o‘?ﬁ“

MAX 2 COMPUTER SYSTEM

REFERENCE ‘MANUAL
| - and
MICROPROGRAMMING GUIDE

.International Meta Systems, Inc.
3655 Torrance Blvd. Torrance, CA 90503

MCS - 02 September 1987

MCS - Ola February 1987

MCS - 01 January 1987

Copyright International Meta Systems Inc., 1987, 1988

TABLE OF CONTENTS

SUMMARY . . ¢ « ¢ ¢« ¢ o o« o « &+ @ . . e o e s
INTRODUCTION . . ¢« ¢ « o« o « o« o o e e e e e e
I SYSTEM ARCHITECTURE o e e e e s
II PC/3230 CPU EXECUTIVE SYSTEM . e e e e e e
FUNCTION KEY DEFINITIONS . . e e e e e e s
FUNCTION KEY SUMMARY« . . .
PROGRAM OPERATION . . + + « « « o e s e e e
IITI MICROPROGRAMMING « e e e e o e
INSTRUCTION PIPELINE P T T
LEFT HAND SIDE FORMAT e e v e e e e
RIGHT HAND SIDE FORMAT . . . e e e e e e e
OFF-CHIP INTERFACES« . e e e e e e
1.0 SPECIAL-PURPOSE REGISTERS . . v e s e e e
1.1 X REGISTER . « « .« = o e e e e e
1.2 MEMORY ADDRESS REGISTER (MAR) e e e e e e
1.3 MEMORY INPUT REGISTER (MIR) « . .
1.4 MEMORY OUTPUT REGISTER (MOR) . « « .« « . .
1.5 K REGISTER . « « « e e e e e e e e s
1.6 LINK STACK REGISTER (LSR) o e e e e e e s
1.7 DATA REGISTER (DR) . « « ¢« « ¢« « ¢ « « «
1.8 INTERRUPT REGISTER (IR) . . « « « « « .« o
1.9 INTERRUPT MASK REGISTER (IMR) . . .
1.10 EXTERNAL INPUT REGISTER (EIR) . . e
2.0 INSTRUCTION FORMAT o e o s e s
2.1 "T" (TARGET OPERAND) FIELD o e e e e e e .
2.2 "A" (PRIMARY INPUT OPERAND) FIELD . . .
2.3 OPERATOR FIELD ¢ ¢ ¢ « o ¢ o o o o o o o o
2.4 "B" (SECONDARY INPUT OPERAND) FIELD . .
2.5 OVERFLOW IN ARITHMETIC/LOGICAL/SHIFT
INSTRUCTIONS « ¢« o ¢ ¢ o o o o o o o o o o
2.6 "C" (RIGHT HAND SIDE) FIELD . .

2.6.1 CONDITIONAL TRANSFERS, TRA ([C] 8 .
LOAD K REGISTER, LDK ([C]=1) . . .
UNCONDITIONAL TRANSFER, TRA ([C]=7)

OV O) O\ OV OV Oh ¢

o o

LINK INSTRUCTIONS, LINK ([C]=4) .
LINK CONDITIONAL, LINKC ([C]=5) .
RETURN INSTRUCTION, RETURN ([C]=6)
SKIP CONDITIONAL INSTRUCTION, SKIP

([CI=0) v v v « v v v v v e e e w

qmm.&wm

N NN

o

e o o o o

.F

8
13
22

23

24
26
26
28
29

30
30
30
30
31
31
31
31
32
32
32

34
35
36
37
39

41
42
43
45
45
46
46
47

48

.8 EXTERNAL BUS INSTRUCTIONS, BUS ([C] 2 3)50

7.0

APPENDIX A: ASSEMBLER SYNTAX AND PSEUDO OPS

PIPELINE CONSTRAINTS .

3.1 PIPELINE PHASE I . « « &« & « «
3.2 PIPELINE PHASE ITI . . + « « =«
3.3 PIPELINE PHASE ITI . . . « . . &
3.4 PIPELINE PHASE IV
3.5 PROGRAMMING/TIMING RULES FOR REA

CACHE MEMORY . « « « .« . o« o e

3.5.1 WRITE CACHE SEQUENCE .«

3.5.2 READ CACHE SEQUENCE

SPECIAL PROGRAMMING TECHNIQUES . .

4.1 LOOPS & ¢ o ¢ o o o o o o o
4.1.1 BOTTOM TEST LOOPS . . .
4.1.2 TOP TEST LOOPS . . .
4.1.3 ARRAYS: MICROCACHE LOOPS

4.2 OUT OF SEQUENCE EXECUTION . .
4.3 TRANSFER VECTOR BRANCHING . .
4.4 REGISTER SHARING &
4.5 ACCESSING PRESTORED DATA FROM MICROSTOR
4.6 STACKING SUBROUTINE PARAMETERS
MEMORY INTERFACE . . . o o e
5.1 MEMORY CONTROLLER INTERFACE .

5.1.1 BUS EMIT OPERATIONS . .

5.1.2 BUS RECEIVE OPERATIONS
5.1.3 INDEXING « . .
5.1.4 TYPICAL PROGRAMMING . .

PC I/0O AND SUPPORT INTERFACES . . .

6.1 METAMICRO TO PC . . « « « « &
6.1.1 ACCESS . . « . o« o e
6.1.2 STATUS TO METAMICRO o« .
6.1.3 READ FUNCTIONS
6.1.4 WRITE FUNCTIONS

6.2 INTERFACE TO PC-AT . . . « . .
6.2.1 PC TO METAMICRO
6.2.2 ACCESS
6.2.3 READ STATUS FUNCTION .
6.2.4 STATUS TO PC-AT
6.2.5 WRITE COMMAND REGISTER
6.2.6 WRITE SELECTED REGISTER
6.2.7 READ SELECTED REGISTER
6.2.8

FLOATING POINT COPROCESSOR . . .
7.1 BUS EMIT AND RECEIVE FUNCTIONS
7.2 SAMPLE PROGRAMS

Al LANGUAGE ELEMENTS . . « « « « &
Al.1 COMMENTS . « ¢« « o o o &
Al.2 TIDENTIFIERS . « « « o &

.

¢« e o o

o« o o O e o o e o

e o e e o o

OTHER COMMAND REGISTER FUNCTIONS

E

.

. e lﬂ e e o o o

54
54
55
56
57

58
58
59

60
60
60
61
61
62
63
64
65
65

66
66
68
69
72
73

74
76
77
77
78
78
78
79
79
80
80
81l
82
82
83

85
85
87

89
90
90
90

A2

INDEX

A3

A4

Al.3 NUMBERS .+ « « « « o« « « « o « « « « « 90
Al.3.1 DECIMAL INTEGERS 90
Al.3.2 HEXADECIMAL INTEGERS 90
Al.3.3 CHARACTERS . « « « « & « « o . 091
Al.3.4 REAL NUMBERS . . « « « « « . . 91
Al.3.5 DOUBLE PRECISION NUMBERS . . . 91

Al.4 EXPRESSIONS .+ + + « « o o o « « « « . 91
Al.4.1 LOGICAL OPERATORS 92
Al.4.2 SHIFT OPERATORS 92

PSEUDO-OPERATIONS « « + + « « « o« « « « « « . 94

A2.1 ASSEMBLER ACTION COMMANDS 94
A2.1.1 LABEL (LONG LABEL DEFINITION) . 94
A2.1.2 CHANGE, UNCHANGE (KEYWORD

ALTERATION) « + & v « o o « « & 95
A2.1.3 INST, DATA (INSTRUCTION, DATA MODE

INITIATION) + « « « « « « « « « . 95
A2.1.4 ORG (SET ORIGIN OF ABSOLUTE CODE) 95
A2.1.5 DC (DEFINE CONSTANT) 96
A2.1.6 RS (RESERVE STORAGE) 96
A2.1.7 EQU (EQUATE SYMBOLS) 96

A2.2 ASSEMBLER LISTING COMMANDS 97
A2.2.1 HEADER (PAGE HEADINGS) 97
A2.2.2 EJECT (PAGE EJECTION) 97
A2.2.3 LIST, NOLIST (ASSEMBLY LISTING ON,

OFF) « v o o o o o o o o o o o 97
A2.2.4 LISTC, NOLISTC (LISTING COMMANDS
ON, OFF + « & v o o o o o o o 97
A2.2.5 BLOCKS, NOBLOCKS (BLOCK STRUCTURE
ANNOTATION CONTROL) .+ . « « « . . 97
A2.2.6 FORMAT, NOFORMAT (FORMATTED LISTING
CONTROL) « & o « o o o o o o « « . 98
A2.2.7 COMWIDTH (COMMENT WIDTH FOR
JUSTIFICATION) « « « o « « « « « . 98
A2.2.8 ILIST, NOLIST (INCLUDE FILE
PRINTING ON, OFF) . « « « 98
A2.2.9 WARN, NOWARN (WARNING MESSAGE
PRINTING ON, OFF) 98
A2.2.10 END (END OF ASSEMBLY) 98
A2.2.11 CODELEN . + + v « & « « « « . 99
A2.2.12 IFON, IFOFF . « « « v « « « « 99
A2.3 DEFAULT OPTIONS . + & « « « o « « « . 99
PRE-PROCESSOR COMMANDS 100

A.3.1 #IF #ELSE #END . . . « « 100

A.3.2 #INCLUDE . +« « « « o « « « o o « . . 100

A.3.3 HDEFINE . &« « « « « o « « o o o « « . 100

STANDARD ASSEMBLER MNEMONICS 101

3

.

