

PRELIMINARY

USERS MANUAL FOR

INTERTEC'S

COMPUSTAR

VIDEO PROCESSING SYSTEM

Document NO. 6801030
May, 1981

NOTE: Although referenced in several areas, photographs are not
shown in this document. Future revisions wi~l include appro
priate photos and illustrated drawings. Your warranty registra
tion form must be returned promptly to assure receipt of future
revisions to this document.

This Class A equipment generates, uses, and can radiate radio frequency energy and if not installed and
used in accordance with the instructions manual, may cause interference to radio communications. As
temporarily permitted by regulation it has not been tested fo~ compliance with the limits for Class A com
puting devices pursuant to Subpart I of Part 15 of FCC Rules, which are designed to provide reasonable
protection against such interference. Operation of this equipment in a residential area is likely to cause in
terference in which case the user at his own expense will be required to take whatever measures may be
required to correct the interference.

CONFIDENTIAL
AND

PROPRIETARY INFORMATION

Information presented in this manual is furnished for customer
reference only and is subject to change.

This document is the property of Intertec Data Systems
Corporation, Columbia, South Carolina, and contains confidential
and trade secret information. This information may not be trans
ferred from the custody or control of Intertec except as
authorized by Intertec and then only by way of loan for limited
purposes. It must not be reproduced in whole or in part and must
be returned to Intertec upon request and in all events upon
completion of the purpose of the loan.

Neither this document nor the information it contains may be used
or disclosed to persons not having a need for such use or
disclosure consistent with the purpose of the loan without the
prior express written consent of Intertec.

COPYRIGHT 1981

The following is a trademark of Intertec
Corporation, Columbia, South Carolina:

COMPUSTAR

INTERTEC DATA SYSTEMS CORPORATION
Columbia, South Carolina

Data Systems

CONGRATULATIONS ON YOUR PURCHASE OF INTERTEC'S COMPUSTAR
VIDEO PROCESSING SYSTEM

Your new CompuStar Video Processing System was manufactured at
Intertec's 120,000 square foot plant in Columbia, South Carolina
under stringent quality control procedures to insure trouble-free
operation for many years. If you should encounter difficulties
with the use or operation or-your terminal, contact the dealer
from whom the unit was purchas~or instructions regardIng the
prQper-5erVICing-[eChniques. If service cannot be made available
through your dealer, contact Intertec's Customer Service
Department at (803) 798-9100.

As with all Intertec products, we would appreciate any comments
you may have regarding your evaluation and application for this
equipment. For your convenience, we have enclosed a customer
comment card at the end of this manual. Please address your
comments to:

Marketing Services Manager
Intertec Data Systems Corporation

2300 Broad River Road
Columbia, South Carolina 29210

The CompuStar is distributed worldwide through a network of
dealer/OEM vendors and through Intertec's own marketing
facilities. Contact us at (803) 798-9100 (TWX' - 810-666-2115)
regarding your requirement for this and other Intertec products.

WILL THE MICROCOMPUTER YOU BUY TODAY
STILL BE THE BEST MICROCOMPUTER BUY TOMORROW?

Probably the best test in determining how to spend your
microcomputer dollar wisely is to consider the overall
versatility of your terminal purchase over the next three to five
years. In the fast-paced, ever-changing world of data
communications, new f'eatures to increase operator and machine
efficiency are introduced into the marketplace daily. We at
Intertec are acutely aware of this rapid infusion of new ideas
into the small systems business. As a result, we have designed
the CompuStar in such a manner as to virtually eliminate the
possibility of obsolescence.

Many competitive alternatives to the CompuStar available today
provide only limited capability for high level programming and
system expansion. Indeed, most low-cost microcomputer systems
presently available quickly become outdated because of the
inability to expand the system. Intertec, however, realizes that
increased demands for more efficient utilization of programming
makes system expansion capability mandatory. That means a lot.
Because the more you use your CompuStar, the more you'll discover
its adaptability to virtually any small system requirement.
Extensive use of "software-oriented" design concepts instead of
conventional "hardware" designs assure you of compa tabili ty vii th
almost any application for which you intend to use the CompuStar.

Once you read our operator's manual and tryout some of the
features described herein, we are confident that you too will
agree with our "top performance--bottom dollar" approach to manu
facturing. The CompuStar offers you many more extremely flexible
features at a lower cost than any other microcomputer we konw of
on the market today. The use of newly developed technologies,
efficient manufacturing processes and consumer-oriented
marketing program enables us to be the first and only major
manufacturer to offer such an incredible breakthrough in the
microcomputer marketplace.

Browse through our operator's manual and sit down in front of a
CompuStar Video Processing Unit for a few hours. Then, let us
know what you think about our new system. There is a customer
comment card enclosed in the rear section of this manual for your
convenience.

Thank you for selecting the CompuStar as your choice for a micro
computer system. We hope you will be selecting it many more
times in the future.

TABLE OF CONTENTS

1.1 ·INTRODUCTION, 1.2 UNPACKING, 1.3 SYSTEM SETUP

2.1 SYSTEM OPERATING INSTRUCTIONS, 2.2 PRACTICAL HINTS, 2.3 VIDEO DISPLAY FEATURES,
2.4 SERIAL INTERACTING, 2.5 SUPERBRAIN CHAINING ADAPTOR

3.1 SYSTEM INFORMATION, 3.2 THEORY OF OPERATION, 3.3 SYSTEM SPECIFICATIONS,
3.4 MAJOR COMPONENTS

4.1 INTRODUCTION TO CP/M FEATURES & FACILITIES

5.1 OPERATION OF THE CP/M CONTEXT EDITOR

6.1 CP/M 2.0 USER'S GUIDE FOR CP/M 1.4 OWNERS

7.1 OPERATION OF THE CP/M DEBUGGER

8.1 OPERATION OF THE CP/M ASSEMBLER

9.1 THE CP/M 2.0 INTERFACE GUIDE

10.1 THE CP/M 2.0 SYSTEM ALTERATION GUIDE

11.1 SERVICE PROCEDURES, 11.2 LOST OR DAMAGED EQUIPMENT, 11.3 ADDITIONAL TECHNICAL
DOCUMENTATION, 11.4 NON-DISCLOSURE AGREEMENT, 11.5 EQUIPMENT MALFUNCTION
REPORT, 11.6 LIMITED WARRANTY REGISTRATION FORM, 11.7 CUSTOMER COMMENT CARD

12.0 HARDWARE ADDENDA, 12.1 SERIAL COMMUNICATION HARDWARE SETUP, 12.2 8251A USART
OPERATION

13.0 SOFTWARE ADDENDA, 13.1 CONFIGUR.COM, 13.2 FORMAT.COM, 13.3 64K TEST.COM,
13.4 TX.COM, 13.5 RX.COM, 13.6 HEXDUMP.COM, 13.7 SYNCHRONOUS COMMUNICATION,
13.8 ASYNCHRONOUS PIP TRANSFERS BETWEEN TERMINALS, 13.9 VERSION 3.1 DOS
INFORMATION, 13.10 VERSION 3.2 CONFIGUR.COM

Section 1

Section 2
I

Section 3

Section 4

Section 5
I

Section 6

Section 7

Section 8

Section 9

Section 10

Section 11

Section 12

Section 13

SECTION 1.0
1.1 INTRODUCTION
1.2 SYSTEM UNPACKING

INSTRUCTIONS
1.3 SYSTEM SETUP

INSTRUCTIONS

•

*** IMPORTANT ***

Do not attempt to write or save programs on your system
diskette(s). It has been 'write protected' by placing a small
adhesive aluminum strip over the notch on the right hand side of
the diskette. Such attempts will result in a 'WRITE' or 'BAD
SECTOR' error.

Before using your CompuStar, please copy the System Diskette onto
a new blank diskette--an Intertec 1121010 diskette. If you do
not have such a diskette, contact your local dealer. He should
be able to supply you with one. If you have any questions
concerning this procedure, please contact your dealer before pro
ceeding. Failure to do so may result in permanent damage to your
System Diskette.

BEFORE APPLYING POWER TO THE MACHINE, INSURE THAT NO DISKETTES
ARE INSERTED INTO THE MACHINE. NEVER TURN THE MACHINE ON OR OFF
WITH DISKETTES INSERTED IN IT. FAILURE TO OBSERVE THIS PRECAUTION
WILL MOST DEFINITELY RESULT IN DAMAGE TO THE DISKETTES.

•

SECTION 1.0

1.1 INTRODUCTION

WELCOME TO THE WORLD OF COMPUSTAR! We are convinced
that you will be impressed with the packaging, operation, relia
bility, and quality of your new Video Computer System. Your
units have received special attention from design to preshipment
testing in order to bring you a quality system. To protect this
quality, we ask that you carefully follow the unpacking and
system setup procedures. These procedures are designed to:

- Reduce the risk of setup damage

- Reduce the time required to make your
operational.

system

This Compustar manual contains information covering
unpacking, cable connections, and system operation. In addition,
comprehensive information is included on specific items of
interest to you, the user. Since many CompuStar users are
familiar with computer processing, some sections of this manual
will not be required reading. However, we strongly recommend
that all users read the unpacking, system setup, and system
operating instructions contained in Sections 1.0 and 2.0. In
addition, all users should become familiar with the system
technical information presented in Section 3.0.

Sections 4 through 10 present more detailed information
on the use of CP/M and will answer questions you may have
concerning the operating system. Sections 11 through 13 present
additional information concerning servicing and hardware/software
updates.

Thank you for purchasing the INTERTEC COMPUSTAR SYSTEM.
We know this system will benefit you greatly in your environment
and we are dedicated to insuring the continued success of your
system through our

- Optional On-Site Service Program (See Section 11)

- Optional Extended Factory Warranty Service Program
(See Section 11)

- Optional Shared Service Program (See Section 11)

SECTION 1.2 - SYSTEM UNPACKING INSTRUCTIONS

1.2.1 Video Processing Unit (VPU) Removal

Step 1: NOTE: Because of the tight-fitting shipping
carto~the removal of a VPU from its carton may require two
people. One person may be required to hold the box on the floor
while the oth~r removes the unit from the carton.

With the arrows on the carton pointing up, stand facing
either side of the VPU. Grasp the unit along the top edge of the
cover with the fingers of one hand. (Caution: Excessiveupward
pressure on the cover top will result in damage to the cover.)
With the fingers of the other hand, grasp the rear of the unit on
the edge directly above the power cord. Lift the unit out of the
carton (see Figure 1.2A) place it on the floor and remove the two
foam packing inserts. Remove the protective plastic bag from
around the terminal. DO NOT DISCARD THE PACKING INSERTS AND
CARTON UNTIL YOU HAVE COMPLETELY CHECKED THE OPERATION OF THE
VPU.

Using the same lifting points as above, lift the VPU to
a table and position the VPU to the front (user looking at
keyboard). If the VPU is equipped with disk drives, remove the
shipping tape from each disk drive. (See Figure 1.2B) IMPORTANT:
THESE DOORS MUST BE TAPED AND ANY DISKETTES REMOVED IF THE UNIT
IS EVER RESHIPPED.

Step~: Repeat Step 1 for all terminals in the system.

1.2.2 Ten Megabyte Disk Storage System (DSS) Removal
~Optional Equipment)

Step 1: Locate
remove--from carton.
diskette.

the package containing the diskette and
Do not bend or otherwise damage the

Step 2: Grasping the foam inserts, remove the Disk Storage
System--cDSS) from the container and place on table. Remove the
foam packing inserts and protective plastic bag. IMPORTANT: DO
NOT CONNECT POWERCORD OF UNIT INTO WALL OUTLET. Turn the DSS on
one side and remove the disk locking screw and strap. (See
Figure 1.2C) The strap assembly should be saved in the event the
unit is reshipped. Position the DSS to the front (user looking
at POWER, READY, FAULT, and RESET buttons) and insure that ade
quate space is available around the unit for good air flow.
(CAUTION: During operation do not restrict the flow of air
through the bottom or sides of the DSS or put heavy items on top
of the unit.)

2

FIGURE 1.2A REMOVAL OF VPU FROM CARTON

FIGURE 1.2B REMOVAL OF SHIPPING TAPE FROM DISK DRIVE DOORS

FIGURE 1.2C REMOVAL OF DSS LOCKING SCREW AND STRAP

3

1 .2. 3 lQ Megabyte DSS Cable Removal (Optional Equipment)

Step 1: Remove cable assemblies from their carton. (The
number--0f- cables should be one less than the total number of
units in the system.)

Example: One DSS and 2 terminals would require 2 cable

One DSS, 2 terminals and I printer would
require 3 cables.

Place the cables near their respective units for later use.

1.2.4 32 Megabyte DSS Removal (Optional Equipment) (To Be
-Provided --- --- --

1.2.5 32 Megabyte DSS Cable Removal (Optional Equipment)
TIo Be Provi<red)

1.2.6 go-Megabyte DSS Removal (Optional Equipment) (To Be
Provided) --- --- --

1.2.7 96 Megabyte DSS Cable Removal (Optional Equipment)
TIo Be Provi<red)

1.2.8 contInuation

The unpacking of your system is now complete. Please
continue with the system setup instructions, Section 1.3.

4

SECTION ~ - COMPUSTAR SYSTEM SETUP INSTRUCTIONS

1.3.1 Designation of CompuStar VPU Number (Station Number)

Step 1: Insure that the powercord on each VPU is
disconnected (unplugged).

Step 2: If your unit has disk drives, insure that the drive
doors-are closed. Caution: Failure to close these doors could
result damage when the cover is removed in Step 6. These doors
may be closed by applying a slight pressure on the door pulling
it back toward the VPU screen.

Step 3: Remove the 5A fuse from the rear panel by pushing
in on the fuse holder and rotating it counter-clockwise.

Step 4: Position the VPU so that the two cover screws below
the front of the keyboard extend slightly beyond the table edge.
(See Figure 1.3A) Remove these two screws with a screwdriver.

Step 5: Rotate the VPU so that the two rear cover screws
above the power cord panel extend slightly beyond the table edge.
(See Figure 1.3B) Remove these two screws.

Step 6: Carefully remove the cover by lifting straight up
after insurIng that the disk drives doors are closed (Step 2).

Step 7: Locate the VPU designator dipswitches on the rear
of the unit (Figure 1.3C). (The switches represent binary counts
with the least significant bit on the left when looking at the
switch.) The switch has "on" and "off" markings on the side or
on the top. Locate these markings. The switches are activated
in the "off" position (depressing the "off" half of the switch).
They are deactivated in the "on" position (depressing the "on"
half of the switch).

Table 1.3A presents the position of each switch for all
possible VPU designations (1-255). For a CompuStar network con
taining less than ten VPUs, choose a unique VPU number between
one and ten and set the switches according to Table 1. (NOTE:
Other VPU numbers can be used but will require altering your
CompuStar system as described in Section 2.1.3.) (For a network
containing more than ten VPUs, assign a unique station number
between 1 and 255. For these networks, it will be necessary to
alter your CompuStar system upon completion of the system setup
procedures. See Section 2.1.3.)

Step 8: Replace the top cover. Do not accidentally change
the switch-setting as the cover is being positioned on the unit.

Step 9: Replace the two rear cover screws.

5

FIGURE 1.3A REMOVAL OF FRONT COVER SCREWS

FIGURE 1.38 REMOVAL OF REAR COVER SCREWS

FIGURE 1.3C VPU DESIGNATOR DIP SWITCHES

6

X=OFF
O=ON

TABLE 1.3A, (SHEET 1)

VPU VPU VPU
NUMBER SETTING NUMBER SETTING NUMBER SETTING

1 xooooooo 43 XXOXOXOO 85 XOXOXOXO
2 OXOOOOOO 44 OOXXOXOO 86 OXXOXOXO
3 XXOOOOOO 45 XOXXOXOO 87 XXXOXOXO
4 OOXOOOOO 46 OXXXOXOO 88 OOOXXOXO
5 XOXOOOOO 47 XXXXOXOO 89 XOOXOOXO
6 OXXOOOOO 48 OOOOXXOO 90 OXOXOOXO
7 XXXOOOOO 49 XOOOXXOO 91 XXOXOOXO
8 OOOXOOOO 50 OXOOXXOO 92 OOXXOOXO
9 XOOXOOOO 51 XXOOXXOO 93 XOXXOOXO

10 . OXOXOOOO 52 OOXOXXOO 94 OXXXOOXO
1 1 XXOXOOOO 53 XOXOXXOO 95 XXXXOOXO
12 OOXXOOOO 54 OX:XOXXOO 96 OOOOOXXO
13 XOXXOOOO 55 XXXOXXOO 97 XOOOOXXO
14 OXXXOOOO 56 OOOXXXOO 98 OXOOOXXO
15 XXXXOOOO 57 XOOXXXOO 99 XXOOOXXO
16 OOOOXOOO 58 OXOXXXOO 100 OOXOOXXO
17 XOOOXOOO 59 XXOXXXOO 101 XOXOOXXO
18 OXOOXOOO 60 OOXXXXOO 102 OXXOOXXO
19 XXOOXOOO 61 XOXXXXOO 103 XXXOOXXO
20 OOXOXOOO 62 OXXXXXOO 104 OOOXOXXO
21 XOXOXOOO 63 XXXXXXOO 105 XOOXOXXO
22 OXXOXOOO 64 OOOOOOXO 106 OXOXOXXO
23 XXXOXOOO 65 XOOOOOXO 107 XXOXOXXO
24 OOOXXOOO 66 OXOOOOXO 108 OOXXOXXO
25 XOOXXOOO 67 XXOOOOXO 109 XOXXOXXO
26 OXOXXOOO 68 OOXOOOXO 110 OXXXOXXO
27 XXOXXOOO 69 XOXOOOXO 111 XXXXOXXO
28 OOXXXOOO 70 OXXOOOXO 112 OOOOOXXO
29 XOXXXOOO 71 XXXOOOXO 113 XOOOOXXO
30 OXXXXOOO 72 OOOXOOXO 114 OXOOOXXO
31 XXXXXOOO 73 XOOXOOXO 115 XXOOOXXO
32 OOOOOXOO 74 OXOXOOXO 116 OOXOOXXO
33 XOOOOXOO 75 XXOXOOXO 117 XOXOOXXO
34 OXOOOXOO 76 OOXXOOXO 118 OXXOOXXO
35 XXOOOXOO 77 XOXXOOXO 119 XXXOOXXO
36 OOXOOXOO 78 OXXXOOXO 120 OOOXOXXO
37 XOXOOXOO 79 XXXXOOXO 121 XOOXOXXO
38 OXXOOXOO 80 OOOOXOXO 122 OXOXOXXO
39 XXXOOXOO 81 XOOOXOXO 123 XXOXOXXO
40 OOOXOXOO 82 OXOOXOXO 124 OOXXOXXO
41 XOOXOXOO 83 XXOOXOXO 125 XOXXOXXO
42 OXOXOXOO 84 OOXOXOXO 126 OXXXOXXO

7

X=OFF
O=ON

TABLE 1.3A, (SHEET 2)

VPU VPU VPU
NUMBER SETTING NUMBER SETTING NUMBER SETTING

127 XXXXXXXO 171 XXOXOXOX 213 XOXOXOXX
128 OOOOOOOX 172 OOXXOXOX 214 OXXOXOXX
129 XOOOOOOX 173 XOXXOXOX 215 XXXOXOXX
130 OXOOOOOX 174 OXXXOXOX 216 OOOXXOXX
131 XXOOOOOX 175 XXXXXXOX 217 XOOXXOXX
132 OOXOOOOX 176 ooooxxox 218 oxoxxoxx
133 XOXOOOOX 177 xoooxxox 219 XXOXXOXX
134 OXXOOOOX 178 OXOOXXOX 220 OOXXXOXX
135 XXXOOOOX 179 XXOOXXOX 221 XOXXXOXX
136 OOOXOOOX 180 OOXOXXOX 222 OXXXXOXX
137 xooxooox 181 xoxoxxox 223 xxxxxoxx
138 OXOXOOOX 182 OXXOXXOX 224 OOOOOXXX
139 XXOXOOOX 183 XXXOXXOX 225 XOOOOXXX
140 OOXXOOOX 184 OOOXXXOX 226 OXOOOXXX
1 41 XOXXOOOX 185 XOOXXXOX 227 XXOOOXXX
142 OXXXOOOX 186 OXOXXXOX 228 OOXOOXXX
143 XXXXOOOX 187 XXOXXXOX 229 XOXOOXXX
144 OOOOXOOX 188 OOXXXXOX 230 OXXOOXXX
145 XOOOXOOX 189 XOXXXXOX 231 XXXOOXXX
146 OXOOXOOX 190 OXXXXXOX 232 OOOXOXXX
147 XXOOXOOX 191 XXXXXXOX 233 XOOXOXXX
148 OOXOXOOX 192 OOOOOOXX 234 OXOXOXXX
149 XOXOXOOX 193 XOOOOOXX 235 XXOXOXXX
150 OXXOXOOX 194 OXOOOOXX 236 OOXXOXXX
151 XXXOXOOX 195 XXOOOOXX 237 XOXXOXXX
152 OOOXXOOX 196 OOXOOOXX 238 OXXXOXXX
153 XOOXXOOX 197 XOXOOOXX 239 XXXXOXXX
154 OXOXXOOX 198 OXXOOOXX 240 OOOOXXXX
155 XXOXXOOX 199 XXXOOOXX 241 XOOOXXXX
156 OOXXXOOX 200 OOOXOOXX 242 OXOOXXXX
157 XOXXXOOX 201 XOOXOOXX 243 XXOOXXXX
158 OXXXXOOX 202 OXOXOOXX 244 OOXOXXXX
159 XXXXXOOX 203 XXOXOOXX 245 XOXOXXXX
160 OOOOOXOX 204 OOXXOOXX 246 OXXOXXXX
1 61 XOOOOXOX 205 XOXXOOXX 247 XXXOXXXX
162 OXOOOXOX 206 OXXXOOXX 248 OOOXXXXX
163 XXOOOXOX 207 XXXXOOXX 249 XOOXXXXX
164 OOXOOXOX 208 OOOOXOXX 250 OXOXXXXX
165 XOXOOXOX 209 XOOOXOXX 251 XXOXXXXX
166 OXXOOXOX 210 OXOOXOXX 252 OOXXXXXX
167 XXXOOXOX 211 XXOOXOXX 253 XOXXXXXX
168 OOOXOXOX 212 OOXOXOXX 254 OXXXXXXX
169 XOOXOXOX 255 XXXXXXXX
170 OXOXOXOX

8

Step 1Q: Replace the two front cover screws.

Step 11:
clockwise.-

Replace the fuse by rotating the fuse holder

Step 12: Insure that the power switch located at the left
rear corner(as you look at rear of VPU) is in the "off" position.

Step 13: Verify that your VPU is wired for a line voltage
that is available in your area. The correct line voltage may be
determined from the serial tag located on the rear of your VPU.
This tag should indicate either 110 or 220 VAC operation. DO NOT
ATTEMPT TO CONNECT THE VPU TO YOUR LOCAL POWER OUTLET UNLESS THE
VOLTAGE AT YOUR OUTLET IS IDENTICAL TO THE ONE SPECIFIED ON THE
SERIAL TAG. Should the voltage differ, contact your dealer at
once and do not proceed to connect the CompuStar system to th~
power outlet. If the voltages are the same, connect the VPU
power cord to the wall outlet.

Step~: Repeat Steps 1 - 13 for each terminal.

Step 15: If your system does not include a Disk Storage
System-TDSS~ continue with Section 2.1. If a DSS is included,
continue with 1.3.2, 1.3.3, or 1.3.4.

1 . 3 . 2 1 ° Meg a b y teD i s.k S tor age S y s t em (D S S) Cab I e Con n e c t ion s
and CompuStar-system Test

Step 1 :
position.

Insure that the VPU switch is in the "off"

Step 2: Select the cable assembly to be used between the 10
megabyte DSS and an INTERTEC Model 20, 30, or 40 VPU (units which
contain floppy disk drives). NOTE: If your system has only
Model 10 units, proceed with steps 3 through 9, but substitute
Model 10 for Model 20, 30, or 40.

Step 3: Attach one end of the cable assembly to the rear of
the DSS:- -Insure a good connection by tightening the two adaptor
holding screws.

Step 4: Attach the other end of the cable assembly to one
of the chaining adaptors on the rear of the INTERTEC Model 20, 30
or 40. Either of the chaining adaptor ports may be used. Insure a
good connection by tightening the two adaptor holding screws.

Step 5: Verify that your DSS is wired for the line voltage
that is available in your area. The serial tag on the right rear
of the DSS will indicate that your unit is set for either 110 or
220 VAC operation. DO NOT ATTEMPT TO CONNECT THE DSS TO YOUR
LOCAL POWER OUTLET UNLESS THE VOLTAGE AT YOUR OUTLET IS IDENTICAL
TO THE ONE SPECIFIED ON THE BACK OF THE DSS. Should the
voltages differ, contact your dealer at once and do not connect
your DSS to the power outlet. Before connecting the DSS to the
wall outlet, be sure that the power switch located on the left

9

wall outlet, be sure that the power switch located on the left
front is OFF (extended out of the front panel the same distance
as the "Ready" switch). NOTE: Also make sure the disk locking
strap has been removed (see Section 1.2.2, Step 2). Your DSS can
be damaged if power is applied with the locking strap attached.

Connect the DSS power plug to the wall outlet. Push the POWER
switch on the front of your DSS. At this time, you should hear a
faint "whirring" sound coming from the fan inside the DSS. Both
the red light on the POWER switch and the green light on the
READY switch will be on. The READY FAULT and RESET switch lights
will be off. Press the RESET switch at this time.

Step 6: Put the POWER switch located at the left rear
corner of the VPU in the "ON" position if the line voltage is the
same as the VPU required voltage (Section 1.3.1, Step 13).

Step I: Refer to Section 2.1.4 for the test procedure to
insure your VPU is functioning properly. Upon completion of
these tests, return to step 8 below.

Step 8: If another INTERTEC Video Processing Unit (Model
10, ~ 20, 30 or 40) is to be used in the system, attach a
cable assembly between the unused chaining adaptor of the tested
VPU (setup in Step 4) and the untested VPU. REFER TO FIGURE 1.3D
(Typical System Configurations) FOR ADDITIONAL PICTORIAL INFORMA
TION CONCERNING INTERUNIT CABLE CONNECTIONS. Now repeat steps 6
and 7 for this VPU. Continue to repeat steps 6, 7, and 8 until
all units have been connected and tested. Then proceed to step
9.

Step 9: The setup of your system is now complete. Please
continue wIth the System Operating Instructions.

10

LOCAL
PRINTER

VPU MODEL 20,30,OR 40

SUPERBRAIN DISK STORAGE SYSTEM (055)
COMPUSTAR STAND·ALONE

VIDEO PROCESSING UNIT (VPU)

DSS

LOCAL
1!!!!.._J-~Y---I~!!!!~-----1 PRINTER

DSS MODEL 20 ,30,OR 40

COMPUSTAR STAND-ALONE VPU WITH DSS

LOCAL
PRINTER

NO.2''' •• NO.3

MODEL 10 VPU MODEL 10 VPU MODEL 10 VPU MODEL 10 VPU

COMPUSTAR SYSTEM WITH UP TO 255 MODEL 10 VPU's (FIXED DSS FILE ALlOCATNS)

DSS

MODEL 20,30,OR 40 MODEL 10 VPU MODEL 10 VPU MODEL 10 VPU

COMPUSTAR SYSTEM WITH ONE MODEL 20,30, OR 40 VPU AND UP TO 254 MODEL
10 VPU 's (ALTERABLE DSS FILE ALLOCATIONS)

am
DSS

MODEL 20,30 ,OR 40 MODEL 10 VPU

COMPUSTAR SYSTEM WITH ONE MODEL 20,30, OR 40 V PU AND UP TO 254 MODEL
10 VPU's ONE MODEL 15 WI SYSTEM PRINTER (ALTERABLE DSS FILE ALLOCATNS.)

FIGURE 1.30 TYPICAL COMPUSTAR SYSTEM CONFIGURATIONS II

1.3.3: 32 Megabyte Disk Storage System (DSS) cable connec-
tion and System test (to be added).

1.3.4: 96 Megabyte Disk Storage System (DSS) Cable
Connections and System test (to be added).

1.3.5: 10 Megabyte Disk Storage System (DSS) cable
connections and SuperBrain System test (to be added).

12

SECTION 2.0
2.1 COMPUST AR SYSTEM

OPERATING INSTRUCTIONS
2.2 PRACTICAL HINTS
2.3 VIDEO DISPLAY FEATURES
2.4 SERIAL INTERFACING
2.5 SUPERBRAIN AND DSS

OPERATING INSTRUCTIONS

COMPUSTAR SYSTEM OPERATING INSTRUCTIONS

2.1.0.0 OVERVIEW

Your CompuStar Computer System can consist of as few as one Video
Processing Unit (VPU) or as many as 255 VPUs and a Disk Storage
System (DSS). This section of the manual will explain how to use
your CompuStar system in any or all of these configurations. Each
Model 20, Model 30, or Model 40 VPU, as shipped from the factory,
is capable of operating as a stand-alone computer, quite similar
tQ our popular SuperBrain Video Computer System. You may choose
to operate your VPU in this manner, and later add the DSS and
other VPUs. If you purchase a DSS, you should know that these
units are configured at the factory, and you may simply attach
your VPUs and begin processing. Also, you may change the con
figuration of the DSS storage layout, allocating more or less
disk space to each station. There are portions of this section of
the manual devoted to each of these concerns.

It is recommended that you carefully read each of the sections in
this part of the manual, as this will familiarize you with the
hardware and software of the computer system. If you are going to
use your VPU as a stand-alone computer., the section entitled
"Using your CompuStar VPU as a Stand-Alone Computer" will
describe its operation. The general system of the CompuStar
network is described in "Layout of a CompuStar System", and if
you ever wish to employ CompuStar's multi-user capabilities, you
should carefully study thts section. The steps needed to change a
DSS allocation scheme can be found in "Altering a CompuStar
System". Again, read all sections thoroughly, and reread other
sections again as needed.

SECTION 2.1.1.0

2.1.1.0 LAYOUT OF A COMPUSTAR SYSTEM WITH A 10 MEGABYTE DSS

An operating system is a computer program that controls your
computer system, properly maintaining its resources, such as the
video, memory, peripherals, etc. A Disk Operating System, or DOS,
is an operating system that resides on a disk. Using a DOS, files
are brought into memory as needed, and therefore, memory usage is
lessened. Your CompuStar Computer System uses standard CP/M as
its Disk Operating System. A copy of the operating system exists
in each user station and makes CompuStar a true computer net
work. This enables the user at each station to enjoy the benefits
of his own computer terminal while allowing users to share the
common data and program files located on the computer disk.

A computer disk has a magnetic oxide coating to enable data to be
recorded upon it, similar to an audio recording device. The heads
in the disk drive read from and write data to the disk. The disk
rotates like a phonograph record, and the head positions itself
at the proper point on the disk for the desired operation. Unlike
a phonograph record, data on a disk is not kept in a spiral
fashion, but instead the disk is divided into rings of concen
tric circles called tracks. The tracks are further divided into
sectors. The operating system maintains a directory specifying
the sectors which are vacant and the sectors which contain data.
By viewing a directory of your disk, you can see a list of all
files which exist on that disk.

CP/M gives each disk drive a name. The names are 'A' for the
first drive, 'B' for the second, and so on, up to 'P' for the
sixteenth disk drive. Each VPU Model (20, 30, or 40) will con
tain its own floppy disk drives A and B. These are accessable
only by the stations themselves. A CompuStar ten megabyte DSS
will contain the drives C, D, and E, and there is special signi
ficance to this drive scheme. An area will exist for each user
on the DSS that will be like drives A and B - accessable only by
each individual station. This disk space is called drive C and
appears to be just another drive to the station. However, the
area called drive D is the shared by all users. Thus, files that
need to be common are kept in drive D. Further, drive E will be
used by the print spooler (details for the print spooler will be
available in the near future).

In a CompuStar Computer System, data files could be kept in the
common area, drive D. These files would be available to any sta
tion in the network. You could use the local storage in a VPU
with A and B disk drives to 'back up' the data on the DSS (this
is STRONGLY RECOMMENDED), and thereby preserve a copy of the
files in case of erroneous erasure. Data and programs needed only
by one station could be placed on that station's drive C, and
lightning-fast access to disk files would be available. Refer to
Figure 2.1A for a typical CompuStar Computer System configura
tion.

2

(CA)

MODEL 10VPU
STATION 003

A:
STATION 255

B:
STATION 255

po-... ___ OPTIONAL
LOCAL PRINTER

MODEL 10VPU
STATION 002

CAl

MODEL 20 VPU
STATION 255 D:

MODEL 10 VPU
STATION 001

ALL STATIONS

C:
STATION 002

STORAGE AREAS IIAII AND IIBII ARE ACCESSABLE ONLY BY STATION 255

STORAGE AREA IIC" IS ~CCESSABLE ONLY BY ASSIGNED STATIONS (I,2,"3 ... 255)

STORAGE AREAS II 0" AND II E II ARE ACCESSABLE BY ALL STATIONS

FIGURE 2.IA DISK STORAGE SYSTEM (DSS) ALLOCATIONS 3

In standard CP/M computer systems, the operating system is loaded
from the first two tracks of the first disk drive, which is
usually denoted as drive A. This is true for the SuperBrain and
CompuStar VPU Models 20, 30, and 40, which each have two disk
drives denoted A and B. However, the Model 10 VPU does not have
any disk drives. For this model, the operating system is loaded
from drive C, which is the first drive for a Model 10. Drive C' is
located in the DSS and is unique for each station in a CompuStar
system. Please note that a copy of the CompuStar operating system
exists in each drive C - this enables you to freely swap Model 10
VPU's with other VPU models in your system.

Drive C is the storage area on the Disk Storage System (DSS) that
is unique to each station in a CompuStar system. In configuring
your network, you may divide the area on the DSS in any fashion
you wish until you expend the 8.4 megabytes of formatted disk
space on the unit. No station can be attached to the DSS network
unless disk space has been allocated for that station. Drive D is
the area on the DSS that is common to all stations in the net
work, and drive E denotes the area devoted to the system print
spooler.

As shipped from the factory, a 10 Megabyte Disk Storage System is
configured for ten.stations, numbered 001 through 010. If you
plan to use your CompuStar system in the factory-configuration,
you must set the dipswitches in each station in the range of 001
to 010 (refer to section 1.3.1 of the installation instructions
for more details). Each station has approximately 250 kilobytes
allocated for its drive C. The print spooler area has been allo
cated 250 kilobytes, and the remaining area is allocated to drive
D. This provides common disk storage of approximately 6000 kilo
bytes, or 6 megabytes. Included with the DSS is a diskette to be
used with a Model 20, 30, or 40 VPU for reallocating the DSS
storage areas for different configurations. Please note that it
is not necessary to have all ten stations in order to use the DSS
as shipped. Additional units may be added later. However, if you
wish to add more than ten stations, or if you desire other disk
allocations, you will have to initialize and configure the DSS
yourself. The exact procedure for this is described in the sec
tion ALTERING A COMPUSTAR SYSTEM.

If you plan to use any CompuStar VPU with local disk storage
(Model 20 VPU, 30 VPU, or 40 VPU) in your CompuStar network, you
will have to use a different operating system from the one that
is shipped with the unit to enable network communication. A
special utility program will install the operating system on
your VPU diskette, and is provided on the diskette shipped with
the DSS. This program is called MODxxDOS.COM, where xx is either
20, 30, or 40, depending on the VPU type. Please select the
correct program for your VPU type, as the wrong one will not work
properly. Detailed instructions on the use of this program can be
found in the section of this manual called ALTERING A COMPUSTAR
SYSTEM.

4

2 • 1 • 1 • 1 10 MEGABYTE OPERATING INSTRUCTIONS

Operation of the DSS 10 is really quite simple. You should only
be concerned with a few aspects. On the front of the unit are
four push switches. The leftmost switch is for power. When this
switch is depressed the unit should power up, and the switch
should light. Also, the READY switch next to the POWER switch
should light. After power is applied, press the RESET switch to
insure that the unit is operable. If the READY light flickers,
this indicates some station in the network has accessed the disk.
Otherwise, the light on the READY switch remains on.

NOTICE: If the FAULT light on the ten megabyte DSS comes on, this
indicates that the DSS was unable to complete a communication
link with one of the stations. When this occurs, you must reset
the DSS before further use or it will remain inoperable. To
reset the DSS, simply press the switch marked RESET. The unit
should then resume normal operation. If the FAULT light remains
on or if you are experiencing frequent disk faults, contact your
Intertec representative.

SECTION 2.1.2

2.1.2.0 OPERATING A COMPUSTAR VPU AS A STAND-ALONE COMPUTER

As shipped from the factory, your CompuStar Video Processing Unit
Model 20, 30, or 40 can be operated as a stand-alone computer.
This means that you do not have to have a Disk Storage System to
enjoy CompuStar's power and you may begin computing with any VPU
that features local disk drives. When used without the DSS, the
VPU behaves much like Intertec's popular SuperBrain Computer
System. Both the SuperBrain and the CompuStar feature CP/M as
their operating system. Before proceeding with operating your
CompuStar VPU, it is suggested that you read Section 2.2 of the
manual. This section should also be read if you wish to use a VPU
Model 20, 30, or 40 in a CompuStar network.

Now that you have removed your CompuStar VPU from the packing
carton, you are ready to begin to set up the system. The first
step in this procedure is to verify that your CompuStar is wired
for the line voltage that is available in your area. This can be
ascertained by looking at the serial tag located at the right
rear of the terminal. This tag will indicate if your terminal is
set up for either 110 or 220 VAC operation. DO NOT ATTEMPT TO
CONNECT THE COMPUSTAR VIDEO PROCESSING UNIT TO YOUR LOCAL POWER
OUTLET UNLESS THE VOLTAGE AT YOUR OUTLET IS IDENTICAL TO THE ONE
SPECIFIED ON THE BACK OF YOUR TERMINAL. Should the voltages
differ, contact your dealer at once and do not proceed to connect
the CompuStar VPU to the power outlet.

Before connecting the CompuStar VPU to the wall outlet, be sure
that the power switch located at the left rear corner is turned
OFF. You may now proceed to connect the computer system to the
wall outlet. Next, turn the power switch on the rear of your VPU
on. At this time, you should hear a faint 'whirring' sound coming
from the fan inside the VPU. After approximately 60 seconds the
message 'INSERT DISKETTE INTO DRIVE A' will appear on the screen.
If this message does not appear after 60 seconds, simultaneously
depress both RED keys on either side of the keyboard. These are
the master reset keys and should reinitialize the computer system
and cause the 'INSERT' message to appear. If, after several
attempts at resetting the equipment, you are unable to get this
message to appear on the screen, turn the unit off for approxi
mately 3 to 5 minutes and then reapply power. Also, check the
brightness adjustment on the rear of the computer's panel,
turning the knob clockwise to increase the brightness level. If
you are still unable to get the appropriate message on the
screen, contact your Intertec representative.

6

2.1.2.1 SYSTEM DISKETTE

Now that you have applied power to the machine and the 'INSERT
DISKETTE' message has been displayed in the upper left corner of
the screen, you are ready to proceed wi th ,loading the computer's
operating system. To do this you will need the 5 1/4" diskette
that was packed in this manual. Notice that a small adhesive
strip has been placed over the notch on the right side of the
diskette. This aluminum strip is used to 'WRITE PROTECT' the
diskette. Therefore, you may only load and/or read programs from
this diskette. If you wish to write or save programs on the
system diskette it will be necessary to remove this strip. This
is NOT RECOMMENDED as it will subject your diskette to accidental
errors that may be induced by you while you are becoming familiar
with the operating system.

You are now ready to proceed with inserting the system diskette
into the machine. When facing the front of the machine, notice
the disk drives in the upper right corner. The one on the left is
drive A, and the one on the right is drive B. It is important to
distinguish the two drives, because the operating system will
only load from drive A. Now open the disk drive door on drive A.
This is done by applying a very slight outward pressure on the
small flat door on the center of the opening. Once open, you may
now insert the Operating System Diskette. There is a label on the
diskette that describes the version of the operating system you
have received. For proper insertion, please be sure that (1) the
small aluminum 'WRITE PROTECT' strip is oriented toward the top
edge of the diskette, and that (2) the label located on the
diskette is away from the screen. Refer to Figure 2.1B for fur
ther help. It is EXTREMELY important that all diskettes are
inserted with the proper orientation since they are inoperable
otherwise. Applying gentle pressure on the rear the diskette,
push it all the way into the opening. Now reclose the drive door,
pulling it in the opposite direction from which it was opened.

Once the door is closed, you may hear a 'swishing' sound. This is
normal and, indicates that the VPU is loading the operating
system. Some drives are quieter than others and therefore this
noise may be inaudible. The following message should appear in
the upper left corner of the screen:

64K COMPUSTAR STAND-ALONE DOS VER 1.0 FOR CP/M 2.2
A>

If this message does not appear on the screen, simultaneously
depress the two RED keys located on either side of the keyboard.
This is how the VPU is reset, and this action should cause the
operating system to reload. If, after several seconds, this
message does not appear on the screen, try depressing the RED
keys several more times. If this proves unsuccessful, then open
the disk drive door on drive A and remove the system diskette,
making certain that it has been properly inserted. Refer to
Fugure 2.1A for further help with diskette insertion. Recall that
the operating system will not load unless the diskette has been

7

FIGURE 2.1B PROPER INSERTION OF DISKETTE

8

correctly inserted. Once you are certain that the diskette has
been correctly placed into disk drive A, close the door and again
depress the RED keys simultaneously. If after repeated depres
sions the indicated message does not appear on the screen,
contact your Intertec representative.

2.1.2.2 REVIEWING THE SYSTEM DISKETTE

Now that you have sucessfully loaded the System Diskette and the
Disk Operating System (DOS), your CompuStar VPU is ready to
accept your disk operating system commands. Now we shall review
several of the commands on the operating system. However, it is
recommended that you refer to the appropriate section of this
manual for a detailed description of all such commands (Section 4
- Introduction to CP/M features and Facilities). The most used
system command is the DIR command.This command instructs your VPU
to display the directory of all files on the disk. To enter this
command, simply enter 'DIR' on the keyboard and push the RETURN
key. The computer should respond by displaying contents similar
to this:

A)DIR
A:ED COM DDT COM SYSGEN COM PIP COM
A:ASM COM STAT COM LOAD COM DUMP COM
A:64KTEST COM CS20BIOS ASM SUBMIT COM XSUB COM
A:CS20CPM COM

A)

To obtain a better understanding of what this information means,
let's take a look at the first entry:

A:ED COM

The first letter on this line is A. This indicates that the
information following this letter is on drive A, which is the
first drive in CP/M systems. The colon serves as a separator
between the drive designator and the other information. The name
of this file is "ED", and the file type is "COM". A more detailed
treatment of this information can be found in other sections of
this manual (Section 4 - An Introduction to CP/M Features and
Facilities and Software Addenda).

IMPORTANT NOTE: Some of the system disk programs may have a two
digit number suffixed to the file name (i.e., PIP22 instead of
just PIP). This suffix is used to indicate the actual revision
and/or version level of the program.

2.1.2.3 DUPLICATING THE OPERATING SYSTEM DISKETTE

Now that you have sucessfully loaded the Disk Operating System
into drive A, it is important to duplicate this diskette onto
another diskette. You should never remove the small aluminum
'WRITE PROTECT' strip covering the notch on the top edge of the
System Diskette, or change or erase any files on this diskette.

9

You should make a duplicate of this diskette, and then store the
original in a safe place. To copy this diskette, you will first
need a blank diskette. We recommend an Intertec 1121010 diskette
for this purpose. If you do not have any blank diskettes of
similar quality, please contact the representative from whom you
purchased your equipment. He should be happy to provide you with
an ample supply of these diskettes.

Insert the blank diskette into drive B. Follow the procedure
outlined in the previous paragraphs regarding the insertion of
the operating system diskette. The only difference is that you
will be placing the diskette into drive B. Be sure to leave the
system diskette installed in drive A. Once installed, three
separate steps are necessary to completely duplicate the diskette
in drive A. First, the diskette in drive B must be formatted.
Secondly, you must copy all of the files to the new diskette.
Thirdly, the operating system must be copied to the new diskette.
You must use a separate procedure to copy files and operating
systems. Each of these steps are described in greater detail in
the paragraphs that follow.

FORMATTING: All new diskettes must be formatted before attempting
to read or write upon them. This is necessary because the infor
mation stored on these diskettes is in a SOFT-SECTORED FORMAT.
The operating system divides the diskette into SECTORS. The
system program called FORMAT tells the operating system where the
sectors are on the diskette and which are in use.

To use the FORMAT program, you must have the program FORMAT.COM
on a formatted diskette in drive A. Type FORMAT on the keyboard
and then push the RETURN key. You will be asked to select the
diskette type next. Respond with'S' for the single-sided disk
ettes used on a CompuStar VPU Model 20, 'D' for double-sided
diskettes used in a CompuStar VPU Model 30, or 'A' for diskettes
used in a CompuStar VPU Model 40. Next type 'F' when ready to
begin the format process. You will hear drive B re-set to track 0
and rewrite information to each track (there are 10 sectors per
track). The formatting program will display each track as it is
formatted.

After the diskette has been formatted, you will be asked whether
you wish to REBOOT the operating system or format another disk.
If you wish to continue formatting diskettes, remove the newly
formatted diskette from drive B and replace it with an unfor
matted diskette. Then repeat the above process for each diskette
you wish to format. If you do not wish to format any more
diskettes, simply push the RETURN key. This will reload the
operating system and once again the VPU will be ready to accept
your commands.

10

PIP: Since our original intent was to copy the original System
Diskette, we may now proceed with the file transfers. This is
done by entering the following command on the keyboard:

PIP B::*.*[V]

Be sure to push the RETURN key after you have typed out the
command.

PIP is actually a file on the diskette that CP/M systems use for
file transfer. PIP stands for Peripheral Interchange Program, and
more information on PIP can be found in Section 4 of this manual
(An Introduction to CP/M Features and Facilities). The PIP
command above instructs the computer system to copy each file on
drive A onto drive B. As each program is copied, its name will be
displayed on the screen. This procedure will take approximately 5
to 10 minutes. After the procedure is complete, the control of
the operating system will be returned to the user. If this proce
dure does not complete, you will see a message indicating the
error. Below are listed some possible messages and your response.

MESSAGE

*** disk not ready ***

*** disk not ready ***

Bdos Err on B: Bad Sector

Bdos Err on B: Select

Bdos Err on B: R/O

1 1

ACTION TAKEN

Make sure the disk drive doors
are closed.

You are attempting to copy
data to an unformatted dis
kette. Format and repeat.

Disk not formatted properly.
Reformat and repeat.

You did not specify the
correct disk drive. Make sure
you entered 'B'.

You probably have a tWRITE
PROTECT' strip over the notch
on the top edge of the disk
ette. Remove and try again.

SYSGEN: Now that you have copied the operating system's programs
from drive A to drive B, you are ready to copy the operating
system itself. The operating system resides on tracks 0 and 1 of
the diskette, and these tracks are inaccessable to other files.
To make this transfer, type the following command an the keyboard
(followed by the RETURN key):

SYSGEN

The SYSGEN command is used to generate an operating system and
place it on the desired diskette. Once you have entered this
command you will select the source disk (where to get the operat
ing system) and the destination diskette (where to place the
copy). In our case, the source response is 'A' and the destina
tion response is 'B'. SYSGEN will ask you to indicate when the
diskettes are loaded, and you press the RETURN key when you have
inserted the diskettes in the proper drives. This procedure will
inform you when it is finished. As in the FORMAT program, you
may repeat this process on another diskette if you desire. To
copy another operating system, remove the diskette from drive B
and replace it with another diskette. Push the RETURN key to
reload the operating system and proceed.

Now you can remove the system diskett~ from drive A. Remove the
diskette in drive B and place it in drive A. Refer to the pre
vious section for proper diskette orientation. Once the newly
copied diskette from drive B is in drive A, close the door to the
drive. Reset the computer system by simultaneously depressing
both RED keys located on ~ither side of the keyboard. This will
force the computer to reload the operating system from the
diskette - the one you just copied. Use this diskette while
becoming familiar with your computer system, and place the
system diskette in a safe place in case one copy is destroyed or
otherwise damaged (see Section 2.2.2.0 DISKETTE PRECAUTIONS).

IMPORTANT: If you reset the computer with the newly copied disk
ette and garbled t~xt appears on the screen, an error was made in
the use of the 'SYSGEN' program. If this is the case, then remove
the diskette from drive A, replace it with the system diskette,
and repeat the previously outlined procedure for copying the
system diskette. If you continue to encounter difficulties,
please read Section 4 of this manual entitled "An Introduction to
CP/M Features and Facilities" for a complete review of the system
program SYSGEN.

Now that you have sucessfully copied the system diskette, please
read Section 4 of this manual entitled "An Introduction to CP/M
Features and Facilities" for a complete description of each of
the operating system programs (DDT.COM, PIP.COM, SUBMIT.COM,
etc.).

12

2. 1 .3 ALTERING A COMPUSTAR SYSTEM

If you wish to change your CompuStar disk allocations, you will
have to perform some initialization tasks. These procedures
include a disk format program and allocation of user, common, and
print spooler areas on the Disk Storage System (DSS). Note that
all user stations can have exclusive disk storage at the DSS
called drive C. Further, the common area or drive D, is
available to any user station in the network. The print spooler
area (drive E) is also available to any network user.

Before proceeding please be certain the the following has been
done:

ALL CABLES TO THE VPU's ARE PROPERLY CONNECTED

ALL DIPSWITCHES FOR STATION NUMBER HAVE BEEN SET

ALL USER STATIONS ARE POWERED OFF

YOU HAVE AT LEAST ONE VPU MODEL 20, MODEL 30, OR MODEL 40

YOU HAVE AN EXTRA FORMATTED DISKETTE
.r

NOTE: You cannot alter your CompuStar DSS configuratt"ons until
you are familiar with the operation of a stand-alone CompuStar
VPU. This section assumes that you understand this kind of
operation. Please study the contents of the section of this
manual entitled 'OPERATING A COMPUSTAR VPU AS A STAND-ALONE
COMPUTER' prior to altering a CompuStar DSS.

First, turn on the power to the station (Model 20, 30, or 40)
that you will use to initialize the DSS. This unit must have
local disk drives since the initialization procedures are on a
diskette. Next, open the door of the left drive of the initiali
zation station - this is drive A. Place the COMPUSTAR INITIALI
ZATION DISKETTE into it. Refer to Figure 2.1B for correct disk
ette orientation. Close the door and then simultaneously depress
the RED keys at the bottom of the keyboard. The unit will now
load the special initialization operating system. The following
message should appear at the top left corner of the screen:

64K COMPUSTAR INITIALIZATION DOS VER 0.1 FOR CP/M 2.2 COM

WA~NING--THIS PROGRAM WILL ERASE ALL HARD DISK DATA

DO NOT USE THIS DISKETTE ONTIL YOU HAVE READ SECTION 2.1.3 OF YOUR
COMPUSTAR MANUAL!

If this does not appear, try depressing the RED keys again. If
repeated depressions of the RED keys do not produce the above
message, then contact your Intertec dealer. You cannot alter the
DSS unless this operating system is loaded in the initialization
station. This operating system will work in every Model 20, 30,
or 40 VPU.

13

The initialization and allocation programs will first format the
DSS and then obtain from you the amount of disk area you wish
to devote to each user station. You may allocate areas for sta
tions to be added later, otherwise you will destroy the DSS's
contents if you should decide to repeat this process. Once these
areas have been assigned, they cannot be changed or reassigned
without destroying the DSS data. Since the initialization uses
CP/M's SUBMIT program, aborting the routine will not work pro
perly (for a review of SUBMIT, see section 4 of this manual).
Therefore, it is mandatory to know how you wish to configure the
DSS before you start.

Once the special initialization DOS has been properly loaded into
the VPU (using the diskette contained in the box with your DSS),
and you are sure that the power is off at all other VPUs in the
CompuStar network, you may proceed with the initialization pro
cess. Type in the following line at the keyboard:

SUBMIT22 STARGEN

A program on the diskette called STARGEN.SUB contains the names
of the system programs needed to initiafize the DSS. First, the
DSS will be formatted. If you notice, the FAULT light on the DSS
will come on during the formatting. This is normal, and indi
cates that nothing is wrong. Do not reset the DSS until later.

The DSS may have media errors on it. This means that some of the
tracks on the disk may not be usable. Supplied with your DSS is
a buff-colored card labeled 'SA1004 MEDIA ERROR MAP'. On this
card is listed the media defects on your drive. It is necessary
for you to enter the tracks and heads listed on the card so that
these may be reassigned. As the head positions itself on a
defective track, it will then reposition itself to an alternate
track area. This makes the defective tracks transparent to the
user. After you have entered all defective tracks, enter 'D' for
a display of your entries for verification purposes. Then enter
'X' to exit the alternate track assignments and proceed.

There are approximately 8800 kilobytes (8.8 megabytes) of for
matted disk area on the DSS. The first area you will be asked to
allocate is the common area - drive D. Enter the amount in kilo
bytes and push the RETURN key. Repeat the process for. drive E,
the print spooler area. Next enter the allocations for each
stations' exclusive area, drive C. Here you will enter a station
number (any number from 1 to 255), and again the number of
kilobytes you wish to allocate. The station numbers do not have
to be in any order and do not have to be contiguous. NOTE:
Allocate area for any future stations at this time, because the
allocation process destroys the data on the DSS. This routine
will display the number of bytes remaining as each entry is made.
You may also enter 'D' to review which stations and areas have
been allocated in the process at any time. To terminate entry,
enter 'E' and push RETURN.

14

After you have made all of your entries and have entered 'E', the
initialization procedure will complete some final tasks and
return to the operating system. One more step is now needed to
complete the process. You must have a different operating system
on the diskette to use a VPU with local disk drives (any Model
20, 30, or 40) in a CompuStar network. The operating system that
comes with the unit will not work with a CompuStar network,
because its original operating system is designed to treat the
VPU as a Stand-Alone computer. You must place a copy of the new
operating system on another formatted diskette. A utility program
called MODxxDOS should be run (xx is 20 for a VPU Model 20, 30
for a VPU Model 30, or 40 for a VPU Model 40). Notice - you
cannot use the CP/M system program SYSGEN to do this because the
diskette in drive A contains a special initialization DOS, and
you actually need another DOS elsewhere on the diskette. MODxxDOS
will insure this transfer. However, once you run the MODxxDOS
program, the diskette in drive B will contain the VPU's network
operating system in drive B. Subsequent operating system trans
fers from that diskette should be performed via the SYSGEN com
mand (For a review of SYSGEN and FORMAT, please see section 4 of
this manual, AN INTRODUCTION TO CP/M FEATURES AND FACILITIES).

15

This is a sample session in which a CompuStar DSS is configured
for five user stations. The underlined portions in this
demonstration are entered by the user, and '(cr)' means that the
RETURN key should be pressed here.

64K COMPUSTAR INITIALIZATION DOS VER 0.1 FOR CPIM 2.2 COM

A>SUBMIT STARGEN (cr)

COMPUSTAR 10 MBYTE DISK GENERATION PROGRAM VER 0.1

CAUTION -- THIS PROGRAM DESTROYS ALL PREVIOUSLY RECORDED DATA

TYPE "G" AND PRESS THF RETURN KEY TO BEGIN G (cr)

FORMAT OPERATION IN PROGRESS
(Note - Here is when the fault light comes on at the DSS--THIS IS
NORMAL! DO NOT PUSH THE RESET KEY AT THIS TIME!)

FORMAT ALTERNATE TRACKS (YIN): Y (cr)

ENTER DEFECTIVE TRACK NUMBER (OR 'D' FOR DISPLAY, 'X' FOR EXIT):
210 (cr)

ENTER DEFECTIVE HEAD NUMBER 0

ENTER DEFECTIVE TRACK NUMBER (OR 'D' FOR DISPLAY, 'X' FOR EXIT):
D (cr)

TRACK
0210

HEAD
0000

These will be reassigned

ENTER DEFECTIVE TRACK NUMBER (OR 'D' FOR DISPLAY, 'X' FOR EXIT):
X (cr)

8799 KBYTES OF DISK SPACE REMAINING
ENTER NUMBER OF KBYTES REQUIRED FOR THE COMMON PARTITION

(MAX = 8400) 5000

5004 KBYTES ALLOCATED TO PARTITION
3795 KBYTES OF DISK SPACE REMAINING
ENTER NUMBER OF KBYTES REQUIRED FOR PRINT SPOOLER PARTITION

(MAX = 8400) 250

0252 KBYTES ALLOCATED TO PARTITION
3543 KBYTES OF DISK SPACE REMAINING
ENTER STATION NUMBER (1-255), "END", OR "DISPLAY" .l (cr)

3543 KBYTES OF DISK SPACE REMAINING
ENTER NUMBER OF KBYTES REQUIRED FOR STATION 001 250

0252 KBYTES ALLOCATED TO PARTITION
3291 KBYTES OF DISK SPACE REMAINING
ENTER STATION NUMBER (1-255), "END", OR "DISPLAY" 2 (cr)

16

3291 KBYTES OF DISK SPACE REMAINING
ENTER NUMBER OF KBYTES REQUIRED FOR STATION 002 250

0252 KBYTES ALLOCATED TO PARTITION
3039 KBYTES OF DISK SPACE REMAINING
ENTER STATION NUMBER (1-255), "END", OR "DISPLAY" 1. (cr)

3039 KBYTES OF DISK SPACE REMAINING
ENTER NUMBER OF KBYTES REQUIRED FOR STATION 003 250

0252 KBYTES ALLOCATED TO PARTITION
2787 KBYTES OF DISK SPACE REMAINING
ENTER STATION NUMBER (1-255), "END", OR "DISPLAY" ~ (cr)

2787 KBYTES OF DISK SPACE REMAINING
ENTER NUMBER OF KBYTES REQUIRED FOR STATION 004 250

0252 KBYTES ALLOCATED TO PARTITION
2535 KBYTES OF DISK SPACE REMAINING
ENTER STATION NUMBER (1-255), "END", OR "DISPLAY" ~ (cr)

2535 KBYTES OF DISK SPACE REMAINING
ENTER NUMBER OF KBYTES REQUIRED FOR STATION 005 2500

2507 KBYTES ALLOCATED TO PARTITION
0028 KBYTES OF DISK SPACE REMAINING
ENTER STATION NUMBER (1-255),"END", OR "DISPLAY" Q (cr)

COMMON AREA 5004 KBYTES ALLOCATED TO PARTITION
PRINT SPOOLER 0252 KBYTES ALLOCATED TO PARTITION
STATION 001 0252 KBYTES ALLOCATED TO PARTITION
STATION 002 0252 KBYTES ALLOCATED TO PARTITION
STATION 003 0252 KBYTES ALLOCATED TO PARTITION
STATION 004 0252 KBYTES ALLOCATED TO PARTITION
STATION 005 2507 KBYTES ALLOCATED TO PARTITION
0028 KBYTES OF DISK SPACE REMAINING
ENTER STATION NUMBER (1-255), "END", OR "DISPLAY" E (cr) ---
A)HUBGEN

A)MD10GEN

A)

(Note - This is when you press the RESET button on the DSS).

A)MOD20DOS
SYSGEN VER 1.4
SOURCE DRIVE NAME
DESTINATION DRIVE
DESTINATION ON B,
FUNCTION COMPLETE
DESTINATION DRIVE

A)

(OR RETURN TO SKIP) (cr)
NAME (OR RETURN TO REBOOT) B (cr)
THEN TYPE RETURN (cr) ---

NAME (OR RETURN TO REBOOT) (cr)

17

2.1.4 VPU SYSTEM TEST

It is necessary to make certain that all VPUs are capable of
communicating with the Disk Storage System. To do this, it is
suggested that each VPU be attached to your CompuStar network and
tested one at a time. This will systematically insure each
terminal's operation before others are attached to the network.

If you are testing a VPU that has its own disk drives, it will be
necessary to initialize a disk operating system that will permit
network communcation. Recall that these units are designed to
operate in a stand-alone mode as shipped from the factory.
Therefore, you only need to copy the network operating system
onto another diskette to test the unit. These special operating
systems can be generated using the program contained on the
diskette that was shipped with your DSS.

To initialize the operating system for your VPU, place the INI
TIALIZATION diskette into drive A of the VPU (this diskette is
the one shipped with your DSS). Be sure to insert the diskette
properly with the notch on the upper edge and the labels away
from the screen. Depress both RED keys simultaneously and load
the initialization operating system. There will be three
programs on the diskette that will generate your new operating
system, depending on your VPU type. The programs are named
MOD20DOS.COM, MOD30DOS.COM, and MOD40DOS.COM. Select the correct
program for your VPU type. Type in the name and press the RETURN
key. When asked for the source drive name, press the RETURN key.
When asked for the destination drive name, type B. Then, when
you have properly inserted a formatted diskette into drive B,
press the RETURN key to inform the program that you are ready.
Don't forget to push the diskette all the way in and lose the
drive door. Press the RETURN key again when the function has
completed and allow the operating system to reboot.

system contained on the diskette now in drive B
with a CompuStar DSS. Remove both diskettes from
turn the off the power. If any other VPUs are
the DSS network, make sure that the power is

The operating
will only work
the VPU and
connected to
switched off on each of these.

You are now ready to test the VPU and determine if it is able to
communicate with the DSS. Press the POWER switch on the DSS,
locking it in the ON position. The red ligh~ on the POWER
switch and the green light on the READY switch should come .,on.
Next, press the RESET switch in for for a few seconds. Now, turn
on the power to the VPU being tested. If you have a Model 10
VPU, the operating system should begin to load. If your VPU has
its own disk drives, insert the diskette containing the network
operating system into drive A. Depress both RED keys. The
operating system should load. With all VPU models, the screen
should contain the sign-on message in the upper portion of the
screen. Also displayed should be the station number and the disk
prompt. Reboot the operating system several times and make sure
that it loads properly.

18

If the operating system fails to load, check the cable
connections. Make certain that the station number has been
correctly set on th~ dipswitch located on the chaining adaptor
board, and that no two stations have the same number setting. If
you VPU has its own disk drives (Model 20, 30, or 40), be sure
that the operating system was correctly copied. Repeat any steps
as necessary. If the unit does not operate properly after you
have checked everything, contact your Intertec representative.

Once the VPU passes this step, switch the unit off before
attaching any other units. Switch off the power to the DSS.
Also, connect the next VPU and test it similarly. Do not test
any VPU with the power on any other VPU. This way, you eliminate
any potentially defective VPU.

19

SECTION 2.2

2.2.0.0 PRACTICAL HINTS

By now you should have read the CompuStar manual thoroughly, and
you should be familiar with the hardware, operating system, and
design scheme of your CompuStar Computer System. Next, we shall
discuss some practical hints and little known facts that will
help you become even more familiar with your computer system.

2.2.1.0 LOGGING ONTO A DISK

Each time you change a diskette, you must inform the operating
system that you have done so. This prevents accidental alteration
of disk contents because the operating system's copy of the
directory does not agree with the files on the disk. Therefore,
for devices with removable media, the directories are checked
with each disk access. Each check produces a checksum, which is
matched with the disk's last access. If these two sums do not
match, then CP/M will not allow you to alter the diskette's
contents. The disk is internally flagged READ ONLY, and an
attempt to change anything on the diskette will produce the
following error message: Bdos Err on d: R/O, where'd' is th~
drive in question. So when you change a diskette, you must per
form an operating system restart. The easiest way to do this is
to hold down the 'control' key (marked CTRL), and then press the
'C' key. This will reload the operating system and will allow you
to alter the newly inserted diskette.

2.2.2.0 DISKETTE PRECAUTIONS

Diskettes are a popular method of auxiliary storage for microcom
puter systems because of their size, price, and ease of use.
There are some rules governing proper diskette care, and you
should always be aware of these.

1) Never allow anything to come in contact with the diskette
surface. Never attempt to clean a diskette.. Although diskette
exposure is limited to the access holes in the jacket, you should
nevertheless be extremely careful when handling diskettes. Oils
on your skin may make the diskette unreadable.

2) Keep diskettes free from smoke or dust. This is best done by
leaving diskettes in their protective covers.

3) Keep magnetic objects away from diskettes as this may cause
the contents of a diskette to be erased. Remember that tools
often become magnetized. Transformers, power cords, and even
telephones may emit magnetic radiation.

4) Label your diskettes properly. When labels are attached to the
jacket of a diskette, use only a felt-tipped pen to write on
them. A pencil or ball-point pen may groove the diskette and

1

make it unreadable. Place the 'WRITE PROTECT' strip over the
notch of any diskette you do not want erased. Each box of
Intertec diskettes comes with an ample supply of labels and
aluminumized 'WRITE PROTECT' strips.

5) Back up important diskettes by keeping separate copies of them
in a safe place. Anticipate diskette failure because mistakes do
happen. Place the date on duplicate copies so that you know how
current their contents are.

6) Diskettes can become damaged if exposed to temperature ex
tremes. 'Usually, a safe operating range is 50 to 120 degrees
Farenheit. Humidity can also be important - 20 to 80 % relative
humidity is suggested. Prolonged periods of sunshine can also
damage a diskette's contents.

7) Be sure to remove the diskette from the disk drive before
the power is turned off the machine and return it to the
protective jacket.

8) Never rely upon a diskette that you suspect is
such SUsplclon, immediately copy its contents
formatted diskette, and then survey the damage.

damaged.
onto a

Upon
newly

9) Remember that the FORMAT system program completely
the contents of a diskette. So does the command ERA
SYSGEN command will only affect the contents on the
tracks (the operating system) of a diskette.

destroys
.. The

first two

10) IMPORTANT - The data contained on a diskette are always worth
more than the diskette itself. Guard the data carefully. Heed
these warnings.

2.2.3.0 CP/M SUMMARY

Detailed operation of all CP/M programs can be found in other
sections of this manual. Specifically, refer to Section 4, 'AN
INTRODUCTION TO CP/M 2.0 FEATURES AND FACILITIES' for the details
on the use of the programs common to all CP/M systems, and see
the section 'SOFTWARE ADDENDA' concerning the Intertec computers.
Here we shall briefly summarize the system programs supplied on
the Operating System Diskette for your CompuStar VPU, and CP/M's
built-in functions.

PROGRAM
NAME

PIP

SYSGEN

ED

ASM

LOAD

DDT

SUBMIT

XSUB

DUMP

STAT

DIR

ERA

REN

SAVE

FUNCTION EXAMPLE

Copies files between devices, PIP B:=A:*.*
logical and physical. PIP CON:=A:FILE.TYP

Generates a new operating SYSGEN
system on diskette.

Text Editor, allows changes ED PROGRAM.BAS
to text files~

Assembles an 80BO-type assembly ASM PROG
language program into a 'HEX' file.

Creates a 'memory image' file from LOAD PROG.HEX
a 'HEX' file that can be executed.

Allows user to debug and step thru DDT PROG.COM
a 'COM' or 'HEX' file's execution. DDT PROG.HEX

Performs sucessive execution of a SUBMIT MORNING.SUB
list of 'COM' files.

Forces data entry into a process XSUB
under control of SUBMIT.

Produces a hexadecimal listing DUMP PROG.COM
of a disk file's contents.

Display or alter file status, device STAT B:*.*
status, or system characteristics. STAT B:DSK:

Displays a disk directory.

Erases a disk file.

Renames a disk file.

Save memory contents on the disk.

3

DIR
DIR B:

ERA B:PROG.BAK

REN PROG.ASM=PROG.(

SAVE 10 A.COM

PROGRAM
NAME

TYPE

CONFIGUR

FORMAT

HEXDUMP

64KTEST

RX/TX

FUNCTION EXAMPLE

Produces an ASCII listing TYPE PROG.PRN
of a disk file's contents.

Establish operating system CONFIGUR
parameters. .

Place sector information on a FORMAT
new diskette.

Generates a 'HEX' file from any HEXDUMP
file, and sends it out of a port.

Performs extensive memory test. 64KTEST

Program pair to enable file transfer RX
between two Stand-Alone VPUs. TX

The reader should note that a CP/M program usually distributed
with CP/M computer systems is not included with Intertec Computer
Systems. The program, MOVCPM, allows the user to change the
operating system for a number of memory sizes. However, all
Intertec computer systems have only one memory size, and MOVCPM
is not needed. Intertec furnishes operating system copies for 64K
memory size.

For a more complete discussion of these system programs, please
refer either to these sections in this manual: AN INTRODUCTION TO
CP/M FEATURES AND FACILITIES, CP/M 2.0 USER'S GUIDE FOR CP/M 1.4
OWNERS, and SOFTWARE ADDENDA.

2.2.4.0 AUTOLOAD FEATURE

Perhaps you wish for your computer terminal to perform the same
function upon each operating system restart. This is possible
with CP/M version 2.2. The command buffer is the area in your
computer's memory where the next command to be executed is
placed. In normal CP/M systems this buffer is empty, and upon
operating system restart the system awaits your command. You may
alter this if desired, so that the system will execute any
program on the disk upon restart.

In order to facilitate this autoload feature, you have to change
the operating system that is stored on the inner two tracks of
your diskette. First, make a copy of the program on your distri
bution diskette that will generate the operating system. In the
CompuStar Model 20, this program is called 'CS20DOS.COM'. Using
the PIP program, copy as follows:

PIP AUTOLOAD.COM=CS20DOS.COM

CS20DOS.COM is similar to the SYSGEN utility, except that no
SOURCE DRIVE is specified when using it. After you have made the
copy, you will have to alter its command buffer for the autoload
capability. The DDT system program will have to be used to do
this. It is strongly recommended that you become familiar with
the DDT program before attempting to alter the operating system.
See Section 7 of this manual, CP/M DYNAMIC DEBUGGING TOOL (DDT)
USER'S GUIDE, for assistance.

Next edit the program 'AUTOLOAD.COM' with the use of DDT. The
correct command is:

DDT AUTOLOAD. COM

DDT will then load into the computer's memory and read in your
'AUTOLOAD' program. After you have decided on the command you
want to be executed upon restart, determine its length. This is
done by counting the number of characters in the command. If a
filename and/or parameters are included in the command, be sure
to include their length(s) in the count. Also include any
separating spaces. For example, if you wanted the directory
display to be your command, the command is 'DIR', and its length
is 3. If instead you wanted to see a directory display of disk B,
the command is 'DIR B:' and its l~ngth is 6.'

The CP/M command buffer begins at location 980H. Use the'S'
command to alter the desired memory locations with your new
command. Place the hexadecimal value of the command length in this
location. The command itself begins at location 981H, and you
may use up to location A07H for the buffer. Notice that if you go
beyond location 998H, you will overwrite the copyright notice in
the operating system. At the end of your command, place the null
terminator OOH. When inserting the command itself into the
memory locations, please note that you must enter hexadecimal
numbers for the ASCII values of the letters in the command. The

5

ASCII code chart is listed in Section 2.3 of this manual.

When you have finished, use the DDT command 'D' to display the
results of your action. Make any necessary corrections, and then
exit to the operating system with the GO command. Before you do
anything else, you must save the memory contents of the 'AUTO
LOAD' program. Using CP/M's 'SAVE' function, enter the following
line at the keyboard:

SAVE 48 AUTOLOAD. COM

Let's review what we have done so far. First, we made a copy of
the operating system, and called it 'AUTOLOAD.COM'. (Inci
dentally, any other name could have been used as long as the
file type is '.COM'). Next, we placed a CP/M command into the
CP/M command buffer, starting with the command length in hexa
decimal. We ended with a null byte terminator. Then we exited to
the operating system and saved the revised program in memory on
the disk. Now it is time to generate the new operating system.

Please be sure that the command in the command buffer is what you
want your- computer to do upon each operating restart, because
that is exactly what it will do. If sure, then type in the
following command at the keyboard:

AUTOLOAD

From here the operation will be similar to that of the SYSGEN
command. First you will be asked to enter a SOURCE DRIVE. Press
the RETURN key here, the program itself is carrying the operating
system for us. Next you will be asked to enter the DESTINATION
DRIVE. Enter your choice, and press the RETURN key when the
correct diskette has been inserted in the destination drive. If
you are using a new diskette, make certain that it has been
formatted with the FORMAT command. When the message 'FUNCTION
COMPLETE' is displayed upon the screen, your transfer is done,
and you should press the RETURN key to reboot the operating
system. If you specified drive A as the destination drive, this
reboot will incorporate your new modification. If not, replace
the diskette in drive A with your destination diskette, and press
both RED keys at the same time. You should now have an operating
system with an autoload feature. If not, you probably incorrectly
entered the command in the command buffer.. Repeat the above
procedure if this is the case.

WARNING: If you chose drive A as the destination drive and you
made an error in altering the command buffer, this diskette will
contain an unusable copy of the operating system. It will pro
bably not operate. You will have to replace its operating system
with a valid copy probably using the 'SYSGEN' command. Therefore,
it is recommended that you select drive B as your destination
drive when altering the command buffer.

6

Here is a sample session describing the steps needed to alter the
command buffer of your operating system. Please carefully read
the previous section before attempting to alter the command
buffer. Note that all items underlined are to be typed in by you.
Otherwise, the displays are generated by the computer. When you
encounter '(cr)', press the RETURN key.

A>PIP22 AUTOLOAD.COM=CS20DOS.COM[V]

A>DDT AUTOLOAD. COM
DDT VER 1.4 '
NEXT PC
3100 0100

-S987 (cr)
o987oCfOO (cr)
0988 20 44 rcrT
0989 20 1f9 rcrT
098A 20 20 rcrT
098B 20 1f2 rcrT
098C 20 3A rcrT
098D 20 00 (cr)
098E 20 -. rcrT
-GO (cr)

A>SAVE 48 AUTOLOAD. COM (cr)

A>AUTOLOAD (cr)
DESTINATION DRIVE NAME(OR RETURN TO REBOOT) B (cr) ---FUNCTION COMPLETE
DESTINATION DRIVE NAME(OR RETURN TO REBOOT) (cr)

A>
(Now replace the diskette in drive B into drive A, and reboot)

7

2.2.5.0 PRINT SPOOLER OPERATION

The CompuStar Computer System will employ a unique technique for
print spooler operation. The spooler will use drive E in a
CompuStar Network to facilitate printer operation. Further
details will be released later.

2.2.6.0 SYSTEM FAILURE

Whenever you have a system failure, you should remain calm. Quite
often, the results of a system failure are minimal. Failure
recovery is important, and you should take all steps to insure
that the system is restored as soon as possible. Use the follow
ing checklist as a guide and insure that each item is covered. If
the system does not wor~ after these items are checked, contact
your Intertec representative. Note all failures in a log book so
that you know what to suspect with subsequent failures.

Check mechanical conditions:

Is the unit plugged into a proper wall outlet?

Is the power switch 'on'?

Is the brightness knob on the back of the unit turned up?

Are the cables properly connected and fastened tightly?

Is the fuse blown?

Operating System Problems:

Is there a diskette in drive A?

Is a valid copy of the operating system on the diskette in
drive A?

Have you incorrectly altered the DSS configuration?

Have you carefully followed the restart instructions?

9

SECTION 2.3

2.3 VIDEO DISPLAY FEATURES

All CompuStar Video Processing Units (except the Model 15) employ
a 'memory-mapped' video scheme. This means that a portion of the
central processing unit's memory is devoted to the characters for
display on the screen. This memory area is unavailable for
program or data use. The CRT Controller performs a direct memory
access (DMA) cycle to obtain this data. This relieves the CPU of
most screen-related functions. A more complete discussion of the
video operation sequence can be found in Section 3.2 of this
manual entitled 'THEORY OF OPERATION'.

Memory-mapped video enables the VPU to provide powerful and fast
video operation. This technique also permits many screen control
features to be performed under software control. When the CRT
Controller receives certain special inputs, the display may be
affected. There are two main types of screen-directed inputs:
'ESCAPE' sequences and 'CONTROL' sequences. An ESCAPE sequence
means the ASCII character ESC (27H) is the first character of the
input and is followed by other characters. A CONTROL sequence
means that the CTRL key (third row of the keyboard, extreme left)
~s held down while the other character is depressed. The control
key operates similarly to the SHIFT key. The following tables
show the ESCAPE and CONTROL sequences and their interpretation by
the video system.

