

USERS MANUAL FOR

INTERTEC'S

5UPE~BRAlNTM
VIDEO COMPUTER SYSTEM

. IMPORTANT NOTICE

This version of the SuperB rain Users Manual is intended for use with the
.. SuperBrain or Sup~rBrain OD Video Computer Systems. However,.this manual is

applicable only for those unfts with .Revision-Ot of the· Keyboarq/d~u module,
and version 3.0 or.h ighe,rof the DOS and boot loader. If-ypu hav~ a Revision-OO :, ..
Keyboard/CPU module, then use only the First or Second Edition of this manual.

Docum~nt No.68~1010 .
. September 19?O

This is the fourth edition of this manual. Your warranty registration form must be
returned promptly to assure receipt of future revisions, if any, to this document.

*** IMPORTANT ***

Do not attempt to write or save programs on your system diskette. It has been 'write
protected' by placing a small adhesive aluminum strip over the notch on the right hand side
of the diskette. Such attempts will result in a 'WRITE' or 'BAD SECTOR' error.

Before using your SuperBrain please copy the System Diskette onto a new blank diskette -
an (ntertec 1121010 diskette. If you do not have such a diskette, contact you local dealer.
He should be able to supply you with one. If you have any questions concerning this
procedure please contact your dealer before proceeding. Failure to do so may result in
permanent damage to your System Diskette.

BEFORE APPLYING POWER TO THE MACHINE INSURE THAT NO DISKETTES ARE
INSERTED INTO THE MACHINE. NEVER TURN THE MACHINE ON OR OFF WITH
DISKETTES INSERTED IN IT. FAILURE TO OBSERVE THIS PRECAUTION WILL
MOST DEFINITELY RESULT IN DAMAGE TO THE DISKETTES.

CONFIDENTIAL

AND

PROPRIETARY INFORMATION

Information presented in this manual is furnished for customer reference only and
is subject to change.

This document is the property of Intertec Data Systems Corporation, Columbia,
South Carolina, and contains confidential and trade secret information. This
information may not be transferred from the custody or control of I ntertec
except as authorized by I ntertec and then only by way of loan for limited
purposes. It must not be reproduced in whole or in part and must be returned to
Intertec upon request and in all events upon completion of the purpose of the
loan.

Neither this document nor the information it contains may be used or disclosed
to persons not having a need for such use or disclosure consistent with the
pu rpose of the loan without the prior express written consent of I ntertec.

COPYRIGHT 1980

The following is a trademark of I ntertec Data Systems Corporation, Columbia,
South Carol ina:

SUPERBRAIN

INTERTEC DATA SYSTEMS CORPORATION
Columbia, South Carolina

THE SUPERBRAIN VIDEO COMPUTER SYSTEM

CONGRATULATIONS ON YOUR PURCHASE OF INTERTEC'S SUPERBRAIN

VIDEO COMPUTER SYSTEM

Your new SuperBrain Video Computer was manufactured at I ntertec's new 120,000 square
foot plant in Columbia, South Carolina under stringent quality control procedures to insure
trouble-free operation for many years. If you should encounter difficulties with the use or
operation of your terminal, contact the dealer from whom the unit was purchased for
instructions regarding the proper servicing techniques. I f service cannot be made available
through your dealer, contact Intertec's Customer S.ervice Department at (803) 798-9100.

As with all Intertec products, we would appreciate any comments you may have regarding
your evaluation and application for this equipment. For your convenience, we have enclosed
a customer comment card at the end of this manual. Please address your comments to:

Product Services Manager
I ntertec Data Systems Corporation

2300 Broad River Road
Columbia, South Carolina 29210

The SuperBrain is distributed worldwide through a network of dealer/OEM vendors and
through I ntertec's own marketing facilities. Contact us at (803) 798-9100 (TWX - 810-
666-2115) regarding your requirement for this and other I ntertec products.

Intertec's new one hundred and twenty thousand square foot corporate and manufilt'wriny fi}(:iliry in Columbia, South Carolina

WILL THE MICROCOMPUTER YOU BUY TODAY
STILL BE THE BEST MICROCOMPUTER BUY TOMORROW?

Probably the best test in determining how to spend your microcomputer dollar
wisely is to consider the overall versatility of your terminal purchase over the next
three to five years. In the fast-paced, ever-changing world·· of data
communications, new features to increase operator and machine efficiency are
introduced into the marketplace daily. We at Intertec are acutely aware of this
rapid infusion of new ideas into the small systems business. As a result, we have
designed the SuperBrain in such a manner as to virtually eliminate the possibility
of obsolescence.

Many competitive alternatives to the SuperB rain available today provide only
limited capability for high level programming and system expansion. Indeed, most
low-cost microcomputer systems presently available quickly become outdated
because of the inability to expand the system. Intertec, however, realizes that
increased demands for more efficient utilization of programming makes system
expansion capability mandatory. That means a lot. Because the more you use
your SuperBrain, the more you'll discover its adaptability to virtually any small
system requirement. Extensive use of "software-oriented" design concepts instead·
of conventional "hardware" designs assure you of compatibility with almost any
application for which you intend to use the SuperB rain.

Once you read our operator's manual and tryout some of the features described
herein, we are confident that you too will agree with our "top performance -
bottom dollar" approach to manufacturing. The SuperBrain offers you many
more extremely flexible features at a lower cost than any other microcomputer
we know of on the market today. The use of newly developed technologies,
efficient manufacturing processes and consumer-oriented marketing programs
enables us to be the first and only major manufacturer to offer such an incredible
breakthrough in the microcomputer marketplace.

Browse through our operator's manual and sit down in front of a SuperBrain for a
few hours. Then, let us know what you think about our new system. There is a
customer comment card enclosed in· the rear section of this manual for your
convenience.

Thank you for selecting the SuperBrain as your choice for a microcomputer
system. We hope you will be selecting it many more times in the future.

TABLE OF CONTENTS

INTRODUCTION

MAJOR COMPONENTS

SYSTEM OPERATION

INTRODUCTION TO CP/M FEATURES & FACILITIES

OPERATION OF THE CP/M CONTEXT EDITOR

CP/M 2.0 USER'S GUIDE FOR CP/M 1.4 OWNERS

OPERATION OF THE CP/M DEBUGGER

OPERATION OF THE CP/M ASSEMBLER

THE CP/M 2.0 INTERFACE GUIDE

THE CP/M 2.0 SYSTEM ALTERATION GUIDE

MICROSOFT BASIC 80 REFERENCE MANUAL

MICROSOFT UTILITY SOFTWARE MANUAL

SERVICE INFORMATION

HARDWAREADDENDUMS

SOFTWAREADDENDUMS

Section 1

Section 2

Section 3

Section 4

Section 5

-
Section 6

Section 7

Section 8

Section 9

Section 10

Section 11

Section 12
I

Section 13

Section 14

Section 15

•

INTRODUCTION

) ..

Page 6

INTRODUCTION

The SuperBrain Video Computer System represents the latest technological advances in the
microprocessor industry. The universal adaptability of the SuperBrain CP/M* Disk
Operating System satisfies the general purpose requirement for a low cost, high performance
microcomputer system.

From the standpoint of human engineering, the SuperBrain has been designed to minimize
operator fatigue through the use of a typewriter-oriented keyboard and a remarkably clear
display. The SuperBrain displays a total of 1,920 characters arranged in 24 lines with 80
characters per line. The video display is usually crisp and sharp due to Intertec's own
specially designed video driver circuitry. And, the high quality, non-glare etched CRT face
plate featured on every SuperBrain assures ease of viewing and uniformity of brightness
throughout the entire screen.

The SuperBrain's unique internal design assures users of exceptional performance for just a
fraction of what they would expect to pay for such "big system" capabilities. The
SuperBrain utilizes a single board "microprocessor" design which combines all processor,
RAM, ROM, disk controller, and communications electronics on the same printed circuit
board. This type of design engineering enables the SuperBrain to deliver superior,
competitive performance.

Standard features of every SuperBrain include: two double-density, single-sided
mini-floppies with a total of over 350,000 bytes formatted disk storage, 32K of dynamic
RAM memory - expandable to 64K (in one 32K increment), a universally recognized
CP/M* Disk Operating System featuring its own text editor, an assembler for assembly
language programming, a program debugger and a disk formatter. Also standard are dual
universal RS232 communications ports for serial data transmission between a host computer
network via modem or an auxiliary serial printer. A number of transmission rates up to
9600 baud are available and selectable under program control.

Other standard features of the SuperBrain include: special operator convenience keys, dual
"restart" keys to insure simplified user operation, a full numeric keypad complement, and a
high quality typewriter compatible keyboard. An optional low cost S-100 bus adaptor is
available to convert the Supel"Brain Z80A data bus into an S-100 data and address
compatible protocol. The S-100 adaptor accommodates one S-100 printed circuit board
which can be mounted internally.

For reliability, the SuperBrain has been designed around 4 basic modules packaged in an
aesthetically pleasing desk-top unit. These major components are: the Keyboard/CPU
module, the power supply module, the CRT assembly, and the disk drives themselves.
Failure of any component within the terminal may be corrected by simply replacing only
the defective module. Individual modules are fastened to the chassis in such a manner to
facilitate easy removal and reinstallation. Terminal down-time can be greatly minimized by
simply "swapping-out" one of the modules and having component level repair performed at
one of Intertec's Service Centers. Spare modules may be purchased from an Intertec
marketing office to support those customers who maintain their own "in-house" repair
faci I ities.

The SuperB rain's cover assembly is exclusively manufactured "in-house" by I ntertec. A
high-impact structural-foam material is covered with a special "felt-like" paint to enhance
the overall appearance. Since the cover assemblyrs injected-molded, there is virtually no
possibility of cracks and disfigurations in the cover itself. And, by manufacturing and
finishing the cover assembly in-house, Intertec is able to specify only high quality material
on the external and internal cover components of your SuperBrain to insure unparalleled
durability over the years to come.

'CP/M is a registered trademark of Digital Research

Page 7

INTRODUCTION (continued)

A wide variety of programming tools and options are either planned or available for the
SuperBrain. Standard software development tools available from I ntertec include Basic,
Fortran and Cobol programming languages. A wide variety of applications packages (general
ledger, accounts receivable, payroll, inventory, word processing, etc.) are available to
operate under SuperBrain CP/M Disk Operating System from leading software vendors in
the industry. Disk storage may be increased by adding SuperBrain's S-100 bus adaptor and
connecting other auxiliary disk devices, including hard disk drives. And, another model of
the SuperBrain - SuperB rain QD - features double density, double-sided disk drives which
provide over 700,000 bytes of formatted data.

The price/performance ratio of the SuperBrain has rarely been equalled in this industry. By
employing innovative design techniques, the SuperBrain is not only able to offer a
competitive price advantage but boasts many features found only in systems costing three to
five times as much. SuperBrain's twin Z80A microprocessors insure extremely fast program
execution even when faced with the most difficult programming tasks. And, each unit must
pass a grueling 48 hour burn-in before it is shipped to the Customer. By combining advanced
microprocessor technology with in-house manufacturing capability and stringent quality
control requirements, your SuperBrain should provide unparalleled reliability in any
application into which it is placed.

CUTAWAY VIEW SHOWING MOUNTING OF MAJOR SUBASSEMBLIES.

FEATURE

CPU
Microprocessors

Word Size

Execution Time

Mach ine Instructions

I nterrupt Mode

Floppy Disk
Storage Capacity

Data Transfer Rate

Average Access Time

Media

Disk Rotation

Internal Memory
Dynamic RAM

Static RAM

ROM Storage

CRT
Display Size

Display Format

Character Font

Display Presentation

Page 8

SYSTEM SPECIFICATIONS

DESCRIPTION

Twin Z80A's with 4MHZ Clock Frequency. One Z80A
(the host processor) performs all processor and screen
related functions. The second Z80A is "down-Ioaded"
by the host to execute disk I/O.

8 bits

1.0 microseconds register to register

158

All interrupts are vectored and reserved.

Over 350K (700K + on SuperB rain aD) total bytes of
unformatted data on two double density drives.
Optional external hard disk storage can be connected
using the optional S-100 bus adaptor.

250K bits/second

250 milliseconds. 35 milliseconds track-to-track

514 inch mini-disk

300 RPM

32K (64K on Superbrain aD) bytes dynamic RAM.
Expandable to 64K in one 32K increment. Optional
32K is socketed.

1 K bytes of static RAM is provided in addition to the
main processor RAM. This memory is used for program
and/or data storage for the auxiliary processor.

2K bytes standard. Allows ROM "bootstrapping" of
system at power-on.

12-i nch, P4 phosphor.

24 lines x 80 characters per line.

5x7 character matrix on a 7x 1 0 character field

Light characters· on a dark background.

*Specifications subject to chango without notice or liability.

•

Page 9

SYSTEM SPECIFICATIONS (continued)

FEATURE

Bandwidth

Cursor

Commu nications
Screen Data Transfer

Main Interface

Auxiliary Interface

Z80A Data Bus

S-100 Bus

Parity

Transmission Mode

Addressable Cursor

System Utilities
Disk Operating System

DOS Software

Optional Software
FORTRAN

COBOL

BASIC

DESCRIPTION

15 MHZ.

Reversed image (block cursor)

Memory-mapped at 38 kilobaud. Serial transmission of
data at rates up to 9600 bps.

RS-232C asynchronous. Synchronous interface optional.

Simplified RS-232C asychronous. Synchronous inter
face optional.

40-pin Data Bus connector.

Connector provided for connection of optional S-100
bus adaptor.

Choice of even, odd, marking, or spacing - under
program control.

Half or Full Duplex. One or two stop bits.

Direct Positioning by absolute x, yaddressing.

CP/M 2.2

An 8080 disk assembler, debugger, text editor and file
handling utilities.

ANSI standard. Relocatable, random and sequential disk
access.

ANSI standard. Relocatable, sequential, relative and
indexed disk access.

Sequential and random disk access. Full string
manipulation, interpreter.

Application Packages Extensive software development tools are available from
leading software vendors including software for the
following applications: Payroll, Accounts Receivable,
Accounts Payable, Inventory Control, General Ledger
and Word Processing.

Keyboard
Alphanumeric Character Set Generates all 128 upper and lower case ASCII characters.

'Specifications subject to change without notice.

Page 10

SYSTEM SPECIFICATIONS (continued)

FEATURE

Special Featu res

Numeric Pad

Cursor Control Keys

I nternal Construction
Cabinetry

Component Layout

Mounting

Environment
Weight

Physical Dimensions

Environment

Power Requirements

DESCRIPTION

2-Key Rollover, Keyboard lock/unlock - under program
control.

0-9, decimal point, comma, minus and user
programmable function keys.

Up, down, forward and backward.

Structural foam

Four board modular design. All processor related
functions and hardware are on a single printed circuit
board. All video and power related circuits on separate
single boards.

All modules mounted to base. CRT in a rigid aluminum
frame. Disk Drive assemblies are mounted into special
bracket for ease of servicing.

Approximately 45 pounds.

145/8" (H) x 21 3/8 (W) x 231/8 (D)

Operating: 0 0 to 400 C Storage: 0 0 to 850 C; 10 to
85% reI. humidity - non-condensing.

115 VAC, 60 HZ, 3 AMP (optional 230VAC/50HZ
model available)
'Specifications subject to change without notice.

Page 11

OPTIONAL VERSUS STANDARD FEATURES

Since each SuperBrain is designed utilizing the latest advances in microprocessor technology,
many features which other system vendors offer as options are offered as standard features
on th.e SuperBrain.

The SuperBrain Video Computer is designed to satisfy the universal requirement for a low
cost, high performance small business system and, hence, there are virtually no options from
which to choose. Basically, available options for the SuperBrain include:

BASIC 80 FROM MICROSOFT - an extensive implementation of Basic language available
for Z80 microprocessors. In just three years of use, it has become the world's standard for
microcomputer Basic. Basic 80 gives users what they want from a Basic - ease of use plus all
of the features that make a micro perform like a minicomputer or large mainframe. Basic 80
meets the requirements of the ANSI subset standard for Basic and supports many unique
features rarely found in other Basics.

MICROSOFT FORTRAN 80 - comparable to Fortran compilers on large mainframes and
minicomputers. All of ANSI standard Fortran X3.9-1966 is included except the COMPLEX
datatype. Therefore, users may take advantage of the many application programs already
written in Fortran. Fortran 80 is unique in that it provides a microprocessor Fortran and
assembly language development package that generates relocatable object modules. This
means that only the subroutines and system routines required to run Fortran 80 programs
are loaded before execution. Subroutines can be placed in a system library so that users
develop a common set of subroutines that are used in their programs. Also, if only one
module of a program is changed, it is necessary to recompile only that module.

CENTRONICS-COMPATIBLE PARALLEL INTERFACE(1) - connects directly to
SuperBrain's 40 pin Z80A data bus connector and provides for a parallel output as required
for Centronics-compatible printers.

S-100 BUS ADAPTOR (2) - connects to SuperBrain's auxiliary Z80A data bus edge card
connector and provides for the connection of up to one standard sized S-100 bus board
inside the SuperBrain cabinet. Bus adaptor includes ribbon cables, S-100 conversion
circuitry, S-100 card guides and a metal mounting bracket to enable the S-100 bus adaptor
to be installed on the inside cover just to the right of SuperBrain's twin double-density disk
drives.

SYNCHRONOUS INTERFACE - enables synchronous transmission via the auxiliary RS232
serial communications port.

32K DYNAMIC RAM EXPANSION KIT - a set of sixteen 16K RAM chips which plug into
existing sockets on the SuperBrain Keyboard/CPU module to enable expansion of the
SuperB rain's dynamic memory from 32K to 64K. Also included with the RAM kit is an
additional CP/M DOS Diskette which reconfigures the SuperBrain's Operating System to
accommodate all 64K of RAM.

(1) Available June, 1980
(2) Available June, 1980

•

(

I

MAJOR COMPONENTS

Page 1

INTERNAL CONSTRUCTION

Perhaps the most remarkable feature of the SuperB rain is its modular construction using
only four major subassemblies which are clearly defined in their respective functions so as to
facilitate ease of construction and repair. These four subassemblies are shown in figure one
and described below.

isl< Drive Module

Keyboard/CPU Module

•

Page 2

INTERNAL CONSTRUCTION (continued)

KEYBOARD/CPU MODULE
The control section of the SuperB rain Video Computer is based upon the widely acclaimed
Z80A microprocessor. The result is far fewer components and the ability to perform a
number of functions not possible with any other approach. The Keyboard/CPU module
(figure two) contains the SuperBrain's twin Z80 microprocessors. One Z80A (the host
processor) performs all processor and screen related functions while the second Z8QA can be
"downloaded" to execute disk I/O handling routines. The result is extremely fast execution
time for even the most sophisticated programs.

In addition to containing the SuperBrain's microprocessor circuitry, the Keyboard/CPU
module contains 32K of dynamic RAM with sockets for an additional expansion capability
of 32K (see figure three). Also found on this module is: the character and keyboard encoder
circuitry, the "bootstrap" ROM, the disk controller and all communications electronics.
Power is supplied to and signals are transferred from this module via a single 22 pin ribbon
cable connected to the SuperBrain's main power supply module. Connection of this module
to the disk drive subassemblies is via a separate ribbon cable. Figure four shows the
connectors on the Keyboard/CPU module which are used for interconnecting this module
with the disk drive subassemblies, the main power supply and the optional parallel and/or
S-100 bus adaptor.

Figure 2 - SuperBrain Keyboard/CPU Module

Figure 3 - Dynamic RAM Section
Every SuperBrain is equipped with 32K dynamic
RAM - on board expandable to 64K. 16 sockets are
provided for the additional 32K of RAM.

Figure 4 - Keyboard/CPU Module Connectors
The 40 pin connector on the top edge of the card
is for connection to SuperBrain's optional parallel
and/or S100 bus adaptor. The 40 pin connector on
the right edge routes signals to and from the disk
drive assembly.

Page 3

INTERNAL CONSTRUCTION (continued)

CRT DISPLAY MODULE
The CRT Display Module consists of a 12 inch, high resolution, cathode ray tube mounted
in a rigid aluminum chassis. The faceplate of the CRT is etched in order to reduce glare on
the surface of the screen and provide uniform brightness throughout the entire screen area .
The CRT display presentation is arranged in 24 lines of 80 characters per line.

The CRT video driver circuitry is mounted in the base of the CRT chassis to facilitate ease
of removal and subsequent repair. I n this manner, either the CRT itself or the video
circuitry can be easily exchanged without disrupting any of the other major modules within
the terminal (see figu re five).

Figure 5 - SuperBrain CRT Display Module
This module is easily removed for service or replacement. A
single edge connector is provided for connection to
SuperBrain's Power Supply Module.

•

Page 4

INTERNAL CONSTRUCTION (continued)

MAIN POWER SUPPL V MODULE
The SuperBrain's power supply is a "solid-state, switching" design and employs switching
voltage regulators to provide many years of trouble-free service. This design reduces heat
dissipation and allows for efficient cooling of the entire terminal with a specially designed
whisper fan to reduce environment noise. The entire power supply can be easily removed by
unscrewing the three screws holding it into the base of the terminal. Included on the main
power supply module are the power off/on switch, the user brightness control and the main
and auxiliary RS232 serial ports. By combining the power supply section and external serial
communications connections on the same module, the total module count is able to be kept
to a minimum thus greatly facilitating ease of field service repair while at the same time
minimizing the number of modules required to be stocked to effect competent field repair
(refer to figure six).

Figure 6 - Main Power Supply

•

INTERNAL CONSTRUCTION (continued)

DISK DRIVE MODULES

Page 5

Figures seven and eight illustrate the left and right views of the SuperBrain's specially
designed double-density disk drive subassembly. Each SuperBrain contains two of these type
drives which are mounted conveniently just to the right of the CRT display module on a
rugged aluminum mounting bracket which supports the drives so that they are flush
mounted with the front "bezel" of the unit. Power to these drives is derived from the Power
Supply Module located just behind the drive assemblies themselves. Data to and from these
drives is routed via a single 34 pin ribbon cable connecting the drives to the Keyboard/CPU
module.

Figure 7 - Top View of SuperBrain Drive Assembly

Figure 8 - Bottom View of SuperBrain Drive Assembly

•

Page 6

INTERNAL CONSTRUCTION (continued)

The 8uperBrain can be configured to employ an optional module - the 8-100 bus adaptor.
This adaptor plugs into the 8uperBrain's Keyboard/CPU module and mounts internally on
the metal bracket supporting the disk drive assemblies. ,Figure nine shows the 8uperBrain
with the 8-100 bus adaptor and a single 8-100 printed circuit card. Figure ten shows the
same unit without the 8-100 bus module installed.

The 8-100 bus adaptor is offered as an optional feature on the 8uperBrain for those users
who desire to expand the units' capability with the addition of auxiliary disk devices
including the new, more popular Winchester-type drives.

A single 8-100 card can be easily inserted in the card guide supplied with each 8-100 bus
adaptor (as shown in figure eleven). NOTE: The 8-100 bus adaptor includes cabling,
connectors and circuitry to convert the 8uperBrain's Z80 data bus into the 8-100 bus. The
actual 8-100 compatible printed circuit board (as is shown in figure eleven) is supplied by
the user.

Figure 9 - 8uperBrain with 8-100 Bus Adaptor
and card installed.

Figure 10 - 8uperBrain with 8-100 Bus Adaptor
and card removed.

Figure 11 - SuperBrain S-100 Bus Adaptor
Includes adaptor, 100 pin S-100 connector, card guides,
mounting bracket and all necessary cabling. The S-100 card is
supplied by the user.

SYSTEM OPERATION

Page 1

THEORY OF OPERATION

The SuperBrain contains two Z80 microprocessors. (Reference Figure 3-1) uP1 is the master
processor. It communicates with the 64K RAM and the I/O devices (serial port, keyboard
encoder, interface controller, and CRT controller). Aside from these devices, it can also
access the 2K ROM and DATA BUFFER RAM in the FLOPPY DISK CONTROLLER. uP2
is slaved to uP1 and can only access the 2K ROM, DATA BUFFER, and the DISK
INTERFACE. This processor is used exclusively for disk control.

The 32/64 kilobyte main memory consists of up to thirty-two 16K x 1 bit dynamic RAMS.
These are divided in four banks (0-3) with each bank containing 16 kilobytes of storage. The
RAS-CAS timing sequence necessary for memory access is created by the memory timing
generator.

There are two devices that can access memory - uP1 and the CRT Controller. uP1 can read
and write to memory while the CRT Controller can only perform the read function. Because
each device runs at a different speed, two clock frequencies are required for memory timing.
The speed is determined by the selection of the control input to the timing generator. The
microprocessor functions require the faster clock.

The CRT-VI DEO CONTROLLER contains three main devices - the CRT Controller which
generates all the timing signals for data display; the video generator which produces the
character font; and the octal 80-bit shift register which stores one row of video data. (80
characters)

The CRT Controller generates all the timing necessary to display 24 rows of characters with
80 characters per row. Thus the screen can display a total of 1920 characters. These
characters are stored in the CRT refresh buffer which is the upper 2048 bytes (2K) of RAM.

Because the CRT buffer is not a separate buffer and the processor must also use the same
bus to access memory, this bus must be timeshared between the two. This is accomplished
by the CRT controller performing a direct memory access (DMA) cycle which is done at the
beginning of each scan row. Each scan row is divided into ten scan lines, therefore
during the first scan line time, the controller takes control of the processor bus by generat
ing a bus request. After acquiring the bus, it reads 80 characters from the CRT buffer and
loads them into the 80 x 8 shift register. This data is then recirculated in the buffer for the
next nine scan lines to produce one row of video characters. Therefore, there are twenty
four DMA cycles performed per vertical frame.

There are also twenty-five interrupts generated - one for each row scan and one extra during
vertical blanking. During the first twenty-four, the processor sets or resets the video blanking
depending on whether that row is displayed or not. During the vertical blanking interrupt,
the address registers in the CRT controller are initialized to the correct top-of-page address
and the cursor register is also updated.

The Interface Controller is basically three 8 bit I/O ports (8255). Through this device, the
processor can obtain status bits from other devices and react to the status by setting/
resetting individual bits in the 8255.

The Keyboard Encoder scans the keyboard for a key depression, determines its position,
and generates the correct ASCII code for the key. The processor is flagged by the 'Data
Ready' signal via the I nterface Controller. The character is then input by the processor.

•

Page 2

THEORY OF OPERATION (continued)

The remaining I/O device is the RS-232-C Serial I nterface Port. Presently, it operates only in
the asynchronous mode and adheres to a simplified standard protocol. The baud rate is set
to 1200 baud by the operating system (Refer to the Technical Bulletin enclosed at the end
of this manuaL)

As previously mentioned, uP1 has the capability of communicating with the RAM and ROM
in the FLOPPY DISK CONTROLLER. It does this to obtain the bootloader from ROM on
power-up and system reset and also when transferring disk parameters and data to/from the
Data Buffer RAM. Because the amount of main memory used is the maximum that the
processor addressing can support different 16K banks of main memory must be switched off
line when communicating with the disk RAM or ROM. In these cases Bank 0
(0000H-3FFFH) is switched out when communicating with the ROM, and Bank 2
(8000H-BFFFH) when communicating with the RAM.

The DISK CONTROLLER performs all disk related I/O functions upon command from the
main processor. These commands are:

• Restore to track 0
• Read sector
• Write sector
• Write sector with deleted data mark
• Format

The parameters associated with drive, side, track, and sector numbers are loaded, a status
word is set at specified location in the disk RAM. When uP2 receives this status, it sets the
'disk busy' status bit and performs the indicated function. Upon completion, it resets the
'busy' bit thus allowing the main processor (uP1) to retrieve data and status from the RAM.

POWER

MEMORY

MICROPROCESSOR

SERIAL PORTS

CRT SCREEN

FLOPPY DISKS

DOS

GENERAL SPECIFICATIONS

110/220 VAC 50/60 HZ
Dual Switching Power Supplies

32/64K bytes (dynamic)

Two Z80's operating at 4MHZ

Two asynchronous 'simplified' RS-232-C, programmable ports

24 lines, 80 columns
7 x 10 dot character field
5 x 7 dot character font
50/60 HZ refresh rate

Two, 5-1/4", double density, MFM
Format (Soft sectored) - 512 Bytes/sector; 10 sectors/track

35/70 tracks/diskette
Capacity - 179K bytes formatted single sided, 35 tracks/diskette

358K bytes formatted single sided, 70 tracks/diskette

CP/M, Version 2.2

•

MAIIl MEMORY
64K x B

RAI~

i--=l

RAM AODRESS

17

. +12 VOC ;:; ..
) +5 VOC

> GNO

> -5VD

) -12 VDC .. ,--J

IX DATA -
=f'" RTS

ASYNC
OTR SERIAL

PORT RX DATA >---
CTS >-
DSR >---

~
2 MHZ

,-

16MHZ

RAS

CAS

CONTROL

CRT- VID.EO CONTROLLER
~--------------------- --- '-1

~--------------

INTR

uFf BUS REO

BUS AK
4MHZ ___

10.92 MHZ 16 MHZ

- -,

--1--+

J..ROCESSOR CONTROL ._.

__ CR!.CONTROL ... -.. -- ·1-- .. 1. ... -~--- ,
I
L _____ • _________ • ___ _

I
_______ ..J

MEMORY BANK ._. __ -1-- ~_
INHIBI~_ . __ . __ . __ _ ____ . ..-ADDRESS BUS 4P

l
_. __ . ___ 1._ +-- _____ .J--___ P.!lIiI..ill!? ___ -,--_ -------i----+--------

,

.--------+----------+---------~---------~

INTERFACE _._____ DATA R 8!!L.

CONTROLLER I
BUS AK

I j DISK BUSY
BUS REQ .. -----+--

DATA
ENCODER f KEYBOARD

1- --------1

4MHZ ---001 1.1>r ---l--.~..JlAIJL- ----1 4MHZ

uP2 ADDRESS J T1- CONTROL I 1

I 1---1 --1""-T'1 l~ I'
~ I WRITE DAT~ WRITE
-~ OISK I PRECOI-IP

'--__ -tIINTERFAC

16 MH~ISK CONTROLLE
1-

! LIGETT

8MHZ 4MHZ 1 MHZ

L

ROM

2K x B

DATA BUFFER

RAM

FLOPPY DISK CONTROLLER

lMHZ_

8fIHZ

I

KEYBOARD

10.92 MHZ
___ I

TIMING GENERATOR

------- _._----

FIGURE 3-1 SUPERBRAIN KEYBOARD/CPU MODULE BLOCK DIAGRAM

•

DO - 07 I
AO - A15 >
1/0 j
CONTROL

I

EXTERNAL
BUS

""lJ
Ql

CO
CD

W

Page 4

INSTALLATION AND OPERATING INSTRUCTIONS

UNPACKING INSTRUCTIONS
Be sure to use extreme care when unpacking your SuperBrain Video Computer System. The
unit should be unpacked with the arrows on the outside facing up. Once you have opened
the unit, locate the Operator's Manual which should be placed at the front of the terminal.

If you have ordered additional optional software with your system, it will most likely be
attached to the outside of the carton in a gray envelope. Extreme care should be used in
opening this envelope so as not to damage any of the delicate diskette media contained
inside. The MASTER SYSTEM DISKETTE is located inside the front cover of the
Operator's Manual. Be careful not to discard or misplace this diskette as it will be vital for
the operation of the equipment in later sections. .

Now that you have located your Operator's Manual and system diskette you can proceed to
remove all packing material on the top and front of the terminal. Once this has been
accomplished, you may now remove the terminal from the shipping carton. In some
instances, you may notice that the terminal is somewhat difficult to remove from the
carton. This is due to the varying amounts of packing material that is placed in each carton.
If you should experience such difficulties, rotate the carton on its side. With the terminal on
its side, you should now be able to pull outward on the terminal and separate it from the
box. Once the terminal is out of the carton place it on a table and remove the protective
plastic bag which should be surrounding the terminal. DO NOT DISCARD THE SHIPPING
CARTON UNTI L YOU HAVE COMPLETELY CHECKED OUT THE TERMINAl.

SET UP
Now that you have removed your SuperBrain Video Computer System from its packing
carton, you are ready to begin to set up the system. The first step in this procedure is to
verify that your SuperBrain Video Computer System is wired for a line voltage that is
available in your area. This can be ascertained by looking on the serial tag located at the
right rear of the terminal. This tag should indicate that your unit is set up for either 110 or
for a 220 VAC operation. DO NOT ATTEMPT TO CONNECT THE SUPERBRAIN VIDEO
COMPUTER SYSTEM TO YOUR LOCAL POWER OUTLET UNLESS THE VOLTAGE AT
YOUR OUTLET IS IDENTICAL-TO THE ONE SPECIFIED ON THE BACK OF YOUR
TERMINAl. Should the voltages differ, contact your dealer at once and do not proceed to
connect the SuperBrain Video Computer System to the power outlet.

Before connecting the SuperBrain Video Computer System to the wall outlet, be sure that
the power switch located at the left rear corner is turned OFF. You may now proceed to
connect your computer system to the wall outlet. After completing this connection, turn
the power switch to the 'ON' position. At this time, you should hear a faint"whirring"
sound coming from the fan in the computer. After approximately 60 seconds the message
'INSERT DISKETTE INTO DRIVE A' will appear on the screen. If this message does not
appear on the screen after approximately 60 seconds, depress the RED key located on the
upper right hand corner of the numeric key pad. This key is the master system reset key and
should reinitialize the computer system thereby displaying the 'I NSE RT' message on the
scre~n. If, after several attempts at resetting the equipment you are unable to get this message
to appear on the screen, turn the unit off for approximately 3 to 5 minutes and then
reapply power to the unit. If you are still unable to get the appropriate message to appear
on the screen, contact you r I ntertec representative.

SYSTEM DISKETTE
Now that you have power applied to the machine and the 'INSERT DISKETTE' message
has been displayed in the upper left hand corner, you are ready to proceed with loading the
computer's operating system. This is accomplished by locating the small 5%" diskette that
was packed with the operator's manual. Once you have located this diskette you will notice

Page 5

INSTALLATION AND OPERATING INSTRUCTIONS (continued)

that a small adhesive aluminum strip has been placed over the notch on the right hand side
of the diskette. This aluminum strip is used to "WR ITE PROTECT" the diskette. Therefore,
you may only load and/or read programs off of this diskette. If you wish to write or save
programs on the system diskette it will be necessary to remove the small adhesive aluminum
strip from the diskette. This is NOT RECOMMENDED as it will subject your diskette to
accidental errors that may be induced by you while you are getting familiar with the
operating system.

You are now ready to proceed with inserting the system diskette into the machine. When
facing the front of the machine, you will notice that tliere are two small openings on the
right-hand side of the machine. The first opening (the one furtherest to the left) is
designated as DRIVE A. The second opening (the one on the right-hand side of the
terminal) is designated as DRIVE B. This distinction is extremely important since the disk
operating system can only be loaded from DRIVE A.

Now that you have located the two disk drives on the system, open the disk drive door on
DRI VE A (opening closest to your left). The drive can be opened by applying a very slight
pressure outward on the small flat door located in the center of the opening. Once the Drive
door has been opened, you are now ready to insert the Operating System Diskette. As noted
previously, this is the diskette which was packed with your Operator's Manual. The front of
the diskette should contain a small white sticker located in the upper left hand corner of the
diskette. This diskette should contain a message indicating that it is the SuperBrain DOS
Diskette with CP/M Version 2.0. Once you have located this diskette you may insert it into
the machine. Be careful to insure that (1) the small aluminum write protect strip is
orientated towards the top edge of the diskette and that (2) the label located in the upper
left hand corner of the operating system diskette is facing AWAY from the screen towards
the right-hand side of the terminal. Once you have orientated the diskette in this fashion,
you may now insert it into the terminal. It is EXTREMELY important that the diskette be
properly orientated before inserting it into the machine since improper orientation will not
allow the operating system to properly load. Once the diskette has been placed in the
machine, be sure that it has been inserted all the way by applying a gentle pressure on the
rear edge of the diskette. Once you are certain that the diskette is fully inserted, you may
close the disk drive door. This can be accomplished by applying a slight pressure on the door
pulling it back into the direction from which it was originally opened. Once you have closed
the door, you will notice a small "swishing" sound. This sound is normal and indicates that
the computer is now attempting to load the operating system. Some drives are quieter than
others and therefore this noise may not be audible in some cases.

After closing the door the following message should appear in the upper left-hand corner of
the screen:

XXK SUPERBRAIN DOS VER X.X
A"?

If this message does not appear on the screen, try depressing the two RED keys located on
either side of the keyboard. This should reset the terminal and thereby attempt to reload
the operating system. If after several seconds, the message does not appear on the screen, try
depressing the RED keys several more times. If repeated depressions of the RED keys do
not bring up the indicated message, then open the door on the disk drive A and remove the
system diskette and check to see if it was properly inserted. It is extremely important that
the diskette be in the proper orientation before attempting to load the operating system. If
you are unsure as to the proper orientation of the diskette, please contact the representative
from whom you originally purchased your equipment.

Page 6

INSTALLATION AND OPERATING INSTRUCTIONS (continued)

After you have checked the orientation of the diskette try reinserting it into DRIVE A (do
NOT insert the system diskette into DRIVE B as it will not load from DRIVE B). Once the
diskette has been reinserted, close the door on DRIVE A and depress the RED key. If after
several repeated depressions of the RED keys the message XXK SUPERBRAIN DOS VER
X.X does not appear on the terminal then contact your dealer.

REVIEWING THE SYSTEM DISKETTE
Now that you have successfully loaded the System Diskette and Disk Operating System,
(DOS), the SuperBrain is ready to accept your disk operating system commands. At this
time we will review several of the commands in the operating system. However, it is
recommended that you refer to the appropriate section in this Manual for a detailed
description of all such commands (Section 4 - Introduction to CP/M Features and
Facilities). The most used system command is the DI R command. This command directs the
operating system to display the directory of all programs contained on the system diskette.
You may enter this command by simply typing the letters DI R on the keyboard. After you
have typed these letters, it is necessary to depress the RETURN key. Depressing this key
instructs the computer to process the line of data that you have just typed. After you
depress the RETURN key the computer should respond by displaying all of the programs on
the system diskette. These programs will appear in the following form:

A: ED.COM
A: DDT.COM
A: ASM.COM
A: LOAD.COM
A: DUMP.COM

A: SYSGEN:COM
A: PIP.COM
A: STAT.COM
A: SUBMIT.COM

To obtain a better understanding of just what this information means, lets take a look at the
first line:

A: ED.COM

The first letter on this line is a letter A. This tells you that the information following this
letter is located on DRIVE A. The colon serves as a separator between the Drive designator
("A") and the file NAME and file TYPE. The file NAME is, in this case, "ED" and the file
TYPE is "COM". As such, this line tells the operator that a program called ED (the disk
operating system text editor) is located on the "A" drive and is a COM type of file. A more
detailed treatment of this information can be found in section 4 of this manual.

IMPORTANT NOTE: Some of the disk utility programs have a two digit number suffixed to
the File name (i.e. PIP 22). This suffix is used to indicate the actual revision and/or version
level of the program.

DUPLICATING THE OPERATING DISKETTE
Now that you have successfully loaded the Disk Operating System on Drive A, it is
important to duplicate this diskette onto another disk. This is necessary in order to preserve
the original copy of the diskette and guard against any possible damage to the original
media. To generate a copy of the operating system you will first need a NEW BLANK
DISKETTE. We recommend an Intertec 1121010 diskette for this purpose. If you do not
have any blank diskettes of similar quality, please contact the representative from whom
you purchased your equipment. He should be able to supply you with an ample quantity of
these diskettes.

Once you have located a new blank diskette, insert it into DRIVE B. Follow the procedures
outlined in the previous paragraphs regarding the insertion of the operating system diskette.
The only difference is that you will be inserting the new blank diskette into DRIVE B. Be
sure and leave the system diskette installed on DRIVE A.

•

Page 7

INSTALLATION AND OPERATING INSTRUCTIONS (continued)

Once you have installed the new blank diskette on DRIVE B, you are now ready to
"FORMAT" the new diskette. It is necessary to format all new previously unused diskettes
before attempting to' transfer data to them. This is necessary because all information is
stored on diskettes in what is known as the SOFT SECTORED FORMAT which necessitates
the writing of certain information on the disks before user programs can be stored on them.

To format the disk in DRIVE B enter the command 'FORMAT' at the keyboard. Remember
·to depress the key marked RETURN after typing the words FORMAT. The operating
system should now respond by asking you to select the type of diskette being formatted (S
or D). This question asks whether the diskette to be formatted is single sided or double
sided. Unless you have ordered our new Quad Density SuperBrain QD, the response to this
question should be the letter "S" indicating a single sided diskette. After entering the'S'
depress the RETURN key. The operating system will now ask you whether you have a 64K
(6) or 32K (3) disk operating system. In most cases, the answer to this question will be 3
(32K). After you have entered the appropriate response to this question the operating
system will respond by telling you to place a blank diskette on DRIVE B. Since this has
already been done, we are now ready to proceed with formatting the diskette and may
do so by entering the letter "F". At this point and time you will hear the disk drive reset to
track a and begin the formatting process. When a disk is formatted the read/write head
positions to track a and rewrites each track (there are a total of 35 on each diskette). The
screen will also display the current track which is being formatted. This number should
range from a to 34 for a total of 35 tracks.

After the disk has been completely formatted, the operating system will respond by asking
you whether to "REBOOT" the operating system or whether you wish to format another
disk. If you wish to format another disk, remove the newly formatted disk from DRIVE B
and insert a new blank diskette into DRIVE B. You may now proceed to format this new
diskette by once again entering the letter "F". If you do not wish to format any more
diskettes, simply enter a RETURN.

The Operating System should now reload and once again be ready to accept new commands.

Since the intent of this procedure was to copy the original disk operating system we are now
ready to begin that procedure. This can be accomplished by entering the following
command on the keyboard:

2~
V

PIP B: =*.*

After you have entered the above command at the keyboard depress the return key.

The system will now begin to copy all of the programs on DRIVE A over to DRIVE B. As
each program is copied, its name will be displayed on the screen. This procedure takes
approximately 5 to 10 minutes. After the procedure completes, the control of the operating
system will be returned to the user.

.•
Now that you have completed copying the operating system's programs from the A DR I VE
to the B DRIVE it is necessary to copy the disk operating system itself (which is located on
tracks 0, 1 and 2) onto the DRIVE B. This may be accomplished by entering the following
command at the keyboard:

SYSGEN 2..7-_

The SYSGEN command is used to generate an operating system and place it on the desired

•

Page 8

INSTALLATION AND OPERATING INSTRUCTIONS (continued)

disk. Once you have entered this command at the keyboard and typed RETURN, the disk
operating system will ask you to select which drive that you want to take the source from.
The correct answer to this question is the letter "A". After entering "A" depress the
RETURN.

The next question the program will ask is where do you want the source to be placed (the
destination drive). The correct answer to this is the letter "B" indicating DRIVE B. Once
you have entered this, the operating system will be copied from DRIVE A onto DRIVE B.

After this process has been completed the operating system will ask you whether you wish
to duplicate another copy or to reload the operating system. The correct response is to
simply enter a RETURN which will reload the operating system.

Once the operating system has been reloaded, you may now remove the master disk
operating system in DRIVE A. Once this disk has been removed store it in a safe place as
you may need it later to generate additional copies of the disk operating system and its
programs.

At this point you should have removed the master disk from DRIVE A. Now remove the
copy from DRIVE B and reinstall it on DRIVE A and close the door on DRIVE A. After
you have completed this, depress the RED reset keys located on either side of the keyboard.
This will reset the machine and reload the newly installed operating system off of your new
diskette.

IMPORTANT: If random garbled information is displayed on the screen at this time, this
indicates that you have made an error in the use of the "SYSGEN" program. If this is
indeed the case, then remove the new diskette from DRIVE A and reinstall the original
master system diskette and repeat the previously outlined procedure for generating a new
disk operating system. If you still encounter difficulties, please refer to Section 4 of this
manual for more detailed information concerning this procedure.

Now that you have successfully completed the generation of a new system diskette please
refer to Section 4 of this manual for a complete description of all of the operating systems
utility programs (DDT.COM, PIP.COM, SUBMIT.COM, etc.).

OPTIONAL SOFTWARE
Numerous optional software packages are available for use with your SuperBrain Video
Computer System. Currently available directly from Intertec are such software packages as
Microsoft's BASIC, FORTRAN and COBOL. If you would like additional information on
these packages please contact you r local I ntertec representative.

NEWLY RELEASED SYSTEM PROGRAMS
From time to time, Intertec will be releasing additional 'standard' system programs. Listed
below is a brief description of several such programs. A complete description of these and
other similar programs can be found in the "software addenda" section of this manual.

FORMAT.COM Allows the user to format blank diskettes. This program must be run on
all new diskettes which have not been previously formatted on a
SuperBrain Video Computer System. It is important to note that
although you may have formatted these diskettes on other systems, this
does not necessarily imply that they will work on a SuperBrain unless
they have been formatted on a computer of this type. Therefore, in
order to insure complete compatibility please format all new diskettes on
a SuperBrain Video Computer System before using.

Page 9

INSTALLATION AND OPERATING INSTRUCTIONS (continued)

RAMTST.COM This program runs an extensive test on main memory by writing and
reading all possible patterns into all locations in the RAM. This program
takes approximately 4 to 5 minutes to complete on 32K machines and 8
to 10 minutes on 64K machines. Since different amounts of RAM are
contained in the 32 and 64K machines, we have included two RAM test
programs. These are: RAMTST32.COM and RAMTST64.COM which are
for testing 32 and 64K versions of the SuperBrain Video Computer
System. It is important to note that the 64K RAM test program will not
execute properly on a 32K machine.

At the end of the RAM test program, the message RAM OK will appear
on the screen if the test was completed successfully. If any errors were
detected during the test, the computer's bell will turn on and continue in
a continuous tone manner until the RED reset key is depressed. If a
continuous tone such as this is heard on the computer when executing
the RAM test, depress the RED reset and try executing the program
several times. If the program continues to produce the audible tone, then
please contact the I ntertec Service Department.

CONFIGUR.COM This program allows the user to configure all parameters for the RS232
MAIN and AUXILIARY serial port. The selected configuration is then
permanently stored on the disk along with the disk operating system. As
such, the system will be completely reconfigured each time power is
applied to the machine or the RED reset key is depressed.

A complete description of all of these programs can be found in the software addenda
section of this manual. In addition to the descriptions contained therein, most newly
released system programs will contain a description program along with the actual COM file.
This program will be in the form of FILE NAME.DES. As an example of such a program
would be 'FORMAT.DES'. This program .would contain a description of how the format
program operates. Therefore, if you are unable to find an adequate description in the
software addenda section of this manual for a program on the disk, please check for a DES
version of the program on your disk. If such a program exists, you may display the
instructions by simply typing the following command: TYPE FI LENAME.DES.

VIDEO DISPLAY FEATURES AND CONTROL CODES
Various screen control features are available to the operator through the use of 'ESCAPE'
sequences. Among these are the following:

Absolute cursor addressing

Erase to end of line

Erase to end of page

Display control characters

[ESC] [Y] [row] [column] The cursor is positioned to
the row and column specified. Refer to the SuperBrain
screen layout for specific screen formatting information.

[ESC] [en] [K] Data is erased from cursor position to the
end of the current line.

[ESC] [en] [k] Data is erased from cursor position to the
end of the screen.

[ESC] [en] [E] Enable transparent mode. Control
characters received are displayed on the screen and are
not executed.

•

INSTALLATION AND OPERATING INSTRUCTIONS (continued)

Disable control character display [ESC] [U')] [D] Disable the transparent mode.

Other features are also available using the 'CONTROL' key. They a-re the following:

MASTER RESET FEATURE

CONTROL [A]
CONTROL [F]
CONTROL [G]
CONTROL [I]
CONTROL [K]
CONTROL [L]
CONTROL [U]

- Home cursor (Row 1, Column 1)
- Cursor forward
- Ring Bell
- Tab
- Cursor Up
- Clear Screen
- Cursor Back

Page 10

A Master Reset of all terminal hardware may be accomplished by depressing the solid
colored RED key located on the upper right hand corner of the numeric keypad. It is
important to note that on some versions of the SuperBrain, this reset feature may involve
the depression of two RED keys. If this is the case on your computer system, you will
notice that the two RED keys are located on the right and left corners of the alphameric
section of the keyboard.

CURSOR CONTROL KEYS
There are three to four cursor control keys located on every SuperBrain Video Computer
System. These keys are located on the right-hand side of the numeric keypad. If your
computer has a single RED key (keyboard layout A), it will be located in the upper right
hand corner of the numeric keypad thereby leaving only three cursor position keys. If your
computer is configured with two RED keys (keyboard layout B - one RED key located on
each side of the alphanumeric keyboard cluster), then you will have a total of four cursor
position keys on the right hand side of the numeric keypad. In either case, these keys will
transmit codes to any program running on the SuperBrain. These codes may in-turn be
interpreted by the program to result in cursor movement on the screen. It is important to
know that these keys will not produce cursor movement when you are in the operating
system mode. The reason for this is that CP/M does not define any use of cursor positioning
on the screen. As such, depression of these keys while in the operating system mode will
result in the control codes assigned to the individual keys being displayed as control codes
on the screen.

Page 11

INTERFACING INFORMATION

RS-232-C Serial Interface
The following chart illustrates the pinouts for the MAIN and AUXI LlARY serial ports and
the direction of signal flow.

SUPERBRAIN SERIAL PORT PIN ASSIGNMENTS

MAIN PORT

PIN #
1 \3UJ
.2 1"3K'I'\

3 BLI\
4 \'1,,):(

5 Gr~!
6 0\((,

7 \,UHT

15 CRI,)

17 YEL
20 IZE"fJ
22 F;:'I--I_

241.,\3'[;;1-)

AUXI LlARY PORT

PIN #

1
2
3
7

20

(For use with Revision 3.0 DOS software or higher
and Keyboard/CPU Module Revision 1.0 or higher)

ASSIGNMENT

GND
Transmitted Data
Received Data
Request to Send
Clear to send
Data Set Ready
GND
Transmit Clock
Receive Clock
Data Terminal Ready
Ring Indicator
Clock

ASSIGNMENT

GND
Received Data
Transmitted Data
GND
Data Terminal Ready

Bus Adaptor Interface

DIRECTION

(From SB)
(To SB)
(From SB)
(To SB)
(To SB)

(To SB)
(To SB)
(From SB)
(ToSB) _
(From 58)

DIRECTION

(To SB)
(From SB)

(ToSB)

The SuperBrain contains a Z80 bus interface to the main processor bus. These signals are
shown in the chart on the following page.

When using this interface, it is recommended that all signals be buffered so as not to
excessively load the main processor bus. The external bus should ONL Y be utilized for I/O
devices using addresses 80H to FFH. Memory mapped I/O is NOT possible since the
SuperBrain is internally configured for 64K of RAM.

Page 12

PIN CONNECTIONS FOR EXTERNAL BUS

SIGNAL
PIN NAME DESCRIPTION

1 SPARE
2 SYSRES* System Reset Output, Low During Power Up Initialize or

Reset Depressed
3 SPARE
4 A10 Address Output
5 A12 Address Output
6 A13 Address Output • 7 A15 Address Output
8 GND Signal Ground
9 A 11 Address Output

10 A14 Address Output
11 A8 Address Output
12 OUT* Peripheral Write Strobe Output
13 WR* Memory Write Strobe Output
14 SPARE
15 RD* Memory Read Strobe Output
16 SPARE
17 A9 Address Output
18 D4 Bidirectional Data Bus
19 IN* Peripheral Read Strobe Output
20 D7 Bidirectional Data Bus
21 SPARE
22 D1 Bidirectional Data Bus
23 SPARE
24 D6 Bidirectional Data Bus
25 A0 Address Output
26 D3 Bidirectional Data Bus
27 A1 Address Output
28 D5 Bidirectional Data Bus
29 GND Signal Ground
30 D0 Bidirectional Data Bus
31 A4 Address Bus
32 D2 Bidirectional Data Bus
33 SPARE
34 A3 Address Output
35 A5 Address Output
36 A7 Address Output
37 GND Signal Ground
38 A6 Address Output
39 +5V 5 Volt Output (Limited Current)
40 A2 Address Output

NOTE: * implies negative (Logical "0"') true, Input or Output

Connection points for External Bus

-
! @ # $ %

ESC 1 2 .3 4 5

TAB Q W

i
E i R T

CTRL CAPS
A S D F LOCK

SHIFT Z X C V

A & . () - + - BACK
6 7 B 9 0 = , SPACE

1 I LINE Y U I 0 P I DEL ["- FEED

G H J K
: .. I L ; . I RETURN

B N M < > 7 SHIFT
HERE

/ IS

SPACE BAR

SUPERBRAIN KEYBOARD LAYOUT A

BREAK· 7

4

1

NUMERIC KEYPAD
(with cursor keys)

B 9 ,

5 6 -

2 3 E
N
T
E

0 R

RESTART

-..

t ,

! @ # $
ESC 1 2 3 4

TAB Q W E R

CAPS
CTRL LOCK A S D

RE-
SHIFT Z X C START

t I

Special "re-start" sequence key used in
conjunction with other re-start key on
right side of keyboard wi \I re-Ioad
SuperBrain's Disk Operating System_ A
two-key re-start sequence is used to
minimize chance of operator error when
system is in operation. Both keys must
be depressed simultaneously to reload
the operating system.

%
5

T

F

V

1\ & . () - + ~ BACK
6 7 B 9 0 : , SPACE BRK

1 I
LINE Y U I 0 P I DEL [

" FEED

: .. I
G H J K L ; I RETURN

B N M < > 7 SHIFT
HERE RE-

/ IS START

SPACE BAR

I

SUPERBRAIN KEYBOARD LAYOUT B

7

4

1

NUMERIC KEYPAD
(with cursor keys)

B 9 I

5 6 -

2 3 E
N
T
E

0 R

II

.-...
t
-I

, I

SUPERBRAIN SCREEN LAYOUT
2 ! 4 5 6 7

1 2 3 4 Ii 8 7 8 II 0 1 2 3 4 5 Ii 7 890 1 2 3 4 Ii 8 7 8 9 0.1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 456 7 8 901 2 3 4 5 6 7 8 9 0 1 2 3 4 5

"-1' I"I"I-I~I-I' 1'1'1'1+1· H ·1/1'1' 1'1' 1'1'1-1'1-1'1·1·1+1' 1'1·1'1'1' 1'1 'l'I'I4ft'1 '1'1 'l'I'I'j f
2~

f.+ W x Y z Cl'
-i

I I

3 "

4 It

5

6 ~

88-
9U-

10

11 •

12 +

13

14 -

15

16

17 0

18 I

111 I

201

2114~

22 IS
I-

2311

:14 11

/'

24
lines

80 Characters

SCREEN DISPLAY

, J

This Screen Format of the lntertube's display area provides
an easy method of locating and addressing specific screen positions.

Using the ESC, Y, r, c command,locate both the row character (r = 1 - 24)
and the column (c = 1 ·80) characters. Example:

ROW

1 (Home)

2

20

COLUMN

50

COMMAND
ESC Y SP sp

ESC Y S

ESC Y 3 Q

An application programmer may find it helpful to maintain a table of
row and column numbers with their respective addressing characters
as shown on this Screen Format. This will provide quick and easy
access to specific screen positions.

6 9 0

I I-
t 2 3 4 Ii I 7 8 II 1 1 2 3 4 Ii I 7 8 9 Z 1 2 3 4 Ii 8 7 8 II :I 1 2 3 4 Ii 8 7 8 9 4 1 2 3 4 5 6 7 8 9 5 1 2 3 4 5 6 " 8 9 6 1 2 3 4 5 6 7 8 9 7 1 2 3 4 5 6 7 8 9 8

o 0 0 0 0 0 0 0

2

3

4

5

6

8

9

10

13

14

15

16

18

19

20

21

22

23

'4
'"tl
Ql
to
CD

-"
01

Page 16

INTERPRETING THE ASCII CODE CHART

The figure below illustrates a conventionally arranged ASCII code chart divided into three
sections corresponding to control codes (columns 0 and 1) upper case characters (columns
2,3,4, and 5), and lower case characters (columns 4 and 5) .

~
..

00 00 0
10

01
10

0

1 1
111 ~b5

.. 01 10 . 0 1 1
B. b ~ ~ ~ column It 4

~ s
~ ~ ~ ·1

a 1 2 3 4 5 6 7

0 a 0 0 a NUL DLE SP 0 @ P
,

p

0 a 0 1 1 SOH DCI ! I A 0 a q
0 a 1 a 2 STX DC2 " 2 B A b r
0 0 1 1 3 ETX DC3 /I 3 C S c s
0 1 0 0 4 EOT DC4 $ 4 D T d t
0 1 0 1 5 ENO NAK % 5 E U e u
0 1 1 0 6 ACK SYN & 6 F V f v
0 1 1 1 7 BEL ETB 7 G W 9 w
1 0 0 0 8 BS CAN (8 H X h x
1 0 0 1 9 HT EM) 9 I Y i y
1 0 1 0 10 LF SUB . J Z j z
1 0 1 1 11 VT ESC + K I: k I

I

1 1 0 0 12 FF FS < L \ L I
I

1 1 0 1 13 CA GS - = M. J m I
I

1 1 1 0 14 so AS < N 1\ n -1 1 1 1 15 SI US / ? 0 - 0 DEL

Control codes are not displayable unless in the transparent mode. Some of these codes
affect the state of the terminal when they are received by the display electronics. For
example, the code SOH causes the cursor to go to the home position, and code DC2 turns
on the printer port. Codes which have no defined function in the Super8rain software are
ignored if received. The set of 64 upper case alphanumeric characters is sometimes referred
to as "compressed ASCII".

If the terminal is set for upper case operation only (CAPS LOCK), lower case alpha
characters from the keyboard are automatically translated and displayed as their upper case
equivalents (columns 4 and 5). If the DE L code is received, it is ignored. Lower case
characters received from the input RS-232C port are displayed as lower case.

The seven-bit binary code for each character is divided into two parts in this chart. A
four-bit number represents the four least significant bits (81, 82, 83, 84) and a three-bit
number represents the three most significant bits (85, 86, 87). The chart above also is
divided into 8 columns and 16 rows. This offers two ways of indicating a particular
character's code. The character code is indicated as either a seven-bit binary number or as a
column/row number in decimal notation. For example, the character M is represented by
the binary number 1001101 or the alternative 4/15 notation. Similarly, the control code VT
is represented by the code 00001011 or the alternative 0/11 notation.

I

INTRODUCTION TO
CP/M FEATURES & FACILITIES

01 [)~[j~Tfll RESEflRl:tI
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FACILITIBS

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF JANUARY 1978

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, "electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Oontents

Section Page

1.

2.

3.

4.

INTRODUcrIOO • ••••••••••••••••••••••••••••••••••••••

FUNCTIOR~ DESCRIPTIOO OF CP/M •••••••••••••••••••••
2.1. General Command Structure ••••••••••••••••• ~ ••
2.2. File References •••••••••••••••••••••••••••• e~

SWITCHING DISKS • •••••••••••••••••••••••••••••••••••

THE FORM OF BUILT-IN CDMMANOO ••••••••••••••••••••••
4.1. ERA afn cr •••••••••••••••••••••••••••••••••••
4.2. DIR afn cr•......•.•••.• ~
4.3. REN ufn1=ufn2 cr
:t.4. SAVE n ufn cr ••••••••••••••••••••••••••••••••
4.5. TYPE ufn cr ••••••••••••••••••••••••••••••••••

1

3
3
3

6

7
7
8
8
9
9

5. LINE EDITING AND OUl'pur CDNTROL ••••••••••••••••••••• 11

6.

7.

8.

TRlINSIENT CDMMANOO • ••••••••••••••••••••••••••••••••
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

STAT cr ••••••••••••••••••••••••••••••••••••••
• ••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••

As.1 ufn cr
LCN) ufn cr
PIP cr •••••••••••••••••••••••••••••••••••••••
ED ufn cr
SYSGEN cr

• •••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••

SUBMIT ufn parm#l ••• parm#n cr •••••••••••••••.•........................ DUMP ufn cr
IDVCPM cr ••••••••••••••••••••••••••••••••••••

BOOS ERROR MESSAGES ••••••••••••••••••••••••••••••••

OPERATION OF CP/M ON THE MOO • ••••••••••••••••••••••

12
13
16
17
18
25
27
28
30
30

33

34

•

1. INTRODUcrION.

CP/M is a ITOnitor control program for microcomputer system development
which uses IBM-compatible flexible disks for backup storage. using a computer
mainframe based u};X:>n Intel's 8080 microcomputer, CP/M provides a general
environment for program construction, storage, and editing, along with
assembly and J;.t'ogram check-out facilities. An im};X:>rtant feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8080 (or Ziloq Z-80) Central Processing Unit, and has at least
16K bytes of main rrernory with up to four IBM-compatible diskette drives. A
detailed discussion of the ITOdifications required for any particular hardware
environment is given in the Digital Research doclUllent entitled "CP/M System
Alteration Guide." Although the standard Digital Research version operates on
a single-density Intel MIS 800, several different hardware manufacturers
support their own input-output drivers for CP/M.

The CP/M m::mitor provides rapid access to programs through a
comprehensive file management package. The file subsystem supports a named
file structure, allowing dynamic allocation of file space as well as
sequential and random file access. Using this file system, a large number of
distinct programs can be stored in both oource and machine executable form.

CP/M also sup};X:>rts a powerful context editor, Intel-compatible assembler,
and debugger subsystems. Optional software includes a powerful
Intel-compatible macro assembler, symbolic debugger, along with various
high-level languages. When coupled with CP/M's Console Command Processor, the
resulting facilities equal or excel similar large computer facilities.

CP/M is logically divided into several distinct parts:

BIOS Basic I/O System (hardware dependent)

BOOS Basic Disk Operating System

CCP Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard peripherals (teletype, CRr, Paper
Tape Reader/Punch, and user-defined peripherals), and can be tailored by the
user for any particular hardware environment by "patching" this JX>rtion of
CP/M. The BOOS provides disk management by controlling one or rrore disk
drives containing independent file directories. The BOOS implements disk
allocation strategies \'.hich provide fully dynamic file construction while
minimizing head rrovement across the di sk dur ing access. Any particular· file
may contain any number of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files. The

1

•

BIXlS has entry p::>ints \\bich include the following pI' imi tive operations which
can be p[ogrammatically accessed:

SEARCH

OPEN

CLOSE

. RENAME

READ

WRITE

SELEcr

Look for a particular disk file by name.

Open a file for further operations.

Close a file after pcocessing.

Change the name of a particular file •

Read a record from a particular file.

write a record onto the disk.

Select a particular disk drive for further
operations.

The CCP provides symbolic interface between the user's console and the
remainder of the CP/M system. The CCP reads the console device and processes
commands \\bich include listing the file directory, pr inting the contents of
files, arid controlling the operation of transient programs, such as
assemblers, editors, and debuggers. The standard commands which are available
in the CCP are listed in a following section •

. The last s~ment of CP/M is the area called the Transient Program Area
(TPA) • The TPA holds programs which are loaded from the disk under command of
the CCP. Durinq p:-ogram editing, for example, the TPA holds the CP/M text
edi tor ITB.chine code and data areas. Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA.

It should be mentioned that any or all of the CP/M comp::ment subsystems
can be "overlayed" by an executing program. That is, once a user's program is
loaded into the TPA, the CCP, BOOS, and BIOS areas can be used as the
program's data area. A "bootstrap" loader is programmatically accessible
whenever the BIOS p::>rtion is not overlayed: thus, the user p[ogram need only
branch to the bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded from disk.

It should be reiterated that the CP/M operating system is partitioned
into distinct nodules, including the BIOS p::>rtion \\tlich defines the hardware
environment in \\bich CP/M is executing. Thus, the standard system can be
easily nodified to any non-standard environment by dlanging the peripheral
drivers to handle the custom system.

2

2. ruN:TIONAL DESCRIPI'ION OF CP/M.

The user interacts with CP/M primarily through the CCP, \>thich reads and
interprets commands entered through the console. In general, the CCP
addresses one of selTeral disks \>thich are online (the standard system crldresses
up to four different disk drives). These disk drives are labelled A, B, C,
and D. A disk is "logged in" if the CCP is currently crldressing the disk. In
order to clearly irrlicate \>thich disk is the currently logged disk, the CCP
always prompts the ~erator wi th the disk name followed by the symbol ")"
indicatinj that the CCP is ready for another canmand. Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the rremory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version number. All CP/M systems are initially set to operate
in a 16K .memory space, but can be easily reconfigured to fit any memory size
on the host system (see the IDVCPM transient command). Followinj system
signon, CP/M automatically logs in disk A, prompts the user wi th the symbol
"A)" (indicating that CP/M is currently addressing disk "A"), and waits for a
command. The commands are implemented at two levels: built-in commands and
transient commands.

2.1. GENERAL CDMMAND STRUCI'URE.

Built-in commands are a part of the CCP program itself, \>thile transient
commarrls are loaded into the TPA from disk and executed. The built-in
commands are

ERA Erase specified files.

DIR List file names in the directory.

REN Rename the specified file.

SAVE Save memory contents in a file.

TYPE Type the contents of a file on the logged disk.

Nearly all of the commands reference a particular file or group of files. The
form of a file reference is specified below.

2.2. PI LE REFERENCES.

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be either
"unambigoous" (ufn) or "ambiguous" (afn). An unambiguous file reference
uniquely identifies a single file, \>thile an ambiguous file reference may be

3

satisfied by a number of different files.

File references consist of two parts: the primary name and the secondary
name. Although the secondary name is optional, it usually is generic; that
is, the secondary name "ASM," for example, is used to denote that the file is
an assembly language source file, mile the primary name distinguishes each
particular source file. The two names are separated by a "." as shown below:

PPPPPPPP.sss

where pppppppp represents the lX'irnary name of eight characters or less, and
sss is the secondary nane of no trore than three characters. As Irentioned
above, the name

pppppppp

is also allowed am is Equivalent to a secondary name consisting of three
blanks. The characters used in s~cifying an unambiguous file reference
cannot contain any of the special characters

[<>.,;:= ?*[]]

while all alphanumerics and remaining s~cial characters are allowed.

An ambigoous file reference is used for directory search and pattern
matching. The form of an ambiguous file reference is similar to an
unambigoous reference, except the symbol "?" may be interspersed throughout
the 12' irnary and secondary names. In various canrnands throughout CP/M, the "?"
symbol matches any character of a file name in the "?" position. Thus, the
arnbigoous reference

X?Z.C?M

is satisfied by the unarnbigoous file names

XYZ.OOM
and

X3Z.CAM

Note that the ambigoous reference

* * .
is Equivalent to the ambigoous file reference

???????? ???
while

4

PPPPPPPP.*
and

*.sss

are abbreviations for

PPPPPPPP.???
and

???????? .sss

respectively. As an example,

DIR *.*

is interpreted by the CCP as a canmand to list the names of all disk files in
the directory, While

DIR X.Y

searches only for a file by the name X.Y Similarly, the command

DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk Which satisfy
this ambiguous reference.

The fOllowing file names are valid unambiguous file references:

x XYZ GAMMA

X.Y XYZ.CDM GAMMA. I

As an crlded convenience, the programmer can generally specify the disk
drive name along with the file name. In this case, the drive name is given as
a letter A through Z follow=d by a colon (:). The specified drive is then
"logged in" before the file operation occurs. Thus, the fOllowing are valid
file names with disk name prefixes:

A:X.Y B:XYZ C:GAMMA

Z :XYZ .CDM B:X.A?M C:*.ASM

It should also be noted that all alphabetic lower case letters in file
and drive names are always translated to upper case \>A1en they are T;rocessed by
the CCP.

5

3. SWITCHING DISKS.

The cperator can switch the currently logged disk by typing the disk
drive nane (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console irput. Thus, the sequence of pranpts and canrnands shown below might
occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.4

A>DIR List all files on disk A.

SAMPLE AStf

SAMPLE PRN

A>B: Switch to disk B.

B>DIR *.ASM List all "ASM" files on B.

DUMP

FILES

B>A: Switch back to A.

6

4. THE FORM CF BUILT-IN CDMWoNOO.

The file arrl device reference forms described above can now be used to
fully st:ecify the structure of the built-in canmands. In the description
below, assume the followin;J abbreviations:

ufn unambiguous file reference

afn ambiguous file reference

cr carriage return

Fur ther, recall that the CCP always translates lower case characters to u];:.Per
case characters internally. Thus, lower case alphabetics are treated as if
they are upper case in command names arrl file references.

4.1 ERA afn cr

The ERA (erase) canmand ranoves files fran the currently logged-in disk
(i.e., the disk nane currently pranpted by CP/M precedin;J the ">"). The files

which are erased are toose \\hich satisfy the ambiguous file reference afn.
The followil'lJ examples illustrate the use of ERA:

ERA X.Y

ERA X.*

ERA *.ASM

ERA X?Y.C?M

ERA B:*.PRN

The file named X.Y on the currently logged disk
is ranoved fran the disk directory, and the space
is returned.

All files wi th pr imary name X are removed fran
the current disk.

All files. wi th secondary name ASM are removed
fran the current disk.

All files on the current disk Which satisfy the
ambiguous reference X?Y.C?M are deleted.

Erase all files on the current disk (in this case
the CCP pranpts the console with the message

"ALL FILES (Y!N)'?"
Which requires a Y response before files are
actually removed).

All files on drive B Which satisfy the ambiguous
reference ????????PRN are deleted, independently
of the currently logged disk.

7

•

4.2. OIR afn cr

The orR (directory) canmand causes the names of all files \>tlich satisfy
the anbiguous file name afn to be listed at the console device. As a s};:ecial
case, the canmand

OIR

lists the files on the currently logged disk (the canmand "OrR" is Equivalent
to the canmand "OIR *.*"). Valid orR canmands are shown below.

orR X.Y

OIR X?Z.C?M

orR ??Y

Similar to other CCP canmands, the afn can be J;receded by a drive name.
The followirq OIR canmands cause the selected drive to be crldressed before the
directory search takes place.

OIR B:

orR B:X.Y

OIR B:*.A?M

If no files can be found on the selected diskette \>tlich satisfy the
directory request, then the IIEssage "Nor FOUND" is ty};:ed at the console.

4.3. REN ufnl=ufn2 cr

The REN (rename) canmand allows the user to change the names of files on
disk. The file satisfyin;J' ufn2 is chan;J'ed to ufnl. The currently logged disk
is assumed to contain the file to rename (ufnl). The CCP also allows the user
to ty};:e a left-directed arrow instead of the equal sign, if the user' s console
supports this graphic character. Examples of the REN canmand are

REN X.Y=Q.R The file Q.R is changed to X. Y.

REN XYZ.OOM=XYZ.XXX The file XYZ.XXX is changed to XYZ.(X)M.

The operator can p::ecede either ufnl or ufn2 (or both) by an optional
drivecrldress. Given that ufnl is preceded by a drive name, then ufn2 is
assumed to exist on the same drive as ufnl. Similarly, if ufn2 is J;receded by
a drive nane, then ufnl is assumed to reside on that drive as ~ll.~;~rf both
ufnl am ufn2 are preceded by drive names, then the same drive must be

8

sp:!cified in both cases. The following REN canmands illustrate this format.

REN A:X.ASM = Y.ASM

REN B:ZAP.BAS=ZOT.BAB

REN B:A.ASM = B:A.BAK

The file Y.ASM is changed to X.ASM on
drive A.

The file ZOT.BAB is changed to ZAP.BAS
on drive B.

The file A.BAK is renamed to A.ASM on
drive B.

If the .file ufnl is already IXesent, the REN canmand will respond with ~:~
the error "FILE EXISTS" and not p.=rform the change. If ufn2 does not exist on
the sp2cified diskette, then the rressaqe "NOI' roUND" is pr inted at the
console.

4.4. SAVE n ufn cr

The SAVE canmarrl places n pages (256-byte blocks) onto disk fran the TPA ~'f
and nanes this file ufn. In the CP/M distribution system, the TPA starts at 'Ii

HH!JH (hexadecimal), mich is the second page of memory. Thus, if the user's
program occupies the area fran l00H through 2FFH, the SAVE command must
specify 2 pages of rremory. The machine code file can be subsequently loaded
and executed. Examples are:

SAVE 3 X.CDM

SAVE 40 Q

SAVE 4 X.Y

COpies l00Hthrough 3FFH to X.CDM.

COpies l00H through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 28H = 2*16+8 = 40 decimal).

COpies l00H through 4FFH to X.Y.

The SAVE canmand can also sp2cify a disk drive in the afn p::>rtion of the
canmand, as shown below.

SAVE 10 B:ZOT.CX)M

4.5. TYPE ufncr

Copies 10 pages (100H through 0AFFH) to
the file ZOT.OOM on drive B.

'l~ The TYPE canmand displays the contents of the ASCII source file ufn on
I'~'\,the rurrently logged disk at the console device. Valid TYPE canrnands are

TYPE X.Y

9

TYPE X.PJ:M

TYPE XXX

The TYPE canrnarrl expands tabs (clt-I characters), assumming tab lX>sitions
are set at fNery eighth colUIm. The ufn can also reference a drive name as
shown below.

TYPE B:X.PRN The file X.PRN from drive B is displayed.

Ie,

5. LINE EDITING AND OUl'PUl' <DNTROL.

The CCP allows certain line editing functions while typing camnand lines. ~~1;.

rubout

ctl-U

ctl-X

ctl-R

ctl-E

ctl-C

ctl-Z

Delete and echo the last character typed at the
console.

Delete the entire line typed at the console.

(Same as ctl-U)

Retype current canmand line: types a "clean line" fol
lowing character deletion wi th rubouts.

Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed.

CP/M system reboot (warm start)

End input from the console (used in PIP and ED).

The control functions ctl-P and ctl-S affect console output as shown below.

ctl-P

ctl-S

Copy all subsequent console output to the currently
assigned list device (see the STAT camnand). Output
is sent to both the list device and the console device
un til the nex t ctl-pis typed.

Stop the console output temporarily. Program execution
and output continue when the next character is typed
at the console (e.g., another ctl-S). This feature is
used to stop output on high speed consoles, such as
CRT's, in order to view a segment of output before con
tinuing.

Note that the ctl-key sEquences shown above are obtained by depressing the
control and letter keys simultaneously. Further, CCP command lines can
generally be up to 255 characters in length~ they are not acted ufX)n rntil the
carriage return key is typed.

11

•

6. TRANSIENT CDMMANOO.

Transient commands are loaded from the currently logged disk and executed
in the TPA. The transient commands defined for execution under the CCP are
shown below. Additional functions can easily be defined by the user (see the
LOAD command definition).

STAT

LffiD

DDI'

PIP

ED

SYSGEN

SUBMIT

DUMP

roVCPM

List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter d~vice
assignment.

Load the CP/M assembler and assemble the specified
program from disk.

Load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new command under the CCP) •

Load the CP/M debugger into TPA and start execution.

Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer operations.

Load and execute the CP/M text editor program.

Create a new CP/M system diskette.

Submit a file of commands for batch processing.

Dump the contents of a file in hex.

Regenerate the CP/M system for a particular memory
size.

Transient commands are specified in the same manner as built-in commands, and
additional commands can be easily defined by the user. As an added
convenience, the transient command can be preceded by a drive name, vklich
causes the transient to be loaded from the specified drive into the TPA for
execution. Thus, the command

B:STAT

~I!,.. causes CP/M to temI;X)rarily "log into drive B for the oource of the STAT
.... ,". h h' . . transIent, and t en return to t e orIgInal logged dISk for subsequent

processing.

12

The basic transient commands are listed in detail below.

6.1. STAT cr

The STAT canrnand provides general statistical information about file
storage and device assignment. It is initiated by typing one of the following
forms:

STAT cr
STAT "cammand line" cr

Special fonns of the "cammand line" allow the current device assignment to be
examined and altered as well. The various command lines which can be
specified are shown below, wi th an explanation of each form shown to the
right.

STAT cr

STAT x: cr

STAT afn cr

If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

x: R/W, SPACE: nnnK
or

x: R!O, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and RIO indicates
the drive is read only (a drive becomes R!O by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
wi thout performing a warm start). The space
remaining on the diskette in drive x is given
in kilobytes by rinn.

If a drive name is given, then the drive is
selected before the storage is computed. Thus,
the canrnand "STAT B:" could be issued while
logged into drive A, resulting in the message

BYI'ES REMAINING ON B: nnnK

The canrnand line can also specify a set of files
to be scanned by STAT. The files which satisfy
afn are listed in alphabetical order, with stor
age requirements for each file under the heading

RECS BYI'S EX D:FILENAME.TYP
rrrr bbbK ee d:pppppppp.sss

where rrrr is the number of l28-byte records

13

•

STAT x:afn cr

STAT x:=R/O cr

allocated to the file, bbb is the number of kilo
bytes allocated to the file (bbb=rrrr*128/1024),
ee is the number of 16K extensions (ee=bbb/16),
d is the drive name containing the file (A ••• Z),
pppppppp is the (up to) eight-character primary
file name, and sss is the (up to) three-character
secondary name. After listing the individual
files, the storage usage is sumrnariz~o

As a convenience, the drive name can be given
ahead of the afn. In this case, the specified
drive is first selected, and the form "STAT afn"
is executed.

~''- This form sets the drive given by x to read-only,
,~, which remains in effect until the next warm or

cold start takes place. When a disk is read-only,
the message

BOOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x. CP/M waits until a key
is depressed before performing an automatic warm
start (at which time the disk becomes R/W).

~t~ The STAT canrnand also allows control over the physical to logical device
U assignment (see the IOBYTE function described in the manuals "CP/M Interface

Guide" and "CP/M System Alteration Guide"). In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of several physical peripheral devices. The four logical devices are
named:

CON:

RDR:

PUN:

LST:

The system console device (used by CCP
for canrnunication with the operator)

The paper tape reader device

The paper tape punch device

The output list device

'rhe actual devices attached to any particular computer system are driven
by subroutines in the BIOS p::>rtion of CP/M. Thus, the logical RDR: device,
for example, could actually be a high speed reader, Teletype reader, or
cassette tape. In order to allow rome flexibility in device naming and
assignment, several physical devices are defined, as shown below:

14

T'lY:

CRr:

BAT:

UCl:

Pl'R:

URI:

UR2:

Pl'P:

UPl:

UP2:

LPl':

ULl:

Teletype device (slow speed console)

Cathode ray tube device (high speed console)

Batch processing (console is current RDR:,
output qoes to current LST: device)

User-defined console

Paper tape reader (high speed reader)

User-defined reader #1

User-defined reader #2

Paper tape punch (high speed punch)

User-defined punch #1

User-defined punch #2

Line printer

user-defined li.st device #l

It must be emphasized that the physical device names mayor may not
actually corres~nd to devices which the names imply. That is, the PTP:
device may be implemented as a cassette write operation, if the user wishes.
The exact corres~ndence and driving subroutine is defined in the BIOS portion
of CP/M. In the standard distribution version of CP/M, these devices
correspond to their names on the MDS 800 development system.

The p:>ssible logical to physical device assignments can be displayed by 7~'"
typing

STAT VAL: cr

The STAT pr ints the p::>ssible values which can be taken on for each logical
device:

fiN. = TTY: CRr: BAT: UCl:
RDR: = TTY: Pl'R: URI: UR2:
PUN: = TTY: PI'P: UPl: UP2:
LST: = TTY: CRr: LPI': ULl:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line. The current logical to ~:(
physical mapping is displayed by typing the command

STAT lEV: cr

15

•

which produces a listing of each logical device to the left, and the current
corresponding physical device to the right. For example, the list might
appear as follows:

CON: = CRr:
RDR: = URI:
PUN: = PI'P:
LST: = TTY:

..;!~ The current logical to physical device assignment can be changed by typing a
,1 STAT command of the form

STAT ldl = pdl, ld2 = pd2 , ••• , ldn = pdn cr

where ldl through ldn are logical device names, and pdl through pjn are
compatible physical device names (i.e., ldi and pji appear on the same line in
the "VAL:" canmand shown above). The following are valid STA'I' canrnands which
change the current logical to physical device assignments:

STAT CDN:=CRl': cr
STAT PUN: = TTY: ,IST:=LPl':, RDR:=TTY: cr

6.2. ASM ufn cr

The ASM canrnand loads and executes the CP/M 8080 assembler. The ufn
specifies a s::>urce file containing assembly language statements where the
secondary name is assumed to be ASM, and thus is not specified. The following
ASM canmands are valid:

ASM X

ASM GAMMA

The two-pass assembler is automatically executed. If assembly errors occur
during the second pass, the errors are printed at the console.

~~! The assembler produces a file
1.'+

x.PRN

where x is the pr imary name specified in the ASM command. The PRN file
contains a listing of the source program (with imbedded tab characters if
present in the s::>urce program), along with.the machine code generated for each
statement and diagnostic error messaqes, if any. The PRN file can be listed

16

at the console usi~ the TYPE canmand, or sent to a }:eripheral device using
PIP (see the PIP canmand structure below). Note also that the PRN file
contains the original s:>urce program, augmented by miscellaneous assembly
information in the leftIoost 16 columns (program crldresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original source file: if the s:>urce file is accidently removed or destroyed,
the· PRN file can be edited (see the ED operator's guide) by removing the
leftIoost 16 characters of each line (this can be done by issuing a single
editor "nacro" canmand). The resulting file is identical· to the original
source file and can be renamed (REN) fran PRN to ASM for subsequent editing
and assembly. The file

x.HEX

is also produced \'thich contains 8080 machine language in Intel "hex" format
sui table for sli:>sequent loading and execution (see the LON) canrnand). For
canplete details of CP/M's assembly language program, see the "CP/M Assembler
language (ASM) User's Guide."

Similar to other transient canrnands, the S)urce file for assembly can be
taken fran an a..ternate disk by prefixing the assembly language file name by a
disk drive name. Thus, the canmand

ASM B:ALPHA cr

loads the assembler fran the currently logged drive and operates up:m the
source program ALPHA.ASM on drive B. The HEX and PRN files are also placed on
drive B in this case.

6.3. LQl\J) ufn cr

The LON) canmand reads the file ufn, \\hich is assumed to contain "hex"
format machine code, and produces a memory image file \'thich can be
subsequently executed. The file name ufn is assumed to be of the form

x.HEX

and thus only the name x need be specified in the canmand.
creates a file named

x.CDM

which narks it as containing nachine executable code. . The file is actually
loaded into memory and executed \'then the user types the file name x
inunediately after the pranptingcharacter ")" printed by the CCP.

In general, the .CCP reads the name x following the pranpting character
and looks for a built-in fmction name. If no fmction name is found, the CCP
searches the system disk directory fora file by the name

17

x.Q)M

If found, the machine code is loaded into the TPA, and the program executes.
Thus, the user need only LOAD a hex file once: it can be subseg:uent1y
executed any number of times by simply typing the primary name. In this way,
the user can "invent" new ccrnrnands in the CCP. (Initialized disks contain the
transient canmands as CDM files, which can be deleted at the user's option.)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name. Thus,

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM program, for example)
which beqin at 100H, the beginning of the TPA. Further, the addresses in the
hex records must be in ascending order: gaps in unfilled memory regions are
filled with zeroes by the LOAD ccrnrnand as the hex records are read. Thus,

?~~LOAD must be used only for creating CP/M standard "Q)M" files which operate in
the TPA. Proqrams v.hich occupy regions of memory other than the TPA can be
loaded under DDI'.

6.4. PIP cr

PIP is the CP/M Peripheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and combine
disk files. The PIP program is initiated by typing one of the following forms

(1) PIP cr
(2) PIP "canmand line" cr

In both cases, PIP is loaded into the TPA and executed. In case (1), PIP
reads command lines directly from the console, prompted with the "*,,
character, until an empty command line is typed (i.e., a single carriage
return is issued by the operator). Each successive ccrnrnand line causes rome
media conversion to take place according to the rules shown below. Form (2)
of the PIP command is equivalent to the first, except that the single command
line given with the PIP command is automatically executed, and PIP terminates
immediately wi th no further prompting of the console for input command lines.
The form of each command line is

destination = source#l, rource#2, ••• , rource#n cr

where "destination" is the file or peripheral device to receive the data, and

18

"oource#l, ••• , source#n" represents a series of one or rrore files or devices
which are copied from left to right to the destination.

When multiple files are given in the canmand line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) ~t the end of each file (see the 0 parameter to
override this assumption). The equal symbol (=) can be replaced by a
left-oriented arrow, if your console supports this ASCII character, to improve
readability. Lower case ASCII alphabetics are internally translated to upper
case to be consistent with CP/M file and device name conventions. Finally,
the -total command line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines Which exceed the console width) •

The destination and source elements can be unambiguous references to CP/M
source files, with or without a precedirtJ disk drive name. That is, any file
can be referenced with a freceding drive name (A:, B:, C:, or D:) which
defines the particular drive Where the file may be obtained or stored. When
the drive name is not included, the currently logged disk is assumed.
Further, the destination file can also appear as one or rrore of the oource
files, in which case the source file is not altered until the entire
concatenation is canplete. If the destination file already exists, it is
removed if the command line is properly formed (it is not removed if an error
condi tion arises). The following canmand lines (with explanations to the
right) are valid as input to PIP:

x = Y cr

X = Y,Z cr

·X.ASM=Y.ASM,Z.ASM,FIN.ASM cr

NEW.ZOT = B:OLD.ZAP cr

B:A.U = B:B.V,A:C.W,D.X cr

Copy to file X from file Y,
Where X and Yare unambiguous
file names; Y remains unchanged.

Concatenate files Y and Z and
copy to file X, with Y and Z
unchanged.

Create the file X.ASM from the
concatenation of the Y, Z, and
FIN files with type ASM.

Move a copy of OLD.ZAP from drive
B to the currently logged disk;
name the file NEW.ZOT.

Concatenate file B. V from drive B
with C.W from drive A and D.X.
from the logged disk; create
the file A.U on drive B.

For rrore convenient use, PIP allows abbreviated commands for transferring
files between disk drives. The abbreviated forms are

19

•

PIP x:=afn cr

PIP x:=y:afn cr

PIP ufn = y: cr

PIP x:ufn = y: cr

The first form copies all files from the currently loqged disk which satisfy
the afn to the same file names on drive x (x = A ••• Z) • The second form is
equivalent to the first, where the source for the copy is drive y (y = A •••
Z) • The third form is equivalent to the command "PIP ufn=y: ufn cr" which
copies the file given by ufn from drive y to the file ufn on drive x. The
fourth form is equivalent to the third, where the source disk is explicitly
given by y.

Note that the source and destination disks must be different in all of
these cases. If an afn is specified, PIP lists each ufn which satisfies the
afn as it is beinq copied. If a file exists by the same name as the
destination file, it is renoved uron successful completion of the copy, and
replaced by the copied file.

The followinq PIP commands qive examples of valid disk-to-disk copy
operations:

B:=*.CDM cr

A:=B:ZAP.* cr

ZAP.ASM=B: cr

B:ZOT.mM=A: cr

B:=GAMMA.BAS cr

B:=A:GAMMA.BAS cr

Copy all files which have the
secondary name "ooM" to drive B
from the current drive.

Copy all files which have the
primary name "ZAP" to drive A
from drive B.

Equivalent to ZAP.ASM=B:ZAP.ASM

Equivalent to B:ZOT.OOM=A:ZOT.ooM

Same as B:GAMMA.BAS=GAMMA.BAS

Same as B:GAMMA.BAS=A:GAMMA.BAS

PIP also allows reference to physical and logical devices which are
attached to the CP/M system. The device names are the same as given under the
STAT command, along with a number of specially named devices. The ICXJical
devices given in the STAT command are

ooN: (console), RDR: (reader), PUN: (punch), and IST: (list)

while the physical devices are

20

TTY:
CRr:
PI'R:
PI'P:
LPl':

(console,
(console,
(reader) ,
(pLmch) ,
(list) ,

reader, pLmch,
or list) ,
URI: (reader),
UPl: (pLmch),
UIJ.: (list)

or list)
UCl: (console)
UR2: (reader)
UP2: (punch)

(Note that the "BAT:" physical device is not included, since this assignment
is used only to indicate that the RDR: and 1ST: devices are to be used for
console input/output.)

The RDR, 1ST, PUN, and OON devices are all defined wi thin the BIOS •
portion of CP/M, and thus are easily altered for any particular I/O system.
(The current physical device mapping is defined by IOBYI'E; see the "CP/M
Interface Guide" for a discussion of this function). The destination device
must be capable of receiving data (i.e., data cannot be sent to the pLmch),
and the source devices must be capable of generating data (i.e., the LST:
device cannot be read).

The additional device names which can be used in PIP commands are

NUL:

EOF:

INP:

our:

PRN:

Send 40 "nulls" (ASCII 0 's) to the device
(this can be issued at the end of pLmched output).

Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent automatically at the
end of all ASCII data transfers through PIP) •

Srecial PIP input source which can be "patched" ~
into the PIP program itself: PIP gets the input
data character-by-character by CALLing location
103H, with data returned in location 109H (parity
bit must be zero).

Srecial PIP output destination which can be
patched into the PIP program: PIP CALLs location
106H with data in register C for each character
to transmit. Note that locations 109H throuqh
IFFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DDT (see the DDT operator's manual).

Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [tBnp]).

\)St;P it\)
(' ON (l &>4",. -Ie

COM fH,~<:r

Tt'Q.()4.rQ r.

File and device names can be intersrersed in the PIP commands. In each
case, the sp:!cific device is read Lmtil end-of-file (ctl-Z for ASCII files,
and a real end of file for non-ASCII disk files). Data from each device or
file is concatenated from left to riqht until the last data source has been

21

read. The destination device or file is written using the data from the
source files, and an end-of-file character (ctl-Z) is appended to the result
for ASCII files. Note if the destination is a disk file, then a temtx>rary
file is created ($$$ secondary name) which is chanqed to the actual file name
only up::m soccessful completion of the copy. Files with the extension "CDM"
are always .assumed to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on
the keyboard (a rubout suffices). PIP will respond with the message "AOOro'EDII
to indicate that the operation was not completed. Note that if any operation
is aborted, or if an error occurs dur inq processing, PIP removes any };Ending
commands which were set up while usinq the SUBMIT command.

It sh:>uld also be noted that PIP performs a sp:cial function if the
destination is a disk file wi. th type "HEX" (an Intel hex formatted machine
code file), and the source is an external p:ripheral device, such as a paper
tape reooer. In this case, the PIP program checks to ensure that the source
file contains a {Xoperly formed hex file, with legal hexadecimal values and
checksum records. When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action. It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 20 inches). When the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read. If the
tape lX'sition cannot be properly read, simply continue the read (by typing a
return followin:J the error message), and enter the record manually wi th the ED
program after the disk file is constructed. For convenience, PIP allows the
end-of-file to be entered fran the console if the source file is a RDR:
device. In this case, the PIP program reads the device and rronitors the
keyboard. If ctl-Z is typed at the keyboard, then the read operation is
terminated normally.

Valid PIP commands are shown below.

PIP 1ST: = X.PRN cr

PIP cr

*CDN:=X.ASM,Y.ASM,Z.ASM cr

*X.HEX=CON:,Y.HEX,PTR: cr

*cr

22

Copy X.PRN to the 1ST device and
terminate the PIP program.

Start PIP for a sequence of
commands (PIP prompts with "*").

Concatenate three ASMfiles and
copy to the CON device.

Create a HEX file by readinq the
CDN (until a ctl-Z is typed), fol
lowed by data fran Y.HEX, followed
by data from PTR until a ctl-Z is
encountered.

Single carriage return stops PIP.

PIP PUN:=NUL:,X.ASM,EOF:,NUL: cr Send 4~ nulls to the punch device:
then copy the X.ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 4~ more null charac
ters.

The user can also specify one or trore PIP parameters, enclo!:!ed in left
and right square brackets, separated by zero or IlPre blanks. Each parameter
affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be followed by an q:>tional decimal integer value (the Sand 0 parameters are
exceptions). The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII
x-off character (ctl-S) is received from the source device.
This allows transfer of data to a disk file from a continuous
reading device, such as a cassette reader. Upon receipt of
the x-off, PIP clears the disk buffers and returns for trore
input data. The amount of data which can be buffered is de
pendent upon the memory size of the host systew (PIP will
issue an error message if the buffers overflow).

On Delete characters which extend past column n in the transfer
of data to the destination from the character source. This
parameter is used IlPst often to truncate long lines which are
sent to a (narrow) printer or console device.

E Echo all transfer operations to the console as they are being
performed.

F Fi! ter form feeds from the file. All imbedded form feeds are
removed. The P parameter can be used simultaneously to
insert new form feeds.

H Hex data transfer: all data is checked for proper Intel hex
file format. Non-essential characters between hex records
are removed during the copy operation. The console will be
prompted for corrective action in case errors occur.

I Ignore 1t:~~1t records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter).

L Translate upper case alphabetics to lower case.

N Add line numbers to each line transferred to the destination
starting at one, and incrementing by 1. Leading zeroes are
suppressed, and the number is followed by a colon. If N2
is specified, then leading zeroes are included, and a tab is
inserted followirg the number. The tab is expanded if T is

23

set.

o Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored ..

Pn Include page ejects at every n lines (with an initial page
eject). If n = 1 or is excluded altogether, page ejects
occur every 60 lines. If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

Qstz Quit copying from the source device or file when the
string s (terminated by ctl-Z) is encountered.

Sstz Start copying from the source device when the string s is
encountered (terminated by ctl-Z). The Sand Q parameters
can be used to "abstract" a particular section of a file
(such as a subroutine). The start and quit strings are al
ways included in the copy operation.

NOTE - the strings following the s and q parameters are
translated to upper case by the CCP if form (2) of the
PIP canmand is used. Form (1) of the PIP invocation, how
ever, does not perform the automatic upper case translation.

(1) PIP cr
(2) PIP "command line" cr

Tn Expand tabs (ctl-I characters) to every nth column during the
transfer of characters to the destination from the source.

U Translate lower case alphabetics to upper case during the
the copy operation.

V verify that data has been copied correctly by rereading
after the write operation (the destination must be a disk
file) •

Z Zero the parity bit on input for each ASCII character.

The following are valid PIP commands which specify parameters in the file
transfer:

PIP X.ASM=B: [v] cr

PIP LPT:=X.ASM[ntSu] cr

Copy X.ASM from drive B to the current drive
and verify that the data was properly copied.

Copy X.ASM to the LPT: device; number each
line, expand tabs to every eighth column, and
translate lower case alphabetics to upper
case.

24

PIP PUN:=X.HEX[i] ,Y.ZOT[h] cr First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX:
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any ":00" records which it contains.

PIP X.Lm = Y.ASM [sSUBRl:tz qJMP L31'z] cr Copy from the file Y.ASM
into the file X.LIB. Start the copy when the
string "SUBRl:" has been found, and quit copy
in:} after the string "JMP L3" is encountered.

PIP PRN:=X.ASM[p50] Send X.ASM to the 1ST: device, with line num
bers, tabs expanded to every eighth column,
and page ejects at every 50th line. Note that
nt8p60 is the assumed parameter list for a PRN
file: p50 overrides the default value.