111

SUMMARY

This manual provides an architectural overview of the
MAX 2 hardware for the PC-AT. Within that system it
describes the instruction set and the symbolic assembly
language used to create microprograms and explains the
operating characteristics of the hardware. An
Executive System, resident on the PC controls loading
programs, debugging 3230 CPU programs, and the I/O
between the MAX 2 and the PC. Appendix A describes
assembler features and use. The descriptions of the
assembly formats of the instructions are interleaved in
the description of the hardware instruction set.

Italics are used in assembly-language descriptions, and
tables of equivalence between assembly mnemonics and
binary microcode are provided.

Assembly language descriptions employ BNF (Backus-Naur Form)
to define language syntax. The BNF structure is as follows:

a. All names appearing in angle brackets, <...>, are
names of syntactic types.

b. The symbol "::=" means "is defined as".
c. The symbol "1 " indicates a choice.
d. Items appearing within square brackets, [...],

are optional.

e. Items appearing within set braces, {...}, may
be repeated zero or more times.

MCS - 02 -1 - SUMMARY

INTRODUCTION

The 3230 CPU is the processor element (VSLI
microprocessor chip) of the MAX 2 expansion board for
the IBM PC-AT and compatible personal computers. This
document is a combination reference manual and
microprogramming guide for the MAX 2/MetaMicro computer
system. Throughout this document, micro-programming
examples, used to describe the operation of the

hardware, are presented in the assembly-language of the
3230 CPU.

I SYSTEM ARCHITECTURE

In recent years, two fundamental categories of computer
design have been widely discussed: the conventional
microcoded complex-instruction-set computer (CISC)
architecture and the non-microcoded reduced-instruc-
tion-set computer (RISC) architecture, both of which
rely heavily on compilers to transform application
software to run on the computer. The IMS "Meta"
architecture is a third category, a minimal-
instruction-set computer (MISC) that is substantially
different in software architecture. Meta architecture
supports the execution of application programmin

languages without the need for conventional compilers.

IMS Meta architecture resolves a bottom-up problem of
VLSI performance and a top-down problem of software
functionality. Both problems constrain future data
processing technology, but are not resolved by either
CISC or RISC approaches. Both problems can be resolved
in the MISC architecture by concentration of the object
program encoding, which relieves the off-chip/on-chip
traffic in the so-called "von Neumann bottleneck."

Encoding concentration is facilitated by language
interpretation: the direct execution of the most
abstract form of a program -- a compressed image of its
high-level language statements. Simple encoding
algorithms compress the semantic information content of
a high-level source program into a binary image that
averages less than half its original size. This
reduces the object program size compared to a compiled
program by an order of magnitude.

VLST Performance - The bottom-up problem of VLSI per-
formance relates to the increasing disparity between
VLSI chip speeds and the speed of off-chip circuitry
such as large dynamic memories and external busses.
Reducing silicon circuit feature size allows enormous
gains in clock speeds of processing that takes place
on-chip, roughly proportional to the reduction in VLSI
feature si:ze. Going from two-micron to one-micron
feature size results in a two to threefold gain in on-
chip clock speed. This magnifies the problem of the
von-Neumann bottleneck, because of the large number of

1 This eliminates a conventional compiler's
primary function: transforming high-level language
programs into expanded low-level machine code.

MCS - 02 -3 - SYSTEM ARCHITECTURE

cycles that a processor may have to wait for
information transmitted from large offchip memories.The
on-chip/off-chip performance disparity can be relieved
by reducing the size of the program code (instructions)
and the frequency with which data must be transmitted
between the very large and relatively slow dynamic
memories and the faster on-chip processors and static
memories. Executing a program in its most abstract
(concentrated) form minimizes the instruction traffic.
Using small, high-speed memory for data memorying of
data structures minimizes the data traffic. The net
effect is an order-of-magnitude gain in effective
memory bandwidth as compared to the expanded machine-
language image produced by a conventional compiler.

Software Functionality - The major top-down problem
removed by the Meta approach is the complexity of high-
order language implementation. Languages which have
shown the highest level of programmer productivity have
dynamic characteristics such as dynamic binding and
data type redefinition that do not lend themselves to
systems with compilers and static loaders. Application
language interpretation eliminates the assembly
language software interface and uses the 3230 CPU
hardware instruction set to directly execute the
high-level language, making the hardware into a
microprogrammed igh-level language machine.

MCS - 02 -4 - SYSTEM ARCHITECTURE

MCS - 02

fl

Floating
Point Instruction
Processor Memory
16-256KB
32
Cctrl
User -
Memory - CpPU
- 32
= 20-40 MIPS
4-64MB
32
PC
Interface Context
Memory
16-256KB

16

16

FIGURE 1 MAX 2/MetaMicro Architecture

SYSTEM ARCHITECTURE

The MAX 2/MetaMicro architecture executes compressed-
source images of high-level languages via micro-
programming. Functionally, it consists of the
following subsystems:

A. METASYSTEM:

1. Microsystem: Minimal Instruction Set
Computer (MISC) ‘

(a) 3230 CPU Processor: a user -
microprogrammable processor consisting
of a single very-high-speed integrated
circuit (VHSIC) chip,

(b) Instruction memory: a register-speed
static memory of up to 64K 32-bit
words, used as a read-only instruction
memory to the 3230 CPU processor,
containing interpreter loaded from the
supporting PC-AT,

(c) Data memory: a register-speed static
memory of up to 64K 32-bit words, used
as a local read/write storage by micro-
programs,

2. User memory: a large dynamic main memory
external to the microsystem, used to store
high-level language code and data,

3. PC-Channel: interface channel logic con-
necting to the computer bus of the PC-AT,

B. METACOMPUTER (Virtual Machine): a micro-program,
resident in the instruction memory, that Ioads
and encodes an application source language
program into a compressed binary image in the
user memory, then interprets the application
language by executing the binary image. When
boot-loaded from the PC, the metacomputer
converts the general-purpose metasystem into a
special-purpose application language machine,
masking the features of the metasystem like a
high-order language masks hardware features.3230
CPU's microprogramming features are optimized for
the implementation of metacomputer code for any
type of high-order language. Because each
language has its own compressed source-executable
image (instruction set architecture) that is

MCS - 02 -6 - SYSTEM ARCHITECTURE

independent of the metasystem, the design of the
metacomputer is not constrained by the design of
the hardware. This offers complete freedom in
the development of high-order-language machines.
Since the metacomputer code resides in a separate
high-speed memory (instruction memory) which is
externally loadable, the hardware can change its
language merely by loading a new metacomputer.

Application-language interpretation sharply reduces
software complexity and leverages the performance of
application languages. The computer is substantially
more user-friendly because the language that it
executes directly corresponds to the one in which the
program was written, i.e.,the program is executed as
written, not as a highly transformed machine-language
program generated by a compiler.

In addition to its use as a high-level language
interpretation engine, the MetaMicro is designed to
function as the control element of systems such as disk
controllers, telemetry processors, parallel
architecture building blocks, and in other digital
processing environments that use general-purpose
microprogrammed logic.

The 3230 CPU performs arithmetic and logical operations
on 32-bit-wide parallel data and is controlled by a
microprogram employing 32-bit-wide parallel
instructions. The 3230 CPU employs eight 32-bit-wide
general-purpose registers and ten special-purpose
registers. The 32-bitwide data memory memory of up to
64K words is directly accessible by the 3230 CPU to use
as a large register file or to implement software
structures such as push-down stacks and hash-addressed
heap-storage. The MetaMicro may be configured to
communicate with other MetaMicros or peripheral

hardware via a 32-bit-wide bidirectional asynchronous
external bus.

MCS - 02 -7 - SYSTEM ARCHITECTURE

II PC/METAMICRO EXECUTIVE SYSTEM

This section describes the operation of the
PC/MetaMicro development system. The system has two
versions: one which runs a MetaMicro computer and a
second which simulates MetaMicro execution.

The system is controlled by the user through the use of
function keys. Functions are provided which:

Load microprograms

Start programs and control execution

Display I/O

Display instruction execution

Breakpoint at instruction location or data ref.
Change interpreter instruction

Display registers, stacks, and the external bus
Dump memory, data memory, registers, and stacks

. Control the form and format of the display
screen.

WVWoOoONOTd wh -

Information from the execution is displayed in two
windows on the screen :

Upper screen window: Lines of terminal-directed
input/output to and from the MetaMicro are displayed in
the upper window of the PC screen. Lines of data
received from the MetaMicro are scrolled upward in this
window and up to 99 lines overflowing the screen are
retained for subsequent browsing.

