspects of interest-how
well EQN sets mathematics, how well it satisfies its
goal of being "easy to use," and how easy it was to
build.

The first question is easily addressed. This
entire paper has been set by the program. Readers can
judge for themselves whether it is good enough for
their purposes. One of our users commented that
although the output is not as good as the best hand-set
material, it is still better than average, and much better
than the worst. In any case, who cares? Printed books
cannot compete with the birds and flowers of
illuminated manuscripts on esthetic grounds, either, but
they have some clear economic advantages.

Some of the deficiencies in the output could be
cleaned up with more woit on our part. For example,
we sometimes leave too much space between a roman
letter and an italic one. If we were willing to keep
track of the fonts involved, we could do this better
more of the time.

Some other weaknesses are inherent in our out
put device. It is hard, for instance, to draw a line of an

A System for Typesetting Mathematics

arbitrary length without getting a perceptible overstrike
atone end.

As to ease of use, at the time of writing, the sys
tem bas been used by two distinct groups. One user
population consists of mathematicims, chemists, physi
cists, and computer scientists. Their typical reaction
bu been something like:

(1) It's easy to write, although I make the following
mil takes •••

(2) How do I do ••. ?

(3) It botches the following things Why don't you
fix them?

(4) You really need the following features ...

The leaming time is short. A few minutes gives
the general ftavor, and typing a page or two of a paper
generally uncovers most of the misconceptions about
how it works.

The second user group is much larger, the secre
taries and mathematical typists who were the original
target of the system. They tend to be enthusiutic con
verts. They find the language easy to learn (most are
largely self-taught), and have little trouble producing
the output they want. They are of course less critical of
the esthetics of their output than users trained in
mathematics. After a transition period, most find using
a computer more interesting than a regular typewriter.

The main difficulty that usen have seems to be
remembering that a blank is a delimiter; even experi
enced users use blanks where they shouldn't and omit
them when they are needed. A common instance is
typing

f(x sub i)

which produces

instead of

f(x;)

Since the EQN language knows no mathematics, it can
not deduce that the right parenthesis is not part of the
subscript.

The language is somewhat prolix, but this
doesn't seem excessive considering how much is being
done, and it is certainly more compact than the
corresponding TROFF commands. For example, here is
the source for the continued fraction expression in Sec
tion 1 of this paper:

a sub 0 + b sub 1 over
{a sub 1 + b sub 2 over
{a sub 2 + b sub 3 over
{a sub 3 + ... } } }

This is the input for the large integral of Section 1;
notice the use of definitions:

A System for Typesetting Mathemadc1

define emx " { e sup mx}"
define mab "{m sqrt ab}"
define sa " {sqrt a}"
define sb " {sqrt b}"
int dx over {a emx - be sup -mx} • .
left { lpile {

}

1 over {2 mab} -iog·
{sa emx-sb} over {sa emx + sb}

above
1 over mab • tanh sup -1 (sa over sb emx)

above
-1 over mab • coth sup -1 (sa over sb emx)

As to ease of construction, we have already
mentioned that there are really only a few person
months invested. Much of this time has gone into two
things-fine-tuning (what is the most esthetically pleas
ing space to use between the numerator and denomina
tor of a fraction?), and changing things found deficient
by our users (shouldn'ta tilde be a delimiter?).

The program consists of a number of small,
essentially unconnected modules for code generation, a
simple lexical analyzer, a canned parser which we did
not have to write, and some miscellany associated with
input files and the macro facility. The program is now
about 1600 lines of C [6], a high-level language remin
iscent of BCPL. About 20 percent of these lines are
"print" statements, generating the output code.

The semantic routines that generate the actual
TROFF commands can be changed to accommodate
other formatting languages and devices. For example,
in less than 24 hours, one of us changed the entire
semantic package to drive NROFF, a variant of TROFF,
for typesetting mathematics on teletypewriter devices
capable of reverse line motions. Since many potential
users do not have access to a typesetter, but still have to
type mathematics, this provides a way to get a typed
version of the final output which is close enough for
debugging purposes, and sometimes even for ultimate
use.

7. Conclusions

We think we have shown that it is possible to do
acceptably good typesetting of mathematics on a photo
typesetter, with an input language that is easy to learn
and use and that satisfies many users' demands. Such a
package can be implemented in short order, given a
compiler-compiler and a decent typesetting program
underneath.·

Defining a language, and building a compiler for
it with a compiler-compiler seems like the only sensible
way to do business. Our experience with the use of a
grammar and a compiler-compiler has been uniformly
favorable. If we had written everything into code
directly, we wpuld have been locked into our original
design. Furthermore, we would have never been sure
where the exceptions and special cases were. But

USD:26-7

because we have a grammar, we can change our minds
readily and still be reasonably sure that if a construc
tion works in one place it will worlc everywhere.

Acknowledgements

We are deeply indebted to J. F. Ossanna, the
author of TR.OFF, for his willingness to modify TROFF
to make our task euier and for his continuous usis
tance during the development of our program. We are
also grateful to A. V. Aho for help with language
theory, to S. C. Johnson far aid with the compiler
compiler, and to our early usen A. V. Aho, S. I. Feld
man, S. C. Johnson, R. W. Hamming, and M. D. Mcil
roy for their constructive criticisms.

References

[l] A Manual of Styk, 12th Edition. University of
Chicago Press, 1969. p 295.

[2] MoMl CIAfl' Phototypesetter. Graphic Systems,
Inc., Hudson, N. H.

[3] Ritchie, D. M., and Thompson, K. L .• "The
UNIX time-sharing system." Comm. ACM 17,
7 (July 1974), 365-375.

[4] Ossanna, J. F., TROFF User's Manual. Bell
Laboratories Computing Science Technical
Report 54, 1977.

[S] Aho, A. V., and Johnson, S. C., "LR Parsing."
Comp. Surv. 6, 2 (June 1974), 99-124.

[6] B. W. Kernighan and D. M. Ritchie, The C Pro
gramming Language. Prentice-Hall, Inc .• 1978.

Typesetting Mathematics - User's Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

ABSTRACT

This is the user's guide for a system for typesetting mathematics, using the phototypesetters on the
UNIXt operating system.

Mathematical expressions are described in a language designed to be easy to use by people who
know neither ·mathematics n<X' typesetting. Enough of the language to set in-line expressions like
:i~(tan x)lilllz = 1 or display equations like

G(z)=elnG(<l=exp[Xi s.t] = IJes,.•1•

=[l+S1z+ sir+·.·] [1+¥+~l;; + .. ·] ...

=ho[l,.i, •. ~.vo 1tL i!21 • • • JL] z"'
k1+2k2+ ••• +IM..=-

can be learned in an hour or so.
The language interfaces directly with the phototypesetting language TROFF, so mathematical expres

sions can be embedded in the running text of a manuscript, and the entire document produced in one pro
cess. This user's guide is an example of its outpuL

The same language may be used with the UNIX formatter NROFF to set mathematical expressions on
DASI and GSI terminals and Model 37 teletypes.

1. Introduction

EQN is a program for typesetting mathemat
ics on the Graphics Systems phototypesetters on
the UNIX operating system. The EQN language
was designed to be easy to use by people who
know neither mathematics nor typesetting. Thus
EQN knows relatively little about mathematics. In
particular, mathematical symbols like +, -, x,
parentheses, and so on have no special meanings.
EQN is quite happy to set garbage (but it will look
good).

EQN works as a preprocessor for the
typesetter formatter, TROFF[l], so the normal
mode of operation is to prepare a document with
both mathematics and ordinary text interspersed,
and let EQN set the mathematics while TROFF does

t UNIX is a trademark of Bell Laboratories.

the body of the text
On UNIX, EQN will also produce mathemat

ics on DASI and OSI terminals and ori Model 37
teletypes. The input is identical, but you have to
use the programs NEQN and NROFF instead of EQN
and TROFF. Of course, some things won't look as
good because terminals don't provide the variety
of characters, sizes and fonts that a typesetter
does, but the output is usually adequate for
proofreading.

To use EQN on UNIX,

eqn files I troff

USD:27-2

2. Displayed Equations

To tell EQN where a mathematical expres
sion begins and ends, we mark it with lines begin
ning .BQ and .EN. Thus if you type the lines

.EQ
x-y+z
.EN

your output will look like

x=y+z

The .BQ and .EN are copied through untouched;
they are not otherwise processed by BQN. This
means that you have to take care of things like
centering, numbering, and so on yourself. The
most common way is to use the TROFF and NROFF
macro package package '-ms' developed by M.
E. Lesk[3], which allows you to center, indent,
left-justify and number equations.

With the '-ms' package, equatiom are cen
tered by default. To left-justify an equation, use
.EQ L instead of .EQ. To indent it, use .EQ I •. Any
of these can be followed by an arbitrary 'equation
number' which will be placed at the right margin.
For example, the input

.EQ I (3.la)
x = f(y/2) + y/2
.EN

produces the output

x=f (y /2)+y /2 (3.la)

There is also a shorthand notation so in-line
expressions like x't can be entered without .EQ
and .EN. We will talk about it in section 19.

3. Input spaces

Spaces and newlines within an expression
are thrown away by EQN. (Normal text is left
absolutely alone.) Thus between .BQ and .EN,

and

and

X=y+z

X=y+z

x = y
+z

and so on all produce the same output

x=y+z

You should use spaces and newlines freely to

Typesetting Mathematics-User's Guide

niake your input equations readable and easy to
edit. In particular, very long lines are a bad idea,
since they are often hard to fix if you make a mis
take.

4. Output spaces

To force extra spaces into the output. use a
tilde '' - '' for each space you want

x---y-+-z

gives

x=y+z

You can also use a circumflex""'", which gives a
space half the width of a tilde. It is mainly useful
for fine-tuning. Tabs may also be used to position
pieces of an expression, but the tab stops must be
set by TROFF commands.

5. Symbols, Special Names, Greek

EQN knows some mathematical symbols,
some mathematical names, and the Greek alpha
bet For example,

x=2 pi int sin (omega t)dt

produces

x=2xJsin(rot)dt

Here the spaces in the input are necessary to tell
BQN that int, pi, sin and omega are separate enti
ties that should get special treatment The sin,
digit 2, and parentheses are set in roman type
instead of italic; pi and omega are made Greek;
and int becomes the integral sign.

When in doubt, leave spaces around
separate parts of the input. A very common error
is to type /(pi) without leaving spaces on both
sides of the pi. As· a result, EQN does· not reeog
nize pi as a special word, and it appears as f (pi)
instead off (7t).

A complete list of EQN names appears in
section 23. Knowledgeable users can also use
TROFF four-character names for anything EQN
doesn't know about, like \(bs for the Bell System
sign•·

6. Spaces, Again

The only way EQN can deduce that some
sequence of letters might be special is if that
sequence is separated from the letters .on either
side of it. This can be done by surrounding a spe
cial word by ordinary spaces (or tabs or new
lines), as we did in the previous section.

Typesetting Mathematics-User's Guide

You can also make special words stand out
by surrounding them with tildes or circumftexes:

x-= '"2-pi-inCsinTomega-tTdt

is much the same as the last example, except that
the tildes not only separate the magic words like
sin, o~ga, and so on, but also add extra spaces,
one space per tilde:

x =2xJ sin(cot)dt

Special words can also be separated by
braces { } and double quotes " ... ", which have
special meanings that we will see soon.

7. Subscripts and Superscripts

Subscripts and supencripts are obtained
with the words sub and sup.

x sup 2 + y sub k

gives

x2+yi

EQN takes care of all the size changes and vertical
motions needed to make the output look right
The words sub and sup must be surrounded by
spaces; x sub2 will give you xsub2 instead of x 2•

Funhermore, don't forget to leave a space (or a
tilde, etc.) to mark the end of a subscript or
superscript A common error is to say something
like

y = (x sup 2)+1

which causes

y=(x2)+1

instead of the intended

y=(x2)+1

Subscripted subscripts and superscripted
superscripts also work:

x sub i sub 1

is

A subscript and superscript on the same thing are
printed one above the other if the subscript comes
first:

x sub i sup 2

is

USD:27-3

Other than this special case, sub and sup
group to the right, so x sup y sub z means x'·, not
x1,.

8. Braces for Grouping

Nonnally, the end of a subscript or super
script is nwked simply by a blank (or tab or tilde,
etc.) What if the subscript or superscript is some
thing that has to be typed with blanks in it? In
that case, you can use the braces { and } to mark
the beginning and end of the subscript or super
script:

e sup {i omega t}

is

Rule: Braces can always be used to force EQN to
treat something as a unit, or just to make your
intent perfectly clear. Thus:

x sub {i sub l} sup 2

is

with braces, but

x sub i sub 1 sup 2

is

xir

which is rather different

Braces can occur within braces if neces-
sary:

e sup {i pi sup {rho +l}}

is

The general rule is that anywhere you could use
some single thing like x, you can use an arbi
trarily complicated thing if you enclose it in
braces. EQN will look after all the details of posi
tioning it and making it the right size.

In all cases, make sure you have the right
number of braces. Leaving one out or adding an
extra will cause EQN to complain bitterly.

Occasionally you will have to print braces.
To do this, enclose them in double quotes, like
"{". Quoting is discussed in more detail in sec
tion 14.

USD:27-4

9. Fractions

gives

To make a fraction, use the word over:

a+b over 2c -1

a+b_1 ~-

The line is made the right length and positioned
automatically. Braces can be used to make clear
what goes over what:

{alpha+ beta} over {sin (x)}

is

~
What happens when there is both an over and a
sup in the same expression? In such an
apparently ambiguous case, EQN does the sup
before the over, so

-b sup 2 over pi

is -:
2

instead of -bi The rules which decide

which operation is done first in cases like this are
summarized in section 23. When in doubt, how
ever, use braces to make clear what goes with
what.

10. Square Roots

To draw a square root, use sqrt:

sqrt a+b + 1 over sqrt {ax sup 2 +bx+c}

is

..Ja+b + 1
'lax 2+bx+c

Warning - square roots of tall quantities look
lousy, because a root-sign big enough to cover the
quantity is too dark and heavy:

is

sqrt {a sup 2 over b sub 2}

- 1-;;;
'I 02

Big square roots are generally better written as
something to the power 111:

(a2/b2)'h.

which is

(a sup 2 lb sub 2) sup half

Typesetting Mathematics - User's Guide

11. Summation, Integral, Etc.

Summations, integrals, and similar con
structions are easy:

sum from i=O to {i= inf} x sup i

produces

i~-. x•
•

Notice that we used braces to .indicate where the
upper part i ::oo begins and ends. No braces were
necessary for the lower part i =O, because it con
tained no blanks. The braces will never hurt, and
if the from and to parts contain any blanks, you
must use braces around them.

The from and to parts are both optional, but
if both are used, they have to occur in that order.

Other useful characters can replace the sum
in our example:

int prod union inter

become, respectively,

I n u n
Since the thing before the from can be anything,
even something in braces, from-to can often be
used in unexpected ways:

lim from { n -> inf} x sub n =O

is

limx,.=O ,._,...

12. Size and Font Changes

By default, equations are set in 10-point
type (the same size as this guide), with standard
mathematical conventions to .determine what
characters are in roman and what in italic.
Although EQN makes a valiant attempt to use
esthetically pleasing sizes and fonts, it is not per
fect. To change sizes and fonts, use size n and
roman, italic, bold and/at. Like sub and sup, size
and font changes affect only the thing that follows
them, and revert to the normal situation at the end
of it. Thus

boldxy

is

xy

and

Typesetting Mathematics - User's Guide

gives

size 14 bold x - y +
size 14 {alpha+ beta}

X=y+<X+(3

As always, you can use braces if you want to
affect something more complicated than a single
letter. F<X" example, you can change the size of
an entire equation by

size 12 { ... }

Legal sizes which may follow siu are 6, 7,
8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 36.
You can also change the size by a given amount;
for example, you can say size +2 to make the size
two points bigger, or size -3 to make it three
points smaller. This has the advantage that you
don't have to know what the current size is.

If you are using fonts other than roman,
italic and bold, you can say font X where X is a
one character TROFF name or number for the font.
Since EQN is tuned for roman, italic and bold,
other fonts may not give quite as good an appear
ance.

The fat operation takes the current font and
widens it by overstriking: fat grad is V and fat { x
sub i} is Xi.

If an entire document is to be in a non
standard size or font, it is a severe nuisance to
have to write out a size and font change for each
equation. Accordingly, you can set a "global"
size or font which thereafter affects all equations.
At the beginning of any equation, you might say,
for instance,

.EQ
gsize 16
gfontR

.EN

to set the size to 16 and the font to roman
thereafter. In place of R, you can use any of the
TROFF font names. The size after gsize can be a
relative change with+ or-.

Generally, gsize and gfont will appear at the
beginning of a document but they can also appear
thoughout a document: the global font and size
can be changed as often as needed. For example,
in a footnote; you will typically want the size of

:!:Like this one-. in which we have a few random
expressions like .x; and 1t1. The sizes for these were set

USD:27-5

equations to match the size of the footnote text,
which is two points smaller than the main text.
Don't forget to reset the global size at the end of
the footnote.

13. Diacritical Marks

To get funny marlcs on top of letters, there
are several words:

xdot x
x dotdot x
xhat i
x tilde :i
x vec r
xdyad ~

x bar x
x under ~

The diacritical mark is placed at the right height.
The bar and under are made the right length for
the entire construct, as in x +y +z ; other marks are
centered.

14. Quoted Text

Any input entirely within quotes (" ... ") is
not subject to any of the font changes and spacing
adjustments normally done by the equation setter.
This provides a way to do your own spacing and
adjusting if needed:

italic "sin(x)" + sin (x)

is

sin(x) +sin(x)

Quotes are also used to get braces and other
EQN keywords printed:

" { size alpha } "

is

{ size alpha }

and

roman " { size alpha } "

is

{ size alpha }

The construction "" is often used as a
place-holder when grammatically EQN needs
something, but you don't actually want anything
in your output. For example, to make 2He, you
can't just type sup 2 roman He because a sup has

by the command gsize -2.

USD:27-6

to be a superscript on something. Thus you must
say

"" sup 2 roman He

To get a literal quote use "\"". TROFF

characters like \(bs can appear unquoted, but
more complicated things like horizontal and verti
cal motions with \h and \v should always be
quoted. (If you've never heard of \h and \v,
ignore this section.)

15. Lining Up Equations

Sometimes it's necessary to line up a series
of equations at some horizontal position, often at
an equals sign.· This is done with two operations
called mark and lineup.

The word mark may appear once at any
place in an equation. It remembers the horizontal
position where it appeared. Successive equations
can contain one occurrence of the word lineup.
The place where lineup appears is made to line up
with the place marked by the previous mark if at
all possible. Thus, for example, you can say

.EQI
x+y mark= z
.EN
.EQI
x lineup= 1
.EN

to produce

x+y=z

x=l

For reasons too complicated to talk about, when
you use EQN and '-ms', use either .EQ I or .EQ L.
mark and lineup don't work with centered equa
tions. Also bear in mind that mark doesn't look
ahead;

xmark=l

x+y lineup -z

isn't going to work, because there isn't room for
the x + y part after the mark remembers where the
xis.

16. Big Brackets, Etc.

To get big brackets [], braces { },
parentheses (), and bars 11 around things, use the
left and right commands:

is

Typesetting Mathematics - User's Guide

left { a over b + 1 right }
-• - left (c over d right)
+ left [e right]

The resulting brackets are made big enough to
cover whatever they enclose. Other characters
can be used besides these, but the are not likely to
look very good. One exception is the floor and
ceiling characters:

left flocr x over y right floor
<• left ceiling a over b right ceiling

produces

Several warnings about brackets are in
order. First, braces are typically bigger than
brackets and parentheses, because they are made
up of three, five, seven, etc., pieces, while brack
ets can be made up of two, three, etc. Second, big
left and right parentheses often look poor,
because the character set is poorly designed.

The right part may be omitted: a "left
something'' need not have a corresponding
''right something''. If the right part is omitted,
put braces around the thing you want the left
bracket to encompass. Otherwise, the resulting
brackets may be too large.

If you want to omit the left part, things are
more complicated, because technically you can't
have a right without a corresponding left. Instead
you have to say

left "" right)

for example. The left'"' means a "left nothing".
This satisfies the rules without hurting your out
put.

17. Piles

There is a general facility for making verti
cal piles of things; it comes in several flavors.
For example:

A-=- left [
pile { a above b above c }
- pile { x above y above z }

right]

will make

Typesetting Mathematics- User's Guide

A=[H]
The elements of the pile (there can be u many u
you want) are centered one above another, at the
right height for most purposes. The keyword
above is used to separate the pieces; braces are
used around the entire list. The elements of a pile
can be u complicated u needed, even containing
more piles.

Three other fonm of pile exist lpile makes
a pile with the elements left-justified; rpile makes
a right-justified pile; and cpile makes a centered
pile, just like pile. The vertical spacing between
the pieces is s~mewhat larger for l-, r- and cpiles
than it is for ordinary piles.

roman sign (xr=
left {

lpile { 1 above 0 above -1}
--1pile

{iix>O above iix=O above iix<O}

makes

{

1 ifx>O
sign(x) = 0 if x=O

-1 if x<O

Notice the left brace without a matching right
one.

18. Matrices

It is also possible to make matrices. For
example, to make a neat array like

you have to type

matrix {

Xi x2

Yi Y2

ecol { x sub i above y sub i }
ecol { x sup 2 above y sup 2 }

}

This produces a matrix with two centered
columns. The elements of the columns are then
listed just as for a pile, each element separated by
the word above. You can also use lcol or rcol to
left or right adjust columns. Each column can be
separately adjusted, and there can be u many
columns u you like.

The reason for using a matrix instead of
two adjacent piles, by the way, is that if the ele
ments of the piles don't all have the same height,
they won't line up properly. A matrix forces
them to line up, because it looks at the entire

USD:27-7

structure before deciding what spacing to use.

A word of warning about matrices - each
colwnn must have the stllM n~r of ele~nts in
it. The world will end if you get this wrong.

19. Shorthand for In-line Equations

In a mathematical document, it is necessary
to follow mathematical conventions not just in
display equations, but also in the body of the text,
for example by making variable names like x
italic. Although this could be done by SUil'Olllld
ing the appropriate parts with .EQ and .EN, the
continual repetition of .EQ and .EN is a nuisance.
Furtbennore, with '-ms', .EQ and .EN imply a
displayed equation.

EQN provides a shorthand for short in-line
expressions. You can define two characters to
mark the left and right ends of an in-line equation,
and then type expressions right in the middle of
text lines. To set both the left and right characters
to dollar signs, for example, add to the beginning
of your document the three lines

.EQ
delim$$
.EN

Having done this, you can then say things like

Let $alpha sub i$ be the primary
variable, and let $beta.$ be zero. Then
we can show that $x sub 1$ is $>=0$.

This works as you might expect - spaces, new
lines, and so on are significant in the text, but not
in the equation pan itself. Multiple equations can
occur in a single input line.

Enough room is left before and after a line
that contains in-line expressions that something

like ~Xi does not interfere ~ith the .lines sur-

rounding il

To turn off the delimiters,

.EQ
delimoff
.EN

Warning: don't use braces, tildes, circumflexes,
or double quotes u delimiters - chaos will
result

20. Definitions

EQN provides a facility so you can give a
frequently-used suing of characters a name, and
thereafter just type the name instead of the whole

USD:27-8

stting. For example, if the sequence

x sub i sub 1 + y sub i sub 1

appears repeatedly throughout a paper, you can
save re-typing it each time by defining it like this:

define xy 'x sub i sub 1 + y sub i sub 1'

This makes xy a shorthand for whatever charac
ters occur between the single quotes in the
definition. You can use any character instead of
quote to mark the ends of the definition, so long
as it doesn't appear inside the definition.

Now you can use xy like this:

.EQ
f(x) = xy ...
.EN

and so on. Each occurrence of xy will expand
into what it was de.fined as. Be careful to leave
spaces or their equivalent around the name when
you actually use it, so EQN will be able to identify
it as special.

There are several things to watch out for.
First, although definitions can use previous
definitions, as in

.EQ
de.fine xi ' x sub i '
de.fine xii ' xi sub 1 '
.EN

don't define something in terms of itself A favor
ite error is to say

de.fine X 'roman X '

This is a guaranteed disaster, since X is now
de.fined in terms of itself. H you say

de.fine X ' roman "X" '

however, the quotes protect the second X, and
everything works fine.

EQN keywords can be redefined. You can
make I mean over by saying

de.fine I ' over '

or redefine over as I with

de.fine over ' I '

H you need different things to print on a.
terminal and on the typesetter, it is sometimes
worth defining a symbol differently in NEQN and
EQN. This can be done with ndefine and tdefine.
A definition made with ndefine only takes effect if
you are running NEQN; if you use tdefine, the

Typesetting Mathematics- User's Guide

definition only applies for. EQN. Names defined
with plain ufine apply to both EQN and NEQN.

21. Local Motions

Although EQN uies to get most things at the
right place on the paper, it isn't perfect, and occa
sionally you will need to tune the output to make
it just right Small extta horizontal spaces can be
obtained with tilde and circumflex. You can also
say back n and fwd n to move small amounts hor
izontally. n is how far to move in l/lOO's of an
em (an em is about the width of the letter 'm' .)
Thus back 50 moves back about half the width of
an m. Similarly you can move things up or down
with "I' n and down n. As with sub o- sup, the
local motions affect the next thing in the input,
and this can be something arbittarily complicated
if it is enclosed in braces.

22. A Large Example

Here is the complete source fo- the three
display equations in the abstract of this guide.

.EQI
GCzrmart • - e sup { In - G(z) }
-.- exp left (
sum from k>· l { S sub t z sup k} overt right)
-.- prod fromk>·l e sup {S sub t z supt/k}
.EN
.EQI
lineup• left(1+Ssub1 z+
{ S sub 1 sup 2 z sup 2 } over 2 ! + ... right)
left (1+ { S sub 2 z sup 2 } over 2
+ { S sub 2 sup 2 z sup 4 } over { 2 sup 2 cdot 2! }
+ ... right) ...
.EN
.EQI
lineup • sum from m>-0 left (
sum from
pile { t sub 1 ,t sub 2 ~ .. ., t sub m >-0
above ·
t sub 1 +2k sub 2 + .. ~+Ink sub m··in}
{ s sub 1 sup {t sub 1} } over {1 sup t sub 1 t sub 1 ! r
{ S sub 2 sup {t sub 2} } over {2 supt sub 2 t sub 2 ! } -

{ S sub m sup {k sub m} } over {m supt sub mt sub m ! }
right) z sup m
.EN

23. Keywords, Precedences, Etc.

H you don't use braces, EQN will do opera
tions in the order shown in this list.

Typesetting Mathematics - User's Guide USD:27-9

dyad vec under bar tUde hat dot dotdot
OMEGA n mu µ

fwd back down up PHI ~ nu v
PI 11 omega Cl)

fat roman italic bold size
PSI 'I' omicron 0 sub sup sqrt over
SIGMA l: phi • from to
THETA 8 pi K

These operations group to the le~ UPSil..QN y psi "' XI - rho p -over sqrt left right -
alpha a sigma a

All others group to the right. beta p tau 't

Digits, parentheses, brackets, punctuation chi x theta 9

marks, and these mathematical words are con- delta a upsilon u
verted to Roman font when encount.ered: epsilon £ xi ;

eta 11 zeta c
sin cos tan sinh cosh tanh arc gamma y
max min fun log In exp
Re Im and if for det

These are all the words known to EQN

These character sequences are recognized and (except for characters with names), together with
translated as shown. the section where they are discussed.

>= ~ above 17, 18 I pile 17
<= ~ back 21 mark 15

= bar 13 matrix 18
!= '* bold 12 ndefine 20
+- ± ecol 18 over 9
-> ~ col 18 pile 17
<- +-- cpile 17 rcol 18
<< << define 20 right 16
>> >> delim 19 roman 12
inf 00 dot 13 rpile 17
partial a dotdot 13 size 12
half 1h down 21 sqn 10
prime dyad 13 sub 7
approx = fat 12 sup 7
nothing font 12 tdefine 20
cdot from 11 tilde 13
times x fwd 21 to 11
del v gfont 12 under 13
grad v gsize 12 up 21

hat 13 vec 13
, ... , italic 12 4,6
sum :l: lcol 18 {} 8

I left 16 " " 8, 14 int

prod n lineup 15

union u
inter n 24. Troubleshooting

If you make a mistake in an equation, like
To obtain Greek letters, simply spell them leaving out a brace (very common) or having one

out in whatever case you want: too many (very common) or having a sup with
nothing before it (common), EQN will tell you

DELTA .d iota t with the message
GAMMA r kappa K

LAMBDA A lambda A.