6.5. ED ufn cr

The ED program is the CP/M system context editor, ¥.bich allows creation
and alteration of ASCII files in the CP/M environment. Complete details of
operation are given the ED user's manual, "ED: a Context Editor for the CP/M
Disk System." In general, ED allows the operator to create and operate up:m
source files \\hich are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence). There is no
practical restriction on line length (no single line can exceed the size of
the worki~ memory), \\hich is instead defined by the number of characters
typed between cr's. The ED program has a number of commands for character
string searching, replacement, and insertion, ¥.bich are useful in the creation
and correction of programs or text files Lmder CP/M. Although the CP/M has a
limited memory work space area (approximately 5000 characters in a 16K CP/M
system), the file size ¥.bich can be edited is not limited, since data is
easily "paged" through this work area.

Upon initiation, ED creates the s:p=cified source file, if it does not
exist, and opens the file for access. The programmer then "appends" data from
the oource file into the work area, if the source file already exists (see the
A canrnand), for editing. The appended data can then be displayed, altered,
and written from the work area back to the disk (see the W command).
Particular p:>ints in the program can be automatically paged and located by
context (see the N command), allowin:} easy access to particular }X)rtions of a
large file.

Given that the operator has typed

ED X.ASM cr

25

the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run. Upon canpletion of ED, the X.ASM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X.ASM. Thus, the X.BAR file contains the original (unedited) file, and the
X.ASM file contains the newly edited file. The operator can always return to
the previous version of a file by ranoving the fOC)st recent version, and
renamim the .,;revious version. Suppose, for example, that the current X.ASM
file was improperly edited: the sequence of CCPI camnand shown below would
reclaim the backup file.

DIR X.*

ERA X.ASM

REN X.ASM=X. BAK

Check to see that BAR file
is available.

Erase fOC)st recent version.

Rename the BAK file to ASM.

Note that the operator can abort the edit at any };X)int (reboot, };X)wer failure,
ctl-C, or Q canmand) without destroying the original file. In this case, the
BAR file is not created, and the original file is always intact.

The ED program also allows the user to "ping-pong" the oource and create
backup files between two disks. The form of the ED canmand in this case is

ED ufn d:

where ufn is the nane of a file to edit on the currently logged disk, and d is
the nane of an alternate drive. The ED program reads and processes the oource
file, and writes the new file to drive d, using the name ufn. Upon canpletion
of processing, the original file becomes the backup file. Thus, if the
operator is addressing disk A, the following canmand is valid:

ED X.ASM B:

which edits the file X.ASM on drive A, creating the new file X.$$$ on drive
B. Upon canpletion of a successful edit, A:X.ASM is renamed to A:X.BAK, and
B : X. $$$ is renamed to B: X.ABM. For user convenience, the cur rentl y logged
disk becanes drive B at the end of the edit. Note that if a file by the name
B:X.ASM. exists before the editing begins, the message

FILE EXISTS

is printed at the console as a precaution aqainst accidently destroying a
source file. In this case, the operator must first ERAse the existing file
and then restart the edit operation.

26

Similar to other transient canmands, editing can take place on a drive
different fran the OJrrently l03ged disk by preceding the rource file name by
a drive mme. Examples of valid edit requests are soown below

ED A:X.ASM

ED B:X.ASM A:

6.6. SYSGEN cr

Edit the file X.ASM on drive A, with
new file and backup on drive A.

Edit the file X.ASM on drive B to the
temporary file X.$$$ on drive A. On
termination of editing, change X.ASM
on drive B to X.SAK, and chanqe X.$$S
on drive A to X.ASM.

The SYSGEN transient command allows generation of an initialized diskette
containing the CP/M operating system. The SYSGEN program prompts the console
for commands, with interaction as shoWn below.

SYSGEN cr Initiate the SYSGEN program.

SYSGEN VERSION m.m SYSGEN sign~on message.

SOURCE IlUVE NAME (OR RETURN TO SKIP)

SOURCE ON x THEN TYPE REI'URN

FUNCTION OOMPLETE

Respond with the drive name (one
of the letters A, B, C, or D) of
the disk containing a CP/M sys
tem: usually A. If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only. Typing a drive name
x will cause the response:

Place a diskette containing the
CP/M operating system on drive
x (x is one of A, B, C, or D).
Answer with cr when rea9Y.

System is copied to memory.
SYSGEN will then prompt with:

DESTINATION mIVE NAME (OR RETURN TO REBOOI')

27

If a diskette is being ini
tialized, place the new disk
into a drive and answer with
the drive name. Otherwise, type
a cr and the system will reboot
from drive A. Typing drive name
x will cause SYSGEN to pr ompt

with:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
x: type return when ready.

FUNCTION CDMPLETE New diskette is initialized
in drive x.

The "DESTINATION" pranpt will be repeated tntil a single carriage return is
typed at the console, so that more than one disk can be initialized.

Upon canpletion of a successful system generation, the new diskette
contains the operating system, and only the built-in canmands are available.
A factory-fresh IBM-compatible diskette appears to CP/M as a diskette with an
empty directory: therefore, the operator must copy the appropriate OOM files
fran an existing CP/M diskette to the newly constructed diskette using the PIP
transient.

The user can copy all files fran an existing diskette by typing the PIP
canmand

PIP B: = A: *.*[vJ cr

which copies all files fran disk drive A to disk drive B, and verifies that
each file has been copied correctly. The name of each file is displayed at
the console as the copy operation proceeds.

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette: it results only in construction of a new operating
system. Further, if a diskette is being used only on drives B through D, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to
be used with CP/M. .

6.7. SUBMIT ufu parm#! ••• parm#n cr

The 9.JBMIT canmand allows CP/M canmands to be batched toqether for
autanatic trocessing. The ufn given in the SUBMIT cormnand must be the
filename of a file which exists on the currently logged disk, with an assumed
file type of "SUB. II The SUB file contains CP/M prototype canmands, with
possible parameter stDstitution. The actual. parameters parm#! ••• parm#n are
substituted into the lX'ototype canmands, and, if no errors occur, the file of
substituted commands are processed sequentially by CP/M.

28

The prototype canrnand file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 ••• $n

correspondin;J to the number of actual parameters which will be included when
the file is smmi tted for execution. When the SUBMIT transient is executed,
the actual parameters parmU ••• parm#n are paired with the formal parameters
$1 ••• $n in the prototype canrnands. If the number of formal and actual
parameters does not correspond, then the submit ftmction is aborted with an
error message at the console. The SUBMIT ftmction creates a file of
substituted commands with the name

$$$.SUB

on the logged disk. When the system reboots (at the termination of the
SUBMIT), this canmand file is read by the CCP as a oource of input, rather
than the console. If the SUBMIT function is ~rformed on any disk other than
drive A, the commands are not processed until the disk is inserted into drive
A and the system reboots. Further, the user can abort canmand processing at
any time by typirg a rubout when the camnand is read and echoed. In this
case, the $$$.SUB file is removed, and the subsequent canrnands come from the
console. Command processing is also aborted if the CCP detects an error in
any of the commands. Programs which execute tmder CP/M can abort ~ocessing of
canrnand files when error conditions occur by simply erasing any existing
$$$.SUB file.

In order to introduce dollar signs into a SUBMIT file, the user may type
a "$$" which reduces to a single "$" wi thin the command file. Further, an
up-arrow symbol "f" may precede an alphabetic character x, which produces a
single ctl-x character within the file.

The last command in a SUB file can initiate another SUB file, thus
allowing chained batch canrnands.

Su~se the file ASMBL.SUB exists on disk and contains the prototype
commands

and the command

A~ $1
DIR $1.*
ERA *.BAK
PIP $2:=$1.PRN
ERA $l.PRN

SUBMIT ASMBL X PRN cr

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file,
smstituting "X" for all occurrences of $1 and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the commands

29

•

A~ X
DIR X.*
ERA *.BAK
PIP PRN:=X.PRN
ERA X.PRN

which are executed in sequence by the CCP.

The SUBMIT function can access a SUB file \\hich is on an alternate drive
by trecedi~ the file name by a drive name. Sutmitted files are only acted
u!X)n, however, when they appear on drive A. Thus, it is !X)ssible to create a
submitted file on drive B \\hich is executed at a later time \\hen it is
inserted in drive A.

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form. The file contents are listed sixteen bytes at a time,
with the absolute byte address listed to the left of each line in
hexadecimal. Lorg typeouts can be aborted by pushing the rubout key dur ing
printout. (The rource listing of the DUMP program is ~given in the "CP/M
Interface Guide" as an example of a program written for the CP/M environment.)

6.9. MJVCPM cr

The M)VCPM p:-ogram allows the user to reconfigure the CP/M system for any
particular rremory size. Two optional parameters may be used to indicate (1)
the desired size of the new system and (2) the dist;X>sition of the new system
at p:-ogram termination. If the first parameter is anitted or a u*" is given,
the M)VCPM program will reconfigure the system to its maximum size, based u~n
the kilobytes of contiguous RAM in the host system (starting aat 0000H). If
the second parameter is ani tted, the system is executed, but not permanently
recorded: if "*,, is given, the system is left in memory, ready for a SYSGEN
operation. The M)VCPM program relocates a memory image of CP/M and places
this image in memory in preparation for a system generation operation. The
canrnand forms are:

MOVCPM cr Relocate and execute CP/M for manage
ment of the current memory configura
tion (memory is examined for contigu
ous RAM, starting at l00H). Upon com
pletion of the relocation, the new '
system is executed but not permanently
recordeq on the diskette. The system
which is constructed contains a BIOS
for the Intel MDS 800.

30

MOVCPM n cr

KlVCPM * * cr

MOVCPM n * cr

The canrnand

MOVCPM * *

Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above.

Construct a relocated memory image for
the current memory configuration, but
leave the memory image in memory, in
preparation for a SYSGEN operation.

Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGEN operation.

for example, constructs a new version of the CP/M system and leaves it in
memory, ready for a SYSGEN operation. The message

READY FOR "SYSGEN" OR
"SAVE 32 CPMxx.cDM"

is J;rinted at the console up:m completion, where xx is the current memory size
in kilobytes. The operator can then type

SYSGEN cr Start the system generation.

SOURCE DRIVE NAME (OR RETURN TO SKIP) Respond with a cr to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation.

DESTINATION [RIVE NAME (OR RETURN T0 REBOOI')
Respond with B to write new system
to the diskette in drive B. SYSGEN
will prompt wi th:

DESTINATION ON B, THEN TYPE RETURN
Ready the fresh diskette on drive
B and type a return when ready.

Note that if you respond with "A" rather than "B" above, the system will be
written to drive A rather than B. SYSGEN will continue to ~ the prompt:

DESTINATION [RIVE NAME (OR RETURN TO REBOOr)

Lmtil the operator responds with a single carriage return, which stops the

31

SYSGEN program with a system reboot.

The user can then go through the reboot process with the old or new
diskette. Instead of performinq the SYSGEN operation, the user could have
typed

SAVE 32 CPMxx.ffiM

at the canpletion of the M)VCPM function, ltilich would place the CP/M memory
image on the currently logged disk in a form which can be "ra tched." This is
necessary when operating in a non-standard environment ltilere the BIOS must be
altered for a particular peripheral device configuration, as described in
the"CP/M System Alteration Guide."

Valid MOVCPM commands are given below:

MOVCPM 48 cr

MOVCPM 48 * cr

MOVCPM * * cr

Construct a 48K verskon of CP/M and start
execution.

Construct a 48K version of CP/M in prepara
tion for permanent recording; response is

READY FOR "SYSGEN" OR
"SAVE 32CPM48.ffiM"

Construct a maximum memory version of CP/M
and start execution.

It is imrnrtant to note that the newly created system is serialized with
the number attached to the or ig inal di skette and is subject to the condi tions
of the Digital Research Software Licensing Agreement.

32

. (

7. BDOS ERROR MESSAGES.

There are three error situations which the Basic Disk Operating System
intercepts dur ill3 file lXocesssill3. When one of these conditions is detected,
the BOOS prints the message:

BOOS ERR ON x: error

where x is the drive name, and "error" is one of the three error messages:

BAD SECl'OR
SELECI'
READ ONLY

The "BAD SECl'OR" message indicates that the disk controller electronics
has detected an error condition in readill3 or writing the diskette. This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette. If you find that your system reports this error more
than once a month, you should check the state of your controller electronics,
and the condition of your media. You may also encounter this condition in
readill3 files generated by a controller produced by a different manufacturer.
Even ttnugh controllers are claimed to be IBM-canpatible, one often finds
small di fferences in recording formats. The MIl3-800 controller, for example,
requires two bytes of one's followill3 the data CRC byte, which is not required
in the IBM format. As a result, diskettes generated by the Intel MOO can be
read by almost all other IBM-canpatible systems, while disk files generated on
other manufacturer's equipment will produce the "BAD SECl'OR" message when read
by the MIl3. In any case, recovery fran this condition is accomplished by
typill3 a ctl-C to reboot (this is the safest!), or a return, which simply
ignores the bad sector in the file operation. Note, however, that typing a
return rey destroy your diskette integrity if the operation is a directory
write, so make sure you have adequate backups in this case.

The "SELEcr" error occurs when there is an attempt to address a drive
beyond the A through D r all3e. In this case, the value of x in the error
message gives the selected drive. The system reboots following any input from
the console.

The "READ ONLY" message occurs men there is an attempt to write to a
diskette which has been designated as read-only in a STAT canmand, or has been
set to read-only by the BOOS. _In general, the operator should reboot CP/M
either by usill3 the v.e.rm start procedure (ctl-C) or by performing a cold start
whenever the diskettes are changed. If a changed diskette is to be read but
not wr itten, BOOS allows the diskette to be changed without the warm or cold
start, but internally marks the drive as read-only. The status of the drive
is subsequently charged to read/write if a v.e.rm or cold start occurs. Upon
issuill3 this message, CP/M waits for input fran the console. An automatic
warm start takes place following any input.

33

•

8. OPERATION OF CP/M ON THE MrS.

This section gives cperating procedures for using CP/M on the Intel MIS
microcomputer development system. A basic knowledge of the MIS hardware and
software systems is assumed.

CP/M is initiated in essentially the same manner as Intel's ISIS
operating system. The disk drives are labelled 0 through 3 on the MrS,
corresp:mdi~ to CP/M drives A through D, respectively. The CP/M system
diskette is inserted into drive 0, and the roar and RESE"I' switches are
depressed in sequence. The interrupt 2 light should go on at this pJint. The
space bar is then depressed on the device v.bich is to be taken as the system
console, and the light srould go out (if it does not, then check connections
and baud rates). The roar switch is then turned off, and the CP/M signon
message srould appear at the selected console device, followed by the lOA>"
system p:-anpt. The user can then issue the various resident and transient
commands

The CP/M system can be restarted (warm start) at any time by pushing the
INT 0 switch on the front panel. The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch (which generates a RST 7), except v.hen
operating under DDT, in v.hich case the DDT program gets control instead.

Diskettes can be renoved from the drives at any time, and the system can
be shut down during operation without affecting data integrity. Note,
however, that the user must not remove a diskette and replace it with another

. wi thout rebooting the system (cold or warm start), unless the inserted
diskette is "read only."

Due to hardware hang-ups or malfunctions, CP/M may type the message

BDOS ERR ON x: BAD SECl'OR

where x is the drive v.bich has a permanent error. This error may occur v.hen
drive doors are cpened and closed- randomly, followed by disk operations, or
may be due to a diskette, drive, or controller failure. The user can
optionally elect to ignore the error by typing a single return at the
console. The error may produce a bad data record, requiring re-initialization
of up to 128 bytes of data. The operator can reboot the CP/M system and try
the cperation again.

Termination of a CP/M session requires no special action, except that it
is necessary to renove the diskettes before turning the {:Ower off, to avoid
random transients v.hich often make their way to the drive electronics.

It srould be noted that factory-fresh IBM-compatible diskettes should be
used rather than diskettes v.bich have previously been used with any ISIS
version. In particular, the ISIS "FORMAT" cperation produces non-standard
sector numbering throughout the diskette. This non-standard numbering
seriously degrades the performance of CP/M, and will operate noticeably slower

34

than the distribution version. If it becomes necessary to reformat a diskette
(which smuld not be the case for standard diskettes). a program can be

written mder CP/M v.hich causes the MI:6 800 controller to reformat with
sequential sector numbering (1-26) on each track.

Note: "MIS 800" aoo "ISIS" are registered trademarks of Intel Corporation •

•

I

OPERATION OF
THE CP/M CONTEXT EDITOR

01 [)~(j~Tf1l RE~Ef1Rr:H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM

USER'S MANUAL

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any lm;tguage or computer language, in any
form or by any means, 'electronic, mechanical, magnetic,
optical,' chemical, manual or otherwise,without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time -in the content hereof without obligation of
Digital Research to . notify . any person of such revision or
changes.

1.

2.

Table of Contents

ED TUTORIAL
1.1 Introduction to ED . ·
1.2 ED Operation . . .
1.3 Text Transfer Functions ·
1.4 Memory Buffer Organization

1.5 Memory Buffer Operation ·
1.6 Command Strings

1.7 Text Search and Alteration

1.8 Source Libraries .

· · ·
· · ·

· · ·
·
· · ·

. .

. .

· .

· .

1

1

1

1

5

5

7

8

· . 11

1.9 Repetitive Command Execution •. · . 12

ED ERROR CONDITIONS . . ·13

3. CONTROL CHARACTERS AND COMMANDS ••.•••. 14

ii

ED USER'S MANUAL

1. ED TUTORIAL

1.1. Introduction to ED.

ED is the context editor for CP/M, and is used to create
and alter CP/M source files. ED is initiated in CP/M by
typing

{
<filename> }

ED <filename>. <filetype>

In general, ED reads segments of the source file given.by
<filename> or <filename> • <filetype> into central memory,
where the file is manipulated by the operator, and subse
quently written back to disk after alterations. If the
source file does not exist before editing, it is created by
ED and initialized to empty. The overall operation of ED
is shown in Figure 1.

1.2. ED Operation

ED operates upon the source file, denoted in Figure 1
by x.y, and passes all text through a memory buffer where
the text can be viewed or altered (the number of lines which
can be maintained in the memory buffer varies with the line
length, but has a total capacity of about 6000 characters
in a 16K CP/M system). Text material which has been edited
is written onto a temporary work file under command of the
operator. Upon termination of the edit, the memory buffer
is written to the temporary file, followed by any remaining
(unread) text in the source file. The name of the original
file is changed from x.y to x.BAK so that the most recent
previously edited source file can be reclaimed if necessary
(see the CP/M commands ERASE and RENAME). The temporary
file is then changed from x.$$$ to x.y which becomes the
reSUlting edited file.

The memory buffer is logically between the source file
and working file as shown in Figure 2.

1.3. Text Transfer Functions

Given that n is an integer value in the range o through
65535, the following ED commands transfer lines of text
from the source file through the memory buffer to the tem
porary (and eventually final) file:

Source

File

After
Edit (E)

Backup

File

x.BAK

Figure 1. Overall ED Operation

Append

(A)

Source
Libraries

(R)

Memory Buffer

Insert
(I)

Write

(W)

Type
(T)

Temporary

File

After
Edit

(E)

New

Source

File

x.y

Note: the ED program accepts both lower and upper case ASCII
characters as input from the console. Single letter commands
can be typed in either case. The U command can be issued to
cause ED to translate lower case alphabetics to upper case as
characters are filled to the memory buffer from the console.
Characters are echoed as typed without translation, however.
The -u command causes ED to revert to "no translation" mode.
ED starts with an assumed-U in effect.

2

Source File

1
.' .,

F~rst L~ne ,

2 ,,'Appended," - . , , ,-
3 "Lines" ,,2-
-7-."~'" -

Figure 2. Hemory Buffer Organization

Memory Buffer

1 .' First Line"

2 ~Buffered ~

~ "Text ",,"-
'" ,'" -, - ""-,-

Memory
Next
Write

TP

1

2

3

Temporary File

'\ F:irst Line"

\ Processed' ,"
-" '\-

"Text '" '-- '\ --, '\" , -- \-... " \ \ '

Free File

Space

L _______ I

Figure 3. Logical Organization of Memory Buffer

first
line

current
line CL

last
line

Memo ry Buffer

---------<cr><lf>

--------<cr><lf>

------~------<cr><lf>

--------<cr><lf>

3

..

* nA<cr> -

nW<cr>

E<cr>

H<cr>

O<cr>

Q<cr>

append the next n unprocessed source
lines from the source file at SP to
the end of the memory buffer at MP.
Increment SP and MP by n.

write the first n lines of the memory
buffer to the temporary file free space.
Shift the remaining lines n+l through
MP to the top of the memory buffer.
Increment TP by n.

end the edit. Copy all buffered text
to temporary file, and copy all un
processed source lines to the temporary
file. Rename files as described
previously.

move to head of new file by performing
automatic E command. Temporary file
becomes the new source file, the memory
buffer is emptied, and a new temporary
file is created (equivalent to issuing
an E command, followed by a reinvocation
of ED using x.y as the file to edit).

return to original file. The memory
buffer is emptied, the temporary file
id deleted, and the SP is returned to
position I of the source file. The
effects of the previous editing commands
are thus nullified.

quit edit with no file alterations,
return to CP/M.--

There are a number of special cases to consider. If the
integer n is omitted in any ED command where an integer is
allowed, then I is assumed. Thus, the commands A and Wappend
one line and write I line, respectively. In addition, if a
pound sign (#) is given in the place of n, then the integer
65535 is assumed (the largest value for n which is allowed).
Since most reasonably sized source files can be contained
entirely in the memory buffer, the command #A is often issued
at the beginning of the edit to read the entire source file
to memory. Similarly, the command #Wwrites the entire buffer
to the temporary file. Two special forms of the A and W

*<cr> represents the carriage-return key

4

commands are provided as a convenience. The command OA fills
the current memory buffer to at least half-full, while OW
writes lines until the buffer is at least half empty. It
should also be noted that an error is issued if the memory
buffer size is exceded. The operator may then enter any
command (such as W) which does not increase memory require
ments. The remainder of any partial line read during the
overflow will be brought into memory on the next successful
append.

1.4. Memory Buffer Organization

The memory buffer can be considered a sequence of source
lines brought in with the A command from a source file. The
memory buffer has an associated (imaginary) character pointer
CP which moves throughout the memory buffer under command of
the operator. The memory buffer appears logically as shown
in Figure 3 where the dashes represent characters of the
source line of indefinite length, terminated by carr~e
return «cr» and line-feed «If» characters, and cp
represents the imaginary character pointer. Note that the
CP is always located ahead of the first character of the
first line, behind the last character of the last line, or
between two characters. The current line CL is the source
line which contains the CPo

1.5. Memory Buffer Operation

Upon initiation of ED, the memory buffer is empty (ie,
CP is both ahead and behind the first and last character).
The operator may either append lines (A command) from the
source file, or enter the lines directly from the console
with the insert command

I<cr>

ED then accepts any number of input lines, where each line
terminates with a <cr> (the <If> is supplied automatically),
until a control-z (denoted by tz is typed by the operator.
The CP is positioned after the last character entered. The
sequence

I<cr>
NOW IS THE<cr>
TIME FOR<cr>
ALL GOOD MEN<cr>
tz

leaves the memory buffer as shown below

5

NOW IS THE<cr><lf>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf~

~

Various commands can then be issued which manipulate the CP
or display source text in the .vicinity of the CPo The
commands shown below with a preceding n indicate that an
optional unsigned value can be specified. When preceded by
±, the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (#) is replaced
by 65535. If an integer n is optional, but not supplied,
then n=l is assumed. Finally, if a plus sign is optional,
but none is specified, then + is assumed.

±B<cr> - move CP to beginning of memory buffer
if +, and to bottom if -.

±nC<cr.> - move CP by ±n characters (toward front
of buffer if +), counting the <cr><lf>
as two distinct characters

±nD<cr> - delete n characters ahead of CP if plus
and behind CP if minus.

±nK<cr> - kill (ie remove) ±n lines of source text
using CP as the current reference. If
CP is not at the begi~ning of the current
line when K is issuec, then the charac
ters before CP remain if + is specified,
while the characters after CP remain if -
is given in the command.

±nL<cr> - if n=O then move CP to the beginning .of
the current line (if it is not already
there) if nFO then first move the CP to
the beginning of the current line, and
then move it to the beginning of the
line which is n lines down (if +) or up
(if -). The CP will stop at the top or
bottom of the memory buffer if too large
a value of n is specified.

6

±nT<cr> - If n=O then type the contents of the
current line up to CPo If n=l then
type the contents of the current line
from CP to the end of the line. If
n>l then type the current line along
with n-l lines which follow, if +
is specified. Similarly, if n>l and
- is given, type the previous n lines,
up to the CPo The break key can be
depressed to abort long type-outs.

±n<cr> - equivalent to ±nLT, which moves up or
down and types a single line

1.6. Command Strings

Any number of commands can be typed contiguously (up to
the capacity of the CP/M console buffer), and are executed
only after the <cr> is typed. Thus, the operator may use
the CP/M console command functions to manipulate the input
command:

Rubout

Control-U

Control-C

Control-E

remove the last character

delete the entire line

re-initialize the CP/M System

return carriage for long lines
without transmitting buffer
(max 128 chars)

Suppose the memory buffer contains the characters shown
in the previous section, with the CP following the last
character of the buffer. The command strings shown below
produce the results shown to the right

Command String

1. B2T<cr>

2. 5COT<cr>

Effect

move to beginning
of buffer and type
2 lines:
"NOW IS THE

TIME FOR"

move CP 5 charac
ters and type the
beginning of the
line
"NOW I"

7

Resulting Memory Buffer

L~NOW IS THE<cr><lf>
l3?J TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

NOW I~~ S THE<cr><lf>
~

•

3. 2L-T<cr>

4. -L#K<cr>

5. I<cr>
TIME TO<cr>
INSERT<cr>
tz

6. -2L#T<cr>

7. <cr>

move two lines down
and type previous
line
"TIME FOR"

move up one line,
delte 65535 lines
which follow

insert two lines
of text

move up two lines,
and type 65535
lines ahead of CP
"NOW IS THE"

move down one line
and type one line
" INSERT"

1.7. Text Search and Alteration

NOW IS THE<cr><lf>

TIME FOR<cr><lf>

~ALL

l5:J
GOOD MEN<cr><lf>

NOW IS THE<cr><lf> ~
C.2:J

NOW IS THE<cr><lf>

TIME TO<cr><lf>

INSERT<cr><lf> ~
~

NOW IS THE<cr><lf> ~
~ TIME TO<cr><lf>

INSERT<cr><lf>

NOW IS THE<cr><lf>

TIME TO<cr><lf> ~~
~ INSERT<cr><lf>

ED also has a command which locates strings within the
memory buffer. The command takes the form

where cl through ck represent the characters to match followed
by either a <cr> or control -z*. ED starts at the current
position of CP and attempts to match all k characters. The
match is attempted n times, and if successful, the CP is
moved directly after the character ck. If the n matches are
not successful, the CP is not moved from its initial position.
Search strings can include-rr (control-l), which is replaced
by the pair of symbols <cr><lf>.

*The control-z is used if additional commands will be typed
following the tz.

8

The following commands illustrate the use of the F
command:

Command String

1. B#T<cr>

2. FS T<cr>

3. FltzOTT

Effect

move to beginning
and :type entire
buffer

find the end of
the string ItS T"

find the next "I"
and type to the
CP then type the
remainder of the
current line:
"TIME FOR"

Resulting Memory Buffer

.-6 NOW IS THE<cr><lf>
~ TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

NOW IS T@1 HE<cr><lf>

NOW IS THE<cr><lf>

TI ~ME FOR<cr><lf> cp
ALL OOD MEN<cr><lf>

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make
simple textual changes. The form is:

c <cr>
n

where cl through c n are characters to insert. If the inser
tion string is terminated by a tz, the characters cl through
c n are inserted directly following the CP, and the CP is
moved directly after character c n " The action is the same
if the command is followed by a <cr> except that a <cr><lf>
is automatically inserted into the text following character
c n . Consider the following command sequences as examples
of the F and I commands:

Command String Effect

BITHIS· IS tz<cr> Insert "THIS IS "
at the beginning
of the text

9

Resulting Memory Buffer

THIS IS~OW THE <cr><lf>

~
TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

FTIMEtz-4DIPLACEtz<cr>

find "TIME" and delete
it; then insert "PLACE"

3FOtz-3D5DICHANGESt<cr>

-8CISOURCE<cr>

find third occurrence
of "0" (ie the second
"0" in GOOD), delete
previous 3 characters;
then insert "CHANGES"

move back 8 characters
and insert the line
"SOURCE<cr><lf>"

THIS IS NOW THE<cr><lf>

PLACE ~ FOR<cr><lf>

ALL GOOD MEN<cr><lf>

THIS IS NOW THE <cr><lf>

PLACE FOR<cr><lf>

ALL CHANGES~<cr><lf>
~

THIS IS NOW THE<cr><lf>

PLACE FOR<cr><lf>

ALL SOURCE<cr><lf>

~CHANGES<cr><lf>
I.5:J

ED also provides a single command which combines .the F ·and
I commands to perform simple string substitutions. The command
takes the form

and has exactly the same effect as applying the command string

a total of n times. That is, ED searches the memory buffer
starting at the ~urrent position of CP and successively sub
stitutes the second string for the first string until the
end of buffer, or until the substitution has been performed
n times.

As a convenience, a command similar to F is provided by
ED which automatically appends and writes lines as the search
proceeds. The form is

n N c l c 2 •.• ck { ctrz }

which searches the entire source file for the nth occurrence
of the string clc2 •.. ck (recall that OF fails if the string
cannot be found in the current buffer). The operation of the

10

~~ command is precisely the same as F except in the case that
the string cannot be found within the current memory buffer.
In this case, the entire memory contents is written (ie, an
automatic #W is issued). Input lines are then read until
the buffer is at least half full, or the entire source file
is exhausted. The search continues in this manner until the
string has been found n times, or until the source file has
been completely transferred to the temporary file.

A final line editing function, called the juxtaposition
command takes the form

with the following action applied n times to the memory buffer:
search from the current CP for the next occurrence of the
string clc2 ... ck' If found, insert the string d kd 2 ... ,dm,
and move CP to follow dm. Then delete all characters following
CP up to (but not including) the string el,e2, ... eq , leaving
CP directly after dm. If el,e2, ... e q cannot be fOUnd, then
no deletion is made. If the current line is

~ NOW IS THE TH1E<cr><lf>
t:E.J

Then the cormnand

JW tzWHATtztl<cr>

Results in

NOW WHAT ~ <cr><lf>
l.91:l

(Recall that tl represents the pair <cr><lf> in search and
SUbstitute strings).

It should be noted that the number of characters allowed
by ED in the F,S,N, and J commands is limited to 100 symbols.

1. 8. Source Libraries

ED also allows the inclusion of source libraries during
the editing process with the R command. The form of this
command is

11

where flf2 •• fn is the name of a source file on the disk with
as assumed filetype of 'LIB'. ED reads the specified file,
and places the characters into the memory buffer after CP,
in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO. LIB
until the end-of-file, and automatically inserts the charac
ters into the memory buffer.

1.9. Repetitive Command Execution

The macro command M allows the ED user to group ED com
mands together for repeated evaluation. The M command takes
the form:

where clc2 .•. ck represent a string of ED commands, not inclu
ding another M command. ED executes the command string n
times if n>l. If n=O or 1, the command string is executed
repetitively until an error condition is encountered (e.g.,
the end of the memory buffer is reached with an F command).

As an example, the following macro changes all occur
rences of GAMMA to DELTA within the current buffer, and
types each line which is changed:

MFGAMMAtz-SDIDELTAtzOTT<cr>

or equivalently

MSGAMMAtzDELTAtzOTT<cr>

12

2. ED ERROR CONDITIONS

On error conditions, ED prints the last character read
before the error, along with an error indicator:

?

>

o

unrecognized command

memory buffer full (use one of
the commands D,K,N,S, or W to
remove characters), F,N, or S
strings too long.

cannot apply command the number
of times specified (e.g., in
F command)

cannot open LIB file in R
command

Cyclic redundancy check (CRC) information is written with
each output record under CP/M in order to detect errors on
subsequent read operations. If a CRC error is detected, CP/M
will type

PERM ERR DISK d

where d is the currently selected drive (A,B, ..•). The oper
ator can choose to ignore the error by typing any character
at the console (in this case, the memory buffer data should
be examined to see if it was incorrectly read), or the user
can reset the system and reclaim the backup file, if it
exists. The file can be reclaimed by first typing the con
tents of the BAK file to ensure that it contains the proper
information:

TYPE x.BAK<cr>

where x is the file being edited. Then remove the primary
file:

ERA x.y<cr>

and rename the BAK file:

REN x.y=x.BAK<cr>

The file can then be re-edited, starting with the previous
version.

13

•

3. CONTROL CHARACTERS AND COMHANDS

The following table summarizes the control characters
and commands available in ED:

Control Character

tc

te

ti

tl

tu

tz

rubout

break

14

Function

system reboot

physical <cr><lf> (not
actually entered in
conunand)

logical tab (cols 1,8,
15, ...)

logical <cr><lf> in
search and substitute
strings

line delete

string terminator

character delete

discontinue command
(e~g., stop typing)

Co nun and

nA

±B

±nC

±nD

E

nF

H

I

nJ

±nK

±nL

nM

nN

o

±nP

Q

R

nS

±nT

± U

nW

nZ

±n<cr>

Function

append lines

begin bottom of buffer

move character positions

delete characters

end edit and close files
(normal end)

find string

end edit, close and reopen
files

insert characters

place strings in juxtaposition

kill lines

move down/up lines

macro definition

find next occurrence with
autos can

return to original file

move and print pages

quit with no file changes

read library file

substitute strings

type lines

translate lower to upper case if U,
no translation if -u
write lines

sleep

move and type (±nLT)

15

•

Appendix A: ED 1.4 Enhancements

The ED context editor contains a number of commands which enhance its
usefulness in text editing. The improvements are found in the addition of line numbers,
free space interrogation, and improved error reporting.

The context editor issued with CP/M 1.4 produces absolute line number prefixes
when the "V" (Verify Line Numbers) command is issued. Following the V command,
the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears
as 5 blanks.

The user may reference an absolute line number by preceding any command by I
a number followed by a colon, in the same format as the line number display. In this
case, the ED program moves the current line reference to the absolute line number,
if the line exists in the current memory buffer. Thus, the command

345:T

is interpreted as "move to absolute line 345, and type the line." Note that absolute
line numbers are produced only during the editing process, and are not recorded with
the file. In particular, the line numbers will change following a deleted or expanded
section of text.

The user may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute line number by a colon. Thus,
the command

:400T

is interpreted as "type from the current line number through the line whose absolute
number is 400." Combining the two line reference forms, the command

345::4"'0T -

for example, is interpreted as "move to absolute line 345, then type through absolute
line 4~0." Note that absolute line references of this sort can precede any of the
standard ED commands.

A special case of the V command, "0V", prints the memory buffer statistics in
the form:

free/total

where "free" is the number of free bytes in the memory buffer (in decimaI), and "total"
is the size of the memory buffer.

ED 1.4 also includes a "block move" facility implemented through the "X" (X fer)
command. The form

nX

transfers the next n lines from the current line to a temporary file called

X$$$$$$$.LIB

which is active only during the editing process. In general, the user can reposition
the current line reference to any portion of the source file and transfer lines to the
temporary file. The transferred line accumulate one after another in this file, and
can be retrieved by simply typing:

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X command
does not remove the transferred lines from the memory buffer, although a K command
can be used directly after the X, and the R command does not empty the· transferred
line file. That is, given that a set of lines has been transferred with the X command,
they can be re-read any number of times back into the source file. The command

r1X

is provided, however, to empty the transferred line file.

Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
jf lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

Due to common typographical errors, ED 1.4 requires several potentially disas
terous commands to be typed as single letters, rather than in composite commands.
The commands

E (end), H (head), 0 (originaI), Q (quit)

must be typed as single letter commands.

ED 1.4 also prints error messages in the form

BREAK "x" AT c

w here x is the error character, and c is the com mand where the error occurred.

CP/M 2.0 USER'S GUIDE
FOR CP/M 1.4 OWNERS

I

01 [)~[j~Tfll RESEflRl:tf
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 USER'S GUIDE

FOR CP/M 1.4 OWNERS

COPYRIGHT (c) 1979

DIGITAL RESEARCH

•

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language. in any form or by any
means, electronic, mechanical, magnetic, optical, chemicaJ,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital R.esearch makes no representations or warranties with
respect to the contents hereof and specifica]Jy disclaims any
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

TrRdemarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

CP/M 2.0 USER'S GUIDE FOR CP/M 1.4 OWNERS

1.

2.

3.

4.

5.

COQyright (c) 1979
Digital Researcn, aox 579
Pacific Grove, California

An Overview of CP/M 2.0 Facilities

User Interface

Console Command Processor (CC?) Intertace

S~AT Enhancements

PIP Enhancements

6. 8D Enhancements

7 • The XSU8 Function

8. 3DOS Interface Conventions • • .

9. CP/M 2.0 Memory Organization

10. 3IOS Differences •.•...•

. 1

3

• • . • 4

• • • • • 5

. • . 10

. . . . 11

• • 12

• 27

• • 28

1. AL~ OVERVIEw OF cp/r-1 2.0 FACILI'rIES.

CP/M 2.0 is a high-performance single-console operating system
which uses table driven techniques to allow field reconfiguration to
match a wide variety of disk capacities. All of the fundamental, file
restrictions are removed, while maintaining upward compatibility from
previous versions of release 1. Features of CP/M 2.0 include field
specification of one to sixteen logical drives,eacn containing up to
eight megabytes. Any particular file can reach the full drive size
with the capability to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically
separated oy user numbers, with facilities for file copy operations
from one user area to another. Powerful relative-record random access
functions are present in CP/M 2.0 whlch provide direct access to any
of the 65536 records of an eight megabyte file.

All disk-dependent portions of CP/M 2.0 are placed into a
BIOS-resident "disk parameter block" which is either hand coded or
produced automatically using the disk definition macro library
provided with CP/M 2.0. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. The macros use
this information 'to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking information
is also provided wnich aids in assembly or disassembly of sector sizes
wnich are multioles of tne fundamental 128 byte data unit, and the
system. alteration manual includes qeneral~purpose subroutines which
use the tnis deblocking information to taKe advantage of larger sector
sizes. Use of these subroutines, together with the table driven data
access algoritnms, make CP/M 2.0 truly a universal data management
system.

File expansion is achieved by providing, up to 512 logical file
extents, where eaCh logical extent contains 16K bytes of data. CP/M
2.0 is structured, however, so that as much as 128K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), tnus maintaining compatibility with previous
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.0 which allow
immediate reference to any record of an eight megabyte file. Using
CP/t1's unique data organization, data blocks are only allocated when
actually required and movement to a record oosition requires little
search time. Sequential file access is upward-compatible from earlier
versions to the full ,eight megaoytes, while random access
compatibility stops at 5l2K byte files. Due to CP/M 2.0's simpler and
faster random access, application programmers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules and utilities have improvements which
correspond to the enhanced file system. STA'r and PIP both account for
file attributes ~nd user areas, while the CCP provides a "login~

(All Information Contained Herein is Proprietary to Digital Researcn.)

1

I

function to change from one user area to anotner. 'i'he CCP also
formats directory displays in a more convenient manner and accounts
for both CRT and hard-copy devices in its enhanced line editing
functions.

The sections below point out the inaividual differences between
CP/M 1.4 and CP/M 2.0~ with the understanding that the reader is
either familiar with CP/M 1.4, or has access to the 1.4 manuals.
Additional information dealing with CP/M 2.0 I/O system alteration is
presented in the Digital Research manual ~CP/M 2.0 Alteration Gtiide. d

(All Information Contained Berein is proprietary to Digital Research.)

2

2. USER INTERFACE.

Console line processing takes CRT-type devices into account with
three new control characters, shown with an asterisk in the list below
(the symbol "ctl" below indicates that the control key is
simultaneously depressed) :

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
ctl-a
ctl-X

removes and echoes last character
reboot when at beginning of line,
physical end of line
oackspace"one cnaracter position*
(line feed) terminates current input*
(carriage return) terminates input
retype current line after new line
remove current line after new line
backspace to beginning of current line*

In ?articular, note that ctl-H produces the proper backspace overwrite
function (ctl-H can be changed internally to another character, such
as delete, through a simple single byte change). Further, the line
editor keeps track ot the current prompt column position so that· the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3

•

3. CONSOLE COMMAI.~D PROCESSOR (CCP) IN'fERFACE.

There are four functional differences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCP) level. 'fheCCP now
displays directory information across the screen (four elements per
line), the USER command is present to allow maintenance oiseparate
files in the same directory, and the actions of the "ERA *.*" and
"SAVE" commands have changed. 'l'he altered DIR format is
self-explanatory, while the USER command takes the for~:

USER n

where n is an integer value in the range 0 to 15. Upon cold start,
the operator is automatically "logged" into user area number 0, which
is compatible with standard CP/M 1.4 directories. The operator may
issue the USER command at any time to move to another logical area
within the same directory. Drives which are logged-in while
addressing one user number are automatically active when the operator
moves to another user numoer since a 'user number is simply a prefix
which accesses particular directory entries on the active disks.

The active
subsequent USER
is again assumed.

user number is maintained until changed by a
command, or until a cold start operation when user 0

Due to the fact that user numbers now tag individual directory
entries, the ERA *.* command has a different effect. In version 1.4,
this command can be used to erase a directory whicn has "garbage"
information, perhaps resulting from use of a disKette under another
operating system (heaven forbid!). In 2.0, however, the ERA ~.*
command affects only the current user number. Thus, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in. version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.0,
nowever~ does not perform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4

4. STAT ENHANCEMENTS.

The STAT program has a number of additional functions which
allow disk parameter display, user number display, and file indicator
manipulation. The command:

s'rA'r VAL:

produces a summary of the available status commands, resulting in the
output:

Temp RIO Disk: d:=R/o
Set Indicator: d:filename.typ $R/O $R/w $SYS $DIR
Disk status DSK: d:DSK:
User Status USR:
Iobyte Assign:
(list of possible assignments)

~hicn gives an instant summary of the possible STAT commands. The
command form:

STAT d:filename.typ ~S

wnere "d:" is an optional
unambiguous or ambiguous
format:

Size Recs 3ytes
48 48 6k
55 55 12k

65536 128 2k

dr ive
file

name, and "filename.typ" is an
name, produces the output display

Ext Acc
1 Rio A:ED.COM
1 RIO (A : f' I P • CO£'1)
2 R/W A:X.DA'l'

where tne $S parameter causes the "Size" field to be displayed
(without the $S, the Size field is skipped, but the remaining fields
are displayed). 'rhe Size field lists the virtual file size in
records, while the "Recs" field sums the number of virtual records in
each extent. For files constructed sequentially, the Size and Recs
fields are identical. 'rhe "Bytes" field lists the actual nUr.lber of
bytes allocated to the corresponding file. The minimum allocation
unit is determined at configuration time, and thus tne number of bytes
corresponds to the record count plus the remaining unused space in the
last allocated block for sequential files. Random access files are
given data areas only when written, so the Bytes field contains the
only accurate allocation figure. In the case of random access, the
Size field gives the logical end-ot-file record position and the Recs
field counts the logical records of each extent (each of these
extents, 11Owever, :nay contain unallocated "holes" even though they are
added into the record count). The "Ext" field counts the number of
logical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily correspond to the number of directory
entries given to the file, since there can be up to 128K oytes (8
logical extents) directly addressed by a single directory entry,
de?ending upon allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent).

'rhe .. Acc"
changed using

field gives the RiO or R/W access mode, which is
'the commands shown below. Similarly, the parentheses

(All Intormation Contained Herein is Proprietary to Digital Research.)

5

shown around the PIP. COM file name indicate that it has the "system"
indicator set, so that it will not be listed in OIR commands. The
four command forms

STAT d:filename.typ ~R/O
STAT d:filename.typ $R/~
STAT d:filename.typ $SYS
STAT d:filename.typ $DIR

set or reset various ?ermanent file indicators. The R/O indicator
places the file (or set of files) in a read-only status until changed
by a subsequent STAT command. The R/O status is recorded in the
directory with tne file so that it remains R/O through intervening
cold start operations. The R/W indicator places the file in a
?ermanent read/write status. The SYS indicator attaches the system
indicator to the file, while the DIR command removes the system
indicator. rrhe "filename. typ" may be ambiguous or unambiguous, but in
eitner case, the files whose attributes are changed are listed at the
console when the change occurs. The drive name denotea by "d:" is
optional.

When a file is marked R/O, subsequent attempts to erase or write
into the file result in a terminal BOOS message

Bdos Err on d: File R/O

The BOOS then waits for a console input before performing a subsequent
warm start (a "return" is sufficient to continue). The command form

s'rAT d: DSK:

lists the drive characteristics of the disk named by "d:" which is in
the range A:, B:, .•. , P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity

8192: Kilooyte Drive Capacity
128: 32 Byte Directory Entries

0: Checked Directory Entries
1024: Records/ Extent

128: Records/ Block
58: Sectors/ Track

2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 is an 8 megabyte drive), followed by the total
capacity listed in Kilooytes. The directorv size is listed next,
followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start. The number of records per extent determines the
addressing capacity of each directory entry (1024 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

l28K in the exam?le above). The number of records oer block shows the
basic allocation size (in the example, 128 records/block times 128
bytes per record, or 16K oytes per block). The listing is then
followed by the number of physical sectors oer track and the number of
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mechanism is used to sKio lower-numbered disk areas allocated to other
logical disks. The cbmm~nd form

s:rA'r DSK:

produces a drive characteristics table for all currently active
drives. The final STAT command form is

8'rAT USR:

which produces a list of the user numbers which have files on the
currently addressed disk. The display format is:

Active User : 0
Active Files: 0 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a list of user numbers
scanned from the current directory. In the above case, the active
user number is 0 (default at cold start), witn three user numbers
whicn have active files on the current disk. 'fhe operator can
subsequently examine the directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level.

(All Information Contained Herein is Proprietary to Digital Research.)

7

•

5. PIP ENHAN'CEMEN'rs.

PIP provides three new functions which account tor the features
of CP/M 2.0. All three functions take the form of file oarameters
which are enclosed in square brackets following the appr.opr late file
names. The commands are:

Gn Get File from User number n
(n in the range 0 - 15)

w write over R/O files without
console interrogation

R Read system files

'rhe G command allows one user area to receive data files from another.
Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X. Yfrom user number 2 into user area number 4. 'rhe
command

PIP A:=A:*.*[G2]

copies all of the files from the A drive directory for user number 2
into the A drive directory of the currently logged user number~ Note
that to ensure file security, one cannot copy files into a different
a-rea than the one which is currently a,ddressed by the USER command.

Note also that the PIP program itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command. The sequence of operations shown below effectively moves PIP
from one user area to the next.

USER '"
DDT PIP. COM
(note PIP size

G0
USER 3
SAVE s PIP. CO£¥l

login user 0
load PIP to memory

s)
return to CCP
login user 3

where s is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number s can be determined when PIP. COM is
loaded under DDT, by referring to the value under the "NEXT" display.
If for example, the next available address is 1000, then PIP.COM
requires lC hexadecimal pages (or 1 times 16 + 12 = 28 pages), and
thus the value of s is 28 in the subsequent save. Once PIP is cooied
in this manner, it can then be copied to another disk belonging to"the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which is
set to a permanent R/O status. If attempt is made to overwrite a R/O
file, the prompt .

(All Information Contained Herein is proprietary to Digital Research.)

8

nRSTINATION FILE IS R/O, DELETE (YIN)?

is issued. If the operator responds with the character "y" then the
file is overwritten. Otherwise, the response

** NOT DELETED **

is issued, the file transfer is skippped, and PIP continues with the
next operation in sequence. In order to avoid the prompt and response
in the case of RiO file overwrite, the command line can include the w
parameter, as shown below

PIP A:=B:*.COM[W]

which copies all non-system files to. the A drive from the B drive, and
overwrites any R/O files in the process. If the operation involves
several concatenated files, the w parameter need only be included with
the last file in the list, as shown in the following example

PIP A.DAT = B.DAT,F:NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers
if the R parameter is included, otherwise system files are not
recognized. The command line

PIP ED. COM = B:ED.COM[R]

for example,: reads the ED.COM file from the B drive, even if it has
been marked as a R/O and system file. The system file attributes are
copied, if present.

It should be noted that downward compatibility with previous
versions of CP/M is only maintained if the file does not exceed one
megabyte, no file attributes are set, and the file is created by user
0. If compatibility is required with non-standard (e.g., "double
density") versions of 1.4, it may be necessary to select 1.4
compatibility mode when constructing the internal disk parameter block
(see the '"CP/M 2.0 Alteration Guide," and refer to Section 10 which
describes BIOS differences).

(All Information Contained Herein is Proprietary to Digital Research.)

9

6. ED ENHANCEMENTS.

The CP/M standard orogram editor provides several new facilities
in the 2.0 release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the e~itor has the "v"
(Verify Line) option set as an initial value. The operator can, of
course, disable line numbering by typing the "-v" command. If you are
not familiar with the ED line number mode, you may wish to refer to
the Appendix in the ED user's guide, where the "v" command is
described.

ED also takes file attributes into account.
attempts to edit a read/only file, the message

** FILE IS READ/ONL~ **

If the operator

appears at the console. The file can be loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
,edit session, and uses STAT to change the file attribute to R/W. If
the edited file has the "system" attribute set, the message

"SYSTEM" FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again,
the STA;f program can be used to change the system' attribute, if
desired.

Finally, the insert mode ("i") command allows CRT line editing
functions, as described in Section 2, above.

(All Information Contained Herein is proprietary to Digital Research.)

1"

7. THE XSUB FUNCTION.

An additional utility program is supplied with version 2.0 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line input to programs as well as the console command
processor. The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the CCP.
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BOOS function 10) receive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XSUB
DDT
I$l.HEX
R
G0
SAVE 1 $2.COM

with a subsequent SUBMIT command:

SUBMIT SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by DD'r which is sent the command lines
"IX.HEX" "R" and "G0" thus returning to the CCP. The final command
"SAVE 1 Y.COM" is processed by the CCP.

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent
submit command streams do not require the XSUB, unless an intervening
cold start has occurred. Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

8. BOOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location 0005H, function number in
register C, and information address in register pair DE. Single byte
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A = L and register B = H
upon return in all cases). A list ot CP/M 2.0 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0. Note that a zero value is returned for
out-of range function numbers.

0 System Reset 19* Delete f"ile
1 Console Input 20 Read Sequential
2 Console Output 21 write Sequential
3 Reader Input 22* Make File
4 PunCh Output 23* Rename File
5 List Output 24* Return Login Vector
6* Direct Console I/O 25 Return Current Disk
7 Get I/O Byte 26 Set DMA Address
8 Set I/O Byte 27 Get Addr (Alloc)
9 Print String 28* Write Protect Disk

10* Read Console Buffer 29* Get Addr(R/O Vector)
11 Get Console Status 30* Set File Attr ibutes
12* Return Version Number 31* Get Addr(Disk Parms)
13 Reset Disk System 32* Set/Get User Code
14 Select Disk 33* Read Random
15* Open File 34* ~vr i te Random
16 Close File 35* Comoute File Size
17* Search for First 36* Set Random Record
18* Search for Next

(Functions 28, 29, and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console I/O.

Direct Console I/O is supported under CP/M 2.0 for those
applications where it is necessary to avoid the BOOS console I/O
operations. Programs whiCh currently perform direct I/O through the
BIOS should be changed to use direct I/O under BOOS so that they can
be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
Character. If the input value is FF, then function 6 returns A = 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character whiCh is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

12

Function 10: Read Console Buffer.

The console buffer read operation remains unchanged except that
console line editing is supported, as described in section 2. Note
also that certain functions which return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the
prompt ended (previously, the carriage returned to the extreme left
margin). 'rhis new convention makes operator data input and line
correction more legible.

Function 12: Return Version Number.

Function 12 has been redefined to orovide information which
allows version-independent programming (this was previously the "lift
head" function which returned HL=0000 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = 00 for the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with random access disabled when operating under •
early releases of CP/M. '

In the file operations described below, DE addresses a file
control block (FCB). Further, all directory operations take place in
a reserved area which does not affect write buffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file is accessed randomly. The default file control block
normally located at 005CH can be used for random access files, since
bytes 00708, 007EH, and 007FH are available for this purpose. For
notational purposes, the FCB format is shown with the following
fields:

(All Information Contained Herein is Proprietary to Digital Research.)

13

Idrlfllf21/ /lf8Itllt2It3Iexlslls2Ircld01/ /ldnlcrlr0lrllr21

00 01 02 ••• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35

where

dr drive code (0 - 16)
o => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl ••. f8 contain the file name in ASCII
upper case, with high 'bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tIl, t21, and t3 1 denote the
bit of these positions,
tIl = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on ~all to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from 0 - 128

d0 ••• dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
to,rl constitute a 16-bit value with
low byte r0, and high byte rl

Function 15: Open File.

Tne Operi File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as zero, but made no

(All Information Contained Herein is Proprietary to Digital Research.)
\

14

cnecks to assure compliance. Thus, the byte is cleared to ensure
upward compatibility with the latest version"where it is required.

Function 17: SearCh for First.

Search First scans the directory for a match with the file given
by the Fca addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to 0,
1, 2, or 3 is returned indicating the file is oresent. In the case
that the file is found, the current DMA ad~ress is filled with the
record containing the directory entry, and the relative starting
position is A ~ 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Altnough not normally required for application programs,
the airectory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from fl through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, -the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application ~rogr&~s, out does allow complete flexibility to scan all
current directory values. If the dr field is not a question mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next.

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions. .

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 0 to 3 is returned.

(All Information Contained Herein is Proprietary to Digital Research.)

15

•

Function 22: Make File.

The Make File operation is identical to previous versions of
CP/M, except that byte s2 is zeroed upon entry to the BOOS.

Function 23: Rename File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range 0 to 3 is returned.

Function 24: Return Login Vector.

The login vector value returned by CP/M 2.0 is a 16-bit value in
HL, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: write Protect Current Disk.

The disk write protect function provides tem90rary write
protection for the currently selected disk. Any attem9t to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

Function 29: Get R/O Vector.

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

Function 30: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to file~. In
particular, the R/O and System attributes (tl' and t2' above) can be
s~t or reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

match, and chanqes the matched directory entry to contain the selected
inaicators. Indicators fl' through f4' are not ~resently used, but
may be useful for applications programs, since they are not involved
in the matching process durin9 file open and close operations.
Indicators £5' tnrough f3' and t3' are reserved for future system
exr;>ans ion.

Function 31: Get Disk Parameter Block Address.

~he address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space .computation purposes, or transient
programs can dynamically change the values of current disk 1;)arameters
when the disk environment changes, if required. Normally, application
programs will not require this facility.

Function 32: Set or Get User Code.

An application program can change or interrogate the currently
active user number by calling function 32. If register E = FF
nex3decimal, then tne value of the current user number is returned in
register A, where the value is in the range 0 to 31. If register E is
not FF, then the current user number is changed to the value of E
(modulo 32).

Function 33: Read Random.

'rhe Read Random function iss imi la r to the seguen t ial file read
operation of previous releases, exce1;)t that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r0), middle
byte next (r1), and high byte last (r2). CP/M release 2.0 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file.

Thus, in version 2.0, the r0,rl byte pair is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from 0 to 65535, providing access to any particular
record of the 8 megabyte file. In order to orocess a file using
random access, the base extent (extent 0) must first be opened.
Although the base extent mayor may not contain any allocated data,
this ensures that the file is properly recorded in the directory, and
is visible in DIR requests. The selected record number is then stored
into the random record field (r0,rl), and the SDOS is called to read
the record. U1;)on return from the call, register A either contains an

(All Information Contained Herein is Proprietary to oigitalResearch.)

17

•

error code, as listed below, or the value 00 indicating the operation
was successful. In the latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. ThuS, subsequent
random read operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. 'rhus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record oosition following each ranaom read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disK

Error code 01 ana 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

Function 34: Write Random.

The Write Random ooeration is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the rando~ record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is proprietary to Digital Research.)

18

switch as it does in sequential mode under either CP/M 1.4 or CP/M
2.0.

The error codes returned
random read operation with
indicates that a new extent
ove rflow.

by a random write are identical to the
the addition of error code 05, which
cannot be created due to directory

Function 35: Compute Fi~e Size.

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual" file size which is, in effect, the record address of" the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536 in version 2.0. Otherwise, bytes r0 and rl
constitute a 16-bit value (r0 is the least significant byte, as
before) which is the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, tnen performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and .. holes" exi s t in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data fs actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the
produce the random record position from a file
written sequentially to a particular point.
useful in two ways.

BOOS to automatically
which has been read or
The function can be

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

•

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a ~articular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

This section is concluded with a rather extensive, but comolete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RAl~DO!-1..C01'1, the CCl? level
command:

RAN DO£>1 X. DA'r

starts the test program. 'rhe program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively: If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the orogram's not so brief), the only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. 'rhe
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,

(All Information Contained Herein is Proprietary to Digital Research.)

20

which contain the ?rincipal input line processor,
'I'h is ?ar ticular pr og ram shows the elements of
processing, and can be used as the basis for
deve lopmen t •

called
random
further

"readc."
access

program

0Hl0

01000 =
iiHHl5 =

01001 =
0002 =
00109 =
fHHJa =
o tHic =
0100f =
iO~10 =
0016 =
JI{j21 =
0022 =

1il05c =
007d =
01217f =
013813 =

00iOd =
000a =

0100 31bc0

0103 0e0c
0105 cd050
13108 fe20
!610a d2160

010d Illb0
0110 cdda0
0113 c3000

. *** ,

.* * ,
;* sample random access program for cp/m 2.0 * .* . '. * ,
.*** ,

. ,
reboot
bdos

org

egu
egu

coninp egu
conout equ
T?string egu
rstring equ
version egu
openf equ
closef egu
makef equ
readr egu
writer eau
;
fcb
ranrec
ranovf
buff

cr
If

egu
egu
equ
equ

egu
egu

100h

00100h
01005h

1
2
9
113
12
15
16
22
33
34

005ch
fcb+33
fcb+35
0080h

0dh
0ah

;base of tpa

;system reboot
;bdos entry point

;console input function
;console output function
;print string until '$'
;read console buffer
;return version number
;file open function
;close function
;make file function
;read random
;write random

;default file control block
;randorn record position
;high order (overflow) byte
;buffer address

;carriage return
;line feed

;
.*** ,
. * ,
;* load SP, set-up file for random access

*
*

.* * ,

.*** ,

versok:

lxi sP,stack

version 2.1O?
mvi
call
cpi
jnc
bad
lxi
call
jrno

c,version
bdos

.20h ;version 2.0 or better?
versok

version, message and go back
d,badver
print
reboot

correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21

0116 0e0f
10118 11Se0
0llb cd1350
121 lIe 3c
0llf c2370

121122 0e16
121124 11Sc0
0127 cd050
0l2a 3c
I2Il2b c2370

0l2e l13a0
13131 cdda0
0134 c31300

0137 cde50
0l3a 227d0
0l3d 217fl2l
12114121 360121
0142 fe5l
0144 c2S60

liH47 0ell1
121149 11SctO
0l4c cd059
I2Il4f 3c
121150 cab99
121153 c3090

0156 fe57
0158 c289121

!?l15b l14d0
0l5e cdda0

mvi c,openf ;open default fcb
lxi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

;
" ; cannot open file, so create it

mvi c,makef
lxi d, fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

· , cannot create file, directory full
lxi d,nospace
call orint
jmp reboot ;back to ccp

;
.*** ,
· * ,
.* , loop back to "ready" after each command

*
*

.* * ,

.*******w*** ,
~
ready:

file is ready for processing

call readcom ;read next command
snld ranrec ;store input record#
lxi h,ranovf
mvi m,0 ;clear high byte if set
cpi 'Q' ; qui t?
jnz notq

· ,
· quit processing, close file ,

mvi c,closef
lxi d,fcb
call bdos
inr a ;err 255 becomes 121
jz error ;error message, retry
jmp reboot ; back to ccp

· , .
• *** ,
.* * ,
;* end of quit command, process write *
.w * ,
.*** ,
notq:

not the quit command, random write?
cpi • ~v'
jnz notw

;
this is a random write, fill buffer until cr
lxi d,datmsg
call print ;data prompt

(All Information Contained Herein is proprietary to Digital Research.)

22

0161 eJe7f
0163 218010

0166 c5
i2J167 e5
1iJ168 cdc20
!.116b el
016c cl
016d fe~jd
016f ca780

0172 77
10173 23
0174 0d
0175 c2660

0178 3600

eJ17a
0.l7c
017f
10182
0183
0166

0189
018b

0l8e
0190
0193
019"6
0197

0e22
115c0
cd0512J
b7
c2b90
c3370

fe52
c2b9f2J

0e21
115c0
cd050
b7
c2b9!.1

f2J 19a cdcf0
019d k1e80
1c119f ./21800

f2Jla2 7e
01a3 23
f2Jla4 e67f
f2l1a6 ca37f2J
01a9 c5
01aa e5

r loop:

~

erloop:

mvi
lxi
~read
puSh
l?ush
call
pop

c,127 ~ul? to 127 characters
h,buff ~destination

next character to buff
b ~save counter
h ~next destination
getchr ~character to a
h ~restore counter
b :restore next to fill
cr :end of line?
er 1000

pop
cpi
jz
not
mov
inx
dcr
jnz

end; store character
m,a
h
c
rloop

:next to fill
:counter goes down
:end of buffer?

end of read loop, store 00
mvi

write
mvi
lxi
call
ora
jnz
jmp

m,0

the record
c,writer
d,fcb
bdos
a
error
ready

to selected record number

:error code zero?
: message if not
:for another record

:
.*~~******~******~********************************** ,
.* * ,
:* end of write command, ~rocess read *
.* * ,
.*** ,
notw:

not a write command, read record?
Cl? i 'R'
jnz error :skip if not

read random record
mvi c,readr
lxi d,fcb
call bdos
ora a :return code 00?
jnz error

read was successful, write to console
call crlf :new line
mvi c,128 imax 128 characters
lxi h,buff inext to get

wloop:
mov a,m :next character
inx h inext to get
ani 7fh imask parity
jz ready :for another command if 1210
push b :save counter
push h isave next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23

01ab fe20
131ad d4c80
01b0 el
01bl cl
II'lb2 13d
01b3 c2a20
01b6 c3370

01b9 11590
01bc cdda0
01bf c3370

01c2 0e0l
01c4 cd050
01c7 c9

01c8 0e02
01ca 5f
01cb cd050
01ce c9

01cf 3e0d
01dl cdc80
01d4 3e0a
131d6 cdc80
131d9 c9

01da d5
01db cdcf0
elIde dl
01Cif 0e09
01el cd0513
01e4 c9

cpi igraphic?
cnc putchr iskip output if not
pop h
pop b
dcr c icount=count-l
jnz wloop
jmp ready

· ,
.******~***********************************~******** ,
· * ,
i* end of read command, all errors end-uD here

*
*

.* * , ,

.*** ,

error:

· ,

lxi
call
jmp

d,errmsg
print
ready

.*** ,

.* ,
i* utility subroutines for console i/o

*
*

.* * ,

.***************************************~*********** ,
getchr:

; read next console character to a
mvi c,coninp
call bdos
ret

putchr:
iwrite character from a to console
mvi c, conout
mov e,a icharacter to send
call bdos ;send character
ret

i
cr If:

;send carr iage return line feed
mvi a,cr ;carriage return
call putchr
mvi a,lf ;line feed
call Dutchr
ret

;
print:

;print the buffer addressed by de until $
push d
call crlf
pop d ;new line
mvi c, pstring
call bdos ;print the string
ret

readcom:

(All Information Contained Herein is Proprietary to Digital Research.)

24

01e5 116b0
01e8 cdda0
vJleb 0e0a
itlled 117ali.l
eJlf0 cd050

01f3 210010
01f6 117c0
01f9 la
01fa 13
01fb b7
01fc c8

01fd d630
01£f fe0a
0201 d2130

0204 29
0205 4d
0206 44
0207 29
0208 29
0209 09
020a 85
0200 6t
o 20c d2f90
~20t 24
11 210 c3f90

0213 c630
0215 fe61
I) 217 dS

0218 e65f
021a c9

021b 536f79

o 23a 4e6f29

o 24d 547970

0259 457272

026b 4e6570

i read the next command line to the conbuf
lxi d,prompt
call TJrint icommand?
mvi c,rstring
lxi d ,conbuf
call bdos iread command line
command line is present, scan it
lxi h,0 istart with 0000
lxi d,conlinicommand line

readc: Idax d inext command character
inx d ito next command position
ora a icannot be end of command
rz
not zero, . ? numerIC.
sui '0 '
cpi 10 i car ry if numeric
jnc endrd
add-in next digi t
dad h i1(2
mov c,l
mov b,h ibC = value * 2
dad h i*4
dad h i*8
dad b i *2 + *8 = *110
add 1 i+digit
mov l,a
jnc readc ifor another char
inr h ioverflow
jmp readc ifor another char

endrd:
end of read, restore value in a
adi • 0' i command
cui 'a' i translate case?
rc
lower case, mask lower case bits
ani 101$111lb
ret

i
.*** ,
.* * ,
i* string data area for console messages *
.* * ,
.*** ,
nadver:

db 'sorry, you need cp/m version 2$'
nospace:

db 'no directory spaceS'
da tmsg:

db 'type data: $'
e r rmsg:

db 'error, try again.S'
prompt:

db 'next command? $'

(All Information Contained Herein is Proprietary to Digital Research.)

25

•

027a 21
027b
027c
0021 =

029c

02bc

.*** ,

.* * ,
i* fixed and variable data area * . * * ,
.*** ,
conbuf: db
consiz: ds
conlin: ds
conlen equ

ds
stack:

end

conlen ilength of
1 iresulting
32 ilength 32
$-consiz

console buffer
size after read
buffer

32 i 16 level stack

(All Information Contained Herein is Proprietary to Digital Research.)

26

9 • CP/M 2.0 MEMORY ORGANIZA'rION.

Similar to earlier versions, CP /(\1 2. fZj is field-altered to fit
var ious memory sizes, depending upon the host computer memory
configuration. Typical base addresses for popular memory sizes are
shown in the table below.

Module 20k 24k 32k 48k 64k
CCP 3400H 4400H 6400H A400H E40liJH
BDOS 3C00H 4C00H 6C00H AC00H EC00H
BIOS 4A00H 5A00H 7A00H BA00H FA00H
'rop of Ram 4FFFH 5FFFH 7FFFH BFFFH FFFFH

The distribution disk contains a CP/M 2.0 system configured for a 20k
Intel MDS-800 with standard IBM 8" floppy disk drives. The disk
layout is shown below:

Sector 'rrack 00 Module Track 01 Module
1 (Bootstrap Loader) 4080H BDOS + 480H
2 3400H CCP + 000H 4100H BOOS + 500H
3 3480H CCP + 080H 4180H BOOS + 580H
4 3500H CCP + 100H 4200H BOOS + 600H
5 3580H CCP + 180H 42d0H BOOS + 6808
6 3600H CCP + 200H 4300H BOOS + 700H
7 3680H CCP + 280H 4380H BOOS + 780H
t5 37i:1I::lH CCP + 300H 4400H BOOS + 800H
Sl 3780H CCP + 380rl 4480H BDOS + 880H

Hl 3800rl CCP + 400H 4500H BOOS + 900H
11 3880H CCP + 4t30H 4580H BOOS + 980H
12 3900H CCP + 500H 4600H BOOS + A00H
13 3980H CCP + 580H 4680H BOOS + A80H
14 3A00H CCP + 600H 4700H BDOS + B00H
15 3A80H CCP + 680H 4780H BOOS + B80H
16 3B00H CCP + 700H 4800H BDOS + C00H
17 3B80H CCP + 780H 4880H BOOS + C80H
18 3C00H BDOS + 000H 4900H BDOS + D00H
19 3C80H BOOS + 080H 4980H BOOS + D80H
20 3D00H BOOS + 100H 4A00H BIOS + 000H
21 3D80H BOOS + lB0H 4A80H BIOS + 080H
22 3E00H BOOS + 200H 4B00H BIOS + 100H
23 3E80H BOOS + 280H 4B80H BIOS + 180H
24 3F00H BOOS + 300H 4C00H BIOS + 200H
25 3F80H BOOS + 380H 4C80H BIOS + 280H
26 4000H BOOS + 400H 4D00H BIOS + 300H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4. The BOOS portion,
however, occupies one more 256-byte page and the BIOS portion extends
through the remainder of track· 01. Thus, the CCP is 800H (2048
decimal) bytes in length, the BOOS is E00H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. In
version 2.0, the BIOS portion contains the standard subroutines of
1.4, along with some initialized table space, as described in the
following section.

(All Information Contained Herein is Proprietary to Digital Research.)

27

10. BIOS DIFFERENCES.

'rhe CP/M 2.0 Basic I/O System differs only slightly in concept
from its predecesssors. Two new jump vector entry points are defined,
a new sector translation subroutine is included, and a disk
characteristics table must be defined. The skeletal form of these
changes are found in the program shown below.

1 :
2 :
3 :
4: ;
5 :
6 :
7 :
d :
9: bpb

rpb
maxb

;
boot:

listst:

;
seldsk:

selsec:

org
maclio
jmp

4000h
diskdef
boot

listst
sectran
4

:list status
:sector translate

jmp
jmp
disks
large
equ
equ

capacity drive

equ
diskdef
diskdef
diskdef
disKdef

ret

xra
ret

16*1024 :bytes per block
bpb/128 :records per block
65535/rpb :max block number
0,1,58,3,bpb,maxb+l,128,0,2
1,1,58, ,bpb,maxb+l,128,O,2
2,0
3,1

:nop

a :nop

:drive number in c
lxi h,0 :00010 in hI produces select error
mov a,c :a is disk number 0 ••• ndisks-l
cpi ndisks :less than ndisks?
rnc ;return with HL = 0000 if not
proper disk number, return dpb element address
mov
dad
dad
dad
dad
lxi
dad
ret

l,c
h : *2
h ;*4
h :*8
h : *16
d,dpbase
d :HL=.dpb

:sector number in c
lxi h,sector
mov
ret

m,c

10:
11:
12 :
13 :
14 :
15 :
16 :
17:
18:
19:
20:
21 :
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
410:
41 :
42:
43:
44:
45:
46:
47:

sectran:
:translate sector BC. using table at DE

:HL = .tran xchg
dad b :single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

48: dad b again if double precision tran
49: mov 1, m ionly low byte necessary here
510: fill botn H and L if double precision tran
51 : ret iHL = 11ss
52: . ,
53: sector: as I
54: endef
55: end

Referring to the program shown above, lines 3-6 represent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jum?
vector elements). °rhe last two eleme"nts provide access to the
hLISTST" (List Status) entry point for DESPOOL. The use of this
particular entry point is defined in the OESPOOL documentation, and is
no different than the previous 1.4 release. It should be noted that
the 1.4 DESPOOL Drog'ram will not o?erate under version 2.0, but an
update version will be available from Digital Research in the near
fu tur e.

'rhe "SECTRAN" (Sector Number 'rranslate) entry shown in the jump
vector at line 6 provides access to a BIOS-resident sector translation
sUbroutine. This mechanism allows the user to specify the sector skew
factor and translation for a particular disk s~stem, and is described
below.

A macro library is shown in the listing,. called DISKDEF,
included on line 2, and referenced in 12-15. Although it is not
necessary to use the macro liorary, it greatly simplifies the disk
definition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macrb library is
included with all CP/M 2.0 distribution disks. (See the CP/M 2.0
Alteration Guide for formulas which you can use to hand-code the
tables produced by the DISKDEF library).

A BIOS disk definition consists of the following sequence of
macro statements:

!'1ACL IB DISKDEF
·
DISKS n
DISKDEF o , .••
DISKDEF 1 , •..
·
DISKDEF n-l
·
ENOEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKOEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-l (corresponding to logical drives A
through P). Note that the DISKS and DISKOEF macros generate in-line

(All Information Contained Herein is Pro?rietary to Digital Research.)

29

•

fixed data tables, and thus must be placed in a non-executable ?ortion
of your BIOS, typically directly following the BIOS jump vector.

The remaining portion
DISKDEF macros, with the
END statement. The ENDEF
necessary uninitialized RAM

of your BIOS is defined following the
ENDEF macro call immediately preceding the

(End of Diskdef) macro generates the
areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISKDEf dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where

dn is the logical disk number, 0 to n-l
fsc is the first physical sector number (0 or 1)
Isc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked .. directory entries
ofs is the track offset to logical track 00
[0] is an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
mac ro invocation. 'rhe" f sc" pa r arne ter accoun ts for di f fer ing sector
number ing systems, and is usually 0 or 1. The" Isc" is the last
numbered sector on a track. When present, the "skf" parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
skf parameter is omitted (or equal to 0). The "bls" parameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more da ta and tl1e BIOS-resident r am space is reduced. 'rhe "dk s"
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
g rea ter than 1024. 'rhe value of .. di r" is the total number of
directory entries which may exceed 255, if desired. The "cks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically 0, since the probability
of changing disks without a restart is quite low. The "ofs" value
determines the number of tracks to· skip when this particular drive is
addressed, which can be used to reserve additional operating system

(All Information Contained Herein is Proprietary to Digital Research.)

30

space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [0] parameter is included when file
compatibility is required with versions of 1.4 which have been
modified for higher density disks. This parameter ensures that only
16K is allocated for each directory record, as was the case for
previous versions. Normally, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i,j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

DISKS
DISKDEF
DISKDEF
DISKDEF
DISKDEF

ENDEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disks having the same parameter values of 26 sectors oer
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
system tracks.

The definitions given in the program shown above (lines 12
th~ough 15) provide access to the largest disks addressable by CP/M
2.0. All disks have identical parameters, except that drives 0 and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks," starting at
address DPBASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

DPBASE
DPE0:
OPEl:
DPE2:
DPE3:

EQU
OW
OW
OW
OW

$
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSVl,ALVl
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the OPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive 0
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT0,
which is the translation vector for drive 0 in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31

•

followed by three 16-bi t "scratch" addresses, followed by the
directory buffer address, disk parameter block address, check vector
address, and allocation vector address. The check and allocation
vector addresses are generated by the ENDEF macro in the ram area
following the BIOS code and tables.

The SELDSK function is extended somewhat in version 2.0. In
particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.0,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE0, DPEl, DPE2, or DPE3, in the
above example) in register HL. If SELDSK returns the value HL =
0000H, then the BDOS assumes the disk does not exist, and prints a
select error ~esage at the terminal. program lines 22 through 36 give
a sample CP/M 2.0 SELDSK subroutine, showing only the disk parameter
header address calculation.

The subroutine SECTRAN is also included in version 2.0 which
performs the actual logical to physical sector translation. In
earlier versions of CP/M, the sector translation process was a part of
the BDOS, and set to skip six sectors between each read. Due
differing rotational speeds of various disks, the translation function
has become a part of the BIOS in version 2.0. Thus, the BDOS sends
sequential sector numbers to SECTRAN, starting at sector number 0.
The SECTRAN subroutine uses the sequential sector number to produce a
translated sector number which is returned to the SOOS. The BOOS
subsequently sends the translated sector number to SELSEC before the
actual read or write is performed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
there is no translation necessary. In this case, the "skf" parameter
is omitted in the macro call, and SEC/fRAN simply returns the same
value which it receives. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in ~he
DISKDEF macro call:

XLT0: DB
OB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. The sector to translate is received in register
pair BC. Only the C register is significant if the sector value does
not exceed 255 (8 = 00 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a previous call
on SELDSK, corresponding to the first element of a disk parameter
header (XL'l'0 in the case shown above). The SECTHAN subroutine then
fetches the translated sector number by adding the input sector number
to the base of the translate taole, to get the indexed translate table
address (see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L. Note that if the number
of sectors exceeds 255, the translate table contains 16-bit elements
whose value must be returned in HL.

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS

(All Information Contained Herein is Proprietary to Digital Research.)

32

which is loaded upon cold start, but must be available between the
3IOS and the ena of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro'might oroduce

4C72 =

4D8k1 =
013C =

BEGDA'r EQU $
(data areas)
ENDDA'r EQO $
DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C728, ends
at 4D80H-l, and occupies 0i3CH bytes. You must ensure that these
addresses are free for us~ after the system is loaded.

CP/M 2.0 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes. Information is provided by the BOOS
on sector write operations which eliminates the need for pre-read
operations, thus allowing olocking and deblocking to take place at the
BIOS level.

See the "CP/M 2.0 Alteration Guide" for additional details
concerning tailoring your CP/M system to your particular hardware •

(All Information Contained Herein is Proprietary to Digital Research.)

33

•

OPERATION OF
THE CP/M DEBUGGER I

(

01 [)~[j~Tfll RESEflR[H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M DYNAMIC DEBUGGING TOOL (DDT)

USER'S GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

•

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, Califcrnia 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fjtness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

Section Page

I.
II.

III.
IV.

INrRODUcrION • 0 0 0 0 • 0 •• 0 0 0 0 0 •••••••••••••••••••••••

Dur OOMl'lAN'Il3 0 0 ••• 0 0 0 0 0 • 0 0 •• 0 • 0 •••••• 0 ••••••••••••

1. The A (Assemble) Command •••••••••••••••••••••
20 The D (Display) Command ••••••••••••••••••••••
3. The F (Fill) Command .0 •••••••••••••••••••••••

4.
50
6.
7.

The G (Go) Command •• 0 0 • 0 • 0 •••••••••••••••••••

The I (Input) Command .0 ••••••••••••••••••••••

The L (List) Command
The M (Move) Command

• •••••••• 0000 ••••••••••••

• ••••••••••••••••••••••••
8. The R (Read) Command •••••••• 0 ••••••••••••••••

90 The S (Set) Command 0000000000000000 •••• 0.0 •• 0

10. The T (Trace) Command .00 ••••••••••••••••••• 0.

110 The U (Untrace) Command ••• o.o •••••••••••••• ~.
12. The X (Examine) Command 00.0000 •••••••••••••••

IMPLEMENTATION NOTES •• 000 •••• 0 •••••••••••••••••••

AN EXAM.PLE o. 0 0 0 0 0 • 0 0 • 0 • 0 ••••••••• 0 •••••••••••••••

1
3
3
4
4
4
5
6
6
6
7
7
8
8
9
10

•

CP/M Dynamic Debugging Tool (DDT)

User's Guide

I. Introduction.

The DDT program allows dynamic interactive testing and debugging of
programs generated in the CP/M environment. The debugger is initiated by
typing one of the following commands at the CP/M Console Comrrand level

DDT
DDr filename.HEX
DDr filename.COM

¥.here "filename" is the name of the program to be loaded and tested. In both
cases, the DDT program is brought into ·main memory in the place of the Console
Canmand Processor (refer to the CP/M Interface Guide for standard memory
organization), and thus resides directly below the Basic Disk Operating System
portion of CP/M. The BlX)S starting address, ¥.hich is located in the address
field of the JMP instruction at location 5H, is altered to reflect the reduced
Transient Program Area size.

The second and third forms of the DDT command shown above perform the same
actions as the first, except there is a subsequent automatic load of the
specified HEX or (X)M file. The a.ction is identical to the sequence of
commands

DDr
Ifilename.HEX or Ifilename.COM
R

where the I and R canmands set up and read the specified program to test (see
the explanation of the I and R commands below for exact details).

Upon initiation, DDT' prints a sign-on message in the format

nnK Dor-s VER m.m

where nn is the IlErnary size (which must match the CP/M system being used), s
is the hardware system which is assumed, corresponding to the codes

D Digital Research standard version
M MUS version
I IMSAI standard version
o ~on systems
S Digital Systems standard version

and m.m is the revision number.

1

•

Following the sign on message, DDT prompts the operator with the character
"-" am waits for input canmaods from the console. The operator can type any
of several single character canmands, terminated by a carriage return to
execute the canmand. Each line of input can be line-edited using the standard
CP/M controls

rubout
ctl-U
ctl-C

remove the last character typed
remove the entire line, ready for re-typing
system reboot

Any commam can b~ up to 32 characters in lenqth (an automatic carriage return
is inserted as the 33rd character), where the first dlaracter determines the
comrnam type

A enter assembly language mnemonics with operands
D display memory in hexadecimal and ASCII
F fill memory with constant data
G begin execution with optional breakpoints
I set up a standard input file control block
L list memory usinq assembler mnemonics
M move a memory segment fran source to destination
R read program for subsequent testing
S substitute memory values
T trace program execution
U untraced program monitoring
X examine and optionally alter the CPU state

The canmam character, in some cases, is followed by zero, one, two, or three
hexadecimal values which are separated by canmas or single blank characters.
All DDT numeric output is in hexadecimal form. In all cases, the commands are
not executed until the carriaqe return is typed at the end of the command.

At any [X>int in the debuq run, the operator can stop execution of DIJI'
usinq either a ctl-C or G0 (jmp to location 0000H), am save the current
memory image usinq a SAVE canmand of the form

SAVE n filename.COM

where n is the number of p3ges (256 byte blocks) to be saved on disk. The
nwrber of blocks can be determined by taking the high order byte of the top
load address am converting this number to decimal. For example, if the
highest address in the Transient Program Area is 1234H then the nurrber of
pages is l2H, or 18 in decimal. Thus the operator could type a ctl-C during
the debug run, returning to the Console Processor level, followed by

SAVE 18 X.COM

The memory image is saved as X.COM on the diskette, am can be directly
executed by simply typing the name X. If further testing is required, the
memory image can be recalled bv typinq

2

DIJI' X.COM

which reloads p:eviously saved program from loaction l00H through p:ige 18
(12FFH) • The machine state' is not a part of the COM file, and thus the
program must be restarted from the beginning in order to properly test it.

I I • DIJI' CDMMANDS.

'l'he imi vidual canmands are given below in some detail. In each case, the
operator must wait for the prompt character (-) before entering the command.
If control is p:issed to a lXogram under test, and the program has not reached
a breakr:oint, control can be returned to DIJI' by executing a RST 7 from the
front p:inel (note that the rubout key should be used instead if the program is
executing a T or U canmand). In the explanation of each command, the command
letter is shown in rome cases with nurrbers separated by canmas, \\here the
nurrbers are represented by lower case letters. These nurrbers are always
assumed to be in a hexadecimal radix, and from one to four digits in length
(longer numbers will be automatically truncated on the right).

Many of the canmands operate ur:on a "CPU state" which corresp:mds to the
program under test. 'I'he CPU state holds the registers of the program being
debugged, and initially contains zeroes for all registers and flags except for
the frogram counter (P) and stack r:ointer (S), which default to l00H. The
program counter is subseguently set to the starting address given in the last
record of a HEX file if a file of this form is loaded (see the I and R
commands) •

1. The A (Assemble) Command. Dill' allows inline assembly language to be
inserted into the current memory image using the A command which takes the
form

As

where s is the hexadecimal starting cddress for the inline assembly. DIJI'
prompts the console wi th the cddress of the next instruction to fill, and
reads the console, looking for assembly language mnemonics (see the Intel 8080
Assembly Language Reference Card for a list of mnemonics), followed by
register references and operands in absolut0 hexadecimal form. Each sucessive
load address is printed before reading the console. The A command terminates
when the first empty line is input from the console.

Upon canpletion of assembly language input, the operator can review the
memory segment using the DlJI'disassembler (see the L command).

Note that the assembler/disassembler]Xlrtion of DIJI' can be overlayed by
the transient program being tested, in which case the DIJI' program restx>nds
wi th an error condition when the A and L commands are used (refer to Section
IV) •

3

•

2. The D (Display) Command. The D command allows the operator to view
the contents of memory in hexadecimal and ASCII formats. The forms are

D
Ds
Ds,f

In the first case, memory is displayed from the current display address
(initially 100H), and continues for 16 display lines. Each display line takes
the fOrm shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc

where aaaa is the display address in hexadecimal, and bb represents data
present in memory starting at aaaa. The ASCII characters starting at aaaa are
given to the right (represented by the sequence of c's), ¥.here non-graphic
characters are fr inted as a };Eriod (.) symbol. Note that both upper and lower
case alphabetics are displayed, and thus will appear as upper case symbols on
a console device that supports only ul;Per case. Each display line gives the
values of 16 bytes of data, except that the first line displayed is truncated
so that the next line begins at an address which is a multiple of 16.

The second form of the D canmand shown above is similar to the first,
except that the di splay address is first set to address s. The third form
causes the display to continue frOm address s through address f. In all
cases, the display address is set to the first address not displayed in this
command, so that a continuing display can be accomplished by issuing
successive D canmands with no explicit addresses.

Excessively long displays can be aborted by pushing the rubout key.

3. The F (Fill) Command. The F command takes the form

Fs,f,c

where s is the starting address, f is the final address, and c is a
hexadecimal byte constant. The effect is as follows: DDT stores the constant
c at address s, increments the value of s and tests against f. If s exceeds f
then the operation terminates, otherwise the operation is repeated. Thus, the
fill command can be used to set a memory block to a specific constant value.

4. The G (Go) Command. Pro:Jrarn execution is started using the G cornand,
with up to two optional breakpoint addresses. The G command takes one ot the
forms

G
Gs
Gs,b

4

Gs,b,c
G,b
G,b,c

The first form starts execution of the program under test at the current value
of the p::ogram counter in the current rrachine state, with no breakpoints set
(the only way to regain control in DO!' is through a RST 7 execution). The
current p::ogram counter can be viewed by typing an X or XP connnand. The
second form is similar to the first except that the program counter in the
current rrachine state is set to address s before execution begins. The third
form is the same as the second, except that program execution stops when
address b is encountered (b must be in the area of the program under test).
The instruction at location b is not executed when the breakpoint is
encountered. The fourth form is identical to the third, except that two
breakpoints are s~cified, one at b and the other at c. Encountering either
break~int causes execution to stop, and both breakpoints are subsequently
cleared. The last blo forms take the program counter fran the current machine
state, and set one and two break~ints, res~ctively.

Execution continues fran the starting address in real-time to the next
breakpoint. That is, there is no intervention between the starting address
and the break address by DO!'. Thus, if the program under test does not reach
a breakpoint, control cannot return to DO!' without executing a RST 7
instruction. Upon encountering a breakpoint, DO!' stops execution and types

*d

where d is the stop address. The rrachine state can be examined at this point
using the X (Examine) connnand o The operator must s~cify break~ints which
differ fran the p::ogram counter address at the beginning of the G camnand.
Thus, if the current program counter is 1234H, then the commands

G,1234
and

G400,400

both produce an imrrediate breaktx>int, without executing any instructions
whatsoever.

5. The I (Input) Comrrand. The I canmand allows the operator to insert a
file name into the default file control block at SCH (the file control block
created by CP/M for transient p::ograms is placed at this location; see the
CP/M Interface Guide). The default PCB can be used by the p:-ogram under test
as if it hcrl been passed by the CP/M Console Processor. Note that this file
name is also used by DO!' for reading additional HEX and COM files. The form
of the I command is

Ifilename
or

5

Ifilename.filetype

If the second form is used, and the filetype is either HEX or COM, then
subsequent R commands can be used to read the pure binary or hex format
machine code (see the R command for further details).

6. The L (List) Commando The L cormnand is used to list assembly language
mnemonics in a particular pr09'ram region. The forms are

L
Ls
Ls,f

The first canrnand lists twelve lines of disassembled machine code from the
current list address. The second form sets the list address to s, and then
lists twelve lines of code. The 'last form lists disasserrbled code from s
through address f. In all three cases, the list address is set to the next
unlisted location in preparation for a subsequent L command. Upon
encountering an execution breakpoint, the list address is set to the current
value of the };r09'ram counter (see the G and T cormnands). Again, long type outs
can be aborted using the rubout key during the list process.

7. The M (Move) Command. The M command allows block movement of pr09'ram
or data areas from one location to another in memory. The form is

Ms,f,d

where s is the start address of the rove, f is the final address of the nove,
and d is the destination address. Data is first noved from s to d, and both
addresses are incremented. If s exceeds f then the nove operation stops,
otherwise the rove operation is repeated.

8. The R (Read) Command. The R command is used in conjunction with the I
command to read COM and HEX files from the diskette into the transient pr09'ram
area in };reparation for the debug run. The forms are

R
Rb

where b is an optional bias address Vthich is added to each program or data
address as it is loaded. The load qJeration must not overwrite any of the
system parameters from 000H through 0FFH (i.e., the first page of memory). If
b is ani tted, then b=0000 is assumed. The R command requires a };revious I
command, specifying the name of a HEX or COM file. The load address for each
record is obtained from each individual HEX record, Vthile an assumed load
address of 100H is taken for COM files. Note that any number of R commands
can be issued following the I command to re-read the program tmder test,

6

assuming the tested program does not destroy the default area at SCH.
Further, any file s};ecified with the filetype "COM" is aSSLnned to contain
machine code in pure binary form (created with the LOAD or SAVE command), and
all others are assumed to contain machine code in Intel hex format (produced,
for example, with the ASM command).

Recall that the command

DDr filename.filetype

which initiates the DD[' program is equivalent to the commands

DDr
-Ifilename.filetype
-R

Whenever the R command is issued, DDr responds with either the error indicator
n?n (file cannot be opened, or a checksLnn error occurred in a HEX file), or
with a load message taking the form

NEXT PC
nnnn PWP

where nnnn is the next address following the loaded program, and pppp is the
assumed program counter (100H for COM files, or taken from the last record if
a HEX file is s};ecified).

9. The 5 (Set) Command.
examined and optionally altered.

5s

The 5 command allows memory locations to be
The form of the command is

where s is the hexadecimal starting address for examination and alteration of
memory. DDr resp:mds with a numeric prompt, giving the memory location, along
with the data currently held in the memory location. If the operator types a
carriage return, then the data is not altered. If a byte value is typed, then
the value is stored at the prompted address. In either case, DIJI' continues to
prompt with successive addresses and values until either a period (.) is typed
by the operator, or an invalid input value is detected.

10. The T (Trace) Command. The T command allows selective tracing of
program execution for 1 to 65535 program steps. The forms are

T
Tn

In the first case, the CPU state is displayed, and the next program step is
executed. The program terminates immediately, with the termination address

7

displayed as

*hhhh

where hhhh is the next address to execute. The display address (used in the D
command) is set to the value of Hand L, and the list address (used in the L
command) is set to hhhh. The CPU state at program termination can then be
examined using the X command.

The second form of the T command is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a J;X"ogram
breakp::>int is occurs. A breakp::>int can be forced in the trace rode by typing
a rubout character. The CPU state is displayed before each program step is
taken in trace rode. The format of the display is the same as described in
the X canrnand.

Note that J;X"ogram tracing is discontinued at the interface to CP/M, and
resumes after return from CP/M to the program under test. Thus, CP/M
functions which access I/O devices, such as the diskette drive, run in
real-time, avoiding I/O timing problems. Programs running in trace rode
execute approximately 500 times slower than real time since DDI' gets control
after each user instruction is executed. Interrupt processing routines can be
traced, but it must be noted that canrnands which use the breakpoint facility
(G, T, and U) accomplish the break using a RST 7 instruction, which means that
the tested J;X"ogram cannot use this interrupt location. Further, the trace
mode always runs the tested J;X"ogram with interrupts enabled, which may cause
problems if asynchronous interrupts are received during tracing.

Note also that the operator should use the rubout key to get control back
to DDI' dur ing trace, rather than executing a RST 7, in order to ensure that
the trace for the current instruction is completed before interruption.

11. The U (Untrace) Command. The U command is identical to the T command
except that intermediate lXogram steps are not displayed. The untrace rode
allows from 1 to 65535 (0FFFFH) steps to be executed in monitored mode, and is
used J;X" incipally to retain control of an executing program while it reaches
steady state condi tions. All conditions of the T command apply to the U
command.

12. The X (Examine) Command. The X command allows selective display and
alteration of the current CPU state for the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

C Carry Flag
Z Zero Flag

(0/1)
(0/1)

8

M Minus Flag (0/1)
E Even Parity Flag (0/1)
I Interdigit Carry (0/1)
A Accumulator (0-FF)
B BC register pair (0-FFFF)
D DE register pair (0-FFFF)
H HL register p:lir (0-FFFF)
S Stack Pointer (0-FFFF)
P Program Counter (0-FFF'F)

In the first case, the CPU register state is displayed in the format

CfZfMfEfIf A=bb B=dddd D=dddd H=dddd S=dddd F--dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double byte
quanti ty corresponding to the register pair. The "inst" field contains the
disassembled instruction which occurs at the location addressed by the. CPU
state's program counter.

The second form allows display ?ind optional alteration of register values,
where r is one of the registers given above (C, Z, M, E, I, A, B, D, H, S, or
P) • In each case, the flag or register value is first displayed at the
console. The DDT program then accepts input from the console. If a carriage
return is typed, then the flag or register value is not altered. If a value
in the proper range is typed, then the flag or register value is altered.
Note that SC, IE, and HL are displayed as register p:tirs. Thus, the operator
types the entire register pair when B, C, or the BC pair is altered.

I II. IMPLEMENTATION NarES.

The organization of DDT allows certain non-essential portions to be
overlayed in order to gain a larger transient program area for debugging large
programs. The DDT program consists of two parts: the Dill nucleus and the
assembler/disassembler nndule. 'rhe DDT nucleus is loaded over the Console
Command Processor, and, al though loaded wi th the DDT nucleus, the
assembler/disassembler is overlayable unless used to assemble or disassemble.

In particular, the BOOS address at location 6H (address field of the JMP
instruction at location 5H) is nndified by DDT to address the base location of
the DDT nucleus which, in turn, contains a JMP instruction to the BOOS. Thus,
progr ams v.hich use this address field to size !Ternory see the logical end of
memory at the base of the DDT nucleus rather than the base of the BOOS.

The asserrbler/disassembler nndule resides directly below the DDT nucleus
in the transient :program area. If the A, L, T, or X commands are used during
the debugging process then the DDT program again alters the address field pt
6H to include this nndule, thus further reducing the logical end of memory.
If a :program loads beyond the beginning of the assembler/disassembler JIDdule,
the A and L canmands are lost (their use produces a "?" in response), and the

9

•

trace am display (T and X) cormnands list the "instil field of the display in
hexadecimal, rather than as a decoded instruction.

IV. AN EXM1PLE.

The followin:J example srows an edit, asserrt>le, and debug for a simple
program which reads a set of data values and determines the largest value in
the set. The largest value is taken from the vector, and stored into "IARGE"
at the termination of the p:ogram

1
; .

2.~
i J
VEeT:
LEH
LARGE:

~*B0P -,)

LOOP:

HFOUHD:

END
!iQY..
.§.l8..
ill

TEST
l!,g

~
!.§.
..ill!,2

ORG
"'VI
MYI
LXI
MOY
SUB
JNC
HEIII
MOil
INX
DCR
JNZ

; TO NEln ELEMENT
il10RE TO SCAtP 3
i FOR A 14 Q THE R.1 J

OF SCAN .• STORE C"
B..::.f
LARGE 1

iGET LARGEST VAL'IE
L -.

.JL ;REBOOTJ

C V'l!ol-e SOU(Qe.