Lower screen window: A trace of the code being executed
in the 3230 CPU under control of the PC is displayed in
the lower window on the PC screen. Lines of data
displayed are scrolled upward in this window and up to
99 lines overflowing the screen are retained for
subsequent browsing.

There are two formats for the display. The normal
form, shown in Figure 1, is organized into three
fields: (1) The assembler -symbolic form of the

executing instructions, (2) the contents of the X
register in hexidecimal, and (3) the contents of the X

register diplayed as characters (values <X'20' are
displayed as ~).

MCS - 02 -8 - EXECUTIVE

In an alternate mode, controlled by SHIFT-F9, the lower
window display is organized into three columns, from
left to right:

(a) The 3230 CPU location counter - four hexadecimal
characters.

(b) The 32 bit instruction of the 3230 CPU, organized
left to right as the T, A, oP, F, B, C and
Address fields, displayed in hexadecimal format.

(c) The X-register of the 3230 cCPU organized high
order (bit 31) to low order (bit 0) in binary
format.

A sample of this screen display is shown in Figure 2.

MCS - 02 -9 - EXECUTIVE

PC/MetaMicro Development System
\

R1: R2: R3: R4: R5: R6: R7:

00000002 00000003 00000004 00000005 00000000 00000000 00000000

X: MAR: KR:

00000AA9 0000 0AAA

STACK: TOP -> BOTTOM

0048 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
—_—-

loc instruction X register

C6D: MAR := 0 = 0007F 0000007F ~~~~
C6E: R7 := R6 SRL 2 LDK 000 00000000 ~~~~
C6F: R6 := R6 AND 3 00000000 ~~~~
C70: MAR := 0 = 0007E 0000007E ~~~~
C71: R7 := MOR - R7 TRA C95 00000000 ~~~~
C72: X = X =0TRA C73 ON NZ 00000000 ~~~~
C95: LSR := RC AND 3 00000000 ~~~~
C96: KR := R6 SRL 2 00000000 ~~~~
C97: R7 := 0 = 00OFF 000000FF ~~~~
C98: NOP RETURN C9B 00000000 ~~~~
C99: X := MOR SRL 8 TRA C9A 00000000 ~~~~
C9B:

R e EEE—————.

waiting:

FIGURE 2

The instructions shown in figure 2, above, are shown as
they move through the insfruction pipeline. At the
bottom of the screen the location indicates the next
instructions in phase 1 and phase 2 of the execution

pPipeline. Phased execution is covered in Section III
and shown in figure 6.

MCS - 02 - 10 - EXECUTIVE

(C) Int'l Meta Systems Inc., 1986,1987
__———__—‘——————__;____—_———————_—““*_

R1: R2: R3: R4: R5: R6: R7:
00000002 00000003 00000004 00000005 00000000 00000000 00000000
X: MAR: KR: IR:

00000006 0000 0000 00

—_———————
loc instruction X register
_

0: 103010000 0000 0000 0000 0000 0000 0000 0000 0001
1: 813010000 0000 0000 0000 0000 0000 0000 0000 0010
2: 913010000 0000 0000 0000 0000 0000 0000 0000 0011
3: A13010000 0000 0000 0000 0000 0000 0000 0000 0100
4: B13010000 0000 0000 0000 0000 0000 0000 0000 0101
5: C13010000 0000 0000 0000 0000 0000 0000 0000 0110
6: D130100O00O0

7: E13010000

8:

2
waiting:

FIGURE 3

MCS - 02 - 11 - EXECUTIVE

(C) Int'l Meta Systems Inc., 1986, 1987

__——_———____.
—_———-—z—__“'—_z—’——__—_—’_

Bus Registers : Stack
bus # 00 X: 00000006 RO: 00000002|| ||0000 0000
status 0000 AR: 00000006 R1: 00000003|| |[0000 0000
inbus 000000|| ||BR: 00000001 R2: 00000004| |l0000 QOO0
outbus 000000|| [[MAR: 0000 R3: 00GO0005{| [|0000 0000
RO: R1: R2 : KR: 0000 R4: 00000000(|| {/0000 0000
00000002 00000003 00%==—===—oo—orne=l |[EIR: 00000000 R5: 00000000 /0000 0000
X: MAR: KR: IR: IR: 0000 R6: 00000000|| {(0000 0000
00000006 0000 0000 00 IMR: 0000 R7: 00000000{| {|0000 0000
—_— T | ER——tht | B |
loc instruction X register
—_— — -
C99: X := MOR SRL 8 TRA C9A 00000000 ~~~-~
C9B: X := MOR + 0 RETURN 000 00000000 ~~~~
C9A: R7 := X AND R7 LDK 000 00000000 ~~~~
76B: R6 := X - 00022 FFFFFFDE = ~~~~
76C: R6 := X - 0 TRA 77F ON NZ FFFFFFDE ~~~~
76D: RO :=R0O + 2 v FFFFFFDE = ~~~~
76E: Rl :=X-1
76F: R1 := RO - R3 TRA 772 ON HB
76F: R6
77F:

B e R I EEEE—E——E—E—————————
waiting:

FIGURE 4

MCS - 02 - 12 - EXECUTIVE

The development system is invoked by a call for the
program MMX and the interpreter by the program MMXS.

The functions supported are controlled by function keys
F1 through F10 as well as the ctrl-, alt- and shift-
versions of these keys. Many of the keys respond with
queries for parameters. In these cases an escape or an
empty line will back out of the query. :

FUNCTION KEY DEFINITIONS

Fl: Output Scroll up

Fl1 scrolls up the MetaMicro input/output display (upper
window). The last 99 lines of MetaMicro input/output
are retained for display. Scrolling past the end of
the saved lines yields a "no more data" message.

F2: Instruction Scroll up .

F2 scrolls up the 3230 CPU instruction display (lower
window). The last 99 lines of 3230 CPU instruction
execution are retained for display.

F3: Output Scroll Down

F3 scrolls down the MetaMicro input/output display
(upper window).

F4: Instruction Scroll Down

F4 scrolls down the 3230 CPU instruction display (lower
window).

FS: Interpreter Run Mode Toggle

F5 toggles the "run" mode. The first F5 puts the 3230
CPU into the running state. The 3230 CPU executes
instructions until the next F5 terminates the "run"
mode. The "run" mode permits the 3230 CPU to execute
instructions independent of the controlling PC.

MCS - 02 - 13 - EXECUTIVE

F6: Instruction Step Execution

F6 steps the 3230 CPU (causes the 3230 CPU to execute
one cycle) and displays the results in the lower
window.

F7: Clear 3230 CPU

F7 initiates a clear cycle for the 3230 CPU. The 3230
CPU's location counted is set to zero, the interrupts
are reset and the pipe-line is "flushed".

F8: Set Instruction Location

Sets the location counter of the 3230 CPU. The user is
prompted for a hexadecimal entry for the location
counter value.

F9: Load Interpreter'

F9 loads selected portions of the interpreter into the
instruction memory of the 3230 CPU. The user is
prompted for a starting and ending address
(hexadecimal) for the portion of the memory to be
loaded.

F10: Display/Edit Interpreter

F1l0 initiates the display and edit sequence for the
interpreter of the 3230 CPU. The location of the first
instruction to be displayed or edited is prompted for.
The requested 3230 CPU instruction is displayed in
either symbolic form or in hexadecimal format in the
sequence T, A, OP, F, B, C and Address depending on the
display format selected. [ENTER] moves to the next
3230 CPU instruction. Right arrow [->] moves to the
first field for editing, re-displaying the fields in
symbolic. Editing is accomplished by over-typing the
field ([->] or [<-] leaveing it intact). An escape in
any field discards any changes made to the instruction
and moves to the next instruction. The cursor returns
to the left of the instruction when an [ENTER] is
pressed for any input field. Right arrow [->] selects
a field for rediting; [ENTER] moves to the next
instruction. The instruction 1is re-displayed in

MCS - 02 - 14 - EXECUTIVE

symbolic form for correctness verification. Another
F10 prompts for another location.

Modified instructions are both retained in a memory

image in the PC and also written into the memory of the
MetaMicro.

LOGGING AND COPYING QUTPUT TO FILES OR PRINTER

I/0 to the two display windows may be directed to files
or the the printer using the function keys below. When
one of the function keys is pressed the system prompts
the user for the name of a file to be used. Any valid
DOS file name may be used or 'PRN' outputs directly to
the printer. The displayed file name can be accepted
with CR. Space CR selects the printer. ESC turns off
logging.

ALT-Fl: PC I/0 Print Log Toggle

ALT-F1 toggles logging to the printer of the PC input/-
output as it is displayed in the upper window.
Normally, this is I/O directed to the terminal by the
executing MetaMicro program, but may also include Debug
output. (See shift Fl). The "L" indicator at the top
of the window shows the on/off status of this switch.

ALT-F2: Interpreter Print Log Toggle

ALT-F2 toggles logging to the printer of the MetaMicro
output as it is displayed in the lower window. The "L"
indicator at the top of the window shows the on/off
status of this switch.