ESCAPE SEQUENCES

[ESC] [Y] [row]
[column]

Absolute cursor addressing - The cursor is
positioned to the row and column as
specified in the screen layout chart.
Refer to figure 2.3A for code translations

Erase to end of line - Data are erased
from cursor position to the end of the
line.

Erase to end of screen - Data are erased
from cursor position to the end of the
screen.

Display control characters - The trans
parent mode is enabled, and control
characters received are displayed on the
screen.

Disable control character display - The
transparent mode is disabled, and control
characters are not displayed.

[ESC] [...] [B]

[ESC] [N] [B]

CONTROL SEQUENCES

CTL-A

CTL-F

CTL-H

CTL-K

CTL-J

CTL-I

CTL-L

CTL-G

CTL-W

Enable blinking display - All data
received are displayed blinking.

Disable blinking display - turns off any
blinking display.

Home cursor - The cursor is positioned
at row 1, column 1.

Cursor forward - The cursor is moved one
space to the right.

Cursor back - The cursor is moved one
space to the left.

Cursor up - The cursor is positioned
up to the previous line.

Cursor down - The cursor is positioned
to the next line down.

Tabbing - The cursor is positioned to
the next modulo-8 position.

Clear screen - Erases the data on the
screen, and the cursor is homed.

Ring bell - The audio indicator is
activated.

Page off/on - Video display is disabled/
enabled after the 24th line.

2

SECTION 2.4

2.4.1 SERIAL PORT INTERFACING INFORMATION

In order to use auxiliary devices (sometimes called peripherals)
with your CompuStar VPU, it is important to review the inter
facing information in this section. Each CompuStar VPU has two
serial ports available for peripherals such as printers, modems,
optical scanners, etc., and these are located on the back panel
of the CompuStar adjacent to the power switch. These are marked
MAIN PORT and AUXILIARY PORT.

A port is simply a point of access to the computer system. The
ports on a CompuStar VPU allow input or output, provided that the
VPU and the peripheral device communicate properly. For proper
protocol, simplified RS-232-C serial interface is provided. RS-
232-C establishes the pin assignments on the port couplers for
transmitted data, received data, handshaking, etc.

Serial transmission refers to the way the data are transferred.
Recall that internally the CompuStar manipulates data as bytes.
Each byte is composed of eight bits, which may have a value of
one or zero (these are numbers that the computer can read). If an
entire byte of data were transmitted or received at one time,
then the port would be a parallel port. The communication with
the DSS is actually parallel. This is faster than serial communi
cation, but requires eight times as many communication lines for
transmitting and receiving data as with serial protocol. So the
CompuStar internally uses a device called a USART, or a Universal
Synchronous/Asynchronous Receiver/Transmitter, which converts a
byte of data into eight bits of data. The CPU sends the USART a
byte, and the USART sends the coupler eight bits serially. At the
other end, the coupler sends the USART eight bits serially, and
the USART sends the computer one byte.

Traditionally, in CP/M the printer is attached to the logical
port designated as the list device. Logical just means that this
is what the operating system calls the port. In the CompuStar,
the LST: device is the same as the AUXILIARY PORT. Other devices
which accept or transmit serial data can be attached to either
port. CP/M refers to the MAIN PORT as the OUT:, PUN:, or RDR:
device. You must write or otherwise obtain software needed to
operate these devices. For a more complete discussion of CP/M's
'logical devices', please refer to Section 4 of this manual - AN
INTORDUCTION TO CP/M 2.0 FEATURES AND FACILITIES.

Each port has two addresses associated with it - status and data.
The following gives the port addresses internally for data and
status transmission. When ready to accept data for transmission
(i.e., out of the computer), the status byte will contain the
hexadecimnal pattern 01H. When the port has received data for the
computer and is ready to send it to the CPU, the status byte will
contain 02H. Normally, the CPU will continuously check the

1

status port until the desired number is present, and then the
proper action will be taken accordingly.

The memory address for the auxiliary port status is 41H, and its
data address is 40H. For the main port, the status address is
59H, and the data address is 58H. The following assembly language
program demonstrates how data might be transmitted out of a port .

. *** ,

.* * ,
;* 2.4.2 SAMPLE OUTPUT DRIVER PROGRAM *
.* *
~*** ,

,
PRTOUT: ORG
PDATA EQU
PSTAT EQU

,
LOOP:

,
LINE

LXI
MVI

LDA
ANI
JNZ
MOV
OUT
INX
DCR
JNZ
RET

DB
END

100H
40H
41H

H,LINE
C,14

PSTAT
01H
LOOP
A,M
PDATA
H
C
LOOP

'THIS IS A LINE'

;base of TPA
;address of AUX data
;address of AUX status

;HL <- address of text for output
;C <- length of text

;get port status
;port ready to send?
;no, check again
;else load next byte of text
;send it out the port
;increment the text pointer
;and decrement the count
;continue if text remains
;else quit

The reader is advised that alternate methods for input and/or
output are available using the facilities of the CP/M operating
system. Please review Section 9 of this Manual, CP/M 2.0 Inter
face Guide, for an explanation of such features.

2

2.4.3 RS-232-C SERIAL INTERFACE

The following chart illustrates the pinouts for the MAIN and
AUXILIARY serial ports and the direction of signal flow.

MAIN PORT
Pin II

1
2
3
4
5
6
7

15
17
20
22
24

AUXILIARY PORT
Pin II

1
2
3
7

20

COMPUSTAR SERIAL PORT PIN ASSIGNMENTS

Assignment
GND
Transmi-t ted Data
Received Data
Request to Send
Clear to Send
Data Set Ready
GND
Transmit Clock
Receive Clock
Data Terminal Ready
Ring Indicator
Clock

Assignment
GND
Received Data
Transmitted Data
GND
Data Terminal Ready

3

Signal Direction

(From CompuStar
(To CompuStar)
(Fron CompuStar
(To CompuStar)
(To CompuStar)

(To CompuStar)
(To CompuStar)
(From CompuStar
(To CompuStar)
(From CompuStar

Signal Direction

(To CompuStar)
(From CompuStar

(To CompuStar)

2.4.4 ASYNCHRONOUS/SYNCHRONOUS COMMUNICATIONS

The USART allows the serial data communication link to be either
asynchronous or synchronous. With asynchronous operation, a
start bit is sent to alert the receiver that a word is being
transmitted. After the start bit, 5 to 8 data bits are sent.
Subsequent to the data bits, an optional parity (or check) bit
(representing an even number or odd number of '1' data bits)
can be sent followed by 1, 1-1/2, or 2 stop bits.

The following information for asynchornous communication may be
programmed by the user:

The number of data bits to be sent for each transmitted
character (5 to 8)

Odd or even parity or no parity bit for each transmitted
character

The number of stop bits to be sent for each transmitted
character

The rate at which characters are to be transmitted (1,
64 times baud rate)

16, or

For a synchronous communication link, the transmitted character
will consist of 5 to 8 data bits plus an optional parity bit.
Preceding the start of a transmitted data stream, the user can
program one or two synchronization characters to be sent. These
synchronization characters will only be used by the receiver in
the internal synchronization mode. If the receiver is in the
external synchronization mode, the synchronization characters
will be ignored and a synchronization pulse is used. In the
synchronous mode, the user may program the following:

The number of bits per character (5 to 8)

Optional parity bit (odd, even, or none)

O~e or two synchronization characters and bit structure of
characters

External or internal synchronization

Additional information concerning serial port interfacing
(asynchronous and synchronous) is presented in sections 12 and
13.

4

2.5 SUPERBRAIN CHAINING ADAPTOR

Via a special chaining adaptor, a SuperBrain or SuperBrain QD
Video Computer Terminal may be connected to a CompuStar DSS.
This will provide hard disk storage for a SuperBrain System.
This section will instruct you concerning proper installation
and configuration of a hard disk system.

The chaining adaptor is shipped with a diskette. This diskette
contains the program needed to allocate disk storage however you
wish. Also contained on this diskette are the operations systems
needed to allow the SuperBrain or SuperBrain QD to use the extra
disk device--the standard DOS will not work.

NOTE: Before proceeding, insure that the power cord is removed
from the wall outlet.

To attach the chaining adaptor to the SuperBrain, you must first
remove the SuperBrain's cover. This is accomplished by removing
the four screws holding the cover in place; two are in the
front ~nd two are in the rear. Make certain that the diskette
drive doors are closed. Next, focate the short cable on the
chaining adaptor. This will plug into the 40 pin connector at
the top edge of the SuperBrain processor board located just
beneath the disk drives. Be sure to align the notch in the
connector with the slot on the processor board. Push the cable
connector until it is completed seated.

Insert the round end of the four mounting tabs into the four
holes on the back of the disk assembly (see Figure 2.5A). Now
place the board on the mounting tabs as shown in Figure 2.5B. Be
careful that the cable does not come in contact with the fan.
Then extend the long cable over the middle of the rear edge of
the base. This cable will connect to the disk drive.

Replace the cover on the SuperBrain, binding the long cable
between the two cover halves. Replace the hold-down bolts to
secure the attachment.

Plug the connector on the end of the long cable into the re
ceptacle at the rear of the DSS. Tighten the connector screws
making certain that the pins are in full contact.

Now you may choose to change the disk allocations to other than
factory configuration. This is suggested because disk space is
lost due to CompuSiar allocations for ten user stations. The
process is fairly simple. Place the diskette included with the
chaining adaptor in drive A of the SuperBrain. Be sure it is
properly inserted with the notch on the upper edge and the
labels facing away from the screen. Close the door to the disk
ette, and then simultaneously depress both RED keys. Now type
the following line at the keyboard:

SUBMIT22 SBGEN

5

FIGURE 2.5A MOUNTING HOLES FOR SUPERBRAIN CHAINING ADAPTOR

FIGURE 2.5B MOUNTED SUPERBRAIN CHAINING ADAPTOR

6

A program on the diskete called SBGEN.SUB contains the names of
the system programs needed to initialize the DSS. First, the
DSS will be formatted. If you notice, the FAULT light on the DSS
will come on during the formatting. This is normal, and does not
indicate that anything is wrong. Do not reset the DSS until
later.

The DSS may have media errors on it. This means that some of the
tracks on the disk may not be usable. Supplied with the DSS is a
buff-colored card labeled 'SA1004 MEDIA ERROR MAP'. This card
lists the media defects on the drive.

It is necessary for you to enter the tracks and heads listed on
the card so that these may be reassigned. Then, as the head
positions itself at a defective track, it will reposition itself
to an alternate track area. This makes the defective tracks
transparent to the user. After you have entered all defective
tracks, enter 'D' for a display of your entries for verification
purposes. Then enter 'X' to exit the alternate track entry and
proceed.

There are approximately 8800 kilobytes (or 8.8 megabytes) of
formatted disk area on the DSS. Enter allocations for drives C,
D, and E. If you make invalid entries, you must reenter your
choice. When finished, you are shown a summary of your entries.
Don't worry if the numbers are slightly greater than you
entered; round-up occurs to insure boundary alignment. If you
wish to change your entries, do so now by entering 'N' where
asked. Otherwise, enter 'Y'.

After you have made your entries, the initialization will
complete a final task and return to the operating system. One
more step is needed to complete the process. You must have a
different operating system on the diskette to use the DSS. The
standard SuperBrain or SuperBrain QD operating system will not
work. You must place a copy of the new operating system on
another formatted diskette.

These operating systems are on the diskette in drive A. Enter
'SB10MDOS' to copj the operating system for a SuperBrain, or
'QD10MDOS' for the SuperBrain QD. The program will ask you for
the source drive. Press return here. Then you will be asked for
a destination drive. Here, press the 'B' key. Press the
'RETURN' key when you have placed a formatted diskette into drive
B. When the program displays 'FUNCTION COMPLETE', press the
'RETURN' key.

After the new operating system has been placed on the diskette in
drive B, you are ready to test it. First, press the RESET button
on the DSS, and the FAULT light should go out. Then exchange
the two diskettes in drives A and B. Then depress both RED keys
simultaneously. This will load in the newly generated operating
system. If the screen fills with garbled text, you have im
properly copied the operating system, and you should repeat the
last step. Otherwise, enjoy your new, powerful computer.

7

SECTION 3.0
3.1 SYSTEM INFORMATION

AND SPECIFICATIONS
3.2 THEORY OF OPERATION
3.3 VIDEO PROCESSING UNIT

SPECIFICA TIONS
3.4 1 0 MEGABYTE DISK

STORAGE SYSTEM
INTERNAL CONSTRUCTION

3.1 SYSTEM INFORMATION

The CompuStar Video Processing System (VPU) represents the latest
technological advances in the microprocessor industry. The
universal adaptability of its CP/M* Disk Operating System
satisfies the general purpose requirement for a low cost, high
performance microcomputer system.

The price/performance ratio of the CompuStar has rarely been
equalled in this industry. By employing innovative design tech
niques, the system is not only able to offer a competitive price
advantage, but boasts many features found only in systems costing
three to five times as much. The twin Z80A microprocessors in
each CompuStar VPU insure extremely fast program execution even
when faced with the most difficult programming tasks. In
addition, each unit must pass a grueling 48 hour burn-in before
it is shipped to the Customer. By combining advanced
microprocessor technology with in-house manufacturing capability
and stringent quality control requirements, your CompuStar System
should provide unparalleled reliability in any application into
which it is passed.

3 . 1 • 1 THE COMPUSTAR VPU AND DSS

The CompuStar Multi-User System consists of a network of video
display terminals (called video processing units) which employ
their own internal microprocessor and dynamic RAM. The ter
minals are tied togetrher in a network fashion to "share" the
resources of a single Winchester or other hard disk device. In
this manner, the CompuStar allows true multi-user capability by
permitting the sharing of a common data base while at the same
time allowing individual users the capability to maintain re
stricted data bases.

A CompuStar system can be configured using anyone of three disk
storage devices (called Disk Storage Systems--DSS), all of which
are manufactured by Intertec. A DSS consists of a hard disk
device, complete with power supply and Intertec's special disk
controller and multiplex circuitry to tie users' stations into a
common disk. The three DSS models available include a table top
ten megabyte Winchester model and Control Data Corporation's 32
or 96 megabyte cartridge module drive models. The CDC drives
feature a 16 megabyte removable, top loading platter and either
16 or 80 megabytes fixed disk storage.

A series of 4 types of video processing units (VPU's) can be
connected into a disk storage system. The VPU's connect by an 8
bit parallel interface, thus allowing a data transfer rate of 1.6
million WPS between the disk storage system and the terminals.
In this manner, the distance over which signals can be transfered
(from disk system to terminal station) is significant up to
one mile in total cable length. And since premanufactured cable
assemblies (with 31 pin 'D'-type connectors on each end) are
offered in a variety of lengths, installation of a CompuStar
network is a real snap!

The video processing units are connected in a "daisy chain"
fashion; i.e., the first terminal is connected directly into the
CompuStar disk storage system, the second terminal is connected
into the first, the third into the second, and so on. A total of
up to 255 video processing units can be connected into a single
network. Each VPU is assigned a variable address via an 8 posi
tion dipswitch mounted internally. This allows each terminal
access to the common and/or restricted data base on the disk
storage system. Plus, each terminal has twin RS-232 Serial Ports
fGr connecting auxiliary printer and/or modem devices.

From the standpoint of human engineering, each CompuStar VPU has
been designed to minimize operator fatigue through the use of a
typewriter-oriented keyboard and a remarkably clear display.
Each video processing unit displays a total of 1,920 characters
arranged in 24 lines with 80 characters per line. The video
display is unusually crisp and sharp due to Intertec's own
specially designed video driver circuitry. And, the high
quality, non-glare etched CRT featured on every VPU assures ease
of viewing and uniformity of brightness throughout the entire
screen.

The CompuStar's unique internal design assures users of
exceptional performance for just a fraction of what they would
expect to pay for such "big system" capabilities. The CompuStar
VPU utilizes a single board "microprocessor" design which
combines all processor ,.. RAM, ROM, disk controller, and
communications electronics on the same printed circuit board.
This type of design engineering enables the CompuStar to deliver
superior, competitive performance.

Standard features of the CompuStar Model 20 VPU includes: two
double-density, single-sided mini-floppies with a total of over
350,000 bytes formatted disk storage, 64K of dynamic RAM memory,
a universally recognized CP/M* Disk Operating System featuring
its own text editor, an assembler for assembly language
programming, a program debugger and a disk formatter. Also
standard are dual universal RS-232 communications ports for
-serial data transmission between a host computer network via
modem or an auxiliary serial printer. A number of transmission
rates up to 9600 baud are available and selectable under program
control.

The Model 30 VPU incorporates these same features, but boasts
nearly 750,000 bytes of di~k storage units, twin double-density,
double-sided drive mechanism. The Model 40 employs dual double
track drive assemblies to provide the user with nearly 1-1/2
million bytes of local, off-line storage capability.

2

For reliability, each CompuStar VPU has been designed around
modules packaged in an aesthetically pleasing desk-top unit.
These major components are: the Keyboard/CPU module, the power
supply module, the CRT assembly, the chaining adaptor and the
disk drives themselves. Failure of any component within the
terminal may be corrected by simply replacing only the defective
module. Individual modules are fastened to the chassis in such a
manner to facilitate easy removal and reinstallation. Terminal
down-time can be greatly minimized by simply "swapping-out" one
of the modules and having component level repair performed at one
of Intertec's Service Centers. Spare modules may be purchased
from an Intertec marketing office to support those customers who
maintain their own "in-house" repair facilities.

CompuStar VPU cover assembly is exclusively manufactured "in
house" by Intertec. A high-impact, structural-foam material is
covered with a special "felt-like" paint to enhance the overall
appearance. Since the cover assembly is injected-molded, there
is virtually no possibility of cracks and disfigurations in the
cover itself. And, by manufacturing and finishing the cover
assembly in-house, Intertec is able to specify only high quality
material on the external and internal cover components of your
CompuStar to insure unparalleled durability over the years to
come.

3

3.1.2 SOFTWARE AND OPTIONS

A wide variety of programming tools and options are either
planned or available for the CompuStar System. Standard software
development tools available from Intertec include Basic, Fortran
and Cobol programming languages. A wide variety of applications
packages (general ledger, acounts receivable, payroll, inventory,
word processing, etc.) are available to operate under the
CompuStar CP/M Disk Operating System from leading software ven
dors in the industry.

CUTAWAY VIEW SHOWING MOUNTING OF MAJOR SUBASSEMBLIES

4

3.2 THEORY OF OPERATION

The CompuStar contains two Z80 microprocessors. (Reference
Figure 3.1) uP1 is the master processor. It communicates with
the 64K RAM and the 1/0 devices (serial port, keyboard encoder,
interface controller, and CRT controller). Aside from these
devices, it can also access the 2K ROM and DATA BUFFER RAM in the
FLOPPY DISK CONTROLLER. uP2 is slaved to uP1 and can only access
the 2K ROM, DATA BUFFER, and the DISK INTERFACE. This processor
is used exclusively for disk control.

The 64 kilobyte main memory consists of thirty-two 16K x 1 bit
dynamic RAMS. These are divided in four banks (0-3) with each
bank containing 16 kilobytes of storage. The RAS-CAS timing
sequence necessary for memory access is created by the memory
timing generator.

There are two devices that can access memory--uP1 and the
Controller. uP1 can read and write to memory while the
Controller can only perform the read function. Because
device runs at a different speed, two clock frequencies
required for memory timing. The speed is determined by
selection of the control input to the timing generator.
microprocessor functions require the faster clock.

The CRT-VIDEO CONTROLLER contains three main devices--the
Controller which generates all the timing signals for
display; the video generator which produces the character
and the octal 80-bit shift register which stores one row of
data. (80 characters)

CRT
CRT

each
are
the
The

CRT
data

font;
video

The CRT Controller generates all the timing necessary to display
24 rows of characters with 80 characters per row. Thus, the
screen can display a total of 1920 characters. These characters
are stored in the CRT refresh buffer which is the upper 2048
bytes (2K) of RAM.

Because the CRT buffer is not a separate buffer and the processor
must also use the same bus to access memory, this bus must be
timeshared between the two. This is accomplished by the CRT
controller performing a direct memory access (DMA) cycle which is
done at the beginning of each scan row. Each scan row is divided
into ten scan lines, therefore during the first scan line time,
the controller takes control of the processor bus by generating a
bus request. After acquiring the bus, it reads 80 characters
from the CRT buffer and loads them into the 80 x 8 shift
register. This data is then recirculated in the buffer for the
next nine scan lines to produce one row of video characters.
Therefore, there are twenty-four DMA cycles performed per
vertical frame.

There are also twenty-five interrupts generated--one for each row
scan and one extra during vertical blanking. During the first

twenty-four, the processor sets or resets the video blanking
depending on whether that row is displayed or not. During the
vertical blanking interrupt, the address registers in the CRT
controller are initialized to the correct top-of-page address and
the cursor register is also updated.

The Interface Controller is basically three 8 bit I/O ports
(8255). Through this device, the processor can obtain status
bits from other devices and react to the status by
setting/resetting individual bits in the 8255.

The Keyboard Encoder scans the keyboard for a key depression,
determines its position, and generates the correct ASCII code for
the key. The processor is flagged by the 'Data R~ady' signal via
the Interface Controller. The character is then input by the
processor.

The Chaining Adaptor Module provides a high speed interface
between each CompuStar VPU and the Disk Storage System (DSS).
Its function is to provide a point of access bus for each VPU in
the CompuStar Computer Network.

The CompuStar bus is a parallel hi-directional bus with 12
differently driven, TTL signals. The information communicated on
the bus includes data and control signals. The bus has been
constructed to allow approximately 4000 feet of cable to be used
in a single CompuStar System (up to 255 Video Processing
Systems).

The remaining I/O device is the RS-232-C Serial Interface Port.
Presently, it, operates only in the asynchronous mode and adheres
to a simplified standard protocol. The baud rate is set to 1200
baud by the operating system. (Refer to the Technical Bulletin
enclosed at the end of this manual.)

As previously mentioned, uP1 has the capability of communicating
with the RAM and ROM in the FLOPPY DISK CONTROLLER. It does this
to obtain the boot loader from ROM on power-up and system reset
and also when transferring disk parameters and data to/from the
Data Buffer RAM. Because the amount of main memory used is the
maximum that the processor addressing can support, different 16K
banks of main memory must be switched off line when communicating
with the disk RAM or ROM~ In these cases, Bank 0 (0000H-3FFH) is
switched out when communicating with the ROM, and Bank 2 (8000H
BFFFH) when communicating with the RAM.

The DISK CONTROLLER performs all disk related I/O functions upon
command from the main processor. These commands are:

Restore to track 0
Read sector
Write sector
Write sector with deleted data mark
Format

2

The parameters associated with drive, side, track and sector
numbers are loaded, a status word is set at specified location in
the disk RAM. When uP2 receives this status, it sets the 'disk
busy' status bit and performs the indicated function. Upon com
pletion, it resets the 'busy' bit thus allowing the main
processor (uP1) to retrieve data and status from the RAM.

3

SECTION 3.3

FEATURE

CPU
Microprocessors

Word Size

Execution Time

VIDEO PROCESSING UNIT SPECIFICATIONS

DESCRIPTION

Twin Z80A's with 4MHZ Clock Frequency.
One Z80A (the host processor) performs
all processor and screen related
functions. The second Z80A is "down
loaded" by the host to execute disk I/O.

8 bits

1.0 microseconds

Machine Instructions 158

Interrupt Mode

Floppy Disk
Storage Capacity
(For Models 20,
30, 40)

Format

Data Transfer Rate

Average Access Time

Media

Disk Rotation

Internal Memory
Dynamic RAM

Static RAM

ROM Storage

CRT
Display Size

Display Format

All interrupts are vectored and reserved

Over 350K (700K Model 30; 1400K Model
40) unformatted data on two 5-1/4" mlnl
drives. External hard disk storage can
be connected using the chaining adaptor.

Soft sectored; 512 bytes/sector; 10
sectors/track; 35/70/140 tracks per
diskette (for Model 20/30/40).

250K bits/second

250 milliseconds. 35 milliseconds track
to-track

5-1/4 inch mini-disk

300 RPM

64K

1K bytes of static RAM is provided in
addition to the maIn processor RAM.
This memory is used for program and/or
data storage for the auxiliary processor

2K bytes standard. Allows ROM "boot
strapping" of system at power-on.

12-inch, P4 phosphor

24 lines x 80 characters per line

1

FEA·TURE

Character Font

Display Presentation

Bandwidth

Cursor

Communications
Screen Data Transfer

Main Interface

Auxiliary Interface

Chaining Interface

Z80A Data Bus

Parity

Transmission Mode

Addressable Cursor

System utilities

DESCRIPTION

5 x 7 character matrix on a 7 x 10
character field

Light characters on a dark background

15 MHZ

Reversed image (block cursor)

Memory-mapped at 38 kilobaud. Serial
transmission of data at rates up to 9600
bps.

RS-232C asynchronous. Synchronous
interface internally selectable.

Simplified RS-232C asynchronous.

Intertec protocol--used for
chaining multiple users into a
disk network.

40-pin Data Bus connector

daisy
single

Choice of even, odd, marking,
spacing--under program control.

or

Half or Full Duplex. 1, 1 1/2, or 2 stop
bits

Direct Positioning by absolute x, y
addressing.

Disk Operating System CP/M 2.2

DOS Software

Optional Software
FORTRAN

COBOL

BASIC

Application Packages

An 8080 disk assembler, debugger, text
editor and file handling utilities.

ANSI standard. Relocatable, random and
sequential disk access.

ANSI standard. Relocatable, sequential,
relative and indexed disk access.

Sequential and random disk access. Full
string manipulation, interpreter.

Extensive software development tools are
available from leading software vendors
including software for the following ap
plications:Payroll, Accounts Receivable,

2

FEATURE

Application Packages
(continued)

Keyboard
Alphanumeric

Character Set

Special Features

Numeric Pad

Cursor Control Keys

Internal Construction
Cabinetry

Component Layout

Mounting

Environment
Weight

Physical Dimensions

Environment

Power Requirements

DESCRIPTION

Accounts Payable, Inventory Control,
General Ledger, and Word Processing.

Generates all 128 upper and lower case
ASCII characters.

2-Key Rollover, Keyboard lock/unlock-
under program control.

0-9, decimal point, comma, minus and
user-programmable function keys.

Up, down, forward and backward.

Structural foam.

Four board modular design. All
processor related functions and hardware
are on a single printed circuit board.
All video and power related circuits on
separate single boards.

All modules mounted to base. CRT in a
rigid aluminum frame. Disk Drive
assemblies are mounted into special
bracket for ease of servicing.

Approximately 45 pounds.

14-5/8" (H) x 21-3/8" (W) x 23-1/8 (D)

Operating: 0 to 40 C Storage: 0 to
85 C; 10 to 85% reI. humidity - non
condensing.

115 VAC, 60 HZ, 3 AMP (optional 230VACI
5HHZ model available).

*Specifications subject to change with
out notice.

3

3.3.1 COMPUSTAR VPU INTERNAL CONSTRUCTION

Perhaps the most remarkable feature of the CompuStar VPU is its
modular construction using only four major subassemblies which
are clearly defined in their respective functions so as to
facilitate ease of construction and repair. These four subassem
blies are shown in figure 1 and described below.

Disk Drive Module (not on Model 10)

CRT Display Module

Chaining Adaptor

Main Power Supply I/O Module

Keyboard/CPU Module

4

3.3.2 KEYBOARD/CPU MODULE

The control section of the CompuStar VPU is based upon the widely
acclaimed Z80A microprocessor. The result is far fewer
components and the ability to perform a number of functions not
possible with any other approach. The Keyboard/CPU module
(figure two) contains the twin Z80 microprocessors. One Z80A
(the host processor) performs all processor and screen related
functions while the second Z80A can be "downloaded" to execute
disk I/O handling routines. The result is extremely fast execu
tion time for even the most sophisticated programs.

In addition to containing the VPU's microprocessor circuitry,
the Keyboard/CPU module contains 64K of dynamic RAM (see figure
3). Also found on this module is: the character and keyboard
encoder circuitry, the "bootstrap" ROM, the disk contoll~r and
all communications electronics. Power is supplied to and signals
are transferred from this module via a single 22 pin ribbon cable
connected to the main power supply module. Connection of this
module to the disk drive subassemblies is via a separate ribbon
cable. Figure 4 shows the connectors on the Keyboard/CPU module
which are used for interconnecting this module with the disk
drive subassemblies, the main power supply and the chaining
adaptors.

Figure 2 - CompuStar Keyboard/CPU Module

Figure 3 - Dynamic RAM Section
Every CompuStar is equipped with
64 K dynamic RAM

5

Figure 4 - Keyboard/CPU
Module Connectors

The 40 pin connector on the
top edge of the card is for
connection to the CompuStar
chaining adaptor. The 40
pin connector on the right
edge routes signals to and
from the disk drive assem
bly.

3.3.3 CRT DISPLAY MODULE

The CRT Display Module consists of a 12-inch, high resolution,
cathode ray tube mounted in a rigid aluminum chassis. The
faceplate of the CRT is etched in order to reduce glare on the
surface of the screen and provide uniform brightness throughout
the entire screen area. .The CRT display presentation is arranged
in 24 lines of 80 characters per line.

The CRT video driver circuitry is mounted in the base of the CRT
chassis to facilitate ease of removal and subsequent repair. In
this manner, either the CRT itself or the video circuitry can be
easily exhanged without disrupting any of the other major modules
within the terminal (see Figure 5).

Figure 5 - CRT Display Module
This module is easily removed for service or replacement.
A single edge connector is provided for connection to
the VPU's Power Supply Mode.

6

3.3.4 POWER SUPPLY MODE

The CompuStar power supply is a "solid-state, switching" design
and employs switching voltage regulators to provide many years of
trouble-free service. This design reduces heat dissipation and
allows for efficient cooling of the entire terminal with a
specially designed whisper fan to reduce environment noise. The
entire power supply can be easily removed by unscrewing the three
screws holding it into the base of the terminal. Included on the
power supply module are the power offlon switch, the user
brightness control, the main and auxiliary RS232 serial ports and
the chaining adaptor circuitry (and connectors) which allow
multi-users to be connected into a single Disk Storage System.
By combining the power supply section and external serial
communiations connections on the same module, the total module
count is able to be kept to a minimum thus greatly faciltating
ease of field service repair while at the same time minimizing
the number of modules required to be stocked to effect competent
field repair (refer to figure six).

Figure 6 - Power Supply Module
with Chaining Adapter card installed

7

3.3.5 DISK DRIVE MODULES FOR MODELS 20, 30 AND 40 VPU's ONLY

Figures 7 and 8 illustrate the left and right views of the
specially designed double-density disk drive subassembly. The
Model 20, 30 and 40 VPU's contain two of these type drives which
are mounted conveniently just to the right of the CRT display
module on a rugged aluminum mounting bracket which supports the
drives so that they are flush mounted with the front "bezel" of
the unit. Power to thefse drives is derived from the Power
Supply Module located just behind the drive assemblies
themselves. Data to and from these drives is routed via a single
34 pin ribbon cable connecting the drives to the Keyboard/CPU
module.

Figure 7 - Top View of CompuStar
(Not applicable for Model 10)

Figure 8 - Bottom View of CompuStar Drive Assembly
(Not applicable for Model 10)

8

3.4 10 MEGABYTE DISK STORAGE SYSTEM SPECIFICATIONS

Performance Specifications

Capacity
Unformatted

Per Drive
Per Surface
per Track

Formatted
Per Drive
Per Surface
Per Track
Per Sector
Sectors/Track

Transfer Rate
Access Time

Track to Track
Average
Maximum

Average Latency

Functional Specifications
Rotational Speed
Recording Density
Flux Density
Track Density
Cylinders
Tracks
R/W Heads
Disks
Index

Physical Specifications

Environmental Limits

SA1004

10.67 Mbytes
2.67 Mbytes

10.4 Kbytes

8.4 Mbytes
2. 1 Mbytes
8.2 Mbytes
256 Kbytes

32
4.34 Mbits/sec

19 msec
70 msec

150 msec
9.6 msec

3125 rpm
6270 bpi
6270 fci

172 tpi
256

1024
4
2
1

Ambient Temperature = 50 to 115 F(10 to 46 C)
Relative Humidity = 8% to 80%
Maximum Wet Bulb = 78% non-condensing

AC Power Requirements
50/60 Hz 0.5 hz
100/115 VAC Installations =
200/230 VAC Installations =

DC Voltage Requirements

90-127V at 1.1A typical
180-253V at 0.6A typical

+24 VDC + 10% 2.8A typical during stepping
(0.2A typical steady state)

+5 VDC + 5% 3.6A typical
-5 VDC + 5% (-7 to -16 VDC optional) .2A typical

Mechanical Dimensions

Height =
Width
Depth
Weight =

=
=

Rack Mount
4.62 in. (117.3mm)
8.55 in. (217.2mm)

14.25 in. (362.0mm)
17 lbs. (7.7Kg)

Standard Mount
4.62 in. (117.3mm)
9.50 in. (241.3mm)

14.25 in. (362.0mm)
17 lbs. (7.7kg)

Heat Dissipation = 511 BTU/Hr. typical (150 Watts)

Re~iability Specifications

MTBF: 8,000 POH typical usage
PM: Not Required
MTTR: 30 minutes
Component Life: 5 Years

Error Rates:
Soft Read Errors:
Hard Read Error,s:
Seek Errors:

per 10
per 10
per 10

2

bits read
bits read
seeks

3.4. 1 10 MEGABYTE DISK STORAGE SYSTEM INTERNAL CONSTRUCTION

The 10 Megabyte DSS contains the typical high quality modular
construction of other Intertec products. Ease of servicing and
rugged reliability have been built into each component.

Featured below are the main modules of the 10 megabyte DSS.
Figure A illustrates the +5 volt and +12 volt supply and Figure B
represents the +24 volt supply.

The Disk Drive Assembly is shown in Figure C. This assembly
contains the motors, read/write heads, electronic board, and
enclosed recording media.

The chassis assembly with cooling fan in shown in figure D.

Figure A

5, +12 Volt
Power Supply
Module

Figure B

+24 Volt Power
Supply Module

3

Figure C

Disk Drive
Assembly

Figure D

Chassis Assembl

3.4.2 32 MEGABYTE DISK STORAGE SYSTEM INTERNAL CONSTRUCTION
(To Be Added)

4

3.4.3 96 MEGABYTE DISK STORAGE SYSTEM INTERNAL CONSTRUCTION
(To Be Added)

5

INTRODUCTION· TO
CP/M FEATURES & FACILITIES

01 [)~(j~Tfll RE~EflR[H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

AN INTRODUCTION TO CP/M FEATURES AND FACILITIHS

COPYRIGHT (c) 1976, 1977, 1978

DIGITAL RESEARCH

REVISION OF JANUARY 1978

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, 'electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

Section Paqe

1. INTRODUCTION ••••••••••••••••••••••••••••••••••••••• 1

2.

3.

4.

FUNCTIONAL DESCRIPTION OF CP/M •••••••••••••••••••••
2.1. General Command Structure ••••••••••••••••• ~ ••
2.2. File References •••••••••••••••••••••••••••• c~

SWITCHING DISKS ••••••••••••••••••••••••••••••••••••

THE FORM OF BUILT-IN <DMMANDS
4.1.
4.2.
4.3.
4.4.
4.5.

ERA afn cr
DIR afn cr

. REN ufn1=ufn2 cr
SAVE n ufn cr
TYPE ufn cr

.

3
3
3

6

7
7
8
8
9
9

5. LINE EDITING AND OUTPUT <DNTROL ••••••••••••••••••••• 11

6.

7.

8.

TRANSIENT <DMMANOO
...................................... 6.1. STAT cr

6.2. ASM ufn cr
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

LCru) ufn cr
....................................... PIP cr

ED ufn cr
SYSGEN cr

.

....................................
SUBMIT ufn parm#l ••• parrn#n cr • ••••••••••••• DUMP ufn cr
t-DVCPM cr

BOOS ERROR MESSAGES ••••••••••••••••••••••••••••••••

OPERATION OF CP 1M ON THE MIl3

12
13
16
17
18
25
27
28
30
30

33

34

1. INI'ROOUcrION.

CP/M is a rronitor control program for microcomputer system developnent
which uses IBM-compatible flexible disks for backup storage. Using a canputer
mainframe based uJ;On Intel's 8080 microcomputer, CP/M provides a general
enviromnent for program construction, storage, and editing, along with
assembly and {X'ogram check-out facilities. An imp:>rtant feature of CP/M is
that it can be easily altered to execute with any computer configuration which
uses an Intel 8080 (or Zilaq Z-80) Central Processing Unit, and has at least
16K bytes of main rrernory wi th up to four IBM-compatible diskette drives. A
detailed discussion of the rrodifications required for any particular hardware
enviromnent is given in the Digital Research document entitled "CP/M System
Alteration Guide." Although the standard Digital Research version operates on
a single-density Intel MIS 8:00, several different hardwa-re manufacturers
support their own input-output drivers for CP/M.

The CP/M rronitor provides rapid access to programs through a
comprehensive file management package. The file subsys·tem supports a named
file structure, allowil'YJ dynamic allocation of file space as well as
sequential and random file access. Usir'XJ this file system, a large number of
distinct programs can be stored in both S)urce and machine executable form.

CP/M also sl.1pp)rts a J;X>werful context editor, Intel-compatible assembler,
and debugger subsystems. Optional software includes a powerful
Intel-compatible macro assembler, symbolic debugger, along with various
high-level languages. When coupled wi th CP/M's Console Command Processor, the
resulting facilities equal or excel similar large computer facilities.

CP/M is logically divided into several distinct parts:

BIOS Basic I/O System (hardware dependent)

BOOS Basic Disk Operating System

CCP Console Command Processor

TPA Transient Program Area

The BIOS provides the primitive operations necessary to access the
diskette drives and to interface standard ~ripherals (teletype, CRr, Paper
Tape Reader/Punch, and user-defined ~ripherals), and can be tailored by the
user for artf particular hardware environment by "patching" this {X)rtion of
CP/M. The BDOS provides disk management by controlling one or rrore disk
drives containing independent file directories. The BDOS implements disk
allocation strategies \\hich provide fully dynamic file construction while
minimizin::) head rrovement across the disk dur ing access. Any particular file
may contain any number of records, not exceeding the size of any single disk.
In a standard CP/M system, each disk can contain up to 64 distinct files. The

1

BIX>S has entry IX>ints \\hich include the following primitive operations which
can be programmatically accessed:

SEARCH

OPEN

CLOSE

RENAME

READ

WRITE

SELEcr

Look for a particular disk file by name.

Open a file for further operations.

Close a file after processing.

Change the name of a particular file.

Read a record from a particular file.

Write a record onto the disk.

Select a particular disk drive for further
operations.

The CCP provides symbolic interface between the user's console and the
remainder of the CP/M system. The CCP reads the console device and processes
commands which include listing the file directory, pr inting the contents of
files, and controlling the operation of transient programs, such as
assemblers, editors, and debuggers. The standard commands which are available
in the CCP are listed in a following section.

The last sBJment of CP/M is the area called the Transient Program Area
(TPA). The TPA holds programs which are loaded from the disk under command of
the CCP. Durinq p:-ogram editing, for example, the TPA holds the CP/M text
edi tor machine code and data areas. Similarly, programs created under CP/M
can be checked out by loading and executing these programs in the TPA.

It smuld be rrentioned that any or all of the CP/M comp:>nent subsystems
can be "overlayed" by an executing program. That is, once a user's program is
loaded into the TPA, the CCP, BOOS, and BIOS areas can be used as the
program's data area. A "bootstrap" loader is programmatically accessible
whenever the BIOS p:>rtion is not overlayed; thus, the user program need only
branch to the bootstrap loader at the end of execution, and the complete CP/M
monitor is reloaded from disk.

It smuld be reiterated that the CP/M operating system is partitioned
into distinct nodules, including the BIOS p:>rtion which defines the hardware
environment in which CP/M is executing. Thus, the standard system can be
easily rodified to any non-standard environment by changing the ~ripheral
drivers to handle the custom system.

2

2. FUN:TIOOAL DESCRIPrION OF CP/M.

The user interacts with CP/M IX"imarily through the CCP, ~ich reads and
interprets canmands entered through the console. In general, the CCP
addresses one of several disks \\hich are online (the standard system crldresses
up to four different disk drives). These disk drives are labelled A, B, C,
and O. A disk is "logged in" if the CCP is currently crldressing the disk. In
order to clearly irrlicate \\hich disk is the currently logged disk, the CCP
always {ranpts the operator wi th the disk name followed by the symbol ")"
indicatin:J that the CCP is ready for another canmand. Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the nemory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version number. All CP/M systems are initially set to operate
in a 16K. memory space, but can be easily reconfigured to fit any memory size
on the host system (see the IDVCPM transient canmand). Followirg system
signon, CP/M automatically logs in disk A, pranpts the user wi th the symbol
II A> " (indicating that CP/M is currently crldressing disk "AU), and waits for a
command. The canmands are implemented at two levels: buil t-in camnarrls arrl
transient canmands.

2.1. GENERAL CDMMANO STIUCIURE.

Built-in canmands are a part of the CCP program itself, ~ile transient
carnmarrls are loaded into the TPA fran disk and executed. The built-in
carnmarrls are

ERA Erase specified files.

OIR List file names in the directory.

REN Rename the specified file.

SAVE Save memory contents in a file.

TYPE Type the contents of a file on the logged disk.

Nearly all of the canmands reference a particular file or group of files. The
fom of a file reference is specified below.

2.2. FI LE REFERENCES.

A file reference identifies a particular file or group of files on a
particular disk attached to CP/M. These file references can be either
"tmambigoous" (ufn) or "ambiguous" (afn). An unambiguous file reference
uniquely identifies a single file, \\hile an ambiguous file reference may be

3

satisfied by a number of different files.

File references consist of two parts: the primary name and the secondary
name. Although the secondary name is optional, it usually is generic; that
is, the secondary nane "ASM," for example, is used to denote that the file is
an assembly language source file, ¥bile the pr imary name distinguishes each
particular source file. The two names are separated by a "." as shown below:

PPPPpPPP.sss

where pwppppp represents the tr imary name of eight characters or less, and
sss is the secondary nane of no IlOre than three characters. As nentioned
above, the name

pppppppp

is also allowed arrl is equivalent to a secondary name consisting of three
blanks. The characters used in s~cifying an tmambiguous file reference
cannot contain any of the special characters

<>.,;:= ?*[]

while all alphanumerics and remaining special characters are allowed.

An ambigoous file reference is used for directory search arrl pattern
matching. The form of an ambiguous file reference is similar to an
unambigoous reference, except the symbol It?.. may be interspersed throughout
the IX imary and secondary names. In various canmands throughout CP/M, the "?"
symbol matches any character of a file name in the n?" position. Thus, the
ambigoous reference

X?Z.C?M

is satisfied by the tnambigoous file names

XYZ.OOM
and

X3Z • CAM

Note tr~t tr~ ambiguous reference

* * •

is equivalent to the ambiguous file reference

???????? ???
while

4

PPPPPPPP.*
and

*.sss

are abbreviations for

PPPPPPPP.???
and

????????sss

respectively. As an example,

DIR *.*

is interpreted by the CCP as a canmand to list the names of all disk files in
the directory, While

DIR X.Y

searches only for a file by the name X.Y Similarly, the command

DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk Which satisfy
this ambiguous reference.

The fbllowing file names are valid unambiguous file references:

x XYZ GAMMA

X.Y XYz.mM GAMMA. I

As an cOded convenience, the IX"ograrnmer can generally specify the disk
drive name along with the file name. In this case, the drive name is given as
a letter A through Z follo~d by a colon (:). The specified drive is then
"logged in" before the file operation occurs. Thus, the fbllowing are valid
file nanes wi th disk name prefixes:

A:X.Y B:XYZ C:GAMMA

z:xyz.mM B:X.A?M C:*.ASM

It smuld also be noted that all alphabetic lower case letters in file
and drive names are always translated to upper case \\hen they are T;rocessed by
the CCP.

5

3. SWITCHING DISKS.

The ~rator can switch the currently logged disk by typing the disk
drive name (A, B, C, or D) followed by a colon (:) when the CCP is waiting for
console il'l'ut. Thus, the sequence of prompts and canmands srown below might
occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.4

A)DIR List all files on disk A.

SAMPLE A901

SAMPLE PRN

A)B: Switch to disk B.

B)DIR *.ASM List all IIASMII files on B.

DUMP A901

FILES A901

B)A: Switch back to A.

6

4. THE lORM CF BUILT-IN a>MftWOO.

The file an::1 device reference forms described above can now be used to
fully st:ecify the structure of the built-in canmands. In the description
below, assume the followin:J abbreviations:

ufn unambiguous file reference

afn ambiguous file reference

cr carriage return

Further, recall that the CCP always translates lower case characters to upper
case characters internally. Thus, lower case alphabetics are treated as if
they are upper case in command names and file references.

4.1 ERA afn cr

The ERA (erase) canmand ranoves files fran the currently logged-in disk
(i.e., the disk name currently pranpted by CP/M preceding the ">"). The files

which are erased are tmse \\hich satisfy the ambiguous file reference afn.
The followil'l3 examples illustrate the use of ERA:

ERA X.Y

ERA X.*

ERA *.ASM

ERA X?Y.C?M

ERA *.*

ERA B:* .PRN

The file named X.Y on the currently logged disk
is removed fran the disk directory, and the space
is returned.

All files wi th };rimary name X are removed fran
the current disk.

All files with secondary name ASM are removed
fran the current disk.

All files on the current disk which satisfy the
ambiguous reference X?Y.C?M are deleted.

Erase all files on the current disk (in this case
the CCP pranpts the console wi th the message

"ALL FILES (YIN),?II
which requires a Y response before files are
actually removed).

All files on drive B which satisfy the ambiguous
reference ????????PRN are deleted, independently
of the currently logged disk.

7

4.2. OIR afn cr

The OIR (directory) canmand causes the names of all files vtlich satisfy
the anbigoous file name afn to be listed at the console device. As a s~cial
case, the canmand

OIR

lists the files on the rurrently logged disk (the canmand "OIR" is ~uivalent
to the canmand "OIR *.*It). Valid OIR canrnands are shown below.

OIR X.Y

OIR X?Z.C?M

OIR ??Y

Similar to other CCP canmands, the afn can be tyeceded by a drive name.
The followi rg OIR canmands cause the selected drive to be crldressed before the
directory search takes place.

OIR B:

DIR B:X.Y

OIR B:*.A?M

If no files can be found on the selected diskette vtlich satisfy the
directory request, then the Iressage "Nor FOUND" is typed at the console.

4.3. REN ufnl=ufn2 cr

The REN (rename) canmand allows the user to change the names of files on
disk. The file satisfyin;} ufn2 is chan;}ed to ufnl. The currently logged disk
is assumed to contain the file to rename (ufnl). The CCP also allows the user
to type a left-directed arrow instead of the equal sign, if the user" s console
supports this graphic character. Examples of the REN command are

REN X.Y=Q.R The file Q.R is changed to X. Y.

REN XYZ.OOM=XYZ.XXX The file XYZ .XXX is changed to XYZ .CDM.

The operator can p:ecede either ufnl or ufn2 (or both) by an optional
drive address. Given that ufnl is preceded by a drive name, then ufn2 is
assumed to exist on the same drive as ufnl. Similarly, if ufn2 is preceded by
a drive nane, then ufnl is assumed to reside on that drive as well. If both
ufnl am ufn2 are preceded by drive names, then the same drive must be

8

specified in both cases. The followirg REN canmands illustrate this format.

REN A:X.ASM = Y.ASM

REN B:ZAP.BAS=ZOT.BAS

REN B:A.ASM = B:A.BAK

The file Y.ASM is changed to X.ASM on
drive A.

The file ZOT.BAS is changed to ZAP.BAS
on drive B.

The file A.BAK is renamed to A.ASM on
drive B.

If the .file ufnl is already fresent, the REN canrnand will respond with
the error "FILE EXISTS" and not ~rform the change. If ufn2 does not exist on
the s~cified diskette, then the message "Nor FOUND" is pr inted at the
console.

4.4. SAVE n ufn cr

The SAVE canmarrl places n pages (256-byte blocks) onto disk fran the TPA
and nanes this file ufn. In the CP/M distribution system, the TPA starts at
100H (hexadecimal), ttklich is the second page of memory. Thus, if the user" s
program occupies the area fran 1008 through 2FF8, the SAVE command must
specify 2 pages of memory. The machine code file can be subsequently loaded
and executed. Examples are:

SAVE 3 X.mM

SAVE 40 Q

SAVE 4 X.Y

Oopies 1008 through 3FFH to x.mM.

Copies 1008 through 28FFH to Q (note
that 28 is the page count in 28FFH,
and that 288 = 2*16+8 = 40 decimal).

Copies 1008 through 4FFH to X.Y.

The SAVE canmarrl can also s~cify a disk drive in the afn p::>rtion of the
canmand, as srown below.

SAVE 10 B:ZOT.OOM

4.5. TYPE ufn cr

Copies 10 pages (100H through 0AFFH) to
the file ZOT.ODM on drive B.

The TYPE canmand displays the contents of the ASCII source file ufn on
the currently logged disk at the console device. Valid TYPE commands are

TYPE X.Y

9

TYPE X.PIN

TYPE XXX

The TYPE canmaoo expands tabs (clt-I characters), assurmniI'X:J tab IDsi tions
are set at e.Jery eighth coltnm. The ufn can also reference a drive name as
shown below.

TY1?E B :X.PRN The file X.PRN from drive B is displayed.

10

5. LINE EDITING AND ourpur mNTROL.

The CCP allows certain line editing functions While typing command lines.

rubout

ctl-U

ctl-X

ctl-R

ctl-E

ctl-C

ctl-Z

Delete and echo the last character typed at the
console.

Delete the entire line typed at the console.

(Same as ctl-U)

Retype current canmand line: types a "clean line" fol
lowing character deletion with rubouts.

Physical end of line: carriage is returned, but line
is not sent until the carriage return key is depressed.

CP/M system reboot (warm start)

End input fran the console (used in PIP and ED).

The control functions ctl-P and ctl-S affect console output as shown below.

ctl-P

ctl-S

Copy all subsequent console output to the currently
assigned list device (see the STAT command). Output
is sent to both the list device and the console device
mtil the next ctl-P is typed.

Stop the console output temporarily. Program execution
and output continue When the next character is typed
at the console (e.g., another ctl-S). This feature is
used to stop output on high speed consoles, such as
CRT's, in order to view a segment of output before con
tinuing •

Note that the ctl-key sequences srown above are obtained by depressing the
control and letter keys simultaneously. Further, CCP canmand lines can
generally be up to 255 characters in length~ they are not acted uJX>n tntil the
carriage return key is typed.

11

6. TRANSIENT CDMMANO>.

Transient commands are loaded fram the currently logged disk and executed
in the TPA. The transient canrnands defined for execution tnder the CCP are
shown below. Addi tional ftnctions can easily be defined by the user (see the
LOAD command definition).

STAT

ASM

Dar

PIP

ED

SYSGEN

SUBMIT

DUMP

K>VCPM

List the number of bytes of storage remaining on the
currently logged disk, provide statistical information
about particular files, and display or alter d~vice
assignment.

Load the CP/M assembler and assemble the specified
program from disk.

Load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA (this loaded program becomes a
new canmand tnder the CCP).

Load the CP/M debugger into TPA and start execution.

Load the Peripheral Interchange Program for subsequent
disk file and peripheral transfer operations.

Load and execute the CP/M text editor program.

Create a new CP/M system diskette.

Submit a file of commands for batch processing.

Dump the contents of a file in hex.

Regenerate the CP/M system for a particular memory
size.

Transient commands are specified in the same manner as built-in commands, and
additional commands can be easily defined by the user. As an added
convenience, the transient canrnand can be preceded by a drive name, which
causes the transient to be loaded fram the specified drive into the TPA for
execution. Thus, the command

B:STAT

causes CP/M to temp:>rarily "log inn drive B for the s:>urce of the STAT
transient, and then return to the original logged disk for subsequent
processing.

12

The basic transient commands are listed in detail below.

6.1. STAT cr

The STAT canmand provides general statistical information about file
storage and device assignment. It is initiated by typing one of the following
forms:

STAT cr
STAT "canmand line" cr

Special forms of the "canmand line" allow the cur rent device assignment to be
examined and altered as well. The various canmand lines which can be
specified are shown below, wi th an explanation of each form shown to the
right.

STAT cr

STAT x: cr

STAT afn cr

If the user types an empty command line, the STAT
transient calculates the storage remaining on all
active drives, and prints a message

x: R/W, SPACE: nnnK
or

x: R!O, SPACE: nnnK

for each active drive x, where R/W indicates the
drive may be read or written, and RIO indicates
the drive is read only (a drive becomes R!O by
explicitly setting it to read only, as shown
below, or by inadvertantly changing diskettes
wi thout performing a warm start). The space
remaining on the diskette in drive x is given
in kilobytes by nnn.

If a drive name is given, then the drive is
selected before the storage is computed. Thus,
the canmand II STAT B:" could be issued while
logged into drive A, resulting in the message

BYTES REMAINING ON B: nnnK

The canmand line can also specify a set of files
to be scanned by STAT. The files which satisfy
afn are listed in alphabetical order, with stor
age requirements for each file under the heading

RECS BYrS EX D: FILENAME.TYP
rrrr bbbK ee d:pppppPPP.sss

where rrrr is the number of 128-byte records

13

STAT x:afn cr

STAT x:=R/O cr

allocated to the file, bbb is the number of kilo
bytes allocated to the file (bbb=rrrr*128/1024),
ee is the number of 16K extensions (ee=bbb/16),
d is the drive name containing the file (A ••• Z),
pppppppp is the (up to) eight-character primary
file name, and sss is the (up to) three-character
secondary name. After listing the individual
files, the storage usage is summariz~.

As a convenience, the drive name can be given
ahead of the afn. In this case, the specified
drive is first selected, and the form "STAT afn"
is executed.

This form sets the drive given by x to read-only,
which remains in effect until the next warm or
cold start takes place. When a disk is read-only,
the Iressage

BOOS ERR ON x: READ ONLY

will appear if there is an attempt to write to
the read-only disk x. CP/M waits until a key
is depressed before performing an automatic warm
start (at which time the disk becomes R/W) •

The STAT canmand also allows control aver the physical to logical device
assignment (see the IOBYTE function described in the manuals "CP/M Interface
Guide" am "CP/M System Alteration Guide ll

). In general, there are four
logical peripheral devices which are, at any particular instant, each assigned
to one of se\Teral physical peripheral devices. The four logical devices are
named:

CON: The system console device (used by CCP
for communication with the operator)

RDR: The paper tape reader device

PUN: The paper tape punch device

LST: The output list device

'rhe actual devices attached to any particular computer system are driven
by subroutines in the BIOS p:>rtion of CP/M. Thus, the logical RDR: device,
for example, could actually be a high speed reader, Teletype reader, or
cassette tape. In order to allow rome flexibility in device naming and
assignment, several physical devices are defined~ as shown below:

14

TrY:

eRr:

BAT:

UCl:

PI'R:

URI:

UR2:

PI'P:

UPl:

UP2:

LPr:

ULl:

Teletype device (slow speed console)

Cathode ray tube device (high speed console)

Batch processing (console is current RDR:,
output qoes to current 1ST: device)

User-defined console

Paper tape reader (high speed reader)

User-defined reader #1

User-defined reader #2

Paper tape punch (high s~ed punch)

user-defined punch #1

user-defined punch #2

Line printer

user-defined list device #1

It must be emphasized that the physical device names mayor may not
actually corres~nd to devices which the names imply. That is, the PI'P:
device may be implemented as a cassette write operation, if the user wishes.
The exact correspondence and driving subroutine is defined in the BIOS portion
of CP/M. In the standard distribution version of CP/M, these devices
correspond to their names on the MDS 800 development system.

The PJssible logical to physical device assignments can be displayed by
typing

STAT VAL: cr

The STAT pr ints the p:>ssible values which can be taken on for each logical
device:

CDN. = TTY: CRr: BAT: UCl:
RDR: = TTY: PI'R: URI: UR2:
PUN: = TTY: PrP: UPl: UP2:
LST: = TTY: CRr: LPr: ULl:

In each case, the logical device shown to the left can take any of the four
physical assignments shown to the right on each line. The current logical to
physical mapping is displayed by typing the command

STAT DEV: cr

15

which produces a listing of each logical device to the left, and the current
corresponding physical device to the riqht. For example, the list might
appear as follows:

CON: = eRr:
RDR: = URI:
PUN: = PrP:
LST: = TTY:

The current logical to physical device assignment can be changed by typing a
STAT canmand of the form

STAT ldl = pdl, ld2 = pd2 , ••• , ldn = pdn cr

where ldl through ldn are logical device names, and ~l through J.X1n are
compatible physical device names (i.e., ldi and odi appear on the same line in
the "VAL:" canmand shown above). The followirg are valid STA'l' canmands which
change the current logical to physical device assignments:

STAT CDN: =CRr: cr
STAT PUN: = TTY: ,IST:=LPr:, RDR:=TTY: cr

6.2. A~ ufn cr

The ASM canmand loads and executes the CP/M 8080 assembler. The ufn
specifies a oource file containing assembly language statements where the
secondary nane is assLUned to be ASM, and thus is not specified. The following
ASM canmands are valid:

A~ X

The two-pass assembler is automatically executed. If assembly errors occur
during the second pass, the errors are printed at the console.

The asserr~ler produces a file

x.PRN

where x is the pr imary name s~cified in the ASM command. The PRN file
contains a listing of the source program (with imbedded tab characters if
present in the rource program), along with .the machine code generated for each
statement and diagnostic error messaqes, if any. The PRN file can be listed

16

at the console usil'Xl the TYPE canmand, or sent to a }:eripheral device using
PIP (see the PIP canmand structure below). Note also that the PRN file
contains the original 9)urce program, augmented by miscellaneous assembly
information in the leftIoost 16 COlUImS (program crldresses and hexadecimal
machine code, for example). Thus, the PRN file can serve as a backup for the
original source file: if the source file is accidently removed or destroyed,
the PRN file can be edited (see the ED operator's guide) by removing the
leftnost 16 characters of each line (this can be done by issuing a single
edi tor Itnacro" canrnand). The resulting file is identical to the original
source file and can be renamed (REN) fran PRN to ASM for subsequent editing
and assembly. The file

x.HEX

is also produced \#fhich contains 8080 machine language in Intel "hex" format
suitable for stbsequent loading and execution (see the I..Cll\D ccmnand). For
canplete details of CP/M's assembly language program, see the "CP/M Assembler
Language (ASM) User's Guide. II

Similar to other transient camnands, the oource file for assembly can be
taken fran an a. ternate disk by prefixing the assembly language file name by a
disk drive name. Thus, the canrnand

ASM B :ALPHA cr

loads the assembler fran the currently logged drive and operates u};X)n the
source trograrn ALmA.ASH on drive B. The HEX and PRN files are also placed on
drive B in this case.

6.3. LClru) ufn cr

The L<l\D canmand reads the file ufn, \\bich is assumed to contain "hex"
fonnat machine code, and produces a memory image file which can be
subsequently executed. The file name ufn is assumed to be of the form

x.HEX

and thus only the nane x need be specified in the canrnand. The LQ1\D camnand
creates a file naned

X.<DM

which narks it as containing machine executable code. The file is actually
loaded into memory and executed \#fhen the user types the file name x
immediately after the pranpting character U>" printed by the CCP.

In general, the CCP reads the name x following the prompting character
and looks for a built-in function name. If no fmction name is found, the CCP
searches the system disk directory for a file by the name

17

x.CDM

If found, the machine code is loaded into the TPA, and the program executes.
Thus, the user need only WAD a hex file once; it can be subsequently
executed any number of times by simply typing the primary name. In this way,
the user can "invent" new canmands in the CCP. (Initialized disks contain the
transient canrnands as CDM files, which can be deleted at the user's option.)
The operation can take place on an alternate drive if the file name is
prefixed by a drive name. Thus,

LOAD B:BETA

brings the LOAD program into the TPA from the currently logged disk and
operates upon drive B after execution begins.

It must be noted that the BETA.HEX file must contain valid Intel format
hexadecimal machine code records (as produced by the ASM T;>rogram, for example)
which beqin at l00H, the beginning of the TPA. Further, the addresses in the
hex records must be in ascending order; qaps in unfilled memory regions are
filled wi th zeroes by the LOAD command as the hex records are read. Thus,
LOAD must be used only for creating CP/M standard "CDM" files which operate in
the TPA. Proqrams vtlich occupy regions of memory other than the TPA can be
loaded under Dar.

6.4. PIP cr

PIP is the CP/M Peripheral Interchange Program which implements the basic
media. conversion operations necessary to load, T;>r int, punch, copy, and canbine
disk files. The PIP program is initiated by typing one of the following forms

(1) PIP cr
(2) PIP IIcanrnand line" cr

In both cases, PIP is loaded into the TPA and executed. In case (1), PIP
reads canmand lines directly from the console, prompted with the "*"
character, until an empty canmand line is typed (i .e., a single carriage
return is issued by the operator). Each successive command line causes rome
media conversion to take place according to the rules shown below. Form (2)
of the PIP canmand is equivalent to the first; e.xcept that the siI".gle command
line qiven with the PIP command is automatically executed, and PIP terminates
immediately wi th no further T;>ranpting of the console for input command lines.
The fonn of each canmand line is

destination = source#l, source#2, ••• , source#n cr

where "destination" is the file or p=ripheral device to receive the data, and

18

ug)urceil, ••• , sourcein" represents a series of one or nore files or devices
which are copied fram left to right to the destination.

When multiple files are given in the canmand line (i.e, n > 1), the
individual files are assumed to contain ASCII characters, with an assumed CP/M
end-of-file character (ctl-Z) at the end of each file (see the 0 parameter to
override this assumption). 'The equal symbol (=) can be replaced by a
left-oriented arrow, if your console sUptX)rts this ASCII character, to improve
readabili ty. Lower case ASCII alphabetics are internally translated to upper
case to be consistent wi th CP/M file and device name conventions. Finally,
the total command line length cannot exceed 255 characters (ctl-E can be used
to force a physical carriage return for lines which exceed the console width) •

The destination and oource elements can be tnambiguous references to CP/M
source files, wi th or wi thout a precediI'XJ disk drive name. That is, any file
can be referenced wi th a treceding drive name (A:, B:, C:, or D:) which
defines the particular drive where the file may be obtained or stored. When
the drive name is not included, the currently logged disk is assumed.
Fur ther, the destination file can also appear as one or rore of the oource
files, in which case the source file is not altered until the entire
concatenation is canplete. If the destination file already exists, it is
removed if the canmand line is properly formed (it is not removed if an error
condi tion arises). The following command lines (with explanations to the
right) are valid as input to PIP:

x = Y cr

x = Y,Z cr

X.ASM=Y.ASM,Z.ASM,FIN.ASM cr

NEW.ZOT = B:OLD.ZAP cr

B:A.U = B:B.V,A:C.W,D.X cr

Copy to file X from file Y,
where X and Yare unambiguous
file names; Y remains unchanqed.

Concatenate files Y and Z and
copy to file X, with Y and Z
unchanqed.

Create the file X.ASM from the
concatenation of the Y, Z, and
FIN files with type MM.

Move a copy of OLD.ZAP from drive
B to the currently logged disk;
name the file NEW.Zar.

Concatenate file B.V from drive B
with C.W from drive A and D.X.
from the logged disk; create
the file A.U on drive B.

For nore convenient use, PIP allows abbreviated commands for transferring
files between disk drives. The abbreviated forms are

19

PIP x:=afn cr

PIP x:=y:afn cr

PIP ufn = y: cr

PIP x:ufn = y: cr

The first form copies all files fran the currently loqged disk which satisfy
the afn to the same file names on drive x (x = A ••• Z) • The second form is
equivalent to the first, where the source for the copy is drive y (y = A •••
Z) • The third fom is equivalent to the canmand "PIP ufn=y:ufn crn which
copies the file given by ufn fran drive y to the file ufn on drive x. The
fourth form is equivalent to the third, where the EOurce disk is explicitly
given by v.

Note that the source and destination disks must be different in all of
these cases. If an afn is s};ecified, PIP lists each ufn which satisfies the
afn as it is being copied. If a file exists by the same name as the
destination file, it is removed uoon successful canpletion of the copy, and
replaced by the copied file.

The followinq PIP commands qive examples of valid disk-to-disk copy
operations:

B:=*.CDM cr

A:=B:ZAP. * cr

ZAP.ASM=B: cr

B:ZOT.mM=A: cr

B:=GAMMA.BAS cr

B:=A:GAMMA.BAS cr

Copy all files which have the
secondary name "OOM" to drive B
from the current drive.

Copy all files which have the
primary name "ZAP" to drive A
from drive B.

Equivalent to ZAP.ASM=B:ZAP.ASM

Equivalent to B:ZOT.OOM=A:ZOT.ODM

Same as B : GAMMA. BAS=GAMMA. BAS

Same as B:GAMMA.BAS=A:GAMMA.BAS

PIP also allows reference LU physical and lcxJical devices which are
attached to the CP/M system. The device names are the same as given under the
STAT canmand, along with a number of s};ecially named devices. The logical
devices given in the STAT command are

CON: (console), RDR: (reader), PUN: (punch), and 1ST: (list)

while the physical devices are

20

TTY: (console, reader, punch, or list)
CRr: (console, or list), UCl: (console)
PrR: (reader) , URI: (reader) , UR2: (reader)
PI'P: (ptmch) , UPl: (punch) , UP2: (punch)
LPI': (list) , UIJ.: (list)

(Note that the "BAT: II physical device is not included, since this assignment
is used only to indicate that the RDR: and 1ST: devices are to be used for
console input/output.)

The RDR, IST, PUN, and CON devices are all defined wi thin the BIOS
portion of CP/M, and thus are easily altered for any particular I/O system.
(The current physical device mapping is defined by IOBYrE; see the "CP/M
Interface Guide" for a di scussion of this ftmction). The destination device
must be capable of receivirq data (i.e., data cannot be sent to the ptmch) ,
and the oource devices must be capable of generating data (i.e., the LST:
device cannot be read).

The additional device names which can be used in PIP commands are

NUL:

EOF:

INP:

our:

PRN:

Send 40 "nulls" (ASCII 0's) to the device
(this can be issued at the end of punched output).

Send a CP/M end-of-file (ASCII ctl-Z) to the
destination device (sent automatically at the
end of all ASCII data transfers through PIP).

SJ;ecial PIP input oource which can be "patched"
into the PIP program itself: PIP gets the input
data character-by-character by CALLing location
l03H, with data returned in location l09H (parity
bit must be zero).

SJ;ecial PIP output destination which can be
patched into the PIP program: PIP CALLs location
l06H with data in register C for each character
to transmit. Note that locations l09H throuqh
lFFH of the PIP memory image are not used and
can be replaced by special purpose drivers using
DDT (see the DDT operator's manual).

Same as LST:, except that tabs are expanded at
every eighth character position, lines are
numbered, and page ejects are inserted every 60
lines, with an initial eject (same as [t8np]).

File and device names can be interspersed in the PIP commands. In each
case, the specific device is read until end-of-file (ctl-Z for ASCII files,
and a real end of file for non-ASCII disk files). Data from each device or
file is concatenated fran left to riqht until the last data oource has been

21

read. The destination device or file is written using the data from the
source files, and an end-of-file character (ctl-Z) is appended to the result
for ASCII files. Note if the destination is a disk file, then a terop::>rary
file is created ($$$ secondary name) which is chanqed to the actual file name
only up:>n soccessful canpletion of the copy. Files wi th the extension "CDMU
are always .assumed to be non-ASCII.

The copy operation can be aborted at any time by depressing any key on
the keyboard (a rubollt suffices). PIP will respond with the message "AOORI'EDu

to indicate that the operation was not completed. Note that if any operation
is aborted, or if an error occurs dur inq processing, PIP removes any ~nding
commands which were set up While usinq the SUBMIT command.

It soould also be noted that PIP performs a s{:ecial frnction if the
destination is a disk file wi th type "HEX" (an Intel hex formatted machine
code file), and the oource is an external ~ripheral device, such as a paper
tape recrler. In this case, the PIP program checks to ensure that the oource
file contains a p:-operly formed hex file, with legal hexadecimal values and
checksum records. When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action. It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 20 inches). When the tape is ready for the re-read, type a single
carriage return at the console, and PIP will attempt another read. If the
tape p:>sition cannot be properly read, simply continue the read (by typinq a
return following the error message), and enter the record manually with the ED
program after the disk file is constructed. For convenience, PIP allows the
end-of-file to be entered fran the console if the source file is a RDR:
device. In this case, the PIP program reads the device and rronitors the
keyboard. If ctl-Z is typed at the keyboard, then the read operation is
terminated normally.

Valid PIP commands are shown below.

PIP LST: = X.PRN cr

PIP cr

*ODN:=X.ASM,Y.ASM,Z.ASM cr

*X.HEX=CON:,Y.HEX,PTR: cr

*cr

22

Copy X.PRN to the LST device and
terminate the PIP program.

Start PIP for a sequence of
canmands (PIP prompts with "*").

Concatenate three ASM files and
copy to the CON deviCe.

Create a HEX file by reading the
CON (until a ctl-Z is typed), fol
lowed by data from Y.HEX, followed
by data from PTR rntil a ctl-Z is
encountered.

Single carriage return stops PIP.

PIP PUN:=NUL:,X.ASM,EOF:,NUL: cr Send 40 nulls to the punch device:
then copy the X.ASM file to the
punch, followed by an end-of-file
(ctl-Z) and 40 more null charac-
ters.

The user can also s~cify one or rrore PIP parameters, enclosed in left
and right square brackets, separated by zero or rrore blanks. Each parameter
affects the copy operation, and the enclosed list of parameters must
immediately follow the affected file or device. Generally, each parameter can
be follo~d by an q:>tional decimal integ-er value (the Sand 0 parameters are
exceptions). The valid PIP parameters are listed below.

B Block mode transfer: data is buffered by PIP until an ASCII
x-off character (ctl-S) is received from the source device.
This allows transfer of data to a disk file from a continuous
reading device, such as a cassette reader. Upon receipt of
the x-off, PIP clears the disk buffers and returns for more
input data. The amount of data which can be buffered is de
pendent upon the memory size of the host systero (PIP will
issue an error message if the buffers overflow).

Dn Delete characters which extend past column n in the transfer
of data to the destination from the character source. This
parameter is used most often to truncate long lines which are
sent to a (narrow) printer or console device.

E Echo all transfer operations to the console as they are being
performed.

F Fil ter form feeds from the file. All imbedded form feeds are
removed. The P parameter can be used simultaneously to
insert new form feeds.

H Hex data transfer: all data is checked for proper Intel hex
file format. Non-essential characters between hex records
are removed during the copy operation. The console will be
prompted for corrective action in case errors occur.

I Ignore ": 00" records in the transfer of Intel hex format
file (the I parameter automatically sets the H parameter).

L Translate upper case alphabetics to lower case.

N Add line numbers to each line transferred to the destination
starting at one, and incrementinq by 1. Leading zeroes are
suppressed, and the number is followed by a colon. If N2
is specified, then leading zeroes are included, and a tab is
inserted followinq the number. The tab is expanded if T is

23

set.

o Object file (non-ASCII) transfer: the normal CP/M end of
file is ignored.

Pn Include page ejects at every n lines (with an initial oage
eject). If n = 1 or is excluded altogether, page ejecf:s
occur every 60 lines. If the F parameter is used, form feed
suppression takes place before the new page ejects are
inserted.

Qstz Quit copying from the source device or file When the
string s (terminated by ctl-Z) is encountered.

Sstz Start copying fram the source device When the string s is
encountered (terminated by ctl-Z). The S and Q parameters
can be used to "abstract" a particular section of a file
(such as a subroutine). The start and quit strings are al-
ways included in the copy operation.

NOTE - the strings following the s and q parameters are
translated to upper case by the CCP if form (2) of the
PIP canmand is used. Form (1) of the PIP invocation, how
ever, does not perform the automatic upper case translation.

(1) PIP cr
(2) PIP Itcanmand linen cr

Tn Expand tabs (ctl-I characters) to every nth column durinq the
transfer of characters to the destination from the source.

U Translate lower case alphabetics to upper case during the
the copy operation.

V verify that data has been copied correctly by rereadinq
after the write operation (the destination must be a disk
file) •

Z Zero the parity bit on input for each ASCII character.

The followi1'XJ are valid PIP commands which specify parameters in the file
transfer:

PIP X.ASM=B: [v] cr

PIP LPT:=X.ASM[ntSu] cr

Copy X.ASM from drive B to the current drive
and verify that the data was properly copied.

Copy X.ASM to the LPT: device: number each
line, expand tabs to every eighth column, and
translate lower case alphabetics to upper
case.

24

PIP PUN:=X.HEX[i] ,Y.ZOT[h] cr First copy X.HEX to the PUN: device and
ignore the trailing ":00" record in X.HEX;
then continue the transfer of data by reading
Y.ZOT, which contains hex records, including
any" :00 1

' records which it contains.

PIP X.Lm = Y.ASM [sSUBRl:tz qJMP L31'z] cr Copy fran the file Y.ASM

PIP PRN:=X.ASM[p50]

6.5. ED ufn cr

into the file X.LIB. Start the copy when the
str ing "SUBRl:" has been found, and qui t copy
in;! after the string "JMP L3" is encountered.

Send X.ASM to the LST: device, with line n~
bers, tabs expanded to every eighth column,
and page ejects at every 50th line. Note that
ntSp60 is the assumed parameter list for a PRN
file: p50 overrides the default value.

The ED program is the CP/M system context edi tor, which allows creation
and alteration of ASCII files in the CP/M environment. Complete details of
operation are given the ED user's manual, liED: a Context Edi tor for the CP/M
Disk System. II In general, ED allows the operator to create and operate uIX>n
source files w."ich are organized as a sequence of ASCII characters, separated
by end-of-line characters (a carriage-return line-feed sequence). There is no
practical restriction on line length (no single line can exceed the size of
the workirg memory), w."ich is instead defined by the number of characters
typed between cr's. The ED proqram has a number of canmands for character
string searching, replacement, and insertion, which are useful in the creation
and correction of programs or text files under CP/M. AI though the CP/M has a
limi ted memory work space area (approximately 5000 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is
easily "paged" through this work area.

Upon initiation, ED creates the s~cified !:purce file, if it does not
exist, and q;>ens the file for access. The programmer then "appends" data fran
the source file into the work area, if the !:puree file already exists (see the
A canmand), for edi tinq. The appended data can then be displayed, altered,
and written fran the work area back to the disk (see the W canmand).
Particular p:>ints in the program can be automatically paged and located by
context (see the N canmand), allowi~ easy access to particular l;X>rtions of a
large file.

Given that the operator has typed

ED X.ASM cr

25

the ED program creates an intermediate work file with the name

X.$$$

to hold the edi ted da ta dur ing the ED run. Upon canpletion of ED, the X.ASM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X.ABM. Thus, the X.BAK file contains the original (unedited) file, and the
X.ASM file contains the newly edi ted file. The operator can always return to
the previous version of a file by removing the rrost recent version, and
renamin;J the p:-evious version. Suppose, for example, that the current X.ASM
file was improperly edi ted; the sequence of CCP camnand shown below would
reclaim the backup file.

DIR X.*

ERA X.ASM

REN X.ASM=X.BAK

Check to see that BAK file
is available.

Erase rrost recent version.

Rename the BAR file to ASM.

Note that the operator can abort the edit at any p::>int (reboot, p::>wer failure,
ctl-C, or Q canrnand) without destroying the original file. In this case, the
BAK file is not created, and the original file is always intact.