'P{~V().tM.. ~ l!w!e,(H4~
C~a (o.clef's 'bl'~c{

~ 1NCJ8Y"o.rYLm.e(

DATA

IIJ II yePf~-h f{.1(fio j e.
(t-kt(1I\, .

2 .. 0 .. 4,3,S,6 .. 1 .. 5J
{-VECT iLENGTHJ
~ iLARGEST VALUE ON EXIT)

le0H iSTART OF TRANSIENT AREA
B,LEN iLEHGTH OF VECTOR TO SCAN
c,e iLARGEST VALUE SO FAR
H.YECT iBASE OF VECTOR
A.M ;GEl YALUE
C i LARGER YALLIE INC?
NFOUHD ;JUMP IF LARGER VALUE NOT FOUND

LARGEST VALUE, STORE I T TO C
C.' A
H
B
LOOP

;TO NEXT ELEMENT
iMORE TO SCAlP
; FOR AI40THER

10

END OF SCAN .. STORE C
MOY A,C ;GET LARGEST VALUE
STA LARGE
.. IMP (3 j REBOOT

TEST DATA
VECT: DB 2 .. 0,4 .. 3,5,6 .. 1 .. 5
LEN EQU $-YECT
LARGE: DS

ENII
~~d. of tdlt '~~ 4--

CP/M ASSEMBLER - VER 1.0

[11 22
002H LISE FACTOR
ENII OF ASSE~lBL'y'

TYPE SCAI4. PRI~
- J

.;LENGTH
ILARGE5T VALUE Ot~ EX IT

CodeW{~
e 10 €I Mo.~mt Cock

(Sou(re ;RC8~GM

01130 BGes,)
0102 3E00

~ ORG 100H ;START OF TRANSIENT AREA
;LENGTH OF VECTOR TO SCAN
;LARGEST VALUE 50 FAR

0104 211901
0107 7E
0108 91
13109 D20DBl

~1Il I
Mil I
un

LOOP: MOil
SUB
.IN C
NEt"
~10 V

B) LE I~
ce
H, 'liE C 'T. ,; BI~SE OF VECTOR
I~,M JGET VALUE
C ;LARGER VALUE IN C?
NFOUND ;JUMP IF LARGER VALUE NOT FOUND

LARGEST VALUE, STORE IT TO C
(:, A 010C 4F

0UlD 23
010E 135
010F C20781

NFOUIH: It4~:

nCR
IN Z

H ;TO NEXT ELEMENT
B ;MORE TO SCAN?
LOOP ;FOR ANOTHER

0112 79
0113 3221B1
13116 C3~.~0~ I'

CcJe./dak IU;\1Y1J ;
i"Yu«altcf "--"f;

0119 B200040305YECT:
003 8 = <:2\ LEN
0121 Va\ueq.J LARGE:
e 122 fqLUrk

Fi>

END OF SCAN, !::TORE C
MOV A., C .• LiET LARGEST VALUE
STA LARGE
JMP 0 ;REBOOT

TEST DATA
DB 2,0,4 .. 3 .. 5;6,1,5
EQU $-VEeT ;LENGTH
DS 1 ;LARGEST YALUE ON EXIT
END

It

DDT SCAN. HEX

161< DDT VER
NEXT PC

~

1.0

~ ~ 21\1.....8_°_° _0 __ lQ..lbt lood CAdMe5~ -I- I
-~

r-ktd-l~
f. -IfI e)(l ((Lit a.t

CeZ0MBE0I0
-XP

A=00 8=0080 D=@00e H=0000 8=0100 P=0000 OUT 7F ?CeO

-J ~ ~J(o.W~ I(~l~~ loJOie de~"e> YU~
p=ee0Et 1013

-~

-~J \.oJL at
C.!.Lttnjt 'PC- -\0 lOO
VlslSb-6 qfJCt\;'"

C0Z0MBE010 A=00 B=0000 D=0000 H=0000 8=0100
-L100",

0100
0102
0104
0107
010S
13109
0leC
el0D
li 1 €IE
e10F
e 112
-L
-~

M'JI
M 'II I
LXI
MOl!
SUB
JHC
MOil
I NX
DCR
JHZ
MOil

B,€I8
(:,00
H .. 0119
A .• M
C
010D
CIA
H
B
0107
A .• C

i!t113 STA €I12i
0116 JMP 0080
0119 BTAX B

1) ~~~!,J M/lc1.I~t
Code a~ l{X)~

~et 'StlJict l.L~h~
O(~lSO~

011A NOP
011 B I NR B A lrlte. Wl)ye..
13 1 1 C I N~: B V'Aadt lYle Code.
: ! ~ ~ ~ ~ ~ ~ .. 0 1 (~ ~ t'(q9m YY\
a 1 2 e II C R B e.wk, a1 l~c.o:Mn lib

.r Pc. cLA"-~d.
F'=0 Hie MVI B,0S)

~ 1\t4vurkV\
-to 6ceack crl Pl~\OO

€I 121 L X I If, 221Hl'u \
13124 LXI H,e200 _ UJl'UAQ~Up+oncooJ .' '.
-.!Ull e\\..Ie.i 'I\\l~ a~se~~~ \'nod~ 10 e~ 4t:Jt..tf ~ OOQ) I~ (). ~1 1, W~I(1
. -R~T "'{ ~ILl CclltSe, -tk Y{~YClY1A UVtdu -f-cot -to '(e.~VV\. it> nvr It \\b\4

0116 - rI l~ eVcw e~c.ukd.
o 1 17~ 'L&.II~j~(Ca'lyt'4jC yttu.(\\ ~-toVS a~seW\1Je mod.eJ

- L 11 3" ust Ctxif at l\'3~ 40 dAtJ 4WJ ~'S11 was 1iY~c(~ \n~
o 1 1 3 S T A €I1 2 1 ~ I~ place cr J'M f
0116 RST B7",...-'

0117 HOP
8118 NOP
8119 STAl< B
ellA NOP
ellB IHR B
BllC IHX B

,

-It ~ loct a\ V Cj lst(S

C0Z0MBE010 A=00 B=00B0 D=B000 H=0000 8=0100 P~0100 MVI B.0S

-Lt1 &ecu:1c ?vO~(a~ --f" Oy\L "Skf. i~L~1 CRu cs-ht-le.. J ~erv(€ J J\ ~ecu.kd
ceZ0M0E010 A=0B 8=00130 D=~0B0 H=0008 8=0100 P=0100 MY] B.08*0102

-l.J lrtu Odt -ip ~;\1 (M{ oru ,on ,g) aLCblJWlitL ~{~kpj)\~t .J
C0Z0MBE0I0 A=0B B=0800 D=0000 H=0000 8=0100 P~0102 MYI C.00*0104

-L; IVtXe CIJo.~\f\ (\(~\~~ C ~~ d(1(A(tdJ
C0Z0M0E0I0 A=00 8=0800 D=0000 H=0000 8=0100 P=0104 LXI H.0119*019?

-llr1\racl. 1"t1vt't ~k{1s
C0zeMBE010 A=Be 8=08130 D=0000 H=0119 8=@100 P=01B7 MOV Ao' M
cezeMBE0I0 A=B2 B=0800 D=B000 H=01l9 S=01B0 P=0108 SUB C
C0Z0MEtE0Il A=Et2 B=08e0 D=IH3e0 H=0119 8=01013 P=0109 JHC 010D*010D
-DI1Q' ~~. crt IIqH. 6.t.r\o~ buak'Po,rtr tA1 jOD~--' --=-J 'OlSQto:1 Mt'MfH,S '(~
e 119 02 IHI 04- 03 05 06 01 ~~~D:~~~
0120 0S 1 1 BB 22 21 130 02 7E EB 77 1 3 23 EB 0B
13130 C2 27 01 C3 03 29 00 00 90 013 0B e0 BB 013
0140 00 00 00 00 00 130 0.0 00 013 00 00 00 00 013 00

D.~ ~ di~V~{d: : : : 0150 00 00 00 0111 00 130 00 00 130 0fJ 00 130 B0 130 €Ie
01613 130 09 00 00 00 90 00 00 013 0fJ 00 00 00 013 00 o ~ 'ttr I" · l\t: 0 1AIt 11: •. 0

01713 130 B0 00 e0 00 00 00 00 0e efJ 130 e0 e0 013 00 °l\A. ~ p~l"bo~ of 0 0 0 0180 00 00 00 013 00 130 130 e0 00 0fJ 130 €Ie 00 013 130
019B 00 00 00 013 130 130 00 130 00 00 00 00 130 013 00 :v\o~:'-6"Op~~l: : : : : : :
BIAe B0 00 00 013 130 00 fJ0 8fJ 00 00 Be fJ0 €Ie 00 00 elAoraUcf'$ 0 0 0 •• 0 0 •

e180 130 fJ0 00 eB 0e 00 fJ0 B13 00 00 00 fJ0 00 130 B0 · , ..
Ble0 130 130 00 013 130 00 fJ0 €Ie 013 013 130 00 00 0111 B0 · . . ~
-x -J Cu«~ CPu. 4.-\e,),
C0ZEtM0E0Il A=02 8=0800 D=0e0B H=0119 8=0100 P=010D I N)<: H

- T S"j -reate s stps ~y~ ClI..((e..rt CPU sk.tc,
C0Z0MBE0Il A=02 B=08e0 D=13 13 BB H=0119 8=0100 P=010D INX H
(:0Z0MBE0Il R=02 B=08e0 D=B000 H=011A 8=0100 P=010E DCR B A~~-lti.
C0Z0MBE0Il A=B2 8=07139 D=000e H=011A S=0100 P=010F JHZ

o I g"""i..ct C0Z0MBE011 A=02 B=0700 D=0000 H=011A 8=B100 P=01B7 MOil A.M
C0Z0M0E011 R=0B 8=8700 Il=B000 H=011A 8=0100 P=0108 SUB C:to01B9
-us 0

\lcfu~ ~\4.:b~.E!d ltdt, ~ks -I "tract \.iIl~~O\)-\
ceZ1MBE111 A=00 B=871HI D=B000 H=011A 8=B100 P=0109 JHC 010D*0108

-K.J CPu. ~k ~t llA&of l.lS I
C0Z0MBE111 A=04 8=0680 D=B0Be H=011B 8=0100 P=0108 SliB C

-§...; \?Url ?rDjraY'\ -ttt:W\ CLtfYO.l-t 'Pc \Al\.-nl C/J~~le.hb~ (l~ ~-·h~e.)
* €I 1 i 6 YJtettk.poiJ Clt ll6~ J COJAf,ltl ~ ~-k~ R<5T 1 \~ ~lt(~e. &d~
- ~-i C1u ~k at ew).. of p~~m
ceZlMBElIl A=00 8=0000 D=8000 H=@121 8=0100 P=0116 RST 07

- ~l l)c£l.~l~ o.vr1 C,\.wt~l 'Qf~~'()\ Col.t~te<
P=0116 IB0;

-X -J
ceZlMBElIl
-T10~ -rw

A = €I 0 8 = 0 €I 0 €I II = 1:1 €I 13 €I H = €I 1 21 S::: €I 1 €I 0 p:= III i 013 i M V I ... B., ~8 &

lO (k~~t) ~s ,fl~t dJ1 ~~tl\,{ ~~ ltr ~It~ tI
C0Z1MBEIIl
C0Z1MBEIIl
C0Z1MBEIIl
C0Z1MBEIIl
ceZlMBElIl
C0Z0MBE011
C0zeMBE0Il
C0Z0MBE011
C0Z0MBE0Il
C0Z0MBE011
C0Z0MBE0Il
C0Z1MBEIIl
C0Z1MBEIIl
C0Z1MBEIIl
ceZ0M0El11
ceZBM0El11
-A109

R=1:I0 8=000€t II=0 0 H=0121 8- .le0 P:=fi~f'0 MVI B, €t8
A=0e 8=08013
A=00 8=080
A=00 B:- ~
A=@ =0-e
A=82
A=B2
A=02
A=02
A=02
A=00
A=00
A=00
A=00
A=013
A=00

-~

i6K DDT VER 1. (1

NEXT PC
02013 B100

8=088e
8=0800
8=0800
9=07B13
8=07013
8=137"013
8=€I7B13
B=070e
8=07013
B=1l160e
8=06813

- L 1 (<f €I J Ll~t SO~ C«J.e
8100 MIn 8.,08
0102 MVI C.' €Ie

[I 800
=0000

II= H=€1119
=0000 H=0119

[I=Ba0e H=0119
['=0000 H=e119
D=000e H=011A
II=000B H=011A
D=B0e0 H=011A
II=000e H=011A
I'=0000 H=el1A
D=000e H=el1A
II=€t000 H=011B
D =0€100 H=€tl1B
It=0e00 H=0118

~UH LXI H., €I 11 9 VyeVlOtAS Pa+c1 .
• lC
13 H1? MOIi M.--5 81e€< SlIB c
0109 JC 1310

14

8=0100 P::0102 MVI C.' e0
8=0100 po: 0 1!:t4 LXI H.,0119
:::=0100 P:::0107 i1 0 \I A., t1
8=0100 P=0 HI8 8UB C
8=0100 P=010:3 IN .
8=e100 P=(!110D

1 '"
8=0100 p=01eE
8=01130 P=010F
8=01130 P=0i07 MOV A,M
8=0100 P=0108 SUB C
S=€t100 F'=01€19 JNC €Ii€tD
::;=01013 P=010D INX H
3=13100 P=0i0E DCR 9
3=0100 P=0i0F • .1NZ 131137
S=13100 P=0107 MOil

ffe5!d lYl X,~r-.t

~s.o'"
A{t

810(; I'IOY C J A
BleD IHX H
IH 0E DCR 8
818F JHZ BIB7
e 112 110'1 A J C
-xp -;
p=eleeJ

-ill ~ T VG.!l -h> $e~ k,t.J p~~ vev5lJ~ oPfJ ctt!S
Cf:lZBMBE01B A=Be
ceZBMBE010 A=00
CeZBI'IBE010 A=0B
C0ZBI'1BEBI0 A=Bf:I
CeZBI'IBE010 A B~
CeZBI'1BE0Il A=B2
cezeMBE0Il A=B2
ceZ0MBE0Il A=82
C0ZBI'1BEBll A=B2
C0ZBI"IBE011 A=B2
CeZ01't0E0Il A=82
C0Z81"1BE0Il A=B0
CIZBI'tlE0Ht A=FE
CIZf""lE010 A=FE
CIZBI'IIE010 A=FE
C 1 Zf:ll'I0E 1 11 A=FE
-x -,;

8=BeEtB
B=88BB
8=138BI:1
8=flSB0
B=e8B~

B SBEt
8=B BEt
8=8 B

B=97132
8=B7B2
8=8782
8=8702
8=8702
8=8602

D =8 €I 0~
D=8f:10B
D=Eteee
D=8f:10B
D=Bee'3
D=Be
D- ee
D=8e0e
D=BeeB
D=B008
D=B0 ee
D=BB 0e
D =13 e ae
D=iHHH~

D=B00e
D=BIHtB

H=000~

H=e0ee
H=IHHH3

H=0119
H=011A
H=011A
H=011A
H=~11A

H=0i lA
H=011A
H=0t18
H=€illB

s=e10e
8=Blt10
8=01ee
8=0100
S=01B0
8=0100
8=0100
~3=B100

:3=0100
:3=0108
:3=0100
8=0100

=i'11e0 1'\',1} 8 J B 8
P=B102 /'1',1} c.; B0
P=BIB4 L X I H .• B119
p=131e7 I'I0Y R .• I'I
P=i"H 08 SUB C
P=BIB9 JC BleD
p=Blec I'I0Y C.' A
P='310D INX H
P=B10E DCR B
P=018F • ...1 HZ BIB7
P=€'lB7 !'lOY Ad'!
P=01B8 SUB C
P=BIB9 JC 01l!lD
P=8UH INX H
P=81BE DCR B
P=8tBF JNZ 01137*0107

~R>~ Jief Ib~
CIZ0MBEIIl A=FE B~06B2 D=0eee H=8118 8=Bla0 P=0107 ~OY A,M
-G .. 108 cl 12UV\ -f~M CUtv(/A.t 'Pc. aYlJ Iovettkpo~~ at I~H
*0108
-K i

CIZEtMBEIIl
-T
-J

CIZ0M0EIIl
-T
-tl

C0ZEtl1BE0Il
-X
-ti

.
J~ex± ~J~

A=84 8=8602 D =8 e 00

~l~k sq fO(
A=Et4 B=0682. D=Beee

A=B2 8=8682 D=iHHI€1

H=0118 8=13100 P=0108

a. few ~d~
H=01 i8 S=01e0 P=B1B8

H=01 i8 8=01013 P=€ili'19

SUB r
'"'

SUB C*0189

JC BleD.BleC

CeZEtMBE0Il A=02 8=0682 D=BBe0 H=elll8 8=13100 P=010C MOY C,A

- G;; t<~ -\0 &(r\pleh~
II: 0116

-'!:..J
CeZlM0ElIl A=03 B=0083 D=6B08 H=0121 S=0100 P=0116 RST 07
- .§.ll1~ look. tXt -t\Ae \k).llU'cf 1\ LAf(;€ 1/

8 1 21 83" WV(ft'l'; \,Ulllt- /

8123

8124 21.1

012500t

il 126 B 2 J / t~d & -II.t S c"MYIIO..J

01277E~~

-l100
-~

0100 MYI
0102 MVI
0104 LXI
0107 MOV
0108 SUB
0109 JC
010C MOV
e10D INX
010E DCR
010F JHZ
0112 MOV
-L
-J

c,ee
H,0119
A .• M
C
el0D
c, A ~

H
B
0107

0113 STA 8121
0116 RST 87
0117 NOP
0118 HOP
0119 STAX B
ellA NOP
i311B INR B
01lC INX B
1311£1 DCR B
011E MYI B,81
£1120 DCR B
-xp
-~

P = 0 1 1 6 1 £I €I Qeset ~e 'Pc.
-J

-1.; S\~lt"S\w I lb'ld ~d,l dak Vo..llt25
ceZ1M0EIIl A=e3 8=00133 D=0e00 H=0121
-T -;
C0Z1MeEII1 A=03 8=08133 D=B009 H=9121
-T r COI.I.t\+ <set 10: at • -i ~ f, set
C0Z1MBEIIl A=03 8=8800 £1=0000 H=0121

8=9100 P=0100

S=0100 P=01(12

8=0100 P=0104
-T r ~ atlh~ tf ~ ~t -~

C0Z1110E111 A=03 B=0800 D=IHI00 H=e119 8=13100 P=0107

,("

MVI 8 .. 138*0102

MVI C,90*0104

LXI H .. 0119*01B7

MOV A .. M*01e8

-T .
-J r.f(";~ o.a-lzt ~~ ~YO~~ ~ A

C0Z1M0El11 A=02 8=0800 D=0000 H=0119 8=0100 P=0108 SUB C*01B9
-T -.;

ceZ0MBE0Il A=02 8=08130 D=000e H=B119 8=0100 P=0109 JC
-T -;
C0Z0MBE0Il
-T -;,
C0Z0M0E011
-T -;
C0Z0MBE011
-T -,;
C0Z0M0E0Il
-T
-J

l:0Z0MEtE0Il
-T
-~

ceZ0MBE0Il
-T
-.)

CIZ0MIE010
-T
-J

A=02 8=0800 D =0€1eB H=0119 8=011Ht P=010C MOV

r~w d.~ ~ V'rl&Jtd -k c. CDffd-lj

A=02 8=0802 D =0 €I e0 H=0119 8=0100 P:::€I10D I Nl<:

A=02 8=0802 D=€! €I 00 H=011A 8=0100 P=010E DCR

A=02 8=07132 D=0000 H=011A 8=010(1 P=010F JNZ

A=02 8=0702 D=8000 H=01iA 5=0100 P=8107 MOY

r Stco~ dttt~ lb. Iorou."tcr -b A
A=00 8=0702 D=aB00 H=011A 8=0100 p=010a SUB

r subfy(.ld derrlv°BS' dak. Va,(t.\l. \'vk\~ W~s (O£Jtl(///
A=FE 8=07132 D=00B0 H=011A 8=0100 P=0109 JC

C .. R"'B10D

Hlfc01BE

B*01BF

13107*0107

CIZ0MIE010 A=FE 8=0702 D=0000 H=011A 8=0100 P=010D INX H*01BE
-L100
-,}

£1100
~102

0104
~107

0108
81139
0113(:
0lan
010E
010F
tl112
-A 1(18
-~

0108

0109~

MVI
MVI
LXI
MOV
SUB
JC
ti01!
I H~:
DCR
.. 1HZ
MOV

B .. 08
C.' e0

~} M..--.. -1tt~ sLtoJd ~t~t Iote~ (A eM P so ~ yea ~~r A
~.~: D lAkMld V\rl lot deJro9lD..
H
B
0107
A .• C

eMF' C
;

-gJ ~p 'DDT ~(5AVr

(7

SAVE 1 SCAN. COM_,
" ~ue VVle~Ot'!4 \~e.

A > DDT S CAN. COM e7 ~~ 'DUf

16K DDT \o'ER 1. €I
NEXT PC
£1200 e100

-~-
P=01 e0~

- .!:...!..l.§..?

0116 RBT 97
0117 HOP
0118 HOP
0119 STAX B
0l1A HOP
- (~~0Ckt)

look- a.t ~ +0 ~e 'tf i+ WCts \'''D?&~ LDct&.ed
(lO\\g 1h~Ou.t alo~t Ull~ YoJoM)

- G., 1.1 () i ((U~ ~V{N\Il lo()\.t +0 (tYl\vlt+l6~
HI116

-~~ loo~ Qt Cc,~ (c.ctLde~1 bpO)
C i

~

. -15..i loot a.t C.fu. ~L
CIZIM0E111 A=06 B=0006 D=0000 H=0121 8=0100 P=0116 RST 07

-~~ loo~ at'" La'fjt.. 0 - it afP(d{S +0 ~ Csrrtct
0121 B6J

£1122 00J

0123 22 e';

ED SCAN. ASM
---~-;

;LARGER VALUE IN C?

;LARGER VALUE IN C?

NFOUND ;JUMP IF LARGER VALUE NOT FOUND

NFOUND iJUMP IF LARGER VALUE NOT FOUND

I 'i

til 22:
0€12H USE FACTOR
fN:O OF ASSEMBLY

i 61< II[1T "iER 1. ~3

IiE:X:T PC
~j121 0000

-Ll1\;

o 1 it: ,.11'1 P \3 00 0 ckeck -\0 f.JASuVt t~cllS <;-t-°lll ttt II b~
£1119 STA~: B
€lilA NOP
(1118 INR 8
_. (y~)

-G100, i 16,., Go -trCMA klj~""V\o\~j Wl~ IoY(tt~vo',~t t4± ewi
>I; (111 6 loveo.~P{)l~ r!O.C~ed

:::~ ~2~:~ E~~7CA:7~
0130 C2 27 01 C3 03 29 00 00 00 00 00
0140 00 00 00 00 00 00 00 00 00 00 00

- LYL'olo.l.lt)

EB
o €i
00

08 78
8€1 0E!
813 0f:t

•
B1 " ! . ~ Ill. i . ',' , ..
t10 00))

I!:H} 00

OPERATION OF
THE CP/M ASSEMBLER

UI []~[j~Tfll RESEflR[H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M ASSEMBLER (ASM)

USER'S GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored ina retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the pri<?r
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations 'or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

Section

1.
2.
3.

4.

5.

6.
7.

INrOOrx..c:rlOO' •••••••••••••••••••••••••••••• 0 ••••••••

~ EO~ •••••••••••••••••••••••••••••••••••••
ro~ 1'I:lE CF~ ••••••••••••••••••••••••••••••••
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

Labels
.0 •••••••••••••••••••••••••• Numeric Constants

Reserved Words
String Constants

. •.........•.................••
Arithmetic and Logical Operators •••••••••••••
Precedence of Operators ••••••••••••••••••••••

ASSEMBLER DIRECTIVES •••••••••••••••••••••••••••••••
The OR; Directive
The END Di recti ve
The EQU Directive
The SET Directive

• •••••••••••••••••• 0 •••• 0 •••

o •••••••••••••••••••••••••••
The IF and ENDIF Directives

4.1.
4.2.
4.3.
4.4.
4.5.
4.6. The DB Directive
4.7. The OW Directive

.
••••••••••••• 0 ••••••••••••• 0.

OPERATIOO' moos
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

Jumps, Calls, and Returns ••••••••••••••••••••
Immediate Operand Instructions •••••••••••••••
Increment and Decrement Instructions •••••••••
Data Movement Instructions •••••••••••••••••••
Arithmetic Logic Unit Operations .ooaa.a.oooo.

Control Instructions
ERROR MESSAGES •••••••••••••••••••••••••••••••••••••
A SAMPLE SESSIOO'

Page

1
2
4
4
4
5
6
6
7
8
8
9
9

10
HI
11
12
12
13
14
14
14
15
16
16
17

•

CP/M Assembler User's Guide

The CP/M assembler reads assembly language source files from the diskette,
and p:-oduces 8080 machine language in Intel hex format. The CP/M assembler is
initiated by typing

A91 f il enarre
or

A91 filename.parms

In both cases, the assembler assumes there is a file on the diskette with the
name

f il enarre .ASM

which contains an 8080 assembly language source file. The first and second
forms srown above differ only in that the second form allows tBrameters to be
passed to the assembler to control source file access and hex and lX int file
destinations.

In either case, the CP/M assembler loads, and prints the message

CP/M ASSEMBLER VER n. n

where n.n is the current version nurrber. In the case of the first command, I'
the assembler reads the source file with assumed file ty~ "ASM" and creates
two output files

filename. HEX
and

filename .PRN

th'e "HEX" file contains the ITBchine code corresponding to the original program
in Intel hex format, and the "PRN" file contains an annotated listing showing
generated machine code, error flags, and source lines. If errors occur during
translation, they will be listed in the PRN file as ~ll as at the console

The second canrrand form can be used to redirect input and output files
from their defaults. In this case, the "parms" portion of the corrrrnand is a
three letter group which s~cifies the origin of the source file, the
destination of the hex file, anj the destination of the print file. The form
is

filename .plp2p3

where pi, p2, and p3 are single letters

pi: A,B, ••• , Y designates the disk name which contains

1

p2:

p3:

Thus, the canrnand

AEM

A,B,

Z
A,B,

x
Z

X.AM

••• , Y

••• , Y

the source file
designates the disk name which will re
ceive the hex file
skips the generation of the hex file
designates the disk name which will re
ceive the print file
places the listing at the console
skips generation of the print file

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and print (X.PRN) files are to be created also on disk A.
This fom of the canmand is implied if the assembler is run from disk A. That
is, given that the operator is currently addressing disk A, the above command
is a::Juivalent to . ..

AEM X

The canmand

AEM X.ABX

indicates that the source file is to be taken from disk A, the hex file is
placed on disk B, and the listing file is to be sent to the console. The
command

ASM X.BZZ

takes the source file from disk B, and skips the generation of the hex and
print files (this canmand is useful for fast execution of the assembler to
check program syntax).

The source program format is compatible wi th both the Intel 812180 assembler
(macros are not currently implemented in the CP/M assembler, however), as well
as the Processor Technology Software Package #1 asserrbler. That is, the CP/M.
assembler accepts source programs written in either format. There are certain
extensions in the CP/M assembler which make it somewhat easier to use. 1hese
extensions are described below.

2. PRCX;RAM EDRMAT.

An assembly language program acceptable as input to the assembler consists
of a sequence of statements of the form

line# label operation operand jcomment

\\here any or all of the fields may be present in a particular instance. Each

2

~embly language statement is terminated with a carriage return and line feed
(the line feed is inserted automatically by the ED program), or with the
character "!" which is a treated as an end-of-line by the asserrbler (thus,
multiple assembly language statements can be written on the same physical line
if separated by exclaim symbols).

The line# is an or;:>tional decimal integer value representing the source
program line number, which is allowed on any source line to maintain
compatibili ty wi th the Processor Technology format. In general, these line
nurrbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or

identifier:

and is optional, except where noted in particular statement types. The
identifier is a seguence of alphanumeric characters (alphabetics and numbers),
where the first character is alphabetic. Identifiers can be freely used by
the programmer to label elements such as program steps and assembler
directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($) which
can be used to improve readability of the name. Further, all lower case
alphabetics become are treated as if they were upper case. Note that the ":"
following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology) 0 Thus, the following are all valid
instances of labels

x
x:
XIY2

xy
yxl:
Xlx2

long$name
longer$named$data:
x234$5678$9012$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8080 machine operation code. The pseudo operations and
machine operation codes are described below.

The ·operand field of the statement, in general, contains an expression
formed out of constants and labels, along with arithmetic and logical
operations on these elements. Again, the complete details of properly formed
expressions are given below.

The canment field contains arbitrary characters following the .. i" symbol
until the next real or logical end-of-line. 'rhese characters are read,
listed, and otherwise ignored by the assembler. In order to maintain
compatability with the Processor Technology assembler, the CP/M assembler also
treat statements v.hich begin with a "*" in column one as comment statements,
which are listed and. ignored in the assembly process o Note that the Processor

3

•

Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. This causes an ambiguous
situation when attempting to be compatible with Intel's language, since
arbi trary expressions are allowed in this case. Hence, programs which use
this side effect to introduce corrunents, must be edited to place a "; II before
these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements of
the above form, terminated optionally by an END statement. All statements
following the END are ignored by the assembler.

3. FORMING THE OPERAND.

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is
used in nearly all statements. Expressions in the operand field consist of
simple operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators. The expression
computation is carried out by the assembler as the asserrbly proceeds. Each
expression must produce a 16-bit value during the assembly. Further, the
nurrber of significant digits in the result must not exceed the intended use.

~ That is, if an expression is to be used in a byte nove immediate instruction,
then the most significant 8 bits of the expression must be zero. The
restrictions on the expression significance is given with the individual
instructions.

3.1. labels.

As discussed above, a label is an identifier which occurs on a particular
statement. In general, the label is given a value determined by the type of
statement which it precedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.g, a MOV instruction, or a
DS pseudo operation), then the label is given the value of the program address
which it labels. If the label precedes an EQU or SE'I', then the label is given
the value which results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.

Wnen a label appears in the operand field, its value is substituted by the
assembler. 'l'his value can then be combined with other operands and operators
to form the operand field for a particular instruction.

3.2. Numeric Constants.

A numeric constant is a l6-bi t value in one of several bases. The base,
called the radix of the constant, is denoted by a trailing radix indicator.
The radix indicators are

B binary constant (base 2)
o octal constant (base 8)

4

Q octal constant (base 8)
o decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal nuOOers since the letter 0 is
easily confused with the digit 0. Any numeric constant which does not
terminate with a radix indicator is assumed to be a decimal constant.

A constant is thus comp:>sed as a sequence of digits, followed by an
optional radix indicator, vvhere the digits are in the appropriate range for
the radix. That is binary constants must be composed of 0 and 1 digits, octal
constants can contain digits in the range 0 - 7, vvhile decimal constants
contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecimal digits A (100), 8 (110), C (120), 0 (130), E (140), and F
(150) • Note that the leading digi t of a hexadecimal constant must be a
decimal digi t in order to avoid confusing a hexadecimal constant with an
identifier (a leading 0 will always suffice). A constant comp:>sed in this
manner must evaluate to a binary nurrber which can be contained within a 16-bit
counter, otherwise it is truncated on the right by the assembler. Similar to
identifiers, imbedded "$" are allowed wi thin constants to improve their
readabili ty. Finally, the radix indicator is translated to upper case if a
lower case letter is encountered. The following are all valid instances of
numeric constants

1234
1234H
33770

12340
0FFEH
0fe3h

3.3. Reserved Words.

11008
33770
1234d

1111$0000$1111$00008
33$77$22Q
0ffffh

There are several reserved character sequences which have predefined
meanings in the operand field of a statement. The names of 8080 registers are
given below, which, when encountered, produce the value shown to the right

A 7
8 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(again, lower case names have the same values as their upper case
equivalents). Machine instructions can also be used in the operand field, and
evaluate to their internal codes. In the case of instructions which require
o-perands, where the s-pecific operand becomes a p3.rt of the binary bit pattern

5

oF- -rite instruction (e.g, IDV A,B), the value of the instruction (in this case
MJV) is the bit p3ttern of the instruction with zeroes in the optional fields
(e.g, IDV produces 40H). -

When the symbol "$" occurs in the operand field (not irrbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contained wi thing the
current logical line.

3.4. String Constants.

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters wi thin apostrophe symbols ('). All
strings must be fully contained within the. current physical line (thus
allowing "!" symbols wi thin strings), arrl must not exceed 64 characters in
length. The apostrophe character itself can be- included within a string by
representing it as a double apostrophe (the two keystrokes "), which becomes
a single apostrophe when read by the assembler. In nost cases, the string
length is restricted to either one or two characters (the DB pseudo operation
is an exception), in which case the string becomes an 8 or 16 bit value,
respectively. Two character strings become a 16-bit constant, with the second
character as the low order byte, and the first character as the high order
byte.

The value of a character is its corresponding ASCII code. There is no
case translation within strings, and thus both upper and lower case characters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

'AB' , c'

a , , , II '

'Walla Walla Wash. '
'She said "Hello" to me. '
'I said "Hello" to her.'

3.5. Arithmetic and Logical Operators.

The cperands described above can be combined in normal algebraic notation
using any canbination of properly formed operands, operators, and
parenthesized expressions. Tqe operators recognized in the operand field are

a + b
a - b

+b
-b

a * b
a / b
a IDD b
Nor b

unsigned arithmetic sum of a and b
unsigned arithmetic difference between a and b
unary plus (produces b)
unary minus (identical to 0 - b)
unsigned magnitude multiplication of a and b
unsigned magnitude division of a by b
remainder after a / b
logical inverse of b (all 0's become l's, l's
become 0's), where b is considered a 16-bit value

6

a AND b
a OR b
a XORb
a SHL b

a SHR b

bit-by-bit logical and of a and b
bit-by-bit logical or of a and b
bit-by-bit logicl exclusive or of a and b
the value which results from shifting a to the
left by an amount b, with zero fill
the value which results from shifting a to the
right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric
constants, reserved words, and one or two character strings), or fully
enclosed parenthesized subexpressions such as

10+20 10h+37Q Ll /3 (L2+4) SHR 3
('a' and 5fh) + '0' ('B' +B) OR (PSW+M)
(1+(2+c)) shr (A-(B+l))

Note that all canputations are ~rformed at assembly time as 16-bit lll1signed
operations. Thus, -1 is canputed as 0-1 which results in the value 0ffffh
(i.e., alII's). The resulting expression must fit the O?eration code in ,
which it is used. If, for example, the expression is used in a ADI (add7 '''''J m.;Sr
immediate) instruction, then the high order eight bits of the expression mustS r;7~;" ,)/).:'
be zero. As a result, the operation "ADI -I" produces an error message (-1 .!:?yr<!
becomes 0ffffh v.hich cannot be represented as an 8 bit value), while "ADI (-1)
AND 0FFH" is accepted by the assembler since the "AND" cperation zeroes the
high order bits of the expression.

3.6. Precedence of Operators.

As a convenience to the programmer, ASM aSSLnnes that operators have a
relative precedence of application which allows the programmer to write
expressions without nested levels of parentheses. The resulting expression
has assumed parentheses v.hich are defined by the relative precedence. The
order of application of operators in unparenthesize expressions is listed
b~low. Operators listed first have highest precedence (they are applied first
in an unparenthesized expression), v.hile operators listed last have lowest
precedence. Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
- +
Nor
.AND

OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler
as the fully parenthesize expressions shown to the right below

a * b + C
a + b * c
a M)D b * c SHL d

7

(a * b) + c
a + (b * c)
((a MOD b) * c) SHL d

•

a OR b AND Nor c + d SHL e a OR (b AND (NOr (c + (d SHL e))))

Balanced parenthesized subexpressions can always be used to override the
assumed parentheses, and thus the last expression above could be rewritten to
force application of operators in a different order as

(a OR b) AND (NOr c) + d SHL e

resulting in the assumed parentheses

(a OR b) AND ((Nor c) + (d SHL e))

Note that an mparenthesized expression is well-formed only if the expression
which results from inserting the assumed parentheses is well-formed.

4. ASSEMBLER DIRECTIVES.

Assembler directives are used to set labels to specific values during the
assrrbly, perform conditional assembly, define storage areas, and specify
starting addresses in the program. Each assembler directive is denoted by a
"pseudo operation" which appears in the operation field of the line. The
acceptable pseudo operations are

VOffi

VEND
vEQU

SET'
IF
ENDIF

vDB
DW

Jffi

set the program or data origin
end program, optional start address
numeric "equate"
numeric "set"
begin conditional assembly
end of conditional assembly
define data bytes
define data words
define data storage area

The individual pseudo operations are detailed below

4.1. The ORG directive.

The ORG statement takes the form

label ORG expression

where "label" is an optional program label, and expression is a l6-bit
expression, consisting of operands which are defined previous to the ORG
statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements within
a particular program, and there are no checks to ensure that the programmer is
not defining overlapping memory areas. Note that lTDst programs written for
the CP/M system begin with an ORG statement of the form

Offi 100H

8

which causes machine code generation to beqin at the base of the CP/M
transient rxogram area. If a label is specified in the ORG statement, then
the label is given the value of the expression (this label can then be used in
the operand field of other statements to represent this expression) •

4.2. The END directive.

The END statement is optional in an assembly language program, but if it
is rxesent it must be the last statement (all subsequent statements are
ignored in the assembly). The two forms of the END directive are

label
label

END
END expression

where the label is again optional 0 If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
0000. Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code "hex" file which results from the asserrbly) 0

Thus, most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H (beginning of the transient
program area) 0

4.3. The EQU directive.

'I'he EQU (equate) statement is used to set up synonyms for particular
numeric values. the form is

label EQU expression

where the label must be rxesent, and must not label any other statement. 'rhe
assembl~r evaluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a name which describes
the value in a rrore human-oriented manner. Further, this name is used
throughout the program to "parameterize" certain functions. Suppose for
example, that data received from a Teletype appears on a particular input
port, and data is sent to the Teletype through the next output fX)rt in
sequence. The series of equate statements could be used to define these ports
for a particular hardware environment

T'IYBASE
T'IYIN
T'IYour

EQU 10H :BASE FDRI' NUMBER FOR TTY
EQU TIYBASE ;TIY D?\TA IN
EQU TIYBASE+ I iTl'Y D?\TA our

At a later PJint in the program, the statements which access the Teletype
could appear as

9

IN 'ITYIN ; READ 'ITY DATA TO REG-A

•••
our 'ITYour ;WRITE DATA TO 'ITY FROM REx:;-A

making the program rrore readable than if the absolute i/o rorts had been
used. Further, if the hardware environment is redefined to start the Teletype
cornrntmications rorts at 7FH instead of 10H, the first statement need only be
changed to

TlYBASE EQU 7FH : BASE FORI' NUMBER FOR TrY

and the program can be reassembled without changing any other statements.

4.4. The SET Directive.

'rhe SET statement is similar to the EQU, taking the form

label SEl' expression

except that the label can occur on other SET statements wi thin the program.
'rhe expression is evaluated and becomes the current value associated with the
label. Thus, the EQU statement defines a label with a single value, while the
SET statement defines a value which is valid from the current SET statement to
the roint where the label occurs on the next SET statement. The use of the
SET is similar to the EQU statement, but is used rrost often in controlling
conditional .assembly.

4.5. The IF and ENDIF directives.

The IF and ENDIF statements define a range of asserrbly language statements
which are to be included or excluded during the assembly process. The form is

IF expression
staternenUl
statemenU2

•••
statemenUn
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement). If the expression evaluates to a non-zero value, then
statement#l through statement#n are assembled; if the expression evaluates to
zero, then the statements are listed but not assembled. Conditional assembly
is often used to write a single "generic" proqram which includes a rurrber of
possible run-time environments, with only a few s~cific '(X)rtions of the
proqram selected for any particular assembly. The following program segments
for example, might be part of a proqram which corrnnunicates with either a
Telety~ or a CRI' console (but not both)· by selecting a p:lrticular value for
TTY before the assembly begins

10

ji:l,ur EQU 0FFFFH
FALSE EQU Nor TRJE

TrY EQU TruE

TIYBASE EX;)U l0H
CRTBASE EQU 20H

CDNIN
CON<XJ.r

CON IN
CONcur

IF TrY
EOU TIYBASE
EQU 'ITYBASE+l
ENDIF

IF Nor TrY
EQU CRTBASE
EQU CRI'BASE+ 1
ENDIF ...
IN CDNIN ...
our CDNOUI'

iDEFlNE VALUE OF TROE
iDEFlNE VALUE OF FALSE

iTRUE IF TTY, FALSE IF CRT

i BASE OF TTY I/O FORTS
; BASE OF CRT I/O FORI'S
i ASSEMBLE RELATIVE TO TTYBASE
:CONSOLE INPUI'
: CONSOLE OUI'PUI'

: ASSEMBLE RElATIVE TO CRI'BASE
:CONSOLE INPUI' (
:CONSOLE ourPUI'

: READ CONSOLE mTA

:w"RITE CONSOLE mTA

In this case, the p:ogram would asserrble for an envirorunent where a Teletype
is connected, based at p:>rt l0H. The statement defining TTY could be changed
to

TIY EX;)U FALSE

and, in this case, the p:ogram would assemble for a CRT based at port 20H.

4.6. The DB Directive.

The DB directive allows the programmer to define initialize storage areas
in single p:ecision (byte) format. The statement form is

label DB e#l, e#2, ••• , e#n

v.here e#1 through e#n are either expressions which evaluate to 8-bit values
(the high order eight bits must be zero), or are ASCII strings of length no
greater than 64 dlaracters. There is no practical restriction on the nurrber
of expressions included on a single source line. The expressions are
evaluated and placed sequentially into the machine code file following the
last program address generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with
the last character. Strings of length greater than two characters cannot be
used as operands in more complicated expressions (i.e., they must stand alone
between the commas). Note that ASCII characters are always placed in memory
with the p3.rity bit reset (0). Further, recall that there is no translation
from lower to u}:Per case wi thin strings. The C{)tional label can be used to
reference the data area throughout the remainder of the program. Examples of

11

valid DB statements are

data: DB
DB

signon; DB
DB

0',1,2,3,4,5
data and 0ffh,5,377Q,1+2+3+4
'please type your name',cr,lf,0
'AB' SHR 8, 'C', 'DE' AND 7FH

4.7. The DW Directive.

The DW statement is similar to the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DW e#l, e#2, ••• , e#n

where e#l through e#n are expressions which evaluate to 16-bit results. Note
that ASCII strings of length one or two characters are allowed, but strings
longer than two cilaracters disallowed. In all cases, the data storage is
consistent with the 8080 processor: the least significant byte of the

'expression is stored forst in rremory, followed by the most significant byte.
Examples are

doub: ow 0ffefh,doub+4,signon-$,255+255
DW 'a', 5, 'ab', 'CD', 6' shl 8 or 110

4.8. 'rheDS Directive.

'l'he DS statement is used to reserve an area of unini tialized memory, and
takes the form

label os expression

where the label is optional. The assembler begins subsequent code generation
after the area reserved by the DS. 'lhus, the DS statement given above has
exactly the same effect as the statement

label: EOU $ iLABEL VALUE IS CURRENT mDE LOCATION
ORG $+expression iMOVE PAST RESERVED AREA

5. OPERATION cxmES.

Assembly language operation codes form the principal part of assembly
language programs, am 'form the operation field of the instruction. In
general, AEM accepts all the standard mnemonics for the Intel 8080
microcomputer, Yilich are given in detail in the Intel manual "8080 Assembly
Language Programmim Manual." Labels are optional on each input line and, if

'included, take the' value of the instr;uction address immediately before the
instruction is issued. The individual operators are listed breifly in the

12

following sections for completeness, although it is understood that the Intel
manuals should be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range 0-7
which can be one of the predefined registers
A, B, C, D, E, H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255

e16 represents a l6-bit value in the range 0-65535

which can themselves be formed from an arbitrary combination of operands and
operators. In some cases, the operands are restricted to p3.rticular values
wi thin the allowable range, such as the PUSH instruction. These cases will be
noted as they are encountered.

In the sections \'oihich follow, each operation codes is listed in its most
general form, along wi th a s};ecific example, wi th a short explanation and
special restrictions.

501. Jumps, Calls, and Returns.

The Jump, Call, am Return instructions allow several di fferent forms
which test the condition flags set in the 8080 microcomputer CPU. The forms
are

JMP e16
JNZ e16
JZ e16
JNC e16
JC e16
J:EO e16
JPE e16
JP e16
JM e16

CALL e16
CNZ e16
CZ e16
CNC e16
CC e16
COO e16
CPE e16
CP e16
CM e16

RST e3

JMP Ll
JMP L2
JMP l00H
JNC Ll+4
JC L3
Joo $+8
JPE L4
JP GAMMA
JM al

CALL Sl
CNZ S2
CZ l00H
mc 81+4
CC S3
COO $+8
CPE S4
CP GAMMA
CM bl$c2

RST 0

Jump unconditionally to label
Jump on non zero condition to label
Jump on zero condition to label
Jump no carry to label
Jump on carry to label
Jump on parity odd to label
Jump on even parity to label
Jump on positive result to label
Jump on minus to label

Call subroutine Lmconditionally
Call subroutine if non zero flag
Call subroutine on zero flag
Call subroutine if no carry set
Call subroutine if carry set
Call subroutine if parity odd
Call subroutine if parity even
Call subroutine if positive result
Call subroutine if minus flag

Programmed "restart", equivalent to
CALL 8*e3, except one byte call

13

•

RET
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

Return from subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if parity is odd
Return if p3rity is even
Return if positive result
Return if minus flag is set

5.2. Immediate Operand Instructions.

Several instructions are available which load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions which ~rform immediate arithmetic or logical operations on the
accumulator (register A) •

MVI e3,e8

ADI e8
ACI e8
SUI e8
SBI e8
ANI e8
XRI e8
ORI e8
CPI e8

LXI e3,e16

t-lVI B,255

ADI I
ACI 0FFH
SOl L + 3
SBI L N'JD 11B
ANI $ AND 7FH
XRI 1111$0000B
ORI L AND 1+1
CPI a

LXI B,100H

Move immediate data to register A, B,
C, D, E, H, L, or M (memory)
Add immediate operand to A without carry
Add immediate operand to A with carry
Subtract from A without borrow (carry)
Subtract from A with borrow (carry)
Logical "and" A with immediate data
"Exclusive or" A with immediate data
Logical "or" A wi th immediate da ta
Compare A with immediate data (same
as SUI except register A not changed)

Load extended immediate to register pair
(e3 must be equivalent to B,D,H, or SP)

5.3. Increment and Decrement Instructions.

Instructions are provided in the 8080 repetoire for incrementing or
decrementing single and double precision registers. The instructions are

INR e3

OCR e3

INX e3

OCX e3

INR E

OCR A

INX SP

OCXB

Single precision increment register (e3
produces one of A, B, C, D, E, H, L, M)
Single precision decrement register (e3
produces one of A, B, C, D, E, H, L, M)
Double precision increment register pair
(e3 must be equivalent to B,D,H, or SP)
Double precision decrement register pair
(e3 must be equivalent to B,D,H, or SP)

5.4. Data Movement Instructions.

14

Instructions which rrove data from rremory to the CPU and from CPU to
memory are given below

r!{)V e3,e3

LQl\X e3

STAX e3

LHLD el6

SHLD e16

LQl\ e16
STA e16
EOP e3

PUSH e3

IN e8
our e8
XTHL
PCHL
SPHL
XCHG

IDV A,B

LI:lPJ{ B

STAX D

LHLD IJ.

SHLD L5+x

LQl\ Gamma.
STA X3-5
EOP PSW

PUSH B

IN 0
our 255

Move data to leftmost element from right
rrost element (e3 produces one of A,B,C
D,E,H,L, or M). IDV M,M is disallowed
Load register A from computed address
(e3 must produce either B or D)
Store register A to computed address
(e3 must produce either B or D)
Load HL direct from location e16 (double
precision load to Hand L)
Store HL direct to location e16 (double
precision store from Hand L to memory)
Load register A from address e16
Store register A into memory at e16
Load register pair from stack, set SP
(e3 must produce one of B, D, H, or PSW)
Store register pair into stack, set SP
(e3 must produce one of B, D, H, or PSW)
Load reqister A with data from port e8
Send data from register A to port e8
Exchange data from top of stack with HL
Fill program counter with data from HL
Fill stack pointer with data from HL
Exchange DE pair with HL pair

5.5. Arithmetic Logic Unit Operations.

Instructions which a'ct upon the single precision accumulator to perform
arithmetic and logic operations are

ADD e3 ADD B Add register given by e3 to accumulator
without carry (e3 must produce one of A,
B, C, D, E, H, or L)

ADC e3 AOC L Add register to A with carry, e3 as above
SUB e3 SUB H Subtract req e3 from A without carry,

e3 is defined as above
SBB e3 SBB 2 Subtract register e3 from A with carry,

e3 defined as above
ANA e3 ANA 1+1 IDgical "and" reg with A, e3 as above
XRA e3 XRA A "Exclusive or" with A, e3 as above
ORA e3 ORA B Logical "or" with A, e3 defined as above
CMP e3 CMP H Compare reqister with A, e3 as above
DI\A Deciroal adjust register A based upon last

arithmetic logic unit operation
CMA. Complement the bits in register A
S'IC Set the carry flag to 1

15

•

Cr.'C
RLC

RAL

RAR

mn e3 :eN) B

Complement the carry flag
Rotate bits left, (re)set carry as a side
effect (high order A bit becomes carry)
Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)
Rotate carry/A register to left (carry is
involved in the rotate)
Rotate carry/A register to right (carry
is involved in the rotate)

Double precision add register pair e3 to
HL (e3 must produce S, D, H, or SP)

5.6. Control Instructions.

The four remaining instructions are categorized as control instructions,
and are listed below

HLT
DI
EI
NOP

6. ERROR MESSAGES.

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system
No operation

wnen errors occur within the assembly language program, they are listed as
single character flags in the leftmost tx>sition of the source listing. The
line in error is also echoed at the console so that the source listing need
not be examined to determine if errors are present. The error codes are

D

E

L

N

o

P

Data error: element in data statement cannot be
placed in the specified data area

Expression error: expression is ill-formed and
cannot be computed at assembly time

Label error: label cannot appear in this context
(may be duplicate label)

Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version)

Overflow: expression is too complicated (i.e., too
many pending operators) to computed, simplify it

phase error: label does not have the same value on
two subsequent p3sses through the program

16

R Register error: the value specified as a register
is not compatible with the operation code

v Value error: operand encountered in expression is
improperly formed

Several error message are printed which are due to terminal error
conditions

NO SOURCE FILE PRESENT

NO DIRECTORY SPACE

SCXJRCE FI LE NAME ERROR

SOURCE FILE READ ERROR

ourpur FI LE WR.I'rE ERROR

CAt'mar CLOSE FI LE

7. A SAMPLE SESSION.

The file specified in the ASM command does
not exist on disk

The disk directory is full, erase files
which are not needed, and retry

Improperly formed ASM file name (e.g., it
is specified with "?" fields)

Source file cannot be read properly by the
assembler, execute a TYPE to determine the
"(;Dint of error

Output files cannot be written properly, most
likely cause is a full disk, erase and retry

Output file. cannot be closed, check to see
if disk is write protected

The following session shows interaction with the assembler and debugger in
the development of a simple assembly language program o

17

•

ASMSORT~

CP/M ASSEMBLER - YER 1.0

~ 1 S C \A4¥:t -Fre~ atl..d.vess)
£t 0 3 H USE FA C T (I R % of +It~le USeJ 00 To PF (~d.ecl~
END OF AS'SE t1 BL Y

D IRS 0 R T. *,;

SORT ASH S;dW'(~ fll~
SORT BA K Io~J~"" ltt~ ~~f-
SO R T P R H 'P"'~ f,1tz C(QII\:tul~ -fr;L, clNu~)
S 0 R THE X WIO..c.lc.,~ c:odL .h~
A}TVPE SORT. PR~

S'~(t..l~
r~------~--------~'

SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE waclu~ Cotk lo~ i
.-J ; START AT THE BEGINHING OF THE TRANSIENT PROGRAM AR