ALT-F3: Print Input/Output Display Lines

ALT-F3 prints the last "n" lines of the MetaMicro
input/output display (upper window). "n" is prompted
for. '

ALT-F4: Print Interpreter Display Lines

ALT-F4: prints the last "n" lines of the 3230 CPU
instruction display (lower window). "n" is prompted
for.

MCS - 02 - 15 - EXECUTIVE

ALT-F5: Run-Until Address Toggle

ALT-F5 toggles the "run-until" option for the 3230 CPU.
This option allows the user to specify up to three
values that will halt the 3230 CPU when they are
encountered as a location counter value or a memory
reference address value. A menu is displayed which
allows setting of values and marking (with an asterisk)
of their use as location value, memory reference, or
both (See figure 2). Field-to-field movement is
accomplished with the arrow keys. Placing the cursor
on "go" in the menu initiates execution. ALT-F5 with
the menu displayed exits the address setting mode
without establishing any addresses and removes the
menu. An ALT-F5 while running until a stop terminates
the mode.

ALT-F6: Step Until Address Toggle

ALT-F6 toggles the "step-until" option for the 3230
CPU. This option allows the user to specify up to
three values that will halt the 3230 CPU when they are
encountered as a location counter value or a memory
reference address value. A menu is displayed which
allows setting of values and marking (with an asterisk)
of their use as location value, memory reference, or
both (See figure 2). Field-to-field movement is ac-
complished with the arrow keys. Placing the cursor on
"go" in the menu initiates execution. ALT-F6 with the
menu displayed exits the address setting mode without
establishing any addresses and removes the menu. An
ALT-F6 while running until a stop terminates the mode.

ALT-F7: Write Interpreter to Disk

ALT-F7 permits the user to write (edited) interpreter
to disk. The user may specify a new file name or use
the file name from which the original MetaMicro image
was read. Files are written with the extension .PCH.

ALT-F8: Unused

Unused.

MCS - 02 - 16 - EXECUTIVE

ALT-F9: Interpreter Load File

ALT-F9 makes it possible to specify a new interpreter
file for the MetaMicro. The user is prompted for the
file name and the MetaMicro memory image is read for
subsequent loading into the MetaMicro. There follows a
set of questions to complete interpreter loading. (See
"Program Operation" for a full description.) :

ALT F10 - DOS SHELL

Alt F10 invokes a second copy of the command
interpreter (usually command.com) and allows you to run
any program or batch job that can normally be run from
the command line. To return to MMX you type EXIT (CR)
at the prompt.

The command processor used is determined by the COMSPEC
variable in the environment. When DOS is started it
sets this variable to command.com.To use another
command processor instead of command.com set COMSPEC
correctly (see your DOS manual for directions for using
the SET command).

The program on the metamicro will continue to run
uninterrupted as long as neither screen nor disk I/O0 is
requested. If I/0 is needed the metamicro waits until
control is returned to MMX to continue.

There are some precautions that should be taken while
you are in a shell process. Never alter or delete any
file that is being used by the metamicro, the results
are unpredictable. Run only proven programs in the
shell. If a program hangs the machine, work in
progress in the MMX will probably be lost. Do not run

another copy of MMX as it will not be initialized
correctly.

SHIFT-Fl: Debug Mode Toggle

SHIFT-F1 toggles the "debug mode". This mode causes
the PC/MetaMicro I/0 interface logic to display status
information in the MetaMicro output portion (upper
window) of the screen as they are executed. Status
information about each transfer between the MetaMicro
and the development system is displayed in the form
shown in Figure 5 below. Debug mode output is dis-
tinguished by 'DEBUG:' at the beginning of each output

MCS - 02 - 17 - EXECUTIVE

line. The "D" indicator at the top of the screen shows
the on/off status of this switch.DEBUG: command = 9,
unit = 10, flags = 0, ucb = -1

DEBUG: ctrlword = 31

DEBUG: DATA

DEBUG: 128 bytes read B
DEBUG: 59 bytes returned

DEBUG: EOM

DEBUG: command = 9, unit = 10, flags = 0, ucb = 3
DEBUG: ctrlword = 31

DEBUG: DATA

DEBUG: STAT

DEBUG: error # 41

DEBUG: 0 bytes returned

DEBUG: EOM

DEBUG: command = 2, unit = 10, flags = 0, ucb = 3
DEBUG: ctrlword = 31

DEBUG: ACK

DEBUG: command = 4, unit = 6, flags = 0, ucb = -1
DEBUG: message # 41

DEBUG: crtlword = 31

41: "BEGIN TEST" PAUSE (}:

DEBUG: ACK

DEBUG: command = 18, unit = 0, flags = 0, ucb = 0

DEBUG: ctrlword = 31
DEBUG: ACK

DEBUG: command = 4, unit = 6, flags = 0, ucb = 3
DEBUG: message # 11

DEBUG: crtlword = 31

1l1: End of rule execution.

DEBUG: ACK

DEBUG: crtlword = 31

DEBUG: 2 bytes written

DEBUG: ACK

DEBUG: command = 2, unit = 6, flags = 0, ucb = 3

DEBUG: crtlword = 31
DEBUG: ACK

FIGURE 5 - Sample Debug Mode Output

MCS - 02 - 18 - EXECUTIVE

SHIFT-F2: Register Display Toggle

SHIFT-F2 toggles the register display in the upper
window of the screen. 1Interpreter only. Note that AR
and BR are not user accessible registers. The
interpreter knows them as inputs to the ALU.

SHIFT-F3: Stack Display Toggle

SHIFT-F3 toggles the stack display in the upper window
of the screen. Interpreter only.

SHIFT-F4: External Bus Display Toggle

SHIFT-F4 toggles the external bus display in the upper
window of the screen. Interpreter only.

SHIFT-F6: DUMP Memory, Data memory, Registers, Stacks

SHIFT-F6 prompts for requests to display the memory,
data memory, registers, or stack. They are displayed
in the upper window. For memory dumps, prompts request
the starting location and the number of words to dump.
ESC interrupts a long dump.

SHIFT-F8: Change Screen Display Mode

SHIFT-F8 cycles the screen display through three
display modes: 1) full screen for the upper I/0 window,
2) full screen for the lower instruction display
window, and 3) half I/O window, half instruction
window. The default is half-and-half.

SHIFT-F9: Toggle Programming Rule Checker

SHIFT-F9 toggles the rule checker in the interpreter
and when the executive is running the 3230 CPU in step
mode. This mode, which is normally on, checks for
violations of progamming rules imposed by hardware
timing, considerations. The user is told of
programming constructs which do not allow sufficient
time for register contents to be available before use
and other rules discussed in section 3.

MCS - 02 - 19 - EXECUTIVE

SHIFT-F10: SET

This function key allows the setting of several
. executive modes of operation. A prompt requests a
single letter input:

Interrupt Register contents for interpreter
- Rule checking mode)

- Disassembly mode

Bell mode

Wwo"H

Interrrupt Register prompts for the value to be placed
in the Interrupt Register and is only available in the
interpreter.

Rule checking controls whether programming rule
checking is done during stepping and stepping-until
modes. In stepping mode errors are displayed in the
lower screen window. In stepping-until mode the error
is displayed in the upper window where it can be
logged. Default is on.

Disassembly mode controls the instruction display:
numeric or symbolic. The default is symbolic.

Bell mode lets you turn the error bell on or off.
Default is on.

CTRL-F1: RUN - Start Interpreter

CTRL-F2: HALT - Stop Interpreter

CTRL-F3: Attention - Interrupt Interpreter

The three keys CTRL-F1 through F3 send status signals
to the interpreter via setting status values and rasing
a flag. Meanings of these unsolicited signals are
determined by the interpreter for a particular high-
level language. The meanings above are used by FORTRAN
and other IMS products.

MCS - 02 - 20 - EXECUTIVE

CTRL-F9: Assign I/0 Units

This function allows the assignment and display of the
correspondence between I/O unit number and DOS
filename. Existing assignments are displayed, changes
or new assignments can be made. New and changed
assignments are filed permanently on prompted request.
At the prompt for a unit assignment number entering
'tab' displays all the current files assigned to units.
Entering a unit number shows the current assignment
which may be replaced with any valid DOS file name or
accepted as is. The assignment is not checked until
the file is opened.

CTRL-F10: Exit Development System

CTRL-F10 terminates execution of the PC/MetaMicro
Development System, returning control to DOS. The user
is prompted for a final yes/no confirmation for exit.

MCS - 02 - 21 - EXECUTIVE

FUNCTION KEY SUMMARY

ALT ALT
PC I/0 1 |Interpreter 2
Printer Log Printer Log
ON/OFF ON/OFF
2 Print 4
Print PC 1/0 Interpreter

Last n Lines

Last n Lines

1 2
Output Display |Mic. Instruc.
Scroll1-Up Scroll-Up
3 4
Output Mic. Instruc.
Down Down
5 6
Interpreter Interpreter
Run/Stop Single Step
7 8
Clear Set
Location
9 10
Load Display/Edit
Interpreter |Interpreter
SHIFT SHIFT
1| * 2
DEBUG Register
I/0 Display
* 3| * 4
Stack External Bus
Display Display
5 6
-—— DUMP
7 8
-——— Screen
Toggle
9 10
Rule Check SET

* interpreter only

MCS - 02

Run Until 5 | Step Until 6
Data or Data or ‘
Instruction Instruction
7 8
Write -—--
Interpreter
Supply 9 Second 10
Interpreter DOS
File Name
CONTROL CONTROL
1 2
RUN HALT
3 4
Attention -——
5 6
7 8
9 10
Assign EXIT
I/0 Unit

EXECUTIVE

PROGRAM OPERATION

To execute an already prepared MetaMicro program the
following steps are required.

l.