USD:27-10

syntax e"or between lines x and y,file z

where x and y are approximately the lines
between which the trouble occurred, and z is the
name of the file in question. The line numbers
are approximate - look nearby as well. There
are also self-explanatory messages that arise if
you leave out a quote or try to run BQN on a non
existent file.

If you want to check a document befae
actually printing it (on UNIX only),

eqn files >/dev/null

will throw away the output but print the mes
sages.

If you. use something like dollar signs as
delimiters, it is easy to leave one out This causes
very strange troubles. The program . chec~q
checks for misplaced or missing dollar signs and
similar troubles.

In-line equations can only be so big
because of an internal buffer in TROFF. If you get
a message ''word overflow'', you have exceeded
this limit If you print the equation as a displayed
equation this message will usually go away. The
message "line overflow" indicates you have
exceeded an even bigger buffer. The only cure
for this is to break the equation into two separate
ones.

On a related topic, EQN does not break
equations by itself - you must split long equa
tions up across multiple lines by yourself, marlc
ing each by a separate .EQ •••. EN sequence. EQN
does warn about equations that are too long to fit
on one line.

25. Use on UNIX

To print a document that contains
mathematics on the UNIX typesetter,

eqn files I troff

If there are any TROFF options, they go after the
TROFF part of the command. For example,

eqn files I troff -ms

A compatible version of EQN can be used
on devices like teletypeS and DASI and GSI termi
nals which have half-line forward and reverse
capabilities. To print equations on a Model 37
teletype, for example, use

neqn files I nroff

The language for equations recognized by NEQN

Typesetting Mathematics-User's Guide

is identical to that of EQN, although of course the
output is more restricted.

To use a GSI or DASI terminal as the output
device,

neqn files I nroff -Tx

where x is the tenninal type you are using, such
as 300 or 300S.

EQN and NEQN can be used with the TBL

program[2] fCX' setting tables that contain
mathematics. Use TBL before CNJEQN, like this:

tbl files I eqn I troff
tbl files I neqn I nroff

26. Acknowledgments

We are deeply indebted to J. F. Ossanna,
the author of TROFF, for his willingness to extend
TROFF to make our task easier, and far his con
tinuous assistance during the development and
evolution of EQN. We are also grateful to A. V.
Aho for advice on language design, to S. C. John
son for assistance with the YACC compiler
compiler, and to all the EQN users who have made
helpful suggestions and criticisms.

References

[1] J. F. Ossanna, "NROFFrrROFF User's
Manual'', Bell Laboratories Computing
Science Technical Report #54, 1976.

[2] M. E. Lesk, "Typing Documents on
UNIX", Bell Laboratories, 1976.

[3] M. E. Lesk, ''TBL - A Program for Setting
Tables'', Bell Laboratories Computing Sci
ence Technical Report #49, 1976.

Thi - A Program to Format Tables

M.E.usk

ABSTRACT

Tbl is a document formatting preprocessor for troff er nroff which makes even
fairly complex tables easy to specify and enter. It is available on theUNIXt system and on
Honeywell 6000 ocos. Tables are made up of columns which may be independently
centered, right-adjusted, left-adjusted, er aligned by decimal points. Headings may be
placed. over single columns er groups of columns. A table entry may contain equations,
or may consist of several rows of texl Horizontal or vertical lines may be drawn as
desired in the table, and any table or element may be encl~ed in a box. For example:

1970 Federal Budget Transfers
(in billions of dollanl

State
Taxes Money

Net collected spent
New York 22.91 21.35 -1.56
New Jersey 8.33 6.96 -1.37
Connecticut 4.12 3.10 -1.02
Maine 0.74 0.67 -0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 +1.17
Texas 9.33 11.13 +1.80

Introduction.

Tbl turns a simple description of a table into a troff or nroff [1] program (list of commands) that
prints the table. Tbl may be used on the UNIX [2] system and on the Honeywell 6000 GCOS system. It
attempts to isolate a portion of a job that it can successfully handle and leave the remainder for other pro
grams. Thus tbl may be used with the equation formatting program eqn [3] or various layout macro pack
ages [4,5,6], but does not duplicate their functions.

This memorandum is divided into two parts. First we give the rules f<X" preparing tbl input; then
some examples are shown. The description of rules is precise but technical, and the beginning user may
pref er to read the examples first, as they show some common table arrangements. A section explaining
how to invoke tbl precedes the examples. To avoid repetition, henceforth read troff as ''troff or nroff.''

The input to tbl is text for a document, with tables preceded by a" .TS" (table start) command and
followed by a ".TE" (table end) command Tbl processes the tables, generating troff formatting com
mands, and leaves the remainder of the text unchanged. The '' • TS'' and '' • TE'' lines are copied, too, so
that troff page layout macros (such as the memo formatting macros [4]) can use these lines to delimit and
place tables as they see fit. In particular, any arguments on the ".TS" or ".TE" lines are copied but oth
erwise ignored, and may be used by document layout macro commands.

t ID-.1X is a trademark of Bell Laboratories.

USD:28-2

The format of the input is as follows:

text
.TS
table
.TE
text
.TS
table
.TE
text

where the format of each table is as follows:

.TS
options;
format.
data
.TE

Tbl - A Program to Format Tables

Each table is independent, and must contain formatting information followed by the data to be entered in
the table. The fonnatting information, which describes the individual columns and rows of the table, may
be preceded by a few options that affect the entire table. A detailed description of tables is given in the
next section.

Input commands.

As indicated above, a table contains, first, global options, then a format section describing the layout
of the table entries, and then the data to be printed. The format and data are always required, but not the
options. The various partS of the table are entered as follows:

1) OPTIONS. There may be a single line of options affecting the whole table. If present, this line must
follow the • TS line immediately and must contain a list of option names separated by spaces, tabs, or
commas, and must be terminated by a semicolon. The allowable options are:
center -center the table (default is left-adjust);

expand

box

all box

- make the table as wide as the current line length;

- enclose the table in a box;

- enclose each item in the table in a box;

doublebox - enclose the table in two boxes;

tab (x) - use x instead of tab to separate data items.

linesize (n) - set lines or rules (e.g. from box) inn point type;

delim (xy) - recognize x and y as the eqn delimiters.
The tbl program tries to keep boxed tables on one page by issuing appropriate ''need'' (.ne) com
mands. These requests are calculated from the number of lines in the tables, and if there are spacing
commands embedded in the input, these requests may be inaccurate; use nonnal troff procedures,
such as keep-release macros, in that case. The user who must have a multi-page boxed table should
use macros designed for this purpose, as explained below under 'Usage.'

2) FORMAT. The format section of the table specifies the layout of the columns. Each line in this sec
tion corresponds to one line of the table (except that the last line corresponds to all following lines up
to the next • T &, if any - see below), and each line contains a key-letter for each column of the
table. It is good practice to separate the key letters for each column by spaces or tabs. Each key
letter is one of the following:

Thi - A Program to Format Tables

L or I to indicate a left-adjusted column entry;

R or r to indicate a right-adjusted column entry;

C or c to indicate a centered column entry;

USD:28-3

N or n to indicate a numerical column entry, to be aligned with other numerical entries so that
the units digits of numbers line up;

A or a to indicate an alphabetic subcolumn; all corresponding entries are aligned on the left,
and positioned so that the widest is centered within the column (see example on page
12);

S ori s to indicate a spanned heading, i.e. to indicate that the entry from the previous column
continues across this column (not allowed for the first column, obviously); or

" to indicate a vertically spanned heading, i.e. to indicate that the entry from the previous
row continues down through this row. (Not allowed for the first row of the table, obvi
ously).

When numerical alignment is specified, a location for the decimal point is sought The righbnost dot
(.) adjacent to a digit is used as a decimal point; if there is no dot adjoining a digit, the righbnost
digit is used as a units digit; if no alignment is indicated, the item is centered in the column. How
ever, the special non-printing character string\& may be used to override unconditionally dots and
digits, or to align alphabetic data; this string lines up where a dot normally would, and then disap
pears from the final output. In the example below, the items shown at the left will be aligned (in a
numerical column) as shown on the right

13
4.2
26.4.12
abc
abc\&
43\&3.22
749.12

13
4.2

26.4.12
abc

abc
433.22

749.12

Note: If numerical data are used in the same column with.wider Lorr type table entries, the widest
number is centered relative to the wider L or r items (L is used instead of I for readability; they have
the same meaning as key-letters). Alignment within the numerical items is preserved. This is similar
to the behavior of a type data, as explained above. However, alphabetic subcolumns (requested by
the a key-letter) are always slightly indented relative to L items; if necessary, the column width is
increased to force this. This is not true for n type entries.

Warning: the n and a items should not be used in the same column.

For readability, the key-letters describing each column should be separated by spaces. · The end of
the format section is indicated by a period. The layout of the key-letters in the format section resem
bles the layout of the actual data in the table. Thus a simple format might appear as:

c s s
1 n n.

which specifies a table of three columns. The first line of the table contains a heading centered across
all three columns; each remaining line contains a left~adjusted item in the first column followed by
two columns of numerical data. A sample table in this format might be:

Overall title
Item-a 34.22 9.1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69 .87 14 .92

There are some additional features of the key-letter system:

USD:28-4 Tbl - A Program to Format Tables

Horizontal lines
- A key-letter may be replaced by '-' (underscore) to indicate a horizontal line in place of the
corresponding column entry, or by '•' to indicate a double horizontal line. If an adjacent
column contains a hclizontal line, or if there are vertical lines adjoining this column, this hor
izontal line is extended to meet the nearby lines. If any data entry is provided for this column,
it is ignored and a warning message is printed.

Vertical lines
- A vertical bar may be placed between column key-letters. This will cause a vertical line
between the corresponding columns of the table. A vertical bar to the left of the first key-letter
or to the right of the last one produces a line at the edge of the table. If two vertical bars
appear between key-letters, a double vertical line is drawn.

Space between columns
- A number may follow the key-letter. This indicates the amount of separation between this
column and the next column. The number normally specifies the separation in ens (one en is
aoout the width of the letter 'n').• If the ''expand'' option is used, then these numbers are mul
tiplied by a constant such that the table is as wide as the current line length. The default
column separation number is 3. If the separation is changed the worst case (largest space
requested) governs.

Vertical spanning
- Normally, vertically spanned items extending over several rows of the table are centered in
their vertical range. If a key-letter is followed by t or T, any corresponding vertically spanned
item will begin at the top line of its range.

Font changes
- A key-letter may be followed by a string containing a font name or number preceded by the
letter I or F. This indicates that the corresponding column should be in a different font from
the default font (usually Roman). All font names are one or two letters; a one-letter font name
should be separated from whatever follows by a space or tab. The single letters B, b, I, and i
are shorter synonyms for fB and fl. Font change commands given with the table entries over
ride these specifications.

Point size changes
- A key-letter may be followed by the letter p or P and a number to indicate the point size of
the corresponding table entries. The number may be a signed digit, in which case it is taken as
an increment or decrement from the current point size. If both a point size and a column
separation value are given, one or more blanks must separate them.

Vertical spacing changes
- A key-letter may be followed by the letter v or V and a number to indicate the vertical line
spacing to be used within a multi-line corresponding table entry. The number may be a s'igned
digit, in which case it is taken as an increment or decrement from the current vertical spacing.
A column separation value must be separated by blanks or some other specification from a
vertical spacing request This request has no effect unless the corresponding table entry is a
text block (see below).

Column width indication
- A key-letter may be followed by the letter w or W and a width value in parentheses. This
width is used as a minimum column width. If the largest element in the column is not as wide
as the width value given after the w, the largest element is assumed to be that wide. If the larg
est element in the column is wider than the specified value, its width is used. The width is also
used as a default line length for included text blocks. Normal troff units can be used to scale
the width value; if none are used, the default is ens. If the width specification is a unitless
integer the parentheses may be omitted If the width value is changed in a column, the last one
given controls.

* More precisely, an en is a number of points (1 point • 1n2 inch) equal to half the cunent type size.

Tbl - A Program to Format Tables USD:28-5

Equal width columns
- A key-letter may be followed by the letter e or E to indicate equal width columns. All
columns whose key-letters are followed by e or E are made the same width. This permits the
user to get a group of regularly spaced columns.

Note:
The order of the above features is immaterial; they need not be separated by spaces, except as
indicated above to avoid ambiguities involving point size and font changes. Thus a numerical
column entry in italic font and 12 point type with a minimum width of 2.S inches and separated
by 6 ens from the next column could be specified as

np12w(2.Si)fl 6
Alternative notation

- Instead of listing the format of successive lines of a table on consecutive lines of the format
section, successive line formats may be given on the same line, separated by commas, so that
the fonnat f<X" the example above might have been written:

cs s, 1 n n.

Default
- Column descriptors missing from the end of a format line are assumed to be L. The longest
line in the format section, however, defines the number of columns in the table; extra columns
in the data are ignored silently.

3) DATA. The data for the table are typed after the format. Normally, each table line is typed as one
line of data. Very long input lines can be broken: any line whose last character is \ is combined with
the following line (and the \ vanishes). The data for different columns (the table entries) are
separated by tabs, or by whatever character has been specified in the option tabs option. There are a
few special cases:

Troff commands within tables
- An input line beginning with a ' • ' followed by anything but a number is assumed to be a
command to troff and is passed through unchanged, retaining its position in the table. So, for
example, space within a table may be produced by'' .sp'' commands in the data.

Full width horizontal lines
- An input line containing only the character_ (underscore) or= (equal sign) is taken to be a
single or double line, respectively, extending the full width of the table.

Single column horizontal lines
- An input table entry containing only the character _ or = is taken to be a single or double
line extending the full width of the column. Such lines are extended to meet horizontal or vert
ical lines adjoining this column. To obtain these characters explicitly in a column, either pre
cede them by \& or follow them by a space before the usual tab or newline ...

Short horizontal lines
- An input table entry containing only the string _ is taken to be a single line as wide as the
contents of the column. It is not extended to meet adjoining lines.

Vertically spanned items
- An input table entry containing only the character string \"" indicates that the table entry
immediately above spans downward over this row. It is equivalent to a table format key-letter
of'"'.

Text blocks
- In order to include a block of text as a table entry, precede it by T{ and follow it by T}.
Thus the sequence

••• T{
block of
text

.. T} •••
is the way to enter, as a single entry in the table, something that cannot conveniently be typed

USD:28-6 Thi - A Program to Format Tables

as a simple string between tabs. Note that the T} end delimiter must begin a line; additional
columns of data may follow after a tab on the same line. See the example on page 11 for an
illustration of included text blocks in a table. If more than twenty or thirty text blocks are used
in a table, various limits in the troff program are likely to be exceeded, producing diagnostics
such as 'too many string/macro names' or 'too many number registers.'

Text blocks are pulled out from the table, processed separately by troff. and replaced in the
table as a solid block. If no line length is specified in the block of tat itself, or in the table for
mat, the default is to use L xC l(N + 1) where L is the current line length, C is the number of
table colunms spanned by the text, and N is the total number of colunms in the table. The
other parameters (point size, font, etc.) used in setting the bloclc of tat are those in effect at the
beginning of the table (including the effect of the ".TS" macro) and any table format
specifications of size, spacing and font, using the p, v and I modifiers to the column tey
letters. Commands within the text block itself are also recognized, of course. However, troff
commands within the table data but not within the text block do not affect that block.

Warnings:
- Although any number of lines may be present in a table, only the first 200 lines are used in
calculating the widths of the various columns. A multi-page table, of course, may be arranged
as several single-page tables if this proves to be a problem. Other difficulties with formatting
may arise because, in the calculation of column widths all table entries are assumed to be in
the font and size being used when the " • TS" command was encountered, except for font and
size changes indicated (a) in the table format section and (b) within the table data (as in the
entry \s+3\tldata\f'P\s0). Therefore, although arbitrary troff requests may be sprinkled in a
table, care must be taken to avoid confusing the width calculations; use requests such as '.ps'
with care.

4) ADDmONAL COMMAND LINES. If the format of a table must be changed after many similar lines, as
with sub-headings or summarizations, the ".T&" (table continue) command can be used to change
column parameters. The outline of such a table input is:

.TS
options;
format.
data

.T&
format.
data
.T&

format.
data
.TE

as in the examples on pages 10 and 13. Using this procedure, each table line can be close to its
corresponding format line.

Warning: it is not possible to change the number of columns, the space between columns, the global
options such as box, or the selection of columns to be made equal width.

Usage.

On UNIX, tbl can be run on a simple table with the command

tbl input-file I troff

but for more complicated use, where there are several input files, and they contain equations and ms
memorandum layout commands as well as tables, the normal command would be

Thi - A Program to Format Tables USD:28-7

tbl file-1 file-2 ••• 1 eqn I troff-ms

and, of course, the usual options may be used on the troff and eqn commands. The usage for nroff is simi
lar to that for troff. but only TELETYPE~ Model 37 and Diablo-mechanism (DASI or GSI) terminals can print
boxed tables directly.

For the convenience of users employing line printers without adequate driving tables <r post-filters,
there is a special -TX command line option to tbl which produces output that does not have fractional line
motions in it The only other command line options recogniz.ed by tbl are -ms and -mm which are turned
into commands to fetch the corresponding macro files; usually it is J110R convenient to place these argu
ments on the troff part of the command line, but they are accepted by tbl u well.

Note that when eqn and tbl are used together on the same file tbl should be used first If there are no
equations within tables, either order wcxts, but it is usually faster to run tbl first, since eqn nmnally pro
duces a larger expansion of the input than tbl. However, if there are equations within tables (using the
delim mechanism in eqn), tbl must be first or the output will be scrambled. Users must also beware of
using equations in n-style columns; this is nearly always wrong, since tbl attempts to split numerical format
items into two parts and this is not possible with equations. The user can defend against this by giving the
delim(xx) table option; this prevents splitting of numerical columns within the delimiters. For example, if
the eqn delimiters are$$, giving delim($$) a numerical column such u "1245 $+- 16$" will be divided
after 1245, not after 16.

Tbl limits tables to twenty columns; however, use of more than 16 numerical colunms may fail
because of limits in troff. producing the 'too many number registers' message. Troff number registers used
by tbl must be avoided by the user within tables; these include two-digit names from 31 to 99, and names
of the forms #x, x+, x I, "X, and x-, where x is any lower cue letter. The names ##, #-, and #" are also used
in certain circumstances. To conserve number register names, then and a formats share a register; hence
the restriction above that they may not be used in the same colunm.

For aid in writing layout macros, tbl defines a number register 1W which is the table width; it is
defined by the time that the ".TE" macro is invoked and may be used in the expansion of that macro.
More importantly, to assist in laying out multi-page boxed tables the macro T# is de.fined to produce the
bottom lines and side lines of a boxed table, and then invoked at its end. By use of this macro in the page
footer a multi-page table can be boxed In particular, the ms macros can be used to print a multi-page
boxed table with a repeated heading by giving the argument H to the " • TS" macro. If the table start
macro is written

.TSH
a line of the fonn

.TH
must be given in the table after any table heading (or at the start if none). Material up to the ".TII" is
placed at the top of each page of table; the remaining lines in the table are placed on several pages as
required. Note that this is not a feature of tbl, but of the ms layout macros.

Examples.

Here are some examples illustrating features of tbl. The symbol e in the input represents a tab char
acter.

USD:28-8

Input:

.TS
box;
CCC
111.
Language €>Authors €>Runs on

Fortran €>Many €>Almost anything
PUl €>IBM ()360/370
C ()BlL €> 11/45,H6000,370
BLISS €>Carnegie-Mellon ()PDP-10,11
IDS €>Honeywell ()H6000
Pascal ()Stanford ()370
.TE

Input:

.TS
allbox;
css
CCC
nnn.
AT&T Common Stock
Year ()Price ()Dividend
1971 f>41-54 ()$2.60
2 ()41-54 ()2.70
3 ()46-55 ()2 .87
4 ()40-53 ©3 .24
s ()45-52 ()3 .40
6 ()51-59 () .95*
.TE
• (first quarter only)

Tbl - A Program to Format Tables

Output:

Language Authors Runs on

Fortran Many Almost anything
PUl IBM 360/370
c BTL 11/45,H(J00(),370
BUSS Carnegie-Mellon PDP-10,11
IDS Honeywell H6000
Pascal Stanford 370

Output:

AT&T Common Stock
Year Price Dividend

1971 41-54 $2.60
2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45-52 3.40
6 51-59 .95*

• (first quarter only)

Tbl - A Program to Format Tables

Input:

.TS
box;
css
clclc
1111 n.
Major New Yott Bridges

Bridge €>Designer €>Length

-
Brooklyn t:>J. A. Roehling €>1595
Manhattan 00. Lindenthal €>1470
Williamsburg t:>L. L. Buck €>1600

-
Queensboro.ugh €>Palmer & €>1182
€> Hombostel

-e e1380
Triborough 00. H. Ammann €> _
e t:>383

-
Bronx Whitestone 00. H. Ammann t'.>2300
Throgs Neck €>0. H. Ammann €>1800

-
George Washington 00. H. Ammann €>3500
.TE

Input:

.TS
cc
np-21 n I.
©Stack
©_
1 ©46
©_
2©23
©_
3©15
©_
4©6.5
©_
5 ©2.1
e_
.TE

USD:28-9

Output:

Major New York Bridges
Bridge Des~er length

Brooklyn J. A. Roehling 1595
Manhattan G. Lindenthal 1470
Williamsburg L.L.Buck 1600
Queens borough Palmer& 1182

Hombostel
1380

Triboo>ugh O.H.Ammann
383

Bronx Whitestone O.H.Ammann 2300
ThrogsNeck O.H.Ammann 1800
George Washington O.H.Ammann 3500

Output:

Stack
1 46
2 23
3 15
4 6.5
s 2.1

USD:28-10

Input:

.TS
box;
LLL
LL_
LLILB
LL_
LLL.
january f>february f>march
april f>may
june 4:>july f>Months
august eseptember
october €>november t>december
.TE

Input:

.TS
box;
Cffi SSS.

Composition of Foods

-
.T&
c I cs s
c I cs s
c I c I c I c.
Food t>Percent by Weight
\"f)_

\" f>Protein f)Fat f)Carbo
\" f>\" f)\" €>hydrate

-
.T&
llnlnln.
Apples e .4 e .5 e13 .o
Halibut 4:>18 .4 t>5.2 t> •••
Lima beans f)7 .5 f) .8 e22 .o
Milk e3 .3 t>4 .o es .o
Mushrooms 4:>3.5 f>.4 f>6.0
Rye bread 4:>9 .o e .6 es2. 7
.TE

Output:

january
april
june
august
october

Output:

Tbl - A Program to Format Tables

february march

:: r Months
september 1------1

november december

Composition of Foods
Percent by Weight

Food
Protein Fat Carbo-

hydrate
Apples .4 .5 13.0
Halibut 18.4 5.2 ...
Lima beans 7.5 .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rye bread 9.0 .6 52.7

Tbl - A Program to Format Tables USD:28-11

Input: Output:

.TS
allbox;
ctl s s

New York Area Roe/cs

C C\V(li) C\V(li)
lp9 lp9 lp9.
Ne\V York Area Rocks
Era f>Formation f>Age (years)
Precambrian f>Reading Prong f>> 1 billion
Paleozoic f>Manhauan Prong €>400 million
Mesozoic f>T {
.na
Ne\Vark Basin, incl.
Stockton, Lockatong, and Bruns\Vick
formations;·also Watchungs
and Palisades.
T} f>200 million
Cenozoic OCoastal Plain f>T {
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation •
• ad
T}
.TE

Input:

Era Formation
Precambrian Reading Prong

Pal comic Manhattan Prong

Mesomic Newark Basin, incl.
Stockton, Locka-
tong, and
Brunswick forma-
tions; also
Watchungs and
Palisades.

Cenomic Coastal Plain

Output:

Name Definition

A_g_e (years)

>1 billion

400 million

200 million

On Long Island
30,000 years; Cre-
taccous sediments
redeposited by
recent glaciation.

.EQ
delim$$
.EN Gamma r(z)=r1 1 - 1e_,d,

.TS
doublebox;
cc
11.
Name ©Definition
.sp
.vs +2p

Sine sin(.x >=ir<ea-e-a)

Error erf(z >=if e-12
dt ·

Bessel J o(z)= ! r cos(z sin9)d 0

Ii :ze1a ~<s '>=tr· ~w i >

Gamma ©$GAMMA (z) =int sub 0 sup inf t sup {z-1} e sup -t dt$
Sine ©$sin (x) = 1 over 2i (e sup ix - e sup -ix)$
Error ©$ roman erf (z) = 2 over sqrt pi int sub 0 sup z e sup {-t sup 2} dt$
Bessel ©$ J sub 0 (z) = 1 over pi int sub 0 sup pi cos (z sin theta) d theta$
Zeta©$ zeta (s) =sum from k=l to infk sup -s -c Re·s > 1)$
.vs -2p
.TE

USD:28-12

Input:

.TS
box, tab(:);
cb s s s s
cp-2ssss
cllclclclc
cllclclclc
1211n21n21n21n.
Readability of Text
Line Width and Leading for 10-Point Type
=
Line : Set: I-Point: 2-Point: 4-Point
Width: Solid: Leading : Leading : Leading

9 Pica: \-9 .3: \-6.0: \-S .3: \-7 .1
14 Pica: \-4 .S: \-0.6: \-0.3: \-1.7
19 Pica: \-S .O : \-S .1 : 0 .0: \-2 .O
31 Pica:\-3.7:\-3.8:\-2.4:\-3.6
43 Pica: \-9 .1 : \-9 .O: \-5 .9: \-8 .8
.TE

Output:

Line
Width
9Pica

14Pica
19Pica
31 Pica
43Pica

Tbl - A Program to Format Tables

Set
Solid
-9.3 -S.3 -7.1
-4.S -0.3 -1.7
-s.o 0.0 -20
-3.7 -2.4 -3.6
-9.1 -S.9 -8.8

Tbl - A Program to Format Tables

Input:

.TS
cs
cip-2 s
In
an.
Some London Transport Statistics
(Year 1964)
Railway route miles 0244
Tubef>66
Sub-surface 022
Surface 0156
.sp .S
.T&
Ir
ar.
Passenger traffic \- railway
Journeys ()674 million
Average length ()4 .SS miles
Passenger miles 03,066 million
.T&
Ir
ar.
Passenger traffic \- road
Journeys ()2,252 million
Average length ()2 .26 miles
Passenger miles ()5,094 million
.T&
In
an.
.sp .5
Vehicles 012,521
Railway motor cars ()2,905
Railway trailer cars ()1,269
Total railway <D4,174
Omnibuses ()8,347
.T&
In
an •
• sp .5
Staff 073, 739
Administrative, etc • (f)S,582
Civil engineering 05,134
Electrical eng. 01, 714
Mech. eng. \-railway 04,310
Mech. eng. \-road ()9,152
Railway operations 08,930
Road operations ()35,946
Other 02,971
.TE

USD:28-13

Output:

Some London Transport Statistics
(Y •"' 1964)

Railway route miles 244
Tube 66
Sub-surface 22
Surface 156

Passenger ttaffic-railway
Journeys
Average length
Passenger miles

Passenger ttaffic - road
Journeys
Average length
Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administtative, etc.
Civil engineering
Electrical eng.
Mech. eng. - railway
Mech. eng. - road
Railway operations
Road operations
Other

674 million
4.SS miles

3,066 million

2,252 million
2.26miles

S,094 million

12,521
2,905
1,269
4,174
8,347

73,739
5,582
5,134
1,714
4,310
9,152
8,930

35,946
2,971

USD:28-14

Input:

.ps 8

.vs lOp

.TS
center box;
css
ci s s
CCC
m In.
New Jersey Representatives
(Democrats)
.sp .5
Name ec>ffice address t:>Phone
.sp .5 .