The ED program also allows the user to "pinq-l=X)ng" the oource and create
backup files between two disks. The form of the ED command in this case is

ED ufn d:

where ufo is the name of a file to edit on the currently logged disk, and d is
the name of an alternate drive. The ED program reads and processes the oource
f il e, and wr i tes the new f il e to dr i ve d, using the name ufn. Upon canpletion
of processing, the original file becomes the backup file. Thus, if the
operator is addressing disk A, the following command is valid:

ED X.ASM B:

which edi ts the file X.ASM on drive A, creating the new file X. $$$ on drive
B. Upon canpletion of a successful edit, A:X.ASf·1 is renaTted to A:X.BAK, cL"".<l
B:X.$$$ is renamed to B:X.ASM. For user convenience, the currently logged
disk becanes drive B at the end of the edi t. Note that if a file by the name
B:X.ASM exists before the editing begins, the message

FILE EXISTS

is IX inted at the console as a precaution cqainst accidently destroying a
source file. In this case, the operator must first ERAse the existing file
and then restart the edit operation.

26

Similar to other transient canmands, editing can take place on a drive
different fran the rurrently lOJged disk by preceding the oource file name by
a drive nane. Examples of valid edit requests are soown below

ED A.:X.ASM

ED B:X.ASM A:

6.6. SYSGEN cr

Edit the file X.ASM on drive A, with
new file and backup on drive A.

Edit the file X.ASM on drive B to the
temporary file X.$$$ on drive A. On
termination of editing, change X.ASM
on drive B to X.BAK, and change X.$$S
on drive A to X.ASM.

The SYSGEN transient command allows generation of an initialized diskette
containing the CP/M operating system. The SYSGEN program prompts the console
for commands, with interaction as shown below.

SYSGEN cr Initiate the SYSGEN program.

SYSGEN VERSION m.m SYSGEN sign-on message.

SOURCE £FIVE NAME (OR REI'URN TO SKIP)

SOURCE ON x THEN TYPE RETURN

FUNCTION COMPLETE

Respond with the drive name (one
of the letters A., B, C, or D) of
the disk containing a CP/M sys
tem: usually A. If a copy of
CP/M already exists in memory,
due to a MOVCPM command, type a
cr only. Typing a drive name
x will cause the response:

Place a diskette containing the
CP/M operating system on drive
x (x is one of A, B, C, or D).
Answer wi th cr when ready.

System is copied to memory.
SYSGEN will then prompt with:

DESTINATION IRIVE NAME (OR RETURN TO REBOOr)

27

If a diskette is being ini
tialized, place the new disk
into a drive and answer with
the dr i ve name. Otherwi se, type
a cr and the system will reboot
from drive A. Typing drive name
x will cause SYSGEN to prompt

with:

DESTINATION ON x THEN TYPE RETURN Place new diskette into drive
X; type return when ready.

FUNCTION CDMPLETE New diskette is initialized
in drive x.

The "DESTINATION" pranpt will be repeated lIDtil a single carriage return is
typed at the console, so that more than one disk can be initialized.

Upon canpletion of a successful system qeneration, the new diskette
contains the Q?erating system, and only the built-in canmands are available.
A factory-fresh IBM-compatible diskette appears to CP/M as a diskette with an
empty directory; therefore, the operator must copy the appropriate COM files
from an eKisting CP/M diskette to the newly constructed diskette using the PIP
transient.

The user can cQ?Y all files from an existing diskette by typing the PIP
canmand

PIP B: = A: *.*[v] cr

which ccpies all files from disk drive A to disk drive B, and verifies that
each file has been copied correctly. The name of each file is displayed at
the console as the copy operation proceeds.

It smuld be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system. Further, if a diskette is bei~ used only on drives B through 0, and
will never be the source of a bootstrap operation on drive A, the SYSGEN need
not take place. In fact, a new diskette needs absolutely no initialization to
be used with CP/M.

6. 7. SUBMIT ufn parmi I ••• parm#n cr

The SUBMIT canmand allows CP/M camnands to be batched toqether for
automatic processinq. The ufn qiven in the SUBMIT canmand must be the
filename of a file ltthich eKists on' the currently logged disk, wi th an assumed
file type of "SUB. II The SUB file contains CP/M prototype camnands, with
possible parameter substitution. The actual.parameters parmil ••• parrn#n are
substituted into the prototype canmands, and, if no errors occur, the file of
substituted commands are processed sequentially by CP/M.

28

The protot~ canmand file is created using the ED program, wi th
interspersed It$" parameters of the form

$1 $2 $3 ... $n

corres!X)ndirq to the number of actual parameters which will be included when
the file is smmi tted for execution. When the SUBMIT transient is executed,
the actual parameters parm#l ••• parm#n are paired with the formal parameters
$1 •• • $n in the protot~ canmands. If the number of formal and actual
parameters does not corres!X)nd, then the submit function is aborted with an
error rressage at the console. The SUBMIT function creates a file of
substituted commands with the name

$$$.SUB

on the logged disk. When the system reboots (at the termination of the
SUBMIT), this canmand file is read by the CCP as a S)urce of input, rather
than the console. If the SUBMIT function is p:rformed on any disk other than
drive A, the canmands are not processed mtil the disk is inserted into drive
A and the system reboots. Further, the user can abort canmand processing at
any time by typirg a rubout ¥.hen the carnnand is read and echoed. In this
case, the $$$.8UB file is ranoved, and the subsequent canmands cane from the
console. Canmand p:'ocessing is also aborted if the CCP deteets an error in
any of the canmands. Programs which execute mder CP/M can abort processing of
canmand files when error condi tions occur by simply erasing any existing
$$$.8UB file.

In order to introduce dollar signs into a SUBMIT file, the user may type
a It$$" which rErluces to a single "$" wi thin the canmand file. Further, an
up-arrow symbol "t.. may precede an alphabetic character x, ¥.hich produces a
single ctl-x character within the file.

The last canmand in a SUB file can initiate another SUB file, thus
allowing chained batch canmands.

SUPJX)se the file ASMBL.SUB exists on disk and contains the prototype
cOOlmands

and the canmand

As-1 $1
DIR $1.*
ERA *.BAK
PIP $2:=$1.PRN
ERA $l.PRN

SUBMIT As-1BL X PRN cr

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file,
smstitutirq "X" for all occurrences of $1 and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing the commands

29

AEM X
DIR X.*
ERA *.BAK
PIP PRN: =X. PRN
ERA X.PRN

Which are executed in sequence by the CCP.

The SUBMIT ftmction can access a SUB file vA1ich is on an alternate drive
by p:-ecedirq the file name by a drive name. Submitted files are only acted
ufOn, however, When they appear on drive A. Thus, it is {X)ssible to create a
submi tted file on drive B which is executed at a later time Yfhen it is
inserted in drive A.

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file (ufn) at the console
in hexadecimal form. The file contents are listed sixteen bytes at a time,
with the absolute byte address listed to the left of each line in
hexadecimal. Lorq- typeouts can be aborted by pushing the rubout key dur inq
pr intout. (The rource listing of the DUMP program is given in the "CP/M
Interface Guide" as an example of a program written for the CP/M environment.)

6.9. IDVCPM cr

The M)VCPM p:ogram allows the user to reconfigure the CP/M system for any
particular rremory size. Two optional parameters may be used to indicate (1)
the desired size of the nev system and (2) the dis~sition of the new system
at program termination. If the first parameter is anitted or a "*" is given,
the M)VCPM program will reconfigure the system to its maximum size, based up:>n
the kilobytes of contiguous RAM in the host system (starting aat 0000H). If
the second parameter is ani tted, the system is executed, but not p:?rmanently
recorded; if "*" is given, the system is left in memory, ready for a SYSGEN
operation. The r-oVCPM program relocates a rremory image of CP/M and places
this image in rremory in preparation for a system qeneration operation. The
canmand forms are:

Relocate and ~xecute CP/M for manage
ment of the current rremory configura
tion (memory is examined for contigu
ous RAM, starting at l00H). Upon com
pletion of the relocation, the new
system is executed but not permanently
recordeq on the diskette. The system
which is constructed contains a BIOS
for t.he Intel MOO 800.

30

MOVCPM n cr

r-DVCPM * * cr

MOVCPM n * cr

The canmand

MOVCPM * *

Create a relocated CP/M system for
management of an n kilobyte system (n
must be in the range 16 to 64), and
execute the system, as described above.

Construct a relocated memory image for
the current memory configuration, but
leave the memory image in memory, in
preparation for a SYSGEN operation.

Construct a relocated memory image for
an n kilobyte memory system, and leave
the memory image in preparation for a
SYSGEN operation.

for example, constructs a new version of the CP/M system and leaves it in
rremory, ready for a SYSGEN operation. The message

READY FOR .. SYSGEN" OR
"SAVE 32 CPMxx.OOM"

is p: inted at the console up:>n completion, where xx is the current memory size
in kilobytes. The operator can then type

SYSGEN cr Start the system generation.

SOURCE DRIVE NAME (OR RETURN TO SKIP) Respond with a cr to skip
the CP/M read operation since the system
is already in memory as a result of the
previous MOVCPM operation.

DESTINATION DRIVE NAME (OR RETURN T0 REBOOr)
Respond with B to write new system
to the diskette in drive B. SYSGEN
will prompt with:

DESTINATION ON B, THEN TYPE RETURN
Ready the fresh diskette on drive
B and type a return when ready.

Note that if you respond wi th "A" rather than liB II above, the system will be
written to drive A rather than B. SYSGEN will continue to type the prompt:

DESTINATION DRIVE NAME (OR RETURN TO REBOOr)

until the operator resp:>nds wi th a single carriage return, W1ich stops the

31

SYSGEN program with a system reboot.

The user can then go through the reboot process with the old or new
diskette. Instead of performirq the SYSGEN operation, the user could have
typed

SAVE 32 CPMxx.OOM

a t the canpletion of the IDVCPM flmction, Vth ich would place the CP/M memory
image on the currently logged disk in a form which can be "patched." This is
necessary when operating in a non-standard environment Vthere the BIOS must be
altered for a particular p:ripheral device configuration, as described in
the"CP/M System Alteration Guide."

Valid MOVCPM commands are given below:

MOVCPM 48 cr

MOVCPM 48 * cr

M)VCPM * * cr

Construct a 48K verskon of CP/M and start
execution.

Construct a 48K version of CP/M in prepara
tion for ~rmanent recording: response is

READY FOR "SYSGEN" OR
"SAVE 32CPM48.00M"

Construct a maximum memory version of CP/M
and start execution.

It is imfX)rtant to note that the newly created system is serialized with
the number attached to the original diskette and is subject to the conditions
of the Digital Research Software Licensing Agreement.

32

7. BOOS ERROR r€SSAGES.

There are three error situations \\hich the Basic Disk Operating System
intercepts durirg file p:-ocesssing. When one of these conditions is detected,
the BDOS pcints the message:

BOOS ERR ON x: error

where x is the drive name, and "error" is one of the three error messages:

BAD SEcroR
SELEcr
READ ONLY

The "BAD SEcroR" rressage indicates that the disk controller electronics
has detected an error condition in reading or writing the diskette. This
condition is generally due to a malfunctioning disk controller, or an
extremely worn diskette. If you find that your system reports this error nore
than once a nonth, you srould check the state of your controller electronics,
and the condition of your rredia. You may also encounter this condition in
readirxJ files generated by a controller produced by a di fferent manufacturer.
Even trough controllers are claimed to be IBM-canpatible, one often finds
small di fferences in recording formats. The MIS-800 controller, for example,
requires two bytes of one's followirxJ the data CRe byte, \\hich is not required
in the IBM format. As a result, diskettes generated by the Intel MIS can be
read by alrrost all other IBM-canpatible systems, while disk files generated on
other manufacturer's equipnent will produce the "BAD SEcroR" nessage when read
by the MIS. In any case, recovery fran this condition is accomplished by
typing a ctl-C to reboot (this is the safest!), or a return, \\hich simply
ignores the bad sector in the file q>eration. Note, mwever, that typing a
return may destroy your diskette integrity if the operation is a directory
write, so make sure you have adequate backups in this case.

The "SELEcru error occurs \\hen there is an attempt to address a drive
beyond the A through D rarxJe. In this case, the value of x in the error
message gives the selected drive. The system reboots following any input fran
the console.

The "READ ONLY" message occurs when there is an attempt to write to a
diskette \\hich has been designated as read-only in a STAT canmand, or has been
set to read-only by the BDOS. In general, the operator should reboot CP/M
ei ther by using the \\arm start procedure (ctl-C) or by performirg a cold start
whenever the diskettes are dlanged. If a changed diskette is to be read but
not written, BOOS allows the diskette to be charged without the warm or cold
start, but internally marks the drive as read-only. The status of the drive
is sti:>sequently charged to read/write if a Yarm or cold start occurs. Upon
issuing this rressage, CP/M waits for input fran the console. An automatic
warm start takes place following any input.

33

8. OPERATION OF CP/M ON THE Mm.

This section gives q:>erating procedures for using CP/M on the Intel MOO
microcomputer development system. A basic knowledge of the MrS hardware and
software systems is assumed.

CP/M is initiated in essentially the same manner as Intel's ISIS
operating system. The di sk drives are labelled 0 through 3 on the MIS,
corres}:X)ndirq to CP/M drives A through D, respectively. The CP/M system
diskette is inserted into drive 0, and the roar and RESET switches are
depressed in sequence. The interrupt 2 light should go on at this point. The
space bar is then depressed on the device which is to be taken as the system
console, and the light soould go out (if it does not, then check connections
and baud rates). The roar switch is then turned off, and the CP/M siqnon
message soould appear at the selected console device, followed by the "A) II
system tranpt. The user can then issue the various resident and transient
commands

The CP/M system can be restarted (warm start) at any time by pushing the
INT 0 switch on the front panel. The buil t-in Intel ROM monitor can be
initiated by pushing the INT 7 swi tch (which generates a RST 7), except \tA1en
operatinq under DDT, in which case the DDT program gets control instead.

Diskettes can be renoved from the drives at any time, and the system can
be shut down durirq operation without affecting data integrity. Note,
however, that the user must not remove a diskette am replace it wi th another
wi thout rebootin:j the system (cold or warm start), unless the inserted
diskette is "read only."

Due to hardware hang-ups or malfunctions, CP/M may type the message

BOOS ERR ON x: BAD SEC!'OR

where x is the drive which has a permanent error. This error may occur when
drive doors are q:>ened am closed" randomly, followed by disk operations, or
may be due to a. diskette, drive, or controller failure. The user can
optionally elect to ignore the error by typing a single return at the
console. The error nay produce a bad data record, requiring re-initialization
of up to 128 bytes of data. The operator can reboot the CP/M system and try
the q:>eration again.

Termination of a CP/M session requires no special action, except that it
is necessary to renove the diskettes before turning the l;X>wer off, to avoid
random transients which often make their way to the drive electronics.

It soould be noted that factory-fresh IBM-canpatible diskettes should be
used rather than diskettes which have previously been used with any ISIS
version. In particular, the ISIS .. FORMAT" operation produces non-standard
sector numberinq throughout the diskette. This non-standard numbering
seriously degrades the performance of CP/M, and will operate noticeably slower

34

than the distribution version. If it becomes necessary to reformat a diskette
(which srould not be the case for standard diskettes), a p::ogram can be

written under CP/M Y.hich causes the MC6 800 controller to reformat wi th
sequential sector numbering (1-26) on each track.

Note: "MIE 800" am "ISIS" are rEgistered trademarks of Intel Corporation.

OPERATION OF
THE CP/M CONTEXT EDITOR

01 [)~(j~TAl RE~EAR[H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM

USER'S MANUAL

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, 'electronic, mechanical, magnetic,
optical, ~hemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

1.

2.

Table of Contents

ED TUTORIAL · ·
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Introduction to ED · . · . .
ED Operation . . · . . · .
Text Transfer Functions

Memory Buffer Organization ·
Memory Buffer Operation

Command Strings · · . .
Text Search and Al teration .

Source Libraries ·

Repetitive Command Execution •.

. · · · 1

1

· · · 1

1

5

· · · 5

7

. · · · 8

· 11

· 12

ED ERROR CONDITIONS . • ·13

3. CONTROL CHARACTERS AND COMMANDS. • . . • • . 14

ii

ED USER'S MANUAL

1. ED TUTORIAL

1.1. Introduction to ED.

ED is the context editor for CP/M, and is used to create
and alter CP/M source files. ED is initiated in CP/M by
typing

{

<filename> }

ED <filename>. <filetype>

In general, ED reads segments of th€ source file given by
<filename> or <filename> • <filetype> into central memory,
where the file is manipulated by the operator, and subse
quently written back to disk after alterations. If the
source file does not exist before editing, it is created by
ED and initialized to empty. The overall operation of ED
is shown in Figure 1.

1.2. ED Operation

ED operates upon the source file, denoted in Figure I
by x.y, and passes all text through a memory buffer where
the text can be viewed or altered (the number of lines which
can be maintained in the memory buffer varies with the line
length, but has a total capacity of about 6000 characters
in a 16K CP/M system). Text material which has been edited
is written onto a temporary work file under command of the
operator. Upon termination of the edit, the memory buffer
is written to the temporary file, followed by any remaining
(unread) text in the source file. The name of the original
file is changed from x.y to x.BAK so that the most recent
previously edited source file can be reclaimed if necessary
(see the CP/M commands ERASE and RENAME). The temporary
file is then changed from x.$$$ to x.y which becomes the
resulting edited file.

The memory buffer is logically between the source file
and working file as shown in Figure 2.

1.3. Text Transfer Functions

Given that n is an integer value in the range 0 through
65535, the following ED commands transfer lines of text
from the source file through the memory buffer to the tem
porary (and eventually final) file:

Source

File

After
Edit

(E)

Backup

File

x.BAK

Figure 1. Overall ED Operation

Append

(A)

Source
Libraries

(R)

Memory Buffer

Insert
(I)

Write

Type
(T)

Temporary

File

After
Edit

(E)

New

Source

File

Note: the ED program accepts both lower and upper case ASCII
characters as input from the console. Single letter commands
can be typed in either case. The U command can be issued to
cause ED to translate lower case alphabetics to upper case as
characters are filled to the memory buffer from the console.
Characters are echoed as typed without translation, however.
The -u command causes ED to revert to "no translation" mode.
ED starts with an assumed -u in effect.

2

Figure 2. Hemory Buffer Organi zation

Source File

1 . . .' Fl.rst Ll.ne,

Memory Buffer

1 .' First Line"
.. .

2 ,Appended,' 2 ~ Buffered ~

3 . -:- 'Li~e~ " ' :: ~ 'Text ""\-.

S~I-7-·"~" -11 MP-"" ~,,~
I Unprocessed I ~~t I Free
I I hex I
I Source I Append I Memory

1 Lines: I Space :
L - - - - - - -I l.- _______ --'

Next
Write

1

2

3

TP ...

Temporary File

, ~irst Line"

, Processed' ,"

\ T~xt ,\, '\
'-- ,--, ,,\ ,

, , -,-, '" -,
Free File

Space

L _______ I

Figure 3. Logical Organization of l1emory Buffer

first
line

Memory Buffer

---------<cr><lf>

--------<cr><lf>

current GJ ------- cp ------<cr><lf> line CL

last --------<cr><lf>
line

3

* nA<cr> - append the next n unprocessed source

nW<cr>

E<cr>

H<cr>

O<cr>

Q<cr>

lines from the source file at SP to
the end of the memory buffer at MP.
Increment SP and MP by n.

write the first n lines of the memory
buffer to the temporary file free space.
Shift the remaining lines n+l through
MP to the top of the memory buffer.
Increment TP by n.

end the edit. Copy all buffered text
to temporary file, and copy all un
processed source lines to the temporary
file. Rename files as described
previously_

move to head of new file by performing
automatic E command. Temporary file
becomes the new source file, the memory
buffer is emptied, and a new temporary
file is created (equivalent to issuing
an E command, followed by a reinvocation
of ED using x.y as the file to edit).

return to original file. The memory
buffer is emptied, the temporary file
id deleted, and the SP is returned to
position I of the source file. The
effects of the previous editing commands
are thus nullified.

quit edit with no file alterations,
return to CP/M.--

There are a number of special cases to consider. If the
integer n is omitted in any ED command where an integer is
allowed, then I is assumed. Thus, the commands A and Wappend
one line and write I line, respectively. In addition, if a
pound sign (#) is given in the place of n, then the integer
65535 is asstLrp.ed (the largest value for n r.olhich is allo\olcd).
Since most reasonably sized source files can be contained
entirely in the memory buffer, the command #A is often issued
at the beginning of the edit to read the entire source file
to memory. Similarly, the command #W writes the entire buffer
to the temporary file. Two special forms of the A and W

*<cr> represents the carriage-return key

4

commands are provided as a convenience. The command OA fills
the current memory buffer to at least half-full, while ow
writes lines until the buffer is at least half empty. It
should also be noted that an error is issued if the memory
buffer size is exceded. The operator may then enter any
command (such as W) which does not increase memory require
ments. The remainder of any partial line read during the
overflow will be brought into memory on the next successful
append.

1.4. Memory Buffer Organization

The memory buffer can be considered a sequence of source
lines brought in with the A command from a source file. The
memory buffer has an associated (imaginary) character pointer
CP which moves throughout the memory buffer under command of
the operator. The memory buffer appears logically as shown
in Figure 3 where the dashes represent characters of the
source line of indefinite length, terminated by carr~e
return «cr» and line-feed «If» characters, and cp
represents the imaginary character pointer. Note that the
CP is always located ahead of the first character of the
first line, behind the last character of the last line, or
between two characters. The current line CL is the source
line which contains the CP.

1.5. Memory Buffer Operation

Upon initiation of ED, the memory buffer is empty (ie,
CP is both ahead and behind the first and last character).
The operator may either append lines (A command) from the
source file, or enter the lines directly from the console
with the insert command

I<cr>

ED then accepts any number of input lines, where each line
terminates with a <cr> (the <If> is supplied automatically),
until a control-z (denoted by tz is typed by the operator.
The CP is positioned after the last character entered. The
sequence

I<cr>
NOW IS THE<cr>
TIME FOR<cr>
ALL GOOD MEN<cr>
tz

leaves the memory buffer as shown below

5

NOW IS THE<cr><lf>
TIME FOR<cr><lf>
ALL GOOD MEN<cr><lf~

~

Various commands can then be issued which manipulate the CP
or display source text in the vicinity of the CP. The
commands shown below with a preceding n indicate that an
optional unsigned value can be specified. When preceded by
±, the command can be unsigned, or have an optional preceding
plus or minus sign. As before, the pound sign (#) is replaced
by 65535. If an integer n is optional, but not supplied,
then n=l is assumed. Finally, if a plus sign is optional,
but none is specified, then + is assumed.

±B<cr> - move CP to beginning of memory buffer
if +, and to bottom if -.

±nC<cr> - move CP by ±n characters (toward front
of buffer if +), counting the <cr><lf>
as two distinct characters

±nD<cr> - delete n characters ahead of CP if plus
and behind CP if minus.

±nK<cr> - kill (ie remove) ±n lines of source text
using CP as the current reference. If
CP is not at the begi.;u1.ing of the current
line when K is issuec, then the charac
ters before CP remain if + is specified,
while the characters after CP remain if -
is given in the command.

±nL<cr> - if n=O then move CP to the beginning of
the current line (if it is not already
there) if n~O then first move the CP to
the beginning of the current line, and
then move it to the beginning of the
line which is n lines down (if +) or up
(if -). The CP will stop at the top or
bottom of the memory buffer if too large
a value of n is specified.

6

±nT<cr> - If n=O then type the contents of the
current line up to CP. If n=l then
type the contents of the current line
from CP to the end of the line. If
n>l then type the current line along
with n-l lines which follow, if +
is specified. Similarly, if n>l and
- is given, type the previous n lines,
up to the CP. The break key can be
depressed to abort long type-outs.

±n<cr> - equivalent to ±nLT, which moves up or
down and types a single line

1.6. Command Strings

Any number of commands can be typed contiguously (up to
the c'apaci ty 0 f the CP/M console buffer), and are executed
only after the <cr> is typed. Thus, the operator may use
the CP/M console command functions to manipulate the input
command:

Rubout

Control-U

Control-C

Control-E

remove the last character

delete the entire line

re-initialize the CP/M System

return carriage for long lines
without transmitting buffer
(max 128 chars)

Suppose the memory buffer contains the characters shown
in the previous section, with the CP following the last
character of the buffer. The command strings shown below
produce the results shown to the right

Command String

1. B2T<cr>

2. SCOT<cr>

Effect

move to beginning
of buffer and type
2 lines:
"NOW IS THE

TIME FOR"

move CP 5 charac
ters and type the
beginning of the
line
"NOW I"

7

Resulting Memory Buffer

.L~ NOW IS THE<cr><lf>
~ TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

NOW I~~ S THE<cr><lf>
~

3. 2L-T<cr>

4. -L#K<cr>

5. I<cr>
TIME TO<cr>
INSERT<cr>
tz

6. -2L#T<cr>

7. <cr>

move two lines down
and type previous
line
"TIME FOR"

move up one line,
delte 65535 lines
which follow

insert two lines
of text

move up two lines,
and type 65535
lines ahead of CP
"NOW IS THE"

move down one line
and type one line
" INSERT"

1.7. Text Search and Alteration

NOW IS THE<cr><lf>

TIME FOR<cr><lf>

~ ALL GOOD MEN<cr><lf>

~

NOW IS THE<cr><lf> ~
CJ:J

NOW IS THE<cr><lf>

TIME TO<cr><lf>

INSERT<cr><lf>~
L.S:J

NOW IS THE<cr><lf> ~
~ TIME TO<cr><lf>

INSERT<cr><lf>

NOW IS THE<cr><lf>

TIME TO<cr><lf> ~~
~ INSERT<cr><lf>

ED also has a command which locates strings within the
memory buffer. The command takes the form

where cl through ck represent the characters to match followed
by either a <cr> or control -z*. ED starts at the current
position of CP and attempts to match all k characters. The
match is attempted n times, and if successful, the CP is
moved directly after the character cke If the n matches are
not successful, the CP is not moved from its initial position.
Search strings can include tl (control-l), which is replaced
by the pair of symbols <cr><lf>.

*The control-z is used if additional commands will be typed
following the tz.

8

The following commands illustrate the use of the F
command:

Command String

1. B#T<cr>

2. FS T<cr>

3. FltzOTT

Effect

move to beginning
and type entire
buffer

find the end of
the string "s T"

find the next "I"
and type to the
CP then type the
remainder of the
current line:
"TIME FOR"

Resulting Memory Buffer

~ NOW IS THE<cr><lf>
L:£j

TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

NOW IS T,.6-, HE<cr> < 1f>
~

NOW IS THE<cr><lf>

TI ~ME FOR<cr><lf> cp
ALL OOD MEN<cr><lf>

An abbreviated form of the insert command is also allowed,
which is often used in conjunction with the F command to make
simple textual changes. The form is:

c <cr>
n

where cl through c n are characters to insert. If the inser
tion string is terminated by a tz, the characters cl through
c n are inserted directly following the CP, and the CP is
moved directly after character cn. The action is the same
if the command is followed by a <cr> except that a <cr><lf>
is automatically inserted into the text following character
cn. Consider the following command sequences as examples
of the F and I commands:

Command String Effect

BITHIS IS tz<cr> Insert "THIS IS "
at the beginning
of the text

9

Resulting Memory Buffer

THIS IS~OW THE <cr><lf>

~
TIME FOR<cr><lf>

ALL GOOD MEN<cr><lf>

FTlMEtz-4DIPLACEtz<cr>

find "TIME" and delete
it; then insert "PLACE"

3FOtz-3D5DICHANGESt<cr>

-8CISOURCE<cr>

find third occurrence
of "0" (ie the second
"0" in GOOD), delete
previous 3 characters;
then insert "CHANGES"

move back 8 characters
and insert the line
"SOURCE<cr><lf>"

THIS IS NOW THE<cr><lf>

PLACE~ FOR<cr><lf>

ALL GOOD MEN<cr><lf>

THIS IS NOW THE <cr><lf>

PLACE FOR<cr><lf>

ALL CHANGES~<cr><lf>
~

THIS IS NOW THE<cr><lf>

PLACE FOR<cr><lf>

ALL SOURCE<cr><lf>

~CHANGES<cr><lf>
~

ED also provides a single command which combines the F and
I commands to perform simple string substitutions. The command
takes the form

n S c 1c 2···ck tz d 1d 2 .•• dm {<~~>}
and has exactly the same effect as applying the command string

a total of n times. That is, ED searches the memory buffer
starting at the current position of CP and successively sub
stitutes the second string for the first string until the
end of buffer, or until the sUbstitution has been performed
n times.

As a convenience, a command similar to F is provided by
ED which automatically appends and writes lines as the search
proceeds. The form is

n N c l c 2 •.• c k { ctrz }

which searches the entire source file for the nth occurrence
of the string clc2 .•. ck (recall that of fails if the string
cannot be found in the current buffer). The operation of the

10

~~ command is precisely the same as F except in the case that
the string cannot be found within the current memory buffer.
In this case, the entire memory contents is written (ie, an
automatic #W is issued). Input lines are then read until
the buffer is at least half full, or the entire source file
is exhausted. The search continues in this manner until the
string has been found n times, or until the source file has
been completely transferred to the temporary file.

A final line editing function, called the juxtaposition
command takes the form

with the following action applied n times to the memory buffer:
search from the current CP for the next occurrence of the
string clc2 ••. ck. If found, insert the string d~d2 •.• ,dm,
and move CP to follow dm• Then delete all characters following
CP up to (but not including) the string el,e2, ... eq , leaving
CP directly after dm• If el,e2, •.• e q cannot be fo~nd, then
no deletion is made. If the current line is

~ NOW IS THE TIr.1E<cr><lf>
B:J

Then the command

JW tzWHATtztl<cr>

Results in

NOW WHAT~ <cr><lf>
Lc:1?J

(Recall that tl represents the pair <cr><lf> in search and
substitute strings).

It should be noted that the number of characters allowed
by ED in the F,S,N, and J commands is limited to 100 symbols.

1.8. Source Libraries

ED also allows the inclusion of source libraries during
the editing process with the R command. The form of this
cornrnand is

11

where flf2 •• fn is the name of a source file on the disk with
as assumed filetype of 'LIB'. ED reads the specified file,
and places the characters into the memory buffer after CP,
in a manner similar to the I command. Thus, if the command

RMACRO<cr>

is issued by the operator, ED reads from the file MACRO. LIB
until the end-of-file, and automatically inserts the charac
ters into the memory buffer.

1.9. Repetitive Command Execution

The macro command M allows the ED user to group ED com
mands together for repeated evaluation. The M command takes
the form:

where clc2 ... ck represent a string of ED commands, not inclu
ding another M command. ED executes the command string n
times if n>l. If n=O or 1, the command string is executed
repetitively until an error condition is encountered (e.g.,
the end of the memory buffer is reached with an F command).

As an example, the following macro changes all occur
rences of GAMMA to DELTA within the current buffer, and
types each line which is changed:

MFGAMMAtz-5DIDELTAtzOTT<cr>

or equivalently

MSGAMMAtzDELTAtzOTT<cr>

12

2. ED ERROR CONDITIONS

On error conditions, ED prints the last character read
before the error, along with an error indicator:

? unrecognized command

> memory buffer full (use one of
the commands D,K,N,S, or W to
remove characters), F,N, or S
strings too long.

cannot apply command the number
of times specified (e.g., in
F command)

o cannot open LIB file in R
command

Cyclic redundancy check (CRC) information is written with
each output record under CP/M in order to detect errors on
subsequent read operations. If a CRC error is detected, CP/M
will type

PERM ERR DISK d

where d is the currently selected drive (A,B, •••). The oper
ator can choose to ignore the error by typing any character
at the console (in this case, the memory buffer data should
be examined to see if it was incorrectly read), or the user
can reset the system and reclaim the backup file, if it
exists. The file can be reclaimed by first typing the con
tents of the BAR file to ensure that it contains the proper
information:

TYPE x.BAK<cr>

where x is the file being edited. Then remove the primary
file:

ERA x.y<cr>

and rename the BAK file:

REN x.y=x.BAK<cr>

The file can then be re-edited, starting with the previous
version.

13

3. CONTROL CHARACTERS AND COMr-W~DS

The following table summarizes the control characters
and commands available in ED:

Control Character

tc

te

ti

tl

tu

tz

rubout

break

14

Function

system reboot

physical <cr><lf> (not
actually entered in
command)

logical tab (cols 1,8,
15, •..)

logical <cr><lf> in
search and substitute
strings

line delete

string terminator

character delete

discontinue command
(e.g., stop typing)

Co nun and

nA

±B

inC

±nD

E

nF

H

I

nJ

inK

±nL

nM

nN

o

±nP

Q

R

nS

±nT

± U

nW

nZ

±n<cr>

Function

append lines

begin bottom of buffer

move character positions

delete characters

end edit and close files
(normal end)

find string

end edit, close and reopen
files

insert characters

place strings in juxtaposition

kill lines

move down/up lines

macro definition

find next occurrence with
autos can

return to original file

move and print pages

quit with no file changes

read library file

sUbstitute strings

type lines

translate lower to upper case if U,
no translation if -U
write lines

sleep

move and type (±nLT)

15

Appendix A: ED 1.4 Enhancements

The ED context editor contains a number of commands which enhance its
usefulness in text editing. The improvements are found in the addition of line numbers,
free space interrogation, and improved error reporting.

The context editor issued with CP/M 1.4 produces absolute line number prefixes
when the "V" (Verify Line Numbers) com mand is issued. Following the V com mand,
the line number is displayed ahead of each line in the format:

nnnnn:

where nnnnn is an absolute line number in the range 1 to 65535. If the memory buffer
is empty, or if the current line is at the end of the memory buffer, then nnnnn appears
as 5 blanks.

The user may reference an absolute line number by preceding any command by
a number followed by a colon, in the same format as the line number display. In this
case, the ED program moves the current line reference to the absolute line number,
if the line exists in the current memory buffer. Thus, the command

345:T

is interpreted as "move to absolute line 345, and type the line." Note that absolute
line numbers are produced only during the editing process, and are not recorded with
the file. In particular, the line numbers will change following a deleted or expanded
section of text.

The user may also reference an absolute line number as a backward or forward
distance from the current line by preceding the absolute line number by a colon. Thus,
the command

:400T

is interpreted as "type from the current line number through the line whose absolute
number is 400." Combining the two line reference forms, the command

345::4~0T

for example, is interpreted as "move to absolute line 345, then type through absolute
line 4~~." Note that absolute line references of this sort can precede any of the
standard ED com mands.

A special case of the V command, "0V", prints the memory buffer statistics in
the form:

free/total

where "free" is the number of free bytes in the memory buffer (in decimal), and "total"
is the size of the memory buffer.

ED 1.4 also includes a "block move" facility implemented through the "X" (Xfer)
command. The form

nX

transfers the next n lines from the current line to a temporary file called

X$$$$$$$.LIB

which is active only during the editing process. In general, the user can reposition
the current line reference to any portion of the source file and transfer lines to the
temporary file. The transferred line accumulate one after another in this file, and
can be retrieved by simply typing:

R

which is the trivial case of the library read command. In this case, the entire
transferred set of lines is read into the memory buffer. Note that the X command
does not remove the transferred lines from the memory buffer, although a K command
can be used directly after the X, and the R command does not empty the transferred
line file. That is, given that a set of lines has been transferred with the X command,
they can be re-read any number of times back into the source file. The command

r;1X

is provided, however, to empty the transferred line file.

Note that upon normal completion of the ED program through Q or E, the
temporary LIB file is removed. If ED is aborted through ctl-C, the LIB file will exist
if lines have been transferred, but will generally be empty (a subsequent ED invocation
will erase the temporary file).

Due to common typographical errors, ED 1.4 requires several potentially disas
terous commands to be typed as single letters, rather than in composite commands.
The com mands

E (end), H (head), a (original), Q (quit)

must be typed as single letter commands.

ED 1.4 also prints error messages in the form

BREAK "x" AT c

where x is the error character, and c is the com mand where the error occurred.

CP/M 2.0 USER'S GUIDE
FOR CP/M 1.4 OWNERS

01 [)nj~Tfll RESEflR[H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 USER'S GUIDE

FOR CP/M 1.4 OWNERS

COPYRIGHT (c) 1979

DIGITAL RESEARCH

Copyright

Copyright (c) 1979 by Digital Research. All rights reserved.
No pal"t of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language. in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacifjc Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specificaUv disclaims any
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

1.

2.

3.

4.

s.

5.

7 •

8.

9.

CP/M 2.0 USER'S GUIDE FOR CP/M 1.4 OWNERS

C09yright (c) 1979
Digital Researcn, aox 579
Pacific Grove, California

An Overview of CP/M 2.0 Facilities

User Interface

Console Command processor (CC?) Intertace

S~AT Enhancements

PIP Enhancements

8D Enhancements

The XSU9 Function

300S Interface Conventions
CP/M 2.0 Memory Organization.

10. 3IOS Differences ••••.••

. . . . 1

• • 3

· 4

• • 5

d

10

· 11

• • 12

• 27

• • 28

1. AN OVERVIEW OF CP/M 2.0 FACILITIES.

CP/M 2.0 is a high-performance single-console operating system
which uses table driven techniques to allow field reconfiguration to
match a wide variety of disk capacities. All of the fundamental, file
restrictions are removed, while maintaining upward compatibility from
previous versions of release 1. Features of CP/H 2.0 include field
specification of one to sixteen logical drives, eacn containing up to
eight megabytes. Any particular file can reaCh the full drive size
with the capability to expand to thirty-two megabytes in future
releases. The directory size can be field configured to contain any
reasonable number of entries, and each file is optionally tagged with
read/only and system attributes. Users of CP/M 2.0 are physically
separated oy user numbers, with facilities for file copy operations
from one user area to another. Bowerful relative-record random access
functions are present in CP/M 2.0 which provide direct access to any
of the 65536 records of an eight megabyte file.

All disk-dependent portions of CP/M 2.0 are placed into a
BIOS-resident "disk parameter block" which is either hand coded or
~roduced automatically using the disk definition macro library
provided with CP/M 2.0. The end user need only specify the maximum
number of active disks, the starting and ending sector numbers, the
data allocation size, the maximum extent of the logical disk,
directory size information, and reserved track values. The macros use
this information to generate the appropriate tables and table
references for use during CP/M 2.0 operation. Deblocking information
is also provided wnich aids in assembly or disassembly of sector sizes
which are multioles ot tne fundamental 128 byte data unit, and the
system. alteration manual includes general~purpose subroutines which
use the this deblocking information to take advantage of larger sector
sizes. Use of these subroutines, together with the table driven data
access algoritnms, make CP/M 2.0 truly a universal data management
system.

File ex~ansion is achieved by providing, up to 512 logical tile
extents, where eaCh logical extent contains 16K bytes of data. CP/M
2.0 is structured, however, so that as much as l28K bytes of data is
addressed by a single physical extent (corresponding to a single
directory entry), tnus maintaining compatibility with previous
versions while taking full advantage of directory space.

Random access facilities are present in CP/M 2.0 which allow
immediate reference to any record of an eight ~egabyte file. Using
CP/M's unique data organization, data blocks are only allocated when
actually required and movement to a record oosition requires little
search time. Sequential file access is upward-com?atible from earlier
versions to the full ,eight megaoytes, while random access
compatibility stops at 512K byte files. Due to CP/M 2.0's sim?ler and
faster random access, application programmers are encouraged to alter
their programs to take full advantage of the 2.0 facilities.

Several CP/M 2.0 modules and utilities have improvements which
correspond to the enhanced file system. STA'r and PIP both account for
file attributes C!nd user areas, while the CCP p,rovides a "login"

(All Information Contained Herein is Proprietary to Digital Research.)

1

function to change from one user, area to anotner. 'rhe CC.I? also
formats directory displays in a more convenient manner and accounts
for both CRT and hard-copy devices in its enhanced line editing
functions.

trhe sections below point out the inciividual differences between
CP/M 1.4 and CP/M 2.0~ with the understanding that the reader is
either familiar with CP/M 1.4, or has access to the 1.4 manuals.
Additional information dealing with CP/M 2.0 I/O system alteration is
presented in the Digital ResearCh manual t·Cp/r1 2.0 Alteration Guide. II

(All Information Contained derein is proprietary to Digital Research.)

2

2. USER INTERFACE.

Console line processing takes CRT-type devices into account with
three new control characters, shown with an asterisk in the list below
(the symbol "ctl" below indicates that the control key is
simultaneously depressed) :

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
ctl-u
ctl-X

removes and echoes last character
reboot when at beginning of line
physical end of line
oackspace'one cnaracter position*
(line feed) terminates current input*
(carriage return) terminates input
retype current line after new'line
remove current line after new line
backspace to beginning of current line*

In ?articular, note that ctl-H produces the proper bacKspace overwrite
function (ctl-H can be changed internally to another character, such
as delete, through a simple single byte change). Further, the ~ine
editor keeps track of the current prom~t column position 50 that the
operator can properly align data input following a ctl-U, ctl-R, or
ctl-X command.

(All Information Contained Herein is Proprietary to Digital Research.)

3

3. CONSOLE COMMAl~O PROCESSOR (CCP) INlrERFACE.

There are four functional ditferences between CP/M 1.4 and CP/M
2.0 at the console command processor (CCP) level. irhe CCP now
displays directory information across the screen (four elements per
line), the USER command is present to allow maintenance of separate
files in the same directory, and the actions of the "ERA *.*" and
"SAVE" commands have changed. l'he altered OIR format is
self-explanatory, while the USER command takes the for~:

USER n

where n is an integer value in the range 0 to 15. Upon cold start,
the operator is automatically "logged" into user area number 0, which
is compatible with standard CP/M 1.4 directories. The operator may
issue the USER command at any time to move to another logical area
within the same directory. Drives which are logged-in while
addressing one user number are automatically active when the operator
moves to another user numoer since a user number is simply a prefix
which accesses particular directory entries on the active disks.

'llhe ac t ive
subsequent USER
is again assumed.

user number is maintained until changed by a
command, or until a cold start operation when user 0

Due to the fact that user numbers now tag individual directory
entries, the ERA *.* command has a different effect. In version 1.4,
this command can be used to erase a directory whicn has "garbage"
information, gerhaps resulting from use of a diskette under another
operating system (heaven forbid!). In 2.0, however, the ERA ~.*
command affects only the current user number. 'rhuS, it is necessary
to write a simple utility to erase a nonsense disk (the program simply
writes the hexadecimal pattern E5 throughout the disk).

The SAVE command in version 1.4 allows only a single memory save
operation, with the potential of destroying the memory image due to
directory operations following extent boundary changes. Version 2.0,
nowever, does not perform directory operations in user data areas
after disk writes, and thus the SAVE operation can be used any number
of times without altering the memory image.

(All Information Contained Herein is Proprietary to Digital Research.)

4

4. STAT ENHANCEMENTS.

The STAT pragram has a number .of additianal functians which
allaw disk parameter display, user number display, and file indicatar
manipulatian. The cammand:

s'rA'r VAL:

praduces a summary .of the available status commands, resulting in the
.output:

'I'emp RIO Dis k:
Set Indicatar:
Disk Status
User Status
Iobyte Assign:

d:=R/O
d:filename.typ $R/O $R/w $SYS $DIR
DSK: d:DSK:
USR:

(list .of 9assible assignments)

whicn gives an instant summary .of the passible STAT cammands. The
cammand farm:

STAT d:filename.tY9 ~S

w n ere "d: ,. i san apt ian a 1
unambiguaus .or ambiguaus
farmat:

Size Recs Bytes
48 4B 6k
55 55 12K

65536 128 2k

dr ive
file

name, and II filename. t yp" is an
name, 9raQuces the .output display

Ext Acc
1 Rio A:ED.COM
1 RIO (A:PIP.COM)
2 R/W A: X. DA'll

where tne $S parameter causes the "Size" field ta be displayed
(withaut the $S, the Size field is skip?ed, but the remaining fields
are dis 91 aye d). ir he S i z e fie I d 1 is t s the vir t u a 1 f i 1 e s i z e in
recards, while the "Recs" field sums the number .of virtual recards in
each extent. Far files canstructed sequentially, the Size and Recs
fie 1 d s are ide n tic a 1 . Ir he .1 By t e s n fie 1 d lis t s the act u a 1 n u r.l be r .of
bytes allacated ta the carrespanding file. The minimum allocation
unit is determined at canfiguration time, and thus tne number of bytes
correspands ta the recard count plus the remaining unused space in the
last allocated black far sequential files. Random access files are
given data areas .only when written, so the Bytes field contains the
only accurate allacation figure. In the case of random access, the
Size field gives the logical end-af-file record position ana the Recs
field counts the lagical records .of each extent (each .of these
exten ts, 110weve r, :nay con ta in una lloca ted II holes" even though they are
added into the record count). The "Ext" field counts the number of
lagical 16K extents allocated to the file. Unlike version 1.4, the
Ext count does not necessarily carrespand ta the number of directary
entries given ta the file, since there can be up to 128K oytes (8
logical extents) directly addressed by a single directary entry,
de?ending upan allocation size (in a special case, there are actually
256K bytes which can be directly addressed by a physical extent).

rrhe "Acc"
changed usinq

field gives the RIO .or R/~ access mode, which is
-the cammands shawn below. Similarly, the parentheses

(All Intormation Contained Herein is Pro?rietary to Digital Research.)

5

shown around the PIP.CO!'1 file name indicate that it has the "system"
indicator set, so that it will not be listed in DIR commands. 'rhe
four command forms

S~AT d:filename.typ $R/O
STAT d:filename.typ $R/ri
STAT d:filename.typ SSYS
S'rA'r d: filename. ty? $DIR

set or reset various permanent file indicators. irhe R/O indicator
places the file (or set of files) in a read-only status until changed
by a subsequent STAT command. The R/O status is recorded in the
directory with tne file so that it remains R/O through intervening
cold start operations. The R/W indicator places the file in a
permanent read/write status. The SYS indicator attaches the system
indicator to the file, while the OIR command removes the system
indicator. rrhe "f ilename. typ" may be ambiguous or unambiguous, but in
either case, the files whose attributes are changed are listed at the
console when the change occurs. IThe or ive name denotea by lid:" is
optional.

When a file is marked R/O, subsequent attempts to erase or write
into the file result in a terminal BDOS message

Bdos Err on d: File R/O

'rhe BOOS then waits for a console input before performing a subsequent
warm start (a "return" is sufficient to continue). irhe command form

3'rAT d: DSK:

lists the drive characteristics of the disk named by "d: 1I which is in
the range A:, B:, ••. , P:. The drive characteristics are listed in
the format:

d: Drive Characteristics
65536: 128 Byte record Capacity

8192: Kilooyte Drive Capacity
128: 32 Byte Directory Entries

0: Checked Directory Entries
1024: Records/ Extent

128: Records/ Block
58: Sectors/ Track

2: Reserved Tracks

where "d:" is the selected drive, followed by the total record
capacity (65536 is an 8 megaoyte drive), followed by the total
caT?acity listed in Kilobytes. The directory size is listed next,
followed by the "checked" entries. The number of checked entries is
usually identical to the directory size for removable media, since
this mechanism is used to detect changed media during CP/M operation
without an intervening warm start. For fixed media, the number is
usually zero, since the media is not changed without at least a cold
or warm start. The number of records per extent determines the
addressing capacity of each directory entry (1024 times 128 bytes, or

(All Information Contained Herein is Proprietary to Digital Research.)

6

128K in the example above). 'rhe number of records per block shows the
basic allocation size (in the example, 128 records/clock times 128
bytes per record, or 16K cytes per block). The listing is then
followed by the number of physical sectors ner track and the number of
reserved tracks. For logical drives which share the same physical
disk, the number of reserved tracks may be quite large, since this
mechanism is used to sKio lower-numbered disk areas allocated to other
logical disks. The command form

S~A~ DSK:

oroduces a drive characteristics tacle for all currently active
drives. The final STAT command form is

STAT USR:

which produces a list of the user nUillbers which have files on the
currently addressed disk. ~he display format is:

Active User : 0
Active Files: 0 1 3

where the first line lists the currently addressed user number, as set
by the last CCP USER command, followed by a list of user numbers
scanned from the current directory. In the above case, the active
user number is 0 (default at cold start), with three user numbers
which have active files on the current disk. 'rhe operator can
subsequently examine the directories of the other user numbers by
logging-in with USER 1, USER 2, or USER 3 commands, followed by a DIR
command at the CCP level.

(All Information Contained Herein is Proprietary to Digital Research.)

7

5. PIP ENHANCEMENTS~

PIP provides three new functions whicn account for the features
of CP/M 2.0. All three functions take the form of file parameters
which are enclosed in square brackets following the appropriate file
names. The commands are:

Gn Get File from User number n
(n in the range 0 - 15)

w write over R/O files without
console interrogation

R Read system files

'rhe G command allows one user area to receive data files from another.
Assuming the operator has issued the USER 4 command at the CCP level,
the PIP statement

PIP X.Y = X.Y[G2]

reads file X.Y from user number 2 into user area number 4. 'rhe
command

PIP A:=A:*.*[G2]

copies all of the tiles from the A drive directory for user number 2
in~o the A drive directory of the currently logg~d user number. Note
tnat to ensure file security, one cannot copy files into a different
area than the one which is currently addressed by the USER command.

Note also that the PIP program itself is initially copied to a
user area (so that subsequent files can be copied) using the SAVE
command. 'rhe sequence of operations shown below effectively moves PIP
from one user area to the next.

USER 0
DDT PIP. COM
(note PIP size

G0
USER 3
SAVE s PIP.COlvl

login user 0
load PIP to memory

s)
return to CCP
login user 3

where s is the integral number of memory "pages" (256 byte segments)
occupied by PIP. The number s can be determined when PIP. COM is
loaded under oorr, by referring to the value under the "NEXT" display.
If for example, the next available address is 1000, then PIP.COM
requires Ie hexadecimal pages (or 1 times 16 + 12 = 28 ?ages), and
thus the value of s is 28 in the subsequent save. Once PIP is copied
in this manner, it can then be copied to another disk belonging to the
same user number through normal pip transfers.

Under normal operation, PIP will not overwrite a file which is
set to a permanent RIO status. If attempt is made to overwrite a RIO
file, the prompt

(All Information Contained Herein is Proprietary to Digital Research.)

8

nFSTINATION FILE IS RIO, DELETE (YIN)?

is issued. If the operator responds with the character "y" then the
file is overwritten. Otherwise, the response

** NOT DELETED **

is issued, the file transfer is skipP?ed, and PIP continues with the
next operation in sequence. In order to avoid the prompt and response
in the case of RIO file overwrite, the command line can include the w
parameter, as shown below

PIP A:=B:*.COM[W]

which copies all non-system files to. the A drive from the B drive, and
overwrites any RIO files in the process. If the operation involves
several concatenated files, the w parameter need only be included with
the last file in the list, as shown in the following example

PIP A.DAT = B.DAT,F:NEW.DAT,G:OLD.DAT[W]

Files with the system attribute can be included in PIP transfers
if the R parameter is included, otherwise system files are not
recognized. The command line

PIP ED. COM = 8:ED.COM[R]

for example, reads the ED. COM file from the B drive, even if it has
been marked as a RIO ana system file. The system file attributes are
copied, if present.

It should be noted that downward compatibility with previous
versions of CPIM is only maintained if the file does not exceed one
megabyte, no file attributes are set, and the file is created by user
0. If compatibility is required with non-standard (e.g., "double
density") versions of 1.4, it may be necessary to select 1.4
compatibility mode when constructing the internal disk parameter block
(see the "CP/lvt 2.0 Alteration Guide, II and refer to Section 10 which
describes BIOS differences).

(All Information Contained Herein is Proprietary to Digital Research.)

9

6. ED ENHANCEMENTS.

'rhe CP/M standard t;>rogram editor provides several new facilities
in the 2.0 release. Experience has shown that most operators use the
relative line numbering feature of ED, and thus the e~itor has the "v"
(Verify Line) option set as an initial value. The operator can, of
course, disable line numbering by typing the "-v" command. If you are
not familiar with the ED line number mode, you may wish to refer to
the Appendix in the ED user's guide, where the "v" command is
descr ibed.

ED also takes file attributes into account.
attempts to edit a read/only file, the message

** FILE IS READ/ONL~ **

If the operator

appears at the console. The file can be loaded and examined, but
cannot be altered in any way. Normally, the operator simply ends the
edit session, and uses STAT to change the file attribute to R/W. If
the edited file has the "system" attribute set, the message

"SYSTEM" FILE NOT ACCESSIBLE

is displayed at the console, and the edit session is aborted. Again,
the STA;r program can be used to change the system attribute, if
desired.

Finally, the insert mode ("i'l) command allows CRT line editing
functions, as described in Section 2, above.

(All Information Contained Herein is Proprietary to Digital Research.)

10

7. THE XSUB FUNCTION.

An additional utility program is supplied with version 2.0 of
CP/M, called XSUB, which extends the power of the SUBMIT facility to
include line input to programs as well as the console command
processor. The XSUB command is included as the first line of your
submit file and, when executed, self-relocates directly below the cepe
All subsequent submit command lines are processed by XSUB, so that
programs which read buffered console input (BOOS function 10) receive
their input directly from the submit file. For example, the file
SAVER.SUB could contain the submit lines:

XSUB
DDT
I$I.HEX
R
G0
SAVE I $2.COM

with a subsequent SUBMIT command:

SUBMIT SAVER X Y

which substitutes X for $1 and Y for $2 in the command stream. The
XSUB program loads, followed by DD'r which is sent the command lines
·'IX.HEX" .IR" and UG0" thus returning to the CCP. The final command
"SAVE 1 Y.COM u is processed by the cepe

The XSUB program remains in memory, and prints the message

(xsub active)

on each warm start operation to indicate its presence. Subsequent
submit command streams do not require the XSUB, unless an intervening
cold start has occurred. Note that XSUB must be loaded after DESPOOL,
if both are to run simultaneously.

(All Information Contained Herein is Proprietary to Digital Research.)

11

8. BOOS INTERFACE CONVENTIONS.

CP/M 2.0 system calls take place in exactly the same manner as
earlier versions, with a call to location 0005H, function number in
register C, and information address in register ~air DE. Single byte
values are returned in register A, with double byte values returned in
HL (for reasons of compatibility, register A ; L and register B = H
upon return in all cases). A list of CP/M 2.0 calls is given below,
with an asterisk following functions which are either new or revised
from version 1.4 to 2.0. Note that a zero value is returned for
out-of range function numbers.

o System Reset
1 Console Input
2 Console Output
3 Reader Input
4 Puncn Output
5 List Outl;)ut
6* Direct Console I/O
7 Get I/O Byte
8 Set I/O Byte
9 Print String

10* Read Console Buffer
11 Get Console Status
12* Return Version Number
1 3 Res e t Dis k S Y stem
14 Select Disk
15* 0gen File
16 Close File
17* Search for First
18* Search for Next

19*
20
21
22*
23*
24*
25
26
27
28*
29*
30*
31*
32"11r
33*
34*
35*
36*

Delete i"ile
Read Sequential
write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr (Alloc)
Write Protect Disk
Get Addr(R/O Vector)
Set File Attributes
Get Addr(Disk Parms)
Set/Get User Code
Read Random
~vr i te Random
Cornoute File Size
Set Random Record

(Functions 2~, 29, and 32 should be avoided in ap?lication programs to
maintain upward compatibility with MP/M.) The new or revised functions
are described below.

Function 6: Direct Console I/O.

Direct Console I/O is supported under CP/M 2.0 for those
applications where it is necessary to avoid the BDOS console I/O
operations. Programs whicn currently perform direct I/O through the
BIOS should be changed to use direct I/O under SDOS so that they can
be fully supported under future releases of MP/M and CP/M.

Upon entry to function 6. register E eitner contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
cnaracter. If the input value is FF, then function 6 returns A = 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is proprietary to Digital Research.)

12

Function 10: Read Console Buffer.

The console buffer read operation remains unchanged except that
console line editing is supported, as described in Section 2. Note
also that certain functions which return the carriage to the leftmost
position (e.g., ctl-X) do so only to the column position where the
prompt ended (previously, the carriage returned to ~he extreme left
margin). This new convention makes operator data input and line
correction more legible.

Function 12: Return Version Number.

Function 12 has been redefined to orovide information which
allows version-independent ~rogramming (this was previously the "lift
head" function whicn returned HL=0000 in version 1.4, but performed no
operation). The value returned by function 12 is a two-byte value,
with H = 00 for the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. using function 12, for example, you can
write application programs whicb provide both sequential and random
access functions, with random access disabled when operating under
early releases of CP/M.

In the file operations described below, DE addresses a file
control block (FCB). Further, all directory operations take place in
a reserved area which does not affect write buffers as was the case in
version 1.4, with the exception of Searcn First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of a sequence of 33
bytes for sequential access, and a series of 36 bytes in the case that
the file is accessed randomly. The default file control clock
normally located at 005CH can be used for random access files, since
bytes 00708, 007EH, and 007FH are available for this purpose. For
notational purposes, the Fca format is shown with the following
fields:

(All Information Contained Herein is Proprietary to Digital Research.)

13

Idrlf11f211 Ilf8ltllt2lt3lexlslls2lrcld01/ /ldnlcrlr0lr11r21

00 01 02 ••• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35

where

dr drive code (0 - 16)
o => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

f1 ••. f8 contain the file name in ASCII
upper case, with high 'bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tI', t2', and t3' denote the
bit of these positions,
tI' = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from 0 - 128

d0 ••• dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

Function 15: Open File.

irne Operi File operation is identical to previous definitions,
with the exception that byte s2 is automatically zeroed. Note that
previous versions of CP/M defined this byte as zero, but made no

(All Information Contained Herein is Proprietary to Digital Research.)

14

cnecks to assure compliance. Thus, the byte is cleared to ensure
upward compatibility with the latest version, where it is required.

Function 17: SearCh for First.

Search First scans the directory for a match with the file given
by the Fca addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise a value of A equal to 0,
1, 2, or 3 is returned indicating the file is present. In the case
that the file is found, the current DMA address is filled with the
record containing the directory entry, and the relative starting
position is A ~ 32 (i.e., rotate the A register left 5 bits, or ADD A
five times). Altnough not normally required for application programs,
the directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from fl through ex matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the dr
field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application progr~~s, out does allow complete flexibility to scan all
current directory values. If the dr field is not a question mark, the
s2 byte is automatically zeroed.

Function 18: Search for Next.

The Search Next function is similar to tne Searcn First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

Function 19: Delete File.

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255 if the reference file or files
could not be found, otherwise a value in the range 0 to 3 is returned.

(All Information Contained Herein is proprietary to Digital Research.)

15

Function 22: Make File.

'rhe Make File operation is identical to previous versions of
CP/M, except that byte s2 is zeroed upon entry to the BOOS.

Function 23: Rename File.

The Actions of the file rename functions are the same as
previous releases except that the value 255 is returned if the rename
function is unsuccessful (the file to rename could not be found),
otherwise a value in the range 0 to 3 is returned.

Function 24: Return Login Vector.

'rhe login vector value returned by CP/M 2.0 is a 16-bit value in
HL, where the least significant bit of L corresponds to the first
drive A, and the high order bit of H corresponds to the sixteenth
drive, labelled P. Note that compatibility is maintained with earlier
releases, since registers A and L contain the same values upon return.

Function 28: write Protect Current Disk.

The disk write orotect function provides tem~orary write
protection for the currently selected disk. Any attem?t to write to
t0e disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

Function 29: Get R/O Vector.

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant nit corresponds to drive A,
while the most significant bit corresponds to drive P. 'rhe R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M whicn detect cnanged disks.

Function 30: Set File Attributes.

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2' above) can be
set or reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a

(All Information Contained Herein is Proprietary to Digital Research.)

16

match, and chanqes the matched directory entry to contain the selected
inaicators. Indicators fl' through f4' are not ?resently used, but
may be useful for applications programs, since they are not involved
in the matching ~rocess during file open and close operations.
Indicators f5' tnrough f8' and t3' are reserved for future system
ex~ansion.

Function 31: Get Disk Parameter Block Address.

~he address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
ne extracted for display and space ·computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, ap?lication
programs will not require this facility.

Function 32: Set or Get User Code.

An application program can change or interrogate the currently
active user number oy calling function 32. If register E = FF
nexadecimal, then tne value of the current user number is returned in
register A, where the value is in the range 0 to 31. If register E is
not FF, then the current user number is changed to the value of E
(modulo 32).

Function 33: Read Random.

'l'he Read Random function iss imilar to the sequential file read
operation of previous releases, except that the read operation takes
~lace at a particular record number, selected by the 24-bit value
constructed from the three nyte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant oyte first (r0), middle
oyte next (r1), and high byte last (r2). CP/M release 2.0 does not
reference byte r2, except in computing the size of a file (function
35). Byte r2 must be zero, however, since a non-zero value indicates
overflow past the end of file.

Thus, in version 2.0, the r0,rl byte pair is treated as a
double-byte, or "word" value, which contains the record to read. This
value ranges from 0 to 65535, providing access to any particular
record of the 8 megabyte file. In order to orocess a file using
random access, the base extent (extent 0) must first be opened.
Although the base extent mayor may not contain any allocated data,
this ensures that the file is properly recorded in the directory, and
is visible in OIR requests. The selected record number is then stored
into the random record field (r0,rl), and the BDOS is called to read
the record. Upon return from the call, register A either contains an

(All Information Contained Herein is Proprietary to Digital Research.)

17

error code, as listed below, or the value 00 indicating the operation
was successful. In the.latter case, the current DMA address contains
the randomly accessed record. Note that contrary to the sequential
read operation, the record number is not advanced. Thus, subsequent
random read operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. 'rhus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record l?osition following each random read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disK

Error code 01 and 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation coml?lete.

Function 34: Write Random.

The write Random ooeration is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the rando~ record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent

(All Information Contained Herein is Proprietary to Digital Research.)

18

switch as it does in sequential mode under either CP/M 1.4 or CP/M
2.0.

'rhe error codes returned by a random wr i te are identical to the
random read operation with the addition of error code 05, which
indicates that a new extent cannot be created due to directory
overflow.

Function 35: Compute Fi~e Size.

When computing the size of a file, the DE reqister pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
"virtual~ file size which is, in effect, the record address of" the
r e co r d follow i n g the end 0 f the f i 1 e . if, follow i n g a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536 in version 2.0. Otherwise, bytes r0 and rl
constitute a l6-bit value (r0 is the least significant byte, as
before) which is the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, tnen performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data ~s actually allocated.

Function 36: Set Random Record.

The Set Random Record function causes the BOOS to automatically
produce the random record position from a file which has been read or
written sequentially to a ~articular point. The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record ~osition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are

(All Information Contained Herein is Proprietary to Digital Research.)

19

involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read and
write operations continue from the selected point in the file.

This section is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM.COM, the CCP level
command:

R~N DOH X. DA 'r

s tarts the test program. 'rhe pr ogr am looks for a file by the name
X.DAT (in this ~articular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take "the form

nw nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity (ok, so
the ?r ogram ~ s not so br ief), the only er ror me ssage 1 S

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands are interpreted. 'rhe
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. 'rhe utility subroutines then follow,

(All Information Contained Herein is proprietary to Digital Research.)

20

which contain the principal input line processor,
'fhis particular program shows the elements of
processing, and can be used as the basis for
development •

called
random
further

"readc."
access

program

10100

0000 =
01005 =

0001 =
0002 =
00109 =
000a =
00kJc =
000f =
01110 =
0016 =
Jk:'.l21 =
0022 =

005c =
007d =
007f =
0080 =

000d =
000a =

0100 31bc0

0103 0e0c
0105 cd050
0108 fe20
1c110a d2160

010d 111bk1
0110 cdda0
0113 c3000

. *~*** ,

.* * ,
i* sample random access program for cp/m 2.0 * . * . - * ,
.********~*****~*******************~**************** ,

org
;
reboot equ
bdos equ

coninp equ
conou t equ
t;>string equ
rstring equ
version equ
openf equ
closef egu
makef equ
readr equ
writer eau

fco
ranrec
ranovf
buff

cr
If

equ
equ
equ
equ

equ
egu

100h

0000h
0005h

1
2
9
10
12
15
16
22
33
34

005ch
fcb+33
fcb+35
10080h

0dh
0ah

;base of tt)a

;system reboot
;bdos entry point

;console input function
iconsole output function
;print string until IS'
;read console buffer
;return version number
;file open function
;close function
imake file function
i read random
;write random

;de£ault file control block
;randorn record position
ihigh order (overflow) byte
ibuffer address

;carriage return
;line feed

;
.************************************~************** ,
.* * ,
;* load SP, set-up file for random access *
.* * ,
.*** ,

;
versok:

lxi sp, stack

version 2.0?
mvi c,version
call bdos
cpi 2~h ;version 2.0 or better?
jnc versok
bad version, message and go back
lxi d,badver
call print
jmt:;' reboot

correct version for random access

(All Information Contained Herein is Proprietary to Digital Research.)

21

0116 0e0f
0118 11Sc0
011b cd050
011e 3c
011£ c2370

0122 0e16
0124 11Sc0
~127 cdf050
012a 3c
0120 c2370

012e 113a0
0131 cdda0
0134 c3000

0137 cde50
013a 227d0
013d 217f0
01410 3600
0142 fe51
0144 c2560

0147 0e10
0149 115c0
014c cd050
014f 3c
0150 cab90
0153 c3000

0156 feS7
0158 c2890

015b 114d0
015e cdda0

mvi
lxi
call
inr
jnz

c,openf iopen default fcb
d,fcb
bdos
a
ready

ierr 255 becomes zero

cannot open file, so create it
mvi c,makef
lxi d,fcb
call bdos
inr
jnz

a
ready

;err 255 becomes zero

cannot create file, directory full
lxi d,nospace
call orint
jmp reboot ;back to ccp

;
.*** ,
· * ,
· * , loop back to ., ready" after each command

*
*

.* * ,

.*** ,
i
ready:

· ,

file is ready for processing

call
snld
lxi
mvi
cpi
jnz

readcom iread next command
ranrec ;store input record#
h,ranovf
m,1O ;c1ear high byte if set
'Q' ;quit?
notq

quit processing, close file
mvi c,closef
1xi d,fcb
call bdos
inr a ;err 255 becomes 0
jz error ;error message, retry
jmp reboot ;back to ccp

.*** ,

.* * ,
;* end of quit command, process write *
.* * ,
.*** ,
notq:

· , not the quit command, random write?
cpi • ~~'
jnz notw

this is a random write, fill buffer until cr
lxi d,datmsg
call print ;data prompt

(All Information Contained Herein is proprietary to Digital Research.)

22

0161 0e7f
0163 21800

0166 c5
0167 e5
0168 cdc20
1016b el
016c cl
0160 fe0d
0l6f ca780

0172 77
0173 23
0174 0d
0175 c2660

0178 3600

0l7a
017c
017£
0182
0183
0166

0189
0l8b

018e
0190
0193
019'6
0197

019a
0l9d
019£

0la2
101a3
0la4
0la6
01a9
0laa

0e22
11Sc0
cd050
b7
c2b90
c3370

fe52
c2b90

0e21
115c0
cd050
b7
c2b90

cdcf0
0e80
21800

7e
23
e67f
ca37fO
c5
e5

r loop:

er loop:

mvi c,l27 ;up to 127 characters
lxi h,buff ;destination
;read next character to buff
puSh b ;save counter
push h ;next destination
call getchr ;character to a
pop h ;restore counter
po~ b irestore next to fill
c?i cr ;end of line?
j z er 1000
not end; store character
mov
inx
der
jnz

m,a
h
c
rloop

;next to fill
;counter goes down
;end of nuffer?

end of read loop, store 00
mvi m, (1

write the record to selected record number
mvi
lxi
call
ora
jnz
jmp

c,writer
d,fcb
bdos
a
error
ready

;error code zero?
; message if not
;for another record

;
.*** ,
. * ,
;* end of write command, process read
. * ,

*
*
*

.***********~*************************************** ,
notw:

not a write command, read record?
CT;> i • R'
jnz error iskip if not

read random record
mvi c,readr
lxi d,fcb
call bdos
ora a ireturn code 00?
jnz error

read was successful, write to console
call crlf inew line
mvi c,128 ;max 128 characters
lxi h,buff ;next to get

wloop:
mov a,m ;next character
inx h ;next to get
ani 7fh ;mask parity
jz ready ;for another command if 00
push b ; save counter
push h ; save next to get

(All Information Contained Herein is Proprietary to Digital Research.)

23

01ab fe20
01ad d4c80
01b0 el
01bl cl
01b2 0d
01b3 c2a20
101b6 c3370

01b9 11590
01bc cdda0
0lbf c3370

0lc2 0e0l
0lc4 cd050
01c7 c9

01c8 0e02
01ca 5f
01cb cd050
0lce c9

0lcf 3e0d
0ldl cdc80
0ld4 3e0a
0ld6 cdc80
0109 c9

01da d5
0ldb cdcf0
01de dl
iZJlCif 0e09
01el cd050
01e4 c9

cpi igraphic?
cnc putchr iskip output if not
pop h
pop b
dcr c ;count=count-l
jnz wloop
jmp ready

;
.******~** ,
. * ,
;* end of read command, all errors end-uo here
• * ,

*
*
*

.*** ,

error:
lxi
call
j mp

d ,er rmsg
print
ready

;
.*** ,
.* * ,
i* utility subroutines for console i/o *
.* * ,
.*** ,
getchr:

i read next console character to a
mvi c,coninp
call bdos
ret

i
putchr:

;write character from a to console
mvi c,conout
mov e,a icharacter to send
call bdos ;send character
ret

cr If:
;send car r iage return line feed
mvi a,cr i car r iage return
call putchr
mvi a,lf iline feed
call putchr
ret

i
print:

.nyoin+- the buffer addressed hv de until $ 't-'~""4'- -- L

push d
call cr If
pop d inew line
mvi c,pstring
call bdos iorint the str ing
ret

readcom:

(All Information Contained Herein is Proprietary to Digital Research.)

24

01e5 116b0
01e8 cdda0
01eb 0e0a
01ed 117ak1
VJlf0 cdVJ50

01f3 21000
01f6 117c0
01£9 la
01fa 13
01fb b7
01fc c8

01fd d63eJ
01£f fe0a
0201 d2130

0204 29
0205 4d
0206 44
02107 29
0208 29
02109 09
020a 85
02tJo 6:[

020c d2£90
(,)20f 24
0210 c3f90

0213 c630
0215 fe61
0217 d8

0218 e65f
021a c9

;read the next command line to the conbuf
lxi d,prompt
call T?rint ; command?
mvi c,rstring
lxi d ,conbuf
call bdos ;read command line
command line is present, scan it
1xi h,0 ;start with 0000
lxi d,con1inicommand line

reaac: 1dax d inext command Character
inx d ito next command position
ora a icannot be end of command
rz
not zero, numeric?
sui • 0 •
cpi 110 icarry if numeric
jnc endrd
add-in next digit
dad h i*2
mov c,l
mov b,h ;bC = value * 2
dad h i*4
dad h i *8
dad b ;*2 + *8 = *10
add 1 ;+digit
mov l,a
jnc readc ifor another char
inr h ;overf1ow
jmp readc ;for another char

endrd:
end of read, restore value in a
adi • 0' i command
coi la • ;trans1ate case?
rc
lower case, mask lower case bits
ani 101$1111b
ret

;
.*** ,
.* * ,
i* string data area for console messages *
.* * ,
.*** ,
badver:

021b 536f79 db Isorry, you need co/m version 2$'
nos,?ace:

023a 4e6f29 db 'no directory spaceS'
da tmsg:

024d 5479710 db 'type data: $'
e r rmsg:

0259 457272 db 'error, try again.$'
prompt:

026b 4e6570 db 'next command? $1

(All Information Contained Herein is Proprietary to Digital Research.)

25

027a 21
027b
027c
01021 =

029c

02bc

.*** ,

.* * ,
;* fixed and variable data area *
. * * ,
.*** ,
conbuf: db con1en ;length of console buffer
consiz: as 1 ;resulting size after read
conlin: ds 32 ;1ength 32 buffer
conlen equ $-consiz

ds 32 ;16 level stack
stack:

end

(All Information Contained Herein is Proprietary to Digital Research.)

26

9. CP /M 2.0 MEMORY ORGANIZA'rION.

Similar to earlier versions, CP/M 2.0 is field-altered to fit
various memory sizes, depending upon the host computer memory
configuration. Typical base addresses for popular memory sizes are
shown in the table below.

Module
CCP
BDOS
BIOS
'rop of Ram

20k
34010H
3C00H
4A00H
4FFFH

24k
4400H
4C00H
5A00H
5FFFH

32k
6400H
6C00H
7A00H
7FFFH

48k
A400H
AC00H
BA00H
BFFFH

64k
E400H
EC00H
FA00H
FFFFH

The distribution disk contains a CP/M 2.0 system configured for a 20k
Intel MOS-800 with standard IBM 8'1 floppy disk drives. The disk
layout is shown below:

Sector
1
2
3
4
5
6
7
is
~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Track 00 Module
(Bootstrap Loader)
3400H CCP + 000H
3480H CCP + 0808
3500H CCP + 100H
3580H CCP + 180H
3600H CCP + 200H
36808 CCP + 280H
370~H CCP + 300H
3780H CCP + 380H
3800H CCP + 400H
3880H CCP + 480H
3900H CCP + 500H
3980H CCP + 580H
3A00H CCP + 6008
3A80H CCP + 680H
3800H CCP + 700H
3B80H CCP + 780H
3C00H BOOS + 000H
3C80H BOOS + 080H
3000H BOOS + 100H
3080H BOOS + 180H
3E00H BOOS + 200H
3E80H BOOS + 280H
3F00H BOOS + 300H
3F80H BOOS + 380H
4000H BOOS + 400H

Track 01 Module
4080H BOOS + 480H
4100H BOOS + 500H
41806 800S + 580H
4200H aDos + 6008
42d0H BOOS + 6808
4300H BOOS + 700H
4380H BOOS + 780H
4400H BOOS + 800H
4480H BOOS + 8808
4500H BDOS + 900H
45808 BOOS + 9808
4600H BDOS + A00H
46808 BOOS + A80H
4700H BOOS + 800H
4780H BOOS + 880H
4800H BDOS + C00H
4880H BOOS + C80H
49008 BOOS + 000H
4980H BOOS + 080H
4A00H BIOS + 000H
4A80H BIOS + 080H
4800H BIOS + 100H
4B80H BIOS + 180H
4C00H BIOS + 200H
4C80H aIOS + 2808
4D00H BIOS + 300H

In particular, note that the CCP is at the same position on the disk,
and occupies the same space as version 1.4. The BOOS portion,
however, occupies one more 256-byte page and the BIOS portion extends
through the remainder of track 01. Thus, the CCP is 800H (2048
decimal) bytes in length, the BOOS is E00H (3584 decimal) bytes in
length, and the BIOS is up to 380H (898 decimal) bytes in length. In
version 2.0, the BIOS portion contains the standard subroutines of
1.4, along with some initialized table space, as described in the
following section.

(All Information Contained Herein is Proprietary to Digital Research.)

27

10. BIOS DIFFERENCES.

'r he CP / M 2. 0 Ba sic I/O S Y stem d iff e r son 1 V s 1 ig h tl yin concept
from its oredecesssors. Two new jump vector entry points are defined,
a new sector translation subroutine is included, and a disk
characteristics table must be defined. The skeletal form of these
changes are found in the program shown below.

1:
2:
3 :
4 :
5 :
6 :
7 :
d:
9: bpb

rpb
maxb

10:
11 :
12 :
13 :
14:
15 :
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
")Q.
JJ.

40:
41 :
42:
43:
44:
45:
46:
47:

;
boot: . ,
1istst:

seldsk:

i
selsec:

sectran:

org
maclio
jmp

4000h
diskdef
boot

listst ;list status
sectran ;sector translate
4

jmp
jmp
disks
large
equ
equ

capacity drive

equ
diskdef
diskdef
dis kde f
disKde f

16*1024 ;bytes per block.
bpb/l28 irecords per block
65535/rpb imax block number
0,1,58,3,bpb,maxb+l,l28,0,2
1,1,58"bpb,maxb+l,l28,O,2
2,0
3,1

ret i nop

xra
ret

a ;nop

;drive number in c
lxi h,0 ;0000 in hI produces select error
mov a,c ;a is disk number 0 ••• ndisks-l
cpi ndisks ;less than ndisks?
rnc ;return with HL = 0000 if not
proper disk number, return dpb element address
mov l,c
dad h ;*2
dad h ;*4
dad h ; *8
dad h ;*16
lxi d,dpbase
dad d ;HL=.dpb
ret

isector number in c
lxi h,sector
mov m,c
ret

;translate sector BC. using table at DE
xchg ;HL = .tran
dad b ;single precision tran

(All Information Contained Herein is Proprietary to Digital Research.)