Load MMX by typing MMX at the DOS prompt or if
already in MMX, use ALT-F9 to supply interpreter
file name. .

At the request for interpreter file name supply
the full name of the file. A file extension of
.MMC will bes assumed.

At the request for the file assignment file, the
default, if any, will be displayed.

a) CR will use the default
b) a named file plus CR will use that file
(.ASN will be assigned if no extension is

given.)
c) blank CR or ESC means no assign file
The next prompt provides for selective
interpreter loading. There are three
possibilities: :

a) CR to load the full interpreter. This is
the normal case.

b) P for partial loading. You will be prompted
for beginning and ending addresses.

c) N or ESC to not load interpreter.

The next prompt asks if you are ready to run. CR
or Y begins execution, any other key takes you to
the MMX "waiting" state for function key
commands.

MCS - 02 - 23 - . PROGRAM OPERATION

IIT MICROPROGRAMMING

The 3230 CPU processor includes twenty-four hardware
operations that are combined into a two instruction per
word format. There are eight op codes in the left hand
side (LHS) and sixteen op codes in the right hand side
(RHS). A typical composite instruction consists of:

LHS Portion: an arithmetic, logic, or shift operation
between two operands with the result assigned to a
third operand; and

RHS Portion: an external bus (unidirectional or
bidirectional) operation, a conditional/ unconditional
transfer/skip operation, a subroutine link/return
operation, an interrupt handling operation, or a
memory indexing operation.

A typical composite instruction, including a shift and
a bidirectional bus operation, is the following:

LHS RHS
R5 := RO SIR 4 BUS EMIT MEMWORD REC MEMSTATUS

This composite instruction performs a left rotational
shift of general register RO by four bits, stores the
result in general register R5 as well as the X (result)
register, then emits the contents of the X register to
the external bus address "MEMWORD" (an assembley-
parameter) and initiates the receipt of the status
information from bus address "MEMSTATUS". The bus
operations are executed as the next instruction
executions take place. The result of the bus REC
operation ultimately appears in the external input
register (EIR). See 2.6.8 for details.

MCS - 02 - 24 - MICRO-PROGRAMMING

L— K 4 MEM EIR
REG + ADDR |~
e MOR REG
INST Context = External f~e—
REG = Decode Memory Bus [
Instruction Legic = OP MIR
Memory i REG
\ ' !
ADDR !
REG
Location = A —= Arithmetic Conditional
Counter i 1 REG Logical 1 X —— Transfer
I Unconditional & Shift REG & Skip
A A t 1 | Transfer ! Operations Operations
‘ Link
i Return B
H REG
-——l :
LSR 16 x 16{==LSR
STACK ADDR ADDR
I REG REG
i General !
H Registers
H RO - R7 !
i I |
I]]
]
1]
Phase I { Phase II { Phase III Phase IV
I 1

FIGURE 6 - Four-Phase Pipeline Operation

MCS - 02 - 25 - MICRO-PROCGRAMMING

INSTRUCTION PIPELINE

To achieve the high instruction throughput rate of 30
to 50 million instructions per second, the 3230 CPU is
implemented as a "pipelined" computer with the

following four phases. (Phases are shown in Figure 6).
1. Composite instruction fetch 5
2. Composite instruction decode and operand fetch,

execution of RHS unconditional transfer, link,
return, interrupt conditional 1link or memory
indexing operations

3. Arithmetic/Logic/Shift execution

4. Conditional transfer/skip or external bus I/O
initiation

Complete execution of a composite instruction requires
that it pass through the four phases listed above.
Each phase requires that one clock cycle and four
composite instruction words are in the process of
execution (one in each phase) at any point in time. A
composite instruction is completed each clock cycle.
Most composite instruction words are the equivalent of

two complete instructions of a typical CISC or RISC
architecture.

In Figure 6 the register positioning on a phase
boundary indicates that the information is provided for

that register by the preceding phase and is available
to the succeeding phrase.

LEFT HAND SIDE FORMAT

The LHS of the composite instruction usually has the
form:

<T> := <A> op
where <T> is a register, := denotes "assign", <A> is a

register or the literal zero, and is a register or

a literal. The op token is one of eight arithmetic,
logic, or shift operators.

MCS - 02 - 26 - MICRO~-PROGRAMMING

MCS

The LHS instructions in assembly format are described briefly
below. Arithmetic and logical operation apply to either short

or long operands.

Operators

SLR, SLL
SRR. SRL

Function

Add

Subtract
Reverse Subtract
Exclusive OR
Logical OR
Logical AND

- b

Left Shift: rotational and logical
Right Shift: rotational and logical

Examples: (leading period denotes start of comment)

RS

RO := X XOR RS
= R3 + KR
MIR := R5 AND X'7FFFF'

X

= RO SLL 6

.shift RO left

-logical 6 bits,

.assign to R5 and X

.XOR X with R5
‘.add KR to R3,

data memory

, assign to RO

assign to X

.R5 and hex literal, store in

The registers used in these instructions are described briefly

below:

Register(s)

Name

RO ..

X
MAR
MIR
MOR
KR
LSR
IR
IMR
EIR
DATA

- 02

R7

General Registers
Result Register

Memory Address Register
Memory Input Register
Memory Output Register
K Register

Link Stack Register File
Interrupt Register
Interrupt Mask Register
External Input Register
Next instruction used as
32-bit literal

Size (bits)

32
32

16

32

32

16

16 x 16

8

8
32

32

MICRO-PROGRAMMING

RIGHT HAND SIDE FORMAT
The RHS of the composite instruction has the form:
{code> <phrase>

where <code> is one of sixteen operations, including
external bus read/write/control, subrcutine
link/return, conditional interrupt handling,
conditional and unconditional transfers and skips and
memory indexing. The <phrase> is a structure of one or
more operands and keywords. '

The RHS instructions are summarized below:

Operator Function
TRA Transfer unconditionally
TRA ... ON Transfer conditionally on Overflow

or not overflow

X reg low bit 0 or 1
X reg high bit 0 or 1
X reg zero or non-zero

SKIP Skip conditionally

LINK Subroutine link

LINK C Link conditional on interrupt

RETURN Subroutine link

LDK Load K register

BUS FROM...TO Initiate bus source to des tination
transfer

BUS EMIT Recieve X register to bus destination and
bus source to EIR

Examel es:

<+« LINK PROC! .call microsubroutine PROC1, push return
address on Link Stack Register (LSR) File

... SKIP 3 IF STATUS HAS NLB .skip 3 instructions on
condition "not low bit"”

««. BUS EMIT MEMC .emit X register to bus
.address MEMC

--. TRA LOOP3 ON Z .transfer to LOOP3 if X register is
zZero

MCS - 02 - 28 - MTCRO-PROGRAMMING

..« RETURN DELTA .Subroutine return to top LSR value
plus DELTA value, pop LSRThe LHS and
the RHS are combined into an

v instruction that executes in a single
: 3230 CPU clock cycle. A4 clock cycle
delay can be introduced by the use of
the no-operation, NOP. Also the NOP
command is used for a null IHS where
only an RHS is desired in a composite
instruction. NOP is an assembler
pseudo op that generates the LHS
institution X:= 0 SLR 1.

Composite Examples:

X:=R5 SLR 6 TRA PROC3 ON HB .shift, assign,
.transfer if negative

MIR:=X+2 SKIP 2 IF STATUS HAS NHB .add, assign,
.Skip conditional

X:=R2+R3 BUS EMIT DES! REC DES4 .add, assign,
.bus emit
.bus receive

R3:=X-R4 TRA L30 ON Z .subtract, assign,
.transfer on zero

NOP TRA LOC16 .unconditional transfer with LHS negated

R4:=X SRR 4 RETURN 6 .shift, assign, subroutine
: return plus 6

OFF-CHIP INTERFACES

Interfaces between the 3230 cpU processor and other
subsystems are through the special registers and the
external bus operations. The data memory is accessed
using the MIR, MAR, MOR, and the K register in LHS
operations. The user memory and the PC-channel are
accessed via the RHS external bus operations. The BUS
EMIT operation sends the contents of the X register to
a specified bus destination. The BUS REC operation
receives an input into the external input register
(EIR) from a specified bus source.

MCS - 02 - 29 - MICRO-PROGRAMMING

1.0 SPECIAL-PURPOSE REGISTERS

In addition to the eight general-purpose 32-bit-wide
registers provided for the temporary storage of
intermediate results, a set of special-purpose
registers provide program interfaces to special
hardware logic. The term "source" is used to designate
registers used as sources of input operands <A> and
<{B>; the term "result" is used to designate registers
used as the object of the assign operation. Certain
registers may be used both as source and result.