0109 k' .

~~~~Ctde 
0100 2146el~ SORT: 
0103 3601 
9105 2147'01 
0le8 3600 

£IleA 7E COMP, 
£1108 FEe9 
€tIeD D219ili 

911£1 214601 
0113 7'E87C29991 

0118 FF 

ORG le9H 

LXI 
Mill 
un 
Mill 

H. SW 
11, 1 
H, I 
11, 13 

;ADDRESS SWITCH TOGGLE 
;SET TO 1 FOR FIRST ITERATION 
,ADDRESS INDEX 
; I = 0 

COMPARE I WITti -ARRAV SIZE 
MOV A, M ; A REGISTER = I 
CPI N- 1 iCY S.E T IF I < ( N -_1 ) 
JHC CONT ,CONTINUE IF I < = ( N- 2 ) 

END OF OjiE PASS THROUGH DATA 
LX I H, Sill ; CHECK FOR ZERO SWITCHES 
MOV A.M! ORA A! .JNZ SORT iEND OF SORT IF S lit =B 

RST 7 ;GO TO THE DEBUGGER INSTEAD nF 

C"·tll-kiCOHTI HUE THI S PASS 
i ADDRESSING I, SO LOAD AY ( I) INTO REGISTERS 

e119 5F1600214BCOtH, MOV LA! M V I D,e! LXI Hd~V ! DAD D! DAD D 
e 121 4E792346 MOV C, M ! MOV A, C! lUX H! t'lOV B .. M 

LOW ORDER BinE IN A AIH C, HIGH ORDER BYTE IH 

MOY HAND L TO ADDRESS AYCI+l) 
0125 23 I I~ X H 

COMPARE VALUE WITH REGS CONTAINING AY(l) 

REi-

B 

0126 965778239E SUB Ii! MOV D, A! MOV A, B! INX H! SB8 11 iSUBTRACT 

BORRO~I S~T IF AV(I+l) ) AV(I) 
0128 DA3FBl JC INCI ,SKIP IF IN PROPER ORDER 

CHECK FOR EQUAL VALUES 
012E B2CA3F01 ORA D! JZ HIe! iS~:IP IF AY(I) = AY(J+t) 



0132 56702B5E MOV It .. M ! t1 0 II 11., B! DCX H! MOV E, 11 
0136 7128722873 MOV t1, C ! !lex H! 110 'V r'l. D ! D (;:.c: H! 11011 M. E 

j 

IHCREMENT SWITCH COUNT 
e13B 21460134 LXI H,SlJ! IHR 11 

IHCREMENT I 
013F 21470134C311'-1CI: un H .. I ! I NR M! JMP CO t1P 

DATA DEFINITION SECTION 
9146 0e SW: DB 0 ;RESERVE SPACE FOR SWITCH COUNT 
9147 I: DS 1 ;SPACE FOR INDEX 
0148 050064e01EAV: Dhi 5.100,30.50,211, '7, 1!HHL 3'313 .. 1130. -3276'7 
eeeA = N 
e 1 5 C It.- e~ ~ va.tIAL 

A >n'PE SORT. HEX..? 

EQU ($-AV)/2 ;CDMPUTE H IHSTEAD OF PRE 
EHD 

: 1001Be09214601360121470136007EFE09D2190140 
rle0110002146017EB7C2B001FF5F16002148011988 
: 10012B00194E79234623965778239EDA3F01B2CAA7 
: 10e130ee3F0156702B5E712B722B732146013421C7 
: 07014ee04?0134C30A01006E 
: 10014800050064801E0B320014000700ESB32C01BB 
:04015B0B640001B0BE 
: 00IH:lf:J(1000Et 
A> DD T S OR T. H EX; s-k~ MI.(., 'rUV\.. 

161< DDT VER 1. e 
~;~6 0:~B dhwtt a&bess Ll'\6 addy~ ~ BJD ~-b..~(W.+) 
-Xp.-) 

p = e 0 13 0 1 B e ~ CWJ.~e. fe- -fo (00 

-UFFFF J u..~~ -r~ 6~3')" s-te.ps a~ (;,;l4!-, 
{yu.bot.Ct 

CeZ0M13E010 A=00 8=00130 Ii=13ee9 H=0Et00 8=0100 P=0100 LXI H .• 0 146:1< €I 1 iii 11 

- T 10.,; -h-oa to c;+~f'S" ,I. 

C0ZBI1BEeIe A=Bl 8=0139£1 D=Seee H=0146 S=010e p::010£1 LXI H,0146 
CeZBM8E0Ie A=81 8=00130 D=13a00 H=0146 8=0100 P=0103 11 V I 11. 13 1 
CeZ(1MBEele A=01 8=001311, D=0a00 H=0146 8=0100 P::0105 LXI H.Et147 
C0Z0M13E010 A=01 8:::00813 D =0 a 00 H=0147 8=,011210 P::0108 MVI 11, 0 €I 
CeZ0M13E010 A=01 8=00130 D=0900 H=014? 8=0112113 P::010A NOll A, 11 
C0Z011BE010 A=00 8:::IH300 D=0e00 H=014? 8=@100 P::0H1B CPI 09 
CIZ0M1EeI0 A=00 8::00130 D=13000 H=014? 8=0100 P=01E1D ,..\ Ne (3 11 9 
CIZ0M1E010 A=00 8=00130 D =8 0 00 H=0147 8=0100 P:::0110 LXI H .. 0146 
CIZeM1EfJI0 A=a0 B =0 €Ie e D =0 0 00 H=0146 8=01121121 P::0113 110 Ii A) 11 
CIZ0MIE010 A=01 8=09139 D=0ea8 H=0146 S=0100 P:::0114 ORA A 
C0zeMBEeI0 A=el 8=01380 D =13 a 130 H=0146 8=0100 P::0115 J ~~l 0100 
cezel1BE010 A=01 8=130813 D=1390e H=0146 S=0100 p=010e LXI H,0146 
C0ZBMBE010 A=Bl 8=1391313 D::::IHH3e H=0146 8=010'0 p=ele3 11 VI M) e 1 
C0Z0MBEele A=Bl 8=001313 Ii =13 €I e0 H=0146 3=011210 P=0105 LXI H.0147 
C0Z0MBE0I0 A=01 8=013139 D =13 0 e0 H::.0147 3=0100 P::0108 MV I 11, (1 €I 
ceZ0M8E010 A=01 B:=13013·e D =0 0 00 H::: 0.1 47 S=01e0 P::01!~A 11011 A)I1*010FJ 
~A10D 

91eD JC 11 9; c~~(.. -fc a .j'u-'1 On Ct1~ 
01 10 ~ 

~d.rt.-J 19 
I "'f3H 



-XP; 

P=010B 10~ ye~+ 1YOj~o.""," (\?~~ 

_ Tie +nue ~-ttD~ -tw (01-1 S-kps 
J2 

C0ZEcl19E010 A=00 B=090'0 II=B099 
C0Z0M9E0I0 A=0 €I B=00130 D=ge90 
C9Z0MBE0I0 A=00 B=0e9& D=8000 
C9Z0M9E9I0 A=13e B=0000 D=8000 
C0ZBM0E0I0 A=B0 B=00130 D=13000 
C0Z0M0E0I0 A=80 B=0080 D=8€100 
C 1 Z0 HI E010 A=09 B=0099 D=B00e 
C1Z0111E010 A=00 B=B0ge II=000€t 
C1ZeM1E0I0 A=B0 B=0eee D=9000 
CIZ0111E0I0 A=IHl B=801;0 D=0000 
CIZ0MIE919 A=8e 8=0090 D=0009 
.~ 9 Z e M 1 Eel €I A=00 8=0900 D=9000 

020MIE010 A=00 B=0eee D=IHt'00 
C9Z0t11E0I9 A=e0 B=00BS D=00013 

b~£.l-b 

H=0147 
H=0146 
H=0146 
H=0147 
H=0147 
H=0147 
H=0147 
H=0147 
H=0147 
H=0147 
H=0148 
H=014B 
H=@148 
H=014B 

~e.J·lr'l~I~ cf-projra.vn.. 

8=0100 P=0100 LXI 
s= €I.100 P::0103 11 V I 
S=eJl€10 P=0105 LXI 
$=0100 P=0108 MVI 
8=0100 P=010A 110V 
S=eJl€10 P::0108 CPI 
8=0100 P==1ZI10D JC 
8=0100 P==0119 110V 
8=0100 p,:allA MVI 
S=0100 P::011C un 
5=0100 P= €I 11 F DAII 
S='.3100 p::e120 DAD 
s=ei eH3 P=0121 t·l0\/ 
s=e100 P=0122 110V 

H,Bl46 

D 
D 
L r1 
A,C: 

C0Z0MIE0Ie A=135 B=eees D=1313ge H=014B 
ceZ0MIE0Ie A=B5 B=0e05 D=009B H=0149 

5=0100 P=0123 
S=0100 P=0124 

I NX 
MOV 

H 
B,M*012:5 

-L lIH,21 

9100 LXI H,e146 
9183 MVI M, 131 
9105 LXI H.0147 
911313 MYI M,0e 
910A MOV A,M 
918B C P I 99 
919£1 JC 0119 
13119 LXI H,0146 
0113 MOV A,M 
B 114 ORA A 
€I 1 15 JNZ 13100 
-L~ 

13118 RST 97 
9119 MOV E,A 
9llA 11\11 D.l39 
BIle LXI H,9148 

t \St S"OIM.C code 
~ lDOI-( 

At.doy'\l\Q.~h c.. 
bf"~fO ~lA.t 

~. 

- abwf h~+ w~~ Y-(.A.L,~ . +. I 
~L.l r ~ -pc. (ol2-S"l-i) ClVl({ 'fulL l\.i\ V'eo-\ 1VV\e -To II.t3H 

- G, 1 t B; ~rl VY~V'I.1LU. -t (V~ 

'" 812 7 '5-bpf1!6 w~~ Q.\.\.. eK-\e.v~l \~YU.p+ 7 -trtMA ~V'(AI\..+ ?c",~.e{ ('PY~Yl1w. was 
- T 4~ \ oo~ at loot'l~ l'YOYAIM. l'" -\-vere rook "+ lO'fll'lj \Vvj~·h~l+e.~) 
C9Z9119E0I9 A=38 B=9964 D=8906 H=0156 5=9109 P=0127 MOV D,A 
C0Z0MBE010 A=38 8=0964 [1=3806 H=0156 5=9199 P=0128 MOV A,B 
Ce20MBE019 A=00 B=0064 D=3806 H=0156 £=0100 P~0129 INK H 
C0Z0MBE010 A=00 8=13064 D=3806 H=0157 8=0100 P~012A SBB M*8128 
-D148 

~~+a. l~ sw-kd, b~ 'fyojY"aw Joes ~t s~ . 
1;148 95 0e 97 09 14 90 1 E 00 
0150 32 B0 64 09 64 90 2C 01 EB f1 3 B 1 813 09 'lie '210 09 2. D. D. , ......... 

9169 013 130 00 08 00 00 00 00 00 I;:, !.I eo 00 00 1210 01~ 00 . . . . . . . . ...... 20 



-G"~ ye-t-u.('V\. -h> CP/M. 

D D j SO R T . HEX J2 ret 00.& -tke memovj I fl'\A~ 

161<. DDT VER 1. €I 
HEXT PC 
else e(!leB 
-xp 

p = e 0 13 e 1 €I €I; Sci "Pc. -\0 bl?jl ~11:~ of t~Y1AXYt 
- L 1 €I Djl l\..::k b~ Ofcod.t 

BleD JHC 0119/ 
0110 LXI H,0146 
- o.~+ ll~ IAI~~ fuloOt.l.t 

- A 10 D; a.S~wJo\L vte.w q'c.otle. 

el0D JC 11~ 

011~ 

- L 1 B €I; h~\- cs\u~ S'e~of 1vo:Jv-aw.. 

010e LXI H,0146 
B1e3 MYI M,a1 
0105 LXI H,0147 
13108 MYl MIEle 
- /lloov\: l\st V\I~~ ~\'4\l.t 
- A 1 €I 3;. dco.~· \~sw'l-hl/ ~IA.:-hjl~ ~ {, ¢r1 

01133 HVI H, 0~ 

01 I!! 5,2 

_,., (; rl.-b. .. "" -10 ev/~ \Allkt, dr-£:. (G~ vJlN~ CIS welt) 

SAVE 1 SORT. COM; "StAVe 1 fo~t (1..t;b ~~S1frvw-- 1.001-t-\v1.~H.) 0'1'· dis/£, \~ C"~L-
• WE' l...ave. -to -re.lt)od. lcJ-ef' 

A > DDT SO R T. COM ~ r.e-S-\tt.v<t 1)'0, w~ 
So.IIl4 ~e.V'I\Ov~ \V"\~e 

161( DDT VER 1. 0 
NEXT PC' . 
B 2 e €I 0 1 €I €I "CoM" -ttll. a..lwo.js s~v-ts Wl-t\,. o,.dJ.'«SI$ 1001-1 
-G.2 rlA"'--\"ke. 1'~"jyt:l1M +nI'P\ 1'C-=loOI-{ 

II< 0 11 a 1'V'Oc?fo."""VI'\t!cl ~-\z,p (~S r 11 elile.o I).\'\.tu-ed 
"'D148 

014B 135 0e e7 00 14 B 0' 1 E 
13150 32 0e 64 13£1 64 as 2C €I 1 E.8 03 B 1 B0 00 lOB 
8160 Et0 00 013 00 1013 013 09 €Ie a8 GB [10 (10 1313 eEt 
13170 IH1 00 130 t:le 08 130 130 00 03 00 8e (lIj 00 013 

-G~ r~V'~ 40 C?X/M.. 

00 ee 2. D. D. ) . . . 
00 013 .. 
130 00 .. 

• 

. . 

. . 

l{ 



;5ET TO 1 FOR FIRST ITERATION 

;ADDRESS INDEX 

iZERO SUI 

H J I iADDRESS IHDE>: 

;C6NTIHUE IF I (= eN-2) 

CP/M ASSEMBLER - VER 1.0 

f:t 1 5 C ~t aJt!ytt,S 10 as~" 
B€t"3H USE FACTOR 
EWD OF ASSEMBLY 

11 D T SO RT . H~ KAi M -pv"'r~ cUCl~t.S 
16K DDT VEl< 
NE:~T PC 
015C O'HtB 
- (; 1 0 €I,; 

"'0118 
- D 148) 

914B 85 130 
13150 32 013 
0160 ee 00 

1.0 

.137 e8 
64 01l 
eo 00 

- tAbbY1: l.u\~rlAlo'v.t 

14 013 
r d6-~ 501'tal 
1 E 00 ....... . 

64 80 2C 01 EB 03 9180 ee 138130 ee.2.D.D.J ........ . 
00 013 00 00 00 130 09 00 00 130 00 80 ............... . 

22. 



'~THE CP/M 2.~O 

INTERFACE GUIDE 





Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896 

CP/M 2.0 INTERFACE GUIDE 

Copyright (c) 1979 

DIGITAL RESEARCH 

• 



Copyright (c) 1979 by Digital Research. All rights reserved. 
No ,part of this publication may be reproduced, transmitted, 
transcribed, stored in a retrieval system, or translated into 
any language or computer language, in any form or by any 
means, electronic, mechanical, magnetic, optical,. chemical, 
manual or otherwise, without the prior written permission of 
Digital Research, Post Office Box 579, Pacific Grove, 
California 93950. 

Disclaimer 

Digital Research makes no representations or warranties with 
respect to the contents hereof and specifically disclaims any 
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the right 
to revise this publication and to make changes from time to 
time in the content hereof without obligation -of Digital 
Research to notify any person of such revision or changes. 



1. 

2. 

3. 

4. 

5. 

6. 

Introduction •. 

CP/M 2.0 INTERFACE GUIDE 

Copyright (c) 1979 
Digital Research, Box 579 
Pacific Grove, California 

Operating System Call Conventions 

A Sample File-to-File Copy Program 

A Sample File Dump Utility 

A Sample Random Access Program . 

System Function Summary 

. DOD D 1 

3 

• 29 

• 34 

• • • 37 

• • • 46 





1. INTRODUCTION. 

This manual describes CP/M, release 2, system organization 
including the structure of memory and system entry points. The 
intention is to provide the necessary information required to write 
programs which operate under CP/M, and which use the peripheral and 
disk I/O facilities of the system. 

CP/M is logically divided into four parts, called the Basic I/O 
System (BIOS), the Basic. Disk Operating System (BDOS), the Console 
command processor (CCP), and the Transient Program Area (TPA). The 
BIOS is a hardware-dependent module which defines the exact low level 
interface to a particular computer system which is necessary for 
peripheral device I/O. Although a standard BIOS is supplied by 
Digital Research, explicit instructions are provided for field 
reconfiguration of the BIOS to match nearly any hardware environment 
(see the Digital Research manual entitled "CP/M Alteration Guide") • 
The BIOS and BDOS are logically combined into a single module with a 
common entry point, and referred to as the FDOS. The CCP is a 
d i st inct prog r am wh ich uses the FDOS to pr ovide a human-or iented 
interface to the information which is cataloged on the backup storage 
device. The TPA is an area of memory (i.e., the portion which is not 
used by the FDOS and CCP) where various non-resident operating system 
commands and user programs are executed. The lower portion of memory 
is reserved for system information and is detailed later sections. 
Memory organization of the CP/M system in shown below: 

high 
memory 

FBASE: 

CBASE: 

TBASE: 

BOOT: 

FDOS (BDOS+BIOS) 

CCP 

TPA 

system parameters 

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and 
FBASE vary from version to version, and are described fully in the 
"CP/M Alteration Guide. II All standard CP/M versions, however, assume 
BOOT = 0000H, which is the base of random access memory. The machine 
code found at location BOOT performs a system "warm start" which loads 
and initializes the programs and variables necessary to return control 
to the CCP. Th'us, transient programs need only jump to location BOOT 

(All Information Contained Herein is Proprietary to Digital Research.) 

1 

• 



to return control to CP/M at the command level. Further, the standard 
versions assume TBASE = BOOT+0l00H which is normally location 0l00H. 
The pr incipal entry point to the FDOS is at location BOOT+0005H 
(normally 00 05H) where a jump to FBASE is found. The address field at 
BOOT+0006H (normally 0006H) contains the value of FBASE and can be 
used to determine the size of available' memory, assuming the CCP is 
being overlayed by a transient program. 

Transient 
follows. The 
lines following 
forms: 

programs are loaded into the TPA and executed as 
operator communicates with the CCP by typing command 

each prompt. Each command line takes one of the 

command 
command f ilel 
command filel file2 

where "command" is either a built-in function such as DIR or TYPE, or 
the name of a transient command or program. If the command is a 
built-in function of CP/M, it is executed immediately. Otherwise, the 
CCP searches the currently addressed disk for a file by the name 

comma nd. COM 

If the file is found, it is assumed to be a memory image of a program 
which executes in the TPA, and thus implicitly originates at TBASE in 
memory. The CCP loads the COM file from the disk into memory starting 
at TBASE and possibly extending up to CBASE. 

If the command is 
the CCP prepares one 
system parameter area. 
to access files through 
section. 

followed by one or two file specifications, 
or two file control block (FCB) names in the 

These optional FCB's are in the form necessary 
the FDOS, and are described in the next 

The transient program receives control from the CCP and begins 
execution, perhaps using the I/O facilities of the FDOS. The 
transient program is "called" from the CCP, and thus can simply return 
to the CCP upon completion of its processing, or can jump to BOOT to 
pass control back to CP/M. In the first case, the transient program 
must not use memory above CBASE, while in the latter case, memory up 
through FBASE-I is free. 

The transient program may use the CP/M I/O facilities to 
communicate with the operator's console and peripheral devices, 
including the disk subsystem. The I/O system is accessed by passing a 
"function number" and an "information address" to CP/M through the 
FDOS entry point at BOOT+0005H. In the case of a disk read, for 
example, the transient program sends the number corresponding to a 
disk read, along with the address of an FCB to the CP/M FDOS. The 
FDOS, in turn, performs the operation and returns with either a disk 
read completion indication or an error number indicating that the disk 
read was unsuccessful. The function numbers and errOr indicators are 
given in below. 

(All Information Contained Herein is Proprietary to Digital Research.) 

2 



2. OPERATING SYSTEM CALL CONVENTIONS. 

The purpose of this section is to provide detailed information 
for performing direct operating system calls from user programs. Many 
of the functions listed below, however, are more simply accessed 
through the I/O macro library provided with the MAC macro assembler, 
and listed in the Digital Research manual entitled "MAC Macro 
Assembler: Language Manual and Appl ications Guide. II 

CP/M facilities which are available for access by transient 
programs fall into two general categories: simple device I/O, and 
disk file I/O. The simple device operations include: 

Read a Console Character 
write a Console Character 
Read a sequential Tape Character 
write a Sequential Tape Character 
write a List Device Character 
Get or Set I/O Status 
Print Console Buffer 
Read Console Buffer 
Interrogate Console Ready 

The FDOS operations which perform disk Input/Output are 

Disk System Reset 
Drive Selection 
File Creation 
File Open 
File Close 
Directory Search 
File Delete 
File Rename 
Random or Sequential Read 
Random or Sequential write 
Interrogate Available Disks 
Interrogate Selected Disk 
Set DMA Address 
Set/Reset File Indicators 

As mentioned above, access to the FDOS functions is accomplished 
by passing a function number and information address through the 
primary entry point at location BOOT+0005H o In general, the function 
number is passed in register C with the information address in the 
double byte pair DE. Single byte values are returned in register A, 
with double byte values returned in HL (a zero value is returned when 
the function number is out of range). For reasons of compatibility, 
register A = L and register B = H upon return in all cases. Note that 
the register passing conventions of CP/M agree with those of Intel's 
PL/M systems programming language. The list of CP/M function numbers 
is given below. 

(All Information Contained Herein is Proprietary to Digital Research.) 

3 

• 



0 System Reset 19 Delete File 
1 Console Input 20 Read Sequenti.3.l 
2 Console Output 21 write Sequential 
3 Reader Input 22 Make File 
4 Punch Output 23 Rename File 
5 List Output 24 Return Login Vector 
6 Di rect Console I/O 25 Return Current Disk 
7 Get I/O Byte 26 Set DMA Address 
8 Set I/O Byte 27 Get Addr (Alloc) 
9 Pr int Str ing 28 write Protect Disk 

10 Read Console Buffer 29 Get R/O vector 
11 Get Console Status 30 Set File Attributes 
12 Return Version Number 31 Get Addr(Disk Parms) 
13 Reset Disk System 32 Set/Get User Code 
14 Select Disk 33 Read Random 
15 Open File 34 write Random 
16 Close File 35 Compute File Size 
17 Search for First 36 Set Random Record 
18 Search for Next 

(Functions 28 and 32 should be avoided in application programs to 
maintain upward compatibility with MP/M.) 

Upon entry to a transient program, the CCP leaves the stack 
pointer set to an eight level stack area with the CCP return address 
pushed onto the stack, leaving seven levels before overflow occurs. 
Although this stack is usually not used by a transient program (Le., 
most transients return to the CCP though a jump to location 0000H), it 
is sufficiently large to make CP/M system calls since the FDOS 
swi tches to a . local stack at system entry. The following assembly 
language program segment, for example, reads characters continuously 
until an asterisk is encountered, at which time control returns to the 
CCP (assuming a standard CP/M system with Boo'r = 0000H): 

BDOS EQU 0005H j STANDARD CP/M ENTRY 
CON IN EQU 1 jCONSOLE INPUT FUNCTION 

ORG 0l00H jBASE OF TPA 
/' 

NEXTC: MVI C,CONIN iREAD NEXT CHARACTER 
CALL BDOS jRETURN CHARACTER IN <A> 
CPI I * I jEND OF PROCESSING? 
JNZ NEXTC jLOOP IF NOT 
RET i RE'rURN TO CCP 
END 

CP/M implements a named file structure on each disk, providing a 
logical organization which allows any particular file to contain any 
number of records from completely empty, to the full capacity of the 
drive. Each drive is logically distinct with a disk directory and 
file data area. The disk file names are in three parts: the drive 
select code, the file name consisting of one to eight non-blank 
characters, and the file type consisting of zero to three non-blank 
characters. The file type names the generic category of a particular 
file, while the file name distinguishes individual files in each 
category. The file types listed below name a few generic categories 

(All Information Contained Herein is Proprietary to Digital Research.) 

4 



which have been established, although they are generally arbitrary: 

ASM 
PRN 
HEX 
BAS 
INT 
COM 

Assembler Source 
Pr inter Listing 
Hex Machine Code 
Basic Source File 
Intermediate ,Code 
CCP Command File 

PLI 
REL 
TEX 
BAK 
SYM 
$$$ 

PL/I Source File 
Relocatable Module 
TEX Formatter Source 
ED Source Backup 
SID Symbol File 
Temporary File 

Source files are treated as a sequence of ASCII characters, where each 
"line" of the source file is followed by a carriage-return line-feed 
sequence (0DH followed by 0AH). Thus one 128 byte CP/M record could 
contain several lines of source text. The end of an ASCII file is 
denoted by a control-Z character (lAH) or a real end of file, returned 
by the CP/M read operation. Control-Z characters embedded within 
machine code files (e.g., COM files) are ignored, however, and the end 
of file condition returned by CP/M is used to terminate read 
operations. 

Files in CP/M can be thought of as a sequence of up to 65536 
records of 128 bytes each, numbered from 0 through 65535, thus 
allowing a maximum of 8 megabytes per file. Note, however, that 
although the records may be considered logically contiguous, they may 
not be physically contiguous in the disk data area. Internally, all 
files are broken into 16K byte segments called logical extents, so 
that counters are easily maintained as 8-bit values. Although the 
decomposition into extents is discussed in the paragraphs which 
follow, they are of no particular consequence to the programmer since 
each extent is automatically accessed in both sequential and random 
access modes. 

In the file operations starting with function number 15, DE 
usually addresses a file control block (FCB). Transient programs 
often use the default file control block area reserved by CP/M at 
location BOOT+005CH (normally 005CH) for simple file operations. The 
basic unit of file information is a 128 byte record used for all file 
operations, thus a default location for disk I/O is provided by CP/M 
at loca,tion BOOT+0080H (normally 0080H) which is the initial default 
DMA address (see function 26). All directory operations take place in 
a reserved area which does not affect write buffers as was the case in 
release 1, with the exception of Search First and Search Next, where 
compatibility is required. 

The File Control Block (FCB) data area consists of 
33 bytes for sequential access and a series of 36 bytes 
that the file is accessed randomly. The default file 
normally located at 005CH can be used for random access 
the three bytes starting at BOOT+007DH are available for 
The FCB format is shown with the following fields: 

a sequence of 
in the case 
control block 
files, since 
this purpose. 

(All Information Contained Herein is Proprietary to Digital Research.) 

5 

• 



------------------------------------------------------------
Idrlfllf21/ /lf8Ibllt2It3Iexlslls2Ircld01/ /ldnlcrlr0lrllr21 
------------------------------------------------------------

00 01 02 ••• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35 

where 

dr drive code (0 - 16) 
o => use default drive for file 
1 => auto disk select drive A, 
2 => auto disk select drive B, . . . 
16=> auto disk select drive P. 

fl ••• f8 contain the file name in ASCII 
upper case, with high bit = 0 

tl,t2,t3 contain the file type in ASCII 
upper case, with high bit = 0 
tl', t2', and t3' denote the 
bit of these positions, 
tl' = 1 => Read/Only file, 
t2' = 1 => SYS file, no DIR list 

ex contains the current extent number, 
normally set to 00 by the user, but 
in range 0 - 31 during file I/O 

sl reserved for internal system use 

s2 reserved for internal system use, set 
to zero on call to OPEN, MAKE, SEARCH 

rc record count for extent "ex," 
takes on values from 0 - 128 

d0 ••• dn filled-in by CP/M, reserved for 
system use 

cr current record to read or write in 
a sequential file operation, normally 
set to zero by user . 

r0,rl,r2 optional random record number in the 
range 0-65535, with overflow to r2, 
r0,rl constitute a 16-bit value with 
low byte r0, and high byte rl 

Each file being accessed through CP/M must have a corresponding 
FCB which provides the name and allocation information for all 
subsequent file operations. When accessing files, it is the 
programmer's responsibility to fill the lower sixteen bytes of the FCB 
and initialize the "cr" field. Normally, bytes 1 through 11 are set 
to the ASCII character values for the file name and file type, while 
all other fields are zero. 

(All Information Contained Herein is Proprietary to Digital Research.) 

6 



FCB's are stored in a directory area of the disk, and are 
brought into central memory before proceeding with file operations 
(see the OPEN and MAKE functions). The memory copy of the FCB is 
updated as file operations take place and later recorded permanently 
on disk at the termination of the file operation (see the CLOSE 
command) • 

The CCP constructs the first sixteen bytes of two optional FCB's 
for a transient by scanning the remainder of the line following the 
transient name, denoted by Iff ilel" and II f ile2" in the prototype 
command line described above, with unspecified fields set" to ASCII 
blanks. The first FCB is constructed at location BOOT+005CH, and can 
be used as-is for subsequent file operations. The second FCB occupies 
the d0 ••• dn portion of the first FCB, and must be moved to another 
area of memory before use. If, for example, the operator types 

PROGNAME B:X.ZOT Y.ZAP 

the file PROGNAME.COM is loaded into the TPA, and the default FCB at 
BOOT+005CH is initialized to drive code 2, file name "X" and file type 
"ZOT". The second dr ive code takes the defaul t value 0, which is 
placed at BOOT+006CH, with the file name "Y" placed into location 
BOOT+006DH and file type "ZAP" located 8 bytes later at BOOT+0075H. 
All remaining fields through "cr" are set to zero. Note again that it 
is the programmer's responsibility to move this second file name and 
type to another area, usually a separate file control block, before 
opening the file which begins at BOOT+005CH, due to the fact that the 
open operation will overwrite the second name and type. 

If no file names are specified in the original command, then the 
fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In all 
cases, the CCP translates lower case alphabetics to upper case to be 
consistent with the CP/M file naming conventions. 

As an added convenience, the default buffer area at location 
BOOT+0080H is initialized to the command line tail typed by the 
operator following the program name. The first position contains the 
number of characters, with the characters themselves following the 
character count. Given the above command 1 ine, the area beg inning at 
BOOT+0080H is initialized as follows: 

Boo'r+0 0 8 0H : 
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14 

1 4 II I. I. B 11 II. II .. X" II. U U Z It It 0 II I' Til.. .. II Y hit. It II Z.. U A U II P .. 

where the characters are translated to upper case ASCII with 
uninitiaiized memory following the last valid character. Again, it is 
the responsibility of the programmer to extract the information from 
this buffer before any file operations are performed, unless the 
default DMA address is explicitly changed. 

The individual functions are described in detail in the pages 
which follow. 

(All Information Contained Herein is Proprietary to Digital Research.) 

7 

• 



*************************************** 
* * * FUNCTION fij: System Reset 
* 

* 
* 

*************************************** 
* Entry Parameters: * 
* Register C: 00H * 
*************************************** 

The system reset function returns control to the CP/M operating 
system at the CCP level. The CCP re-initializes the disk subsystem by 
selecting and logging-in disk drive A. This function has exactly the 
same effect as a jump to location BOOT. 

*************************************** 
* 
* 
* 

FUNc'rION 1: CONSOLE INPUT 
* 
* 
* 

*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: 01H 

* 
* 
* 

* Returned Value: * 
* Register A: ASCII Character * 
*************************************** 

The console input function reads the next console character to 
register A. Graphic characters, along with carriage return, line 
feed, and backspace "(ctl-H) are echoed to the console. Tab characters 
(ctl-I) are expanded in columns of eight characters. A check is made 
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P). 
The FDOS does not return to the calling program until a character has 
been typed, thus suspending execution if a character is not ready. 

*************************************** 
* * 
* FUNCTION 2: CONSOLE OUTPUT * 
* .* 
*************************************** 
* 
* 
* 
* 

En t ry Par am e t e r s: 
Register C: 
Register E: 

* 
02H * 
ASCII Character * 

* 
*************************************** 

The ASCII character from register E is sent to the console 
device. Similar to function 1, tabs are expanded and checks are made 
for start/stop scroll and printer echo. 

(All Information Contained Herein is Proprietary to Digital Research.) 

8 



*************************************** 
* * 
* FUNCTION 3: 
* 

READER INPUT * 
* 

*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: 03H 

* 
* 
* 

* Returned Value: * 
* Register A: ASCII Character * 
*************************************** 

The Reader Input function reads the next character from the 
logical reader into register A (see the IOBYTE definition in the "CP/M 
Alteration Guide"). Control does not return until the character has 
been read. 

*************************************** 
* * * FUNCTION 4: 
* 

PUNCH OUTPUT * 
* 

*************************************** 
* 
* 
* 
* 

Entry Parameters: 
Register C: 
Register E: 

* 
04H * 
ASCII Character * 

* 
*************************************** 

The Punch Output function sends the character from register E to 
the logical punch device. 

*************************************** 
* * 
* FUNCTION 5: 
* 

LIST OUTPUT * 
* 

*************************************** 
* Entry Parameters: * 
* Register C: 05H * 
* Register E: ASCII Character * 
* * 
*************************************** 

The List Output function sends the ASCII character in register E 
to the logical listing device. 

(All Information Contained Herein is Proprietary to Digital Research.) 

9 



*************************************** 
* * * FUNCTION 6: DIRECT CONSOLE I/O * 
* * 
*************************************** 
* 
* 
* 
* 
* 

Entry Parameters: 
Register C: 
Register E: 

* Returned Value: 

* 
~6H * 
~FFH (input) or * 
char (output) * 

* 
* 

* Register A: char or status * 
(no value) * 

*************************************** 

Direct console I/O is supported under CP/M for those specialized 
applications where unadorned console input and output is required. 
Use of this function should, in general, be avoided since it bypasses 
all of CP/M1s normal control character functions (e.g., control-S and 
control-P). Programs which perform direct I/O through the BIOS under 
previous releases of CP/M, however, should be changed to use direct 
I/O under BDOS so that they can be fully supported under future 
releases of MP/M and CP/M. 

Upon entry to function 6, register E either contains hexadecimal 
FF, denoti~ a console input request, or register E contains an ASCII 
character. If the input value is FF, then function 6 returns A = ~~ 
if no character is ready, otherwise A contains the next console input 
character. 

If the input value in E is not FF, then function 6 assumes· that 
E contains a valid ASCII character which is sent to the console. 

(All Information Contained Herein is Proprietary to Digital Research.) 

10 



*************************************** 
* * 
* FUNCTION 7: GET I/O BYTE 
* 

* 
* 

*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: 07H 

* 
* 
* * Returned Value: * 

* Register A: I/O Byte Value * 
*************************************** 

The Get I/O Byte function returns the current value of IOBYTE in 
register A. See the "CP/M Alteration Guide" for IOBYTE definition. 

*************************************** 
* 
* 
* 

FUNc'rION 8: SET I/O BYTE 
* 
* 
* 

*************************************** 
* 
* 
* 
* 

Entry Parameters: 
Register C: 
Register E: 

08H 
I/O Byte Value 

* 
* 
* 
* 

*************************************** 

The Set I/O Byte function changes the system IOBYTE value to 
that given in register E. 

~************************************** 

* * 
* FUNCTION 9: PRINT STRING 
* 

* 
* 

*************************************** 
* 
* 
* 
* 

Entry Parameters: 
Register C: 
Registers DE: 

09H 
Str ing Address 

* 
* 
* 
* 

*******************~******************* 

The Print String function sends the character string stored in 
memory at the location given by DE to the console device, until a "$" 
is encountered in the string. Tabs are expanded as in function 2, and 
checks are made for start/stop scroll and printer echo. 

(All Information Contained Herein is Proprietary to Digital Research.) 

11 

• 



*************************************** 
* * 
* FUNCTION 10: READ CONSOLE BUFFER * 
* * 
*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: 
Registers DE: 

0AH 
Buffer Address 

* 
* 
* * * 

* Returned Value: * 
* Console Characters in Buffer * 
*************************************** 

The Read Buffer function reads a line of edited console input 
into a buffer addressed by registers DE. Console input is terminated 
when either the input buffer overflows. The Read Buffer takes the 
form: 

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 +n 

Imxlnclcllc21c31c41c51c61c71 I??I 

where "mx" is the maximum number of characters which the buffer will 
hold (1 to 255), "nc" is the number of characters read (set by FDOS 
upon return), followed by the characters read from the console. if nc 
< mx, then uninitialized positions follow the last character, denoted 
by "??" in the above figure. A number of control functions are 
recognized during line editing: 

rub/del 
ctl-C 
ctl-E 
ctl-H 
ctl-J 
ctl-M 
ctl-R 
ctl-U 
ctl-x 

removes and echoes the last character 
reboots when at the beginning of line 
causes physical end of line 
backspaces one character position 
(line feed) terminates input line 
(return) terminates input line 
retypes the current line after new line 
removes currnt line after new line 
backspaces to beginning of current line 

Note also that certain functions which return the carriage to the 
leftmost position (e.g., ctl-X) do so only to the column position 
where the prompt ended (in earlier releases, the carriage returned to 
the extreme left margin). This convention makes operator data input 
and line correction more legible. 

(All Information Contained Herein is Proprietary to Digital Research.) 

12 



*************************************** 
* * * FUNC'rION 11: GET CONSOLE S'fATUS * 
* * 
*************************************** 
* Entry Parameters: * 
* Register C: 0BH * 
* * * Returned Value: * 
* Register A: Console Status * 
*************************************** 

The Console Status function checks to see if a character has 
been typed at the console. If a character is ready, the value 0FFH is 
returned in register A. Otherwise a 00H value is returned. 

*************************************** 
* * 
* FUNCTION 12: RETURN VERSION NUMBER * 
* * 
*************************************** 
* Entry Parameters: * 
* Register C: 0CH * 
* * * Returned Value: * 
* Registers HL: Version Number * 
*************************************** 

Function 12 provides information which allows version 
independent programming. A two-byte value is returned, with H = 00 
designating the CP/M release·· (H = 01 for MP/M), and L = 00 for all 
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in 
register L, with subsequent version 2 releases in the hexadecimal 
range 21, 22, through 2F. Using function 12, for example, you can 
write application programs which provide both sequential and random 
access functions, wi th 'random access disabled when operating under 
early releases of CP/M. ' 

(All Information Contained Herein is Proprietary to Digital Research.) 

13 

• 



*************************************** 
* * FUNCTION 13: RESET DISK SYSTEM 

* 
* 

* * *************************************** 
* Entry Parameters: * 
* Register C: 0DH * 
* * 
*************************************** 

The Reset Disk Function is used to programmatically restore the 
file system to a reset state where all disks are set to read/write 
(see functions 28 and 29), only disk drive A is selected, and the 
default DMA address is reset to BOOT+0080H. This function can be 
used, for example, by an application program which requires a disk 
change without a system reboot. 

*************************************** 
* 
* FUNCTION 14: SELECT DISK 
* 

* 
* 
* 

*************************************** 
* 
* 
* 
* 

Entry Parameters: 
Register C: 
Register E: 

0EH 
Selected Disk 

* 
* 
* 
* 

*************************************** 

The Select Disk function designates the disk drive named in 
register E as the default disk for subsequent file operations, with E 
= 0 for drive A, 1 for drive B, and so-forth through 15 corresponding 
to drive P in a full sixteen drive system. The drive is placed in an 
"on-lineH status which, in particular, activates its directory until 
the next cold start, warm start, or disk system reset operation. If 
the disk media is changed while it is on-line, the drive automatically 
goes to a read/only status in a standard CP/M environment (see 
function 28). FCB's which specify drive code zero (dr = 00H) 
automatically reference the currently selected default drive. Drive 
code values between 1 and 16, however, ignore the selected default 
drive and directly reference drives A through P. 

(All Information Contained Herein is Proprietary to Digital Research.) 

14 



*************************************** 
* * 
* 
* 

FUNCTION 15: OPEN FILE * 
* 

*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: 
Registers DE: 

0FH 
FCB Address 

* 
* 
* 

* * * Returned Value: * 
* Register A: Directory Code * 
*************************************** 

The Open File operation is used to activate a file which 
currently exists in the disk directory for the currently adtive user 
number. The FDOS scans the referenced disk directory for a match in 
positions 1 through 14 of the FCB referenced by DE (byte sl is 
automatically zeroed), where an ASCII question mark (3FH) matches any 
directory character in any of these positions. Normally, no question 
marks are included and, further, bytes "ex" and "s2" of the FCB are 
zero. 

If a directory element is matched, the relevant directory 
information is copied into bytes d0 through dn of the FCB, thus 
allowing access to the files through subsequent read and write 
operations. Note that an existing file must not be accessed until a 
sucessful open operation is completed. Upon return, the open function 
returns a "directory code" with the value 0 through 3 if the open was 
s uc c e s s f ul ,or (1 F F H ( 2 5 5 dec irn a 1 ) i f the f i 1 e can not be f 0 u n d • I f 
question marks occur in the FCB then the first matching FCB is 
activa ted. Note that the cur rent record ("cr") must be zeroed by the 
program if the file is to be accessed sequentially from the first 
record. 

(All Information Contained Herein is Proprietary to Digital Research.) 

15 

• 



*************************************** 
* * FUNCTION 16: CLOSE FILE 
* 

* 
* 
* 

*************************************** 
* 
* 
* 
* 

Entry Parameters: 
Register C: 
Registers DE: 

l0H 
FCB Address 

* 
* 
* 
* 

* Returned Value: * 
* Register A: Directory Code * 
*************************************** 

The Close File function performs the inverse of the open file 
function. Given that the FCB addressed by DE has been previously 
activated through an open or make function (see functions 15 and 22), 
the close function permanently records the new FCB in the referenced 
disk directory. The FCB matching process for the close is identical 
to the open function. The directory code returned for a successful 
close operation is 0, 1, 2, or 3, while a 0FFH (255 decimal) is 
returned if the file name cannot be found in the directory. A file 
need not be closed if only read operations have taken place. If write 
operations have occurred, however, the close operation is necessary to 
permanently record the new directory information. 

(All Information Contained Herein is Proprietary to Digital Research.) 

16 



*************************************** 
* * * FUNCTION 17: SEARCH FOR FIRST * 
* * 
*************************************** 
* Entry Parameters: * 
* Reg i s t e r C : 11 H * 
* Registers DE: FCB Address * 
* * 
* Returned Value: * 
* Register A: Directory Code * 
*************************************** 

Search First scans the directory for a match with the file given 
by the FCB addressed by DE. The value 255 (hexadecimal FF) is 
returned if the file is not found, otherwise 0, 1, 2, or 3 is returned 
indicating the file is present. In the case that the file is found, 
the current DMA address is filled with the record containing the 
directory entry, and the relative starting position is A * 32 (i.e., 
rotate the A register left 5 bits, or ADD A five times). Although not 
normally required for application programs, the directory information 
can be extracted from the buffer at this position. 

An ASCII question mark (63 decimal, 3F hexadecimal) in any 
position from "fl" through "ex" matches the corresponding field of any 
directory entry on the default or auto-selected disk drive. If the 
"dr" field contains an ASCII question mark, then the auto disk select 
function is disabled, the default disk is searched, with the search 
function returning any matched entry, allocated or free, belonging to 
any user number. This latter function is not normally used by 
application programs, but does allow complete flexibility to scan all 
curr~nt directory values. If the "dr" field is not a question mark, 
the "s2" byte is automatically zeroed. 

*************************************** 
* 
* FUNCTION 18: SEARCH FOR NEXT 
* 

* 
* 
* 

*************************************** 
* Entry Parameters: * 
! Register C: 12H ! 
* Returned Value: * 
* Register" A: Directory Code * 
*************************************** 

The Search Next function is similar to the Search First 
function, except that the directory scan continues from the last 
matched entry. Similar to function 17, function 18 returns the 
decimal value 255 in A when no more directory items match. 

(All Information Contained Herein is Proprietary to Digital Research.) 

17 

• 



*************************************** 
* * 
* FUNCTION 19: DELETE FILE * 
* * 
*************************************** 
* Entry Parameters: * 
* Register C: l3H * 
* Registers DE: FCB Address * 
* 
* Returned Value: 
* Register A: 

* 
* 

Directory Code * 
*************************************** 

The Delete File function removes files which match the FCB 
addressed by DE. The filename and type may contain ambiguous 
references (i.e., question marks in various positions), but the drive 
select code cannot be ambiguous, as in the Search and Search Next 
functions. 

Function 19 returns a decimal 255 
files cannot be found, otherwise a 
returned. 

*************************************** 
* 
* 
* 

FUNCTION 20: READ SEQUENTIAL 
* 
* 
* 

*************************************** 
* Entry Parameters: 
* Register C: 
* Registers DE: 

l4H 
FCB Address 

* 
* 
* 

* * * Returned Value: * 
* Register A: Directory Code * 
*************************************** 

if the referenced file or 
value in the range 0 to 3 is 

Given that the FCB addressed by DE has been activated through an 
open or make function (numbers 15 and 22), the Read Sequential 
function reads the next 128 byte record from the file into memory at 
the current DMA address. the record is read from position "cr" of the 
extent, and the ncr" field is automatically incremented to the next 
record position. If the "cr" field overflows then the next logical 
extent is automatically opened and the "cr" field is reset'to zero in 
preparation for the next read operation. The value 00H is returned in 
the A register if the read operation was successful, while a non-zero 
value is returned if no data exists at the next record position (e.g., 
end of file occurs). 

(All Information Contained Herein is Proprietary to Digital Research.) 

18 



*************************************** 
* 
* 
* 

FUNCTION 21: WRITE SEQUENTIAL 
* 
* 
* 

*************************************** 
* Entry Parameters: * 
* Register C: ISH * 
* Registers DE: FCB Address * 
* * * Returned Value: * 
* Register A: Directory Code * 
*************************************** 

Given that the FCb addressed by DE has been activated through an 
open or make function (numbers 15 and 22), the Write Sequential 
function writes the 128 byte data record at the current DMA address to 
the file named by the FCB. the record is placed at position ncr" of 
the file, and the "cr" field is automatically incremented to the next 
record position. If the Iocr" field overflows then the next logical 
extent is automatically opened and the hcr" field is reset to zero in 
preparation for the next write operation. Write operations can take 
place into an existing file, in which case newly written records 
overlay those which already exist in the file. Register A = 00H upon 
return from a successful write operation, while a non-zero value 
indicates an unsuccessful write due to a full disk. 

*************************************** 
* * * FUNCTION 22: MAKE FILE 

* 
* 
* 

*************************************** 
* 
* 
* 
* 

Entry Parameters: 
Register C: 
Registers DE: 

16H 
FCB Address 

* 
* 
* 
* 

* Returned Value: * 
* Register A: Directory Code * 
*************************************** 

The Make File operation is similar to the open file operation 
except that the FCB must name a file which does not exist in the 
currently referenced disk directory (i.e., the one named explicitly by 
a non-zero "dr" code, or the default disk if "dr" is zero). The FDOS 
creates the file and initializes both the directory and main memory 
value to an empty file. The programmer must ensure that no duplicate 
file names occur, and a preceding delete operation is sufficient if 
there is any possibility of duplication. Upon return, register A = 0, 
1, 2, or 3 if the operation was successful and 0FFH (255 decimal) if 
no more directory space is available. The make function has the 
side-effect of activating the FCB and thus a subsequent open is not 
necessary. 

(All Information Contained Herein is Proprietary to Digital Research.) 

19 

• 



*************************************** 
* * 
* FUNCTION 23: RENAME FILE 
* 

* 
* 

*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: 
Registers DE: 

17H 
FCB Address 

* 
* 
* 

* * 
* Returned Value: * 
* Register A: Directory Code * 
*************************************** 

The Rename function uses the FCB addressed by DE to change all 
occurrences of the file named in the first 16 bytes to the file named 
in the second 16 bytes. The drive code "dr" at position 0 is used to 
select the drive, while the drive code for the new file name at 
position 16 of the FCB is assumed to be zero. Upon return, register A 
is set to a value between 0 and 3 if the rename was successful, and 
0FFH (255 decimal) if the first file name could not be found in the 
directory scan. 

*************************************** 
* * 
* FUNC'r ION 24: RETURN LOGIN VECTOR * 
* * 
*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: 18H 

* 
* 
* 

* Returned Value: * 
* Registers HL: Login Vector * 
*************************************** 

The login vector value returned by CP/M is a 16-bit value in HL, 
where the least significant bit of L corresponds to the first drive A, 
and the high order bit of H corresponds to the sixteenth drive, 
labelled P. A "0" bit indicates that the drive is not on-line, while 
a "I" bit marks an drive that is actively on-line due to an explicit 
disk drive selection, or _an implicit drive select caused by a file 
operation which specified a non-zero "dr" field. Note that 
compatibility is maintained with earlier release~, since registers A 
and L contain the same values upon return. 

(All Information Contained Herein is Proprietary to Digital Research.) 

20 



*************************************** 
* * 
* FUNCTION 25: RETURN CURRENT DISK * 
* * 
*************************************** 
* Entry Parameters: * 
* Register C: 19H * 
* * * Returned Value: * 
* Register I A: . Current Disk * 
****************************~********** 

Function 25 returns the currently selected default disk ~umber 
in register A. The disk numbers range from 0 through 15 corresponding 
to dr ives A through P. 

*************************************** 
* * * FUNCTION 26: SET DMA ADDRESS 
* 

* 
* 

*************************************** 
* Entry Parameters: * 
* Register C: lAH * 
* Registers DE: DMA Address * 
* * 
*************************************** 

'IDMA" is an acronym for Direct Memory Address, which is often 
used in connection with disk controllers which directly access the 
memory of the mainframe computer to transfer data to and from the disk 
subsystem. Al though many computer systems use non-DHA access (i. e. , 
the data is transfered through programmed I/O operations), the DMA 
address has, in CP/M, come to mean the address at which the 128 byte 
data record resides before a disk write and after a disk read. Upon 
coid start, warm start, or disk system reset, the DMA address is 
automatically set to BOOT+0080H. The Set DMA function, however, can 
be used to change this defaul t value to address another area of memory 
where the data records reside. Thus, the DMA address becomes the 
value specified by DE until it is changed by a subsequent Set DMA 
function, cold start, warm start, or disk system reset. 

(All Information Contained Herein is Proprietary to Digital Research.) 

21 



*************************************** 
* * 
* 
* 

FUNCTION 27: GET ADDR(ALLOC) * 
* 

*************************************** 
* Entry Parameters: * 
* Register C: IBH * 
* * * Returned Value: * 
* Registers HL: ALLOC Address * 
*************************************** 

An "allocation vector" is maintained in main memory for each 
on-line disk drive. Various system programs use the information 
provided by the allocation vector to determine the amount of remaining 
storage (see the STAT program). Function 27 returns the base address 
of the allocation vector for the currently selected disk drive. The 
allocation information may, however, be invalid if the selected disk 
has been marked read/only • Although this function is not normally 
used by application programs, additional details of the allocation 
vector are found in the "CP/M Alteration Guide. h 

*************************************** 
* * 
* FUNCTION 28: WRITE PROTECT DISK * 
* * 
*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: ICH 

* 
* 
* 

*************************************** 

The disk write protect function provides temporary write 
protection for the currently selected disk. Any attempt to write to 
the disk, before the next cold or warm start operation produces the 
message 

Bdos Err on d: R/O 

(All Information Contained Herein is Proprietary to Digital Research.) 

22 



*************************************** 
* * 
* 
* 

FUNCTION 29: GET READ/ONLY VECTOR * 
* 

*************************************** 
* 
* 
* 

Entry Parameters: 
Register C: IDH 

* 
* 
* 

* Returned Value: * 
* Registers HL: R/O Vector Value* 
****************************~********** 

Function 29 returns a bit vector in register pair HL which 
indicates drives which have the temporary read/only bit set. Similar 
to function 24, the least significant bit corresponds to drive A, 
while the most significant bit corresponds to drive P. The R/O bit is 
set either by an explicit call to function 28, or by the automatic 
software mechanisms within CP/M which detect changed disks. 

*************************************** 
* * * FUNCTION 30: SET FILE ATTRIBUTES * 
* * 
*************************************** 
* Entry Parameters: * 
* Register C: IEH * 
* Registers DE: FCB Address * 
* * * Returned Value: * 
* Register A: Directory Code * 
*************************************** 

The Set File Attributes function allows programmatic 
manipulation of permanent indicators attached to files. In 
particular, the R/O and Syst~ attributes (tl' and t2') can be set or 
repet. The DE pair addresses an unambiguous file name with the 
appropriate attributes set or reset. Function 30 searches for a 
match, and changes the matched directory entry to contain the selected 
indicators. Indicators fl' through f4' are not presently used, but 
may be useful for applications programs, since they are not involved 
in the matching process during file open and close operations. 
Indicators f5' through fS' and t3' are reserved for future system 
expansion. 

(All Information Contained Herein is Proprietary to Digital Research.) 

23 

• 



*************************************** 
* * 
* 
* 

FUNCTION 31: GET ADDR(DISK PARMS) * 
* 

*************************************** 
* Entry Parameters: * 
* Register C: IFH * 
* * 
* Returned Value: * 
* Registers HL: DPB Address * 
*************************************** 

The address of the BIOS resident disk parameter block is 
returned in HL as a result of this function call. This address can be 
used for either of two purposes. First, the disk parameter values can 
be extracted for display and space computation purposes, or transient 
programs can dynamically change the values of current disk parameters 
when the disk environment changes, if required. Normally, application 
programs will not require this facility. 

*************************************** 
* * * FUNCTION 32: SET/GET USER CODE * 
* * 
*************************************** 
* Entry Parameters: * 
* Register C: 20H * 
* Reg i s t e r . E : 0 F F H (g e t) 0 r * 
* User Code (set) * 
* * 
* Returned Value: * 
* Register A: Current Code or * 
* (no value) * 
*************************************** 

An application program can change or interrogate the currently 
active user number by calling function 32. If register E = 0FFH, then 
the value of the current user number is returned in register A, where 
the value is in the range 0 to 31. If register E is not 0FFH, then 
the current user number is changed to the value of E (modulo 32). 

(All Infdrmation Contairied Herein is Proprietary to Digital Research.) 

24 



**************************************~ 

* * 
* FUNCTION 33: READ RANDOM 
* 

* 
* 

*************************************** 
* Entry Parameters: * 
* Reg i s t e r C : 21 H * 
* Registers DE: FCB Address * 
* * * Returned Value: * 
* Reqister A: Return Code * 
*************************************** 

The Read Random function is similar to the sequential file read 
operation of previous releases, except that the read operation takes 
place at a particular record number, selected by the 24-bit value 
constructed from the three byte field following the FCB (byte 
positions rIO at 33, rl at 34, and r2 at 35). Note that the sequence 
of 24 bits is stored with least significant byte first (rIO), middle 
byte next (rl), and high byte last (r2). CP/M does not reference byte 
r2, except in computing the size of a file (function 35). Byte r2 
must be zero, however, since a non-zero value indicates overflow past 
the end of file. 

Thus, the rIO, rl byte pair is treated as a double-byte, or "word" 
value, which contains the record to read. This value ranges from 10 to 
65535, providing access to any particular record of the 8 megabyte 
file. In order to process a file using random access, the base extent 
(extent (0) must first be opened. Although the base extent mayor may 
not contain any allocated data, this ensures that the file is properly 
recorded in the directory, and is visible 'in DIR requests. The 
selected record number is then stored into the random record field 
(rIO, rl), and the BDOS is called to read the record. Upon return from 
the call, register A either contains an error code, as listed below, 
or the value 010 indicating the operation was successful. In the 
latter case, the current DMA address contains the randomly accessed 
record. Note that contrary to the sequential read operation, the 
record number is not advanced. Thus, subsequent random read 
operations continue to read the same record. 

Upon each random read operation, the logical extent and current 
record values are automatically set. Thus, the file can be 
sequentially read or written, starting from the current randomly 
accessed position. Note, however, that in this case, the last 
randomly read record will be re-read as you switch from random mode to 
sequential read, and the last record will be re-written as you switch 
to a sequential write operation. You can, of course, simply advance 
the random record position following each random read or write to 
obtain the effect ofa sequential I/O operation. 

Error codes returned in register A following a random read are 
listed below. 

(All Information Contained Herein is Proprietary to Digital Research.) 

25 

• 



01 reading unwritten data 
02 (not returned in random mode) 
03 cannot c}ose current extent 
04 seek to unwritten extent 
05 (not returned in read mode) 
06 seek past physical end of disk 

Error code 01 and 04 occur when a random read operation accesses a 
data block which has not been previously written, or an extent which 
has not been created, which are equivalent conditions. Error 3 does 
not normally occur under proper system operation, but can be cleared 
by simply re-reading, or re-opening extent zero as long as the disk is 
not physically write protected. Error code 06 occurs whenever byte r2 
is non-zero under the current 2.0 release. Normally, non-zero return 
codes can be treated as missing data, with zero return codes 
indicating operation complete. 

(All Information Contained Herein is Proprietary to Digital Research.) 

26 



*************************************** 
* * 
* FUNCTION 34: WRITE RANDOM * 
* * 
*************************************** 

Entry Parameters: 
Register C: 22H 

* 
* 
* 
* 

Registers DE: FCB Address 

* 
* 
* 
* * Returned Value: * 

* Register A: Return Code * 
*************************************** 

The Write Random operation is initiated similar to the Read 
Random call, except that data is written to the disk from the current 
DMA address. Further, if the disk extent or data block which is the 
target of the write has not yet been allocated, the allocation is 
performed before the write operation continues. As in the Read Random 
operation, the random record number is not changed as a result of the 
write. The logical extent number and current record positions of the 
file control block are set to correspond to the random record which is 
being written. Again, sequential read or write operations can 
commence following a random write, with the notation that the 
currently addressed record is either read or rewritten again as the 
sequential operation begins. You can also simply advance the random 
record position following each write to get the effect of a sequential 
write operation. Note that in particular, reading or writing the last 
record of an extent in random mode does not cause an automatic extent 
switch as it does in sequential mode. 

The error codes returned 
random read operation with 
indicates that a new extent 
overflow. 

by a random write are identical to the 
the addition of error code 05, which 
cannot be created due to directory 

(All Information Contained Herein is Proprietary to Digital Research.) 

27 



*************************************** 
* * * FUNCTION 35: COMPUTE FILE SIZE * 
* * 
*************************************** 
* Entry Parameters: * 
* Register C: 23H * 
* Registers DE: FCB Address * 
* * Returned Value: 
* Random Record Field Set 

* 
* 
* 

*************************************** 

When computing the size of a file, the DE register pair 
addresses an FCB in random mode format (bytes r0, rl, and r2 are 
present). The FCB contains an unambiguous file name which is used in 
the directory scan. Upon return, the random record bytes contain the 
"virtual" file size which is, in effect, the recbrd· address of the 
record following the end of the file. if, following a call to 
function 35, the high record byte r2 is 01, then the file contains the 
maximum record count 65536. Otherwise, bytes r0 and rl constitute a 
l6-bit value (r0 is the least significant byte, as before) which is 
the 'file size. 

Data can be appended to the end of an existing file by simply 
calling function 35 to set the random record position to the end of 
file, then performing a sequence of random writes starting at the 
preset record address. 

The virtual size of a file corresponds to the physical size when 
the file is written sequentially. If, instead, the file was created 
in random mode and "holes" exist in the allocat'ion, then the file may 
in fact contain fewer records than the size indic,ates. If, for 
example, only the last record of an eigh t megabyte file is wr i tten in 
random mode (i.e., record number 65535), then the virtual size is 
65536 records, although only one block of data is actually allocated. 

(All Information Contained Herein is Proprietary to Digital Research.) 

28 



*************************************** 
* * * FUNCTION 36: SET RANDOM RECORD * 
* * 
*************************************** 
* Entry Parameters: * 
* Register C: 24H * 
* Registers DE: FCB Address * 
* * 
* Returned Value: * 
* Random Record Field Set * 
*************************************** 

The Set Random Record function causes the 
produce the random record position from a file 
written sequentially to a particular point. 
useful in two ways. 

BDOS to automatically 
which has been read or 
The function can be 

First, it is often necessary to initially read and scan a 
sequential file to extract the positions of various "key" fields. As 
each key is encountered, function 36 is called to compute the random 
record position for the data corresponding to this key. If the data 
unit size is 128 bytes, the resulting record position is placed into a 
table with the key for later retrieval. After scanning the entire 
file and tabularizing the keys and their record numbers, you can move 
instantly to a particular keyed record by performing a random read 
using the corresponding random record number which was saved earlier. 
The scheme is easily generalized when variable record lengths are 
involved since the program need only store the buffer-relative byte 
position along with the key and record number in order to find the 
exact starting position of the keyed data at a later time. 

A second use of function 36 occurs when switching from a 
sequential read or write over to random read or write. A file is 
sequentially accessed to a particular point in the file, function 36 
is called which sets the record nu~ber, and subsequent random read and 
write operations continue from the selected point in the file. 

(All Information Contained Herein is Proprietary to Digital Research.) 

29 

• 



3. A SAMPLE FILE-TO-FILE COpy PROGRAM. 

The program shown below provides a relatively simple example of 
file operations. The program source file is created as COPY.ASM using 
the CP/M ED program and then assembled using ASM or MAC, resulting in 
a "HEX" file. The LOAD program is the used to produce a COPY.COM file 
which executes directly under the CCP. The program begins by setting 
the stack pointer to a local area, and then proceeds to move the 
second name from the default area at 006CH to a 33-byte file control, 
block called DFCB. The DFCB is then prepared for file operations by 
clearing the current record field. At this point, the source and 
destination FCB's are ready for processing since the SFCB at 005CH is 
properly set-up by the CCP upon entry to the COpy progr~u. That is, 
the first name is placed into the default fcb, with the proper fields 
zeroed, including the current record field at 007CH. The program 
continues by opening the source file, deleting any exising destination 
file, and then creating' the destination file. If all this is 
successful, the program loops at the label COpy until each record has 
been read from the source file and placed into the destination file. 
Upon completion of the data transfer, the destination file is closed 
and the program returns to the CCP command level by jumping to BOOT. 

0000 = 
0005 = 
005c = 
005c = 
006c = 
0080 = 
0100 = 

0009 = 
000f = 
0010 = 
0013 = 
0014 = 
0015 = 
0016 = 

0100 
0100 3llb02 

0103 0e10 

· , 
sample file-to-file copy program 

~ at the ccp level, the command 

; copy a:x.y b:u.v 
· , 

· , 
boot 
bdos 
fcbl 
sfcb 
fcb2 
dbuff 
tpa 
; 
printf 
openf 
closef 
deletef 
readf 
writef 
makef 

; 

· , 

copies the file named x.y from drive 
a to a file named u.v on drive b. 

equ 
equ 
equ 
equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 
equ 
equ 
equ 

org 
lxi 

0000h 
0005h 
005ch 
fcbl 
006ch 
0080h 
0100h 

9 
15 
16 
19 
20 
21 
22 

; system reboot 
bdos entry point 
first file name 
source fcb 
second file name 

; defaul t buffer 
beg inning of tpa 

print buffer func# 
open file func# 
close file func# 
delete file func# 
sequential read 
sequential write 
make file func# 

tpa beginning of tpa 
sp,stack; local stack 

move second file name to dfcb 
mvi c,16 ; half an fcb 

(All Information Contained Herein is Propr ietary to big i tal Research.) 

30 



131135 116cr3r3 
131138 21dar31 
r31Qlb la mfcb: 
QlIQlc 13 
QlIQld 77 
01Qle 23 
01Qlf r3d 
131113 c2r3br31 

13113 af 
0114 32far31 

Qll17115cr3r3 
011a cd6901 
r311d 1187131 
131213 3c 
13121 cc6101 

13124 Ilda01 
13127 cd73r31 

012a Ilda01 
012d cd8201 
01313 119601 
0133 3c 
0134 cc6101 

· , 

· , 

; 
0137 115c00 copy: 
r313a cd7801 
013d b7 
013e c251r31 

0141 
13144 
13147 
014a 
r314b 

,014e 

IldaQll 
cd7d0l 
lla9 £11 
b7 
c46101 
c33701 

0151 Ilda01 
13154 cd6e01 
0157 21bb01 
Ql15a 3c 
Ql15b cc6101 

· , 
; 

; 
eofile: 

lxi 
lxi 
Idax 
inx 
mov 
inx 
dcr 
jnz 

d,fcb2 
h,dfcb 
d 
d 
m,a 
h 
c 
mfcb 

source of move 
destination fcb 

; source fcb 
ready next 
dest fcb 
ready next 
count 16 ••• 0 
loop 16 times 

name has been moved, zero cr 
xra a ; a = 00h 
sta dfcbcr; current rec = 13 

source and destination fcb's ready 

lxi 
call 
lxi 
inr 
cz 

d, sfcb 
open ; 
d,nofile; 
a 
finis 

source file 
error if 255 
ready message 
255 becomes 13 
done if no file 

source file open, prep destination 
lxi d,dfcb destination 
call delete remove if present 

lxi 
call 
lxi 
inr 
cz 

d,dfcb 
make 
d,nodir 
a 
finis 

destination 
create the file 
ready mes sage 
255 becomes 0 
done if no dir space 

source file open, dest file open 
copy until end of file on source 

lxi 
call 
ora 
jnz 

d,sfcb 
read 
a 
eofile 

source 
read next record 
end of file? 
skip write if so 

not 
lxi 
call 
lxi 
ora 
cnz 
j mp 

end of file, write the record 

; end 
lxi 
call 
lxi 
inr 
cz 

d,dfcb destination 
write write record 
d,space 
a 
finis 
copy 

ready message 
00 if write ok 
end if so 
loop un til eo f 

close destination 
destination 

of file, 
d,dfcb 
close ; 255 if error 
h,wrprot; ready message 
a 
finis 

255 becomes 130 
shouldn't happen 

copy operation complete, end 

(All Information Contained Herein is Proprietary to Digital Research.) 

31 



015e 11cc01 

0161 0e09 
0163 cd0500 
0166 c30000 

· , finis: 

lxi 

~ write 
mvi 
call 
jmp 

d,normal~ ready message 

message given by de, reboot 
c,printf 
bdos ~ write message 
boot ~ reboot system 

system interface subroutines 
(all return directly from bdos) 

0169 0e0f open: mvi 
016b c30500 jmp 

· , 
016e 0e10 close: mvi 
0170 c30500 jmp 

· , 
01730e13 delete: mvi 
0175 c30500 jmp 

· , 
0178 0e14 read: 
017a c30500 

~ 
017d 0e15 write: 
017f c30500 

~ 
0182 0e16 make: 
0184 c30500 

0187 
0196 
01a9 
01bb 
!{llcc 

6e6f20fnofile: 
6e6f209nodir: 
6f7574fspace: 
7772695wrprdt: 
636f700normal: 

mvi 
jmp 

mvi 
jmp 

mvi 
jmp 

console 
db 
db 
db 
db 
db 

c,openf 
bdos 

c,closef 
bdos 

c,deletef 
bdos 

c, readf 
bdos 

c,writef 
bdos 

c,makef 
bdos 

mes sages 
'no source file$' 
'no directory spaceS' 
'out of data space$' 
'write protected?$' 
'copy complete$' 

data areas 
01da 
01fa = 

01fb 

021b 

dfcb: ds 33 ; destination fcb 
dfcbcr equ dfcb+32 ; current record 

as 32 16 level stack 
stack: 

end 

Note that there are several simplifications in this particular 
program. First, there are no checks for invalid file names which 
could, for example, contain ambiguous references. This situation 
could be detected by scanning the 32 byte default area starting at 
location 005CH for ASCII question marks. A check should also be made 
to ensure that the file names have, in fact, been included (check 
locations 005DH and 006DH for non-blank ASCII characters). Finally, a 
check should be made to ensure that the source and destination file 
names are different. A speed improvement could be made by buffering 
more data on each read operation. One could, for example, determine 

(All Information Contained Herein is Proprietary to Digital Research.) 

32 



the size of memory by fetching FBASE from location 0006H and use the 
entire remaining portion of memory for a data buffer. In this case, 
the programmer simply resets the DMA address to the next successive 
128 byte area before each read. Upon writing to the destination file, 
the DMA address is reset to the beginning of the buffer and 
incremented by 128 bytes to the end as each record is transferred to 
the destination file. 

(All Information Contained Herein is Proprietary to Digital Research.) 

33 

• 



4. A SAMPLE FILE DUMP UTILITY. 

The file dump program shown below is slightly more complex than 
the :simple copy program given in the previous section. The dump 
program reads an inputf ile, specified in the CCP command line, and 
displays the content of each record in hexadecimal format at the 
console. Note that the dump program saves the CCp's stack upon entry, 
resets the stack to a local area, and restores the CCp's stack before 
returning directly to the CCP. Thus, the dump program does not 
perform and warm start at the end of processing. 

0HH} 
13005 = 
0001 = 
0002 = 
0009 = 
000b = 
000f = 
0014 = 

005c = 
0080 = 

000d = 
13 00a = 

o 05c = 
013 5d = 
01365 = 
0068 = 
006b = 
007c = 
0137d = 

0100 210000 
01133 39 

0104 221502 

0107 3157132 

o 1 0a cd cl 0 1 
o 10d f e ff 
010f c21b01 

0112 Ilf301 
0115 cd9c01 
0118 c35101 

; DUMP program reads input file and displays hex data 

bdos 
cons 
typef 
pr~ntf 

brkf 
openf 
readf . , 
fcb 
buff . , 
cr 
If 

fcbdn 
fcbfn 
fcbft 
fcbrl 
fcbrc 
fcbcr 
fcbln 

org 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

equ 
equ 

1130h 
13 0 05h 
1 
2 
9 
11 
15 
213 

5ch 
813h 

;dos entry point 
; read console 
;type function 
;buffer print entry 
;break key function (true if char 
;file open 
;read function 

;file control block address 
;input disk buffer address 

non graphic characters 
egu 0dh ;carriage return 
equ 0ah ;line feed 

file 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

control block definitions 
fcb+0 ;disk name 
fcb+l ;file name 
fcb+9 ;disk file type (3 characters) 
fcb+12 ;file's current reel number 
fcb+15 ;file's record count (13 to 128) 
fcb+32 ;current (next) record number (0 
fcb+33 ; fcb length 

set up stack 
lxi h,0 
dad sp 
entry stack pointer in hI from the ccp 
shld oldsp 
set sp to local stack area (restored at finis) 
lxi sp,stktop 
read and print successive buffers 
call setup ;set up input file 
cpi 255 ;255 if file not present 
jnz openok ;skip if open is ok 

file 
lxi 
call 
jmp 

not there, give error message and return 
d,opnmsg 
err 
finis ito return 

(All Information Contained Herein is Proprietary to Digital Research.) 

34 



011b 3e80 
011d 321302 

0120 210000 

0123 e5 
0124 cda201 
0127 el 
0128 da5101 
012b 47 

012c 7d 
012d e60f 
012f c24401 

0132 cd7201 

0135 cd5901 

0138 0f 
0139 da5101 

013c 7c 
013d cd8f01 
0140 7d 
0141 cd8f01 

0144 23 
0145 3e20 
0147 cd6501 
014a 78 
014b cd8f01 
014e c32301 

0151 cd7201 
0154 2a1502 
0157 f9 

0158 c9 

0159 e5d5c5 
015c 0e0b 
015e cd0500 
0161 cldlel 

openok: 

; 
gloop: 

nonum: 

. 
I 

finis: 

. 
I 

break: 

;open operation ok, set buffer index to end 
mvi a,80h 
sta ibp ;set buffer pointer to 80h 

next address to print hI contains 
lxi h,0 ;start with 0000 

h 
gnb 
h 
finis 
b,a 

;save line position 

;recall line position 
;carry set by gnb if end file 

push 
call 
pop 
jc 
mov 
print 
check 
mov 
ani 
jnz 
print 

hex values 
for line fold 

call 

a,l 
0fh ;check low 4 bits 
nonum 

line number 
crlf 

check for break key 
call break 
accum lsb = 1 if character ready 
rrc ;into carry 
jc finis ;don't print any more 

mov 
call 
mov 
call 

inx 
mvi 
call 
mov 
call 
j mp 

end of 
(note 
call 
lhld 
sphl 
stack 
ret 

a,h 
phex 
a,l 
phex 

h 
a,' , 
pchar 
a,b 
phex 
gloop 

ito next line number 

dump, return to ccp 
that a jmp to 0000h reboots) 

cr If 
oldsp 

pointer contains ccp's stack location 
ito the ccp 

sub r ou tin e s 

;check break key (actually any key will do) 
push h! push d! push b; environment saved 
mvi c,brkf 
call bdos 
pop b! pop d! pop h; environment restored 

(All Information Contained Herein is Proprietary to Digital Research.) 

35 

• 



0164 c9 ret 
i 
pchar: iprint a character 

0165 e5d5c5 push h! push d! push bi saved 
0168 0e02 mvi c, typef 
0l6a Sf mov e,a 
0l6b cd0500 call bdos 
0l6e cldlel pop b! pop d! pop hi restored 
0171 c9 ret 

i 
cr If: 

0172 3e0d mvi a,cr 
0174 cd6501 call pchar 
0177 3e0a mvi a,lf 
0179 cd650l call pchar 
017c c9 ret 

i 
pnib: iprint nibble in reg a 

0l7d e60f ani 0fh i low 4 bits 
017f fe0a cpi 10 
0181 d28901 jnc p10 

less than or equal to 9 
0184 c630 adi 10' 
0186 c38b01 jmp prn 

greater or equal to 10 
0189 c637 p10: adi I a • - 10 
0l8b cd6501 prn: call pchar 
0l8e c9 ret 

i 
phex: iprint hex char in reg a 

0l8f f5 push psw 
0190 0f rrc 
0191 0f rrc 
0192 0f rrc 
0193 0f rrc 
0194 cd7d0l call pnib iprint nibble 
0197 fl pop psw 
0198 cd7d0l call pnib 
019b c9 ret 

err: iprint error message 
d,e addresses message ending with "$10 

019c 0e09 mvi c,printf iprint buffer function 
01ge cd0500 call bdos 
01al c9 ret 

. , 
gnb: i get next byte 

01a2 3a1302 Ida ibp 
01a5 fe80 cpi 80h 
01a7 c2b301 jnz g0 

read another buf'fer 

(All Information Contained Herein is Proprietary to Digital Research.) 

36 



9laa cdce9l 
9lad b7 
9lae cab39l 

9lbl 37 
9lb2 c9 

9lb3 5f 
9lb4 1699 
9lb6 3c 
9lb7 321392 

9lba 218999 
9lbd 19 

9lbe 7e 

9lbf b7 
9lc9 c9 

; 

; 

; 
g9: 

· I 

; 

; 

· I 

call 
ora 
jz 
end 
stc 
ret 

diskr 
a ;zero value if read ok 
gf{J ;for another byte 

of data, return with carry set for eof 

;read the byte at buff+reg a 
mov e,a ;ls byte of buffer index 
mvi d,f{J ;double precision index to de 
inr a ;index=index+l 
sta ibp ;back to memory 
pointer is incremented 
save the current file address 
lxi h,buff 
dad d 
absolute character address is in hI 
mov a,m 
byte is in the accumulator 
ora a ;reset carry bit 
ret 

setup: ; set up file 
; open the file for input 

f{Jlcl af xra a i zero to accum 
f{Jlc2 327cf{J9 sta fcbcr iclear current record 

f{Jlc5 11Sc00 
0lc8 ge0f 
0lca cd0500 

0lcd c9 

9lce e5d5c5 
0ldl l15c90 
0ld4 ge14 
9ld6 cd0509 
0ld9 cldlel 
0ldc c9 

; 

; 

; 
diskr: 

· I 

lxi 
mvi 
call 
255 in 
ret 

d,fcb 
c,openf 
bdos 

accum if open error 

;read disk file record 
push h! push d! push b 
lxi d,fcb 
mvi c" r.eadf 
call bdos 
pop b! pop d! pop h 
ret 

; fixed message area 
0ldd 46494c0signon: db 'file dump version 2.0$' 
0lf3 ~d9a4e90pnmsg: db cr,lf,'no input file present on disk$' 

0213 
0215 

9217 

f{J257 

· , 
ibp: 
oldsp: 
; 

stktop: 

var iable area 
ds 2 
ds 2 

stack area 
ds 64 

end 

;input buffer pointer 
:entry sp value from ccp 

ireserve 32 level stack 

(All Information Contained Herein is Proprietary to Digital Research.) 

37 

• 



5. A SAMPLE RAND<l4 ACCESS PROGRAM. 

This manual is concluded with a rather extensive, but complete 
example of random access operation. The program listed below performs 
the simple function of reading or writing random records upon command 
from the terminal. Given that the program has been created, 
assembled, and placed into a file' labelled RANDOM. COM , the CCP level 
command: 

RAND<l4 X. DA T 

starts the test program. The program looks for a file by the name 
X.DAT (in this particular case) and, if found, proceeds to prompt the 
console for input. If not found, the file is created before the 
prompt is given. Each prompt takes the form 

next command? 

and is followed by operator input, terminated by a carriage return. 
The input commands take the form 

nW nR Q 

where n is an integer value in the range 0 to 65535, and W, R, and Q 
are simple command characters corresponding to random write, random 
read, and quit processing, respectively. If the W command is issued, 
the RAND<l4 program issues the prompt 

type data: 

The operator then responds by typing up to 127 characters, followed by 
a carriage return. RAND<l4 then writes the character string into the 
X.DAT file at record n. If the R command is issued, RANDOM reads 
record number n and displays the string. valu.e at the console. If the 
Q command is issued, the X.DAT file is closed, and the program returns 
to the console command processor. In the interest of brevity, the 
only er ror message is 

error, try again 

The program begins with an initialization section where the 
input file is opened or created, followed by a continuous loop at the 
label "ready" where the individual commands are interpreted. The 
default file control block at 005CH and the default buffer at 0080H 
are used in all disk operations. The utility subroutines then follow, 
wh;ch contain the principal input line processor, called "readc." 
Th1S particular program shows the elements of random access 
processing, and can be used as the basis for further program 
development. 

(All Information Contained Herein is Proprietary to Digital Research.) 

38 



0HH?J 

0000 = 
0005 = 

0001 = 
0002 = 
0009 = 
000a = 
000c = 
o 00f = 
0010 = 
0016 = 
0021 = 
0022 = 

005c = 
007d = 
007f = 
0080 = 

000d = 
000a = 

0100 3lbc0 

0103 0e0c 
0H'5 cd050 
0108 fe20 
010a d2l60 

0l0d lllb0 
0110 cdda0 
0113 c3000 

0116 0e0f 
0118 115c0 
0l1b cd050 
011e 3c 
011f c2370 

.*************************************************** , 
· * , 
~* sample random access program for cp/m 2.0 
· * , 

* 
* 
* 

.*************************************************** , 

~ 
reboot 
bdos 
~ 
coninp 
conout 
pstring 
rstring 
version 
openf 
closef 
makef 
readr 
writer 
~ 
fcb 
ranrec 
ranovf 
buff 
· , 
cr 
If 
· , 

org 

equ 
equ 

egu 
egu 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

equ 
equ 
equ 
equ 

equ 
egu 

100h 

0000h 
0005h 

1 
2 
9 
10 
12 
15 
16 
22 
33 
34 

005ch 
fcb+33 
fcb+35 
0080h 

0dh 
0ah 

~base of tpa 

~systern reboot 
~bdos entry point 

~console input function 
~console output function 
~print string until 1$1 
~read console buffer 
1return version number 
~file open function 
~close function 
;make file function 
;read random 
;write random 

;default file control block 
irandom record position 
~high order (overflow) byte 
;buffer address 

~carriage return 
~line feed 

.*************************************************** , 
· * , 
;* load SP, set-up file for random access 

* 
* 

.* * , 

.*************************************************** , 
1 xis p , s tack 

i version 2.0? 
mvi c,version 
call bdos 
cpi 20h ;version 2.0 or better? 
jnc versok 
bad version, message and go back 
lxi d,badver 
call print 
jmp reboot 

versok: 
correct version for random access 
mvi c,openf ;open default fcb 
lxi d,fcb 
call bdos 
inr a ;err 255 becomes zero 
jnz ready 

· , 
cannot open file, so create it 

(All Information Contained Herein is Proprietary to Digital Research.) 

39 

• 



121122 0e16 
121124 115cl21 
121127 cdl215121 
12112a 3c 
12112b c237121 

12112e 113al21 
121131 cddal21 
121134 c3121121121 

121137 cde5121 
12113a 227dl21 
12113d 217fl21 
12114121 36121121 
121142 fe51 
121144 c256121 

121147 0ell21 
121149 115c0 
12114c cdl215121 
014f 3c 
12115121 cab9121 
121153 c3 1210 121 

0156 fe57 
121158 c289121 

12115b 114deJ 
12115e cddal21 
121161 l21e7f 
121163 218121121 

121166 c5 
121167 e5 
121168 cdc2121 
12116b el 

mvi c,makef 
lxi d,fcb 
call bdos 
inr a ,err 255 becomes zero 
jnz ready 

, cannot create file, directory full 
lxi d,nospace 
call print 
jmp reboot ,back to ccp 

; 
.*************************************************** , 
· * , 
· * , 
· * , 

loop back to "ready" after each command 
* 
* 
* 

.*************************************************** , 
; 
ready: 
; file is ready for processing 

call readcom ;read next command 
shld ranrec ;store input record# 
lxi h, ranovf 
mvi m,121 ;clear high byte if set 
cpi I QI ;qui t? 
jnz notq 

· quit processing, close file , 
mvi c,closef 
lxi d,fcb 
call bdos 
inr a ;err 255 becomes 121 
jz error ; er ror message, retry 
jmp reboot ; back to ccp 

· , 
.*************************************************** , 
· * , ,* end of quit command, process write 

* 
* 

.* * , 

.*************************************************** , 
notq: 

not the quit command, random write? 
cpi IW I 

jnz notw 

this is a random wr i te, fill buffer until cr 
lxi d,datmsg 
call print ,da ta prompt 
mvi c,127 ;up to 127 characters 
lxi h,buff ;destination 

r loop: ; read next character to buff 
push b ;save counter 
push h ;next destination 
call getchr ;character to a 
pop h ;restore counter 

(All Information Contained Herein is Proprietary to Digital Research.) 

40 



o 16c c1 
016d fe0d 
o 16f ca780 

9172 77 
~173 23 
0174 0d 
0175 c2669 

0178 3600 

017a 0e22 
017c 11Sc0 
017f cd050 
0182 b7 
0183 c2b90 
0186 c3370 

0189 feS2 
018b c2b90 

018e file21 
0190 115c0 
0193 cd050 
0196 b7 
0197 c2b90 

019a cdcf0 
o 19d 0e80 
019f 21800 

01a2 7e 
01a3 23 
01a4 e67f 
01a6 ca370 
01a9 cS 
01aa eS 
01ab fe20 
o lad d4c80 
o 1b0 el 
01bl c1 
01b2 0d 
o Ib3 c2a20 
01b6 c33Ul 

pop b ; restore next to fill 
cpi cr ;end of line? 
jz erloop 

; not end, store character 
mov m,a 
inx h ;next to fill 
dcr c ;counter goes down 
jnz rloop ;end of buffer? 

erloop: 
end of read loop, store 00 
mvi m,0 

· , 
write the record to selected record number 
mvi c,writer 
lxi d,fcb 
call bdos 
ora a ;error code zero? 
jnz error ;message if not 
jmp ready ;for another record 

; 
;*************************************************** 
· * , 
;* end of write command, process read 
· * , 

* 
* 
* 

.*************************************************** , 
notw: 

not a wr i te command, read record? 
cpi • R I 
jnz error ;skip if not 

read random record 
mvi c, readr 
lxi d,fcb 
call bdos 
ora a ;return code 00? 
jnz error 

read was successful, write to console 
call cr1f ;new line 
mvi c,128 ;max 128 characters 
lxi h,buff ;next to get 

w1oop: 
mov a,m ;next character 
inx h ;next to get 
ani 7fh ;mask parity 
jz ready ;for another command if 00 
push b ;save counter 
push h ;save next to get 
cpi • I ;graphic? 
cnc putchr ;skip output if not 
pop h 
pop b 
dcr c ; count=count-1 
jnz wloop 
jmp ready 

(All Information Contained Herein is Proprietary to Digital Research.) 

41 

• 



01b9 11590 
01bc cdda0 
01bf c3370 

01c2 0e01 
01c4 cd050 
01c7 c9 

01c8 0e02 
01ca Sf 
01cb cd050 
01ce c9 

01cf 3e0d 
01dl cdc80 
01d4 3e0a 
01d6 cdc80 
01d9 c9 

01da d5 
01db cdcf0 
01de dl 
01df 0e09 
01el cd050 
01e4 c9 

01e5 116b0 
01e8 cdda0 
01eb 0e0a 
01ed 117a0 
01f0 cd050 

. , 
:*************************************************** 
.* * , 
:* end of read command, all errors end-up here 
. * , * 

* 
:*************************************************** 

error: 
lxi 
call 
jmp 

d,errmsg 
print 
ready 

i 
i*************************************************** 
.* * , 
i* utility subroutines for console i/o * 
.* * , 
.*************************************************** , 
getchr: 

i read next console character to a 
mvi c,coninp 
call bdos 
ret 

pu tchr: 
iwrite character from a to console 
mvi c, conout 
mov e,a icharacter to send 
call bdos isend character 
ret 

cr If: 
isend car r iage return line feed 
mvi a,cr i carr iage return 
call putchr 
mvi a,lf iline feed 
call putchr 
ret 

print: 
iprint the buffer addressed by de until $ 
push d 
call crlf 
pop d inew line 
mvi c ,pstr ing 
call bdos iprint the str ing 
ret 

i 
read com : 

i read the next command line to the conbuf 
lxi d ,prompt 
call print i command? 
mvi c, r s t ring 
lxi d,conbuf 
call bdos i read command line 
command line is present, scan it 

(All Information Contained Herein is Proprietary to Digital Research.) 

42 



01f3 21000 
01f6 117c0 

h,0 istart with 0000 
d,conlinicommand line 

01f9 1a readc: 

lxi 
lxi 
ldax 
inx 
ora 

d ;next command character 
01fa 13 
01fb b7 
01fc c8 

01fd d630 
01ff fe0a 
0201 d2130 

0204 29 
0205 4d 
0206 44 
0207 29 
0208 29 
0209 09 
o 20a 85 
o 20b 6f 
020c d2f90 
o 20f 24 
0210 c3f90 

i 

d ito next command position 
a icannot be end of command 

rz 
not zero, numeric? 
sui 10 1 
cpi 10 icarry if numeric 
jnc endrd 
add-in next digit 
dad h ;*2 
mov 
mov 
dad 
dad 
dad 
add 
mov 
jnc 
inr 
jmp 

c,l 
b,h 
h 
h 
b 
1 
l,a 
readc 
h 
readc 

;bc = value * 2 
;*4 
;*8 
;*2 + *8 = *10 
;+digit 

;for another char 
; overflow 
;for another char 

endrd: 

0213 c630 
0215 fe61 
0217 d8 

0218 e65f 
o 21a c9 

end of read, restore value in a 
adi '0' ; command 
cpi la' ;translate case? 
rc 
lower case, mask lower case bits 
ani l0l$111lb 
ret . , 

.*************************************************** , 

.* * , 
;* string data area for console messages * 
.* * , 
.*************************************************** , 
badver: 

02lb 536f79 db 'sorry, you need cp/m version 2$' 
nospace: 

o 23a 4e6f29 db 'no directory space$1 
datmsg: 

024d 547970 db 'type da ta: $ I 
e r rmsg: 

0259 457272 db 'error, try again.$' 
prompt: 

026b 4e6570 db Inext command? $ , 

(All Information Contained Herein is Proprietary to Digital Research.) 

43 



e27a 21 
e27b 
e27c 
ee2l = 
e29c 

1tJ2bc 

.*************************************************** , 

.* * , ,* fixed and variable data area 

.* , * 
* 

.*************************************************** , 
conbuf: db conlen : length of console buffer 
consiz: ds 1 ,resul ting size after read 
conlin: ds 32 : length 32 buffer 
conlen equ $-consiz 
: 

ds 32 :16 level stack 
stack: 

end 

Again, major improvements could be made to this particular 
program to enhance its operation. In fact, with some work, this 
program could evolve into a simple data base management system. One 
could, for example, assume' a standard record size of 128 bytes, 
consisting of arbitrary fields within the record. A program, called 
GETKEY, could be developed which first reads a sequential file and 
extracts a specific field defined by the operator. For example, the 
command 

GETKEY NAMES.DAT LASTNAME lltJ 2e 

would cause GETKEY to read the data base file NAMES.DAT and extract 
the II LASTNAME II field from each record, starting at position Ie and 
ending at character 2e. GETKEY builds a table in memory consisting of 
each particular LASTNAME field, along with its 16-bit record number 
location within the file. The GETKEY program then sorts this list, 
and writes a new file, called LASTNAME.KEY, which is an alphabetical 
list of LASTNAME fields with their corresponding record numbers. 
(This list is called an "inverted index" in information retrieval 
parlance.) 

Rename the program shown above as QUERY, and massage ita bi t so 
that it reads a sorted key file into memory. The command line might 
appear as: 

QUERY NAMES.DAT LASTNAME.KEY 

Instead of reading a number, the QUERY program reads an alphanumeric 
string which is a particular key to find in the NAMES.DAT data base. 
Since the LASTNAME.KEY list is sorted, you can find a particular entry 
quite rapidly by performing a IIbinary search, II similar to looking up a 
name in the telephone book. That is, starting at both ends of the 
list, you examine the entry halfway in between and, if not matched, 
split either the upper half or the lower half for the next search. 
You'll quickly reach the item you're looking for (in 10g2(n) steps) 
where you'll find the corresponding record number. Fetch and display 
this record at the console, just as we have done in the program shown 
above. 

(All Information Contained Herein is Proprietary to Digital Research.) 

44 



At this point you're just getting started. with a little more 
work, you can allow a fixed grouping size which differs from the 128 
byte record shown above. This is accomplished by keeping track of the 
record number as well as the byte offset within the record. Knowing 
the group size, you randomly access the record containing the proper 
group, offset to the beginning of the group within the record read 
sequentially until the group size has been exhausted. 

Finally, you can improve QUERY considerably by allowing boolean 
expressions which compute the set of records which satisfy several 
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE 
less than 45. Display all the records which fit this description. 
Finally, if your lists are getting too big to fit into memory, 
randomly access your key files from the disk as well. One note of 
consolation after all this work: if you make it through the project, 
you'll have no more need for this manual! 

(All Information Contained Herein is Proprietary to Digital Research.) 

45 

• 



6. SYSTEM FUNCTION SUMMARY. 

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

System Reset 
Console Input 
Console Output 
Reader Input 
punch Output 
List Output 
Direct Console I/O 
Get I/O Byte 
Set I/O Byte 
Pr int Str ing 
Read Console Buffer 
Get Console Status 
Return Version Number 
Reset Disk System 
Select Disk 
Open File 
Close File 
Search for First 
Search for Next 
Delete File 
Read Sequential 
write Sequential 
Make File 
Rename File 
Return Login Vector 
Return Current Disk 
Set DMA Address 
Get Addr (Alloc) 
write Protect Disk 
Get R/O Vector 
Set File Attributes 
Get Addr (disk parms) 
Set/Get User Code 
Read Random 
Wr i te RandOm 
Compute File Size 
Set Random Record 

none 
none 
E = char 
none 
E = char 
E = char 
see def 
none 
E = IOBYTE 
DE = .Buffer 
DE = • Buffer 
none 
none 
none 
E = Disk Number 
DE = .FCB 
DE = .FCB 
DE = .FCB 
none 
DE = .FCB 
DE = .FCB 
DE = .FCB 
DE = .FCB 
DE = .FCB 
none 
none 
DE = .DMA 
none 
none 
none 
DE = .FCB 
none 
see def 
DE = .FCB 
DE = .FCB 
DE = .FCB 
DE = .FeB 

* Note that A = L, and B = H upon return 

none 
A = char 
none 
A = char 
none ' 
none 
see def 
A = IOBYTE 
none 
none 
see def 
A = 00/FF 
HL= Version* 
see def 
see def 
A = Dir Code 
A = Dir Code 
A = Dir Code 
A = Dir Code 
A = Dir Code 
A = Err Code 
A = Err Code 
A = Dir Code 
A = Dir Code 
HL= Login Vect* 
A = Cur Disk:fl: 
none 
HL= .Alloc 
see def 
HL= R/O Vect* 
see def 
HL= .DPB 
see def 
A = Err Code 
A = Err Code 
r0, rl, r2 
r0, rl, r2 

(All Information Contained Herein is Proprietary to Digital Research.) 

46 



THE CP/M 2.0 . 
SYSTEM ALTERATION GUIDE 

I 





DIIJ~IJ~Tfll RESEflRI:H 
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896 

CP/M 2.0 ALTERATION GUIDE-

Copyright (c) 1979 

DIGITAL RESEARCH 



. Copyright 

Copyright (c) 1979 by Digital Research. All rights reserved. 
No part of this publication may be reproduced, transmitted. 
transcribed, stored in a retrieval system, or translated into 
any language or computer language, in any form or by any 
means, electronic, mechanical. magnetic, optIcal, chemical, 
manual or otherwise, without the prior written permission of 
Digital Research, Post Office Box 579, Pacific Grove, 
CaJifornia 93950. 

Disclaimer 

Digital Research makes no representations or warranties with 
respect to the contents hereof and specificalJy disclaims any 
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the right 
to revise this publication and to make changes from time to 
time in the content hereof without obligation of Digital 
Research to notify any person of such revision or changes. 

Trademarks 

CP/M is a registered trademark of Digital Research. MP/M, 
MAC,and SID are trademarks of Digital Research. 



1. 

2. 

3. 

4. 

Introduction 

CP/M 2.0 ALTERATION GUIDE 

Copyright (c) 1979 
Digital Research, Box 579 
Pacific Grove" California 

First Level System Regeneration • 

Second Level System Generation . . . . . . . . . . . . . 
Sample Getsys and Putsys Programs • 

5. Diskette Organization . . . . . . . . . . . 
6. 

7. 

The BIOS Entry Points • 

A Sample BIOS 

8. A Sample Cold Start Loader 

9. Reserved Locations in Page Zero • 

10. Disk Parameter Tables 

11. The DISKDEF Macro Library • 

12. Sector Blocking and Deblocking 

. . . . . 

". . . . . 

. . . . . . . . 
Appendix A 
Appendix B 
Appendix C 
Appendix D 
Appendix E 
Appendix F 
Appendix G 

. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 

1 

2 

6 

10 

12 

14 

21 • 22 

23 

25 

'30 

34 

36 
39 
50 
56 
59 
61 
66 





1. IN'rRODuC'rION 

'rhe standard CP/M system assumes operation on an Intel r1DS-800 
microcomputer development system, but is designed so that the user can 
alter a specific set of subroutines which define the hardware 
operating environment. In this way, the user can T?roduce a diskette 
which operates with any IBM-374l format compatible drive controller 
and other peripheral devices. 

Altnough standard CP/M 2.0 is configured for single density floppy 
disks, field-alteration features allow adaptation to a wide variety of 
disk subsystems from single drive minidisks through high-capacity 
"hard disk" systems. In order to simplify the following adaptation 
process, we assume that CP/M 2.0 will first be configured for single 
density floppy disks where minimal editing and debugging tools are 
available. If an earlier version of CP/M is available, the 
customizing process is eased considerably. In this latter case, you 
may. wiSh to briefly review the system generation process, and skip to 
later sections which discuss system alteration for non-standard disk 
systems. 

In order to achieve device independence, CP/M is separated into 
tnree distinct modules: 

BIOS - basic I/O system which is envirol1ioent dependent 
BOOS - basic disk operating system which is not dependent 

upon the hardware configuration 
CCP - the console command processor which uses the BDOS 

Of these modules, only the BIOS is dependent upon the particular 
nardware. That is, the user can "patch" the distribution version of 
CP/M to provide a new BIOS which provides a customized interface 
between the remaining CP/M modules and the user's own hardware system. 
The purpose of this document is to T?rovide a step-by-step procedure 
for patching your new BIOS into CP/M. 

If CP/M is being tailored to your computer system for the first 
time, the new BIOS requires some relatively simple software 
development and testing. 'rhe standard BIOS is listed in Appendix B, 
and can be used as a model for the customized package. A skeletal 
version of the BIOS is given in Appendix C which can serve as the 
basis for a modified BIOS. In addition to the BIOS, the user must 
write a simple memory loader, called GETSYS, which brings the 
operating system into memory. In order to patcn the new BIOS into 
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which 
places an altered version of CP/M back onto the diskette. PUTSYS can 
be derived from GETSYS by changing the disk read commands into disk 
write commands. Sample skeletal GETSYS and PUTSYS programs are 
described in Section 3, and listed in Appendix D. In order to make 
the CP/M system work automatically, the user must also supply a cold 
start loader, similar to the one T?rovided with CP/M (listed in 
Appendices A and B). A skeletal form of a cold start loader is given 
in Appendix E which can serve as a model for your loader. 

(All Information Contained Herein is Proprietary to Digital Research.) 

1 

• 



2. FIRS'r LEVEL SYS'rEM REGENERA'rION 

'rhe procedure to follow to patcn the cp/r-1. system is given below in 
several steps. Address references in each step are shown with a 
following "Hoi which denotes t-he hexadecimal radix, and are given for a 
20K CP/M system. For larger Cp/r1 systems, add a "bias" to each 
address whicn is shown with a "+b" following it, where b is equal to 
tne memory size - 20K. Values for b in various standard memory sizes 
are 

24K: b = 24K - 20K = 4K = 1000H 
32K: b = 32K - 20K = 12K = 312l00H 
40K: b = 40K - '20K = 20K = 5000H 
48K: b = 48K - 20K = 28K = 7000H 
56K: b = 56K - 20K = 36K = 9000H 
62K: b = 62K 20K = 42K = A800H 
6 4K: b = 64K - 20K = 44K = B0012lH 

Note: The standard distribution version of CP/M is set for~ 
operation within a 20K memory system. Therefore, you must first bring 
up the 20K CP/M system, and then configure it for your actual memory 
size (see Second Level System Generation). 

(1) Review Section 4 and write 
first two tracks of a diskette into 
must begin at location 3380H. 
location l00B (case of the TPA), 
Appendix d. 

a GETSYS program which reads the 
memory. The data from the diskette 

Code GETSYS so that it starts at 
as shown in the first part of 

(2) 'rest tne GE'rSYS program by reaciing a blanK diskette into 
memory, and check to see that the data has been read properly, and 
that the diskette has not been altered in any way by the GETSYS 
program. 

(3) Run the GETSYS program using an initialized CP/M diskette to 
see if GETSYS loads CP/M starting at 33812lH (the operating system 
actually starts 128 bytes later at 3400H). 

(4) Review Section 4 and write the PU'rSYS program which writes 
memory starting at 3380B back onto the first two tracks of the 
diskette. The PU'rSYS program should be located at 200H, as shown in 
the second part of Appendix D. 

(5) Test the PUTSYS program using a blank uninitialized diskette 
by writing a portion of memory to the first two tracks~ clear memory 
and read it back using GETSYS. Test PUTSYS completely, since this 
program will be used to alter CP/M on disk. 

(6) Study Sections 5,6, and 7, along with the distribution 
version of the BIOS given in Appendix B, and write a simple version 
which performs a similar function for the customized environment. Use 
the program given in Appendix C as a model. Call this new BIOS by the 
name CBIOS (customized BIOS). Implement only the primitive disk 
operations on a single drive, and simple console input/output 
functions in this phase. 

(All Information Contained Herein is Proprietary to Digital Research.) 

2 



I 

I 

I 

(7) Test CBIOS completely to ensure that it properly performs 
console character I/O and disk reads and writes. Be especially 
careful to ensure that no disk write operations occur accidently 
during read operations, and check that the proper track and sectors 
are addressed on all reads and writes. Failure to make these checks 
may cause destruction of the initialized CP/M system after it is 
patched. 

(8) Referring to Figure 1 in Section 5, note that the 8IOS is 
placed between locations 4A00H and 4FFFH. Read the CP/M system using 
GETSYS and replace the BIOS segment by the new CBIOS developed in step 
(6) and tested in step (7). ~his replacement is done in the memory of 
the machine, and will be placed on the diskette in the next step. 

(9) Use PU~SYS to place the patched memory image of CP/M onto the 
first two tracks of a blank diskette for testing. 

(10) Use GETSYS to bring the copied memory image from the test 
diskette back into memory at 3380H, and check to ensure that it has 
loaded back properly (clear memory, if possible, before the load). 
Upon successful load, brancn to the cold start code at location 4A00H. 
The cold start routine will initialize page zero, then jumo to the CCP 
at location 3400H which will call the BOOS, which will call the CBIOS. 
The C8IOS will be asked by the CCP to read sixteen sectors on track 2, 
3.nd if successful, CP/r1 will type "A)", the system prompt. 

When you make it this far, you are almost on the air. If you have 
trouble, use whatever debug facilities you have available to trace and 
breakpoint your CBIOS. 

(11) Upon completion of step (10), CP/M has orom9ted the console 
for a command input. Test the disk write operation by typing 

SAVE 1 X.COM 

(recall that all commands must be followed by a carriage return) . 

CP/M should respond vlith another prompt (after several disk accesses): 

A) 

If it does not, debug your disK write functions and retry. 

(12) Then test the directory command by typing 

DIR 

CP/M should respond with 

A: X COM 

(13) Test the erase command by typing 

ERA X. Cm1 

{All Information Contained Herein is Proprietary to Digital Research.) 

3 

• 



CP;M should respond with the A promote When you make it this far, you 
should have an operational system which will only require a bootstrap 
loader to function completely. 

(14) write a bootstrap loader which is similar to GETSYS, 
place it on track 0, sector 1 using PUTSYS (again using the 
diskette, not the distribution diskette). See sections 5 and d 
more information on the bootstrap operation. 

and 
test 

for 

(15) Retest the new test diskette with the bootstrap loader 
installed by executing steps (11), (12), and (13). Upon completion of 
these tests, type a control-C (control and C keys simultaneously). The 
system should then execute a "warm start" which reboots the system, 
and types the A prompt. 

(16) At this point, you prObably have a good version of your 
customized CP/M system on your test diskette. Use GETSYS to load CP/M 
from your test diskette. Remove the test diskette, place the 
distribution diskette (or a legal copy) into the drive, and use PUTSYS 
to replace the distribution version by your customized version. Do 
not make this replacement if you are unsure of your patch since this 
step·destroys the system which was sent to you from Digital Research. 

(17) Load your modified CP/M system and test it by typing 

DIR 

CP/M should reSpond with a list of files which are provided on the 
initialized diskette. One such file should be the memory image for. 
the debugger, called DDT. COHo 

No'rE: from now on, it is important that you always reboot tne CP/M 
system (ctl-C is sufficient) when the diskette is removed and replaced 
by anotner diskette, unless the new diskette is to be read only. 

(10) Load and test the debugger by typing 

DDT 

(see the document "CP/M Dynamic Debugging Tool (DDT)" for operating 
procedures. You should take the time to become.·famj..liar with DD'r, it 
will be your best triend in later steps. 

(19) Before making further CBIOS modifications, practice using 
the editor (see th~ ED user's guide), and assembler (see the ASM 
user's guide). Then recode and test the GETSYS, PUTSYS, and CBIOS 
programs using ED, ASH, a,nd Do'r. Code and test a COpy program which 
does a sector-to-sector copy from one diskette to ano~herto obtain 
back-up copies of the original diskette (NOTE: read your CP/M 
Licensing Agreement; it specifies your legal responsibilities when 
copying the CP/M system). place the copyright notice 

Copyr ight (c), 1979 
Digital Research 

(All Information Contained Herein is Proprietary to Digital Research.) 

4 



on each copy which is made with your COpy program. 

(20) Modify your CBIOS to include the extra functions for 
punches, readers, signon messages, and so-forth, and add the 
facilities for a aaditional disk drives, if desired. You can make 
these changes wi th the GE'I'SYS and pu'rsys programs which you have 
developed, or you can refer to the following section, which outlines 
CP/M facilities which will aid you in the regeneration process. 

You now have a good copy of the customized CP/M system. Note that 
although the CBIOS portion of CP/M which you have develoged belongs to 
you, the modified version of CP/M which you have created can be copied 
for your use only (again, read your Licensing Agreement), and cannot 
be legally copied for anyone else's use. 

It should be noted that your system remains file-compatible with all 
other CP/M systems, (assuming media compatiblity, of course) which 
allows transfer of non-proprietary software between users of CP/M • 

(All Information Contained Herein is Proprietary to Digital Research.) 

5 

• 



3. SECOND LEVEL SYSTEM GENERATION 

Now that you have the CP/M system running, you will want to 
configure CP/M for your memory size. In general, you will first get a 
memory image of CP/M with the "t10VCPM" program (system relocator) and 
place this memory image into a named disk file. The disk file can then 
be loaded, examined, patched, and replaced using the debugger, and 
system generation program. For further details on the operation of 
these programs, see the "Guide to CP/M Features and Facilities" 
:nanual. 

Your CSIOS and BOOT can be modified using ED, and assembled using 
ASM, producing files called CBIOS.HEX and BOOT. HEX, which contain the 
machine code for CBIOS and BOOT in Intel hex format. 

To get the memory image of CP/M into the TPA configured for the 
desired memory size, give the command: 

MOVCPM xx * 

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K). 
'rhe response will oe: 

CONs'rROC'l'ING xxK Cl?/t1 VERS 2. (1 
RElillY FOR "SYSGEN" OR 
"SAVE 34 CPMxx.COM" 

At this point, an image of a CP/M in the TPA configured for the 
requested memory size. The memory image is at location 0900H through 
227FH. (i.e., The BOOT is at 0900H, the CCP is at 980H, the BDOS 
starts at 1180H, and the BIOS is at IF80H.) Note that the memory 
image has the standard MDS-800 BIOS and BOOTon it. It is now 
necessary to save the memory image in a file so that you can patch 
your CaIOS and CBoo'r into it: 

SAVE 34 CPMxx.COM 

'rhe memory image created by the "MOVCPM" program is offset by a 
negative bias so that it loads into the free area of the TPA, and thus 
does not interfere with the operation of CP/M in higher memory. This 
memory image can be subsequently loaded under DDT and examined or 
changed in preparation for a new generation of the system. DDT is 
loaded with the memory image by typing: 

DDT CPMxx.COM 

DDT should respond with 

NEXT PC 
2300 0100 

Load DDT, then read the CPM 
image 

(The DDT prompt) 

You can then use the display and disassembly commands to examine 

(All Information Contained Herein is Proprietary to Digital Research.) 

6 



portions of the memory image between 900H and 227FH. Note, however, 
that to find any particular address within the memory image, you must 
apply the negative bias to the CP/M address to find the actual 
address. Track 100, sector 01 is loaded to location 900H (you should 
find the cold start loader at ~00H to 97FH), track 00, sector 02 is 
loaded into 980H (this is the base of the CCP), and so-forth through 
the entire CP/M system load. In a 20K system, for exam~le, the CCP 
resides at the CP/M address 3400H, but is placed into memory at 980H 
by the SYSGEN program. Thus, the negative bias, denoted by n, 
satisfies 

341.10H + n = 980H, or n = 980H - 3400H 

Assuming two's complement arithmetic, n = 0580H, which can be checked 
by 

3400H + D580H = 10980H = 09808 (ignoring high-order 
overflow) . 

Note that for larger systems, n satisfies 

(3400H+b) + n = 980H, or 
n = 981.1H - (3400H + b), or 
n = 0580H - b. 

'rhe value of n for common CP/M systems is given below 

memory size bias b negative offset n 

20K 0000H D580H - 000l1H = 0580H 
24K 10008 D580H l0130H = C580H 
32K 30010H 0580H 3000H = A580H 
40K 5000H 0580H - 51300H = 8580H 
48K 7000H 0580H 7000H = 6580H 
56K 9000H 0580H - 9000H = 458011 
62K A800H 0580H - A80\1H = 2D80H 
64K B000H 0580H - B000H = 2580H 

Assume, for example, that you want to locate the address x within the 
memory image loaded under DDT in a 20K system. First type 

Hx,n Hexadecimal sum and difference 

and DDT will respond with the value of x+n (sum) and x-n (difference). 
The first number printed by DOT will be the actual memory address in 
the image where the data or code will be found. The input 

H3400,0580 

for example, will ~roduce 980H as the sum, which is where the CCP is 
located in the memory image under DDT. 

Use the L command to disassemble portions the gIOS located at 
(4A00H+b)-n which, when you use the H command, oroduces an actual 
address of lF80H. The disassembly command would thus be 

(All Information Contained Herein is Proprietary to Digital Research.) 

7 

• 



LIF80 

It is now necessary to oatch in your CBoo·r and CBIOS routines.' The 
BOOT resides at location 0900H in the memory image. If the actual 
load address is "n", then to calculate the bias (m) use the command: 

H900,n Subtract load address from 
target address. 

The second number typed in response to the command is the desired bias 
(m). For example, if your BOOT executes at 0080H, tne command: 

H900,80 

will reply 

0980 0880 Sum and difference in hex. 

'fherefore, the bias "m" would be 0880H. 1'0 read-in the BOOT, give the 
command: 

IeBOOT.HEX 

Then: 

Rm 

tou may now examine your CBOO~ with: 

L900 

Input file CBOOT.HEX 

Read CBOOT with a bias of 
m (=90iiH-n) 

we are now ready to replace tne CBIOS. Examine 
where the original version of the CBIOS resides. 

the area 
Then type 

at IF80H 

ICBIOS.HEX Ready the "hex" file for loading 

assume that your CBrDS is being integrated into a 20K CP/M system, and 
thus is origined at location 4A00H. In order to properly locate the 
caras in the memory image under DDT, we must apply the negative bias n 
for a 20K system when loading the hex file. This is accomplished oy 
typing 

RD580 Read the file with bias D580H 

Upon completion of the read, re-examine the are~ where the CBIQS has 
been loaded (use an "LIF80" command), to ensure that is was loaded 
properly. When you are satisfied that the change has been made, 
return from DD'r using a control-C or "Gel" command. 

Now use SYSGEN to replace the patched memory image back onto a 
diskette (use a test diskette until you are sure of your patch), as 
shown in the following interaction 

(All Information Contained Herein is Proprietary to Digital Research.) 

a 



SYSGEN 
SYSGEN VERSION 2.0 
SOURCE DRIVE NA~1E (OR 

DESTINATION DRIVE NAME 

DESTINATION ON B, THEN 

FUNCTION COMPLETE 

Start the SYSGEN program 
Sign-on message from SYSGEN 

RE'fURN TO SKIP) 
Respond with a carriage return 
to skip the CP/M read operation 
since the system is already in 
memory. 
(OR RETURN TO REBOOT) 
Respond with "B" to write the 
new system to the diskette in 
drive B. 
TYPE RETURN 
Place a scratch diskette in 
drive B, then type return. 

DESTINATION DRIVE NAME (OR RETURN TO REBOOT) 

~lace the scratch diskette in your drive A, and then perform a 
coldstart to bring up the new CP/M system you have configured. 

'rest the new CP/l'1 system, and place the Dig i tal Research copyr ight 
notice on the diskette, as specified in your Licensing Agreement: 

Copyright (c), 1979 
Dig i tal Researcll 

9 

• 



4. SAMPLE GETSYS AND PUTSYS PROGRAMS 

The following program provides a framework for the GETSYS and 
PU1'SYS programs rererenced in Section 2. 'rhe READSEC and vvRI'I'ESEC 
subroutines must be inserted by the user to read and write the 
specific sectors. 

GETSYS PROGRAH -
REGISTER 

A 
B 
C 
DE 
HL 
SP 

STAR1': LXI 
LXI 

RDSEC: 

MVI 

MVI 

CALL 
LXI 
JAD 
INR 
[-lOV 
CPI 
JC 

SP,3380H 
H, 3380H 
B, 0 

C,1 

READSEC 
D,128 
D 
C 
A,C 
27 
RDSEC 

READ TRACKS 0 AND 1 TO [-1EMORY AT 3380H 
USE 

(SCRATCH REGISTER) 
TRACK COUNT (0, 1) 
SECTOR COUNT (1,2, .•• ,26) 
(SCRATCH REGISTER PAIR) 
LOAD ADDRESS 
SET TO STACK ADDRESS 

;SET STACK POINTER TO SCRATCH AREA 
;SET BASE LOAD ADDRESS 
;START WITH TRACK 0 
; READ NEX'f TRACK (INI'I'IALLY 11) 
; READ STAR'rING WITH SECTOR 1 
;READ NEXT SECTOR 
;USER-SUPPLIED SUBROUTINE 
;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE 
;HL = HL + 128 
;SECTOR = SECTOR + 1 
;CHECK FOR END OF TRACK 

;CARRY GENERATED IF SECTOR < 27 

ARRIVE HERE AT END OF TRACK, MOVE oro NEXT 'rRACK 
INR B 
MOV A,B ;TEST FOR LAST TRACK 
CPI 2 
JC RD'rRK ; CARRY GENERA'rED IF 

ARRIVE HERE A'r END OF LOAD, HAL'I' FOR NOH 
HL'r 

USER-SUPPLIED SUBROUTINE TO READ THE DISK 
READSEC: 

ENTER WITH TRACK NUMBER IN REGISTER B, 
SECTOR NUMBER IN REGISTER C, AND 
ADDRESS TO FILL IN HL 

'rRACK 

PUSH 
PUSH 

B 
H 

;SAVE BAND C REGISTERS 
;SAVE HL REGISTERS 

perform disk read at this point, branch to 

label START if an error occurs 

POP 
POP 
RE'r 

H 
B 

END START 

;RECOVER HL 
;RECOVER BAND C REGISTERS 
;BACK TO MAIN PROGRAM 

< 2 

(All Information Contained Herein is Proprietary to Digital Research.) 

10 



L~ote that this program is assembled and listed in 
reference purposes, with an assumed origin of HJ0H. 
operation codes which are listed on the left may be 
program has to be entered through your machine's front 

Appendix C for 
'rhe hexadecimal 
useful if the 
panel switcnes. 

'rhe PUTSYS program can be constructed from GE'fSYS by changing only 
a few operations in the GETSYS program given above, as shown in 
Appendix D. The register pair HL become the dump address (next 
address to write), and operations upon these registers do not change 
within the program. The READSEC subroutine is rel?laced by a WRI'fESEC 
subroutine which l?erforms the opposite function: data from address HL 
is written to the track given by register B and sector given by 
register C. It is often useful to combine GETSYS and PUTSYS into a 
single program during the test and development phase, as shown in the 
Appendix.- -

(All Information Contained Herein is Proprietary to Digital Research.) 

11 

• 



5. DISKErr'rE ORGANIZATION 

The sector allocation for the standard distribution version of 
CP/M is given here for reference purposes. The first sector (see 
table on the following page) contains an optional software boot 
section. Disk controllers are often set u9 to bring track 0, sector 1 
into memory at a specific location (often location 0000H). The 
program in this sector, called BOO'r, has the responsibility of 
bringing the remaining sectors into memory starting at location 
3400H+b.If your controller does not have a built-in sector load, you 
can ignore the program in track 0, sector 1. and begin the load from 
track J sector 2 to location 3400H+b. 

As an example, the Intel MDS-800 hardware cold start loader brings 
track 0, sector 1 into absolute address 3000H. Upon loading this 
sector, control transfers to location 3000H, where the bootstrap 
operation commences by loading the remainder of tracks 0, and all of 
track 1 into memory, starting at 3400H+b. The user should note that 
tois bootstrap loader is of little use in a non-MDS environment, 
althougn it is useful to examine it since some of the boot actions 
will have to be duplicated in your cold start loader. 

(All Information Contained Herein is Proprietary to Digital Research.) 

12 



'rrack# Sectori 

.. 
II 

.. 
II 

.. 

.. 
II 

II 

II 

kHJ .. 
.. 

II 

II 

01 ., 
.. 
II 

., 

.. 

.. 

., 

•• .. 
., 
., 
.. 
.. 
.. 
01 

01 ., 
II 

.. 

.. 
01 

02-76 

01 

02 
03 
04 
05 
106 
07 
138 
09 
10 
11 
12 
13 
14 
15 
16 
17 

18 
19 
20 
21 
22 
23 
24 
25 
26 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 
21 
23 
24 
25 
26 

01-26 

Page# 

.. 
01 .. 
02 

03 

04 .. 
05 

II 

06 .. 
07 .. 

08 ., 
09 .. 
Ie) .. 
11 

II 

12 .. 
13 

14 

15 

16 .. 
17 .. 
18 

19 
.1 

UJ .. 
21 .. 

22 .. 
23 .. 
24 ., 

Memory Address 

(boot address) 

3400H+b 
3480H+b 
3500H+b 
35tHJH+b 
3600H+b 
3680H+b 
3700H+O 
3780H+b 
3800H+b 
3880fI+b 
3900H+b 
3980H+b 
3A00H+b 
3A8VJH+b 
3B00H+b 
3B80H+b 

3C00H+b 
3C80H+b 
3D00H+b 
3D80H+b 
3E00H+b 
3E80H+b 
3F00H+b 
3F80H+b 
4001iJH+b 
4080H+b 
4100H+b 
4180H+b 
4200H+b 
4280H+b 
4300H+b 
4380H+b 
4400H+b 
4480H+b 
4500H+b 
4580H+b 
4600H+b 
4680H+b 
4700H+b 
4780H+b 
48fHJH+b 
4880H+b 
4900H+b 
4980H+b 

4A00H+b 
4A80H+b 
4B00H+b 
4B80H+b 
4C00H+b 
4C80H+b 

CP/M Module name 

Cold Start Loader 

CCP .. 
... 
.. 

.. 

., 

.. 
II 

.. 

CCP 

BOOS 

.. 

.. 

.. 

.. 
" .. 
.. 
II 

., 

.. 

.. 
II 

BOOS 

BIOS 
" 
" 
" .. 

BIOS 

(directory and data) 

(All Information Contained Herein is proprietary to Digital Research.) 

• 



6. THE BIOS ENTRY POINTS 

The entry points into the BIOS from the cold start loader and BOOS 
are detailed below. Entry to the- BIOS is through a "jump vector" 
located at 4A00H+b, as shown below (see Appendices Band C, as well). 
The jump vector is a sequence of 17 jump instructions which send 
~rogram control to the individual BIOS subroutines. The BIOS 
subroutines may be empty for certain functions (i.e., they may cori~ain 
d single RET operation) during regeneration of CP/M, but the entries 
must be present in the jump vector. 

'rhe j urn!? vec tor at 4All 0H+b takes the form shown below, where the 
individual jump addresses are given to tne left: 

4A00H+b 
4A03d+o-
4A06H+b 
4A09H+b 
4A0CH+b 
4A0FH+b 
4A12l:i+b 
4A15H+b 
4A18H+b 
4l-\lSd+!::> 
4AlEiHo 
4A21H+o 
4A24H+b 
4A27f1+b 
4A2A1Hb 
4A2ofI+b 
4A30H+b 

JMP BOO'l' 
J i'1P WBOOrl' 
Jll1p CONST 
J-t-lP COlUN 
J I'll' CONOlJT 
Jtv1i? LIST 
J~P PUNCH 
Jt'1P READER 
JMP HOME 
Jr·1P SELDSK 
J~1P SET'rRK 
J!\1 . .i? SE'rSEC 
J Hi? S E'rDfJIA 
J r.1i? READ 
JMP ~I)'RI'rE 

J £vIP L I S'rS'I' 
JMP S ECrRAN 

ARRIVE HERE FROM COLD START LOAD 
ARRIVE HERE FOR WAR!"1 S'rART 
CHECK FOR CONSOLE CHAR READY 
READ CONSOLE CHARACTER IN 
~VRI'rE CONSOLE CHARAC'rER ou'r 
WRITE LISTING CHARACTER OUT 
WRI'l'E CHARACTER 'ro PUNCH DEVICE 
READ READER DEVICE 
MOVE TO TRACK 00 ON SELECTED DISK 
SELECT DISK DRIVE 
SE'I' 'fRACK NUMBER 
SET SECTOR NUMBER 
S E'r Drv1A ADDRESS 
READ SELECTED SECTOR 
WRITE SELECTED SECTOR 
RETURN LIST STATUS 
SECTOR TRANSLATE SUBROUTINE 

8ach jumo address corresponds to a particular subroutine which 
performs tne specific function, as outlined below. There are three 
major divisions in the jump table: the system (re) initialization 
whicn results from calls on BOOT and WBOOT, simple character I/O 
performed by calls on CONST, CONIN, CONOU'I', LIST, PUNCH, READER, and 
LISTS'r, and diskette I/O performed by calls on HOME, SELDSK, SET'rRK, 
SETSEC, SETOMA, READ, WRITE, and SECTRAN. 

All simple character I/O operations are assumed to be performed in 
ASCII, upper and 
An end-of-file 
control-z (lAH). 
devices, and are 

lower case, with high order ("parity bit) set to zero. 
condition for an input device is given by an ASCII 
Peripheral devices are seen by CP/M as "logical" 

assigned to physical devices within the BIOS. 

In order to operate, the BOOS needs only the CONST, CONIN, and 
CONOU'r subroutines (LIST, PUl~CH, and READER may be used by PIP, but 
not the BOOS). Further, the LISTST entry is used currently only by 
DESPOOL, and thus, the initial version of CBIOS may have empty 
subroutines for the remaining ASCII devices • 

...... 

(All Information Contained Herein is Proprietary to Digital Research.) 

14 



The characteristics of each device are 

CONSOLE 

LIST 

PUNCH. 

READER 

The ?rincipal interactive console which communicates 
with the operator, accessed through CaNST, CONIN, and 
CONOUT. Typically, the CONSOLE is a device such as a 
CRT or Teletype. 

The principal listing device, if it exists on your 
system, which is usually a hard-copy device, such as a 
printer or Teletype. 

The principal tape punching device, if it exists, which 
is normally a high-speed paper tape punch or Teletype. 

The principal tape reading device, such as a simple 
optical readei or Teletype. 

Note that a single ?eripheral can be assigned as 
the LIS'r, PUNCH, and READER dev ice s imul taneousl y. If 
no peri?heral device is assigned as the LIST, PUNCH, or 
READER device, the CBIOS created by the user may give 
an appropriate error message so that the system does 
not "hang" if the device is accessed by PIP. or some 
other user program. Alternately, the PUNCH and LIST 
routines can just simply return, and the READER routine 
can return with a lAH (ctl-Z) in reg A to indicate 
immediate end-of-file. 

For added flexibility, the user can, optionally 
implemen t the "IOBY'rE" function wh ich allows 
reassignment of physical and logical devices. The 
IOBYTE function creates a mapping of logical to 
physical devices which can be altered during CP/M 
processing (see the STAT commanc). 'rhe definition of 
the IOBYTE function corresponds to the Intel standard 
as follows: a single location in memory (currently 
location 0003H) is maintained, called IOBYTE, which 
defines the logical to ?hysical device mapping Which is 
in effect at a particular time. The mapping is 
performed by splitting the IOBYTE into four distinct 
fields of two bits each, called the CONSOLE, READER, 
PUNCH, and LIST fields, as shown below: 

most significant least significant 

IOBYTE AT 0003H I LIST I PUl'-JCH I READER I CONSOLE I 

bits 6,7 bits 4,5 bits 2,3 bits 0,1 

The value in each field can be in the range 0-3, 
defining the assigned source or destination of each 
logical device. The values which can be assigned to 
each field are given below 

(All Information Contained Herein is Pro~rietary to Digital Research.) 

15 



CONSOLE field (bits 0,1) 
o - console is assigned to the console printer device (TTY:) 
I console is assigned to the CRT device (CRT:) 
2 - batch mode: use the READER as the CONSOLE input, 

and the LIST device as the CONSOLE output (BAT:) 
3 - user defined console device (UCl:) 

READER 

'" 1 
2 
3 

PUNCH 
o 
1 
2 
3 

field (bits 2,3) 
- READER is the 'reletype device (TTY:) 

READER is the high-speed reader device (RDR:) 
user defined reader # 1 (URI:) 
user defined reader # 2 (UR2:) 

field (bits 4,5) 
- PUNCH is the Teletype device (TTY:) 
- PUNCH is the high speed punch device (PUN:) 
- user defined punch # 1 (UPl:) 

user defined punch # 2 (UP2:) 

LIST field (bits 6,7) 
o - LIST is the Teletype device (TTY:) 
1 - LIST is the CRT device (CRT:) 
2 - LIST is the line printer device (LPT:) 
3 - u~er defined list device (ULl:) 

Note again that the implementation of the IOBYTE is 
optional, and affects only the organization of your 
CBIOS. No CP/M systems use the IOBYTE (although they 
tolerate the existence of the IOBYTE at location 
0~03H), except for PIP which allows access to the 
physical devices, and S'rA'l' which allows 
logical-physical assignments to be made and/or 
displayed (for more information, see the "CP/M Features 
and Fac il i ties Gu ide") • In any case, the 10BY'rE 
implementation should be omitted until your basic CBIOS 
is fully imolemented and tested: then add the 10BYTE to 
increase your facilities. 

Disk I/O is always performed through a sequence of 
calls on the various disk access subroutines which set 
u~ the disk number to access, the track and sector on a 
particular disk, and the direct memory access (DMA) 
address involved in the I/O operation. After all these 
parmneters have been set up, a call is made to the READ 
or WRITE function to oeriorm the actual I/O operation. 
Note that there is often a single call to SELDSK' to 
select a disk drive, followed by a number of read or 
write operations to the selected disk before selecting 
another drive for subsequent operations. Similarly, 
there may be a single call to set the DMA address, 
followed by several calls which read or write from the 
selected DMA address before the DMA address is changed. 
The track and sector sUbroutines are always called 
before tne READ or WRI'rE operations are performed. 

(All Information Contained Herein is Proprietary to Digital Research.) 

16 



Boo'r 

WBoo'r 

CONST 

CONIN 

Note that the READ and WRITE routines should 
perform several retries (10 is standard) before 
reporting the error condition to the BOOS. If the 
error condition is returned to the BOOS, it will report 
the error to the user. The HOME subroutine mayor may 
not actually perform the track 00 seek, depending upon 
your controller characteristics; the important point is 
that track 00 has been selected for the next operation, 
and is often treated in exactly the same manner as 
SET'rRK with a parameter of 00. 

The exact responsibilites of eacn entry point 
subroutine are given below: 

The BOOT entry point gets control from the cold start 
loader' and is responsible for basic system 
initialization, including sending a signon message 
(which can be omitted in the first version). ' If the 
IOBYTE function is implemented, it must be set at this 
point. 'rhe var ious system parameters which are set by 
the wBOOT entry point must be initialized, and control 
is transferred to the CCP at 3400H+b for further 
processing. Note that reg C must be set to zero to 
select dr ive A. 

The WBOOT entry point gets control when a warm start 
occurs. A warm start is performed whenever a user 
r;>rogram branches to location 0000H, or when the CPU is 
reset from the front panel. 'rhe CP/i"1 system must be 
loaded from the first two tracks of drive A up to, but 
not including, the BIOS (or CBIOS, if you have 
completed your patch). System parameters must be ini
tialized as shown below: 

location 0,1,2 set to JHP WBOO'f for warm starts 
(0000H: JHP 4A03H+b) 

location 3 set initial value of IOBYTE, if 
implemented in your CBIOS 

location 5,6,7 set to Jr.lP BOOS, which is the 
primary entry point to CP/M for 
transient programs. (0005H: JMP 
3C06H+b) 

(see Section 9 for complete details of page zero use) 
Upon completion of the initialization, the WBOOT 
program must branch to the CCP at 3400H+b to (re)start 
the system. Upon entry to the CCP, register C is set 
to the drive to select after system initialization. 

Sample the status of the currently assigned console 
device and return 0FFH in register A if a character is 
ready to read, and 00H in register A if no console 
characters are ready. 

Read the next console character into register A, and 

(All Information Contained Herein is Proprietary to Digital Research.) 

17 

• 



CONOUT 

LISlr 

PUNCH 

READER 

HOME 

SELDSK 

set the parity oit (high order bit) to zero. If no 
console character is ready, wait until a character is 
typed oetore returning. 

Send the character from register C to the console 
output device. The character is in ASCII, with high 
order parity bit set to zero. You may want to include 
a time-out on a line feed or carriage return, if your 
console device requires some time interval at the end 
of the line (sucn as a TI Silent 700 terminal). You 
can, if you wish, filter out control characters which 
cause your console device to react in a strange way (a 
control-z causes the Lear Seigler terminal to clear 
the screen, for examole). 

Send the character from register C to the currently 
assigned listing device. The character is in ASCII 
with zero parity. 

Send the cnaracter from register C to the currently 
assigned punch device. The character is in ASCII with 
zero parity. 

Read the next character from the currently assigned 
reader device into register A with zero parity (high 
order bit must be zero), an end of file condition is 
reported by returning an ASCII control-z (lAH). 

Return the disk head of the currently selected disk 
(initially disk A) to the track 00 position. If your 
controller allows access to the track 0 flag from the 
drive, step the head until the track 0 flag is 
detected. If your controller does not support this 
feature, you can translate the HOME call into a call 
on SE'II'rRK witn a parameter of 0. 

Select the disk drive given by register C for further 
operations, wnere register C contains 0 for drive A, 1 
for drive' 8, and so-forth up to 15 for drive P (the 
standard CP/M distribution version supports four 
drives). On each disk select, SELDSK must return in 
HL the base address of a 16-byte area, called the Disk 
Parameter Header, described in the Section 10. For 
standard floppy disk drlves, the contents of the 
header and associated tables does not change, and thus 
the program segment included in the sample C8IOS 
performs this operation automatically. If there is an 
attempt to select a non-existent drive, SELDSK returns 
HL=0000H as an error indicator. Although SELDSK must 
return the header address on each call, it is 
advisable to postpone the actual physical disk select 
operation until an I/O function (seek, read or write) 
is actually performed, since disk selects often occur 
without utimately performing any disk I/O, and ~many 
controllers will unload the head of the current disk 

(All Information Contained Herein is Proprietary to Digital Research.) 

18 



SE'l'TRK 

SE'l'SEC 

SE'rOMA 

READ 

~vRITE 

before selecting the new drive. This would cause an 
excessive amount of noise and disk wear. 

Register BC contains the track number for subseauent 
disk accesses on the currently selected drive. You 
can choose to seek the selected track at this time, or 
delay the seek until the next read or write actually 
occurs. Register BC can take on values in the range 
0-76 corresponding to valid track numoers for standard 
floppy disk drives, and 0-65535 for non-standard disk 
subsystems. 

Register BC contains the sector number (1 through 26) 
for subsequent disk accesses on the currently selected 
drive. You can choose to send this information to the 
controller at this point, or instead delay sector 
selection until a read or write operation occurs. 

Register BC contains the OMA (disk memory access) 
address for subsequent read or write operations. For 
example, if B = 00H and C = 80H when SETOMA is called, 
then all subsequent read operations read their data 
into 80H through 0FFH, and all subsequent write 
operations get their data from 80d through 0FFH, until 
the next call to SETDMA occurs. The initial DMA 
address is assumed to be 80H. Note that the 
controller need not actually support direct memory 
access. If, for example, all data is received and 
sent through I/O ports, the CBIOS which you construct 
will use the 128 byte area starting at the selected 
DMA address for the memory buffer during the following 
read or write operations. 

Assuming the drive has been selected, the track has 
been set, the sector has been set, and the DMA address 
has been specified, the READ subroutine attempts to 
read one sector based upon these parameters, and 
returns the following error codes in register A: 

o no errors occurred 
1 non-recoverable error condition occurred 

Currently, CP/M responds only to a zero or non-zero 
value as tne return code. That is, if the value in 
register A is 0 then CP/M assumes that the disk 
operation completed properly. If an error occurs, 
however, the CBIOS should attempt at least 10 retries 
to see if the error is recoverable. When an error is 
reported the BOOS will print the message "BOOS ERR ON 
x: BAD SECTOR". The operator then has the option of 
typing <cr> to ignore the error, or ctl-C to abort. 

write the data from the currently selected OMA address 
to the currently selected drive, track, and sector. 
'r he d a t ash 0 u 1 d be mar ked as" non del e ted d a t a " to 

(All Information Contained Herein is Proprietary to Digital Research.) 

19 

.. 



SEC'l'RAN 

maintain compatibility with other CP/l'-l systems. The 
error codes given in the READ command are returned in 
register A, with error recovery attempts as described 
above. 

Return the ready status of the list device. Used by 
the DESPOOL program to improve console response during 
its operation. The value 00 is returned in A if the 
list device is not ready to accept a character, and 
0FFH if a character can be sent to the printer. Note 
that a 00 value always suffices. -

Performs sector logical to physical sector translation 
in order to impro~e the over~ll response of CP/M. 
Standard CP/M systems are shipped with a "skew factor" 
of 6, where six physical sectors are skipped between 
each logical reaa operation. This skew factor allows 
enough time between sectors for most programs to load 
their buffers without missing the next sector. In 
particular computer systems which use fast processors, 
memory, and disk subsystems, the skew factor may be 
changed to improve overall response. Note, however, 
that you should maintain a single density IBM 
compatible version of CP/M for information transfer 
into and out of your computer system, using a skew 
factor of 6. In general, SECTRAN receives a logical 
sector number in BC, and a translate table address in 
DE. The sector number is used as an index into the 
translate table, with the resulting physical sector 
number in HL. For stanaard systems, the tables and 
indexing code is orovided in the CBIO~ and need not be 
changed. 

(All Information Contained Herein is Proprietary to Digital Research.) 

20 



7. A SAMPLE BIOS 

'rhe program sho\vn in A.ppendix C can serve as a basis for your 
first BIOS. The simolest functions are assumed in this BIOS, so that 
you can enter it through the front panel, if absolutely necessary. 
Note that the user must alter and insert code into the subroutines for 
CONS;r, CONIN, CONOUT, READ, WRITE, and WAITIO subroutines. Storage is 
reserved for user-supplied code in these regions. The scratch area 
reserved in ?age zero (see Section 9) for the BIOS is used in this 
program, so that it could be implemented in ROM, if desired. 

Once operational, this skeletal version can be enhanced to print 
the initial sign-on message and perform better error recovery. The 
subroutines for LIST, PUNCH, and READER can be filled-out, and the 
IOBYTE function can be implemented. 

(All Information Contained Herein is proprietary to Digital Research.) 

21 

• 



8. A SAM.PLE COLO S'rAR'r LOADER 

'rhe program shown in Appendix D can serve as a basis for your cold 
start loader~ The disk read function must be supplied by the user, 
ana the program must be loaded somehow starting at location 0000. 
Note tnat space is reserved for your patch so that the total amount of 
storage required for the cold start loader is 128 bytes. Eventually, 
you will probably want to get this loader onto the first disk sector 
(track 0, sector 1), and cause your controller to load it into memory 
automatically upon system start-up. Alternatively, you may wish to 
place tne cold start loader into ROM, and place it above the CP/M 
system. In this case, it will be necessary to originate the program 
at a higher address, and key-in a jump instruction at system start-up 
which branChes to the loader. Subsequent warm starts will not require 
this key-in operation, since the entry point 'WBOOT ' gets control, 
thus bringing the system in from disk automatically. Note also that 
the skeletal cold start loader has minimal error recovery, which may 
be enhanced on later versions. 

(All Information Contained Herein is Proprietary to Digital Research.) 

22 



9. RESERVED LOCATIONS IN PAGE ZERO 

Main memory page zero, between locations 00H ana 0FFH, contains 
several segments of code and data which are used during CP/M 
processing. The code and data areas are given below for reference 
puq)oses. 

Locations 
from to 
00008 - 0002H 

0003H - 000 3H 

1010 10 48 - 000 4H 

0005H - 0007H 

0008H - 0027H 

01030H - 1tJ037H 

1tJ1038H - 1tJ03AH 

003BH - 003FH 

0i040H - 1i.104FH 

1tJ050H - 005BH 

005CH - 1007CH 

0070H - 007FH 

Contents 

Contains a jump instruction to the warm start 
entry point at location 4A03H+b. This allows a 
simple programmed restart (JHP 01tJ0LiiH) or manual 
restart from the front Danel. 

Contains the Intel standard I08YTE, 
optionally included in tne user's 
described in Section 6. 

which is 
CBIOS, as 

Current default drive number (0=A, ••• ,15=.!?). 

Contains a jump instruction to the ODOS,and 
serves two purposes: JMP 0005H provides the 
primary entry point to the BOOS, as described in 
the manual "CP/M Interface Guide," and LHLO 
01tJ06H brings the address field of the 
instruction to the tiL register pair. This value 
is the lowest aadress in memory used by CP/M 
(assuming the CCP is being overlayed). Note 
that the DD'r ?rogram will change the address 
field to reflect the reduced memory size in 
debug mode. 

(interrupt locations 1 through 5 not used) 

(interrupt location 6, not currently used 
reserved) 

Restart 7 - Contains a jum? instruction into the 
DDT or SID ?rogram when running in debug mode 
for programmed breakpoints, but is not otherwise 
used by cp/rvJ.. 

(not currently used - reserved) 

16 byte area reserved for scratch by CBIOS, but 
is not used for any purpose in the distribution 
version of CP/M 

(not currently used - reserved) 

default 
transient 
.!?rocessor. 

file control 
program by 

block produced 
the Console 

Optional default random record position 

for a 
Command 

(All Information Contained Herein is Proprietary to Digital Research.) 

23 

• 



0080H - 00FFH default 12d byte disk buffer (also filled with 
the command line when a transient is loaded 
under the CCP). 

Note that this information is set-up for normal operation under 
the CP/M system, but can be overwritten by a transient program if the 
BDOS tacilities are not required by the transient. 

If, for example, a particular program performs only simple I/O and 
must begin execution at location 0, it can be first loaded into the 
~PA, using normal CP/M facilities, with a small memory move progr~ 
which gets control when loaded (the memory move program must get 
control from location 0100H, which is the assumed beginning of all 
transient programs). The move program can then proceed to mo~e the 
entire memory image down to location 0, and pass control to the 
starting address of the memory load. Note that if the BIOS is 
overwritten, or if location 0 (containing the warm start entry point) 
is overwritten, then the progr~mer must bring the CP/M system back 
into memory with a cold start sequence. 

(All Information Contained Herein is Proprietary to Digital Research.) 

24 



H'J. DISK PARAMETER TABLES. 

Tables are included in the BIOS which describe the particular 
characteristics of the disk subsystem used with CP/M. These tables 
can be either hand-coded, as shown in the sample CBIOS in Appendix C, 
or automatically generated using the DISKDEF macro library, as shown 
in Appendix B. The purpose here is to describe the elements of these 
tables. 

In general, each disk drive has an associated (16-byte) 
parameter header which both contains information about the disk 
and provides a scratchpad area for certain BDOS operations. 
format of the disk parameter header for each drive is shown below 

disk 
dr ive 

The 

Disk Parameter Header 

XLT I 0000 I 0000 I 0000 IDIRBUFI DPB CSV ALV 

16b 16b 16b 16b 16b 16b 16b 16b 

where each element is a word (16-bit) value. The meaning'of each Disk 
Parameter Header (DPH) element is 

XLT 

DIRBUF 

DPB 

CSV 

ALV 

Address of the logical to physical translation vector, 
if used for this particular drive, or the value 0000H 
if no sector translation takes place (i.e, the physical 
and logical sector numbers are the same). Disk drives 
with identical sector skew factors share the same 
translate tables. 

Scratchpad values for use within the BDOS (initial 
value is unimportant). 

Address of a 128 byte scratchpad area for directory 
operations within BDOS. All DPH's address the same 
scratchpad area. 

Address of a disk parameter block for this drive. 
Drives with identical disk characteristics address the 
same disk parameter block. 

Address of a scratchpad area used for software check 
for changed disks. This address is different for each 
DPH. 

-
Address of a scratchpad area used by the BDOS to keep 
disk storage allocation information. This address is 
different for each DPH. 

Given n disk drives, the DPH's are arranged in a table whose first row 
of 16 bytes corresponds to drive 0, with the last row corresponding to 
drive n-l. The table thus appears as 

(All Information Contained Herein is Proprietary to Digital Research.) 

25 

• 



DPBASE: 

00 IXLT 001 0000 1 0000 1 0000 IDIRBUFIDBP 001csv 001ALV 001 

01 IXLT 011 0000 1 0000 1 0000 IDIRBUFloBP 0llcsv 0llALV 011 

(and so-forth through) 

n-IIXLTn-ll 0000 1 0000 1 0000 1 DIRBUFIDBPn-1ICSVn-IIALVn-l1 

where the label DPBASE defines the base address of the DPH table. 

A responsibility of the SELDSK subroutine is to return the base 
address of the DPH for the selected drive. The following sequence of 
operations returns the table address, with a 0000H returned if the 
selected drive does not exist. 

NDISKS EQU 4 iNUMBER OF DISK DRIVES 

SELDSK: 
iSELECT DISK GIVEN BY BC 
LXI H,0000H iERROR CODE 
MOV A,C iDRIVE OK? 
CPI NDISKS iCY IF SO 
RNC iRET IF ERROR 
iNO ERROR, CONTINUE 
MOV L,C iLOW(DISK) 
MOV H,B iHIGH(DISK) 
DAD H i*2 
DAD H i*4 
DAD H i*8 
DAD H i*16 
LXI D,DPBASE iFIRST DPH 
DAD D i DPH (DISK) 
RET 

The translation vectors (XLT 00 through XLTn-l) are located 
elsewhere in the BIOS, and simply correspond one-for-one with the 
logical sector numbers zero through the sector count-I. The Disk 
Parameter Block (DPB) for each drive is more complex. A particular 
OPB, which is addressed by one or more DPHls, takes the general form 

SPT IBSHIBLMIEXMI DSM DRM IAL01ALII CKS OFF 

l6b 8b 8b 8b l6b l6b 8b 8b l6b l6b 

where each is a byte or word value, as shown by the .18b" or "16b" 
indicator below the field. 

SPT 

BSH 

is the total number of sectors per track 

is the data allocation block shift factor, determined 
by the data block allocation size. 

(All Information Contained Herein is proprietary to Digital Research.) 

26 



EXM 

DSM 

DRM 

CKS 

OFF 

is the extent mask, determined by the data block 
allocation size and the number of disk blocks. 

determines the total storage capacity of the disk drive 

determines the total number of directory entries which 
can be stored on this drive AL0,ALI determine reserved 
directory blocks. 

is the size of the directory check vector 

is the number of reserved tracks at the beginning of 
the (logical) disk. 

The values of BSH and BLM determine (implicitly) the data allocation 
size BLS, which is not an entry in the disk parameter block. Given 
that the designer has selected a value for BLS, the values of BSH. and 
BLM are shown in the table below 

BLS 
1,024 
2,048 
4,096 
8,192 

16,384 

BSH 
3 
4 
5 
6 
7 

BLM 
7 

15 
31 
63 

127 

where all values are in decimal. The value of EXM depends upon both 
the BLS and whether the DSM value is less than 256 or greater than 
255, as shown in the following table 

BLS DSM < 256 DSM > 255 
1,024 0 N/A 
2,048 1 0 
4,096 3 1 
8,192 7 3 

16,384 15 7 

The value of DSM is the maximum data block number supported by 
this particular drive, measured in BLS units. The product BLS times 
(DSM+l) is the total number of bytes held by the drive and, of course, 
must be within the capacity of the Dhysical disk, not counting the 
reserved operating system tracks. .. 

The DRM entry is the one less than the total number of directory 
entries, which can take on a 16-bit value. The values of AL0 and ALl, 
however, are determined by DRM. The two values AL0 and ALI can 
together be considered a string of l6-bits, as shown below. 

(All Information Contained Herein is Proprietary to Digital Research.) 

27 

• 



AL0 ALI 
--------------------------------------~----------

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 

where position 00 corresponds to the high order bit of the byte 
labelled AL0, and 15 corresponds to the low order bit of the byte 
labelled ALI. Each bit position reserves a data block for number of 
directory entries, thus allowing a total of 16 data blocks to be 
assigned for directory entries (bits are assigned starting at 00 and 
filled to the right until position 15). Each directory entry occupies 
32 bytes, resulting in the following table 

BLS 
1,024 
2,048 
4,096 
8,192 

16,384 

Directory Entries 
32 times # bits 
64 times # bits 
128 times # bits 
256 times # bits 
512 times # bits 

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then there 
are 32 directory entries per block, requiring 4 reserved blocks. In 
this case, the 4 high order bits of AL0 are set, resulting in the 
value~ AL0 = 0F0H and ALI = 00H. 

The CKS value is determined as follows: if the disk drive" media 
is removable, then CKS = (DRM+l)/4, where DRM is the last directory 
entry number. If the media is fixed, then set CKS = 0 (no directory 

'records are checked in this case). 

Finally, 
skipped at the 
automatically 
mechanism for 
partitiQning a 

the OFF field determines the number of tracks which are 
beginning of the physical disk~ This value is 

added whenever SETTRK is called, and can be used as a 
skipping reserved operating system tracks, or for 
large disk into smaller segmented sections. 

To complete the discussion of the DPB, recall that several DPH's 
can address the same DPB if their drive characteristics are identical. 
Further, the DPB can be dynamically changed when a new drive is 
addressed by sim?ly changing the pointer in the DPH since the BDOS 
copies the DPB values to a local area whenever the SELDSK function is 
invoked. 

Returning back to the DPH for a particular drive, note that the 
two address values csv and ALV remain. Both addresses reference an 
area of un initialized memory following the BIOS. The areas must be 
unique for each drive, and the size of each area is determined by the 
values in the DPB. 

The size of the area addressed by CSV is CKS bytes, which is 
sufficient to hold the directory check information for this particular 
drive. If CKS = (DRM+l)/4, then you must reserve (DRM+l)/4 bytes for 
directory check use. If CKS = 0, then no storage is reserved. 

(All Information Contained Herein is Proprietary to Digital Research.) 

28 



The size of the area addressed by ALV is determined by the 
maximum number of data blocks all~ed for this particular disk, and is 
computed as (DSM/8)+I. 

The CBIOS shown in Appendix C demonstrates an instance of these 
tables for standard 8" single density drives. It may be useful to 
examine, this program, and compare the tabular values with the 
definitions given above. 

(All Information Contained Herein is Proprietary to Digital Research.) 

29 

• 



11. THE DISKDEF MACRO LIBRARY. 

A macro library is shown in Appendix F, called DISKDEF, which 
greatly simplifies the table construction process. You must have 
access to the MAC macro assembler, of course, to use the DISKDEF 
facility, while the macro library is included with all CP/M 2.0 
distribution disks. 

A BIOS disk definition consists of the following sequence of 
macro statements: 

MACLIB DISKDEF 
· . . . . . 
DISKS n 
DISKDEF o , ••• 
DISKDEF 1 , ... · . . . . . 
DISKDEF n-l 
· ..... 
ENDEF 

where the MACLIB statement loads the DISKDEF.LIB 'file (on the same 
disk as your BIOS) into MAC's internal tables. The DISKS macro call 
follows, which specifies the number of drives to be configured with 
your system, where n is an integer in the range 1 to 16. A series of 
DISKDEF macro calls then follow which define the characteristics of 
each logical disk, 0 through n-l (corresponding to logical drives A 
through P). NJte that the DISKS and DISKDEF macros generate the 
in-line fixed data tables described in the previous section, and thus 
must be placed in a non-executable portion of your BIOS, typically 
directly following the BIOS jump vector. 

The remaining portion of your BIOS is defined following the 
DISKDEF macros, with the ENDEF macro call immediately preceding the 
END statement. The ENDEF (End of Diskdef) macro generates the 
necessary uninitialized RAM areas which are located in memory above 
your BIOS. 

The form of the DISKDEF macro call is 

DISKDEF dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0] 

where 

dn is the logical disk number, 0 to n-l 
fsc is the first physical sector number (0 or I) 
Isc is the last sector number 
skf is the optional sector skew factor 
bls is the data allocation block size 
dir is the number of directory entries 
cks is the number of "checked ll directory entries 
ofs is the track offset to logical track 00 
[ 0 ] is an optional 1.4 compatibility flag 

The value "dnll is the drive number being defined with this DISKDEF 

(All Information Contained Herein is Proprietary to Digital Research.) 

30 



macro invocation. The "fsc" parameter accounts for differing sector 
number ing systems, and is usually 0 or 1. The "lsc" is the last 
numbered sector on a track. When present, the "skf" parameter defines 
the sector skew factor which is used to create a sector translation 
table according to the skew. If the number of sectors is less than 
256, a single-byte table is created, otherwise each translation table 
element occupies two bytes. No translation table is created if the 
skf parameter is omitted (or equal to 0). The "bls" parameter 
specifies the number of bytes allocated to each data block, and takes 
on the values 1024, 2048, 4096, 8192, or 16384. Generally, 
performance increases with larger data block sizes since there are 
fewer directory references and logically connected data records. are 
physically close on the disk. Further, each directory entry.addresses 
more data and the BIOS-resident ram space is reduced. The "dks" 
specifies the total disk size in "bls" units. That is, if the bls = 
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes. 
If dks is greater than 255, then the block size parameter bls must be 
greater than 1024. The value of "dir" is the total number of 
directory entries which may exceed .255, if desired. The licks" 
parameter determines the number of directory items to check on each 
directory scan, and is used internally to detect changed disks during 
system operation, where an intervening cold or warm start has not 
occurred (when this situation is detected, CP/M automatically marks 
the disk read/only so that data is not subsequently destroyed). As 
stated in the previous section, the value of cks = dir when the media 
is easily changed, as is the case with a floppy disk subsystem. If 
the disk is permanently mounted, then the value of cks is typically 0, 
since the probability of changing disks without a restart is quite 
low. The "ofs" value determines the number of tracks to skip when 
this particular drive is addressed, which can be used to reserve 
additional operating system space or to simulate several logical 
drives on a single large capacity physical drive. Finally, the [0] 
parameter is included when file compatibility is required with 
versions of 1.4 which have been modified for higher density disks. 
This parameter ensures that only 16K is allocated for each directory 
record, as was the case for previous versions. Normally, this 
parameter is not included. 

For convenience and economy of table space, the special form 

DISKDEF i, j 

gives disk i the same characteristics as a previously defined drive j. 
A standard four~drive single density system, which is compatible with 
version 1~4, is defined using the following macro invocations: 

(All Information Contained Herein is Proprietary to Digital Research.) 

31 

• 



DISKS 
DISKDEF 
DISKDEF 
DISKDEF 
DISKDEF 

ENDEF 

4 
0,1,26,6,1024,243,64,64,2 
1,0 
2,0 
3,0 

with all disks having the same parameter values of 26 sectors per 
track (numbered 1 through 26), with 6 sectors skipped between each 
access, 1024 bytes per data block, 243 data blocks for a total of 243k 
byte disk capacity, 64 checked directory entries, and two operating 
system tracks. 

The DISKS macro generates n Disk Parameter Headers (DPH's), 
starting at the DPH table address DPBASE generated by the macro. Each 
disk header block contains sixteen bytes, as described above, and 
correspond one-for-one to each of the defined drives. In the four 
drive standard system, for example, the DISKS macro generates a table 
of the form: 

DPBASE 
DPE0 : 
DPEl: 
DPE2 : 
DPE3 : 

EQU 
DW 
DW 
DW 
DW 

$ 
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0 
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSVl,ALVl 
XL'N} ,00 00H, 00 00H, 00 00H ,DIRBUF ,DPB0 , CSV2, ALV2 
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3 

where the DPH labels are included for reference purposes to show the 
beginning table addresses for each drive 0 through 3. The values 
contained within the disk parameter header are described in detail in 
the previous section. The check and allocation vector addresses are 
generated by the ENDEF macro in the ram area following the BIOS code 
and tables. 

Note that if the "skf" (skew factor) parameter is omitted (or 
equal to 0), the translation table is omitted, and a 0000H value is 
inserted in the XLT position of the disk parameter header for the 
disk. In a subsequent call to perform the logical to physical 
translation, SECTRAN receives a translation table address of DE = 
0000H, and simply returns the original logical sector from BC in the 
H L r eg i s t e r p air. A t ran s 1 ate tab 1 e i s con s t r u c ted w hen the s-k f 
parameter is present, and the (non-zero) table address is placed into 
the corresponding DPH's. The table shown below, for example, is· 
constructed when the standard skew factor skf = 6 is specified in the 
DISKDEF macro call: 

XLT0: DB 
DB 

1,7,13,19,25,5,11,17,23,3,9,15,21 
2,8,14,20,26,6,12,18,24,4,10,16,22 

Following the ENDEF macro call, a number of uninitialized data 
areas are defined. These data areas need not be a part of the BIOS 
which is loaded upon cold start, but must be available between the 
BIOS and the end of memory. The size of the un initialized RAM area is 
determined by EQU statements generated by the ENDEF macro. For a 
standard four-drive system, the ENDEF macro might produce 

(All Information Contained Herein is Proprietary to Digital Research.) 

32 



4C72 = 

4DB0 = 
013C = 

BEGDAT EQU $ 
(da ta areas) 
ENDDA'I' EQU $ 
DATSIZ EQU $-BEGDAT 

which indicates that uninitialized RAM begins at location 4C72H, ends 
at 4DB0H-l, and occupies 013CH bytes. You must ensure that these 
addresses are free for use after the system is loaded. 

After modification, you can use the STAT program to check your 
drive characteristics, since STAT uses the disk parameter block to 
decode the drive information. The STAT command form 

STAT d:DSK: 

decodes the disk parameter block for drive d (d=A, ••• ,P) and displays 
the values shown below: 

r: 128 Byte Record Capacity 
k: Kilobyte Drive Capacity 
d: 32 Byte Directory Entries 
c: Checked Directory Entries 
e: Records/ Extent 
b: Records/ Block 
s: Sectors/ Track 
t: Reserved Tracks 

Three examples of DISKDEF macro invocations are 
corresponding STAT parameter values (the last 
8-megabyte system). 

DISKDEF 0,1,58,,2048,256,128,128,2 

shown below 
produces a 

r=4096, k=512, d=128, c=128~ e=256, b=16, s=58, t=2 

DISKDEF 0,1,58,,2048,1024,300,0,2 
r=16384, k=2048, d=300, c=0, e=128, b=16, s=58, t=2 

DISKDEF 0,1,58,r16384,512,128,128,2 
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2 

with 
full 

(All Information Contained Herein is Proprietary to Digital Research.) 

33 

• 



12. SECTOR BLOCKING AND DEBLOCKING. 

Upon each call to the BIOS WRITE entry point, the CP/M BDOS 
includes information which allows effective sector blocking and 
deblocking where the host disk subsystem has a sector size which is a 
multiple of the basic 128-byte unit. The purpose here is to present a 
general-purpose algorithm which can be included within your BIOS which 
uses the BDOS information to perform the operations automatically. 

Upon each call to WRITE, the BDOS provides the following 
information in register C: 

o 
1 
2 

= 
= 
= 

normal sector write 
write to directory sector 
write to the first sector 
of a new data block 

Condition 0 occurs whenever the next write operation is into a 
previously written area, such as a random mode record update, when the 
write is to other than the first sector of an unallocated block, or 
when the write is not into the directory area. Condition 1 occurs 
when a write into the directory area is performed. Condition 2 occurs 
when the first record (only) of a newly allocated data block is 
written. In most cases, application programs read or write multiple 
128 byte sectors in sequence, and thus there is little overhead 
involved in either operation when blocking and deblocking records 
since pre-read operations can be avoided when writing records. 

Appendix G lists the blocking and deblocking algorithms in skeletal 
form (this file is included on your CP/M disk). Generally, the 
algorithms map all CP/M sector read operations onto the host disk 
through an intermediate buffer which is the size of the host disk 
sector. Throughout the program, values and variables which relate to 
the CP/M sector involved in a seek operation are prefixed by "sek," 
while those related to the host disk system are prefixed by "hst." 
The equate statements beginning on line 29 of Appendix G define the 
mapping between CP/M and the hos t system, and mu s t be changed if other 
than the sample host system is involved. 

The entry points BOOT and WBOOT must contain the initialization 
code starting on line 57, while the SELDSK entry point must be 
augmented by the code starting on line 65. Note that although the 
SELDSK entry point computes and returns the Disk Parameter Header 
address, it does not physically selected the host disk·at this point 
(it is selected later at READHST or WRITEHST). Further, SETTRK, 
SETTRK, and SETDMA simply store the values, but do not take any other 
action at this point. SECTRAN performs a trivial trivial function of 
returning the physical sector number. 

The principal entry points are READ and WRITE, starting on lines 
110 and 125, respectively. These subroutines take the place of your 
previous READ and WRITE operations. 

The actual physical read or write takes place at either WRITEHST 
or READHST, where all values have been prepared: hstdsk is the host 

(All Information Contained Herein is Proprietary to Digital Research.) 

34 



disk number, hsttrk is the host track number, and hstsec is the host 
sector number (which may require translation to a physical sector 
number) • You must insert code at this point which performs the full 
host sector read or write into, or out of, the buffer at hstbuf of 
length hstsiz. All other mapping functions are performed by the 
algorithms. 

This particular algorithm was tested using an 80 megabyte hard 
disk unit which was originally configured for 128 byte sectors, 
producing approximately 35 megabytes of formatted storage. \r\lhen 
configured for 512 byte host sectors, usable storage increased to 57 
megabytes, with a corresponding 400% improvement in overall response. 
In this situation, there is no apparent overhead involved in 
deblocking sectors, with the advantage that user programs still 
maintain the (less memory consuming) 128-byte sectors. This is 
primarily due, of course, to the information provided by the BDOS 
which eliminates the necessity for pre-read operations to take place • 

(All Information Contained Herein is Proprietary to Digital Re~earch.) 

35 

• 



0000 = 
ffff = 
0000 = 

0000 = 

0000 = 
0806 = 
1880 = 
1600 = 
1603 = 

3000 

1880 = 
13002 = 
0031 = 
0019 = 
0018 = 

f800 = 
ff0f = 
0078 = 
0079 = 
007b = 
007f = 

0078 = 
0079 = 
007a = 
00ff = 
0003 = 
0004 = 
0100 = 

3000 310001 

3003 db79 
3005 db7b 

30137 dbff 

1~~6 e~~130 

APPENDIX A: THE MDS COLD START LOADER 

MDS-800 Cold Start Loader for CP/M 2.0 

Version 2.0 August, 1979 

false egu 
true egu 
testing egu 

bias 

bias 

cpmb 
bdos 
bdose 
boot 
rboot 

. , 
bdosl 
ntrks 
bdoss 
bdos0 
bdosl 

Gil . , 
mon8e! 
rmon80 
base 
rtype 
rbyte 
reset 

dstat 
ilow 
ihigh 
bsw 
recal 
readf 
stack 

rstart: 

if 
egu 
endif 
if 
egu 
endif 
egu 
egu 
egu 
egu 
egu 

org 

egu 
egu 
egu 
egu 
eou 

egu 
egu 
egu 
egu 
egu 
egu 

egu 
egu 
egu 
egu 
egu 
egu 
egu 

lxi 
clear 
in 
in 
check 

coldstart: 
in 
ani 
Jnz 

o 
not false 
false 

testing 
03400h 

not testing 
0000h 

bias 
806h+bias 
1880h+bias 
1600h+bias 
boot+3 

;base of dos load 
;entry to dos for calls 
;end of dos load 
;cold start entry point 
;warm start entry point 

3000h ;loaded here by hardware 

bdose-cpmb 
2 ; tracks to read 
bdosl/128 
25 
bdoss-bdos0 

;# sectors in bdos 
;# on track 0 
i# on track 1 

0f800h 
0ff0fh 
078h 
base+l 
base+3 
base+7 

base 
base+l 
base+2 
0ffh 
3h 
4h 
100h 

;intel monitor base 
irestart location for mon80 
i 'base' used by controller 
iresult type 
;result byte 
ireset controller 

idisk status port 
ilow iopb address 
;high iopb address 
iboot switch 
;recalibrate selected drive 
idisk read function 
;use end of boot for stack 

sp,stackiin case of call to mon80 
disk status 

rtype 
rbyte 

if boot switch is off 

bsw 
02b d t t·switch on? coT s ar 

36 



300e d37f 

3010 0602 
3012 214230 

3015 7d 
3016 d379 
3018 7c 
3019 d37a 
30lb db78 

j~t¥ ~~~g30 

3022 db79 
3024 e603 
3026 fe02 

3028 d20030 

302b db7b 

302d 17 
302e dc0fff 
3031 If 
3032 e6le 

3034 c20030 

3037'110700 
303a 19 
303b 05 
303c c2l530 

303f c300l6 

start: 

wai to: 

i 

clear the controller 
out reset ilogic cleared 

mvi 
'lxi 

b,ntrks inumber of tracks to read 
h, iopb0 

read first/next track into cpmb 
mov a,l 
out ilow 
mov a,h 
ou t ihigh 
in dstat 
ani 4 
J z wai to 

check disk status 
in rtype 
ani lIb 
cpi 2 

if 
cnc 
endif 
if 
jnc 
endif 

testing 
rmon80 igo to monitor if 11 or 10 

not testing 
rstart iretry the load 

in rbyte ii/o complete, check status 
if not ready, then go to mon80 
ral 
cc rmon80 inot ready bit set 
rar irestore 
ani lll10b ioverrun/addr err/seek/crc 

if 
cnz 
endif 
if 
jnz 
endif 

lxi 
dad 
dcr 
jnz 

testing 
rmon80 igo to monitor 

,not testing 
rstart iretry the load 

d,iopbl ilength of iopb 
d iaddressing next iopb 
b icount down tracks 
start 

jmp boot, print message, set-up jmps 
jmp boot 

parameter blocks 

37 

• 



3042 80 iopb0: db 80h i iocw, no update 
3043 04 db readf i read function 
3044 19 db bdos0 i# sectors to read trk " 3045 00 db 11 itrack 0 
3046 02 db 2 istart with sector 2, trk 0 
3047 0000 dw cpmb istart at base of bdos 
0007 = iopbl egu $-iopb0 

i 
3049 80 iopbl: db 80h 
304a 04 db readf 
304b 18 db bdosl isectors to read on track 1 
304c 01 db 1 itrack 1 
304d 01 db 1 isector 1 
304e 800c c1w cpmb+bdos0*128 ibase of second rd 
3050 end 

38 



0014 = 

4a00 
3400 = 
3c06 = 
1600 = 
002c = 
0002 = 
0004 = 
0080 = 
000a = 

4a00 
4a03 
4a06 
4arii9 
4a0c 

c3b34a 
c3c34a 
c36l4b 
c3644b 
c36a4b 

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS) 

vers 

cpmb 
bdos 
cpml 
nsects 
offset 
cdisk 
buff 
retry 

mds-800 i/o drivers for cp/m 2.0 
(four drive single density version) 

version 2.0 august, 1979 

equ 20 ;version 2.0 

copyright (c) 1979 
digital research 
box 579, pacific grove 
california, 93950 

org 
equ 
egu 
equ 
equ 
equ 
equ 
equ 
equ 

perform 
boot 
wboot 

4a00h ;base of bios in 20k system 
3400h ;base of cpm ccp 
3c06h ;base of bdos in 20k system 
$-cpmb ;length (in bytes) of cpm system 
cpml/128;number of sectors to load 
2 ;number of disk tracks used by cp 
0004h ;address of last logged disk 
0080h ;default buffer address 
10 ;max retries on disk i/o before e 

following functions 
cold start 
warm start (save i/o byte) 

(boot 
const 

and wboot are the same for mds) 
console status 

conin 
conout 
list 
punch 
reader 
horne 

reg-a = 00 if no character ready 
reg-a = ff if character ready 
console character in (result in reg-a) 
console character out (char in reg-c) 
list out (char in reg-c) 
punch out (char in reg-c) 
paper tape reader in (result to reg-a) 
move to track 00 

(the following calls set-up the io parameter bloc 
mds, which is used to perform subsequent reads an 
seldsk select disk given by reg-c (0,1,2 ••• ) 
settrk set track address (0, ••• 76) for sub r/w 
setsec set sector address (1, ••• ,26) 
setdma set subsequent dma address (initially 80h 

read/write assume previous calls to set i/o parms 
read read track/sector to preset dma address 
write write track/sector from preset dma addres 

jump vector for indiviual routines 
jmp boot 

wboote: jmp wboot 
jmp const 
jmp conin 
jmp conout 

39 

• 



4a0f c36d4b 
4a12 c3724b 
4a15 c3754b 
4a18 c3784b 
4alb c37d4b 
4ale c3a74b 
4a2l c3ac4b 
4a24 c3bb4b 
4a27 c3c14b 
4a2a c3ca4b 
4a2d c3704b 
4a30 c3b14b 

4a33+= 
4a33+824a00 
4a37+000000 
4a3b+6e4c73 
4a3f+0d4dee 
4a43+824a00 
4a47+000000 
4a4b+6e4c73 
4a4f+3c4dld 
4a53+824a00 
4a57+000000 
4a5b+6e4c73 
4a5f+6b4d4c 
4a63+824a00 
4a67+000000 
4a6b+6e4c73 
4a6f+9a4d7b 

4a73+= 
4a73+la00 
4a75+03 
4a76+07 
4a77+00 
4a78+f200 
4a7a+3f00 
4a7c+c0 
4a7d+00 
4a7e+1000 
4a80+0200 
4a82+= 
4a82+0l 
4a83+07 
4a84+0d 
4a85+l3 
4a86+l9 
4a87+05 
4a88+0b 
4a89+ll 
4a8a+17 
4a8b+03 

dpbase 
dpe0: 

dpel: 

dpe2: 

dpe3 : 

dpb0 

xlt0 

jmp 
jmp 
jmp 
jmp 
jmp 
jmp 
jml? 
jmp 
jmp 
jmp 
jmp 
jmp 

maclib 
disks 
egu 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
dw 
diskdef 
equ 
dw 
db 
db 
db 
dw 
dw 
db 
db 
dw 
dw 
egu 
db 
db 
db 
db 
db 
db 
db 
db 
db 
db 

list 
punch 
reader 
home 
seldsk 
settrk 
setsec 
setdma 
read 
write 
listst ;list status 
sectran 

diskdef ;load the disk definition library 
4 ;four disks 
$ ;base of disk parameter blocks 
xlt0,0000h ;translate table 
0000h,0000h ;scratch area 
dirbuf,dpb0 ;dir buff,parm block 
csv0,alv0 ;check, alloc vectors 
xltl,0000h ;translate table 
0000h,0000h ;scratch area 
dirbuf,dl?bl ;dir buff,parm block 
csvl,alvl ;check, alloc vectors 
xlt2,0000h ;translate table 
0000h,0000h ;scratch area 
dirbuf,dpb2 idir buff,parm block 
csv2,alv2 ;check, alloc vectors 
xlt3,0000h ;translat€ table 
0000h,0000h ;scratch area 
dirbuf,dpb3 ;dir buff,parm block 
csv3,alv3 ;cheek, alloe vectors 
0,1,26,6,1024,243,64,64,offset 
$ ; di s k parm block 
26 ;sec per track 
3 iblock shift 
7 ;block mask 
o iextnt mask 
242 ;disk size-l 
63 ;directory max 
192 ;alloe0 
o ;allocl 
16 icheck size 
2 ;offset 
$ itranslate table 
1 
7 
13 

, 19 
25 
5 
11 
17 
23 
3 

40 



4a8c+09 
4aSd+0f 
4aSe+15 
4aSf+02 
4a90+08 
4a91+0e 
4a92+14 
4a93+1a 
4a94+06 
4a95+0c 
4a96+12 
4a97+1S 
4a9S+04 
4a99+0a 
4a9a+110 
4a9b+16 

4a73+= 
001f+= 
0010+= 
4aS 2+= 

4a73+= 
001f+= 
00HJ+= 
4aS2+= 

4a73+= 
001f+= 
001121+= 
4aS2+= 

00fd = 
00fc = 
00f3 = 
007e = 

fS00 = 
ff0f = 
fS03 = 
fS06 = 
fS09 = 
fS0c = 
fS0f = 
fS12 = 

dpbl 
alsl 
cssl 
xltl 

dpb2 
als2 
css2 
xlt2 

dpb3 
als3 
css3 
xlt3 

. , 
revrt 
intc 
icon 
inte 

. , 
monS0 
rmonS0 
ci 
ri 
co 
po 
10 
csts 

db 9 
db 15 
db 21 
db 2 
db 8 
db 14 
db 20 
db 26 
db 6 
db 12 
db IS 
db 24 
db 4 
db 10 
db 16 
db 22 
diskdef 1,10 
equ dpb0 iequivalent parameters 
equ als0 isame allocation vector size 
equ css0 isame checksum vector size 
equ xlt0 i same translate table 
diskdef 2,0 
equ dpb0 iequivalent parameters 
equ als0 isame allocation vector size 
equ css0 isame checksum vector size 
equ xlt0 i same translate table 
diskdef 3,0 
equ dpb0 ieguivalent parameters 
equ als0 isame allocation vector size 
equ , css0 isame checksum vector size 
equ xlt0 isame translate table 
endef occur s at end of assembly 

end of controller - independent code, the remaini 
are tailored to the particular oper.ating environm • 
be altered for any system which differs from the 

the following code assumes the mds monitor exists 
and uses the i/o subroutines within the monitor 

we also 
equ 
equ 
equ 
equ 

assume the mds system has four disk drive 
0fdh iinterrupt revert port 
0fch iinterrupt mask port 
0f3h iinterrupt control port 
0111$1110bienable rst o (warm boot) ,rst 7 

mds 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

monitor equates 
0f800h ;mds monitor 
0ff0fh irestart monS0 (boot error) 
0fS03h ;console character to reg-a 
0fS06h ireader in to reg-a 
0fS09h ;console char from c to console 0 
0fS0ch ;punch char from c to punch devic 
0fS0fh ilist from c to list device 
0fS12h ;console status 00/ff to register 

41 



101078 = 
101078 = 
101079 = 
IOf07b = 

101079 = 
fOI07a = 

1010104 = 
1010106 = 
00103 = 
1010104 = 
f00fOd = 
fOfOfOa = 

4a9c 
4a9f 
4aal 
4aad 
4ab0 

4ab3 
4ab6 
4ab9 
4abc 
4abd 
4acfO 

0dfOa0a 
32310 
6b20.43f 
32 2e3 0 
fOd0af00 

31010101 
219c4a 
cdd34b 
af 
3204100 
c30f4b 

4ac3 31810100 

4ac6 0e0a 
4ac8 c5 

4ac9 01101034 
4acc cdbb4b 
4acf 0efOIO 
4adl cd7d4b 
4ad4 0e00 
4ad6 cda74b 
4ad9 0elO2 
4adb cdac4b 

4ade cl 
4adf 062c 

base 
dstat 
rtype 
rbyte 
; 
ilow 
ihigh 

readf 
writf 
recal 
iordy 
cr 
If 

s ignon: 

. , 
boot: 

disk ports and commands 
equ 78h . ;base of disk command 

;disk status (input) 
;result type (input) 
;result byte (input) 

io ports 
equ base 
equ base+l 
equ base+3 

equ 
equ 

equ 
equ 
equ 
egu 
equ 
equ 

; s ignon 
db 
db 
db 
db 
db 

;print 
(note: 
lxi 
lxi 
call 
xra 
sta 
jmp 

base+l 
base+2 

4h 
6h 
3h 
4h 
0dh 
0ah 

;iopb low address (output) 
;iopb high address (output) 

;read function 
;write function 
;recalibrate drive 
;i/o finished mask 
;carriage return 
;line feed 

message: xxk cp/m vers y.y 
cr,lf,lf 
120 1 ;sample memory size 
Ik cp/m vers I 
vers/lfO+lfO l ,1.1 ,vers mod 10+ 110 1 
cr,lf,0 

signon message and go to ccp 
mds boot initialized iobyte at 0003h) 

sp,buff+80h 
h,signon 
prmsg ;print message 
a fclear accumulator 
cdisk ;set initially to disk a 
gocpm ;go to cp/m 

wboot:; loader on track 0, sector 1, which will be skippe 
read cp/m from disk - assuming there is a 128 byt 
star t. 

wboot0: 

lxi 

mvi 
push 
;enter 
lxi 
call 
q1vi 
call 
mvi 
call 
mvi 
call 

sp,buff ;using dma - thus 810 thru ff ok f 

c,retry ;max retries 
b 

here on error retries 
b,cpmb ;set dma address to start of disk 
setdma 
c,0 
seldsk 
c,1O 
settrk 
c,2 
setsec 

;boot from drive 10 

;start with track 10 
;start reading sector 2 

read sectors, count nsects to zero 
pop b ;10-error count 
mvi b,nsects 

42 



4ael c5 
4ae2 cdc14b 
4ae5 c2494b 
4ae8 2a6c4c 
4aeb 118000 
4aee 19 
4aef 44 
4af0 4d 
4afl cdbb4b 
4af4 3a6b4c 
4af7 fela 
4af9 da054b 

4afc 3a6a4c 
4aff 3c 
4b00 4f 
4b01 cda74b 
4b04 af 

rdsec: 

4b05 3c rdl: 
4b06 4f 
4b07 cdac4b 
'4b0a cl 
4 b0 b 05 
4b0c c2e14a 

4b0f f3 
4b10 3e12 
4b12 d3fd 
4b14 af 
4b15 d3fc 
4b17 3e7e 
4b19 d3fc 
4blb af 
4blc 03f3 

4ble 018000 
4b21 cdbb4b 

4b24 3ec3 
4b26 320000 
4b29 21034a 
4b2c 220100 
4b2f 320500 
4b32 21063c 
4b35 220600 
4b38 323800 
4b3b 2100f8 
4b3e 223900 

gocpm: 

iread next sector 
push b isave sector count 
call read 
jnz booterr iretry if errors occur 
Ihld iod ;increment dma address 
lxi d,128 isector size 
dad d iincremented dma address in hI 
mov 
mov 
call 
Ida 
cpi 
jc 
must 
Ida 
inr 
mov 
call 
xra 
inr 
mov 
call 
pop 
dcr 

b,h 
c,l 
setdma 
ios 

iready for call to set dma 

26 
rdl 

isector number just read 
iread last sector? 

be sector 26, zero and go to next track 
iot iget track to register a 
a 
c,a 
settrk 
a 
a 
c,a 
setsec 
b 
b 

jnz rdsec 

iready for" call 

iclear sector number 
ito next sector 
iready for call 

irecall sector count 
i done? 

done with the load, reset default buffer 
i (enter here from cold start boot) 
enable rst0 and rst7 
di 
mvi 
out 
xra 
out 
mvi 
out 
xra 
out 

a ,12h 
revrt 
a 
intc 
a,inte 
intc 
a 
icon 

iinitialize command 

icleared 
irst0 and rst7 bits on 

;interrupt control 

set default buffer address to 80h 
lxi b,buff 
call setdma 

reset monitor entry points 
mvi a, j mp 
sta 0 
lxi h,wboote 
shld 1 ijmp wboot at location 00 
sta 5 
lxi h,bdos 
shld 6 ijmp bdos at location 5 

address 

sta 7*8 ijmp to mon80 (may have been chan 
lxi h,mon80 
shld 7*8+1 
leave iobyte set 

43 

• 



4b4l 3a04flfl 
4b44 4f 
4b45 fb 
4b46 c30034 

4b49 cl 
4b4a 0d 
4b4b ca524b 

4b4e c5 
4b4f c3c94a 

4b52 2l5b4b 
4b55 cdd34b 
4b58 c30fff 

· , 

: 
booterr: 

booter0: 

· , 
bootrnsg: 

previously selected disk was b, send parameter to 
Ida cdisk :last logged disk number 
mov c,a :send to ccp to log it in 
ei 
jmp cpmb 

error condition occurred, print message and retry 

pop b :recall counts 
dcr c 
jz booterfl 
try again 
push b 
jmp wboot0 

otherwise too many retries 
lxi h,bootmsg 
call prmsg 
jmp rmon80 :mds hardware monitor 

4bSb 3f626f4 db '?boot',0 

4b6l c3l2f8 

4b64 cd03f8 
4b67 e67f 
4b69 c9 

: 
const: 

conin: 

; 

:console status to reg-a 
(exactly the same as mds call) 
jmp csts 

:console character to reg-a 
call ci 
ani 7fh :remove parity bit. 
ret 

conout: ;console character from c to console out 
4b6a c309f8 jmp co 

4b6d c30ff8 

4b70 af 
4b7l c9 

· , 
list: 

; 
listst: 

; 

;list device out 
(exactly the same as mds call) 
jmp 10 

;return list status 
xra 
ret 

a 
:always not ready 

punch: ;punch device out 
(exactly the same as mds call) 

4b72 c30cf8 jmp po 

· , 
reader: ;reader character in to reg-a 

(exactly the same as mds call) 
4b75 c306f8 jmp ri 

; 
horne: ;move to horne position 

44 



4b78 0e00 
4b7a c3a74b 

4b7d 210000 
4b80 79 
4b81 fe04 
4b83 d0 

4b84 e602 
4b86 32664c 
4b89 79 
4b8a e601 
4b8c b7 
4b8d ca924b 
4b90 3e30 

4b92 47 
4b93 21684c 
4b96 7e 
4b97 e6cf 
4b99 b0 
4b9a 77 

~B~8 ~~00 
4bge 29 
4b9f 29 
4ba0 29 
4ba1 29 
4ba2 11334a 
4ba5 19 
4ba6 c9 

4ba7 216a4c 
4baa 71 
4bab c9 

4bac 216b4c 
4baf 71 
4bb0 c9 

4bb1 0600 
4bb3 eb 
4bb4 09 
4bb5 7e 
4bb6 326b4c 
~gg~ gg 

; treat as track 00 seek 

; 

mvi 
jmp 

c,0 
settrk 

se1dsk: ;se1ect disk given by register c 
1xi h,0000h ireturn 0000 if error 
mov a,c 
cpi ndisks itoo large? 
rnc ;leave hI = 0000 

ani 
sta 
mov 
ani 
ora 
jz 
mvi 

10b i00 00 for drive 0,1 and 10 10 fo 

setdrive: 
mov 
1xi 
mov 
ani 
ora 
mov 
mov mvl. 

. , 
settrk: 

setsec: 

sectran: 

. , 

dad 
dad 
dad 
dad 
1xi 
dad 
ret 

;set 
1xi 
mov 
ret 

;set 
1xi 
mov 
ret 

mvi 
xchg 
dad 
mov 
sta 
mo~ re 

dbank ito select drive bank 
arC i00, 01, 10, 11 
1b imds has 0,1 at 78, 2,3 at 88 
a iresu1t 00? 
setd rive 
a,00110000b ;se1ects drive 1 iri bank 

b,a 
h,iof 
a,m 

isave the function 
iio function 

11001111b ;mask out disk number 
b ;mask in new disk number 
m,a ;save it in iopb 