28

48: dad b
49: mov
50: fill
51 : ret
52:
53: sector: as
54: endef
55: end

again
I,m

botn H

1

if double precision tran
;only low byte necessary here

and L if double precision tran
;HL = ??ss

Referring to the program shown above, lines 3-6 re~resent the
BIOS entry vector of 17 elements (version 1.4 defines only 15 jum?
vector elements). 'rhe last two elements provide access to the
ttLIs'rs'r" (List status) entry point for DESPOOL. The use of this
particular entry point is defined in the DESPOOL documentation, and is
no different tnan the previous 1.4 release. It should be noted that
the 1.4 DESPOOL orogram will not o?erate under version 2.0, but an
update version will be available from Digital Research in the near
fu tur e.

;fhe "SECTRAN" (Sector Number Translate) entry shown in the jump
vector at line 6 provides access to a BIOS-resident sector translation
suor ou tine. °rh is mechanism allows the user to specify the sector skew
factor and translation for a ~articular disk system, and is described
below.

A macro library is shown in the listing ,. called DISKDEF,
included on line 2, and referenced in 12-15. ~lthough it is not
necessary to use the macro liorary, it greatly simplifies the disk
deiinition process. You must have access to the MAC macro assembler,
of course, to use the DISKDEF facility, while the macro library is
included with all CP/M 2.0 distribution disks. (See the CP/M 2.0
Alteration Guide for formulas which you can use to hand-code the
taoles produced by the DISKDEF library).

A BIOS disk definition consists of the following sequence of
macro statements:

£v1ACLIB DISKDEF
·
DISKS n
DISKDEF o , •••
DISKDEF 1 , ...
·
DISKDEF n-l
·
ENDEF

where the MACLI8 statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-l (corresponding to logical drives A
through P). Note that the DISKS and DISKDEF macros generate in-line

(All Information contained Herein is Proprietary to Digital Research.)

29

fixed data tables, and thus must be placed in a non-executable ?ortion
of your BIOS, typically directly following the BIOS jum? vector.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary uninitialized RAM areas which are located above your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where

dn is the logical disk number, " to n-l
fsc is the first physical sector number (0 or 1)
lsc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ots is the track offset to logical track 00
[0] is an ootional 1.4 compatibility flag

1rhe value "dn" is the drive number being defined with this DISKDEF
macro invocation. 'The "fsc" parameter accounts for differing sector
n u m be ring s y stem s, and i sus u all y 0 0 r 1. The· j 1 s c" i s the 1 a s t
n urn b ere d sec tor 0 nat rack . \~ hen l? res e nt, the II s k f .. par am e t e r de fin e s
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
s k f par am e t e r i s 0 mit ted (0 r e qua 1 to 0). The" b 1 S·I par am e t e r
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
m 0 red a t a an 0 t 11 e B lOS - res i 0 e n tram spa c e i s red u c e d • rr he" d k s II
specifies the total disk size in "bls" units. 'I'hat is, if the bls =
2048 and dks = 1000, tnen the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. 'rhe value of 'Idir" is the total number of
oi rectory en tr ies wh ich may exceed 255, if de sired. The II ck s··
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed).
Normally the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is permanently
mounted, then the value of cks is typically 0, since the probability
of cnanging disks without a restart is quite low. The "ofs" value
determines the number of tracks to· skip when this particular drive is
addressed, which can be used to reserve additional operating system

(All Information Contained Herein is proprietary to Digital Research.)

30

space or to simulate several logical drives on a single large capacity
physical drive. Finally, the [0] parameter is included when file
com?atibility is required with versions of 1.4 which have been
modified for higher density disks. 'rhis parameter ensures that only
16K is allocated for each directory record, as was the case for
previous versions. Normally, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i, j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is como.atible with
version 1.4, is defined using the following macro invocations:

DISKS
DISKDEF
DISKDEF
DISKDEF
OISKDEF

ENDEF

4
0,1,26,6,1024,243,64,64,2
1,0
2,0
3,0

with all disKS having the same parameter values of 26 sectors o.er
track (numbered 1 through 26), with 6 sectors skipped between each
access, 1024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
s y stem t r a c k s •

The definitions given in the program shown above (lines 12
through 15) provide access to the largest disks addressable by CP/M
2.0. All disks have identical parameters, except that drives 0 and 2
skip three sectors on every data access, while disks 1 and 3 access
each sector in sequence as the disk revolves (there may, however, be a
transparent hardware skew factor on these drives).

The DISKS macro generates n "disk header blocks," starting at
address DPBASE which is a label generated by the macro. Each disk
header block contains sixteen bytes, and correspond, in sequence, to
each of the defined drives. In the four drive standard system, for
example, the DISKS macro generates a table of the form:

O.i?BASE
DPE0 :
OPEl:
OPE2 :
DPE3 :

EQU
ow
DW
DW
DW

$
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV0,ALV0
XLT0,0000H,0000H,0000H,DIRBUF,OPB0,CSVl,ALVl
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV2,ALV2
XLT0,0000H,0000H,0000H,DIRBUF,DPB0,CSV3,ALV3

where the OPE (disk parameter entry) labels are included for reference
purposes to show the beginning table addresses for each drive 0
through 3. The values contained within the disk parameter header are
described in detail in the CP/M 2.0 Alteration Guide, but basically
address the translation vector for the drive (all reference XLT0,
which is the translation vector for drive 0 in the above example),

(All Information Contained Herein is Proprietary to Digital Research.)

31

followed by three 16-bit "scratch" addresses, followed by the
directory buffer address, disk parameter block address, check vector
address, and allocation vector address. The check and allocation
vector addresses are generated by the ENDEF macro in the ram area
following the BIOS code and tables.

The SELDSK function is extended somewhat in version 2.0. In
particular, the selected disk number is passed to the BIOS in register
C, as before, and the SELDSK subroutine performs the appropriate
software or hardware actions to select the disk. Version 2.0,
however, also requires the SELDSK subroutine to return the address of
the selected disk parameter header (DPE0, DPEl, DPE2, or OPE3, in the
above example) in register HL. If SELDSK returns the value HL =
0000H, then the BDOS assumes the disk does not exist, and prints a
select error mesage at the terminal. program lines 22 through 36 give
a sample CP/M 2.0 SELOSK subroutine, showing only the disk parameter
header address calculation.

The subroutine SECTRAN is also included in version 2.0 which
performs the actual logical to physical sector translation. In
earlier versions of CP/M, the sector translation process was a part of
the BOOS, and set to skip six sectors between each read. Due
differing rotational speeds of various disks, the translation function
has become a ?art of the BIOS in version 2.0. 'rhus, the BOOS sends
sequential sector numbers to SECTRAN, starting at sector number 0.
The SECTRAN subroutine uses the sequential sector number to produce a
translated sector number which is returned to the 8DOS. The BOOS
subsequently sends the translated sector number to SELSEC before the
actual read or write is performed. Note that many controllers have
the capability to record the sector skew on the disk itself, and thus
the rei s not ran s1 a t ion n e c e s sa ry • I nth i s cas e , the .1 s k f" par am e t e r
is omitted in the macro call, and SEC'rRAN simply returns the same
val u e w h i chi t r e c e i v e s . 'r he tab 1 e show n below , for e x amp 1 e , i s
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLT0: DB
DB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,20,26,6,12,18,24,4,10,16,22

If SECTRAN is required to translate a sector, then the following
process takes place. The sector to translate is received in register
pair BC. Only the C register is significant it the sector value does
not exceed 255 (8 = 00 in this case). Register pair DE addresses the
sector translate table for this drive, determined by a orevious call
on SELoSK, corresponding to the first element of a disk parameter
header (XLT0 in the case shown above). The SECTRAN subroutine then
fetches the translated sector number by adding the input sector number
to the base of the translate taole, to get the indexed translate table
address ,(see lines 46, 47, and 48 in the above program). The value at
this location is then returned in register L. Note that if the number
of sectors exceeds 255, the translate table contains l6-bit elements
whose value must be returned in HL.

Following the ENOEF macro call, a number of un initialized data
areas are defined. These data areas need not be a part of the BIOS

(All Information Contained Herein is Proprietary to Digital Research.)

32

which is loaded upon cold start, but must be available between the
3IOS and the ena of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro'might oroduce

4C72 =

4D80 =
0l3C =

BEGDA'r EQU $
(data areas)
ENDOA'r EQU $
DATSIZ EQU $-BEGDAT

which indicates that uninitialized RAM begins at location 4C72H, ends
at 4DB0H-l, and occupies 0i3CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

CP/M 2.0 is also easily adapated to disk subsystems whose sector
size is a multiple of 128 bytes. Information is provided by the BOOS
on sector write operations which eliminates the need for pre-read
operations, thus allowing olocking and deblocking to take place at the
BIOS level.

See the .. CP 1M 2.0 Al te ra t ion Gu ide" fo r addi t ional details
concerning tailoring your CP/M system to your particular hardware.

(All Information Contained Herein is Proprietary to Digital Research.)

33

OPERATION OF
THE CP/M DEBUGGER

01 [U[j~TflL RE~EflR[H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M DYNAMIC ··DEBUGGING TOOL (DDT)

USER'S GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

I

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved~ No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

Section Page

I.
II.

III.
N.

INTRODUCTION •••••••••••••••••••••••••••••••••••••
DIJI' OOMMAN'OO •••••••••••••••••••••••••••••••••••••
1. The A (Assemble) Command •••••••••••••••••••••
2. The D (Display) Command ••••••••••••••••••••••
3. The F (Fill) Command •••••••••••••••••••••••••
4. The G (Go) Command •••••••••••••••••••••••••••
5. The I (Input) Command ••••••••••••••••••••••••
6. The L (List) Command •••••••••••••••••••••••••
7. The M (Move) Command •••••••••••••••••••••••••
8. The R (Read) Command •••••••••••••••••••••••••
9. The S (Set) Command ••••••••••••••••••••••••••
10. The T (Trace) Command ••••••••••••••••••••••••
11. The U (Untrace) Command •••••••••••••••••••• ~.
12. The X (Examine) Command ••••••••••••••••••••••
IMPLEMENTATION NOTES •••••••••••••••••••••••••••••
Al'l EXAMPLE •••••••••••••••••••••••••••••••••••••••

1
3
3
4
4
4
5
6
6
6
7
7
8
8
9
10

CP/M Dynamic Debugging Tool (DDT)

User's Guide

I. Introduction.

The DOT program allows dynamic interactive testing and debugging of
programs generated in the CP/M environment. The debugger is initiated by
typing one of the following commands at the CP/M Console Comrrand level

DDT
DDT filename.HEX
DDT filename.COM

where "filename" is the name of the program to be loaded and tested. In both
cases, the DDT program is brought into lTI3in memory in the place of the Console
Canmand Processor (refer to the CP/M Interface Guide for standard memory
orqanization), and thus resides directly below the Basic Disk Operating System
portion of CP/M. The B[x)s starting crldress, which is located in the oodress
field of the JMP instruction at location 5H, is altered to reflect the reduced
Transient Program Area size.

The second and third forms of the DDT command shown above ~rform the same
actions as the first, except there is a subsequent automatic load of the
srecified HEX or mM file. The action is identical to the sequence of
commands

DDr
Ifilename.HEX or Ifilename.COM
R

where the I and R canmands set up and read the s~cified program to test (see
the explanation of the I and R commands below for exact details).

Upon initiation, om' pr ints a sign-on message in the format

nnK Dor-s VER rn.rn

where nn is the rremory size (which must match the CP/M system being used), s
is the hardware system which is assumed, corresponding to the codes

0 Digital Research standard version
M Ml13 version
I IMSAI standard version
0 Onr on sys terns
S Digital Systems standard version

and m.m is the revision nurrber.

1

Following the sign on rressaqe, Dm' prompts the operator wi th the character
tI_" and waits for input canmands from the console. The operator can type any
of several single character canmands, terminated by a carriage return to
execute the canmand. Each line of input can be line-edi ted using the standard
CP/M controls

rubout
ctl-U
ctl-C

remove the last character typed
remove the entire line, ready for re-typing
system reboot

Any command can be up to 32 characters in lenqth (an automatic carriage return
is inserted as the 33rd character), where the first character determines the
command type

A enter assembly language mnemonics with operands
o display memory in hexadecimal and ASCII
F fill memory with constant data
G begin execution with optional breakpoints
I set up a standard input file control block
L list memory using assembler mnemonics
M move a memory segment from source to destination
R read program for subsequent testing
S substitute memory values
T trace program execution
U untraced program monitoring
X examine and optionally alter the CPU state

The canmand character, in some cases, is followed by zero, one, two, or three
hexadecimal values which are separated by commas or single blank characters.
All DDT numeric output is in hexadecimal form. In all cases, the commands are
not executed until the carriaqe return is typed at the end of the command.

At any [Dint in the debug run, the operator can stop execution of our
usinq either a ctl-C or G0 (jmp to location 0000H), arxt save the current
memory image usinq a SAVE command of the form

SAVE n filename.COM

where n is the number of p3ges (256 byte blocks) to be saved on disk. The
nUITber of blocks can be determined by takinq the hiqh order byte of the top
load ajdress am converting this number to decimal. For example, if the
highest ajdress in the Transient Program Area is 1234H then the nUJTber of
pages is 12H, or 18 in decimal. Thus the operator could tyt=€ a ctl-C during
the debug run, returning to the Console Processor level, followed by

SAVE 18 X.COM

The memory image is saved as X.COM on the diskette, ard can be directly
executed by simply typing the name X. If further testing is required, the
memory image can be recalled by typinq

2

nor X.COM

which reloads p:eviously saved program from loaction l00H through p9.ge 18
(12FFH) • The machine state' is not a part of the COM file, arrl thus the
program must be restarted from the beginning in order to properly test it.

I I. nor CDMMANDS.

The individual commands are given below in some detail. In each case, the
operator must wait for the prompt character (-) before entering the command.
If control is p:lssed to a p:-ogram under test, and the program has not reached
a breakp:>int, control can be returned to nIJr by executing a RST 7 from the
front p:lnel (note that the rubout key should be used instead if the program is
executing a T or U command). In the explanation of each command, the command
letter is srown in rome cases wi th nurrbers separated by canmas, where the
nurrbers are represented by lower case letters. These nurrbers are always
assumed to be in a hexadecimal radix, and from one to four digits in length
(longer numbers will be automatically truncated on the right).

Many of the canmands operate up:>n a "CPU state" which corresponds to the
program mder test. 'llhe CPU state holds the registers of the program being
debugged, and initially contains zeroes for all registers and flags except for
the p:-ogram counter (P) and stack p:>inter (S), \\bich default to l00H. The
program counter is subsequently set to the starting address given in the last
record of a HEX file if a file of this form is loaded (see the I and R
commands) •

1. The A (Assemble) Command. nor allows inline assent>ly language to be
inserted into the current nemory image using the A command which take$ the
form

As

where s is the hexadecimal starting crldress for the inline assent>ly. ODr
prompts the console with the crldress of the next instruction to fill, and
reads the console, looking for assembly language nnemonics (see the Intel 6080
Asserrbly Language Reference Card for a list of rmemonics), followed by
register references and operands in absolut0 hexadecimal form. Each sucessive
load a::ldress is p: inted before reading the console. The A command terminates
when the first empty line is input from the console.

Upon canpletion of assembly language input, the operator can review the
memory segment using the OIJr disassembler (see the L command).

Note that the assembler/disassembler p:>rtion of DIJr can be overlayed by
the transient program being tested, in which case the nor program responds
wi th an error condi tion \\ben the A and L commands are used (refer to Section
IV).

3

2. 'llhe D (Display) Command. The D cormnand allows the operator to view
the contents of memory in hexadecimal and ASCII formats. The forms are

Q,
OS
OS,f

In the first case, memory is displayed from the current display oodress
(initially 100H), and continues for 16 display lines. Each display line takes
the .. fopn, shown . below

." a.~~ t;>b., bb bb bb bb bb.b~ bb bb bb' bb bb bb bb bb bb cccccccccccccccc

where ,~{aaa is the ' di spiay address i.o hexadecimal, and bb represents data
pre,~~o.t inrremory starting at aaaa. The ASGII characters starting at aaaa are
given to theri,.qht (represented by the sequence of c's), \\here non-graphic
charficter~. are'};rinted as a ~riod (.) symbol. Note that both upper and lower
case,cilphabetics are displayed, arldthus will appear as upper case symbols on
a console device' that suppOrts only uwer case. Each display line gives the
values of 16 bytes of data, except that the first line displayed is truncated
so, that t~n~t .line ,begins at an address which is a multiple of 16.

; . The,':s~onq . form' of the Ocanrnand shown above is similar to the first,
except ~hat the display address is first set to address s. The third form
causes the. displaY,tc> continue fran address s through address f. In all
C!~ses,' the dispJ.aY addres,s "15 set to the first address not displayed in this
cOrnrriand, so that a continuing di splay can be accomplished by issuing
successive D commands with no explicit addresses.

Exq~S.st~~ly.long displ'ays can.be aborted by pushing the rubout key.

3. The F JFill) CornrnaI1(j. The F command takes the form

Fs,f ,c

where s .. 1s the' starting address, f is the final address, and c is a
hexadecimal 'Oyteconstant. The effect is as follows: DDr stores the constant
C at address s, increments the value of s and tests against f. If s exceeds f
then the operation terminates, otherwise the operation is repeated. Thus, the
fillcanmand can .be used to set a memory block to a specific constant value.

, 4. ~hE;?"G (Go), Corrunand. P[,ograrn execution is started using the G cornand,
~ith up to two optional breakfX)int addresses. The G command takes one ot the
form·s.

G
Gs
Gs,b

4

Gs,b,c
G,b
G,b,c

The first form starts execution of the program under test at the current value
of the y;:cogram counter in the current machine state, with no breakpoints set
(the only way to regain control in DDT is through a RST 7 execution). The
current y;:cogram counter can be viewed by typing an X or XP ccmnand. The
second form is similar to the first except that the program counter in the
current machine state is set to address s before execution begins. The third
form is the same as the second, except that program execution stops when
address b is encountered (b must be in the area of the program tmder test).
The instruction at location b is not executed when the breakpoint is
encountered. The fourth form is identical to the third, except that two
breakIX>ints are s~cified, one at b and the other at c. Encountering either
breakp:>int causes execution to stop, and both breakp:>ints are subsequently
cleared. The last two forms take the program counter from the current machine
state, and set one and two breakp:>ints, respectively.

Execution continues from the starting address in real-time to the next
breakIX>int. That is, there is no intervention between the starting address
and the break crldress by om. Thus, if the program under test does not reach
a breakpoint, control cannot return to DDT without executing a RST 7
instruction. Upon encountering a breakpoint, DDT stops execution and ty~s

*d

where d is the stop address. The machine state can be examined at this IX>int
using the X (Examine) command. The operator must s~cify breakpoints which
differ from the y;:cogram counter address at the beginning of the G canmand.
Thus, if the current program counter is l234H, then the commands

G,l234
and

G400,400

both produce an imrrediate break{X>int, without executing any instructions
whatsoever.

5. The I (Input) Command. The I command allows the operator to insert a
file name into the default file control block at 5CH (the file control block
created by CP/M for transient {rograms is placed at this location: see the
CP/M Interface Guide). The default FCB can be used by the program under test
as if it hed been passed by the CP/M Console Processor. Note that this file
name is also used by DDT for reading addi tional HEX and COM files. The form
of the I command is

Ifilename
or

5

Ifilename.filetype

If the second form is used, and the filetype is either HEX or COM, then
subsequent R commands can be used to read the pure binary or hex format
machine code (see the R command for further details).

6. The L (List) Command. The L canmand is used to list assembly language
mnaronics in a particular program region. The forms are

L
Ls
Ls,f

The first canmand lists twelve lines of disassembled machine code from the
current list a::ldress. The second form sets the list address to s, and then
lists twelve lines of code. The 'last form lists disassent>led code from s
through address f. In all three cases, the list address is set to the next
unlisted location in preparation for a subsequent L command. Upon
encountering an execution breakp:>int, the list address is set to the current
value of the p:ogram counter (see the G and T commands). Again, long typeouts
can be aborted using the rubout key during the list process.

7. The M (Move) Command. The M command allows block movement of program
or data areas fram one location to another in memory. The form is

Ms,f,d

where s is the start a::ldress of the rove, f is the final address of the nove,
and d is the destination crldress. Data is first noved fram s to d, and both
addresses are incremented. If s exceeds f then the nove operation stops,
otherwise the rove operation is repeated.

8. The R (Read) Command. The R command is used in conjunction with the I
command to read COM and HEX files from the diskette into the transient program
area in p:eparation for the debug run. The forms are

R
Rb

where b is an ~tional bias address which is added to each program or data
address as it is loaded. The load operation must not overwrite any of the
system parameters from 000H through 0FFH (i.e., the first page of memory). If
b is ani tted, then b=0000 is assumed. The R command requires a p:evious I
command, s~cifying the name of a HEX or COM file. The load address for each
record is obtained from each individual HEX record, vthile an assumed load
address of l00H is taken for COM files. Note that any nurrber of R commands
can be issued following the I command to re-read the program under test,

6

assuming the tested program does not destroy the default area at SCH.
Further, any file sf:ecified wi th the filetype "COM'" is assumed to contain
machine code in pure binary form (created with the LOAD or SAVE command), and
all others are assumed to contain machine code in Intel hex format (produced,
for example, with the ASM command).

Recall that the command

DDr filenarne.filetype

which initiates the DD[' program is equivalent to the commands

DDr
-Ifilename.filetype
-R

Whenever the R command is issued, DDT responds with either the error indicator
II?" (file cannot be cpened, or a checksum error occurred in a HEX file), or
with a load message taking the form

NEXT PC
nnnn PWP

where nnnn is the next address following the loaded program, and pppp is the
assumed program counter (100H for COM files, or taken from the last record if
a HEX file is specified).

9. The S (Set) Command.
examined and optionally altered.

Ss

The S command allows memory locations to be
The form of the command is

where s is the hexadecimal starting address for examination and alteration of
memory. DDr responds wi th a numeric prompt , giving the memory location, along
with the data currently held in the memory location. If the operator types a
carriage return, then the data is not altered. If a byte value is typed, then
the value is stored at the lXompted address. In either case, Om' continues to
prompt wi th successive addresses and values lIDtil either a tEriod (.) is typed
by the operator, or an invalid input value is detected.

10. The T (Trace) Command. The T command allows selective tracing of
program execution for 1 to 65535 program steps. The forms are

T
Tn

In the first case, the CPU state is displayed, and the next txograrn step is
executed. The p:-ograrn terminates immediately, wi th the termination address

7

displayed as

*hhhh

where hhhh is the next address to execute. The display address (used in the D
command) is set to the value of Hand L, and the list address (used in the L
command) is set to hhhh. The CPU state at program termination can then be
examined using the X command.

The second form of the T command is similar to the first, except that
execution is traced for n steps (n is a hexadecimal value) before a p::ogram
break{X>int is occurs. A breakJX)int can be forced in the trace rode by typing
a rubout dlaracter. The CPU state is displayed before each program step is
taken in trace rrode. The format of the display is the same as described in
the X canmand.

Note that p:-ogram tracing is discontinued at the interface to CP/M, and
resumes after return from CP/M to the program under test. Thus, CP/M
functions which access I/O devices, such as the diskette drive, run in
real-time, avoiding I/O timing problems. Programs running in trace node
execute approximately 500 times slower than real time since DIJr gets control
after each user instruction is executed. Interrupt processing routines can be
traced, but it must be noted that camnands which use the break"fX)int facility
(G, T, and U) accomplish the break using a RST 7 instruction, which means that
the tested Irogram cannot use this interrupt location. Further, the trace
mode always runs the tested program with interrupts enabled, which may cause
problems if asynchronous interrupts are received during tracing.

Note also that the operator should use the rubout key to get control back
to DIJr dur ing trace, rather than executing a RST 7, in order to ensure that
the trace for the current instruction is completed before interruption.

11. The U (Untrace) Command. The U command is identical to the T command
except that intermediate trogram steps are not displayed. The lI1trace node
allows from 1 to 65535 (0FFFFH) steps to be executed in monitored mode, and is
used p:: incipally to retain control of an executing program while it reaches
steady state condi tions. All conditions of the T command apply to the U
command.

12. The X (Examine) Command. The X command allows selective display and
alteration of the current CPU state for the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

C Carry Flag
Z Zero Flag

(0/1)
(0/1)

8

M Minus Flag (0/l)
E Even Parity Flag (0/l)
I Interdigit Carry (0/l)
A Accumulator (0-FF)
B BC register pair (0-FFFF)
D DE register pair (0-FFFF)
H HL register pair (0-FFFF)
S Stack Pointer (0-FFFF)
P Program Counter (0-FFFF)

In the first case, the CPU register state is displayed in the format

CfZfMfEflf A=bb B=dddd D=dddd H=dddd S=dddd P--dddd inst

where f is a 0 or 1 flag value, bb is a byte value, and dddd is a double byte
quantity corresponding to the register pair. The "instil field contains the
disassembled instruction vtlich occurs at the location addressed by the CPU
state's program counter.

The second form allows display ~nd optional alteration of register values,
where r is one of the registers given above (C, Z, M, E, I, A, B, D, H, S, or
P) • In each case, the flag or register value is first displayed at the
console. The DDT program then accepts input from the console. If a carriage
return is typed, then the flag or register value is not altered. If a value
in the proper range is typed, then the flag or register value is altered.
Note that BC, DE, and HL are displayed as register pairs. Thus, the operator
types the entire register pair when B, C, or the BC pair is altered.

III. IMPLEMENTATION NarES.

The organization of DDT allows certain non-essential portions to be
overlayed in order to gain a larger transient program area for debugging large
programs. The DDI' program consists of two p3.rts: the Dm nucleus and the
assembler/disassembler rrodule. 'rhe DDI' nucleus is loaded over the Console
Command Processor, and, al though loaded wi th the DDT nucleus, the
assembler/disassembler is overlayable unless used to assemble or disassemble.

In particular, the BInS address at location 6H (address field of the JMP
instruction at location 5H) is rrodified by DDT to address the base location of
the DDT nucleus Which, in turn, contains a JMP instruction to the BDOS. Thus,
programs which use this address field to size rremory see the logical end of
memory at the base of the DDT nucleus rather than the base of the BDOS.

_ The asserrbler/disassembler rrodule resides directly below the DDT nucleus
in the transient IX'ogram area. If the A, L, T, or X commands are used during
the debugging process then the DDT program cgain alters the address field pt
6H to include this rrodule, thus further reducing the logical end of memory.
If a program loads beyond the beginning of the assembler/disassembler rrodule,
the A and L canmands are lost (their use produces a "?" in response), and the

9

trace am eli splay (T and X) commands Ii st the It inst II field of the di splay in
hexadecimal, rather than as a decoded instruction.

IV. AN EXAMPLE.

The following example srows an edit, asserrble, and debug for a simple
program which reads a set of data values and determines the largest value in
the set. The largest value is taken fr.OOl the vector, and stored into "IARGE"
at the termination of the {rogram

.i.
.1..

1."
; J

YECT:
LEH
LARGE:

~*B0P -;

LOOP:

NFOllND:

EHD
ruLY..
.lift.
!!.tlf

TEST
~
Ull'.
II
END~

ORG
M\lI
MY}
LXI
MOY
SUB
JNC
NEfti
MOV
INX
nCR
JNZ

OF

iTO HE~<T ELEMENT
if10RE TO SCAN? 3
j FOR A I~ 0 THE R.1 J

SCAN., STORE Ci
A., C ; GET LARGEST VALL1E,
mGE.? ~

.Ji. i REBOOT J

C flak SOU(crl.

'P'~vo.~ .. o.~e((,vt~
C~a(o.det'5 ~Ptc:(
~ 1fICJ5 ~O:fYl ~

DATA

IIJ /. vePl~fs {»{)'(fio1t

(t4u(~.
2.,0.,4} 31 51 6., 1 .,5.1
{-VEeT iLENGTH.2
~ ;LARGEST VALUE ON EXIT)

l00H iSTART OF TRANSIENT AREA
B,LEH ;LEHGTH OF 'lECTOR TO SCAN
C,0 iLARGEST VALUE SO FAR
H,VECT JBASE OF VECTOR
A,M iGET VALUE
C ;LARGER VALUE IN C?
NFOUND ;JUMP IF LARGER VALUE NOT FOUND

LARGEST YALUE~ STORE IT TO C
C.' A
H
B
LOOP

iTO HEXT ELEMENT
iMORE TO SCAN?
;FOR ANOTHER

10

END OF SCAN .. STORE C
MOY AJC ;CET LARGEST VALUE
STA LARGE
JMP e ;REBOOT

TEST DATA
VEeT: DB 2 .. e)4 .. 3,5,6 .. 1 .. 5
LEN
LARGE:

EQU $-VECT ;LENGTH
DS 1 ;LARGEST VALUE ON EXIT
E NIl .
.- tkA ri ~lht

CP/M ASSEMBLER - VER 1.0

0122
002H LISE FACTOR
END OF ASSE~lBLY

TYPE SCAN.PRN - ~

CodeAJJ6~
o 1 0 0 Mo.~~t Cock

(Sou(re :R'cgYG'M

018e 9688,)
~ ORG 100H ;START OF TRANSIENT AREA

;LENGTH OF VECTOR TO SCAN
;LARGEST VALUE SO FAR 0182 0E00

MVI
MVI
LgI

BJ LEN
c) e
H .. VECl .; Bi4SE OF VECTOR 0104 211981

0107 7E LOOP: MCtV A,M lGET VALUE
e18a 91
0189 D20nBl

SUB
.IN C
HE t~
MOV

C ;L}.jRGER VALUE IN C?
NFOUND ;JUMP IF LARGER VALUE NOT FOUND

LA~~GEST VALUE,. STORE IT TO C
C.' A 91ec 4F

aleD 23
018E 05
013F C20701

NFOUND: IN~: H ;TO NEXT ELEMENT

0112 79
0113 322181
0116 C3~.~8~1'

Ccdt/~ hGtlY!j j

~td '--/f;
9119 8200040305VECT:
0008 = <:2\ LEN
e 1 2 1 Value q ~) L A R G E :
a 122 E~u.ok

A}

nCR
JNZ

B ;MORE TO SCAN?
LOOP ;FOR ANOTHER

END OF SCAN~ STORE C
MOV A .. C ,j GET LARGEST VALLIE
STA LARGE
JMP 0 ;REBOOT

TEST DATA
DB 210J4 .. 3 .. 5)611sS
EQU $-VECT ;LENGTH
DS 1 ;LARGEST VALUE ON EXIT
END

It

[lIlT SCAN. HEX
~

161< DDT VER 1. 121
HEXT PC
~~21,Bege

-~
,-ktd-\~
~ -to e~ (.u:k a.t

C0Z0MBE010 A=00 8=0000 D=@000 H=000e 8=0100 P~0000 OllT 7F ?Ce:O

- X P J "- ~)(o.~~ ve~lCO~ \oJ()I£ de~~ ru~
p=ee0Et 100

-; elA.unjt f~ -\0 lOO
-~ J \.ool at VlS \Slut; qg(.tl~
ceZ0MBE010 A=00 B=0000 D=8000 H=0008 8=0100
-L100 -;
8100
81132
0104
0107
e108
0109
010(:
810D
li 1 €IE
~leF
B 112
-L
-~

MVI
MVI
LXI
MOV
SUB
JHC
MOV
I H~:
nCR
JNZ
MOV

B .. 08
C .. e0
H,.e119
A .• M
C 'D r5(4~Y'\~l{,J MarL l~t 0l0D
c .. A Code 111 l(X)~
H $,t't 'Srutct l.tc;;h~ B
0107 d{ CCJc~\~((S O~)
A .• C

0113 STA 012i
0116 dMP e000
l3119 STA:X: B
011A HOP
o 1 1 B I H R B A l rtte w.JJY (.,
o 1 1 C I H~: B Mocl,uV\e Code
~ ! ~ ~ ~ ~ ~ : " 0 1 (V\6k ~ t/(q9m YY\
o 1 20 II C R B e.~ 01 lDta.-MY\ \l b

r 'Pc. ck ... ~d.
P=0100 MVI 8 .. 08)

~ l~4vutbv\
-to tteatk a\ p~~\OO

: ~~! ~~~ ~~ ~~~~ . UJl~ Q ~uP +0 nero') . .
-.!i!1£ e~.Ief 'l~lM!, a~se~~~ \'Ytod~ ~ e~e ~t ~~ ~ OOCO \~ (). ~1 1, Wt.l~
_ _ ~,.... ~lll cuJ6e. fk yO(~YCtM UVtclU ~cs-t -to '(e.-tnVV\.. -\t> 'our l~ \ \b\1
1111b R.:iT ,'. 1.1

. rl \~ eVe.(ex.tw\U\. .
e 11 7~ ltjl~\(CCl1yt'o.$ '(du(~ ,:>-tops a'5~1Je mode] .
- L 11 3 -; u~\ C«{(at t\'3\'(io Wtd M 'R~ '7 IAX\5 'jJVO\'CK(g \yl~
€I 1 1 :3 S T A e 1 2 1 ~ \~ 'Place ~ ::rM f
0116 RST 07,.,..---'

(L

0117 HOP
8118 NOP
01 19 STAX B
e 1 1 A NOP
Et 1 1 B IHR B
B 1 1 (: I H~: B

-:! ~ \.ott at I(~ lst(S

C0Z0M0E010 A=00 8=0080 D=B000 H=0000 8=0100 P=0100 MVI B~08

-L.1 &RCM.~ fY~(a~ ~ OV\L -skf a i~l~(CPu. S1zt4t- I ~ero(~ J i\ ~ecu.~d
C0Z0M0E010 A=00 8=0000 D=8000 H=0000 8=0100 P=0100 MY1 B~08*0102

-.l~ lra:e Ott! ~p ~;\1 (Me oru In g) au:bwaitL ~(€akpb\~'+ -.J
C0Z0M0E0I0 A=00 8=0880 D=0000 H=0000 8=0100 P=0102 MVl C,e0*01~4

-L) 1V«e ajo.;~ (I<~ l~~ C ;~ dl'tA(td ~
C0Z0M0E010 A=00 8=0800 D=8000 H=00eB 3=0100 P=0104 LXI H~0119*0107

- T3 llYCl~ -fVlyt~ ~kys
C0Z0M0E010 A=00 8=08130 II=0000 H=0119 8=0100 P=0107 MO'l A .• M
C0Z0M0E010 A=02 8=0800 D=0000 H=0119 S=0100 P=0108 SUB C
CeZ0MEtE0Il A=02 8=0800 D=8000 H=0119 8=0100 P=0109 JNC 010D*010D

-~~ Dl~Ql~ Mt\nCHj Sav-h~ at t\qW. o.t.do. br(a.~~o,rtt- tA1 jOD~----'
B 119 02 00 94 03 05 06 o 1 ~~~~~~~
012£1 05 1 1 00 22 21 80 02 7E EB 77 1 3 23 EB 08 '78 81
0139 C2 27 01 C3 03 29 00 130 €Ie 00 00 e0 00 €lEt 00 00
0140 0e 0e 00 €Ie 00 00 0.0 e0 e0 00 ee e0 e0 00 00 00

D.~ ~ a is~lggtd : : : ~ 8150 B0 Be 0e e0 00 00 00 a0 e8 00 00 €I0 £10 08 0a 00
0160 00 0e 00 00 e0 Be a0 00 e0 00 €Ie e0 a0 ea 00 80 . ~ '-Ht ,\, · (\4: . Wt 11.' , ••
0170 00 80 00 08 100 0e 00 Be e8 100 00 €I0 €I0 ea 0e 00 'llA 1W p~l'h,).1 of ... e18e 0e 00 00 e8 00 0e B0 00 08 e0 £10 e0 €I0 08 08 B0
0198 00 80 00 08 00 B0 00 0e 00 00 00 80 00 00 130 B0 :v\o~:., 6(Op.~~(: : : : : : :
elA0 0e 8e 00 00 130 0e 00 00 00 00 00 80 0€1 00 08 B0 elwra:(k('s
0180 00 00 00 00 00 130 00 00 138 00 00 80 a0 €lEt 12'0 Be ·
01(;8 0e 0e 00 00 00 8e 00 80 00 00 00 e0 00 ea 00 00 · . . ~

-1:..~ Cuff~ CPLl *1t, ~
C0Z0M0Eell A=02 8=0800 D =0 €I €Ie H=0119 8=0100 P=010D IHg H
-T5

\face s stPS ~y~ CU((~~ CPlA sll -"
C0Z0M0E011 A=02 8=0800 D =8 e 130 H=0119 8=0100 P=010D INX H
ceZ0MBE0Il A=02 B=08B0 D=6000 H=011A 8=0100 P=010E IteR B A~-!u:
C0Z0M0E011 A=82 8=0700 D=0000 H=011A 8=0100 P=€t10F JHZ 0lgkfOi.ct
ceZ0MBE0Il A=02 B=0700 D=0000 H=011A S=01e0 P=0107 MOV AJM
C0Z0M0E011 A=B0 B=0700 II=8000 H=etl1A 8=0100 P=01B8 SUB C*0189
-LIS .

\l~~ l\t~tdlodt, ~-k.s -I \ract \.atl~~{)(.l~
ceZiM0El11 A=00 B=tI70& D=8000 H=011A 8=0100 P=0109 .JNC 010D*0108

-K.; CPu. ~k 0'+ f~&of uS ~
C0Z0M0EIIl A=04 B=8600 I'=0000 H=011B S=0100 p=010e sus c

-§..; eun ?rl>~r~Y'\ -t~ currot-t Vc lAA-nl Cb~~le.tlb~ (lL-t ~-+v~~e)
*= eli 6 \o1et.t~\?o~4 ~t ll6~ } c~d. ~ ~-h~ R~r 1 \~ y)Wl.tLrle. M~
-x
-J C1'u ~k, at ewl tf Prt!Yatfl

C0Z1M9£111 A=00 B=0000 D=0000 H=0121 8=0100 P=0116 RST 07
- ~'P •
~l lY.t1vv..l'ftl. tlvrt C,Wlvt~l t>f~~it\ eDl,lhte(

P=€1l16 100;

-x -J
C 0 Z 1 M 0 Ell 1 A = €I 0 8 = 0121 00 D = a €I ~3 e H = 01 21 S::: ell 0121 p::: ~I i 00 f t1 V I B " ~8 ~

- T 10~ lru to ~~\) ~ ~t~~ ~ ~~"'{ cuJ~ lfS ~ rJ
C0Z1M0El11 A=0121 8::0000 D=Et-.0 H=0121 S-.100 p:::ftel'0 t1VI 8108
caZ1M8El11 A=e0 8=0880 D ,000 P=0102 MVI
ceZlM0El11 A=00 B=083 8=0100 P=0104 LXI
ceZI M8E 1 II ::;=01€'10
C0Z1M0El11
(:020118E011
C0Z0M8E0Il
ceZ0MBE011
C0Z0M0E011 A=02

8=0700
8=0780
8=0700
B=€1680
8:::0680

[1=00et0
D=8000
[1=00130
D=B000
II=a000
II =13 €H30
D=0e00
[1=0000
D=0000
[1=0000

S:::0100
8=0100

H=0119 ::;=0100
H=01 1A !3=€t100
H=011A 8=01013
H=011A 8=0100
H=011A S=011210
H=011A 8=0100
H=011A !:;= 01 00
H=et11B ~3=e100

H =01 1 B ~:;::: ell €'I €I
H=011B :3=€t1(10

P:::0107 i10V
p:=01el8 ~; US
P=0l09 \..IN:
p::eI10D 1 N :
P=010E nCR
P=010F • ..1 NZ
P::0107 MOV
P::0108 SUB
P=0109 JNC
P::0l0D INX
P=0l0E DCR
P=010F \..1"12
P::0107 t10V

C
01121 II
H
8
0107
A J M
C
et10D
H
B
0107

C0Z0MBE011 A=02
CeZ(1MBE011 A=0e
(:021M0El11 A=00
C0Z1M0El11 A=0e
ce21M0Elli A=00
C0Z0M0El11 A=0e
(:020M0El11 A=00
-AIEt9
-~ 'I~ a. l) kt po:tdt A. \~ ~t~a.M. ~~{L bue m~t6 +tt~

tl 1 sa 9 J C 1 e II J ~ wac~l lte ~ (A '1_ • A
-to c. \ta ~ .-t{.te, V l 1'v'Mt 1'\ l\.<tV C ~ \ ~c.(f'. '> e ·

o i 0 c~ j".x.. 10 ~(, 5UA.~ 4lS Ctx.k UJJ.S not t~w.td)
-~ l ~ ror -so~-\: 0.. vevswn of i t arpc"~ Y6 -lb.a+ -Hte .J" t.\ C. ~ 1tI

~ p~ ?"Ojram Ul~ be ~VtCI ~~ ~u~ fA.. J"c.. 1V6'h-~
S A \I E 1 seA N . C (I ~1,., 'Ji.c'Jva.~ Yls~e 5 OV\ · .. L~t ~tl '$0 sa\t.. 1. 1'a.~.

A > DDT SC AN. ((I M ... 'j{t~V+ tur c.... rlt. -tl.t' ~ vee! 'rnelYl6(g I ~ -b Co~ -htl~ +t"b'h ~
; .::: U T. r, T I.J r L' • ,-..
,t ~.' f', .L' U I V s:;;. f'\ l, I!)

NE>'~T PC
0200 e100
- L 1 (rt €.I J Ll~t SO'Mt Lbde
0100 MVI B .. 08
0102 t1 V I C.' €I (1

61 ~34 L>n H., ~I 1 1 9 ?reVl()(,(S Po'+~
.

ffe5!d X,~~ ~ l' lYl
01e7 MOV ~.t1~
e10e SUB l:
0109 ,...I C 010

810C "oy C.lH
BleD INX H
BleE DCR B
810F JHZ 8187
8112 t10\l AJC
-xp
-'}

p= e1eB .I

- T 1 e II T ~l +0 Se~ ~w f>~~ Ve(SLl~
D =@ B 013 H=e~0~

D=88ee H=eeee

OPtlc¢!S 'Dab ~ r.o:l'd-f~ A-b c
M 1,1 1 8 .. 88

P=8182 P1't'1 c.; 8e
C8Z81't8E010
ceZ8MBE010
CeZ81'1BE0I0
ceZ0M8E0I0
ceZ0MBE0I0
ceZ8MBE0Il
cezeMBE0Il
CeZ01'tBE0Il
ceZ0M8E0Il
ceZ0MBE0Il
CeZ0t10E0Il
CeZ0t18E0Il
CIZ8MIE0I0
CIZ8MIE0I0
CIZ0MIE0I0
[:IZ0M8EIIl
-x

A=8e B=0ee8
A=8e B=8SB8
A=08 B=0888 D =0 8 e0 H=eeee P=0104 LXI "-1..8119

-,}

8=0880
""""--____ B = 0 aBe

A=82
A=82

B 888
B=8 88
B=8 B

A=82 8=8702
A=80 B=8782
A=FE B=8782
A=FE 8=0782
A=FE 8=8782
A=FE 8=8682

D=8eee
D=Beee
D=88
D e8
D=Be0B
D =8 e ee
D=008e
D=80ee
D =8 e ee
D =0 0 e0
D=80ee
D =8 e ee
D=aeee

S=0100
S=01e0
S=81ee

H=8119 $=0100
H=011A S=f.!100
H=011A $=010e
H=011A S=01ee
H=011A $=0100
H=0i 1A :3=01 ee
H=011A S=01ae
H=011B $=0100
H=011B $=0100

P=11107 P10\l A.I ,..

p=a108 SUB
,..,
'oJ

P=0189 JC BleD
p=81ec 1'10\1 C.A
P=010D IN>: H
p=01eE DCR B
P=018F \H~Z 018?
p=~le7 MOY A.I t1
p=018a SUB c
p=81e9 JC BleD
p=81eD INX H
P=818E DCR B
P=818F JNZ 8187.0187

~fbiarl ofit,r lb~
CIZ0MBEIIl A=FE B~e6e2 D=0eee H=0118 8=0108 P=0107 ~OY AJI'I
- G.I 1 08 el 12ltVt -tt11M CUtvl~t 'Pc. aVlJ ~eAkpo~.,n at 1000H
*0108
-K i

CIZ0M8EIIl
-T
-J

CIZ8M8E1Il
-T
-rl

A=84

A=84

8=8682 D=8000

'i)L~lt ~ fO(
8=8682 D=8e0e

H=011B s=e100 P=8108

li jzw G9d~
H=01 iB S=01e0 p=818a

SUB C

sus C*0189

CBZ8MBE8Il A=82 8=8682 D=80ee H=el1B s=e100 P=8189 JC 018D*018C
-x -,/

ceZ0M8E0Il A=82 8=86B2 D=8000 H=011B S=0100 P=810C MOY CIA

-GJ t<~ -\0 CJn\pleh~
*0116
-::..~

ceZ1MBEIIl A=83 B=8e83 D=6008 H=0121 $=0100 P=0116 RST 87

-llU., \ ook cd -t\Ae \A1l1At cf 1\ LAeb€ II
8 1 21 e 3" WVcK'~ \b.ltll-l

/l:l

e122 Et0;

0123 22J

0124 21.1

0125 Be...,

€I 1 26 B 2 J / ~""d cHk s c,/VIYV\O.vJ.

0127 7E •
-~

-L100 -;
0100 MVI B .. 08
0102 MYI c .. ee
0104 LXI H .. e119
0107 MOV A.I M
0108 SUB C
€tles JC 0len
alec MOV C .. A
e 10I(I NX H
010E DCR B
B10F JHZ 0107
8112 MOV A., (: \2evUw 1k C exit -L
-J
0113 STA 8121
e 116 RST 87
011 7 NOP
e 118 HOP
€I 1 19 STAX B
011 A HOP
011 B INR B
01 1 (: I N~: B
011 II DCR B
Ell1 E MVI B J e 1
012£1 DCR B
- ~,P
-J

P=0116 10e Qeset ~t f'e
-J

-1.; S\~lt ~ I tlvtd ~d,t dak Valu-iS
ceZ1M0EI11 A=03 8=0003 D =0 a 00 H=€I121
-i -;
C0Z1M0E111 A=03 8=0803 D=0000 H=0121
-T r CtJLl.r\+ $e.t eJ- It -J ~lo.t~ set
CBZIMBEIIl A=03 8=0800 D=0000 H=0121

8=010@ P=0100

S=0100 P=0102

8=0100 P=0104
_. T

r ~ adM~ tf dtda ~t -~

ce21 M0E 1 I I A=03 8:::0800 I'=B000 H=0119 8=0100 P=€I107

"

MVI B .. 08*0102

M'VI C.I 00* 0 104

LXI H .. 0119*0197

MOV A.I M*8108

-T
-J

c:eZ1M0EIIl
-T -J

CeZ0MF.tE0Il
-T -;
C:0Z0M0EfJll
-T
-J

C0Z0M0E0Il
-T -J
c:eZ&MBE011
-T
-J

CeZ0M0E011
-T -;

c:eZ0M8Eell
_oT
-J

CeZ0MBE0Il
-T

-oJ
C1Z0MIE010
-T
-~

'~l';t Aa-k ~ ~YO~kt ~ A
A=82 B=0aee D=0000 H=0119 8=0100 p=010e SUB

A=02 B=88ee II=0000 H=@119 8=0100 P=0109 JC

A=02 B=eaee D=00e8 H=0119 8=0100 P=010C MOV

r.fw J.~ ~ ~td ~ c: "'fd-lj
A=€t2 8=0882 D=00e8 H=0119 8=e10e P=f110D I HX

A=02 8=0882 II=0008 H=011A 8=0100 P=010E nCR

A=e2 8=0782 D =8 e e8 H=311A 8=0100 P=010F J~~Z

A=02 9=0782 D=00e0 H=01iA S=0100 P=8107 MOV

r St£iJ'Nl dot.. l~ \0, t>u." kt -It, A
A=€t0 8=0702 D=8000 H=011A S=0100 P=0108 SUB

r Sc4fyAa d.~(78S da:k.. \la,((d. wk,Ck w~s {~lt(//{
A=FE B=0782 D=8000 H=011A S=0100 P=0109 JC

C*0189

010D*018C

C.' (:Pfl010D

H*018E

B*018F

0107*0107

CIZ0MIE010 A=FE B=0782 D=B008 H=011A 8=0100 P=810D INX H*01BE
-L100
-,}

0100
0102
0104
8107
0198
e109
01ec
fi 1 9 rl
010E
010F
ell 12
-Alet8
-oJ

0108

e 109i

M \I I
MVI
LXI
MOV
SUB
JC
MOV
I N)C:
DCR
\-1 HZ
MOV

CMF' c:

B .. 08
clee
H .. 0119

~ .. M~ .. -1tA~ ckoJd ~i~l k~ fA eMP so~ Y~~~f A
~ .~ : D tAkM(d \t\6t lot dRJro9td.
H
B
0107
A .• C

J

-ElL,; s\llp WT t- 5NC

17

SAVE 1 SCAN. COM,)

A)DDT SCAN. COM
------~

16K DDT VER 1. 0
NEXT PC
0200 910a

-~-
P=0100~

- .h..U..§.i

0116 RST a7
0117 HOP
0118 HOP
0119 STA>C: B
OllA HOP

look- a.t c«it +0 ~ "If 1+ VJ(.S ?~D\l~ Loa&.ed
Cto~~ ~~O((t Ct\o~\ ua~ YoJoAA)

- (~ll\ofM1)

- G., 1. 1 6 ~UV\ ~ ~ \O()\..l +0 (t~vk'h6~
~

*0116

-ll~ lcx>~ Qt Cc.(~ (OLtJek! b\'D~
Ci~

-2i. i look a.t (fu. ~t.
C1ZIMaEl11 A=06 B=0ee6 D=8000 H=0121 8=0100 P=8116 RST 07

-ill.!; loo~ at ~I la(j!- 0 .,. it- afPq{s +0 k Csrrea:
£11 21 e 6

J

(1122 00 J

0123 22 .;

ED S CA N. A 8M
;

lt~~

NFOUHD

NFOLIHII

jlARGER

iLARGER

; JUMP IF

j \.1 U NP 1 F

1'1

VALUE IN C?

VALLIE I N C?

lA~~GER VALUE

LARGEF~ VALUE

NOT FOUND

NOT FOUND

AS M ~;C AN. AA~~- ~l-a.~tA!VAf ~ ~lech~ 5CJUJlct ~rOtt'\ dl4- Jr

CP/M ASSEMBLER - VER 1. 0 ~~:a:l~ tSekcf.o; IN) 'P/1~th(')
0122
0€12H USE FACTOR
£NII OF ASSEMBL'y'

i6V 1IDT VER 1. (1

HE;x:T PC
0121 €l0(10

-Ll16;

0liE; dNP 0~300

£1119 STA~: 8
011A NOP
0118 INR 8
_. (y~)

-GI00, i 16,., Go ~ ~~;~V;\~ Wl~ 'bv(~pOt.,\- ~ elACi
* 13 1 1 6 Iov {p.. ~ Pbl~ r~~«l

:::: 1~2C:~E~~7~:~~
0130 (2 27 01 C3 03 29 80 00 08 00 00
0140 a0 80 00 00 00 0e e0 00 00 00 B0

EB
€I (1

00

08 78
00 0£1
00 130

B1 II !

00 0e ..

IF,., 00

!.tl. IL ~: .
:>

OPERATION OF
THE CP/M ASSEMBLER I

DI 1J~[j~Tffl RE~EffR[1-I
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M ASSEMBLER (ASM)

USER'S GUIDE

COPYRIGHT (c) 1976, 1978

DIGITAL RESEARCH

Copyright (c) 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior
written permission of Digital Research, Post Office Box 579,
Pacific Grove, California 93950.

Disclaimer

Digital Research makes no representations ·or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

Table of Contents

Section

1.
2.
3.

4.

5.

6.
7.

.
~ ro~ ••••••••••••••••••••.••••••••••••••••
rolMIR:; 'I'Im CPE.RAN'D ••••••••••••••••••••••••••••••••
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

Labels •••••••••••••••••••••••••••••••••••••••
Numeric Constants ••••••••••••••••••••••••••••
Reserved Words •••••••••••••••••••••••••••••••
String Constants •••••••••••••••••••••••••••••
Arithmetic and Logical Operators •••••••••••••
Precedence of Operators ••••••••••••••••••••••

ASSEMBLER DIRECTIVES •••••••••••••••••••••••••••••••
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

The ORG Directive ••••••••••••••••••••••••••••
The END Directive ••••••••••••••••••••••••••••
The EQU Directive ••••••••••••••••••••••••••••
The SET Directive ••••••••••••••••••••••••••••
The IF and ENDIF Directives ••••••••••••••••••
The DB Directive •••••••••••••••••••••••••••••
The OW Directive •••••••••••••••••••••••••••••

OPERATION OODES ••••••••••••••••••••••••••••••••••••
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.

Jumps, Calls, and Returns ••••••••••••••••••••
Immediate Operand Instructions •••••••••••••••
Increment and Decrement Instructions •••••••••
Data Movement Instructions •••••••••••••••••••
Arithmetic Logic Unit Operations •••••••••••••
Control Instructions •••••••••••••••••••••••••

ERROR MESSAGES •••••••••••••••••••••••••••••••••••••
A SAMPLE SESSION •••••••••••••••••••••••••••••••••••

Page

1
2
4
4
4
5
6
6
7
8
8
9
9

10
10
11
12
12
13
14
14
14
15
16
16
17

CP/M Assembler User's Guide

1. INrROa.c:rICN.

The CP/M asserrt>ler reads asser£t)ly language source files fran the diskette,
and ~oduces 8080 machine language in Intel hex format. The CP/M asserrbler is
initiated by typing

A9-1 filename
or

ASM filename.parms

In both cases, the asserrnler aSSLJneS there is a file on the di skette wi th the
name

f il enarre .ASM

which contains an 8080 assembly language source file. The first and second
forms srown above differ only in that the second form allows p:lrameters to be
passed to the assenbler to control oource file access and hex and ~ int file
destinations.

In either case, the CP/M assembler loads, and prints the message

CP/M ASSE1-1BLEH VEH n. n

where n.n is the current version nurrber. In the case of the first command,
the assembler reads the oource file wi tn assumed file typ= "ASM" and creates
two output files

filename.HEX
and

filenarre.PRN

the "HEX" file contains the machine code corresp:>nding to the original program
in Intel hex format, arrl the "PRN" file contains an annotated listing showing
generated machine code, error flags, and source lines. If errors occur during
translation, they will be listed in the PRN file as \Yell as at the console

The second canmand form can be used to redirect input and output files
fran their defaults. In this case, the "parms" -pJrtion of the command is a
three letter group which specifies the orlgln of the source file, the
destination of the hex file, am the destination of the pr int file. The form
is

filenarne.plp2p3

where pI, p2, and p3 are single letters

pI: A,B, ••• , Y designates the disk name which contains

I

the source file
p2: A,B, ••• , Y designates the disk name which will re-

ceive the hex file
Z skips the generation of the hex file

p3: A,B, ••• , Y designates the disk name which will re-
ceive the print file

X places the listing at the console
Z skips generation of the print file

Thus, the canmand

AEM X.AM.

indicates that the source file (X.ASM) is to be taken from disk A, and that
the hex (X.HEX) and p:-int (X.PRN) files are to be created also on disk A.
This foml of the canrnand is implied if the assembler is run from di sk A. That
is, given that the operator is currently addressing disk A, the above command
is equivalent to

AEM X

The canmand

AEM X.ABX

indicates that the source file is to be taken from disk A, the hex file is
placed on disk B, and the listing file is to be sent to the console. The
command

ASM X.BZZ

takes the source file from disk S, and skips the generation of the hex and
pr int files (this canrnand is useful for fast execution of the assembler to
check p:-ogram syntax).

The source program format is compatible with both the Intel 8080 assembler
(macros are not currently implemented in the CP/M assembler, however), as well
as the Processor Technology Software Package #1 assembler. That is, the CP/M
assembler accepts source programs written in either format. There are certain
extensions in the CP/M assembler which rrake it somewhat easier to use. rr'hese
extensions are described below.

2. PRCX;RAM FORMAT.

An assembly language program acceptable as input to the assembler consists
of a sEquence of statements of the form

line# label operation operand ; comment

where any or all of the fields may be present in a particular instance. Each

2

~embly language statement is terminated with a carriage return and line feed
(the line feed is inserted automatically by the ED program), or with the
character II! II which is a treated as an end-of-line by the asserrbler (thus,
multiple assembly language statements can be written on the same physical line
if separated by exclaim symbols).

The line# is an optional decimal integer value representing the source
program line number, which is allowed on any source line to maintain
compatibili ty wi th the Processor Technology format. In general, these line
nUITbers will be inserted if a line-oriented editor is used to construct the
original program, and thus ASM ignores this field if present.

The label field takes the form

identifier
or

identifier:

and is optional, except where noted in particular statement tYI=es. The
identifier is a sequence of alphanumeric characters (alphabetics and numbers),
where the first character is alphabetic. Identifiers can be freely used by
the prcx:lrammer to label elements such as program steps and assembler
directives, but cannot exceed 16 characters in length. All characters are
significant in an identifier, except for the embedded dollar symbol ($) which
can be used to improve readabili ty of the name. Further, all lower case
alphabetics become are treated as if they were uwer case. Note that the II: II

following the identifier in a label is optional (to maintain compatibility
between Intel and Processor Technology). Thus, the following are all valid
instances of labels

x
x:
XIY2

xy
yxl:
Xlx2

long $ name
longer$named$data:
x234$5678$90l2$3456:

The operation field contains either an assembler directive, or pseudo
operation, or an 8080 machine operation code. The pseudo operations and
machine operation codes are described below.

'Ilhe operand field of the statement, in general, contains an expression
formed out of constants and labels, along with arithmetic and logical
operations on these elements. Again, the complete details of properly formed
expressions are given below.

The canment field contains arbi trary characters following the "; II symbol
until the next real or logical end-of-line. Irhese characters are read,
listed, and otherwise ignored by the assembler. In order to maintain
compatability with the Processor Technoloqy assembler, the CP/M assembler also
treat statements which begin wi th a 11* II in column one as comment statements,
which are listed and ignored in the assembly process. Note that the Processor

3

Technology assembler has the side effect in its operation of ignoring the
characters after the operand field has been scanned. This causes an ambiguous
situation when attempting to be compatible with Intel's language, since
arbitrary expressions are allowed in this case. Hence, programs which use
this side effect to introduce comments, must be edited to place a ";" before
these fields in order to assemble correctly.

The assembly language program is formulated as a sequence of statements of
the above form, terminated optionally by an END statement. All statements
following the END are ignored by the assembler.

3. FORMING THE OPERAND.

In order to completely describe the operation codes and pseudo operations,
it is necessary to first present the form of the operand field, since it is
used in nearly all statements. Expressions in the operand field consist of
simple operands (labels, constants, and reserved words), combined in properly
formed subexpressions by arithmetic and logical operators. The expression
computation is carried out by the assembler as the assembly proceeds. Each
expression must produce a l6-bit value during the assembly. Further, the
nurrber of significant digi ts in the result must not exceed the intended use.
'rhat is, if an expression is to be used in a byte nove irmnediate instruction,
then the rrost significant 8 bits of the expression must be zero. 'Ihe
restrictions on the expression significance is given with the individual
instructions.

3.1. Labels.

As discussed above, a label is an identifier which occurs on a particular
statement. In general, the label is given a value determined by the type of
statement which it precedes. If the label occurs on a statement which
generates machine code or reserves memory space (e.g, a MOV instruction, or a
DS pseudo operation), then the label is given the value of the program address
which it labels. If the label precedes an EQU or SE'r, then the label is given
the value which results from evaluating the operand field. Except for the SET
statement, an identifier can label only one statement.

Wnen a label appears in the operand field, its value is substituted by the
asserrbler. This value can then be combined wi th other operands and operators
to form the operand field for a particular instruction.

3.2. Numeric Constants.

A numeric constant is a l6-bit value in one of several bases. 'rhe base,
called the radix of the constant, is denoted by a trailing radix indicator.
The radix indicators are

8 binary constant (base 2)
o octal constant (base 8)

4

Q octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q is an alternate radix indicator for octal nurrbers since the letter 0 is
easily confused wi th the digi t 0. Any numeric constant which does not
terminate with a radix indicator is assumed to be a decimal constant.

A constant is thus canJX)sed as a sequence of digits, followed by an
optional radix indicator, \\here the digi ts are in the appropr iate range for
the radix. That is binary constants must be com~sed of 0 and 1 digits, octal
constants can contain digi ts in the range 0 - 7, while decimal constants
contain decimal digits. Hexadecimal constants contain decimal digits as well
as hexadecimal digi ts A (10D), B (lID), C (12D), D (13D), E (140), and F
(150) • Note that the leading digi t of a hexadecimal constant must be a
decimal digi t in order to avoid confusing a hexadecimal constant with an
identifier (a leading 0 will always suffice). A constant comrosed in this
manner must evaluate to a binary number which can be contained within a l6-bit
counter, otherwise it is truncated on the right by the assembler. Similar to
identifiers, imbedded .. $" are allowed wi thin constants to improve their
readabili ty. Finally, the radix indicator is translated to upper case if a
lower case letter is encountered. The following are all valid instances of
numeric constants

1234
1234H
33770

12340
0FFEH
0fe3h

3.3. Reserved Words.

11008
33770
l234d

1111$0000$1111$0000B
33$77$22Q
0ffffh

There are several reserved character sequences which have predefined
meanings in the operand field of a statement. The names of 8080 registers are
given below, which, when encountered, produce the value shown to the right

A 7
8 0
C 1
0 2
E 3
H 4
L 5
M 6
SP 6
PSW 6

(again, lower case names have the same values as their upper case
equivalents). Machine instructions can also be used in the operand field, and
evaluate to their internal codes. In the case of instructions which require
operands, where the sp=cific operand becomes a p3.rt of the binary bi t rettern

5

oF- -the instruction (e.g , IDV A,B), the value of the instruction (in this case
MOV) is the bit pattern of the instruction with zeroes in the optional fields
(e.g, IDV produces 40H).

When the symbol U$" occurs in the operand field (not irrbedded within
identifiers and numeric constants) its value becomes the address of the next
instruction to generate, not including the instruction contained withing the
current logical line.

3.4. String Constants.

String constants represent sequences of ASCII characters, and are
represented by enclosing the characters wi thin apostrophe symbols ('). All
strings must be fully contained within the current physical line (thus
allowing "!" symbols wi thin str ings), and must not exceed 64 characters in
length. The apostrophe character itself can be included wi thin a str ing by
representing it as a double apostrophe (the two keystrokes "), which becomes
a single apostrophe vtlen read by the assembler. In rrost cases, the string
length is restricted to either one or two dlaracters (the DB pseudo operation
is an exception), in vtlich case the str ing becomes an 8 or 16 bit value,
respectively. Two character strings become a l6-bit constant, with the second
character as the low order byte, and the first character as the high order
byte.

The value of a character is its corresponding ASCII code. There is no
case translation within strings, and thus both upper and lower case characters
can be represented. Note however, that only graphic (printing) ASCII
characters are allowed within strings. Valid strings are

c
a , , ' .. '

'Walla Walla Wash. '
'She said ' 'Hello" to me. '
'I said "Hello" to her. '

3.5. Arithmetic and Logical Operators.

The cperands described above can be combined in normal algebraic notation
using any canbination of properly formed operands, operators, and
parenthesized expressions. The operators recognized in the operand field are

a + b
a - b

+b
-b

a * b
a / b
a twDD b
Nor b

unsigned arithmetic sum of a and b
unsigned arithmetic difference between a and b
unary plus (produces b)
unary minus (identical to 0 - b)
unsigned magnitude multiplication of a and b
unsigned magnitude division of a by b
remainder after a / b
logical inverse of b (all 0's become l's, l's
become 0's), vtlere b is considered a 16-bit value

6

a AND b
a OR b
a XORb
a SHL b

a SHR b

bit-by-bit logical and of a and b
bit-by-bit logical or of a and b
bit-by-bit logicl exclusive or of a and b
the value which results from shifting a to the
left by an amount b, with zero fill
the value which results from shifting a to the
right by an amount b, with zero fill

In each case, a and b represent simple operands (labels, numeric
constants, reserved words, and one or two character strings), or fully
enclosed parenthesized subexpressions such as

10+20 l0h+37Q Ll /3 (L2+4) SHR 3
(' a' and 5fh) + ' 0' ('B' +B) OR (PSW+M)
(l+(2+c}) shr (A-(B+l})

Note that all canputations are :p=rformed at assembly time as 16-bi t tmsigned
operations. Thus, -1 is canputed as 0-1 which results in the value 0ffffh
(i.e., alII's). The resulting expression must fit the operation code in
which it is used. If, for example, the expression is used in a ADI (add
immediate) instruction, then the high order eight bits of the expression must
be zero. As a result, the operation "ADI -111 produces an error message (-1
becomes 0ffffh \\hich cannot be represented as an 8 bit value), while "ADI (-l)
AND 0FFH" is accepted by the assembler since the "AND" cperation zeroes the
high order bits of the expression.

3.6. Precedence of Operators.

As a convenience to the programmer, ASM assumes that operators have a
relative precedence of application which allows the programmer to write
expressions wi thout nested levels of parentheses. The r€sulting expression
has assumed parentheses \\hich are defined by the relative precedence. The
order of application of operators in unparenthesize expressions is listed
b~low. Operators listed first have highest precedence (they are applied first
in an rnparenthesized expression), mile operators Ii sted last have lowest
precedence. Operators listed on the same line have equal precedence, and are
applied from left to right as they are encountered in an expression

* / MOD SHL SHR
- +
Nor
AND

OR XOR

Thus, the expressions shown to the left below are interpreted by the assembler
as the fully parenthesize expressions shown to the right below

a * b + C

a + b * c
a M)O b * c SHL d

7

(a * b) + c
a + (b * c)
{(a MOD b) * c) SHL d

a OR b AND Nor c + d SHL e a OR (b AND (NO[' (c + (d SHL e))))

Balanced parenthesized subexpressions can always be used to override the
assumed P3rentheses, and thus the last expression above could be rewritten to
force application of operators in a different order as

(a OR b) AND (Nor c) + d SHL e

resulting in the assumed parentheses

(a OR b) AND ((Nor c) + (d SHL e))

Note that an Lnparenthesized expression is well-formed only if the expression
which results from inserting the assumed parentheses is well-formed.

4. ASSEMBLER DIRECI'IVES.

Assembler directives are used to set labels to specific values during the
assrrbl y, perform condi tional assembly, define storage areas, am sp:=cify
starting addresses in the program. Each assembler directive is denoted by a
"pseudo operation" which appears in the operation field of the line. The
acceptable pseudo operations are

OR;
END
EQU
SEr
IF
ENDIF
DB
OW
113

set the program or data origin
end program, optional start address
numeric "equate"
numeric "setl'
begin conditional assembly
end of conditional assembly
define data bytes
define data words
define data storage area

The individual pseudo operations are detailed below

4.1. The ORG directive.

The ORG statement takes the form

label ORG expression

where "label" is an optional prograTt label, and expression is a 16-bit
expression, consisting of operands which are defined previous to the ORG
statement. The assembler begins rrachine code generation at the location
specified in the expression. There can be any number of ORG statements within
a particular program, and there are no checks to ensure that the programmer is
not defining overlapping m=mory areas. Note that Trost programs written for
the CP/M system begin with an ORG statement of the form

OR; 100H

8

which causes machine code generation to begin at the base of the CP/M
transient {Xogram area. If a label is specified in the ORG statement, then
the label is given the value of the expression (this label can then be used in
the operand field of other statements to represent this expression).

4.2. The END directive.

The END statement is optional in an assembly language program, but if it
is present it must be the last statement (all subsequent statements are
ignored in the assembly). The two forms of the END directive are

label
label

END
END expression

where the label is again optional. If the first form is used, the assembly
process stops, and the default starting address of the program is taken as
0000. Otherwise, the expression is evaluated, and becomes the program
starting address (this starting address is included in the last record of the
Intel formatted machine code "hex" file which results from the assembly).
Thus, most CP/M assembly language program~ end with the statement

END 100H

resulting in the default starting address of 100H (beginning of the transient
program area) •

4.3. The EQU directive.

The EOO (equate) statement is used to set up synonyms for particular
numeric values. the form is

label EQU expression

where the label must be {Xesent, and must not label any other statement. 'rhe
assembler evaluates the expression, and assigns this value to the identifier
given in the label field. The identifier is usually a name which describes
the value in a rrore human-oriented manner. Further, this name is used
throughout the program to Ijparameterize l' certain functions. Suppose for
example, that data received from a TeletYre appears on a p3rticular input
port, and data is sent to the Teletype through the next output r;x:>rt in
sequence. The series of equate statements could be used to define these p:>rts
for a particular hardware environment

TIYBASE
TIYIN
TTYour

EQU 10H iBASE IDRT NUMBER FUR TTY
EQU TrYBASE iTI'Y ffiTA IN
EQU TrYBASE+l iTI'Y ffiTA our

At a later fX>int in the program, the statements which access the 'l'eletype
could appear as

9

IN TrY IN ; READ TrY mTA TO REG-A ...
our TTYour ;WRITE mTA 'ID 'ITY FROM REG-A

making the program rrore readable than if the absolute i/o p:>rts had been
used. Further, if the hardware environment is redefined to start the Teletype
communications p:>rts at 7FH instead of 10H, the first statement need only be
changed to

'ITYBASE EQU 7FH ;BASE FORI' NUMBER FOR TrY

and the program can be reassembled without changing any other statements.

4.4. The SE'I' Directive.

'rhe SET statement is similar to the EQU, taking the form

label SET expression

except that the label can occur on other SET statements wi thin the program.
'rhe expression is evaluated and becomes the current value associated with the
label. Thus, the EQU statement defines a label with a single value, While the
SET statement defines a value Which is valid from the current SET statement to
the p:>int where the label occurs on the next SET statement. '!he use of the
SET is similar to the EQU statement, but is used rrost often in controlling
conditional assembly.

4.5. The IF and ENDIF directives.

The IF and ENDIF statements define a range of assembly language statements
which are to be included or excluded during the assembly process. The form is

IF expression
statement#l
statement#2

•••
statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression
following the IF (all operands in the expression must be defined ahead of the
IF statement)" If the expression evaluates to a non-zero value, then
statement#1 through statement#n are assembled; if the expression evaluates to
zero, then the statements are listed but not assembled. Conditional assembly
is often used to write a single "generic" program which includes a nmber of
possible run-time environments, wi th only a few sp=cific fX)rtions of the
program selected for any particular assembly. The following program segments
for example, might be part of a troqram which communicates wi th either a
Te1ety~ or a CRr console (but not both)' by selecting a p3.rticular value for
TTY before the assembly begins

10

-mUE mU 0FFFFH
FALSE EQU Nor TR.JE

TIY EQU TRJE

TIYBASE EQU 10H
CRrBASE mU 20H

IF 'ITY
mNIN EOU TIYBASE
mNCXJI' EQU 'ITIBASE+l

ENDIF

IF Nor TIY
mNIN EQU CRrBASE
CONCXJr EQU CRI'BASE+ 1

ENDIF
•••
IN OONIN ...
our OONour

iDEFlNE VALUE OF TIDE
iDEFlNE VALUE OF FALSE

iTRUE IF TTY, FALSE IF CRT

iBASE OF TTY I/O IDRTS
i BASE OF CRT I/O roRI'S
iASSEMBLE RELATIVE 1'0 'ITYBASE
iCONSOLE INPUI'
i CONSOLE ourPUI'

i ASSEMBLE RElATIVE 1'0 CRl'BASE
iCONSOLE INPUI' (
iCONSOLE Gurpur

i READ mNSOLE D\TA

iwlUTE OONSOLE D\TA

In this case, the {rogram would asserrble for an environment wnere a Teletype
is connected, based at {nrt 10H. The statement defining TTY could be changed
to

mu FALSE

and, in this case, the program would assemble for a CRT based at port 20H.

4.6. The DB Directive.

The DB directive allows the programmer to define initialize storage areas
in single precision (byte) format. The statement form is

label DB e#l, e#2, ••• , e#n

Yilere e#l through e#n are either expressions which evaluate to 8-bi t values
(the high order eight bi ts must be zero), or are ASCII strings of length no
greater than 64 characters. There is no practical restriction on the nurrber
of expressions included on a single source line. The expressions are
evaluated and placed sequentially into the ITIc3.chine code file following the
last program address generated by the assembler. String characters are
similarly placed into memory starting with the first character and ending with
the last character. Strings of length greater than two characters cannot be
used as operands in more complicated expressions (i.e., they must stand alone
between the canmas). Note that ASCII characters are always placed in memory
with the parity bit reset (0). Further, recall that there is no translation
fran lower to ufPer case wi thin strings. The optional label can be used to
reference the data area throughout the remainder of the program. Examples of

11

valid DB statements are

data: DB
DB

signon: DB
DB

4.7. The DW Directive.

0,1,2,3,4,5
data and 0ffh,5,377Q,I+2+3+4
'please type your name',cr,lf,0
'AB' SHR 8, 'C', 'DE' AND 7FH

The DW statement is similar to. the DB statement except double precision
(two byte) words of storage are initialized. The form is

label DW e#l, e#2, ••• , e#n

where e#l through e#n are expressions which evaluate to 16-bit results. Note
that ASCI I strings of length one or two characters are allowed, but str ings
longer than two characters disallowed. In all cases, the data storage is
consistent wi th the 8080 processor: the least significant byte of the
expression is stored forst in rremory, followed by the IlOst significant byte.
Examples are

doub: DW 0ffefh,doub+4,signon-$,255+255
OW ' a " 5, , ab " , CD', 6 shl 8 or lIb

4.8. 'rhe OS Directive.

'lhe OS statement is used to reserve an area of unini tialized memory, and
takes the form

label DS expression

where the label is optional. The assembler begins subsequent code generation
after the area reserved by the OS. 'lhus, the OS statement given above has
exactly the same effect as the statement

label: EOU $:LABEL VALUE IS CURRENT OJOE LCX:ATION
ORG $+expression :MOVE PAST RESERVED AREA

5. OPERATION (DOES.

Assembly language operation ccx:ies form the pr incipal })art of assembly
language programs, and form the operation field of the instruction. In
general, AEM accepts all the standard mnemonics for the Intel 8080
microcomputer, \\hich are given in detail in the Intel manual "8080 Assembly
Language Programmim Manual. h Labels are optional on each input line and, if
included, take the value of the instruction address immediately before the
instruction is issued. The individual operators are listed breifly in the

12

following sections for completeness, although it is understood that the Intel
manuals should be referenced for exact operator details. In each case,

e3 represents a 3-bit value in the range 0-7
which can be one of the predefined registers
A, B, C, D, E, H, L, M, SP, or PSW.

e8 represents an 8-bit value in the range 0-255

e16 represents a l6-bit value in the range 0-65535

which can themselves be formed from an arbitrary combination of operands cind
operators. In some cases, the operands are restricted to p3.rticular values
within the allowable range, such as the PUSH instruction. These cases will be
noted as they are encountered.

In the sections v.hich follow, each operation codes is listed in its rrost
general form, along wi th a s~cific example, wi th a short explanation and
special restrictions.