1.1 X REGISTER

All instructions, including NOP, produce a 32-bit-wide
result as a consequence of an Arithmetic/Logical/shift
operation. This result can be directed to one of the
general-purpose registers, to one of the special-
purpose registers, or neither. However, the result
will always reside in the X register as well as in any
general- or special-purpose register specified. 1In the
symbolic assembly language, the X register is often
specified as the result register and classed as a
special-purpose register. When so specified, it has
the meaning "the X register and no other register”.

1.2 MEMORY ADDRESS REGISTER (MAR)

The MAR is 16 bits wide and is used to hold an address
which, summed together with the contents of the "X
Register" (see 1.5 below), selects a memory location in
the Data memory memory.

1.3 MEMORY INPUT REGISTER (MIR)

The MIR can be used only as a result register, not as
an operand source. A result directed to the MIR will
be stored in the memory location within the data memory

memory as specified by the sum of the MAR and the K
Register.

MCS - 02 - 30 - REGISTERS

1.4 MEMORY OUTPUT REGISTER (MOR)

The MOR can be used only as an operand source, not as a
result register. It specifies that the contents of the
memory location of the Data memory memory as addressed
by the sum of the K Register and the MAR is selected as
an operand source.

4,
>

1.5 K REGISTER

The K register is a multi-function, 16-bit-wide
register that exhibits many of the characteristics of
an index register in a conventional single-address
computer. As specified in 1.3 above, the X register,
in summation with the MAR, forms the memory address
used to reference the data memory memory. It can also
be used like a general register. See 2.6.2 for more
details.

1.6 LINK STACK REGISTER (LSR)

The LSR is a 16-bit-wide, 16 element last-in-first-out-
(LIFO) register stack whose primary function is to
implement the subroutine "LINK" and "RETURN"
instructions of the 3230 CPU. However, it can also be
used as a source or result register. 1Its use as a
source 1is equivalent to a POP, while its use as a
result is equivalent to a PUSH. When conflicts arise
(as when the LSR appears in the "T" field preceding a
Link or Return instruction), the use of the LSR for
"LINK" and "RETURN" takes precedence over the use as a
source or result register. Another way to view LSR is
as a window onto the 16 element stack. PUSH moves the
window up and stores; POP fetches and moves the window
down. The stack is circularly connected: 16 POPs leave
the stack unchanged. There are no fill or empty stack
conditions.

1.7 DATA REGISTER (DR)

The DR can be used only as an operand source, not as a
result register. The DR is not a specific hardware
register; when specified it means that the next
instruction is to be considered a 32-bit data value.
The assembler directive DC is often used to define the
value for the data registers.

MCS - 02 - 31 - REGISTERS

1.8 INTERRUPT REGISTER (IR)

The IR can be specified both as a source and result
register. It is 8 bits wide and represents 8 boolean
flags that can be set (=1) by events and conditions
external to the scope of the 3230 CPU. The bits can be
reset (=0) by the 3230 CPU. When used as a source
register, the IR represents an 8-bit-wide value, each
bit of which is the state or condition of an
independent variable in a set of boolean variables.
When used as a result register, writing a value into
the register will reset those boolean variables for
which a corresponding "one" bit exists in the value.The
IR and the IMR work in conjunction with the Link
Conditional instruction (See 2.64 and 3.2)

Assignments of the bits in the interrupt register are :

Bit ‘Set Condition

0 External bus parity error
1 I/0 Timeout, IOTMO

2 Data memory parity error
3-7 Unused

1.9 INTERRUPT MASK REGISTER (IMR)

The IMR can be used only as a result register, not as
an operand source. It is 8 bits wide and represents a
mask for the 8 boolean flags of the Interrupt Register
(IR). The IMR and the IR operate in conjunction with
the Link Conditional instruction (see 2.6.4 and 3.2).

1.10 EXTERNAL INPUT REGISTER (EIR)

The EIR is the input termination of the MetaMicro
External Bus (EB). This register can be used as a
source operand only and is loaded by action on the EB.
As the EB operates asynchronously from the operation of
the 3230 CPU, special consideration must be given to
its use. When an EB operation that results in data
input to the 3230 cPU (the EIR) is initiated, the EIR
contents are undefined until the bus operation is
completed. If the EIR is referenced by the 3230 cpru
before the bus operation is complete, the 3230 CPU will
stop and wait for completion, thus synchronizing the
3230 CPU and the EB. However, if synchronization does
~not take place within 16 3230 CpPyU clock cycles,

MCS - 02 - 32 - REGISTERS

operation will proceed unconditionally and a positive
pulse will be generated on the external pin labeled
IOTMO (input/output timeout). This signal sets bit 1
of the Interrupt Register, IR. The value of the EIR
under forced continuation circumstances is the previous
EIR value.

MCS - 02 - 33 - REGISTERS

2.0 INSTRUCTION FORMAT

The 3230 CPU employs two forms of instruction encoding

as shown below, designated composite (F=0) and LHS-only
(F=1).

-

31 2827 24 23 20 19 16 15 12 11 0

fl 0 Il
F=0 T A op| B C addr
F

F=1 T A op literal

In assembler format, instructions consist of two statements:

LHS: arithmetic, logical, or shift statement (or a NOP),
followed by

RHS: optional statement, broviding a second instruction of up
to 16 alternative operations, including external bus
instructions, subroutine link/return (both conditional
and unconditional), conditional skips, secondary loading

of the K register, and conditional/unconditional
transfers.

<instruction> :: = <LHS stmt> [<RHS stmt>]

For LHS Arithmetic/Logical/shift operations the 3230
CPU employs a three-address instruction format that can

be represented symbolically as a simple assignment
statement of the form:

<T>:=<A>0p

wherein a register specified by the "T" field takes on
the value of some binary operation (op) performed on
the contents of the register specified by the "aA" field
and the contents of the register specified by the "B"
field. In the case of literal or immediate data

MCS - 02 - 34 - INSTRUCTION FORMAT

representation of magnitude < 8, the "B" field may
represent the data directly.

In assembler format, these. statements have the following
8eneral form:

<LHS_stmt> ::=)
<T_field>:= [-] <A _field> <op> <B_field> | NoP

Examples:
X ¢s= X SLL 4

IMR := RO XOR R4
NOP

2.1 "T" (TARGET OPERAND) FIELD

The "T" field (bits 31-28) is four bits wide and
references the registers as shown in the table below.

In assembler format, the "T" field is defined as follows:

<T _field> ::=
<gen_reg> | MAR | MIR | X | KR | LSR | IR | MR

where

<gen_reg>::=RO | R1 | R2 | R3 | R4 | R5 | R6 | r7

MCS - 02 - 35 - INSTRUCTION FORMAT

The "I" field assembler mnemonics and equivalences are given
in the following table:

T FIELD

HEX| BINARY | MNEMONIC MEANING

0 0000 (not used) -—-

1 0001 X X REGISTER

2 0010 MAR MEMORY ADDRESS REGISTER
3 0011 MIR MEMORY INPUT REGISTER

4 0100 KR K REGISTER

5 0101 LSR LINK STACK REGISTER (push
6 0110 IR INTERRUPT REGISTER

7 0111 IMR INTERRUPT MASK REGISTER
8 1000 RO GENERAL REGISTER 0

9 1001 R1 " " 1

A 1010 R2 " " 2

B 1011 R3 " " 3

(¥ 1100 R4 " " 4

D 1101 RS " " 5

E 1110 R6 " " 6

F 1111 R7 " " 7

2.2 "A" (PRIMARY INPUT OPERAND) FIELD

The "A" field (bits 27-24) is four bits wide and
references the registers in the table below.

In assembler format, the "A" field is defined as follows:

<4_field> ::=
<gen reg> | 0| X | EIR | MOR | kR | LSR |IR | DATA

MCS - 02 - 36 - INSTRUCTION FORMAT

The "A" field assembler mnemonics and equivalences are given
in the following table:

A FIELD

HEX| BINARY | MNEMONIC MEANING

0 0000 0 THE LITERAL ZERO

1 0001 X X REGISTER

2 0010 EIR EXTERNAL INPUT REGISTER
3 0011 MOR MEMORY OUTPUT REGISTER
4 0100 KR K REGISTER

5 0101 LSR LINK STACK REGISTER (POP)
6 0110 IR INTERRUPT REGISTER

7 0111 DATA DATA REGISTER

8 1000 RO GENERAL REGISTER 0

9 1001 R1 " " 1

A 1010 R2 " " 2

B 1011 R3 " " 3

c 1100 R4 " " 4

D 1101 R5 " " 5

E 1110 R6 " " 6

F 1111 R7 " " 7

2.3 OPERATOR FIELD

The "op" field (bits 23-20) is four bits wide2 and
specifies the Arithmetic/Logical/shift operation that
is to be performed on the data sources specified by the
"A" and "B" fields. The encoding of the "op" field is
Shown in the table below.