Tbl - A Program to Format Tables

James J. Florio f>23 S. White Horse Pike, Somerdale 08083 t:>f>09-627-8222
WilliamJ. Hughes f>2920 Adantic Ave., Atlantic City 08401 t:>f>09-345-4844
James J. Howard f>801 Bangs Ave., Asbury Park 07712 ()201-774-1600
Frank Thompson, Jr. f>lO Rutgers Pl., Trenton 08618 t:>f>09-599-1619
Andrew Maguire f>115 W. Passaic St., Rochelle Park 07662 ()201-843-0240
Robert A. Roe f>U .S .P .0 ., 194 Ward St., Paterson 07510 ()201-523-5152
Henry Helstoski f>666 Paterson Ave., East Rutherford 07073 ()201-939-9090
Peter W. Rodino, Jr. f>Suite 1435A, 970 Broad St., Newark 07102 ()201-645-3213
Joseph G. Minish f>308 Main St., Orange 07050 ()201-645-6363
Helen S • Meyner f>32 Bridge St., Lambertville 08530 f>609-397-1830
Dominick V. Daniels f>895 Bergen Ave., Jersey City 07306 ()201-659-7700
Edward J. Patten f>Natl. Bank Bldg., Perth Amboy 08861 f>201-826-4610
.sp .S
.T&
ci s s
min.
(Republicans)
.sp .5v
Millicent Fenwick f>41 N. Bridge St., Somerville 08876 ()201-722-8200
Edwin B. Forsythe f>301 Mill St., Moorestown 08057 f>609-235-6622
Matthew J. Rinaldo ()1961 Morris Ave., Union 07083 €)201-687-4235
.TE
.ps 10
.vs 12p

Tbl - A Program to Format Tables

Output:

Name

JamaJ.Florlo
WIDlalllJ.Hup•
Jam•J.Howard
Fnak Tlaom,_, Jr.
Andrew Maplre
Robert A. Roe
HenrJ HelltOlkl
Peter W. Rodino, Jr.
JOlepla G. Mlnllll
Hel• S. Me1ner
Dominick v. Daalell
F.dwanl J. Pattm

Miiiicent Fenwick
Edwin B. Forsythe
Matthew J. Rinaldo

New Jeney Repuentativea
(DClffOCNb)

Office addrell

23 S. White Hone Pib, Somerdale 08083
2920 A11antic Ave., A!llatic Cty 08401
801 Banp Ave., AJhury Part 07712
10 Rutpn PL, Tmllaa 08611
HS W. Pluaic SL, Rodlelle Part 07662
U.S.P.O., 194 Ward SL, Patenon 07510
666 Pltenma Ave., Elllt Rudlerfard 07073
Suite 1435A, 970 Bl'Old SL, Newark 07102
308 Main St., Orange 07050
32 Bridge SL, Lambertville 08530
895 Bergen Ave., Jeney City 07306
Natl. But Bldg., Perth~ 08861

(Republictuu)

41 N. Bridge SL, Somerville 08876
301 Mill SL, Moorestown 08057
1961 Morris Ave., Union 07083

Phone

6»-627-8222
li09-345-4844
201-774-ltiOO
li09-599-1619
201-843-0240
201-S23-S1S2
201-939-9090
201-645-3213
201-645-6363
li09-397-1830
201-659-7700
201-826-4610

201-722-8200
(,()9-235-6622
201-687-4235

USD:28-15

This is a paragraph of normal text placed here only to indicate where the left and right margins are. In this
way the reader can judge the appearance of centered tables or expanded tables, and observe how such
tables are formatted.

Input:

.TS
expand;
csss
cc cc
11 n n.
Bell Labs Locations
Name eAddress eArea Code ePhone
Holmdel eHolmdel, N. J. 07733 e201 ()949-3000
Murray Hill t>Murray Hill, N. J. 07974 t>201 t>582-6377
Whippany eWhippany, N. J. 07981 t>201 t>386-3000
Indian Hill t>Naperville, Illinois 60540 t>312 t>690-2000
.TE

Output:

Name
Holmdel
Murray Hill
Whippany
Indian Hill

Bell Labs Locations
Address

Holmdel, N. J. 07733
Murray Hill, N. J. 07974
Whippany, N. J. 07981
Naperville, Illinois 60540

Area Code
201
201
201
312

Phone
949-3000
582-6377
386-3000
690-2000

USD:28-16

Input:

.TS
box;
Cb S I S
clclc s
ltiw(li) I ltw(2i) I lp8 I lw(1.Si)p8.
Some IDl.ereating Places

Name f>Descripdon f>Pnctical Information

T{
American Museum of Natural Hialory
T}Of{
The collections fill 11.S acres (Michelin) or 2S acres (MT A)
of exlul>ition balls on four ftoon. TheJe is a full-sized replica
of a blue whale and the world's largest star aappiire (at.olen in 1964).
T} f>Hounf>lO-S,ex. Sun 11-S, Wed. to9
\" f)\" f>Location f>T{
Central Park West & 19th St.
T}
\" f>\'" f>Admission f>Doaation: $1 .00 asked
\" f)\" f>Subway f>AA to 81st St.
\" f>\" f>Telephone f>212-873-422S

Bronx Zoo f>T{
About a mile long and .6 mile wide, this is the largest zoo in America.
A lion eats 18 pounds
of meat a day while a sea lion eats lS pounds of fish.
T} f>Houn f>T{
10-4:30 winter, to S:OO summer
T}
\" f)\" f>Location f>T{
18Sth St. & Southern Blvd, the Bronx.
T}
\" f)\" f>Admission f>s1.oo, but Tu,We,Th free
\" f)\" f>Subway f>2 S to East Tremont Ave.
\" f)\" f>Telepbone €)212-933-1759

Brooklyn Museum f>T{
Five floors of galleries contain American and ancient art.
There are American period rooms and architectural ornaments saved
from wreckers, such as a classical figure from Pennsylvania Station.
T} f>Hours f>Wed-Sat, 10-S, Sun 12-S
\" f>\" f>Localion f>T{
Eastern Parkway & Washington Ave., Brooklyn.
T}
\" f)\" f>Admission f>Free
\" f)\" f>Subway f>2,3 to Eastern Parkway.
\" f)\" f>Telephone f>718-638-SOOO

T{
New-York Historical Society
T} f>T{
All the original paintings for Audubon's
.I
Birds of America
.R
are here, as are exhibits of American decorative arts, New Yort history,
Hudson River school paintings, carriages, and glass paperweights.
T} f>Houn f>T{
Tues-Fri & Sun. 1-Si Sat 10-S
T}
\" f>\" f>Location f>T{
Central Park West & 17th St.
T}
\" f>\" f>Admission f>Free
\"{)\"{)subway t)AA to 81st St.
\" f)\'" {)Telephone {)212-873-3400
.TE

Thi - A Program to Format Tables

Tbl - A Program to Format Tables

Output:

Some Interesting Places
Name Description

American Muse
um of Natural
History

The collections fill 11.5 acres Haun
(Michelin) or 25 acres (MT A) of Location
exhibition halls on four ftoors. Admiuion

There is a full-sized replica of a Subway
blue whale and the wmld's largest Telephone
star s~phire (stolen in 1964).

Bronx Zoo About a mile long and .6 mile Haun
wide, this is the largest zoo in Location
America. A lion eats 18 pounds of
meat a day while a sea lion eats 15 AdmiuiOD
pounds of fish. Subway

Brooklyn Museum Five ftoors of galleries contain
American and ancient art. There
are American period rooms and ar
chitectural ornaments saved from
wreckers, such as a classical figure
from Pennsylvania Station.

New-York Histor- All the original paintings for
ical Society Audubon's Birds of America are

here, as are exhibits of American
decorative arts, New York history,
Hudson River school paintings,
carriages, and glass paperweights.

Acknowledgments.

Telephone

Haun
Location

Admission
Subway

Telephone

Houn
Location
Admission
Subway

Telephone

USD:28-17

Practical Information
10-S,eL Sun 11-S, Wed. to9

Central Part West & 79tb St

Donation: s 1.00 uted
AAtoBlstSL

212-873-4225

10-4:30 winler, to S:OO aummer
18Stb SL & Southern Blvd, the
Bronx.
$1.00, b.a Tu,We,Th flee

2, s to Eut Tremom Ave.

212-933-1759

Wed-Sat, 10-S, Sun 12-S
Eastem Partway & Washington
Ave., Brooklyn.

Free
2,3 to Eastem Partway.
718-638-SOOO

Tues-Fri & Sun, 1-S; Sat 10-5
Centr.ll Part West & 77th St.

Free
AA to81st SL

212-873-3400

Many thanks are due to J. C. Blinn, who has done a large amount of testing and assisted with the
design of the program. He has also written many of the more intelligible sentences in this document and
helped edit all of it. All phototypesetting programs on UNIX are dependent on the work of J. F. Ossanna,
whose assistance with this program in particular has been most helpful. This program is patterned on a
table formatter originally written by J. F. Gimpel. The assistance of T. A. Dolotta, B. W. Kernighan, and J.
N. Sturman is gratefully acknowledged.

Reterences.

[1] J. F. Ossanna, NROFF/TROFF User's Manual, Computing Science Technical Report No. 54, Bell La
boratories, 1976.

[2] K. Thompson and D. M. Ritchie, "The UNIX Time-Sharing System," Comm. ACM. 17, pp. 365-75
(1974).

[3] B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm. ACM. 18, pp.
151-57 (1975).

[4] M. ~· Lesk, Typing Documents on UNIX. Bell Laboratories internal memorandum.

[5] M. E. Lesk and B. W. Kernighan, Computer Typesetting of Technical Journals on UNIX, Computing
Science Technical Report No. 44, Bell Laboratories, July 1976.

[6] J. R. Mashey and D. W. Smith, PWBIMM - Programmer's Workbench Memorandum Macros, Bell
Laboratories memorandum.

USD:28-18 Tbl - A Program to Format Tables

List of Tbl Command Characters and Words

Command Meaning Section
a A Alphabetic subcolumn 2
all box Draw box around all items 1
bB Boldface item 2
box Draw box around table 1
cc Centered column 2
center Center table in page 1
doublebox Doubled box around table 1
eE Equal width colunms 2
expand Make table full line width 1
f F Font change 2
ii Italic item 2
IL Left adjusted column 2
nN Numerical colunm 2
nnn Column separation 2
pP Point size change 2
rR Right adjusted cob1mn 2
sS Spanned item 2
tT Vertical spanning at top 2
tab (x) Change data separator character 1
T{ T} Text block 3
vV Vertical spacing change 2
wW Minimum width value 2
.xx Included troff command 3
I Vertical line 2
11 Double vertical line 2
A Vertical span 2
\" Vertical span 3

= Double horizontal line 2,3
Horizontal line 2,3 -

\ Short horizontal line 3 -

Refer - A Bibliography System

Bill Tuthill

Computing Services
University of California

Berkeley, CA 94720

ABSTRACT

Refer is a bibliography system that supports data entry, indexing, retrieval, sorting, runoff,
converuent citations, and footnote or endnote numbering. This document assumes you know
how to use some Unix editor, and that you are familiar with the nroff/troff text formatters.

The refer program is a preprocessor for nroff/troff', like eqn and tbl, except that it is used
for literature citations, rather than for equations and tables. Given incomplete but sufficiently
precise citations, ref er finds references in a bibliographic database. The complete references are
formatted as footnotes, numbered, and placed either at the bottom of the page, or at the end of a
chapter.

A number of ancillary programs make ref er easier to use. The addbib program is for
creating and extending the bibliographic database; sortbib sorts the bibliography by author and
date, or other selected criteria; and roffbib runs off the entire database, formatting it not as foot
notes, but as a bibliography or annotated bibliography.

Once a full bibliography has been created, access time can be improved by making an
index to the references with indxbib. Then, the lookbib program can be used to quickly retrieve
individual citations or groups of citations. Creating this inverted index will speed up ref er, and
lookbib will allow you to verify that a citation is sufficiently precise to deliver just one refer
ence.

Introduction

Taken together, the refer programs constitute a database system for use with variable-length information. To
distinguish various types of bibliographic material, the system uses labels composed of upper case letters, preceded
by a percent sign and followed by a space. For example, one document might be given this entry:

%A Joel Kies
%T Document Formatting on Unix Using the-ms Macros
%1 Computing Services
%C Berkeley
%0 1980

Each line is called a field, and lines grouped together are called a record; records are separated from each other by a
blank line. Bibliographic information follows the labels, containing data to be used by the refer system. The order
of fields is not irnponant, except that authors should be entered in the same order as they are listed on the document
Fields can be as long as necessary, and may even be continued on the following line(s).

The labels are meaningful to nroff/troff macros, and, with a few exceptions, the ref er program itself does not
pay attention to them. This implies that you can change the label codes, if you also change the macros used by
nroff /troff. The macro package takes care of details like proper ordering, underlining the book title or journal
name, and quoting the article's title. Here are the labels used by refer, with an indication of what they represent

USD:29-2

%H Header commentary, printed before reference
%A Author's name
%Q Corporate or foreign author (unreversed)
% T Title of article or book
%S Series title
%1 Journal containing article
%B Book containing article
%R Report, paper, « thesis (for unpublished material)
%V Volume
%N Number within volume
%E Editor of book containing article
%P Page number(s)
%1 Issuer (publisher)
%C City. where published
%D Date of publication
%0 Other commentary, printed at end of reference
%K Keywords used to locate reference
%L Label used by -k option of refer
%X Abstract (used by roffbib, not by refer)

Refer - A Bibliography System

Only relevant fields should be supplied. Except for %A, each field should be given only once; in the case of multi
ple authors, the senior author should come first The %Q is f<X" organizational authors, or authors with Japanese or
Arabic names, in which cases the order of names should be preserved. Books should be labeled with the % T, not
with the %B, which is reserved for books containing articles. The %J and %B fields should never appear together,
although if they do, the %J will override the %B. If there is no author, just an editor, it is best to type the editor in
the %A field, as in this example:

%A Bertrand Bronson, ed.

The %E field is used for the editor of a book (%B) containing an article, which has its own author. For unpublished
material such as theses, use the %R field; the title in the % T field will be quoted, but the contents of the %R field
will not be underlined. Unlike other fields, %H, %0, and %X should contain their own punctuation. Here is a mod
est example:

%A Mike E. Lesk
% T Some Applications of Inverted Indexes on the Unix System
%B Unix Programmer's Manual
%1 Bell Laboratories
%C Murray Hill, NJ
%0 1978
%V 2a
%K refer rnkey inv hunt
%X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using \ffirefer\fP.

Note that the author's name is given in normal order, without inverting the surname; inversion is done automati
cally, except when %Q is used instead of %A. We use %X rather than %0 for the commentary because we do not
want the comment printed all the time. The %0 and %H fields are printed by both refer and roffbib; the %X field
is printed only by rofTbib, as a detached annotation paragraph.

Data Entry with Addbib

The addbib program is for creating and extending bibliographic databases. You must give it the filename of
your bibliography:

% addbib database

Every time you enter addbib, it asks if you want instructions. To get them, type y; to skip them, type RETURN.

Refer - A Bibliography System USD:29-3

Addbib prompts for various fields, reads from the keyboard, and writes records containing the refer codes to the
database. After finishing a field entry, you should end it by typing RETURN. If a field is too long to fit on a line, type
a backslash(\) at the end of the line, and you will be able to continue on the following line. Note: the backslash
works in this capacity only inside addbib.

A field will not be written to the database if nothing is entered into it. Typing a minus sign as the first charac
ter of any field will cause addbib to back up one field at a time. Backing up is the best way to add multiple authors,
and it really helps if you f<X"get to add something important Fields not contained in the prompting skeleton may be
entered by typing a backslash as the last character before RE1URN. The following line will be sent verbatim to the
database and addbib will resume with the next field. This is identical to the procedure for dealing with long fields,
but with new fields, don't forget the % key-letter.

Finally, you will be asked for an abstract (or annotation), which will be preserved as the %X field Type in as
many lines as you need, and end with a control-D (hold down the CTRL button, then press the "d" key). This
prompting for an abstract can be suppressed with the -a command line option.

After one bibliographic record has been completed, addbib will ask if you want to continue. If you do, type
RETURN; to quit, type q or n (quit or no). It is also possible to use one of the system editors to correct mistakes
made while entering data. After the ''Continue?'' prompt, type any of the following: edit, ex, vi, or ed-you will
be placed inside the corresponding editor, and returned to addbib afteIWards, from where you can either quit or add
more data.

If the prompts normally supplied by addbib are not enough, are in the wrong order, or are too numerous, you
can redefine the skeleton by constructing a promptfile. Create some file, to be named after the -p command line
option. Place the prompts you want on the left side, followed by a single TAB (control-I), then the refer code that is
to appear in the bibliographic database. Addbib will send the left side to the screen, and the right side, along with
data entered, to the database.

Printing the Bibliography

Sortbib is for sorting the bibliography by author (%A) and date (%0), or by data in other fields. It is quite
useful for producing bibliographies and annotated bibliographies, which are seldom entered in strict alphabetical
order. It takes as arguments the names of up to 16 bibliography files, and sends the sorted records to standard output
(the terminal screen), which may be redirected through a pipe or into a file.

The -sKEYS flag to sortbib will sort by fields whose key-letters are in the KEYS string, rather than merely by
author and date. Key-letters in KEYS may be followed by a '+' to indicate that all such fields are to be used The
default is to sort by senior author and date (printing the senior author last name first), but -sA+D will sort by all
authors and then date, and -sA TD will sort on senior author, then title, and then date.

Roftbib is for running off the (probably sorted) bibliography. It can handle annotated bibliographies - anno
tations are entered in the %X (abstract) field. Roftbib is a shell script that calls refer -B and nroff -mbib. It
uses the macro definitions that reside in /usr/lib/tmac/tmac.bib, which you can redefine if you know nroff and troff.
Note that ref er will print the %H and %0 commentaries, but will ignore abstracts in the %X field; roftbib will print
both fields, unless annotations are suppressed with the -x option.

The following command sequence will lineprint the entire bibliography, organized alphabetically by author
and date:

% sortbib database I roftbib I lpr

This is a good way to proofread the bibliography, or to produce a stand-alone bibliography at the end of a paper.
Incidentally, rof'fbib accepts all flags used with nrofT. For example:

% sortbib database I roftbib -Tdtc -sl

will make accent marks work on a OTC daisy-wheel printer, and stop at the bottom of every page for changing
paper. The -n and -o flags may also be quite useful, to start page numbering at a selected point, or to produce only
specific pages.

USD:29-4 Refer - A Bibliography System

Roftbib understands four command-line number registers, which are something like the two-letter number
registers in -ms. The -rNt argument will number references beginning at one (1); use another number to start
somewhere besides one. The -rV2 ftag will double-space the entire bibliography, while -rVt will double-space the
references, but single-space the annotation paragraphs. Finally, specifying -rL6i changes the line length from 6.5
inches to 6 inches, and saying -r01i sets the page offset to one inch, instead of zero. (That's a capital 0 after -r,
not a zero.)

Citing Papers with Refer

The refer program normally copies input to output, except when it encounters an item of the form:

.[
partial citation
.]

The partial citation may be just an author's name and a date, or perhaps a title and a keyword, or maybe just a docu
ment number. Refer looks up the citation in the bibliographic database, and transforms it into a full, properly for
matted reference. If the partial citation does not correctly identify a single work (either finding nothing, or more
than one reference), a diagnostic message is given. If nothing is found, it will say "No such paper." If more than
one reference is found, it will say ''Too many hits.'' Other diagnostic messages can be quite cryptic; if you are in
doubt, use checknr to verify that all your .['shave matching .]'s.

When everything goes well, the reference will be brought in from the database, numbered, and placed at the
bottom of the page. This citation, lesk inverted indexes for example, was produced by:

This citation,
.[
lesk inverted indexes
.]
for example, was produced by

The . [and .] markers, in essence, replace the .FS and .FE of the -ms macros, and also provide a numbering mechan
ism. Footnote numbers will be bracketed on the the lineprinter, but superscripted on daisy-wheel terminals and in
troff. In the reference itself, articles will be quoted, and books and journals will be underlined in nroff, and itali
cized in troff.

Sometimes you need to cite a specific page number along with more general bibliographic material. You may
have, for instance, a single document that you refer to several times, each time giving a different page citation. This
is how you could get ''p. 1 O'' in the reference:

.[
kies document formatting
%P 10
.]

The first line, a partial citation, will find the reference in your bibliography. The second line will insert the page
number into the final citation. Ranges of pages may be specified as ''%P 56-78' '.

When the time comes to run off~ paper, you will need to have two files: the bibliographic database, and the
paper to format Use a command line something like one of these:

% refer -p database paper I nroff -ms
% ref er -p database paper I tbl I nroff' -ms
% refer -p database paper I tbl I neqn I nroff -ms

If other preprocessors are used, refer should precede tbl, which must in turn precede eqn or neqn. The -p option
specifies a ''private'' database, which most bibliographies are.

Refer - A Bibliography System USD:29-S

Refer's Command-line Options

Many people like to place references at the end of a chapter, rather than at the bottom of the page. The -e
option will accumulate references until a macro sequence of the form

.[
UST
.]

is encountered (or until the end of file). Refer will then write out all references collected up to that point, collapsing
identical references. Warning: there is a limit (currently 200) on the number of references that can be accumulated
atone time.

It is also possible to sort references that appear at the end of text The -sKEYS flag will sort references by
fields whose key-letters are in the KEYS string, and permute reference numbers in the text accordingly. It is
unnecessary to use -e with it, since -s implies -e. Key-letters in KEYS may be followed by a '+' to indicate that all
such fields are .to be used. The default is to sort by senior author and date, but -sA+D will sort on all authors and
then date, and -sA+ T will sort by authors and then title.

Refer can also make citations in what is known as the Social or Natural Sciences format. Instead of number
ing references, the -1 (letter ell) flag makes labels from the senior author's last name and the year of publication.
For example, a reference to the paper on Inverted Indexes cited above might appear as [Lesk1978a]. It is possible
to control the number of characters in the last name, and the number of digits in the date. For instance, the com
mand line argument-16,2 might produce a reference such as [Kemig78c].

Some bibliography standards shun both footnote numbers and labels composed of author and date, requiring
some keyword to identify the reference. The -k flag indicates that, instead of numbering references, key labels
specified on the %L line should be used to mark references.

The -n flag means to not search the default reference file, located in /usr/dict/papers/Rv7man. Using this flag
may make ref er marginally faster. The -an flag _will reverse the first n author names, printing Jones, J. A. instead of
J. A. Jones. Often -al is enough; this will reverse the names of only the senior author. In some versions of refer
there is also the -f flag to set the footnote number to some predetermined value; for example, -t'23 would start
numbering with footnote 23.

Making an Index

Once your database is large and relatively stable, it is a good idea to make an index to it, so that references
can be found quickly and efficiently. The indxbib program makes an inverted index to the bibliographic database
(this program is called pubindex in the Bell Labs manual). An inverted index could be compared to the thumb cuts
of a dictionary - instead of going all the way through your bibliography, programs can move to the exact location
where a citation is found.

lndxbib itself takes a while to run, and you will need sufficient disk space to store the indexes. But once it
has been run, access time will improve dramatically. Furthermore, large databases of several million characters can
be indexed with no problem. The program is exceedingly simple to use:

% indxbib database

Be aware that changing your database will require that you run indxbib over again. If you don't, you may fail to
find a reference that really is in the database.

Once you have built an inverted index, you can use lookbib to find references in the database. Lookbib can
not be used until you have run indxbib. When editing a paper, lookbib is very useful to make sure that a citation
can be found as specified. It takes one argument, the name of the bibliography, and then reads partial citations from
the terminal, returning references that match, or nothing if none match. Its prompt is the greater-than sign.

USD:29-6

% lookbib database
> lesk inverted indexes
%A Mike E. Lesk
%T Some Applications of Inverted Indexes on the Unix System
%J Unix Programmer's Manual
%I Bell Laboratories
%C Murray Hill, NJ
%D 1978
%V 2a
%X Difficult to read paper that dwells on indexing strategies,
giving little practical advice about using \ffirefer\fP.
>

Refer - A Bibliography System

If more than one reference comes back, you will have to give a more precise citation for refer . Experiment until
you find something that works; remember that it is harmless to overspecify. To get out of the lookbib program, type
a control-D alone on a line; lookbib then exits with an ''EOT'' message.

Lookbib can also be used to extract groups of related citations. For example, to find all the papers by Brian
Kernighan found in the system database, and send the output to a file, type:

% lookbib /usr/dict/papers/Ind > kem.rers
> kernighan
>EOT
% cat kern.rers

Your file, "kem.refs", will be full of references. A similar procedure can be used to pull out all papers of some
date, all papers from a given journal, all papers containing a certain group of keywords, etc.

Refer Bugs and Some Solutions

The refer program will mess up if there are blanks at the end of lines, especially the %A author line. Addbib
carefully removes trailing blanks, but they may creep in again during editing. Use an editor command- g/ •$Isl/I
- to remove trailing blanks from your bibliography.

Having bibliographic fields passed through as string definitions implies that interpolated strings (such as
accent marks) must have two backslashes, so they can pass through copy mode intact For instance, the word
''telephone'' would have to be represented:

te\ *'le\\•' phone

in order to come out correctly. In the %X field, by contrast, you will have to use single backslashes instead. This is
because the %X field is not passed through as a string, but as the body of a. paragraph macro.

Another problem arises from authors with foreign names. When a name like "Valery Giscard d'Estaing" is
turned around by the -a option of refer, it will appear as "d'Estaing, Valery Giscard," rather than as "Giscard
d'Estaing, Valery." To prevent this, enter names as follows:

%A Vale\\•'ry Giscard\Od'Estaing
%A Alexander Csoma\Ode\OKo\\•:ro\\•:s

(The second is the name of a famous Hungarian linguist) The backslash-zero is an nroff/troff request meaning to
insert a digit-width space. It will protect against faulty name reversal, and also against mis-sorting.

Footnote numbers are placed at the end of the line before the .[macro. This line should be a line of text, not a
macro. As an example, if the line before the.[is a .R macro, then the .R will eat the footnote number. (The .R is an
-ms request meaning change to Roman font) In cases where the font needs changing, it is necessary to do the fol
lowing:

Refer - A Bibliography System

\flet al. \fR
.[
awk aho kemighan weinberger
.]

USD:29-7

Now the reference will be to Aho et al. awk aho kernighan The \fl changes to italics, and the \fR changes back to
Roman fonl Both these requests are nrotr/trotr requests, not part of -ms. If and when a footnote number is added
after this sequence, it will indeed appear in the output.

Internal Details of Refer

You have already read everything you need to know in order to use the refer bibliography system. The
remaining sections are provided only fer extra information, and in case you need to change the way refer works.

The output of refer is a stteam of string definitions, one for each field in a reference. To create string names,
percent signs ~ simply changed to an open bracket, and an [F string is added, containing the footnote number. The
%X, % Y and %Z fields are ignored; however, the annobib program changes the %X to an .AP (annotation para
graph) macro. The citation used above yields this intermediate output:

.els [F 1

.]-

.els [A Mike E. Lesk

.els [T Some Applications of Inverted Indexes on the Unix System

.els [J Unix Programmer's Manual

.els [I Bell Laboratories

.els [C Murray Hill, NJ

.els [D 1978

.els [V 2a

.nr [T 0

.nr [A 0

.nr [0 0

.] [1 journal-article

These string definitions are sent to nroff, which can use the -ms macros defined in /usr/lib/mx/tmac.xref to take care
of formatting things properly. The initializing macro .]- precedes the string definitions, and the labeled macro .][
follows. These are changed from the input.[and.] so that running a file twice through refer is harmless.

The.](macro, used to print the reference, is given a type-number argument, which is a numeric label indicat
ing the type of reference involved. Here is a list of the various kinds of references:

Field Value Kind of Reference

%1 1
%B 3
%R%G 4
%1 2
%M S
none 0

Journal Article
Article in Book
Report, Government Report
Book
Bell Labs Memorandum (undefined)
Other

The order listed above is indicative of the precedence of the various fields. In other words, a reference that has both
the %1 and %B fields will be classified as a journal article. If none of the fields listed is present, then the reference
will be classified as "other."

The footnote number is fiagged in the text with the following sequence, where number is the footnote number:

([.number(.]

The \ *([. and*(.] stand for bracketing or superscripting. In nroff with low-resolution devices such as the lpr and a
crt, footnote numbers will be bracketed In troff, or on daisy-wheel printers, footnote numbers will be

USD:29-8 Refer - A Bibliography System

.
superscripted. Punctuation normally comes before the reference number; this can be changed by using the -P (post
punctuation) option of ref er.