~~~ ;h1=disk number 
h i*2
h ;*4
h ;*8
h ;*16
d,dpbase
d ;h1=disk header table address

track address given by c
h,iot
m,c

sector number given by c
h,ios
m,c

;trans1ate sector bc using table at de
b,0 idoub1e precision sector number

itrans1ate table address to hI
b ;trans1ate(sector) address
a,m itrans1ated sector number to a
ios
1,a i return sector number in 1

setdma: ;set dma address given by regs b,c

45

i

4bbb 69
4bbc 6r.1
4bbd 226c4c
4bc0 c9

4bcl
4bc3
4bc6
4bc9

4bca
4bcc
4bcf
4bd2

r.1er.14
cde04b
cdfr.14b
c9

r.1er.16
cder.14b
cdfr.14b
c9

4bd3 7e
4bd4 b7
4bd5 c8

4bd6 e5
4bd7 4f
4bd8 cd6a4b
4bdb el
4bdc 23
4bdd c3d34b

4ber.1 21684c
4be3 7e
4be4 e6f8
4be6 bl
4be7 77

4be8 e620
4bea 216b4c
4bed b6
4bee 77
4bef c9

4bf0 0e0a

4bf2 cd3f4c
4bf5 cd4c4c

4bf8 3a664c

;
read:

;
write:

mov
mov
shld
ret

; read
mvi
call
call
ret

;disk
mvi
call
call
ret

l,c
h,b
iod

next disk
c,readf
setfunc
waitio

record (assuming disk/trk/sec/dma
;set to read function

;perform read function
;may have error set in reg-a

write function
c,writf
setfunc :set to write function
waitio

;may have error set

utility subroutines
prmsg: :print message at h,l to 0

:
setfunc:

;
waitio:

rewai t:

mov
ora
rz

a,m
a : zero?

more to print
push h
mov
call
pop
inx
jmp

set
lxi
mov
ani
ora
mov
the

c,a
conout
h
h
prmsg

function for next i/o (command in reg-c)
h,iof :io function address
a,m :get it to accumulator for maskin
11111000b :remove previous command
c :set to new command
m,a ;replaced in iopb

mds-800 controller req's disk bank bit in sec
mask the bit from the current i/o function
ani
lxi
ora
mov
ret

mvi

00100000b :mask the disk select bit
h,ios ;address the sector selec
m :select proper disk bank
m,a ;set disk select bit on/o

c,retry :max retries before perm error

start the i/o function and wait for completion
call intype :in rtype
call inbyte :clears the controller

Ida dbank ;set bank flags

46

4bfb b7
4bfc 3e67
4bfe 064c
4c00 c20b4c
4c03 d379
4c05 78
4c06 d37a
4c08 c3H'4c

4c0b d389
4c0d 78
4c0e d38a

4c10 cd594c
4c13 e604
4c15 ca104c

4c18 cd3f4c

4clb fe02
4cld ca324c

4c20 b7
4c21 c2384c

4c24 cd4c4c
4c27 17
4c28 da324c
4c2b If
4c2c e6fe
4c2e c2384c

4c31 c9

4c32 cd4c4c
4c35 c3384c

· ,
iodrl:

;
wai to:

· ,

ora a ;zero if drive 0,1 and nz
mvi a,iopb and 0ffh ; low address for iopb
mvi b, iopb shr 8 ; high address for iopb
jnz iodrl ;drive bank I?
'out ilow ;low address to controlle
mov a,b
out ihigh ; high
jmp wait0

; dr ive bank 1
out ilow+10h
mov a,b
out ihigh+10h

call instat
ani iordy
jz wait0

check io completion ok

address
ito wait for complete

;88 for drive bank 10

;wait for completion
;ready?

call intype ;must be io complete (00)
00 unlinked i/o complete, 01 linked i/o comple
10 disk status changed 11 (not used)
cpi 10b ;ready status change?
j z wready

must be 00 in the accumulator
ora
jnz

check
call
ral
jc
rar
ani
jnz

a
werror

i/o error bits
. inbyte

wready

11111110b
werror

;some other condition, re

;unit not ready

;any other errors?

read or write is ok, accumulator contains zero
ret

wready: ;not ready, treat as error for now
call inbyte ;clear result byte
jmp trycount

werror: ;return hardware malfunction (crc, track, seek, e

;

· ,

· I

;

the mds controller has returned a bit in each pos
of the accumulator, corresponding to the conditio
o - deleted data (accepted as ok above)
1 - crc error
2 - seek error
3 - address error (hardware malfunction)
4 - data over/under flow (hardware malfunct
5 - write protect (treated as not ready)
6 - write error (hardware malfunction)
7 - not ready

47

4c38 0d
4c39 c2f24b

4c3c 3e01
4c3e c9

4c3f 3a664c
4c42 b7
4c43 c2494c
4c46 db79
4c48 c9
4c49 db89
4c4b c9

4c4c 3a664c
4c4f b7
4c50 c2564c
4c53 db7b
4c55 c9
4c56 db8b
4c58 c9

4c59 3a664c
4c5c b7
4c5d c2634c
4c60 db78
4c62 c9
4c63 db88
4c65 c9

4c66 00

4c67 80
4c68 04
4c69 01
4c6a 02
4c6b 01
4c6c 8000

(accumulator bits are numbered 7 6 5 4 3 2 1 0)

it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable. in any case, the not ready conditio
treated as a separate condition for later improve

trycount:
register c contains retry count, decrement 'til z
dcr c
jnz rewait ;for another try

cannot recover from error
mvi a,l ;error code
ret

intype, inbyte, instat read drive bank 00 or 10
intype: Ida dbank

ora a
jnz intypl ;skip to bank 10
in r type
ret

intypl: in
ret

rtype+10h ;78 for 0,1 88 for 2,3

inbyte: Ida
ora
jnz
in
ret

inbytl: in
ret

;
instat: Ida

ora
jnz
in
ret

instal: in
ret

. data ,
dbank: db

iopb: ;io
db

iof: db
ion: db
iot: db
ios: db
iod: dw

dbank
a
inbytl
rbyte

rbyte+10h

dbank
a
instal
dstat

dstat+10h

areas (must be in
0 ;disk

parameter block

ram)
bank 00 if drive

10 if drive

80h ;normal i/o operation
readf ;io function, initial
1 ;number of sectors to
offset ;track number
1 ;sector number
buff do address

define ram areas for bdos operation

48

0,1
2,3

read
read

4c6e+=
4c6e+
4cee+
4d0d+
4dld+
4d3c+
4d4c+
4d6b+
4d7b+
4d9a+
4daa+=
013c+=
4daa

begdat
di rbuf:
al v0:
csv0:
alvl:
csvl:
alv2 :
csv2:
alv3:
csv3:
enddat
da tsiz

endef
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds
equ
equ
end

$
128 ~directory access buffer
31
16
31
IE?
31
16
31
16
$
$-begdat

49

0014 =

0000 =
3400 =
3c06 =
4a00 =
0004 =
0003 =

4a00
002c =

4a00 c39c4a

msize

bias
ccp
bdos
bios
cdisk
iobyte

nsects

4a03 c3a64a wboote:
4a06 c3114b
4a09 c3244b
4a0c c3374b
4a0f c3494b
4a12 c34d4b
4alS c34f4b
4a18 c3S44b
4alb c3Sa4b
4ale c37d4b
4a21 c3924b
4a24 c3ad4b
4a27 c3c34b
4a2a c3d64b
4a2d c34b4b
4a30 c3a74b

4a33 734a00 dpbase:
4a37 000000
4a3b f04c8d
4a3f ec4d70

4a43 734a00
4a47 000000
4a4b f04c8d
4a4f fc4d8f

4aS3 734a00
4aS7 000000
4aSb f04c8d
4aSf 0c4eae

APPENDIX C: A SKELETAL CBIOS

skeletal cbios for first level of cp/m 2.0 alter a

egu 20 icp/m version memory size in kilo

"bias" is address offset from 3400h for memory sy
than 16k (referred to as lib" throughout the text)

(msize-20) *1024 egu
equ
equ
egu
equ
equ

3400h+bias ibase of ccp
ccp+806h ibase of bdos
ccp+1600h ibase of bios
0004h ;current disk number 0=a, ••• ,15=p
0003h iintel i/o byte

org
equ

bios iorigin of this program
($-ccp)/128 iwarm start sector count

jump
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

vector for
boot
wboot
const
conin
conout
list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst
sectran

individual subroutines
icold start
iwarm start
iconsole status
;console character in
;console character out
;list character out
;punch character out
;reader character out
;move head to home positi
;select disk
;set track number
;set sector number
iset dma address
;read disk
;write disk
;return list status
;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 00
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk00,al100
disk parameter header for disk 01
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk01,al101
disk parameter header for disk 02
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk02,al102

50

4a63
4a67
4a6b
4a6f

734a00
000000
f04c8d
lc4ecd

i

~~11 ~9~~~g trans:
4a7b 170309
4a7f 150208
4a83 141a06
4a87 121804
4a8b 1016

4a8d la00
4a8f 03
4a91O 07
4a91 00
4a92 f200
4a94 3f00
4a96 c0
4a97 1010
4a98 1000
4a9a 0200

4a9c af
4a9d 320300
4aa0 320400
4aa3 c3ef4a

4aa6 318000
4aa9 0e00
4aab cd5a4b
4aae cd544b

4abl 062c
4ab3 0e00
4ab5 1602

4ab7 210034

4aba c5
4abb d5
4abc e5
4abd 4a
4abe cd924b
4acl cl

dpblk:

i
boot:

i
wboot:

10adl:

disk
dw
dw
dw
dw

parameter header
trans,0000h
0000h,0000h
dirbf,dpblk
chk03,al103

for disk 03

sector translate vector
gg
db
db
db
db
db

idisk
dw
db
db
db
dw
dw
db
db
dw
ow

~5:5~rl~17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22

isectors
isectors
isectors
isectors
isectors
isectors
isectors

5~g~1~~
9,10,11,12
13,14,15,16
17,18,19,20
21,22,23,24
25,26

parameter
26
3
7

block, common to all disks
isectors per track
iblock shift factor
iblock mask

(0

242
63
192
Ii)

16
2

inull mask
idisk size-l
idirectory max
ialloc 0
ialloc 1
icheck size
itrack offset

end of fixed tables

individual subroutines to perform each function
isimplest case is to just perform parameter initi
xra a izero in the accum
sta iobvte iclear the iobyte
sta cdisk iselect disk zero
jmp gocpm iinitialize and go to cp/

isimplest case is to read the disk until all sect
lxi sp,80h iuse space below buffer f
mvi c,0 iselect disk Ii)

call seldsk
call home ;go to track 00

mvi b,nsects ib counts # of sectors to
mvi c,0 iC has the current track
mvi d,2 ;d has the next sector to
note that we begin by reading track 0, sector 2 s
~ontains the cold start loader, which is skipped
lxi h,ccp ibase of cp/m (initial 10
i load
push
push
push
mov
call
pop

one
b
d

more sector

h
c,d
setsec
b

51

isave sector count, current
isave next sector to read

track

isave dma address
iget sector address
iset sector address
irecall dma address

to register c
from register
to b,c

•

4ac2 c5
4ac3 cdad4b

4ac6 cdc34b
4ac9 fe00
4acb c2a64a

4ace el
4acf 1180100
4ad2 19
4ad3 dl
4ad4 cl
4ad5 05
4ad6 caef4a

4ad9 14
4ada 7a
4adb felb
4add daba4a

4ae0 1601
4ae2 0c

4ae3 c5
4ae4 d5
4ae5 e5
4ae6 cd7d4b
4ae9 el
4a,ea dl
4aeb cl
4aec c3ba4a

4aef 3ec3
4afl 32101000
4af4 21034a
4af7 220100

4afa 320500
4afd 21063c
4b00 220600

4b03 1018101010
4blO6 cdad4b

4blO9 fb
4b0a 3alO401O
4b0d 4f
4b0e c3101034

gocpm:

push
call

drive
call
cpi
jnz

b ;replace on stack for later recal
setdma ;set dma address from b,c

set to
read
100h
wboot

10, track set, sector set, dma addres

;any errors?
;retry the entire boot if an erro

no error, move to next sector
;recall dma address
;dma=dma+128

pop h
lxi d,128
dad d ;new dma address is in h,l

;recall sector address pop d
pop b ;recall number of sectors remaini

;sectors=sectors-l dcr b
j z gocpm ;transfer to cp/m if all have bee

more sectors remain to load, check for track chan
inr
mov
cpi
jc

d
a,d
27
loadl

;sector=27?, if so, change tracks

;carry generated if sector<27

end of current track, go to next track
mvi d,l ;begin with first sector of next
inr c ;track=track+l

save
push
push
push
call
pop
pop
pop
jmp

register state, and change tracks
b
d
h
settrk ;track address set from register
h
d
b
loadl ;for another sector

end of load operation, set parameters and go to c

rnvi
sta
lxi
shld

sta
lxi
shld

lxi
call

ei
Ida
mov
jmp

a,0c3h ;c3 is a jmp instruction
10 ;for jmp to wboot
h,wboote ;wboot entry point
1 ;set address field for jmp at 10

5
h,bdos
6

b,8lOh
setdma

cdisk
c,a
ccp

52

;for jmp to bdos
;bdos entry point
;address field of jump at 5 to bd

;default dma address is 810h

;enable the interrupt system
;get current disk number
;send to the ccp
;go to cp/m for further processin

4bll
4b21 3eliH'
4b23 c9

4b24
4b34 e67f
4b36 c9

4b37 79
4b38
4b48 c9

4b49 79
4b4a c9

4b4b af
4b4c c9

4b4d 79
4b4e c9

4b4f 3ela
4b51 e67f
4b53 c9

4b54 0e00
4b56 cd7d4b
4b59 c9

4b5a 210000
4b5d 79
4b5e 32ef4c
4b61 fe04

i
i

;

· ,
simple i/o handlers (must be filled in by user)
in each case, the entry point is provided, with s
to insert your own code

const: iconsole status, return 0ffh if character ready,
ds 10h ispace for status subroutine
mvi a, 00h
ret

conin: iconsole character into register a
ds 10h ispace for input routine
ani 7fh istrip parity bit
ret

i
conout: iconsole character output from register c

i
list:

· ,

mov a,c iget to accumulator
ds 10h ispace for output routine
ret

;list character from register c
mov a,c ;character to register a
ret inul1 subroutine

listst: ;return list status (0 if not ready, I if ready)

· ,
xra a ;0 is always ok to return
ret

punch: ;punch character from register Co

mov a,c ;character to register a
ret ;null subroutine

;
reader: ;read character into register a from reader devic

;

· ,
home:

· ,

mvi a,lah ;enter end of file for now (repla
ani 7fh ;remember to strip parity bit
ret

i/o drivers for the disk follow
for now, we will simply store the parameters away
in the read and write subroutines

;move to the track 00 position of current drive
translate this call into a settrk call with param
mvi c,0 ;select track 0
call settrk
ret ;we will move to 00 on first read

seldsk: ;select disk given by register c
lxi h,0000h ;error return code
mov a,c
sta diskno
cpi 4 ;must be between 0 and 3

53

4b63 d0

4b64

4b6e 3aef4c
4b71 6f
4b72 2600
4b74 29
4b75 29
4b76 29
4b77 29
4b78 11334a
4b7b 19
4b7c c9

4b7d 79
4b7e 32e94c
4b81
4b91 c9

4b92 79
4b93 32eb4c
4b96
4ba6 c9

4ba7 eb
4ba8 09
4ba9 6e
4baa 2600
4bac c9

4bad 69
4bae 60
4baf 22ed4c
4bb2
4bc2 c9

4bc3
4bd3 c3e64b

4bd6

rnc
disk number is
ds 10
compute proper
Ida diskno

ino carry if 4,5, ...
in the proper range

ispace for disk select
disk parameter header address

mov l,a il=disk number 0,1,2,3
mvi h,0 ihigh order zero
dad h i*2
dad h i*4
dad h i *8
dad h i*16 (size of each header)
lxi d,dpbase
dad d ihl=.dpbase(diskno*16)
ret

settrk: iset track given by register c
mov a,c
sta track
ds 10h ispace for track select
ret

i
setsec: iset sector given by register c

mov
sta
ds
ret

a,c
sector
10h ispace for sector select

sectran:
itranslate
; transla te
xchg

the sector given by bc using the
table given by de

;hl=.trans
;hl=.trans(sector)

.
I

setdma:

read:

i
write:

i

dad b
mov I,m ;1 = trans(sector)
mvi h,0 ;hl= trans(sector)
ret

;set
mov
mov
shld
ds
ret

iwith value in hI

dma address given by registers band c
l,c ;low order address
h,b ;high order address
dmaad isave the address
10h ;space for setting the dma add res

;perform read operation {usually this is similar
so we will allow space to set up read command, th
common code in write)
ds 10h ;set up read command
jmp waitio ito perform the actual i/o

;perform a write operation
ds 10h iset up write commanu

waitio: ;enter here from read and write to perform the ac
operation. return a 00h in register a if the ope
properly, and 01h if an error occurs during the r

54

4be6
4ce6 3efill
4ce8 c9

4ce9
4ceb
4ced
4cef

4cf0 =
4cf0
4d70
4d8f
4dae
4dcd
4dec
4dfc
4e0c
4elc

4e2c =
013c =
4e2c

in this case,

ds 256
mvi a,l
ret

we have saved the disk number in 'd
the track number in I track I (0-76
the sector number in I sector I (1-
the dma address in I dmaad I (II' -655
;space reserved for i/o drivers
;error condition
;replaced when filled-in

the remainder of the cbios is reserved uninitiali
data area, and does not need to be a part of the
system memory image (the space must be available,
however, between "begdat" and "enddat").

track: ds
sector: ds
dmaad: ds
diskno: ds

2
2
2
1

;two bytes for expansion
;two bytes for expansion
;direct memory address
;disk number 0-15

scratch ram area for bdos use
begdat equ $; beginning of data area
dirbf: ds 128 ;scratch directory area
al100 : ds 31 ;allocation vector 0
al101: ds 31 ;allocation vector 1
al102 : ds 31 ;allocation vector 2
alHl3: ds 31 ;a11ocation vector 3
chk00 : ds 16 ; check vector 0
chk01: ds 16 ;check vector 1
chk02: ds 16 ; check vector 2
chk03: ds 16 ; check vector 3
;
enddat equ $;end of data area
datsiz equ $-begdat; size of data area

end

55

•

APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM

0100

0014 =

0000 =
3400 =
3c00 =
4a00 =

msize

combined getsys and putsys programs from Sec 4.
Start the programs at the base of the TPA

org 0100h

equ 20 size of cp/m in Kbytes

"bias" is the amount to add to addresses for > 20k
(referred to as lib" throughout the text)

bias
ccp
bdos
bios

gstart:

equ
,equ
equ
equ

(msize-20)*1024
34013h+bias
ccp+0800h
ccp+1600h

getsys programs tracks 0 and 1 to memory at
3880h + bias

register
a
b
c
d,e
h,l
sp

usage
(scratch register)
track count (0 ••• 76)
sector count (1. •• 26)
(scratch register pair)
load address
set to stack address

start of getsys
0100 318033 lxi sp,ccp-013813h

h,ccp-01380h
b,0

; convenient p1ac
set initial loa
start with trac
read next track
each track star

0103 218033 lxi
0106 13600 mvi

rd$trk:
0108 13e01 mvi

0113a cd131303
010d 1181300
13110 19
0111 13c
0112 79
13113 fe1b
0115 da0a01

rd$sec:
call
1xi
dad
inr
mov
cpi
jc

c,l

read$sec
0,128
d
c
a,c
27
rdsec

get the next se
offset by one s

(h1=h1+128)
next sector
fetch sector nu

and see if la
<, do one more

arrive here at end of track, move to next track

13118 04
0119 78
011a fe02
011c da0801

011f fb
0120 76

inr
mov
cpi
jc

b
a,b
2
rd$trk

track = track+l
check for last
track = 2 ?
<, do another

arrive here at end of load, halt for lack of anything b

ei
hIt

56

0200

0200 318033
0203 218033
0206 0600

0208 0e01

020a cd0004
020d 118000
0210 19
0211 0c
0212 79
~213 fe1b
0215 da0a02

0218 04
0219 78
021a fe02
021c da0802

021f fb
0220 76

0300

0300 c5
0301 e5

0302

0342 el
0343 c1

putsys program, places memory image starting at
3880h + bias back to tracks 0 and 1
start this program at the next page boundary

org

put$sys:
1xi
1xi
mvi

wr$trk:

wr$sec:
mvi

call
1xi
dad
inr
mov
cpi
jc

($+0100h) and 0ff00h

sp,ccp-0080h
h,ccp-0080h
b,0

c,l

write$sec
d,128
d
c
a,c
27
wr$sec

convenient p1ac
start of dump
start with trac

start with sect

write one secto
length of each
<h1>=<h1> + 128
<c> = <c> + 1
see if

past end of t
no, do another

arrive here at end of track, move to next track

inr
mov
cpi
jc

b
a,b
2
wr$trk

track = track+1
see if

last track
no, do another

done with putsys, halt for lack of anything bette

ei
hIt

user supplied subroutines for sector read and write

move to next page boundary

org ($+0100h) and 0ff00h

read$sec:
read the next sector
track in ,
sector in <c>
dmaaddr in <hI>

push
push

b
h

user defined read operation goes here
ds 64

pop
pop

h
b

57

0344 c9 ret

0400 org ($+0100h) and 0ff00h another page bo

write$sec:

. same parameters as read$sec I

0400 c5 push b
0401 e5 push h

user defined write operation goes here
0402 ds 64

0442 e1 pop h
0443 c1 pop b
0444 c9 ret

end of getsys!putsys program

0445 end

58

0000

liH1l4 =

0000 =
3400 =
4a00 =
0300 =
4a00 =
1900 =
0032 =

0000 010200
0003 1632
0005 210034

APPENDIX E: A SKELE'rAL COLD START LOADER

this is a sample cold start loader which, when modified
resides on track 00, sector 01 (the first sector on the
diskette). we assume that the controller has loaded
this sector into memory upon system start-up (this pro
gram can be keyed-in, or can exist in read/only memory
beyond the address space of the cp/m version you are
running). the cold start loader brings the cp/m system
into memory at "10adp" (3400h + "bias"). in a 20k
memory system, the value of "bias" is 0000h, with large
values for increased memory sizes (see section 2). afte
loading the cp/m system, the clod start loader branches
to the "boot" entry point of the bios, which begins at
"bios" + "bias." the cold start loader is not used un
til the system is powered u? again, as long as the bios
is not overwritten. the origin is assumed at 0000h, an
must be changed if the controller brings the cold start
loader into another area, or if a read/only memory area
is used.

msize

bias
ccp
bios
biosl
boot
size
sects

cold:

Isect:

org 0 base of ram in cp/m

equ 20 min mem size in kbytes

egu (msize-20)*1024 offset from 20k system
equ 3400h+bias base of the ccp
egu ccp+1600h base of the bios
egu 0300h length of the bios
egu bios
egu bios+biosl-ccp size of cp/m system
equ size/128 # of sectors to load

begin the load operation

lxi b,2 b=0, c=sector 2
mvi d,sects d=# sectors to load
lxi h,ccp base transfer

. load the next sector ,

insert inline code at this point to
read one 128 byte sector from the
track given in register b, sector
given in register c,
into the address given by <hI>

address

branch to location "cold" if a read error occurs

59

•

0008 c36b00
000b

006b 15
006c ca004a

006f 318000
0072 39

0073 0c
0074 79
0075 felb
0077 da0800

007a 0e01
007c 04
007d c30800
0080

*
*
*

user supplied read operation goes here •••

jmp past$patch . remove this when patche ,
ds 60h

past$patch:
; go to next sector if load is incomplete

dcr d ; sects=sects-l
jz boot . head for the bios ,

more sectors to load

we aren't using a stack, so use <sp> as scratch registe
to hold the load address increment

lxi sp,128 128 bytes per sector
dad sp <hI> = <hI> + 128

inr c sector = sector + 1
mov a,c
cpi 27 last sector of track?
jc Isect no, go read another

end of track, increment to next track

mvi c,l sector = 1
inr b track = track + 1
jmp Isect for another group
end of boot loader

60

1:
2:

APPENDIX F: CP/M DISK DEFINITION LIBRARY

CP/M 2.0 disk re-definition library

3: ; Copyright (c) 1979
4: ; Digital R=bearch
5: Box 579
6: Pacific Grove, CA
7: 93950
8:
9: ; CP/M logical disk drives are defined using the

macros given below, where the sequence of calls
is:

disks n
diskdef ?arameter-list-0
diskdef 9arameter-list-l

diskdef parameter-list-n
endef

where n is the number of logical disk drives attached
to the CP/M- system, and parameter-list-i defines the

,characteristics of the ith drive (i=0,1, ••. ,n-l)

each parameter-list-i takes the form
dn,£Qc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where
dn is the disk number Ii) ,1, ••• ,n-l
fsc is tile first sector number (usually 0 or 1)
lsc is ti1e last sector number on a track
skf is ofjtional iiskew factor" for sector translate
bls is tne data block
dks is tnt:: disk size
dir is tn€: number of
cks is th~ number of
ofs is the number of
[0] is an opt.ional 0

for convenience, the form
dn,dm

size (1024,2048, ••• ,16384)
in bls increments (word)
directory elements (word)
dir elements to checksum
tracks to skip (word)
which forces 16K/directory en

defines disk dn as having the same characteristics as
a previously defined disk dm.

a standard four
disks
diskdef

dsk set
rept

dsk set
diskdef
endm
endei

drive CP/M system is defined by
4
10,1,26,6,1024,243,64,64,2
o
3
dsk+1
%dsk,0

•

110:
11: ;
12: ;
13: ;
14: ;
15 :
16:
17:
18: ;
19: ;
20:
21:
22: ;
23: ;
24:
25:
26:
27:
28:
29: ;
30: ;
31:
32: ;
33:
34: ;
35: ;
36: ;
37:
38: ;
39: ;
410: ;
41:
42: ;
43: ;
44: ;
45:
46: ;
47: ;
48:
49: ;
50: ;
51:
52: ;
53: ; the value of "begdat" at the end of assembly defiries t

61

54:
55:
56:
57:
58: ;
59:
610:
61:
62:
63: ;;

. ,
dskhdr

beginning of the uninitialize ram area above the bios,
while the valve of "enddat" defines the next location
followinq the end of the data area. the size of this
area is ~iven by the value of "datsiz" at the end of t
assembly. note that the allocation vector will be qui
large if a large disk size is defined with a small blo
size.

macro
define

dn

64: dpe&dn: dw
a single disk

xlt&dn,00100h.
0000h,0000h
dirbuf,dpb&dn
csv&dn,alv&dn

header list
;translate table
;scratch area 65:

66:
67:
68:
69:
70:

;
disks

71: ;;
72: ndisks
73:
74:
"15:
76:
77:
78:
79:
80:
81:
82:
a 3:
84:
85:

dpbase
; ;
dsknxt

dsknxt

. ,
dpbhdr
dpb&dn

. ,
ddb
; ;

;
ddw
; ;

136:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97: ;;
98: ;;

gcd

99:
100:
101 :
102:
1103:
104:
105:
1106:
1107:
108:

. . , ,
gcdm
gcdn
gcdr

gcdx
gcdr

dw
dw
dw
endm

macro nd
define nd disks

;dir buff,parm block
;check, ailoc vectors

set nd ;;for later reference
equ $
generate the

;base of disk parameter blocks
r~d elements

set 0
rept nd
dskhdr %dsknxt
set
endm
endm

macro
equ
endm

macro
define
db
endm

macro
define
dw
endm

a

a

dsknxc+l

dn
$

da ta, cornmen t
db statement

data

da ta, commen t
dw statement

data

macro m,n

;disk parm block

comment

comment

greatest common divisor of m,n
produces value gcdn as result
(used in sector translate table generation)
set m ;;variable for m
set n ;;variable for n
set 0 ;;variable for r
rept 65535
set gcdm/gcdn
set gcdm - gcdx*gcdn
if gcdr = 0
exitm
endif

62

109:
110:
111:
112:

gcdm
gcdn

113: :

set
set
endm
endm

gcdn
gcdr

114: diskdef macro dn,fsc,lsc,skf,bls,dks,dir,cks,ofs,k16
115: ;; generate the set statements for later tables
116: if nul lsc
117: ;; current disk dn s~me as orevious fsc

;8quivalent parameters 118: dpb&dn equ dpb&fsc
119: als&dn equ als&fsc ;same allocation vector size

;same checksum vector size
;same translate table

120: css&dn equ css&fsc
121: xlt&dn equ xlt&fsc
122: else
123: secmax set
124: sectors set
125: als&dn set

lsc-{fsc) ;;sectors 0 •.• secmax
secmax+l;;number of sectors
(dks)/8 ;;size of allocation vector
({dks) mod 0) ne f2J 126: if

127:
128 :
129 :
1310:
131 :
132 :
133:
134:
135:
136:
137:

als&dn

css&dn ..
I I

blkval
blkshf
blkmsk

138: ;;
139: blkshf
140: blkmsk
141: blkval
142:
143:
144:
145:
146:
147:
148:
149:

.. , ,
blkval
extmsk

; ;
extmsk
blkval

1510:
151 :
152:
153 :
154: ;;

extmsk
155:
156:
157:
158: ;;
159 :
160:
161:
162 :
163:

extmsk

; ;
dirrem

set
endif

als&dn+l

set (cks) /4 ; inumber of checksum elements
generate the block shift value
set bls/128 ;;number of sectors/block
set 0 ;;counts right 0's in blkval
set 0 ;;~ills with l's from right
rept 16 ;i~nce for each bit position
if blkval=l
exitm
endif
otherwise, high ord~r 1 not found yet
set blkshf+l
set (blkmsk shl 1) or 1
set blkval/2
endm
generate the extent mask byte
set bls/1024 iinumber of kilobytes/block
set 0 iifill from right with l's
rept 16
if blkval=l
exitm
endif
otherwise more to shift
set (extmsk shl 1) or 1
set blkval/2
endm
may be
if
set
endif
may be
if
set
endif

double byte ~llocation
(dks) > 256
(extmsk shr 1)

optional [0]
not nul k16
k16

in last position

now generate directory reservation bit vector
ii# remaining to process set dir

63

•

164:
165:
166:
167:
168:
169:

dirbks
dirblk

170: ii
171 :
172 :
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:

; ;
dirblk

dirrem

dirrem

190: ii
191:
192:
193:
194:
195:
196:

xlt&dn

xlt&dn

197: ii
198: nxtsec
199: nxtbas
200:
201 : . . , ,
202: neltst
203: ii
2104: ;;
2105: nelts
206: xlt&dn
207:
208:
209:
210:
211 :
212 :
213:
214:
215:
216:
217:
218:

nxtsec

nxtsec

nelts

set
set

bls/32
o

;;nuffiber of entries per block
i;f111 with l's on each loop

rept
if
exitm
endif

16
dirrem=0

not complete, iterate once again
shift right and add 1 high order bit
set (dirblk shr i) or 8000h
if dirrem > dirbks
set dirrem-di~bks
else
set
endif
endm
dpbhdr dn ;;ge~erate equ $
ddw %sectors,<;sec per track>
ddb %blkshf,<iblcck shift>
ddb %blkmsk,<iblockmask>
ddb %extmsk,<ie~tnt mask>
ddw %(dks)-l,<;oisk size-I>
ddw %(dir)-l,<;airectory max>
ddb %dirblk shr &,<;alloc0>
ddb %dirblk ana 0ffh,<;allocl>
ddw %(cks)/4~<icheck size>
ddw %ofs,<ioffset>
generate the translate table, if requested
if nul skf
equ 0
else
if
equ
else

skf
o

= g

ino xlate table

ino xlate table

generate the translate taole
set (1 iiaext sector to fill
set 0 iifficves by one on overflow
gcd %sectors,skf
gcdn = gcd(sectors,skew)
set sectors/gcdn
neltst is number of elements to generate
before we overlap orevious elements
set ne1tst iicounter
equ $ itranslate table
rept sectors i ionce for each sector
if sectors < 256
ddb %nxtsec+(fsc)
else
ddw
endif
set
if
set
endif
set
if

%nxtsec+(fsc)

nxtsec+(skf)
nxtsec >= sectors
nxtsec-sectors

nelts-l
nelts = 0

64

219 :
220:
221 :
222 :
223:
224:
225:
226:
227:
228:
229 :
230:
231 :
232 :
233:
234:
235:
236:
237:
238:
239:
240:
241:
242 :
243 :
244:
245:
246:
247:
248: ;;
249:

nxtbas
nxtsec
nelts

;
aefas
lab:

· ,
Ids

· ,
endef · . , ,
begdat
dirbuf:
dsknxt

dsknxt

enddat
datsiz

set
set
set
endif
endm
endif
endif
endm

macro
as
endm

macro
aefds
endm

macro

nxtbas+l
nxtbas
neltst

;;end of nul fac test
;;end of nul bls test

lab,space
space

Ib,dn,val
Ib&dn,%val&dn

generate the nec~ssary ram data areas
egu $
ds 128 ;directory access buffer
set 0
rept ndisks ;;once for eacn disk
Ids alv,%dsknxt,als
Ids csv,%dsknxt,css
set dsknxt+l

$
$-begdat

endm
egu
egu
db 0
endm

at this point forces hex record

65

•

APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS.

1: ;***
2: 1 *
3: ;* Sector Deblocking Algorithms for CP/M 2.0

*
*

4: ;* *
5: ;***
6:
7: ;
8: smask
9: ;;

10 :
11 :

utility macro to compute sector mask
macro hblk
compute log2(hblk), return @x as result
(2 ** @x = hblk on return)
set hblk

; ;
@y
@x 12 :

13: ;;
14:

set 0
count right shifts of @y until = 1
rept 8

15 :
16:
17:
18:
19:
20:
21:
22 :
23:
24:
25:
26 :
27:
28:
29:
30:
31 :
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45 :
46:
47:
48:
49:
50:
51:
52:
53:

if @y = 1
exi tm
endif. · . , , @y is not 1, shift right one position

@y
@x

. set @y shr 1
set @x + 1
endm
endm

;
.*** , .

· * ,
· * ,
· * ,

CP/M to host disk constants
'*
*
*

.*** , .

blksiz equ
hstsiz equ
hstspt equ
hstblk equ
cpmspt equ
secmsk equ

smask
secshf equ

2048
512
20
hstsiz/128
hstblk * hstspt
hstblk-l
hstblk
@x

;CP/M allocation size
;host disk sector size
;host disk sectors/trk
;CP/M sects/host buff
;CP/Msectors/track
;sector mask
;compute sector mask
;log2(hstblk)

;
.*** ,
.* * ,
.* , BOOS constants on entry to write *
.* * ,
.*** ,
wrall
wrdir
wrual
· ,

equ
equ
equ

o
1
2

;write to allocated
;write to directory
;write to unallocated

;***
.* * ,
;* The BOOS entry points given below show the *
; * code which is re-levant to deblocking only. *
.* * ,
.*** ,

66

54:
55:
56:
57:
58:
59:
60:
61 :
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

HHJ:
101:
102:
103:

· ,
dpbase
· ,
boot:
wboot:

;
seldsk:

· ,
set trk:

setsec:

· ,
setdma:

· ,
sectran:

DISKDEF macro, or hand coded tables go here
egu $;disk param block base

:enter here on system boot to initialize
xra a
sta hstact
sta unacnt
ret

:select disk
mov a,c
sta sekdsk
mov l,a
mvi h,0
rept 4
dad h
endm
lxi d,dpbase
dad d
ret

;set track given
mov h,b
mov l,c
shld sektrk
ret

;set sector given
mov a,c
sta seksec
ret

iset dma address
mov h,b
mov l,c
shld dmaadr
ret

; 0 to accumulator
;host buffer inactive
;clear unalloc count

:selected disk number
;seek disk number
:disk number to HL

:multiply by 16

;base of parm block
;hl=.dpb(curdsk)

by registers Be

itrack to seek

by register c

:sector to seek

given by Be

;translate sector number Be
mov h,b
mov l,c
ret

67

•

lrl14:
1 rlI 5:
lrl1 6:
lrl17:
1 rlI8:
1 rlI9:
llrl1 :

.*** I

.*
I

· * I

. * I

.*
I

The READ entry point takes the place of
the previous BIOS defintion for READ •

*

*
.*** I

read:
1 read the selected CP/M sector
mvi a,l
sta readop 1read operation
sta rsflag 1must read data
mvi ·a ,wrual
sta wrtype 1treat as unalloc
jmp rwoper 1to perform the read

· I

.*** I

Ill:
112:
113:
114:
115:
116:
117:
118:
119 :
12rl1 :
121:
122:
123:
124:
125:
126:
127:
128:
129 :
13rl1:
131:
132:
133:
134:
135:
136:
137 :
138:
139:
140 :
141:
142:
143:
144:
145:
146:
147:
148:
149:
15rl1: 1
151:
152:
153:
154:
155:
156:
157: 1
158: 1

.* I

.*
I

· * I

.* I

The WRITE entry point takes the place of
the previous BIOS defintion for WRITE.

*
*
*
*

.*** I

write:

1

· I

chkuna:

1write the selected
xra
sta
rnov
sta
cpi
jnz

a
readop
a,c
wrtype
wrual
chkuna

CP/M sector
1rl1 to accumulator
1not a read operation
1write type in c

1write unallocated?
1check for unalloc

write to unallocated, set parameters
mvi a,blksiz/128 1next unalloc recs
st.a unacnt
Ida sekdsk 1disk to seek
sta unadsk 1unadsk = sekdsk
Ihld sektrk
shld unatrk 1unatrk = sectrk
Ida seksec
sta unasec 1unasec = seksec

1check for write to unallocated sector
Ida unacnt 1any unalloc remain?
ora
jz

a
alloc 1skip if not

more
dcr
sta
Ida
lxi
cmp
jnz

unallocated records remain
a
unacnt
sekdsk
h,unadsk
m
alloc

disks are the same

68

;unacnt = unacnt-l

;same disk?

1sekdsk = unadsk?
;skip if not

159:
1610:
161:
162 :
163:
164 :
155:
166:
167:
168:
169:
1710:
171:
172:
173:
174:
175:
176:
177:
178:
179:
1810:
181:
182:
183:
184:
185:
186:
187:
188:
189:
1910:
191:
192:
193:
194:
195:
196:
197:
198:
199:
21010:
2101:
202:
20~:
2104:
2105:
2106:
2107:
2108:
2109:
2110:
211:
212:
213:

noovf:

;
a11oc:

.

1xi
call
jnz

h,unatrk
sektrkcmp
a110c

tracks are the same
Ida seksec
1xi h,unasec
CPO m
jnz a110c

match, move to next
inr m
mov a,m
cpi cpmspt
jc noovf

;sektrk = unatrk?
;skip if not

;same sector?

;seksec = una sec?
,skip if not

sector for future ref
;unasec = unasec+1
;end of track?
;count CP/M sectors
;skip if no overflow

overflow to next track
mvi
1h1d
inx
sh1d

;match
xra
sta
jmp

;not an
xra
sta
inr
sta

m,e
unatrk
h
unatrk

found,
a
rsf1ag
rwoper

mark

unallocated
a
unacnt
a
rsf1ag.

;unasec = 10

;unatrk = unatrk+1

as unnecessary read
;10 to accumulator
; rsf1ag = 10
ito perform the write

record, requires pre-read
; 10 to accum
;unacnt = 10
;1 to accum
; rsf1ag = 1

, .
• *** ,
.* * ,
;* Common code for READ and WRITE follows *
.* * I

.*** I

rwoper:
;enter
xra
sta
Ida
rept
ora
rar
endm
sta

active
1xi
mov
mvi

here to perform
a
erf1ag
seksec
secshf
a

sekhst

host sector?
h,hstact
a,m
m,l

69

the read/write
;zero to accum
;no errors (yet)
;compute host sector

;carry = 10
;shift right

;host sector to seek

;host active flag

;a1ways becomes 1

•

214:
215:
216:
217: ;
218:
219 :
2210:
221:
222 :
223:
224:
225:
226:
227:
228:
229:
2310:
231 :
232:
233: ;
234: nomatch:

ora
jz

a
filhst

;was it already?
;fill host if not

host
Ida
lxi
cmp
jnz

buffer active, same as seek buffer?

same
lxi
call
jnz

sekdsk
h ,hstdsk
m
nomatch

disk, same track?
h,hsttrk
sektrkcmp
nomatch

;same disk?
;sekdsk = hstdsk?

;sektrk = hsttrk?

same disk, same track, same buffer?
Ida sekhst
lxi h,hstsec ;sekhst = hstsec?
cmp
jz

m
match ;skip if match

235: ;proper disk, but not correct sector
236: Ida hstwrt ;host written?
237:
238 :
239: ;
2410: filhst:
241:
242:
243:
244:
245:
246:
247:
248:
249:
2510:
251:
252:
253: ;
254: match:
255:
256:
257 :
258:
259:
260:
261:
262 :
263:
264:
265:
266:
267:
268:

ora
cnz

;may
Ida
sta
Ihld
shld
Ida
sta
Ida
ora
cnz
xra
sta

a
writehst

have to fill
sekdsk
hstdsk
sektrk
hsttrk
sekhst
hstsec
rsflag
a
readhst
a
hstwr t

;clear host buff

the host buffer

;need to read?

; ye s, if 1
;/0 to accum
;no pending write

;copy data to or from buffer
Ida seksec ;mask buffer number
ani secmsk ;least signif bits
mov l,a ;ready to shift
mvi h,/O ;double count
rept 7 ;shift left 7
dad h
endm
hI has
lxi
dad
xchg
Ihld

relative host buffer address

mvi

d,hstbuf
d

dmaadr
c,128

710

;hl = host address
;now in DE
;get/put CP/M data
;length of move

269 :,
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:

, 282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301 :
302:
303 :
304 :
305:
306:
307:
308 :
309:
310:
311:
312:
313 :
314:
315 :
316 :
317:
318:
319 :
320:

rwmove:

· ,

Ida readop iwhich way?
ora a
jnz rwmove iskip if read

write operation, mark and switch direction
mvi a,l
sta hstwrt i hstwr t = 1
xchg isource/dest swap

;C initially 128, DE is source, HL is dest
Idax d ;source character
inx d
mov m,a ito dest
inx h
dcr c ; loop 128 times
jnz rwmove ..
data' has been moved to/from host buffer
Ida wrtype
cpi wrdir
Ida erf1ag
rnz

clear host buffer for
ora
rnz
xra
sta
call
Ida
ret

a

a
hstwr t
writehst
erflag

iwrite type
ito directory?
;in case of errors
inO further processing

directory write
;errors?
iskip if so
i0 to accum
ibuffer written

.*** ,

.* * ,
· * ,
· * ,

utility subroutine for 16-bit compare *
*

.*** ,
sektrkcmp:

;HL = .unatrk or .hsttrk, compare with sektrk
xchg
lxi
Idax
cmp
rnz
low
inx
inx
1dax
cmp
ret

h,sektrk
d
m

bytes equal,
d
h
d
m

test

;low byte compare
i same?
ireturn if not

high Is

i sets flags

71

•

.*** 321:
322:
323:
324 :
325:
326:
327:
328 :
329 :
3310:
331 :
332:
333:
334:
335:
336:
337:
338:
339:
3410:
341 :
342: i *
343:
344:
345:
346:
347 :
348:
349:
3510:
351 :
352:
353 :
354:
355:
356:
357:
358:
359:
3610:
361:
362:
363:
364:
365:
366:
367:
368:
369:
3710:

,
.* ,
· * ,
· * ,
· * ,
· * , .

WRITEHST perf~rms the physical write to
the host disk, READHST reads the physical
disk.

*
"It

*
*
*

. *** ,
writehst:

· ,
readhst:

· ,

ihstdsk = host disk #, hsttrk = host track #,
ihstsec = host sect i. write "hstsiz h bytes
ifrom hstbuf and return error flag in erflag.
;return erflag non-zero if error
ret

ihstdsk = host disk #, hsttrk = host track i,
ihstsec = host sect i. read "hstsiz" bytes
iinto hstbuf and return error flag in erflag.
ret

.*** ,
*

· * , unitialized RAM data areas *
· * , *
.*************************************n******~******** ,
· ,
sekdsk: ds
sektrk: ds
seksec: ds
i
hstdsk: ds
hsttrk: ds
hstsec: as
i
sekhst:
hstact:
hstwr t:
i
unacnt:
unaask:
unatrk:
unasec:

erflag:
rsflag:
readop:
w:type:
dmaadr:
hstbuf:

ds
ds
ds

ds
as
ds
ds

ds
ds
ds
as
ds
ds

1
2
1

1
2
1

1
1
1

1
1
2
1

1
1
1
1
2
hstsiz

72

iseek disk number
iseek track number
iseek sector number

ihost disk number
ihost track number
ihost sector number

iseek shr secshf
ihost active flag
ihost written flag

iunalloc rec cnt
ilast unalloc disk
ilast unalloc track
ilast unalloc sector

;error reporting
iread sector flag
;1 if read operation
;write operation type
;last dma address
;host buffer

371:
372:
373:
374:
375:
376:

.*** ,

. * ,

. * ,
*

The ENDEF macro invocation goes here * .* * ,
.*** ,

end

73

•

MICROSOFT BASIC 80
REFERENCE MANUAL

I

[1YA][]©OO©®©[P1J

rn3£®[]© c ®@
release 5.0

Revision 1

~ Microsoft, 1979

•

Introduction

BASIC-80 is the most extensive implementation of BASIC
available for the 8080 and Z80 microprocessors. In its
fifth major release (Release 5.0), BASIC-80 meets the ANSI
qualifications for BASIC, as set forth in document
BSRX3.60-1978. Each release of BASIC-80 consists of three
upward compatible versions: 8K, Extended and Disk. This
manual is a reference for all three versions of BASIC-80,
release 5.0 and later. This manual is also a reference for
Microsoft BASIC-86 and the Microsoft BASIC Compiler.
BASIC-86 is currently available in Extended and Disk
Standalone. versions, which are comparable to the BASIC-80
Extended and Disk Standalone versions.

There are significant differences between the 5.0 release of
BASIC-80 and the previous releases (release 4.51 and
earlier). If you have programs written under a previous
release of BASIC-80, check Appendix A for new features in
5.0 that may affect execution.

The manual is divided into three large qhapters plus a
number of appendices. Chapter 1 covers a variety of topics,
largely pertaining to information representation when using
BASIC-BO·. Chapter 2 contains the syntax and semantics of
every command and statement in BASIC-BO, ordered
alphabetically. Chapter 3 describes all of BASIC-BO's
intrinsic functions, also ordered alphabetically. The
appendices contain information pertaining to individual
operating systems; plus lists of error messages, ASCII
codes, and math functions; and helpful information on
assembly language subroutines and disk I/O.

•

INTRODUCTION

CHAPTER 1

CHAPTER 2

CHAPTER 3

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX 0

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

APPENDIX K

APPENDIX L

BASIC-80 Reference Manual

CQNTENTS

General Information About BASIC-80

BASIC-80 Commands and Statements

BASIC-80 Functions

New Features in BASIC-80, Release 5.0

BASIC-80 Disk I/O

Assembly Language Subroutines

BASIC-80 with the CP/M Operating System

BASIC-80 with the ISIS-II Operating System

BASIC-80 with the TEKDOS Operating System

BASIC-80 with the Intel SBC and ~DS Systems

Standalone Disk BASIC

Converting Programs to BASIC-80

Summary of Error Codes and Error Messages

Mathematical Functions

ASCII Character Codes •

CHAPTER 1

GENERAL INFORMATION ABOUT BASIC-SO

1.1 INITIALIZATION

The procedure for initialization will vary with different
implementations of BASIC-SO. Check the appropriate appendix
at the back of this manual to determine how BASIC-SO is
initialized with your operating system.

1.2 MODES OF OPERATION

When BASIC-SO is initialized, it types· the prompt "Ok".
"Ok" means BASIC-SO is at command level, that is,' it is
ready to accept commands. At this point, BASIC-SO may be
used in either of two modes: the direct mode or the
indirect mode.

In the direct mode, BASIC commands and statements are not
preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may
be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for . using BASIC as a
"calculator" for quick computations that do not require a
complete program.

The indirect mode is the mode used
Program lines are preceded by line
memory. The program stored in
entering the RUN command.

1.3 LINE FORMAT

for entering programs.
numbers and are stored in

memory is executed by

Program lines in a BASIC program have the following format
.(square brackets indicate optional) :

nnnnn BASIC statement[:BASIC statement •••] <carriage return>

•

GENERAL INFORMATION ABOUT BASIC-80 Page 1-2

At the programmer's option, more than one BASIC statement
may be placed on a line, but each statement on a line must
be separated from. the last by a colon.

A BASIC program line always begins with a line number, ends
with a carriage return, and may contain a maximum of:

72 characters in 8K BASIC-80
255 characters in Extended and Disk BASIC-80.

In Extended and Disk versions, it is possible to extend a
logical line over more than one physical line by use of the
terminal's <line feed> key. <Line feed> lets you continue
typing a logical line on the next physical line without
entering a <carriage return>. (In the 8K version, <line
feed> has no effect.

Every BASIC program line begins with a line number. Line
numbers indicate the order in which the program lines are
stored in memory and are also used as references when
branching and editing. Line numbers must be in the range 0
to 65529. In the Extended and Disk versions, a period C.)
may be used in EDIT, LIST, AUTO and DELETE commands to refer
to the current line. .

GENERAL INFORMATION ABOUT BASIC-SO Page 1-3

1.4 CHARACTER SET

The BASIC-SO character set is comprised of alphabetic
characters, numeric characters and special characters.

The alphabetic characters in BASIC-SO are the upper case and
lower case letters of the alphabet.

The numeric characters in BASIC-SO are the digits a through
9.

The following special characters and terminal keys are
recognized by BASIC-SO:

Character

=
+

*
/
f\
(
)
%

$

[
]

&
?
<
>
\
@

<rubout>
<escape>

<tab>

<line feed>
<carriage

return>

Name
Brank
Semicolon
Equal sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent
Number (or pound) sign
Dollar sign
Exclamation point
Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Colon
Ampersand
Question mark
Less than
Greater than
Backslash or integer division symbol
At-sign
Underscore
Deletes last character typed.
Escapes Edit Mode subcommands.
See Section 2.16.
Moves print position to next tab stop.
Tab stops are every eight columns.
Moves to next physical line.

Terminates input of a line.

•

GENERAL INFORMATION ABOUT BASIC-SO Page 1-4

1.4.1 Control.9haracters

The following control characters are in BASIC-80:

Control-A

Control-C

Control-G

Control-H

Control-I

Control-O

Control-R

Control-S

Control-Q

Control-U

1.5 CONSTANTS

Enters Edit Mode on the line being typed.

Interrupts program execution and returns to
BASIC-80 command level.

Rings the bell at the terminal.

Backspace. Deletes the last character typed.

Tab. Tab stops are every eight columns.

Halts program
continues. A
output.

output
second

while
Control-O

execution
restarts

Retypes the line that is currently being
typed.

Suspends program execution.

Resumes program execution after a Control-S.

Deletes the line that is currently being
typed.

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric.

A string constant is a sequence of up to 255
characters enclosed in double quotation marks.
string constants:

alphanumeric
Examples of

"HELLO"
"$25,000.00"
"Number of Employees"

Numeric constants are positive or negative numbers. ,Numeric
constants in BASIC cannot contain commas. There are five
types of numeric constants:

1. Integer constants

2. Fixed Point
constants

Whole numbers between -32768 and
+32767._ Integer constants do not
have decimal points.

Positive or negative real numbers,
i.e., numbers that contain decimal
points.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-5

3. Floating Point
constants

4. Hex constants

5. Octal constants

Positive or negative numbers repre-·
sented in exponential form (similar
to scientific notation). A
floating point constant consists of
an optionally signed integer or
fixed point number (the mantissa)
followed by the letter E and an
optionally signed integer (the
exponent). The exponent must be in
the range -38 to +38.
Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double precision floating point
constants use the letter D instead
of E. See Section 1.5.1.)

Hexadecimal numbers with the prefix
&H. Examples:

&H76
&H32F

Octal numbers with the prefix &0 or
&. Examples:

&0347
&1234

1.5.1 Single And Double Precision ~ For Numeric Constants

In the 8K version of BASIC-80, all numeric constants are
single precision numbers. They are stored with 7 digits of
precision, and printed with up to 6 digits.

In the Extended and Disk versions, however, numeric
constants may be either single precision or double prec1s10n
numbers. With double precision, the numbers are stored with
16 digits of precision, and printed with up to 16 digits.

•

GENERAL INFORMATION ABOUT BASIC-80 Page 1-6

A single precision constant is
has:

1. seven or fewer digits,

2. exponential form using

3. a trailing exclamation

A double precision constant is
has:

1. ~ight or more digits,

2. exponential form using

3. a trailing number

Examples:

Single Precision Constants

46.8
-7.09E-06

3489.0
22.51

1.6 VARIABLES

sign

any numeric constant that

or

E, or

point (1)

any numeric con$tant that

or

D, or

(#)

Double Precision Constants

345692811
-1.09432D-06

3489.0#
7654321.1234

Variables are names used to represent values that are used
in a BASIC program. The value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable is
assigned a value, its value is assumed to be zero.

1.6.1 Variable Names And Declaration Characters

BASIC-80 variable names may be any length, however, in the
8K version, only the first two characters are significant.
In the Extended and Disk versions, up to 40 characters are
significant. The characters allowed in a variable name are
letters and numbers, and the decimal point is allowed in
Extended and Disk variable names. The first character must
be a letter. Special type declaration characters are also
allowed -- see below.

A variable name may not be a reserved word. The Extended
and Disk versions allow embedded reserved words; the 8K
version does not. If a variable begins with FN, it is
assumed to be a call to a user-defined function. Reserved
words include all BASIC-80 commands, statements, function

GENERAL INFORMATION ABOUT BASIC-80 Page 1-7

names and operator names.

Variables may represent either a numeric value or a string.
String variable names are written with a dollar sign ($) as
the last character. For example: A$ = IISALES REPORT II • The
dollar sign is a variable type declaration character, that
is, it IIdeclares ll that the variable will represent a string.

In the Extended and Disk versions, numeric variable names
may declare integer, single or double precision values.
(All numeric values in 8K are single precision.) The type
declaration characters for these variable names are as
follows:

% Integer variable

Single precision variable

Double precision variable

The default type for a numeric variable name is single
precision.

Examples of BASIC-80 variable names follow.