In assembler format, the "op” field takes the form:

<op>:: = <A_op> | <L_op> | <S_op> | <No_op>

2 Bit 20 (the "F" field) is used as a suboperation
qualifier and format modifier to distinguish between
rotational and logical shifts and to specify whether
the "B" field is "short" (register operand or 3-bit

literal) or "long" (a 20-bit literal in the "C" and
address fields).

MCS - 02 ' - 37 - INSTRUCTION FORMAT

The arithmetic operators include addition, subtraction, and
reverse subtraction (indicated by using a + with a - before
the A field):

<A _op>::= + | -
The logical operators are OR, AND, and XOR:

<L_op>:: = OR | AND | XOR

The shift operators are logical shift left or right and
rotational shift left or right.

<S_op>::=SLL | SRL | SLR | SRR

The <No_op> (empty operation) statement,
<No_op> ::= NOP

will generate the code:
X := 0 SLR !

The "op" field assembler mnemonics and equivalences are given
in the following table:

OP FIELD

HEX|BINARY| MNEMONIC | MEANING

0 | 0000 SLR SHIFT LEFT ROTATIONAL

1 | o001 SLL SHIFT LEFT LOGICAL

2 | 0010 -+ REVERSE SUBTRACT

3 | 0011 -+ REVERSE SUB. 20-BIT LITERAL
4 | 0100 - SUBTRACT

5 | 0101 - SUBTRACT 20-BIT LITERAL

6 [0110 + ADD

7 | 0111 + ADD 20-BIT LITERAL

8 | 1000 XOR EXCLUSIVE OR

9 [1001 XOR EXCLUSIVE OR 20-BIT LITERAL
A | 1010 OR LOGICAL OR

B | 1011 OR LOGICAL OR 20-BIT LITERAL

C | 1100 AND LOGICAL AND

D | 1101 AND LOGICAL AND 20-BIT LITERAL

E | 1110 SRR SHIFT RIGHT ROTATIONAL

F [1111 SRL SHIFT RIGHT LOGICAL

MCS - 02 - 38 - INSTRUCTION FORMAT

NOP

X := RO + R2
IMR := -X + RO

RO := 0-1

R7 := R5 AND I

X := Rl OR X'7FFF'
R5 := MOR AND 1

X := MOR XOR NAME T

X := RO SLL 6

SR := R5 SRL 6

X := R7 SRR 2

2.4 "B" (SECONDARY INPUT OPERAND) FIELD

The "B" field (bits 19-16) is four bits wide in its
short form (F bit = 0). For short form operations
involving arithmetic/logical manipulation
(op=2,4,6,8,A,C), the "B" field references the
registers and or literals as shown in the table below:

In assembler format, the short form "B" field may be either a

8general register or an expression representing the literals
(0-7).

<B_field>::=<gen_reg> | <expr>

MCS - 02 - 39 - INSTRUCTION FORMAT

The assembler mnemonic equivalences for arithmetic and logical
operations are given in the following table:

B FIELD - Arithmetic & Logical

HEX|BINARY MNEMONIC MEANING .
0 | 0000 EXPRESSION 3 BIT-LITERAL = 0

1 | 0001 " " =1

2 | 0010 " " = 2

3 | 0011 " " = 3

4 | 0100 " " =4

5 | 0101 " " =5

6 | 0110 " " = 6

7 | 0111 " " = 7

8 | 1000 RO GENERAL REGISTER 0
9 | 1001 R1 " " 1
A | 1010 R2 " " 2
B | 1011 R3 " " 3
C | 1100 R4 " " 4
D | 1101 R5 " " 5
E | 1110 R6 " " 6
F | 1111 R7 " " 7

For operations involving shifting (op=0,2,E,F), the "B"
field specifies the shift values as listed in the table

below.

For shift operations,

the

"B" field must be an

expression whose value is between 1 and 8, inclusive,
which are converted by the assembler to the values 0-7.

MCS - 02

- 40 - INSTRUCTION FORMAT

The assembler mnemonic equivalences are given in the following
table:

- B FIELD - Shifts

HEX| BINARY MNEMONIC MEANING

0000 EXPRESSION SHIFT 1
0001 " "2
0010 " "3
0011 " "4
0100 " "5
0101 " "6
0110 " v 7
0111 " “ 8

NOOTE~WN-O

2.5 OVERFLOW IN ARITHMETIC/LOGICAL/SHIFT INSTRUCTIONS

The arithmetic operations, Add, Subtract, and Reverse
Subtract may generate an arithmetic overflow if the
result generated by the operation extends beyond bit 31
into a bit known as the overflow bit. The overflow bit
is also used for left, right, logical, and rotational
shifts.

Caution on subtract overflow: Subtraction is
accomplished by forming the 1's complement of the
subtrahend and adding it, plus 1, to the minuend. If
this addition overflows, the overflow bit is set. The
result is that the overflow bit is set if underflow
does not occur (6-5 overflows, 6-0 overflows, 5-6
does not overflow).

For logical shifts, data leaving either the high order
bit (bit 31) or the low-order bit (bit 0) for left and
right shifts, respectively, reside in the overflow bit
position. Thus, following a right or left logical
shift, if the last bit to be shifted out of the result
was a one, then the overflow bit will be a one. Con-
versely, if the last bit to be shifted out of the
result was zero, then the overflow bit will be a zero.

For rotational shifts, bits shifted out of bit position
31 reenter the result in bit position zero (left rotat-
ional) or bits shifted out of bit position 0 reenter
the result in bit position 31 (right rotational).In

MCS - 02 _ - 41 - INSTRUCTION FORMAT

either case, if a one bit traverses from position 31 to
0 or from 0 to 31, then the overflow bit will be set.
If no one bits traverse through, the overflow bit will
not be set. For example, during a right rotational
shift of eight bits, if any of the 8 bits of the input
in positions 7 through 0 were a one, then the overflow
bit would be set in the result. Conversely, if all of
the 8 bits of the input in positions 7 through '0 were

zeros, then the overflow bit would not be set in the
result.

2.6 "C" (RIGHT HAND SIDE) FIELD

When the "B" field has short form, the "C" and Address
fields constitute the right-hand-side RHS instruction
in which the "C" field is an operation code and the
Address field is a memory address reference or a

literal field. The encoding of the "C" field is shown
in the table below.

An assembler "RHS statement” may be included with a shift
statement, with any arithmetic or logic statement not using a
20-bit literal, or with a NOP. If an RHS statement is allowed

but not used, then the assembler will generate code for a skip
statement that has no effect.

<RHS statment> ::=

<link_return_stmt> | <1 oad_k_stmt> | <transfer_stmt>|
<bus_stmt> | <ski_stmt>

Note: When a shift operator is used, the B field must be an
expression whose value is between one and eight, inclusive.
If an arithmetic or logic operator is used and the B field
is an expression with value between 0 and 7, inclusive, then
a 3-bit literal will generated. If the B_field is an ex-
Dression with value outside this range, then a 20-bit
literal will be generated and any RHS_statement will be

ignored. In this case, the assembler will generate an
appropriate error message.

MCS - 02 - 42 - INSTRUCTION FORMAT

The assembler mnemonic equivalences for RHS_statements are
given in the following table:

C FIELD

HEX| BINARY| MNEMONIC| MEANING

0 0000 SKIP SKIP CONDITIONAL

1 0001 LDK LOAD K REGISTER

2 0010 BUS BUS (FROM/TO)

3 0011 | BUS BUS (EMIT/REC/EMIT-REC)

4 0100 LINK LINK TO SUBROUTINE

5 0101 LINKC LINK COND. ON INTERRUPT

6 0110 RETURN SUBROUTINE RETURN

7 0111 TRA TRANSFER UNCONDITIONAL

8 1000 TRA CONDITIONAL TRANSFER ON NOV
9 1001 TRA " " ON oV
A 1010 TRA " " ON NLB
B 1011 TRA " " ON LB

c 1100 TRA " " ON 2

D 1101 TRA " " ON Nz

E 1110 TRA " " ON NHB
F 1111 TRA " " ON HB

2.6.1 CONDITIONAL TRANSFERS, TRA ([C]=8...F)

Conditional transfer instructions examine the result of
the arithmetic/logical/shift portion of the instruction
(<T>:=<A>0p) and cause control to be transferred to
the memory address in the Instruction memory specified
by the Address field if the associated condition is
true. Because the 3230 CPU is a "pipeline" machine,
the consequences of this action are more complex than
that of a "non-pipeline" machine.

As stated earlier, the conditional transfer portion of
the instruction is executed in the fourth phase of the
pipeline. Therefore, the three instructions
immediately following the conditional transfer

instruction are already in the pipeline and partially
executed.

Specifically, as Figure 6 shows, the first instruction
is in the arithmetic/logical/shift Circuitry (Phase
III); the second is undergoing decoding (Phase II) and
right-hand-side execution: and the third is being
fetched (Phase I). Since the transfer condition is not

MCS - 02 - 43 - INSTRUCTION FORMAT

determined until Phase IV, an additional effect of the
conditional transfer instruction is to flush these
instructions if the condition is true and the transfer
is taken.An exception is the next instruction, which
has already completed Phase II and is in Phase IIT.
The Left hand side has not completed execution, but the
A and B registers have been loaded (possibly popping
the stack). If it includes in its RHS, a transfer,
link, return, or load K operation (which execute in
Phase II), it will already have been executed, and the
location counter changed. This location counter change
will be superseded, since the conditional transfer will
reset the location counter to the desired transfer
location when the transfer condition is met. The load
K instruction will be executed, altering the K
register. Also, the push or pop by the link or return
RHS instruction will take place. Three cycles are lost
in flushing the pipeline following the true execution
of a conditional transfer.