In some cases, it is necessary to override cenain fields in a reference. For jnstance, each time a work is cited,
you may want to specify different page numbers, and you may want to change certain fields. This citation will find
the Lesk reference, but will add specific page numbers to the output, even though no page numbers appeared in the
original reference .

. [
lesk inverted indexes
%P 7-13
%I Computing Services
%0 UNX 12.2.2 .
.]

The %1 line will also override any previous publisher information, and the %0 line will append some commentary.
The refer program simply adds the new %P, %I, and %0 strings to the output, and later strings definitions cancel
earlier ones.

It is also possible to insert an entire citation that does not appear in the bibliographic database. This reference,
for example, could be added as follows:

.[
%A Brian Kernighan
% T A Troff Tutorial
%1 Bell Laboratories
%0 1978
.]

This will cause refer to interpret the fields exactly as given, without searching the bibliographic database. This
practice is not recommended, however, because it's better to add new references to the database, so they can be
used again later.

If you want to change the way footnote numbers are printed, signals can be given on the.[and.] lines. For
example, to say ''See reference (2),'' the citation should appear as:

See reference
.[(
partial citation
.]),

Note that blanks are significant on these signal lines. If a permanent change in the footnote format is desired, it's
best to redefine the[. and.] strings.

Changing the Refer Macros

This section is provided for those who wish to rewrite or modify the refer macros. This is necessary in order
to make output correspond to specific journal requirements, or departmental standards. First there is an explanation
of how new macros can be substituted for the old ones. Then several alterations are given as examples. Finally,
there is an annotated copy of the refer macros used by roflbib .

The refer macros for nroff/troff supplied by the -ms macro package reside in /usr/lib/mx/tmac.xref; they are
reference macros, for producing footnotes or endnotes. The refer macros used by roftbib, on the other hand, reside
in /usr/lib/tmac/tmac.bib; they are for producing a stand-alone bibliography.

To change the macros used by roflbib, you will need to get your own version of this shell script into the
directory where you are working. These two commands will get you a copy of roflbib and the macros it uses: t

% cp /usr/lib/tmac/tmac.bib bibmac

You can proceed to change bibmac as much as you like. Then when you use rofTbib, you should specify your own

Refer - A Bibliography System

version of the macros, which will be substituted for the normal ones

% roffbib -m bibmac filename

where filename is the name of your bibliography file. Make sure there's a space between -m and bibmac.

USD:29-9

If you want to modify the refer macros for use with nroff and the -ms macros, you will need to get a copy of
''tmac.xrer ':

% cp /usr/Iib/ms/s.ref refmac

These macros are much like ''bibmac' ', except they have .FS and .FE requests, to be used in conjunction with the
-ms macros, rather than independently defined .XP and .AP requests. Now you can put this line at the top of the
paper to be formatted:

.so refmac

Your new ref~r macros will override the definitions previously read in by the -ms package. This method works
only if "refmac" is in the working directory.

Suppose you didn't like the way dates are printed, and wanted them to be parenthesized, with no comma
before. There are five identical lines you will have to change. The first line below is the old way, while the second
is the new way:

.if !"*([D'"' , *([D\c

.if !"*([D"" \& (*([D)\c

In the first line, there is a comma and a space, but no parentheses. The ''\c'' at the end of each line indicates to
nroff that it should continue, leaving no extra space in the output. The ''\&'' in the second line is the do-nothing
character; when followed by a space, a space is sent to the output

If you need to format a reference in the style favored by the Modern Language Association or Chicago
University Press, in the form (city: publisher, date), then you will have to change the middle of the book macro [2 as
follows:

\& (\c
.if !"*([C"" *([C:
*([l\c
.if !"*([D"" , *([D\c
)\c

This would print (Berkeley: Computing Services, 1982) if all three strings were present The first line prints a space
and a parenthesis; the second prints the city (and a colon) if present; the third always prints the publisher (books
must have a publisher, or else they're classified as other); the fourth line prints a comma and the date if present; and
the fifth line closes the parentheses. You would need to make similar changes to the other macros as well.

Acknowledgements

Mike Lesk of Bell Laboratories wrote the original refer software, including the indexing programs. Al
Stangenberger of the Forestry Department wrote the first version of addbib, then called bibin. Greg Shenaut of the
Linguistics Department wrote the original versions of sortbib and roffbib. All these contributions are greatly
appreciated.

Some Applications of Invened Indexes on the UNIX System

I. Introduction.

Some Applications of Inverted Indexes on the UNIX System

M. E. Lesk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

USD:30-l

The UNIXt system has many utilities (e.g. grep, awk, lex, egrep, fgrep, ...) to search through files
of text, but most of them are based on a linear scan through the entire file, using some deterministic
automaton. This memorandum discusses a program which uses inverted indexes 1 and can thus be
used on much larger data bases.

As with any indexing system, of course, there are some disadvantages; once an index is made.
the files that have been indexed can not be changed without remaking the index. Thus apolications
are restricted to those making many searches of relatively stable data. Funhermore. these ,,Jrograms
depend on hashing, and can only search for exact matches of whole keywords. It is not possible to
look for arithmetic or logical expressions (e.g. Hdate greater than 1970") or for regular expression
searching such as that in lex. 2

Currently there are two uses of th is software. the refer preprocessor to format references. and
the looka/l command to search through all text files on the UNlX system.;

The remaining sections of this memorandum discuss the searching programs and their uses.
Section 2 explains the operation of the searching algorithm and describes the data collected for use
with the lookall command. The more imponant application~ refer has a user's description in section
J. Section 4 goes into more detail on reference files for the benefit of those who wish to add refer
ences to data bases or write new troff macros for use with refer. The options to make refer collect
identical citations. or otherwise relocate and adjust references, are described in section 5.

2. Searching.

The indexing and searching process is divided into two phases, each made of two parts. These
are shown below.

A. Construct the index.

(1) Find keys - turn the input files into a sequence of tags and keys, where each tag identifies
a distinct item in the input and the keys for each such item are the strings under which it
is to be indexed.

(2) Hash and son - prepare a set of invened indexes from which, given a set of keys. the
appropriate item tags can be found quickly.

B. Retrieve an item in response to a query.

t L'NIX is a trademark of AT&T Bell Laboratories.
1 D. Knuth, The Art o.f Computer Programming: 'Vol. 3. Sorting and Searching. Addison-Wesley, Read

ing. Mass .. 1977. See section 6.5.

:? M. E. Lesk. "Lex - A Lexical Analyzer Generator."' Comp. Sci. Tech. Rep. No. 39. Bell Laboratories.
Murray Hill. ~ew Jersey. October 197 5. Reprinted as PS 1: 16 in (.'.VIX Programmer's .\f anual. lJsenix As
sociation. (1986).
; lookall is not part of the Berkeley L'"NIX distribution.

USD:J0-2 Some Applications of Invened Indexes on the UNIX System

(3) Search - Given some keys, look through the files prepared by the hashing and soning
facility and derive the appropriate tags.

(4) Deliver - Given the tags, find the original items. This completes the searching process.

The first phase, making the index, is presumably done relatively infrequently. It should, of course. be
done whenever the data being indexed change. In contrast, the second phase, retrieving items. is
presumably done often, and must be rapid.

An effon is made to separate code which depends on the data being handled from code which
depends on the searching procedure. The search algorithm is involved only in programs (2) and (3).
while knowledge of the actual data files is needed only by programs (1) and (4). Thus it is easy to
adapt to different data files or different search algorithms.

To stan with, it is necessary to have some way of selecting or generating keys from input files.
For dealing with files that are basically English, we have a key-making program which automatically
selects worps and passes them to the hashing and soning program (step 2). The format used has one
line for each input item, arranged as follows:

name:stan,length (tab) keyl key2 key3 ...

where name is the file name, start is the starting byte number, and length is the number of bytes in
the entry.

These lines are the only input used to make the index. The first field (the file name, byte posi
~ion and byte count) is the tag of the item and can be used to retrieve it quickly. Normally, an item
} either a whole file or a section of a file delimited by blank lines. After the tab, the second field con

tains the keys. The keys, if selected by the automatic program, are any alphanumeric strings which
are not among the l 00 most f; equent words in English and which are not entirely numeric (except for
four-digit numbers beginning 19, which are accepted as dates). Keys are truncated to six characters
and convened to lower case. Some selection is needed if the original items are very large. We nor
mally just take the first n keys, with n less than I 00 or so; this replaces any attempt at intelligent
selection. One file in our system is a complete English dictionary; it would presumably be retrieved
for alJ queries.

To generate an invened index to the list of record tags and keys, the keys are hashed and soned
to produce an index. What is wanted, ideally, is a series of lists showing the tags associated with each
key. To condense this, what is actually produced is a list showing the tags associated with each hash
code, and thus with some set of keys. To speed up access and funher save space, a set of three or
possibly four files is produced. These files are:

File Contents
entry Pointers to post.ing file

for each hash code
posting Lists of tag pointers for

each hash code
tag Tags for each item
key Keys for each item

(optional)

The posting file comprises the real data: it contains a sequence of lists of items posted under each
hash code. To speed up searching, the entry file is an array of pointers into the posting file. one per
potential hash code. Funhermore, the items in the lists in the posting file are not referred to by their
complete tag, but just by an address in t~e tag file, which gives the complete tags. The key file is
optional and contains a copy of the keys used in the indexing.

The searching process stans with a query, containing several keys. The goal is to obtain ail
items whi ~ ·~ were indexed under these keys. The query keys are hashed. and the pointers in the entry
file used to access the lists in the posting file. These lists are addresses in the tag file of documents
posted under the hash codes derived from the query. The common items from all lists are deter
mined: this must include the items indexed by every key, but may also contain some items which are

Some Applications of Inverted Indexes on the UNIX System USD:30-3

false drops, since items referenced by the correct hash codes need not actually have contained the
correct keys. Normally, if there are several keys in the query, there are not likely to be many false
drops in the final combined list even though each hash code is somewhat ambiguous. The actual tags
are then obtained from the tag file, and to guard against the possibility that an item has false-dropped
on some hash code in the query, the original items are normally obtained from the delivery program
(4) and the query keys checked against them by string comparison.

Usually, therefore, the check for bad drops is made against the original file. However, if the key
derivation procedure is complex, it may be preferable to check against the keys fed to program (2).
In this case the optional key file which contains the keys associated with each item is generated, and
the item tag is supplemented by a string

;start.length

which indicates the starting byte number in the key file and the length of the string of keys for each
item. This file is not usually necessary with the present key-selection program, since the keys always
appear in the original document.

There is also an option (-Cn) for coordination level searching. This retrieves items which match
all but n of the query keys. The items are retrieved in the order of the number of keys that they
match. Of course~ n must be less than the number of query keys (nothing is retrieved unless it
matches at least one key).

As an example, consider one set of 43 77 references, comprising 660.000 bytes. This included
51 ~000 keys, of which 5,900 were distinct keys. The hash table is kept full to save space (at the
expense of time); 995 of 997 possit!e hash codes were used. The total set of index files (no key file)
included 1 71 ~000 bytes, about 26% of the original file size. It took 8 minutes of processor time to
hash, sort, and write the index. To search for a single query with the resulting index took 1.9 seconds
of processor time, while to find the same paper with a sequential linear search using grep (reading all
of the tags and keys) took 12.3 seconds of processor time.

We have also used this software to index all of the English stored on our UNIX system. This is
the index searched by the look.all command. On a typical day there were 29,000 files in our user file
system, containing about 152,000.000 bytes. Of these 5.300 files, containing 32,000.000 bytes (about
21 %) were E11glish text. The total number of ·words' (determined mechanically) was 5, 100,000. Of
these 227 ,000 were selected as keys; 19,000 were distinct, hashing to 4,900 (of 5,000 possible)
different hash codes. The resulting inverted file indexes used 845,000 bytes, or about 2.6% of the size
of the original files. The particularly small indexes are caused by the fact that keys are taken from
only the first 50 non-common words of some very long input files.

Even this large look.all index can be searched quickly. For example, to find this document by
looking for tie keys .. lesk inverted indexes" required 1. 7 seconds of processor time and system time;
By comparison, just to search the 800,000 byte dictionary (smaller than even the inverted indexes; let
alone the 27,000,000 bytes of text files) with grep takes 29 seconds of processor time. The lookal/
program is thus useful when looking for a document which you believe is stored on-line, but do not
know where. For example. many memos from our center ~re in the file system, but it is often difficult
to guess where a particular memo might be (it might have several authors, each with many direc
tories, and have been worked ·on by a secretary with yet more directories). Instructions for the use of
the look.all command are given in the manual section, shown in the appendix to this memorandum.

The only indexes maintained routinely are those of publication lists and all English files. To
make other indexes. the programs for making keys, sorting them, searching the indexes, and deliver
ing answers must be used. Since they are usually invoked as parts of higher-level commands, they are
not in the default command directory, but are available to any user in the directory lusrl/iblrefer.
Three programs are of interest: mker. which isolates keys from input files: inv, which makes an index
from a set of keys; and hunt. which searches the index and delivers the items. Note that the two
pans of the retrieval phase are combined into one program, to avoid the excessive system work and
delay which would result from running these as separate processes.

USD:30-4 Some Applications of Invened Indexes on the U~IX System

These three commands have a large number of options to adapt to different kinds of input. The
user not interested in the detailed description that now follows may skip to section 3, which describes
the refer program, a packaged-up version of these tools specifically oriented towards formatting ref er
ences.

Make Keys. The program mkey is the key-making program corresponding to step (I) in phase
A. Normally, it reads its input from the file names given as arguments, and if there are no arguments
it reads from the standard input. It assumes that blank lines in the input delimit separate items, for
each of which a different line of keys should be generated. The lines of keys are written on the stan
dard output. Keys are any alphanumeric string in the input not among the most frequent words in
English and not entirely _numeric (except that all-numeric strings are acceptable if they are between
1900 and 1999). In the output, keys are translated to lower case, and truncated to six characters in
length; any associated punctuation is removed. The following flag arguments are recognized by m keJ ·:

~name Name of file of common words; default is lusrllibleign.
-f name Read a list of files from name and take each as an input argu

ment.
-i chars Ignore all lines which begin with '%' followed by any character

in chars.
-kn Use at most n keys per input item.
-In Ignore items shorter than n letters long.
-nm Ignore as a key any word in the first m words of the list of

common English words. The default is 100.
-s Remove the labels (file:start,length) from the output; just give

the keys. Used when searching rather than indexing.
-w Each whole file is a separate item; blank lines in files are

irrelevant.

The normal arguments for indexing references are the defaults, which are -c lusrl/ibleign.
-nJOO, and -13. For searching, the -s option is also needed. When the big lookall index of all
English files is run, the options are -w, -k50, and -f fjile/ist). When running on textual input. the
mkey program processes about 1000 English words per processor second. Unless the -k option is
used (and the input files are long enough for it to take effect) the output of mkey is comparable in
size to its input.

Hash and invert. The inv program computes the hash codes and writes the invened files. It
reads the output of mkey and writes the set of files described earlier in this section. It expects one
argument, which is used as the base name for the three (or four) files to be written. Assuming an
argument of Index (the default) the entry file is named Index.ia, the posting file Jndex.ib, the tag file
Jndex.ic, and the key file (if present) Index.id. The inv program recognizes the following options:

-a Append the new keys to a previous set of inverted files, mak
ing new files if there is no old set using the same base name.

-d Write the optional key file. This is needed when you can not
check for ·false drops by looking for the keys in the original
inputs, i.e. when the key derivation procedure is complicated
and the output keys are not words from the input files.

-hn The hash table size is n (default 997): n should be prime.
Making n bigger saves search time and spends disk space.

-i(u} name Take input from file name, instead of the standard input: if u
is present name is unlinked when the son is staned. Using
this option permits the sort scratch space to overlap the disk
space used for input keys.

-n Make a completely new set of invened files. ignoring previous
files.

Some Applications of Inverted Indexes on the lTh.TJX System

-p

-v

"'Pipe into the sort program, rather than writing a temporary
input file. This saves disk space and spends processor time.
Verbose mode; print a .summary of the .ru.unber of .keys which
finished indexing.

USD:30-5

About half the time llSed in inv is in the contained son. Assuming the~ is ronr;hly linear.
however, a guess at the total timing for im• .is 250 keys per second. The space used .is .usually of mG.:-e
importance: the entry file uses four bytes per possible hash (note the -h option), and the tag file
around 15-20 bytes per item indexed. "Roughly, the posting file contains one item foi each key
instance and one item for each possible hash code; the items are 1WO bytes long if th~ tag file is less
than 65336 bytes long, and the items are four bytes wide if the tag file is greater than 65536 bJ1es
long. Note that to minimize storage, the hash tatles should be over-full; for most of the files indexed
in this way, there is no other real choice, since the entry file must fit in memory.

Searching and Retrieving. The hunt program retrieves items from an index. It combines, as
me:1tioned above, the two pans of phase (B): search and delivery. The reason ~+.y it is efficient to
co. oint: delivery .and search .is partly to .a.-a.id .starting .unnecessary processes, .and ~1rtly be.cause the
deli \'Cry operation must be a part of the search operation in any case. Because ,. :~ :he hashing. the
search part takes place in two stages: first items are retrieved which have the right hash codes associ
ated 'With them, and then the actual items are inspected to determine false drops. i.e. to determine if
an!1hmg with the right hash codes doesn't really have the right keys. Since the original item is
,: :·1evcd to check on false drops. it is efficient to present it immediately, rather than only giving the

Ldg as output and later retrieving the item again. If there were a separate key file. this argument
would not apply, but separate key files are not common.

Input to hunt is taken from the standard inl'ut, one query -per line. Ear query should be in
mkey -s output format; all lower case, no punctuation. The hunt program takes one argument which
specifies the base name of the index files to be searched. Only one set of index files can be searched
at a time. although many text files may ~:'. indexed as a group. of course. If o~ of the text files has
been changed since the inde~ that file is searched with f grep; this may occasionally slow down the
se::rching. and care should be taken to avoid having many out of date files. The following option
argumrnts are recognized by hunt:

-a Give all output; ignore checking for false drops.
-Cn Coordination level n; retrieve items with not more than n

terms of the input missing; default CO, implying that each
search term must be in the output items.

-Ffynd] ··-Fy" gives the text of all the items found; "-Fn., suppresses
them . .. -Fd"' where d is an integer gives the text of the .first d
items. The default is -Fy.

-g Do not use fgrep to search files changed since the index was
made; print an error comment instead.

-i string Take string as input, instead of reading the standard input.
-1 n The maximum length of int'!rnal lists of candidate items is n;

defauh 1000.
~string Put text output (0 -Fy") in siring: of use onlp when invoked

from another program.
-p Print hash code frequencies: mostly for use in optimizing hash

table sizes.
-T{ynd) .. -Ty" gives the tags of the items found; ·~rn" suppresses

them. .._ T d"" where d is an integer gives the first d tags. The
default is -Tn .

-t string Put tag output e·-Ty•·) in string; of use only when invoked
from another program.

The :iming of hunt is complex. Normally the hash table is overfull. so :hat t:;ere will be rr:.rny
false i:rops on any single term: but a muhi-terrn qu:'.'ry will have few false drops on an terms. Thus if

USD:30-6 Some Applications of Inverted Indexes on the UNIX System
<

a query is underspecified (one search term) many potential items will be examined and discarded as
false drops, wasting time. If the query is overspecified (a dozen search terms) many keys will be
examined only to verify that the single item under consideration has that key posted. The variation
of search time with number of keys is shown in the table below. Queries of varying length were con
structed to retrieve a particular document from the file of references. In the sequence to the left.
search terms were chosen so as to select the desired paper as quickly as possible. In the sequence on
the right, terms were chosen inefficiently, s.o that the query did not uniquely select the desired docu
ment until four keys had been used. The same document was the target in each case, and the final set
of eight keys are also identical; the differences at five, six and seven keys are produced by measure
ment error, not by the slightly different key lists.

Efficient Keys Inefficient Keys
No. keys Total drops Retrieved Scarth time No. keys Total drops Retrieved Search time

(incl. false) Documents (seconds) (incl. false) Documents (seconds)

I 15 3 1.27 I 68 55 5.96
2 I I 0.11 2 29 29 2.72
3 I I 0.14 3 8 8 0.95
4 I 1 0.17 4 1 1 0.18
5 1 I 0.19 5 1 1 0.21
6 1 I 0.23 6 I 1 0.22
7 I I 0.27 7 1 1 0.26
8 I I 0.29 8 I 1 0.29

A:> would be expected, the optimal search is achieved when the query just specifies the answer: how
ever. overspecification is quite cheap. Roughly, the time required by hunt can be approximatec as 30
milliseconds per search key plus 75 milliseconds per dropped document (!\'hether it is a false drop or
a real answer). In general, overspecification can be recommended: it protects the user against addi
tions to the data base which turn previously uniquely-answered queries into ambiguous queries.

The careful reader will have noted an enormous discrepan~y between these times and the earlier
quoted time of around 1.9 seconds for a search. The times here are purely for the search and
retrieval: they are measured by running many searches through a single invocation of the hunt pro
gram alone. The normal retrieval operation involves using the shell to set up a pipeline through
mkey to hunt and starting both processes; this adds a fixed overhead of about 1. 7 seconds of proces
sor time to any single search. Furthermore, remember that all these times are processor times: on a
typical morning on our PDP 11170 system, with about one dozen people logged on, to obtain 1 second
of processor time for the search program took between 2 and 12 seconds of real time. with a median
of 3.9 seconds and a mean of 4.8 seconds. Thus, although the work involved in a single search may
be only 200 milliseconds, after you add the I. 7 seconds of startup processor time and then assi..: me a
4: 1 elapsed/processor time ratio, it will be 8 seconds before any response is printed.

3. Selecting and Formatting References for TROFF

The major application of the retrieval software is refer, which is a troff preprocessor like eqn . 3
It scans its input looking for items of the form

. [
imprecise citation
.]

where an imprecise citation is merely a string of words found in the relevant bibliographic citation.
This is translated into a properly formatted reference. If the imprecise citation does not correctly
identify a single paper (either selecting no papers or too many) a message is given. The data base of

3 B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics." Comm. Assoc. Comp .
. Hach., vol. 18. pp. 151-157, Bell Laboratories. Murray Hill. New Jersey, March 1975. Reprinted as
lJSD:.26 in [.:SIX Cser's Jfanual. Usenix Association. (1986).

Some Applications of Inverted Indexes on the UNIX System USD:30-7

citations searched may be tailored to each system. and individual users may specify their own citation
files. On our system, the default data base is accumulated from the publication lists of the members
of our organization, plus about half a dozen personal bibliographies that were collected. The present
total is about 4300 citations, but this increases steadily. Even now, the data base covers a large frac
tion of local citations.

For example, the reference for the eqn paper above was specified as

preprocessor like
.I eqn .
. [
kemighan cherry acm 1975
.]
It scans its input looking for items

This paper was itself printed using refer. The above input text was processed by refer as well as tbl
and troff by the command

refer memo-file I tbl I troff -ms

8nr! the reference was automatically translated into a correct citation to the ACM paper on
"·. '.1 a ti cal typesetting.

fhe procedure to use to place a reference in a paper 11sing refer is as follows. First, use the
lookbib command to check that the paper is in the data base and to find out what keys are necessary
to retrieve it. This is done by typing lookbib and then typing some potential queries until a suitable
query is found .. For.example, had one started to find the eqn paper shown above by presenting the
query

$ lookbib
kemighan cherry
(EQT)

lookbib would have found several items: experimentation would quickly have shown that the query
given above is adequate. Overspecifying the query is of course harmless. A particularly careful
reader may have noticed that "acm" does not appear in the printed citation; we have supplemented
some of the data base items with common extra keywords, such as common abbreviations for jour
nals or other sources, to aid in searching.

If the reference is in the data base, the query that retrieved it can be inserted in the text.
between .[and •) brackets. If it is not in the data base, it can be typed in to a private file of ref er
ences, using the format discussed in the next section, and then the -p option used to search this
private file. Such a command might read (if the private references are called my.file)

refer -p my.file docum.ent I tbl I eqn I troff -ms ...

where tbl and/or eqn could be omitted if not needed. The use of the -ms macros4 or some other
macro package. however. is essential. Refer only generates the data for the references: exact format
ting is done by some macro package. and if none is supplied the references will not be printed.

By default. the references are numbered sequer!tially. and the -ms macros format references as
footnotes at the bottom of the page. This memorandum is an example of that style. Other possibili
ties are discussed in section 5 below.

~ ~. E. Lesk. Typing Documents on r.:SIX and GCOS: The ·ms Jfacros for Troff. 1977. Revised version
reprinted as USD:.:?O in C.\'V.: User's .Hanual. Usenix Association. O 986 l.

USD:30-8 Some Applications of Inverted Indexes on the UNIX System

4. Ref ere nee Files.

A reference file is a set of bibliographic references usable with refer. It can be indexed using the
software described in section 2 for fast searching. What refer does is to read the inr·ut document
stream, looking for imprecise citation references. It then searches through reference fiies to find the
full citations, and inserts them into the document. The format of the full citation is arranged to make
it convenient for a macro package, such as the -ms macros, to format the reference for printing.
Since the format of the final reference is determined by the desired style of output, which is deter
mined by the macros used, refer avoids forcing any kind of reference appearance. All it does is
define a set of string registers which contain the basic information about t~. ~ ref:rence; and provide a
macro call which is expanded by the macro package to format the reference. It is the responsibility of
the final macro package to see that the reference is actually printed; if no macros are used, and the
output of refer fed untranslated to troff, nothing at all will be printed.

The strings defined by refer are taken directly from the files of references, which are in the fol
lowing format. The references should be separated by blank lines. Each reference is a sequence of
lines beginning with % and followed by a key-letter. The remainder of that line, and successive lines
until the next line beginning with O/o, contain the information specified by the key-letter. In general.
refer does not interpret the information, but merely presents it to the macro package for final format
ting. A user with a separate macro package, for example, can add new key-letters or use the existing
ones for other purposes without bothering refer.

The meaning of the key-letters given below, in particular, is that assigned by the -ms macros.
Sot all information, obviously, is used with each citation. For example, if a document is both an
internal memorandu1u and a journal article, the macros ignore the memorandum version and cite
only the journal article. Some kinds of information are not used at all in printing the reference: if a
user does not like finding references by specifying title or author keywords, and prefers to add specific
keywords to the citation, a field is available which is searched but not printed (K).

The key letters currently recognized by refer and -ms. with' the kind of information implied.
are:

Key Information specified Key Information specified
A Author's name N Issue number
B Title of book containing item 0 Other information
C City of publication P Page(s) of article
D Date R Technical report reference
E Editor of book containing item T Title
G Government (NTIS) ordering number V Volume number
I Issuer (publisher)
J Journal name
K Keys (for searching) X or
L Label Y or
M Memorandum label Z Information not used by refer

For example, a sample reference could be typed as:

Some Applications of Inverted Indexes on the UNIX System

%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%Z ctrl27
%A A. V. Aho
%AD. S. Hirschberg
%A J. D. Ullman
%1 J. ACM
%V 23
%N 1
%P 1-12
%M abcd-78
%D Jan. 1976

USD:30-9
'

Order is irrelevant, except that authors are shown in the order given. The output of refer is a stream
of string definitions, one for each of the fields of each reference, as shown below .

.]-

.ds [A authors' names ...

. ds [T title ...

. ds [J journal ...

,] [type-number

The special macro .)- precedes the string definitions and the special macro .) [follows. These are
changed from the input .(and .) so that running the same file through refer again is harmless. The
.]- macro can be used by the macro package to initialize. The .] [macro, which should pe used to
print the reference. is given an argument. type-number to indicate the kind of reference, as follows:

Value Kind of reference
1 Journal article
2 Book
3 Article within book
4 Technical report
5 Bell Labs technical memorandum
0 Other

The reference is flagged in the text with the sequence

([.number (.]

where number is the footnote number. The strings (. and • J should be used by the macro package to
format the reference flag in the text. These strings can be replaced for a particular footnote. as
described in section 5. The footnote number (or other signal) is available to the reference macro .J[
as the string register [F.