In Extended and Disk versions:

PI#
MINIMUM!
LIMIT%

declares a double precision value
declares a single precision value
declares an integer value

In 8K, Extended and Disk versions:

N$
ABC

declares a string value
represents a single precision value

In the Extended and Disk versions of BASIC-BO, there is a
second method by which variable types may be declared. The
BASIC-80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL may be
inclcded in a program to declare the types for certain
variable names. These statements are described in detail in
Section 2.12.

1.6.2 Array Variables

An array is a group or table of values referenced by the
same variable name. Each element in an array is referenced
by an array variable that is subscripted with integers or
integer expressions. An array variable name has as many
subscripts as there are dimensions in the array. For
example V(10) would reference a value in a one-dimensional
array, T(1,4) would reference a value in a two-dimensional
array, and so on.

•

GENERAL INFORMATION ABOUT BASIC-80 Page 1-8

1.7 TYPE CONVERSION

When necessary, BASIC will convert a numeric constant from
one type to another. The following rules and examples
should be kept in mind.

1. If a numeric constant of one type is set equal to a
numeric variable of a different type, the number
will be stored as the type declared in the variable
name. (If a string variable is set equal to a
numeric value or. vice versa, a "~ype mismatch"
error occurs.)
Example:

10 A% = 23.42
20 PRINT A%
RUN

23

2. During expression evaluation, all of the operands
in an arithmetic or relational operation are
converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result
of an arithmetic operation is returned to this
degree of precision.
Examples:

10 D# = 6#/7 The arithmetic was performed
20 PRINT D# in double precision and the
RUN result was returned in D#

.8571428571428571 as a double precision value.

10 0 = 6#/7
20 PRINT D
RUN

.857143

The arithmetic was performed
in double precision and the
result was returned to D (single
precision variable), rounded and
printed as a single precision
value.

3. Logical operators (see Section 1.8.3) convert their
operands to integers and return an integer result.
Operands must be in the range -32768 to 32767 or an
"Overflow" error occurs.

4. When a floating point value is converted to an
integer, the fractional portion is rounded.
Example:

10 C% = 55.88
20 PRINT C%
RUN

56

GENERAL INFORMATION ABOUT BASIC-BO Page 1-9

5. If a double precision variable is assigned a single
prec~s~on value, only the first seven digits,
rounded, of the converted number will be valid.
This is because only seven digits of accuracy were
supplied with the single precision value. The
absolute value of the difference between the
printed double precision number and the original
single precision value will be less than 6.3E-B
times the original single precision value.
Example:

10 A = 2.04
20 B# = A
30 PRINT A~B#
RUN

2.04 2.039999961B53027

1.B EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or
a variable, or it may combine constants and variables with
operators to produce a single value.

Operators perform mathematical or logical operations on
values. The operators provided by BASIC-BO may be divided
into four categories:

1. Arithmetic

2. Relational

3. Logical

4. Functional

1.B.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator

*,/

+,-

Operation

Exponentiation

Negation

Multiplication, Floating
Point Division

Addition, Subtraction

Sample Expression

XAY

-X

X*y
X/Y

X+Y

•

GENERAL INFORMATION ABOUT BASIC-80 Page 1-10

To change the order in which the operations
use parentheses. Operations within
performed first. Inside parentheses, the
operations is maintained.

are performed,
parentheses are
usual order of

Here are some sample algebraic expressions and their BASIC
counterparts.

Algebraic Expression

X+2Y

x-..L
Z

XY
Z
X+Y
-Z-

(X2) Y
yZ

X

X(-Y)

BASIC Expression

X+Y*2

X-Y/Z

X*Y/Z

(X+Y)/Z

(XJ\2) J\Y

XJ\(YJ\Z)

X*(-Y) Two consecutive
operators must
be separated by
parentheses.

1.8.1.1 Integer Division And Modulus Arithmetic -
Two additional operators are available in Extended and Disk
versions of BASIC-BO: Integer division and modulus
arithmetic.

Integer division is denoted by the
operands are rounded to integers
-32768 to 32767) before the division
quotient is truncated to an integer.

10\4 = 2 .
25. 68\6.99 = 3

basks lash ('). The
(must be in the range

is performed, and the
For example:

The precedence of integer divisionis
multiplication and floating point division.

just after

Modulus arithmetic is denoted by the operator MOD. It gives
the integer value that is the remainder of an integer
division. For example:

10.4 MOD 4 = 2 (10/4=2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer
division.

GENERAL INFORMATION ABOUT BASIC-BO Page 1-11

1.8.1.2 Overflow And Division ~ Zero -
If, during the evaluation of an expression, a division by
zero is encountered, the "Division by zero" error message is
displayed, machine infinity with the sign of the numerator
is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation results
in zero being raised to a negative power, the "Division by
zero" error message is displayed, positive machine infinity
is supplied as the result of the exponentiation, and
execution continues.

If overflow occurs, the "Overflow" error message is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues.

1.B.2 Relational Operators

Relational operators are used to compare two values. The
result of the comparison is either "true" (-1) or "false"
(0). This result may then used to make a decision regarding
program flow. (See IF, Section 2.26.)

°Eerator Relation Tested EXEression

= Equality- x=y

<> Inequality x<>y

< Less than x<y

> Greater than x>y

<= Less than or equal to X<=Y

>= Greater than or equal to X>=y

(The equal sign is also used to assign a value to a
variable. See LET, Section 2.30.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+y < (T-1)/Z

is true if the value of X plus Y is less than the value of
T-1 divided by Z. More examples:

IF SIN(X)<O GOTO 1000
IF I MOD J<> 0 THEN K=K+1·

•

GENERAL INFORMATION ABOUT BASIC-SO Page 1-12

1.S.3 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either "true" (not zero)
or "false" (zero). In an expression, logical operations are
performed after arithmetic and relational operations 0 The
outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of
precedence.

NOT

AND

OR

XOR

IMP

EQV

X NOT X
1 a
a 1

X
1
1
a
o

X
1
1
a
a

X
1
1
a
a

X
1
1
a
a

X
1
1
a
a

y
1
a
1
a

Y
1
O·
1
o

Y
1
o
1
o

Y
1
o
1
o

Y
1
o
1
o

X AND Y
1
a
a
a

X OR Y
1
1
1
o

X XOR Y
o
1
1
o

X IMP Y
1
o
1
1

x EQV Y
1
o
o
1

Just as the relational op~rators can be used to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
value to be used in a decision (see IF, Section 2.26). For

GENERAL INFORMATION ABOUT BASIC-80 Page 1-13

example:

IF 0<200 AND F<4 THEN 80
IF I>10 OR K<O THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to
sixteen bit, signed, two's complement integers in the range
-32768 to +32767. (If the operands are not in this range,
an error results.) If both operands are supplied as 0 or -1,
logical operators return 0 or -1. The given operation is
performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in
the two operands.

Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator maybe used to "mask" all but one of the bits of a
status byte at a machine I/O port. The OR operator may be
used to "merge" two bytes to create a particular binary
value. The following examples will help demonstrate how the
logical operators work.

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 OR 2=6

10 OR 10=10

-1 OR -2=-1

NOT X=- (X+1)

63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 1 4 (binary 1110)

-1 = binary 1111111111111111 and
8 = binary 1000, so -1 AND 8 = 8

4 = binary 100 and 2 = binary 10,
so 4 OR 2 = 6 (binary 110)

10 = binary 1010, so 1010 OR 1010 =
1010 (10)

-1 = binary 1111111111111111 and
-2 = binary 1111111111111110,
so -1 OR -2 = -1. The bit
complement of sixteen zeros is
sixteen ones, which is the
two's complement representation of -1.

The two's complement of any integer
is ~he bit complement plus one.

•

GENE~ INFORMATION ABOUT BASIC-SO Page 1.~14

1.S.4 Functional Operators

A function is used in ari expression to call a predetermined
operation that is to be performed on an operand.' BASIC-SO
has "intrinsic" functions that reside in thesyst~rii, such as
SQR (square root) or SIN (sine).' All ofBASIC-SO's
intr~nsic functions are described in Chapter 3~

BASIC-SO also allows "user defined" functions that ar~
written by the programmer. 'See DEFFN, Section 2.11.

1.S.5 String Uperations

~trings may be concatenated using +. For example:,

10 A$="FILE"': B$="NAME n

, '20 ~RINT A$ + B$
30 PRINT "NEW " + A$ ~ B$
RUN "
FIL'ENAME'
NEW FILENAME

Strings may be compared using the same relational operators
that are used with numbers:

= <> < > <= >=

String comparisons are made by taking one character ,at a
time from each string 'and comparing the ASCII codes.' If all
the ASCII codes are the same, the strings are equal. If the
ASCII codes differ, the lower code number preced~s the
higher. If, during string comparison, the end of one string
is reached, the shorte~ string ~s said to be smaller.
Leading and, trailing blanks are significant. Examples:

"M" < "AB"
"FILENAME" = "FILENAME"
"X&" > "X#"
"CL " > "CL"
"kg" > "KG"
"SMYTH" < "SMYTHE"
B$ < "9/12/7~" wher~ B$ = "S/12/7S~

Thus, string comparisons can be used to test string, values
or to alphabetize strings., All string constants used in
comparison expressions must be enclosed in quotation marks.

GENERAL INFORMATION ABOUT BASIC-SO Page 1-15

1.9 INPUT EDITING

If an incorrect character is entered as a line is being
typed, it can be deleted with the RUBOUT key or with
Control-H. Rubout surrounds the deleted characterCs) with
backslashes, and Control-H has the effect of backspacing
over a character and erasing it. O~ce a characterCs) has
been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type
Control-U. A carriage return is executed automatically
after the line is deleted.

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
BASIC-SO will automatically replace the old line with the
new line.

More sophisticated editing capabilities are provided in the
Extended and Disk versions of BASIC-SO. See EDIT, Section
2. 16.

To delete the entire program that is currently residing in
memory, enter the NEW command. CSee Section 2.41.) NEW is
usually used to clear memory prior to entering a new
program.

1.10 ERROR MESSAGES

If BASIC-SO d~tects an error that causes program execution
to "terminate, an error message is printed. In the SK
version, only the error code is printed. In the Extended
and Disk versions, the entire error message is printed. For
a complete list of BASIC-SO error codes and error messages,
see Appendix J. ..

CHAPTER 2

BASIC-80 COMMANDS AND STATEMENTS

All of the BASIC-80 commands and statements are described in
this chapter. Each description is formatted as follows:

Format:

Versions:

Purpose:

Remarks:

Example:

Shows the correct format for the instruction.
See below for format notation.

Lists the versions of BASIC-80
in which the instruction is available.

Tells what the instruction is used for.

Describes in detail how the instruction
is used.

Shows sample programs or program segments
that demonstrate the use of the instruction.

Format Notation
Wherever the format for a statement or command is given, the
following rules apply:

1. Items in capital letters must be input as shown.

2. Items in lower case letters enclosed in angle
brackets « » are to be supplied by the user.

3. Items in square brackets ([]) are optional.

4. All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

5. Items followed by an ellipsis (•••) may be repeated
any number of times (up to the length of the line)'.

I

BASIC-80 COMMANDS A~D STATEMENTS Page 2-2

2.1 AUTO

Format:

Versions:

Purpose:

Remarks:

Example:

AUTO [<line number>[,<increment>]]

Extended, Disk

To generate a line number automatically after
every carriage return.

AUTO begins numbering at <line number> and
increments each subsequent line number by
<increment>. The default for both values is 10.
If <line number> is followed by a comma but
<increment> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the
number to warn the user that any input will
replace the existing line. However, typing a
carriage return immediately after the asterisk
will save the line and generate the next line
number.

AUTO is terminated by typing Control-C. The
line in which Control-C is typed is not saved.
After Control-C is typed, BASIC returns to
command level.

AUTO 100,50

AUTO

Generates line numbers 100,
150, 200 ••.

Generates line numbers 10,
20, 30, 40 •.•

BABIC-80 COMMANDS AND STATEMENTS Page 2-3

2.2 CALL

Format:

Version:

Purpose:

Remarks:

Example:

CALL <variable name>[«argument list»]

Extended, Disk

To call an assembly language subroutine.

The CALL statement is one way to transfer
program flow to an assembly language subroutine.
(See also the USR function, Section 3.40)

<variable name> contains an address that is the
starting point in memory of the subroutine.
<variable name> may not be an array variable
name. <argument list> contains the arguments
that are passed to the assembly language
subroutine.

The CALL statement generates the same calling
sequence used by Microsoft's FORTRAN, COBOL and
BASIC compilers.

110 MYROUT=&HDOOO
120 CALL MYROUT(I,J,K)

•

BASIC-BO COMMANDS AND STATEMENTS Page 2-4

2.3 CHAIN

Format:

Version:

Purpose:

Remarks:

CHAIN [MERGE] <filename>[, [<line number exp>]
[,ALL] [,DELETE<range>]]

Disk

To call a program and pass variables to it from
the current program.

<filename> is the name of the program that is
called. Example:

CHAIN"PROG1"

<line number exp> is a line number or an
expression that evaluates to a line number in
the called program. It is the starting point
for execution of the called program. If it is
omitted, execution begins at the first line.
Example:

CHAIN"PROG1",1000

<line number exp> is not affected by a RENUM
command.

With the ALL option, every variable in the
current program is passed to the called program.
If the ALL option is omitted, the current
program must contain a COMMON statement to list
the' variables that are passed. See Section 2.7.
Example:

CHAIN"PROG1",1000,ALL

If the MERGE option is included, it allows a
subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation is
performed with the current program and the
called program. The called program must be an
ASCII file if it is to be MERGEd. Example:

CHAIN MERGE"QVRLAY",1000

After an overlay is
desirable to delete
be brought in. To
option. Example:

brought in, it is usually
it so that a new overlay may

do this, use the DELETE

CHAIN MERGE"OVRLAY2",1000,DELETE 1000-5000

The line numbers in <range> are affected by the
RENUM command.

BASIC-SO COMMANDS AND STATEMENTS Page 2-5

NOTE: The Microsoft BASIC compiler does not support
the ALL, MERGE, and DELETE options to CHAIN. If
you wish to maintain compatibility with the
BASIC compiler, it is recommended that COMMON be
used to pass variables and that overlays not be
used.

•

BASIC-SO COMMANDS AND STATEMENTS Page 2-6

2.4 CLEAR

. Format: CLEAR [, [<expression 1 >] [, <expression2>]]

Versions: SK, Extended, Disk

Purpose: To set all numeric variables to zero and all
string variables to null; and, optionally, to
set the end of memory and the amount of stack
space.

Remarks: <expression1> is a memory location which, if

NOTE:

Examples:

specified, sets the highest location available
. for use by BASIC-SO.

<expression2> sets aside stack space for BASIC.
The default is 1000 bytes or one-eighth of the
available memory, whichever is smaller.

In previous versions of BASIC-SO, <expression1>
set the amount of string space and <expression2>
set the end of memory. BASIC-80, release 5.0
and later, allocates string space dynamically.
An "Out of string space" error occurs only if
there is no free memory left for BASIC to use.

CLEAR

CLEAR ,32768

CLEAR,,2000

CLEAR,32768,2000

BASIC-80 COMMANDS AND STATEMENTS Page 2-7

2.5 CLOAD

Formats:

Versions:

Purpose:

Remarks:

NOTE:

Example:

CLOAD <filename>

CLOAD? <filename>

CLOAD* <array name>

8K (cassette), Extended (cassette)

To load a program or an array from cassette tape
into memory.

CLOAD executes a NEW command before it loads
program from cassette tape. <filename> is
string expression or the first character of
string expression that was specified when
program was CSAVEd.

the
the
the
the

CLOAD? verifies tapes by comparing the program
currently in memory with the file on tape that
has the same filename. If they are the same,
BASIC-80 prints Ok. If not, BASIC-80 prints NO
GOOD.

CLOAD* loads a numeric array that has been saved
on tape. The data on tape is loaded into the
array called <array name> specified when the
array was CSAVE*ed.

CLOAD and CLOAD? are always entered at command
level as direct mode commands. CLOAD* may be
entered at command level or used as a program
statement. Make sure the array has been
DIMensioned before it is loaded. BASIC-80
always returns to command level after a CLOAD,
CLOAD? or CLOAD* is executed. Before a CLOAD
is executed, make sure the cassette recorder is
properly connected and in the Play mode, and the
tape is possitioned correctly.

See also CSAVE, Section 2.9.

CLOAD and CSAVE are not included
implementations of BASIC-80.

CLOAD "MAX2"

Loads file "M" into memory.

in all

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-8

2.6 CLOSE

Format:

Version: .

Purpose:

Remarks:

Example:

CLOSE[[#]<file number>[,[#]<file number ••• >]]

Disk

To conclude I/O to a disk file.

<file number> is the number under which the file
was OPENed. A CLOSE with no arguments closes
all open files.

The association between a particular file and
file number terminates upon execution of a
CLOSE. The file may then be reOPENed using the
same or a different file number; likewise, that
file number may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command always
CLOSE all disk files automatically. (STOP does
not close disk files.)

See· Appendix B.

BASIc-ao COMMANDS AND STATEMENTS Page 2-9

2.7 COMMON

Format:

Version:

Purpose:

Remarks:

Example:

COMMON <list of variables>

Disk

To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with
the CHAIN statement. COMMON statements may
appear anywhere in a program, though it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending "()" to the variable name. If all
variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

100 COMMON A,B,C,D() ,G$
110 CHAIN "PROG3", 1 a

•
•

•

BASIC-BO COMMANDS AND STATEMENTS Page 2~10

2.B CONT

Format:

Versions:

Purpose:

Remarks:

Example:

CONT

BK, Extended, Disk

To continue program execution after a Control-C
has been typed, or a STOP or END statement has
been executed.

Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (? or prompt
string) •

CONT is usually used in conjunction with STOP
for debugging. When execution is stopped,
intermediate values may be examined and changed
using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.
With the Extended and Disk versions, CONT may be
used to continue execution after an error.

CONT is invalid if the program has been edited
during the break. In 8K BASIC-80, execution
cannot be CONTinued if a direct mode error has
occurred during the break.

See example Section 2.61, STOP.

BASIC-80 COMMANDS AND STATEMENTS Page 2-11

2.9 CSAVE

Formats:

Versions:

Purpose:

Remarks:

NOTE:

Example:

CSAVE <string expression>

CSAVE* <array variable name>

8K (cassette), Extended (cassette)

To save the program or an array currently in
memory on cassette tape.

Each program or array saved on tape is
identified by a filename. When the command
CSAVE <string expression> is executed, BASIC-80
saves the program currently in memory on tape
and uses the first character in <string
expression> as the filename. <string
expression> may be more than one character, but
only the first character is used for the
filename.

When the command CSAVE* <array variable name> is
executed, BASIC-80 saves the specified array on
tape. The array must be a numeric array. The
elements of a multidimensional array are saved
with the leftmost subscript changing fastest.

CSAVE may be used as a program statement or as a
direct mode command.

Before a CSAVE or CSAVE* is executed, make sure
the cassette-recorder is properly c6nnected and
in the Record mode.

See also CLOAD, Section 2.5.

CSAVE and CLOAD are not included
implementations of BASIC-80.

CSAVE "TIMER"

Saves the program currently in memory on
cassette under filename liT".

in all •

BASIC-80 COMMANDS AND STATEMENTS Page 2-12

2.10 DATA

Format:

Versions:

Purpose:

Remarks:

Example:

DATA <list of constants>

SK, Extended, Disk

To store the numeric and string constants that
are accessed by the program's READ statement(s).
(See READ, Section 2.54)

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
fit on a line (separated by commas), and any
number of DATA statements may be used in a
program. The READ statements access the DATA
statements in order (by line number) and the
data contained therein may be thought of as one
continuous list of items, regardless of how many
items are on a line or where the lines are
placed in the program.

<list of constants> may contain numeric
constants in any format, i.e., fixed point,
floating point or integer. (No numeric
expressions are allowed in the list.) String
constants in DATA statements must be surrounded
by double quotation marks only if they contain
commas, colons or significant leading or
trailing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or string) given in
the READ statement must agree with the
corresponding constant in the DATA statement.

DATA statements may be reread from the beginning
by use of the RESTORE statement (Section 2.57).

See examples in Section 2.54, READ.

BASIC-80 COMMANDS AND STATEMENTS Page 2.,.13

2.11 DEF FN

Format:

Versions:

Purpose:

Remarks:

DEF FN<name>[«parameter list»]=<function definition>

8K, Ext-ended, Disk

To define and name a function that is written by
theuser.

<name> must be a legal variable name. This
name, preceded by FN, becomes the name of the
function 0 <parameter list> is comprised of
those variable names in the function definition
that are to be replaced when the function is
called. The items in the list are separated by
commas. <function definition> is an expression
that performs the operation of the function. It
is limited to one line. Variable names that
appear in this expression serve only to define
the function; they do not affect program
variables that have the same name. A variable
name used in a function definition mayor may
not appear in the parameter list. If it does,
the value of the parameter is supplied when the
function is called. Otherwise, the current
value of the variable is used.

The variables in the parameter list represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call.
(Remember, in the 8K version only one argument
is allowed in a function call, therefore the DEF
FN statement will contain only one variable.)

In Extended and Disk BASIC-80, user-defined
functions may be numeric or string; in 8K,
user-defined string functions are not allowed.
If a type is specified in the function name, the
value of the expression is forced to that type
before it is returned to the calling statement.
If a type is specified in the function name and
the argument type does not match, a "Type
mismatch" error occurs.

A DEF FN statement must be executed before the
function it defines may be called. If a
function is called before it has been defined,
an "Undefined user function" error occurs. DEF
FN is illegal in the direct mode.

•

BASIC-80 COMMANDS AND STATEMENTS

Example:
•

410 DEF FNAB(X,Y)=XA3/YA2
420 T=FNAB(I,J)

•
•

Line 410 defines the function
function is called in line 420.

Page 2-14

FNAB. The

BASIC-80 COMMANDS AND STATEMENTS Page 2-15

2.12 DEFINT/SNG/DBL/STR

Format:

Versions:

Purpose:

Remarks:

Examples:

DEF<type> <range of letters>
where <type> is INT, SNG, DBL, or STR

Extended, Disk

To declare variable types as integer, single
precision, double precision, or string.

A DEFtype statement declares that the variable
names beginning with the letter(s) specified
will be that ·type variable. However, a type
declaration character always takes precedence
over a DEFtype statement in the typing of a
variable.

If no type declaration statements are
encountered, BASIC-80 assumes all variables
without declaration characters are single·
precision variables.

10 DEFDBL L-P All variables beginning. with
the letters L, M, N, 0, and P
will be double precision
variables.

10 DEFSTR A All variables beginning with
the letter A will be string
variables.

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-16

2.13 DEF USR

Format:

Versions:

Purpose:

Remarks:

Example:

DEF USR[<digit>]=<integer expression>

Extended, Disk

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is
omitted, DEF USRO is assumed. The value of
<integer expression> is the starting address of
the USR routine. See Appendix C, Assembly
Languag~ Subroutines.

Any number of DEF USR statements may appear in a
program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary.

200 DEF USRO=24000
210 X=USRO(YA2/2.89)

BASIC-80 COMMANDS AND STATEMENTS Page 2-17

2.14 DELETE

Format:

Versions:

Purpose:

Remarks:

Examples:

DELETE[<line number>] [-<line number>]

Extended, Disk

To delete program lines.

BASIC-80 always returns to command level after a
DELETE is executed. If <line number> does not
exist, an "Illegal function call" error occurs.

DELETE 40

DELETE 40-100

DELETE-40

Deletes line 40

Deletes lines 40 through
100, inclusive

Deletes all lines up to
and including line 40

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-18

2.15 DIM

Format:

Versions:

Purpose:

Remarks:

Example:

DIM <list of subscripted variables>

8K, Extended, Disk

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

If an array variable name is used without a DIM
statement, the maximum value of its subscript(s)
is assumed to be 10. If a subscript is used
that is greater than the maximum specified, a
"Subscript out of range" error occurs. The
minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE
statement (see Section 2.46).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

10 DIM A(20)
20 FOR I=O TO 20
30 READ A (I)
40 NEXT I

BASIC-80 COMMANDS AND STATEMENTS Page 2-19

2.16 EDIT

Format:

Versions:

Purpose:

Remarks:

EDIT <line number>

Extended, Disk

To enter Edit Mode at the specified line.

In Edit Mode, it is possible to edit portions of
a line without retyping the entire line. Upon
entering Edit Mode, BASIC-80 types the line
number of the line to be edited, then it types a
space and waits for an Edit Mode subcommand.

Edit Mode Subcommands

Edit Mode sub commands are used to move the
cursor or to insert, delete, replace, or search
for text within a line. The subcommands are not
echoed. Most of the Edit Mode subcommands may
be preceded by an integer which causes the
command to be executed that number of times.
When a preceding integer is not specified, it is
assumed to be 1.

Edit Mode subcommands may be categorized
according to the following functions:

1. Moving the cursor

2. Inserting text

3. Deleting text

4. Finding text

5. Replacing text

6. Ending and restarting Edit Mode

NOTE

In the descriptions that follow, <ch>
represents any character, <text>
represents a string of characters of
arbitrary length, [i] represents an
optional integer (the default is 1), and
$ represents the Escape (or Altmode)
key.

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-20

1. Moving the Cursor

Space Use the space bar to move the cursor to the
right. [i]Space moves the cursor i spaces to
the right. Characters are printed as you space
over them.

Rubout In Edit Mode, [i]Rubout moves the cursor i
spaces to the left (backspaces). Characters are
printed as you backspace over theme

2. Inserting Text

I

x

I<text>$ inserts <text> at the current cursor
position. The inserted characters are printed
on the terminal. To terminate insertion, type
Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing
Escape and then Carriage Return. During an
Insert command, the Rubout or Delete key on the
terminal may be used to delete characters to the
left of the cursor. If an attempt is made to
insert a character that will make the line
longer than 255 characters, a bell (Control-G)
is typed and the character is not printed.

The X subcommand is used to extend the line. X
moves the cursor to the end of the line, goes
into insert mode, and allows insertion of text
as if an Insert command had been given. When
you are finished extending the line, type Escape
or Carriage Return.

3. Deleting Text

D

H

[i]D deletes i characters to the right of the
cursor. The deleted characters are echoed
between backslashes, and the cursor is
positioned to the right of the last character
deleted. If there are fewer than i characters
to the right of the cursor, iD deletes the
remainder of the line.

H deletes all characters to the
cursor and then automatically
mode. H is useful for replacing
the end of a line.

right of the
enters insert
statements at

4. Finding Text

S The subcommand [i]S<ch> searches for the ith
occurrence of <ch> and positions the cursor
before it. The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor will stop at the end of

BASIC-80 COMMANDS AND STATEMENTS Page 2-21

the line. All characters passed over during the
search are printed.

K The subcommand [i]K<ch> is similar to [i]S<ch>,
except all the characters passed over in the
search are deleted. The cursor is positioned
before <ch> , and the deleted characters are
enclosed in backslashes.

5. Replacing Text

C The subcommand C<ch> changes the next character
to <ch>. If you wish to change the next i
characters, use the subcommand iC, followed by i
characters. After the ith new character is
typed, change mode is exited and you will return
to Edit Mode.

6. Ending and Restarting Edit Mode

<cr>

E

Q

L

A

Typing Carriage Return prints the remainder of
the line, saves the changes you made and exits
Edit Mode.

The E subcommand has the same effect as Carriage
Return, except the remainder of the line is not
printed.

The Q subcommand returns to BASIC-80 command
level, without saving any of the changes that
were made to the line during Edit Mode.

The L subcommand lists the remainder of the line
(saving any changes made so far) and repositions
the cursor at the beginning of the line, still
in Edit Mode. L is usually used to list the
line when you first enter Edit Mode.

The A subcommand lets you begin editing a line
over again. It restores the original line and
repositions the cursor at the beginning.

NOTE

If BASIC-80 receives an unrecognizable
command or illegal character while in
Edit Mode, it prints a bell (Control-G)
and the command or character is ignored.

•

BASIC-SO COMMANDS .AND STATEMENTS Page 2-22

Syntax Errors

When a Syntax Error is encountered during
execution of a program, BASIC-SO automatically
enters Edit Mode at the line that caused the
error. For example:

10 K = 2 (4)
RUN
?Syntax error in 10
10

When you finish editing the line and type
Carriage Return (or the E subcommand), BASIC-aO
reinserts the line, which causes all variable
values to be lost. To preserve the variable
values for examination, first exit Edit Mode
with the Q subcommand. BASIC-aO will return to
command level, and all variable values will be
preserved.

Control-A

To enter Edit Mode on the line you are currently
typing, type Control-A. BASIC-SO responds with
a carriage return, an exclamation point (1) and
a space. The cursor will be positioned at the
first character in the line. Proceed by typing
an Edit Mode subcommand.

NOTE

Remember, if you have just entered a
line and wish to go back and edit it,
the command "EDIT." will enter Edit Mode
at the current line. (The line number
symbol "." always refers to the current
line.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-23

2.17 END

Format:

Versions:

Purpose:

Remarks:

Example:

END

8K, Extended, Disk

To terminate program execution, close all files
and return to command level.

END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a BREAK message to
be printed. An END statement at the end of a
program is optional. BASIC-80 always returns to
command level after an END is executed.

520 IF K>1000 THEN END ELSE GOTO 20

•

BASIC-SO COMMANDS AND STATEMENTS Page 2-24

2.1S ERASE

Format:

Versions:

Purpose:

Remarks:

NOTE:

Example:

ERASE <list of array variables>

SK, Extended, Disk

To eliminate arrays from a program.

Arrays may be redimensioned after they are
ERASEd, or the previously allocated array space
in memory may be used for other purposes. If an
attempt is made to redimension an array without
first ERASEing it, a "Redimensioned array" error
occurs.

The Microsoft BASIC compiler does not support
ERASE.

450 ERASE A,B
460 DIM B(99)

BASIC-80 COMMANDS AND STATEMENTS Page 2-25

2.19 ERR AND ERL VARIABLES

When an error handling subroutine is entered,
the variable ERR contains the error code for the
error, and the variable ERL contains the line
number of the line in which the error was
detected. The ERR and ERL variables are usually
used in IF.aaTHEN statements to direct program
flow in the error trap routine.

If the statement that caused the error was a
direct mode statement, ERL will contain 65535.
To test if an error occurred in a direct
statement, use IF 65535 = ERL THEN •••
Otherwise, use

IF ERR = error code THEN •••

IF ERL = line number THEN a ••

If the line number is not on the right side of
the relational operator, it cannot be renumbered
by RENUM. Because ERL and ERR are reserved
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement.
BASIC-80's error codes are listed in Appendix J.
(For Standalone D'isk BASIC error codes, see
Appendix H.)

•

BASIC-80 COMMANDS.AND STATEMENTS Page 2-26

2.20 ERROR

Format:

Versions:

Purpose:

Remarks:

ERROR <integer expression>

Extended, Disk

1) To simulate the
error; or 2) to
defined by the user.

occurrence of
allow error

a BASIC-80
codes to be

The value of <integer expression> must be
greater than 0 and less than 255. If the value
of <integer expression> equals an error code
already in use by BASIC-80 (see Appendix J), the
ERROR statement will simulate the occurrence of
that error, and the corresponding error message
will be printed. (See Example 1.)

To define your own error code, use a value that
is greater than any used by BASIC-80's error
codes. (It is preferable to use the highest
available values, so compatibility may be
maintained when more error codes are added to
BASIC-80.) This user-defined error code may then
be conveniently handled in an error trap
routine. (See Example 2.)

If an ERROR statement specifies a code for which
no error message has been defined, BASIC-80
responds with the message UNPRINTABLE ERROR.
Execution of an ERROR statement for which there
is no error trap routine causes an error message
to be printed and'execution to halt.

Example 1: LIST
10 S = 10
20 T = 5
30 ERROR S + T
40 END
Ok
RUN
String too long in line 30

Or, in direct mode:

Ok
ERROR 15
String too long
Ok

(you type this line)
(BASIC-80 types this line)

BASIC-80 COMMANDS AND STATEMENTS

Example 2: •
•
•

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";B
130 IF B > 5000 THEN ERROR 210

•
•
•

Page 2-27

400 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL = 130 THEN RESUME 120

•
•
•

•

BASIC-80 COMMANDSAND STATEMENTS Page 2-28

2.21 FIELD

Format:

Version:

Purpose:

Remarks:

Example:

NOTE:

FIELD[#]<file number>,<field width> AS <string variable> •••

Disk

To allocate space for variables in a random file
buffer.

To get data out of a random buffer after a GET
or to enter data before a PUT, a FIELD statement
must have been executed.

<file number>
was OPENed.
characters to
For example,

is the number under which the file
<field width> is the number of

be allocated to <string variable>.

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$,
the next 10 positions to ID$, and the next 40
positions to ADD$. FIELD does NOT place any
data in the random file buffer. (See LSET/RSET
and GET.)

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was OPENed.
Otherwise, a "Field overflow" error occurs.
(The default record length is 128.)

Any number of FIELD statements may be executed
for the same file, and all FIELD statements that
have been executed are in effect at the same
time.

See Appendix B.

Do not use a FIELDed variable name in an INPUT
or LET--statement. Once a --variable-name is
FIELDed, it points to the correct place in the
random file buffer. If a subsequent INPUT or
LET statement with that variable name is
executed, the variable's pointer is moved to
string space.

BASIC-SO COMMANDS AND STATEMENTS Page 2-29

2.22 FOR ••• NEXT

Format:

Versions:

Purpose:

Remarks:

FOR <variable>=xTO y [STEP z]

•
•

NEXT [<variable>] [,<variable> •••]

where x, y and z are numeric expressions.

SK, Extended, Disk

To allow a series of instructions to be
performed in a loop a given number of times.

<variable> is used as a counter. The first
numeric expression (x) is the initial value of
the counter. The second numeric expression (y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter is incremented by the amount
specified by STEP. A check is performed to see
if thevalue of the counter is now greater than
the final value (y). If it is not greater,
BASIC-SO branches back to the statement after
the FOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. This is
a FOR ••• NEXT loop. If STEP is not specified,
the increment is assumed to be one. If STEP is
negative, the final value of the counter is set
to be less than the initial value. The counter
is decremented each time through the loop, and
the loop is executed until the counter is less
than the final value.

The body of the loop is skipped if the initial
value of the loop times the sign of the step
exceeds the final value times the sign of the
step •.

Nested Loops
FOR ••• NEXT loops may be nested, that is, a
FOR ••• NEXT loop may be placed wi.thin the context
of another FOR ••• NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be used for
all of them.

The variable{s) in the NEXT statement may be

•

BASIc-ao COMMANDS AND STATEMENTS Page 2-30

Example 1:

omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR" error message is issued and execution is
terminated.

10 K=10
20 FOR I=1 TO K STEP 2
30 PRINT I:
40 K=K+10
50 PRINT K
60 NEXT
RUN

1 20
3 30
5 40
7 50
9 60

OR

Example 2: 10 J=O

Example 3:

20 FOR I=1 TO J
30 PRINT I
40 NEXT I

In this example, the
because the initial
the final value.

10 I=5
20 FOR I=1 TO I+5
30 PRINT I:
40 NEXT
RUN

1 2 3 4 5 6 7
Ok

a

loop does not execute
value of the loop exceeds

9 10

In this example, the loop executes, ten times.
The final value for the loop variable is always
set before the initial value is set. (Note:
Previous versions of BASIC-80 set the initial
value of the loop variable before setting the
final value: i.e., the above loop would have
executed six times.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-31

2.23 GET

Format:

Version:

Purpose:

Remarks:

Example:

GET [#]<file number>[,<record number>]

Disk

To read a record from a random disk file into a
random buffer.

<file number> is the number under whicn the file
was OPENed. If <record number> is omitted, the
next record (after the last GET) is read into
the buffer. The largest possible record number
is -32767.

See Appendix -B.

•

BASIC~80 COMMANDS AND STATEMENTS Page 2-32

2.24 GOSUB ••• RETURN

Format:

Versions:

Purpose:

Remarks:

Example:

GOSUB <line number>

•
RETURN

8K, Extended, Disk

To branch to and return from a subroutine.

<line number> is the first
subroutine.

line of the

A subroutine may be called any number of times
in a program, and a subroutine may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory.

The RETURN statement(s) in a subroutine cause
BASIC-80 to branch back to the statement
following the most recent GOSUB statement. A
subroutine may contain more than one RETURN
statement, should logic dictate a return at
different points in the subroutine. Subroutines
may appear anywhere in the program, but it is
recommended that the subroutine be readily
distinguishable from the main program. To
prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO
statement that directs program control around
the subroutine.

10 GOSUB 40
20 PRINT "BACK FROH SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT " IN";
60 PRINT " PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-33

2.25 GOTO

Format:

Versions:

Purpose:

Remarks:

Example:

GOTO <line number>

8K, Extended, Disk

To branch unconditionally out of the normal
program sequence to a specified line number.

If <line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered after <line number>.

LIST
10 READ R
20 PRINT "R =";R,
30 A -= 3.14*RA2
40 PRINT "AREA =";A
50 GOTO 10
60 DATA 5,7,12
Ok
RUN
R = 4
R = 7
R = 12

AREA
AREA
AREA

?Out of data
Ok

in 10

= 78.5
= 153.86
= 452.16

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-34

2.26 IF ••• ~[••• ELSE] AND .!! ... GOTO

Format:

Format:

Versions:

NOTE:

Purpose:

Remarks:

IF <expression> THEN <statement(s»

[ELSE <statement(s» I <line number>]

IF <expression> GOTO <line number>

[ELSE <statement(s» I <line number>]

8K, Extended, Disk

<line number>

The ELSE clause is allowed only in Extended and
Disk versions.

To make a decision regarding program flow based
on the result returned by an expression.

If the result of <expression> is not zero, the
THEN or GOTO clause is executed. THEN may be
followed by either a line number for branching
or one or more statements to be executed. GOTO
is always followed by a line number. If the
result of <expression> is zero, the THEN or GOTO
clause is ignored and the ELSE, clause,' if
present, is executed. Execution continues with
the next executable statement. (ELSE is allowed
only in Extended and Disk versions.) Extended
and Disk versions allow a comma before THEN.

Nesting of !! Statements

In the Extended and Disk versions,
IF ••• THEN ••• ELSE statements may be nested.
Nesting is limited only by the length of the
line. For example

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT IIEQUAL II

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C II
ELSE PRINT "A<>C II

will not print IIA<>C II when A<>B.

If an IF ••• THEN statement is followed by a
number in the dirapt mode, an "Undefined
error results unless a statement with
specified line number had previously
entered in the indirect mode.

line
line"

the
beeri

BASIC-80 COMMANDS AND STATEMENTS Page 2-35

NOTE: When using IF to test equality for a value . that
is the result of a floating point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN •••

This test returns true if the value of A is 1.0
with a relative error of less than 1.0E-6.

Example 1: 200 IF I THEN GET#1,I

This statement GETs record number I if I is not
zero.

Example 2: 100 IF(I<20)*(I>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE"

•

•

In this example, a test determines if I is
greater than 10 and less than 20. If I is in
this range, DB is calculated and execution
branches to line 300. If I is not in this
range, execution continues with line 110.

Example 3: 210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of a variable (IOFLAG) •
If IOFLAG is zero, output goes to the line
printer, otherwise output goes to the terminal. •

BASIC-80 COMMANDS AND STATEMENTS Page 2-36

2.27 INPUT

Format:

Versions:

Purpose:

Remarks:

INPUT[i] [<"prompt string">;]<list of variables>

8K, Extended, Disk

To allow input from the terminal during program
execution.

When an INPUT statement is encountered, program
execution pauses and a question mark is printed
to indicate the program is waiting for data. If
<"prompt string"> is included,· the string is
printed before the question mar~. The required
data is then entered at the terminal.

If INPUT is immediately followed by
then the carriage return typed by
input data does not echo a carriage
feed sequence.

a semicolon,
the user to
return/line

The data that is entered is assigned to
variable(s) given in <variable list>.
number of data items supplied must be the
as the number of variables in the lis.t.
items are separated by commas.

the
The

same
Data

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPUT
statement need not be surrounded by quotation
marks.)

Responding to INPUT with too many or too few
items, or with the wrong type of value (numeric
instead of string, etc.) causes the messsage
"?Redo from start" to be printed. No assignment
of input values is made until' an acceptable
response is given.

In the 8K version, INPUT is illegal in the
direct mode.

BAStC-80 COMMANDS AND STATEMENTS Page 2-37

Examples: 10 INPUT X
20 PRINT X "SQUARED IS" XA2
30 END
RUN
? 5 (The 5 was typed in by the user

in response to the question mark.)
5 SQUARED IS 25

Ok

LIST
10 PI=3.14
20 INPUT ttWHAT IS THE RADIUS";R
30 A=PI*RA2
40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT
60 GOTO 20
Ok
RUN
WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-38

2.28 INPUT#

Format:

Version:

Purpose:

Remarks:

Example:

INPUT#<file number> , <variable list>

Disk

To read data items from a sequential disk file
and assign them to program variables.

<file number> is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must
match the type specified by·the variable name.)
With INPUT#, no question mark is printed, as
with INPUT.

The data items in the file shoul~ appear just as
they would if data were being typed in response
to an INPUT statement. With numeric values,
leading spaces, carriage returns and line feeds
are ignored. The first character encountered
that is not a space, carriage return or line
feed is assumed to be the start of a number.
The number terminates on a space, carriage
return, line feed or comma.

If BASIC-80 is scanning the sequential data file·
for a string item, leading spaces, carriage
returns and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first
character is a quotation mark ("), the string
item will consist of all characters read between
the first quotation mark and the second. Thus,
a quoted string may not contain a quotation mark
as a character. If the first character of the
string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage or line feed (or after 255 characters
have been read). If end of file is reached when
a numeric or string item is being INPUT, the
item is terminated.

See Appendix B.

BASIC-BO COMMANDS AND STATEMENTS Page 2-39

2.29 KILL

Format:

Version:

Purpose:',

Remarks:

Example:

KILL <filename>

Disk

To delete a file from disk.

If a KILL statement is given for a file that is
currently OPEN, a "File already open" error
occurs.

KILL is used for all types of disk files:
program files, random data files and sequential
data files.

200 KILL "DATA1"

See also Appendix B.

•

/

o

BASIC-80 COMMANDS AND STATEMENTS Page 2-40

2.30 LET

Format:

Versions:

Purpose:

Remarks:

Example:

[LET] <variable>=<expression>

8K, Extended, Disk

To assign the value of an expression to a
variable.

Notice the word LET is optional, i.e., the equal
sign is sufficient when assigning an expression
to a variable name.

110 LET D=12
120 LET E=12A2
130 LET F=12A4
140 LET SUM=D+E+F

or

110 D=12
120 E=12A2
130 F=12A4
140 SUM=D+E+F

BASIC-SO COMMANDS AND STATEMENTS Page 2-41

2.31 LINE INPUT

Format:

Versions:

Purpose:

Remarks:

Example:

LINE INPUT[i] [<"prompt string">i]<string variable>

Extended, Disk

To input an entire line (up to 254
to a string variable, without
delimiters.

characters)
the use of

The prompt string is a string literal that is
printed at the terminal before input is
accepted. A question mark is not printed unless
it is part of the prompt string. All input from
the end of the prompt to the carriage return is
assigned to <string variable>.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a
carriage return/line feed sequence at the
terminal.

A LINE INPUT may be escaped by typing Control-C.
BASIC-SO will return to command level and type
Ok. Typing CONT resumes execution at .the LINE
INPUT.

See Example, Section 2.32, LINE INPUT#.

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-42

2.32 LINE INPUT#

Format:

Version:

Purpose:

Remarks:

Example:

LINE INPUT#<file number>,<string variable>

Disk

To read an entire line (up to 254 characters),
without delimiters, from a sequential disk data
file to a string variable.

<file number> is the number under which the file
was OPENed. <string variable> is the variable
name to which the line wil~ be assigned. LINE
INPUT# reads all characters in the sequential
file up to a carriage return. It then skips
over the carriage return/line feed sequence, and
the next LINE INPUT# reads all characters up to
the next carriage return. (If a line
feed/carriage return sequence is encountered, it
is preserved.)

LINE INPUT# is especially useful
a data file has been broken into
BASIC-80 program saved in ASCII
read as data by another program.

10 OPEN "O",1,"LIST"

if each line of
fields, or if a
mode is being

20 LINE INPUT "CUSTOMER INFORMATION? " ; C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN "I",1,"LIST"
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-43

2.33 LIST

Format 1:

Versions:

Format 2:

Versions:

Purpose:

Remarks:

LIST [<line number>]

8K, Extended, Disk

LIST [<line number>[-[<line number>]]]

Extended, Disk

To list all or part of the program currently in
memory at the terminal. .

BASIC-80 always returns to command level after a
LIST is executedo

Format 1: If <line number> is omitted, the
program is listed beginning "at the lowest line
number. (Listing is terminated either by the
end of the program or by typing Control-C.) If
<line number> is included, the 8K version will
list the program beginning at that line; and
the Extended and Disk versions will list only
the specified line.

Format 2: This format allows the following
options:

1. If only the first number is specified, that
line and all higher-numbered lines are
listed.

2. If only the second number is specified, all
lines from the beginning of the program
through that line are listed.

3. If both numbers are specified, the entire
range is listed. •

BASIc-ao COMMANDS AND STATEMENTS Page 2-44

Examples: Format 1:

LIST

LIST 500

Format 2:

Lists the program currently
in memory.

In the 8K version, lists
all programs lines from
500 to the end.
In Extended and Disk,
lists line 500.

LIST 150- Lists all lines from 150
to the end.

LIST -1000 Lists all lines from the
lowest number through 1000.

LIST 150-1000 Lists lines 150 through
1000, inclusive.

BASIC-80 COMMANDS AND STATEMENTS Page 2-45

2.34 LLIST

Format:

Versions:

Purpose:

Remarks:

NOTE:

Example:

L~IST [<line number>[-[<line number>]]]

Extended, Disk

To list all or part of the program currently in
memory at the line printer.

LLIST assumes a 132-character wide printer.

BASIC-80 always returns to command level after
an LLIST is executed. The options for LLIST are
the same as for LIST, Format 2.

LLIST and LPRINT are not included in
implementations of BASIC-80.

See the examples for LIST, Format 2.

all

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-46

2.35 LOAD

Format:

Version:

Purpose:

Remarks:

Example:

LOAD <filename>[,R]

Disk

To load a file from disk into memory.

<filename> is the name that was used when the
file was SAVEd. (With CP/M, the default
extension .BAS is supplied.)

LOAD closes all open files and deletes all
variables and program lines currently residing
in memory before it loads the designated
program. However, if the "R" option is used
with LOAD, the program is RUN after it is
LOADed, and all open data files are kept open.
Thus, LOAD with the "R" option may be used to
chain several programs (or segments of the same
program). Information may be passed between the
programs using their disk data files.

LOAD "STRTRK",R

BASIC-80 COMMANDS AND STATEMENTS Page 2-47

2.36 LPRINT AND LPRINT USING

Format:

Versions:

Purpose:

Remarks:

NOTE:

LPRINT [<list of expressions>]

LPRINT USING <"format string">;<list of expressions>

Extended, Disk

To print data at the line printer.

Same as PRINT and PRINT USING, except output
goes to the line printer. See Section 2.49 and
Section 2.50.

LPRINT assumes a 132-character-wide printer.

LPRINT and LLIST are not included in
implementations of BASIC-80.

all

..

BASIC-80 COMMANDS AND STATEMENTS Page 2-48

2.37 LSET AND RSET

Format:

Version:

Purpose:

Remarks:

Examples:

NOTE:

LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

Disk

To move data from memory to a random file buffer
(in preparation for a PUT statement).

If <string expression> requires fewer bytes than
were FIELDed to <string variable>, LSET
left-justifies the string in the field, and RSET
right-justifies the string~ (Spaces are used to
pad the extra positions.) If the string is too
long for the field, characters are dropped from
the right. Numeric values must be converted to
strings before they are LSET or RSET. See the
MKI$, MKS$, MKD$ functions, Section 3.25.

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC($)

See also Appendix B.

LSET or RSET may also be used with
string variable to left-justify or
a string in a given field. For
program lines

110 A$=SPACE$(20)
120 RSET A$=N$

a non-fielded
right-justify
example, the

right-justify the string N$ in a 20-character
field. This can be very handy for formatting
printed output.

BASIC-80 COMMANDS AND STATEMENTS Page 2-49

2.38 MERGE

Format:

Version:

Purpose:

Remarks:

Example:

MERGE <filename>

Disk

To merge a specified disk file into the program
currently in memory.

<filename> is the name used when the file was
SAVEd. (With CP/M, the default extension .BAS
is supplied.) The file must have been SAVEd in
ASCII format. (If not, a "Bad file mode" error
occurs.)

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as "inserting" the program lines on
disk into the program in memory.)

BASIC-80 always returns to command level after
executing a MERGE command.

MERGE "NUMBRS"

•

BASIC-SO COMMANDS AND STATEMENTS Page 2-50

2.39 MID$

Format:

Versions:

Purpose:

Remarks:

Example:

MID$«string exp1>,n[,m])=<string exp2>

where n
<string

and
exp1>

expressions.

Extended, Disk

m are integer expressions and
and <string exp2> are string

To replace a portion of one string with another
string.

The characters in <string exp1>, beginning at
position n, are replaced by the characters in
<string exp2>. The optional m refers to the
number of characters from <string exp2> that
will be used in the replacement. If m is
omitted, all of <string exp2> is used. However,
regardless of whether m is omitted or included,
the replacement of characters never goes beyond
the original length of <string exp1>.

10 A$="KANSAS CITY, MO"
20 MID$(A$,14)="KS"
30 PRINT A$
RUN
KANSAS CITY, KS

MID$ may also be used as a function that returns
a substring of a given string. See Section
3.24.

BASIC-80 COMMANDS AND STATEMENTS Page 2-51

2.40 NAME

Format:

Version:

Purpose:

Remarks:

Example:

NAME <old filename> AS <new filename>

Disk

To change the name of a disk file.

<old filename> must exist and <new filename>
must not exist~ otherwise an error will result.
After a NAME command, the file exists on the.
same disk, in the same area of disk space, with
the newname.

Ok
NAME "ACCTS" AS "LEDGER"
Ok

In this example, the file that was
formerly named ACCTS will now be named LEDGER •

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-52

2.41 NEW

Format:

Versions:

Purpose:

Remarks:

NEW

8K, Extended, Disk

To delete the program currently in memory and
clear all variables.

NEW is entered at command level to clear memory
before entering a new program. BASIC-80 always
returns to command level after a NEW is
executed.

BASIC-80 COMMANDS AND STATEMENTS Page 2-53

2.42 NULL

Format:

Versions:

Purpose:

Remarks:

Example:

NULL <integer expression>

8K, Extended, Disk

To set the number of nulls to be printed at the
end of each line.

For 10-character-per-second tape punches,
<integer expression> should be >=3. When tapes
are not being punched, <integer expression>
should be 0 or 1 for Teletypes and
Teletype-compatible CRTs. <integer expression>
should be 2 or 3 for 30 cps hard copy printers.
The default value is o.

Ok
NULL 2
Ok
100 INPUT X
200 IF X<50 GO TO 800

•

Two null characters will be printed after each
line.

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-54

2.43 ON ERROR GOTO

Format:

Versions:

Purpose:

Remarks:

NOTE:

Example:

ON ERROR GOTO <line number>

Extended, Disk

To enable error trapping and specify the first
line of the error handling subroutine.

Once error trapping has been enabled all errors
detected, including direct mode errors (e.g.,
Syntax errors), will cause a jump to the
specified error handling subroutine. If <line
number> does not exist, an "Undefined line"
error results. To disable error trapping,
execute an ON ERROR GOTO O. Subsequent errors
will print an error message and halt execution.
An ON ERROR GOTO 0 statement that appears in an
error trapping subroutine causes BASIC-80 to
stop and print the error message for the error
that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for
which there is no recovery action.

If an e~ror occurs during execution of an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error
trapping does not occur within the error
handling subroutine.

10 ON ERROR GOTO 1000

BASIC-80 COMMANDS AND STATEMENTS Page 2-55

2.44 ON ••• GOSUB AND ON ••• GOTO

Format:

Versions:

Purpose:

Remarks:

Example:

ON <expression> GOTO <list of line numbers>

ON <expression> GOSUB <list of line numbers>

8K, E~tended, Disk

To branch to one of several specified line
numbers,- depending on the value returned when an
expression is evaluated.

which line
branching.
the third

The value of <expression> determines
number in the list will be used for
For example, if the value is three,
line number in the list will be the
of the branch. (If the value is a
the fractional portion is rounded.)

destination
non-integer,

In the ON ••• GOSUB statement, each line number in
the list must be the first line number of a
subroutine.

If the value of <expression> is negative, zero
or greater than the number of items in the list,
an "III~gal function call" erro~ occurs.

100 ON L-1 GOTO 150,300,320,390

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-56

2.45 OPEN

Format:

Version:

Purpose:

Remarks:

NOTE:

Example:

OPEN <mode>, [#]<file nurnber>,<filename>,[<reclen>]

Disk

To allow I/O to a disk file.

A disk file must be OPENed before any disk
operation can be performed on that file.
allocates a buffer for I/O to the file
determines the mode of access that will be
with the buffer.

<mode> is a string expression whose
character is one of the following:

o specifies sequential output mode

I specifies sequential input mode

I/O
OPEN

and
used

first

R specifies random input/output mode

<file number> is an integer expression whose
value is between one and fifteen. The number is
then associated with the file for as long "as it
is OPEN and is used to refer other disk I/O
statements to the file.

<filename> is a string expression containing a
name that conforms to your operating system's
rules for disk filenames.

<reclen> is an integer expression which, if
included, sets the record length for random
files. The default record length is 128 bytes.
See also page A-3.

A file can be OPENed for sequential input or
random access on more than one file number at a
time. A file may be OPENed for output, however,
on only one file number at a time.

10 OPEN "I",2,"INVEN"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-57

2.46 OPTION BASE

Format:

Versions:

Purpose:

Remarks:

OPTION BASE n
where n is 1 or a

Extended, Disk

To declare the
subscripts.

minimum value for

The default base is O. If the statement

OPTION BASE 1

array

is executed, the lowest value an array subscript
may have is one.

•

BASIC-80 COMMANDS AND STATErmNTS Page 2-58

2.47 OUT

Format:

Versions:

Purpose:

Remarks:

Example:

OUT I,J
where: I and J are integer expressions in the
range a to 255.

8K, Extended, Disk

To send a byte to a machine output port.

The integer expression I is the port number, and
the integer expression J is the data to be
transmitted.

100 OUT 32,100

BASIC-80 COMMANDS AND STATEMENTS Page 2-59

2.48 POKE

Format:

Versions:

Purpose:

Remarks:

Example:

POKE I,J
where I and J are integer expressions

8K, Extended, Disk

To write a byte into a memory location.

The integer expression I is the address of the
memory location to be POKEd. The integer
expression J is the data to be POKEd. J must be
in the range 0 to 255. In the 8K version, I
must be less than 32768. In the Extended and
Disk versions, I must be in the range 0 to
65536.

With the 8K version, .data may be POKEd into
memory locations above 32768 by supplying a
negative number for I. The value of I is
computed by subtracting 65536 from the desired
address. For example, to POKE data into
location 45000, I = 45000-65536, or -20536.

The complementary function to POKE is PEEK. The
argument to PEEK is an address from which a byte
is to be read. See Section 3.27.

POKE and PEEK are useful for efficient data
storage, loading assembly language subroutines,
and passing arguments and results to and from
assembly language subroutines.

10 POKE &H5AOO,&HFF

•

BASIC-BO COMMANDS AND STATEMENTS Page 2-60

2.49 PRINT

Format:

Versions:

Purpose:

Remarks:

PRINT [<list of expressions>]

8K, Extended, Disk

To output data at the terminal.

If <list of expressions> is omitted, a blank
line is printed. If <list of expressions> is
included, the values of the expressions are
printed at the terminal. The expressions in the
list may be numeric and/or string expiressions.
(Strings must be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined
by the punctuation used to separate the items in
the list. BASIC-80 divides the line into print
zones of 14 spaces each. In the list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. A
semicolon causes the next value to be printed
immediately after the last value. Typing one or
more spaces between expressions has the same
effect as typing a semicolon. '

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly.
If the list of expressions terminates without a
comma or a semicolon, a carriage return is
printed at the end of the line. If the printed
line is longer than the terminal width, BASIC-BO
goes to the next physical line and continues
printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represefited
with 6 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 10A(-6) is output as
.000001 and 10A(-7) is output as 1E-7. Double
prec1s1on numbers that can be represented with
16 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 10A(-16) is output as
.0000000000000001 and 10A(-17) is o~tput as
1D-17.

BASIC-80 COMMANDS AND STATEMENTS Page 2-61

A question mark may be used in plac~ of the word
PRINT in a PRINT statement.

Example 1: 10 X=5
20 PRINT X+5, X-5, X*(-5), XA5
30 END
RUN

10 0 -25
Ok

3125

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

Example 2: LIST

Example 3:

10 INPUT X
20 PRINT X "SQUARED IS" XA2 "AND";
30 PRINT X "CUBED IS" XA3
40 PRINT
50 GOTO 10
Ok
RUN
? 9

9 SQUARED IS 81 AND 9 CUBED IS 729

? 21/
21 SQUAREDjS 441 AND 21 CUBED IS 9261

?

In this example, the semicolon at the end of
line 20 causes both PRINT statements to be
printed on the same line, and line 40 causes a
blank line to be printed before the next prompt •

10 FOR X = 1 TO 5
20 J=J+5
30 K=K+10
40 ?J;K;
50 NEXT X
Ok
RUN

5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (Don't
forget, a number is always followed by a space
and positive numbers are preceded by a space.)
In line 40, a question mark is used instead of
the word PRINT.

•

BASIC-80 COMMANDS' AND STATEMENTS Page 2-62

2.50 PRINT USING

Format:

Versions:

Purpose:

Remarks
and
Examples:

PRINT USING </I format string">; <list of expressions>

Extended, Disk

To print strings or numbers using a specified
format.

<list of expressions> is comprised of the string
expressions or numeric expressions that are to
be printed, separated by semicolons. </I format
string">, enclosed in quotation marks, is
comprised of special formatting characters.
These formatting characters (see below)
determine the field and the format of the
printed strings or numbers.

String Fields

When PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

/I!/I Specifies that only the first character in the
given string is to be printed.

"\n spaces\" Specifies that 2+n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters will be printed;
with one space, three characters will be
printed, and so on. If the string is longer
than the field, the extra characters are
ignored. If the field is longer than the
string, the string will be left-justified in the
field and padded with spaces on the right.
Example:

10 A$="LOOK":B$="OUT/I
30 PRINT USING /I!";A$;B$
40 PRINT USING /1\ \";A$;B$
50 PRINT USING /1\ \/I;A$;B$;"!!/I
RUN
LO
LOOKOUT
LOOK OUT ! !

BASIC-80 COMMANDS AND STATEMENTS Page 2-63

"&11 Specifies a variable length string field. When
the field is specified with "&", the string is
output exactly as input. Example:

10 A$="LOOK":B$="OUT"
20 PRINT USING "!"; A$;
30 PRINT USING "&II;B$
RUN
LOUT

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to
format the numeric field:

A number sign is used to represent each digit
position. Digit positions are aiways, filled.
If the number to be printed has fewer digits
than positions specified, the number will be
right-justified (preceded by spaces) in the
field.

A decimal point may be inserted at any position
in the field. If the format string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as a if
necessary). Numbers are rounded as necessary.

PRINT USING "##.##;".78
0.78

PRINT USING "###.##";987.654
987.65

PRINT USING "##.## 11;10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line.

+ A plus sign at the beginning or end of the
format string will cause the sign of the number
(plus or minus) to be printed before or after
the number.

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-64

**

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING "##.##- ";-68.95,22.449,-7.01
68.95- 22.45 7.01-

A double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies positions for two more digits.

PRINT USING "**#.# ";12.39,-0.9,765.1
*12.4 *-0.9 765.1

$$ A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with $$.
Negative numbers cannot be used unless the minus
sign trails to the right.

PRINT USING "$$###.##";456.78
$456.78

**$ The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number.
**$ specifies three more digit positions, one of
which is the dollar sign.

PRINT USING "**$##.##";2.34
***$2.34

A comma that is to the left of the decimal point
in a formatting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
position. The comma has no effect if used with
the exponential (AAAA) format.

PRINT USING "####,.##";1234.5
1,234.50

PRINT USING "####.##,";1234.5
1234.50,

BASIC-80 COMMANDS AND STATEMENTS Page 2-65

AAAA

%

Four carats (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carats allow space
for E+xx to be printed. Any decimal point
position may be specified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or -
is specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign.

PRINT USING "##.##AAAA";234.56
2.35E+02

PRINT USING ".####AAAA-";888888
.8889E+06

PRINT USING "+.##AAAA";123
+.12E+03

An underscore in the format string
next character to be output as
character.

PRINT USING" 1##.## 1";12.34
!12.341

causes the
a literal

The literal character itself may be an
underscore by placing " __ " in the format string.

If the number to be
specified numeric
printed in front of
causes the number to
sign will be printed
number.

the printed is larger than
field, a percent sign is
the number. If rounding
exceed the field, a percent
in front of the rounded

PRINT USING "##.##";111.22
%111.22

PRINT USING ".##";.999
%1.00

If the number of digits specified exceeds 24, an
"Illegal function call" error will result.

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-66

2.51 PRINT# AND PRINT# USING

Format:

Version:

Purpose:

Remarks:

PRINT#<filenumber>,[USING<"format string">;]<list of exps>

Disk

To write data to a sequential disk file.

<filenumber> is the number used when the file
was OPENed for output. <"format string"> is
comprised of formatting characters as described
in Section 2.50, PRINT USING. The expressions
in <list of expressions> are the numeric and/or
string expressions that will be written to the
file.

PRINT# does not compress data on the disk. An
image of the data is written to the disk, just
as it would be displayed on the terminal with a
PRINT statement. For this reason, care should
be taken to delimit the data on the disk, so
that it will be input correctly from the disk •

. "

In the list of expressions, numeric
should be delimited by semicolons.

PRINT#1,A;B;C;X;Y;Z

expressions
For example,

(If commas are used as delimiters, the extra
blanks that are inserted between print fields
will also be written to disk.)

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use explicit
delimiters in the list of expressions.

For example, let A$="CAMERA" and B$="93604-1".
The statement

PRINT#1,AjB

would write CAMERA93604-1 to the disk. Because
there are no delimiters, this could not be input
as two separate strings. To correct the
problem, insert explicit delimiters into the
PRINT# statement as follows:

PRINT#1,A$;","jB$

The image written to disk is

CAMERA, 93604-1

BASIC-SO COMMANDS AND STATEMENTS

which can be read back
variables.

into two

If the strings themselves contain
semicolons, significant leading blanks,
returns, or line feeds, write them
surrounded by explicit quotation
CHR$(34) •

Page 2-67

string

commas,
carriage
to disk

marks,

For
B$="

example, let A$="CAMERA, AUTOMATIC"
93604-1". The statement

and

PRINT# 1 ,A$; B$

would write the following image to disk:

CAMERA, AUTOMATIC 93604-1

and the statement

INPUT# 1 ,A$, B$

would input "CAMERA" to
"AUTOMATIC 93604-1" to B$. To
strings properly on the disk,
quotes to the disk image using
statement

A$ and
separate these
write double

CHR$(34). The

PRINT#1,CHR$(34) ~A$;CHR$(34);CHR$(34);B$;CHR$(34)

writes the following image to disk:

"CAMERA, AUTOMATIC"" 93604-1"

and the statement

INPUT# 1 ,A$,B$

would input "CAMERA, AUTOMATIC" to
" 93604-1" to B$.

A$ and

The PRINT# statement may also be used with the
USING option to control the format of the disk
file. For example:

PRINT#1,USING"$$###.##,";J;K;L

For more examples using PRINT#, see Appendix B.

See also- WRITE#, Section 2.6~.

BASIC-80 COMMANDS AND STATEMENTS Page 2-68

2.52 PUT

Format:

Version:

Purpose:

Remarks:

Example:

PUT [#]<file number>[,<record number>]

Disk

To write a record from a random buffer to a
random disk file.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
record will have the next available record
number (after the last PUT). The largest
possible record number is 32767.

See Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-69

2.53 RANDOMIZE

Format:

Versions:

Purpose:

Remarks:

Example:

RANDOMIZE [<expression>]

Extended, Disk

To reseed the random number generator.

If <expression> is
program execution
printing

omitted, BASIC-80
and asks fora

Random Number Seed (0-65529)?

before executing RANDOMIZE.

suspends
value by

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers every time
the program is RUN, place a RANDOMIZE statement
at the beginning of the program and change the
argument with each RUN.

1 0 RANDOMI Z E
20 FOR I=1 TO 5
30 PRINT RND;
40 NEXT I
RUN
Random Number Seed (0-65529)? 3 (user types 3)

.88598 .484668 .586328 .119426 .709225
Ok
RUN
Random Number Seed (0-65529)? 4 (user types 4
for new sequence)

• 803506 .162462 .929364 .292443 .322921
Ok
RUN
Random Number Seed (0-65529)? 3 (same sequence
as first RUN)

.88598 .484668 .586328 .119426 .709225
Ok

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-70

2.54 READ

Format:

Versions:

Purpose:

Remarks:

Example 1:

READ <list of variables>

8K, Extended, Disk

To read values from a DATA statement and assign
them to variables. (See DATA, Section 2.10~)

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a "Syntax
error" will result.

A single READ statement may access one or more
DATA statements (they will be accessed in
order), or several READ statements may access
the same DATA statrnent. If the number of
variables in <list of variables> exceeds the
number of elements in the DATA statement(s), an
OUT OF DATA message is printed. If the number
of variables specified is fe',ver than the number
of elements in the DATA statement(s), subsequent
READ statements will begin reading data at the
first unread element. If there are no
subsequent READ statements, the extra data is
ignored.

To reread DATA statements from
the RESTORE statement (see
2.57)

the start, use
RESTORE, Section

•
80 FOR I=1 TO 10
90 READ A (I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values
DATA statements into the array
execution, the value of A(1) will be
so on.

from the
A. After
3.08 I and

BASIC-80 COMMANDS AND STATEMENTS

Example 2: LIST
10 PRINT "CITY", "STATE", " ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80211
Ok

Page 2-71

This program READs string and numeric data from
the DATA statement in line 30.

•

BASIC-SO COMMANDS AND STATEMENTS Page 2-72

2.55 REM

Format:

Versions:

Purpose:

Remarks:

Example:

REM <remark>

SK, Extended, Disk

To allow explanatory remarks ,to be inserted in a
program.

REM statements are not executed but are output
exactly as entered when the program is lis,ted.

, ,

REM statements may be branched into (from a GOTO
or GOSUB statement), and execution will continue
with the first executable statement after the
REM statement.

In the Extended and Disk versions, remarks may
be added to the end of a line by preceding the
remark with a single quotation mark instead of
: REM.

•
•
•

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=1 TO 20
140 SUM=SUM + V(I)

•
•
•

or, with Extended and Disk versions:

•

•
120 FOR I=1 TO 20
130 SUM=SUM+V(I)
140 NEXT I

•
•
•

'CALCULATE AVERAGE VELOCITY

BASIC-BO COMMANDS AND STATEMENTS Page 2-73

2.56 RENUM

Format:

Versions:

Purpose:

Remarks:

NOTE:

Examples:

RENUM [[<new number>] [, [<old number>] [, <.increment>]]]

Extended, Disk

To renumber program lines.

<new number> is the first line number to be used
in the new sequence. The default is 10. <old
number> is the line in the current program where
renumbering is to begin. The default is the
first line of the program. <increment> is the
increment to be used in the new sequence. The
default is 10.

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ON ••• GOTO,
ON ••• GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number
appears after one of these statements, the error
message IIUndefined line xxxxx in yyyyy" is
printed. The incorrect line number reference
(xxxxx) is not changed by RENUM, but line number
yyyyy may be changed.

RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when the
program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529.
An IIIllegal function call ll error will result.

RENUM Renumbers the entire program.
The first new line number
will be 10. Lines will
increment by 10.

RENUM 300,,50 Renumbers the entire pro
gram. The first new line
number will be 300. Lines
will increment by 50.

RENUM 1000,900,20 Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.

•

BASIC-BO COMMANDS AND STATEMENTS Page 2-74

2.57 RESTORE

Format:

Versions:

Purpose:

. Remarks:

Example:

RESTORE [<line number>]

8K, Extended, Disk

To allow DATA statements to be reread from a
specified point.

After a RESTORE statement is executed, the next
READ statement accesses the first item in the
first DATA statement in the program. If <line
number> is specified, the next READ statement
accesses the first item in the specified DATA
statement.

10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79

•

•

BASIC-80 COMr~DS AND STATEMENTS Page 2-75

2."58 RESUME

Formats:

Versions:

Purpose:

Remarks:

Example:

RESUME

RESUME a

RESUME NEXT

RESUME <line number>

Extended, Disk

To continue program execution after an error
recovery procedure has been performed.

Anyone of the four formats shown above may be
used, depending upon where execution is to
resume:

RESUME
or

RESUME a

RESUME NEXT

Execution resumes at the
statement which caused the
error.

Execution resumes at the
statement immediately fol
lowing the one which
caused the error.

RESUME <line number> Execution resumes at
<line number>.

A RESUME statement that is not in an error trap
_routine causes a "RESUME without error" message
to be printed.

·10 ON ERROR GOTO 900
•
•
•

900 IF (ERR=230) AND (ERL=90) THEN PRINT "TRY
AGAIN" : RESUME 80

•
•
•

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-76

2.59 RUN

Format 1:

Versions:

Purpose:

Remarks:

Example:

Format 2:

Version:

Purpose:

Remarks:

Example:

RUN [<line number>]

8K Extended, Disk

To execute the program currently in memory.

If <line number> is specified, execution begins
on that line. Otherwise, execution begins at
the lowest line number. ·BASIC-80 always returns
to command level after a RUN is executed.

RUN

RUN <filename> [,RJ

Disk

To load a file from disk into memory and run it.

<filename> is the name used when the file was
SAVEd. (With CP/M and ISIS-II, the default
extension .BAS is supplied.)

RUN closes all open
current contents J of
designated program.
option, all data files

RUN "NEWFIL",R

See also Appendix B.

files and deletes
memory before loading
However, with the
remain OPEN.

the
the
" R"

BASIC-80 COMMANDS AND STATEMENTS Page 2-77

2.60 SAVE

Format:

Version:

Purpose:-

Remarks:

Examples:

SAVE <filename> [,A I ,p]

Disk

To save a program file on disk.

<filename> is a quoted string that conforms to
your operating system's requirements for
filenames. (With CP/M, the default extension
.BAS is supplied.) If <filename> already exists,
the file will be written over.

Use the A option to save the file in ASCII
format. Otherwise, BASIC saves the file in a
compressed binary format. ASCII format takes
more space on the disk, but some disk access
requires that files be in ASCII format. For
instance, the MERGE command requires an ASCI.I
format file, and some operating system commands
such as LIST may require an ASCII format file.

Use the P option to protect the file by saving
it in an encoded binary format. When a
protected file is later RUN (or LOADed), any
attempt to list or edit it will fail.

SAVE"COM2",A
SAVE "PROG" ,P

See also Appendix B.

•

·BASIC-80 COMMANDS AND STATEMENTS Page 2-78

2.61 STOP

Format:

Versions:

Purpose:

. Remarks:·

Example:

STOP

8K, Extended, Disk

To terminate program execution and return· to
command level.

STOP statements may be used anywhere in a
program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement
does not close files.

BASIC-80 always returns to command level after a
STOP is executed. Execution is resumed by
issuing a CONT command (see Section 2.8).

10 INPUT A,B,C
20 K=AA2*5.3:L=BA3/.26
30 STOP
40M=C*K+100:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT, L

30.7692
Ok
CONT

115.9
Ok

BASIC-SO COMMANDS AND STATEMENTS Page 2-79

2.62 SWAP

Format:

Versions:

Purpose:

Remarks:

Example:

SWAP <variable>,<variable>

Extended, Disk

To exchange the values of two variables.

Any type variable may be SWAPped (integer,
single precision, double precision, string), but
the two variables must be of the same type or a
"Type mismatch" error results.

LIST
10 A$=" ONE II : B$=" ALL II

20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
RUN
Ok

ONE FOR ALL
ALL FOR ONE

Ok

C$="FOR"

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-80

2.63 TRON/TROFF

Format:

Versions:

Purpos.e:

Remarks:

Example:

TRON

TROFF

Extended, Disk

To trace the execution of program statements.

As an aid in debugging, the TRON statE!ment
(executed in either the direct or indirect mode)
enables a trace flag that prints each line
number of the program as it is executed •. The
numbers appear enclosed in square brackets. The
trage flag is disabled with the TROFF statement
(or when a NEW command is executed).

TRON
Ok
LIST
10 K=10
20 FOR J=1 TO 2
30 L=K + 10
40 PRINTJ;K;L
50 K=K+10
60 NEXT
70 END
Ok
RUN
[10] [20] [30] [40] 1 10 20
[50] [60] [30] [40] 2 20 30
[50] [60] [70]
Ok
TROFF
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-81

2.64 WAIT

Format:

Versions:

Purpose:

Remarks:

CAUTION:

Example:

WAIT <port number>, I[,J]
where I and J are integer expressions

8K, Extended, Disk

To suspend program execution while monitoring
the status of a machine input port.

The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read
at the port is exclusive OR'ed with the integer
expression J, and then AND'ed with I. If the
result is zero, BASIC-80 loops back and reads
the data at the port again. If the result is
nonzero, execution continues with the next
statement. If J is omitted, it is assumed to be
zero.

It is possible to enter an infinite loop with
the WAIT statement, in which case it will be
necessary to manually restart the machine.

100 WAIT 32,2

•

BASIC-SO COMMANDS AND STATEMENTS Page 2-S2

2.65 WHILE ••• WEND

Format:

Versions:

Purpose:

Remarks:

Example:

WHILE <expression>

[<loop statements>]

WEND

Extended,· Disk

To execute a series of statements in a loop as
long as a given condition is true.

If <expression> is not zero (i.e., true), <loop
statements> are executed until the WEND
statement is encountered. BASIC then returns to
the WHILE statement and checks <expression>. If
it is still true, the process is repeated. If
it is not true, execution resumes with the
statement following the WEND statement.

WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE.
An unmatched WHILE statement causes a "WHILE
without WEND" error, and an unmatched WEND
statement causes a "WEND without WHILE" er_ror.

90 'BUBBLE SORT ARRAY A$
100 FLIPS=1 'FORCE ONE PASS
110 WHILE FLIPS
115 FLIPS=O
120 FOR I=1 TO J-1

THRU LOOP

130 IF A$(I»A$(I+1) THEN
SWAP A$(I),A$(I+1) :FLIPS=1

140 NEXT I
150 WEND

BASIC-80 COMMANDS AND STATEMENTS Page 2-83

2.66 WIDTH

Format:

Versions:

Purpose:

Remarks:

WIDTH [LPRINT] <integer expression>

Extended, Disk

To set the printed line width in number of
characters for the terminal or line printer.

If the LPRINT option is omitted, the line width
is set at the terminal. If LPRINT is included,
the line width is set at the line printer.

<integer expression> must have a value
range 15 to 255. The default width
characters.

in the
is 72

If <integer expression> is 255, the line width
is "infinite," that is, BASIC never inserts a
carriage return. However, the position of the
cursor or the print head, as given by the POS or
LPOS function, returns to zero after position
255.

•

BASIC-80 COMMANDS AND STATEMENTS Page 2-84

2.67 WRITE

Format:

Version:

Purpose:

Remarks:

Example:

WRITE[<li.t of expressions>]

Disk

To output data at the terminal.

If <list of expressions> is omitted, a blank
line is output. If <list of expressions> is,
included, the values of the expressions are
output at the terminal. The expressions in the
li~t m~y be numeric and/or string expressions,
and they must be separated by commas.

When the printed items are output, each item
will be separated from the last by a comma.
Printed strings will be delimited by quotation
marks. After the last item in the list is
printed, BASIC inserts a carriage return/line
feed.

WRITE outputs numeric values using the same
format as the PRINT statement, Section 2.49.

10 A=80:B=90:C$=THAT'S ALL
20 WRITE A,B,C$
RUN

80, 90,"THAT'S ALL"
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-85

2.68 WRITE#

Format:

Version:

Purpose:

Remarks:

Example:

WRITE#<file number>,<list of expressions>

Disk

To write data to a sequential file.

<file number> is the number under which the file
was OPENed in "0" mode. The expressions in the
list are string or numeric expres,sions, and they
must be separated by commas. "

The difference between WRITE# and PRINT# is that
WRITE# inserts commas between the items as
they are written to disk and delimits strings
with quotation marks. Therefore,. it is not
necessary for the user to put explicit
delimiters in the list. A carriage return/line
feed sequence is inserted after the last item in
the list is written to disk.

Let A$="CAMERA"
statement:

WRITE#1,A$,B$

and B$="93604-1".

writes the following image to disk:

"CAMERA","93604-1"

A subsequent INPUT# statement, such as:

INPUT#1,A$,B$

The

would input "CAMERA" to A$ and "93604-1" to B$. •

CHAPTER 3

BASIC-80 FUNCTIONS

The intrinsic functions provided by BASIC-80 are presented
in this chapter. The functions may be called from any
program without further definition.

Arguments to functions are always enclosed in parentheses.
In the formats given for the functions in this chapter, the
arguments have been abbreviated as follows:

X and Y Represent any numeric expressions

I and J Represent integer expressions

X$ and Y$ Represent string expressions

If a floating point value is supplied where an integer is
required, BASIC-80 will round the fractional portion and use
the resulting integer.

•

BASIC-80 FUNCTIONS Page 3-2

3.1 ABS

Format:

Versions:

Action:

Example:

3.2 ASC

Format:

Versions:

Action:

Example:

ABS eX)

8K, Extended, Disk

Returns the absolute value of the expression X.

PRINT ABS (7* (-5))
35

Ok

ASC(X$)

8K, Extended, Disk

Returns a numerical value that is the ASCII code
of the first character of the string X$. (See
Appendix L for ASCII codes.) If X$ is null, an
"Illegal function call" error is returned.

10 X$ = "TEST"
20 PRINT ASC(X$)
RUN

84
Ok

See the CHR$ function
conversion.

for ASCII-to-string

BASIC-80 FUNCTIONS Page 3-3

3.3 ATN

Format:

Versions:

Action:

Example:

3.4 CDBL

Format:

Versions:

Action:

" Example:

ATN(X)

8K, Extended, Disk

Returns the arctangent of X in radians. Result
is in the range -pi/2 to pi/2. The expression X
may be any numeric type, but the evaluation of
ATN is always performed in single precision.

10 INPUT X
20 PRINT ATN(X)
RUN
? 3

1.24905
Ok

CDBL(X)

Extended, Disk

Converts X to a double precision number.

10 A = 454.67
20 PRINT AiCDBL(A)
RUN

454.67 454.6700134277344
Ok

II

BASIC-80 FUNCTIONS Page 3-4

3.5 CHR$

Format:

Versions:

Action:

Example:

3.6 CINT

Format:

Versions:

Action:

Example:

CHR$(I)

8K, Extended, Disk

Returns a string whose one element has ASCII
code I. (ASCII codes are listed in Appendix L.)
CHR$ is commonly used to send a special
character to the terminal. For instance, the
BEL character could be sent (CHR$(7» as a
preface to an error message, or a form feed
could be sent (CHR$(12» to clear a CRT screen
and return the cursor to the horne position.

PRINT CHR$ (66)
B
Ok
See the ASC function
conversion.

CINT (X)

Extended, Disk

for ASClI-to-nurneric

Converts X to an integer by rounding the
fractional portion. If X is not in the range
-32768 to 32767, an "Overflow" error occurs.

PRINT CINT(45.67)
46

Ok

See the CDBL and CSNG functions for converting
numbers to the double precision and single
precision data type. See also the FIX and INT
functions, both of which return integers.

BASIC-SO FUNCTIONS Page 3-5

3.7 COS

Format:

Versions:

Action:

Example:

3.S CSNG

Format:

Versions:

Action:

Example:

COS (X)

SK, Extended, Disk

Returns the cosine of X
calculation of COS (X) is
precision.

10 X = 2*COS(.4)
20 PRINT X
RUN

1.S4212·
Ok

CSNG(X}

Extended, Disk

in radians. The
performed in single

Converts X to a single precision number.

10 A# = 975.3421#
20 PRINT A#; CSNG(A#)
RUN

975.3421· 975.342
Ok

See the CINT and CDBL functions for converting
numbers to the integer and double precision data
types. •

BASIC..,80 FUNCTIONS Page 3-6

3 • 9 CVI, CVS, CVD

Format:

Version:>

Action:

Example:

3.10 EOF

Format:

Version:

Action:

Example:

CVI«2-byte string»
CVS«4-bytestring»
CVD«8-byte string»

Disk

Convert string values to numeric values.
Numeric values that are read in from a random
disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to
an integer. CVS converts a 4-byte string to a
single precision number. CVD converts an a-byte
string to a double precision number.

70 FIELD #1,4 AS N$, 12 AS B$, •••
80 GET #1
90 Y=CVS(N$)

See also MKI$, MKS$, MKD$, Section 3.25 and
Appendix B.

EOF«file number»

Disk

Returns -1 (true) if the end of a sequential
file has been reached. Use EOF to test for
end-of-file while INPUTting, to avoid "Input
past end" errors.

10 OPEN "I",1,"DATA"
20 C=O
30 IF EOF(1) THEN 100
40 INPUT # 1 1M (C)
50 C=C+1:GOTO 30

BASIC-80 FUNCTIONS Page 3-.7

3.11 EXP

Format:

Versions:

Action:

Example:

3.12 FIX

Format:

Versions:

Action:

Examples:

EXP(X)

8K, Extended, Disk

Returns e to the power of X. X must be
<=87.3365. If EXP overflows, the "Overflow"
error message is displayed, machine infinity
with the appropriate sign is supplied as the
result, and execution continues.

10 X = 5
20 PRINT EXP (X-1)
RUN

54.5982
Ok

FIX (X)

Extended, Disk

Returns the truncated integer part of X. FIX (X)
is equivalent to SGN(X)*INT(ABS(X)). The major
difference between FIX and INT is that FIX does
not return the next lower number for negative X.

PRINT FIX(58.75)
58

Ok

PRINT FIX(-58.75)
-58
Ok •

BASIC-80 FUNCTIONS Page 3-8

3.13 FRE

Format: FRE(O)
FRE (X$)

Versions: 8K, Extended, Disk

Action: Arguments to FRE are dummy arguments. If the
~ argument isO (numeric), FRE returns the number
of bytes in memory not being used by BASIC-80.
If the argument is· a string, FRE returns the
number of free bytes in string space.

Example: PRINT FRE(O)

3.14 HEX$

Format:

Versions:

Action:

Example:

14542
Ok

HEX$(X)

Extended, Disk

Returns a
hexadecimal
rounded to
evaluated.

10 INPUT X

string which represents
value of the decimal argument.

an integer before HEX$(X)

20 A$ = HEX$ (X)
30 PRINT X "DECIMAL IS " A$ " HEXADECIMAL"
RUN
? 32

32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCT$ function for octal conversion.

the
X is

is

BASIC-80 FUNCTIONS Page 3-9

3.15 INP

Format:

Versions:

Action:

Example:

3.16 INPUT$

Format:

Version:

Action:

INP (I)

8K, Extended, Disk

Returns the byte read from port I. I must be in
the range a to 255. INP is the complementary
function to the OUT statement, Section 2.47.

100 A=INP(255)

INPUT $ (X [, [#] Y])

Disk

Returns a string of X characters, read from the
terminal or from file number Y. If the terminal
is used for input, no characters will be echoed
and all control characters are passed through
except Control-C, which is used to interrupt the
execution of the INPUT$ function.

Example 1: 5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL

Example 2:

100PEN"I",1,"DATA"
20 IF EOF(1) THEN 50
30 PRINT HEX$(ASC(INPUT$(1,#1»);
40 GOTO 20
50 PRINT
60 END

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=INPUT$(1)
120 IF X$="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100

•

BASIC-80 FUNCTIONS Page 3-10

3.17 INSTR

Format:

Versions:

Action:

Example:

3.18 INT

Format:

Versions:

Action:

Examples:

INSTR ([I,] X$, Y$)

Extended, Disk

Searches for the first occurrence of string Y$
in X$ and returns the position at which the
match is found. Optional offset I sets the
position for starting the search. I must be in
therange 0 to 255. If I>LEN(X$) or if X$ is
null or if Y$ cannot be found, INSTR returns O.
If Y$ is null, INSTR returns I or 1. X$ and Y$
may be string variables, string expressions or
string literals.

10 X$ = "ABCDEB"
20 Y$ = "B"
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN

2 6
Ok

INT(X)

8K, Extended, Disk

Returns the largest integer <=X.

PRINT INT(99.89)
99

Ok

PRINT INT(-12.11)
-13
Ok

See the FIX and CINT functions which also return
integer values.

BASIC-80 FUNCTIONS Page 3-11

3.19 LEFT$

Format:

Versions:

Action:

Example:

3.20 LEN

Format:

Versions:

Action:

Example:

LEFT$(X$,I)

SK, Extended, Disk

Returns a string comprised of the leftmost I
characters of X$. r must be in the range 0 to
255. If I is greater than LEN(X$), the entire
string (X$) will be returned. If I=O, the null
string (length zero) is returned.

10 A$ = "BASIC-80"
20 B$ = LEFT$(A$,5)
30 PRINT B$
BASIC
Ok

,'-

Also see the MID$ and RIGHT$ functions.

LEN (X$)

8K, Extended, Disk

Returns the number of characters in X$.
Non-printing characters and blanks are counted.

10 X$ = "PORTLAND, OREGON"
20 PRINT LEN (X$)

16
Ok •

BASIC-80 FUNCTIONS Page 3-12

3.21 LOC

Format:

Version:

Action:

Example:

3.22 LOG

Format:

Versions:

Action:

Example:

LOC«file number»

Disk

With random disk files, LOC returns the next
record number to be used if a GET or PUT
(without a record number) is executed. With
sequential files, LOC returns the number of
sectors (128 byte blocks) read from or written
to the file since it was OPENed.

200 IF ~OC(1»50 THEN STOP

LOG (X)

8K, Extended, Disk

·Returns the natural logarithm of X. X must be
greater than zero.

PRINT LOG (45/7)
1.86075

Ok

BASIc-ao FUNCTIONS Page 3-13

3.23 LPOS

Format:

Versions:

Action:

Example:

3.24 MID$

Format:

Versions:

Action:

Example:

LPOS (X)

Extended, Disk

Returns the current position of the line printer
print head within the line printer buffer. Does
not necessarily give the physical position of
the print head. X is a dummy argument.

100 IF LPOS(X»60 THEN LPRINT CHR$(13)

MID$ (X$, I [, J])

8K, Extended, Disk

Returns a string of length J characters from X$
beginning with the Ith character. I and J must
be in the range a to 255 •. If J is omitted or if
there are fewer than J characters to the right
of the Ith character, all rightmost characters
beginning with the Ith character are returned.
If I>LEN(X$), MID$ returns a null string.

LIST
10 A$=ItGOOD "
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)
Ok
RUN
GOOD EVENING
Ok

Also see the LEFT$ and RIGHT$ functions.
•

BASIC-80 FUNCTIONS Page 3-14

3.25 MKI$, MKS$, MKD$

Format:

Version:

Action:

Example:

3.26 OCT$

Format:

Versions:

Action:

Example:

MKI$«integer expression»
MKS$«single precision expression>}
MKD$«double precision expression»

Disk

Convert numeric values to string values. Any
numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integer
to a 2-byte string. MKS$ converts a single
precision number to a 4-byte string. MKD$
converts a double precision number to an 8-byte
string.

90 AMT=(K+T)
100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET D$ = MKS$(AMT)
120 LSET N$ = A$
130 PUT #1

See also CVI, CVS, CVD, Section 3.9 and Appendix
B.

OCT$ (X)

8K, Extended, Disk

Returns a string which represents the octal
value of the decimal argument. X is rounded to
an integer before OCT$(X) is evaluated.

PRINT OCT$(24)
30

Ok

See the HEX$
conversion.

function for hexadecimal

BASIC-SO FUNCTIONS Page 3-15

3.27 PEEK

Format:

Versions:

Action:

Example:

3.2S POS

Format:

Versions:

Action:

Example:

PEEK (I)

SK, Extended, Disk

Returns the byte (decimal integer in the range a
to 255) read from memory location I. With the
SK version of BASIC-SO, I must be less than
3276S. To PEEK at a memory location above
3276S, subtract 65536 from the desired address.
With Extended and Disk BASIC-SO, I must be in
the range a to 65536. PEEK is the complementary
function to the POKE statement, Section 2.4S.

A=PEEK (&H5AO 0)

POS (I)

SK, Extended, Disk

Returns the current cursor position. The
leftmost position is O. X is a dummy argument.

IF POS(X»60 THEN PRINT CHR$(13)

Also see the LPOS function.

•

BASIC-80 FUNCTIONS Page 3-16

3.29 RIGHT$

Format:

Versions:

Action:

Example:

3.30 RND

Format:

Versions:

Action:

Example:

RIGHT$(X$,I)

8K, Extended, Disk

Returns the rightmost I characters of string X$.
If I=LEN(X$), returns X$. If 1=0, the null
string (length zero) is returned.

10 A$="DISK BASIC-80"
20 PRINT RIGHT$(A$,8)
RUN
BASIC-80
Ok

Also see the MID$ and LEFT$ functions.

RND [(X)]

8K, Extended, Disk

Returns a random number between 0 and 1. The
same sequence of random numbers is generated
each time the program is RUN unless the random
number generator is reseeded (see RANDOMIZE,
Section 2.53). However, X<O always restarts the
same sequence for any given X.

X>O or X omitted generates the next random
number in the sequence. X=O repeats the last
number generated.

10 FOR 1=1 TO 5
20 PRINT INT(RND*100);
30 NEXT
RUN

24 30 31 51 5
Ok

BASIC-80 FUNCTIONS Page 3-17

3.31 SGN

Format:

Versions:

Action:

Example:

3.32 SIN

Format:

Versions:

Action:

Example:

SGN(X)

8K, Extended, Disk

If X>O, SGN(X) returns 1.
If X=O, SGN(X) returns O.
If X<O, SGN(X) returns -1.

ON SGN(X)+2 GOTO 100,200,300 branches to 100 if
X is negative, 200 if X is 0 and 300 if X is
positive.

SIN (X)

8K, Extended, Disk

Returns the sine of X in
calculated in
COS(X)=SIN(X+3.14159/2).

PRINT SIN(1.5)
.997495

Ok

radians.
single

SIN (X) is
precision.

•

\

BASIC-80 FUNCTIONS Page 3;..18

3.33 SPACE$

Format:

Versions:

Action:

Example:

3.34 SPC

Format:

Versions:

Action:

Example:

SPACE $ (X)

8K, Extended, Disk

Returns a string of spaces of length X. The
expression X is rounded to an integer and must
be in the range 0 to 255.

10 FOR I = 1 TO 5
20 X$ = SPACE$(I)
30 PRINT X$~I
40 NEXT I
RUN

1

Ok

2
3

4
5

Also see the SPC function.

SPC(I)

8K, Extended, Disk

Prints I blanks on the terminal. SPC may only
be used with PRINT and LPRINT statements. I
must be in the range 0 to 255.

PRINT "OVER" SPC (15) "THERE"
OVER THERE
Ok

Also see' the SPACE$ function.

BASIC-80 FUNCTIONS Page 3-19

3.35 SQR

Format:

Versions:

Action:

Example:

3.36 STR$

Format:

Versions:

Action:

Example:

SQR(X)

8K, Extended, Disk

Returns the square root of X. X must be >=0.

10 FOR X
20 PRINT
30 NEXT
RUN

10
15
20
25

Ok

STR$(X)

= 10 TO 25 STEP 5
X, SQR(X)

3.16228
3.87298
4.47214
5

8K, Extended, Disk

Returns a string representation of the value of
X.

5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER"~N
20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400,500

Also see the VAL function. •

BASIC-80 FUNCTIONS Page 3-20

3.37 STRING$

Formats:

Versions:

Action:

Example:

3.38 TAB

Format:

Versions:

Action:

Example:

STRING$(I,J)
STRING$(I,X$)

Extended, Disk

Returns a string of length I whose characters
all have ASCII code J or the first character of
X$.

10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN
----------MONTHLY REPORT---------
Ok

TAB (I)

8K, Extended, Disk

Spaces to position I on the terminal. If the
current print position is already beyond space
I, TAB has no effect. Space 0 is the leftmost
position, and the rightmost position is the
width minus one. I must be in the range 0 to
255. TAB may only be used in PRINT and LPRINT
statements.

10 PRINT "NAME" TAB(25) "AMOUNT" : PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA "G. T. JONES","$25.00"
RUN
NAME AMOUNT

G. T. JONES
Ok

$25.00

BASIC-80 FUNCTIONS Page 3-21

3.39 TAN

Format:

Versions:

Action:

Example:

3.40 USR

Format:

Versions:

Action:

Example:

TAN (X)

8K, Extended, Disk

Returns the tangent of X in radians. TAN (X) is
calculated in single prec~s~on. If TAN
overflows, the "Overflow" error message is
displayed, machine infinity with the appropriate
sign is supplied as the result, and execution
continues.

10 Y = Q*TAN(X)/2

USR[<digit>] (X)

8K, Extended, Disk

Calls the user's assembly language subroutine
with the argument X. <digit> is allowed in the
Extended and Disk versions only. <digit> is in
the range 0 to 9 and corresponds to the digit
supplied with the DEF USR statement for that
routine. If <digit> is omitted, USRO is
assumed. See Appendix C.

40 B = T*SIN(Y)
50 C = USR(B/2)
60 D = USR(B/3) •

BASIC-80 FUNCTIONS Page 3-22

3.41 VAL

Format: VAL (X$)

Versions: 8K, Extended, Disk

.Action: . Returns the numerical valu,e of string X$. If
the first character of X$-isnot +, -, &, or a

.digit, VAL(X$)=O.

Example: 10 READ NAME$,CITY$,STATE$,ZIP$
20 IF VAL(ZIP$)<90000 OR VAL(ZIP$»96699 THEN
PRINT NAME$ TAB(25) "OUT OF STATE II

30 IF VAL(ZIP$»=90801 AND VAL(ZIP$)<=908J5 THEN
PRINT NAME$ TAB(25) "LONG BEACH"

•

See the STR$ function for numeric to string
conversion.

BASIC-80 FUNCTIONS Page 3-23

3.42 VARPTR

Format 1:

Versions:

Format 2:

Version:

Action:

NOTE:

Example:

VARPTR«variable name»

Extended, Disk

VARPT~(#<file number»

Disk

Format 1: Returns the address of the first byte
of data identified with <variable name>. A
value must be assigned to <variable name> prior
to execution of VARPTR. Otherwise an "Illegal
function call" error results. Any type variable
name may be used (numeric, string, array), and
the address returned will be an integer in the
range 32767 to ~32768. If a negative address is
returned, add it to 65536 to obtain the actual
address.