5.1. Jumps, Calls, and Returns.

The Jump, Call, aoo Return instructions allow several different forms
which test the condi tion flags set in the 8080 microcomputer CPU. The forms
are

JMP e16 JMP 11 Jump unconditionally to label
JNZ e16 JMP L2 Jump on non zero condition to label
JZ e16 JMP 100H Jump on zero condition to label
JNC e16 JNC 11+4 Jump no carry to label
JC e16 JC L3 Jump on carry to label
JFO e16 JFO $+8 Jump on parity odd to label
JPE e16 JPE L4 Jump on even parity to label
JP e16 JP GAMMA Jump on positive result to label
JM e16 JM al Jump on minus to label

CALL e16 CALL Sl Call subroutine unconditionally
CNZ e16 CNZ S2 Call subroutine if non zero flag
CZ e16 CZ l00H Call subroutine on zero flag
CNC e16 CNC 81+4 Call subroutine if no carry set
CC e16 CC S3 Call subroutine if carry set
ero e16 cm $+8 Call subroutine if parity odd
CPE e16 CPE S4 Call subroutine if p3.rity even
CP e16 CP GAMMA Call subroutine if positive result
CM e16 CM bl$c2 Call subroutine if minus flag

RST e3 RST 0 Pr og r arruned "restart II , equivalent to
CALL 8*e3, except one byte call

13

REI'
RNZ
RZ
RNC
RC
RPO
RPE
RP
RM

Return from subroutine
Return if non zero flag set
Return if zero flag set
Return if no carry
Return if carry flag set
Return if parity is odd
Return if parity is even
Return if }X)sitive result
Return if minus flag is set

5.2. Immediate Operand Instructions.

Several instructions are available Y.hich load single or double precision
registers, or single precision memory cells, with constant values, along with
instructions Y.hich ~rforrn iIllITediate arithmetic or logical operations on the
accumulator (register A).

MVI e3,e8

ADI e8
ACI e8
SUI e8
SBI e8
ANI e8
XRI e8
OR! e8
CPI e8

LXI e3,e16

tvlVI B,255

ADI 1
ACI 0FFH
SOl L + 3
SBI L AND lIB
AN I $ 'AND 7FH
XRI llll$0000B
OR! L AND 1+1
CPI a

LXI B,100H

Move immediate data to register A, B,
C, D, E, H, L, or M (memory)
Add immediate operand to A without carry
Add immediate operand to A with carry
Subtract from A without borrow (carry)
Subtract from A with borrow (carry)
Logical "and" A wi th immediate data
"Exclusive or" A with immediate data
Logical "or" A with irrnnediate data
Compare A with immediate data (same
as SUI except register A not changed)

Load extended immediate to register pair
(e3 must be equivalent to B,D,H, or SP)

5.3. Increment and Decrement Instructions.

Instructions are provided in the 8080 repetoire for incrementing or
decrementing single and double precision registers. The instructions are

INR e3

OCR e3

INX e3

OCX e3

INR E

OCR A

INX SP

IXXB

Single precision increment register (e3
produces one of A, B, C, D, E, H, L, M)
Single precision decrement register (e3
produces one of A, B, C, 0, E, H, L, M)
Double precision increment register pair
(e3 must be equivalent to B,O,H, or SP)
Double precision decrement regi.ster tBir
(e3 must be equivalent to B,O,H, or SP)

5.4. Data Movement Instructions.

14

Instructions which rrove data from rremory to the CPU and from CPU to
memory are given below

KJV e3,e3

Lmx e3

STAX e3

LHLD e16

SHLD el6

Lm e16
STA el6
IDP e3

PUSH e3

IN e8
our e8
XTHL
PCHL
SPHL
XCHG

mv A,B

Lr:AX B

STAX D

LHLD Ll

SHLD L5+x

Lm Gamma
STA X3-5
EOP PSW

PUSH B

IN 0
our 255

Move data to leftmost element from right
rrost element (e3 produces one of A"B,C
D,E,H,L, or M). mv M,M is disallowed
Load register A from computed address
(e3 must produce either B or D)
Store register A to computed address
(e3 must produce either B or D)
Load HL direct from location el6 (double
precision load to Hand L)
Store HL direct to location el6 (double
precision store from Hand L to memory)
Load register A from address e16
Store register A into memory at el6
Load register pair from stack, set SP
(e3 must produce one of B, D, H, or PSW)
Store register pair into stack, set SP
(e3 must produce one of B, D, H, or PSW)
Load register A with data from port e8
Send data from register A to port e8
Exchange data from top of stack with HL
Fill program counter with data from HL
Fill stack pointer with data from HL
Exchange DE pair with HL pair

5.5. Arithmetic Logic Unit Operations.

Instructions mich a'ct upon the sinqle precision accumulator to perform
arithmetic and logic operations are

ADD e3 lIDD B Add register given by e3 to accumulator
wi thout carry (e3 must produce one of A,
B, C, D, E, H, or L)

ADC e3 ADC L Add register to A with carry, e3 as above
SUB e3 SUB H Subtract reg e3 from A without carry,

e3 is defined as above
SBS e3 SBB 2 Subtract register e3 from A with carry,

e3 defined as above
ANA e3 N.\JA 1+1 Logical "and U reg with A, e3 as above
XRA e3 XRA A "Exclusive or lO with A, e3 as above
ORA e3 ORA B Logical "or'· with A, e3 defined as above
CMF e3 eMP H Compare reqister with A, e3 as above
MA Decimal adjust register A based upon last

arithmetic logic unit operation
CMA Complement the bits in register A
S'IC Set the carry flag to 1

15

cre
RLC

RAL

RAR

mn e3 D\D B

Complement the carry flag
Rotate bits left, (re)set carry as a side
effect (high order A bit becomes carry)
Rotate bits right, (re)set carry as side
effect (low order A bit becomes carry)
Rotate carry/A register to left (carry is
involved in the rotate)
Rotate carry/A register to right (carry
is involved in the rotate)

Double precIsIon add register pair e3 to
HL (e3 must produce B, 0, H, or SP)

5.6. Control Instructions.

The four remaining instructions are categorized as control instructions,
and are listed below

HLT
DI
EI
NOP

6. ERROR MESSAGES.

Halt the 8080 processor
Disable the interrupt system
Enable the interrupt system
No operation

wben errors occur wi thin the assembly language program, they are listed as
single dlaracter flags in the leftmost {X)sition of the source listing. The
line in error is also echoed at the console so that the source listing need
not be eKamined to determine if errors are present. The error codes are

D

E

L

N

o

P

Data error: element in data statement cannot be
placed in the specified data area

Expression error: eKpression is ill-formed and
cannot be computed at assembly time

Label error: label cannot appear in this context
(may be duplicate label)

Not implemented: features which will appear in
future ASM versions (e.g., macros) are recognized,
but flagged in this version)

Overflow: expression is too complicated (i.e., too
many p?nding operators) to computed, simplify it

Phase error: label does not have the same value on
two subsequent p3.sses through the program

16

R Register error: the value specified as a register
is not compatible with the operation code

v Value error: operand encountered in expression is
improperly formed

Several error message are printed which are due to terminal error
conditions

NO SOURCE FILE PRESENT

NO DIRECTORY SPACE

SOORCE FI LE NAME ERROR

SOURCE FILE READ ERROR

OUI'pur FI LE WRI'rE ERROR

CANNor CLOSE FI LE

7. A SAMPLE SESSION.

The file specified in the ASM command does
not exist on disk

The disk directory is full, erase files
which are not needed, and retry

Improperly formed ASM file name (e.g., it
is specified with "?" fields)

Source file cannot be read properly by the
assembler, execute a TYPE to determine the
tnint of error

Output files cannot be written properly, most
likely cause is a full disk, erase and retry

Output file cannot be closed, check to see
if disk is write protected

The following session shows interaction with the assembler and debugger in
the development of a simple assembly language program.

17

ASMSORT~

CP/M ASSEMBLER - YER 1.0

~ 1 5 C ~ -Fre~ lllltlv-e:6)
e03H LISE FACTOR 0/oi -\-tt~le o>ed 00 To fF' (~d.eCl~
END OF AS'SE MBl Y

DIR SORT. *,;

SORT AS M S~t.V<~ .ri~
S 0 R T B A K lo~ .JV'£,~ l (\ ~ (2d.~i-
SO R T P R H 'P"'~ f,kl CCD~:\~ll~ -w.. ~~)
SO R THE X ~d.c.,~ eodt.. f..~
A >TYPE SORT. PR~

S()U.i'(t.. l ~
r------~--------~,

SORT PROGRAM IHCP/M ASSEMBLY LANGUAGE wa4u~ cJ.t... \O~
.--J START AT THE BEGINNING OF THE TRANSIENT PROGRAM AR

€I18a ~ .
~~~~~ 

0100 2r46el~ SORT: 
0103 3601 
0105 214791 
018S 3690 

010A 7E COMP: 
0lBB FE09 
EtI€tD D219Bl 

0110 214681 
e 11 3 7EB7C20001 

0118 FF 

ORG 100H 

LXI 
t1 II I 
Ll< I 
Mill 

H~ SW 
t1} 1 
H, I 
r1, 0 

;ADDRESS SWITCH TOGGLE 
;5£T TO 1 FOR FIRST ITERATION 
; ADDRESS IBDEX 
; I = 0 

COMPARE I WITH .ARRAY SIZE 
MOV A I t1 ; A REGISTER = I 
CPI N-l ; C Y SE T IF I < ( N -l ) 
JHC COHT ;CONTINUE 1 F I t -

\ - ( N- 2 ) 

EN D OF ONE PASS THROUGH DATA 
LXI H, Shl ;CHECf< FOR ZERO SWITCHES 
MOV AI 11 ! ORA A! .JNZ SORT ;END OF SORT IF Slll=0 

RST 7 ;GO TO THE DEBUGGER INSTEAD nF 

rl.ll\ta.-WCOHTlHUE THIS PASS 
j ADDRESSING I, SO LOAD A Y ( I ) INTO REGISTERS 

0119 5F16902148COHT: MOY E I A ! MYI D, 0! LXI H .. AV! DAD D! DAD D 
e 12 1 4E792346 MO·V C .. M! MOV AI C! n~x H! NOV B., M 

LOW ORDER B't T E I H A At~ D c) HIGH ORDER BYTE IH 

MOY HAND L TO ADDRESS AV(I+l) 
0125 23 I t~ X H 

COMPARE VALUE WITH REGS COHTAI~IHG AY(I) 

R E i~ 

B 

0126 965778239E SUB '1! M 0 V D I A! M 0 V A; B! I H X H' S B B (1 i SUB T R ACT 

BORRO~I S6:T IF AV(I+l) > AY(I) 
012B DA3F01 JC INCI ;SKIP IF IN PROPER ORDER 

CHECK FOR EQUAL VALUES 
012E B2CA3F01 ORA D! JZ IHC! iSKIP IF AY(I) = AY(I+l) 



0132 567'212B5E MOV fI,. M ! t10V t1,. B ! DC 1-: H! MOV E) f1 
0136 7128722873 MOV tL C! !lex H! f10V t'1, It ! DC ~: H! r10V MJ E 

INCREMENT SWITCH COUNT 
0138 21460134 LXI H J S W ! INR t1 

INCREMENT I 
fJ13F 21470134C31NCI: Ll< I H" I ! I HR M! JMP COt1P 

DATA DEFINITION SECTION 
0146 0e SW: DB 0 ;RESERVE SPACE FOR SWITCH COUNT 
0147 I: DS 1 ;SPACE FOR INDEX 
a148 050064001EAV: D hI 5 I 1 IHL 3 (I I 5 0) 2 {L '7 I 1 a fqL 113 e., 1 e!L - 3 2 7 6 'l 
0eeA = N 
e 1 selL- ~t ~ va..tv.e. 

EQU ($-AV)/2 ;COMPUTE H INSTEAD OF PRE 
EN D 

A >T~'PE SORT, HEX.-:> 

: 1001eee0214601360121479136097EFE09D2190140 
1100110002146917EB7C20001FF5F16002148011988 
: 10012900194E79234623965778239EDA3F01B2CAA7 
: le01300eJF01567e2B5E7128722B732146013421C7 
: 07014ee04?0134C30A010e6E 
: 10014800050064901E0B320014000700E8832C0188 
: 0401580064000180BE 
: 0e000B000Et 
A> DD T S OR T. HEX; S"hv--t ~u..,\ \'£tV\.. 

16K DDT \o'ER 1. 0 \ 

~~~6 e:~e dern.wh- address L~ addr~ ~ BJD s-h.~bA-+) 
-xP.w

p=e0ee 180~ c~~e fc, -to lOO

- U FF F F; lA.m.ac.e -fw b'1iS?'c) S~ alxw+ W'l~ r Y'u.b.ot.Ct

ceZ0MBE010 A=0e 8:::00130 It=Bee0 H=0Et00 8=01013 P=0100 LXI H" 0 1 4 6H.1 1 0 0

- T 10,2 -\You t 0" c;+~fS'
C0Ze t1B E 0 10 A =0 1 B:::0eee D =8 0 ea H=0146 S=0100 P=0100 LXI HJ0146
CeZ0MBE010 A=01 8:::00130 D =0 0 ee H::0146 S=13100 P::0103 t1 V I t1 J 0 1
C0ZBM8E01e A=01 B=0eee D=B0ee H=0146 $=01'210 p:: 0 1 €I 5 L X I HJ0147
C0ZEtM6E010 A = €I 1 B =0 ee e D=B00e H::::014? 8=,01013 P::0108 M'I I t1 J 012)
C0ZeM8E0I0 A=01 B=eOee D=0000 H=014? S=0100 p:= 010 A NOV A I t1
CeZet1BE01 e A=00 B:::tt000 D=0e0e H=014? S=0100 P::01l18 CPI 09
CIZeM1E0I0 A=00 B :::tH~ B 0 D=000et H=014? S=0100 P=01{~D ,../ NC (1 11 :3
C1Z0MIE010 14=00 8:::0000 D=0000 H=014? $:::0100 P~0110 L X I H"l1146
CIZ0MIE010 A=00 B=0eee D=aeee H=0146 S=0100 P::~1113 t10V A) t1
CIZ0M1E0I0 A=01 B=0000 D=00e0 H=fH 46 S=0100 Pr:0114 ORA A
CeZBMBE010 A=01 8=00130 D=000Et H=0146 S=0100 P::0115 JNZ 0100
CeZett1BE010 A=01 B=008e D=eeee H=0146 $=0100 P=0100 L X I HJf:l146
C0ZBM0E0I0 A=01 8=0000 DJ:9000 H=0146 S=0100 P::0103 t1 VI M J 0 1
C0Z0MBE0I0 A=Bl B=000e £1=0000 H=0146 8:::0100 P:::0105 LXI HJ0147
C0Z0MBE010 A=01 B=0080 D=Et000 H=-014? S=0100 P::0108 MVI t1) (10

CeZ0MBE€1l0 A=01 B:::00IH1 D=e000 H = (jJ 47 S=0100 P:=0U~A f10V A"f1*B108
-A10D

BleD JC 11 9~ ck~~ -fc> 0.. ~'u.'1 0" Ctl~
01 10 ~

~('t(err ~ 19
I "'8H

-XP;

P=0108 10~ ye~+ 1YOjVO~ (t7~~ ,buck -b

- T 10 +race ~itO", -t-CN' (OH s-krS
~

C9ZBI18E010 A=00 B=B9&'e II=809& H=0147
CeZ0M8E010 A=00 B=00a0 D=0000 H=0146
CeZ0M0E010 A=00 B=0090 D =8 0 00 H=0146
C0Z0M0E010 A=00 B:::0000 D=0000 H=0147
C0ZBt10E01 €I A=B0 B:=0eee D =0000 H=0147
C0zeM0E010 A=Et0 B=00ee D =0 €I 00 H=9147
C 1 Z €I til E 0 L0 A=00 9=0000 D=B000 H=0147
C 1 ze M 1 E ene A=00 8=0090 II =8 €I e0 H=0147
ClzeMIE010 A=B0 B=0000 D =0 €I 0B H=0147
CIZ0M1E010 A=00 9=0090 D =0 0 00 H=0147
CIZBMIE0I0 A=00 8=0000 11=0000 H=014B
.~ 0 z e M 1 E 0 I 0 A=00 9=0009 D=Et000 H=0148

eZBMIE010 A=00 B=0000 D =0 €I €Ie H=@148
C0Z0MIE010 A=09 8=0085 D =0 0 90 H=0148
C0Z0MIE910 A=0S 9=0005 II=0000 H=014S
ceZBMIE010 A=fJ5 9=0085 D=8eEta H=0149
-L IB~

010£1 LXI HJB146
£1103 MVI M J 0 1
8105 LX I H/0147
Bles MVI
alBA MOV
eleB C P I
a 1 all JC

M/ee
A J M
£19
e 11 9

llst S"O\M.C cod.e

t-vtMA lDO~
0110 LXI H,B146
£1113 MOV A I M
o 114 ORA A
B 1 15 JHZ 0100
-L;
8118 RST 07
8119 MOV EJA
0llA MVI D,es
BllC LXI HJ0148

beJ'tr'\~I~ Cfrrdj(a.m.

S=0100
S= 01 00
S=01e0
$=0100
$=0100
S=01e0
S=0100
S=010e
~3=010e

$=0100
S=0100
8=0100
~:=ei 0@

$=0100
5=0100
S=0100

P=0100 L.XI
P::0103 t1 V I
P::0105 LXI
P::0108 MVI
P={iJ10A t10V
P::010B CPI
p::(iJleD JC
P::0119 t10V
P::011A M V I
P::011C L>n
P=011F DAII
p=012e DAD
P=0121 t'1 (I v
P:;0122 t10;0/
P=0123 I NX
P=€l124 MOV

Au1oV1t\Q.{ \ i.
bY~fo~v..t

D
D
C J f1
A) C
H
B,M*8125

~

- ak>vf l\.;t w~~ n.l~ilJ.-t . I
r ~?C. (orz.51-t] O-LAL\ Yul{. l~ vetA \ +1VY\e -To IIl3H

- G,l 1 8; 'S-h~ ~Y~V(l~ -t (t)HA..

.. 0 I 2 7 'S-Iofl'('d "": +L, 0...... ex-\eviN'L1 i...rtcv yupf 7 -f rtM.t +~+ yo. \A.e.{ ('PV"~1'!i1AA was

- T4~ \ 001< a:t loq>l~ VYO~fAII" '''' -\-voce mok '+ lOCfI"'~ \Vlbh ... ,-kc.",)
ceZ9M9E010 A=38 B=9064 D=8006 H=0156 S=01B0 P=0127 MOV D,A
C0Z9M0E0I0 A=38 B=0964 D=3806 H=0156 S:0100 P=0128 MOV A,B
C0ZeMBE019 A=0e B=0e64 D=3806 H=0156 £=0100 P=0129 INX H
ceZ0M0E010 A=00 B=0064 D=3806 H=0157 8=010121 P=012A SBa M*012B
-D148

~&.+4 lS s~} 10",* rYOjftJ.W Joes~t s-ky .
e148 9S Be 97 08 14 Be IE £19
815032 £10 64 £106400 2C Bl E8 (~3 £118000 ee 0000 2.D.!JJ .. "
e 1 € eBB 0 0 0 £I 0 B 0 £I e 0 e 0 0 £I £I €I I" d e fJ (; 0 0 0 00 0l; 0 0 . ' 20

-,,~ ye:tlA(,~ +0 Cp/M.

D Di SO R T . HE x~ reloAd -tke meWlOVj 'fl'\Af

16K. DDT VEE< 1.0
HEXT PC
else eeee
-xp

P=0000 100) set -pc. ~ ~1~11;~ J'tOljYAA't
... L 1€1 D; ll~ bGJ Ofcod.[

BleD JHC 9119/
0110 LXI H/0146

... a.\..,ov+ ll~ w~~ r-o.loOt..\.t

... Ale D; a. ~Stu.Jq\t. ~~ q?(~t!e.

£tIeD JC 11~

011~

- LI !; 0; 1\:' I- ~~ s~ of 'F"jV'OJM.

0100 LXI H/0146
0103 MVI M/al
01e5 LXI H,0147
0188 t1V1 M/0e

- AloM t\st \.N~~ (V.b6(l.t

- A 103,2 c~~ "sw·, .. hL: l\A:~:...tl~~ -b ~rj
0103

i;105,2

_ ... (; V'e.k~"" -\0 ef/~ Wl~ C.f{-L (G~ vJlNit.s CQ well)

S A \IE 1 SO R T . CO M; ${AVe 1 f()~l (It;~ ~~S, f~ 1..00~ 40 '1~J.(,) O¥'· d ~s'" "'" C,,~e-
• W~ ~o. ve.. -\-0 v--e l () CAd. l A.tt('

A> IJD T SORT. C 011,2 Y'~?~v1' 1)'OT w~
$a..vlci ~~V"I'OV~ \V\"\~e

16t<. DDT \o'ER 1.0
NEXT PC' .
02eee Blee "QoM,1 {de. a.lvJo.~., s~rf5 Wl~ ~~ loOH
- G.l rCA~ -tke.- y'r~ro.\M + ~ " C -: 100 H

It: 011 8 1~f"~"~t!d ~""P (£.S r 7) e.tI\e.Ql).~+t.rtel
"'D148

0148 05 ee 07 ete
0150 32 0e 64 ee
0160 00 00 00 00
0179 90 €I0 00 IdB

-G~ r~V'1A. -\0 C!.-f'/M.

14 0e
64 ae
00 0e
ee ee

IE
2C
00
0e

o 1 E.8 e 3 e 1 8 e e e e e 0 e e e 2. D . D. }
00 00 OB 00 00 00 00 00 00
00 ee 00 00 00 00 08 00 00

Zf

;AIIDRESS IHIIEX

;SET TO 1 FOR FIRST ITERATION

;ADDRESS INDEX

iZERO SW

iADDRESS IHDE>~

;CONTIHUE IF I <=

CP/M ASSEMBLER - VER 1.0

B 1 as c ~t aMr~ 40 as~t,
00"3H USE FACTOR
END OF ASSEMBLY

t1 D T SO R T. HE: XAl itst r~'rDJM cUo.~t.S

16K DDT VER 1. 0
t~E:~T PC
015(: Ul1€t0

- G 1 (10.J

*01.18
-D.14 8~

9148 0S 00 07 08 14 ee
,{"' dc;.~ 50~t d
1E 00

(H-2)

elsa 32 0e 64 ee 64 eo 2C 01 E8 030180013 as 00 Oe,2.D.D.~
0160 ee 00 00 ee 00 00 00 00000000000000 0080

- tAbc1Y-t W\~ rtA~,\).t

22

THE CP/M 2.0
INTERFACE GUIDE

01 (]~[j~Tfll RESEflRCH
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright (c) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer Janguage, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box '579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

1.

2.

3.

In t r odu c t ion • •

CP/M 2.0 INTERFACE GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

Operating System Call Conventions

A Sample File-to-File Copy Program •

4. A Sample File Dump Utility

5. A Sample Random Access Program •

6. System Function Summary

. . .'. 1

3

• 29

. 34

• • • 37

. . . • .46

1. INTRODUCTION.

This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intention is to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheral and
disk I/O facilities of the system.

CP/M is logically divided into four parts, called the Basic I/O
System (BIOS), the Basic. Disk Operating System (BOOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device I/O. Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Dig i tal Research manual ent i tIed "CP/M Al teration Guide") •.
The BIOS and BOOS are logically combined into a single module with a
common entry point, and referred to as the FDOS. The CCP is a
distinct pr·ogram which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device. The TPA is an area of memory (i.e., the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and is detailed later sections.
Memory organization of the CP/M system in shown below:

high
memory

FBASE:

CBASE:

TBASE:

BOOT:

FDOS (BDOS+BIOS)

CCP

TPA

system parameters

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are described fully in the
"CP/M Alteration Guide. II All standard CP/M versions, however, assume
BOOT = 0000H, which is the base of random access memory. The machine
code found at location BOOT performs a system "warm start" which loads
and initializes the programs and variables necessary to return control
to the CCP. Th-us, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

I

to return control to CP/M at the command level. Further, the standard
versions assume TBASE = BOOT+0100H which is normally location 0100H.
The principal entry point to the FOOS is at location BOOT+0005H
(normally 0005H) where a jump to FBASE is found. The address field at
BOOT+0006H (normally 0006H) contains the value of FBASE and can be
used to determine the size of available memory, assuming the CCP is
being overlayed by a transient program.

Transient programs are loaded into the TPA and executed as
follows. The operator communicates with the CCP by typing command
lines following each prompt. Each command line takes one of the
forms:

command
command f ilel
command filel file2

where ucommandh is either a built-in function such as OIR or TYPE, or
the name of a transient command or program. If the command is a
built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

comma nd. COM

If the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory_ The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE.

If the command is
the CCP prepares one
system parameter area.
to access files through
section.

followed by o,ne or two file specifications,
or two file control block (FCB) names in the

These optional FCBls are in the form necessary
the FOOS, and are described in· the next

The transient program receives control from the CCP and begins
execution, perhaps using the I/O facilities of the FOOS. The
transient program is "called ll from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-I is free.

The transient program may use the CP/M I/O facilities to
communicate with the operatorls console and peripheral devices,
including the disk subsystem. The I/O system is accessed by passing a
"function number ll and an lIinformation address;' to CP/M through the
FOOS entry point at BOOT+0005H. In the case of a disk read, for
example, the transient program sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FOOS. The
FOOS, in turn, performs the operation and returns with either a disk
read completion indication or an error number indicating that the disk
read was unsuccessful. The function numbers and error indicators are
given in below ..

(All Information Contained Herein is Proprietary to Digital Research.)

2

2. OPERATING SYSTEM CALL CONVENTIONS.

The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions listed below, however, are more simply accessed
through the I/O macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Appl ications Guide."

CP/M facilities which are available for access by transient
programs fall into two general categories: simple device I/O, and
disk file I/O. The simple device operations include:

Read a Console Character
write a Console Character
Read a Sequential Tape Character
write a Sequential Tape Character
write a List Device Character
Get or Set I/O Status
Print Console Buffer
Read Console Buffer
Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+0005H. In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = H upon return in all cases. Note that
the register passing conventions of CP/M agree with those of Intel's
PL/M systems programming language. The list of CP/M function numbers
is given below.

(All Information Contained Herein is Proprietary to Digital Research.)

3

0 System Reset 19 Delete File
1 Console Input 20 Read Sequential
2 Console Output 21 Wr i te Sequential
3 Reader Input 22 Make File
4 Punch Output 23 Rename File
5 List Output 24 Return Login Vector
6 Direct Console I/O 25 Return Current Disk
7 Get I/O Byte 26 Set DMA Address
8 Set I/O Byte 27 Get Addr (Alloc)
9 Pr int Str ing 28 Write Protect Disk

10 Read Console Buffer 29 Get R/O Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next

(Functions 28 and 32 should be avoided in application programs to
maintain upward compatibility with MP/M.)

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 0000H), it
is sufficiently large to make CP/M system calls since the FDOS
switches to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a s tandard CP/M sys tern wi th Boo'r = 000 0H) :

BOOS EQU 0005H : STANDARD CP/M ENTRY
CONIN EQU I :CONSOLE INPUT FUNCTION

ORG 0l00H :BASE OF TPA
NEXTC: MVI C,CONIN :READ NEXT CHARACTER

CALL BOOS : RErrURN CHARACTER IN <A)
CPI . *. :END OF PROCESSING?
JNZ NEXTC :LOOP IF NOT
RET : RE'rURN TO CCP
END

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular
file, while the file name distinguishes individual files in each
category. The file types listed below name a few generic categories

(All Information Contained Herein is Proprietary to Digital Research.)

4

which have been established, although they are generally arbitrary:

ASM
PRN
HEX
BAS
INT
COM

Assembler Source
Pr inter Listing
Hex Machine Code
Basic Source File
Intermediate.Code
CCP Command File

PLI
REL
TEX
BAK
SYM
$$$

PL/I Source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File

Source files are treated as a sequence of ASCII characters, where each
"line" of the source file is followed by a carriage-return line-feed
sequence (0DH followed by 0AH). Thus one 128 byte CP/M record could
contain several lines of source text. The end of an ASCII file is
denoted by a control-Z character (lAH) or a real end of file, returned
by the CP/M read operation. Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from 0 through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be considered logically contiguous, they may
not be physically contiguous in the disk data area. Internally, all
files are broken into 16K byte segments called logical extents, so
that counters are easily maintained as 8-bit values. Although the
decomposition into extents is discussed in the paragraphs which
follow, they are of no particular consequence to the programmer since
each extent is automatically accessed in both sequential and random
access modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+005CH (normally 005CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is provided by CP/M
at loca,tion BOOT+0080H (normally 0080H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of
33 bytes for sequential access and a series of 36 bytes
that the file is accessed randomly. The default file
normally located at 005CH can be used for random access
the three bytes starting at BOOT+007DH are available for
The FCB format is shown with the following fields:

a sequence of
in the case
control block
files, since
th is purpose.

(All Information Contained Herein is Proprietary to Digital Research.)

5

Idrlfllf21/ /lf8Ibllt2It3Iexlslls2Ircld01/ /ldnlcrlr0lrllr21
--

00 01 02 ••• 08 09 10 11 12 13 14 15 16 ••• 31 32 33 34 35

where

dr drive code (0 - 16)
o =) use defaul t dr ive for file
1 =) auto disk select drive A,
2 =) auto disk select dr ive B, . . .
16=) auto disk select drive P.

fl ••• f8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tIl, t21, and t3' denote the
bit of these positions,
tIl = 1 =) Read/Only file,
t21 = 1 =) SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

r c record count for extent II ex,"
takes on values from 0 - 128

d0 ••• dn filled-in by CP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it is the
programmer's responsibility to fill the lower sixteen bytes of the FCB
and initialize the "cr" field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero.

(All Information Contained Herein is Proprietary to Digital Research.)

6

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceeding with file operations
(see the OPEN and MAKE functions). The memory copy of the FCB is
updated as file operations take place and later recorded permanently
on disk at the termination of the file operation (see the CLOSE
command) •

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the line following the
transient name, denoted by ufilel li and nfile2'i in the prototype
command 1 ine desc r ibed above, wi th unspec if ied fields se t' to ASCI I
blanks. The first FCB is constructed at location BOOT+005CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the d0 .•• dn portion of the first FCB, and must be moved to another
area of memory before use. If, for example, the operator types

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOO'I'+005CH is initialized to drive code 2, file name "X" and file type
"Z0T". The second dr ive code takes the defaul t value 0, which is
placed at BOOT+006CH, with the file name "Y" placed into location
BOOT+006DH and file type "ZAP" located 8 bytes later at BOOT+0075H.
All remaining fields through hcr" are set to zero. Note again that it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOOT+005CH, due to the fact that the
open operation will overwrite the second name and type.

If no file names are specified in the original command, then the
fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience, the default buffer area at location
BOOT+0080H is initialized to the command line tail typed by the
operator following the program name. The first position contains the
number of characters, with the characters themselves following the
character count. Given the above command line, the area beginning at
BOOT+0080H is initialized as follows:

Boo'r+0 0 8 0H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14

1 4 II I, ., B II .. X" ... Ii I, zit .. 0 II II T .. h Y It ". II .. Z" .. A" .. P h

where the characters are translated to upper case ASCII with
uninitialized memory following the last valid character. Again, it is
the responsibility of the programmer to extract the information from
this buffer before any file operations are performed, unless the
default DMA address is explicitly changed.

The individual functions are described in detail in the pages
which follow.

(All Information Contained Herein is Proprietary to Digital Research.)

7

* * * FUNCTION ((): system Reset
*

*
*

* Entry Parameters: *
* Register C: 00H *

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-in disk drive A. This function has exactly the
same effect as a jump to location BOOT.

*
* FUNc'rION 1: CONSOLE INPUT

*
*

* *

*
*
*

En t ry Par am e t e r s:
Register C: 0lH

*
*
*

* Returned Value: *
* Register A: ASCII Character *

The console input function reads the next console character to
register A. Graphic characters, along with carriage return, line
feed, and backspace (ctl-H) are echoed to the console. Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

* * * FUNCTION 2: CONSOLE OUTPUT *

* *

*
*
*
*

En t ry Par am e t e r s:
Register C:
Register E:

*
02H *
ASCII Character *

*

The ASCII character from register E is sent to the console
device. Similar to function 1, tabs are expanded and checks are made
for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

8

* * * FUNCTION 3: READER INPUT
*

*
*

*
*
*

Entry Parameters:
Register C: 03H

*
*
*

* Returned Value: *
* Register A: ASCII Character *

The Reader Input function reads the next character from the
logical reader into register A (see the IOBYTE definition in the "CP/M
Alteration Guide"). Control does not return until the character has
been read.

* * * FUNCTION 4: PUNCH OUTPUT
*

*
*

Entry Parameters: * *

*
*
*

Register C:
Register E:

04H *
ASCII Character *

*

The Punch Output function sends the character from register E to
the logical punch device.

* *
* FUNCTION 5: LIST OUTPUT
*

*
*

* Entry Parameters: *
* Register C: 05H *
* Register E: ASCII Character *
* *

The List Output function sends the ASCII character in register E
to the logical listing device.

(All Information Contained Herein is Proprietary to Digital Research.)

9

* *
* FUNCTION 6: DIRECT CONSOLE I/O *
* *

* Entry Parameters: *
* Register C: 06H *
* Register E: 0FFH (input) or *
* char (output) *
* *
* Returned Value: *
* Register A: char or status *

(no value) *

Direct console I/O is supported under CP/M for those specialized
applications where unadorned console input and output 1S required.
Use of this function should, in general, be avoided .since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-P). Programs which perform direct I/O through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/O under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A = 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes that
E contains a valid ASCII character which is sent to the console.

(All Information Contained Herein is Proprietary to Digital Research.)

10

* * FUNCTION 7: GET I/O BYTE
*

*
*
*

* Entry Parameters: *
* Register C: ({)7H *
* * * Returned Value: *
* Register A: I/O Byte Value *

The Get I/O Byte function returns the current value of IOBYTE in
register A. See the "CP/M Alteration Guide" for IOBYTE definition.

* *
*
*

FUNc'rION 8: SET I/O BYTE *
*

* Entry Parameters: *
* Register C: ({)8H *
* Register E: I/O Byte Value *
* *

The Set I/O Byte function changes the system IOBYTE value to
that given in register E.

*
* FUNCTION 9: PRINT STRING
*

*
*
*

* Entry Parameters: *
* Reg i s te r C: ({) 9H *
* Registers DE: String Address *
* *

The Print String function sends the character string stored in
memory a t the location given by DE to the console device, until a a. $"
is encountered in the string. Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

11

* *
* FUNCTION 10: READ CONSOLE BUFFER *
* *

* Entry Parameters: *
* Register C: 0AH *
* Registers DE: Buffer Address *
* * * Retur ned Value: *
* Console Characters in Buffer *

The Read Buffer function reads a line of edited console input
into a buffer addressed by registers DE. Console input is terminated
when either the input buffer overflows. The Read Buffer takes the
form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 +n

Imxlnclcllc21c31c41c51c61c71 I??I

where II mx " is the maximum number of characters which the buffer will
hold (1 to 255), "nc " is the number of characters read (set by FDOS
upon return), followed by the characters read from the console. if nc
< mx, then uninitialized positions follow the last character, denoted
by .. ?? II in the above figure. A number of control functions are
recognized during line editing:

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
ctl-U
ctl-x

removes and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character position
(line feed) terminates input line
(return) terminates input line
retypes the current line after new line
removes currnt line after new line
backspaces to beginning of current line

Note also that certain functions which return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases, the carriage returned to
the extreme left margin). This convention makes operator data input
and line correction more legible.

(All Information Contained Herein is Proprietary to Digital Research.)

12

* *
* FUNCTION 11: GET CONSOLE STATUS *
* *

* Entry Parameters: *
* Register C: 0BH *
* * * Returned Value: *
* Register A: Console Status *

The Console Status function checks to see if a character has
been typed at the console. If a character is ready, the value 0FFH is
returned in register A. Otherwise a 00H value is returned.

* *
* FUNCTION 12: RETURN VERSION NUMBER *
* *

* Entry Parameters: *
* Register C: 0CH *
* * * Returned Value: *
* Registers HL: Version Number *

Function 12 provides information which allows version
independent programming. A two-byte value is returned, with H = 00
designating the CP/M release (H = 01 for MP/M), and L = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequential and random
access functions, with 'random access disabled when operating under
early releases of CP/M. '

(All Information Contained Herein is Proprietary to Digital Research.)

13

* * * FUNCTION 13: RESET DISK SYSTEM *
* * ***************************************
*
*
*

Entry Parameters:
Register C: eDH

*
*
*

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected, and the
default DMA address is reset to BOOT+ee80H. Thi·s function can be
used, for example, by an application program which requires a disk
change without a system reboot.

*
* FUNCTION 14: SELECT DISK
*

*
*
*

* Entry Parameters: *
* Register C: eEH *
* Register E: Selected Disk *
* *

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= 10 for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
"on-line" status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in. a standard CP/M environment (see
function 28). FCB's which specify drive code zero (dr = eeH)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

(All Information Contained Herein is Proprietary to Digital Research.)

14

* *
*
*

FUNCTION 15: OPEN FILE *
*

* Entry Parameters: *
* Register C: 0FH *
* Registers DE: FCB Address *

* * * Returned Value: *
* Register A: Directory Code *

The Open File operation is used to activate a file which
currently exists in the disk directory for the currently active user
number. The FDOS scans the referenced disk directory for a match in
positions 1 through 14 of the FCB referenced by DE (byte sl is
automatically zeroed), where an ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no question
marks are included and, further, bytes Hex" and "s2" of the FCB are
zero.

If a directory element is matched, the relevant directory
information is copied into bytes d0 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessful open operation is completed. Upon return, the open function
returns a "directory code" with the value 0 through 3 if the open was
successful, or 0FFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
act~ated. Note that the current record ("cr") must be zeroed by the
program if the file is to be accessed sequentially from the first
record.

(All Information Contained Herein is Proprietary to Digital Research.)

15

* *
* FUNCTION 16: CLOSE FILE
*

*
*

* Entry Parameters: *
* Register C: 10H *
* Registers DE: FCB Address *
* * * Returned Value: *
* Register A: Directory Code *

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DE has been previously
activated through an open or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical
to the open function. The directory code returned for a successful
close operation is 0, 1, 2, or 3, while a 0FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information.

(All Information Contained Herein is Proprietary to Digital Research.)

16

* *
* FUNCTION 17: SEARCH FOR FIRST *
* *

* Entry Parameters: *
* Register C: IlH *
* Registers DE: FCB Address *
* *
* Retur ned Value: *
* Register A: Directory Code *

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1, 2, or 3 is returned
indicating the file is present. In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from lifl'l through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
udr u field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark,
the II s 2" by t e i s aut oma tic all y z e r 0 ed •

* *
* FUNCTION 18: SEARCH FOR NEXT
*

*
*

* Entry Parameters: *
: Register C: 12H :

* Returned Value: *
* Reg i s t e r' A : D ire c tory Cod e *

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(All Information Contained Herein is Proprietary to Digital Research.)

17

* *
* FUNCTION 19: DELETE FILE *
* *

* En t ry Par am e t e r s: *
* Register C: l3H *
* Registers DE: FCB Address *
*
* Returned Value:
* Register A:

*
*

Directory Code *

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the drive
select code cannot be ambiguous, as in the Search and Search Next
funct ions.

Function 19 returns a decimal 255
files cannot be found, otherwise a
r etur ned.

* *
*
*

FUNcrrION 20: READ SEQUENTIAL *
*

*
*
*
*

Entry Parameters:
Reg ister C:
Registers DE:

l4H
FCB Address

*
*
*
*

* Returned Value: *
* Register A: Directory Code *

if the referenced file or
value in the range 0 to 3 is

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position Itcr" of the
extent, and the licr" field is automatically incremented to the next
record position. If the "cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next read operation. The value 00H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information Contained Herein is Proprietary to Digital Research.)

18

* *
*
*

FUNCTION 21: WRITE SEQUENTIAL *
*

* Entry Parameters: *
* Register C: 15H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the write Sequential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position ncr" of
the file, and the hcrl. field is automatically incremented to the next
record pos it ion. I f the .. c rll field over flows then the next logical
extent is automatically opened and the Ilcr" field is reset to zero in
preparation for the next write operation. Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A = 00H upon
return from a successful write operation, while a non-zero value
indicates an unsuccessful write due to a full disk.

* *
* FUNCTION 22: MAKE FILE *
* *

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

16H
FCB Address

*
*
*
*

* Returned Value: *
* Register A: Directory Code *

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly by
a non-zero "drli code, or the default disk if Ildrll is zero). The FDOS
creates the file and initializes both the directory and main memory
value to an empty file. The programmer must ensure that no duplicate
file names occur, and a preceding delete operation is sufficient if
there is any possibility of duplication. Upon return, register A = 0,
1, 2, or 3 if the operation was successful and 0FFH (255 decimal) if
no more directory space is available. The make function has the
side-effect of activating the FCB and thus a subsequent open is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research.)

19

* *
* FUNCTION 23: RENAME FILE
*

*
*

* Entry Parameters: *
* Register C: 17H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr U at position (0 is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between (0 and 3 if the rename was successful, and
(oFFH (255 decimal) if the first file name could not be found in the
d ire c tory s can.

* *
* FUNc'rION 24: RETURN LOGIN VECTOR *
* *

*
*
*

Entry Parameters:
Register C: 18H

*
*
*

* Returned Value: *
* Registers HL: Login Vector *

The login vector value returned by CP/M is a 16-bit value in HL,
whe('e the least significant bit of L corresponds to the first drive A,
andt"he h igh order bit of H corresponds to the sixteenth dr ive,
labelled P. A 1'0" bit indicates that the drive is not on-line, while
a "III bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicit drive select caused by a file
operation which specified a non-zero Udr" field. Note that
compatibility is maintained with earlier releases, since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

2(0

* *
*
*

FUNCTION 25: RETURN CURRENT DISK *
*

* Entry Parameters: *
* Register C: 19H *
* * * Returned Value: *
* Register A: Current Disk *
****************************~**********

Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 0 through 15 corresponding
to dr ives A through P.

* * * FUNCTION 26: SET DMA ADDRESS
*

*
*

* Entry Parameters: *
* Register C: lAH *
* Registers DE: DMA Address *
* *

"DMA" is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the disk
subsystem. Although many computer systems use non-DHA access (i.e.,
the data is transfered through programmed I/O operations), the DMA
address has, in CP/M, corne to mean the address at which the 128 byte
data record resides before a disk write and after a disk read. Upon
coid start, warm start, or disk system reset, the DMA address is
automatically set to BOOT+0080H. The Set DMA function, however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequent Set DMA
function, cold start, warm start, or disk system reset.

(All Information Contained Herein is Proprietary to Digital Research.)

21

* *
*
*

FUNCTION 27: GET ADDR(ALLOC) *
*

*
*
*

Entry Parameters:
Reg ister C: IBH

*
*
* * Retur ned Value: *

* Registers HL: ALLOC Address *

An "allocation vector ll is maintained in main memory for each
on-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of remaining
storage (see the STAT program). Function 27 returns the base address
of the allocation vector for the currently selected disk drive. The
allocation information may, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by application programs, additional details of the allocation
vector are found in the "CP/M Alteration Guide. II

* *
* FUNCTION 28: WRITE PROTECT DISK *
* *

*
*
*

Entry Parameters:
Register C: lCH

*
*
*

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold or warm start operation produces the
message

Bdos Err on d: R/O

(All Information Contained Herein is Proprietary to Digital Research.)

22

* *
*
*

FUNCTION 29: GET READ/ONLY VECTOR *
*

* Entry Parameters: *
* Register C: lDH *
* *
* Returned Value: *
* Registers HL: R/O Vector Value*
****************************~**********

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M which detect changed disks.

* *
* FUNCTION 30: SET FILE ATTRIBUTES *
* *

* Entry Parameters: *
* Register C: lEH *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Register A: Directory Code *

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tIl and t2t) can be set or
repet. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl' through f41 are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.
Indicators fS' through f8 1 and t3 1 are reserved for future system
expansion.

(All Information Contained Herein is Proprietary to Digital Research.)

23

* *
*
*

FUNCTION 31: GET ADDR(DISK PARMS) *
*

* Entry Parameters: *
* Register C: IFH *
* *
* Returned Value: *
* Registers HL: DPE Address *

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, application
programs will not require this facility.

* *
* FUNCTION 32: SET/GET USER CODE
*

*
*

* Entry Parameters: *
* Register C: 20H *
* Register E: 0FFH (get) or *
* User Code (set) *
* *
* Returned Value: *
* Register A: Current Code or *
* (no value) *
~********************************

An application program can change or interrogate the currently
active user number by calling function 32. If register E = 0FFH, then
the value of the current user number is returned in register A, where
the value is in the range 0 to 31. If register E is not 0FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

24

**************************************~

*
* FUNCTION 33: READ RANDOM
*

*
*
*

* Entry Parameters: *
* Reg i s t e r C : 21 H *
* Registers DE: FCB Address *
* * * Returned Value: *
* Reqister A: Return Code *

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r0), middle
byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a qon-zero value indicates overflow past
the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from 0 to
65535, providing access to any particular record of the 8 megabyte
file. In order to process a file using random access, the base extent
(extent 0) must first be opened. Although the base extent mayor may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and is visible in DIR requests. The
selected record number is then stored into the random record field
(r0,rl), and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 00 indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the sequential read operation, the
record number is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last record will be re-written as you switch
to a sequential write operation. You can, of course, simply advance
the random record position following each random read or write to
obtain the effect of a sequential I/O operation.

Error codes returned in register A following a random read are
listed below.

(All Information Contained Herein is Proprietary to Digital Research.)

25

01 reading unwritten data
02 (not returned in random mode)
03 cannot close current extent
04 seek to unwritten extent
05 (not returned in read mode)
06 seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

(All Information Contained Herein is Proprietary to Digital Research.)

26

* * * FUNCTION 34: WRITE RANDOM *
* *

*
*
*

Entry Parameters:
Register C:
Registers DE:

22H
FCB Address

*
*
*

* * * Retur ned Value: *
* Register A: Return Code *

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode.

The error codes returned by a random write are identical to the
random read operation with the addition of error code 05, which
indicates that a new extent cannot be created due to directory
overflow.

(All Information Contained Herein is Proprietary to Digital Research.)

27

* * * FUNCTION 35: COMPUTE FILE SIZE *
* *

* Entry Parameters: *
* Register C: 23H *
* Registers DE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytes r0, rl, and r2 are
present). The FCB contains an unambiguous file name which is used in
the directory scan. Upon return, the random record bytes contain the
hvirtual" file size which is, in effect, the record address of the
record following the end of the file. if, following a call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536. Otherwise, bytes r0 and rl constitute a
16-bit value (r0 is the least significant byte, as before) which is
the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

28

* * * FUNCTION 36: SET RANDOM RECORD *
* *

*
*
*
*

Entry Parameters:
Register C:
Registers DE:

24H
FCB Address~

*
*
*
* * Returned Value: *

* Random Record Field Set *

The Set Random Record function causes the BDOS to automatically
produce the random record position from a file which has been read or
written sequentially to a particular point. The function can be
useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various ~key" fields. As
each key is encountered, function 36 is called to compute the random
record position for the data corresponding to this key. If the data
unit size is 128 bytes, the resulting record position is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizing the keys and their record numbers, you can move
instantly to a particular keyed record by performing a random read
using the corresponding random record number which was saved earlier.
The scheme is easily generalized when variable record lengths are
involved since the program need only store the buffer-relative byte
position along with the key and record number in order to find the
exact starting position of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record nu~ber, and subsequent random read and
write operations continue from the selected point in the file.

(All Information Contained Herein is Proprietary to Digital Research.)

29

3. A SAMPLE FILE-TO-FILE COpy PROGRAM.

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY.ASH using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a hHEX" file. The LOAD program is the used to produce a COPY. COM file
which executes directly under the CCP. The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at 006CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at 005CH is
properly set-up by the CCP upon entry to the COpy program. That is,
the first name is placed into the default fcb, with the proper fields
zeroed, including the current record field at 007CH. The program
continues by opening the source file, deleting any exising destination
file, and then creating the destination file. If all this is
successful, the program loops at the label COpy until each record has
been read from the source file and placed into the destination file.
Upon completion of the data transfer, the destination file is closed
and the program returns to the CCP command level by jumping to BOOT.

0000 =
0005 =
005c =
005c =
006c =
0080 =
0100 =

0009 =
000f =
0010 =
0013 =
0014 =
0015 =
0016 =

0100
0100 311b02

0103 0e10

· ,
sample file-to-file copy program

; at the ccp level, the command
;

· ,
;

copy a:x.y b:u.v

; copies the file named x.y from drive
a to a file named u.v on drive b.

· , boot
bdos
fcbl
sfcb
fcb2
dbuff
tpa
;
printf
openf
closef
deletef
readf
writef
makef
· ,

· , · ,

equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

org
lxi

0000h
0005h
005ch
fcbl
006ch
0080h
0l00h

9
15
16
19
20
21
22

system reboot
bdos entry point
fir s t f i 1 e n am e
source fcb
second file name
defaul t buffer
beginning of tpa

print buffer func#
open file func#
close file func#

; delete file func#
sequential read

; sequential write
; make file func#

tpa ; beg inning of tpa
sp,stack; local stack

move second file name to dfcb
mvi c,16 ; half an fcb

(All Information Contained Herein is Proprietary to Digital Research.)

30

0105 116c00
0108 21da01
010b 1a mfcb:
010c 13
010d 77
010e 23
010f 0d
0110 c20b01

0113 af
011432fa01

0117 115c00
011a cd6901
011d 118701
0120 3c
0121 cc6101

0124 11da01
0127 cd7301

012a Ilda01
012d cd8201
0130 119601
0133 3c
0134 cc6101

0137 115c00 copy:
013a cd7801
013d b7
013e c25101

0141 11da01
0144 cd7d01
0147 lla901
014a b7
014b c46101
014e c3 3 701

;

1xi
lxi
Idax
inx
mov
inx
dcr
jnz

d,fcb2
h,dfcb
d
d
m,a
h
c
mfcb

source of move
destination fcb
source fcb
ready next
dest fcb
ready next
count 16 ••• 0
loop 16 t im e s

name has been moved, zero cr
xra a ; a = 00h
sta dfcbcr; current rec = 0

source and destination fcb's ready

lxi
call
lxi
inr
cz

d, s fc b
open ;
d,nofile;
a
finis

source file
error if 255
ready message
255 becomes 10
done if no file

source file open, prep destination
lxi d,dfcb destination
call delete remove if present

lxi
call
lxi
inr
cz

d,dfcb
make
d,nodir
a
finis

destination
create the file
ready message
2 5 5 be corn e s 0
done if no dir space

source file open, dest file open
copy until end of file on source

lxi
call
ora
jnz

d, s fc b
read
a
eof ile

source
read next record
end of file?
skip write if so

not end of file, write the record
lxi d,dfcb destination
call write write record
lxi d,space ready message
ora a 00 if write ok
cnz finis end if so
jmp copy loop until eof

eofile: ; end of file, close destination
0151 11da01
0154 cd6e01
0157 21bb01
015a 3c
015b cc6101

lxi d,dfcb
call close
lxi h,wrprot;
inr
cz

a
finis

destination
255 if error
ready message
255 becomes 00
shouldn't happen

copy operation complete, end

(All Information Contained Herein is Proprietary to Digital Research.)

31

015e llcc01

0161 0e09
0163 cd0500
0166 c30000

;
finis:

;

0169 0e0f open:
016b c30500

;
016e 0e10 close:
0170 c30500 . ,

lxi d,normal; ready message

; write message given by de, reboot
mvi c,printf
call bdos ; write message
jmp boot ; reboot system

system interface subroutines
(all return directly from bdos)

mvi
jmp

mvi
j mp

c,openf
bdos

c,closef
bdos

01730e13 delete: mvi c,deletef
bdos 0175 c30500 jmp

;
" 1 7 8 0 e 1 4 read:
017a c30500

;
017d 0e15 write:
017f c30 500

;
0182 0e16 make:
0184 c30500

0187
0196
01a9
01bb
01cc

6e6f20fnofile:
6e6f209nodir:
6 f7 57 4f space:
7772695wrprot:
636f700normal:

mvi
j mp

mvi
jmp

mvi
j mp

console
db
db
db
db
db

c, readf
bdos

c,writef
bdos

c,makef
bdos

messages
'no source fileS'
'no directory spaceS'
'out of data spaceS'
'write protected?$'
'copy compl ete$ •

data areas
01da
01fa =

dfcb: ds 33 destination fcb
current record

01fb

o 21b

dfcbcr equ dfcb+32

ds 32
stack:

end

16 level stack

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references. This situation
could be detected by scanning the 32 byte default area starting at
location 005CH for ASCII question marks. A check should also be made
to ensure that the file names have, in fact, been included (check
locations 005DH and 006DH for non-blank ASCII characters). Finally, a
check should be made to ensure that the source and destination file
names are different. A speed improvement could be made by buffering
more data on each read operation. One could, for example, determine

(All Information Contained Herein is Proprietary to Digi~al Research.)

32

the size of memory by fetching FBASE from location 0006H and use the
entire remaining portion of memory for a data buffer. In this case,
the programmer simply resets the DMA address to the next successive
128 byte area before each read. Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incremented by 128 bytes to the end as each record is transferred to
the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

33

4. A SAMPLE FILE DUMP UTILITY.

The file dump pr09ram shown below is slightly more complex than
the s irnple ',copy prog ram given in the previous section. The dump
program read~ an input file, specified in the CCP command line, and
d isplays th~ content of each record in hexadec irnal format a t the
console. Note that the dump program saves the CCp' s stack upon entry,
resets the stack to a local area, and restores the CCp's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing.

0100
10005 =
0001 =
0002 =
0009 =
000b =
000f =
0014 =

005c =
0080 =

000d =
000a =

005c =
005d =
0065 =
0068 =
006b =
007c =
007d =

0100 210000
0103 39

0104 221502

0107 315702

010a cdc101
0l0d feff
010f c21b01

0112 llf301
0115 cd9c01
0118 c35l01

DUMP program reads input file and displays hex data

org l00h
bdos equ 0005h ;dos entry point
cons equ 1 ; read console
typef equ 2 ;type function
prlntf equ 9 ;buffer print entry
brkf equ 11 ;break key function (true if char
openf equ 15 ;file open
readf equ 20 ; read function . ,
fcb equ 5ch ; file con trol block address
buff egu 80h ;input disk buffer address

non graphic characters
cr equ 0dh ;carriage return
If equ 0ah ;line feed

fcbdn
fcbfn
fcbft
fcbrl
fcbrc
fcbcr
fcbln

file
equ
equ
equ
equ
equ
equ
equ

control block definitions
fcb+0 ;disk name
fcb+l ;file name
fcb+9 ;disk file type (3 characters)
fcb+12 ;file's current reel number
fcb+15 ;file's record count (0 to 128)
fcb+32 ;current (next) record number (0
fcb+33 ;fcb length

set up stack
lxi h,0
dad sp
entry stack pointer in hI from the ccp
shld oldsp
set sp to local stack area (restored at finis)
lxi sp,stktop
read and print successive buffers
call setup ;set up input file
cpi 255 ;255 if file not present
jnz openok ;skip if open is ok

f,ile not there, give error message and return
l~i d,opnmsg
call err
j mp fin is; to ret ur n

(All Information Contained Herein is Proprietary to Digital Research.)

34

011b 3e80
011d 321302

0120 210000

0123 e5
0124 cda201
0127 e1
0128 da5101
012b 47

012c 7d
012d e60f
012f c24401

0132 cd7201

0135 cd5901

0138 0 f
0139 da5101

013c 7c
013d cd8f01
0140 7d
0141 cd8f01

0144 23
121145 3e2121
121147 cd651211
12114a 78
12114b cd8fl211
014e c3231211

121151 cd7201
0154 2a1502
0157 f9

0158 c9

0159 e5d5c5
015c 0e0b
015e cd0500
0161 cld1el

openok:

;
gloop:

.
I

nonum:

.
I

finis:

. ,
break:

;open operation ok, set buffer index to end
mvi a,80h
sta ibp :set buffer pointer to 80h
hI contains next address to print
1xi h,0 :start with 0000

push h :save line position
call gnb
pop h :recall line position
jc finis :carry set by gnb if end file
mov b,a
print hex values
check for line fold
mov a,l
ani 0fh :check low 4 bits
jnz nonum
print line number
call cr If

check for break key
call break
accum lsb = 1 if character ready
rrc ;into carry
jc finis :don't print any more

mov
call
mov
call

inx
mvi
call
mov
call
j mp

a,h
phex
a,l
phex

h
a,' •
pchar
a,b
phex
gloop

:to next line number

end of dump, return to ccp
(note that a jmp to 0000h reboots)
call crlf
lhld oldsp
sph1
stack pointer contains ccp's stack location
ret :to the ccp

subr ou tines

icheck break key (actually any key will do)
push h! push d! push b: environment saved
mvi c,brkf
call bdos
pop b! pop o! pop hi environment restored

(All Information Contained Herein is Proprietary to Digital Research.)

35

0164 c9 ret
i
pchar: iprint a character

0165 e5d5c5 push h! push d! push bi saved
0168 0e02 mvi c,typef
016a Sf mov e,a
016b cd0500 call bdos
016e cldlel pop b! pop d! pop hi restored
0171 c9 ret

i
crlf:

0172 3e0d mvi a,cr
0174 cd6501 call pchar
0177 3e0a mvi a,lf
0179 cd6501 call pchar
017c c9 ret

i
pnib: iprint nibble in reg a

017d e60f ani 0fh i low 4 bits
017f fe0a cpi 10
0181 d28901 jnc plIO

less than or equal to 9
10184 c630 adi 110 1

0186 c38b01 jmp prn

greater or equal to 10
0189 c637 p10: adi 'a I - 10
018b cd6501 prn: call pchar
018e c9 ret . ,

phex: iprint hex char in reg a
018f f5 push psw
01910 eJf rrc
0191 eJf rrc
0192 0f rrc
0193 0f rrc
0194 cd7d01 call pnib iprint nibble
0197 f1 pop psw
0198 cd7d01 call pnib
1019b c9 ret

er r: iprint error message
d,e addresses message ending wi th •• $ 10

019c 0e09 mvi c,printf iprint buffer function
01ge cd05100 call bdos
IOlal c9 ret

i
gnb: iget next byte

01a2 3a13102 Ida ibp
01a5 fe80 cpi 8eJh
0la7 c2b301 jnz 9 0

read another buffer

(All Information Contained Herein is Proprietary to Digital Research.)

36

0laa cdce0l
o lad b7
o lae cab301

0lbl 37
0lb2 c9

0lb3 Sf
0lb4 1600
01b6 3c
01b7 321302

01ba 218000
01bd 19

01be 7e

01bf b7
((llc0 c9

. ,

i
g0:

call diskr
ora a izero value if read ok
jz g0 ifor another byte
end of data, return with carry set for eof
stc
ret

iread the byte at buff+reg a
mov e,a ils byte of buffer index
mvi d,0 ;double precision index to de
inr a :index=index+l
sta ibp iback to memory
pointer is incremented
save the current file address
lxi h,buff
dad d
absolute character address is in hI
mov a,m
byte is in the accumulator
ora a ireset carry bit
ret

setup: ; set up file
open the file for input

01cl af xra a izero to accum
01c2 327c00 sta fcbcr iclear current record

01c5 ll5c00
((llc8 0e0f
01ca cd0500

o lcd c9

o Ice e5d5c5
o Idl 115c00
01d4 0e14
((lld6 cd0500
o Id9 cldlel
o Idc c9

i

;
diskr:

i

lxi d,fcb
mvi c,openf
call bdos
255 in accum if open error
ret

;read disk file record
push h! push d! push b
lxi d,fcb
mvi C" r.eadf
call bdos
pop b! pop d! pop h
ret

i fixed message area
01dd 46494c0signon: db 'file dump version 2.0S'
01f3 0d0a4e0opnmsg: db cr,lf,'no input file present on diskS'

0213
0215

0217

0257

;
ibp:
oldsp:

. ,
stktop:

variable area
ds 2
ds 2

stack area
ds 64

end

iinput buffer pointer
ientry sp value from ccp

:reserve 32 level stack

(All Information Contained Herein is Proprietary to Digital Research.)

37

5. A SAMPLE RANDCM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or wr i ting random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file' labelled RANDOM.COM, the CCP level
command:

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The input commands take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is issued,
the RANDCM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string valu.e at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at the
label "ready" where the individual commands ar~e interpreted. The
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutines then follow,
which contain the principal input line processor, called "readc."
This particular program shows the elements of random access
processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

38

0100

0000 =
0005 =
0001 =
0002 =
0009 =
000a =
000c =
000f =
0010 =
0016 =
0021 =
0022 =

005c =
007d =
007f =
0080 =

000d =
000a =

0100 31bc0

0103 0e0c
0105 cd050
0108 fe20
0l0a d2160

0l0d lllb0
0110 cdda0
0113 c3000

0116 0e0f
0118 l15c0
0l1b cd050
0lle 3c
0llf c2370

.*** ,
• * ,
;* sample random access program for cp/m 2.0
. * ,

*
*
*

.*** ,

;
reboot
bdos

org

equ
equ

coninp equ
conout equ
pstr ing equ
rstring equ
version equ
openf equ
closef equ
makef equ
readr equ
wr iter equ
;
fcb
ranrec
ranovf
buff

cr
If

equ
equ
equ
equ

equ
equ

100h

0000h
0005h

1
2
9
10
12
15
16
22
33
34

005ch
fcb+33
fcb+35
0080h

0dh
0ah

;base of tpa

; sys tern reboot
;bdos entry point

;console input function
;console output function
;print string until '$'
;read console buffer
;return version number
;file open function
;close function
;make file function
; read random
;write random

;default file control block
;random record position
;high order (overflow) byte
; buffer address

;carriage return
;line feed

;
.*** ,
. * ,
;* load SP, set-up file for random access

*
*

.* * ,

.*** ,

versok:

lxi sp,s tack

version 2.0?
mvi
call
cpi
jnc
bad
1xi
call
jmp

c,version
bdos
20h ;version 2.0 or better?
versok

version, message and go back
d,badver
print
reboot

correct version for random access
mvi c,openf ;open default fcb
lxi d,fcb
call bdos
inr a ;err 255 becomes zero
jnz ready

cannot open file, so create it

(All Information Contained Herein is Proprietary to Digital Research.)

39

0122 0e16
0124 115c0
0127 cd050
012a 3c
012b c2370

012e 113a0
0131 cdda0
0134 c3000

0137 cde50
013a 227d0
013d 217f0
0140 3600
0142 fe51
0144 c2560

0147 0e10
0149 115c0
014c cd050
014f 3c
0150 cab90
0153 c3000

0156 fe57
0158 c2890

015b 114d0
015e cdda0
0161 0e7f
0163 21800

0166 c5
0167 e5
0168 cdc20
016b el

mvi c,makef
lxi d,fcb
call bdos
inr a ~err 255 becomes zero
jnz ready

cannot create file, directory full
lxi d,nospace
call print
jmp reboot ~ back to ccp

~

.*** I

• * ,
. * , loop back to .. ready" after each command

*
*

.* * ,

.*** ,

ready:
file is ready for processing

call
shld
lxi
mvi
cpi
jnz

readcom ~read next command
ranrec istore input record.
h, ranovf
m,0 ~clear high byte if set
IQI ~quit?

notq

quit processing, close file
mvi c,closef
lxi d,fcb
call bdos
inr a ~err 255 becomes 0
jz error ierror message, retry
jmp reboot ~back to ccp

;
.*** I

.* * ,
i* end of quit command, process write *
.* * ,
.*** ,
notq:

not the quit command, random write?
cpi IW I

jnz notw

this is a random wr i te, fill buffer until cr
lxi d,datmsg
call print ida ta prompt
mvi c,127 ;up to 127 characters
lxi h,buff idestination

r loop: ; read next character to buff
push b ; save counter
push h ;next destination
call getchr ;character to a
pop h ;restore counter

(All Information Contained Herein is Proprietary to Digital Research.)

40

016c cl
((} 16d fe0d
016f ca78((}

0172 77
0173 23
0174 0d
017S c2660

0178 3600

017a 0e22
((}17c 11Sc((}
017f cd0S0
0182 b7
0183 c2b90
0186 c3370

0189 feS2
018b c2b90

018e 0e21
0190 lIScO
0193 cd0S((}
0196 b7
0197 c2b90

019a cdcf0
O19d 0e80
019f 2180((}

01a2 7e
0la3 23
0la4 e67f
0la6 ca370
0la9 cS
0laa eS
0lab fe20
0lad d4c80
0lb0 el
0lbl cl
0lb2 0d
01b3 c2a20
0lb6 c3370

e r loop:

;

pop b
cpi cr
j z er loop

irestore next to fill
iend of line?

not end, store character
mov
inx
dcr
jnz

m,a
h
c
rloop

inext to fill
icounter goes down
iend of buffer?

end of read loop, store 0((}
mvi m,0

write the record to selected record
mvi c,writer
lxi d,fcb
call bdos
ora a ierror code zero?
jnz error i message if not
jmp ready ifor another record

number

i
i***
.* * ,
i* end of write command, process read *
.* * ,
.*** ,
notw:

not a wr i te command, read record?
cpi • R • jnz error iskip if not

read random record
mvi c, readr
lxi d,fcb
call bdos
ora a i return code 00?
jnz error

read was successful, write to console
call crlf inew line
mvi c,128 imax 128 characters
lxi h,buff inext to get

wloop:
mov a,m inext character
inx h inext to get
ani 7fh imask parity
jz ready ifor another com~and if 00
push b isave counter
push h isave next to get
cpi • • i graphic?
cnc putchr iskip output if not
pop h
pop b
dcr c icount=count-l
jnz wloop
jmp ready

(All Information Contained Herein is Proprietary to Digital Research.)

41

01b9 11590
01bc cdda0
01bf C3370

01c2 0e01
01c4 cd050
01c7 c9

01c8 0e02
01ca Sf
01cb cd050
01ce c9

01cf 3e0d
01dl cdc80
01d4 3e0a
01d6 cdc80
01d9 c9

01da d 5
01db cdcf0
01de dl
01df 0e09
01el cd050
01e4 c9

01e5 116b0
01e8 cdda0
01eb 0e0a
01ed 117a0
01f0 cd050

. ,
:***~*
.* * ,
:* end of read command, all errors end-up here * . * * ,
:***

error:
lxi
call
jmp

d,errmsg
print
ready

;
:***
.* * ,
:* utility subroutines for console i/o *
.* * ,
.*** ,
getchr:

putchr:

cr If:

pr int:

readcom:

:read next console character to a
mvi c,coninp
call bdos
ret

:write character from a to console
mvi
mov
call
ret

c, conout
e,a :character to send
bdos :send character

:send carriage return line feed
mvi a,cr :carriage return
call putchr
mvi a,lf :line feed
call putchr
ret

iprint
push
call
pop
mvi
call
ret

the buffer addressed by de until $
d
crlf
d :new line
c ,pstr ing
bdos :pr int the str ing

:read the next command line to the conbuf
lxi d ,prompt
call print : command?
mvi
lxi
call

c, r s tr ing
d ,conbuf
bdos ;read command line

command line is present, scan it

(All Information Contained Herein is Proprietary to Digital Research.)

42

01f3 21000
01f6 117c0

h,0 ;start with 0000
d,conlin;command line

01f9 1a readc:

lxi
lxi
Idax
inx
ora

d ;next command character
01fa 13
01fb b7
01fc c8

01fd d630
01ff fe0a
0201 d2130

0204 29
0205 4d
0206 44
0207 29
0208 29
0209 09
o 20a 85
o 20b 6f
o 20c d2f90
o 20f 24
0210 c3f90

0213 c630
0215 fe61
0217 d8

0218 e65f
"21a c9

endrd:

d ito next command position
a ;cannot be end of command

rz
not zero, numeric?
sui '0'
cpi 10 ;carry if numeric
jnc endrd
add-in next digit
dad h ;*2
mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp

c,l
b,h
h
h
b
1
l,a
readc
h
readc

;bc = value * 2
;*4
i*8
i*2 + *8 = *10
; +dig i t

ifor another char
;overflow
ifor another char

end of read, restore value in a
ad i ' 0 ' ; command
cpi 'a' itranslate case?
rc
lower case, mask lower case bits
ani 101$1111b
ret

i
.*** ,
.* * ,
;* string data area for console messages *
. * * ,
.*** ,
badve r:

021b 536f79 db 'sorry, you need cp/m version 2$'
nospace:

023a 4e6f29 db 'no directory spaceS'
da tmsg :

024d 547970 db 'type data: $,
errmsg:

0259 457272 db 'error, try again.$'
prompt:

026b 4e6570 db 'next command? $,
;

(All Information Contained Herein is Proprietary to Digital Research.)

43

027a 21
027b
027c
0021 =
029c

02bc

1***
.* * ,
1* fixed and variable data area *
.* * ,
.*** ,
conbuf: db conlen ; length of console buffer
consiz: ds 1 ; resul t ing size after read
conlin: ds 32 ; length 32 buffer
conlen equ $-consiz
1

ds 32 ; 16 level stack
stack :

end

Again, major improvements could be made to this particular
program to enhance its operation. In fact, with some work, this
program could evolve into a simple data base management system. One
could, for example, assume a standard record size of 128 bytes,
consisting of arbitrary fields within the record. A program, called
GETKEY, could be developed which first reads a sequential file and
extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the 'iLASTNAME" field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its 16-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical
list of LASTNAME fields with their corresponding record numbers.
(This list is called an "inverted index" in information retrieval
par lance.)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command line might
appear as:

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular entry
quite rapidly by performing a IIbinary search," similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search.
You'll quickly reach the item you're looking for (in 10g2(n) steps)
where you'll find the corresponding record number. Fetch and display
this record at the console, just as we have done in the program shown
above.

(All Information Contained Herein is Proprietary to Digital Research.)

44

At this point you're just getting started. with a little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of the
record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

(All Information Contained Herein is Proprietary 'to Digital Research.)

45

6. SYSTEM FUNCTION SUMMARY.

FUNC FUNCTION NAME INPUT PARAMETERS OUTPUT RESULTS

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

System Reset
Console Input
Console Output
Reade r Input
punch Output
List Output
Direct Console I/O
Get I/O Byte
Set I/O Byte
Pr int Str ing
Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next
Delete File
Read Sequential
write Sequential
Make File
Rename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr (Alloc)
write Protect Disk
Get R/O Vector
Set File Attributes
Get Addr (disk parms)
Set/Get User Code
Read Random
Wr i te Random
Compute File Size
Set Random Record

none
none
E = char
none
E = char
E = char
see def
none
E = IOBYTE
DE = .Buffer
DE = .Buffer
none
none
none
E = Disk Number
DE = .FCB
DE = .FCB
DE = .FCB
none
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
none
none
DE = .DMA
none
none
none
DE = .FCB
none
see def
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB

* Note that A = L, and B = H upon return

none
A = char
none
A = char
none
none
see def
A = IOBYTE
none
none
see def
A = 00/FF
HL= Version*
see def
see def
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Err Code
A = Err Code
A = Dir Code
A = Dir Code
HL= Login Vect*
A = Cur Disk#
none
HL= .Alloc
see def
HL= R/O Vect*
see def
HL= .DPB
see def
A = Err Code
A = Err Code
r0, rl, r2
r0, rl, r2

(All Information Contained Herein is Proprietary to Digital Research.)

46

THE CP/M 2.0
SYSTEM ALTERATION GUIDE

01 ()~(j~TflL RE~EflR[H
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP/M 2.0 ALTERATION GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

Copyright

Copyright {cl 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specificaIJy disclaims any
implied warranties of merchantability or fitness for any parti
cular purpose. Further, Digita] Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

Trademarks

CP/M is a registered trademark of Digital Research. MP/M,
MAC, and SID are trademarks of Digital Research.

1. In t r odu c t ion

CP/M 2.0 ALTERATION GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove" California

2. First Level System Regeneration.
3. Second Level System Generation
4. Sample Getsys and Putsys Programs

5. Diskette Organization

6. The BIOS Entry Points

7 • A Sample BIOS

8. A Sample Cold start Loader

9. Reserved Locations in Page Zero • •

10. Disk Parameter Tables
11. The DISKDEF Macro Library •

12. Sector Blocking and Deblocking
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

· ·

· ·

1

2

6

10

12

14

21

22

23

25

34

36
39
50
56
59
61
66

1. IN1rRODUC'fION

'roe standard CP/M system assumes operation on an Intel r1DS-t300
microcomputer development system, but is designed so that the user can
alter a specific set of subroutines which define the hardware
operating environment. In this way, the user can ?roduce a diskette
which operates with any IBM-374l format compatible drive controller
and other peripheral devices.

Altnough standard CP/M 2.0 is configured for single density floppy
disks, field-alteration features allow adaptation to a wide variety of
disk subsystems from single drive minidisks through high-capacity
"hard aisk" systems. In order to simplify the following adaptation
process, we assume that CP/M 2.0 will first be configured for single
density floppy disks where minimal editing and debugging tools are
available. If an earlier version of CP/M is available, the
customizing process is eased considerably. In this latter case, you
may. wiSh to briefly review the system generation process, and skip to
later sections which discuss system alteration for non-standard disk
systems.

In order to achieve device independence, CP/M is separated into
three distinct modules:

B lOS - bas i c I/O s Y stem w h i chi sen vir 0 l1iO en t de pen den t
BOOS - basic disk operating system which is not dependent

upon the hardware configuration
CCP - the console command processor which uses the BOOS

Of these modules, only the BIOS is dependent upon the particular
nardware. That is, the user can "patch" the distribution version of
CP/M to provide a new BIOS whiCh provides a customized interface
between the remaining CP/M modules and the user's own hardware system.
~he purpose of this document is to provide a step-by-step procedure
for patching your new BIOS into CP/M.

If CP/M is being tailored to your computer system for the first
time, the new BIOS requires some relatively simple software
development and testing. The standard BIOS is listed in Appendix B,
and can be used as a model for the customized package. A skeletal
version of the BIOS is given in Appendix C which can serve as the
basis for a modified BIOS. In addition to the BIOS, the user must
write a simple memory loader, called GETSYS, which brings the
operating system into memory. In order to paten the new BIOS into
CP/M, the user must write the reverse of GETSYS, called PUTSYS, which
places an altered version of CP/M back onto the diskette. PUTSYS can
be derived from GETSYS by changing the disk read commands into disk
write commands. Sample skeletal GETSYS and PUTSYS programs are
described in Section 3, and listed in Appendix D. In order to make
the CP/H system work automatically, the user must also supply a cold
start loader, similar to the one provided with CP/M (listed in
Appendices A and B). A skeletal form of a cold start loader is given
in Appendix E which can serve as a model for your loader.

(All Information Contained Herein is Proprietary to Digital Research.)

1

2. FIRS'r LEVEL SYS'rEM REGENERA'rrON

'r h e pro C e du ret 0 follow top at cn the CP /M s Y stem is g i v en below in
several steps. Address references in each step are shown with a
follow ing II H" wh ich denotes t,he hexadec imal radix, and are given for a
20K CP/fwi system. For larger cp/r~ systems, add a tibias" to each
address which is shown with a "+b" following it, where b is equal to
tne memory size - 20K. Values for b in various standard memory sizes
are

24K: b = 24K - 20K = 4K = l000H
32K: b = 32K - 20K = 12K = 3000H
40K: b = 40K - 20K = 20K = 5000H
4 8K: b = 48K - 20K = 28K = 7000H
5 6K: b = 56K - 20K = 36K = 9000H
62K: b = 62K 20K = 42K = A800H
6 4K: b = 64K 20K = 44K = 8000H

Note: The standard distribution version of CP/M is set for
operation within a 20K memory system. Therefore, you must first bring
up the 20K CP/M system, and then configure it for your actual memory
size (see Second Level System Generation).

(1) Review section 4 and write
first two tracks of a diskette into
must begin at location 3380H.
location 1008 (base of the TPA),
Appendix d.

a GETSYS program which reads the
memory. The data from the diskette

Code GETSYS so that it starts at
as shown in the first part of

(2) 'r est t neG E ir s y S pro gram by rea cl i ng a b 1 an l< dis ke t t e in to
memory, and check to see that the data has been read properly, and
that the diskette has not been altered in any way by the GETSYS
program.

(3) Run the GETSYS program using an initialized CP/M diskette to
see if GETSYS loads CP/M starting at 3380H (the operating system
actually starts 128 bytes later at 3400H).

(4) Review section 4 and write the PUTSYS program which writes
memory starting at 33808 back onto the first two tracks of the
diskette. The PUTSYS program should be located at 200H, as shown in
the second part of Appendix D.

(5) Test the PUTSYS program using a blank uninitialized diskette
by writing a portion of memory to the first two tracks: clear memory
and read it back using GETSYS. Test PUTSYS completely, since this
program will be used to alter CP/M on disk.