In some cases users wish to suspend the searching, and merely use the reference macro format
ting. That is. the user doesn't want to provide a search key between .[and •) brackets, but merely the
reference lines for the appropriate document. Alternatively. the user can wish to add a few fields to
those in the reference as in the standard file, or override some fields. Altering or replacing fields. or
supplying whole references. is easily done by i;iserting lines beginning with %: any such line is taken
as direct input to the reference processor rather than keys to be searched. Thus

.[
key I key~ key 3 ...
%Q ~ew format item
%R Override report name
.]

makes the indicated changes to the re~'..llt of searching for the keys. All of the search keys must be

USD:30-10 Some Applications of Inverted Indexes on the UNIX, System

given before the first O/o line.

If no search keys are provided, an entire citation can be provided in-line in the text. For exam
ple, if the eqn paper citation were to be inserted in this way, rather than by searching for it in the
data base, the input would read

preprocessor like
.I eqn .
. [
%AB. W. Kernighan
%A L. L. Cherry
% T A System for Typesetting Mathematics
%1 Comm. ACM
%V 18
%N 3
%P 151-157
%0 March 1975
.]
It scans its input looking for items

· · · · .1,·ould produce a citation of ~he same appearance as that resulting from the file search.

As shown, fields are normally turned into troff strings. Sometimes users would rath::r have
them defined as macros, so that other troff commands can be placed into the data. When this is
necessary, simply double the control character % in the data. Thus the input

. ['

%V .:?3
%%M
Bell Laboratories,
Murray Hill, N.J. 07974
.]

is processed by refer into

.ds [V 23

.de [M
Bell Laboratories.
Murray Hill, N.J. 07974

The information after %%M is defined as a macro to be invoked by .[M while the information after
% V is turned into a string to be invoked by \•([V. At present -ms expects all information as strings.

5. Collecting References and other Refer Options

Normally, the combination of refer and -ms formats output as troff footnotes which are con
secutively numbered and placed at the bottom of the page. However, options exist to place the refer
ences at the end: to arrange references alphabetically by senior author; and to indicate references by
strings in the text of the form [Name I 975a] rather than by number. Whenever references are not
placed at the bottom ofa page identical references are coalesced.

For example. the --e option to refer specifies· that references are to be collected: in this case they
are output whenever the sequence

. [
$LIST$
• J

Some Applications of Inverted Indexes on the UNIX System USD:30-I l

is encountered. Thus, to place references at the end of a paper, the user would run refer with the -e
option and place the above $LIST$ commands after the last line of the text. Refer will then move all
the references to that point. To aid in formatting the collected references, refer writes the references
preceded by the line

.J<
and followed by the line

.J>
to invoke special macros before and after the references.

Another possible option to refer is the -s option to specify sorting of references. The default, of
course, is to list references in the order presented. The -s option implies the -e option, and thus
requires a

. [
$LIST$
.]

entry to call out the reference list. The -s option may be followed by a string of letters. numbers. and
• +' signs indicating how the references are to be sorted. The sort is done using the fields whose key
letters are in the string as sorting keys; the numbers indicate how many of the fields are to be con
:· ~ 0 r~d. with'+' taken as a large number. Thus the default is -sAD meaning "Sort on senior author.

-:~. Jate." To sort on all authors and then title, specify -sA+ T. And to sort on two authors and
then the journal, write -sA2J.

Other options to refer change the signal or label inserted in the text for each reference. Nor
mally these are just sequential numbers, and their exact placement (within brackets, as superscripts.
etc.) is determined by the macro package. The -I option replaces reference numbers by strings com
posed of the senior author's last name, the date, and a disambiguating letter. If a number follows the
l as in -13 only that many letters of the last name are used in the label string. To abbreviate the date
as well the form -lm,n shortens the last name to the first m letters and the date to the last n digits.
For example, the option -13,2 would refer to the eqn paper (reference 3) by the signal Ker75a, since it
is the first "cited reference by Kernighan in 1975.

A user wishing to specify particular labels for a private bibliography may use the -k option.
Specifying -k.x causes the field x to be used as a label. The default is L. If this field ends in -. that
character is replaced by a sequence letter, otherwise the field is used exactly as given.

If none of the refer-produced signals are desired, the -b option entirely suppresses automatic
text signals.

If the user wishes to override the -ms treatment of the reference signal (which is normally to
enclose the number in brackets in nroff and make it a superscript in troff) this can be done easily. If
the lines .(or .] contain anything following these characters, the remainders of these lines are used to
surround the reference signal, instead of the default. Thus, for example, to say ··see reference (2). ··
and avoid "See reference. 1" the input might appear

See reference
. [(
imprecise citation ...
.]).

Note :hat blanks are significant in this construction. If a permanent change is desired in the style of
reference signals. however. it is probably easier to redefine the strings [. and .) (which are used to
bracket each signal) than to change each citation.

Although normally refer limits itself to retrieving the data for the reference, and leaves to a
macro package the job of arranging that data as required by the local format, there are two special
options for rearrangements that can not. be done by macro packages. The ~ option puts fields into
all upper case (CAPS-SMALL CAPS in troff output). The key-letters indicated what information is to be

USD:30.12 Some Applications of Inverted Indexes on the UNIX System

translated to upper case follow the c, so that -cAJ means that authors' names and journals are to be
in caps. The -a option writes the names of authors last name first, that is A. D. Hall. Jr. is written as
Hall, A. D. Jr. The citation form of the Journal of the ACM, for example, would require both -<:A
and -a options. This produces authors' names in the style KERNIGHAN, B. W. A!.,'D CHERRY, L. L. for
the previous example. The -a option may be followed by a number to indicate how many author
names should be reversed; -al (without any -c option) would produce Kernighan, B. W. and L. L.
Cherry. for example.

Finally, there is also the previously-mentioned -p option to let the user specify a private file of
references to b~ searched before the public files. Ncte that refer does not insist on a previously made
index for these files. If a file is named which contains reference data but is not indexed, it will be
searched (more slowly) by refer using fgrep. In this way it is easy for us.:rs to keep small files of new
references, which can later be added to the public data bases.

BIB - A Program for Formatting Bibliographies

Timothy A. Budd

The University of Arizona
Department of Computer Science

Tucso~ Arizona 85721

Bib is a program for collecting and fonnatting reference lists in documents. It is a preprocessor to the
nroff/troff typesetting systems, (much like the tbl [.tbl.] and eqn [.eqn.] programs) and an alternative to the refer
[.lesk: refer.] bibliography program. Bib takes two inputs: a document to be formatted and a library of references.
Imprecise citations in the source document are replaced by more conventional citation strings, the appropriate refer
ences are selected from the reference file, and comman& are generated to format both citation and the referenced
item in the bibliography.

An imprecise citation is a list of words surrounded by the characters [..]. Words (which are truncated to six
letters) in the imprecise citation are matched against entries in the reference file, and if an entry is found that
matches all wor&, that reference is used. For example:

In Brooks' s interesting book [. brooks mythical.] various reasons ...

Multiple citations are indicated by simply placing a comma in the imprecise citation:

In [.k:ernig tools, kernig elements.], Kernighan and Plauger have ...

Embedded newlines, tabs and extra blanks within the imprecise citation are ignored.

Judicious use of the K (keyword) field in references in the database can simplify citations considerably. Also
additional information can be placed into citations by surrounding text with curly braces. The additional informa
tion is inserted verbatim into the citation, e.g. [.dragon {,Chapter 6}.]. Note that it may be desirable to use non
breakable spaces, in order that the citation not be split across a line boundary by troff, for example:

For a description of LR parsing, see [.dragon{,\ Chapter 6}.] by Aho and Ullman.

An alternative citation style can be used by surrounding the imprecise citation with {. and . } . Most document
styles just give the raw citation, without the braces, in this case. This is useful, for example, to refer to citations in
running text

For a discussion of this point, see reference {.dragon.}.

The algorithm used by bib scans the source input in two passes. In the first pass, references are collected and
the location of citations marked. In the second pass, these marks are replaced by the appropriate citation, and the
entire list of references is dumped following a call on the macro .o. This macro is left untouched. However, this
can be altered to achieve other typographic effects.

An exception to this process is made in those instances where references are indicated in footnotes. In this
case the macro that generates the reference is placed immediately after each line in which the reference is cited.

Reference files are prepared for bib using invert. By default invert places an inverted index for the reference
list in the file INDEX. Unless the user specifies an alternative (see the -p switch described below), this is the first

USD:31-2 Bm - A Program for Formatting Bibliographies

file searched by bib in attempting to locate a reference. If the entry is not found in the user's file, a standard
system-wide index is searched. If the entry is still not found in the system file, a warning message is produced and a
blank citation is generated.

The format for entries in the reference file is described more fully in the section 'Reference File Formats'.
This format is similar to that used by refer with the following exceptions:

1. An F field, if present, overrides whatever citation suing would otherwise be consttucted.

2. Certain defined names can be Used, and will be expanded differently by different document styles. For exam
ple, the string CACM is expanded into 'Communications of the ACM' by some document styles, 'Comm.
ACM' by others, and 'Comm. of the Assoc. of Comp. Mach.' by yet others. Appendix I lists the currently
recognized names.

3. The program automatically abbreviates names, reverses names, and hyphenates suinp of contiguous refer
ences, if requested.

4. A reference can have more than ooe editor field, and editor's names can be abbreviated, reversed, and/or
printed in cap'small caps style, independent of any processing done to authors names.

Since the user's index is searched before the system index, if the user wants to alter a specific entry in the sys
tem index (say to change the name W. E. Howden to William E. Howden, for example) it is a simple matter to copy
the system information into a private database and make the changes locally.

Citation formats are either determined by explicit switch settings or, more generally, by using a predefined
formatting style. In the latter form, usage looks something like:

bib -tstyle [files]

where style is a citation style. Currently the following citation styles are available:

stdn (standard numeric) numeric citation. Reference entries are listed in citation order.

stdsn same as stdn, but references are sorted by senior author followed by date.

stda (standard alphabetic) citations are three letters followed by the last two digits of the date. For papers
with a single author, the letters are the first three letters of the authors last name (e.g. Knu). In papers
with two authors the first two letters are from the first author followed by one letter from the second
(e.g. HoU). If three or more authors are given the first letters from the first three authors are used
(e.g. AHU).

openn

open a

foot

same as stdsn, only using an open reference format (each major entry is on a new line1).

same as stda, but using an open formal

footnoted references.

supn same as stdn, but using superscripts.

spe format used by the journal Software-Practice and Experience. Eventually there will be macro pack
ages available for several journal styles.

It is possible to alter slightly the format of standard styles. For example, to generate references in standard
numeric style, but abbreviate first names, the following can be used:

bib -tstdn -aa ...
If two reference items create the same citation string (this can happen if two papers authored by the same per

son in a single year are referred to in one paper) a disambiguating final letter is added to the citation (i.e., Knu79
becomes Knu79a and Knu79b). As noted previously, this can be altered by using the F field.

For the purposes of sorting by author, the last name is taken to be the last word of the name field. This means
some care must be taken when names contain embedded blanks, such as in 'Hartley Rogers, Jr.' or 'Mary-Claire
van Leunen'. In these cases a concealed space(\) should be used, as in 'Hartley Rogers,\ Jr.'.

1. The open reference fonnat is adapted from A Handboolc/or Sclrolar3, by Mary-Claire van Leunen, published by Knopf,
1978.

BIB - A Program for Formatting Bibliographies USD:31-3

bib knows very little about troff usage or syntax. This can sometimes be useful For example, to cause an
entry to· appear in a reference list without having it explicitly cited in the text the citation can be placed in a troff
commenl

.\" [.imprecise citation.]

It is also possible to embed troff commands within a reference definition. See 'abbreviatiom' in the section
'Reference Format Designer's Guide' for an example.

In some styles (superscripts) periods and commas should precede the citation while spaces follow. In other
styles (brackets) these rules are reversed. If a period, comma or space immediately precedes a citation, it will be
moved to the appropriate location for the particular reference style being used This movement is not done for cita
tions given in the alternative style.

The following is a complete list of options for bib:

-aa
-arnum

-ax
-cstr

-ea
-ex

-ernum

-f

-h

-i file

-ifile

-nstr

-0

-pfile

-pfile

-sstr

-ttype

-ttype

reduce authm's first names to abbreviations.

reverse the first num author's names. If num is omitted all names are reversed.

print authors last names in Caps-Small Caps style. For example Budd becomes BUDD.

build citations according to the template str. See the reference format designer's guide for more
information on templates.

abbreviate editors' names

places editors' names in Caps-Small Caps style. (see -x)

reverse the first num editors' names. If num is omitted all editors' names are reversed.

instead of dumping references following the call on .o, dump each reference immediately fol
lowing the line on which the citation is placed (used for footnoted references).

hyphenate runs of three or more contiguous references in the citation string. (eg 2,3,4,5
becomes 2-5). This is most useful for numeric citation styles, but works generally. The -h
option implies the -o option.

include and process the indicated file. This is useful for including a private file of string
definitions.

turn off the indicated options. str must be composed of the characters ofhorx.

sort contiguous citations according to the order given by the reference list (This option defaults
on).

instead of searching the file INDEX, search the indicated reference file(s) before searching the
system file. Multiple files are separated by commas.

sort references according to the template str.

use the standard macros and switch settings to generate citations and references in the indicated
style.

Reference File Formats

USD:31-4 BIB - A Program for Foonatting Bibliographies

A reference file is a file containing any number of reference items. Reference items are separated by one or
more blank lines. There are no resttictions placed on the order of items in a file, although imposing some order
(such as sorting items alphabetically) simplifies updates.

A reference item is a collection of field tags and values. A field tag is a percent sign followed by a single
letter. Currently, the following field tags are recognized:

A Author's name
B Title of book containing item
C City of publication
D Date
E Editor(s) of book containing item
F Caption
G Govemrnent(NTIS)orderingnumber
I Issuer (publisher)
J Journal name
K Keys for searching
N Issue number
0 Other information
P Page(s) of article
R Technical report number
S Series title
T Title
V Volume number
W Where the item can be found locally
X Annotations (not in all macro styles)

Author and editor fields can be repeated, as necessary, but all other fields can occur at most once in any refer
ence. The field information is as long as necessary, and can extend onto new lines. Lines that do not begin with a
percent sign or a period are treated as continuations of the previous line. The order of fields is irrelevant, except that
authors and editors are listed in the order of occurrence.

Generally a reference falls into one of several basic categories. An example of each and a brief comment is
given below. With less standard references (Archival Sources, Correspondence, Government Documents, Newspa
pers) generally some experimentation is necessary.

Books

A book is something with a publisher that isn't a journal article or a technical report. Generally, books also
have authors and titles and dates of publication (although some don't). For books not published by a major publish
ing house it is also helpful to give a city for the publisher. Some government documents also qualify as books,. so a
book may have a government ordering number.

It is conventional that the authors names appear in the reference in the same form as on the title page of the
book. Note also that stting definitions are provided for most of the major publishing houses (PRHALL for
Prentice-Hall, for example). The string definition may include the city as part of the definition, depending on the
database in use.

%A R. E. Griswold
%A J. F. Poage
%A I. P. Polansky
% T The SNOBOIA Programming Language
%I PRHALL
%D second edition 1971

Sometimes a book (particularly old books) will have no listed publisher. The reference entry must still have
an I field.

%A R. Colt Hoare

BIB - A Program for Formatting Bibliographies USD:31-5

% T A Tour through the Island of Elba
%1 (no listed publisher)
%C London
%D 1814

If a reference database contains entries from many people (such as a departmental-wide database), the W field
·can be used to indicate where the referenced item can be found; using the initials of the owner, for example. Any
entry style can take a W field, since this field is not used in formatting the reference.

The K field is used to define general subject categories for an entry. This is useful in locating all entries per
taining to a specific subject area. Note the use of the backslash, to indicate the last name is Van Tassel, and not sim
ply Tassel.

%A Dennie Van\ Tassel
%T Program Style, Design, Efficieocy,
Debugging and Testing
%1 PRHALL
%D 1978
%W tab
%K testing debugging

Journal article

The only requirement for a journal article is that it have a journal name and a volume number. Usually jour
nal articles also have authors, titles, page numbers, and a date of publication. They may also have numbers, and,
less frequently, a publisher. (Generally, publishers are only listed for obscure journals).

Note that string names (such as CACM for Communications of the ACM) are defined for most major journals.
There are also string names for the months of the year, so that months can be abbreviated to the first three letters.
Note also in this example the use of the K field to define a short name (hru) that can be used in searching for the
reference.

%A M. A. Harrison
%A W. L. Ruzzo
%A 1. D. Ullman
% T Protection in Operating Systems
%1 CACM
%V 19
%N 8
%P 461-471
%0 AUG 1976
%K hru

Article in conference proceedings

An article from a conference is printed as though it were a journal article and the journal name was the name
of the conference. Note that string names (SOSP) are also defined for the major conferences (Symposium on
Operating System Principles).

%A M.Bishop
%A L.Snyder
% T The Transfer of Information and Authority
in a Protection System
%1 Proceedings of the 7th SOSP
%P 45-54
%D 1979

USD:31-6 BIB - A Program for Formatting Bibliographies

Article in book

An article in a book has two titles, the title of the article and the title of the book. The first goes into the T
field and the second into the B field Similarly the author of the article goes into the A field and the editor of the
book goes into the E field

%A John B. Goodenough
% T A Survey of Program Testing Issues
%B Reseaich Directions in Software Technology
%E Peter Wegner
%1 MITPress
%P 316-340
%D 1979

If a work as more than one editcr, they each get their own %E field

%A R. J. Lipton
%A L. Snyder
% T On Synchronization and Security
%E Richard A. DeMillo
%E David P. Dobkin
%E Anita K. Jones
%E Richard J. Lipton
%B Foundations of Secure Computation
%P 367-388
%1 ACPRESS
%D 1978

Sometimes the book is part of a multi-volume series, and hence may contain a volume field and/or a series
name.

%A C.A.R. Hoare
% T Procedures and parameters: An axiomatic approach
%B Symposium on semantics of algorithmic languages
%E E. Engeler
%P 102-116
%S Lecture Notes in Mathematics
%V 188
%1 Springer-Verlag
%C Berlin-Heidelberg-New York
%D 1971

In any reference format, the 0 field can be used to give additional information. This is frequently used, for
example, for secondary references.

%A A. Girard
%A J-CRault
% T A Programming Technique for Software Reliability
%B Symposium oh sOftware Reliability
%1 IEEE
%C Montvale, New Jersey
%D 1977
%0 (Discussed in Glib [32])

BIB - A Program for Formatting Bibliographies USD:31-7

Compilations

A compilation is the work of several authors gathered together by an editor into a book. The reference format
is the same as for a book, with the editor(s) taking the place of the author.

%E R. A. DeMillo
%E D. P. Dobkin
%E A. K. Jones
%E R. J. Lipton
% T Foundations of Secure Computation
%1 ACPRESS
%D 1978

Technical Reports

A teclmical report must have a report number. They usually have authors, titles, dates and an issuing institu
tion (the I field is used fa: this). They may also have a city and a government issue number. Again string values
(UATR for 'University of Arizona Technical Report') will frequently simplify typing references.

%A T.A.Budd
%T An APL Complier
%R UATR 81-17
%C Tucson, Arizona
%D 1981

If the institution name is not part of the technical report number, then the institution should be given
separately.

%A Douglas Baldwin
%A Frederick Sayward
% T Heuristics for Determining Equivalence of Program Mutations
%R Technical Report Number 161
%1 Yale University
%0 1979

PhD Thesis

A PhD thesis is listed as if it were a book, and the institution granting the degree the publisher.

%A Martin Brooks
% T Automatic Generation of Test Data for
Recursive Programs Having Simple Errors
%1 PhD Thesis, Stanford University
%0 1980

Some authors prefer to treat Master's and Bachelor theses similarly, although most references on style instruct
say to treat a Master's degree as an article or as a report.

%A A. Snyder
% T A Portable Compiler for the Language C
%R Master's Thesis
%1 M.l.T.
%0 1974

Miscellaneous

A miscellaneous object is something that doe8 not fit into any other form. It can have any of the the following
fields; an author, a title, a date, page numbers, and, most generally, other information (the 0 field).

USD:31-8 BIB - A Program for Formatting Bibliographies

Any reference item can contain· an F field, and the corresponding text will override whatever citation would
otherwise be constructed.

%F BHS--
%A Timothy A. Budd
%A Robert Hess
%A Frederick G. Sayward
%T User's Guide for the EXPER Mutation Analysis system
%0 (Yale university, memo)

Reference Format Designer's Guide

This section need only be read by those users who wish to write their own formatting macro packages.

The information necessary for generating citations and references of a particular style is contained in aformat
file. A format file consists of two parts; a sequence of format commands, which are read and interpreted by bib, and
a sequence of text lines (usually troff macro definitions) which are merely copied to output The format file name is
always prefixed with the string bib. Thus the format file for a standard document type, such as stdn, is found in a
file called bib.stdn in the standard library area.

When bib encounters a -t switch, the user's directory is first searched for a format file matching the given
name, before the system area is examined. Thus.the user can create individual style database files.

Each formatting command is distinguished by a single letter, which must be the first character on a line. The
formatting commands in a database file are similar to the command line options for bib. The legal commands, and
their arguments, are as follows:

#text

A line beginning with a sharp sign is a comment, and all remaining text on the line is ignored.

A

The A command controls how authors' names are to be formatted. It can be followed by the following char
acter sequences:

A Authors' names are to be abbreviated. (see abbreviations, below).

Rnum The first num authors' names are to be reversed. If num is omitted, all authors' names are
reversed.

X Authors' names are to be printed in Caps-Small Caps style.

E

The E command is equivalent to the A command, except that it controls the formatting of editors' names.

F

The F command indicates that references are to be dumped immediately after a line containing a citation, such
as when the references are to be. placed in footnotes.

S template

The S command indicates references are to be sorted before being dumped. The comparison used in sorting is
based on the template. See the discussion on sorting (below) for an explanation of templates.

BIB - A Program for Formatting Bibliographies USD:31-9

C template

The template is used as a model in constructing citations. See the discussion below.

D word definition

The word-definition pair is placed into a table. Before each reference is dumped it is examined for the
occurrence of these words. Any occurrence of a word from this table is replaced by the definition, which is then
rescanned for other words. W orcts are limited to alphanumeric characters, ampersand and underscore.

Definitions can extend over multiple lines by ending lines with a backslash (\). The backslash will be
removed, and the definition, including the newline and the next line, will be entered into the table. This is useful for
including several fields as part of a single definition (city names can be included as part of a definition for a publish
ing house, for example).

I file111J1M

The indicated file is included at the current point. The included file may contain other formatting commands.

H

Three or more contiguous citations that refer to adjacent items in the reference list are replaced by a
hyphenated string. For example, the citation 2,3,4,5 would be replaced by 2-5. This is most useful with numeric
citations. The H option implies the 0 option.

0

Contiguous citations are sorted according to the order given by the reference list.

Rnumber

The first number author's names are reversed on output (i.e. T. A. Budd becomes Budd, T. A.). If number is
omitted all names are reversed.

T str

The str is a list of field names. Each time a definition string for a named field is produced, a second string
containing just the last character will also be generated. See 'Trailing characters', below.

x
Authors' last names are to be printed in Caps/Small Caps format (i.e., Budd becomes BUDD).

The first line in the format file that does not match a format command causes that line, and all subsequent
lines, to be immediately copied to the output.

File Naming Conventions

Standard database format files are kept in a standard library area. The string BMACLIB in bib.h points to this
directory (/usr/new/lib/bmac in the distribution). In addition, this name is always defined when reading format files.
There are three types of files:

bib.xxx

bibinc.xxx

bmac.xxx

These files contain bib commands to format documents in the xxx style.

These files contain information (such as definitions) used by more than one style database.

These files are the tro.ffrnacros to actually implement a style. They are generally not exam
ined by bib at all, but are processed by troff in response to a .so command.

The first command output by bib defines the string l] to be the standard macro database directory. This allows
macro files to be independent of where they are actually stored.

USD:31-10 Bm - A Program for Foonatting Bibliographies

Naming Conventions

There is a simple naming convention for sttings, registers and macros used by bib. All strings, registers and
macros are denoted by two character names containing either a left or right brace. The following are general rules:

[x If x is alphanumeric, the stting contains the value of a reference field. If x is nonalphanumeric, this is a for
matting string preceding a citation.

]x If x is alphanumeric, this is the fuial character from a reference field. If x is nonalphanumeric, the stting is
formatting information within a citation.

x[Sttings in this format, where xis can be any character, are defined by the specific macro package in use and
are not specified by bib.

x] If xis nonalphanumeric these sttings represent fmnatting commands following citations (the inverse of [x
commands). Other sttings represent miscellaneous formatting commands, such as the space between leading
letters in abbreviated names.

Sorting

The sort template is used in comparing two references to generate the sorted reference list. The sort template
is a sequence of sort objects. Each sort object consists of an optional negative sign, followed by a field character,
followed by an optional signed size. The leading negative sign, if present, specifies the sort is to be in decreasing
order, rather than increasing. The field character indicates which field in the reference is to be compared. The
entire field is used, except in the case of the 'A' field, in which case only the senior author's last name is used. A
positive number following the field character indicates that only the first n characters are to be examined in the com
parison. The negative value indicates only the last n characters. Thus, for example, the template AD-2 indicates
that sorting is to be done by the senior author followed by the last two characters of the date.

The sort algorithm is stable, so that two documents which compare equally will be listed in citation order.

Note that in sorting, citation construction, and elsewhere, if an author field is not present the senior editor will
be used. If neither author nor editor fields are present the institution name will be used.

Citations

A citation template is similar to a sort template, with the following exceptions: The field name 'l' refers to
the number which represents the position of the reference in the reference list (after sorting). The field name '2'
generates a three character sequence; If the paper being referenced has only one author~ this is the first three charac
ters of the author's last name. For two author papers, this is the first two characters of the senior author, followed by
the first character of the second author. For papers with three or more authors the first letter of the first three authors
is used. The field name '3' is used to specify a format consisting of the authors' last names, or the senior author fol
lowed by the text 'et al' if more than four authors are listed. The fields '4' through '9' are reserved to be used to
specify formats that cannot be produced using templates. These will be implemented either as local modifications to
bib or in future releases.

In order to postpone the inevitable clash of local changes versus new releases, it is suggested that local for
matting styles use numbers starting at 9 and working downward.

Each object can be followed by either of the letters 'u' or 'l' and the field will be printed in all upper or all
lower case, respectively.

If necessary for disambiguating, the character '@' can be used as a separator between objects in the citation
template. Any text which should be inserted into the citation uninterpreted should be surrounded by either {} or <>
pairs.

Citation Formatting

In the output, each citation is surrounded by the strings*([[and*(]](*([{ and*(}] in the alternative style).
Multiple citations are separated by the string \ *(],. The text portion of a format file should contain troff definitions
for these sttings to achieve the appropriate typographic effect.

Citations that are preceded by a period, comma, space or other puncuation are surrounded by string values for
formatting the puncuation in the approprate location. Again, troff commands should be given to insure the

BIB - A Program for Formatting Bibliographies USD:31-11

appropriate values are produced.

The following table summarizes the string values that must be defined to handle citations.

[[]] Standard citation beginning and ending
{[}] Alternate citation beginning and ending
[. .] Period before and after citation
[, ,] Comma before and after citation
[? ?] Question mark before and after citation
[! !] Exclaimation Point before and after citation
[: :] Colon before and after citation
[; ;] Semi-Colon before and after citation
[" "] Double Quote before and after citation
[' 'l Single Quote before and after citation
[< >] Space before and after citation
], Multiple citation separator
]- Separator f<X' a range of citations

Name Formatting

Authors' (and editors') names can be abbreviated, reversed, and/or printed in Caps-small Caps format In
producing the string values for an author, formatting strings are inserted to give the macro writer greater flexibility
in producing the final output Currently the following strings are used:

a] gap between sucessive initials
b] comma between last name and initial in reversed text
c] comma between authors
n] and between two auth<n
m] and between last two authors
p] period following initial

For example, suppose the name 'William E. Howden' is abbreviated and reversed. It will come out looking
like

Howden*(b]W*{p]*(a]E*{p]

Rererence Formatting

The particular style used in printing references is decided by macros passed to troff. Basically, for each refer
ence, bib generates a sequence of string definitions, one for each field in the reference, followed by a call on the for
matting macro. For example an entty which in the reference file looks like:

%A M. A. Harrison
%A W. L. Ruzzo
%A J. D. Ullman
% T Protection in Operating Systems
%1 CACM
%V 19
%N 8
%P 461-471
%D 1976
%K hru

is converted into the following sequence of commands

USD:31-12

.[-

.ds [F 1

.ds [A M. A. Harrison ·

.as [A *(c]W. L. Ruzzo

.as [A *(in]J. D. Ullman

.ds [T Protection in Operating Systems

.ds [J Communications of the ACM

.ds [V 19

.ds [N 8

.nr [P 1

.ds [P 461-471

.ds [D 1976

.][

BIB - A Program for Formatting Bibliographies

Note that the commands are preceded by a call on the macro '.[-'. This can be used by the macro routines for
initialization, for example to delete old string values. The string [Fis the citation value used in the document. Note
that the string CACM has been expanded.