VARPTR is usually used to obtain the address of
a variable or array so it may be passed to an
assembly language subroutine. A function call
of the form VARPTR(A(O) is usually specified
when passing an array, so that the
lowest-addressed element of the array is
returned.

All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.

Format 2: Returns the starting address of the
disk I/O buffer assigned to <file number>.

In Standalone Disk BASIC, VARPTR(#<file number»
returns the first byte of the file block. See
Appendix H.

100 X=USR(VARPTR(Y»

•

APPENDIX A

New Features in BASIC-BO, Release 5.0

The execution of BASIC programs written under Microsoft
BASIC, release 4.51 and earlier may be affected by some of
the new features in release 5.0. Before attempting to run
such programs, check for the following:

1. New reserved words: CALL, CHAIN, CO~~ON, WHILE,
WEND, WRITE, OPTION BASE, RANDOMIZE.

2. Conversion from floating point to integer values
results in rounding, as opposed to truncation.
This affects not only assignment statements (e.g.,
1%=2.5 results in 1%=3), but also affects function
and statement evaluations (e.g., TAB(4.5) goes to
the 5th position, A(1.5) yeilds A(2), and X=11.5
MOD 4 yields 0 for X).

3. The body of a FOR ••• NEXT loop is skipped if the
initial value of the loop times the sign of the
step exceeds the final value times the sign of the
step. See Section 2.22.

4. Division by zero and overflow no longer produce
fatal errors. See Section 1.8.1.2.

5. The RND function has been changed so that RND with I
no argument is the same as RND with a positive
argument. The RND function generates the same
sequence of random numbers with each RUN, unless
RANDOMIZE is used. See Sections 2.53 and 3.30.

6. The rules for PRINTing single precision and double
precision numbers have been changed. See Section
2.49.

7. If the argument to ON •.• GOTO is out of range, an
error message results and execution halts.

8. String space is
first argument
will be ignored.

allocated dynamically, and the
in a two-argument CLEAR statement

See Section 2.4.

Page A-2

9. Responding to INPUT with too many or too few items,
or with the wrong type of value (numeric instead of
string, etc.), or with a carriage return causes the
message "?Redo from start" to be printed. No
assignment of input values is made until an
acceptable response is given.

10. There are two new field formatting characters for
use with PRINT USING. An ampersand is used for
variable length string fields, and an underscore
signifies a literal character in a format string.

11. If the expression supplied with the WIDTH statement
is 255, BASIC uses an "infinite" line width, that
is, it does not insert carriage returns. WIDTH
LPRINT may be used to set the line width at the
line printer. See Section 2.66.

12. The at-sign and underscore are no longer used as
editing characters.

13. Variable names are significant up to 40 characters
and ca.n contain embedded reserved words. However,
reserved words must now be delimited by spaces. To
maintain compatibility with earlier versions of
BASIC, spaces will be automatically inserted
between adjoining reserved words and variable
names. WARNING: This insertion of spaces may
cause the end of a line to be truncated if the line
length is close to 255 characters.

14. BASIC programs may be saved in a protected binary
format. See SAVE, Section 2.60.

Page A-3

CP/M and ISIS-II BASIC-BO

In CP/H and ISIS-II BASIC-BO, release 5.0, a number of addi
tions have been made to disk I/O capability:

1. After a GET statement, INPUT# and LINE INPUT# may be done
to read characters from the random file buffer. PRINT#,
PRINT# USING, and WRITE# may also be used to put characters
in the random file buffer before a PUT statement.

In the case of WRITE#, BASIC-BO pads the buffer with spaces
up to the carriage return. Any attempt to read or write
past the end of the buffer causes a "Field overflow" error.

2. /S:<max record size> may be added at the end of the command
line to set the maximum record size for use with random
files. The default record size is 12B bytes.

A new feature has been added to the INPUT statement. A comma
may be used instead of a semicolon after the prompt string to
suppress the question mark. For example, the statement
INPUT "ENTER BIRTHDATE",B$ will print the prompt with no
question mark.

•

APPENDIX B

BASIC-80 Disk I/O

Disk I/O procedures for the beginning BASIC-80 user are
examined in this appendix. If you are new to BASIC-80 or if
you're getting disk related errors, read through these
procedures and program examples to make sure you're using
all the disk statements correctly.

Wherever a filename is required in a disk command or
statement, use a name that conforms to your operating
system's requirements for filenames. The CP/M operating
system will append a default extension .BAS to the filename
given in a SAVE, RUN, MERGE or LOAD command.

B.1 PROGRAM FILE COMMANDS

Here is a review of the commands and statements used in
program file manipulation.

SAVE "filename" [,A]

LOAD "filename" [, R]

Writes to disk the program that is
currently residing in memory.
Optional A writes the program as a
series of ASCII characters.
(Otherwise, BASIC uses a compressed
binary format.)

Loads the program from disk into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes
all files before LOADing. If R is
included, however, open data files are
kept open. Thus programs can be
chained or loaded in sections and
access the same data files.

•

RUN "filename" [,R]

MERGE IIfilename ll

KILL" filename II

NAME

B.2 PROTECTED FILES

Page B-2

RUN "filename" loads the program from
disk into memory and runs it. RUN
deletes the current contents of memory
and closes all files before loading
the program. If the R option is
included, however, all open data files
are kept open.

Loads the program from disk into
memory but does not delete the current
contents of memory. The program line
numbers on disk are merged with the
line numbers in memory. If two lines
have the same number, only the line
from the disk program is saved. After
a MERGE command, the "merged ll program
resides in memory, and BASIC returns
to command level.

Deletes the file from the disk.
IIfilename ll may be a program file, or a
sequential or random access data file.

To change the name of a disk file,
execute the NAME statement, NAME
"oldfile" AS "newfile ll • NAME may be
used with program files, random files,
or sequential files.

If you wish to save a program in an encoded
use the "Protect ll option with the SAVE
example:

binary format,
command. For

SAVE IIMYPROG II ,P

A program saved this way cannot be listed or edited.

Page B-3

B.3 ~ ~ FILES - SEQUENTIAL AND RANDOM I/O

There are two types of disk data files that may be created
and accessed by a BASIC-80 program: sequential files and
random access files.

B.3.1 Sequential Files

Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to
accessing the data. The data that is written to a
sequential file is stored, one item after another
(sequentially), in the order it is sent and is read back in
the same way.

The statements and functions that are used with sequential
files are:

OPEN PRINT# INPUT# WRITE#
PRINT# USING LINE INPUT#

CLOSE EOF LOC

The following program steps are required to create a
sequential file and access the data in the file:

1. OPEN the file in "0" mode.

2. Write data to the file
using the PRINT# statement.
(WRITE# maybe used instead.)

3. To access the data in the
file, you must CLOSE the file
and reOPEN it in "I" mode.

4. Use the INPUT# statement to
read data from the sequential
file into the program.

OPEN "0", # 1 , "DATA"

PRINT#1,A$;B$;C$

CLOSE#1
OPEN "I",#1,"DATA"

INPUT#1,X$,Y$,Z$

Program B-1 is a short program that creates a sequential
file, "DATA", from information you input at the terminal.

•

10 OPEN "O",#1,"DATA"
20 INPUT "NAME" ;N$
25 IF N$="DONE" THEN END
30 INPUT "DEPARTMENT";D$
40 INPUT "DATE HlRED";H$
50 PRINT#1,N$;",";D$;",";H$
60 PRINT:GOTO 20
RUN

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER .SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.

PROGRAM B-1 - CREATE A SEQUENTIAL DATA FILE

Page B-4

Page B-5

Now look at Program B-2. It accesses the file "DATA" that
was created in Program B-1 and displays the name of everyone
hired in 1978.

10 OPEN "I",#1,"DATA"
20 INPUT#1,N$,D$,H$
30 IF RIGHT$ (H$,2)"="78" THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

PROGRAM B-2 - ACCESSING A SEQUENTIAL FILE

Program B-2 reads, sequentially, every item in the file.
When all the data has been read, line 20 causes an "Input
past end" error. To avoid getting this error, insert line
15 which uses the EOF function to test for end-of-file:

15 IF EOF(1) THEN END

and change line 40 to GO TO 15.

A program that creates a sequential file can also write
formatted data to the disk with the PRINT# USING statement.
For example, the statement

PRINT#1,USING"####.##,"~A,B,C,D

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string
serves to separate the items in the disk file.

The LOC function, when used with a sequential file, returns
the number of sectors that have been written to or read from
the file since it was OPENed. A sector is a 128-byte block
of data.

B.3.1.1 Adding ~ To A Sequential File -
If you have a sequential file residing on disk and later
want to add more data to the end of it, you cannot simply
open the file in "0" mode and start writing data. As soon
as you open a sequential file in "0" mode, you destroy its
current contents. The following procedure can be used to
add data to an existing file called "NAMES".

•

Page B-6

1. OPEN "NAMES" in "I" mode.

2. OPEN a second file called "COPY" in "0" mode.

3. Read in the data in "NAMES" and write it to "COPY".

4. CLOSE "NAMES" and KILL it.

5. Write the new information to "COPyll.

6. Rename "COPY" as "NAMES" and CLOSE.

7. Now there is a file on disk called "NAMES" that
includes all the previous data plus the new data
you just added.

Program B-3 illustrates this technique. It can be used to
create or add onto a file called NAMES. This program also
illustrates the use of LINE INPUT# to read strings with
embedded commas from the disk file. Remember, LINE INPUT#
will read in characters from the disk until it sees a
carriage return (it does not stop at quotes or commas) or
until it has read 255 characters.

10 ON ERROR GOTO 2000
20 OPEN "I",#1,"NAMES"
30 REM IF FILE EXISTS, ~'1RITE IT TO "COpy"
40 OPEN "O",#2,"COPY"
50 IF EOF(1) THEN 90
60 LINE INPUT#1,A$
70 PRINT#2,A$
80 GOTO 50
90 CLOSE #1
100 KILL "NAMES"
110 REM ADD NEW ENTRIES TO FILE
120 INPUT "NAME" i N$

Page B-7

130 IF N$="" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT "ADDRESS? "iA$
150 LINE INPUT "BIRTHDAY? "iB$
160 PRINT#2,N$
170 PRINT#2,A$
180 PRINT#2,B$
190 PRINT:GOTO 120
200 CLOSE
205 REM CHANGE FILENAHE BACK TO "NAMES"
210 NAME "COPY" AS "NAMES"
2000 IF ERR=53 AND ERL=20 THEN OPEN "O",#2,"COPY":RESUME 120
2010 ON ERROR GOTO 0

PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

The error trapping routine in line
not exist" error in line 20.
statements that copy the file are
created as if it were a new file.

B.3.2 Random Files

2000 traps a "File does
If this happens, the

skipped, and "COPY" is

Creating and accessing random files requires more program
steps than sequential files, but there are advantages to
using random files. One advantage is that random files
require less room on the disk, because BASIC stores them in
a packed binary format. (A sequential file is stored as a
series of ASCII characters.)

The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk --it is not
necessary to read through all the information, as with
sequential files. This is possible because the information
is stored and accessed in distinct units called records and
each record is numbered.

The statements and functions that are used with random files
are:

•

OPEN FIELD

PUT CLOSE

MKI$ CVI
MKS$ CVS
MKD$ CVD

LSET/RSET GET

LOC

B.3.2.1 Creating A Random File -

Page B-8

The following program steps are required to create a random
file.

1 •

2.

3.

4.

OPEN the file for random
access ("R" mode). This example
specifies a record length of 32
bytes.If the record length is
omitted, the default is 128
bytes.

Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be written to the random
file.

Use LSET to move the data
into the random buffer.
Numeric values'must be made
into strings when placed in
the buffer. To do this, use the
"make" ,functions: MKI$ to
make an integer value into a
string, MKS$ for a single
precision value, and MKD$ for
a double precision value.

Write the data from
the buffer to the disk
using the PUT statement.

OPEN "R",#1,"FILE",32

FIELD #1 20 AS N$,
4 AS A$, 8 AS P$

LSET N$=X$
LSET A$=MKS$(AMT)
LSET P$=TEL$

PUT #1,CODE%

Look at Program B-4. It takes information that is input, at
the terminal and writes it to a random file. Each time the
PUT statement is executed, a record is written to the file.
The two-digit code that is input in line 30 becomes the
record number.

Do not use a
variable in
statement.
pointer for
point into
instead of
buffer.

10 OPEN "R"#1,"FILE"

NOTE

FIELDed string
an INPUT or LET

This causes the
that variable to
string space

the random file

20 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE"~CODE%
40 INPUT "NAME" ~X$
50 INPUT "AMOUNT"~AMT
60 INPUT "PHONE"iTEL$:PRINT
70 LSET N$=X$
80 LSET A$=MKS$(AMT)
90 LSET P$=TEL$
100 PUT #1,CODE%
110 GOTO 30

PROGRAM B-4 - CREATE A RANDOM FILE

B.3.2.2 Access A Random File -

PalJe B-9

The following program steps are required to access a random
file:

1. OPEN the file in "R" mode. OPEN "R",#1,"FILE",32

2. Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be read from the file.

FIELD #1 20 AS N$,

NOTE:
In a program that performs both
input and output on the same random
file, you can often use just one
OPEN statement and one FIELD
statement.

4 AS A$, 8 AS P$

•

3.

4.

Use the GET statement to move
the desired record into the
random buffer.

The data in the buffer may
now be acessed by the program.
Numeric values must be converted
back to numbers using the
"convert" functions: CVI for
integers, CVS for single
precision values, and CVD
for double precision values.

GET #1,CODE%

PRINT N$
PRINT CVS (A$)

Page B-10

Program B-5 accesses the random file "FILE" that was created
in Program B-4. By inputting the three-digit code at the
terminal, the information associated with that code is read
from the file and displayed.

10 OPEN "R",#1,"FILE"
20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS p$
30 INPUT "2-DIGIT CODE";CODE%
40 GET #1, CODE%
50 PRINT N$
60 PRINT USING "$$###.##";CVS(A$}
70 PRINT P$:PRINT
80 GOTO 30

PROGRAM B-5 - ACCESS A RANDOM FILE

The LaC function, with random files,
record number." The current record
last record number that was used in a
For example, the statement

IF LOC(1}>50 THEN END

returns the "current
number is one plus the
GET or PUT statement.

ends program execution if the current record number in
file#1 is higher than 50.

Program B-6 is an inventory program that illustrates random
file access. In this program, the record number is used as
the part number, and it is assumed the inventory will
contain no more than 100 different part numbers. Lines
900-960 initialize the data file by writing CHR$(255} as the
first character of each record. This is used later (line
270 and line 500) to determine whether an entry already
exists for that part number.

Lines 130-220 display the different inventory functions that
the program perfo~s. When you type in the desired function
number, line 230 branches to the appropriate subroutine.

Page B-11
PROGRAM B-6 - INVENTORY

120 OPEN "R",#1,"INVEN.DAT",39
125 FIELD#1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$
130 PRINT:PRINT "FUNCTIONS:":PRINT
135 PRINT 1,"INITIALIZE FILE"
140 PRINT2,"CREATE A NEW ENTRY"
150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
160 PRINT 4,"ADD TO STOCK"
170 PRINT 5,"SUBTRACT FROM STOCK"
180 PRINT 6,IIDISPLAY ALL ITEMS BELOW REORDER LEVEL II
220 PRINT:PRINT:INPUT"FUNCTION"iFUNCTION
225 IF (FUNCTION<1)OR(FUNCTION>6) THEN PRINT "BAD FUNCTION NUMBERII:GOTO
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$)<>255 THEN INPUT"OVERWRITE"iA$:IF A$<>"Y" THEN RETURN
280 LSET F$=CHR$(O)
290 INPUT "DESCRIPTION"iDESC$
300 LSET D$=DESC$
310 INPUT "QUANTITY IN STOCK";Q%
320 LSET Q$=MKI$(Q%)
330 INPUT "REORDER LEVEL";R%
340 LSET R$=MKI$(R%)
3,50 INPUT "UNIT PRICE" i P
360 LSET P$=MKS$(P)
370 PUT#1,PART%
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER ###";PART%
430 PRINT D$
440 PRINT USING "QUANTITY ON HAND #####"iCVI(Q$)
450 PRINT USING "REORDER LEVEL #####";CVI(R$)
460 PRINT USING "UNIT PRICE $$##.##";CVS(P$)
470 RETURN •
480 REM ADD TO STOCK
490 GOSUB840
500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
510 PRINT D$:INPUT "QUANTITY TO ADD "iA%
520 Q%=CVI(Q$)+A%
530 LSET Q$=MKI$(Q%)
540 PUT#1,PART%
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$)=255 THEN PRINT "NULL ENTRylI:RETURN
590 PRINT D$
600 INPUT IIQUANTITY TO SUBTRACT"iS%
610 Q%=CVI (Q$)
620 IF (Q%-S%)<O THEN PRINT "ONLY"iQ%i" IN STOCK":GOTO 600
630 Q%=Q%-S%
640 IF Q%=<CVI(R$) THEN PRINT "QUANTITY NOW";Q%i" REORDER LEVEL"iCVI(R$)
650 LSET Q$=MKI$(Q%)
660 PUT#1,PART%

670 RETURN
680 REM DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR I=1 TO 100
710 GET#1,I

Page B-12

720 IF CVI(Q$)<CVI(R$) THEN PRINT D$1" QUANTITY"1CVI(Q$) TAB(50)
"REORDER LEVEL" ;CVI (R$)

730 NEXT I
740 RETURN
840 INPUT "PART NUMBER"1PART%
850 IF(PART%<1)OR(PART%>100) THEN PRINT "BAD PART NUMBER":GOTO 840

ELSE GET#1,PART%:RETURN
890 END
900 REM INITIALIZE
910 INPUT "ARE YOU SURE";B$:IF B$<>"Y" THEN RETURN
920 LSET F$=CHR$(255)
930 FOR I=1 TO 100
940 PUT#1,I
950 NEXT I
960 RETURN

APPENDIX C

Assembly Language Subroutines

All versions of BASIC-aD have prov~s~ons for interfacing
with assembly language subroutines. The USR Function allows
assembly language subroutines to be called in the same way
BASIC's intrinsic functions are called.

NOTE

The addresses of the DEINT,
GIVABF, MAKINT and FRCINT
routines are stored in loca
tions that must be supplied
individually for different im
plementations of BASIC.

C.1 MEMORY ALLOCATION

Memory space must be set aside for an assembly language
subroutine before it can be loaded. During initialization,
enter the highest memory location minus the amount of memory
needed for the assembly language subroutine(s). BASIC uses
all memory available from its starting loc~tion up, so only
the topmost locations in memory can be set aside for user
subroutines.

When an assembly language subroutine is called, the stack
pointer is set up for a levels (16 bytes) of stack storage.
If more stack space is needed, BASIC's stack can be saved
and a new stack set up for use by the assembly language
subroutine. BASIC's stack must be restored, however, before
returning from the subroutine.

•

Page C-2

The assembly language subroutine may be loaded into memory
by means of the system monitor, or the BASIC POKE statement,
or (if the user has the MACRO-SO or FORTRAN-SO package)
routines may be assembled with MACRO-SO and loaded using
LINK-SO.

C.2 USR FUNCTION CALLS - SK BASIC

The starting address of the assembly language subroutine
must be stored in USRLOC, a two-byte location in memory that
is supplied individually with different implementations of
BASIC-SO. With SK BASIC, the starting address may be POKEd
into USRLOC. Store the low order byte first, followed by
the high order byte.

The function USR will call the routine whose address is in
USRLOC. Initially USRLOC contains the address of ILLFUN,
the routine that gives the "Illegal ·function call" error.
Therefore, if USR is called without changing the address in
USRLOC, an "Illegal function call" error results.

The format of a USR function call is

USR(argument)

where the argument is a numeric expression. To obtain the
argument, the assembly language subroutine must call the
routine DEINT. DEINT places the argument into the D,E
register pair as a 2-byte, 2's complement integer. (If the
argument is not in the range -32768 to 32767, an "Illegal
function call" error occurs.)

To pass the result back from an assembly language
subroutine, load the value in register pair [A,B], and call
the routine GIVABF. If GIVABF is not called, USR(X) returns
X. To return to BASIC, the assembly language subroutine
must execute a RET instruction.

For example, here is an assembly language subroutine that
multiplies the argument by 2:

USRSUB: CALL DEINT iPutarg in D,E
XCHG iIDove arg to H,L
DAD H iH,L=H,L+H,L
MOV A,H imove result to A,B
MOV B,L
JMP GIVABF ipass result back and RETurn

Note that valid results will be obtained from this routine
for arguments in the range -16384<=x<=163S3. The single
instruction JMP GIVABF has the same effect as:

CALL GIVABF
~T

Page C-3

To return additional values to the program, load them into
memory and read them with the PEEK function.

There are several methods by which a program may call more
than one USR routine. For example, the starting address of
each routine may be POKEd into USRLOC prior to each USR
call, or the argument to USR could be an index into a table
of USR routines.

C.3 USR FUNCTION CALLS - EXTENDED AND DISK BASIC

In the Extended and Disk versions, the format of the USR
function is

USR[<digit>] (argument)

where <digit> is fro~ 0 to 9 and the argument is any numeric
or string express~on. <digit> specifies which USR routine
is being called, and corresponds with the digit supplied in
the DEF USR statement for that routine. If <digit> is
omitted, USRO is assumed. The address given in the DEF USR
statement determines the starting address of the subroutine.

When the USR function call is made, register A contains a
value that specifies the type of argument that was given.
The value in A may be one of the following:

Value in A ~ of Argument

2 Two-byte integer (two's complement)

3 String

4 Single precision floating point number

8 Double precision floating point number

If the argument is a number, the [H,L] register pair points
to the Floating Point Accumulator (FAC) where the argument
is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and

I

FAC-2 contains the middle 8 bits of mantissa and
FAC-1 contains the highest 7 bits of mantissa
with leading 1 suppressed (implied). Bit 7 is
the sign of the number (O=positive, 1=negative).
FAC is the exponent minus 128, and the binary
point is to the left of the most significant
bit of the mantissa.

Page C-4

If the argument is a double precision floating point number:

FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits).

If the
to 3
string
255) •
8 bits

argument is a string, the [D,E] register pair points
bytes called the "string descriptor." Byte 0 of the
descriptor contains the length of the string (0 to

Bytes 1 and 2, respectively, are the lower and upper
of the string starting address in string space.

CAUTION: If the argument is a string literal in the
program, the string descriptor will point to program text.
Be careful not to alter or destroy your program this way.
To avoid unpredictable results, add +"" to the string
literal in the program. Example:

A$ = "BASIC-80"+""

This will copy the string literal into string space and will
prevent alteration of program text during a subroutine call.

Usually, the value returned by a USR function is the same
type (integer, string, single precision or double precision)
as the argument that was passed to it. However, calling the
MAKINT routine returns the integer in [H,L] as the value of
the function, forcing the value returned by the function to
be integer. To execute MAKINT, use the following sequence
to return from the subroutine:

PUSH
LHLD
XTHL

RET

H
xxx

isave value to be returned
iget address of MAKINT routine
isave return on stack and
iget back [H,L]
ireturn

Also, the argument of the function, regardless of its type,
may be forced to an integer by callinq the FRCINT routine to
get the integer value of the argument in [H,L]. Execute the
following routine:

LXI H iget ,address of subroutine
icontinuation

PUSH H iplace on stack
LHLD xxx iget address of FRCINT
PCHL

SUB1:

Page C-5

C.4 CALL STATEMENT

Extended and Disk BASIC-80 user function calls may also be
made with the CALL statement. The calling sequence used is
the same as that in Microsoft's FORTRAN, COBOL and BASIC
compilers.

A CALL statement with no arguments generates a simple "CALL"
instruction. The corresponding subroutine should return via
a simple "RET." (CALL and RET are 8080 opcodes - see an 8080
reference manual for details.)

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For each argument in the CALL
argument list, a parameter is passed to the subroutine.
That parameter is the address of the low byte of the
argument. Therefore, parameters always occupy two bytes
each, regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC
(if pres·ent).

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL.

2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3) •

Note that, with this scheme, the subroutine must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. There are no checks for
correct number or type of parameters.

If the subroutine expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system
subroutine which will perform this transfer. This argument
transfer routine is named $AT (located in the FORTRAN
library, FORLIB.REL), and is called with HL pointing to the
local data area, BC pointing to the third parameter, and A
containing the number of arguments to transfer (i.e., the
total number of arguments minus 2). The subroutine is

•

Page C-6

responsible for saving the first
calling $AT. For example, if a
parameters, it should look like:

two parameters before
subroutine expects 5

SUBR: SHLD
XCHG
SHLD
MVI
LXI
CALL
•

•

P1

P2
A,3
H,P3
$AT

~SAVE PARAMETER 1

;SAVE PARAMETER 2
~NOo OF PARAMETERS LEFT
;POINTER TO LOCAL AREA
~TRANSFER THE OTHER 3 PARAMETERS

[Body of subroutine]

P 1 :
P2:
P3:

RET
DS
DS
DS

2
2
6

;RETURN TO CALLER
;SPACE FOR PARAMETER 1
~SPACE FOR PARAMETER 2
iSPACE FOR PARAMETERS 3-5

A listing of the argument transfer routine AT$ follows.

00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300

. ,
; [B,C]
i [H,L]
~ [A]

$AT:

AT1 :

ARGUMENT TRANSFER
POINTS TO 3RD PARAM.
POINTS TO LOCAL STORAGE FOR PARAM 3
CONTAINS THE # OF PARAMS TO XFER(TOTAL-2)

ENTRY
XCHG
MOV
MOV
MOV
INX
MOV
INX
XCHG
MOV
INX
MOV
INX
XCHG
DCR
JNZ
RET

$AT

H,B
L,C
C,M
H
B,M
H

M,C
H
M,B
H

A
AT1

;SAVE [H,L] IN [D,E]

~ [H,L] = PTR TO PARAMS

; [B,C] = PARAM ADR
~ [H,L] POINTS TO LOCAL STORAGE

iSTORE PARAM IN LOCAL AREA
iSINCE GOING BACK TO AT1
iTRANSFERRED ALL PARAMS?
iNO, COpy MORE
;YES, RETURN

Page C-7

When accessing parameters in a subroutine, don't forget that
they are pointers to the actual arguments passed.

C.s INTERRUPTS

NOTE

It is entirely up to the
programmer to see to it that
the arguments in the calling
program match in number, ~,
and length with the parameters
expected by the subroutine.
This applies to BASIC
subroutines, as well as those
written in assembly language.

Assembly language subroutines can be written to handle
interrupts. All interrupt handling routines should save the
stack, register A-L and the PSW. Interrupts should always
be re-enabled before returning from the subroutine, since
an interrupt automatically disables all further interrupts
once it is received. The user should be aware of which
interrupt vectors are free in the particular version of
BASIC that'has been supplied o Note to CP/M users: in CP/M
BASIC, all interrupt vectors are free.}

•

APPENDIX D

BASIC-BO with the CP/M Operating System

The CP/M version of BASIC-BO (MBASIC) is
standard size 3740 single density diskette.
file is MBASIC.COM. (A 2BK or larger
recommended.)

supplied on a
The name of the

CP/M system is

To run MBASIC, bring up CP/M and type the following:

A>MBASIC <carriage return>

The system will reply:

xxxx Bytes Free
BASIC-BO Version 5.0
(CP/M Version)
Copyright 1978 (C) by Microsoft
Created: dd-rnrnrn-yy
Ok

MBASIC is the same as Disk BASIC-80 as described in this
manual, with the following exceptions:

D.1 INITIALIZATION

The initialization dialog has been replaced by a set of
options which are placed after the MBASIC command to CP/M.
The format of the command line is:

A>MBASIC [<filename>] [/F:<nurnber of files>] [/M:<highest memory location>

If <filename> is present, MBASIC proceeds as if a RUN
<filename> command were typed after initialization is
complete. A default extension of .BAS is used if none is
supplied and the filename is less than 9 characters long.
This allows BASIC programs to be executed in batch mode
using the SUBMIT facility of CP/M. Such programs should
include a SYSTEM statement (see below) to return to CP/M
when they have finished, allowing the next program in the
batch stream to execute.

•

Page D-2

If /F:<number of files> is present, it sets the number of
disk data files that may be open at anyone time during the
execution of a BASIC program. Each file data block
allocated in this fashion requires 166 bytes of memory. If
the /F option is omitted, the number of files defaults to 3.

The /M:<highest memory location> option sets the highest
memory location that will be used by MBASIC. In some cases
it is desirable to set the amount of memory well below the
CP/M's FDOS to reserve space for assembly language
subroutines. In all cases, <highest memory location> should
be below the start of FDOS (whose address is contained in
locations 6 and 7). If the /M option is omitted, all memory
up to the start of FDOS is used.

Examples:

NOTE

Both <number of files> and
<highest memory location> are
numbers that may be either
decimal, octal (preceded by
&0) or hexadecimal (preceded
by &H).

A>MBASIC PAYROLL. BAS Use all memory and 3 files,
load and execute PAYROLL. BAS.

A>MBASIC INVENT/F:6

A>MBASIC /M:32768

Use all memory and 6 files,
load and execute INVENT.BAS.

Use first 32K of memory and
3 files.

A>MBASIC DATACK/F:2/M:&H9000

D.2 DISK FILES

Use first 36K of memory, 2
files, and execute DATACK.BAS.

Disk filenames follow the normal CP/M nam~ng conventions.
All filenames may include A: or B: as the first two
characters to specify a disk drive, otherwise the currently
selected drive is assumed. A default extension of .BAS is
used on LOAD, SAVE, MERGE and RUN <filename> commands if no
"." appears in the filename and the filename is less than 9
characters long.

Page D-3

D.3 FILES COMMAND

Format:

Purpose:

Remarks:

Examples:

FILES [<filename>l

To print the names of files residing on the
current disk.

If <filename> is omitted, all the files on the
currently selected drive will be listed.
<filename> is a string formula which may contain
question marks (?) to match any character in the
filename or extension. An asterisk (*) as the
first character of the filename or extension
will match any file or any extension.

FILES
FILES II*.BASII
FILES IIB:*.*II
FILES IITEST?BAS II

D.4 ·RESET COMMAND

Format:

Purpose:

Remarks:

RESET

To close all disk files and write the directory
information to a diskette before it is removed
from a disk drive.

Always execute a RESET command before removing a
diskette from a disk drive. Otherwise, when the
diskette is used again, it will not have the
current directory information written on the
directory track.

RESET closes all open files on
writes the directory track
with open files.

all drives and
to every diskette •

Page D-4

D.S LOF FUNCTION

Format:

Action:

Example:

D.6 EOF

LOF(-<file number»

Returns the number of records present in the
last extent read or written. If the file does
not exceed one extent (128 records), then LOF
returns the true length of the file.

110 IF NUM%>LOF(1) THEN PRINT "INVALID ENTRY"

With CP/M, the EOF function may be used with random files.
If a GET is done past the end of file, EOF will return -1.
This may be used to find the size of a file using a binary
search or other algorithm.

D.7 MISCELLANEOUS

1. CSAVE and CLOAD are not implemented.

2. To return to CP/M, use the SYSTEM command or
statement. SYSTEM closes all files and then
performs a CP/M warm start. Control-C always
returns to MBASIC, not to CP/M.

3. FRCINT is at 103 hex and MAKINT is at 105 hex.
(Add 1000 hex for ADDS versions, 4000 for SBC CP/M
versions.)

APPENDIX E

BASIC-80 with the ISIS-II Operating System

With ISIS-II, BASIC-80 is the same as described in this
manual, with the following exceptions:

E.1 INITIALIZATION

The initialization dialog has been replaced by a set of
options which are placed after the MBASIC command to
ISIS-II. The format of the command line is:

-MBASIC [<filename>] [/F:<number of files>] [/M:<highest memory location

If <filename> is present, BASIC proceeds as if a RUN
<filename> command were typed after initialization is
complete. A default extension of .BAS is used if none is
supplied.

If /F:<number of files> is present, it sets the number of
disk data files that may be open at anyone time during the
execution of a BASIC program. The maximum is six and the
default is three. The /M:<highest memory location> option
sets the' highest memory location that will be used by BASIC.
Use this option to reserve memory locations above BASIC for
assembly language subroutines.

At initializ~tion, the system will reply:

xxxx Bytes Free
BASIC-80 Version x.x
(ISIS-II Version)
Copyright 1978 (C) by Microsoft

•

Page E-2

E.2 LINE PRINTER I/O

To send output to the printer during execution of a BASIC
program, open the line printer as if it were a disk file:

50 N=4
100 OPEN "O",N,":LP:"

120 PRINT #N,A,B/C

Since BASIC buffers disk I/O, you may want to force buffers
out by CLOSEing the printer channel.

To LIST a program on the line printer, use:

SAVE" :LP:",A

E.3 ATTRIB STATEMENT

In ISIS-II BASIC-80, the ATTRIB statement
attributes. The format of the statement is:

ATTRIB <filename string>,<attribute string>

sets file

The attribute string consists of F, W, S or I for the
attribute, followed by a 1 to set the attribute or a 0 to
reset.

Examples:

ATTRIB "INFO.DAT", "W1"
ATTRIB "GHOST.BAS","I1"
ATTRIB ":F1:SYSFIL","W1F1S111"
ATTRIB A$,B$

E.4 MISCELLANEOUS

Note these other differences for ISIS-II BASIC:

1. MAKINT is located at xxxxx hex, and GIVINT is
located at xxxxx hex.

2. There is no
Filenames do
and MERGEs.

FILES command in ISIS-II BASIC.
not default to .BAS on SAVEs, LOADs,

APPENDIX F

BASIC-80 with the TEKDOS Operating System

The operation of BASIC-80 with the TEKDOS operating system
is the same as described in this manual with the following
exceptions:

1. At initialization, BASIC asks MEMORY SIZE? If you
respond with a carriage return, BASIC will use all
available memory. If you respond with a memory
location (in decimal), BASIC will use memory only
up to that location. This lets you reserve space
at the top of memory for assembly language
subroutines.

2. The number of disk files that may be open at one
time defaults to 5.

3. LPRINT and LLIST are not implemented.
open a file to the printer.

Instead,

4. TEKDOS does not support random disk I/O.
corresponding BASIC-80 statements (PUT,
OPEN"R", etc.) are inoperable under TEKDOS.

The
GET,

5. Control-C works only once due to a bug in TEKDOS.
If you interrupt a running program or a LIST
command with Control-C, BASIC appears to be in
"single statement" mode. To clear this condition,
exit BASIC with a SYSTEM command and re-enter BASIC
with an XEQ BASIC. Avoid using the AUTO command,
since it requires a Control-C to return to BASIC
command level.

•

APPENDIX G

BASIC-80 with the INTEL SBC and MDS Systems

G.1 INITIALIZATION

The paper tape of BASIC-80 supplied for
is in Intel-compatible hex format.
command to load the tape, then execute
start BASIC-80. The command is:

.G4000

BASIC will respond:

Memory size?

SBC and MDS systems
Use the monitor's R
the G command· to

If you want BASIC to use all available RAM, just type a
carriage return. If you want to reserve space at the top of
memory for machine language subroutines, enter the highest
memory address (in decimal) that BASIC may use.

Terminal Width?

(8K versions only) Respond with the number of characters for
the output line width in PRINT statements. The default is
72 characters. (Extended versions use WIDTH command.)

Want SIN-COS-TAN-ATN?

Type Y to retain these functions, type N to delete them, or
type A to delete ATN only.

G.2 SUBROUTINE ADDRESSES

In the 8K version of SBC and MDS BASIC-80, DEINT is located
at 0043 hex and GIVABF is located at 0045 hex. USRLOC is at
xxx x hex. In the Extended version, FRCINT is located at
xxx x hex, and MAKINT is located at xxxx hex.

•

Page G-2

G.3 LLIST AND LLPRINT

LLIST and LPRINT are not implemented.

APPENDIX H

Standalone Disk BASIC

Standalone Disk BASIC is an easily implemented,
self-contained version of BASIC-80 that runs on almost any
8080 or Z80 based disk hardware without an operating system.
Standalone Disk BASIC incorporates several unique disk I/O
methods that make faster and more efficient use of disk
access and storage.

Random access with Standalone BASIC is faster than other
disk operating systems because the file allocation table is
kept in memory and updated periodically on the diskette.
Therefore, there is no need for index blocks for random
files, and there is no need to distinguish between random
and sequential files. Because there are no index blocks,
there is no large per-file-overhead either in memory or on
disk. Binary SAVEs and LOADs are also faster because they
are optimized by cluster, i.e., an entire cluster is read or
written at one time, instead of a single sector.

To initialize Standalone Disk BASIC, insert the BASIC
diskette and power up the system. In one- or two-drive
systems, BASIC asks if there are two drives. In systems
with more than two drives, BASIC asks for the number of
drives. BASIC then asks how many files, i.e., how many disk
files may be open at one time. Answer with a number from a
to 15, or, for a default of 1 file per drive, just enter a
carriage return.

The operation of Standalone Disk BASIC is the same as Disk
BASIC-80 as described in this manual, with the following
exceptions:

H.1 FILENAMES

Disk filenames are six characters with an optional
three-character extension that is preceded by a decimal
point. If a decimal point appears in a filename after fewer
than six characters, the name is blank-filled to six
characters and the next three characters are the extension.

I

Page H-2

If the filename is six or fewer characters with no decimal
point, there is no extension. If the filename is more than
six characters, BASIC inserts a decimal point after the
sixth character and uses the next three characters as an
extension. (Any additional characters are ignored.)

H.2 DISK FILES

The FILES command prints the names of the files residing on
a disk. The format is: [L]FILES[<drive number>]

LFILES outputs to the line printer. In addition to the
filename, the size of each file, in clusters, is output. A
cluster is the minimum unit of allocation for a file -- it
is one-half of a track. Filenames of files created with
OPEN or ASCII SAVE are listed with a space between the name
and extension. Filenames of binary files created with
binary SAVE are listed with a decimal point between the name
and extension. The protected file option with SAVE is not
supported in Standalone Disk BASIC.

H.3 FPOS

The FPOS function:

FPOS«file number»

is the same as BASIC-80's LOC function except it returns the
number of the physical sector where <filenumber> is located.
(BASIC-80's LOC function and CP/M BASIC-80's LOF function
are also implemented.)

H.4 DSKI$/DSKO$

The DSKO$ statement:

DSKO$<drive>,<track>,<sector>,<string expression>

writes the string on the
length for the string is
than 128 characters is
characters.

specified sector. The maximum
128 characters. A string of fewer
zero-filled at the end to 128

DSKI$ is the complementary function to the DSKO$ statement.
DSKI$ returns the contents of a sector to a string variable
name. The format is:

DSKI$«drive>,<track>,<sector»

Example: A$=DSKI$(O,I,J)

Page H-3

R.S MOUNT CO~~~~D

Before a diskette can be used for file operations (i.e., any
disk I/O besides DSKI$, DSKO$, or IBM or USR modes), it must
be f:.1OUNTed. The format of the command is:

MOUNT[<drive>[,<drive> •••]]

MOUNT with no arguments mounts all drives. When a diskette
is mounted, BASIC reads the File Allocation Table (see
Section H.11.2) from the diskette into memory and checks it
for errors. If there are no errors, the disk is mounted.
If an error is found, BASIC reads one or both of the back-up
allocation tables from the diskette in an attempt to mount
the disk; and a warning message, "x copies of allocation
bad on drive y", is issued. x is 1 or 2 and y is the drive
number. When a warning occurs, it is a good idea to make a
new copy of the diskette. If all copies of the allocation
table are bad or if a free entry is encountered in the file
chain, a fatal error--"Bad allocation table"--is given and
the diskette will not be mounted.

While a disk is mounted,
allocation table to the
check for errors unless the
set for that drive (see SET

H.G REMOVE COMMAND

BASIC occasionally writes
directory track, but it does
read after write attribute
statement).

the
not
is

REMOVE is the complement of MOUNT. Before a diskette can be
taken out of the drive, a REMOVE command must be executed.
The format of the command is:

REMOVE[<drive>[,<drive> •••]]

REMOVE writes three copies of the current allocation
to disk and follows the same error-check procedure as
MOUNT and REMOVE replace the RESET command that
BASIC-BO.

NOTE

ALWAYS do a REMOVE before
taking a diskette out of a
drive. If you do not, the
diskette you took out will not
have an updated and checked
allocation table, and the data
on the next diskette inserted
will be destroyed when the
wrong allocation table is
written to the directory
track.

table
HOUNT.
is in •

Page H-4

H.7 SET STATEMENT

The SET statement determines the attributes of the currently
mounted disk drive, a currently open file, or a file that
need not be open. The format of the SET statement is:

SET<drive> I #<file> I <filename>,<attribute string>

<attribute string> is a string of characters that determines
what attributes are set. Any characters other than the
following are ignored:

R Read after write
P Write protect
E EBCDIC conversion (if available)

Attributes are assigned in the following order:

1. MOUNT command

2.

When a MOUNT is done for a particular drive, the
first byte of the information sector on the
diskette (track 35, sector 20 for floppy; track
18, sector 13 for minifloppy) contains the
attributes for the disk. (octal values: R=100,
P=20, E=40)

SET<drive>,<attribute string> Statement
This statement sets the current attributes for
disk, in memory, while it is mounted.
attributes are not permanently recorded and
only while the disk is mounted.

the
The

apply

3. When a file is created, the permanent file
attributes recorded on the disk will be the same as
the current drive attributes.

4. SET<filename>,<attribute string> Statement
This statement changes the permanent
attributes that are stored in the directory
for that file. It does not affect the
attributes.

file
entry
drive

5. When an existing file is OPENed, the attributes of
the file number are those of the directory entry.

6. SET#<file number>,<attribute string> Statement

Examples:

SET 1,"R"

This statement changes the attributes for that file
number but does not change the directory entry.

Force read after write checking on all
output to drive 1

SET #1,"R" Force read after write for all output to

Page H-5

.t:!!,_

.I....J....J..t::: 1 while it is

SET #1,"P" Give write protect error if any output is
attempted to file 1

SET "TEST", "p" Protect TEST from deletion and
modification

SET 1,"" Turn off all attributes for drive 1

H.8 ATTR$ FUNCTION

ATTR$ returns a string of the current attributes for a
drive, currently open file, or file that need not be open.
The format of ATTR$ is:

ATTR$«drive> #<file number> <filename»

For example:

SET 1,"R":A$=ATTR$(1) :PRINT A$
R
Ok

H.9 OPEN STATEMENT

The format for the OPEN statement in Standalone BASIC is:

OPEN <filename> [FOR <mode>] AS [#]<file number>

where <mode> is one of the following:

INPUT
OUTPUT
APPEND
IBM
USR

The mode determines only the initial positioning within the
file and the actions to be taken if the file does not exist.
The action taken in each mode is:

INPUT

OUTPUT

APPEND

The initial position is at the start of the file.
An error is returned if the file is not found.

The initial position is at the start of the file.
A new file is always created.

The initial position is at the end of the file.
An error is returned if the file is not found.

•

Page H-6

IBM The initial position is after the last DSKI$ or
DSKO$. The file is then set up to write
contiguous. No file search is done. (The same
effect may be achieved in many cases by altering
the FORMAT program. See Section H.11.2.1.)

USR Same as IBM mode except, instead of write
contiguous, USRO is called and returns the next
track/sector number. The USRO routine should read
the current track/sector from B,C and return the
next location in B,C. When USRO is first called,
B,C contains the track and sector number of the
previous DSKI$ or DSKO$.

If the FOR <mode> clause is omitted, the initial position is
at the start of the file. If the file is not found, it is
created.

Note that variable length records are not supported in
Standalone Disk BASIC. All records are 128 bytes in length.

USR mode is especially useful for creating diskettes that
require sector mapping. This is the case if the diskette is
intended for use on another system, for example, a CP/M
system. Instead of opening the file for write contiguous
(IBM mode), the USRO routine may be used to map the sectors
logically, as required by the other system.

When a file is OPENed FOR APPEND, the file mode is set to
APPEND and the record number is set to the last record of
the file. The program may subsequently execute disk I/O
statements that move the pointer elsewhere in the file.
When the last record is read, the file mode is reset to FILE
and the pointer is left at the end of the file. Then, if
you wish to append another record, execute:

GET#n,LOF(n)

This positions the pointer at the end of the file in
preparation for appending.

At anyone time, it is possible to have a particular
filename OPEN under more than one file number. This allows
different attributes to be used for different purposes. Or,
for program clarity, you may wish to use different file
numbers for different methods of access. Each file number
has a different buffer, so changes made under one £ile are
not accessible to (or affected by) the other numbers until
that record is written (e.g., GET#n,LOC(n)).

Page H-7

H.10 DISK I/O

A GET or PUT (i.e., random access) cannot be done on a file
that is OPEN FOR IBM or OPEN FOR USR. Otherwise, GET/PUT
may be executed along with PRINT#/INPUT# on the same file,
which makes midfile updating possible. The statement
fqrmats for GET, PUT, PRINT#, and INPUT# are the same as
those in BASIC-BO. The action of each statement in
Standalone BASIC is as follows:

GET If the "buffer changed" flag is set, write the
buffer to disk. Then execute the GET (read the
record into the buffer), and reset the position
for sequential I/O to the beginning of the buffer.

PUT Execute the PUT (write the buffer to the specified
record number), and set the "sequential I/O is
illegal" flag until a GET is done.

INPUT# If the buffer is empty, write it if the "Buffer
changed" flag is sei, then read the next buffer.

PRINT# Set the "buffer changed" flag. If the buffer is
full, write it to disk. Then, if end of file has
not been reached, read the next buffer.

H.10.1 FileFormat

For a single density floppy, each file requires 137 bytes:
9 bytes plus the 12B-byte buffer. Because the File
Allocation Table keeps random access information for all
files, random and sequential files are identical on the
disk. The only distinction is that sequential files have a
Control-Z (32 octal) as the last character of the last
sector. When this sector is read, it is scanned from the
end for a non-zero byte. If this byte is Control-Z, the
size of the buffer is set so that a PRINT overwrites this
byte. If the byte is not Control-Z, the size is set so the
last null seen is overwritten.

Any sequential file can be copied in random mode and remain
identical. If a file is written to disk in random mode
(i.e., with PUT instead of PRINT) and then read in
sequential mode, it will still have proper end of file
detection.

•

Page H-8

H.11 DISK ALLOCATION INFORMATION

With Standalone Disk BASIC, storage space on the diskette is
allocated beginning with ~he cluster closest to the current
position of the head. (This method is optimized for
writing. Custom versions can be optimized for reading.)
Disk allocation information is placed in memory when the
disk is mounted and is periodically written back to the
disk. Because this allocation information is kept in
memory, there is no need for index blocks for random files,
and there is no need to distinguish between random and
sequential files.

H.11.1 Directory Format

On the diskette, each sector of the directory track contains
eight file entries. Each file entry is 16 bytes long and
formatted as follows:

Bytes

0-8

9

10

11-15

Usage

Filename, 1 to 9 characters. The
first character may not be 0 or 255.

Attribute:
Octal

200 Binary file
100 Force read after write check

40 EBCDIC file
20 Write protected file

Excluding 200, these bits are the same
for the disk attribute byte which is the
first byte of the information sector.

Pointer into File Allocation Table
to the first cluster of the file's
cluster chain.

Reserved for future expansion.

If the first byte of a filename is zero, that file entry
slot is free. If the first byte is 255, that slot is the
last occupied slot in the directory, i.e., this flags the
end of the directory.

H.11.2 Drive Information

For each disk drive that is MOUNTed,
information is kept in memory:

the following

Page H-9

1. Attributes
Drive attributes are read from the information
sector when the drive is mounted and may be changed
with the SET statement. Current attributes may be
examined with the ATTR$ function.

2. Track Number
This is the current track while the disk is
mounted. Otherwise, track number contains 255 as a
flag that the disk is not mounted.

3. Modification Counter
This counter is incremented whenever an entry in
the File Allocation Table is changed. After a
given number of changes has been made, the File
Allocation Table is written to disk.

4. Number of Free Clusters
This is calculated when the drive is mounted, and
updated whenever a file is deleted or a cluster is
allocated.

5. File Allocation Table
The File Allocation Table has a one-byte entry for
every cluster allocated on the disk. If the
cluster is free, this entry is 255. If the cluster
is reserved, this entry is 254. If the cluster is
the last cluster of the file, this entry is 300
(octal) plus the number of sectors from this
cluster that were used. Otherwise, the entry is a
pointer to the next cluster of the file. The File
Allocation Table is read into memory when the drive
is mounted, and updated:

1. When a file is deleted

2. When a file is closed

3. When modifications to the table total twice the
number of sectors in a cluster (this can be
changed in custom versions)

4. When modifications to the table have been
and the disk head is on (or passes)
directory track.

made
the

•

Page H-10

H.11.2.1 FORMAT Program - Before mounting a
drive with a new diskette, run BASIC's FORMAT program to
initialize the directory (set all bytes to 255), set the
information sector to 0, and set all the File Allocation
Table entries (except the directory track entry (254» to
"free" (255).

The FORMAT program is:

10 CLEAR 1500
20 A$=STRING$(255,128)
30 B$=STRING$(35*2,255)+STRING$(2,254)+STRING$(56,255)
40 FOR S=1 TO 19:DSKO$ 1,35,5,A$:NEXT
50 FOR S=21 TO 25 STEP 2:DSKO$ 1,35,S,B$
60 DKSO$ 1,35,S+1,A$:NEXT
70 DSKO$ 1,39,20,CHR$(0)

After running FORMAT and MOUNTing the drive, files will be
allocated as usual, i.e., on either side of the directory
track.

The FORMAT program may be altered to pre-allocate selected
files. For instance, you may wish to use the FORMAT program
to pre-allocate files contiguously (as they would be
allocated in IBM mode). Then IBM and BASIC files may both
exist on the diskette. The altered FORMAT program must also
write the name of the filets) to the directory track (i.e.,
files1-8 in sector 1, files 9-16 in sector 2, etc.), so
BASIC knows where the files start.

H.11.3 File Block

Each file on the disk has a file block that contains the
following information:

1. File Mode (byte 0)
This is the first byte (byte 0) of the file block,
and its location may be read with
VARPTR(#filenurnber). The location of any other
byte in the file block is relative to the file mode
byte. The file mode byte is one of the following:

(octal)
1
2
4

10
20
40

100
200

Input only
Output only
File mode
Append mode
Delete file
IBM mode
Special format (USR)
Binary save

Page H-11

NOTE

It iz not rsco~~ended that the user attempt
to modify the next four bytes of the File
Allocation Table. Many unforeseen
complications may result.

2. Pointer to the File Allocation Table entry for the
first cluster allocated to the file (+1)

3 0 Pointer to the File Allocation Table entry for the
last 9luster accessed (+2)

40 Last sector accessed (+3)

50 Disk number of file (+4)

6. The size of the last buffer read (+5). This is 128
unless the last sector of the file is not full
(i.e., Control-Z)0

7. The current position in the buffer (+6). This is
the offset within the buffer for the next print or
input.

8.

9.

File flag
Octal

100
40

20
10

4

2

(+7), is one.of the following:

Read after write check
Read/Write EBCDIC, not ASCII
(Not available in all versions.)
File write protected
Buffer changed by PRINT
PUT has been done. PRINT/INPUT are
errors until a GET is done.
(See Section H.10.)
Flags buffer is empty

Terminal position for TAB function and comma
PRINT statements (+8)

in

100 Beginning of sector buffer (+9), 128 bytes in
length

H.12 ADVANCED USES OF FILE BUFFERS

1 • Information may be passed
another by FIELDing it to
(not *0). The FIELD buffer
as the file is not OPENed.

from one program to
an unopened file number
is not cleared as long

•

Page H-12

2. The FIELDed buffer for an unopened file can also be
used to format strings. For example, an
aO-character string could be placed into a FIELDed
buffer with LSET. The strings could then be
accessed as four 20-character strings using their
FIELDed variable names. For example:

100 FIELD#1, ao AS A$
200 FIELD#1, 20 AS A1$, 20 AS A2$, 20 AS A3$, 20 AS A4$
300 LINE INPUT "CUSTOHER INFORMATION: ";B$
400 LSET A$=B$
500 PRINT "NAME ";A1$;"SSN: ";A2$

3. FIELD#O may be used as a temporary buffer, but note
that this buffer is cleared after each of the
following commands: FILES, LOAD, SAVE, HERGE, RUN,
DSKO$, MOUNT, OPEN.

4. The effect of PRINT [USING] # into a string may be
achieved by printing to a FIELDed buffer and then
accessing it without reopening the file. To assure
that this temporary buffer is not written to the
disk, return the pointer to the beginning of the
buffer and reset the "buffer changed" flag as
follows:

10 OPEN "D" FOR IBM AS 1:REM THIS DOESN'T USE SPACE
20 PRINT USING#1 •••
30 P=PEEK(6+VARPTR(#1» : REM OPTIONAL, TO GET LENGTH OF PRINT
USING
40 FIELD#1 ••• AS •.•
50 Y=7+VARPTR(#11
60 POKE~PEEK(Y AND &360) :REM RESET BUFFER CHANGED FLAG
70 POKE6+VARPTR,0:REM CLEAR POSITION IN BUFFER

H.13 STANDALONE BASIC DISK ERRORS

50 FIELD overflow
51 Internal error
52 Bad file number
53 File not found
54 File already open
55 Disk not mounted
56 Disk I/O error
57 File already exists
59 Disk already mounted
61 Input past end
62 Bad file name
63 Direct statement in file
64 Bad allocation table
65 Bad drive number
66 Bad track/sector
67 File write protected
68 Disk offline
69 Deleted record
70 Rename across disks
71 Sequential after PUT
72 Sequential I/O only
73 File not OPEN

Page H-13

•

APPENDIX I

converting Programs to BASIc-aD

If you have programs written in a BASIC other than BASIC-aD, some
minor adjustments may be necessary before running them with BASIC-aD.
Here are some specific things to look for when converting BASIC
programs.

I.1 STRING DIMENSIONS

Delete all statements that are used to declare the length of strings.
A statement such as DIM A$(I,J), which dimensions a string array for J
elements of length I, should be converted to the BASIC-aD statement
DIM A$ (J) •

Some BASICs use a comma or ampersand for string concatenation. Each
of these must be changed to a plus sign, which is the operator for
BASIC-SO string concatenation.

In BASIC-SO, the MID$, RIGHT$, and LEFT$ functions are used to take
substrings of strings. Forms such as A$(I) to access the Ith
character in A$, or A$(I,J) to take a substring of A$ from position I
to position J, must be changed as follows:

X$=A$(I)
X$=A$(I,J)

BASIC-SO

X$=MID$(A$,I,1)
X$=MID$(A$,I,J-I+1)

If the substring reference is on the left side of an assignment and X$
is used to replace characters in A$, convert as follows:

Other BASIC

A$(I)=X$
A$(I,J)=X$

A$(I)=X$
A$(I,J)=X$

SK BASIC-SO

A$=LEFT$ (A$,I-1)+X$+MID$(A$,I+1)
A$=LEFT$(A$,I-1) iX$iMID$(A$,J+1)

Ext. and Disk BASIC-80

MID$(A$,1,1)=X$
MID$(A$,I,J-I+1)=X$

II

Page I-2

I.2 MULTIPLE ASSIGNMENTS

Some BASICs allow statements of the form:

10 LET B=C=O

to set Band C equal to zero. BASIC-80 would interpret the second
equal sign as a logical operator and set B equal to -1 if C equaled O.
Instead, convert this statement to two assignment statements:

10 C=O:B=O

I.3 MULTIPLE STATEMENTS

Some BASICs use a backs I ash (1 to separate multiple statements on a
line. With BASIC-80, be sure all statements on a line are separated
by a colon (:).

I.4 MAT FUNCTIONS

Programs using the MAT functions available in some BASICs must be
rewritten using FOR ••• NEXT loops to execute properly •.

Code Number

BS 9

CN 17

DD 10

FC 5

APPENDIX J

Summary of Error Codes and Error Messages

Subscript out of
An array element
subscript that
the array, or
subscripts.

Can't continue

Message

range
is referenced either with
is outside the dimensions
with the wrong number

a
of
of

An attempt is made to continue a program
that:

1. has halted due to an error,

2. has been modified during a break in
execution, or

3. does not exist.

Redimensioned array
Two DIM statements are given for the same
array, or a DIM statement is given for an
array· after the default dimension of 10 has
been established for that array.

Illegal function call
A parameter that is out of range is passed to
a math or string function. An FC error may
also occur as the result of:

1 • a negative or unreasonably large
subscript

2. a negative or zero argument with LOG

3. a negative argument to SQR

4. a negative mantissa with a non-integer
exponent

•

ID 12

NF 1

aD 4

OM 7

as 14

OV 6

SN 2

ST 16

TM 13

Page J-2

5. a call to a USR function for which the
starting address has not yet been given

6. an improper argument to r.1ID$, LEFT$,
RIGHT$, INP, OUT, WAIT, PEEK, POKE, TAB,
SPC, STRING$, SPACE$, INSTR, or
ON ••• GOTO.

Illegal direct
A statement that is illegal in di~ect mode is
entered as a direct mode command.

NEXT'without FOR
A variable in a NEXT statement
correspond to any previously
unmatched FOR statement variable.

Out of data

does not
executed,

A READ statement is executed when there are
no DATA statements with unread data remaining
in the program.

Out of memory
A program is too large, has too many FOR
loops or GOSUBs, too many variables, or
expressions tha~ are too complicated.

Out of string space
String variables exceed the allocated amount
of string space. Use CLEAR to allocate more
string space, or decrease the size and number
of strings.

Overflow
The result of a calculation is too large to
be represented in BASIC-80's number format.
If underflow occurs, the result is zero and
execution continues without an error.

Syntax error
A line is encountered that contains some
incorrect sequence of characters (such as.
unmatched parenthesis, misspelled command or
statement, incorrect punctuation, etc.).

String formula too complex
A string expression is
complex. The expression
into smaller expressions.

Type mismatch

too long or too
should be broken

A string variable name is assigned a numeric
value or vice versa; a function that expects
a numeric argument is given a string argument
or vice versa.

RG

UF

UL

/0

3

18

8

1 1

Page J-3

Return without GOSUB
A RETURN statement is encountered for
there is no previous, unmatched
statement.

Undefined user function

which
GOSUB

A USR function is called before the function
definition (DEF statement) is given.

Undefined line
A line reference
IF ••• THEN ••• ELSE
nonexistent line.

Division by zero

in a GOTO,
or DELETE is

GOSUB,
to a

A division by zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is
supplied as the result of the involution, and
execution continues.

Extended and Disk Versions Only

19 No RESUME
An error trapping routine is entered but
contains no RESUME statement.

20 RESUME without error

21

A RESUME statement is encountered before an
error trapping routine is entered.

Unprintable error
An error message is not available
error condition which exists.
usually caused by an ERROR with an
error code.

for the
This is

undefined

22 Missing operand
An expression contains an operator with no
operand following it.

23 Line buffer overflow
An attempt is made to input a line that has
too many characters.

26 FOR without NEXT
A FOR was encountered without a matching
NEXT.

29 WHILE without WEND
A WHILE statement does not have a matching
WEND.

•

Page J-4

30 WEND without WHILE
A WEND was encountered without a matching
WHILE.

Disk Errors

50 Field overflow
A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

51 Internal error
An internal malfunction has occurred in Disk
BASIC-80. Report to Microsoft the conditions
under which the message appeared.

52 Bad file number
A statement or command references a file with
a file number that is not OPEN or is out of
the range of file numbers specified at
initialization.

53 File not found

54

55

A LOAD, KILL or OPEN statement references a
file that does not exist on the current disk.

Bad file mode
An attempt is made to use PUT, GET, or LOF
with a sequential file, to LOAD a random file
or to execute an OPEN with a file mode other
than I, 0, or R.

File already open
A sequential output mode
file that is already
given for a file that is

OPEN is issued for a
open; or a KILL is
open.

57 Disk I/O error
An I/O error occurred on a disk I/O operation.
It is a fatal error, i.e., the operating sys
tem cannot recover from the error.

58 File already exists
The filename specified in a NAME statement is
identical to a filename already in use on the
disk.

61 Disk full
All disk storage space is in use.

Page J-5

62 Input past end

63

An INPUT statement is exeucted after all the
data in the file has been INPUT, or for a
null (empty) file. To avoid this error, use
the EOF function to detect the end of file.

Bad record number
In a PUT or GET statement, the record
is either greater than the maximum
(32767) or equal to zero.

number
allowed

64 Bad file name

66

An illegal form is used for the filename with
LOAD, SAVE, KILL, or OPEN (e.g., a filename
with too many characters).

Direct statement in file
A direct statement is
LOADing an ASCII-format
terminated.

encountered while
file. The LOAD is

67 Too many files
An attempt is made to create a new file
(using SAVE or OPEN) when all 255 directory
entries are full.

•

APPENDIX K

Mathematical Functions

Derived Functions

Functions that are not intrinsic to BASIC-SO may be calculated
as follows:

Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBOLIC
COTANGENT

BASIC-80 Equivalent

SEC(X)=1/COS(X}
CSC(X)=1/SIN(X)
COT(X)=1/TAN(X)
ARCSIN(X)=ATN(X/SQR(-X*X+1))
ARCCOS(X)=-ATN (X/SQR(-X*X+1))+1.5708
ARCSEC(X)=ATN(X/SQR(X~X-1))

+SGN(SGN(X)-1)*1.5708
ARCCSC(X)=ATN(X/SQR(X*X-1))

+(SGN(X)-1)*1.570B
ARCCOT(X)=ATN(X)+1.5708
SINH(X)=(EXP(X)-EXP(-X))/2
COSH(X)=(EXP(X)+EXP(-X))/2
TANH (X)=EXP (-X)/EXP(X)+EXP(-X))*2+1
SECH(X)=2/(EXP(X)+EXP(-X))
CSCH(X)=2/(EXP(X)-EXP(-X))
COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1

ARCSINH(X)=LOG(X+SQR(X*X+1))

ARCCOSH(X)=LOG(X+SQR(X*X-1)

ARCTANH (X) =LOG ((1 +X) / (1-X)) /2

ARCSECH(X)=LOG«SQR(-X*X+1)+1)/X)

ARCCSCH(X)=LOG«SGN(X)*SQR(X*X+1)+1)/X

ARCCOTH(X)=LOG«X+1)/(X-1))/2

•

APPENDIX L

ASCII Character Codes

ASCII ASCII ASCII
Code Character Code Character Code Character

000 NUL 043 + 086 V
001 SOH 044 087 W
002 STX 045 088 X
003 ETX 046 0 089 y
004 EaT 047 / 090 Z
005 ENQ 048 0 091 [
006 ACK 049 1 092 \
007 BEL 050 2 093]
008 BS 051 3 094 fI
009 HT 052 4 095 <
010 LF 053 5 096
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 SO 057 9 100 d
015 SI 058 101 e
016 DLE 059 102 f
017 DC1 060 < 103 g
018 DC2 061 = 104 h
019 DC3 062 > 105 i
020 DC4 063 ? 106 j
021 NAK 064 @ 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 C 110 n
025 EM 068 D 111 0

026 SUB 069 E 112 P
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 .GS 072 H 115 s • 030 RS 073 I 116 t
031 US 074 J 117 u
032 SPACE 075 K 118 v
033 076 L 119 w
034 11 077 M 120 x
035 # 078 N 121 Y
036 $ 079 a 122 z
037 % 080 P 123 {
038 & 081 Q 124 I 039 082 R 125
040 (083 S 126 }
041) 084 T 127 DEL
042 * 085 U

APCII codes are in decimal
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

INDEX

ABS • • • • • • • • 3-2
Addition · • • 1-10
ALL • • • • • • 2-4, 2-9
Arctangent • • • • 3-3
Array variables • • 1-7, 2-9, 2-18
Arrays • • • • • 1-7,2-7, 2-11 , 2-24
ASC • • • • • 3-2
ASCII codes • • • • • • • • 3-2, 3-4, L-1
ASCII format • • • 2-4, 2-49, 2-77
Assembly language subroutines 2-3, 2-16, 2-59, 3-21,

3-23, C-1
ATN • • • • • 3-3
ATTR$ • • H-5
ATTRIB • • • • E-2
AUTO 1-2, 2-2

Boolean operators • 1-12

CALL · • • 2-3, C-5
Carriage return • 1-3, 2-36, 2-41 to 2-42,

2-83 to 2-85
Cassette tape 2-7, 2-11
CDBL · • 3-3
CHAIN • 2-4, 2-9
Character set 1-3
CHR$ • • • 3-4
CINT • • • • 3-4
CLEAR • • • 2-6, A-1
CLOAD • • • • • 2-7
CLOAD* • 2-7
CLOAD? • • 2-7
CLOSE 2-8, B-3, B-8

• Command level 1-1
COMMON · • 2-4, 2-9
Concatenation 1-14
Constants • • • • 1-4
CONT • • 2-10, 2-41
Control characters • 1-4
Control-A 2-22
COS • • • • 0 3-5
CP/M · 2-46, 2-49, 2-76 to 2-77,

B-1, D-1, H-2
CSAVE 2-11
CSAVE* 2-11
CSNG · 3-5
CVD 3-6, B-8
CVI 3-6, B-8
CVS 3-6, B-8

DATA · 2-12, 2-74

DEF FN • • • • • •
DEF USR • • •
DEFDBL • • • •
DEFINT. •
DEFSNG • • • •
DEFSTR • • • •
DEINT •• • •
DELETE • • • • • •
DIM • • • • • • •

•
•
•
•
•

Direct mode •
Division. •••
Double precision •
DSKI$
DSKO$

•
•

EDIT ••
Edit mode
END ••
EOF • •
ERASE •
ERL •
ERR •
ERROR

•
•

•

•
•

•
Error codes

• • •
• • •

• • •
• • •
• • •
• •
• • •
• • •

•
• •

•
Error messages •
Error trapping •

Escape
EXP

• ••
• •

Exponentiation •
Expressions ••

FIELD • • • • •
FILES •
FIX ••••
FOR ••• NEXT •
FORMAT program •
FPOS ••• •
FRCINT ••••
FRE •• •
Functions

GET •

GIVABF •
GIVINT •
GOSUB
GOTO ••

•

•

•
•

• HEX$
Hexadecimal

• • •

• •

• •
• •

• • •
• •

•
• •

IF ••• GOTO • •
IF ••• THEN ••
IF ••• THEN ••• ELSE
Indirect mode •
INP •
INPUT • • • •

•

•
•
•
•

•
•

•

•
•
•
•

•

•
•
•
•
•
•
•

•

•
•
•
•

•
•

•
•

•

•
• •
• •
• •
• •
• •
• •
• •
• •
•
• •
• •
• •

•

• •
• •
• •
• •

•
•

•
• •

•

• •
• •
• •
• •

• •

• •
• •

•
• •
• •
• •
• •

•

• •
•
• •

•

• •
•

• •
•
•
• •

• •

• • •
• • •
• • • •
• • • •
• • • •
• • •
• • • •
• • •
• • o

• • •
• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • •
• • •
• • •
• • • •
• • • •
• • •
• • •
• • •
• • •

• • • •
• • • •
• • • •
• • • •

• • • •

• • •
• • • •
• • •. • • •
• • • •

• • •
• • • •

• •

• • • •
• • •
• •

• • • •

• •
• • •

• • •
• •
• • • •
o • • •

•
• • •

2-13
2-16, 3-21
1-7, 2-15
1-7, 2-15
1-7, 2-15
1-7, 2-15
C-1, G-1
1-2, 2-4, 2-17
2-18
1-1, 2-34, 2-54
1-10
1-5, 2-15, 2-60,
H..;2
H-2

1-2, 2-19
1-4, 2-19

3-3, A-1

2-8, 2-10, 2-23, 2-32
3-6, B-3, B-5, 0-4
2-24
2-25
2-25
2-26
1-15, 2-25 to 2-26, J-1
1-15, J-1
2-25 to 2-26, 2-54, 2-75,
B-7
1-3, 2-19
3-7
1-10 to 1-11, 3-7
1-9/

2-28, B-8, H-11
0-3, H-2
3-7
2-29, A-1
H-10
H-2
C-1, C-4, 0-4, G-1
3-8
1-14, 2-13, 3-1, K-1

2-28, 2-31, B-8, D-4,A-3
H-7
C-1 to C-2, G-1
E-2
2-32
2-32 to 2-33

3-8
1-5,

2-34
2-25,
2-34
1-1
3-9
2-10,

3-8

2-34

2-28, 2-36, A-2, A-3, B-9

INPUT$
INPUT#

INSTR
INT •

•
•

• •
•

• •

• • •
• • •

• •
• • •

Integer. • ••
Integer division •
INTEL • • • • • •
Interrupts
ISIS-II

KILL • •

LEFT$ •
LEN • •

• LET
LFILES •
Line feed

•
•
•

LINE INPUT
LINE INPUT#

•
• •

• •

• •
• •
• •
• •
• •

•
•

Line numbers •
Line printer •

Lines • • • •

•

•

•
•
•
•
•

•
•

•
•

•
LIST • • • •.• •
LLIST • • • • •
LOAD • • • • • •
LOC • • • •
LOF •••••
LOG •••••
Logical operators
Loops •• •
LPOS •• • ••
LPRINT •
LPRINT USING • •
LSET. ••••

MAKINT
MBASIC
MDS
MERGE

•
•

•
•

• •
•

• •
•

MID$ • • • • •
MKO$ • •

•
•
•
•

•

•

•

•
•

•
•

•
•

•

•
•
•
•
•
•
•

•
•
•
•
•

•
•
•
•
•
•

MKI$ • • • • • • •
MKS$ • • • • • • •
MOD operator • • •
Modulus arithmetic
MOUNT • • •
Multiplication •

NAME •
Negation
NEW • •
NULL ••

•
•

•
•
•

• •
• • •

•
• •

• •
•

• •
• •

•
• •
• •
• •
•

• •

• •
•

• •
•

• •

• •
• •

• •
• •

• •
• •
• •
• •
• •
•
• •

• •
• •
• •
• •
• •

•
•
•

• •
• •

•
• •
• •
•
•
•

•

•
• •

•

• •
•

• •
• •
• •
•
• •
• •
• •

• •

•
• •
•

•
• •

• •
• •

• •
• •

•
• •
• •
• •
•

•

• •
• •
• •
• •

• •
•

•
• •
• •

•
• •
• •

• •
• •

•

• •
• •
• •
• •

• •
• •

• •
• •
•
• •
• •
• •
•

• •

• •
• •

•
• •
• •

• •
•

• •
•

• •

3-9
2-38, A-3, B-3, H-7

3-10
3-7, 3-10
3-4, 3-7,
1-10
G-1
C-7
2-76, E-1

2-39, B-2

3-11
3-11

3-10

2-28, 2-40, B-9
H-2
1-2,2-36,2-41
2-84 to 2-85
2-41
2-42, A-3, B-3

to 2-42,

1-1 to 1-2,
2-45, 2-47,
A-2, E-2
1-1

2-2, 2-73
2-83, 3-13,

•• 1-2, 2-43
•
•
•

•

•
•
•
•
•

•

•

•
•
•

•

•

• 2-45, F-1, G-2
• 2-46, 2-77, B-1
• 3-12, B-3, B-5,
• D-4, H-2

3-12
1-12

• 2-29,

B-8,

• 2-83,
2-47,

2-82
3-13
2-83, F-1, G-2

• 2-47
2-48, B-8

H-2

•
•

C-1, C-4, D-4, E-2, G-1
D-1

•
•
•
•
•
•
•
•
•

•
•

•

G-1
2-4, 2-49, B-2
2-50, 3-13, I-1
3-14, B-8
3-14, B-8
3-14, B-8
1-10
1-10
H-3
1-10

2-51
1-10
2-8, 2-52
2-53

I

Numeric constants
Numeric variables

OCT$. ••
Octal •• •
ON ERROR GOTO
ON ••• GOSUB •
ON ••• GOTO •
OPEN ••••

Operators
OPTION BASE
OUT •• •
Overflow •
Overlay •

•

•

•
•

•

•

•
•
•
•
•

Paper tape • •
PEEK • • •••
POKE • • • • •
POS ••.••

•
PRINT. ••
PRINT USING
PRINT#: •
PRINT#: USING •

•
•
•
•

•

•
•
•
•
•

•
•
•
•
•

•

• • • • • • 1-4
1-7 • • • • • •

• • • • • • 3-14
• • • • • • • 1-5, 3-14
• • • • • • • 2-54
• • • • • • • 2-55
• • • • • • 2-55, A-1
• • • • • • • 2-8, 2-28, 2~56, B-3,

B-8, H-"5
• • • • • • • 1-9, 1-11 to 1-14
• • • • • • • 2-57
• • • • • • • 2-58
• • • • • • • 1-11, 3-7, 3-21, A-1
• • • • • • • 2-4

• • • • • • • 2-53
• • • • • • • 2-59, 3-15 · .. • • .. . • 2-59, 3-15
• • • • • • • 2-83, 3-15
• • • • • • • 2-60, A-1
• • • • • 2-62, A-2

• • • • 2-66, A-3, B-3, H-7
• • • • • • • 2-66, A-3, B-5, B-5

Protected files • • • • • • 2-77, A-2, B-2

PUT •

Random files • • •

Random numbers • •
RANDOHIZE
READ • • • • •

•

•
•
• •

Relational operators •
REM • • • • • • • •
REMOVE • • • • • • • •
RENUM • • •
RESET •
RESTORE
RESUME • • • •

• •

· .•
• •
• •

•

• •
• •
• •
• •

RETURN • • • • • • • •
RIGHT$ • • • • • •
RND • • • · . . •
RSET • • • • •
Rubout • • • • • • • •
RUN ••

SAVE ••
SBC
Sequential

SET • • •

• • • •
•

files •

• • • •

•

• •
•
• •

• •

• •

• • •

• • •
•.

• • •
• •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• •
• • •
• • •
• • '. .
• •

•

•

• 2-28, 2-68, B-8, H-7

• 2~28, 2-31, 2-39, 2-48,
2-56, 2-68, 3-12, 3-14, A-3
B-7, D-4

• 2-69, 3-16
• 2-69, 3-16, A-1
• 2-70, 2-74

1-11
• 2-72
• H-3
• 2-4, 2-25, 2-73
• D-3
• 2-74
• 2-75
• 2-32
• 3-16
• 2-69, 3-16, A-1
• 2-48, B-8
• 1-3, 1-15, 2-20
• 2-76 to 2-77, B-2

• 2-46, 2-76 to 2-77, B-1
• G-1
• 2-38 to 2-39, 2-42, 2-56,

2-66, 2-85, 3-6, 3-12,
B-3

• H-4

SGN • • •• •••
SIN. •• • •
Single precision • •
SPACE$ • • ••
SPC. ••••••
SQR ••
Standalone Disk BASIC
STOP • • •• •••
STR$ • •. •• •••
String constants • •
String functions •

String operators •
String space • • •
String variables •
STRING$ •••••
Subroutines •••
Subscripts • • • •
Subtraction • • •
SWAP •• •• ••
SYSTEM •• •••

TAB ••
Tab •
TAN ••
TEKDOS •
TROFF •
TRON ••

USR •
USRLOC •

VAL •
Variables
VARPTR •

• •
•
•
•

• •
• •

•
• •

•

• • •
• •
• • •

•
• • •
• • •

• • •
• •

• •
• •
• •

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•

•
•

•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•

•
•

•
•
•

WAIT ••.•• • • • •
WEND •• ••
WHILE •• •
WIDTH. ••
WIDTH LPRINT •
WRITE. ••
WRITE# • • • •

• •
• •
• •
• •
• •
• •

• •
• •
• •
• •
• •
• •

• • •
• • •
• •
• •
• • •
• • •
• • •

• •
• • •

• •
• • •

• • •
• • •
• • •
• •
• •
• • •
• •
• • •
•

• • •
• • •
• • •
• •
• •
• • •

• • •
• • •

• • •
• • •
•

• • •
• •

• •
• •
• • •
• • •

• •

• 3-17
• 3-17
• 1-5, 2-15, 2-60, 3-5, A-1

'" .. "
• .j-IO

• 3-18
• 3-19
• H-1
• 2-10, 2-23, 2-32, 2-78
• 3-19
• 1-4
• 3-6, 3-10 to 3-11, 3-13,

3-16, 3-19, 3-22, 1-1
• 1-14
• 2-6, 3-8, A-1, B-9
• 1-7, 2-15, 2-41 to 2-42

3-20
• 2-3, 2-32, 2~55, C-1
• 1-7, 2-18, 2-57
• 1-10
• 2-79
• 0-4, F-1

• 3-20
• 1-3 to 1-4
• 3-21
• F-1
• 2-80
• 2-80

• 2-16, 3-21, C-1
• C-2, G-1

•
•
•

3-22
1-6
3-23, H-10

• 2-81
• 2-82
• 2-82
• 2-83, A-2
• 2-83, A-2
• 2-84
• 2-85, A-3, B-3 •

Microsoft
~"f+, •• ~ .. .a D .. ~hlam DOft~"+
.....,"' ... YYUI '4iiiiP I I "'WI 'V ••• 1'4iiiiP"""" "

Use this form to report errors or problems in:

Date

Report only one problem per form.

Describe your hardware and operating system:

BASIC Release number:

D Microsoft

D H.icrosoft

o Microsoft

BASIC-80

BASIC-86

BASIC
Compiler

Please supply a concise description of the problem and the
circumstances surrounding its occurrence. If possible, reduce
the problem to a simple test case. Otherwise, include all
programs and data in machine readable form (preferably on a
diskette). If a patch or interim solution is being used,
please describe it.

This form may also be used to describe suggested enhancements
to Microsoft BASIC.

Problem Description:

-()vpr-

•

Did you find errors in the BASIC-80 Referenc.e Manual?
If so, please include page numbers and describe:

Fill in the following information before returning this form:

Name Phone --------------------------------------- ----------~-------------

Organization ---
Address --------------------------

Ci ty ________ __

Return. form to: Microsoft
10800 NE Eighth, Suite 819
Bellevue, WA 98004

State Zip __ _

MICROSOFT UTILITY
SOFTWARE MANUAL

MltoDoltW ~@{fltw@[f®
[[fi)@[Ji) M@D

©Microsoft, 1978

•

SECTION 1

Microsoft
Utility Software Manual

CONTENTS

MACRO-SO Assembler • • 5

1.1 Format of MACRO-SO Commands ••••••••• 5
1 • 1 .1 MACRO-SO Command Strings • • • • • •• 5
1.1.2 MACRO-SO Switches ••••••••••• 6

1. 2 Format of MACRO-SO Source Files ••••••• 6
1.,2.1 Statements ••• • • • • • •• 7
1 .2.2 Symbols. • • • • • • • • • • • • • •• 8
1.2.3 Numeric Constants ••••••••••• S
1.2.4 Strings. • • • • • • • • • • • • • •• 9

1.3 Expression Evaluation •••••••••••• 10
1.3.1 Arithmetic and Logical Operators ••• 10
1 . 3. 2 Modes • • • • • • • • • • • • 10
1.3.3 Externals ••••••••••••••• 11

1.4 Opcodes as Operands ••••••••••••• 12
1.5 Pseudo Operations •••••••••••• 12

1 • 5 • 1 ASEG • • • • • • • • • • • • • • • • • 1 2
1 • 5 • 2 COMMON • • • • • • • • 1 3
1.5.3 CSEG •••• • • • • • •• 13
1.5.4 Define Byte •••••••••••••• 13
1.5.5 Define Character • • • • • 14
1.5.6 Define Space • • • •••• 14
1.5.7 DSEG •• • • • • • • • • • •• •• 14
1.5.S Define Word •••••.•••••••• 14
1 • 5 • 9 END. • • • • • • • •. .••••• 1 5

1.5.10 ENTRY/PUBLIC •••• • •••••• 15
1 • 5 • 1 1 EQU.... • • • • • • • • • • 1 5
1.5.12 EXT/EXTRN. • • • ••••••• 15
1 • 5 • 1 3 NAME •• • • • • • •••••• ~ • 1 6
1.5.14 Define Origin • •••.••••••• 0 16
1 • 5 • 15 PAGE ••••••••••• • • • • 0 , 16
1 • 5 • 1 6 SET. • • • • • • • • • • • • • • g • • 1 6
1.5.17 SUBTTL •••••••••••• g ••• 16
1 • 5 • 1 S TITLE • • • • • • • • • • • • • • • • • 1 7
1 • 5. 1 9 • COMMENT ••••••••••••••• 1 7
1 • 5 • 2 0 • P RINTX • • • • • • •••• • • 1 7
1 • 5 • 21 • RADIX ••• • • • • • • • • • • • • • 1 8
1.5.22 • REQUEST ••••••••••• •• 1S
1.5.23 .ZSO ••••••••••• • • , • 18
1.5.24 .S080....... • ••••••• 18
1.5.25 Conditional Pseudo Operations ••• 19
1.5.26 Listing Control Pseudo Operations ••• 20
1.5.27 Relocation Pseudo Operations ••••• 20
1.5.28 Relocation Before Loading ••••••• 21

•

1.6 Macros and Block Pseudo Operations. •• ~ 22
1 • 6 • 1 Terms. • . • • . . . • • • • • • • . . 22
1.6.2 REPT-ENDM. • • • • • • • • 23
1 .6. 3 IRP-ENDM • • • • • • • • • • • 24
1. 6.4 IRPC-ENDM.. ••• 24
1 • 6 • 5 r1ACRO .•••.•••••••••• 2 4
1 • 6 • 6 ENDM • • • . • • • • • • • 2 6
1 • 6 • 7 EXITr-1. • • • • •• • . • •• • 26
1 • 6 • S LOCAL. • • • • • • •• • • 27
1.6.9 Special r·1acro Operators and Forms • 27

1.7 Using ZSO Pseudo-ops • • • /.S
1.S Sample Assembly • • • • • • ••••• 29
1.9 MACRO-SO Errors • • • • • • • • • • .' 30

1.10 Compatability with Other Assemblers ••••• 31
1.11 Format of Listings. • • • 32

1. 11 • 1 Symbol Table Listing • • • • •• • 33
1.12 Cross Reference Facility • 34

SECTION 2

2.1

2.2
2.3
2.4
2.5

SECTION 3

LINK-SO Linking Loader 36

Format of LINK-SO Commands • • • 36
2.1.1 LINK-SO Command Strings •••.
2.1.2 LINK-SO Switches ••••••.
Sample Link • • • • • • • . •

• • • • 36
• • • • 37

Format of LINK Compatible Object Files •
LINK-SO Error Messages • • • . • • • • •
Program Break Information . • . • • .

LIB-SO Library Manager •

• • 39
• . • 39

• 41
· • 43

· 44

3.1 LIB-SO Commands • • • . • • ••• • • 44
301.1 Modules. 44

3.2 LIB-SO Switches •••••••.••. 46
3.3 LIB-SO Listings • • • • • • . •••• 46
3.4 Sample LIB Session •••..••••.•• 47
3.5 Summaryof Switches and Syntax •••••••• 47

SECTION 4 Operating Systems • 4S

4. , CP 1M • • • • . 48
4.2 DTC Microfile . • • • •• • ••• 50
4.3 Altair DOS ••••.•.••..•• . 52
4.4 ISIS-II • • . . . • . . .• ••.. • 54

1.1

1 • 1 • 1

SECTION 1

t·1ACRO-80 Assembler

Format of MACRO-SO Commands

MACRO-80 Command Strings

To run MACRO-BO, type MBa. followed by a carriage
return. MACRO-SO will return the prompt "*" (with
the DTC operating system, the prompt is ">."),
indicating it is ready to accept commands. The
format of a MACRO-SO command string is:

objprog-dev: filename. ext, list-dev: filename. ext=
source-dev:filename.ext '

objprog-dev:
The device on which the object program is to be
written.

list-dev:
The device on which the program listing is written.

source-dev:
The device from which the source-program input to
HACRO-80 is obtained. If a device name is omitted,
it defaults to the currently selected drive.

filename. ext
The filename and filename extension of the object
program file, the listing file, and the source
file. Filename extensions may be omitted. See
Section 4 for the default extension supplied by
your operating system.

Either the object file or the listing file or both
may be omitted. If neither a listing file nor an
object file is desired, place only a comma to the
left of the equal sign. If the names of the object
file and the listing file are omitted, the default
is the name of the source file.

Examples:

*=SOURCE .l-1AC

*,LST:=TEST

Assemble the program
SOURCE.MAC and place
the object in SOURCE.REL

Assemble the program
TEST.MAC and list on
device LST

•

1 • 1 • 2

--~- -

*SMALL,TTY:=TEST Assemble the program
TEST.MAC, place the
object in SMALL.RELand
list on TTY

MACRo-ao Switches

A number of different switches may be given in the
MACRO-aO command string that will affect the format
of the listing file. Each switch must be preceded
by a slash (/):

Switch

o

H

R

L

C

Z

I

Examples:

*=TEST/L

Action

Print all listing addresses, etc. in
octal. (Default for Altair DOS)

Print all listing addresses, etc. in
hexadecimal.
(Default for non-Altair versions)

Force generation of an object file.

Force generation of a listing file.

Force generation of a cross reference
file.

Assemble zao (Zilog format) mnemonics.
(Default for Z80 operating systems)

Assemble 8080 mnemonics. (Default for
8080 operating systems)

Compile TEST.MAC with object
file TEST.REL and listing
file TEST.LST

*LAST,LAST/C=MOD1 Compile MOD1.MAC with object
file LAST.REL and cross
reference file LAST.CRF for
use with CREF-80
(See Section 1.12)

1.2 Format of MACRO-SO Source Files

In general, MACRO-SO accepts a source file that is
almost identical to source files for INTEL
compatible assemblers. Input source lines of up to
132 characters in length are acceptable.

Microsoft Utility Software Page 7

1 .2. 1

MACRO-BO preserves lower
strings and comments.
pseudo-opcodes typed in
converted to upper case.

case letters in quoted
All symbols, opcodes and

lower case will be

NOTE

If the source file includes line numbers
from an editor, each byte of the line
number must have the high bit on. Line
numbers from Microsoft's EDIT-80 Editor are
acceptable.

Statements

Source files input to
statements of the form:

MACRO-BO consist of

[label: [:]] [operator] [argumen ts] [; comment]

With the exception of the ISIS assembler $ controls
(see Section 1.10), it is not necessary that
statements begin in column 1. Multiple blanks or
tabs may be used to improve readability.

If a label is present, it is the first item in the
statement and is immediately followed by a colon.
If it is followed by two colons, it is declared as
PUBLIC (see ENTRY/PUBLIC, Section 1.5.10). For
exmple:

FOO: : RET

is equivalent to

PUBLIC FOO
FOO: RET

The next item after the label (or the first item on
the line if no label is present) is an operator.
An operator may be an opcode (8080 or Z80
mnemonic), pseudo-op,_ macro call or expression.
The evaluation order is as follows:

1. Macro call

2. Opcode/Pseudo operation

3. Expression

Instead of flagging an expression as an error, the
assembler treats it as if it were a DB statement

I

Microsoft Utility Software Page a

1.2.2

1.2.3

(see Section 1.5.4).

The arguments following the operator will, of
course, vary in for.m according to the operator.

A comment always begins with a semicolon and ends
with a carriage return. A comment may be a line by
itself or it may be app~nded to a line that
contains a statement. Extended comments can be
entered using the .COMMENT pseudo operation (see
Section 1.5.19).

Symbols

MACRO-aO symbols may be of any length, however,
only the first six characters are significant. The
following characters are legal in a symbol:

A-Z 0-9 $ • ? @

With the aoao/zao assembler, the underline
character is also legal in a symbol. A symbol may
not start with a digit. When a symbol is read,
lower case is translated into upper case. If a
symbol reference is followed by ## it is declared
external (see also the EXT/EXTRN pseudo-op, Section
1.5.12).

Numeric Constants

The default base for numeric constants is decimal.
This may be changed by the .RADIX pseudo-op (see
Section 1.5.21). Any base from,2 (binary) to 16
(hexadecimal) may be selected. When the base is
greater than 10, A-F are the digits following 9.
If the first digit of the number is not numeric
(i.e., A-F), the number must be preceded by a zero.
This eliminates the use of zero as a leading digit
for octal constants; as in -previOus versions of
MACRO-aO.

Numbers are 16-bit unsigned quantities. A number
is always evaluated in the current radix unless one
of the following special notations is used:

nnnnB
nnnnD
nnnnO
nnnnQ
nnnnH

X'nnnn'

Binary
Decimal
Octal
Octal
Hexadecimal
Hexadecimal

Overflow of a number beyond two bytes is ignored

Microsoft Utility Software Page 9

1.2.4

and the result is the low order 16-bits.

A character constant is a string comprised of zero,
one or two ASCII characters, delimited by quotation
marks, and used in a non-simple expression. For
example, in the statement

DB 'A' + 1

'A' is a character constant. But the statement

uses 'A' as a string because it is in
expression. The rules for character
delimiters are the same as for strings.

a simple
constant

A character constant comprised of one character has
as its value the ASCII value of that character.
That is, the high order byte of the value is zero,
and the low order byte is the ASCII value of the
character. For example, the value of the constant
'A' is 41H.

A character constant comprised of two characters
has as its value the ASCII value of the first
character in the high order byte and the ASCII
value of the second character in the low order
byte. For example, the value of the character
constant "AB" is 41H*256+42H.

Strings

A string is comprised of zero or more characters
delimited by quotation marks. Either single or
double quotes may be used as string delimiters.
The delimiter quotes may be used as characters if
they appear twice for every character occurrence
desired. For example, the statement

DB "I am ""great"" today"

stores the string

I am "great" today

If there are zero characters between the
delimiters, the string is a null string.

•

Microsoft Utility Software Page 10

1.3

1.3.1

1.3.2

Expression Evaluation

Arithmetic and Logical Operators

The following operators are allowed in expressions.
The operators are listed in order of precedence.

NUL

LOW, HIGH

*, I, MOD, SHR, SHL

Unary Minus

+, -

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

Parentheses are used to change the, order of
precedence. During evaluation of an expression, as
soon as a new operator is encountered that has
precedence less than or equal to the last operator
encountered, all operations up to the new operator
are perfor.med. That is, subexpressions involving
operators of higher precedence are computed first.

All operators except +, -, *, I must be separated
from their operands by at least one space.

The byte isolation operators (HIGH,LOW) isolate
the high or low order 8 bits of an Absolute 16-bit
value. If a relocatable value is supplied as an
operand, HIGH and LOW will treat it as if it were
relative to location zero.

Modes

All symbols used as operands in expressions are in
one of the following modes: Absolute, Data
Relative, Program (Code) Relative or COMMON. (See
Section 1.5 for the ASEG, CSEG, DSEG and COMMON
pseudo-ops.) Symbols assembled under the ASEG, CSEG
(default), or DSEG pseudo-ops are in Absolute, Code
Relative or Data Relative mode respectively. The
number of COMMON modes in a program is determined
by the number of CO~~ON blocks that have been named

Microsoft Utility Software Page 11

1 .3. 3

with the COMMON pseudo-oPe Two COMMON symbols are
not in the same mode unless they are ~n the sw~e
COMMON block.

In any operation other
subtraction, the mode of
Absolute.

than addition or
both operands must be

If the operation is addition, the following rules
apply:

1. At least one of the operands must be Absolute.

2. Absolute + <mode> = <mode>

If the operation is subtraction, the following
rules apply:

1. <mode> - Absolute = <mode>

2. <mode> - <mode> = Absolute
where the two <mode>s are the same.

Each intermediate step in the evaluation of an
expression must conform to the above rules for
modes, or an error will be generated. For example,
if FOO, BAZ and ZAZ are three Program Relative
symbols, the expression

FOO + BAZ - ZAZ

will generate an R error because the first step
(FOO + BAZ) adds two relocatable valueso (One of
the values must be Absolute.) This problem can
always be fixed by inserting parentheses. So that

FOO + (BAZ - ZAZ)

is legal because the first step (BAZ ZAZ)
generates an Absolute value that is then added to
the Program Relative value, FOO.

Externals

Aside from its classification by mode, a symbol is
either External or not External. (See EXT/EXTRN,
Section 1.5.12.) An External value must be
assembled into a two-byte field. (Single-byte
Externals are not supported.) The following rules
apply to the use of Externals in expressions:

1. Externals are legal only in addition and
subtraction.

•

- -----~

2. If an External symbol is used in an expression,
the result of the expression is always
External.

3. When the operation is addition, either operand
(but not both) may be External.

4. When the operation is subtraction, only the
first operand may be External.

1.4 Opcodes ~ Operands

1.5

1 .5. 1

8080 opcodes are valid one-byte -operands. Note
that only the first byte is a valid operand. For
example:

MVI A, (JMP)
ADI (CPI)
MVI B, (RNZ)
CPI (INX H)
ACI (LXI B)
MVI C,MOV A,B

Errors will be generated if more than one byte is
included in the operand -- such as (CPI 5), LXI
B,LABEL1) or (JMP LABEL2).

Opcodes used as one-byte operands need not be
enclosed in parentheses.

NOTE

Opcodes are not valid operands in Z80 mode.

Pseudo Operations

ASEG

ASEG

ASEG sets the location counter to an absolute
segment of memory. The location of the absolute
counter will be that of the last ASEG (default is
0), unless an ORG is done after the ASEG to change
the location. The effect of ASEG is also achieved
by using the' code segment (CSEG) pseudo operation
and the /P switch in LINK-80. See also Section
1.5.27.

Microsoft Utility Software Page 13

1.5.3

1 .5.4

COMMON /<block name>/

COMMON sets the location counter to the selected
cornmon block in memorye The location is always the
beginning of the area so that compatibility with
the FORTRAN COMMON statement is maintained. If
<block name> is omitted or consists of spaces, it
is considered to be blank common. See also Section
1.5.27.

CSEG

CSEG

CSEG sets thelocation counter to the code relative
segment of memory. The location will be that of
the last CSEG (default is 0) I unless an ORG is done
after the CSEG to change the location. CSEG is the
default condition of the assembler (the INTEL
assembler defaults to ASEG). See also Section
1.5.27.

Define Byte

DB <exp>[,<exp> •••]

DB <string>[<string> •••]

The arguments to DB are either expressions or
strings. DB stores the values of the expressions
or the characters of the strings in successive
memory locations beginning with the current
location counter.

Expressions must evaluate to one byte. (If the
high byte of the result is a or 255, no error is •
given; otherwise, an A error results.)

Strings of three or more characters may not be used
in expressions (i.e., they must be immediately
followed by a comma or the end of the line). The
characters in a string are stored in the order of
appearance, each as a one-byte value with the high
order bit set to zero.

Example:

0000'
0002'
0003'

4142
42
41 42 43

DB
DB
DB

'AB'
'AB' AND OFFH
'ABC'

Microsoft Utility Software Page 14

1.5.5

1.5.6

1.5.7

1.5.8

Define Character

DC <string>

DC stores the characters in <string> in successive
memory lo~ations beginning with the current
location counter. As with DB, characters are
stored in order of appearance, each as a one-byte
value with the high order bit set to zero.
However, DC stores the last character of the string
with the high order bit set to one. An error will
result if the argument to DC is a null string.