(6) Study Sections 5, 6, and 7, along with the distribution
version of the BIOS given in Appendix B, and write a simple version
which performs a similar function for the customized environment. Use,
the program given in Appendix C as a model. Call this new BIOS by the
name CBIOS (customized BIOS). Implement only the primitive disk
operations on a single drive, and simple console input/output
functions in this phase.

(Ail Infor~ation Contained Herein is Proprietary to Digital Research.)

2

(7) Test CBIOS completely to ensure that it properly performs
console character I/O and disk reads and writes. Be especially
careful to ensure that no disk write operations occur accidently
during read operations, and check that the proper track and sectors
are addressed on all reads and writes. Failure to make these checks
may cause destruction of the initialized CP/~ system after it is
patched.

(8) Referring to Figure I in section 5, note that the 8IOS is
placed between locations 4A00H and 4FFFH. Read the CP/M system using
GETSYS and replace the BIOS segment by the new CBIOS developed in step
(6) and tested in step (7). 'rhis replacement is done in the memory of
the machine, and will be placed on the diskette in the next step.

(9) Use PUTSYS to place the patched memory image of CP/M onto the
first two tracks of a blank diskette for testing.

(10) Use GETSYS to bring tne copied memory image from the test
diskette back into memory at 3380H, and check to ensure that it has
loaded back properly (clear memory, if possible, before the load).
Upon successful load, brancn to the cold start coae at location 4A00rl.
~he cold start routine will initialize page zero, then jum? to the CCP
at location 3400H which will call the BOOS, which will call the CaIOS.
The CBIOS will be asked by the CCP to read sixteen sectors on track 2,
3nd if successful, CP/H will type "A>", the system prompt.

When you make it this far, you are almost on the air. If you have
trouble, use whatever debug facilities you have available to trace and
breakpoint your CBIOS.

(11) Upon completion of step (10), CP/M has prom~ted the console
for a command input. Test the disk write operation by typing

SAVE I X.COM

(recall that all commands must be followed by a carriage return).

CP/M should respond with another prompt (after several disk accesses):

A>

If it does not, debug your diSK write functions and retry.

(12) Then test the directory command by typing

OIR

CP/M should respond with

A: X COM

(13) Test tne erase command by typing

ERA X. C011

{All Information Contained Herein is Proprietary to Digital Research.)

3

CP}M should respond with the A promote When you make it this far, you
should have an operational system which will only require a bootstrap
loader to function completely.

(14) Write a bootstrap loader which is similar to GETSYS, and
place it on track 0, sector 1 using PUTSiS (again using the test
diskette, not the distribution diskette). See Sections 5 and d for
more information on the bootstrap operation.

(15) Retest the new test diskette with the bootstrap loader
installed by executing-steps (11), (12), and (13). Upon completion of
these tests, type a control-C (control and C keys simultaneously). The
system should then execute a "warm start" which reboots the system,
and types the A prompt.

(16) At this point, you prObably have a good version of your
customized CP/M system on your test diskette. Use GETSYS to load CP/M
from your test diskette. Remove the test diskette, place the

,distribution diskette (or a legal copy) into the drive, and use PUTSYS
to replace the distribution version by your customized version. Do
not make this replacement if you are unsure of your patch since this
step destroys the system which was sent to you from Digital Research.

(17) Load your modified CP/M system and test it by typing

DIR

- CP/M should res~ond with a list of files which are provided on the
initialized diskette. One such file should be the memory image for
the debugger, called DDT. COM.

NOTE: from now on, it is important that you always reboot tne CP/M
system (ctl-C is sufficient) when the diskette is removed and replaced
by anotner diskette, unless the new diskette is to be read only.

(lb) Load and test the debugger by typing

DDT

(see the document "CP/N Dynamic Debugging '1'001 (OD'r) 01 for operating
procedures. You should take the time to become familiar with DDT, it
will be your nest triend in later steps.

(l~) Before making further CBIOS modifications, practice using
the editor (see the ED user's guide), and assembler (see the ASM
user's guide). Then recode and test the GETSYS, PUTSYS, and CBIOS
programs using ED, ASl1, ~nd DD'r. Code and test a COpy program which
does a sector-to-sector copy from one diskette to another to obtain
oack-up copies of the original diskette (NOTE: read your CP/M
Licensing Agreement; it specifies your legal responsibilities when
copying the CP/M system). Place the copyright notice

Copyright (c), 1979
Digital Research

(All Information Contained Herein is Proprietary to Digital Researcn.)

4

on eacn copy which is made with your COpy program.

(20) Modify your CBIOS to include the extra functions for
punches, readers, signon messages, and so-forth, and add the
facilities for a additional disk drives, if desired. You can make
these changes wi th the GEll SYS and PUJrSYS programs which you have
developed, or you can refer to the following section, which outlines
CP/M facilities which will aid you in the regeneration process.

You now have a good copy of the customized CP/M system. Note that
although the CBIOS portion of CP/M which you have developed belongs to
you, the modified version of CP/M which you have created can be copied
for your use only (again, read your Licensing Agreement), and cannot
be legally copied for anyone else's use.

It should be noted that your system remains file-compatible with all
otner CP/M systems, (assuming media compatiblity, of course) which
allows transfer of non-proprietary software between users of CP/M.

(All Information Contained Herein is Proprietary to Digital Research.)

5

3. SECOND LEVEL SYSTEM GENERATION

Now that you have the CP/M system running, you will want to
configure CP/M for your memory size. In general, you will first get a
memory image of CP/M with the "l10VCPM" program (system relocator) and
9lace this memory image into a named disk file. The disk file can then
be loaded, examined, patched, and replaced using the debugger, and
system generation program. For further details on the operation of
the s e p r og r am s, see the " G u ide to C P / i'4 Fe a t u res and Fa c i 1 i tie sit
~anual.

Your CBIOS and BOOT can be modified using ED, and assembled using
ASM, producing files called CBIOS.HEX and BOOT.HEX, which contain the
macnine code for CBIOS and BOOT in Intel hex format.

To get the memory image of CP/M into the TPA configured for the
desired memory size, give the command:

tvlOVCP M x x *

where "xx" is the memory size in decimal K bytes (e.g., 32 for 32K).
The response will oe:

CONs'rROC'fING xxK Cf> /t1 VERS 2.0
RElillY FOR "SYSGEN" OR
"SAVE 34 CPlv1xx.COlv1"

At this point, an image of a CP/M in the TPA configured for the
requested memory size. The memory image is at location 0900H through
227FH. (i.e., The BOOT is at 0900H, the CCP is at 980H, the BOOS
starts at l180H, and the BIOS is at lF80H.) Note that the memory
image has the standard MDS-800 BIOS and BOOT on it. It is now
necessary to save the memory image in a file so that you can patch
your CBIOS and CBOOT into it:

SAVE 34 CPMxx.COM

'rhe memory image created by the "MOVCPM" program is offset by a
negative bias so that it loads into the free area of the TPA, and thus
does not interfere with the operation of CP/M in higher memory. This
memory image can be subsequently loaded under DDT and examined or
changed in preparation for a new generation of the system. DDT is
loaded with the memory image by typing:

DDT CPMxx.COM

DDT should respond with

NEXT
231010

PC
011010

Load DDT, then read the CPM
image

(The DDT prompt)

You can then use the display and disassembly commands to examine

(All Information Contained Herein is Proprietary to Digital Research.)

6

portions of the memory image between 900H and 227FH. Note, however,
that to find any particular address within the memory image, you must
apply the negative bias to the CP/M address to find the actual
address. Track 00, sector 01 is loaded to location 900H (you should
find the cold start loader at ~k10H to 97FH), track 100, sector 02 is
loaded into 980H (this is the base of the CCP), and so-forth through
the entire CP/M system load. In a 20K system, for exam?le, the CCP
resides at the CP/M address 3400H, but is placed into memory at 980H
by the SYSGEN program. Thus, the negative bias, denoted by n,
satisfies

3400H + n = 980H, or n = 980H - 3400H

Assuming two's complement arithmetic, n = 05808, which can be checked
by

34008 + D580H = 10980H = 0980H (ignoring nigh-order
overflow) •

Note that for larger systems, n satisfies

(3400H+b) + n = 980H, or
n = 980H - (3400H + b), or
n = D580H - b.

The value of n for common CP/M systems is given below

memory size bias b negative offset n

20K 0000H D580H - 0000H = 0580H
24K 1000H D580H 1000H = C58k'JH
32K 3000H D580H - 3000H = A580H
40K 5000H 05816H - 5000H = 8580H
48K 7000H D580H - 7G00H = 6580H
56K 9000H 0580H 9000H = 4580H
62K A800H D580H - A800H = 2D80H
64K 80'10H 0580H 3000H = 2580H

Assume, for example, that you want to locate the address x within the
memory image loaded under ODT in a 20K system. First type

Hx,n Hexadecimal sum and difference

and DDT will respond with the value of x+n (sum) and x-n (difference).
The first number printed by DDT will be the actual memory address in
the image where the data or code will be found. The input

rl3400,0580

for example, will produce 980H as the sum, which is where the CCP is
located in the memory image under DDT.

Use the L command to disassemble portions the gIOS located at
(4A00H+b)-n which, when you use the H command, oroduces an actual
address of IF80H. The disassembly command would thus be

(All Information Contained Herein is Proprietary to Digital Research.)

7

LIF80

It is now necessary to oatch in your CBOOT and CBIOS routines. The
BOOT resides at location 0900H in the memory image. If the actual
load address is "n'·, then to calculate the bias (m) use the command:

H900,n Subtract load address from
target address.

The second number tYged in response to the command is the desired bias
(m). For example, if your BOOT executes at 0080H, tne command:

H900,80

will reply

09H0 0880 Sum and difference in hex.

'fherefore, the bias "m" would be 0880H. 1'0 read-in the BOOT, give the
command:

ICBoo'r. HEX

'I'hen:

Rm

You may now examine your CBOO~ with:

L900

Input file CBOOT.HEX

Read CBOOT with a bias of
m (=900H-n)

We are now ready to replace the C8IOS. Examine
where the original version of the CBIOS resides.

the area
Then type

at IF80H

IC8IOS. HEX Ready the "hex" file for loading

assume that your CBIOS is being integrated into a 20K CP/M system, and
thus is origined at location 4A00H. In order to properly locate the
CBIOS in the memory image under DDT, we must apply the negative bias n
for a 2 0 K s Y stem w hen loa din g the hex f i 1 e • 'r his i sac c om pI ish e d by
typing

RD580 Read the file with bias 0580H

Upon completion of the read, re-examine the area where the CBIOS has
been loaded (use an "LlF80" command), to ensure that is was loaded
properly. When you are satisfied that the change has been made,
return from DDT using a control-C or "G0" command.

Now use SYSGEN to replace the patched memory image back onto a
diskette (use a test diskette until you are sure of your ?atch), as
shown in the following interaction

(All Information Contained Herein is proprietary to Digital Research.)

8

SYSGEN
SYSGEN VERSION 2.0
SOURCE DRIVE NAME (OR

DESTINATION DRIVE NAME

DESTINATION ON B, THEN

FUNCTIO~ COMPLETE

Start the SYSGEN program
Sign-on message from SYSGEN

RE'fURN TO SKIP)
Respond with a carriage return
to skip the CP/M read operation
since the system is already in
memory.
(OR RETURN TO REBOOT)
Respond witn "B" to write the
new system to the diskette in
drive B.
TY PE RE'fURN
Place a scratch diskette in
drive B, then type return.

DESTI~ATION DRIVE NAME (OR RETURN TO REBOOT)

Blace the scratch diskette in your drive A, and then perform a
coldstart to bring up the new CP/M system you have configured.

'rest the new CP/t1 system, and place the Dig i tal Research copyr ight
notice on the diskette, as specified in your Licensing Agreement:

Copyright (c), 1979
Digital Research

9

4. SAMPLE GETSYS AND PUTSYS PROGRAMS

The following program provides a framework for the GETSYS and
PU11SYS pr og rams re rerenced in Section 2. Irhe READSEC and v~RI'rESEC
subroutines must be inserted by the user to read and write the
specific sectors.

i

GETSYS PROGRAM -
REGISTER

A
B
C
DE
HL
SP

READ TRACKS 0 AND 1 TO MEMORY AT 3380H
USE

(SCRATCH REGISTER)
TRACK COUNT (0, 1)
SECTOR COUNT (1,2, ••• ,26)
(SCRATCH REGISTER PAIR)
LOAD ADDRESS
SET TO STACK ADDRESS

STAR11
: LXI S£>,3380H

H, 3380H
B, 0

iSET STACK POINTER TO SCRATCH AREA
iSET BASE LOAD ADDRESS

RD'rRK :

ROSEC:

LXI
MVI

~1VI

CALL
LXI
OAD
INR
f10V
CPI
JC

ARRIiJE
INR
MOV
CPI
JC

ARRIVE
HL'r

C,l

READSEC
D,128
D
C
A,C
27
RDSEC

HERE AT
B
A,B
2
RD'rRK

HERE Air

END

END

OF

OF

iSTART WITH TRACK 0
iREAD NEX'r TRACK (INI'fIALLY 0)
iREAD STARTING WITH SECTOR 1
:READ NEXT SECTOR
iUSER-SUPPLIED SUBROUTINE
i MOVE LOAD ADDRESS rrONEXT 1/2 PAGE
iHL = HL + 128
iSECTOR = SECTOR + 1
iCHECK FOR END OF TRACK

iCARRY GENERATED IF SECTOR < 27

TRACK, MOVE 'ro NEXT 'rRACK

iTEST FOR LAST TRACK

i CARRY GENERA'rED IE' 'rRACK < 2

LOAD; HAL'r FOR NO\-l

: USER-SUPPLIED SUBROUTINE TO READ THE DISK
READSEC:

ENTER WITH TRACK NUMBER IN REGISTER S,
SECTOR NUMBER IN REGISTER C, AND
ADDRESS TO FILL IN HL

PUSH
PUSH

B
H

iSAVE BAND C REGISTERS
:SAVE HL REGISTERS

perform disk read at this point, branch to

label START if an error occurs

POP
POP
RE'r

H
B

END START

:RECOVER HL
:RECOVER BAND C REGISTERS
:BACK TO MAIN PROGRAM

(All Information Contained Herein is Proprietary to Digital Research.)

10

Hote that this program is assembled and listed in Appendix C for
reference purposes, with an assumed origin of 100H. The hexadecimal
operation codes which are listed on the left may be useful if the
program has to be entered through your machine1s front panel switcnes.

'fhe PUTSYS program can be constructed from GETSYS by changing only
a few operations in the GETSYS program given above, as shown in
Appendix D. The register pair HL become the dump address (next
address to write), and operations upon these registers do not change
within the program. The READSEC subroutine is replaced by a WRI'rESEC
subroutine which performs the opposite function: data from address HL
is written to the"track given by register B and sector given by
register C. It is often useful to combine GETSYS and PUTSYS into a
single program during the test and development phase, as shown in the
Appendix.

(All Information Contained Herein is Proprietary to Digital Research.)

11

5. DISKET'rE ORGANIZATION

The sectDr allocation for the standard distribution version of
CP/M is given here for reference?urposes. The first sector (see
table on the following page) contains an optional software boot
section. Disk controllers are often set u9 to bring track 0, sector 1
into memory at a specific location (often location 0000H). The
program in this sector, called BOO'r, has the responsibility of
bringing the remaining sectors into memory starting at location
3400H+b. If your controller does not have a built-in sector load, you
can ignore the program in track 0, sector 1, and begin the load from
track 0 sector 2 to location 3400H+b.

As an example, the Intel MDS-800 hardware cold start loader brings
track 0, sector 1 into absolute address 3000H. Upon loading this
sector, control transfers to location 3000H, where the bootstrap
operation commences by loading the remainder of tracks 0, and all of
track 1 into memory, starting at 3400H+b. The user should note that
this bootstrap loader is of little use in a non-MDS environment,
althougn it is useful to examine it since some of the boot actions
will have to be duplicated in your cold start loader.

(All Information Contained Herein is Proprietary to Digital Research.)

12

'rr acki Sector#

00

..
II

'"

..
II

00

II

..

II

01
II

..
II

..

II

II

..
II

..
II

01

01

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
01
02
03
04
05
06
07
08
09
10
11
12
13

: 14
I 15

16
17
18
19

Page#

00

01

02

03

04
II

05

06

07

08
II

09

10
II

11
II

12
II

13

14

15

16
"'

17
II

18

19
II

20
II

21

Memory Address

(boot address)

34100H+b
3480H+b
3500H+b
3580H+b
3600H+o
3680H+b
3700H+o
3780H+b
3800H+b
3880H+b
3900H+b
39808+b
3A00H+b
3A80H+b
3B00H+b
3880H+b

3C00H+b
3C80H+b
3DeJ0H+b
3D80H+b
3E00H+b
3E80H+b
3F00H+b
3F80H+b
4000H+b
4080H+b
4100H+b
4180H+b
4200H+b
4280H+b
4300H+b
4380H+b
4400H+b
4480H+b
4500H+b
4580H+b
4600H+b
4680H+b
4700H+b
4780H+b
4800H+b
4880H+b
4900H+b
4980H+b

CP/M Module name

Cold Start Loader

CCP

If'

II

II

"

CCP

BOOS

..

..

.t

II

It

..

..
II

..

..

.,

..
"
It

BOOS

01
II

II

..
II

01

02-76

20
21
23
24
25
26

01-26

22
II

23
II

24 ,.

4'A00H+b
4A80H+b
4800H+b
4880H+b
4C00H+b
4C80H+b

BIOS ..
II

II

BIOS

(directory and data)

(All Information Contained Herein is Proprietary to Digital Research.)

6. THE BIOS ENTRY POINTS

The entry points into the BIOS from the cold start loader and BDOS
are detailed below. Entry to the BIOS is through a "jump vector"
located at 4A00H+b, as shown below (see A?pendices Band C, as well).
The jump vector is a sequence of 17 jumo instructions which send
~rogram control to the individual BIOS subroutines. The BIOS
subroutines may be em?ty for certain functions (i.e., they may contain
d single RE~ operation) during regeneration of CP/M, but the entries
must be present in the jump vector.

The jump vector at 4A00H+b takes the form shown below, where the
individual jump addresses are given to the left:

4A00H+b JMP BOO'll ARRIVE HERE FROM COLD START LOAD
4A03d+o JMP WBoari' ARRIVE HERE FOR 'VVARi"l S'I'ART
4Ak:l6ti+b J 1'1.P COt-IST CHBCK FOR CONSOLE CHAR READY
4A09H+b J £VIP COi'J IN READ CONSOLE CHARACTER IN
4A0CH+b JNP CONOUT' '~~RI'rE CONSOLE CHARACrER OUI'
4AOFH+b J~lP LIST' ~'1RI'r E LISTING CHARACrER OUT
4A12ti+b J.:v1P PUNCH WRrrE CHARACTER 'ra P(Jl~CH DEVICE
4A15H+b Jt·1P READER READ READER DEVICE
4A18H+b J~1P HOME MOVE fro '1' RACK 00 ON SELECI'ED DISK
4l\ISd+~ J r',1P SELDSK SELECT DISK DRIVE
4A1Ed+o J ;"1f? S ETTRK SE'I" 'rRACK NUMBER
4A21H+o J L'1,i? S E'rSEC SE'r SEcrOR l\JUMBER
4A24H+b Jfv1P SE'rOMA S E'r Dl'lA ADDRESS
4A27i-I+b JMP READ READ S ELEcrED SEc'rOR
4A2AH+.b J f'lP ~'lRI'rE ~rlRI'rE SELEc;rED SEcrOR
4A2DH+b Jfv1P LI s'rS'll RE:l'URN LIs'r s'rA'rus
4A30H+b JMP S EcrrRAN S EcrOR 'I'RANSLAfrE SUBROUTINE

Bach jumo address corresponds to a particular subroutine which
performs tne specific function, as outlined below. There are three
major divisions in the jump table: the system (re)initialization
which results from calls on BOOT and WBOOT, simple character I/O
pe rfo rmed by calls on CONS'r, CONIN, CONOU'l" LIST, PUNCH, READER, and
LISTS'r, and diskette I/O performed by calls on HOt-1E, SELDSK, SET'rRK,
SETS EC, S ETDMA, READ, WRI TE, and .s EC'r RAN.

All simple character I/O operations are assumed to be performed in
ASCII, upper and lower case, with high order (parity bit) set to zero.
An end-of-file condition for an input device is given by an ASCII
control-z (lAH). Peripheral devices are seen by CP/M as "logical"
devices, and are assigned to physical devices within the BIOS.

In order to operate, the BDOS needs only the CONST, CONIN, and
CONOUT subroutines (LIS'r, PU1'JCH, and READER may be used by PIP, but
not the BOOS). Further, the LISTST entry is used currently only by
DESpOOL, and thus, the initial version of CBIOS may have empty
subroutines for the remaining ASCII devices.

(All Information Contained Herein is Proprietary to Digital Research.)

14

The characteristics of each device are

CONSOLE

LIST

PUNCH

READER

The principal interactive console which communicates
with the operator, accessed through CONST, CONIN, and
CONOUT. Typically, the CONSOLE is a device such as a
CRT or 'reletype.

The principal listing device, if it exists on your
system, which is usually a hard-copy device, such as a
printer or Teletype.

The principal tape punching device, if it exists, which
is normally a high-speed paper tape punch or Teletype.

The principal tape reading device, such as a simple
optical readet or Teletype.

Note that a single peripheral can be assigned as
the LIS'r, PUNCH, and READER device simultaneously. If
no peripheral device is assigned as the LIST, PUNCH, or
READER device, the CBIOS created by the user may give
an appropriate error message so that the system does
not ··hang" if the device is accessed by PIP or some
other user program. Alternately, the PUNCH and LIST
routines can just simply return, and the READER routine
can return with a lAB (ctl-Z) in reg A to indicate
immediate end-of-file.

For added flexibility, the user can optionally
implement the "IOBY'rE" function Which allows
reassignment of physical and logical devices. The
IOBYTE function creates a mapping of logical to
physical devices which can be altered during CP/M
processing (see the STAT commanc). The definition of
the IOBYTE function corresponds to the Intel standard
as follows: a single location in memory (currently
location 00038) is maintained, called IOBYTE, which
defines the logical to physical device mapping which is
in effect at, a particular time. The mapping is
performed by splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER,
.P U NC H, and LIS T fie 1 ds, ass h ow n below:

most significant least significant

IOBYTE AT 0003H I LIST I PUi'JCH I READER I CONSOLE I

bits 6,7 bits 4,5 bits 2,3 bits 0,1

The value in each field can be in the range 0-3,
defining the assigned source or destination of each
logical device. The values which can be assigned to
each field are given below

(All Information Contained Herein is Proprietary to Digital Research.)

15

CONSOLE field (bits 0,1)
o - console is assigned to the console printer device (TTY:)
1 console is assigned to the CRT device (CRT:)
2 batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)
3 user defined console device (Uel:)

READER
o
1
2
3

PUNCH
o
1
2
3

field (bits 2,3)
- READER is the 'reletype device (TTY:)

READER is the high-speed reader device (RDR:)
user defined reader # 1 (URI:)
user defined reader # 2 (UR2:)

field (bits 4,5)
- PUNCH is the Teletype device (TTY:)
- f>UNCH is the high speed punch device (PUN:)
- user defined punch # 1 (UPl:)
- user defined puncn # 2 (UP2:)

LIST field (bits 6,7)
o - LIST is the Teletype device (TTY:)
1 - LIST is the CRT device (CRT:)
2 - LIST is the line printer device (LPT:)
3 - U32r defined list device (ULl:)

Note again that the im~lementation of the IOBYTE is
optional, and affects only the organization of your
CBIOS. No CP/M systems use the IOBYTE (although they
tolerate the existence of the IOBYTE at location
0~03H), except for PIP which allows access to the
ph Y sic aId ev ice s , and S 'r A '11 w h i c hallow s
logical-physical assignments to be made and/or
displayed (for more information, see the "CP/M Features
and Fa c i lit i e s G u ide It) • I nan y cas e , the lOB Y Ir E
implementation should be omitted until your basic CSIOS
is fully imolemented and tested: then add the IOBYTE to
increase your facilities.

Disk I/O is always performed through a sequence of
calls on the various disk access subroutines which set
up the disk number to access, the track and sector on a
particular disk, and the direct memory access (DMA)
address involved in the I/O operation. After all these
par~neters have been set up, a call is made to the READ
or WRITE function to perform the actual I/O operation.
Note that there is often a single call to SELDSK to
select a disk drive, followed by a number of read or
write operations to the selected disk before selecting
another drive for subsequent operations. Similarly,
there may be a single call to set the DMA address,
followed by several calls which read or write from the
selected DMA address oefore the DMA address is changed.
The track and sector sUbroutines are always called
before tne READ or WRITE operations are performed.

(All Information Contained Herein is Proprietary to Digital Research.)

16

Boo"r

CONST

CONIN

Note that the READ and WRITE routines should
perform several retries (10 is standard) before
reporting the error condition to the BOOS. If the
error condition is returned to the BOOS, it will report
the error to the user. The HOME subroutine mayor may
not actually perform the track 00 seek, depending upon
your controller characteristics; the important point is
that track 00 has been selected for the next operation,
and is often treated in exactly the same manner as
SET'rRK wi th a pa r arneter of 10 0.

The exact responsibilites of eacn entry point
subroutine are given below:

The BOOT entry point gets control from the cold start
loader and is responsible for basic system
initialization, including sending a signon message
(which can be omitted in the first version) . If the
IOBYTE function is implemented, it must be set at this
point. 'rhe var ious system parameters which are set by
the wBOOT entry point must be initialized, and control
is transferred to ~ne CCP at 3400H+b for further
processing. Note that reg C must be set to zero to
select dr ive A..

The WBOOT entry point gets control when a warm start
occurs. A warm start is performed whenever a user
?rogram branches to location 0000H, or when the CPU is
reset from the front panel. The CP/M system must be
loaded from the first two tracks of drive A up to, but
not including, the BIOS (or CBIOS, if you have
completed your patch). System parameters must be ini
tialized as shown below:

location 10,1,2 set to JMP WBOO'r for warm starts
(0000H: JMP 4A03H+b)

location 3 set initial value of IOBYTE, if
implemented in your CBIOS

location 5,6,7 set to Jf-1P BDOS, which is the
primary entry point to CP/M for
transient programs. (0005H: JMP
3C06H+b)

(see Section 9 for comolete details of page zero use)
Upon completion of the initialization, the WBOOT
program must branch to the CCP at 3400H+b to (re)start
the system. Upon entry to the CCP, register C is set
to the drive to se~ect after system initialization.

Sample the status of the currently assigned console
device and return 0FFH in register A if a character is
ready to read, and 00H in register A if no console
characters are ready.

Read the next console character into register A, and

(All Information Contained Herein is Proprietary to Digital Research.)

17

CONOUT

LIs'r

PUNCH

READER

HOME

SELDSK

set the parity nit (high order bit) to zero. If no
console character is ready, wait until a character is
typed oetore returning.

Send the character from register C to the console
output device. The character is in ASCII, with high
order parity bit set to zero. You may want to include
a time-out on a line feed or carriage return, if your
console device requires some time interval at the end
of the line (such as a TI Silent 700 terminal). You
can, if you wish, filter out control characters which
cause your console device to react in a strange way (a
control-z causes the Lear Seigler terminal to clear
the screen, for exam~le).

Send the character from register C to the currently
assigned listing device. The character is in ASCII
with zero parity.

Send the character from register C to the currently
assigned punch device. The character is in ASCII with
ze r 0 pa r i ty •

Read the next character from the currently assigned
reader device into register A with zero parity (high
order bit must be zero), an end of file condition is
reported by returning an ASCII control-z (lAH).

Return the disk head of the currently selected disk
(initially disk A) to the track 00 position. If your
controller allows access to the track 0 flag from the
drive, step the head until the track 0 flag is
detected. If your controller does not support this
feature, you can translate the HOME call into a call
on SE'I'frRK wi th a parameter of 0.

Select the disk drive given by register C for further
operations, where register C contains 0 for drive A, 1
for drive' B, and so-forth up to 15 for drive P (the
standard CP/M distribution version supports four
drives). On each disk select, SELDSK must return in
HL the base address of a 16-byte area, called the Disk
Parameter Header, described in the Section 10. For
standard floppy disk drives, the contents of the
header and associated tables does not change, and thus
the program segment included in the sample CBIOS
performs this operation automatically. If there is an
a t tern p t to s e I e c tan 0 :1-e xis ten t d r i v e, S E LOS K ret urn s
HL=0000H as an error indicator. Although SELOSK must'
return the header address on each call, it is
advisable to postpone the actual physical disk select
operation until an I/O function (seek, read or write)
is actually performed, since disk selects often occur
without utimately performing any disk I/O, and many
controllers will unload the head of the current disk

(All Information Contained Herein is proprietary to Digital Research.)

18

SE'llTRK

SE'rSEC

SE'rOMA

READ

~~RITE

before selecting the new drive. This would cause an
excessive amount of noise and disk wear.

Register BC contains the track number for subsequent
disk accesses on the currently selected drive. You
can choose to seek the selected track at this time, or
delay the seek until the next read or write actually
occurs. Register BC can take on values in the range
0-76 corresponding to valid track numoers for standard
floppy disk drives, and 0-65535 for non-standard disk
sub s Y stern s •

Register BC contains the sector number (1 through 26)
for subsequent disk accesses on the currently selected
drive. You can choose to send this information to the
controller at this point, or instead delay sector
selection until a read or write operation occurs.

Register BC contains the DMA (disk memory access)
address for subsequent read or write operations. For
example, if B = 00H and C = 80H when SETDMA is called,
then all sUbsequent read operations read their data
into 80H through 0FFH, and all subsequent write
operations get their data from 80il through 0FFH, until
the next call to SETDMA occurs. The initial DMA
address is assumed to be 80H. Note that the
controller need not actually suoport airect memory
access. If, for example, all data is received and
sent through I/O ports, the CBIOS which you construct
will use the 12d byte area starting at the selected
DMA address for the memory buffer during the following
read or write operations.

Assuming the drive has been selectea, the track has
been set, the sector has been set, and the DMA aadress
has been specified, the READ subroutine attempts to
read one sector based upon these parameters, and
returns the following error codes in register A:

o no errors occurred
1 non-recuverable error condition occurred

Currently, CP/M responds only to a zero or non-zero
value as tne return code. That is, if the value in
register A is 0 then CP/M assumes that the disk
operation completed properly. If an error occurs,
however, the CBIOS should attempt at least 10 retries
to see it the error is recoverable. When an error is
reported the BOOS will print the message "BOOS ERR ON
x: BAD SEC'rOR". The operator then has the option of
typing <cr> to ignore the error, or ctl-C to abort.

write the data from the currently selected DMA address
to the currently selected drive, track, and sector.
'rhe da ta should be rna rked as "non deleted da ta" to

(All Information Contained Herein is Proprietary to Digital Research.)

19

L I S1'S'1'

SEC'I'RAN

maintain compatibility with other CP/M systems. The
error codes given in the READ command are returned in
register A, with error recovery attempts as described
a.bove.

Return the ready status of the list device. Used by
the DESPOOL program to improve console response during
its operation. The value 00 is returned in A if the
list device is not ready to accept a character, and
0FFH if a character can be sent to the printer. Note
that a 00 value always suffices. -

Performs sector logical to physical sector translation
in order to impro~e the overall response of CP/M.
Standard CP/M systems are shipped wi th a II skew factor"
of 6, where six physical sectors are skipped between
each logical reaa operation. This skew factor allows
enough time between sectors for most programs to load
their buffers without missing the next sector. In
particular computer systems which use fast processors,
memory, and disk subsystems, the skew factor may be
changed to improve overall response. Note, however,
that you should maintain a single density IBM
compatible version of CP/M for information transfer
into and out of your computer system, using a skew
factor of 6. In general, SECTRAN receives a logical
sector number in BC, and a translate table address in
DE. The sector number is used as an index into the
translate table, with the resulting physical sector
number in HL. For stan6ard systems, the tables and
indexing code is orovided in the CBIOS and need not be
changed.

(All Information Contained Herein is Proprietary to Digital Research.)

20

7 • A SAMPLE BIOS

Ir h e pro gram show n inA p pe n d i x C can s e r ve a s a bas is for you r
first BIOS. The simplest functions are assumed in this BIOS, so that
you can enter it through the front panel, if absolutely necessary.
Note that the user must alter and insert code into the subroutines for
CONS;r, CONIN, CONOUT, READ, WRITE, and \'lAITIO subrou tines. Storage is
reserved for user-supplied code in these regions. The scratch area
reserved in page zero (see Section 9) for the BIOS is used in this
program, so that it could be implemented in ROM, if desired.

Once operational, this skeletal version can be enhanced to print
the initial sign-on message and perform better error recovery. The
subroutines for LIST, PUNCH, and READER can be filled-out, and the
IOBYTE function can be implemented.

(All Information Contained Herein is Proprietary to Digital Research.)

21

8. A SAMPLE COLD S'rAR'r LOADER

'r h e pro gram show n in Ap pen d i x Dca n s e r ve a s a bas is for you reo 1 d
start loader. The disk read function must be supplied by the user,
ana the program must be loaded somehow starting at location 0000.
Note tnat space is reserved for your patch so that the total amount of
storage required for the cold start loader is 128 bytes. Eventually,
you will probably want to get this loader onto the first disk sector
(tracK 0, sector 1), and cause your controller to load it into memory
automatically upon system start-up. Alternatively, you may wish to
place tne cold start loader into ROM, and place it above the CP/M
system. In this case, it will oe necessary to originate the program
at a nigher address, and key-in a jump instruction at system start-up
whicn brancnes to the loader. Subsequent warm starts will not require
this key-in operation, since the entry point 'WBOOT' gets control,
thus bringing the system in from disk automatically. Note also that
the skeletal cold start loader has minimal error recovery, which may
oe enhanced on later versions.

(All Information Contained Herein is Proprietary to Digital Research.)

22

9. RESERVED LOCA'rIONS IN PAGE ZERO

Main memory page zero, between locations 00H and 0FFH, contains
several segments of code and data which are used during CP/M
processing. 'rhe code and data areas are given below for reference
purposes.

Locations
from to
0000H - 0002H

o 0 0 3H - 0 0 03H

o 00 4H - 00 0 4H

0005H - 0007H

0008H - 0027H

0030H - 003 7H

003dH - 003AH

003BH - 003FH

0040H - 004FH

0050H - 010588

005C8 - 007CH

007DH - 007FH

contents

Contains a jump instruction to the warm start
entry point at location 4A03H+b. This allows a
simple programmed restart (JHP 0000H) or manual
restart from the front canel.

Contains the Intel standard IOBYTE,
optionally included in toe user's
described in Section 6.

which is
CBIOS, as

Current default drive number (IO=A, ••• ,1S=!?).

Contains a jump instruction to the BDOS,and
serves two purposes: JMP 0005H provides the
primary entry point to the BOOS, as descrioed in
the manual "CP/M Interface Guide," and LHLD
0006H brings the address field of the
instruction to the tiL register pair. This value
is the lowest aadress in memory used by CP/M
(assuming the CCP is being overlayed). Note
that the DD'r pr og ram will change the address
field to reflect the reduced memory size in
debug mode.

(interrupt locations I through 5 not used)

(interrupt location 6, not currently used
reserved)

Restart 7 - Contains a jump instruction into the
DDT or SID program when running in debug mode
for programmed breakpoints, but is not otherwise
used by CP /tvt.

(not currently used - reserved)

16 byte area reserved for scratch by CBIOS, but
is not used for any purpose in the distribution
version of CP/M

(not currently used - reserved)

default
transient
!?rocessor.

file control
program by

block produced
the Console

Optional default random record Dosition

for a
Command

(All Information Contained Herein is Proprietary to Digital Research.)

23

0080H - !{J0£t'FH default l2d byte disk buffer (also filled with
the command line when a transient is loaded
under the CCP).

Note that this information is set-up for normal o?eration under
the CP/M system, but can be overwritten by a transient program if the
BDOS facilities are not required by the transient.

If, for example, a particular program performs only sim?le I/O and
must begin execution at location 0, it can be first loaded into the
'l'fJA, using normal CP/M facilities, with a small memory move program
which gets control when loaded (the memory move program must get
control from location 0100H, which is the assumed beginning of all
trans ient pr og rams). 11he move pr ogram can then pr oceed to mov.e the
entire memory image down to location 0, ana pass control to the
starting address of the memory load. Note that if the BIOS is
overwritten, or if location 0 (containing the warm start entry point)
is overwritten, then the programmer must bring the CP/M system back
into memory with a cold start sequence.

(All Information Contained Herein is Proprietary to Digital Research.)

24

10. DISK PARAMETER TABLES.

Tables are included in the BIOS which describe the particular
characteristics of the disk subsystem used with CP/M. These tables
can be either hand-coded, as shown in the sample CBIOS in Appendix C,
or automatically generated using the DISKDEF macro library, as shown
in Appendix B. The purpose here is to describe the elements of these
tables.

In general, each disk drive has an associated (16-byte) disk
parameter header which both contains information about the disk drive
and provides a scratchpad area for certain BDOS operations. The
format of the disk parameter header for each drive is shown below

Disk Parameter Header

XLT I 0000 I 0000 I 0000 IDIRBUFI DPB CSV ALV

16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each Disk
Parameter Header (DPH) element is

XLT

DIRBUF

D~

C~

ALV

Address of the logical to physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the physical
and logical sector numbers are the same) 0 Disk drives
with identical sector skew factors share the same
translate tables.

Scratchpad values for use within the SDOS (initial
value is unimportant).

Address of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same
scratchpad area.

Address of a disk parameter block for this drive.
Drives with identical disk characteristics address the
same disk parameter block.

Address of a scratchpad area used for software check
for changed disks. This address is different for each
DPH.

Address of a scratchpad area used by the BDOS to keep
disk storage allocation information. This address is
different for each DPH.

Given n disk drives, the DPH's are arranged in a table whose first row
of 16 bytes corresponds to drive 0, with the last row corresponding to
drive n-l. The table thus appears as

(All Information Contained Herein is Proprietary to Digital Research.)

25

DPBASE:

00 IXLT 001 0000 I 0000 I 0000 IDIRBUFIDBP 001csv 001ALV 001

01 IXLT 011 0000 I 0000 I 0000 IDIRBUFIDBP 01lCSV 01lALV 011

(and so-forth through)

n-lIXLTn-ll 0000 I 0000 I 0000 IDIRBUFIDBPn-lICSVn-lIALVn-ll

where the label DPBASE defines the base address of the DPH table.

A responsibility of the SELDSK subroutine is to return the base
address of the DPH for the selected drive. The following sequence of
operations returns the table address, with a 0000H returned if the
selected drive does not exist.

NDISKS EQU 4 ;NUMBER OF DISK DRIVES

SELDSK:
;SELECT DISK GIVEN BY BC
LXI H,0000H ;ERROR CODE
MOV A,C ;DRIVE OK?
CPI NDISKS iCY IF SO
RNC ;RET IF ERROR
;NO ERROR, CONTINUE
MOV L,C ;LOW(DISK)
MOV H,B ;HIGH(DISK)
DAD H ;*2
DAD H ;*4
DAD H ;*8
DAD H ;*16
LXI D,DPBASE ;FIRST DPH
DAD D ;DPH(DISK)
RET

The translation vectors (XLT 00 through XLTn-l) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-I. The Disk
Parameter Block (DPB) for each drive is more complex. A ~articular
DPB, which is addressed by one or more DPH1s, takes the general form

SPT IBSHIBLMIEXMI DSM DRM IAL01ALII CKS OFF

l6b 8b 8b 8b l6b l6b 8b 8b l6b l6b

where each is a byte or word value, as shown by the d8b" or "16b"
indicator below the field.

SPT is the total number of sectors per track

BSH is the data allocation block shift factor, determined
by the data block allocation size.

(All Information Contained Herein is Proprietary to Digital Research.)

26

EXM

DSM

DRM

CKS

OFF

is the extent mask, determined by the data block
allocation size and the number of disk blocks.

determines the total storage capacity of the disk drive

determines the total number of directory entries which
can be stored on this drive AL0,ALl determine reserved
directory blocks.

is the size of the directory check vector

is the number of reserved tracks at the beginning of
the (logical) disk.

The values of BSH and BLM determine (implicitly) the data allocation
size BLS, which is not an entry in the disk parameter block. Given
that the designer has selected a value for BLS, the values of aSH and
BLM are shown in the table below

BLS
1,024
2,048
4,096
8,192

16,384

BSH
3
4
5
6
7

BLM
7

15
31
63

127

where all values are in decimal. The value of EXM depends upon both
the BLS and whether the DSM value is less than 256 or greater than
255, as shown in the following table

BLS DSM < 256 DSM > 255
1,024 0 N/A
2,048 1 0
4,,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product-BLS times
(DSM+l) is the total number of bytes held by the drive and" of course,
must be within the capacity of the ohysical disk" not counting the
reserved operating system tracks.'

The DRM entry is the one less than the total number of directory
entries, which can take on a l6-bit value. The values of AL0 and ALl,
however, are determined by DRM. The two values AL0 and ALl can
together be considered a string of l6-bits, as shown below.

(All Information Contained Herein is Propr ietary to Digital Research.)

27

AL0 ALI

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labelled AL0, and 15 corresponds to the low order bit of the byte
labelled ALI. Each bit position reserves a data block for number of
directory entries, thus allowing a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until position 15). Each directory entry occupies
32 bytes, resulting in the following table

BLS
1,024
2,048
4,096
8,192

16,384

Directory Entries
32 times # bits
64 times # bits
128 times # bits
256 times # bits
512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then there
are 32 directory entries per block, requiring 4 reserved blocks. In
this case, the 4 high order bits of AL0 are set, resulting in the
values AL0 = 0F0H and ALI = 00H.

The CKS value is determined as follows: if the disk drive media
is removable, then CKS = (DRM+l)/4, where DRM is the last directory
entry number. If the media is fixed, then set CKS = 0 (no directory
records are checked in this case).

finally,
skipped at the
automatically
mechanism for
partitioning a

the OFF field determines the number of tracks which are
beginning of the physical disk. This value is

added whenever SETTRK is called, and can be used as a
skipping reserved operating system tracks, or for
large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several DPH's
can address the same OPB if their drive characteristics are identical.
Further, the DPB can be dynamically changed when a new drive is
addressed by sim~ly changing the pointer in the DPH since the BDOS
copies the DPB values to a local area whenever the SELDSK function is
invoked.

Returning back to the DPH for a particular drive, note that the
two address values csv ~nd ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by the
values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this particular
drive. If CKS = (DRM+l)/4, then you must reserve (DRM+l)/4 bytes for
directory check use. If CKS = 0, then no storage is reserved.

(All Information Contained Herein is Proprietary to Digital Research.)

28

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and is
computed as (DSM/8)+I.

The CBIOS shown in Appendix C demonstrales an instance of these
tables for standard 8" single density drives. It may be useful to
examine this progr~, and compare the tabular values with the
definitions given above.

(All Information Contained Herein is Proprietary to Digital Research.)

29

11. THE DISKDEFMACRO LIBRARY.

A macro library is shown in Appendix F, called DISKDEF, whi'ch
greatly simplifies the table construction process. You must have
access to the MAC macro assembler, of course, to use the DISKDEF
facility, while the macro library is included with all CP/M 2.0
distribution disks.

A BIOS disk definition consists of the following sequence of
macro statements:

MACLIB DISKDEF
·
DISKS n
DISKDEF " , ...
DISKDEF 1 , ...
·
DISKDEF n-l
·
ENDEF

where the MACLIB statement loads the DISKDEF.LIB file (on the same
disk as your BIOS) into MAC's internal tables. The DISKS macro call
follows, which specifies the number of drives to be configured with
your system, where n is an integer in the range 1 to 16. A series of
DISKDEF macro calls then follow which define the characteristics of
each logical disk, 0 through n-l (corresponding to logical drives A
through P). NJte that the DISKS and DISKDEF macros generate the
in-line fixed data tables described in the previous section, and thus
must be placed in a non-executable portion of your BIOS, typically
directly following the BIOS jump vector.

The remaining portion of your BIOS is defined following the
DISKDEF macros, with the ENDEF macro call immediately preceding the
END statement. The ENDEF (End of Diskdef) macro generates the
necessary un initialized RAM areas which are located in memory above
your BIOS.

The form of the DISKDEF macro call is

DISKDEF dn,fsc,lsc, [skf] ,bls,dks,dir,cks,ofs, [0]

where

dn is the logical disk number, 0 to n-l
fsc is the first physical sector number (0 or I)
lsc is the last sector number
skf is the optional sector skew factor
bls is the data allocation block size
dir is the number of directory entries
cks is the number of "checked" directory entries
ofs is the track offset to logical track 00
[0] is an optional 1.4 compatibility flag

The value tldn" is the drive number being defined with this DISKDEF

(All Information Contained Herein is Proprietary to Digital:Research.)

30

macro invocation. The nfsc" parameter accounts for differing sector
number ing systems, and is usually 0 or 1. The !llsc " is the last
numbered sector on a track. When present, the "skf ll parameter defines
the sector skew factor which is used to create a sector translation
table according to the skew. If the number of sectors is less than
256, a single-byte table is created, otherwise each translation table
element occupies two bytes. No translation table is created if the
s kf par ameter is omi t ted (or equal to 0). The II bls 'i par ameter
specifies the number of bytes allocated to each data block, and takes
on the values 1024, 2048, 4096, 8192, or 16384. Generally,
performance increases with larger data block sizes since there are
fewer directory references and logically connected data records are
physically close on the disk. Further, each directory entry addresses
more data and the BIOS-resident ram space is reduced. The "dksu
specifies the total disk size in "bls" units. That is, if the bls =
2048 and dks = 1000, then the total disk capacity is 2,048,000 bytes.
If dks is greater than 255, then the block size parameter bls must be
greater than 1024. The value of IIdir" is the total number of
directory entries which may exceed 255, if desired. The licks"
parameter determines the number of directory items to check on each
directory scan, and is used internally to detect changed disks during
system operation, where an intervening cold or warm start has not
occurred (when this situation is detected, CP/M automatically marks
the disk read/only so that data is not subsequently destroyed). As
stated in the previous section, the value of cks = dir when the media
is easily changed, as is the case with a floppy disk subsystem. If
the disk is permanently mounted, then the value of cks is typically 0,
since the probability of changing disks without a restart is quite
low. The lIofsll value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of 1.4 which have been modified for higher density disks.
This parameter ensures that only 16K is allocated for each directory
record, as was the case for previous versions. Normally, this
parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i, j

gives disk i the same characteristics as a previously defined drive j.
A standard four-drive single density system, which is compatible with
version 1.4, is defined using the following macro invocations:

(All Information Contained Herein is proprietary to Digital Research.)

31

DISKS
DISKDEF
OISKDEF
OISKDEF
o ISKDEF

ENDEF

4
0,1,26,6,11024,243,64,64,2
1,10
2,0
3,10

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with 6 sectors skipped between each
access, 11024 bytes per data block, 243 data blocks for a total of 243k
byte disk capacity, 64 checked directory entries, and two operating
s y stern t rack s •

The DISKS macro generates n Disk Parameter Headers (DPH I s) ,
starting at the DPH table address DPBASE generated by the macro. Each
disk header block contains sixteen bytes, as described above, and
correspond one-for-one to each of the defined drives. In the four
drive standard system, for example, the DISKS macro generates a table
of the form:

OPBASE
OPEIO:
DPE1 :
OPE2 :
DPE3 :

EQU
DW
OW
OW
DW

$
XLT0,10000H,0000H,10100IOH,DIRBUF,DPB0,CSVIO,ALVIO
XLTIO,101O00H,101O100H,1000IOH,DIRBUF,OPBIO,CSV1,ALV1
XL'r0, 1010100H, 00101OH, 100010H ,DIRBUF ,DPB0 ,CSV2 ,ALV2
XLT0,01000H,0000H,0000H,DIRBUF,DPBeJ,CSV3,ALV3

where the OPH labels are included for reference purposes to show the
beginning table addresses for each drive 10 throuqh 3. The values
contained within the disk parameter header are described in detail in
the previous section. The check and allocation vector addresses are
generated by the ENDEF macro in the ram area following the BIOS code
and tables.

Note that if the ·'skf ll (skew factor) parameter is omitted (or
equal to 10), the translation table is omitted, and a eJ0010H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DE =
eJeJeJeJH, and sim?ly returns the original logical sector from BC in the
HL register pair. A translate table is constructed when the skf
parameter is present, and the (non-zero) table address is placed into
the corresponding DPH's. The table shown below, for example, is
constructed when the standard skew factor skf = 6 is specified in the
DISKDEF macro call:

XLTeJ: DB
DB

1,7,13,19,25,5,11,17,23,3,9,15,21
2,8,14,210,26,6,12,18,24,4,110,16,22

Following the ENDEF macro call, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of memory. The size of the uninitialized RAM area is
determined by EQU statements generated by the ENDEF macro. For a
standard four-drive system, the ENDEF macro might produce

(All Information Contained Herein is Proprietary to Digital Research.)

32

4C72 =

4DB0 =
013C =

BEGDAT EQU $
(data areas)
ENDDA1' EQU $
DATSIZ EQU $-BEGDAT

which indicates that un initialized RAM begins at location 4C72H, ends
at 4DB0H-l, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The STAT command form

STAT d:DSK:

decodes the disk parameter block for drive d (d=A, ••• ,P) and displays
the values shown below:

r : 128 Byte Record Capacity
k: Kilobyte Dr ive Capacity
d: 32 Byte Directory Entries
c: Checked Directory Entries
e: Records/ Extent
b: Records/ Block
s: Sectors/ Track
t: Reserved 'rr ack s

Three examples of DISKDEF macro invocations are
corresponding STAT parameter values (the last
8-megabyte system).

DISKDEF 0,1,58,,2048,256,128,128,2

shown below
produces a

r=4096, k=512, d=128, c=128,. e=256, b=16, s=58, t=2

DISKDEF 0,1,58,,2048,1024,300,0,2
r=16384, k=2048, d=300, c=0, e=128, b=16, s=58, t=2

DISKDEF 0,1,58,,16384,512,128,128,2
r=65536, k=8192, d=128, c=128, e=1024, b=128, s=58, t=2

with
full

(All Information Contained Herein is Proprietary to Digital Research.)

33

12. SECTOR BLOCKING AND DEBLOCKING.

Upon each call to the BIOS WRITE entry point, the CP/M BOOS
includes information which allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is a
multiple of the basic l28-byte unit. The purpose here is to present a
general-purpose algorithm which can be included within your BIOS which
uses the BOOS information to perform the operations automatically.

Upon each call to WRITE, the BOOS provides the following
information in register C:

o
I
2

=
=
=

normal sector write
write to directory sector
write to the first sector
of a new data block

Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when the
write is to other than the first sector of an unallocated block, or
when the write is not into the directory area. Condition 1 occurs
when a write into the directory area is performed. Condition 2 occurs
when the first record (only) of a newly allocated data block is
written. In most cases, application programs read or write multiple
128 byte sectors in sequence, and thus there is little overhead
involved in either operation when blocking and deblocking records
since pre-read operations can be avoided when writing records.

Appendix G lists the blocking and deblocking algorithms in skeletal
form (this file is included on your CP/M disk). Generally, the
algorithms map all CP/M sector read operations onto the host disk
through an intermediate buffer which is the size of the host disk
sector. Throughout the program, values and variables which relate to
the CP/M sector involved in a seek operation are prefixed by "sek,"
while those related to the host disk system are prefixed by IIhst."
The equate statements beginning on line 29 of Appendix G define the
mapping between CP/M and the host system, and must be changed if other
than the sample host system is involved.

The entry points BOOT and WBOOT must contain the initialization
code starting on line 57, while the SELDSK entry point must be
augmented by the code starting on line 65. Note that although the
SELDSK entry point computes and returns the Disk Parameter Header
address, it does not physically selected the host disk"at this point
(it is selected later at READHST or WRITEHST). Further, SETTRK,
SETTRK, and SETDMA simply store the values, but do not take any other
action at this point. SECTRAN performs a trivial trivial function of
returning the physical sector number.

The principal entry points are READ and WRITE, starting on lines
110 and 125, respectively. These subroutines take the place of your
previous READ and WRITE operations.

The actual physical read or write takes place at either WRITEHST
or READHST, where all values have been prepared: hstdsk is the host

(All Information Contained Herein is Proprietary to Digital Research.)

34

disk number, hsttrk is the host track number, and hstsec is the host
sector number (which may require translation to a physical sector
number) • You must insert code at this point which performs the full
host sector read or write into, or out of, the buffer at hstbuf of
length hstsiz. All other mapping functions are performed by the
algorithms.

This particular algorithm was tested using an 80 megabyte hard
disk unit which was originally configured for 128 byte sectors,
producing approximately 35 megabytes of formatted storage. When
configured for 512 byte host sectors, usable storage increased to 57
megabytes, with a corresponding 400% imorovement in overall response.
In this situation, there is no apparent overhead involved in
deblocking sectors, with the advantage that user programs still
maintain the (less memory consuming) l28-byte sectors. This is
primarily due, of course, to the information provided by the BDOS
which eliminates the necessity for pre-read operations to take place.

(All Information contained Herein is Proprietary to Digital Research.)

35

0000 =
ffff =
00'00 =

0000 =

0000 =
0806 =
1880 =
1600 =
1603 =

3000

1880 =
0002 =
0031 =
0019 =
0018 =

f800 ==
ff0f :z:

0078 =
0079 =
007b =
007f =

0078 ==
0079 =
007a =
00ff =
0003 =
0004 =
0100 =

3000 310001

3003 db79
3005 db7b

3007 dbff

1~~6 ~~~130

APPENDIX A: THE MDS COLD START LOADER

i MDS-800 Cold Start Loader for CP/M 2.0

version 2.0 August, 1979

false equ
true equ
testing equ

bias

bias

cpmb
bdos
bdose
boot
rboot

i
bdos1
ntrks
bdoss
bdos0
bdos1
i
mon80
rmon80
base
rtype
rbyte
reset

dstat
ilow
ihigh
bsw
recal
readf
stack

rstart:

if
equ
endif
if
equ
endif
equ
equ
equ
equ
equ

org

equ
equ
equ
equ
eau

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

lxi
clear
in
in

i check
colds tart:

in
ani
Jnz

o
not false
false

testing
03400h

not testing
0000h

bias
806h+bias
1880h+bias
1600h+bias
boot+3

jbase of dos load
ientry to dos for calls
iend of dos load
icold start entry point
iwarm start entry point

3000h i10aded here by hardware

bdose-cpmb
2 jtracks to read
bdosl/128
25
bdoss-bdos0

i# sectors in bdos
i# on track QI
i# on track 1

Qlf800h
0ff0fh
078h
base+l
base+3
base+7

base
base+l
base+2
0ffh
3h
4h
100h

iintel monitor base
irestart location for mon80
j'base' used by controller
;result type
jresu1t byte
ireset controller

idisk status port
iloW iopb address
ihigh iopb address
iboot switch
irecalibrate selected drive
idisk read function
iuse end of boot for stack

sp,stackiin case of call to mon80
disk status

rtype
rbyte

if boot switch is off

bsw
02 b

d t t·switch on? coT s ar

36

300e d37f

3010 0602
3012 214230

3015 7d
3016 d379
3018 7c
3019 d37a
30lb db78

j~!~ ag~~30

3022 db79
3024 e603
3026 fe02

3028 d20030

302b db7b

302d 17
302e dc0fff
3031 If
3032 e6le

3034 c20030

3037 110700
303a 19
303b 1,15
303c c2l530

303f c300l6

start:

wa i to :

clear the controller
out reset ilogic cleared

mvi
lxi

b,ntrks inumber of tracks to read
h,iopb0

read first/next track into cpmb
mov a,l
out ilow
mov a,h
out ihigh
in dstat
ani 4
JZ wait0

check disk status
in rtype
ani lIb
cpi 2

if
cnc
endif
if
jnc
endif

testing
rmon80 igo to monitor if 11 or 10

not testing
rstart iretry the load

in rbyte ii/o complete, check status
if not ready, then go to mon80
ral
cc rmon80 inot ready bit set
rar irestore
ani lll10b ioverrun/addr err/seek/crc

if
cnz
endif
if
jnz
endif

lxi
dad
dcr
jnz

testing
rmon80 ;go to monitor

not testing
rstart ;retry the load

d,iopbl ;length of iopb
d ;addressing next iopb
b ;count down tracks
start

jmp boot, print message, set-up jmps
jmp boot

parameter blocks

37

3042 80 iopb0: db 80h i iocw, no update
3043 04 db readf iread function
3044 19 db bdos0 i# sectors to read trk 0
3045 00 db 10 itrack 0
3046 02 db 2 istart with sector 2, trk 0
3047 0000 dw cpmb istart at base of bdos
0007 = iopbl equ $-iopb0

i
3049 80 iopbl: db 80h
304a 04 db readf
304b 18 db bdosl isectors to read on track 1
304c 01 db 1 itrack 1
304d 01 db 1 isector 1
304e 800c ow cpmb+bdos0*128 ibase of second rd
3050 end

38

0014 =

4a0eJ
341010 =
3ceJ6 =
161010 =
002c =
0002 =
00104 =
100810 =
lOeJ0a =

4a00
4a03
4a06
4a09
4alOc

c3b34a
c3c34a
c3614b
c3644b
c36a4b

APPENDIX B: THE MDS BASIC I/O SYSTEM (BIOS)

vers

cpmb
bdos
cpml
nsects
offset
cdisk
buff
retry

mds-8100 i/o drivers for cp/m 2.0
(four drive single density version)

version 2.10 august, 1979

equ 210 ;version 2.10

copyright (c) 1979
digital research
box 579, pacific grove
california, 939510

org
equ
equ
equ
equ
equ
equ
equ
equ

perform
boot
wboot

4aeJeJh ;base of bios in 20k system
3400h ;base of cpm ccp
3c06h ;base of bdos in 2eJk system
$-cpmb ;length (in bytes) of cpm system
cpml/128;number of sectors to load
2 ;number of disk tracks used by cp
eJeJeJ4h ;address of last logged disk
01080h ;default buffer address
110 ;max retries on disk i/o before e

following functions
cold start
warm start (save i/o byte)

(boot
const

and wboot are the same for mds)
console status

conin
conou t
list
punch
reader
home

reg-a = 1010 if no character ready
reg-a = ff if character ready
console character in (result in reg-a)
console character out (char in reg-c)
list out (char in reg-c)
punch out (char in reg-c)
paper tape reader in (result to reg-a)
move to track 00

(the following calls set-up the io parameter bloc
mds, which is used to perform subsequent reads an
seldsk select disk given by reg-c (0,1,2 •••)
settrk set track address (0, ••• 76) for sub r/w
setsec set sector address (1, ••• ,26)
setdma set subsequent dma address (initially 80h

read/write assume previous calls to set i/o parms
read read track/sector to preset dma address
write write track/sector from preset dma addres

jump vector for indiviual routines
jmp boot

wboote: jmp wboot
jmp const
jmp conin
jmp conout

39

4a0f c36d4b
4a12 c3724b
4a15 c3754b
4a18 c3784b
4alb c37d4b
4ale c3a74b
4a21 c3ac4b
4a24 c3bb4b
4a27 c3c14b
4a2a c3ca4b
4a2d c3704b
4a30 c3b14b

4a33+=
4a33+824a00
4a37+000000
4a3b+6e4c73
4a3f+0d4dee
4a43+824a00
4a47+000000
4a4b+6e4c73
4a4f+3c4dld
4a53+824a00
4a57+000000
4a5b+6e4c73
4a5f+6b4d4c
4a63+824a00
4a67+000000
4a6b+6e4c73
4a6f+9a4d7b

4a73+=
4a73+1a00
4a75+03
4a76+07
4a77+00
4a78+f200
4a7a+3f00
4a7c+c0
4a7d+00
4a7e+1000
4a80+0200
4a82+=
4a82+01
4a83+07
4a84+0d
4a85+13
4a86+19
4a87+05
4a88+0b
4a89+1l
4a8a+17
4a8b+03

dpbase
dpe0:

dpel:

dpe2:

dpe3:

dpb0

xlt0

jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

mac lib
disks
equ
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
diskdef
equ
dw
db
db
db
dw
dw
db
db
dw
dw
equ
db
db
db
db
db
db
db
db
db
db

list
punch
reader
home
seldsk
settrk
setsec
setdma
read
write
listst ;list status
sectran

diskdef ;loac the disk definition library
4 ;four disks
$;base of disk parameter blocks
xlt0,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb0 ;dir buff,parm block
csv0,alv0 ;check, alloc vectors
xltl,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpbl ;dir buff,parm block
csvl,alvl ;check, alloc vectors
xlt2,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb2 :dir buff,parm block
csv2,alv2 ;check, alloc vectors
xlt3,0000h ;translate table
0000h,0000h ;scratch area
dirbuf,dpb3 ;dir buff,parm block
csv3,alv3 ;check, alloc vectors
0,1,26,6,1024,243,64,64,offset
$;disk parm block
26 ;sec per track
3 ;block shift
7 ;block mask
o ;extnt mask
242 ;disk size-l
61 ;directory max
192 ;alloc0
o ;allocl
16 ;check size
2 ;offset
$;translate table
1
7
13
19
25
5
11
17
23
3

40

4a8c+09
4a8d+0f
4a8e+15
4a8f+02
4a90+08
4a91+0e
4a92+14
4a93+1a
4a94+06
4a95+0c
4a96+12
4a97+18
4a98+04
4a99+0a
4a9a+10
4a9b+16

4a73+=
IOlOlf+=
1010110+=
4a82+=

4a73+=
0101f+=
01010+=
4a82+=

4a73+=
001f+=
010110+=
4a82+=

IOlOfd =
IOlOfc =
01Of3 =
10107e =

f81010 =
ff0f =
f8103 =
f8106 =
f8109 =
f810c =
f810f =
f812 =

dpbl
alsl
cssl
xltl

dpb2
als2
css2
xlt2

dpb3
als3
css3
xlt3

revrt
intc
icon
inte

. ,
mon81O
rmon81O
ci
ri
co
po
10
csts

db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
db
di skdef
equ
equ
equ
equ
diskdef
equ
equ
equ
equ
diskdef
equ
equ
equ
equ

9
15
21
2
8
14
210
26
6
12
18
24
4
110
16
22
1,10
dpblO
alslO
csslO
xlt0
2,10
dpblO
als0
css0
xltlO
3,10
dpblO
als0
css0
xlt0

iequivalent parameters
isame allocation vector size
isame checksum vector size
isame translate table

ieguivalent parameters
isame allocation vector size
isame checksum vector size
isame translate table

iequivalent parameters
isame allocation vector size
isame checksum vector size
isame translate table

endef occur s at end of assembly

end of controller - independent code, the remaini
are tailored to the particular oper.ating environm
be altered for any system which differs from the

the following code assumes the mds monitor exists
and uses the i/o subroutines within the monitor

we also
equ
equ
equ
equ

assume the mds system has four disk drive
0fdh iinterrupt revert port
0fch iinterrupt mask port
IOf3h iinterrupt control port
0l11$111lObienable rst o (warm boot) ,rst 7

mds
equ
equ
equ
equ
equ
equ
equ
equ

monitor equates
0f800h imds monitor
0ff0fh irestart mon81O (boot error)
0f8103h iconsole character to reg-a
IOf8106h ireader in to reg-a
0f8109h iconsole char from c to console 0
0f80ch iPunch char from c to punch devic
0f81Ofh ilist from c to list device
0f812h iconsole status IOIO/ff to register

41

0078 =
0078 =
0079 =
007b =

0079 =
007a =

0004 =
0006 =
0003 =
0004 =
000d =
000a =

4a9c
4a9f
4aal
4aad
4ab0

4ab3
4ab6
4ab9
4abc
4abd
4ac0

0d0a0a
3230
6b20A3f
322e30
0d0a00

310001
219c4a
cdd34b
af
320400
c30f4b

4ac3 318000

4ac6 0e0a
4ac8 cS

4ac9 010034
4acc cdbb4b
4acf 0e00
4adl cd7d4b
4ad4 "'e00
4ad6 cda74b
4ad9 0e02
4adb cdac4b

4ade cl
4adf 062c

;
base
dstat
rtype
rbyte
;
ilow
ihigh

readf
writf
recal
iordy
cr
If

signon:

;
boot:

disk ports and commands
equ 78h ;base of disk command

;disk status (input)
;result type (input)
;result byte (input)

io ports
equ base
equ base+l
equ base+3

equ
equ

equ
equ
equ
equ
equ
equ

; s ignon
db
db
db
db
db

;print
(note:
lxi
lxi
call
xra
sta
jmp

base+l
base+2

4h
6h
3h
4h
0dh
0ah

;iopb low address (output)
;iopb high address (output)

;read function
;write function
;recalibrate drive
;i/o finished mask
;carriage return
;line feed

message: xxk cp/m vers y.y
cr,lf,lf
'20' ;sample memory size
'k cp/m vers '
vers/10+'0','.',vers mod 10+'0'
cr,lf,1O

signon message and go to ccp
mds boot initialized iobyte at 0003h)

sp,buff+80h
h,signon
prmsg ;print message
a ;clear accumulator
cdisk ;set initially to disk a
gocpm ;go to cp/m

wboot:; loader on track 0, sector 1, which will be skippe
read cp/m from disk - assuming there is a 128 byt
start.

wboot0 :

lxi

mvi
push
;enter
lxi
call
~vi
call
mvi
call
mvi
call

sp,buff ;using dma - thus 80 thru ff ok f

c,retry ;max retries
b

here on error retries
b,cpmb ;set dma address to start of disk
setdrna
c,0
seldsk
c,0
settrk
c,2
setsec

;boot from drive 0

:start with track 0
;start reading sector 2

read sectors, count nsects to zero
pop b ;10-error count
mvi b,nsects

42

4ael c5
4ae2 cdc14b
4ae5 c2494b
4ae8 2a6c4c
4aeb 118000
4aee 19
4aef 44
4af0 4d
4afl cdbb4b
4af4 3a6b4c
4af7 fela
4af9 da054b

4afc 3a6a4c
4aff 3c
4b00 4f
4b01 cda74b
4b04 af

rdsec:

4b05 3c rdl:
4b06 4f
4b07 cdac4b
4b0a cl
4b0b 05
4b0c c2el4a

4b0f f3
4bllO 3el2
4b12 d3fd
4bl4 af
4bl5 d3fc
4b17 3e7e
4b19 d3fc
4blb af
4blc 03f3

4ble 0180100
4b21 cdbb4b

4b24 3ec3
4b26 320000
4b29 21034a
4b2c 22101010
4b2f 3205100
4b32 21063c
4b35 220600
4b38 323800
4b3b 2100f8
4b3e 223900

gocpm:

:read next sector
push b isave sector count
call read
jnz booterr
lhld iod
lxi d,128
dad d
mov b,h
mov c,l
call setdma
Ida ios
cpi 26
jc rdl

iretry if errors occur
iincrement dma address
isector size
iincremented dma address in hI

iready for call to set dma

isector number just read
iread last sector?

must be sector 26, zero and go to next track
Ida iot iget track to register a
inr a
mov
call
xra
inr
mov
call
pop
dcr
jnz

c,a
settrk
a
a
c,a
setsec
b
b
rdsec

iready for call

iclear sector number
ito next sector
iready for call

irecall sector count
i done?

done with the load, reset default buffer address
i (enter here from cold start boot)
enable rstlO and rst7
di
mvi
out
xra
out
mvi
out
xra
out

a,12h
revrt
a
intc
a,inte
intc
a
icon

iinitialize command

icleared
irst0 and rst7 bits on

iinterrupt control

set default buffer address to 80h
lxi b,buff
call se toma

reset monitor entry points
mvi a, jmp
sta 10

lxi h,wboote
shld 1 ijmp wboot at location 00
sta 5
lxi h,bdos
shld 6 ;jrnp bdos at location 5
sta 7*8 ijrnp to mon80 (may have been chan
lxi h,rnon80
shld 7*8+1
leave iobyte set

43

previously selected disk was b, send parameter to
4b41 3a0400 Ida cdisk ilast logged disk number
4b44 4f mov c,a isend to ccp to log it in
4b45 fb ei
4b46 c30034 jmp cpmb

. error condition occurred, print message and retry ,

4b49 cl
4b4a 0d
4b4b ca524b

4b4e c5
4b4f c3c94a

4b52 215b4b
4b55 cdd34b
4b58 c30fff

booterr:

booter0:

bootmsg:

pop b irecall counts
dcr c
jz booter0
try again
push b
jmp wboot0

otherwise too many retries
lxi h,bootmsg
call prmsg
jmp rmon80 imds hardware monitor

4bSb 3f626f4 db l?boot l ,0

4b61 c312f8

4b64 cd03f8
4b67 e67f
4b69 c9

const:

conin:

iconsole status to reg-a
(exactly the same as mds call)
jmp csts

iconsole character to reg-a
call ci
ani 7fh iremove parity bit
ret

conout: iconsole character from c to console out
4b6a c309f8 jmp co

4b6d c30ff8

4b70 af
4b71 c9

1 ist: ;list device out
(exactly the same as mds call)
jmp 10

listst:
ireturn list status
xra a
ret ialways not ready

punch: iPunch device out
(exactly the same as mds call)

4b72 c30cf8 jmp po
i
reader: ireader character in to reg-a

(exactly the same as mds call)
4b75 c306f8 jmp ri

i
home: imove to home position

44

4b78 0e00
4b7a c3a74b

4b7d 210000
4b80 79
4b81 fe04
4b83 d0

4b84 e602
4b86 32664c
4b89 79
4b8a e601
4b8c b7
4b8d ca924b
4b90 3e30

4b92 47
4b93 21684c
4b96 7e
4b97 e6cf
4b99 b0
4b9a 77

tB98 ~~00
4bge 29
4b9f 29
4ba0 29
4bal 29
4ba2 11334a
4ba5 19
4ba6 c9

4ba7 216a4c
4baa 71
4bab c9

4bac 216b4c
4baf 71
4bb0 c9

4bbl 0600
4bb3 eb
4bb4 09
4bb5 7e
4bb6 326b4c

agg~ g~

treat as track 00 seek
mvi c,0
jmp settrk

i
se1dsk: ise1ect disk given by register c

1xi h,0000h ireturn 0000 if error
mov a,c
cpi ndisks itoo large?
rnc i leave hl = 0000

ani 10b i00 00 for dr ive 0,1 and 10 10 fo
sta dbank ito select drive bank
mov a,c i 00, 01, 10, 11
ani 1b imds has 0,1 at 78, 2,3 at 88
ora a i resu1 t 00?
jz setdr ive
mvi a,00110000b iselects drive 1 in bank

setdr ive:

i
settrk:

setsec:

sectran:

. ,

mov
lxi
mov
ani
ora
mov
mov
rnVl
dad
dad
dad
dad
1xi
dad
ret

iset
1xi
mov
ret

iset
lxi
mov
ret

mvi
xchg
dad
mov
sta
mo¥ re

b,a i save the function
h,iof iio function
a,m
11001111b imask out disk number
b imask in new disk number
m, a i save it in iopb

~:~ ih1=disk number
h i*2
h i*4
h i *8
h i*16
d,dpbase
d ih1=disk header table address

track address given by c
h,iot
m,c

sector number given by c
h,ios
m,c

itranslate sector bc using table at de
b,0 idouble precision sector number

itrans1ate table address to hI
b ;trans1ate(sector) address
a,m itrans1ated sector number to a
ios
1,a ireturn sector number in 1

setdma: iset dma address given by regs b,c

45

i

4bbb 69
4bbc 60
4bbd 226c4c
4bc0 c9

4bcl 0e04
4bc3 cde04b
4bc6 cdf04b
4bc9 c9

4bca 0e06
4bcc cde04b
4bcf cdf04b
4bd2 c9

4bd3 7e
4bd4 b7
4bd5 c8

4bd6 e5
4bd7 4 f
4bd8 cd6a4b
4bdb el
4bdc 23
4bdd c3d34b

4be0 21684c
4be3 7e
4be4 e6f8
4be6 bl
4be7 77

4be8 e620
4bea 216b4c
4bed b6
4bee 77
4bef c9

4bf0 0e0a

4bf2 cd3f4c
4bf5 cd4c4c

4bf8 3a664c

i
read:

i
write:

mov
mov
shld
ret

l,c
h,b
iod.

iread next disk record (assuming disk/trk/sec/dma
mvi c,readf iset to read function
call setfunc
call waitio iperforrn read function
ret irnay have error set in reg-a

idisk write function
mvi c,writf
call setfunc iset to write function
call waitio
ret imav have error set

utility subroutines
prmsg: iprint message at h,l to 0

. ,
setfunc:

i
waitio:

rewa it:

mov
ora
rz

a,m
a

more to print
push h
mov
call
pop
inx
jmp

c,a
conout
h
h
prmsg

i zero?

set function for next i/o (command in reg-c)
lxi h,iof iio function address
mov a,m iget it to accumulator for maskin
ani 11111000b iremove previous command
ora c iset to new command
mov m,a ireplaced in iopb
the mds-800 controller req's disk bank bit in sec
mask the bit from the current i/o function
ani 00100000b imask the disk select bit
lxi h,ios iaddress the sector selec
ora m iselect proper disk bank
mov m,a iset disk select bit on/o
ret

mvi c,retry irnax retries before perm error

start the i/o function and wait for completion
call intype iin rtype
call inbyte iclears the controller

Ida dbank iset bank flags

46

4bfb b7
4bfc 3e67
4bfe 064c
4c00 c20b4c
4c03 d379
4c0S 78
4c06 d37a
4c08 c3l04c

4c0b d389
4c0d 78
4c0e d38a

i
iodrl:

i

ora
mvi
mvi
jnz
out
mov
out
jmp

a
a,iopb
b,iopb
iodrl
ilow
a,b
ihigh
wait0

: dr ive bank 1

izero if drive 0,1 and nz
and 0ffh ;low address for iopb
shr 8 ;high address for iopb

:drive bank I?
:lowaddress to controlle

:high address
ito wait for complete

out ilow+10h i88 for drive bank 10
mov a,b
out ihigh+10h

4c10 cdS94c wait0: call
ani
jz

instat
iordy
wai to

iwait for completion
iready? 4c13 e604

4clS ca104c

4c18 cd3f4c

4clb fe02
4cld ca324c

4c20 b7
4c2l c2384c

4c24 cd4c4c
4c27 17
4c28 da324c
4c2b If
4c2c e6fe
4c2e c2384c

4c3l c9

4c32 cd4c4c
4c35 c3384c

i

check io completion ok
call intype imust be io complete (00)
00 unlinked i/o complete, 01 linked i/ocomple
10 disk status changed 11 (not used)
cpi l0b iready status change?
j z wready

must be 00 in the accumulator
ora
jnz

a
werror

check i/o error bits
call inbyte
ral
jc wready
rar
ani llllll10b
jnz werror

isome other condition, re

iunit not ready

iany other errors?

read or write is ok, accumulator contains zero
ret

wready: inot ready, treat as error for now
call inbyte iclear result byte
jmp trycount

werror: ;return hardware malfunction {crc, track, seek, e
the mds controller has returned a bit in each pos

; of the accumulator, corresponding to the conditio
o - deleted data (accepted as ok above)
1 - crc error
2 -seek error
3 - address error (hardware malfunction)
4 - data over/under flow {hardware"malfunct
5 - write protect (treated as not ready)
6 - write error (hardware malfunction)
7 - not ready