The strings c], n] and m] are used to separate authors. c] separates the initial authors in multi-author docu
ments (it is usually a comma with some space before and after), n] separates authors in two author documents (usu
ally ' and '), and m] separates the last two authors in multi-author documents (either ' and ' or ', and ').

If abbreviation is specified, the string a] is used to separate initials in the author's first name.

The bib system provides minimal assistance in deciding format types. For example note that the number
register [P has been set of 1, to indicate that the article is on more than one page. Similarly, in documents with edi
tors, the register [E is set to the number of editors.

Trailing Characters

There is a problem with fields that end with punctuation characters causing multiple occurrences of those
characters to be printed. For example, suppose author fields are terminated with a period, as in T. A. Budd. If
names are reversed, this could be printed as Budd, T. A .. Even if names are not reversed, abbreviations, such as in
Jr. can cause problems.

To avoid this problem bib, if instructed, generates the last character from a particular field as a separate string.
The string name is a right brace followed by the field character. Macro packages should test this value before gen
erating punctuation.

Abbreviations

The algorithm used to generate abbreviations from first names is fairly simple: Each word in the first name
field that begins with a capital is reduced to that capital letter followed by a period. In some cases, this may not be
sufficient For example, suppose Ole-Johan Dahl should be abbreviated '0-J. Dahl'. The only way to achieve this
(short of editing the output) is to include troff commands in the reference file that alter the strings produced by bib,
as in the following

%A Ole-Johan Dahl ·
.ds [A 0-J. Dahl

In fact, any troff commands can be entered in the middle of a reference entry, and the commands are copied
uninterpreted to the output. For example, the user may wish to have a switch indicating whether the name is to be
abbreviated or not:

BIB - A Program for Formatting Bibliographies USD:31-13

%A Ole-Johan Dahl
.if \n(i[.ds [A 0-J. Dahl

An Example

Figure 1 shows the format file for the standard alphabetic format. The sort command indicates that sorting is
to be done by senior author, followed by the last two digits of the date. The citation template indicates that citations
will be the three character sequence described in the section of citations followed by the last two characters of the
date (i.e. AHU79, for example).

standard alphabetic format
SAD-2
C2D-2
I BMACLIB/bibinc.fullnames
I BMACLIB/bibinc.std

Figure 1

The two I commands include two files. The first is a file of definitions for common strings, such as dates and
journal names. A portion of this file is shown in figure 2. Note that a no-op has been inserted into the definition
string for BIT in order to avoid further expansion when the definition is rescanned.

The second file is a sequence of troff macros for formatting the references. The beginning of this file is shown
in figure 3.

On the basis of some simple rules (the presence or absence of certain fields) the document is identified as one
of five different types, and a call made on a different macro for each type. This is shown in figure 4.

Finally figure 5 shows the macro for one of those different types, in this case the book formatting macro.

#full journal names, and other names

#journals
D ACT A Acta Informatica
DBITB\&IT
D CACM Communications of the ACM

#months
D JAN January

D DEC December

Figure 2

USD:Jl-14

standard end macros

.ds [[
.els]]

.els''

.ds> ..

. ds >,'

.els c], \&

.ds n] ""and

.ds m], and

.de p[\" produce reference beginning

.IP [\\$1]

.de D \" start displaying collected references

.SH
References
.LP

.de][\" choose fonnat

.ie !"*([J"" \{\

. ie !"*([V"" .nr t[1 \"journal

. el .nr t[S \" conference paper

.\}

.el .ie !"\\ *([B"" .nr t[3 \" article in book

.el .ie !"\\ *([R"" .nr t[4 \" technical report

.el .ie !"*([I"" .nr t[2 \" book

.el .nr t[0 \"other

.\\n(t[[

BIB - A Program for Formatting Bibliographies

Figure 3

Figure 4

BIB - A Program for Formatting Bibliographies

.de 2(\" book

.if !"*([F"" .p[*([F .

. if ! "*([A"" *([A,

.if !"*([T"" \\f2*([T,\\fl
*([I\c
.if !"*([C"" , *([C\c
.if!"\\ *([D"" \& (*([D)\c
\& .
. if !"*([0"" Oov't ordering no. *([0 .
. if !"*([0"" *([0
.]-

Acknowledgements

bib was inspired by refer, written by M. Lesk.

Figure 5

1. A. V. Aho and J .D. Ullman, Principles of Compiler Design, Addison-Wesley, 1977.

2. B.W. Kernighan and LL. Cherry, A System for Typesetting Mathematics, Comm. of the ACM 18,
3 (March 1978)), 151-156.

3. M.E. Lesk, Some Applications of Inverted Indexes on the UNIX System, Bell Laboratories Com
puting Science Technical Report 69, June 1978.

4. M.E. Lesk, Thi - A Program to Format Tables, Unix Programmer's Manual, Volume 2A.

USD:31-15

USD:31-16 Bm - A Program for Formatting Bibliographies

APPENDIX 1

Standard Names
The following list gives the standard names recogni7.ed in most citation styles. Various different forms for the output are

used by the different styles. In the longer reference style, the conference proceedings will also refer to the date {%0), city(%C),
and when the proceedings are published u ajournal, the journal name (%.1), volumn (%V) and number {%N).

JoW"Dal Names
ACTA
BIT
BSTJ
CACM
COMP
COMPJOUR
COMPLANG
COMPS UR
l&C
IBMJRD
IBMSJ
IEEETC
IEEETSE
IJCIS
IPL
JACM
JCSS
MATHST
NMATH
SIAMJC
SIAMJNA
SI GA CT
SIGPLAN
SIGSOFf
SP&E
SPE
TOCS
TODS
TOMS
TOP LAS

Conferences
ADA SO
ASPLOS82
CCC79
CCC82
CCC84
CONF
FJCC
FOCS
HICSS
ICSE
JER3
JICAI
PLISS83
POPL
POP LS
POPL6
POPL7

Acta Informatica
Brr
Bell System Technical Journal
Communications of the ACM
IEEE Computer
1be Computer Journal
Journal of Computer Languages
ACM Computing Surveys
Information and Control
IBM Journal of Research and Development
IBM Systems Journal
IEEE Transactions on Computers
IEEE Transactions on Software Engineering
International Journal of Computer and Information Sciences
Information Processing Letters
Journal of the ACM
Journal of Computer and System Sciences
Mathematics Systems Theory
Numerical Mathematics
Siam Journal on Computing
Siam Journal on Numerical Analysis
SIGACTNews
SIGPLAN Notices
Software Engineering Notes
Software-Practice & Experience
Software-Practice & Experience
ACM Transactions on Computer Systems
ACM Transactions on Database Systems
ACM Transactions on Mathematical Software
ACM Transactions on Programming Languages and Systems

PROC of the ACM-SIGPLAN Symposium on the Ada Programming Language, SIGPLAN
PROC of the SYMP on Architectural Support for Programming Languages and Operating Systems, SIGPLAN
PROC of the SIGPLAN 1979 SYMP on Compiler Construction, SIGPLAN
PROC of the SIGPLAN 1982 SYMP on Compiler Construction, SIGPLAN
PROC of the SIGPLAN 1984 SYMP on Compiler Construction, SIGPLAN
Conference
Fall Joint Computer Conference
Annual SYMP on Foundations of Computer Science
Hawaii International CONF on System Science
International CONF on Software Engineering
PROC Third Jerusalem CONF on Information Technology
Joint International CONF on Artificial Intelligence
PROC SIGPLAN 1983 SYMP on Programming Language Issues in Software Systems, SIGPI.AN
ACM SYMP on Principles of Programming Languages
Conference Record of the Fifth POPL
Conference Record of the Sixth POPL
Conference Record of the Seventh POPL

BIB - A Program for Formatting Bibliographies

POPL8
POPL9
POPLlO
POPLll
PROC
SOSP
STOC
SYMP
WJCC

Conference Record of the Eighth POPL
Conference Record of the Ninth POPL
Conference Record of the Tenth POPL
Conference Record of the Eleventh POPL
Proceedings
SYMP on Operating System Principles
Annual ACM SYMP on Theory of Computing
Symposium
PROC Western Joint Computer CONF

Longer place names
BTLHO Bell Laboratories
BTLMH
CMU
CMUCS
DG
MITAi
MITLCS
sues

Bell Laboratories
Carnegie-Mellon University
Computer Science Department, Carnegie-Mellon University
Data General
MIT Artificial Intelligence Laboratory
MIT Laboratory for Computer Science
Computer Science Department, Stanford University

USD:31-17

SUCSL
SUEE

Computer Systems Lab., Stanford Electronics Lab., Dept of Electrical Engineering and Computer Science
Department of Electrical Engineering. Stanford University

TUM Technische Universit'at M"unchen
UCB University of California, Berkeley
UCBCS Computer Science Division, EECS, UCB
UC BERL ERL, EECS, UCB

Short place names
CORP Corporation
CSD Computer Science Department
DCS Department of Computer Science
DEPT Department
DISS Dissertation
TR Technical Report
UATR University of Arizona Technical Report
UNIV University
ERL Electronics Research Laboratory

Months or the year
JAN January
FEB February
MAR March
APR April
MAY May
JUN June
JUL July
AUG August
SEP September
OCT October
NOV November
DEC December

Publishers
ACADEMIC
AC PRESS
ADDISON
ANSI
CS PRESS

Academic Press
Academic Press
Addison Wesley
American National Standards Institute
Computer Science Press

DIGITAL
ELSEVIER
FREEMAN
GPO
HOLT
IEEEP
MCGRAW
MG HILL
MITP
NHOLL
NYC
PRENTICE
PRHALL
SPRINGER
SRA
WILEY
WINTH

Digital Press
American Elsevier
W. H. Freeman and Company
U. S. Government Printing Office
Holt, Rinehart, and Winston
IEEE Press
McGraw-Hill
McGraw-Hill
MIT Press
North-Holland
New York, NY
Prentice Hall
Prentice Hall
Springer Verlag
Science Research Associates
John Wiley & Sons
Winthrop Publishers

Writing Tools • The STYLE and DICTION Progra~

L.L. Cherry

W. Vesterman

Livingston College
Rutgers University

ABSTRACT

Text processing systems are now in heavy use in many companies to format docu
ments. With many documents stored on line, it has become possible to use computers to
study writing style itself and to help writers produce better written and more readable
prose. The system of programs described here is an initial step toward such help. It
includes programs and a data base designed to produce a stylistic profile of writing at the
word and sentence level The system measures readability, sentence and word length,
sentence type, word usage, and sentence openers. It also locates common examples of
wordy phrasing and bad diction. The system is useful for evaluating a document's style,
locating sentences that may be difficult to read or excessively wordy, and determining a
particular writer's style over several documents.

1. Introduction

Computers have become important in the document preparation process, with programs to check for
spelling errors and to format documents. As the amount of text stored on line increases, it becomes feasi
ble and attractive to study writing style and to attempt to help the writer in producing readable documents.
The system of writing tools described here is a first step toward such help. The system includes programs
and a data base to analyze writing style at the word and sentence level. We use the term "style" in this
paper to describe the results of a writer's particular choices among individual words and sentence forms.
Although many judgements of style are subjective, particularly those of word choice, there are some objec
tive measures that experts agree lead to good style. Three programs have been written to measure some of
the objectively definable characteristics of writing style and to identify some commonly misused or
unnecessary phrases. Although a document that conforms to the stylistic rules is not guaranteed to be
coherent and readable, one that violates all of the rules is likely to be difficult or tedious to read. The pro
gram STYLE calculates readability, sentence length variability, sentence type, word usage and sentence
openers at a rate of about 400 words per second on a PDPl 1170 running the UNIXt Operating System. It
assumes that the sentences are well-formed, i. e. that each sentence has a verb and that the subject and verb
agree in number. DICTION identifies phr~ that are either bad usage or unnecessarily wordy.
EXPLAIN acts as a thesaurus for the phrases found by DICTION. Sections 2, 3, and 4 describe the pro
grams; Section 5 gives the results on a cross-section of technical documents; Section 6 discusses accuracy
and problems; Section 7 gives implementation details.

2. STYLE

The program STYLE reads a document and prints a summary of readability indices, sentence length
and type, word usage, and sentence openers. It may also be used to locate all sentences in a document
longer than a given length, of readability index higher than a given number, those containing a passive

t UNIX is a trademark of Bell Laboratories.

USD:32-2 Writing Tools - the STYLE and DICTION Programs

verb, or those beginning with an expletive. STYLE is based on the system for finding English wool classes
or parts of speech, PARTS [1]. PARTS is a set of programs that uses a small dictionary (about 350 words)
and suffix rules to partially assign word classes to English text. It then uses experimentally derived rules of
word order to assign word classes to all words in the text with an accuracy of about 95%. Because PARTS
uses only a small dictionary and general rules, it works on text about any subject, from physics to psychol~
ogy. Style ~ures have been built into the output phase of the programs that make up PARTS. Some of
the measures are simple counters of the word classes found by PARTS; many are more complicated. For
example, the verb count is the total number of verb phrases. This includes phrases like:

has been going
was only going
to go

each of which each counts as one verb. Figure 1 shows the output of STYLE run on a paper by Kernighan
and Mashey about the UNIX programming environment [2].

programming environment
readability grades:

sentence info:

sentence types:

word usage:

sentence beginnings:

(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5 (46.3)

no. sent 335 no. wds.7419
av sent Ieng 22.1 av word Ieng 4.91
no. questions 0 no. imperatives 0
no. nonfunc wds 4362 58.8% av Ieng 6.38
short sent (<17) 35% (118) long sent (>32) 16% (55)
longest sent 82 wds at sent 174; shortest sent 1 wds at sent 117

simple 34% (114) complex 32% (108)
compound 12% (41) compound-complex 21% (72)

verb types as % of total verbs
tobe 45% (373) aux 16% (133) inf 14% (114)
passives as% of non-inf verbs 20% (144)
types as % of total
prep 10.8% (804) conj 3.5% (262) adv 4.8% (354)
noun 26.7% (1983) adj 18.7% (1388) pron 5.3% (393)
nominalizations 2 % (155)

subject opener: noun (63) pron (43) pos (0) adj (58) art (62) tot 67%
prep 12% (39) adv 9% (31)
verb 0% (1) sub_conj 6% (20) conj 1% (5)
expletives 4% (13)

Figure 1

As the example shows, STYLE output is in five parts. After a brief discussion of sentences, we will
describe the parts in order.

2.1. What is a sentence?

Readers of documents have little trouble deciding where the sentences end. People don't even have
to stop and think about uses of the character "." in constructions like 1.25, A. J. Jones, PhD., i. e., or etc ..
When a computer reads a document, finding the end of sentences is not as easy. First we must throw away
the printer's marks and formatting commands that litter the text in computer form. Then STYLE defines a

Writing Tools- the STYLE andDicnON Programs USD:32-3

sentence as a string of words ending in one of:

. ! ? I.

The end marker ''I.'' may be used to indicate an imperative sentence. Imperative sentences that are not so
marked are not identified as imperative. STYLE properly handles numbers with embedded decimal points
and commas, strings of letters and numbers with embedded decimal points used for naming computer file
names, and the common abbreviations listed in Appendix 1. Numbers that end sentences, like the preced
ing sentence, cause a sentence break if the next word begins with a capital letter. Initials only cause a sen
tence break if the next word begins with a capital and is found in the dictionary of function words used by
PARTS. So the string

J.D.JONES

does not cause a break, but the suing

..• system H. The .••

does. With these rules most sentences are broken at the proper place, although occasionally either two sen
tences are called· one or a fragment is called a sentence. More on this later.

2.2. Readability Grades

The first section of STYLE output consists of four readability indices. As Klare points out in [3] rea
dability indices may be used to estimate the reading skills needed by the reader to understand a document
The readability indices reported by STYLE are based on measures of sentence and word lengths. Although
the indices may not measure whether the document is coherent and well organized, experience has shown
that high indices seem to be indicators of stylistic difficulty. Documents with short sentences and short
words have low scores; those with long sentences and many polysyllabic words have high scores. The 4
formulae reported are Kincaid Formula [4], Automated Readability Index [5], Coleman-Liau Formula [6]
and a normalized version of Flesch Reading ~e Score [7]. The formulae differ because they were exper
imentally derived using different texts and subject groups. We will discuss each of the formulae briefly;
for a more detailed discussion the reader should see [3].

The Kincaid Formula, given by:

Reading_Grade=ll.8*syl_per_wd+.39*wds_per_sent-1S.S9

was based on Navy training manuals that ranged in difficulty from S.S to 16.3 in reading grade level. The
score reported by this formula tends to be in the mid-range of the 4 scores. Because it is based on adult
training manuals rather than school book text, this formula is probably the best one to apply to technical
documents.

The Automated Readability Index (ARI}, based on text from grades 0 to 7, was derived to be easy to
automate. The formula is:

Reatllng_Grade=4.11*let_per_wd+.S*wds_per_sent-21.43

ARI tends to produce scores that are higher than Kincaid and Coleman-Liau but are usually slightly lower
than Flesch. ·

The Coleman-Liau Formula, based on text ranging in difficulty from .4 to 16.3, is:

Reading_Grade=S.89*kt_per _wd-.3*senl_per _ 100_wds-1S.8

Of the four formulae this one usually gives the lowest grade when applied to technical documents.

The last formula, the Flesch Reading Ease Score, is based on grade school text covering grades 3 to
12. The fonIUlla, given by:

Reading_Score=206.83S-84.6*syl_per_wd-1.01S*wds_per_senl

is usually reported in the range 0 (very difficult) to 100 (very easy). The score reported by STYLE is
scaled to be comparable to the other formulas, except that the maximum grade level reported is set to 17.
The Flesch score is usually the highest of the 4 scores on technical documents.

USD:32-4 Writing Tools - the STYLE and DICTION Programs

Coke [8] found that the Kincaid Formula is probably the best predictor for technical documents; both
ARI and Flesch tend to overestimate the difficulty; Coleman-Liau tend to underestimate. On text in the
range of grades 7 to 9 the four formulas tend to be about the same. On easy text the Coleman-Liau formula
is probably preferred since it is reasonably accurate at the lower grades and it is safer to present text that is
a little too easy than a little too hard.

If a document has particularly difficult technical content, especially if it includes a lot of mathemat
ics, it is probably best to make the text very easy to· read, i.e. a lower readability index by shortening the
sentences and words. This will allow the reader to concentrate on the technical content and not the long
sentences. The user should remember that these indices are estimators; they should not be taken as abso
lute numbers. STYLE called with "-r number" will print all sentences with an Automated Readability
Index equal to or greater than ''number'''.

2.3. Sentence length and structure

The next two sections of STYLE output deal with sentence length and structure. Almost all books
on writing style or effective writing emphasize the importance of variety in sentence length and structure
for good writing. Ewing's first rule in discussing style in the book Writing for Results [9] is:

''Vary the sentence structure and length of your sentences.''

Leggett, Mead and Charvat break this rule into 3 in Prentice-Hall Handbook for .Writers [10] as follows:

'' 34a. A void the overuse of short simple sentences.''
"34b. Avoid the overuse oflong compound sentences."
''34c. Use various sentence structures to avoid monotony and increase effectiveness.''

Although experts agree that these rules are important, not all writers follow them. Sample technical docu
ments have been found with almost no sentence length or type variability. One document had 90% of its
sentences about the same length as the average; another was made up almost entirely of simple sentences
(80%).

The output sections labeled "sentence info" and "sentence types" give both length and structure
measures. STYLE reports on the number and average length of both sentences and words, and number of
questions and imperative sentences (those ending in "/."). The measures of non-function words are an
attempt to look at the content words in the document. In English non-function words are nouns, adjectives,
adverbs, and non-auxiliary verbs; function words are prepositions, conjunctions, articles, and auxiliary
verbs. Since most function worm are short, they tend to lower the average word length. The average
length of non-function words may be a more useful measure for comparing word choice of different writers
than the total average word length. The percentages of short and long sentences measure sentence length
variability. Short sentences are those at least S worm less than the average; long sentences are those at
least 10 words longer than the average. Last in the sentence information section is the length and location
of the longest and shortest sentences. If the tlag ''-1 number'' is used, STYLE will print all sentences
longer than "number".

Because of the difficulties in dealing with the many uses of commas and conjunctions in English,
sentence type definitions vary slightly from those of standard textbooks, but still measure the same con
structional activity.

1. A simple sentence has one verb and no dependent clause.

2. A complex sentence has one independent clause and one dependent clause, each with one verb.
Complex sentences are found by identifying sentences that contain either a subordinate conjunction
or a Clause beginning with words like ''that'' or ''who''. The preceding sentence has such a clause.

3. A compound sentence has more than one verb and no dependent clause. Sentences joined by'';''
are also counted as compound.

4. A compound-complex sentence has either several dependent clauses or one dependent clause and a
compound verb in either the dependent or independent clause.

Even using these broader definitions, simple sentences dominate many of the technical documents
that have been tested, but the example in Figure 1 shows variety in both sentence structure and sentence

Writing Tools - the STYLE and DicnON Progrum USD:32-5

length.

2.4. Word Usage

The word usage· measures are an attempt to identify some other constructional features of writing
style. There are many different ways in English to say the same thing. The constructions differ from one
another in the fonn of the words used. The following sentences all convey approximately the same mean
ing but differ in wad usage:

The cxio program is used to perfonn all communication between the systen.
The cxio program performs all communications between the systems.
The cxio program is used to communicate between the systen.
The cxio program communicates between the systems.
All communication between the systems is performed by the cxio program.

The distribution of the parts of speech and verb constructions helps identify overuse of particular construc
tions. Although the measures used by STYLE are crude, they do point out problem areas. For each
category, STYLE reports a percentage and a raw count In addition to looking at the percentage, the user
may find it useful to compare the raw count with the number of sentences. If, for example, the number of
infinitives is almost equal to the number of sentences, then many of the sentences in the document are con
structed like the first and third in the preceding example. The user may want to transform some of these
sentences into another fonn. Some of the implications of the word usage measures are discussed below.

Verbs are measured in several different ways to try to determine what types of verb constructions are most
frequent in the document Technical writing tends to contain many passive verb constructions and
other usage of the verb "to be". The category of verbs labeled "tobe" measures both passives and
sentences of the fonn:

subject tobe predicate

In counting verbs, whole verb phrases are counted as one verb. Verb phrases containing auxiliary
verbs are counted in the category "aux". The verb phrases counted here are those whose tense is
not simple present or simple past It might eventually be useful to do more detailed measures of verb
tense or mood. Infinitives are listed as ''inf''. The pezcentages reported for these three categories
are based on the total number of verb phrues found These categories are not mutually exclusive;
they cannot be added, since, for example, "to be going" counts as both "tobe" and "inf". Use of
these three types of verb constructions varies significantly among authors.

STYLE reports passive verbs as a percentage of the finite verbs in the document. Most style books
warn against the overuse of passive verbs. Coleman [11] has shown that sentences with active verbs
are easier to learn than those with passive verbs. Although the inverted object-subject order of the
passive voice seen to emphasize the object, Coleman's experiments showed that there is little
difference in retention by word position. He also showed that the direct object of an active verb is
retained better than the subject of a passive verb. These experiments support the advice of the style
books suggesting that writers should try to use active verbs wherever possible. The flag "-p"
causes STYLE to print all sentences containing passive verbs.

Pronouns
add cohesiveness and connectivity to a document by providing back-reference. They are often a
short-hand notation for something previously mentioned, and therefore connect the sentence contain
ing the pronoun with the word to which the pronoun refers. Although there are other mechanisms for
such connections, documents with no pronouns tend to be wordy and to have little connectivity.

Adverbs
can provide transition between sentences and order in time and space. In performing these functions,
adverbs, like pronouns, provide connectivity and cohesiveness.

Conjunctions
provide parallelism in a document by connecting two or more equal units. These units may be whole

USD:32-6 Writing Tools - the STYLE and DICTION Programs

sentences, verb phrases, nouns, adjectives, or prepositional phrases. The compound and compound
complex sentences rep<X'ted under sentence type are parallel structures. Other uses of parallel struc
tures are indicated by the degree that the number of conjunctions rep<X'ted under word usage exceeds
the compound sentence measures.

Nouns and Adjectives.
A ratio of nouns to adjectives near unity may indicate the over-µse of modifiers. Some teclmical
writers qualify every noun with one or more adjectives. Qualifiers in phrases like "simple linear
single-link netwOlk model'' often lend more obscurity than precision to a texL

N ominalizations
are verbs that are changed to nouns by adding one of the suffixes "ment", "ance", "ence", or
''ion''. Examples are accomplishment, admittance, adherence, and abbreviation. When a writer
transforms a nominalized sentence to a non-nominalized sentence, she/he increases the effectiveness
of the sentence in several ways. The noun becomes an active verb and frequendy one complicated
clause becomes two shorter clauses. For example, ·

Their inclusion of this provision is admission of the ·importance of the system.
When they included this provision, they admitted the importance of the system.

Coleman found that the transformed sentences were easier to learn, even when the transformation
produced sente~ that were slightly longer, provided the transformation broke one clause into two.
writers who find their document contains many oominalizations may want to transform some of the
sentences to use active verbs.

2.5. Sentence openers
Another agreed upon principle of style is variety in sentence openers. Because STYLE determines

the type of sentence opener by looking at the part of speech of the first word in the sentence, the sentences
counted under the heading "subject opener" may not all really begin with the subject However, a large
percentage of sentences in this category still indicates lack of variety in sentence openers. Other sentence
opener measures help the user determine if there are transitions between sentences and where the subordi
nation occurs. Adverbs and conjunctions at the beginning of sentences are mechanisms for transition
between sentences. A pronoun at the beginning shows a link to something previously mentioned and indi
cates connectivity.

The location of subordination can be detemiined by comparing the number of sentences that begin
with a subordinator with the number of sentences with complex clauses. If few sentences start with subor
dinate conjunctions then the subordination is embedded or at the end of the complex sentences. For variety
the writer may want to transform some sentences to have leading subordination.

The last category of openers, expletives, is commonly overworked in technical writing. Expletives
are the words "it" and "there", usually with the verb "to be", in constructions where the subject follows
the verb. For example,

There are three streets used by the traffic.
There are too many users on this system.

This construction tends to emphasize the object rather than the subject of the sentence. The flag ''-e'' will
cause STYLE to print all sentences that begin with an expletive.

3. DICTION

The program DICTION prints all sentences in a document containing phrases that are either fre
q uendy misused or indicate wordiness. The progr~ an extension of Abo's FGREP [12] string matching
progr~ takes as input a file of phrases or patterns to be matched and a file of text to be searched. A data
base of about 450 phrases has been compiled as a default pattern file for DICTION. Before attempting to
locate phrases, the program maps upper case letters to lower case and substitutes blanks for punctuation.
Sentence boundaries were deemed less critical in DICTION than in STYLE, so abbreviations and other
uses of the character "." are not treated specially. DICTION brackets all pattern matches in a sentence
with the characters "[" "]" . Although many of the phrases in the default data base are correct in some

Writing Tools- the STYLE andDicnON Programs USD:32-7

contexts, in others they indicate wordiness. Some examples of the phrases and suggested alternatives are:

Phrase
a large number of
arrive at a decision
collect together
for this reason
pertaining to
through the use of
utilize
with the exception of

Alternative
many
decide
collect
so
about
by or with
use
except

Appendix 2 contains a complete list of the default file. Some of the entries are short forms of problem
phrases. For example, the phrase "the fact" is found in all of the following and is sufficient to point out
the wordiness to the user:

Phrase
accounted for by the fact that
an example of this is the fact that
based on the fact that
despite the fact that
due to the fact that
in light of the fact that
in view of the fact that
notwithstanding the fact that

Alternative
caused by
thus
because
although
because
because
since
although

Entries in Appendix 2 preceded by ',_,' are not matched. See Section 7 for details on the use of ',_, '.