Define Space

DS <exp>

DS reserves an area of memory. The value of <exp>
gives the number of bytes to be allocated. All
names used in <exp> must be previously defined
(i.e., all names known at that point on pass 1).
Otherwise, a V error is generated during pass 1 and
a U error may be generated during pass 2. If a U
error is not generated during pass 2, a phase error
will probably be generated because the DS generated
no code on pass 1.

DSEG

DSEG

DSEG sets the location counter to the Data Relative
segment of memory. The location of the data
relative counter will be that of the last DSEG
(default is 0), unless an ORG is done after the
DSEG to change the location. See also Section
1.5.27.

Define Word

DW <exp>[,<exp> •••]

DW stores the values of the expressions in
successive memory locations beginning with the
current location counter. Expressions are
evaluated as 2-byte (word) values.

Microsoft Utility Software Page 15

1.5 .. 9 END

END [<exp>]

The END statement specifies the end of the program.
If <exp> is present, it is the start address of the
program. If <exp> is not present, then no start
address is passed to LINK-BO for that program.

1.5.10 ENTRY/PUBLIC

ENTRY <name>[,<name> •••]
or

PUBLIC <name>[,<name> •.•]

ENTRY or PUBLIC declares each name in the list as
internal and therefore available for use by this
program and other programs to be loaded
concurrently. All of the names in the list must be
defined in the current program or a U error
results. An M error is generated if the name is an
external name or common-blockname.

1.5.11 ~

<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp>
is external, an error is generated. If <name>
already has a value other than <exp>, an M error is
generated.

1.5.12 EXT/EXTRN

EXT <name>[,<name> •.•]
or

EXTRN <name>[,<name> •••]

EXT or EXTRN declares that the name(s) in the list
are external (i.e., defined in a different
program). If any item in the list references a
name that is defined in the current program, an M
error results. A reference to a name where the
name is followed immediately by two pound signs
(e.g., NAME##) also declares the name as external.

•

Microsoft Utility Software Page 16

1.5.13 NAME

NAME (, modname ')

NAME defines a name for the module. Only the first
six characters are significant in a module name. A
module name may also be defined with the TITLE
pseudo-oPe In the absence of both. the NAME and
TITLE pseudo-ops, the module name is created from
the source file nameQ

. 1.5. 14 Define. Origin

ORG <exp>

The location counter is set to the value of <exp>
and the assembler assigns generated code starting
with that value. All names used in <exp> must be
known on pass 1, and the value must either be
absolute or in the same area as the location
counter.

1.5.15 PAGE

PAGE [<exp>]

PAGE causes the assembler to start a new output
page. The value of <exp>, if included, becomes the
new page size (measured in lines per page) and must
be in the range 10 to 255. The default page size
is 50 lines per page. The assembler puts a form
feed character in the listing file at the end of a
page.

1.5.16 SET

<name> SET <exp>

SET is the same as EQU, except no error is
generated if <name> is already defined.

1.5.17 SUBTTL

SUBTTL <text>

SUBTTL specifies a subtitle to be listed on the
line after the title (see TITLE, Section 1.5.18) on
each page heading. <text> is truncated after 60
characters. Any number of SUBTTLs may be given in
a program •.

Microsoft Utility Software Page 17

1.5.18 TITLE

TITLE <text>

TITLE specifies a title to be listed on the first
line of each page. If more than one TITLE is
given, a Q error results. The first six characters
of the title are used as the module name unless a
NAME pseudo operation is used. If neither a NAME
or TITLE pseudo-op is used, the module name is
created from the source filename.

1.5.19 • COMMENT

.COMMENT <delim><text><delim>

The first non-blank character encountered after
• COMMENT is the delimiter. The following <text>
comprises a comment block which continues until the
next occurrence of <delimiter> is encountered. For
example, using an asterisk as the delimiter, the
format of the comment block would be:

1.5.20 .PRINTX

• COMMENT *
any amount of text entered
here as the comment block

*
ireturn to normal mode

.PRINTX <delim><text><delim>

The first non-blank character encountered after
.PRINTX is the delimiter. The following text is
listed on the terminal during assembly until
another occurrence of the delimiter is encountered •
• PRINTX is useful for displaying progress through a
long assembly or for displaying the value of
conditional assembly switches. For example:

IT ~M

.PRINTX /CPM version/
ENDIF

NOTE

.PRINTX will output on both passes. If
only one printout is desired, use the IF1
or IF2 pseudo-oPe

•

Microsoft Utility Software Page 18

1.5.21 • RADIX

.RADIX <exp>

The default base (or radix) for all constants is
decimal. The .RADIX statement allows the default
radix to be changed to any base in the range 2 to
16. For example:

LXI H,OFFH
.RADIX 16
LXI H,OFF

The two LXls in the example are identical. The
<exp> in a .RADIX statement is always in decimal
radix, regardless of the current radix.

1.5.22 • REQUEST

.REQUEST <filename>[,<filename> •••]

.REQUEST sends a request to the LINK-BO loader to
search the filenames in the list for undefined
globals before searching the FORTRAN library. The
filenames in the list should be in the form of
legal MACRO-BO symbols. They should not include
filename extensions or disk specifications. The
LINK-BO loader will supply its default extension
and will assume the currently selected disk drive.

1.5.23 .ZBO

.Z80 enables the assembler to accept Z80 opcodes.
This is the default condition when the assembler is
running on a Z80 operating system. Z80 mode may
also be set by appending the Z switch to the
MACRO-BO command string -- see Section 1.1.2.

1.5.24 .80aO

.8080 enables the assembler to accept 8080 opcodes.
This is the default condition when the assembler is
running on an B080 operating system. 8080 mode may
also be set by appending the I switch to the
MACRO-aO command string -- see Section 1.1.2.

Microsoft Utility Software Page 19

1.5.25 Conditional Pseudo Operations

The conditional pseudo operations are:

IF/IFT

IFE/IFF <exp>

IF1

IF2

IFDEF <symbol>

True if

True if

True if

True if

True if

<exp> is

<exp> is

pass 1.

pass 2.

<symbol>

not o.
o.

is defined
has been declared External.

or

IFNDEF <symbol> True if <symbol> is undefined
or not declared External.

IFB <arg>

IFNB <arg>

True if <arg> is blank. The
angle brackets around <arg>
are required.

True if <arg> is not blank.
Used for testing when dummy
parameters are supplied. The
angle brackets around <arg>
are required.

All conditionals use the following format:

IFxx [argument]

[ELSE

END IF

Conditionals may be nested to any level. Any
argument to a conditional must be known on pass 1
to avoid V errors and incorrect evaluation. For
IF, IFT, IFF, and IFE the expression must involve
values which were previously defined and the
expression must be absolute. If the name is
defined after an IFDEF or IFNDEF, pass 1 considers
the name to be undefined, but it will be defined on
pass 2.

ELSE
Each conditional pseudo operation may optionally be
used with the ELSE pseudo operation which allows
alternate code to be generated when the opposite
condition exists. Only one ELSE is permitted for a

•

Microsoft Utility Software Page 20

given IF, and an ELSE is always bound to the most
recent, open IF. A conditional with more than one
ELSE or an ELSE without a conditional will cause a
C error.

ENDIF
Each IF must have a matching ENDIF to terminate the
conditional. Otherwise, an 'Unterminated
conditional' message is generated at the end of
each pass. An ENDIF without a matching IF causes a
C error.

1.5.26 Listing Control Pseudo Operations

Output to the listing file can be controlled by two
pseudo-ops:

.LIST and .XLIST

If a listing is not being made, these pseudo-ops
have no effect. .LIST is the default condition.
When a .XLIST is encountered, source and object
code will not be .listed until a .LIST is
encountered.

The output of cross reference information is
controlled by .CREF and .XCREF. If the cross
reference facility (see Section 1.12) has not been
invoked, .CREF and .XCREF have no effect. The
default condition is .CREF. When a .XCREF is
encountered, no cross reference information is
output until .CREF is encountered.

The output of MACRO/REPT/IRP/IRPC expansions is
controlled by three pseudo-ops: .LALL, .SALL, and
.XALL. .LALL lists the complete macro text for all
expansions. .SALL lists only the object code
produced by a macro and not its text. .XALL is the
default condition; it is similar to .SALL, except
a source line is listed only if it generates object
code.

1.5.27 Relocation Pseudo Operations

The ability to create relocatable modules is one of
the major features of MACRO-BO. Relocatable
modules offer the advantages of easier coding and
faster testing, debugging and modifying. In
addition, it is possible to specify segments of
assembled code that will later be loaded into ~~
(the Data Relative segment) and ROM/PR011 (the Code
Relative segment). The pseudo operations that

Microsort Ut~~~ty ~o~tware .l:'age ':::1

select relocatable areas are CSEG and DSEG. The
ASEG pseudo-op is used to generate non-relocatable
(absolute) code. The COMMON pseudo-op creates a
common data area for every COMMON block that is
named in the program.

The default mode for the assembler is Code
Relative. That is, assembly begins with a CSEG
automatically executed and the location counter in
the Code Relative mode, pointing to location a in
the Code Relative segment of memory. All
subsequent instructions will be assembled into the
Code Relative segment of memory until an ASEG or
DSEG or COMMON pseudo-op is executed. For example,
the first DSEG encountered sets the location
counter to location zero in the Data Relative
segment of memory. The following code is asembled
in the Data Relative mode, that is, it is assigned
to the Data Relative segment of memory. If a
subsequent CSEG is encountered, the location
counter will return to the next free location in
the Code Relative segment and so on.

The ASEG, DSEG, CSEG pseudo-ops never have
operands. If you wish to alter the current value
of the location counter, use the ORG pseudo-oPe

ORG Pseudo-op
At any time, the value of the location counter may
be changed by use of the the ORG pseudo-oPe The
form of the ORG statement is:

ORG <exp>

where the value of <exp> will be the new value of
the location counter in the current mode. All
names used in <exp> must be known on pass 1 and the
value of <exp> must be either Absolute or in the
current mode of the location counter. For example,
the statements

DSEG
ORG 50

set the Data Relative location counter to 50,
relative to the start of the Data Relative segment
of memory. - - -

LINK-ao
The LINK-80 linking loader (see Section 2 of this
manual) combines the segments and creates each
relocatable module in memory when the program is
loaded. The origins of the relocatable segments
are not fixed until the program is loaded and the
origins are assigned by LINK-80. The command to

•

M~croso~~ u~~~~ty sottware Page 22

LINK-80 may contain user-specified or~g~ns through
the use of the IP (for Code Relative) and ID (for
Data and COMMON segments) switches.

For example, a program that begins with the
statements

ASEG
ORG 800H

and is assembled entirely in Absolute mode will
always load beginning at 800 unless the ORG
statement is changed in the source file. However,
the same program, assembled in Code Relative mode
with no ORG statement, may be loaded at any
specified address by appending the IP:<address>
switch to the LINK-80 command string.

1.5.28 Relocation Before Loading

Two pseudo-ops, ePHASE and .DEPHASE, allow code to
be located in one area, but executed only at a
different,specified area.

For example:

0000' . PHASE 100H
0100 CD 0106 FOO: CALL BAZ
0103 C3 0007' JMP ZOO
0106 C9 BAZ: RET

.DEPHASE
0007' C3 0005 ZOO: JMP 5

All labels within a .PHASE block are defined as the
absolute value from the origin of the phase area.
The code, however, is loaded in the current area
(i.e., from 0' in this example). The code within
the block can later be moved to 100H and executed.

1.6 Macros and Block Pseudo Operations

1. 6. 1

The. macro facilities provided by MACRO-SO include
three repeat pseudo operations: repeat (REPT) ,
indefinite repeat (IRP), and indefinite repeat
character (IRPC). A macro definition operation
(MACRO) is also provided. Each of these four macro
operations is terminated by the ENDM pseudo
operation.

Terms

For the purposes of discussion of macros and block

Microsoft Utility Software Page 23

1 .6. 2

operations, the following terms will be used:

1. <dummy> is used to represent a dummy parameter.
All dummy parameters are legal symbols that
appear in the body of a macro expansion.

2. <dummylist> is a list of <dummy>s separated by
commas.

3. <arglist> is a list of arguments separated by
commas. <arglist> must be delimited·by angle
brackets. Two angle brackets with no
intervening characters «» or two commas with
no intervening character~ enter a null argument
in the list. Otherwise an argument is a
character or series of characters terminated by
a comma or >. With angle brackets that are
nested inside an <arglist>, one level of
brackets is removed each time the bracketed
argument is used in an <arglist>. (See
example, Section 1.6.5.) A quoted string is an
acceptable argument and is passed as such.
Unless enclosed in brackets or a quoted string,
leading and trailing spaces are deleted from
arguments.

4. <paramlist> is used to represent a list of
actual parameters separated by commas. No
delimiters are required (the list is terminated
by the end of line or a comment), but the rules
for entering null parameters and nesting
brackets are the same as described for
<arglist>. (See example, Section 1.6.5.)

REPT-ENDM

REPT <exp>

•
ENDM

The block of statements between REPT and ENDM is
repeated <exp> times. <exp> is evaluated as a
16-bit unsigned number. If <exp> contains any
external or undefined terms, an error is generated.
Example:

SET
REPT
SET
DB
ENDM

o
10
X+1
X

;generates DB1-DB10

•

Microsoft Utility Software Page 24

1.6.3

1.6.4

1.6.5

IRP-ENDM

IRP <dummy>,<arglist>
•

ENDM

The <arglist> must be enclosed in angle brackets.
The number of arguments in the <arglist> determines
the number of times the block of statements is
repeated. Each repetition substitutes the next
item in the <arglist> for every occurrence of
<dummy> in the block. If the <arglist> is null
(i.e., <», the block is processed once with each
occurrence of <dummy> removed. For example:

IRP
DB
ENDM

X,<1,2,3,4,5,6,7,8,9,10>
X

generates the same bytes as the REPT example.

IRPC-ENDM

IRPC <dummy>,string (or <string»

ENDM

IRPC is similar to IRP but the arglist is replaced
by a string of text and the angle brackets around
the string are optional. The statements in the
block are repeated once for each character in the
string. Each repetition substitutes the next
character in the string for every occurrence of
<dummy> in the block. For example:

IRPC
DB
ENDM

X,0123456789
X+1

generates the same code as the two
examples.

MACRO

previous

Often it is convenient to be able to generate a
given sequence of statements from various places in
a program, even though differant parameters may be
required each time the sequence is used. This
capability is provided by the ~~CRO statement. The
form is

Microsoft Utility Software Page 25

<name> MACRO <durnmylist>

ENDM

where <name> conforms to the rules for forming
symbols. <name> is the name that will be used to
invoke the macro. The <dummy>s in <dummylist> are
the parameters that will be changed (replaced) each
time the MACRO is invoked. The statements before
the ENDM comprise the body of the macro. During
assembly, the macro is expanded every time it is
invoked but, unlike REPT/IRP/IRPC, the macro is not
expanded when it is encountered.

The form of a macro call is

<name> <paramlist>

where <name> is the name supplied in the ~~CRO
definition, and the parameters in <paramlist> will
replace the <dummy>s in the MACRO <dummylist> on a
one-to-one basis. The number of items in
<dummylist> and <paramlist> is limited only by the
length of a line. The number of parameters used
when the macro is called need not be the same as
the number of <durnmy>s in <durnmylist>. If there
are more parameters than <dumrnmy>s, the extras are
ignored. If there are fewer, the extra <dummy>s
will be made nUll. The assembled code will contain
the macro expansion code after each macro call.

NOTE

A dummy parameter in a MACRO/REPT/IRP/IRPC
is always recognized exclusively as a
dummmy parameter. Register names such as A
and B will be changed in the expansion if
they were used as dummy parameters. •

Microsoft Utility Software Page 26

Here is an example of a MACRO definition that
defines a macro called Faa:

Faa MACRO X
Y SET a

REPT x
Y SET Y+1

DB Y
ENDM
ENDM

This macro generates the same code as the previous
three examples when the call

FOO 10

is executed.

Another example, which generates the same code,
illustrates the removal of one level of brackets
when an argument is used as an arglist:

Faa MACRO X

When the call

IRP Y,<X>
DB Y
ENDM
ENDM

Faa <1,2,3,4,5,6,7,8,9,10>

is made, the macro expansion looks like this:

IRP
DB
ENDM

Y,<1,2,3,4,5,6,7,8,9,10>
Y

1.6.6 ENDM

1.6.7

Every REPT, IRP, IRPC and MACRO pseudo-op must be
te~inated with the ENDM pseudo-oPe Otherwise, the
'Unterminated REPT/IRP/IRPC/MACRO' message is
generated at the end of each pass. An unmatched
ENDM causes an a error.

EXITM

The EXITM pseudo-op is used to terminate a
REPT/IRP/IRPC or MACRO call. When an EXITM is
executed, the expansion is exited immediately and
any remaining expansion or repetition is not
generated. If the block containing the EXITM is
nested within another block, the outer level

Microsoft Utility Software Page 27

continues to be expanded.

1.6.8 LOCAL

1.6.9

LOCAL <dummylist>

The LOCAL pseudo-op is allowed only inside a MACRO
definition. When LOCAL is executed, the assembler
creates a unique symbol for each <dummy> is
<dummy list> and substitutes that symbol for each
occurrence of the <dummy> in the expansion. These
unique symbols are usually used to define a label
within a macro, thus eliminating multiply-defined
labels on successive expansions of the macro. The
symbols created by the assembler range from •• 0001
to •• FFFF. Users will therefore want to avoid the
form •• nnnn for their own symbols. I~ LOCAL
statements are used, they must be the first
statements in the macro definition.

Special Macro Operators ~ Forms

& The ampersand is used in a macro expansion to
concatenate text or symbols. A dummy
parameter that is in a quoted string will not
be substituted in the expansion unless it is
immediately preceded by &. To form a symbol
from text and a dummy, put & between them.
For example:

.. , ,

ERRGEN MACRO
ERROR&X: PUSH

MVI
JMP
ENDM

X
B
B, , &X'
ERROR

In this example, the call ERRGEN A will
generate:

ERRORA: PUSH
MVI
JMP

B
B, 'A'
ERROR

In a block operation, a comment preceded by
two semicolons is not saved as part of the
expansion (i.e., it will not appear on the
listing even under .LALL). A comment preceded
by one semicolon, however, will be preserved
and appear in the expansion.

When an
argument,
literally

exclamation point is used in an
the next character is entered

(i.e., !; and <;> are equivalent).

•

Microsoft Utility Software Page 28

NUL NUL is an operator that returns true if its
argument (a parameter) is null. The remainder
of a line after NUL is considered to be the
argument to NUL. The conditional

IF NUL argument

is false if, during the expansion, the first
character of the argument is anything other
than a semicolon or carriage return. It is
recommended that testing for null parameters
be done using the IFB and IFNB conditionals.

1.7 Using Z80 Pseudo-ops

When using the B080/Z80 assembler, the following
Z80 pseudo-ops are valid. The function of each
pseudo-qp is equivalent to that of its 8080
counterpart.

Z80 pseudo-op

COND
ENDC
*EJECT
DEFB
DEFS
DEFW
DEFM
DEFL
GLOBAL
EXTERNAL

Equivalent 8080 pseudo-op

IFT
ENDIF
PAGE
DB
OS
OW
DB
SET
PUBLIC
EXTRN

The formats, where different, conform to the 8080
format. That is, DEFB and DEFW are permitted a
list of arguments (as are DB and OW), and DEFM is
permitted a string or numeric argument (as is DB).

Microsoft Utility Software Page 2·9

1.8 Sample Assembly

A>M80

*EXMPL1,TTY:=EXMPL1

MAC80 3.2 PAGE 1

00100 ;CSL3(P1,P2)
00200 ~SHIFT P1 LEFT CIRCULARLY 3 BI~S
00300 ~RETURN RESULT IN P2
00400 ENTRY CSL3
00450 ~GET VALUE OF F'IRST PARAMETER
00500 CSL3:

0000' 7E 00600 MOV A,M
0001' 23 00700 INX H
0002 1 66 00800 MOV H,M
0003' 6F 00900 MOV L,A

01000 ; SHIFT COUNT
0004' 06 03 01100 MVI B,3
0006' AP 01200 LOOP: XRA A

01300 ; SHIFT LEFT
0007' 29 01400 DAD H

01500 ; ROTATE IN CY BIT
0008' 17 01600 RAL
0009' 85 01700 ADD L
OOOA' 6F 01800 MOV L,A

01900 ; DECREMENT COUNT
OOOB' 05 02000 OCR B

02100 iONE MORE TIME
OOOC' C2 0006' 02200 JNZ LOOP
OOOF' EB 02300 XCHG

02400 ~SAVE RESULT IN SECOND PARAMETER
0010' 73 02500 MOV M,E
0011' 23 02600 INX H
0012' 72 02700 MOV M,D
0013' C9 02800 RET

02900 END

• MACaO 3.2 PAGE S

CSL3 OOOOI' LOOP 0006'

No Fatal error(s)

Microsoft Utility Software Page 30

1.9 MACRO-80 Errors

MACRO-80 errors are indicated by a one-charact.er
flag in column one of the listing file. If a
listing file is not being printed on the terminal,
each erroneous line is also printed or displayed on
the terminal. Below is a list of the MACRO-80
Error Codes:

A Argument error
Argument to pseudo-op is not in correct format
or is out of range (.PAGE 1; .RADIX 1;
PUBLIC 1: STAX H; MOV M,M; INX C).

C Conditional nesting error

D

ELSE without IF, ENDIF without IF, two ELSEs
on one IF.

Double Defined symbol
Reference to a symbol which is
defined.

multiply

E External error
Use of an external illegal in context (e.g.,
FOO SET NAME##; MVI A,2-NAME##).

M Multiply Defined symbol
Definition of a symbol which is multiply
defined.

N Number error
Error in a number, usually a bad digit (e.g.,
8Q).

o Bad opcode or objectionable syntax
ENDM, LOCAL outside a block; SET, EQU or
MACRO without a name; bad syntax in an opcode
(MOV A:): or bad syntax in an expression
(mismatched parenthesis, quotes, consecutive
operators, etc.).

P Phase error
Value of a label or EQU name is different on
pass 2.

Q Questionable

R

Usually means a line is not terminated
properly. This is a warning error (e.g. MOV
A,B,).

Relocation
Illegal use of
as abs-rel.
relocatable.

relocation in expression, such
Data, code and COMMON areas are

MicrosOft Utility Software Page 31

1. 10

U Undefined symbol
A symbol referenced in an expression is not
defined. (For certain pseudo-ops, a V error
is printed on pass 1 and a U on pass 2.)

V Value error
On pass 1 a pseudo-op which must have its
value known on pass 1 (e.g., • RADIX, .PAGE,
DS, IF, IFE, etc.), has a value which is
undefined. If the symbol is defined later in
the program, a U error will not appear on the
pass 2 listing.

Error Messages:

'No end statement encountered on input file'
No END statement: either it is missing
is not parsed due to being in a
conditional, unterminated IRP/IRPC/REPT
or terminated macro.

'Unterminated conditional'

or it
false
block

At least one conditional is unterminated at
the end of the file.

'Unterminated REPT/IRP/IRPC/MACRO'
At least one block is unterminated.

[xx] [No] Fatal error(s) [,xx warnings]
The number of fatal errors and warnings. The
message is listed on the CRT and in the list
file.

Compatibility ~ Other Assemblers

The $EJECT and $TITLE controls are provided for
compatability with INTEL's ISIS assembler. The
dollar sign must appear in column 1 only if spaces
or tabs separate the dollar sign from the control
word. The control

$EJECT

is the same as the MACRO-80 PAGE pseudo-oPe
The control

$TITLE (, text')

is the same as the ~~CRO-80 SUBTTL <text>
pseudo-oPe

The INTEL operands
errors when used

PAGE
with

and INPAGE generate Q
the MACRO-80 CSEG or DSEG

•

Microsoft Utility Software. Page 32

pseudo-ops. These errors are
assembler ignores. the operands.

warnings; the

When MACRO-aO is entered, the default for the
or~g~n is Code Relative O. With the INTEL ISIS
assembler, the default is Absolute O.

With MACRO-aO, the dollar sign ($) is a defined
constant that indicates the value of the location
counter at the start of the statement. Other
assemblers may use a decimal point or an asterisk.
Other constants are defined by MACRo-ao to have the
following values:

A=7
H=4

B=O
L=5

1.11 Format of Listings

C=1
M=6

D=2
SP=6

E=3
PSW=6

On each page of a MACRO-BO listing, the first two
lines have the form:

[TITLE text]
[SUB TTL text]

where:

MAcao 3.2 PAGE x [-v]

1. TITLE text is the text supplied with the TITLE
pseudo-op, if one was given in the source
program.

2. x is the major page number, which is
incremented only when a form feed is
encountered in the source file. (When using
Microsoft's EDIT-BO text editor, a form feed is
inserted whenever a page mark is done.) When
the symbol table is being printed, x = , S ' .

3. Y is the minor page number, which is
incremented whenever the • PAGE pseudo-op is
encountered in the source file, or whenever the
current page size has been filled.

4. SUBTTL text is the text supplied with the
SUBTTL pseudo-op, if one was given in the
source program.

Next, a blank line is printed, followed . by the
first line of output.

A line of output on a MACRO-BO listing has the
following form:

[crf#] [error] loc#m xx xxxx ••• source

Microsoft Utility Software Page 33

If cross reference information is being output: the
first item on the line is the cross reference
number, followed by a tab.

A one-letter error code followed by a space appears
next on the line, if the line contains an error.
If there is no error, a space is printed. If there
is no cross reference number, the error code column
is the first column on the listingo

The value of the location counter appears next on
the line. It is a 4-digit hexadecimal number or
6-digit octal number, depending on whether the /0
or /H switch was given in the MACRO-SO command
string.

The character at the end of
value is the mode indicator.
following symbols:

"
<space>
, *

Code Relative
Data Relative
COMMON Relative
Absolute
External

the location counter
It will be one of the

Next, three spaces are printed followed by the
assembled code. One-byte values are followed by a
space. Two-byte values are followed by a mode
indicator. Two-byte values are printed in the
opposite order they are stored in, i.e., the high
order byte is printed first. Externals are either
the offset or the value of the pointer to the next
External in the chain.

The remainder of the line contains the line of
source code, as it was input.

1.11.1 Symbol Table Listing

In the symbol table listing, all the macro names in
the program are listed alphabetically, followed by
all the symbols in the program, listed
alphabetically. After each symbol, a tab is
printed, followed by the value of the symbol. If
the symbol is Public, an I is printed immediately
after the value. The next character printed will
be one of the following.

•

Microsoft Utility Software Page 34

U

C

*

Undefined symbol.

COMMON block name. (The "value" of the
COMMON block is its length (number of
bytes) in hexadecimal or octal.)

External symbol.

<space> Absolute value.

Program Relative value.

" Data Relative value.

COMMON Relative value.

1.12 Cross Reference Facility

The Cross Reference Facility is invoked by typing
CREF80. In order to generate a cross reference
listing, the assembler must output a special
listing file with embedded control characters. The
MACRO-BO command string tells the assembler to
output this special listing file. (See Section
105.26 for the .CREF and .XCREF pseudo-ops.) /C is
the cross reference switch. When the /C switch is
encountered in a MACRO-BO command· string, the
assembler opens a .CRF file instead of a .LST file.

Examples:

. *=TEST/C

*T,U=TEST/C

Assemble file TEST.MAC and
create object file TEST.REL
and cross reference file
TEST.CRF.

Assemble file TEST.MAC and
create object file T.REL
and cross reference file
U.CRF.

Wh~n the assembler is finished, it is necessary to
call the cross reference facility by typing CREF80.
The command string is:

*listing file=source file

Possible command strings are: The default
extension for the source file is .CRF. The /L
switch is ignored, and any other switch will cause
an error message to be sent to the terminal.
Possible command strings are:

Microsoft Utility Software

*=TEST

*T=TEST

Page 35

Ex~uiile file TEST.CRF and
generate a cross reference
listing file TEST.LST.

Examine file TEST.CRF and
generate a cross reference
listing file T.LST.

Cross reference listing files differ from ordinary
listing files in that:

10 Each source statement is numbered with a cross
reference number.

20 At the end of the listing, variable names
appear in alphabetic order along with the
numbers of the lines on which they are
referenced or defined. Line numbers on which
the symbol is defined are flagged with '#'.

Microsoft Utility Software Page 36

2.1

2. 1 • 1

SECTION 2

LINK-aD Linking Loader

Format of LINK-aD Commands

LINK-aD Command Strings

To run LINK-aD, type LaO followed by a carriage
return. LINK-aD will return the prompt "*" (with
the DTC operating system, the prompt is ">"),
indicating it is ready to accept commands. Each
command to LINK-aD consists of a string of
filenames and switches separated by commas:

objdev1:filename.ext/switch1,objdev2:filename.ext, •••

If the input device for a file is omitted, the
default is the currently logged disk. If the
extension of a file is omitted, the default is
.REL. After each line is typed, LINK will load or
search (see /S below) the specified files. After
LINK finishes this process, it will list all
symbols that remained undefined followed by an
asterisk.

Example:

*MAIN

DATA

SUBR1 *

DATA

*SUBR1
*/G

0100 0200

(SUBR1 is undefined)

0100 0300

(Starts Execution - see below)

Typically, to execute a FORTRAN and/or COBOL
program and subroutines, the user types the list of
filenames followed by /G (begin execution). Before
execution begins, LINK-80 will always search the
system library (FORLIB.REL or COBLIB.REL) to .
satisfy any unresolved external references. If the
user wishes to first search libraries of his own,
he should append the filenames that are followed by
/S to the end of the loader command string.

Microsoft Utility Software Page 37

2.1.2 LINK-ao Switches

A number of switches may be given in the LINK-a 0
command string to specify actions affecting the
loading processo Each switch must be preceded by a
slash (/)0 These switches are:

Switch

R

E or E:Name

G or G:Name

N

Action

Reseto Put loader back in its
initial stateo Use /R if you
l~aded the wrong file by mistake
and want to restarto /R takes
effect as soon as it is encountered
in a command stringo

Exit LINK-80 and return to the
Operating System. The system
library will be searched on the
current disk to satisfy any
existing undefined globals. The
optional form E:Name (where Name is
a global symbol previously defined
in one of the modules) uses Name
for the start address of the
program. Use /E to load a program
and exit back to the monitor.

Start execution of the program as
soon as the current command line
has been interpreted. The system
library will be searched on the
current disk to satisfy any
existing undefined globals if they
existo Before execution actually
begins, LINK-ao prints three
numbers and a BEGIN EXECUTION
message. The three numbers are the
start address, the address of the
next available byte, and the number
of 2S6-byte pages used. The
optional form G:Name (where Name is
a global symbol previously defined
in one of the modules) uses Name
for the start address of the
program.

If a FILENAME>/N is specified, the
program will be saved on disk under
the selected name (with a default
extension of .COM for CP/M) when a
/E or /G is done. A jump to the
start of the program is inserted if
needed so the program can run
properly (at 100H for CP/M) 0

•

Microsoft Utility Software Page 3a

P and 0

U

M

/P and /0 allow the origines) to be
set for the ~ program loaded.
/P and /0 take effect when seen
(not deferred), and they have no
effect on programs already loadea7
The form is /P : ADDRESS> or
/D:ADDRESS>, where ADDRESS> is the
desired origin in the current
typeout radix. (Default radix for
non-MITS versions is hex. /0 sets
radix to octal; /H to hex.)
LINK-aO does a default /P:LINK
origin>+3 (i.e., 103H for CP/M and
4003H for ISIS) to leave room for
the jump to the start address.

NOTE: Do not use /P or /D to load
programs or data into the locations
of the loader's jump to the start
address (100H to 102H for CPM and
2800H to 2802H for DTC) , unless it
is to load the start of the program
there. If programs or data are
loaded into these locations, the
jump will not be generated.

If no /D is given, data areas are
loaded before program areas for
each module. If a /D is given, all
Data and Cornmon areas are loaded
starting at the data origin and the
program area at the program origin.
Example:

*/P:200,FOO
Data 200 300
*/R
*/P:200 /D:400,FOO
Data 400 480
Program 200 280

List the origin and end of the pro
gram and data area and all
undefined globals as soon as the
currentcornmand line has been
interpreted. The program informa
tion is only printed if a /D has
been done. Otherwise, the program
is stored in the data area.

List the origin and end of the pro
gram and data area, all defined
globals and their values, and all
undefined globals followed by an
asterisk. The program information

Microsoft Utility Software • Page 39

S

is only printed if a /D has been
done. Otherwise, the program is
stored in the data area.

Search the filename immediately
preceding the /S in the command
string to .satisfy any undefined
globals.

Examples:

*/M List all globals

*MYPROG,SUBROT,MYLIB/S

*/G

Load MYPROG.REL and SUBROT.REL and
then search MYLIB.REL to satisfy
any remaining undefined globals.

Begin execution of main program

2.2 Sample ~

A>L80
*EXAMPL,EXMPL1/G
DATA 3000 30AC
[304F 30AC 49]
[BEGIN EXECUTION]

A>

1792
14336

-16383
14

112

14336
-16383

14
112
896

2.3 Format of ~ Compatible Object Files

NOTE

Section 203 is reference material for users
who wish to know the load format of LINK-aO
relocatable object files. Most users will
want to skip this section, as it does not
contain material necessary to the operation
of the package.

LINK-compatible object files consist of a bit
stream. Individual fields within the bit stream
are not aligned on byte boundaries, except as noted
below. Use of a bit stream for relocatable object
files keeps the size of object files to a minimum,
thereby decreasing the number of disk reads/writes.

•

Microsoft Utility Software Page 40

There are two basic types of load items: Absolute
and Relocatable. The first bit of an item
indicates one of these two types. If the first bit
is a 0, the following 8 bits are loaded as an
absolute byte. If the first bit is a 1, the next 2
bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16
bits after adding the current Program
base.

10 Data Relative. Load the following 16
bits after adding the current Data base.

11 Common Relative. Load the following 16
bits after adding the current Common
base.

Special LINK items consist of the bit stream 100
followed by:

a four-bit control field

an optional A field consisting
of a two-bit address type that
isthe same as the two-bit field
above except 00 specifies
absolute address

an optional B field consisting
of 3 bits that give a symbol
length and up to 8 bits for
each character of the symbol

A general representation of a special LINK item is:

1 OOxxxx yy nn zzz + characters of symbol name

xxxx
yy
nn
zzz

A field B field

Four-bit control field (0-15 below)
Two-bit address type field
Sixteen-bit value
Three-bit symbol length field

The following special types have a B-field only:

o Entry symbol (name for search)
1 Select COMMON block
2 Program name

Microsoft Utility Software Page 41

3 Request library search
4 Reserved for future expansion

The following special LINK items have both an A
field and a B field:

5 .. Define COMMON size
6 Chain external (A is head of address chain,

B is name of external symbol)
7 Define entry point (A is address, B is name)
8 Reserved for future expansion

The following special LINK items have an A field
only:

9 External + offset. The A value will
be added to the two bytes starting
at the current location counter
immediately before execution.

10 Define size of Data area (A is size)
11 Set loading location counter to A
12 Chain address. A is head of chain,

replace all entries in chain with current
location counter.
The last entry in the chain has an
address field of absolute zero.

13 Define program size (A is size)
14 End program (forces to byte boundary)

The following special Link item has neither an A nor
a B field:

15 End file

2.4 LINK-BO Error Messages

LINK-BO has the following error messages:

?No Start Address

?Loading Error

?Out of Memory

?Command Error

?<file> Not Found

A /G switch was issued,
but no main program
had been loaded.

The last file given for input
was not a properlyforillatted
LINK-BO object file.

Not enough memory to load
program.

Unrecognizable LINK-BO
command.

<file>, as given in the command
string, did not exist.

•

Microsoft Utility Software Page 42

%2nd COMMON Larger /XXXXXX/
The first definition of
COMMON block /XXXXXX/ was not
the largest definition. Re
order module loading sequence
or change COMMON block
definitions.

%Mult. Def. Global YYYYYY
More than one definition for
the global (internal) symbol
YYYYYY was encountered during
the loading process.

%Overlaying [program] Area ,Start = xxxx
Data ,Public = <symbol name>(xxxx)

?Intersecting

,External = <symbol name>(xxxx)
A /0 or /P will cause already
loaded data to be destroyed.

[program] Area
Data

The program and data area
intersect and an address or
external chain entry is in
this intersection. The
final value cannot be con
verted to a current value
since it is in the area
intersection.

?Start Symbol - <name> - Undefined
After a /E: or /G: is given,
the symbol specified was not
defined.

Origin [Above] Loader Memory, Hove Anyway (Y or N)?
. Below

After a /E or /G was given,
either the data or program
area has an origin or top
which lies outside loader
memory (i.e., loader origin
to top of memory). If a
Y <cr> is given, LINK-80
will move the area and con
tinue. If anything else is
given, LINK-80 will exit.

?Can't Save Object File

In either case, if a /N was
given, the image will already
have been saved.

A disk error occurred when
the file was being saved.

Microsoft Utility Software Page 43

2.5 Program Break Information

LINK-80 stores the address of the first free
location in a global symbol called $MEMRY if that
symbol has been defined by a program loaded.
$MEMRY is set to the top of the data area +1.

NOTE

If -D is given and the data origin is less
than the program area, the user must be
sure there is enough room to keep the
program from being destroyedo This is
particularly true with the disk driver for
FORTRAN-80 which uses $MEMRY to allocate
disk buffers and FCB'so

•

SECTION 3

LIB-80 Library Manager
(CP/M Versions Only)

Page 44

LIB-80 is the object time library manager for CP/M versions
of FORTRAN-80 and COBOL-80. LIB-80 will be interfaced to
other operating systems in future releases of FORTRAN-SO and
COBOL-SO.

3.1 LIB-80 Commands

3. 1 • 1

To run LIB-SO, type LIB followed by a carriage
return. LIB-80 will return the prompt "*" (with
the DTC operating system·, the prompt is ">"),
indicating it is ready ·to accept commands. Each
command in LIB-80 either lists information about a
library or adds new modules to the library under
construction.

Commands to LIB-80consists of an optional
destination filename which sets the name of the
library being created, followed by an equal sign,
followed by module names separated by commas. The
default destination filename is FORLIB.LIB.
Examples:

*NEWLIB=FILE1 <MOD2> , FILE3,TEST

*SIN,COS,TAN,ATAN

Any command specifying a set of modules
concatenates the modules selected onto the end of
the last destination filename given. Therefore,

*FILE1,FILE2 <BIGSUB>, TEST

isequivalent to

*FILE1
*FILE2 <BIGSUB>
*TEST

Modules

A module is typically a
subprogram, main program or
that contains ENTRY statements a

FORTRAN or COBOL
a MACRO-80 assembly

The primary function of LIB-80 is to concatenate
modules in .REL files to form a new library. In

Microsoft Utility Software Page 45

order to extract modules from previous libraries or
.REL files, a powerful syntax has been devised to
specify ranges of modules within a .REL file.

The simplest way to specify a module within a file
is simply to use the name of the module. For
example:

SIN

But a relative quantity plus or minus 255 may also
be used. For example:

SIN+1

specifies the module after SIN and

SIN-1

specifies the one before it.

Ranges of'modules may also be specified by using
two dots:

•• SIN means all modules up to and including
SIN.

SIN •• means all modules from SIN to the end
of the file.

SIN •• COS means SIN and COS and all the
modules in between.

Ranges of modules and relative offsets may also be
used in combination:

SIN+1 •• COS-1

To select a given module from a file, use the name
of the file followed by the module(s) specified
enclosed in angle brackets and separated by commas:

FORLIB <SIN •• COS>

or

MYLIB.REL <TEST>

or

BIGLIB. REL <FIRST, r·lIDDLE , LAST>

etc.

If no modules are selected from a file, then all

•

Microsoft Utility Software Page 46

the modules in the file are selected:

TESTLIB.REL

3.2 LIB-80 Switches

A number of switches-are used to control LIB-80
operation. These switches are always preceded by a
slash:

/0 Octal - set Octal typeout mode for /L
command.

/H Hex - set Hex typeout mode for /L
command (default).

/u List the symbols which would remain
undefined o~ a search through the
file specified.

/L List the modules in the files specified
and symbol definitions they contain.

/e (Create) Throwaway the library under
construction and start over.

/E Exit to CP/M. The library under
construction (.LIB) is revised to .REL
and any previous copy is deleted.

/R Rename - same as /E but does not exit
to CP/M on completion.

3.3 LIB-80 Listings

To list the contents of a file in cross reference
format, use /L:

*FORLIB/L

When building libraries, it is important to order
the modules such that any intermodule references
are "forward." That is, the module containing the
global reference should physically appear ahead of
the module containing the entry point. Otherwise,
LINK-80 may not satisfy all global references on a
single pass through the library.

Use /U to list the symbols which could be undefined
in a single pass through a library. If a module in
the library makes a backward reference to a symbol
in another module, /U will list that symbol.
Example:

Microsoft Utility Software Page 47

*SYSLIB!U

NOTE: Since certain modules in the standard
FORTRAN and COBOL systems are always force-loaded,
they will be listed as undefined by /U but will not
cause a problem when loading FORTRAN or COBOL
programs.

Listings are currently always sent to the terminal;
use control-P to send the listing to the printer.

3.4 Sample LIB Session

A>LIB

*TRANLIB=SIN,COS,TAN,ATAN,ALOG
*EXP
*TRANLIBoLIB/U
*TRANLIB.LIB/L

(List of symbols in TRANLIB.LIB)

*/E
A>

3.5 Summary of Switches and Syntax

/0 Octal - set listing radix
/H Hex - set listing radix
/u List undefineds
/L List cross reference
/e Create - start LIB over
/E Exit - Rename .LIB to .REL and exit
/R Rename - Rename .LIB to .REL

module::=module name 1+ or - number}

module sequence ::=

module I .. module I module •• I module1 •• module2

file specification: :=filename 1 <rnodule sequence> 1, <rnodule sequencE

command::= (library filename=}
jlist of switches}

11ist of file specifications}

Microsoft Utility Software Page 48

SECTION 4

Operating Systems

This section describes the use of MACRO-BO and LINK-BO under
the different disk operating system~. The examples shown in
this section assume that the FORTRAN-BO compiler is in use.
If you are using the COBOL=80 compiler, substitute "COBOL"
wherever "FSO" appears, and substitute the extension ".COB"
wherever ".FOR" appears.

4.1 CPM

Create a Source File
Create a source--lile using the CPM editor.
Filenames are up to eight characters long, with
3-character extensions. FORTRAN-SO source
filenames should have the extension FOR, COBOL-SO
source filenames should have the extension COB, and
HACRO-BO source filenames should have the extension
M1-.C 0

Compile the Source File
Before attempting to compile the progra~ and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
a source file called M1-~1.FOR, type

A>FSO , =M&'{1

This command compiles the source file MAX1.FOR
without producing an object or listing file. If
necessary, return to the editor and correct any
syntax errors.

To compile the source file and produce an object
and listing file, type

A>F80 MAX1,r-iAX1=MAX1
or

A>F80 =MAX1/L

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file called M&'{1.PRNG

Loading, Executing and Saving the Program (Using
LINK-80) -
To load the program into memory and execute it,
type

Microsoft Utility Software Page 49

..
A>L80 r·1AX1/G

To exit LINK-SO and save the memory image (object
code), type

A>L80 MAX1/E,MAX1/N

When LINK-80 exits, three numbers will be printed:
the starting address for execution of the program,
the end address of the program and the number of
256-byte pages used. For example

[210C 401A 48]

If you wish to use the CPM SAVE command to save a
memory image, the number of pages used is the
argument for SAVE. For example

A>SAVE 48 MAX1.COM

NOTE

CP/M always saves memory starting at 100H
and jumps to 100H to begin execution. Do
not use /P or /D to set the origin of the
program or data area to 100H, unless
program execution will actually begin at
100H~

An object code file has now been saved on the disk
under the name specified with /N or SAVE ~in this
case MAX1). To execute the program simply type the
program name

A> MAX 1

CPM - Available Devices

A:, B:,
HSR:
LST:
TTY:

C:, D: disk drives
high speed reader
line printer
Teletype or CRT

CPM Disk Filename Standard Extensions

FOR FORTRAN-SO source file
COB COBOL-SO source file
MAC MACRO-SO object file
REL relocatable object file
PRN listing file
COM absolute file

•

Microsoft Utility Software Page 50

CPM Command Lines
CPM command lines and files are supported; i.e., a
COBOL-BO, FORTRAN-BO, MACRO-BO or LINK-aO command
line may be placed in the same line with the CPM
run command. For example, the command

A>F80 =TEST

causes CPM to load and run the FORTRAN-BO compiler,
which then compiles the program TEST.FOR and
creates the file TEST.REL. This is equivalent to
the following series of commands:

A>FSO
*=TEST
*AC
A>

4.2 DTC Microfile

Create a Source File
Create -a source--lile using the DTC editor.
Filenames are up to five characters long, with
1-character extensions. COBOL-SO, FORTRAN-BO and
MACRO-BO source filenames should have the extension
T.

Compile the Source File
Before attempting -ro- compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1,type

*FBO ,=MAX1

This command compiles the source file MAX1 without
producing an object or listing file. If necessary,
return to the editor and correct any syntax errors.

To compile the source file MAX 1 and produce an
object and listing file, type

*F80 MAX1,MAX1=MAX1
or

*F80 =MAX1/L/R

The compiler will create a relocatable file called
MAX1.0 and a listing file called MAX1.L.

Loading, Executing and Saving the Program (Using
LINK-SO)
To load the program into memory and execute it,

Microsoft Utility Software Page 51

type

*L80 MAX1/G

To save the memory image (object code), type

*L80 MAX1/E

which will exit from LINK-80, return to
monitor and print three numbers: the
address for execution of the program,
address of the program, and the number of
pages usedo For exampl~

[210C 401A 48']

the DOS
starting
the end
256-byte

Use the DTC SAVE command to save a memory image.
For example

*SA MAX1 2800 401A 2800

2800H (24000Q) is the load address used by the DTC
Operating Systemo

NOTE

If a /P:ADDRESS> or /D:ADDRESS> has been
included in the loader command to specify
an origin other than the default (2800H),
make sure the low address in the SAVE
command is the same as the start address of
the programo

An object code file has now been saved on the disk
under the name specified in the SAVE command (in
this case MAX1)o To execute the program, simply
type

*RUN MAX1

DTC Microfile - Available Devices

DO:, D 1 :, D 2 :, D 3 :
TTY:
LIN:

disk drives
Teletype or CRT
communications port

DTC Disk Filename Standard Extensions

T COBOL-aO, FORTRAN-aO or
~~CRO-aO source file

o relocatable object file
L listing file

•

Microsoft Utility Software Page 52

DTC Command Lines
DTC command lines are supported as described in
Section 4.1, CPM Command Lines.

4.3 Altair DOS

Create a Source File
Create a source file using the Altair DOS editor.
The name of the file should have four characters,
and the first character must be a letter. For
example, to create a file called MAX1, initialize
DOS and type

.EDIT MAX1

The editor will respond

CREATING FILE
00100

Enter the program. When .you are finished entering
and editing the program, exit the editor.

Compile the Source ~
Load the compiler by typing

.Fao

The compiler will return the prompt character "*"
Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX 1 , type

* ,=&MAX1 •

(The editor stored the program as &MAX1) Typing
,=&MAX1. compiles the source file MAX1 without
producing an object or listing file. If necessary,
return to the editor and correct any syntax errors.

To compile the source file MAX 1 and produce an
object and listing file, type

* MAX 1 R , & MAX 1 = &MAX 1 •

The compiler will create a REL (relocatable) file
called MAX1RREL and a listing file called &~mX1LST.
The REL filename must be entered as five characters
instead of four, so it is convenient to use the
source filename plus R.

Microsoft Utility Software Page 53

After the source file has been compiled and a
prompt has been printed, exit the compiler. If the
computer uses interrupts with the terminal, type
Control C. If not, actuate the RESET switch on the
computer front panel. Either action will return
control to the monitor.

Using LINK-SO
Load LINK-aO by typing

.LSO

LINK-ao will respond with a "*" prompt. Load the
program into memory by entering the name of the
program REL file

*MAX1R

Executing and Saving ~ Program
Now you are ready to e~ther execute
that is in memory or save a memory
code) of the program on disk. To
program, type

the program
image (object
execute the

*/G

To save the memory image (object code), type

*/E

which will exit from LINK-aO, return to
monitor and print three numbers: the
address for execution of the program,
address of the program, and the number of
pages used. For example

[26301 44054 35]

the DOS
starting
the end
256-byte

Usethe DOS SAVE command to save a memory image.
Type

• SAV MAX1 a 17100 44054 26301

17100 is the load address used by Altair DOS for
the floppy disk. (With the hard disk, use 44000.)

An object code file has now been saved on the disk
under the name specified in the SAVE command (in
this case MAX1). To execute the program, simply
type the program name

.HAX1

•

M~crosoft utility Software Page 54

Altair DOS - Available Devices

FO:, F1:, F2:, ••.
TTY:

disk drives
Teletype or CRT

Altair DOS Disk Filename Standard Extensions

FOR FORTRAN-aO source file
COB COBOL-aO source file
MAC MACRO-80 source file
P~L relocatable object file
LST listing file

Command Lines
Command lines are not supported by Altair DOS.

4.4 ISIS-II

Create a Source File
Create a source =rile using the ISIS-II editor.
Filenames are up to six characters long, with
3-character extensions. FORTRAN-a a source
filenames should have the extension FOR and
COBOL-SO source filenames should have the extension
COB. MACRO-SO source filenames should have the
extension MAC.

Compile the Source File
Before attempting ~ compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. Removing
syntax errors will eliminate the necessity of
recompiling later. To perform the syntax check on
the source file called MAX1.FOR, type

-FSO ,=MAX1

This command compiles the source file MAX1.FOR
without producing an object or listing file. If
necessary, return to the editor and correct any
syntax errors.

To compile the source file MAX1.FOR and produce an
object and listing file, type

-FSO MAX1,MAX1=MAX1
or

-FSO =MAX1/L/R

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file called MAX1.LST.

Microsoft Utility Software Page 55

Loading, Saving ~ Executing the Program (Using
LINK-80)
To load the program into memory and execute it,
type

-L80 MAX1/G

To save the memory image (object code), type

-L80 ~UlX1/E,MAX1/N

which will exit from LINK-80, return to the ISIS-II
monitor and print three numbers: the starting
address for execution of the program, the end
address of the program, and the number of 256-byte
pages usedo For example

[210C 401A 48]

An object code file has now been saved on the disk
under the name specified with /N (in this case
MAX1).

ISIS-II - Available Devices

:FO:, :F1:, :F2:, •••
TTY:
LST:

disk drives
Teletype or CRT
line printer

ISIS-II Disk Filename Standard Extensions

FOR FORTRAN-80 source file
COB COBOL-80 source file
MAC MACRO-80 source file
REL relocatable object file
LST listing file

ISIS-II Command Lines
ISIS-II command lines are supported as described in
Section 4.1, CPM Command Lines. •

Microsoft Utility Software

Index

.8080 ••
• COMMENT
.CREF • •
.DEPHASE
.LALL • •
.LIST • •
.PAGE • •
.PHASE •
.PRINTX •
.RADIX •
• REQUEST
.SALL •
.XALL •
• XC REF
.XLIST
.Z80

•
•
•
•
•

• •
• •
• •
• •
• •
• •
• •
•
• •
• •

•
• •
• •
• •
• •
• •

• • •
• • •
• •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

Absolute memory • •
Altair •• •••
Arithmetic operators
ASEG •• ••

Block pseudo ops •

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

• •
• •

•
• •

• •

Character constants • •
Code Relative • • • •
Command format • •
Comments ••• • • • •
CO~.MON • • • • • •
Conditionals •••• •
Constants • • • • • • •

•

•

CP/M • • • • • • •
Cross reference facility
CSEG • • • •

Data Relative •
Define Byte • •
Define Character
Define Origin •
Define Space •
Define Word •
DSEG • • • • •
DTC. ••••

EDIT-80 •
ELSE 0

END •••
ENDIF ••
ENDM
ENTRY •
EQU • •

•
•
•

•

•
•

•

Error codes •
Error messages

•

•

•

• • • •

• • • •
• • • •

• • •
• • • •
• • • •
• • • •
• • • •
• • •

• • • •
• • • •

• •
• • • •

•
o o

• •
• o

• o •

• 18
• 17
• 20
• 22
• 20
• 20
• 32
• 22
• 17
• 8, 18
• 18
• 20
• 20
• 20
• 20
• 18

•
•
•
•

•

•

•

10, 12, 33
6, 52
10
11-12, 21

22

9
13, 21-22, 33
5, 36, 44
8

Page 56

•
•

11, 13, 21-22, 33-34
19

•
•

•

•
•
•
•
•
•
•
•

o

•

•

o

•

8
37,
20,
11,

48
33-34
13, 21, 32

10, 14, 20-22,
8, 13
14
16
14
14
11, 14, 21, 32
5, 36, 44, 50

7, 32
19
15
19-20
22, 26
15, 44
15-16
30, 33
31, 41

33

EXITM · • • • • • 26
EXT • • • • • • • • 15
Externals · • • • 11, 15, 30, 33
EXTRN • • • • • • 15

IF • • • • • • • • 19
IF1 , • • • • • • 19
IF2 ~ • 19
IFB • • • • • • • • • • 19
IFDEF • • • • 19
IFE · • • • • • • • 19
IFF • • .. • • • • • 19
IFNB • • • • • • • • 19
IFT · • • • • • • • • • 19
INTEL • • • • • • • • • • 6, 31-32
IRP • • • • • • • • • • • 20, 22, 24
IRPC · 20, 22, 24
ISIS-II · • • • 38, 54

Library manager · • 44
Listings • • • 20, 32-33, 35, 46
LOCAL · • • • • • • 27
Logical operators · • • 10

MACRO · · 20, 22-26
Macro operators · • • • · 27
Modes · • • • • 10
Modules · • • • · 44

NAME • • • • • • 16

Operating system • · 48
Operators • • • • 10
ORG · • • • • • • • 12-14, 16, 21

PAGE • • • • • • 16, 31
Program Relative • • • • 10
PUBLIC • • • • • • • 7, 15, 33

REPT • • • • • • • • • • 20, 22-23

SET • • • • • • • • • • • 16

• Strings .. • • • • • • • • 9
SUBTTL • • • • • • • • • 16, 31-32 /
Switches • • • • • • 6, 37, 46-47
Symbol table • • • • • • 32-33

TITLE · • • • • • 16-17, 32

SERVICE INFORMATION

I

Plfit ~A-6+
.1 s t- S'rOP - SoVtevl-z ~

\4+ tIJ/'rJ

:3 c> r L\ 131 001(5 - S..jo(J S J <7 trv.;)

Actte ReP - \e}-}-vN

-r .b \OC)C

~e-ft-o~ CO{'Ne.r
1Pc2t/OS

Sf: (ovis J;;fb S'tS
3/ Lf-43c. -.Ji8 I

(;J esl-po{)..f

Ce;Jle.r llrO -e 'Pf-.
~ Vlceeo - 15

9DW S.Jf - 11'15

C ~ v ~1:f;. 2, r2.5

~\veJ - ~tlSo

Page 1

SERVICING PROCEDURES

Your SuperBrain Video Terminal is warranted to the original purchaser for 90 days from
date of shipment. This warranty covers the adjustment or replacement F .O.B. Intertec's
plant in Columbia, South Carolina of any part or parts which in Intertec's judgment shall
disclose to have been originally defective. A complete statement of your warranty rights is
contained on the inside back cover of this manual.

In order to validate your SuperBrain warranty, the Warranty Registration Form (contained
in this section) must be completed in full and returned to Intertec Data Systems within 10
days of receipt of this equipment. Be sure to include the serial number of the specific terminal
you are registering. The serial number of your terminal can be found on the rear 1/0 panel
next to the power cord. A Customer Comment Card is also enclosed for your convenience if
you desire to make comments regarding the overall operation andlor adaptability of the
SuperBrain to your particular application. Completion of the Customer Comment Card is
optional.

IF SERVICE IS EVER REQUIRED:
If you should encounter difficulties with the use or operation of this terminal, contact the
supplier from whom the unit was purchased for instructions regarding the proper servicing
techniques. Service procedures differ from dealer to dealer but most Intertec authorized
service dealers can provide local, on·site servicing of this equipment on a per-call or main
tenance contract basis. Plus, a variety of service programs are available directly from the
factory including extended warranty, a module exchange program and on-site contract
maintenance from over 50 locations in the U.S. Contact our National Service Department
at the factory for rates and availability if you desire to participate in one of these programs.
If you are not covered under one of the three programs described above and service cannot
be made available through your local supplier, contact Intertec's Customer Service Depart
ment at (803) 798-9100. Be prepared to give the following information when you call:

1} The serial number of the equipment which is defective. If you are returning
individual modules to the factory for repair, it will be necessary to have the serial
number of the individual modules also. The serial number of the entire terminal may
be found on the rear 1/0 panel just to the right of the power cord. Module serial
numbers are listed on white stickers placed in conspicuous locations on each major
module or subassembly of the terminal.

NOTE: Individual modules cannot be returned to the factory for repair unless you
originally purchased your unit directly from the factory. If your unit was purchased
through a Dealer or OEM vendor, and you desire factory repair, then the entire
terminal must be returned.

2} The name and location of the Dealer andlor Agent from which the unit was
purchased.

3) A complete description of the alleged failure (including the nature and cause of the
failure if readily available).

The Customer Service Department will issue you Return Material Authorization Number
(RMA Number) which will be valid for a period of 30 days. This RMA ~umber will be your
official authorization to return equipment to IDSC for repair only. The Customer Service
Department will also give you an estimate, if requested, of the time it should take to process
and repair your equipment. Turnaround time on repairs varies depending on workloads and
availability of parts but normally your equipment will be repaired and returned to you
within 10 working days of its receipt. If your repair is urgent, you may authorize a special
$50 Emergency Repair fee and have your equipment repaired and returned within no more
than 48 hours of its receipt at our Service Center. Ask the Customer Service Department for
more information about this program.

•

Page 2

SERVICING PROCEDURES (continued)

IMPORTANT: Any equipment returned to Intertec without an RMA Number will result in
the equipment being refused and possible cancellation of your SuperBrain warranty. Also if
,Your RMA Number expires, you must request a new number. Equipment arriving at Intertec
bearing expired RMA Number will also be refused.

After securing an RMA Number from the Customer Service Department, return the
specified modules and/or complete terminals to Intertec, freight prepaid, at the address
below. NOTE: The RMA Number must be plainly marked and visible on your shipping label
,to prevent the equipment from being refused at I ntertec's Receiving Department.

ATTN: SUPERBRAIN SERVICE CENTER
I ntertec Data Systems Corporation

2300 Broad River Road
Columbia, South Carolina 29210

To aid our technicians in troubleshooting and correcting your reported malfunction, please
complete an Intertec Equipment Malfunction Report (contained in this section) and enclose
it with the equipment you intend to return to the factory.

Be sure a declared value equal to the price of the unit is shown on the Bill of Lading,
Express Receipt of Air Freight Bill, whichever is applicable. Risk of loss or damage to
equipment during the time it is in transit either to or from I ntertec's facilities is your sole
responsibility. A declared value must be placed on your Bill of Lading to insure
substantiation of your freight claim if shipping damage or loss is incurred.

All equipment returned to an Intertec Service Center must be freight prepaid. Equipment
not prepaid on arrival at I ntertec's Receiving Department cannot be accepted. Upon repair of
the defective equipment, it will be returned to you, F.O.B. the factory in Columbia, via UPS
or equivalent ground transportation unless you specify otherwise.

INSTRUCTIONS FOR HANDLING LOST OR DAMAGED EQUIPMENT

The goods described on your Packing Slip were delivered to the Transportation Company at
Intertec's premises in complete and good condition. If any of the goods called for on this
Packing Slip are short or damaged, you must file a claim WITH THE TRANSPORTATION
COMPANY FOR THE AMOUNT OF THE DAMAGE AND/OR LOSS.

IF LOSS OR DAMAGE IS EVIDENT AT TIME OF DELIVERY:
If any of the goods called for on your Packing Slip are short or damaged at the time of
delivery, ACCEPT TH EM, but insist that the Freight Agent make a damaged or short
notation on your Freight Bill or Express Receipt and sign it.

IF DAMAGE OR LOSS IS CONCEALED AND DISCOVERED AT A LATER DATE:
If any concealed loss or damage is discovered, notify your local Freight Agent or Express
Agent AT ONCE and request him to make an inspection. This is absolutely necessary. Un
less you do this, the Transportation Company will not consider your claim for loss or
damage valid. If the agent refuses to make an inspection, you should draw up an affidavit
to the effect that you notified him on a certain date and that he failed to make the
necessary inspection.

After you have ascertained the extent of the loss or damage, ORDER THE REPLACEMENT
PARTS OR COMPLETE NEW UNITS FROM THE FACTORY. We will ship to you and bill
you for the cost. This new invoice will then be a part of your claim for reimbursement from
the Transportation Company. This together with other papers, will properly support your
claim.

•

Page 3

SERVICING PROCEDURES (continued)

IMPORTANT: The claims adjustment procedure for UPS shipments varies somewhat from
the procedure listed above for regular motor and air freight shipments. If your equipment
was shipped via UPS and sustained either damage or loss, the UPS representative in your
area must initiate the claim by inspecting the goods and assigning a freight claim number to
the damaged equipment. The representative will attach a "Call Tag" to the outside of the
equipment box which will be your authorization to return the merchandise to our factory
for claim adjustment. Upon receipt of this damaged equipment, we will perform the
necessary repairs, process the appropriate paperwork with UPS and return the equipment to
you. Please allow time for processing of any type claim. Normal time for proper processing
of a UPS claim is 15-30 working days.

Remember, it is extremely important that you do not give the Transportation Company a
clear receipt if damage or shortages are evident upon delivery. It is equally important that
you call for an inspection if the loss or damage is discovered later. DO NOT, UNDER ANY
CIRCUMSTANCES, ORDER THE TRANSPORTATION COMPANY TO RETURN
SHIPMENT TO OUR FACTORY OR REFUSE SHIPMENT UNLESS WE HAVE
AUTHORIZED SUCH RETURN.

ADDITIONAL TECHNICAL DOCUMENTATION

Detailed technical documentation (i.e. schematics) describing the operation of the
SuperBrain Video Terminal and the electrical interconnection of its various modules is
available at nominal cost directly from Intertec Data Systems Corporation. However, due to
the confidentiality of this technical information, it will be necessary to sign and return the
Documentation Non-Disclosure Agreement (appearing on the next page) denoting your
concurrence with its terms and conditions.

The handling and processing costs of SuperBrain technical documentation is $50. Due to the
large amount of requests being processed and the relatively small handling costs involved,
we must request that you enclose payment ($50) upon return of your Non-Disclosure
Agreement. Normally the documents will be mailed to you within 15 to 30 days after
receipt of your payment and a signed copy of the Agreement. (IMPORTANT: The techni
cal documentation will be mailed to the address listed at the top of the Non-Disclosure
Agreement.) For prompt processing of your documentation request, please forward your
signed agreement and payment to:

Customer Service Department
I ntertec Data Systems Corporation

2300 Broad River Road
Columbia, South Carolina 29210

NOTE: Formal technical documentation for the SuperBrain will be sent to you normally
within 10-15 days of receipt of your payment and signed Non-Disclosure agreement.

IMPORTANT: Payment must accompany your Non-Disclosure Agreement. Agreements sent
to us without payment will be discarded without notice.

•

HARDWARE ADDENDUMS

I

=i11~= INTE<TEC ENGINEERING CHANGE ORDER d [DI\TI\ IDS -910A

® ~r~~1adqUarters; 2300 Broad River Road, Columbia, South Carolina 29210.803/798-9100 • TWX; 810-666-2115

SUBJECT .. Expand.ing .. _.s.up.e.rJ3r:ai.n_.MernQry.....5.iz.e.-E.r.ClID-32.Lt.cL.6...4K.Jl.O.Jl~ i on 1 CPU Modu 1 es
NOTE: This ECO is for Revision 1 CPU Modules only! Refer to ECO #119001 for

.jns.t.ruc.tions __ tQr .. ReYi.sjQn. . .Q_Q>JLJ1Q.dul~:.=s,-,-. ________________ _

PRODUCT .. _ ... S.up.ex6cQ.i.R __ __ .. __ ._DATE ___ JalJ.u~a.,,~_80 Eco#_J!l0004_ PAGE 1 OF 1

ASSEMBLY NAME/NUMBER_._._J~S!.Y.I?'parQLCPU Modul e

BACKGROUND AND IMPLEMENTATION INFORMATION:

Standard SuperBrain terminals are supplied with 32K dynamic RAM but can be expanded to
64K. The instructions below detail the proper installation of the optional 32K RAM
expansion kit.

INSTALLATION:
1) Remove cover and locate RAM bank at upper left corner of Keyboard/CPU Module.

(See Figure 1)
2) Install all sixteen RAM chips in the two upper rows of eight sockets each

being careful to notice that all the chips are inserted correctly. (NOTE:
The notch on each chip should be pointing toward the top of the board.)

3) After all sixteen RAM chips have been installed, find the small bare wire
jumper located between the two chips designated 174LS157 1 and 174LS155 1. (See
Figure 1)

4) Cut the LEFT end of the jumper (end closest to the 174LS157 1) and reconnect
it to the pad just to the RIGHT of the other end (the two pads are approxi
mately 0.111 apart). Installation of the additional 32K is now complete.

Figura 1 - Location of SuperBrain RAM Bank

Install extra 32K of RAM into these 1
sockets (8 sockets each row) 16 RAM
chips are required to enable the extra
32K memory.

OPERATION:

Remove and reconnect
jumper located in' this
area

To operate the SuperBrain with 64K, insert a DOS diskette (configured for 64K) into
drive A. The sign-on message must read as follows:

64K SUPERBRAIN DOS VER
A

IMPORTANT: Do not attempt to operate the unit with a DOS Diskette configured for 32K.
It will not work properly in a 64K machine. The program which allows for configura
tion of the SuperBrain in 32 or 64K of RAM is entitled ICPM6420.COM 1 and is contained
on your CP/M DOS Diskette. The CP/M program MOVCPM, which reconfigures the size of the
Disk Operating System, is not supplied on the DOS diskette. Intertec offers only two
RAM configurations - 32K and 64K - so there should be no need to reconfigure the
operating system to any other size.

See reverse side for additional information

THIS ENGINEERING CHANGE ORDER AFFECTS: IDS-910A

DMATERIAL(S) /COMPONENTS(S) USED

DPRODUCTION PROCEDURES

THIS CHANGE PREVENTS:~~

CHANGE FROM:

32K SuperBrain Operation

CHANGE TO:

64K SuperBrain Operation

INITIATED BY:

THIS ECO DISTRIBUTED TO:

o ENGINEERING

o OPERATIONS

o QUALITY ASSURANCE

o SHIPPING & RECEIVING

~ CUSTOMER SERVICE

~ MARKETING

~ FIELD SERVICE

o CUSTOM E R LIST

~ CUSTOMER AS REQUESTED

DPACKAGING/SHIPPING

~SERVICING/PROCEDURES

DOTHE~----------------------------

KIT AND ORDERING INFORMATION

KIT AVAILABLE? 0 YES 0 NO

KIT N UM B E R ___ 9_r.9~r ___ by ._c1~~_GI:iptjQI1._. ______ ._.

PRICING: ... 1~50.fQL3tclcljttQnQJ_JfIL8l:\~L __ ..

....... _1. •. O .• B .•. . fa ctoJ'y,_CoJumbj 9,L.S, C.

CONTACT THE CUSTOMER SERVICE DEPARTMENT AT THE

NUMBER AND ADDRESS ON REVERSE SIDE TO OBTAIN

FURTHER INFORMATION AND/OR TO ORDER THIS KIT.

SOFTWARE ADDENDUMS

I

SUPERBRAIN DOS 3.0 DESCRIPTION

DOS 3.0 has two major differences from the previous versions of SUPERBRAIN DOS. First,
DOS 3.0 incorporates CP/M 2.2 and secondly, the physical sector length of the diskette has been
changed from 128 bytes/sector to 512 bytes/sector. An increased diskette capacity (40 kilobytes
per diskette) is the result of these alterations.

. The updated DOS requires the use of a VERSION 3.0 or higher PROM Bootloader. The
version number can be easily verified by performing a system reset with no diskettes in the drives.
The version number will be displayed in the sign-on message.

Also included on this diskette are four different operating systems to facilitate the copying of
128 byte/sector diskettes to 512 byte/sector diskettes. They are the following:

32CPM5/5.COM - 32K DOS; Disk A is 512 bytes/sector;
Disk B is 512 bytes/sector

32CPM5/1.COM - 32K DOS; Disk A is 512 bytes/sector;
Disk B is 128 bytes/sector

64CPM5/5.COM - 64K DOS; Disk A is 512 bytes/sector;
Disk B is 512 bytes/sector

64CPM5/1.COM - 64K DOS; Disk A is 512 bytes/sector;
Disk B is 128 bytes/sector

The distribution copy is initialized as a 64K system with both disk drives programmed to
accept a 512 byte/sector diskette. This was done so a copy of the distribution diskette can be
easily made before attempting to change operating systems.

NOTE: THE STANDARD SUPERBRAIN IS SHIPPED WITH A 32K MEMORY.
. . THEREFORE, A 32K DOS MUST BE GENERATED BEFORE

PERFORMING ANY FILE MANIPULATIONS.

RECOMMENDED OPERATING PROCEDURES
To insure that the proper operating system for your SUPERBRAIN version is utilized, the

following procedure should be performed. This procedure describes the generation of an operating
system on a newlyformatted diskette.

1) Insert a blank diskette into Disk B.
2) Format the diskette using the FORMAT30.COM program. Type 'FORMAT30' (Return)

NOTE: DRIVE B CAN ONLY BE FORMATTED IF IT IS NOT DESIGNATED
AS A 128 BYTE/SECTOR DRIVE.

3) Select one of the two 512/512 operating systems and put it on Disk B.

EXAMPLE:
If you have a 32K system and you want to copy the distribution diskette, do the
following:

Type '32CPM5/5' (RETURN)
System responds with
'SOURCE DRIVE NAME (OR RETURN TO SKIP)
Type RETURN

. System responds with
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Type 'B'
System responds with
DESTINATION ON B, THEN TYPE RETURN
Type RETURN
When function is complete, type RETURN.

4) Remove the diskettes and interchange them in the drives.
5) Do a system reset. The system should sign-on with the generated DOS message.
6) Copy the programs from Disk B to Disk A using the PIP program.

Now that a back-up copy has been generated, anyone of the four operating systems can be
put on disk A by following the above procedures and using Disk A as the destination.

To copy 128 byte/sector diskettes to a 512 byte/sector diskette, use either 64CPM5/1.COM
or 32CPM5/1.COM. Put the 512 byte/sector diskette in Disk A and the 128 byte/sector diskette
in Disk B.

32K BIOS PROGRAM
The BIOS portion of the DOS is supplied as a source program (32BS5/5.ASM) to facilitate

the modification of the software drivers for peripheral devices. This program can be edited,
assembled, and integrated into the DOS. Any extra routines should only be added in the
designated area of the BIOS program.

SOFTWARE/HARDWARE COMPATIBILITY
DOS 3.0 can only be operated on SUPERBRAIN units that have a REV-01 processor PC

Board, and then only certain REV-01 boards quality. If your system does not have a REV-01
board, then DOS 3.0 cannot be used on that system. However, REV-01 boards that do not
qualify can be factory retrofitted to support DOS 3.0.

To determine if your machine can support DOS 3.0 software, it is necessary to visually
inspect the Processor board. This is done in the following manner:

1) Remove power from unit.
2) Close door on disk drives.
3) Remove cover by removing four screws. (2-front, 2-rear)
4) To determine if the board is at the correct revision "level, the number 1532000-01 should

be on the top right hand corner of the board and there should be two blue ribbon-cable
connectors mounted on the board.
If the board does not meet both conditions, it will not support DOS 3.0

5) If the board is REV-01, one more condition must be met. There should not be a 35391 or
35392 IC installed in the location shown in the diagram on the attached page. If an IC is
present in that location and you would like to use DOS 3.0, contact the factory for
pricing and scheduling.

WHITE CONNECTOR

5·POSITION
QIP SWITCH
(BLUE)

74LS245

35391 OR
35392

Direct all inquiries to:

****.
* *
* *

* .. *
* *
* *
* *
* *
* .. *

*

.. *****

CUSTOMER SERVICE
INTERTEC DATA SYSTEMS
2300 BROAD RIVER ROAD
COLUMBIA, SC 29210

TELEPHONE: 803/798-9100

,/I, INTHTEC' TECHNICAL 8ULLETIN J C OI\TI\ IDS - 912A

® ~~~H~adqUarters: 2300 Broad River Road, Columbia, South Carolina 29210.803/798-9100. TWX: 810-666-2115

,
ASSEMBLY NAME/NUMBER. __ DOSJ;ttSK~IIJ; ____ . __________ . ____ PRODUCT _SLLPer6.ra in ----;-J--.
REFERENCE Eco#_._. __ ~LA DISTRIBUTED TO________ APPROVE!!J--------

USING THE IIINP: II AND 1I0UT:1I FEATURES OF PIP
TO FACILITATE FILE TRANSFERS TO AND FROM THE SUPERBRAIN

The SuperBrain is presently equipped with one RS-232-C serial interface port (labeled
IMain l on the rear panel). This interface is programmed for the following mode:

1 Ae-llla l1 y A\Jx. Poco(Asynchronous
1200 Baud

'l'his Pro::.drlrt -GJ,o!;..f
5!)p-Prbr-c: ;r1 <;

8 bits
1 Stop Bit
No Parity

This port is also wired so that the SuperBrain appears as a processor rather than as
a terminal. If it is to be used as a terminal, pins 2 and 3 in the RS-232-C cable
must be interchanged.

Files can be transferred using the PIP program as described in Section 6.4 of the
Operator1s Manual entitled IIAn Introduction to CP/M Features and Facilities. II When
the SuperBrain transmits serial data, the destination is designated as a list (LST:)
device; when receiving, the source device is considered a reader (RDR:).

The serial port may also be considered as an input (INP:) or output (OUT:) port. When
used in this mode, the operator has the option of communicating to the sending/re
ceiving device via the SuperBrain console before actual files are transferred.

Files transferred via the serial port must be in Intel hex format or ASCII. Binary
files must be converted to hex files by utilizing the HEXGEN.ASM program before being
sent to the SuperBrain. BASIC files must be saved in the ASCII format it they are to
be trangferred to the serial interface.

(NOTE: 'When ASCII files are transferred using the INP: or OUT: format, all data en
tered by the Operator on the console will also appear in the ASCII file. Undesired
data must then be edited by using ED. COM).

Sequence of Operation:
1. Connect SuperBrain MAIN port to console input of host computer. Be sure host

computer is set to 1200 baud.

2. The largest program that can be transferred by PIP is 25K. If programs are
larger than 25K, then programs most be broken down into smaller segments
25K or smaller.

3. All commands must be entered on the SuperBrain in the following sequence:

Contact the Customer Service Department at the address above for additional information on this bulletin.

~F INTE~TEC TECHNICAL BULLETIN

~ ~. ~t;:'!;!'dq"'rt'rt, 2300 8,~d R ;'" R~d. Co'"mb". S,"," C,,,Ii,, 2921 0 • 803/798-9100 • TWX, 810-666-2115 'DS - 91,.

DATE OF THIS RELEASE November', 1979 .. PAGE .2 ... oF6.BULLETIN #_ ... ~U.~.O~~._. ___ ._ _

ASSEMBLY NAME/NUMBER DOS DISKETTE

REFERENCE ECO# N/A DISTRIBUTED TO .

A. To transfer ASCII file - ABC. ASM - from SuperBrain to host:

A> PIP OUT: = ABC. ASM~
ECHO (YIN) 'i I?-

+

(Keyboard entry)
(Computer responds)
(Keyboard entry)
(Computer responds)

Now the SuperBrain will act like a dumb terminal for host computer.
Any keyboard entry will be sent to host computer and displayed on
screen.

+ PIP ABC.HST = CON:)

(CTRL) (B)

(Keyboard entry)
(Computer responds)
(Keyboard entry - these two
keys at the same time)

NOTE: Underlined characters are typed by customer.
I~ II represents a carri age return.

Now the file is being transferred and should be displayed on the screen.
When the file has been transferred the operating system will show the
prompt symbol.

A> PIP OUT: = EOF:
ECHO (YIN) 'i ~

+
(CTRL) (B)

(Keyboard entry)
(Computer responds)
(Keyboard entry)
(Computer responds)
(Keyboard entry - these two
keys at the same time)

Now the file transfer has been completed; both computers should
return to the operating system.

B. To transfer binary file - ABC.COM - from SuperBrain to host:

A> PIP ABC.TST = INP:~
ECHO (YIN) 'i

+

(Keyboard entry)
(Computer responds)
(Keyboard entry)
(Computer responds)

Now the SuperBrain will act like a dumb terminal for the host
computer. Any keyboard entry will be sent to the host computer
and displayed on the screen.

+ PIP ABC.HEX = CON:) (Keyboard entry)

Contact the Customer Service Department at the address above for additional information on this bulletin.

JIIC DATA IOS-912A ~~
INTE~TEC TECHNICAL BULLETIN

@ ~r~!~t~adqUartars: 2300 Br~ad River Road, Columbia, South Carolina 29210.803/798-9100. TWX: 810-666-2115

DATE OF THIS RELEASE . November,J979 ... _.PAGE ... 3 ... 0F ... P ... BULLETIN #.JH19004 ______ .. _

ASSEMBL Y NAME/NUMBER __ ._.D.O~.PJSKEJI~ ___ ._ .. PRODUCT _._S1JR~.r.er.i:llr:L'· ____ ~;I·_'

REFERENCE ECO#... -" NIp.. .. DISTRIBUTED TO '" --.--..--.--.--.. _---.. -... -.--APPROVEoJ{.-.... ,

NOTE: The binary file on the SuperBrain will be transferred in
INTEL HEX format. After the transfer use LOAD or DDT and
SAVE to change. HEX file to a binary, COM file.

(CTRL) (Z)

End of file, Control Z?
(CTRL) (Z)

(Keyboard entry - these two
keys at the same time)

(Computer responds)
(Keyboard entry - these
two keys)

Now the host computer is set up to input a file. The SuperBrain
will return to the operating system with its prompt.

A> HEXDUMP ABC. COM) (Keyboard entry)

At this point the file will be transferred in HEX format and
displayed on the screen. When the transfer is complete the
SuperBrain will return to the operating system.

C. To transfer ASCII file - ABC.PRN - to SuperBrain from host:

A> PIP AB C . P RN = IN P :.)
ECHO (YIN) Y ,.

+

(Keyboard entry)
(Computer responds)
(Keyboard entry)
(Computer responds)

Now the SuperBrain is ready for input from host. The keyboard
entry will be sent to the host and displayed on the screen. Now
set up commands to output from the host.

+ PIP CON: = ABC.PRN; (Keyboard entry)

The file ABC.PRN on the host is now being input to the SuperBrain
and displayed on the screen. After the file has been transferred,
the SuperBrain should return to the operating system; if it does
not, then type (CTRL) (Z) simultaneously.

D. To transfer binary file - ABC. COM - to SuperBrain from host:

(NOTE: Before transferring to SuperBrain, either HEXGEN.ASM or
HEXDUMP.COM must be transferred to the host.)

.~~.~

Nffn::: IIsXDI),o;t{:! t7tdW Pp· ... "'=R: ~q:: A L\6TII~"I::-' Pt:61&A).4 T E'<J
FILE- jrd flSe-E: (t-&jo..qC ~ etivtvcdlii7t+ of ~)

Contact the Customer Service Department at the address above for additional information on this bulletin.

DATE OF THIS RELEASE November, 1979 4 PAGE OF 6 Bl19004 . BU LLETI N # __ . __ ... _ ... ______ .. _ .. __ __

ASSEMBLY NAME/NUMBER DOS DISKETTE _. . .. P RODUCT ._ ?'-~p~!:.~!'a ~.~ ... __ ... __ ._:.~.I- .,.
REFERENCE ECO# N/A DISTR I BUTED TO .. -- " .. - .-.--........ ----.------.APPROVED.::Jf---.--

1) Using HEXDUMP. COM

A> PIP ABC.HEX = INP: [H] .~
ECHO (YIN) Y ,F'"

+

(Keyboard entry)
(Computer responds)
(Keyboard entry)
(Computer responds)

Now the SuperBrain ready to accept input. NOTE: Since a binary
file is transferred in INTEL HEX format, the .HEX file on the
SuperBrain can be changed using LOAD or DDT and SAVE, to a binary
fi 1 e.

+ HEXDUMP ABC. COM; (Keyboard entry)

The file is now being transferred and also displayed on the screen.
When the transfer is complete, the SuperBrain will return to the
operating system.

2) Using HEXGEN. ASM
Look at source listing:

ORG

LXI
LXI
LXI

6000H

SP 6400H
0, 6000H
H, 100H

*ending address
*beginning address

The origin and the SP will need to be modified for your particular
system. (For example: 32K system use ORG 5000H~ and SP, 5400H.)
You may also change H,D to suit program size; register H is loaded
with the end address of the program to be transferred and register
o has the beginning address (most programs begin at 100H). Now run
assembler to generate HEXGEN.HEX. You are ready to begin.

A> PIP ABC.HEX = INP:
ECHO (Y IN) Y

+

[H] -;. (Keyboard entry)
(Computer responds)
(Keyboard entry)
(Computer responds)

At this point the SuperBrain is ready for input and the host must
be set up to output the HEX file.

+.llilI P
Verslon 1.4

(Keyboard entry)
(Computer responds)

Contact the Customer Service Department at the address above for additional information on this bulletin.

=;till? INTE~ .. TECHNICAL BULLETIN d ~ DATA IDS-912A

® ~~~H~adqUarters: 2300 Broad'RiverRo~d, Columbia, South Carolina 29210. B03/798-9100 • TWX: 810-666-2115

DATE OF THIS RELEASE ... -NoYE:In.ber, __ 1912 ______ PAGE_. §. __ OF __ §' __ BULLETIN #~119004 ___ .. _. ___ _

ASSEMBLY NAME/NUMBER-.. ___ .. RQ.?_ . .QlS_KUIl _____ . __ . ___ . _____ PRODuCT_ilu.perBr.§i n ~~T-'

REFERENCE ECO#~ .. ___ .. _ ... _tlLA. __ ._ .. __ .. ___ .. DISTRIBUTED TO .. ____ _____________ APPROVED.;jf-__ _

3)

Now we have loaded DDT into the host system.

- IABC. COM ;.
-RJI..
NEXT PC
DADO 0100

-IHEXGEN.HEX;.
.:B..')'
NEXT PC
60B8 0100

(Keyboard entry)

(Computer responds)
(These two numbers are the
end and starting address)

(Keyboard entry)

(Computer responds)

At this point the host computer has 2 programs loaded into
memory, one above the other. One is the program to be transferred
and the other to generate the INTEL HEX format.

(Keyboard entry)
(The number is the same

-G6000 ;.

as ORG in the source listing)

Now the file is being transferred and will be displayed on the
screen. After the program has been transferred, the SuperBrain
will return to the operating system.

To change back to a bi nar,t fi 1 e, follow this ~rocedure:

A> LOAD ABC. HEX ~ (Keyboard entry)

LAST ADDRESS XXXX (Computer responds)
FIRST ADDRESS XXXX
BYTES READ XXXX
RECORDS WRITTEN XX

A>

Now there are two fil es: one HEX and one binary.
or

A> DDT ABC.HEX:tl (Keyboard entry)
Version 1.4 (Computer responds)
Next PC
ABCD 0100

(CTRL) (C) (Keyboard entry - both keys
at same time)

Contact the Customer Service Department at the address above for additional information on this bulletin.

•.. ~~i

Jllc: DATA IDS-912A ~~
INTE(TEC TECHNICAL BULLETIN

(iO) ~~~H~adqUarters: 2300 Broad River Road, Columbia, South Carolina 29210.803/798-9100 • TWX: 810-666-2115

Q~TE OF THIS REI EASE November. 1979 PAGE 6 OF 6 BU LLET I N # B"-"1 1 90,.,,0 4'--__ _

ASSEMBLY NAME/NUMBER DOS DISKETTE~ ________ PRODUCTs.up.eArp~Bp.rR.aojv~ED /

REFERENCE Eco#: __ N/A DISTRIBUTED TO VEr;jf--

A> SAVE xx ABG.COM;.

NOTE: XX = A times 16 + B
under NEXT

(Keyboard entry)

Now there are two files: one .HEX and one binary.

Contact the Customer Service Department at the addres:: above for additional infnrmMinn nn thi.~ hI/lip-tin.

DATE OF THIS RELEASE __ ~nuar .. LIQ...LJ980 PAGE

ASSEMBLY NAME/NUMBER___ Main Power SUDD 1 y

REFERENCE ECo#_. ___ NL8 __ .. _____ DISTRIBUTED TO

1 OF __ l_BULLETIN # B010008 _._

PRODUCT Su~erBrain & Inter~Q~
I'nterTube & . 10/
SuperBrain Resellers APPROVED-jJ~W,--_.

I

COMPATIBILITY INFORMATION FOR REVISION 3 AND 4
OF THE INTERTUBE AND SUPERBRAIN MAIN POWER SUPPLY MODULE/ASSEMBLY

Revision 4 of the SuperBrain Main Power Supply Module is compatible £rrll with
Revision 1 of the SuperBrain Keyboard/CPU Module and any revision level of the
InterTube Processor Module.

Revisions 1 - 3 of the SuperBrain Main Power Supply can be used .Q!!.!y with Revision
o of the SuperBrain Keyboard/GPU Module and any revision level of the InterTube
Processor Module.

CAUTION: Attempts by the customer to connect incompatible Power Supply Modules
with either Keyboard/CPU Modules or Processor Modules will cause severe, irreparable
damage to all modules connected in this manner.

Since compatibility must be observed when interchanging modules, it is necessary
for all customers to specify the revision level of any module which is r~quested
to be sent from our Service Department prior to return of a defective module. Rev
ision levels of all modules/subassemblies are listed as a suffix number of the
standard Intertec module part number. Example: Intertec number 1424002-04 would
specify revision level "4" of the SuperBrain Main Power Supply.

Cont;,ct the Customer Service DeD8rtment;" the Rrfrlre!l!t Rhnvp. fnr IIrl,,;,ionai information '''' th;.~ hlllle,in.

•

Jlllic • ~'~rt.n' 2300 ._ R'w, R Co'"mb". S~'" eo .. ,,"" 292,0. B03~'OO. :'E~,::: BU~~~r,I~
DATE OF THIS RELEASE January 10,).J80_PAGE 1 OF 1 BULLETIN #~B~0.:!:.:10~0,!.!,0~9 ___ -I--

ASSEMBLY NAME/NUMBER Keyboard/CPU Module PRODUCT. SuoerBrain /

REFERENCE Eco#_-=N/c..:.A"--____ DISTRIBUTED TO Manual s and as regueste~PPROvED-jj,WiI/~ __
~r

SUPERBRAIN CPU MODULE REVISION 1
SERIAL COMMUNICATIONS DIPSWITCH SETTING PROTOCOL

Starting with Revision 1 of the SuperBrain Keyboard/CPU Module (all factory produced
units effective January 10, 1980) there exists a small 5 position dipswitch located
in the upper right hand corner of this module. This switch is used to control
various clock parameters to and from the MAIN USART. For normal use these switches
should be set as follows:

1 - OFF, 2 - OFF, 3 - ON, 4 - ON, 5 - OFF

Listed below is a brief description of the function of each of these switches:

1 - External TX Clock to MAIN USART - Originates from Pin #15 on
MAIN RS232 connector at rear of terminal.

2 - External RX Clock to MAIN USART - Originates from Pin #17 on
MAIN RS232 connector at rear of terminal.

3 - Internal TX Clock to MAINUSART - When on this switch enables
the built-in baud rate generator (Western Digital BR-1941).
NOTE: When this switch is in the 10N I position switch 1 MUST
be in the 10FF I position.

4- Internal RX Clock to MAIN USART - When this switch is in the
10N I position switch 2 MUST be in the 10FF I position.

5 - Internal Baud Clock to MAIN Port - This switch enables the
transmission of the internal baud rate clock (Western Digital BR-1941)
to the main RS232 port - this signal will appear on Pin #24 of
the main port when this switch is in the ION I position. If this
switch is not used, it should be left in the 'OFF I position to
avoid any possible conflict with external RS232 signals.

Contact the Customer Service Department at the address aboVe for additional information on this bulletin.

STATEMENT OF LIMITED WARRANTY

For ninety (90) days from the date of shipment from our manufacturing plant at 2300 Broad River Road. Columbia. South Carolina. Intertec warrants.
to the original purchaser only. that its products. excluding software products. will be free of defective parts or components and agrees to replace or repair
any defective component which. in Intertec's judgment. shall disclose to have been originally defective. Intertec neither offers nor implies any warranty
whatsoever on any software praducts. Furthermore. Intertec's obligations under this limited warranty are subject to the following conditions:

LIMITED WARRANTY REPAIRS

Unless authorized by written statement from Intertec. all repairs must be done by Intertec at our plant in Columbia. South Carolina. Return of any and
all ports and/or equipment must be freight prepaid and accompanied by on Intertec Return Material Authorization number which must be clearly visible
on the customer's shipping label. Return of ports or equipment contrary to this policy sholl result in the material being refused. and the customer being
invoiced for any replacement ports. if any were previously issued. at Intertec's standard prices.

When making repairs or replacing parts in accordance with this limited warranty. Intertec reserves the right to alter and/or modify specifications of this
equipment.

Upon completion of the repairs. Intertec will return the equipment. freight collect. directly to the customer from whom it was sent via UPS or equivalent
ground transportation.

Authorization to return equipment for repair can be obtained by writing Intertec at the address stated herein or by colling our Customer Service
Deportment at 803/798-9100.

In the event Intertec shall authorize repair of its equipment. in writing. by on authorized repair agent. then Customer sholl bear all shipping. pocking.
inspection and insurance costs necessary to effectuate repairs under this warranty.

EXCLUSIONS

The Limited Warranty provided by Intertec Data Systems Corporation does not include:
(0) Any damage or defect caused by injuries received in shipment or any damage caused by unauthorized repairs or adjustments. The risk of loss or

damage to the equipment sholl pass to the Customer upon delivery by Intertec to the carrier at Intertec's premises.
(b) Repair. damage or increase in service time caused by failure to continually provide a suitable installation environment including. but not limited to.

the failure to provide. or the failure of. adequate electrical power. air-conditioning. or humidity control.
(c) Repair; damage or increase in service time caused by occident or disaster. which shall include. but not be limited to. fire. flood. water. wind.

lightning. transportation neglect. misuse and alterations. which shall include. but not be limited to. any deviation from the original physical. mechanical
or electrical design of the product.

(d) Any statements made about the equipment by salesman. dealers or agents unless such statements are in a written document signed by an officer of
Intertilc Data Systems Corporation. Such statements do not constitute warranties. sholl not be relied on by the buyer. and are not port of the contract for
sale.

(e) Any damage ariSing out of any application for its products other than for normal commercial and industrial use. unless such application is. upon
request. specifically approved in writing by Intertec. Intertec products are sophisticated data processing units and are not sold or distributed for personal.
family or household purposes.

(f) Software. including either source code. object code or any computer program used in connection with our equipment. whether purchased directly
from Intertec or from an independent source.

WAIVER OF ALL EXPRESS OR IMPLIED WARRANTIES

Our limited warranty to repair or replace defective parts or components for ninety (90) days after shipment from our Columbia plant is being offered in
lieu of all express or implied warranties.

INTERTEC MAKES NO EXPRESS WARRANTY OTHER THAN THE LIMITED WARRANTY SET FORTH ABOVE. CONCERNING THIS PRODUCT OR ITS
COMPONENTS. NOR DO WE IMPLIEDLY WARRANT ITS MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

All statements. technical information and recommendations contained in this and related documents are based on tests we believe to be reliable. but
the accuracy or completeness thereof is not guaranteed.

THE FOREGOING LIMITED WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES. EXPRESS OR IMPLIED. EXCEPT AS TO CONSUMER GOODS IN
WHICH CASE THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY ONLY FOR THE PERIOD OF THE
LIMITED WARRANTY.

PURCHASERS OF CONSUMER PRODUCTS SHOULD NOTE THAT SOME STATES DO NOT ALLOW FOR THE EXCLUSION OF CONSEQUENTIAL
DAMAGES OR THE LIMITATION OR THE DURATION OF IMPLIED WARRANTIES SO THE ABOVE EXCLUSION AND LIMITATION MAY NOT BE
APPLICABLE.

THIS LIMITED WARRANTY GIVES THE PURCHASER SPECIFIC LEGAL RIGHTS. AND THE PURCHASER MAY ALSO HAVE OTHER RIGHTS WHICH MAY
VARY FROM STATE TO STATE.

LIMITATION OF REMEDIES

INTERTEC SHALL NOT BE LIABLE FOR ANY INJURY. LOSS OR DAMAGE. DIRECT OR CONSEQUENTIAL. TO PERSONS OR PROPERTY CAUSED
EITHER DIRECTLY OR INDIRECTLY BY THE USE OR INABILITY TO USE ITS PRODUCTS AND/OR DOCUMENTS. SUCH LIMITATION IN LIABILITY SHALL
REMAIN IN FULL FORCE AND EFFECT EVEN WHEN INTERTEC MAY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH INJURIES. LOSSES OR
DAMAGES.

Before purchaSing or using. the Customer shall determine the suitability of Intertec's products and documents for his intended use and assumes all risk
and liability whatsoever in connection therewith.

THE LIMITED WARRANTY TO REPLACE OR REPAIR PARTS OR COMPONENTS FOR NINETY(90) DAYS IS THE EXCLUSIVE REMEDY PROVIDED TO THE
CUSTOMER AND THE LIABILITY OF INTERTEC WITH RESPECT TO ANY OTHER CONTRACT. SALE OR ANYTHING DONE IN CONNECTION
THEREWITH. WHETHER IN CONTRACT. IN TORT. UNDER ANY WARRANTY. OR OTHERWISE. SHALL NOT EXCEED THE PRICE OF THE PART OR
COMPONENT ON WHICH SUCH LIABILITY IS BASED.

Rights under this warranty are not assignable without the express prior consent. in writing. of Intertec Data Systems Corporation. and. regarding the
terms of such consent in writing. the assignee shall have no greater rights than his aSSignor.

In the event the Customer has any problem or complaints arising out of any breach of our limited warranty. including a failure to make repairs in
accordance with the warranty. or unsuccessful repair attempts by an authorized repair facility. the Customer is encouraged to inform Intertec. in writing.
of his or her problem or complaint. Any such writing should be addressed to Intertec Data Systems Corporation. 2300 Broad River Road. Columbia. South
Carolina. 29210 and should be marked with the phrase "Warranty Claim."

." .\

r.

()

CORPORATE HEADQUARTERS. 2300 BROAD RIVER ROAD. COLUMBIA, SOUTH CAROLINA 29210 • 803/798-9100
.... ~

CORPORATE HEADQUARTERS. 2300 BROAD RIVER ROAD. COLUMBIA, SOUTH CAROLINA 29210 • 803/798-9100