47

(accumulator bits are numbered 7 6 5 4 3 2 1 0)

i it may be useful to filter out the various condit
but we will get a permanent error message if it i
recoverable. in any case, the not ready conditio
treated as a separate condition for later improve

t rycoun t:
register c contains retry count, decrement Itil z

4c38 0d dcr c
4c39 c2f24b jnz rewait ifor another try

4c3c 3e0l
4c3e c9

4c3f 3a664c
4c42 b7
4c43 c2494c
4c46 db79
4c48 c9
4c49 db89
4c4b c9

4c4c 3a664c
4c4f b7
4c50 c2564c
4c53 db7b
4c55 c9
4c56 db8b
4c58 c9

4c59 3a664c
4c5c b7
4c5d c2634c
4c60 db78
4c62 c9
4c63 db88
4c65 c9

4c66 00

4c67 80
4c68 04
4c69 01
4c6a 02
4c6b 01
4c6c 8000

. ,
cannot recover from error
mvi a,l ierror code
ret

; intype, inbyte, instat read drive bank 00 or 10
intype: Ida dbank

ora a
jnz intypl iskip to bank 10
in rtype
ret

intypl: in
ret

rtype+10h i78 for 0,1 88 for 2,3

i
i nbyte: Ida

ora
jnz
in
ret

inbytl: in
ret

i
instat: Ida

ora
jnz
in
ret

instal: in
ret

dbank
a
inbytl
rbyte

rbyte+10h

dbank
a
instal
dstat

dstat+10h

. data areas (must be in ram) ,
dbank: db 0 idisk bank 00 if drive

10 if drive
iopb: iio parameter block

db 80h inormal i/o operation
iof: db readf iio function, initial
ion: db 1 inumber of sectors to
iot: db offset itrack number
ios: db 1 isector number
iod: dw buff iio address

define ram areas for bdos operation

48

0,1
2,3

read
read

4c6e+=
4c6e+
4cee+
4d0d+
4d1d+
4d3c+
4d4c+
4d6b+
4d7b+
4d9a+
4daa+=
013c+=
4daa

begdat
di rbuf:
alv0 :
csv0:
a1v1 :
csv1:
a1v2:
csv2:
a1v3:
csv3:
enddat
da tsiz

endef
equ
ds
ds
ds
ds
ds
ds
ds
ds
ds
equ
equ
end

$
128 ;directory access buffer
31
16
31
1Q
31
16
31
16
$
$-begda t

49

0014 =

0000 =
3400 =
3c06 =
4a00 =
0004 =
0003 =

';

msize

bias
ccp
bdos
bios
cdisk
iobyte

APPENDIX C: A SKELETAL CBIDS

skeletal cbios for first level of cp/m 2.0 altera

equ 20 ;cp/m version memory size in kilo

Ubias" is address offset from 3400h for memory sy
than 16k (referred to as lib ll throughout the text)

equ
equ
equ
equ
equ
equ

(msize-20)*1024
3400h+bias ;base of ccp
ccp+806h ;base of bdos
ccp+1600h ;base of bios
0004h ;current disk number 0=a, ••• ,15=p
0003h ;intel i/o byte

4a00
002c =

org
nsects equ

bios ;origin of this program
($-ccp)/128 ;warm start sector count

4a00 c39c4a
4a03 c3a64a wboote:
4a06 c3114b
4a09 c3244b
4a0c c3374b
4a0f c3494b
4a12 c34d4b
4a15 c34f4b
4a18 c3544b
4alb c35a4b
4ale c37d4b
4a21 c3924b
4a24 c3ad4b
4a27 c3c34b
4a2a c3d64b
4a2d c34b4b
4a30 c3a74b

4a33 73 4a0 0 dpbase:
4a37 000000
4a3b f04c8d .
4a3f ec4d70

4a43 7 34a0 0
4a47 000000
4a4b f04c8d
4a4f fc4d8f

4a53 734a00
4a57 000000
4a5b f04c8d
4a5f 0c4eae

jump
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp
jmp

vector for
boot
wboot
const
conin
conou t
list
punch
reader
horne
selds k
settrk
setsec
se tdma
read
write
listst
sectran

individual subroutines
;cold start
;warm start
;console status
;console character in
;console character out
;list character out
;punch character out
;reader character out
;move head to horne positi
;select disk
;set track number
;set sector number
;set dma address
;read disk
;write disk
;return list status
;sector translate

fixed data tables for four-drive standard
ibm-compatible 8" disks
disk parameter header for disk 00
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk00,al100
disk parameter header for disk 01
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk01,al101
disk parameter header for disk 02
dw trans,0000h
dw 0000h,0000h
dw dirbf,dpblk
dw chk02,al102

50

4a63 734a00
4a67 000000
4a6b f04c8d
4a6f lc4ecd

;

~~i1 ~~~5~g trans:
4a7b 170309
4a7f 150208
4a83 141a06
4a87 121804
4a8b 1016

4a8d
4a8f
4a90
4a91
4a92
4a94
4a96
4a97
4a98
4a9a

la00
03
07
00
f200
3f00
c0
00
1000
0200

4a9c af
4a9d 320300
4aa0 320400
4aa3 c3ef4a

4aa6 318000
4aa9 0e00
4aab cd5a4b
4aae cd544b

4abl 062c
4ab3 0e00
4ab5 1602

4ab7 210034

4aba c5
4abb dS
4abc e5
4abd 4a
4abe cd924b
4acl cl

dpblk:

i
boot:

;
wboot:

loadl:

disk
dw
dw
dw
dw

parameter header
trans,0000h
0000h,0000h
dirbf,dpblk
chk03,al103

for disk 03

sector translate vector
gg
db
db
db
db
db

;disk
dw
db
db
db
dw
ow
db
db
dw
ow

~5?5~rl~17
23,3,9,15
21,2,8,14
20,26,6,12
18,24,4,10
16,22

~~~gfgf~ ~:t:1:~ 
isectors 9,10,11,12 
isectors 13,14,15,16 
;sectors 17,18,19,20 
isectors 21,22,23,24 
;sectors 25,26 

parameter 
26 
3 
7 

block, common to all disks 
;sectors per track 
;block shift factor 
;block mask 

o 
242 
63 
192 
o 
16 
2 

;null mask 
;disk size-l 
;directory max 
;alloc 0 
;alloc 1 
;check size 
;track offset 

end of fixed tables 

individual subroutines to perform each function 
;simplest case is to just perform parameter initi 
xra a izera in the accum 
sta iobvte ;clear the iobyte 
sta cdisk ;select disk zero 
jmp gocpm iinitialize and go to cp/ 

;simplest case is to read the disk until all sect 
lxi sp,80h ;use space below buffer f 
mvi c,0 ;select disk 0 
call seldsk 
call horne ;go to track 00 

mvi b,nsects ;b counts # of sectors to 
mvi c,0 ;c has the current track 
mvi d,2 ;d has the next sector to 
note that we begin by reading track 0, sector 2 s 
~ontains the cold start loader, which is skipped 
lxi h,ccp ;base of cp/m (initial 10 
;load one more sector 
push b isave sector count, current track 
push d ;save next sector to read 
push h isave dma address 
mov c,d ;get sector address to register c 
call setsec ;set sector address from register 
pop b ;recall dma address to b,c 

51 



4ac2 c5 
4ac3 cdad4b 

4ac6 cdc34b 
4ac9 fe00 
4acb c2a64a 

4ace el 
4acf 118000 
4ad2 19 
4ad3 dl 
4ad4 cl 
4ad5 05 
4ad6 caef4a 

4ad9 14 
4ada 7a 
4adb felb 
4add daba4a 

4ae0 1601 
4ae2 0c 

4ae3 c5 
4ae4 d5 
4ae5 e5 
4ae6 cd7d4b 
4ae9 el 
4aea dl 
4aeb cl 
4aec c3ba4a 

4aef 3ec3 
4afl 320000 
4af4 21034a 
4af7 220100 

4afa 320500 
4afd 21063c 
4b00 220600 

4b03 018000 
4b06 cdad4b 

4b09 fb 
4b0a 3a0400 
4b0d 4f 
4b0e c30034 

gocpm: 

push 
call 

b ;replace on stack for later recal 
setdma ;set dma address from b,c 

drive set to 0, track set, sector set, dma addres 
call read 
cpi 00h ;any errors? 
jnz wboot ;retry the entire boot if an erro 

no error, move to next sector 
;recall dma address 
;dma=dma+128 

pop h 
lxi d,128 
dad d ;new dma address is in h,l 

;recall sector address pop d 
pop b ;recall number of sectors remaini 

;sectors=sectors-l dcr b 
j z gocpm ;transfer to cp/m if all have bee 

more sectors remain to load, check for track chan 
inr 
mov 
cpi 
jc 

d 
a,d 
27 
loadl 

;sector=27?, if so, change tracks 

;carry generated if sector<27 

end of current track, go to next track 
mvi d,l ;begin with first sector of next 
inr c ;track=track+l 

save 
push 
push 
push 
call 
pop 
pop 
pop 
jmp 

register state, and change tracks 
b 
d 
h 
settrk ;track address set from register 
h 
d 
b 
loadl ;for another sector 

end of load operation, set parameters and go to c 

mvi 
sta 
lxi 
shld 

sta 
lxi 
shld 

lxi 
call 

ei 
Ida 
mov 
jmp 

a,0c3h ;c3 is a jmp instruction 
QJ ;for jmp to wboot 
h,wboote ;wboot entry point 
1 ;set address field for jmp at 0 

5 ;for jmp to bdos 
h,bdos ;bdos entry point 
6 ;address field of jump at 5 to bd 

b,80h ;default dma address is 80h 
setdma 

;enable the interrupt system 
cdisk ;get current disk number 
c,a ;send to the ccp 
ccp ;go to cp/m for further processin 

52 



4bll 
4b21 3e00 
4b23 c9 

4b24 
4b34 e67f 
4b36 c9 

4b37 79 
4b38 
4b48 c9 

4b49 79 
4b4a c9 

4b4b af 
4b4c c9 

4b4d 79 
4b4e c9 

4b4f 3ela 
4b51 e67f 
4b53 c9 

4b54 0e00 
4b56 cd7d4b 
4b59 c9 

4b5a 210000 
4b5d 79 
4b5e 32ef4c 
4b61 fe04 

. , 

i 

simple i/o handlers (must be filled in by user) 
in each case, the entry point is provided, with s 
to insert your own code 

const: iconsole status, return 0ffh if character ready, 
ds l0h ispace for status subroutine 
mvi a,00h 
ret 

conin: iconsole character into register a 
ds l0h ispace for input routine 
ani 7fh ;strip parity bit 
ret 

conout: iconsole character output from register c 

i 
list: 

; 

mov a,c iget to accumulator 
ds l0h ;space for output routine 
ret 

;list character from register c 
mov a,c ;character to register a 
ret ;null subroutine 

listst: ireturn list status (0 if not ready, I if ready) 
xra a i0 is always ok to return 
ret 

; 
punch: iPunch character from register c 

mov a,c icharacter to register a 
ret ;null subroutine 

i 
reader: ;read character into register a from reader devic 

horne: 

. , 

mvi a,lah ienter end of file for now (repla 
ani 7fh ;remember to strip parity bit 
ret 

i/o drivers for the disk follow 
for now, we will simply store the parameters away 
in the read and write subroutines 

imove to the track 00 position of current drive 
translate this call into a settrk call with param 
mvi c,0 iselect track 0 
call settrk 
ret iwe will move to 00 on first read 

seldsk: ;select disk given by register c 
lxi h,0000h ;error return code 
mov a,c 
sta diskno 
cpi 4 ;must be between 0 and 3 

53 



4b63 d0 

4b64 

4b6e 3aef4c 
4b7l 6f 
4b72 2600 
4b74 29 
4b75 29 
4b76 29 
4b77 29 
4b78 11334a 
4b7b 19 
4b7c c9 

4b7d 79 
4b7e 32e94c 
4b81 
4b91 c9 

4b92 79 
4b93 32eb4c 
4b96 
4ba6 c9 

4ba7 eb 
4ba8 09 
4ba9 6e 
4baa 2600 
4bac c9 

4bad 69 
4bae 60 
4baf 22ed4c 
4bb2 
4bc2 c9 

4bc3 
4bd3 c3e64b 

4bd6 

: 
settrk: 

: 
setsec: 

: 
sectran: 

. , 
setdma: 

. , 
read: 

: 

rnc :no carry if 4,5, ••• 
disk number is in the proper range 
ds 10 :space for disk select 
compute proper disk parameter header address 
Ida diskno 
mov l,a :l=disk number 0,1,2,3 
mvi h,0 :high order zero 
dad h :*2 
dad h : *4 
dad h : *8 
dad h :*16 (size of each header) 
lxi d,dpbase 
dad d :h1=.dpbase(diskno*16) 
ret 

:set track given by register c 
mov a,c 
sta track 
ds 10h :space for track select 
ret 

:set sector given by register c 
mov a,c 
sta sector 
ds 10h :space for sector select 
ret 

:translate 
:translate 
xchg 

the sector given by bc using the 
table given by de 

:hl=.trans 
:hl=.trans(sector) dad b 

mov 
mvi 
ret 

:set dma 
mov 
mov 
shld 
ds 
ret 

1 , m 
h,0 

:1 = trans(sector) 
:hl= trans(sector) 
:with value in hI 

address given by registers band c 
l,c :low order address 
h,b ihigh order address 
dmaad :save the address 
10h ispace for setting the dma addres 

iperform read operation (usually this is similar 
so we will allow space to set up read command, th 
common code in write) 
ds 10h iset up read command 
jmp waitio ito perform the actual i/o 

write: iperform a write operation 
ds 10h :set up write comman~ 

i 
waitio: ienter here from read and write to perform the ac 

operation. return a 00h in register a if the ope 
properly, and 01h if an error occurs during the r 

54 



4be6 
4ce6 3e0l 
4ce8 c9 

4ce9 
4ceb 
4ced 
4cef 

4cf0 = 
4cf0 
4d70 
4d8f 
4dae 
4dcd 
4dec 
4dfc 
4e0c 
4elc 

4e2c = 
0l3c = 
4e2c 

; 

; 

j 

in this case, 

ds 256 
mvi a,l 
ret 

we have saved the disk number in 'd 
the track number in 'track' (0-76 
the sector number in 'sector' (1-
the dma address in 'dmaad' (0-655 
jspace reserved for i/o drivers 
jerror condition 
jreplaced when filled-in 

the remainder of the cbios is reserved uninitiali 
data area, and does not need to be a part of the 
system memory image (the space must be available, 
h oweve r, be twe en" beg da t il and I' end da t") • 

track: ds 
sector: ds 
dmaad: ds 
diskno: ds 

2 
2 
2 
1 

jtwo bytes for expansion 
jtwo bytes for expansion 
jdirect memory address 
jdisk number 0-15 

begdat 
di rbf: 
al100 : 
al10l: 
al102: 
al103 : 
chk00 : 
chk0l: 
chk02: 
chk03 : 
j 

enddat 
da tsiz 

scratch 
equ 
ds 
ds 
ds 
ds 
ds 
ds 
ds 
ds 
ds 

equ 
equ 
end 

ram area for bdos use 
$ jbeginning of data area 
128 jscratch directory area 
31 jallocation vector 0 
31 jallocation vector 1 
31 jallocation vector 2 
31 jallocation vector 3 
16 jcheck vector 0 
16 jcheck vector 1 
16 jcheck vector 2 
16 jcheck vector 3 

$ jend of data area 
$-begdatjsize of data area 

55 



APPENDIX D: A SKELETAL GETSYS/PUTSYS PROGRAM 

0100 

0014 = 

0000 = 
3400 = 
3c00 = 
4a00 = 

msize 

combined getsys and putsys programs from Sec 4. 
Start the programs at the base of the TPA 

org 0100h 

equ 20 size of cp/m in Kbytes 

; "bias" is the amount to add to addresses for > 20k 
(referred to as hb u throughout the text) 

bias 
ccp 
bdos 
bios 

gstart: 

equ 
equ 
equ 
equ 

(rnsize-20) *1024 
3400h+bias 
ccp+0800h 
ccp+1600h 

getsys programs tracks 0 and 1 to memory at 
3880h + bias 

register 
a 
b 
c 
d,e 
h,l 
sp 

usage 
(scratch register) 
track count (0 ••• 76) 
sector count (1 ••• 26) 
(scratch register pair) 
load address 
set to stack addiess 

0100 318033 1xi sp,ccp-0080h 
h,ccp-0080h 
b,0 

start of getsys 
convenient p1ac 
set initial loa 
start with trac 
read next track 
each track star 

0103 218033 1xi 
0106 0600 rnvi 

rd$trk: 
0108 0e01 rnvi 

010a cd0003 
010d 118000 
0110 19 
0111 0c 
0112 79 
0113 fe1b 
0115 da0a01 

rd$sec: 
call 
1xi 
dad 
inr 
mov 
cpi 
jc 

c,l 

read$sec 
d,128 
d 
c 
a,c 
27 
rdsec 

get the next se 
offset by one s 

(h1=h1+128) 
next sector 
fetch sector nu 

and see if 1a 
<, do one more 

arrive here at end of track, move to next track 

0118 04 
0119 78 
011a fe02 
011c da0801 

011f fb 
0120 76 

inr 
mov 
cpi 
jc 

b 
a,b 
2 
rd$trk 

track = track+1 
check for last 
track = 2 ? 
<, do another 

arrive here at end of load, halt for lack of anything b 

ei 
hIt 

56 



0200 

0200 318033 
0203 218033 
0206 0600 

0208 0e01 

020a cd0004 
020d 118000 
0210 19 
0211 0c 
0212 79 
~213 felb 
0215 da0a02 

0218 04 
"219 78 
021a fe02 
021c da0802 

021f fb 
0220 76 

0300 

0300 c5 
0301 e5 

0302 

0342 el 
0343 cl 

putsys program, places memory image starting at 
3880h + bias back to tracks 0 and 1 
start this program at the next page boundary 

org 

put$sys: 
lxi 
lxi 
mvi 

wr$trk: 

wr$sec: 
mvi 

call 
lxi 
dad 
inr 
mov 
cpi 
jc 

($+0100h) and 0ff00h 

sp,ccp-0080h 
h,ccp-0080h 
b,0 

c,l 

write$sec 
d,128 
d 
c 
a,c 
27 
wr$sec 

convenient plac 
; start of dump 

start with trac 

; start with sect 

write one secto 
length of each 
<hl>=<hl> + 128 
<c> = <c> + 1 
see if 

past end of t 
no, do another 

arrive here at end of track, move to next track 

inr 
mov 
cpi 
jc 

b 
a,b 
2 
wr$trk 

track = track+l 
see if 

last track 
no, do another 

done with putsys, halt for lack of anything bette 

ei 
hIt 

user supplied subroutines for sector read and write 

move to next page boundary 

org ($+0100h) and 0ff00h 

read$sec: 
read the next sector 
track in <b>, 
sector in <c> 
dmaaddr in <hI> 

push 
push 

b 
h 

user defined read operation goes here 
ds 64 

pop 
pop 

h 
b 

57 



0344 c9 ret 

0400 or9 ($+0100h) and 0ff00h another page bo 

write$sec: 

; same parameters as read$sec 

0400 c5 push b 
0401 e5 push h 

user defined write operation goes here 
0402 ds 64 

0442 e1 pop h 
0443 c1 pop b 
0444 c9 ret 

end of getsys/putsys program 

0445 end 

58 



100010 

101014 = 

010010 = 
34010 = 
4a01O = 
031010 = 
4a00 = 
191010 = 
0032 = 

001010 1011021010 
010103 1632 
101005 2110034 

APPENDIX E: A SKELETAL COLD START LOADER 

this is a sample cold start loader which, when modified 
resides on track 00, sector 01 (the first sector on the 
diskette). we assume that the controller has loaded 
this sector into memory upon system start-up (this pro
gram can be keyed-in, or can exist in read/only memory 
beyond the address space of the cp/m version you are 

; running). the cold start loader brings the cp/m system 
into memory at "loadp" (34101Oh + "bias h

). in a 20k 
memory system, the value of "bias" is 00100h, with large 
values for increased memory sizes (see section 2). afte 
loading the cp/m system, the clod start loader branches 
to the "boot" entry point of the bios, which begins at 
"bios" + "bias. 1I the cold start loader is not used un
til the system is powered u~ again, as long as the bios 
is not overwritten. the origin is assumed at 100101Oh, an 
must be changed if the controller brings the cold start 
loader into another area, or if a read/only memory area 
is used. 

msize 

bias 
ccp 
bios 
biosl 
boot 
size 
sects 

cold: 

Isect: 

org 10 base of ram in cp/m 

equ 20 min mem size in kbytes 

equ (rnsize-21O) *11024 offset from 20k sys tern 
equ 34100h+bias base of the ccp 
equ ccp+161OlOh base of the bios 
equ 03010h length of the bios 
equ bios 
equ bios+biosl-ccp size of cp/m system 
equ size/128 # of sectors to load 

begin the load operation 

lxi b,2 b=1O , c=sector 2 
rnvi d,sects d=# sectors to load 
lxi h,ccp base transfer address 

; load the next sector 

insert inline code at this point to 
read one 128 byte sector from the 
track given in register b, sector 
given in register c, 
into the address given by (hI> 

branch to location "cold U if a read error occurs 

59 



0008 c36b00 
000b 

006b 15 
006c ca004a 

006f 318000 
0072 39 

0073 0c 
0074 79 
0075 felb 
0077 da0800 

007a 0e01 
007c 04 
007d c30800 
0080 

************************************************* 
* 
* 
* 

user supplied read operation goes here ••• 

************************************************* 

jmp 
ds 

past$patch: 

past$patch 
60h 

: remove this when patche 

; go to next sector if load is incomplete 
dcr d : sects=sects-l 
jz boot ; head for the bios 

more sectors to load 

we aren't using a stack, so use <sp> as scratch registe 
to hold the load address increment 

lxi 
dad 

inr 
mov 
cpi 
jc 

sp,128 
sp 

c 
a,c 
27 
Isect 

128 bytes per sector 
<hI> = <hI> + 128 

sector = sector + 1 

last sector of track? 
no, go read another 

end of track, increment to next track 

mvi 
inr 
jmp 
end 

c,l 
b 
Isect 

60 

sector = 1 
track = track + 1 
for another group 
of boot loader 



1: 
2: 
3 : 
4 : 
5 : 
6 : 
7 : 
8 : 
9: 

; 

10: 
11: 
12 : 
13: 
14: ; 
15: 
16: 
17: 
18: 
19: ; 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: ; 
38: ; 
39: 
40: 
41: 
42: 
43: 
44: ; 
45: 
46: 
47: ; 
48: 
49 : 
sa: 
51: 
52: 
53: ; 

APPENDIX F: CP/M DISK DEFINITION LIBRARY 

CP/M 2.0 disk re-definition library 

Copyright (c) 1979 
Digital R=bearcn 
Box 579 
Pacific Grove, CA 
93950 

CP/M logic21 disk drives are defined using the 
macros given below, where the sequence of calls 
is: 

disks a 
diskdef ?arameter-list-0 
diskdef ?arameter-list-1 

diskdef parameter-list-n 
endef 

where n is the number of logical disk drives attached 
to the CP/M· system, ana parameter-list-i defines the 
characteristics of the ith drive (i=0,1, ••• ,n-l) 

each parameter-list-i takes the form 
dn,f05c,lsc, [skf] ,bls,dks,dir,cks,ofs, [0] 

where 
dn is the disk number o ,1, ••• ,n-l 
fsc is tile first sector number (usually 0 or 11-
Isc is ti1e last sector number on a track 
skf is ot?tiona1 "skew factor" for sector translate 
bls is tne data block 
dks is tnt: disk size 
dir is tnt:': number of 
cks is the number of 
ofs is the number of 
[0] is an opt.iona1 0 

for convenience, the form 
dn,dm 

size (1024,2048, ••• ,16384) 
in bls increments (word) 
directory elements (word) 
dir elements to checksum 
tracks to skip (word) 
which forces 16K/directory en 

defines disk dn as having the same characteristics as 
a previously defined disk dm. 

a standard four 
disks 
diskdef 

dsk set 
rept 

dsk set 
diskdef 
endm 
endei 

drive CP/M system is defined by 
4 
0,1,26,6,1024,243,64,64,2 
o 
3 
dsk+1 
%dsk,0 

the value of "begdat" at the end of assembly defines t 

61 



54: 
55: 
56: 
57: 
58: 
59: 
610: 

; 
dskhdr 

61 : 
62: 
63: ;; 

beginning of the uninitialize ram area above the bios, 
while the vallle of "enddat U defines the next location 
following the end of the data area. the size of this 
area is given by the value of ndatsiz" at the end of t 
assembly. note that the allocation vector will be qui 
large if a large disk size is defined with a small blo 
size. 

macro 
define 

dn 

64: dpe&dn: dw 
a single disk 

xlt&dn,0000h 
0000h,0000h 
dirbuf,dpb&dn 
csv&dn,alv&dn 

header list 
;translate table 
;scratch area 65: 

66: 
67: 
68: 
69: . , 

disks 70: 
71: ;; 
72: ndisks 
73: 
74: 
15: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 

dpbase 
; ; 
dsknxt 

dsknxt 

; 
dpbhdr 
dpb&dn 

; 
ddb 

84: 
85: 
06: 
8,]: ;; 
88: 
89: 
90: 
91: 

; 
ddw 

92: ;; 
93: 
94: 
95: 
96: gcd 
97: ;; 
98: ;; 
99: 

100: 
101 : 
102 : 
103: 
104 : 
105: 
106: 
107: 
108: 

. . , , 
gcdm 
gcdn 
gcdr 

gcdx 
gcdr 

dw 
dw 
dw 
endm 

macro nd 
define nd disks 

;dir buff,parrn olock 
;check, alloc vectors 

set nd ;;for later reference 
equ $ ;base of disk parameter blocks 
generate the nd elements 
set 0 
rept nd 
dskhdr %dsknxt 
set dsknxc+l 
endm 
endm 

macro 
equ 
endm 

dn 
$ 

macro data,comrnent 
define a db statement 
db data 
endm 

macro data,comme~t 
define a dw statement 
dw data 
endm 

macro m,n 

;disk parm block 

comment 

comment 

greatest common divisor of m,n 
produces value gcdn as result 
(used in sector translate table generation) 
set m ;;variable for rn 
set n ;;variable for n 
set 0 ;;variable for r 
rept 65535 
set gcdm/gcdn 
set gcdm - gcdx*gcdn 
if gcdr = 0 
exi trn 
endif 

62 



109: 
110: 
Ill: 
112: 

gcdrn 
gcdn 

113: ; 

set 
set 
endm 
endm 

gcdn 
gcdr 

114: diskdef macro dn,fsc,lsc,skf,b1s,dks,dir,cks,ofs,k16 
115: ;; generate the set statements for later tables 
116: if nul lsc 
117: ;; current disk dn s~me as orevious fsc 

;~quivalent ~ararneters 118: dpb&dn equ dpb&fsc 
119: a1s&dn equ a1s&fsc ;sarne allocation vector size 

;same checksum vector size 
;same translate table 

120: css&dn equ css&fsc 
121: x1t&dn equ x1t&fsc 
122: else 
123: secmax set 
124: sectors set 
125: a1s&dn set 

lsc-(fsc) ;;sectors 0 ••• secmax 
secmax+1;;number of sectors 
(dks)/8 ;;size of allocation vector 
((dks) mod td ne 0 126: if 

127 : 
128: 
129 : 
1310: 
131 : 
132: 
133 : 
134: 
135: 
136 : 
137: 

als&dn 

css&dn . . , , 
b1kva1 
blkshf 
b1kmsk 

138: ;; 
139: blkshf 
140: b1kmsk 
141: blkval 
142: 
143: 
144: 
145: 
146: 
147: 
148 : 
149: 

; ; 
blkval 
extrnsk 

150: 
151 : 
152 : 
153 : 
154: ;; 
155: 

. . , , 
extrnsk 
blkval 

extrnsk 156: 
157: 
158: ;; 
159: 
160: 
161 : 

extrnsk 

162: ;; 
1 6 3: d i r r ern 

set 
endif 

als&dn+l 

set (cks)/4 ;;number of checksum elements 
generate the block shift value 
set bls/128 ;;number of sectors/block 
set 0 ;;count5 right 0'5 in blkva1 
set 0 ;;£i11s with l's from right 
re?t 16 ;;~nce for each bit ?osition 
if b1kval=1 
exitm 
endif 
otherwise, high ord~r 1 not found yet 
set b1kshf+l 
set (blkmsk shl 1) or 1 
set blkval/2 
endm 
generate the extent mask byte 
set bls/1024 ;;number of kilobytes/block 
set 0 ;;fi11 from right with l's 
rept 16 
if b1kva1=1 
exitm 
endif 
otherwise more to shift 
set (extmsk sh1 1) or 1 
set blkval/2 
endm 
may be double byte 111ocation 
if (dks) > 256 
set 
endif 

(extmsk shr 1) 

may be optional 
if not nul 
set k16 
endif 

[0] 
k16 

in last position 

now generate directory reservation bit vector 
set dir ;;# remaining to ?rocess 

63 



164: 
165: 
166: 
167: 
168: 
169: 
170: ;; 
1 71: 
172: 
173: 
174: 
175: 
176: 
177: 
178: 
179: 
180: 

dirbks 
dirblk 

.. , , 
dirblk 

dirrern 

di r rem 

181: 
182: 
183: 
184: 
185: 
186: 
187: 
188 : 
189: 
1910: ;; 
1~1: 
192: 
193: 
194: 
1~5: 

196: 

x1t&dn 

xlt&dn 

197: ;; 
198: nxtsec 
199: nxtbas 
200: 
201 : 
202: 

.. , , 
neltst 

203: ;; 
204: ;; 
205: nelts 
206: xlt&dn 
207: 
208: 
2109: 
210: 
211 : 
212 : 
213: 
214: 
215: 
216: 
217: 
218: 

nxtsec 

nxtsec 

nelts 

set 
set 
rept 
if 
exitm 
endif 

bls/32 
o 
16 
dirrem=0 

;;number.of entries per block 
;;fill with l's on each loop 

not complete, iterate once again 
shift right and add 1 high order bit 
set (dirblk shr i) or 8000h 
if dirrern > dirbks 
set dirrem-di~bks 
else 
set 0 
endif 
endm 
dpbhdr dn ;;ge~erate equ $ 
ddw %sectors,<;sec per track> 
ddb %blkshf,<;blcck shift> 
ddb %b1kmsk,<;blcck mask> 
ddb %extmsk,<;e~tnt mask> 
ddw %(dks)-l,<;oisk size-I> 
ddw %(dir)-l,<;oirectory max> 
ddb %dirblk shr 8,<;alloc0> 
ddb %dirblk an& 0ffh,<;allocl> 
ddw %(cks)/4,<;check size> 
ddw %ofs,<;offset> 
generate the translate table, if requested 
if nul skf 
equ 0 ino xlate taole 
else 
if skf = 0 
equ 0 ;no xlate table 
else 
generate the translate tao1e 
set 0 ; ;ilext sector to fill 
set 0 ;;fficves by one on overflow 
gcd %sectors,skf 
gcdn = gcd(sectors,skew) 
set sectors/gcdn 
neltst is number of elements to generate 
before we overlap orevious elements 
set neltst ;;~ounter 
equ $ ;translate table 
rept sectors i;once for each sector 
if sectors < 256 
ddb %nxtsec+(fsc) 
else 
ddw %nxtsec+(fsc) 
endif 
set 
if 
set 
endif 
set 
if 

nxtsec+ (SKf) 
nxtsec >= sectors 
nxtsec-sectors 

nelts-1 
nelts = 0 

64 



219 : 
220: 
221 : 
222 : 
223: 
224: 
225: 
226: 
227: 
228: 
229 : 
230: 
231 : 
232: 
233: 
234: 
235: 
236: 
237: 
238: 
239: 
240: 
241 : 
242: 
243: 
244: 
245: 
246: 
247: 
248: :: 
249: 

nxtbas 
nxtsec 
nelts 

: 
defds 
lab: 

. , 
Ids 

: 
endef .. , , 
begdat 
dirbuf: 
dsknxt 

dsknxt 

enddat 
datsiz 

nxtbas+l 
nxtbas 
neltst 

set 
set 
set 
endif 
endm 
endif 
endif 
endrn 

::end of nul fac test 
;;end of nul bls test 

macro 
as 
endrn 

lab,space 
space 

macro 
defos 
endm 

Ib,dn,val 
Ib&dn,%val&dn 

macro 
generate the nec~ssary ram data areas 
equ $ 
ds 128 ;directory access buffer 
set 0 
rept ndisks ::once for eacn disk 
Ids alv,%dsknxtJals 
Ids csv,%dsknxt,css 
set dsknxt+l 
endm 
equ $ 
equ $-begdat 
db 0 at this point forces hex record 
endm 

65 



APPENDIX G: BLOCKING AND DEBLOCKING ALGORITHMS. 

1: ;***************************************************** 
2: ; * * 
3: ;* 
4: ;* 

Sector Deblocking Algorithms for CP/M 2.0 * 
* 

5: ;***************************************************** 
6: 
7: ; 
8: smask 
9: ;; 

10 : 
11 : 
12 : 

; ; 
@y 
@x 

utility macro to compute sector mask 
macro hblk 
compute log2(hblk), return @x as result 
(2 ** @x = hblk on return) 
set hblk 
set 0 

13: ;; 
14 : 

count right shifts of @y until = 1 
rept 8 

15 : 
16 : 
17: 
18: 
19: 
20: 
21 : 
22 : 
23 : 
24: 
25: 
26 : 
27: 
28: 
29: 
30: 
31 : 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41 : 
42: 
43: 
44: 
45 : 
46: 
47: 
48 : 
49: 
50: 
51: 
52: 
53 : 

; ; 
@y 
@x 

if @y = 1 
exi trn 
endif 
@y is 
set 
set 
endm 
endm 

not 1, shift right one position 
@y shr 1 
@x + 1 

; 
.***************************************************** , 
· * , 
· * , CP/M to host disk constants 

* 
* .* * , 

.***************************************************** , 
blk s iz 
hstsiz 
hstspt 
hstblk 
cpmspt 
secmsk 

secshf 

equ 
equ 
equ 
equ 
equ 
equ 
smask 
equ 

2048 
512 
20 
hstsiz/128 
hstblk * hstspt 
hstblk-l 
hstblk 
@x 

;CP/M allocation size 
;host disk sector size 
;host disk sectors/trk 
;CP/M sects/host buff 
;CP/M sectors/track 
;sector mask 
;compute sector mask 
;log2(hstblk) 

; 
.***************************************************** , 
· * * , 
· * , 
· * , 

BDOS constants on entry to write * 
* 

.***************************************************** , 
wrall 
wrdir 
wrual 

equ 
equ 
equ 

o 
1 
2 

;write to allocated 
;write to directory 
;write to unallocated 

; 
.***************************************************** , 
· * * , 
· * , 
· * , 

The BDOS entry points given below show the 
code which is relevant to deblocking only. 

* 
* 

.* * , 

.***************************************************** , 

66 



54: 
55: 
56 : 
57: 
58 : 
59: 
60: 
61 : 
62: 
63: 
64: 
65 : 
66: 
67: 
68: 
69: 
70: 
71 : 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93 : 
94: 
95: 
96: 
97: 
98: 
99: 

100: 
101: 
102: 
103: 

: DISKDEF macro, or hand coded tables go here 
dpbase equ $ :disk param block base 

· , 
boot: 
wboot: 

: 
seldsk: 

· , 
settrk: 

setsec: 

· , 
setdma: 

: 
sectran: 

:enter here on system boot to initialize 
xra a :0 to accumulator 
sta hstact :host buffer inactive 
sta unacnt :clear unalloc count 
ret. 

:select disk 
mov 
sta 
mov 
rnvi 
rept 
dad 
endm 
1xi 
dad 
ret 

a,c 
sekdsk 
l,a 
h,0 
4 
h 

d,dpbase 
d 

:se1ected disk number 
:seek disk number 
:disk number to HL 

:multiply by 16 

:base of parm block 
:hl=.dpb(curdsk) 

:set track given by registers Be 
mov h,b 
mov l,c 
sh1d sektrk :track to seek 
ret 

:set sector given by register c 
mov 
sta 
ret 

a,c 
sek sec :sector to seek 

:set dma address given by Be 
mov h,b 
mov l,c 
shld dmaadr 
ret 

:translate sector number Be 
mov h,b 
mov l,c. 
ret 

67 



104: 
105: 
106: 
107: 
108: 
109: 
110: 
Ill: 
112: 
113 : 
114: 
115: 
116 : 
117: 
118: 
119 : 
120: 
121: 
122: 
123: 
124 : 
125: 
126: 
127: 
128: 
129 : 
130: 
131: 
132 : 
133: 
134: 
135 : 
136: 
137: 
138: 
139: 
140: 
141: 
142: 
143 : 
144 : 
145: 
146 : 
147: 
148: 
149: 
150: 
151: 
152: 
153 : 
154: 
155 : 
156: 
157: 
158: 

.***************************************************** , 
· * , 
· * , 
· * , 

The READ entry point takes the place of 
the previous BIOS defintion for READ. 

* 
* 
* 

.* * , 

.***************************************************** , 
read: 

iread the selected CP/M sector 
mvi a,l 
sta readop iread operation 
sta rsflag imust read data 
mvi ,a,wrual 
sta wrtype itreat as unalloc 
jmp rwoper ito perform the read 

· , 
.***************************************************** , . 

· * , 
· * , 
· * , 
· * , 

The WRITE entry point takes the place of 
the previous BIOS defintion for WRITE. 

* 
* 
* 
* 

.***************************************************** , 
write: 

· , 
chkuna: 

iwrite the selected CP/M sector 
xra a i0 to accumulator 
sta readop inot a read operation 
rnov a,c iwrite type in c 
sta wrtype 
cpi wrual 
jnz chkuna 

write to unallocated, 
mvi a,blksiz/128 
sta unacnt 
Ida sekdsk 
sta unadsk 
Ihld sek trk 
shld unatrk 
Ida seksec 
sta unasec 

iwrite unallocated? 
icheck for unal10c 

set parameters 
inext unalloc recs 

idisk to seek 
iunadsk = sekdsk 

iunatrk = sectrk 

iunasec = seksec 

icheck for write to unallocated sector 
Ida unacnt iany unalloc remain? 
ora 
jz 

a 
alloc ;skip if not 

more 
dcr 
sta 
Ida 
lxi 
cmp 
jnz 

unallocated records remain 
a 
unacnt 
sekdsk 
h,unadsk 
m 
al10c 

disks'are the same 

68 

iunacnt = unacnt-l 

isame disk? 

isekdsk = unadsk? 
;skip if not 



159 : 
160: 
161 : 
162: 
163 : 
164: 
] 55: 
166: 
167: 
168: 
169: 
170: 
171 : 
1 72: 
173: 
174: 
175: 
176: 
177: 
178: 
1 79: 
180: 
181: 
182: 
183: 
184: 
185: 
186: 
187: 
188: 
189: 
190: 
191: 
192: 
193: 
194: 
195: 
196: 
197: 
198: 
199: 
200: 
201: 
202: 
203: 
204: 
205: 
206: 
207: 
208: 
209: 
210: 
211: 
212: 
213: 

noovf: 

i 
alloc: 

1xi 
call 
jnz 

h,unatrk 
sektrkcmp 
alloc 

tracks are the same 
Ida seksec 
lxi h,unasec 
Cf:"t) 

jnz 
m 
alloc 

match, move to next 
inr m 
mov a,m 
cpi cpmspt 
j c noovf 

isektrk = unatrk? 
iskip if not 

isame sector? 

iseksec = unasec? 
,skip if not 

sector for future ref 
iunasec = unasec+l 
iend of track? 
icount CP/M sectors 
jskip if no overflow 

overflow to next track 
mvi 
1hld 
inx 
shld 

imatch 
xra 
sta 
jmp 

jnot an 
xra 
sta 
inr 
sta 

m,0 
unatrk 
h 
unatrk 

found, 
a 
rsflag 
rwoper 

mark 

unallocated 
a 
unacnt 
a 
rsflag 

iunasec = 0 

iunatrk = unatrk+l 

as unnecessary read 
i 0 to accumulator 
i rsflag = 0 
ito perform the write 

record, requires pre-read 
i 0 to accum 
iunacnt = 0 
i 1 to accum 
i rsf1ag = 1 

i 
.***************************************************** , 
.* * , 
i* Common code for READ and WRITE follows * 
. * * , 
.***************************************************** , 
rwoper: 

;enter 
xra 
sta 
Ida 
rept 
ora 
rar 
endm 
sta 

active 
1xi 
mov 
mvi 

here to perform 
a 
erflag 
seksec 
secshf 
a 

sekhst 

host sector? 
h,hstact 
a,m 
m,l 

69 

the read/write 
izero to accum 
ino errors (yet) 
icompute host sector 

icarry = 0 
i shift right 

;host sector to seek 

ihost active flag 

ia1ways becomes 1 



214: 
215: 
216: 
217: 
218: 
219 : 
220 : 
221: 
222: 
223: 
224: 
225: 
226 : 
227 : 
228: 
229 : 
230: 
231: 
232 : 
233: 
234: 
235: 
236: 
237 : 
238: 
239: 
240: 
241 : 
242: 
243 : 
244: . 
245: 
246: 
247: 
248: 
249: 
250: 
251: 
252 : 

i 
nomatch: 

i 
filhst: 

253: i 
254: match: 
255: 
256: 
257: 
258: 
259: 
260: 
261: 
262: 
263: 
264: 
265: 
266: 
267: 
268: 

ora 
jz 

a 
filhst 

iwas it already? 
ifill host if not 

host 
Ida 
lxi 
cmp 
jnz 

buffer active, same as seek buffer? 
sekdsk 
n, hstdsk 
m 
nomatch 

same disk, same track? 
lxi h,hsttrk 

isame disk? 
isekdsk = hstdsk? 

call sektrkcmp isektrk = hsttrk? 
jnz nomatch 

same disk, same track, same buffer? 
Ida sekhst 
lxi h,hstsec isekhst = hstsec? 
cmp m 
jz match iskip if match 

iproper disk, but not correct sector 
ihost written? Ida hstwr t 

ora a 
cnz writehst iclear host buff 

imay have to fill the host buffer 
Ida sekdsk 
sta hstdsk 
lhld sek trk 
shld hsttrk 
Ida sekhst 
sta hstsec 
Ida rsflag 
ora a 
cnz readhst 
xra a 
sta hstwr t 

iCOPY data to or 
Ida seksec 
ani secmsk 
mov l,a 
mvi h,0 
rept 7 
dad h 
endm 
hI has relative 
lxi d,hstbuf 
dad d 
xchg 
lhld dmaadr 
mvi c,128 

from 

host 

70 

ineed to read? 

i yes , if 1 
i0 to accum 
ino pending write 

buffer 
imask buffer number 
ileast signif bits 
iready to shift 
idouble count 
ishift left 7 

buffer address 

ihl = host address 
inow in DE 
iget/put CP/M data 
ilength of move 



269:. 
270: 
271 : 
272: 
273: 
274: 
275: 
276: 
277: 
278: 
279: 
280: 
281: 

.282: 
283: 
284: 
285: 
286: 
287: 
288: 
289: 
290: 
291: 
292: 
293: 
294: 
295: 
296: 
297: 
298: 
299: 
300: 
301 : 
302: 
303: 
304: 
305: 
306: 
307: 
308 : 
309: 
310: 
311: 
312: 
313 : 
314: 
315 : 
316: 
317: 
318: 
319 : 
320: 

rwrnove: 

· , 

Ida 
ora 
jnz 

readop 
a 
rwrnove 

iwhich way? 

iskip if read 

write operation, mark and switch direction 
mvi a,l 
sta hstwr t 
xchg 

i hstwrt = 1 
isource/dest swap 

iC initially 128, DE is source, HL is dest 
Idax d isource character 
inx d 
mov m,a ito dest 
inx h 
dcr c iloop 128 times 
jnz rwrnove 

data has been moved 
Ida wrtype 
cpi wrdi r 
Ida erflag 
rnz 

• 
to/from host buffer 

iwrite type 
ito directory? 
;in case of errors 
ino further processing 

clear host buffer for directory write 
ierrors? ora a 

rnz 
xra 
sta 
call 
Ida 
ret 

a 
hstwrt 
writehst 
erflag 

iskip if so 
;0 to accum 
;buffer written 

.***************************************************** , 

.* * , 
· * , 
· * , 

utility subroutine for 16-bit compare * 
* 

.***************************************************** , 
sektrkcrnp: 

iHL = .unatrk or .hsttrk, compare with sektrk 
xchg 
lxi 
Idax 
cmp 
rnz 
low 
inx 
inx 
Idax 
cmp 
ret 

h,sektrk 
d 
rn 

bytes equal, 
d 
h 
d 
m 

test 

;low byte compare 
isame? 
;return if not 

high Is 

;sets flags 

71 



321 : 
322: 
323 : 
324 : 
325 : 
326 : 
327 : 
328: 
329 : 
330: 
331 : 
332: 
333 : 
334: 
335: 
336 : 
337 : 
338: 
339: 
340: 
341 : 
342: 
343 : 
344 : 
345: 
346: 
347 : 
348 : 
349: 
350: 
351 : 
352 : 
353 : 
354: 
355: 
356: 
357: 
358: 
359: 
360: 
361 : 
362 : 
363 : 
364: 
365: 
366 : 
367: 
368: 
369: 
370: 

.***************************************************** , 
· * , 
· * , 
· * , 
· * , 
.. * , 

WRITEHST performs the physical write to 
the hos t disk, READHST reads the physical 
disk. 

* 

* 
* 
* 

.***************************************************** , 
writehst: 

; 
readhst: 

;hstdsk = host disk #, hsttrk = host track #, 
;hstsec = host sect #. write IIhstsiz" bytes 
;from hstbuf and return error flag in erflag. 
;return erflag non-zero if error 
ret 

;hstdsk = host disk #, hsttrk = host track #, 
;hstsec = host sect #. read "hstsiz" bytes 
;into hstbuf and return error flag in erflag .. 
ret 

; 
.***************************************************** , 
• * , 
· * , unitialized RAM data areas 

* 
* 

.* * , 

.*************************************n*************** , 
; 
sekdsk: ds 
sektrk: ds 
seksec: ds 
; 
hstdsk: ds 
hsttrk: ds 
hstsec: ds 

sekhst: ds 
hstact: ds 
hstwr t: ds 
; 
unacnt: ds 
unadsk: ds 
unatrk: ds 
unasec: ds 

erflag: ds 
r sflag: ds 
readop: ds 
w~type: ds 
drnaad r: ds 
hstbuf: ds 

1 
2 
1 

1 
2 
1 

1 
1 
1 

1 
1 
2 
1 

1 
1 
1 
1 
2 
hstsiz 

72 

;seek disk number 
;seek track number 
;seek sector number 

;host disk number 
;host track number 
;host sector number 

;seek shr secshf 
;host active flag 
;host written flag 

;unalloc rec cnt 
;last unalloc disk 
;last unalloc track 
;last unalloc sector 

;error reporting 
;read sector flag 
;1 if read operation 
;write operation type 
;last dma address 
;host buffer 



371: 
372: 
373: 
374: 
375: 
376: 

.***************************************************** , 
· * , 
· * , 
· * , 

The ENDEF macro invocation goes here * 
* 

.***************************************************** , 
end 

o 

73 



11.0 SERVICE INFORMATION 
11.1 SERVICE ,PROCEDURES 
11.2 LOST OR DAMAGED . 

EQUIPMENT 
11.3 ADDITIONAL TECHNICAL 

DOCUMENTATION 
11.4 NON-DISCLOSURE 

AGREEMENT 
11.5 EQUIPMENT 

MALFUNCTION REPORT 
I 

11.6 LIMITED WARRANTY 
REGISTRATION FORM 

11.7 CUSTOMER COMMENT 
CARD 



11.1 SERVICING PROCEDURES 

Your CompuStar Video Processing System is warranted to the 
original purchaser for 90 days from date of shipment. This 
warranty covers the adjustment or replacement F.O.B. Intertec's 
plant in Columbia, South Carolina of any part or parts which in 
Intertec's judgment shall disclose to have been originally 
defective. A complete statement of your warranty rights is 
contained on the inside back cover of this manual. 

In order to register your warranty, the Warranty Registration 
form (contained in this section) must be completed in full and 
returned to Intertec Data Systems within 10 days of receipt of 
this equipment. Be sure to include the serial number of the 
specific terminal you are registering. The serial number of your 
terminal can be found on the rear liD panel next to the power 
cord. A Customer Comment Card is also enclosed for your 
convenience if you desire to make comments regarding the overall 
operation andlor adaptability of the CompuStar to your particular 
application. Completion of the Customer Comment Card is 
optional. 

IF SERVICE IS EVER REQUIRED: 
If you should encounter difficulties with the use or operation of 
this equipment, contact the supplier from whom the unit was 
purchased for instructions regarding the proper servicing tech
niques. Service pro~edures differ from dealer to dealer but most 
Intertec authorized service dealers can provide local, on-site 
servicing of this equipment on a per-call or maintenance contract 
basis. Plus, a variety of service programs are available 
directly from the factory including extended warranty, a module 
exchange program and on-site contract maintenance from over 50 
locations in the U.S. 

If you are not covered under one of the three programs described 
above- and -service cannot be made-avaIlable through your local 
supplie~contact Intertec'S-CustOmer Service Departmenr-at (803) 
798-9100. Be prepared to give the following information when you 
call: -- -- ---- --- ---- ---

1. The serial number of the equipment which is defective. 
If you are returning individual modules to the factory 
for repair, it will be necessary to have the serial 
number of the individual modules also. The serial number 
of the entire terminal may be found on the rear liD panel 
just to the right of the power cord. Module serial 
numbers are listed on white stickers placed in 
conspicuous locations on each major module or subassembly 
of the terminal. 

NOTE: Individual modules cannot be returned to the 
factory for repair unless you originally purchased your 
unit directly from the factory. If your unit was 
purchased through a Dealer or OEM vendor, and you desire 

1 



factory repair, 
returned. 

then the entire terminal must be 

2. The name and location of the Dealer and/or Agent from 
which the unit was purchased. 

3 · A complete description of the 
the nature and cause of 
available. 

alleged failure (including 
the failure if readily 

The Customer Service Department will issue you Return Material 
Authorization Number (RMA Number) which will be valid for a 
period of 30 days. This RMA Number will be your official 
authorization to return equipment to IDSC for repair only. The 
Customer Service Department will also give you an estimate, if 
requested, of the time it should take to process and repair your 
equipment. Turnaround time on repairs varies depending on 
workloads and availability of parts but normally your equipment 
will be repaired and returned to you within 10 working days of 
its receipt. If your repair is urgent, you may authorize a 
special $50 Emergency Repair fee and have your equipment repaired 
and returned within no more than 48 hours of its receipt at our 
Service Center. Ask the Customer Service Department for more 
information about this program. 

IMPORTANT: Any equipment returned to Intertec without an RMA 
Number will -result in the equipment being refused and possible 
cancellatIOn of your-SuperBrain warranty. Also i-f--your RMA 
Number expires, you msut request a new number. EQUIpment 
arriving at Intertec ~ring expired RMA Number will also be 
refused. 

After securing an RMA Number from the Customer Service 
Department, return the specified modules and/or complete teminals 
to Intertec, freight prepaid, at the address below. NOTE! The 
RMA Number must be plainly marked and visible on your shippIng 
label to prevent~he equipment from being refused ar--Intertec's 
Receiving Departme~ ----

ATTN: FACTORY SERVICE CENTER 
Intertec Data Systems Corporation 

2300 Broad River Road 
Columbia, South Carolina 29210 

To aid our technicians in troubleshooting and correcting your 
reported malfunction, please complete an Intertec Equipment Mal~ 
function Report (contained in this section) and enclose it with 
the equipment you intend to return to the factory. 

Be sure a declared value equal to the price of the unit is shown 
on the bill of Lading, Express Receipt of Air Freight Bill, 
whichever is applicable. Risk of loss or damage to equipment 
during the time it is in transit either to or from Intertec's 
facilities is your sole responsibility. A-declared value must be 
placed on your Bill of Lading to insure substantiation of your 

2 



freight claim if shipping damage or loss is incurred. 

All equipment returned to an Intertec Service Center must be 
freight prepaid. Equipment not prepaid on arrival at Intertec'S 
Receiving Department cannot be accepted. Upon repair of the 
defective equipment, it will be returned to you, F.D.B. the 
factory in Columbia, via UPS or equivalent ground transportation 
unless you specify otherwise. 

3 



11.2 INSTRUCTIONS FOR HANDLING LOST OR DAMAGED EQUIPMENT 

The goods described on your Packing Slip were delivered to the 
Transportation Company at Intertec's premises in complete and 
good condition. If any of the goods called for on this Packing 
Slip are short or damaged, you must file a claim WITH THE TRANS
PORTATION COMPANY FOR THE AMOUNT OF THE DAMAGE AND/OR LOSS. 

IF LOSS OR DAMAGE IS EVIDENT AT TIME OF DELIVERY 

If any of the goods called for on your Packing Slip are short or 
damaged at the time of delivery, ACCEPT THEM, but insist that the 
Freight Agent make a damaged or short notation on your Freight 
Bill or Express Receipt and sign it. 

IF DAMAGE OR LOSS IS CONCEALED AND DISCOVERED AT A LATER DATE 

If any concealed loss or damage is discovered, notify your local 
Freight Agent or Express Agent AT ONCE and request him to make an 
inspection. This is absolutely necessary. Unless you do this, 
the Transportation Company will not consider your claim for loss 
or damage valid. If the agent refuses to make an inspection, you 
should draw up an affidavit to the effect that you notified him 
on a certain date and that he failed to make the necessary 
inspection. 

After you have ascertained the extent of the loss or damage, 
ORDER THE REPLACEMENT PARTS OR COMPLETE NEW UNITS FROM THE 
FACTORY. We will ship to you and bill you for the cost. This 
new invoice will then be a part of your claim for reimbursement 
from the Transportation Company. This together with other 
papers, will properly support your claim. 

IMPORTANT: The claims adjustment procedure for UPS shipments 
varies somewhat from the procedure listed above for regular motor 
and air freight shipments. If your equipment was shipped via UPS 
and sustained either damage-or-r05s, the Ups-representatlVe in 
you~ area must initiate the -Claim by InSpectIng the goods and 
asslgnrng- a-freight claim number to-rhe damaged eQUIpment. The 
representatIve will attach a "CaIT Tag" to the outside of the 
equipment box which will be your authorization to return the 
merchandise to our factory for claim adjustment. Upon receipt of 
this damaged eqiupment, we will perform the necessary repairs, 
process the appropriate paperwork with UPS and return the equip
ment to you. Please allow time for processing any type claim. 
Normal time for proper processing of a UPS claim is 15-30 working 
days. 

Remember, it is extremely important that you do not give the 
Transportation Company a clear receipt if damage or shortages are 
evident upon delivery. It is equally important that you call for 
an inspection if the loss or damage is discovered later. DO NOT, 
UNDER ANY CIRCUMSTANCES, ORDER THE TRANSPORTATION COMPANY TO 
RETURN SHIPMENT TO OUR FACTORY OR REFUSE SHIPMENT UNLESS WE HAVE 
AUTHORIZED SUCH RETURN. 

4 



11.3 ADDITIONAL TECHNICAL INFORMATION 

Additional Technical documentation (i.e., schematics) describing 
the operation of the CompuStar System and the electrical inter
connection of its various modules is available at a nominal cost 
directly from Intertec Data System Corporation. However, due to 
the confidentiality of this technical information, it will be 
necessary to sign and return the Documentation Non-Disclosure 
Agreement (appearing on the next page) denoting your concurrence 
with its terms and conditions. 

The handling and processing costs of CompuStar technical documen
tation is $50. Due to the large amount of requests being pro
cessed and the relatively small handling costs involved, we must 
request that you enclose payment ($50) upon return of your- Non
Disclosure-Agreement. Normally the documents will be mailed--rD 
you within 15 to 30 days after receipt of your payment and a 
signed copy of the Agreement. (IMPORTANT: The technical 
documentation will be mailed to the address listed at the top of 
the Non-Disclosure Agreement.) For prompt processing of your 
documentation request, please forward your signed agreement and 
payment to: 

Customer Service Department 
Intertec Data Systems Corporation 

2300 Broad River Road 
Columbia, South Carolina 29210 

NOTE: Technical documentation for the CompuStar will be sent to 
you normally within 10-15 days of receipt of your payment and 
signed Non-Disclosure Agreement. 

IMPORTANT: Payment 
Agreement. Agreements 
carded without notice. 

must accompany your Non-Disclosure 
sent to us without payment will be dis-

5 



INTE<TEC 
DATA 
SYSrEMSe 

11.4 - COMPUSTAR NON-DISCLOSURE AGREEMENT 
IDS-3508 

Corporate Headquarters: 2300 Broad River Road, Columbia, South Carolina 29210 

THIS AGREEMENT MADE BETWEEN INTERTEC 
DATA SYSTEMS CORPORATION AND THE 
ORGANIZATION AND/OR PERSONS LISTED AT THE 
RIGHT AND BECOMES EFFECTIVE ON THE DATE 
SPECIFIED BELOW. 

(PLEASE PRINT CLEARLY. DOCUMENTS WILL BE 
MAILED TO THE ADDRESS AT RIGHT) 

YOUR COMPANY ______________________________ __ 

ADDRESS 

CITY & STATE ________________________________ _ 

TELEPHONE 

YOUR NAME __________________________________ __ 

For and in consideration of receiving confidentiai documentation on the CompuStar™ line of terminals manufactured 
by INTERTEC DATA SYSTEMS CORPORATION (hereinafter called INTERTEC) at the date hereof, the undersigned 
hereby agrees with INTERTEC as follows: 

(1) The undersigned acknowledges that formulae, pro
grams, manufacturing processes, devices, techniques, 
plans, methods, drawings, blueprints, reproductions, data, 
tables, calculations and components were designed and 
developed by INTERTEC at great expense and over 
lengthy periods of time, and the same are secret and con
fidential, are unique and constitute the exclusive property 
and trade secrets of I NTERTEC, and that any use of such 
property and trade secrets by the undersigned other than 
for the sole benefit of INTERTEC would be wrongful, tor
tiuous and would cause irreparable injury to INTERTEC. 

(2) The undersigned shall not at any time, without the 
express written consent of the Board of Directors of 
INTERTEC, publish, disclose, use or divulge to any person, 
firm or corporation, directly or indirectly, or use for his own 
benefit or the benefit of any person, firm, or use other than 
to effect repair of INTERTEC manufactured equipment, 
and property above described, trade secrets or confiden
tial information of INTERTEC, its subsidiaries and its af
filiates learned or obtained by its subsidiaries and its af
filiates learned or obtained by him from INTERTEC, in
cluding, but not limited to, the information and things set 
forth in paragraph 1 hereinabove. 

(3) This agreement shall be binding upon the under
signed, his personal representatives, successors and 
assigns, and shall run to the benefit of I NTERTEC, its suc
cessors and assigns. 

(4) Upon termination of the association of the under-

signed with I NTERTEC. or its subsidiaries, the undersigned 
shall promptly deliver to INTERTEC all drawings, 
blueprints, reproductions, manuals, letters, notes, 
notebooks, reports, data, tables, calculations or copies 
thereof, components, programs, and any and all other 
secret and confidential property of INTERTEC, its sub
sidiaries and affiliates, including, but not limited to, all of 
the property set forth in paragraph 1 hereinabove which 
are in the possession or under the control of the 
undersigned. 

(5) The undersigned hereby acknowledges and agrees 
that in the event of any violation hereof, INTERTEC shall be 
authorized and entitled to obtain from any court of compe
tent jurisdiction preliminary and permanent injunctive 
relief as well as equitable accounting of all profits or 
benefits arising out of such violation which rights or 
remedies shall be cumulative and in addition to any rights 
or remedies to which I NTERTEC may be entitled and that 
the undersigned shall further be directly liable for any and 
all reasonable attorney's fees incurred by INTERTEC to en
force this Agreement against the undersigned in a court of 
law. 

(6) The foregoing understanding shall apply to any 
subsequent meetings and/or communications between 
INTERTEC and the above mentioned organization relating 
to the same subject manner, unless modified in writing as 
to any such subsequent meetings and/or communications. 

We would appreciate your signing and returning to us, prior to the release of INTERTEC product documentation, the 
original copy of this agreement denoting your concurrence with the foregoing provisions. 

AGREED TO: 
(YOUR NAME OR COMPANY - PLEASE PRINT) 

YOUR SIGNATURE: _____________ _ 
In addition to the terms listed above, I further certify that I am duly 
authorized to sign this document on behalf of the organization and/or 
persons requesting that this imformation be supplied by INTERTEC. 

YOURNAME: ________________________ __ 

YOUR TITLE: ________________ _ 

TODAY'S DATE: ________________ _ 

INTERTEC DATA SYSTEMS CORPORATION 

SIGNATURE: ___________ _ 

FOR OFFICE USE ONLY 

DATE RCV'D PROCESSED BY: 

OTHER RELEASES DATE INVOICE NO. 



11.5 - EQUIPMENT MALFUNCTION REPORT 
IDS - 505A 

This equipment purchased from: 

Dealer Name: Address: ___________ _ 

City & State: Telephone: Area 

Dear Customer: 

We are trying to manufacture the most reliable product possible. You would do us a great 
courtesy by completing this form should you experience any failures. Enclose this form with the 
equipment you intend to return to the dealer or factory for service. (Additional copies of this form 
available upon request.) 

1. Type Unit ________________ Serial No. _______ _ 

Module (if applicable) __________________ _ 

2. Component failed (if available, include Name and Number) _________ _ 

3. Description of failure (include cause of failure if readily available) _______ _ 

4. Approximate hours/days of operation to failure 

5. Failure occurred during: 

D Initial Inspection D Customer Installation D Field Use 

6. Personal Comment: 

Your Name _____________ Address ___________ _ 

City & State _________ Zip, ________ Phone ---'-__ ..L.--__ _ 

Date _________ Signed _________________ _ 

Return this form and equipment to your local dealer or to the factory at the address below. 

AnN: FACTORY SERVICE CENTER 
Intertec Data Systems Corporation 

2300 Broad River Road 
Columbia, South Carolina 29210 



BE SURE TO INCLUDE YOUR SERIAL NUMBER HERE. 

~~ INTE~EC 
~, ~e~dqUarters: 2300 Broad River Road, Columbia, South Carolina 292~:~1:~~:~1 00 • TWX: 81 ~66-2115 

COMPUSTAR LIMITED WARRANTY REGISTRATION FORM 

IMPORTANT: This form should be completed within ten days of receipt of your CompuStar Video 
Processing Terminal and returned to Intertec at the following address: 

Intertec Data Systems Corporation 
2300 Broad River Road 
Columbia, South Carolina 29210 

Attn: Warranty Registration Department 

Complete this form in its entirety within ten days of receipt of your equipment in order to 
properly validate your Limited Warranty. All warranty liability is limited to that expressed in the 
most recent edition of the CompuStar Video Terminal User's Manual as published by Intertec 
Data Systems Corporation. 

******** 

Date Received: Purchased from: _________ _ 

Company: ____________ _ 

Name: Address: ___________ _ 

Title: ______________ _ City: ___________ ---.-

Address: Telephone: --'-__ -L-_______ _ 

City: ______________ _ Sales Agent: 

Country: Order Placed On: 

Telephone: Price Paid: ___________ _ 

******** 

Where did you first hear about the CompuStar? From a: D Magazine D Dealer D Friend 

Why did you decide to purchase the CompuStar? D Features D Price D Appearance 

Was the Dealer and/or Sales Agent knowledgeable about the CompuStar? DYES D NO 

Please explain. ___________________________ _ 

Questions on the reverse side must be completed to validate your warranty. 



Were you introduced to any other Intertec products? 0 YES o NO (If yes, please 

indicate other products which were mentioned.} _________________ _ 

Are you aware of other Intertec products? 0 YES o NO (If yes, which ones?) 

What other microcomputers related products will you be purchasing in the next 12 months? 

o Video Terminals 0 Printers (matrix) 0 Printers (character) 0 Disk Systems 0 Other 

What is your application for the CompuStar? 0 Business 0 Scientific 0 Educational 0 Other 

What are your comments in general concerning the overall operation of the CompuStar? 

o Outstanding 0 Excellent 0 Good 0 Average 0 Unsatisfactory 

Would you like to be placed on our mailing list? 0 YES 0 NO 

May we use your name as a 'favorable reference for other customers in your area desiring to pur
chase a CompuStar? 0 YES 0 NO 

Thank you for purchasing the CompuStar Video Processing Terminal. If we may be of further 
assistance to you, please contact our Customer Service Department at the address on the 
reverse side of this form. 



~II~ INTHfEC CUSTOMER COMMENT CARD 

J C ~~e:dquarters: 2300 Broad River Road, Columbia, South Carolina 292t 0 

Our past and present customers are directly responsible for the evolution of the 
CompuStar as you see it presented in this manual. Before Intertec began research and 
development of the CompuStar, an extensive user survey was conducted to ascertain 
optimum video computer price/performance ratios to enable us to capture a major por
tion of the video computer market. In order that we continue with our commitment to ex
cellence in engineering, production and marketing, we would appreciate your comments 
below regarding your overall opinion of the CompuStar. All comments are given careful 
consideration in future product design and become the property of Intertec Data 
Systems Corporation. 

(1) What are your comments concerning the overall appearance of the CompuStar? 
(You may want to comment on color, size and construction.) 

(2) What are your comments (in general) concerning the overall operation of the unit? 

(3) What features about the unit do you like best? 

(4) What features about the unit do you like least? 

Please see additional questions on the reverse side 



(5) Briefly describe your application for the CompuStar. 

(6) What other microcomputer systems do you feel are comparable to the CompuStar 
in both price and performance? 

(7) What changes and/or modifications to the CompuStar could be made to render it 
more suited to your application? 

(8) Your candid comments regarding the operation of and application for the 
CompuStar are greatly appreciated. Address your comments and/or suggestions to: 

MARKETING SERVICES MANAGER 
Intertec Data Systems 
2300 Broad River Road 
Columbia, South Carolina 29210 

(9) If you desire to be contacted by our service, marketing or technical staff regarding 
these comments, please give us your complete name, address and phone number 
below. (This information is optional.) 

Company Name: 
Address: __________________________________________________ __ 

City, State & Zip: 
Contact: _________________________________________________ __ 

Phone: AREA --l('---__ --'-___________________________ EXT ____ _ 

I would like to be contacted by your: 0 Sales Department 0 Service Department 



12.0 HARDWARE ADDENDA 
12.1 SERIAL COMMUNICATION 

HARDWARE SETUP 
12.2 8251 A USART OPERATION 



12.1 COMPUSTAR SERIAL COMMUNICATIONS DIPSWITCH SETTING PROTOCOL 

On all CompuStar Video Processing Units there exists a small 5 
position dipswitch located in the upper right hand corner of the 
keyboard/CPU module. For the normal mode (*asynchronous communi
cation mode) these switches should be set as follows: 

1 - OFF, 2 - OFF, 3 - ON, 4 - ON, 5 - OFF 

For the synchronous communication mode with another unit 
providing the transmitter and receiver clock, the switches should 
be set as follows: 

1 - ON, 2 - ON, 3 - OFF, 4 - OFF, 5 - OFF 

For the synchronous mode with the user terminal providing both 
the transmitter and receiver clock, the switches should be set as 
follows: 

1-0FF, 2-0FF, 3-0N, 4-0N, 5-0N 

Listed below is a brief description of the function of each of 
these switches: 

1 - External Clock to transmitter section of MAIN USART 
Originates from PIN '15 on MAIN RS232 connector at rear 
of terminal. 

2 - External Clock to receiver section of MAIN USART 
Originates from Pin '17 on MAIN RS232 connector at rear 
of terminal. 

3 - Internal TX Clock to MAIN USART - When on this switch 
enables the built-in baud rate generator (Western 
Digital BR-1941). NOTE: When this switch is in the 
'ON' position, switch 1 MUST be in the 'OFF' position. 

4 - Internal RX Clock to MAIN USART - When this switch is 
in the 'ON' position, switch 2 MUST be in the 'OFF' 
position. 

5 - Internal Baud Clock to MAIN Port - This switch enables 
the transmission of the internal baud rate clock 
(Western Digital BR-1941) to the main RS232 port - this 
signal will also appear on Pin '24 of the main port when 
this switch is in the 'ON' position. If this switch is 
not used, it should be left in the 'OFF' position to 
avoid any possible conflict with external RS232 signals. 

* NOTE: The switches were set for the asyn~hronous communication 
mode before shipping from the factory. 

2 



12.2 8251A USART OPERATION 

DESCRIPTION OF OPERATION - ASYNCHRONOUS 

Transmlsslon-

When a data character is written into the USART, it auto
matically adds a START bit (low level or "space") and the 
number of STOP bits (high level or "mark") specified by 
the Mode Instruction. If Parity has been enabled, an odd 
or even Parity bit is inserted just before the STOP bites), 
as eTsified by the Mode Instruction. Then, depending 
on and TxEN, the character may be transmitted as a 
serial data stream at the TxD output. Data is shifted out by 
the falling~e of TxC at a transmission rate of TxC, 
TxC/16 or TiC/64, as defined by the Mode Instruction. 

If no data characters have been loaded into the USART, or 
if all available characters have been transmitted, the TxD 
output remains "high" (marking) in preparation for send
i ng the START bit of the next character provided by the 
processor. TxD may be forced to send a BREAK (con
tinuously low) by setting the correct bit in the Command 
Instruction. 

Recelve-

The RxD input line is normally held "high" (marking) by 
the transmitting device. A falling edge (high to lowtransi
tion) at RxD signals the possible beginning of a START bit 
and a new character. The receiver is thus prevented from 
starting in' a "BREAK" state. The START bit is verified by 
testing for a "low" at its nominal center as specified by the 
BAUD RATE. If a "low" is detected, it is considered valid, 
and the bit assembling counter starts counting. The bit 
counter locates the approximate center of the data, parity 
(if specified), and STOP bits. The parity error flag (PE) is 
set, if a parity error occurs. Input bits are sampled at the 
RxD pin with the rising edge of RxC. If a high is not de
tected for the STOP bit, which normally signals the end 
of an input character, a framing error (FE) will be set. After 
the STOP bit time, the input character is loaded into the 
paralled Data Bus Buffer of the USART and the RxRDY 
signal is raised to indicate to the processor that a character 
is ready to be fetched. If the processor has failed to fetch 
the previous character, the new character replaces the old 
and overrun flag (0 E) is set. All the error flags can be reset 
by setting a bit in the Command Instruction. Error flag 
conditions will not stop subsequent USART operation. 

DESCRIPTION OF OPERATION-SYNCHRONOUS 

Transmlsslon-

As in Asynchronous transmission, the TxD output re
mains "high" (marking) until the USART receives the first 
character (usually a SYNC character) from the processor. 
After a Command I nstruction has set TxEN and after 
CleartoSend (CTS) goes low, thefirstcharacterisserial~ 
transmitted. Data is shifted out on the falling edge ofTx 
at the same rate as TxC. 

Once transmission has started, Synchronous Data Pro
tocols ~uire that the serial data stream at TxD continue 
at the TiC rate or SYNC will be lost. If a data character is 
not provided by the processor before the USARTTransmit 
Buffer becomes empty, the SYNC character(s) loaded 
directly following the Mode Instruction will be automat
ically inserted in the TxD data stream. The SYNC char
acter(s) are inserted to fill the line and maintainsynchron
ization until the new data characters are available for 
transmission. If the USART becomes empty, and must 
send the SYNC character(s), the TxEMPTY output is 
raised to signal the processor that the Transmitter Buffer 
is empty and SYNC characters are being transmitted. 
TxEMPTY is automatically reset by the next character 
from the processor. 

Recelve-

In Synchronous receive, character synchronization can 
be either external or internal. If the internal SYNC mode 

3 

has been selected, the ENTER HUNT (EH) bit has been 
set by a Command Instruction, the receiver goes into the 
HUNT mode. 

Incoming~ta on the RxD input is sampled on the rising 
edge of RXC, and the contents of the Receive Buffer are 
compared with the first SYNC character after each bit has 
been loaded until a match is found. If twoSYNC characters 
have been programmed, the next received character is 
also compared. When the (two contiguous) SYNC char
acter(s) programmed have been detected, the USART 
leaves the HUNT mode and is in character synchroniza
tion. At this time, the,SYNDET (output) issethigh.SYNDET 
is automatically reset by a STATUS READ. 

If external SYNC has been specified in the Mode Instruc
tion, a "one" applied to the SYNDET (input) for at least 
one ~ cycle will synchronize the USART. 

Parity and Overrun Errors are treated the same in the 
Synchronous as in the Asynchronous Mode. If not in 
HUNT, parity will continue to be checked even if the re
ceiver is not enabled. Framing errors do not apply in the 
Synchronous format. 

The processor may command the receiver to enter the 
HUNT mode with a Command Instruction which sets 
Enter HUNT (EH) if synchronization is lost. Under this 
condition the Rx register will be cleared to all "ones". 



OPERATION AND PROGRAMMING 

The microprocessor program controlling the COM 8251A 
performs these tasks: 

• Outputs control codes 
• Inputs status 
• Outputs data to be transmitted 
• Inputs data which has been received 

Control codes determine the mode in which the COM 
8251A will operate and are used to set or reset control 
signals output by the COM 8251A . 

The Status register contents will be read by the program 
monitoring this device's operation in order to determine 
error conditions, when and how to read data, write data or 
output control codes. Program logic may be based on 
reading status bit levels, or control signals may be used 
to request interrupts. 

INITIALIZING THE COM 8251A 

Figure 1. Control Word Sequences for Initialization 
r 

c/D=l .. 

> 

ClD=o ... 

\.. 

c/o = 1 

C/D=o { 

MODE CONTROL 

COMMANI:\ 

DATA 

• · • · 
COMMAND 

DATA 

· · · 

} 

INITIALING 
SEQUENCE 

ASYNCHRONOUS OPERATION 

The COM 8251A may be initialized following a system 
RESET or prior to starting a new serall/O sequence. The 
USART must be RESET (external or internal) following 
power up and subsequently may be reset at any time 
following completion of one activity and preceding a 
new set of operations. Following a reset; the COM 8251A 
enters an idle state in which it can neither transmit nor 
receive data. 

The COM 8251A is initialized with two, three or four con
trol words from the processor. Figure 1 shows the sequence 
of control words needed to initialize the COM 8251A, for 
synchronous or for asynchronous operation. Note that 
in asynchronous operation a mode control is output to 
the device followed by a command. For synchronous 
operation, the mode control is followed by one or two 
SYNC characters, and then a command. 

Only a single address is set aside for mode control bytes, 
command bytes and SYNC character bytes. Forthis to be 
possible, logic internal to the chip directs control informa
tion to its proper destination based on the sequence in 
which it is received. Following a RESET (external or inter
nal), the first control code output is interpreted as a mode 
control. If the mode control specifies synchronous opera
ti<1n;then the next one ortwo bytes (as determined by the 

4 

c/D=l ~ 

C/D=o -< 

c/D=l 

c/l5=o { 

MODE CONTROL 

SYNC.l 

SYNC 112 
(OPTIONAL) 

COMMAND 

DATA 

· • · · 
COMMAND 

DATA 

• • • 

) INITIALING 
SEQUENCE 

SYNCHRONOUS OPERATION 

mode byte) output as control codes will be interpreted as 
SYNC characters. For either asynchronous or synchro
nous operation,' the next byte output as a control code is 
interpreted as a command. All subsequent bytes output 
as control codes are interpreted as commands. There are 
two ways in which control logic may return to anticipating 
a mode control input; following aRESETinputorfollowing 
an internal reset command. A reset operation (internal via 
IR or external via RESET) will cause the USART to inter
pret the next "control write", which should immediately 
follow the reset, as a Mode Instruction. 

After receiving the control words the USART is ready to 
communicate. TxRDY is raised to signal the processor 
that the USART is ready to receive a character tor trans
mission. Concurrently, the USART is ready to receive 
serial data. 

C/n 1115 WR ~ 
0 0 1 0 USART - Data Bus 
0 1 0 0 Data Bus - USART 
1 0 1 0 Status - Data Bus 
1 1 0 0 Data Bus - Control 
X X X 1 Data Bus - 3-State 
X. 1 1 0 



MODE CONTROL CODES 

The COM 8251A interprets mode control codes as illus
trated in Figures 2 and 3. 

Control code bitsOand 1 determinewhethersynchronous 
or asynchronous operation is specified. A non-zero value 
in bits 0 and 1 specifies asynchronous operation and de
fines the relationship between data transfer baud rate and 
receiver or transmitter clock rate. Asynchronous serial 
data may be received or transmitted on every clock pulse, 
on every 16th clock pulse, or on every 64th clock pulse, 
as' programmed. A zero in both bits 0 and 1 defines the 
mode of operation as synchronous. 

For synchronous and asynchronous modes, control bits 
2 and 3 determine the number of data bits which will be 
present in each data character. In the case of a programmed 
character length of less than 8 bits, the least significant 
DATA BUS unused bits are "don't care" when writing data 
to the USART and will be "zeros" when reading data. Rx 
data will be right justified onto DO and the LSB for Tx data 
is DO. 

For synchronous and asynchronous modes, bits 4 and 5 

determine whether there will be a parity bit in each char
acter, and if so, whether odd or even parity will be adopted. 
Thus in synchronous mode a character will consistoffive, 
six, seven or eight data bits, plus an optional parity bit. In 
asynchronous mode, the data unit will consist of five, six, 
seven or eight data bits, an optional parity bit, a preceeding 
start bit, plus 1, 1112 or 2 trailing stop bits. Interpretation of 
subsequent bits differs for synchronous or asynchronous 
modes. 

Control code bits 6 and 7 in asynchronous mode determine 
how many stop bits will trail each data unit. 1 '12 stop bits 
can only be specified with a 16X or 64X baud rate factor. 
I n these two cases, the half stop bit will be equivanlent to 
8 or 32 clock pulses, respectively. 

In synchronous mode, control bits 6 and 7 determine 
how character synchronization will be achieved. When 
SYNDET is an output, internal synchronization isspecified; 
one or two SYNC characters, as specified by control bit 7, 
must be detected at the head of a data stream in order to 
establish synchronization. 

COMMAND WORDS 

Command words are used to initiate specific functions 
within the COM 8251A such as, "reset all error flags" or 
"start searching for sync". Consequently, Command 
Words may be issued by the processor to the COM 8251A 
at any time during the execution of a program in which 

specific functions are to be initialized within the com
munication circuit. 

Figure 4 shows the format for the Command Word. 

Figure 4. COM 8251A Control Command 

7 6 5 4 3 2 O~BitNo. 

111111111 
) A t 

5 

TxEN 
1 = Enable transmission 
o = Disable transmission 

om 
1 = DTR output is forced to 0 

RxE 
1 = Enable RxRDY 
0= Disable RxRDY 

SBRK 
1 = TxD is forced low 
o = Normal operation 

ER 
1 = Resets all error flags in 

Status register. (PE. OE. FE) 

RTS 
1 = RTS output is forced to 0 

IR 
1 = Resetformat 

EH 
1 = Enter HUNT mode 



Figure 2. Synchronous Mode Control Code. 

7 6 5 4 3 2 1 O~BitNo. 

I I I I I 0 I 0 J 
~ ~ 

~sYncmode 
00 5 bits per character 
01 6 bits per character 
10 7 bits per character 
11 8 bits per character 

0= Parity disable, 1 = Parity enable 

0= Odd parity, 1 = Even parity 

0= SYN DET output 
1 = SYNDET input 

0=2 SYr::JC characters 
1 = 1 SYNC character 

Figure 3. Asynchronous Mode Control Code. 

7 6 5 4 3 2 1 O~BitNo. 

I I I I I 1 J 
~ ~ ~ ~ ~ ~ 

~ L~ Invalid (SYNC mode) 
Async mode, 1 X Baud rate factor 

10 Async mode, 16X Baud rate factor 
11 Async mode, 64X Baud rate factor 

00 5 bits per character 
01 6 bits per character 
10 7 bits per character 
11 8 bits per character 

0= Parity disable, 1 = Parity enable 

0= Odd parity, 1 = Even parity 

00 Invalid 
01 1 stop bit 
10 1'12 stop bits 
11 2 stop bits 

6 



Bit 0 of the Command Word is the Transmit Enable bit 
(TxEN). Data transmission for the COM 8251A cannot 
take place unless TxEN is set (assuming CTS = 0) in the 
command register. The TX Disable command is prevented 
from halting transmission by the Tx Enable logic until all 
data previously written has been transmitted. Figure 5 
defines the way in which TxEN, TxE andTxRDY combines 
to control transmitter operations. 

Bit 1 is the Data Terminal Ready (DTR) bit. When the DTR 
command bit is set, the DTR output connection is active 
(low). DTR is used to advise a modem thatthedata terminal 
is prepared to accept or transmit data. 

Bit 2 is the Receiver Enable Command bit (RxE). RxE is 
used to enable the RxRDY output signal. RxE, when zero, 
prevents the RxRDY signal from being generated to notify 
the processor that a complete character is framed in the 
Receive Character Buffer. It does not inhibit the assembly 
of data characters at the input, however. Consequently, 
if communication circuits are active, characters will be 
assembled by the receiver and transferred to the Receiver 
Buffer. If RxE is disabled, the overrun error (OE) will prob
ably be set; to insure proper operation, the overrun error 
is usually reset with the same command that enables RxE. 

FigureS. 
Operation of the Transmitter Section as a Function of TxE, TxRDY and TxEN 

TxEN TxE TxRDY 
1 1 1 Transmit Output Register and Transmit Character Buffer empty. 

TxD continues to mark if COM 8251A is in the asynchronous mode. 
TxD will send SYNC pattern if COM 8251A is in the Synchronous 
Mode. Data can be entered into Buffer. 

o 1 Transmit Output Register is shifting a character. Transmit Character 
Buffer is available to receive a new byte from the processor. 

o Transmit Register has finished sending. A new character is waiting 
for transmission. This is a transient condition. 

1 o o Transmit Register is currently sending and an additional character 
is stored in the Transmit Character Buffer for transmission. 

o 0/1 0/1 Transmitter is disabled. 

Bit3 is theSend Break Command bit(SBRK). WhenSBRK 
is set, the transmitter output (TxD) is interrupted and a 
continuous binary "0" level, (spacing) isappliedtothe TxD 
output signal. The break will continue until a subsequent 
Command Word is sent to the COM 8251 A to removeSBRK. 

Bit 4 is the Error Reset bit (ER). When a Command Word 
is transferred with the ER bit set, all three error flags (PE, 
OE, FE) in the Status Register are-reset. Error Reset occurs 
when the Command Word is loaded into the COM 8251A. 
No latch is provided in the Command Register to save the 
ER command bit. 

Bit 5, the Request To Send Command bit (RTS), sets a 
latch to reflect the RTS signal level. The output of this 
latch is created independently of other signals in the 
COM 8251A. As a result, data transfers may be made by 
the processor to the Transmit Register, and data may be 
actively transmitted to the communication line through 
TxD regardless of the status of RTS. 

Bit 6, the Internal Reset (IR), causes the COM 8251A to 

return to the Idle mode. All functions within the COM 
8251A cease and no new operation can be resumed until 
the circuit is reinitialized. If the operating mode is to be 
altered during the execution of a processor program, the 
COM 8251A must first be reset. Either the RESET input 
can be activated, or the Internal Reset Command can be 
sent to the COM 8251A. Internal Reset is a momentary 
function performed only when the command is issued. 

Bit 7 is the Enter Hunt command bit (EH). The Enter Hunt 
mode command is only effective for the COM 8251A when 
it is operating in the Synchronous mode. EH causes the 
receiver to stop assembling characters at the RxD input, 
clear the Rx register to all "ones", and start searching for 
the prescribed sync pattern. Once the "Enter Hunt" mode 
has been initiated, the search for the sync pattern will 
continue indefinitely until EH is reset when a subsequent 
Command Word is sent, when the IR command is sent to 
the COM 8251 A, or when SYNC characters are recognized. 
Parity is not checked in the EH mode. 

STATUS REGISTER 

The Status Register maintains information about the 
current operational status of the COM 8251A. Status cari 
be read at any ~me, however, the status update will be 
inhibited during status read. Figure 6 shows the format of 
the Status Register. 

TxRDY signals the processor that the Transmit Character 
Buffer is empty and that the COM 8251A can accept a new 
character for transmission. The TxRDY status bit is not 

7 

totally equivalent to the TxRDY output pin, the relationship 
is as follows: 

TxRDY (status bit) = Tx Character Buffer Empty 
TxRDY (pin 15) = Tx Character Buffer Empty • CTS • TxEN 

RxRDY Signals the processor that a completed character 
is holding in the Receive Character Buffer Register for 
transfer to the processor. 



Figure 6. The COM 8251A Status Register 

7 6 5 4 3 2 o .. Bit No. 

I I I I I I I I I 
I' AI' AI' AI' j 

TxE signals the processor that the Transmit Register 
is empty. 

PE is the Parity Error signal indicating to the CPU that the 
character stored in the Receive Character Buffer was 
received with an incorrect number of binary "1" bits. PE 
does not inhibit USART operation. PE is reset by the ER bit. 

OE is the receiver Overrun Error. OE is set whenever a byte 
stored in the Receiver Character Register is overwritten 
with a new byte before being transferred to the processor. 
OE does not inhibit USART operation. OE is reset by the 
ER bit. 

FE (Async only) is the character framing error which in
dicates that the asynchronous mode byte stored in the 
Receiver Character Buffer was received with incorrect bit 
format ("0" stop bit), as specified by the current mode. FE 
does not inhibit USART operaton. FE is reset by the ER bit. 

Note: 
1. While operating the receiver it is important to realize 

that the RxE bit of the Command Instruction only in
hibits the assertion of RxRDY; it does not inhibit the 
actual reception of characters. As the receiver is con
stantly running, it is possible for it to contain extraneous 
data when it is enabled. To avoid problems this data 
should be read from the USART and discarded. This 
read should be done immediately following the setting 
of the RxE bit in the asynchronous mode, and following 
the setting of EH in the synchronous mode. It is not 
necessary to wait for RxRDY before executing the 
dummy read. 

2. ER should be performed whenever RxE of EH are pro
grammed. ER resets all error flags, even if RxE = O. 

8 

TxRDY 

RxRDY 

TxE 

PE 
Parity error 

OE 
Overrun error 

FE 
Framing error 

SYNDET IBRKDET 

DSR 

SYNDET is the synchronous mode status bit associated 
with internal or external sync detection. 

=-.,..-=-"'-=---=-
DSR is the status bit set by the external Data Set Ready 
signal to indicate that the communication Data Set is 
operational. 
All status bits are set by the functions described for 
them. SYNDET is reset whenever the processor reads the 
Status Register. OE, FE, PE are reset by the error reset 
command or the internal reset command or the RESET 
input. OE, FE, or PE being set does not inhibit USART 
operation. 

Many of the bits in the status register are copies of external 
pins. This dual status arrangement allows the USART to 
be used in both Polled and Interrupt driven environments. 
Status update can have a maximum delay of 16 tey periods. 

3. The USART may provide fau Ity RxR DY for the first read 
after power-on or for the first read after the receiver is 
re-enabled by a command instruction (RxE). A dummy 
read is recommended to clear faulty RxRDY. This is not 
the case for the fi rst read after hardware or software 
reset after the device opration has been established. 

4. I nternal Sync Detect is disabled when External Sync 
Detect is programmed. An External Sync Detect Status 
is provided through an internal flip-flop which clears 
itself, assuming the External Sync Detect assertion has 
removed, upon a status read. As long as External Sync 
Detect is asserted, External Sync Detect Status will 
remain high. 



13.0 SOFTWARE ADDENDA 
13.1 CONFIGUR.COM 
13.2 FORMAT.COM 
13.3 64K TEST.COM 
13.4 TX.COM 
13.5 RX.COM 
13.6 HEXDUMP.COM 
13.7 SYNCHRONOUS 

COMMUNICATION 
13.8 ASYNCHRONOUS PIP 

TRANSFERS BETWEEN 
TERMINALS 

13.9 VERSION 3.1 DOS 
INFORMATION 

13.1 0 VERSION 3.2 
CONFIGUR.COM 



13.1 CONFIGUR.COM 

This program enables the user to select various operating parame
ters for the CompuStar. This feature allows flexibility in your 
CompuStar's use. The parameters affect the MAIN and AUXILIARY 
ports, the AC line frequency, and disk verification. By allowing 
the user to change these parameters, a variety of peripheral 
devices can be used with your CompuStar VPU. 

The CONFIGUR program is menu-driven; the user selects the parame
ter to change, and then follows the instructions listed. To 
initiate the CONFIGUR command, type 'CONFIGUR (cr)' at the key
board. CONFIGUR ~ill then accept your commands for parameter 
changes. After you are finished, press the return key (you may 
change several of the parameters if you wish); the screen will 
clear, and you will be instructed to press both RED keys bn the 
keyboard. This action will force an operating system reload 
containing your new parameters, and these parameters will be 
reloaded each time you reset the operating system. 

Note that the CONFIGUR program will change the copy of the 
operating system located on the diskette in d~ive A. Even if your 
copy of CONFIGUR.COM is located on drive B, drive A will be 
affected. A summary of parameter selections is included for 
reference. 



CONFIGUR.COM SUMMARY 

(A)----AC LINE FREQUENCY 
(5)----50 HERTZ 
(6)----60 HERTZ 

(B)----DISK READ-AFTER-WRITE VERIFICATION 
(Y)----VERIFYDISK WRITE AUTOMATICALLY 
(N)----DO NOT VERIFY 

(C)----MAIN PORT BAuD RATE 
(A)----9600 
(B)----7200 
(C)----4800 
(D)----3600 
(E)----2400 
(F)----2000 
(G)----1800 
(H)----1200 
(1)-----600 
(J)-----300 
(K)-----150 
(L)---134.5 
(M)-----110 
(N)------75 
(0)------50 

(D)----MAIN PORT CHARACTER LENGTH 
(5)-----5 BITS 
(6)-----6 BITS 
(7)-----7 BITS 
(8)-----8 BITS 

(E)----MAIN PORT STOP BITS 
(1)-----1 STOP BIT 
(2)-----1.5 STOP BITS 
(3)-----2 STOP BITS 

(F)----MAIN PORT PARITY 
(N)----NO PARITY 
(E)----EVEN PARITY 
(O)----ODD PARITY 

2 



(G)----AUX PORT BAUD RATE 
(A)----9600 
(B)----1200 
(C)----4800 
(0)----3600 
(E)----2400 
(F)----2000 
(G)----1800 
(H)----1200 
(1)-----600 
(J)-----300 
(K)-----150 
(L)---134.5 
(M)-----110 
(N)------75 
(0)------50 

(H)----AUX PORT CHARACTER LENGTH 
(5)-----5 BITS 
(6)-----6 BITS 
(7)-----1 BITS 
(8)-----8 BITS 

(I)----AUX PORT STQP BITS 
(1)-----1 STOP BIT 
(2)-----1.5 STOP BITS 
(3)-----2 STOP BITS 

(J)----AUX PORT PARITY 
(N)----NO PARITY 
(E)---~EVEN PARITY 
(0)----000 PARITY 

(K)----AUX PORT HANDSHAKING 
(Y)----AUX PORT TRANSMISSION CONTROLLED BY AUX PORT DSR 
(N)----AUX PORT TRANSMISSION NOT CONTROLLES BY DSR 

3 



13.2 FORMAT.COM 

Before diskettes can be used by an Intertec computer, they must 
first be formatted. This process will erase the diskette of all 
data and write certain sector-header information on the diskette 
so that the operating system is able to properly locate data on 
the diskette. FORMAT.COM is a versatile pro~ram that will allow 
the user to format diskettes for both SuperBrain and CompuStar 
computers. 

To load the format program from diskette, type 'FORMAT (cr)' at 
the keyboard. After loading, you should select the type of 
diskette you wish to format. You may select s~ngle-sided (for 
SuperBrain and CompuStar Model 20 computers), double-sided (for 
SuperBrain QD and CompuStar Model 30 computers), or double
sided/double-tracked (for CompuStar Model 40 diskettes). Once 
your selection has been entered, you will be asked to place an 
unformatted diskette into drive B and type the 'F' key to begin 
formatting. When the formatting is completed, you may continue 
formatting by placing another dis~ette into drive B and' pressing 
the 'F' key. You may repeat this process until all of your 
diskettes have been formatted. Press the 'RETURN' key to end the 
formatting session. 

The diskette that you format does not have to be a blank 
diskette. You mayk format on old diskette if you wish, but you 
should remember that 'FORMAT' will destroy all data on a 
diskette. However, if a the data on a diskette becomes damaged 
(or if you suspect that the data is damaged), copy the diskette 
onto another diskette and reformat the original. This way, you 
save some (or all) of the original data and you don't lose any 
diskettes. 

4 



13.3 64KTEST.COM 

This program performs an extensive test on main memory by writing 
and reading all possible binary patterns to all locations in the 
random access memory (RAM). The process takes between eight and 
ten minutes to complete. 

The test procedure begins by typing '64KTEST (cr)' at the key
board. After the program is loaded into memory, you will be 
asked to remove all diskettes from their drives. If you have a 
CompuStar Disk Storage System (DSS) connected to the terminal to 
be tested, either power down the DSS or disconnect the DSS from 
the terminal by removing the interconnecting cable. 

Once you have pressed the 'G' key to start the test, the screen 
should fill with random text. The patterns on the screen should 
move around. This is because the memory for the screen is also 
undergoing the test. After the test is completed, the screen 
will display 'RAM OK', indicating that the test was sucessful. 
The test is an endless loop, and will repeat until the RED keys 
are depressed simultaneously. Therefore, you can test the RAM as 
long as you desire. 

If an error is detected by the test, the test will stop and the 
audible tone will sound continuously. Should this occur, retry 
the test. If thektone occurs frequently, please contact the 
Intertec Service Department. 

5 



13.4 TX.COM 

The TX utility is written in standard CP/M assembly language. TX 
is designed to communicate via the computer's Main Port with the 
program RX running in the destination machine. Therefore, TX is 
considered the "Master" program, and RX is the "Slave" program. 
RX receives commands from TX such as "Open file", "Read incoming 
data block", "Write block to file", and so on. For this reason, 
the user should only be concerned with console operations for the 
machine in which TX is running. RX receives all directions from 
the communications link. 

Unlike data transfer operations initiated with PIP, the 
pair perform block checksum verification, retransmission 
event of error, and are insensitive to the type of data 
transferred. TX/RX may be used to send any type of CP/M 
without modification, including .COM files. 

TX/RX 
in the 
being 
file 

TX is initiated by typing the command: 'TX (cr)'. The TX program 
will then "sign-on" with an idelltifying message and version 
number and then give the user an option to proceed or abort. The 
actual console dialogue appears as: 

A>TX 

INTERTEC File Transfer Utility Vers 1.6 
HIT CR WHEN RECEIVE MACHINE READY OR Q TO ABORT 

At this point, start up RX in the destination machine (See RX.COM 
in Section 13.5) 

When a carriage return is entered to TX, it will attempt to 
establish a linkage to the destination RX machine over the compu
ter's Main Port. Given that a link can be established, TX will 
display the message: 

LINK TO SLAVE MACHINE ESTABLISHED 

or, if many attempts to link fail: 

UNABLE TO ESTABLISH/MAINTAIN DATA LINK 

(This probably indicates that some aspect of the connection with 
the destination machine is not correct, i.e. inconsistent baud 
rates, improper cabling, or excessive line noise.) 

The TX program then prompts the user to enter both the source 
file name and the destination file name. These names must be 
fully qualified, non-ambigous file references. This includes 
disk specifiers. 

If the specified file already exists on the receiving machine, TX 
will display: 

6 



FILE ALREADY EXISTS ON RECEIVING MACHINE 

and the link is terminated. 

As an expediency, send the file again, but with a temporary 
destination file name. 

As a file is being transmitted under TX/RX, both TX and RX will 
display a record count. This serves to indicate that the data is 
being transferred correctly. It is normal to see a difference of 
one record between the two counts upon completion of a file 
transfer. 

If TX detects a failure in the data link, it will output the 
message: 

UNABLE TO ESTABLISH/MAINTAIN DATA LINK 

When a file has been transmitted, TX displays the message: 

FUNCTION COMPLETE 
TYPE R TO REPEAT, CR TO EXIT 

If another file is to be transferred, enter the letter "R" and TX 
will request another pair of file names. Entry of a carriage 
return will cause TX to command RX to shutdown and both will 
terminate. 

There are two other messages that could be output by TX. 

As each data block is sent, a checksum is calculated and 
transmitted. If RX detects a discrepancy between the received 
checksum and that which has been calculated for the received 
data, it will request that TX re-send the block in question. If 
the block cannot be received correctly after several re-transmis
sions, the message: 

HARD DATA TRANSMISSION ERROR 

will be rendered. 
hardware. 

The most likely cause of this failure is bad 

If the diskette on which RX attempts to place the incoming data 
file is write protected, or if there is not enough space to 
contain the incoming file, TX will display: 

RECEIVE CANNOT CLOSE FILE 

7 



13.5 RX.COM 

RX is an assembly language program designed to receive data files 
transmitted by TX from the computer's Main Port. It operates as 
a slave to the TX program, receiving commands from TX to perform 
operations on the destination machine. 

RX is initiated by typing the command 'RX (cr)'. Upon initiation, 
RX displays a "sign-on" message of the form: 

INTERTEC File Transfer Utility Vers 1.3 

From this point on, unless an error Qondition occurs, no further 
operator action is required. 

As each data block is received, RX outputs a running count of the 
data blocks received. At the end of each received file, RX 
displays the message: 

END-OF-FILE RECEIVED 

When all files have been received, TX will command RX to 
terminate and RX will display: 

LINK TERMINATED 

If the data link cannot be established or maintained (indicated 
by a message on the TX system), it will be necessary to reset the 
destination system. This is accomplished on the destination 
computer by depressing both RED keys simultaneously. 

8 



13.6 HEXDUMP.COM 

This is a system utility designed to generate a 'HEX' file from a 
'COM' file, and transfer the contents out of a desired port. 
Since the PIP program cannot transfer 'COM' files, this utility 
is useful in effecting file transfers with the PIP program. To 
initiate the Hexdump facility, type the following at the key
board: 'HEXDUMP (cr)'. The program will be loaded and then await 
your instructions. 

The first thing that the Hexdump procedure requests is the port 
to which you wish to dump the file. Here enter '1' for the MAIN 
port (corresponding to CP/M's PUN: and RDR: device), or '2' for 
the AUXILIARY port (corresponding to CP/M's LST: device). You 
must enter either a '1' or a '2', invalid entries will be 
ignored. Next you may choose whether or not you wish to have the 
'HEX' file echoed to the console (this will display the file as 
transmitted). Enter '1' if you do not wish to have the file 
echoed on the screen, or '2' if you wish to have the contents 
echoed. Again, invalid entries will be ignored. 

Now you are ready to enter the file name. You must enter 
drive designator, the file name and the file type. Seperate 
drive indicator from the file name with a colon (':'), and 
type from the name with a period ('.'). Press the return 
after entering the name. 

Example: 

A>HEXDUMP (cr) 

HEXDUMP FILE UTILITY VER. 3.1 

SELECT ONE OF THE FOLLOWING: (TYPE THE NUMBER) 
1 - THE MAIN PORT (PUN:) 
2 - THE AUX PORT (LST:) 

2 

SELECT ECHO ON THE CONSOLE: 

1 

1 - DO NOT ECHO ON THE CONSOLE 
2'- ECHO TO THE CONSOLE 

ENTER DISC,FILE-NAME,AND FILE-TYPE TO BE TRANSFERRED. 
A:STAT.COM (cr) 

FILE TRANSFER COMPLETED. 

9 

the 
the 
the 
key 



In the example above, the file STAT.COM was transfered from disk 
A through the auxiliary port. HEXDUMP.COM will only transfer 
files which exist on drives A and B. If you enter an erroneous 
file-name or disk drive, the program will display an error mes
sage. If HEXDUMP.COM is unable to locate the given file, another 
error message will be given. When the transmission has completed, 
the screen will indicate this and return to the operating system. 

10 



13.1 SYNCHRONOUS COMMUNICATION 

Your computer system is factory configured to program the Univer
sal Synchronous/Asynchronous Receiver/Transmitter (USART) to 
operate in the asynchronous mode. It is possible, however, to 
change this and permit the Bisync, or byte synchronous, communi
cation mode. You will be responsible for writing the software 
drivers that send and receive synchronous data through to the 
MAIN port at the rear of your terminal. This section will in
struct you to properly program the USART which is the interface 
between the CPU and the main port of your computer. 

Before proceeding, it would be helpful to read the specifica
tion sheet for the 8251-type USART. This is located in Section 
12.2 of this manual. On this sheet you are given the control 
words to reprogram the USART to enable synchronous communication. 
However, we shall demonstrate with an example of common type. 
Also, it is important that the blue timing dipswitch, located on 
the processor board, be set in accordance with procedures found 
in Section 12.1 of this manual. This is necessary to coordinate 
the clock pulses between the two terminals communicating in the 
synchronous mode. 

Both the CompuStar and SuperBrain computer systems store the 
command byte for the 8251 USART in memory. To use a different 
type of communication, several steps are necessary. The USART 
command word must be changed in order to change the USART's 
operating mode. The operating system must also be prevented from 
resetting the USART during an interrupt cycle. Below is listed a 
simple assembly language program which, when appended to your 
communication program, should permit this type of operat In. Be 
certain to execute these instructions prior to any synchronous 
communication. 

SYNC: 

FALSE 
TRUE 
SUPER 
COMPU 

EQU 
EQU 
EQU 
EQU 

IF 
USCMD EQU 
MODE 
USINS EQU 
INSTRUCTION 
RETPNT EOU 
POINT 

ENDIF 

IF 
USCMD EQU 
MODE 
USINS EQU 
INSTRUCTION 

o 
NOT FALSE 
TRUE 
FALSE 

SUPER 
OEF01H 

OEF02H 

OE5F8H 

COMPU 
OEF01H 

OEF02H 

1 1 

MODE FOR THE SUPERBRAIN 
CHANGE IF COMPUSTAR 

ADDRESS OF SUPERBRAIN COMMAND 

ADDRESS OF SUPERBRAIN 

ADDRESS FOR BREAK KEY RETURN 

ADDRESS OF COMPUSTAR COMMAND 

ADDRESS OF COMPUSTAR 



RETPNT 
POINT 

. , 
MNDAT 
MNSTAT 
RESET 
SYNCMD 
SYNINS 
SYNC 

EQU 

ENDIF 

EQU 
EQU 
DB 
DB 
DB 
DB 

ORG 
DI 
IN 
IN 
MVI 
MVI 
OUT 
OUT 
MVI 
OUT 
STA 
MVI 
STA 

BYPASS THE 
MVI 
STA 
EI 

OE5FEH 

58H 
59H 
50H 
OCH 
17H 
16H 

100H 

MNSTAT 
MNDAT 
A,RESET 
A,SYNC 
MNSTAT 
MNSTAT 
A,SYNCMD 
MMSTAT 
SYNMOD 
A,SYNINS 
UNINS 

ADDRESS FOR BREAK KEY RETURN 

MAIN PORT DATA 
MAIN PORT STATUS 
USART RESET, ERROR FLAG RESET 
SYNC COMMAND MODE - NO PARITY - 8 BI 
SYNC MODE INSTRUCTION 
ASCII SYNC WORD 

TBASE 
DISABLE THE INTERRUPTS 
FLUSH OUT USART BUFFERS 

A CONTAINS USART RESET 
SYNC WORD 
SENT TO USART 
RESET USART 
A CONTAINS MODE FOR SYNC. COMM. 

SAVE THIS MODE FOR IN CASE OF RESET 
A CONTAINS USART INSTRUCTION 

NEXT STEP 
A,OC9H 
RETPNT 

IF YOU WISH TO USE BREAK KEY 
THIS IS A RETURN INSTRUCTION 
SAVE IN PROPER RETURN POINT 
ENABLE THE INTERRUPTS AGAIN 

REST OF PROGRAM HERE ..... 

The above example will set up the USART for synchronous communi
cation, with 1 sync character, and a word length of eight bits. 
By referencing the specification sheet for the 8251, you may 
alternately change the mode word to allow 2 sync characters, a 
different word length, or some other set up. Note that the return 
instruction stored at RETPNT will disable the BREAK key from 
resetting the USART line; clever programming will be needed to 
allow this. 

12 



13.8 USING THE "INP:" AND "OUT:" FEATURES OF PIP 
TO FACILITATE FILE TRANSFERS TO AND FROM THE COMPUSTAR 

The CompuStar is equipped with a 'MAIN' RS-232-C serial interface 
port on the rear panel. This interface should be programmed for 
the following mode: 

Asynchronous 
1200 Baud 
8 bits 
1 Stop Bit 
No Parity 

" This port is also wired so that the CompuStar appears as a 
processor rather than as a terminal. If it is to be used as a 
terminal, pins 2 and 3 in the RS-232-C cable must be 
interchanged. 

Files can be transferred using the PIP program as described in 
Section 6.4 of the Operator's Manual entitled "An Introduction to 
CP/M Features and Facilities." When the CompuStar transmits 
serial data, the destination is designated as a list (LST:) 
device; when receiving, the source device is considered a reader 
(RDR:). 

The serial port may also be considered as an input (INP:) or 
output (OUT:) port. When used in this mode, the operator has the 
option of communicating to the sending/receiving device via the 
CompuStar console before actual files are transferred. 

Files transferred via the serial port must be in Intel hex format 
or ASCII. Binary· files must be converted to hex files by 
utilizing the HEXGEN.ASM program before being sent to the 
CompuStar. BASIC files must be saved in the ASCII format if they 
are to be transferred to the serial interface. 

(NOTE: When ASCII files are transferred using the INP: or OUT: 
format, all data entered by the Operator on the console will also 
appear in the ASCII file. Undesired data must then be edited by 
using ED.COM.) 
Sequence of Operation: 

1. Connect CompuStar MAIN port to console input of host 
computer. Be sure host computer is set to 1200 baud. 

2. The largest program that can be transferred by PIP is 25K. 
If programs are larger than 25K, then programs must be 
broken down into smaller segments. 

3. All commands must be entered on the CompuStar in the 
following sequence. 

A. To transfer ASCII file - ABC.ASM - from CompuStar to 
host: 

13 



A) PIP OUT: = ABC. ASM (cr) 
ECHQ(Y/N)Y- -- --

+ 

(Keyboard entry) 
(Computer responds) 

(Keyboard entry) 
(Computer Responds) 

Now the CompuStar will act like a dumb terminal for host 
computer. Any keyboard entry will be sent to host computer 
and displayed on screen. 

+ PIP ABC.HST = CON: (cr) 

(CTRL) (B) 

(Keyboard entry) 
(Computer responds) 
(Keyboard entry - these 
two keys at the same 
time) 

NOTE: Underlined characters are typed by customer. 
"(cr)" represents a carriage return. 

Now the file is being transferred and should be displayed on 
the screen. When the file has been transferred the 
operating system will show the prompt symbol. 

A) PIP OUT: = EOF: (cr) 
ECHO-- TY7N)-Y--

+ 
(CTRL) (B) 

(Keyboard entry) 
(Computer responds) 

(Keyboard entry) 
(Computer resonds) 
(Keyboard entry - these 
two at the same time) 

Now the file transfer has been completed; both computers 
should return to the operating system. 

B. To transfer binary file - ABC.COM - from CompuStar to host: 

14 



A) PIP ABC.TST = INP: (cr) 
ECHO- (YIN) Y 

+ 

(Keyboard entry) 
(Computer responds) 

(Keyboard entry) 
(Computer responds) 

Now the CompuStar will act like a dumb terminal for the 
host computer. Any keyboard entry will be sent to the host 
computer and displayed on the screen. 

+ PIP ABC.HEX = CON: (cr) (Keyboard entry) - --
NOTE: The binary file on the CompuStar will be transferred 

in INTEL HEX format. After the transfer use LOAD or 
DDT and SAVE to change. HEX file to a binary, COM 
file. 

(CTRL) (Z) 

End of file, Control Z1 
(CTRL) (Z) 

(Keyboard entry - these 
two at the same time) 
(Computer responds) 
(Keyboard entry - these 
two keys) 

Now the host computer is set up to input a file. The 
CompuStar will return to thef operating system with 
its prompt. 

A) HEXDUMP ABC. COM (cr) (keyboard entry) 

At this point the file will be transferred in HEX format and 
displayed on thf screen. When the transfer is complete the 
CompuStar will return to the operating system. 

C. To transfer ASCII file = ABC.PRN = to CompuStar from host: 

A) PIP ABC.PRN = INP: (cr) 
ECHo (Y/N)-Y-

+ 

(Keyboard entry) 
(Computer responds) 

(Keyboard entry) 
(Computer responds) 

Now the CompuStar is ready for input form host. The 
keyboard entry will be sent to the host and displayed on the 
screen. Now set up commands to output from the host. 

+ PIP CON: = ABC.PRN (cr) (Keyboard entry) 

The file ABC.PRN on the host is now being input to the 
CompuStar and displayed on the screen. After the file has 
been transferred, the CompuStar should return to the 
operating system; if it does not, then type (CTRL) (Z) 
simultaneously. 

15 



D. To transfer binary fiele = ABC.COM - to CompuStar from 
host: 

(NOTE: Before transferring to CompuStar, either HEXGEN.ASM 
or HEXDUMP.COM must be transferred to the host.) 

1) Using HEXDUMP.COM 

A> PIP ABC.HEX ~ INP: [H] (cr) 
ECHo-(Y/N) Y 

+ 

(Keyboard entry) 
(Computer Responds) 

(Keyboard entry) 
(Computer responds 

Now the CompuStar is ready to accept input. NOTE: Since a 
binary file is transferred in INTEL HEX format, the .HEX 
file on thef CompuStar can be changed using LOAD or DDT and 
SAVE, to a binary file. 

+ HEXDUMP ABC·.COM (cr) (keyboard entry) 

The file is now being transferred and also 
the screen. When the transfer is complete, 
will return to the operating system. 

displayed on 
the CompuStar 

2) Using HEXGEN.ASM 
Look at source listing: 

ORG 

LXI 
LXI 
LXI 

6000H 

SP 6400H 
D, 6000H 
H, 100H 

*ending address 
*beginning address 

The origin and the SP will need to be modified for your 
particular system. (For example: 32K systems use ORO 
5000H, and SP, 5400H.) You may also change H,D to suit 
program size; register H is loaded with the end adress of 
the program to be transferred, and register D has the 
beginning address (most programs begin at 100H). Now run 
assembler to generate HEXGEN.HEX. You are ready to begin. 

A> PIP ABC.HEX 
ECHo-(Y/N) Y 

+ 

- INP: --- [H] (Keyboard entry) 
(Computer responds) 

(Keyboard entry) 
(Computer responds) 

At this point the CompuStar is ready for inputr and thE 
host must be set up to output the HEX file. 

16 



+DDT 
Version 1.4 

(Keyboard entry) 
(Computer responds) 

Now we have loaded DDT into the host system. 

IABC.COM (cr) 
-R (cr) 
NEXT PC 
OAOO 0100 

-IHEXGEN.HEX (cr) 
-R ( c r ) 
NEXT PC 
60B8 0100 

(Keyboard entry) 

(Computer Responds) 
(These two numbers are 
the end and starting 
address) 

(Keyboard entry) 

(Computer responds) 

At this point the host computer has 2 programs loaded into 
memory, one above the other. One is the program to be 
transferred, and the other to generate the INTEL HEX 
format. 

-G6000 (cr) (Keyboard entry) 
(The number is the 
same as ORG in the 
source listing) 

Now the file is being transferred and will be displayed on 
the screen. After the program has been transferred, the 
CompuStar will return to the the operating system. 

3) To change back to ~ binary file, follow this procedure: 

A> LOAD ABC.HEX (cr) 

LAST ADDRESS XXXX 
FIRST ADDRESS XXXX 
BYTES READ XXXX 
RECORDS WRITTEN XX 

A> 

(Keyboard entry) 

(Computer responds) 

Now there are two files: one HEX and one binary. 

A> DDT ABC.HEX (cr) 
Version 1. 4 
Next PC 
ABCD 0100 

(CTRL) (C) 

17 

or 

(Keyboard entry) 
(Computer responds) 

(Keyboard entry - bot 
keys at same time) 



A) SAVE XX ABC.COM (cr) 

NOTE: XX = A times 16 + B 
under NEXT 

(Keyboard entry) 

Now there are two files: one .HEX and one binary. 

18 



~F INTE~TEC TECHNICAL BULLETIN 

~, @ ~adqUart.rs: 2300 Broad River Road. Columbia. South Carolina 29210 • B03/798.91 00 • TWX: B 1 ().666.2115 IDS, 9t 2A 

DATE OF THIS RELEASE . May, 1981 .. ' . PAGE.) ..... oF.J3 ..... BULLETIN # .. _ .. ~Q_~Jq.~_~_ .. __ .. _ ..... _ ... 
CompuStar 20,30 (Stand-Alone) 

ASSEMBL Y NAME/NUMBER ._005 Di skettes. . .. _PRODUCTSyp~r~ra iJ},_S.YR~.r6X'.c!j!LQD 

REFERENCE ECO# E051041 ... DISTRIBUTED TO.-.. .~.,C~ Q.~L'.~.') " ...... ___ .. __ ... _ .. _ .. APPROVED.'l?nlr':. 

VERSION 3.1 DISK OPERATING SYSTEM SOFTWARE RELEASE 

The Disk Operating System on many Intertec computer systems now 
features many enhancements. This new DOS will run on any 
SuperBrain or SuperBrain QD video computer system which is 
in current production. These softw~re changes are designed to 
provide greater operator efficiency, more powerful software, and 
more flexible computer usage. These changes are listed below, and 
a further explanation of their use is described later in this 
document. 

Audible feedback with each key depression (selectable) 

Key repeat after key is held down 

Type-ahead permitting 128 characters to be entered ahead 
of computer 

Time of day maintained by the operating system 

Date kept by the operating system, including end-of-month 
and end-of-year checks 

Synchronous communication capability via the MAIN serial 
I/O port 

Data Set Ready (DSR) can be checked prior to output on 
the MAIN port before transmission to enable 'handshaking' 
(selectable) 

Redefinable Numeric Keypad, allowing any value to be 
assigned to any key on the pad 

Contact the Customer Service Deoartment at the address above for additional information on tIli!: hlllletin 



~F NTE~TEC TECHNICAL BULLETIN 

~ '@ ~r~'t~adqUarters: 2300 Broad River Road. Columbia. South Carolina 29210 • 8031798-9100 • TWX: 81 IJ.666.2115 IDS· 912A 

DATE OF THIS RELEASE ... - M~y '. )981 . PAGE 

ASSEMBLY NAME/NUMBER.. DO~ Qi?~E~Jt~s. ... _ 

REFERENCE ECO#. __ E.Q~1941 .. -._ ... ___ DISTRIBUTED TO. ___ ._._~~_~ ,.P .. ,_f_,-_~._,l _______ . ________ . __ APPROVED ----.--

OPERATION ENHANCEMENTS 

Audible Feedback 

The audible feedback feature is designed to provide a tone with 
each key depression. The purpose of the feedback is to allow 
faster data entry by informing the operator whenever a key is 
depressed. This feature can be easily selected during terminal 
operation or can be automatically selected upon system power-up. 

To enable the feedback feature, simply display a Control-B (02H). 
This will 'toggle' the key click feature and turn it ~on if it is 
off, or vice versa. The CONFIGUR program will permit you to set 
the click on or off on system power-up, and hence, relieve you of 
any further action. (See Technical Bulletin concerning CONFIGUR 
operation.) 

Key Repeat 

When a key remains depressed for more than 600 milliseconds, the 
key value wi~l repeat at a rate of approximately 30 per second. 
This will allow faster data entry for aplications such as word 
processing, text editing, and program displays where a 'banner' 
is required. 

Type-ahead 

The input on DOS version 3.1 is saved if the operator enters data 
faster than the computer can accept it. Up to 128 characters are 
stored when typed, an~ delivered only when needed. It is now 
possible to enter commands to an application program as it is 
being loaded from the disk and not lose any characters. Your 
input will appear after the program has been loaded, and the 
program will execute the commands as if you had just entered 
them. If you type more than 128 characters ahead of the computer 
system, the bell will ring. This indicates that the buffer is 
full, and further typing will be ignored by the system. 

Contact the Customer Service DeDartment at the address above for additional information on this bulletin. 



~F INTE~TEC I ~"'nNI"'AL DULLE: I II" 

~ ,® ~adquartars: 2300 Broad R;ver Road, Columb;a, South Caro!;na 29210 .8031798-9100 • TWX: 810-666-2115 lOS - 912A 

DATE OF THIS RELEASE._M.~y,.)Qe.J._.__ .. __ PAGE . __ 3. ___ .0F .. ___ 6 ____ BULLETIN #~nQ~_. __ ... _. ________ _ 

ASSEMBL y NAME/NUMBER-DQS"HPi..s_~ett.es_.. ... .. H _ . __ ...... _H_H_PR~~~g~§~~r~~_J~~:.~~~~i~ .. Q6 
E051041 REFERENCE ECO #--..... ___ . __ ... . ... __ ....... DISTRIBUTED TO _____ .s..~~ .. , .. ~_,_~~_§.~.!_._ .. ____ . ___ APPROVED ... _. ___ ._ .. ______ _ 

Notes 

It should be noted that some programs will not work with the 
type-ahead featu~e. An example is the 'DIR' command, which dis
plays the directory contents of a diskette. By definition, a 
directory display is interrupted if a key is depressed during the 
display. If the 'DIR' command receives a key from the type-ahead 
feature, it doesn't know if the key was just entered, or if it 
came from the buffer. In either case, the display is disrupted 
and a character is lost. Experiment with the system to see which 
programs will not tolerate type-ahead. 

ADDED CONVENIENCES 

Time 

The Operating System will now keep the time of day. The time is 
maintained in ASCII, and therefore, its contents are displayable 
at any time ~nd no conversion is necessary. The location of the 
time is 42 through 4AHexadecimal so these locations cannot be 
used by the programmer. The time is kept in military format with 
values ranging from 00:00:00 to 23:59:59. At midnight the time 
resets itself and also changes the value of the date. (See the 
subsection entitled 'Date' for more information.) 

The time may be displayed upon the screen in the upper right 
corner. This feature may be disabled if such a display is not 
desired. By displaying a Control-T (14H), the time display is 
'toggled' either on or off. Also, the display can be made to 
rem a i non 0 r 0 f f u p 0 n s y s tern p 0 w:e r - u p v; a the CON FIG U R P 'r 0 g ram. 
The time is always maintained by the operating system even if the 
the time display is disabled. 

The time may be set .with the 'TIME' command .. This is a system 
program supplied on the distribution diskette. To set the time 
type 'TIME' followed by the current time. The time must be en
tered in military format (hh:mm:ss), and separating colons must 
be supplied. If an invalid number is entered for the time, then 
the operator is lwarned, and the time is not set. 

Contact the Customer Service DeDartment at the address above for additional information on this bulletin. 



JIIC DATA IDS-912A JC INTE~TEC TECHNICAL BULLETIN 

® ~~H~adqUarters: 2300 Broad River Road. Columbia. South Carolina 29210.8031798-9100. TWX: 810-666-2115 

DATE OF THIS RELEASE-. ______ May-' __ 198J_ _ ____ PAGE __ 'l_ ... ____ OF _____ §_ .... __ BULLETIN # ____ SJ2~_lQ_Z~ _____ .________ -
CompuStar 20,30 (Stand-Alone) 

ASSEMBL Y NAME/NUMBER "- __ 00.$ R5$k.eJt~s. ________ ____________________ PRODUCT~_u._E.er::.~.!:.a i n ~~~E.~_!:..~_~_~_i n_ Q[ 

REFERENCE ECO# E05~04~ ________ -__ .. DISTRIBUTED TO ____ ~~~~_~_'-.f_~~..J ________ .. ____________ APPROVED _____________________ .. 

Note that when the time display is enabled, it takes precedence 
over anything which may be displayed upon the screen and will 
over-write any characters which would have been displayed on the 
last nine positions of the first line. It is not possible to use 
these positions for data display if the time display is enabled. 
Note also that this is a 'software clock ' and may be inaccurate 
as much as several seconds per day. 

Date 

The Operating System will now keep the date. The date is located 
at locations 4B through 40 Hexadecimal. These locations are now 
reserved and may not be used by the programmer. The date is 
maintained in packed binary-coded decimal, or BCD, format. The 
three bytes storing the date are for the month, day, and year, 
respectively (the year is the last two digits only). At midnight, 
the Operating System will increment the day by one, and then 
check for end of month. If it is the end of the month, the month 
is incremented. The system will also check for the end of the 
year. 

The date may be queried or set with a new command called 'DATE'. 
This is a system program located on the distribution diskette. To 
set the date, type in. 'DATE' followed by the new date in the form 
of mm/dd/yy. If you enter an invalid date, you will be warned so 
and the date will not be set. To view the date, type in 'DATE' by 
itself. This will display the current date. 

Other Commands 

The suffix 1-221, which was appended to system commands on pre
vious software releases, has been omitted from all progr~ms on 
version 3.1. This suffix was to distinguish CP/M version 2.2 
pro 9 ram s fro m C P / M v e r,s ion 1. 4 pro 9 ram s • The s u f fix i s nolo n 9 e r 
needed and will be excluded. 

Contact the Customer Service Def)artment at the address above for additional information on this bulletin. 



J I1II c @ ~dqU.rt.rs: 2300 Broad R;ver Road. Columb; •. South Carol;n. 29210 • 8031798.9100 • TW:E~':2:: BU ~o~ ~J.I! 
DATE OF THIS RELEASE MaY,.1981 

ASSEMBL Y NAME/NUMBER- . _OOS. __ Oi.~~et_tes 

PAGE __ 5_ ..... OF .. __ a_ .. __ BULLETIN #_B1!'~JQ.f.Q .. _._ ... __ 
CompuStar 20,30 ~Stand-Al0ne6 

... _ ... _____ ._. ____ PRODUCT ~uJ~er:~.r:~t1)-, ___ ~ p_~t~.Y'~i. n Q 

REFERENCE ECO#.-. EQ51041. . _. _____ .DISTRIBUTED TO ___ ... 6_.C .• P.~.f._G .• J ___ . ____ .. ______ APPROVED . ___ . __ . 

INPUT/OUTPUT ENHANCEMENTS 

Synchronous Communication 

The MAIN serial port on the rear of the computer can now be 
programmed for limited synchronous (Bi-Sync) communication. Syn
chronous protocol sends the data over the transmission lines at a 
timed rate and does not rely upon start- and end-of-data indica
tors. When data is not available for transmission, the universal 
synchronous/asynchronous receiver/transmitter (USART) enters the 
'synchronous idle' mode and transmits a SYNC byte in lieu of 
data. The receiving USART will intercept this and enter the 
'hunt' mode awaiting resumption of data transmission. 

The USARTs must be programmed upon power-up in order that proper 
operating mode and other parameters can be determined. When the 
initial programming command indicates that the operating mode is 
synchronous, the USART next expects a SYNC character that will be 
transmitted when the USART enters synchronous idle mode. The 
value of this SYNC character is stored with the operating system, 
and can be set via the CONFIGUR program. Also, you may specify 
whether one or two SYNC characters should be sent to the USART. 

It is the responsibility. of the user to write his own routines to 
initiate Start-of-Headei (SOH), Start-nf-Text (STX), End-of-Text 
(ETX), and End-Of-Transmission (EOT) sequences for Bi-Sync 
communication. The support offered by the Operating System is 
only to insure that the USART will be properly programmed upon 
power-up whenever the BREAK key is depressed. Also take care in 
selecting the clock settings on the blue dipswitch located on the 
upper right corner of the processor board. This switch will 
select the TX clock and the RX clock - refer to Technical 
Bulletin #B010009 found elsewhere in the Operator's Manual for 
explicit instructions. 

Contact the Customer Service Deoartment at the address above for additional information on this bulletin. 



J II/Ie @ ~dQuarters, 2300 Broad River Road, Columbia, South Carolina 29210 • 803/198-9100 • TW:

E

:1::

C

:: au ~D~ ~J,I~ 
DATE OF THIS RELEASE._ ...... _t1~y-~-.J~?)-.-----.. -_- .... ____ . PAGE -~ ___ ... OF .. ____ ~ _____ BULLETIN #~05_!Q?1-. __________ . __ . 

CompuStar 20,30 ~Stand-Alone6 
ASS E M B L Y N AM E / N U M BE R ___ .m __ • __ • __ 0.0_5. __ PJ~_k.~_t.t~ ____ ._._ .... __ . __ . _______ .. __ .. _ PRODUCT ~_yp~ r B_r aJ~L._~.P~_!:~r.:~ i~ ... 9 

REFERENCE ECO # ... _ ... ~Q? 1 O~ 1 . '" _ .. , . ______ ... 0 I STR I B UTE 0 TO_ ... _ .. _ ... __ ~_!~_8X_!~.~}. __ . _______ APPROV ED .. ____ ... __ "." 

Synchronous communication is complicated to implement, and it is 
advised that the user be well educated on this subject before 
attempting to communicate in synchronous mode. Currently, the 
Operating System performs no check for parity error, framing 
error, or overrun error. You will have to modify the BIOS listing 
supplied on your distribution diskette and merge it into the 
Operating System to include these checks and any re-transmission 
of data as required. Most peripherals use asynchronous communica
tion, and you should ensure that your peripheral will permit 
synchronous communication before attempting to program the MAIN 
port. 

Data Set Ready on MAIN Port 

Quite often a peripheral device will signal the host computer 
when it is able to receive a character for processing. This is 
known as handshaking, because the computer and the device are in 
constant c'ommunication with each other. The MAIN port will now 
accept the DSR to be checked prior' to any transmission of data. 
If the peripheral device is not ready to accept characters, the 
computer will wait until it is. If this check is not desired, it 
can be bypassed. This setting can be selected in the CONFIGUR 
program. 

KEYPAD REPROGRAMMING 

The 18 keys on the numeric keypad can now be reprogrammed to 
return different values other than those shown on the face of the 
key cap. This feature allows the user to assign any value to any 
key and pro v ide s g rea t e r f 1 e x i b 1 i 1 t y "1 nus i n g you r com put e r I s 
keyboard. Applicatl0ns using this include -word processors, text 
editors, and custom application programs which recognize special 
values as conditional input. By reassigning the key values and 
changing the key caps, the user can configure his system in 
literally hun~reds of ways. 

Contact the Customer Service Department at the address above for additional information on this bulletin. 



5ffirrF NTE~TEC TECHNICAL BULLETIN 

~, @ ~adQUartars: 2300 Broad R ivar Road, Columbia, South Carolina 29210 • 8031798.9100 • TWX: 81 CH;66.2115 IDS· 912A 

DATE OF THIS RELEASE May, 1981 ___ . PAGE ___ Z ___ .OF. ___ Jt __ BULLETIN # ____ JtCl~)Qf~_ ____ _ 

ASSEMBLY NAME/NUMBER. 
CompuStar 20,30 fStand-Alone6 

_ DOS. Dtskette.s . ___ _____ . ____ .. ____ . ___ H ___ PRODUCT s..YQ~J:ar~jnL U_PJ~r~.ra i:n Q 

REFERENCE ECO # .. ___ .~051Q41__ . ___ .. __ ._.DISTR I BUTEO TO_. ___ . ___ ~._,~_lQ_,E_!~_,J ___ .. _____ . __ .. ________ APPROVED _._ ... _. ____ _ 

Special note is needed concerning the cursor keys on the extreme 
right of the keypad. These keys will position the cursor upon 
input, i.e., when the key is depressed. After the cursor has been 
moved by these keys, the input value is substituted with another 
value, namely, the ASCII value corresponding to the action taken. 
If you change the values of these keys, then input cursor posi
tioning will not occur. However, if any key is assigned 81H, 82H, 
83H, or 85H, then the cursor will be positioned upon input left, 
right, up, or down, respectively. 

The keys on the keypad can be changed with the CONFIGUR program. 
You may assign any key a value of from OOH to FFH. When 
reassigning the keys, note that the following values have special 
meaning to the input routine in the Operating System: 

17H (Control-W) Turns on/off the computer's ability to 
scroll the video display. If any key is assigned this 
value and that key is depressed, the cursor may 
disappe~r after the 24th line on the screen. 

80H Begins the BREAK sequence out of the MAIN port. The BRK 
line on the USART will become high for approximately 
250 milliseconds and will interrupt any data 
transmission. The USART is also reset and is sent the 
command word. 

81H Cursor Left. The cursor is moved one position to the 
left, and the value 08H is returned. 

82H Cursor Right. The cursor is moved one position to the 
right, and th~ value 06H is returned. 

83H Cursor Up. The cursor is positioned one line up, and 
the value OBH is returned. 

85H Cursor Down. The cursor is positioned one line down, 
and the value OAH is returned. 

Contact the Customer Service Denartment at the address RhoV8 for additional information on thi,t; hlJlletin 



~~ 
INTE~TEC TECHNICAL BULLETIN JIIC DATA IDS-912A 

® ~~!:'t~adqUarters: 2300 Broad River Road, Columbia, South Carolina 29210.8031798·9100. TWX: 810-666-2115 

DATE OF THIS RELEASE- May, 19~1_ _ __ PAGE ___ J~_ OF _____ ~ _____ BULLETIN # ___ .. ____ B.115_1029 ________________ _ 
CompuStar 20,30 (Stand-Alone) 

ASSEMBL Y NAME/NUMBER _ _~OS_Pi ske_t:tg~ _____ .. _ .. ___ . ______ .. ____ . _______ . __ PRODUCT .s.uJ?erB.ra t!h~YRer6.r~1n. __ QO 

REFERENCE Eco# .... EO'51041 ... --._DISTR I BUTED TO __ ._.B_,..c.~J1.l1I ,G_,_L. _______________ APPROVED _______ _ 

Control Code Chart 

The following is a list of the hexadecimal equivalents of the 
control codes. The CONGIGUR program accepts only hexadecimal 
values when reassigning the keypad, so these are listed as a 
programmer convenience. Use caution when reassigning the values 
on the keypad, and recall that you may enter 'R' to restore the 
pad to its original configuration if you desire. 

Ctrl-A 0IH Ctrl-J OAH Ctrl-S I3H 
Ctrl-B 02H Ctrl-K OBH Ctrl-T I4H 
Ctrl-C 03H Ctrl-L OCH Ctrl-U I5H 
Ctrl-O 04H Ctrl-M OOH Ctrl-V I6H 
Ctrl-E 05H Ctrl-N OEH Ctrl-W I7H 
Ctrl-F 06H Ctrl-O OFH Ctrl-X I8H 
Ctrl-G 07H Ctrl-P 10H Ctrl-Y I9H 
Ctrl-H 08H Ctrl-Q IlH Ctrl-Z lAH 
Ctrl-I 09H Ctrl-R 12H 

Contact the Customer Service DeDartment at the address above for additional information on this bulletin. 



qp INTE~TEC TECHNICAL BULLETIN 

~, @ ~~adquarters: 2300 Broad River Road, Columbia, South Carolina 29210 • B03/798-91oo • TWX: 81Q-666-2115 IDS - 9t 2A 

DATE OF THIS RELEASE . May, 19~1 ... PAGE 1. . .. of.6 ... _BULLETIN #._B.n51030_ ..... __ ._ . 

ASSEMBLY NAME/NUMBER. CONF.IGUR. COM VER?~ON 3.2 

REFERENCE ECO # E051041 DISTRIBUTED TO ... ~ ,C ,D,E,G, t ............ _ .... __ ._.APPROVED.2!.;!Jt:r-

INFORMATION CONCERNING CONFIGUR.COM VERSION 3.2 

The system program CONFIGUR has been changed in order to support 
the new Operating System version 3.1. This new version of 
CONFIGUR performs all of the functions of the previous version. 
However, new functions have been added to enhance operational 
characteristics. This technical bulletin will describe the 
operating of the CONFIGUR utility. Below are listed the new 
features that CONFIGUR will perform. 

Enable/Disable Time Display upon system power-up 

Enable/Disable Key-Depressed Feedback upon system power
up 

Enable/Disable DSR check on the MAIN serial port 

Select Synchronous or Asynchronous operating mode for the 
MAIN serial port 

Select Number of SYNC Characters for MAIN port operating 
in Synchronous mode 

Select SYNC Character value for MAIN port operating in 
Synchronous mode 

Reprogram the 18-key numeric keypad for any new values, 
including special cursor-positioning keys 

Contact the Customer Service Department at the address above for additional information on this bulletin. 



~~ 
INTE~TEC TECHNICAL BULLETIN JIIC DAT" IOS-912A 

@ ~~~H:adqUarters: 2300 Broad River Road, Columbia, South Carolina 29210.8031798·9100. TWX: 810-666-2115 

DATE OF THIS RELEASE.- May, .. J9.81 ... _. __. . PAG E._.f .. _ .. _OF.Ji_ ......... B U L LET IN # _._.J~Q~lQ.3...Q _____ .. __ ._ .. 

ASSEMBLY NAME/NUMBER ... CQNflG.UR~COM __ ._VERSIQN._3_~ .. 2. ____ .......... _ ... _ ... PRODUCT ._.J2QS.J)js.ke_:tte ___ ... _. __ . ___ . 

REFERENCE ECO# E.051041 . ___ ._. _. DISTRIBUTED To ......... ~ .. !~,P...,.f~G_~.L ....... _ .. __ . ____ ....... _ APPROVEu. ___ ._ ...... _ ... . 

OPERATION 

Operating Frequency 

Your computer system can operate at either 50 or 60 Hertz. You 
may select either frequency. It is important that the correct 
frequency be chosen or the USARTs and the real-time clock will 
not properly operate. 

Disk Write Verification 

You may select to have the Operating System perform disk 
read-back verification after each floppy disk write. This feature 
will 'double-check' the write operation, and attempt an automatic 
retry if the disk write did not occur properly. 

Time Display Enable/Disable 

If you wish for the time of day to be constantly displayed in the 
upper right corner of the screen upon power-up, you may select 
this feature here. Note that the time is always maintained 
internally, even if you choose not to display it. Also note that 
this setting is only for power-up, and you may select/deselect 
the time during operation by displaying a Control-T (14H). 

Key Click Enable/Disable 

You may choose to have the audible feedback feature enabled upon 
s y s t em power - up. W hen eve r the au d i b 1 e fee d b a c k i sen a b ,1 ed, the 
computer will inform the operator with a slight 'click' at each 
ey depression. Note that this setting is only for system power
up, and the key click feature can be changed during operation by 
displaying a Control-B (02H). 

Contaat the Customer Service Deoartment at the address above for additional information on thi~ hulletin. 



~F INTE~TEC TECHNICAL BULLETIN 

~t '" ~~H:adqUarters: 2300 Broad River Road, Columbia, South Carolina 29210 • 8031798.9100 • TWX: 810-666.2115 IDS • 912A 

DATE OF THIS RELEASE __ May,_ lQ&.l _ .. 

ASSEMBL Y NAME/NUMBERCONFI.GUR..COM .. __ VERSJON 3.2._ . ____ . __ .. _____ PRODUCT ._-'p_QS_J2j.§_!s.~tt?. ____ ... ___ . __ 

REFERENCE ECO# E051.941 .. _._ .DISTRIBUTED To __ ._._~_.,-.~_,-.Q_,-f __ ,-.~.,-J ____ . ___ .. __ . _____ APPROVED. _________ .. _. __ 

Main and Aux Port Operation 

Choosing these selections will permit you to change the operating 
parameters of the MAIN and AUX serial I/O ports located on the 
rear of your computer. The details of this selection are covered 
below including which ports are applicable for a given feature. 

Operating Mode (MAIN Port Only) 

The MAIN port operating mode selections are synchronous and 
asynchronous. Be certain that the peripheral with which you are 
communicating is capable of operating in the same mode; they 
cannot be different. Note also that when changing to synchronous 
mode, you may need to change the number of SYNC Characters and 
the SYNC Character value. When changing to the asynchronous mode, 
you may need to change the number of stop bits. 

Baud Rate (MAIN and AUX Ports) 

A wide range of baud rates can be selected for the port including 
rates from 9600 baud (approximately 960 characters/second) to 50 
baud (5 characters/second). Select the baud rate needed to 
communicate with your peripheral. 

Number of SYNC Characters (MAIN Port Only) 

This selection will affect the number of SYNC Characters sent to 
the USART upon system power-up. Select either one' or two. 

Number of Stop Bits (MAIN and AUX Ports) 

This selection will choose the number of stop bits sent 
each character when the port is operating in asynchronous 
Select either 1, 1.5, or 2 stop bits. 

after 
mode. 

Contact the Customer Service Deoartment at the address above for additional information on this bulletin_ 



5ffirFr= INTE~TEC TECHNICAL BULLETIN 

~t @ ~H~adqUart.rs: 2300 Broad River Road, Columbia, South Carolina 29210. 8031798-9100 • TWX: 810-666-2115 lOS - 9t 2A 

DATE OF THIS RELEASE . M.~y',J ~~J .... _ .. __ ._ ..... _. _ ... PAGE . __ 4 ... __ 0F._~_. ---BULLETIN # __ ~_Q'§1.9.~.9_ .. _. ___ . -. 

ASSEMBLY NAME/NUMBER ... ___ ~ONE.I~_WR.!_C.OM._._VERSJQ~._3 .• __ 2 _________ . ____ PRODUCT . ___ QO~~i sJet~~. ________ .. 

REFERENCE E CO # ........E._O 5l 0.41 _. .. ___ . __ . _DISTRIBUTED TO. __ . _~_.'--C.,_ Q_2f. 2 G11 ___________ . __ APP ROV ED .. _ ._._. ____ ... 

Character Length (MAIN and AUX Ports) 

You may select the length of the character to be transmitted and 
received. Many selections are provided to insure compatibility 
with older TTY and Baudot machines. Usually eight bits is the 
standard character length. You may, however, select 5, 6, 7, or 8 
bit character lengths. 

Parity (MAlN and AUX Ports) 

You may choose to check parity with each transmission. This will 
provide a limited 'checksum' to help insure that proper 
transmission has occurred. However, if parity is enabled, the 
application program will have to test the USART status register 
for parity error. You maJ also select Even or Odd parity. If you 
choose to check parity, be certain that the device with which you 
are communicating matches your setting. 

Handshaking (MAIN and AUX Ports) 

If you wish to check Data Set Ready prior to each character 
transmission, you should enable this function. This will permit a 
peripheral device to signal the computer whenever it cannot 
receive anymore characters. 

SYNC Character Value (MAIN Port Only) 

The SYNC Character is the byte that is sent to the USART after it 
has been programmed fot synchronous communication. Generally, 
the ASCII value of 13H (SYN) is used, but any binary value may be 
substituted. Make certain that the SYNC Character value matches 
that of the peripheral device with which you are communicating. 
Enter the hexadecimal number desired. 

Contact the Customer Service Department at the address above for additional information on this bulletin. 



~F INTE~TEC TECHNICAL BULLETIN 

~t '" ~~adqUarters: 2300 Broad River Road, Columbia, South Carolina 29210 • 8031798,9100 • TWX: 810-666-2115 IDS - .'lA 

DATE OF THIS RELEASE ...... Ma..Y ,J~8J ___ .. ____________ .PAGE ____ ? .. ____ .. OF_._§ __ . ___ BULLETIN # __ ]..9~103_Q_._. ___ ._ .. _ 

;ASSEMBL Y NAME/NUMBER ____ . __ CONFJGUR_· .. GPM.Y_E.R~_!.9_ti_~ .. ~._g ___ ._. __ ._._. ____ .PRODUCT ___ .QOS Dtsk~t.1~ .... _____ ... __ . 

REF E RENe E ECO # _.. ;Q!) 1 041 ..... __ . __ ._ 0 I STR I BUTEO TO-----_~!~_ ~ ~ _~X_~§._~} .. ____ . ____ ____ APPROV ED ._._. __ . _____ . 

KEYPAD REPROGRAMMING 

The 18 key numeric keypad on the right side of the keyboard can 
be reprogrammed to any input values desired. You may, for 
example, wish to invert the numeric keys on the pad. They will 
then correspond to 'telephone style' with 1-2-3 on the top row 
and 7-8-9 on the bottom. You may wish to replace the keys with 
control-codes which are accepted by a word processing or text 
editing program. The key cap values could then be changed to 
descriptive messages which are easier to learn and understand. 
Any value from OOH to FFH can now be assigned to the numeric keys 
with version 3.2 of CONFIGUR. 

When this selection is entered, an image of the keypad appears on 
the screen. To change the value of any key, depress the 'TAB' key 
until the cursor is over the key you wish to change. Then press 
the escape (ESC) key to indicate the change needed. The cursor 
will position itself on the last line, and a blinking asterisk 
will replace the cursor on the key being changed. Enter the new 
hexadecimal value for this key. Your input must be valid hex 
numbers between O-F as invalid numbers will not be accepted. 
Press the I RETURN' key when you are fi nished. 

To restore the keypad to its original values press the 'R' key 
instead of the ESC or TAB keys. The screen will be updated 
instantly, and the cursor will be repositioned at the beginning 
of the display. When all changes have been entered, pressing the 
'RETURN' key (instead of the ESC or TAB keys) will return you to 
the main menu of selections. 

" 

Special note is needed concerni~g the cursor keys on the extreme 
right of the keypad. These keys will position the cursor upon 
input, i.e., when the key is depressed. After the cursor has been 
moved by these keys, the input value is~substituted with another 
value, namely, the ASCII value corresponding to the action taken. 
If you change the values of these keys, then input cursor 
positioning will not occur. However, if any key is assigned 81H, 
82H, 83H, or 85H, the cursor will be positioned left, right, up, 
or down, respectively. 

Contact the Customer Service Deoartment at the address above for additional information ()n thi.~ hulletin 



~~ 
INTE~TEC TECHNICAL BULLETIN JIIC Dl\T/\ IDS-912A 

@ ~~H~adqUarters: 2300 Broad River Road, Columbia, South Carolina 29210.803/798-9100. TWX: 810-666-2115 

May, 1981 DATE OF THIS RELEASE.... . .. 6 6 B051030 . PAGE._... . .. OF .... _._ ....... _ .. BULLETIN # .. _ .. __ . __ . __ . ___ ...... _ ... . 

ASSEMBLY NAME/NUMBER CONFIGUR. COM VERS ION 3.2". __ .... ,, ____ PRODUCT ___ Q.~~ ... Di s~~.!~~._. __ ._,,_. 

REFERENCE ECO# ..... EOS1041 .. DISTRIBUTED TO-.. ~.'~ ,_P~f,.~ .. ~J ........... ________ ._APPROVED_. ___ . 

l_. 

Control Code Chart 

The following is a list of the hexadecimal equivalents of the 
control codes. The CONGIGUR program accepts only hexadecimal 
values when reassigning the keypad, so these are listed as a 
programmer convenience. Use caution when reassigning the values 
on the keypad, and reca 11 that you may enter 'R' to restore the 
pad to its original configuration if you desire. 

Ctrl-A 01H Ctrl-J OAH Ctrl-S 13H 
Ctrl-B 02H Ctrl-K OBH Ctrl-T I4H 
Ctrl-C 03H Ctrl-L OCH Ctrl-U ISH 
Ctrl-O 04H Ctrl-M OOH Ctrl-V 16H 
Ctrl-E OSH Ctrl-N OEH Ctrl-W I7H 
Ctrl-F 06H Ctrl-O OFH Ctrl-X I8H 
Ctrl-G 07H Ctrl-P 10H Ctrl-Y I9H 
Ctrl-H 08H Ctrl-Q IIH Ctrl-Z IAH 
Ctrl-I 09H Ctrl-R 12H 

After all corrections have been entered, pressing the 'RETURN' 
key will save your new param~ters on the disk. This must be done 
at the main menu of selections. Then press both RED keys when 
instructed to force a 'cold boot' of the Operating System and 
properly load your newly changed parameters. 

Contact the Customer Service Deoartment at the address above for additional information on this bulletin. 



STATEMENT OF LIMITED WARRANTY 

For ninety (90) days from the date of shipment from our manufacturing plant at 2300 Broad River Road, Columbia, South Carolina, Intertec warrants, to 
the original purchaser only, that its products, excluding software products, will be free of defective parts or components and agrees to replace or repair any 
defective component which, in Intertec's jUdgment, shall disclose to have been originally defective. Intertec neither offers nor implies any warranty 
whatsoever on any software products. Furthermore, Intertec's obligations under this limited warranty are subject to the following conditions: 

LIMITED WARRANTY REPAIRS 

Unless authorized by written statement from Intertec, all repairs must be done by Intertec at our plant in Columbia, South Carolina. Return of any and all 
parts and/or equipment must be freight prepaid and accompanied by an Intertec Return Material Authorization number which must be clearly visible on the 
customer'S shipping label. Return of parts or equipment contrary to this policy shall result in the material being refused, and the customer being invoiced 
for any replacement parts, if any were previously issued, at Intertec's standard prices. 

When making repairs or replacing parts in accordance with this limited warranty, Intertec reserves the right to alter and/or modify specifications of this 
eqUipment. 

Upon completion of the repairs, Intertec will return the equipment, freight collect, directly to the customer from whom it was sent via UPS or equivalent 
ground transportation. 

Authorization to return equipment for repair can be obtained by writing Intertec at the address stated herein or by calling our Customer Service 
Department at 803/798-9100. 

In the event Intertec shall authorize repair of its equipment, in writing, by,an authorized repair agent, then Customer shall bear all shipping, packing, 
inspection and insurance costs necessary to effectuate repairs under this warranty, 

EXCLUSIONS 

The Limited Warranty provided by Intertec Data Systems Corporation does not include: 
(a) Any damage or defect caused by injuries received in shipment or any damage caused by unauthorized repairs or adjustments. The risk of loss or 

damage to the equipment shall pass to the Customer upon delivery by Intertec to the carrier at Intertec's premises. 
(b) Repair, damage or increase in service time caused by failure to continually provide a suitable installation environment including, but not limited to, 

the failure to provide, or the failure of, adequate electrical power, air-conditioning, or humidity control. 
(c) Repair, damage or increase in service time caused by accident or disaster, which shall include, but not be limited to, fire, flood, water, wind, lightning, 

transportation neglect, misuse and alterations, which shall include, but not be limited to, any deviation from the original physical, mechanical or electrical 
deSign of the product. 

(d) Any statements made about the equipment by salesman, dealers or agents unless such statements are in a written document sigr.ed by an officer of 
Intertec Data Systems Corporation, Such statements do not constitute warranties, shall not be relied on by the buyer, and are not part of the contract for 
sale', 

(e) Any damage arising out of any application for its products other than for normal commercial and industrial use, unless such application is, upon 
request, specifically approved in writing by Intertec. Intertec products are sophisticated data processing units and are not sold or distributed for personal, 
family or household purposes, 

This Class A equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instructions 
manual, may cause interference to radio communications. As temporarily permitted by regulation it has not been tested for compliance with the limits for 
Class A computing devices pursuant to Subpart I of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference. 
Operation of this equipment in a residential area is likely to cause interference in which case the user at his own expense will be required to take whatever 
measures may be required to correct the interference. 

(f) Software, including either source code, object code or any computer program used in connection with our equipment, whether purchased directly 
from Intertec or from an independent source. 

WAIVER OF ALL EXPRESS OR IMPLIED WARRANTIES 

Our limited warranty to repair or replace defective parts or components for ninety (90) days after shipment from our Columbia plant is being offered in 
lieu of all express or implied warranties, 

INTERTEC MAKES NO EXPRESS WARRANTY OTHER THAN THE LIMITED WARRANTY SET FORTH ABOVE, CONCERNING THIS PRODUCT OR ITS 
COMPONENTS, NOR DO WE IMPLIEDLY WARRANT ITS MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, 

All statements, technical information and recommendations contained in this and related documents are based on tests we believe to be reliable, but the 
accuracy or completeness thereof is not guaranteed. 

THE FOREGOING LIMITED WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, EXCEPT AS TO CONSUMER GOODS IN 
WHICH CASE THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY ONLY FOR THE PERIOD OF 
THE LIMITED WARRANTY, 

PURCHASERS OF CONSUMER PRODUCTS SHOULD NOTE THAT SOME STATES DO NOT ALLOW FOR THE EXCLUSION OF CONSEQUENTIAL 
DAMAGES OR THE LIMITATION OR THE DURATION OF IMPLIED WARRANTIES SO THE ABOVE EXCLUSION AND LIMITATION MAY NOT BE 
APPLICABLE. 

THIS LIMITED WARRANTY GIVES THE PURCHASER SPECIFIC LEGAL RIGHTS, AND THE PURCHASER MAY ALSO HAVE OTHER RIGHTS WHICH 
MAY VARY FROM STATE TO STATE, 

LIMITATION OF REMEDIES 

INTERTEC SHALL NOT BE LIABLE FOR ANY INJURY, LOSS OR DAMAGE, DIRECT OR CONSEQUENTIAL, TO PERSONS OR PROPERTY CAUSED 
EITHER DIRECTLY OR INDIRECTLY BY THE USE OR INABILITY TO USE ITS PRODUCTS AND/OR DOCUMENTS. SUCH LIMITATION IN LIABILITY SHALL 
REMAIN IN FULL FORCE AND EFFECT EVEN WHEN INTERTEC MAY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH INJURIES, LOSSES OR 
DAMAGES. 

Before purchasing or using, the Customer shall determine the suitability of Intertec's products and documents for his intended use and assumes all risk 
and liability whatsoever in connection therewith, 

THE LIMITED WARRANTY TO REPLACE OR REPAIR PARTS OR COMPONENTS FOR NINETY (90) DAYS IS THE EXCLUSIVE REMEDY PROVIDED TO 
THE CUSTOMER AND THE LIABILITY OF INTERTEC WITH RESPECT TO ANY OTHER CONTRACT, SALE OR ANYTHING DONE IN CONNECTION 
THEREWITH, WHETHER IN CONTRACT, IN TORT, UNDER ANY WARRANTY, OR OTHERWISE, SHALL NOT EXCEED THE PRICE OF THE PART OR 
COMPONENT ON WHICH SUCH LIABILITY IS BASED. 

Rights under this warranty are not assignable without the express prior consent, in writing, of Intertec Data Systems Corporation, and, regarding the 
terms of such consent in writing, the assignee shall have no greater rights than his assignor. 

In the event the Customer has any problem or complaints arising out of any breach of our limited warranty, including a failure to make repairs in 
accordance with the warranty, or unsuccessful repair attempts by an authorized repair facility, the Customer is encouraged to inform Intertec, in writing, of 
his or her problem or complaint Any such writing should be addressed to Intertec Data Systems Corporation, 2300 Broad River Road, Columbia, South 
Carolina 29210, and should be marked with the phrase "Warranty Claim," 




	000
	001
	002
	003
	004
	005
	01-001
	01-002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-0-01
	02-1-01
	02-1-02
	02-1-03
	02-1-04
	02-1-05
	02-1-06
	02-1-07
	02-1-08
	02-1-09
	02-1-10
	02-1-11
	02-1-12
	02-1-13
	02-1-14
	02-1-15
	02-1-16
	02-1-17
	02-1-18
	02-1-19
	02-2-01
	02-2-02
	02-2-03
	02-2-04
	02-2-05
	02-2-06
	02-2-07
	02-2-08
	02-2-09
	02-3-01
	02-3-02
	02-4-01
	02-4-02
	02-4-03
	02-4-04
	02-4-05
	02-4-06
	02-4-07
	03-0-01
	03-1-01
	03-1-02
	03-1-03
	03-1-04
	03-1-05
	03-2-01
	03-2-02
	03-2-03
	03-3-01
	03-3-02
	03-3-03
	03-3-04
	03-3-05
	03-3-06
	03-3-07
	03-3-08
	03-4-01
	03-4-02
	03-4-03
	03-4-04
	03-4-05
	04-000
	04-001
	04-002
	04-003
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	05-0001
	05-0002
	05-001
	05-002
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	06-000
	06-001
	06-002
	06-003
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	07-000
	07-001
	07-002
	07-003
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	08-000
	08-001
	08-002
	08-003
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-000
	09-001
	09-002
	09-003
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	10-000
	10-001
	10-002
	10-003
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	10-56
	10-57
	10-58
	10-59
	10-60
	10-61
	10-62
	10-63
	10-64
	10-65
	10-66
	10-67
	10-68
	10-69
	10-70
	10-71
	10-72
	10-73
	11-0-01
	11-1-01
	11-1-02
	11-1-03
	11-1-04
	11-1-05
	11-1-06
	11-1-07
	11-1-08
	11-1-09
	11-1-10
	11-1-11
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-000
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	xBack