The user may supply her/his own pattern file with the flag "-f patfile". In this case the default file
will be loaded first, followed by the user file. This mechanism allows users to suppress patterns contained
in the default file or to include their own pet peeves that are not in the default file. The flag '' -n'' will
exclude the default file altogether. In constructing a pattern file, blanks should be used before and after
each phrase to avoid matching substrings in words. For example, to find all occurrences of the word
"the", the pattern" the" should be used. The blanks cause only the word "the" to be matched and not
the string "the" in words like there, other, and therefore. One side effect of surrounding the words with
blanks is that when two phrases occur without intervening words, only the first will be matched.

4. EXPLAIN

The last program, EXPLAIN, is an interactive thesaurus for phrases found by DICTION. The user
types one of the phrases bracketed by DICTION and EXPLAIN responds with suggested substitutions for
the phrase that will improve ·the diction of the document

5. Results

S.1. STYLE

To get baseline statistics and check the program's accuracy, we ran STYLE on 20 technical docu
ments. There were a total of 3287 sentences in the sample. The shortest document was 67 sentences long;
the longest 339 sentences. The documents covered a wide range of subject matter, including theoretical
computing, physics, psychology, engineering, and affirmative action. Table 1 gives the range, median, and
standard deviation of the various style measures. As you will note most of the measurements have a fairly
wide range of values across the sample documents.

As a comparison, Table 2 gives the median results for two different technical authors, a sample of
instructional material, and a sample of the Federalist Papers. The two authors show similar styles, although
author 2 uses somewhat shorter sentences and longer words than author 1. Author 1 uses all types of

USD:32-8 Writing Tools - the STYLE and DICTION Programs

Table 1
Text Statistics on 20 Technical Documents

variable minimum maximum mean standard deviation
Readability Kincaid 9.S 16.9 13.3 2.2

automated 9.0 17.4 13.3 2.S
Cole-Liau 10.0 16.0 12.7 1.8
Flesch 8.9 17.0 14.4 2.2

sentence info. av sent length lS.S 30.3 21.6 4.0
av word length 4.61 S.63 S.08 .29
av nonfunction length S.72 7.30 6.S2 .4S
short sent 23'*' 46% 33% S.9
long sent 7% 20% 14% 2.9

sentence types simple 31% 71% 49% 11.4
complex 19% 50% 33% 8.3
compound 2% 14% 7% 3.3
compound-complex 2% 19% 10% 4.8

verb types to be 26% 64% 44.7% 10.3
auxiliary 10% 40% 21% 8.7
infinitives 8% 24% 15.1% 4.8
passives 12% 50% 29% 9.3

word usage prepositions 10.1% 15.0% 12.3% 1.6
conjunction 1.8% 4.8% 3.4% .9
adverbs 1.2% 5.0% 3.4% 1.0
nouns 23.6% 31.6% '27.8% 1.7
adjectives 15.4% 27.1% 21.1% 3.4
pronouns 1.2% 8.4% 2.5% 1.1
nominalizations 2% 5% 3.3% .8

sentence openen prepositions 6% 19% 12% 3.4
adverbs 0% 20% 9% 4.6
subject 56% 85% 70% 8.0
verbs 0% 4% 1% 1.0
subordinating conj 1% 12% 5% 2.7
conjunctions 0% 4% 0% 1.5
expletives 0% 6% 2% 1.7

sentences, while author 2 prefers simple and complex sentences, using few compound or compound
complex sentences. The other major difference in the styles of these authors is the location of subordina
tion. Author 1 see~ to prefer embedded or trailing subordination, while author 2 begins many sentences
with the subordinate clause. The documents tested for both authors 1 and 2 were technical documents,
written for a technical audience. The instructional documents, which are written for craftspeople, vary
surprisingly little from the two technical samples. The sentences and words are a little longer, and they
contain many passive and auxiliary verbs, few· adverbs, and almost no pronouns. The instructional docu
ments contain many imperative sentences, so there are many sentence with verb openen. The sample of
Federalist Papers contrasts with the other samples in almost every way. ·

5.2. DICTION

In the few weeks that DICTION has been available to usen about 35,000 sentences have been run
with about 5,000 string matches. The· authon using the program seem to make the suggested changes
about 50-75% of the time. To date, almost 200 of the 450 strings in the default file have been matched.
Although most of these phrases are valid and correct in some contexts, the SO-15% change rate seems to
show that the phrases are used much more often than concise diction warrants.

Writing Tools- the STYLE and DICTION Programs USD:32-9

Table 2
Text Statistics on Single Authors

variable author 1 author2 inst FED
readability Kincaid 11.0 10.3 10.8 16.3

automated 11.0 10.3 11.9 17.8
Coleman-Liau 9.3 10.1 10.2 12.3
Flesch 10.3 10.7 10.1 15.0

sentence info av sent length 22.64 19.61 22.78 31.85
av word length 4.47 4.66 4.65 4.95
av nonfunction length 5.64 5.92 6.04 6.87
short sent 3S% 43% 35% 40%
long sent 18% 15% 16% 21%

sentence types simple 36% 43% 40% 31%
complex 34% 41% 37% 34%
compound 13% 7% 4% 10%
compound-complex 16% 8% 14% 25%

verb type to be 42% 43% 45% 37%
auxiliary 17% 19% 32% 32%
infinitives 17% 15% 12% 21%
passives 20% 19% 36% 20%

word usage prepositions 10.0% 10.8% 12.3% 15.9%
conjunctions 3.2% 2.4% 3.9% 3.4%
adverbs 5.05% 4.6% 3.5% 3.7%
nouns 27.7% 26.5% 29.1% 24.9%
adjectives 17.0% 19.0% 15.4% 12.4%
pronouns 5.3% 4.3% 2.1% 6.5%
nominalizations 1% 2% 2% 3%

sentence openers prepositions 11% 14% 6% 5%
adverbs 9% 9% 6% 4%
subject 65% 59% 54% 66%
verb 3% 2% 14% 2%
subordinating conj 8% 14% 11% 3%
conjunction 1% 0% 0% 3%
expletives 3% 3% 0% 3%

6. Accuracy

6.1. Sentence Identification

The correctness of the STYLE output on the 20 document sample was checked in detail. STYLE
misidentified 129 sentence fragments as sentences and incorrectly joined two or more sentences 75 times in
the 3287 sentence sample. The problems were usually because of nonstandard formatting commands, unk-
nown abbreviations, or lists of non-sentences. An impossibly long sentence found as the longest sentence
in the document usually is the result of a long list of non-sentences.

6.2. Sentence Types

Style correctly identified sentence type on 86.5% of the sentences in the sample. The type distribu
tion of the sentences was 52.5% simple, 29.9% complex, 8.5% compound and 9% compound-complex.
The program reported 49~5% simple, 31.9% complex, 8% compound and 10.4% compound-complex.
Looking at the errors on the individual documents, the number of simple sentences was under-reported by
about 4% and the complex and compound-complex were over-reported by 3% and 2%, respectively. The
following matrix shows the programs output vs. the actual sentence type.

USD:32-10

Actual.
Sentence

Type

simple
complex
compound
comp-complex

Writing Tools - the STYLE and DICTION Programs

Program Results
simple complex

1566 132
47 892
40 6
0 52

compound
49

6
207

s

comp-complex
17
6S
23

249

The system's inability to find imperative sentences seems to have little effect on most of the style
statistics. A document with half of its sentences imperative was run, with and without the imperative end
marker. The results were identical except for the expected errors of not finding verbs as sentence openers,
not counting the imperative sentences, and a slight difference (1 %) in the number of nouns and adjectives
reported.

6.3. Word Usage

The accuracy of identifying word types reftects that of PARTS, which is about 95% correct. The
largest source of confusion is between nouns and adjectives. The verb counts were checked on about 20
sentences from each document and found to be about 98% correct.

7. Technical Details

7.1. Finding Sentences

The formatting commands embedded in the text increase the difficulty of finding sentences. Not all
text in a document is in sentence form; there are headings, tables, equations and lists, for example. Head
ings like "Finding Sentences" above should be discarded, not attached to the next sentence. However,
since many of the documents are formatted to be phototypeset, and contain font changes, which usually
operate on the most important words in the document, discarding all formatting commands is not correct
To improve the programs' ability to find sentence boundaries, the deformatting program, DEROFF [13],
has been given some knowledge of the formatting packages used on the UNIX operating system. DEROFF
will now do the following:

1. Suppress all formatting macros that are used for titles, headings, author's name, etc.

2. Suppress the arguments to the macros for titles, headings, author's name, etc.

3. Suppress displays, tables, footnotes and text that is centered or in no-fill mode.

4. Substitute a place holder for equations and check for hidden end markers. The place holder is neces
sary because many typists and authors use the equation setter to change fonts on important words.
For this reason, header files containing the definition of the EQN delimiters must also be included as
input to STYLE. End markers are often hidden when an equation ends a sentence and the period is
typed inside the EQN delimiters.

5. Add a "." after lists. If the ftag -ml is also used, all lists are suppressed. This is a separate ftag
because of the variety of ways the list macros are used. Often, lists are sentences that should be
included in the analysis. The user must determine how lists are used in the document to be analyzed.

Both STYLE and DICTION call DEROFF before they look at the text. The user should supply the
-ml ftag if the document contains many lists of non-sentences that should be skipped.

7 .2. Details of DICTION

The program DICTION is based on the string matching program FGREP. FGREP takes as input a
file of patterns to be matched and a file to be searched and outputs each line that contains ·any of the pat
terns with no indication of which pattern was matched. The following changes have been added to
FGREP:

1. The basic unit that DICTION operates on is a sentence rather than a line. Each sentence that con
tains one of the patterns is output.

Writing Tools- the STYLE and DICTION Programs USD:32-11

2. Upper case letters are mapped to lower case.
3. Punctuation is replaced by blanks.

4 All pattern matches in the sentence are found and surrounded with''['' '']''.

5. A method for suppressing a stting match has been added Any pattern that begins with ',_,' will not
be matched. Because the matching algorithm finds the longest substring, the suppression of a match
allows words in some correct contexts not to be matched while allowing the word in another context
to be found Fm- example, the word "which" is often incorrectly used instead of "that" in restric
tive clauses. However, "which" is usually correct when preceded by a preposition or '\". The
default pattern file suppresses the match of the common prepositions or a double blank followed by
"which" and therefore matches only the suspect uses. The double blank accounts for the replaced
comma.

8. Conclusions

A system of writing tools that measure some of the objective characteristics of writing style has been
developed. The tools are sufficiently general that they may be applied to documents on any subject with
equal accuracy. Although the measurements are only of the surface structure of the text, they do point out
problem areas. In addition to helping writers produce better documents, these programs may be useful for
studying the writing process and finding other formulae for measuring readability.

USD:32-12 Writing Tools - the STYLE and DICTION Programs

References

1. L. L. Cherry, "PARTS - A System for Assigning Word Classes to English Text," submitted Com
munications of the ACM.

2. B. W. Kernighan and J. R. Mashey, "The UNIX Programming Environment," Software -Practice
cl ~rience, 9, 1-15 (1979).

3. G. R. Klare, "Assessing Readability," Reading Research Quarterly, 1974-1975, 10, 62-102.

4. E. A. Smith and P. Kincaid, "Derivation and validation of the automated readability index for use
with technical materials," HllmlJ/I Factors, 1970, 12, 457-464.

5. J.P. Kincaid, R. P. Fishburne, R. L. Rogers, and B. S. Chissom, "Derivation of new readability for
mulas (Automated Readability Index, Fog count, and Flesch Reading Ease Formula) for Navy
enlisted personnel," Navy Training Command Research Branch Report 8-75, Feb., 1975.

6. M. Coleman and T. L. Liau, ''A Computer Readability Formula .Designed for Machine Scoring,''
Journal of Applied Psychology, 1915, 60, 283-284.

7. R. Flesch, "A New Readability Yardstick," Journal of Applied Psychology, 1948, 32, 221-233.

8. E. U. Coke, private communication.

9. D. W. Ewing, Writing/or Results, John Wiley & Sons, Inc., New York, N. Y. (1974).

10. G. Leggett, C. D. Mead and W. Charvat, Prentice-Hall Handbook. for Writers, Seventh Edition,
Prentice-Hall Inc., Englewood Cliffs, N. J. (1978).

11. E. B. Coleman, "Leaming of Prose Written in Four Grammatical Transfonnations," Journal of
Applied Psychology, 1965, vol. 49, no. 5, pp. 332-341.

12 A. V. Aho and M. J. Corasick, "Efficient String Matching: an aid to Bibliographic Search," Com
munications of the ACM, 18, (6), 333-340, June 1975.

13. Bell Laboratories, "UNIX TIME-SHARING SYSTEM: UNIX PROGRAMMER'S MANUAL,"
Seventh Edition, Vol. 1 (January 1979).

Writing Tools - the STYLE and DICTION Programs

a. d.
A.M.
a.m.
b. c.
Ch.
ch.
ckts.
dB.
Dept
dept.
Depts.
depts.
Dr.
Ors.
e.g.
Eq.
eq.
et al.
etc.
Fig.
fig.
Figs.
figs.
ft.
i.e.
in.
Inc.
Jr.
jr.
mi.
Mr.
Mrs.
Ms.
No.
no.
Nos.
nos.
P.M"
p.m.
Ph.D.
Ph.d.
Ref.
ref.
Refs.
refs.
St
vs.
yr.

Appendix 1

STYLE Abbreviations

USD:32-13

USD:32-14 Writing Tools - the STYLE and DicnON Programs

Appendix2

Default DICTION Patterns

apu&dalol ceallr pardmt feerfal lbat illllllfcrmof

a llrp Dlllllblr ol clllctlm few ill lllJllbc ID 1111 lmmnl:e ol
alatol clllct• ma rMIJ ID 1111 iDllllrim
aimjad&Jof clllct'lp• tml compledml ID 1111 lut ma1"9 ct&cle lml IDllll!llllllrol
...... ol ca.. tma--.. IDllll-tmu.

·~ cdlabclnla tmlremlt tnllll~of
a pre,._ Im c:dlecl 8mlm ill 1111 net llOo~ ftalme
.1111111 ot CCllllbial Ind ll tallreldq., bow ID 1111 proztmi&J ol
a lllllG:f ID ccmetoallllll Int IDll finmall IDllllrmpol

a bow I .. cc...- Int begillafllp ID die - WllJ' • dac:rfbed
•blcllUllJ campldl ccmmmMCGld Int lnidalild ID die lbape of

ablcllUllJ~ c 4 Indy IDdle'ricillllJof
1ttrompHllwd ~ fallowlftlr ID II* cam

acccrdlDal1 camptle fallowqlftlr ID Yiew ol 1111
wm. ccmmdlli far 1111 p1rpcm ol ID -nolalian of caadllct• lat ':P"mof far die nalOll dllt m-cb• added-- ~ far die liqlle reaan dllt ladica•
•cleqaalllmoqb CGllDIC&'lp far dlil reaoa illldicatmof

adnal ~ofopiaim far Joar IDf«Jllll:icJa lDitillil8

a1bd aa CJFPClrCllDit1 cca.q-rallt f?Om die poilll of~ of IDi1ialie
agnplle CCllldidall fiDledm full IDll complelll !njarioulO
lllof CCllllnlCt genenlly lped iDqUe

Ill dual&lal cCllllelllpl8la good IDll lmldeof
alq die Hae ccadlmlOD go«., IDltillllea

ID indkatioaof ccmtlaal IO nmam gralllitma IDtellll IDll palpoeel

lmlyzadan c:caldol paly mhJimjze intamillgle
ml etc cauitwp head up irrepntl•
mlar CCJGFl•flDltdm belpbat ilddml•
aDOda ad4Wollll deblla lbaat helps ID 1111 prodDClbl of ii ued to conlrol
my IDll 111 decide OD hopefal ii when
uriYeata del eft'ect If ml when ilwba9
uaaa.roffac& ~ If at Ill pomble it ii incamtJeD&
uamecbodof demlmmlll fmpKt it lllmdl ID reaan
u good or beuer lblll depnciltl ia Yllae implement it W11 DOied Chit II
uolmw 4-Ytasol importllDt eaentil1a joint coapaatioll
uper delinhle beaet&a impor11ndy joint putDetlblp
urqanll dairoalof in a large meuue juteXIClly
urelaledto dltftmlt lblll in a pcllidml to tlDI ol
UllO dilc:calimle In accordm:e tnowaboa& dilldU&J In ld'9IDCI ol 1 .. bmnatl..C
Uliltlace 10 dMdeap In agreemeal wilb lalHOD
alliltmce to dalbt'* tnaD~ lerrinc oat of c:cmaidersdoa
UllUDll!l lhlt d11ero ID beck of Uable
atalallrdalll duly DOied ID bebllfof lilltup
a ta boat d1llilll die dme 11111 IDbeblnd Jil2nlly
ataboft ucblDllmry in between litde doubt lbll
at all tilml eady bqimlinal In Clll lOle oaten
atmmtydalll efrec:lull in cloe prolimly lOClol
at below emodollll feeUnp in coalict wilb main lllelllilla
atlbeiir- emptyaat In coajmlctiOD wilb mU:ea
at lbe dme wbeD mcla.d lmeiD in coanecdm wilb mike ldjulemellll ID

at dlil poilll iD lime mcl09d berewllb illl'llct mU:em
1tdlil tlma endmmlt IDllrp- mllte lpplicadml eo
atwbicbdme, ID may~ mllte c:ioa1ac& wilb
at yam emlielt cC111.ealmce em.,. illlllOIC~ mllte meadaa ol
audaartzadml emria ill my opiDioa I dlllllt mike oet a lilt of

awftll -- in order to mllte the acqlllinllml:e of

bllic flmlllmllllla e1ldmled innre~ mlltetheadjUmeal

baklllJ adnlycomp• in reference to llllllmr

be c:opiaa& ol eqalJygoocl• inrepntto mWmapmaillle

beinl•, inrepnlato IDllllilllM
beiqdllt eWDtlllll iD reladOD wilb meetvpwllb

brief in claradoa nwymwmldm inlbartlllpllly melt don
brilla to • CCllll:l'aiOD eucdy idllldcll mm. melt up

batdllt ellpldlaciaa ditlallJ inllrlmof melbodolOIJ
blllwllll ,..... in die amoant of miabtol
by--ol ,_.,.., in thee-of minimb.e. fir .. poaible
by die 1111 ol fd'- inthecmmol mlaor tmpanm:e
cmy oat aperilllem fecalDllt..,. in die e'felll mill oaten

Cllller lboat futiDICdaa iadle llddol moditCldm
cemrlrOllllll femfalol

111 11~11,~1111111111111·1!ttJ111111111111:I1 11111111111:111!ii111ii~1iil~J:~~~t!IJt111~ t ft ts a.s t~ffwBf!'1~ s ll ff ts '11'1a.! ~; A.f ~~1 1} J •I
A. I •! B I I. I r I Is I f

B ~ j

fillllllliiJJ.Jtt~iilllillif~!fil
8

1'lll''''''l'''!'''llf l'''Jt1·11·1· 1111:111111
1J!ilI!l! II r1·•1=ti'tli1

11 r l,1 1 i!J!li•l1
1[1 1ltr ·'1tt r~r. 11•~· 1 ~1·11

1~!1~1 8 I !1 I i i'1 1~11 1~ i A. I 1 I
4}~ ~ s i ~ I is

i r
I

llllilllf liiiliiiiliiil
1i!i

~ g.
CIQ

i
I

If

~
i
~
~

f

~
~
t;-> -V\

A Guide to the Dungeons of Doom

Mic~IC. Toy
Kenneth C.R. C. Arnold

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California
Berkeley, California 94720

ABSTRACT

Roglll! is a visual CRT based fantasy game which runs under the UNIXt timesharing system. This
paper describes how to play rogue, and gives a few hints for those who might otherwise get lost
in the Dungeons of Doom.

1. Introduction

You have just finished your years as a student at the local fighter's guild. After much practice and
sweat you have finally completed your training and are ready to embark upon a perilous adventure. As a
test of your skills, the local guildmasters have sent you into the Dungeons of Doom. Your task is to return
with the Amulet of Yendor. Your reward for the completion of this task will be a full membership in the
local guild. In addition, you are allowed to keep all the loot you bring back from the dungeons.

In preparation for your journey, you are given an enchanted mace, a bow, and a quiver of arrows
taken from a dragon's hoard in the far off Dark Mountains. You are also outfitted with elf-crafted annor
and given enough food to reach the dungeons. You say goodbye to family and friends for what may be the
last time and head up the road.

You set out on your way to the dungeons and after several days of uneventful travel, you see the
ancient ruins that mark the entrance to the Dungeons of Doom. It is late at night, so you make camp at the
entrance and spend the night sleeping under the open skies. In the morning you gather your weapons, put
on your annor, eat what is almost your last food, and enter the dungeons.

2. What is going on here?

You have just begun a game of rogue. Your goal is to grab as much treasure as you can, find the
Amulet of Yendor, and get out of the Dungeons of Doom alive. On the screen, a map of where you have
been and what you have. seen on the current dungeon level is kept. As you explore more of the level, it
appears on the screen in front of you.

Rogue differs from most computer fantasy games in that it is screen oriented. Commands are all one
or two keystrokes1 and the results of your commands are displayed graphically on the screen rather than
being explained in words.1

Another major difference between rogue and other computer fantasy games is that once you have
solved all the puzzles in a standard fantasy game,· it has lost most of its excitement and it ceases to be fun.

tUNIX is a trademark of Bell Laboratories
1 AB opposed to pseudo English sentences.
2 A minimum screen size of 24 lines by 80 columns is required. If the screen is larger, only the 24x80 section will be used for

USD:33·2 A Guide to the Dungeons of Doom

Rogue, on the other hand, genentes a new dungeon every time you play it and even the author finds it an
entertaining and exciting game.

3. What do all those things on the screen mean?

In order to understand what is going on in rogue you have to first get some grasp of what rogue is
doing with the screen. The rogue screen is intended to replace the ''You can see ... '' descriptions of stan
dard fantasy games. Figure 1 is a sample of what a rogue screen might look like.

3.1. The bottom line

At the bottom line of the screen are a few pieces of cryptic information describing your current
status. Here is an explanation of what these things mean:
Level This number indicates how deep you have gone in the dungeon. It starts at one and goes up as you

go deeper into the dungeon.

Gold The number of gold pieces you have managed to find and keep with you so far.

Hp Your current and maximum health points. Health points indicate how much damage you can take
before you die. The more you get hit in a fight, the lower they get You can regain health points by
resting. The number in parentheses is the maximum number your health points can reach.

Str Your current strength and maximum ever strength. This can be any integer less than or equal to 31,
or greater than or equal to three. The higher the number, the stronger you are. The number in the
parentheses is the maximum strength you have attained so far this game.

Arm Your current armor protection. This number indicates how effective your armor is in stopping
blows from unfriendly creatures. The higher this number is, the more effective the armor.

Exp These two numbers give your current experience level and experience points. As you do things, you
gain experience points. At certain experience point totals, you gain an experience level. The more
experienced you are, the better you are able to fight and to withstand magical attacks.

3.2. The top line

The top line of the screen is reserved for printing messages that describe things that are impossible to
represent visually. If you see a ''--More--'' on the top line, this means that rogue wants to print another
message on the screen, but it wants· to make certain that you have read the one that is there first To read
the next message, just type a space.

the map.

I .
I .. @.
I. . B.
I

- + -

. . +
. 1 I

I
I

Level: 1 Gold: 0 Hp: 12(12) Str: 16(16) Arm: 4 Exp: 1/0

Figure 1

A Guide to the Dungeons of Doom USD:33-3

3.3. The rest of the screen

The rest of the screen is the map of the level as you have explored it so far. Each symbol on the
screen rep~ents something. Here is a list of what the various symbols mean:

@ This symbol represents you, the adventurer.

-I These symbols represent the walls of rooms.

+

•
)

]

?

A do<x' to/from a room.
The floor of a room.
The floor of a passage between rooms.
A pile or pot of gold.

A weapon of some sort.

A piece of armor.
A flask containing a magic potion.

A piece o(paper, usually a magic scroll.

A ring with magic properties

I A magical staff or wand

A trap, watch out for these.

% A staircase to other levels

A piece of food.

A-Z The uppercase letters rep~ent the various inhabitants of the Dungeons of Doom. Watch out, they
can be nasty and vicious.

4. Commands

Commands are given to rogue by typing one or two characters. Most commands can be preceded by
a count to repeat them (e.g. typing "10s" will do ten searches). Commands for which counts make no
sense have the count ignored. To cancel a count or a prefix, type <ESCAPE>. The list of commands is rather
long, but it can be read at any time during the game with the''?'' command. Here it is for reference, with
a short explanation of each command.

? The help command Asks for a character to give help on. If you type a "*", it will list all the com
mands, otherwise it will explain what the character you typed does.

I This is the "What is that on the screen?" command. A"!" followed by any character that you see
on the level, will tell you what that character is. For instance, typing "/@" will tell you that the
"@"symbol represents you, the player.

h, H, "H
Move left. You move one space to the left If you use upper case ''h'', you will continue to move
left until you run into something. This works for all movement commands (e.g. "L" means run in
direction "l") If you use the "control" "h", you will continue moving in the specified direction
until you pass something interesting or run into a wall. You should experiment with this; since it is a
very useful command, but very difficult to describe. This also works for all movement commands.

j Move down.

k Move up.

MoverighL

y Move diagonally up and left.

u Move diagonally up and right

b Move diagonally down and left.

n Move diagonally down and right

USD:33-4 A Guide to the Dungeons or Doom

t Throw an objecL This is a prefix command. When followed with a direction it throws an object in
the specified direction. (e.g. type "th" to throw something to the left)

f Fight until someone dies. -When followed with a direction this will force you to fight the creature in
that direction until either you or it bites the big one.

m Move onto something without picking it up. This will move you one space in the direction you
specify and, if there is an object there you can pick up, it won't do it.

z Zap prefix. Point a staff or wand in a given direction and fire it. Even non-directional staves must be
pointed in some direction to be used.

Identify trap command. If a trap is on your map and you can't remember what type it is, you can get
rogue to remind you by getting next to it and typing """ followed by the direction that would move
you on top of it.

s Search for traps and secret doors. Examine each space immediately adjacent to you for the existence
of a trap or secret door. There is a large chance that even if there is something there, you won't find
it, so you might have to search a while before you find something.

> Climb down a staircase to the next level. Not surprisingly, this can only be done if you are standing
on staircase.

< Climb up a staircase to the level above. This can't be done without the Amulet of Yendor in your
possession.

Rest. This is the "do nothing" command. This is good for waiting and healing.

Pick up something. This picks up whatever you are currently standing on, if you are standing on
anything at all.

Inventory. List what you are carrying in your pack.

I Selective inventory. Tells you what a single item in your pack is.

q Quaff one of the potions you are carrying.

r Read one of the scrolls in your pack.

e Eat food from your pack.

w Wield a weapon. Take a weapon out of your pack and carry it for use in combat, replacing the one
you are currently using (if any).

W Wear armor. You can only wear one suit of armor at a time. This takes extra time.

T Take armor off. You can't remove armor that is cursed. This takes extra time.

P Put on a ring. You can wear only two rings at a time (one on each hand). If you aren't wearing any
rings, this command will ask you which hand you want to wear it on, otherwise, it will place it on the
unused hand. The program assumes that you wield your sword in your right hand.

R Remove a ring. If you are only wearing one ring, this command takes it off. If you are wearing two,
it will ask you which one you wish to remove,

d Drop an object. Take something out of your pack and leave it lying on the floor. Only one object
can occupy each space. You cannot drop a cursed object at all if you are wielding or wearing it.

c Call an object something. If you have a type of object in your pack which you wish to remember
something about, you can use the call command to give a name to that type of object. This is usually
used when you figiare out what a potion, scroll, ring, or staff is after you pick it up, or when you want
to re~ember which of those swords in your pack you were wielding.

D Printout which things you've discovered something about. This command will ask you what type of
thing you are interested in. If you type the character for a given type of object (e.g. ''!'' for potion)
it will tell you which kinds of that type of object you've discovered (i.e., figured out what they are).
This command works for potions, scrolls, rings, and staves and wands.

o Examine and set options. This command is further explained in the section on options.

"'R Redraws the screen. Useful if spurious messages or transmission errors have messed up the display.

A Guide to the Dungeons of Doom USD:33-5

'"P Print last message. Useful when a message disappears before you can read iL This only repeats the
last message that was not a mistyped command so that you don't loose anything by accidentally typ
ing the wrong ch~ter instead of '"P.

<ESCAPE>
Cancel a command, prefix, <X count.

Escape to a shell for some commanm.
Q Quit. Leave the game.

S Save the current game in a file. It will ask you whether you wish to use the default save file. Cavear.
Rogue won't let you start up a copy of a saved game, and it removes the save file as soon as you start
up a restored game. This is to prevent people from saving a game just before a dangerous position
and then restarting it if they die. To restore a saved game, give the file name as an argument to
rogue. As in

~ rogue save _file
To restart from the default save file (see below), run

% rogue-r

v Prints the program version number.

) Print the weapon you are currently wielding

1 Print the armor you are currently wearing

Print the rings you are currently wearing

@ Reprint the status line on the message line

5. Rooms

Rooms in the dungeons are either lit or dark. If you walk into a lit room, the entire room will be
drawn on the screen as soon as you enter. H you walk into a dark room, it will only be displayed as you
explore iL Upon leaving a room, all monsters inside the room are erased from the screen. In the darkness
you can only see one space in all directions around you. A corridor is always dark.

6. Fighting

H you see a monster and you wish to fight it, just attempt to run into il Many times a monster you
find will mind its own business unless you attack iL It is often the case that discretion is the better part of
valor.

7. Objects you can find

When you find something in the dungeon, it is common to want to pick the object up. This is accom
plished in rogue by walking over the object (unless you use the "m" prefix, see above). If you are carry
ing too many things, the program will tell you and it won't pick up the object, otherwise it will add it to
your pack and tell you what you just picked up.

Many of the commands that operate on objects must prompt you to find out which object you want to
use. H you change your mind and don't want to do that command after all, just type an <ESCAPE> and the
command will be aborted.

Some objects, like armor and weapons, are easily differentiated. Others, like scrolls and potions, are
given labels which vary according to type. During a game, any two of the same kind of object with the
same label are the same type. However, the labels ~ill vary from game to game.

When you use one of these labeled objects, if its effect is obvious, rogue will remember what it is for
you. Hit's effect isn't extremely obvious you will be asked what you want to.scribble on it so you will
recognize it later, or you can use the "call" command (see above).

7 .1. Weapons

Some weapons, like arrows, come in bunches, but most come one at a time. In order to use a
weapon, you must wield iL To fire an arrow out of a bow, you must first wield the bow, then throw the

USD:33-6 A Guide to the Dungeons of Doom

arrow. You can only wield one weapon at a time, but you can't change weapons if the one you are
currently wielding is cursed. The commands to use weapons are "w,, (wield) and "t" (throw).

7.2. Armor

The.re are various sorts of armor lying· around in the dungeon. Some of it is enchanted, some is
cursed, and some is just nmnal. Different ll1ll<X' types have different amior protection. The higher the
armor protection, the m<n protection the arm« affords against the blows of monsters. He.re is a list of the
various armor types and their normal armor proteetion:

Ty~
None
Leather armor
Studded leather I Ring mail
Scale mail
Chain mail
Banded mail I Splint mail
Plate mail

Protection
0
2
3
4
s
6
7

If a piece of armor is enchanted, its armor protection will be higher than normal. If a suit of armor is
cursed, its armor protection will be lower, and you will not be able to remove it However, not all armor
with a protection that is lower than normal is cursed.

The commands to use weapons are "W" (wear) and "T" (take oft).

7.3. Serons

Scrolls come with titles in an unknown tongue3• After you read a scroll, it disappears from your
pack. The command to use a scroll is ''r'' (read).

7 .4. Potions

Potions are labeled by the color of the liquid inside the ftask. They disappear after being quaffed.
The command to use a scroll is "q" (quaff).

1.S. Staves and Wands
Staves and wands do the same kinds of things. Staves are identified by a type of wood; wands by a

type of metal or bone. They are generally things you want to do to something over a long distance, so you
must point them at what you wish to affect to use them. Some staves are not affected by the direction they
are pointed, though. Staves come with multiple magic charges, the number being random, and when they
are used up, the staff is just a piece of wood or metal.

The command to use a wand or staff is "z" (zap)

7.6. Rings

Rings are very useful items, since they are relatively permanent magic, unlike the usually fteeting
effects of potions, scrolls, and staves. Of course, the bad rings are also more powerful. Most rings also
cause you to use up food more rapidly, the rate varying with the type of ring. Rings are differentiated by
their stone settings. The commands to use rings are "P" (put on) and "R" (remove).

7.7. Food

Food is necessary to keep you going. If you go too long without eating you will fainlt and eventually
die of starvation. The command to use food is "e" (eat).

3 Actually, it's a dialect spoken only by the twenty-seven members of a tribe in Outer Mongolia, but you're not supposed to
know that.

A Guide to the Dungeons of Doom USD:33-7

8. ·options

Due to variations in personal tastes and conceptions of the way rogue should do things, there are a
set of options you can $et that cause rogue to behave in various different ways.

8.1. Setting the options

There are two ways to set the options. The first is with the ''o'' command of rogue; the second is
with the "ROGUEOYfS" environment variable4•

8.1.1. Using the 'o' command

When you type "o" in rogue, it clears the screen and displays the current settings f<X" all the options.
It then places the cursor by the value of the first option and waits for you to type. You can type a
<RETURN> which means to go to the next option, a '' -'' which means to go to the previous option, an
<ESCAPE> which means to return to the game, or you can give the option a value. For boolean options this
merely involves typing "t" for ttue or "r' for false. For string options, type the new value followed by a
<RETURN>.

8.1.2. Using the ROGUEOPTS variable

The ROGUEOPTS variable is a string containing a comma separated list of initial values for the
various options. Boolean variables can be turned on by listing their name or turned off by putting a "no"
in front of the name. Thus to set up an environment variable so that jump is on, terse is off, and the name
is set to "Blue Meanie", use the command

% setenv ROGUEOYfS "jump,noterse,name=Blue Meanie"5

8.2. Option list

Here is a list of the options and an explanation of what each one is for. The default value for each is
enclosed in square brackets. For character string options, input over fifty characters will be ignored.
terse [noterse]

Useful for those who are tired of the sometimes lengthy messages of rogue. This is a useful option
for playing on slow terminals, so this option defaults to terse if you are on a slow (1200 baud or
under) terminal.

jump [nojump]
If this option is set, running moves will not be displayed until you reach the end of the move. This
saves considerable cpu and display time. This option defaults to jump if you are using a slow termi
nal.

Hush [no.flush]
All typeahead is thrown away after each round of battle. This is useful for those who type far ahead
and then watch in dismay as a Bat kills them.

seeftoor [see.floor]
Display the ftoor around you on the screen as you move through dark rooms. Due to the amount of
charactets generated, this option defaults to noseejloor if you are using a slow terminal.

p~go [nopassgo]
Follow turnings in passageways. If you run in a passage and you run into stone or a wall, rogue will
see if it can tum to the right or left If it can only turn one way, it will turn that way. If it can turn
either or neither, it will stop. This algorithm can sometimes lead to slightly confusing occurrences
which is why it defaults to nopassgo.

tombstone [tombstone]
Print out the tombstone at the end if you get killed. This is nice but slow, so you can turn it off if you

4 On Version 6 systems, there is no equivalent of the ROGUEOI'fS feature.
5 For those of you who use the Bourne shell sh (1). the commands would be
S ROGUEOI'fS-"jump.notene,name-Blue Meanie"
$ export ROGUEOPTS

USD:33-8 A Guide to the Dungeons of Doom

like.

inven [overwrite]
Inventory type. This can have one of three values: overwrite, slow, or clear. With overwrite the top
lines of the map are overwritten with the list when inventory is requested or when ''Which item do
you wish to ••• ?'' questions are answered with a''•''. However, if the list is longer than a screen
ful, the screen is cleared. With slow, lists are displayed one item at a time on the top of the screen,
and with clear, the.scieen is cleared, the list is displayed, and then the dungeon level is re-displayed.
Due to speed considerations, clear is the default for terminals without clear-to-end-of-line capabili
ties.

name [account name]
This is the name of your character. It is used if you get on the top ten scorer's list.

fruit [slime-mold]
This should hold the name of a fruit that you enjoy eating. It is basically a whimsey that rogue uses
in a couple of places.

file [*fro gue .save]
The default file name for saving the game. If your phone is hung up by accident, rogue will automat
ically save the game in this file. The file name may start with the special character ',_,' which
expands to be your home directory.

9. Scoring

Rogue usually maintains a list of the top scoring people or scores on your machine. Depending on
how it is set up, it can post either the top scores or the top players. In the latter case, each account on the
machine can post only one non-winning score on this list If you score higher than someone else on this
list, or better your previous score on the list, you will be inserted in the proper place under your current
name. How many scores are kept can also be set up by whoever installs it on your machine.

If you quit the game, you get out with all of your gold intact. If, however, you get killed in the
Dungeons of Doom, your body is forwarded to your next-of-kin, along with 90% of your gold; ten percent
of your gold is kept by the Dungeons' wizard as a fee6• This should make you consider whether you want
to take one last hit at that monster and possibly live, or quit and thus stop with whatever you have. If you
quit, you do get all your gold, but if you swing and live, you might find more.

If you just want to see what the current top players/games list is, you can type
% rogue-s

10.
Acknowledgements

Rogue was originally conceived of by Glenn Wichman and Michael Toy. Ken Arnold and Michael
Toy then smoothed out the user interface, and addedjillions of new features. We would like to thank Bob
Arnold, Michelle Busch, Andy Hatcher, Kipp Hickman, Marie Horton, Daniel Jensen, Bill Joy, Joe Kalash,
Steve Maurer, Marty McNary, Jan Miller, and Scott Nelson for their ideas and assistance; and also the
teeming multitudes who graciously ignored work, school, and social life to play rogue and send us bugs,
complaints, suggestions, and just plain flames. And also Mom.

5 The Dungeon's wizard is named Wally the Wonder Badger. Invocations should be accompanied by a siuble donation.

Star Trek

STAR

TREK

by

Eric Allman
University of California

Berkeley

INTRODUCTION

USD:34-1

Well, the federation is once again at war with the Klingon empire. It is up to you, as captain of
the U.S.S. Enterprise, to wipe out the invasion fteet and save the Federation.

For the purposes of the game the galaxy is divided into 64 quadrants on an eight by eight grid,
with quadrant 0,0 in the upper left hand comer. Each quadrant is divided into 100 sectors on a ten by ten
grid. Each sector contains one object (e.g., the Enterprise, a Klingon, or a star).

Navigation is handled in degrees, with zero being straight up and ninety being to the right.
Distances are measured in quadrants. One tenth quadrant is one sector.

The galaxy contains starbases, at which you can dock to refuel, repair damages, etc. The
galaxy also contains stars. Stars usually have a knack for getting in your way, but they can be triggered
into going nova by shooting a photon torpedo at one, thereby (hopefully) destroying any adjacent Klingons.
This is not a good practice however, because you are penalized for destroying stars. Also, a star will some
times go supernova, which obliterates an entire quadrant You must never stop in a supernova quadrant,
although you may "jump over" one.

Some starsystems have inhabited planets. Klingons can attack inhabited planets and enslave
the populace, which they then put to work building more·K.Iingon battle cruisers.

STARTING UP THE GAME

To request the game, issue the command

/usr/games/trek

from the shell If a filename is supplied, a log of the game is written onto that file. (Otherwise, no file is
written.) If the "-a" ftag is stated before the filename, the log of the game is appended to the file.

USD:34-2 Star Trek

The game will ask you what length game you would like. Valid responses are "short",
"medium", and "long". You may also type "restart", which restarts a previously saved game. Ideally, the
length of the game does not affect the difficulty, but currently the shorter games tend to be harder than the
longer ones.

You will then be prompted for the skill, to which you must respond "novice", "fair", "good",
"expert", "commodore", or "impossible". You should start out with a novice and work up, but if you really
want to see how fast you can be slaughtered, start out with an impossible game.

In general, throughout the game, if you forget what is appropriate the game will tell you what
it expects if you just type in a question mark.

ISSUING COMMANDS

If the game expects you to enter a command, it will say "Command: " and wait for your
response. Most commands can be abbreviated.

At almost any time you can type more than one thing on a line. For example, to move straight
up one quadrant, you can type

moveO 1
or you could just type

move
and the game would prompt you with

Course:
to which you could type

01
The "1" is the distance, which could be put on still another line. Also, the "move" command could have
been abbreviated "mov", "mo", orjust"m".

If you are partway through a command and you change your mind, you can usually type "-1"
to cancel the command.

Klingons generally cannot hit you if you don't consume anything (e.g., time or energy), so
some commands are considered "free". As soon as you consume anything though -- POW!

Star Trek

Short Range Scan

THE COMMANDS

Mnemonic: srscan
Shortest Abbreviation: s
Full Commands: srscan

srscan yes/no
Consumes: nothing

USD:34-3

The shat range scan gives you a picture of the quadrant you are in, and (if you say "yes") a
status report which tells you a whole bunch of interesting stuff. You can get a status report alone by using
the status command An example follows:

Short range sensa- scan

0 1 2 3 4 s 6 7 8
0 • .
1 E
2
3 • #
4 .
5 • • .
6 . @
7
8 K
9 • .

0 1 2 3 4 s 6 7 8

Distressed Starsystem Marcus XII

The cast of characters is as follows:
E thehero
K the villain
the starbase
• stars

9
• 0

1
• 2

3
4
5
6
7
8
9

9

@ inhabited starsystem
. empty space

a black hole

stardate 3702.16
condition RED
position 0,3/1,2
warp factor 5.0
total energy 4376
torpedoes 9
shields down, 78%
Klingons left 3
time left 6.43
life support damaged, reserves = 2.4

The name of the starsystem is listed underneath the short range scan. The word "distressed", if
present, means that the starsystem is under attack.

Short range scans are absolutely free. They use no time, no energy, and they don't give the
Klingons another chance to hit you. ·

Status Report

Mnemonic: status
Shortest Abbreviation: st
Consumes: nothing

USD:34-4 Star Trek

follows:
This command gives you infmnation about the current status of the game and your ship, as

Stardate -- The current stardate.

Condition -- as follows:
RED - in battle
YEILOW -- low oo energy
GREEN - normal state
DOCKED - docked at starbase
CWAKED -- the cloaking device is activated

Position -- Your current quadrant and secur.

Warp Factor -- The speed you will move at when you move under warp power (with the move
command).

Total Energy - Your energy reserves. If they drop to zero, you die. Energy regenerates, but the
higher the skill of the game, the slower it regenerates.

Torpedoes --How many photon torpedoes you have.left.

Shields -- Whether your shields are up or down, and how effective they are if up (what percen
tage of a hit they will absorb).

Klingons Left -- Guess.

Time Left - How long the Federation can hold out if you sit on your fat ass and do nothing. If
you kill Klingons quickly, this number goes up, otherwise, it goes down. If it hits zero,
the Federation is conquered.

Life Support -- If" active", everything is fine. If "damaged", your reserves tell you how long you
have to repair your life support or get to a starbase before you starve, suffocate, or
something equally unpleasant.

Current Crew -- The number of crew members left This figures does not include officers.

Brig Space - The space left in your brig for Klingon captives.

Klingon Power -- The number of units needed to kill a Klingon. Remember, as Klingons fire at
you they use up their own energy, so you probably need somewhat less than this.

Skill, Length -- The skill and length of the game you are playing.

Status infmnation is absolutely free.

Long Range Scan

~emonic:lrscan
Shortest Abbreviation: 1
Consumes: nothing

Star Trek USD:34-5

Long range scan gives you information about the eight quadrants that surround the quadrant
you 're in. A sample long range scan follows:

Long range scan for quadrant 0,3

2 3 4
• ! • • !

0 ! 108 ! 6 ! 19 !
l! 9! II/! 8!

The three digit numbelS tell the number of objects in the quadrants. The units digit tells the
number of stars, the tens digit the number of starbases, and the hundreds digit is the number of Klingons.
"•"indicates the negative energy barrier at the edge of the galaxy, which you cannot enter. "Ill" means that
that is a supernova quadrant and must not be entered.

Damage Report

Mnemonic: damages
Shortest Abbreviation: da
Consumes: nothing

A damage report tells you what devices are damaged and how long it will take to repair them.
Repairs proceed faster when you are docked at a starbase.

Set Warp Factor

Mnemonic: warp
Shortest Abbreviation: w
Full Command: warp factor
Consumes: nothing

The warp factor tells the speed of your starship when you move under warp power (with the
move command). The higher the warp factor, the faster you go, and the more energy you use.

The minimum warp factor is 1.0 and the maximum is 10.0. At speeds above warp 6 there is
danger of the warp engines being damaged. The probability of this increases at higher warp speeds.
Above warp 9 .0 there is a chance of entering a time warp.

Move Under Warp Power

Mnemonic: move
Shortest Abbreviation: m
Full Command: move course distance
Consumes: time and energy

This is the usual way of moving. The course is in degrees and the distance is in quadrants. To
move one sector specify a distance of 0.1.

USD:34-6 Star Trek

Time is consumed proportionately to the inverse of the warp factor squared, and directly to the
distance. Energy is consumed as the warp factor cubed, and directly to the distance. If you move with
your shields up it doubles the amount of energy consumed.

When you move in a quadrant containing Klingons, they get a chance to attack you.

The computer detects navigation emn. If the computer is out, you run the risk of running into
things.

The course is determined by the Space Inertial Navigation System [SINS]. As described in
Star Fleet Technical Order 1'0:02:06:12, the SINS is calibrated, after which it becomes the base for naviga
tion. If damaged, navigation becomes inaccurate. When it is fixed, Spock recalibrates it, however, it can
not be calibrated extremely accurately until you dock at starbase.

Move Under Impulse Power

Mnemonic: impulse
Shortest Abbreviation: i
Full Command: impulse course distance
Consumes: time and energy

The impulse engines give you a chance to maneuver when your warp engines are damaged;
however, they are incredibly slow (0.095 quadrants/stardate). They require 20 units of energy to engage,
and ten units per sector to move.

The same comments about the computer and the SINS apply as above.

There is no penalty to move under impulse power with shields up.

Deflector Shields

Mnemonic: shields
Shortest Abbreviation: sh
Full Command: shields up'down
Consumes: energy

Shields protect you from Klingon attack and nearby novas. As they protect you, they weaken.
A shield which is 78% effective will absorb 78% of a hit and let 22% in to hurt you.

The Klingons have ,a chance to attack you every time you raise or lower shields. Shields do
not rise and lower instantaneously, so the hit you receive will be computed with the shields at an intennedi
ate effectiveness.

It takes energy to raise shields, but not to drop them.

Star Trek

Cloaking Device

Mnemonic: cloak
Shonest Abbreviation: cl
Full Command: cloak up'down
Consumes: energy

USD:34-7

When you are cloaked, Klingons cannot see you, and hence they do not fire at you. They are
useful for entering a quadrant and selecting a good position, however, weapons cannot be fired through the
cloak due to the huge energy drain that it requires.

The cloak up command only starts the cloaking process; Klingons will continue to fire at you
until you do SOIJ>:Cthing which eonsumes time.

Fire Ph~ers

Mnemonic: ph~rs
ShonestAbbreviation:p
Full Commands: phasers automatic amount

phasers manual amtl coursel spreadl ...
Consumes: energy

Phasers are energy weapons; the energy comes from your ship's reserves ("total energy" on a
srscan). It takes about 250 units of hits to kill a Klingon. Hits are cumulative as long as you stay in the
quadrant

Phasers become less effective the further from a Klingon you are. Adjacent Klingons receive
about 90% of what you fire, at five sectors about 60%, and at ten sectors about 35%. They have no effect
outside of the quadrant

Phasers cannot be fired while shields are up; to do so would fry you. They have no effect on
starbases or stars.

In automatic mode the computer decides how to divide up the energy among the Klingons
present; in manual mode you do that yourself.

In manual mode firing you specify a direction, amount (number of units to fire) and spread (0
-> 1.0) for each of the six ph~ banks. A zero amount terminates the manual input

Fire Photon Torpedoes

Mnemonic: torpedo
Shonest Abbreviation: t
Full Command: torpedo course [yes/no] [burst angle]
Consumes: torpedoes

USD:34-8 Star Trek

Torpedoes are projectile weapons· - there are no partial hits. You either hit your target or you
don't A hit on a Klingon destroys him. A hit on a starbue destroys that starbue (woops!). Hitting a star
usually causes it to go nova, and occasionally supernova.

Photon torpedoes cannot be aimed precisely. They can be fired with shields up, but they get
even more random as they pass through the shields.

Torpedoes may be fired in bursts of three. If this is desired, the burst angle is the angle
between the three shots, which may vary from one to fifteen. The word "no" says that a burst is not
wanted; the word "yes" (which may be omitted if stated on the same line as the course) says that a burst is
wanted.

Photon torpedoes have no effect outside the quadrant

Onboard Computer Request

Mnemonic: computer
Shortest Abbreviation: c
Full Command: computer request; request; ...
Consumes: nothing

The computer command gives you access to the facilities of the onboard computer, which
allows you to do all sorts of fascinating stuff. Computer requests are:

score -- Shows your current score.

course quad/sect -- Computes the course and distance from wherever you are to the given loca
tion. If you type "course /x,y" you will be given the course to sector x,y in the current
quadrant

move quad/sect -- Identical to the course request, except that the move is executed

chart -- prints a chart of the known galaxy, i.e., everything that you have seen with a long range
scan. The format is ~the same as on a long range scan, except that" ... " means that you
don't yet know what is there, and ".1." means that you know that a starbase exists, but
you don't know anything else. "$$$" mans the quadrant that you are currently in.

trajectory - prints the course and distance to all the K.lingons in the quadrant

warpcost dist warp_factor -- computes the cost in time and energy to move 'dist' quadrants at
warp 'warp _factor'.

iinpcost dist -- same as warpcost for impulse engines.

pheff range -- tells how effective your phuers ·are at a given range.

distresslist -- gives a list of currently distressed starbases and starsystems.

Star Trek USD:34-9

More than one request may be stated on a line by separating them with semicolons.

Dock at Starbase

Mnemonic: dock
Shortest Abbreviation: do
Consumes: nothing

You may dock at a starbase when you are in one of the eight adjacent sectors.

When you dock you are resupplied with energy, photon torpedoes, and life support reserves.
Repairs are also done fasttl' at starbase. Any prisoners you have taken are unloaded. You do not receive
points for taking prisoners until this time.

Starbases have their own deflector shields, so you are safe from attack while docked.

Undock from Starba.w

Rest

attack.

Mnemonic: undock
Shortest Abbreviation: u
Consumes: nothing

This just allows you to leave starbase so that you may proceed on your way.

Mnemonic: rest
Shortest Abbreviation: r
Full Command: rest time
Consumes: time

This command allows you to rest to repair damages. It is not advisable to rest while under

Call Starbase For Help

Mnemonic: help
Shortest Abbreviation: help
Consumes: nothing ·

You may call starbase fm- help via your subspace radio. Starbase has long range transporter
beams to get you. Problem is, they can't always rematerialize you.

You should avoid using this. command unless absolutely necessary, for the above reason and
because it counts heavily against you in the scoring.

USD:34-10

Capture Klingon

Mnemonic: capture
Shortest Abbreviation: ca
Consumes: time

Star Trek

You may request that a Klingon surrender to you. If he accepts, you get to take captives (but
only as many as your brig can hold). It is good if you do this, because you get points for captives. Also, if
you ever get captured, you want to be sure that the Federation has prisoners to exchange for you.

You must go to a starbae to tum over your prisoners to Federation authorities.

Visual Scan

Mnemonic: visual
Shortest Abbreviation: v
Full Command: visual course
Consumes: time

When your short range scanners are out, you can still see what is out "there" by doing a visual
scan. Unfortunately, you can only see three sectors at one time, and it takes 0.005 stardates to perform.

The three sectors in the general direction of the course specified are examined and displayed.

Abandon Ship

Mnemonic: abandon
Shortest Abbreviation: abandon
Consumes: nothing

The officers escape the Enterprise in the shutdecraft. If the transporter is working and there is
an inhabitable starsystem in the area, the crew beams down, otherwise you leave them to die. You are
given an old but still usable ship, the Faire Queene.

Ram

Mnemonic: ram
Shortest Abbreviation: ram
Full Command: ram course distance
Consumes: time and energy

This command is identical to "move", except that the computer doesn't stop you from making
navigation errors.

You get very nearly slaughtered if you ram anything.

Star Trek

Self Destruct

Mnemonic: destruct
Shortest Abbreviation: destruct
ConsUJDeS:everything

USD:34-11

Your starship is self-destructed. Chances are you will destroy any Klingons (and stars, and
starbases) left in your quadrant

Terminate the Game

Mnemonic: tenninate
Shortest Abbreviation: tenninate
Full Command: terminate yes/no

Cancels the current game. No score is computed. If you answer yes, a new game will be
started, otherwise trek exits.

Call the Shell

Mnemonic: shell
Shortest Abbreviation: shell

Temporarily escapes to the shell. When you exit the shell you will return to the game.

SCORING

The scoring algorithm is rathel' complicated. Basically, you get points for each
Klingon you kill, for your Klingon per stardate kill rate, and a bonus if you win the game. You
lose points for the number of Klingons left in the galaxy at the end of the game, for getting killed,
for each star, starbase, or inhabited starsystem you destroy, for calling for help, and for each
casualty you incur.

You will be promoted if you play very well. You will never get a promotion if you
call for help, abandon the Enterprise, get killed, destroy a starbase or inhabited starsystem, or
destroy too many stars.

'\

~.O '·

USD:J4.12

Command

abandon

capture
cloak up/down
computer request; .•.
damages
destruct
dock
help

·impulse course distance

lrscan
move course· distance

phasers automatic amount
amtl coursel spreadl ...

torpedo course [yes] angle/no
ram course distance · ·

rest time
shell
shields up/down
srscan [yes/no]
status
terminate ,es/no
undock
visual course
warp warp_ factor

i..

COMMAND SUMMARY

Requires

shuttlecraft,
transporter

subspace radio
cloaking device
computer

computer

subspace radio

Consumes

time
energy

. 'i ~

_..,,;\

impulse engines, · -time, energy
computer, SINS
L.R. sensors
warp engines, -
computer, SINS

phasers, computer
phasers
torpedo tubes
warp engines,
computer, SINS

time, energy

energy phasers manual
energy
torpedoes
time, energy

time

shieldl : ,: energy .. ;
S.R. sensors L~ -

time

Star Trek

II Integrated Solutions

H DOCUMENTATION COMMENTS

Please take a minute to comment on the accuracy and completeness of this manual. Your assistance will help us
to better identify and respond to specific documentation issues. If necessary, you may attach an additional page
with comments. Thank you in advance f<X your cooperation.

I Manual Title: UNIX User's Supplement (USD) Part Number: 490144 Rev. A

Name: Tiuc:
-----------~- .. -~ ·-- "-

Company: --------------- Pha:.;-: () ____________ _
Address: ------------··- -·· ·--·- - ·-----------------
City: Zip Code: ____ _

1. Please rate this manual for the following:

Poor Fair Good Excellent

Clarity a CJ f'
,... CJ ..

Completeness a CJ CJ CJ
Organization Cl CJ CJ CJ
Technical Content/ Accuracy a D C' CJ
Readability a CJ ,,.:r;t ·C' CJ

Please comment:

2. Does this manual contain enough examples and 'figures?
Yes Cl Noa

Please comment:

3. Is any information missing from this manual?
Yes Cl No CJ

Please comment:

4. Is this manual adequate for your purposes?
Yes a Noa

Please comment on how this manual can be improved:

old Down First Fol4 -- - _ --·-- - - --~ ... - ----------- - ---- ------------ - --
111111

BUSINESS REPLY MAIL
First-Class Mail Permit No. 7628 San Jose, Californi:i 95131 = ·:, . ,. . - ••E.t*lm ______ _

Postage will be paid by addressee

• H
An NBI

Comp1ny

Integrated Solutions
A TIN: Technical Publications Manager
1140 Ringwood Court
San Jose, CA 95131

......-..; . .m-a·z..r -•

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED ST A TES

........................ ______ _____ . ___ ~ ----------- ---------------·
)Id Cp Second

Staple Here