In assembler format, the conditional transfer instructions
have the following form:

<transfer_stmt>::= TRA <expr> ON <tra cond>
<tra_cond>::=z | Nz | ov | Nov | L8 T NLB | uB | NuB

Examples:

. TRA @-3 ON NZ (@ ::= this instruction address)
. TRA ERROR_.I 6 ON ov

Composite Examples:

R7 :
X

MOR+0 TRA INTERPT IB ON Z
R2 SLL 1 TRA NOMORE ON Z

The transfer conditions have the following meanings:

V4 ::= ZERO

NZ ::= NON-ZERO

ov := OVERFLOW
NOV ::= NO OVERFLOW
LB ::= LOW BIT = 1
NLB ::= LOW BIT = 0
HB s= HIGH BIT = |
NHB ::= HIGH BIT = 0

MCS - 02 : - 44 - INSTRUCTION FORMAT

2.6.2 LOAD K REGISTER, LDK ([C]=1)

The K register is a special-purpose register used in
conjunction with the Memory Address Register (MAR) to
reference the Data memory memory. The K register can
be used as a conventional source or result operand in
an instruction and can also be loaded directly with a
12- bit value (the address field) under control “of the
"C" field.The K register is 16 bits wide; consequently,
when the K register is loaded under "C" field control,
the upper four bits (bits 15-12) of the K register are
cleared to zeros. The loading of the K register takes
place at the end of Phase II of the pipeline (see 3.2).
Consequently, the value loaded will appear in the
register one instruction cycle after the instruction
used to load it.

In assembler format, the LDK statement is used to load the K
register with the value of the expression.

<load k_stmt>:: = LDK <expr>
Examples:
... LDK X'FFF'
LDK 536
LDK (1-X)*Y

Composite Examples:

Rl := R2 SLL 8 LDK 3
MAR := MIR-1 LDK HEAP OFFSET-2

2.6.3 UNCONDITIONAL TRANSFER, TRA ([C]=7)

As the name implies, unconditional transfer always
causes a transfer of control in the Instruction memory
program. Since there are no dependencies on various
machine conditions for the transfer to take place, the
unconditional transfer is implemented within the
pipeline at the earliest possible position which is in
Phase 1II. When the transfer is recognized, the
subsequent instruction in Phase I has already been
fetched from Instruction memory and executes normally.
Consequently no clock cycle is lost. This facility,
while somewhat unique, can be put to very good use in
the programming for the 3230 CPU.

MCS - 02 - 45 - INSTRUCTION FORMAT

In assembler format, -the unconditional transfer statement has
the following form:

<unconditional_transfer> ::= TRA <expr>

Examples:

... TRA CHANNEL3
... TR4 @-3

Composite Examples:

R2 :=MOR+0 TRA INTERPT I
NOP TRA INTRUPT IK

2.6.4 LINK INSTRUCTIONS, LINK ([C]=4)

The Link instruction ([C]=4) not only produces an
unconditional transfer, but also causes the value of
the address plus two of the 1link instruction to be
"pushed" onto a sixteen-element LIFO stack register
file (the Link-Stack Register). This saves the address
of the Link instruction for subroutine return.

In assembler format, the link instruction has the following
form:

<link_stmt> ::= LINK <expr>

Examples:

... LINK SUBROUTI
... LINK @+6

Composite Examples:

Rl := MOR-2 LINK EXT BLK
NOP LINK INTERPT 15B

2.6.5 LINK CONDITIONAL, LINKC ([C]=5)

The Link Conditional instruction ([C]=5) 1is a
Specialized instruction that is dependent upon
interrupt conditions. It is similar in function to the
Link instruction but is executed only if the special
interrupt test conditions are true.

MCS - 02 - 46 - INSTRUCTION FORMAT

The test consists of examining the individual bits of
the Interrupt Register (IR) for which a corresponding
bit position in the Interrupt Mask Register (IMR) is a
"1". The test is false if there is not at least one
matching bit pair; no transfer or Link Stack "push"
takes place. If one or more matching bit pairs exist,
then a value equal to the position of the highest-

priority bit pair is formed. Position "0" +#is the
highest-priority bit position and position "7" is the
lowest-priority bit position. The value formed is

doubled and added to the address field of the instruc-
tion to form a transfer address. 1In addition, the bit
position within the IR corresponding to the highest
priority bit position is reset or cleared.

In summary, a subroutine linkage is conditionally made
to an address which is the value of the Address field
plus twice the value of the highest priority masked bit

position in the IR. The bit position within the IR is
reset.

In assembler format, the link conditional statement has the
following form:

<link conditional_stmt> ::= LINKC <expr>

Examples:

LINKC INTRUPT A6
LINKC @+4

Composite Examples:

IMR := EIR AND RO LINKC INP_INTR
NOP LINKC RESET FLAG

2.6.6 RETURN INSTRUCTION, RETURN ([C]=6)

The Return instruction ([C]=6) causes an unconditional
transfer to the address formed by summing the Address
portion of the Return instruction and the "top" element
of the Link-Stack Register File. The top stack element
is "popped" (deleted). _

In assembly format, the Return instruction has the form:

<return_ stmt> ::= RETURN [<expr>]

PRV

MCS - 02 - 47 - INSTRUCTION FORMAT

Examples:

RETURN 2
RETURN OFFSET4

Composite Examples: ‘

RO := 0-1 RETURN INTERPT 34
NOP RETURN 0

2.6.7 SKIP CONDITIONAL INSTRUCTION, SKIP ([C]=0)

A Skip Conditional instruction, like the Conditional
Transfer instruction, tests the result of the arithmet-
ic/logical/shift portion of the instruction (<T>:=<A>0p
). However, multiple and more complex tests can be
performed and the result, if true, is to cause from one
to four subsequent instructions to be skipped. For each
instruction skipped, one clock cycle is lost. Because
the test associated with the skip instruction is made
in Phase IV of the pipeline, the instruction im-
mediately following the skip instruction is already in
Phase III when the test is made. Further, this
instruction has already passed through Phase II and
with regard to the RHS (transfer, link, return or load
K) portion of the instruction, hasalready been
executed. Therefore, while the assignment portion of
the instruction which immediately follows a skip
instruction can be negated, if the following
instruction has a RHS portion, that portion of the
instruction will execute normally. If a transfer,
link, return, or load K is present in any subsequent
instruction which is to be skipped, it will be skipped
entirely (see examples below).

For skips of three or four instructions and where the
instruction immediately following the skip instruction
contains a transfer, link or return sub-function, the
instructions skipped are (1) the two instructions
immediately following the skip instruction and (2) one
or two subsequent instructions beginning at the point
of the transfer address.

The address field of the skip instruction does not
contain a memory address; rather, it is used to specify
the type of skip, the extent of the skip, and a mask
which defines the conditions of the test. The type of
skip is encoded into bits 9-8 of the address field as
listed below.

MCS - 02 - 48 - INSTRUCTION FORMAT

Type = 0 If the Exclusive OR of the STATUS and the
MASK are all zeros, then skip.

'Type =1 If the Logical AND of the STATUS and the -
MASK is anywhere non-zero, then skip.

Type = 2 If the Exclusive OR of the X Register (7-0)
and the MASK are all zeros, then skip.

Type = 3 If the Logical AND of the X Register (7-0)
and the MASK is anywhere non-zero, then
skip.

The MASK is an eight-bit field specified by bits 7-0 of
the address field.® The STATUS is an eight-bit value
formed by the hardware in Phase IV from the overflow
bit and the X Register contents as follows.

Status Bit 0: Set if Overflow bit is not set

Status Bit 1: Set if Overflow bit is set

Status Bit 2: Set if X Register bit 0 is not set
Status Bit 3: Set if X Register bit 0 is set

Status Bit 4: Set if all X Register bits are zero
Status Bit 5: Set if any X Register bit is non-zero
Status Bit 6: Set if X Register bit 31 is not set
Status Bit 7: Set if X Register bit 31 is set

Thus, skip types 0 and 1 allow multiple status
conditions to be tested in combination whereas skip
types 2 and 3 allow the result of the T:= A op B to be
tested in the low order (bits 7-0) eight bit
positions.The extent of the skip, if taken, is encoded
in bits 11-10 of the address field as listed below.

Extent = 0: - Skip 1 instruction
Extent = 1: Skip 2 instructions
Extent = 2: Skip 3 instructions
Extent = 3: Skip 4 instructions

In assembly format, the skip statement has the form:

<skip stmt> ::= SKIP <extent_expr>
[[IF] (STATUS | RESULT)
(IS | HAS) <mask_expr>]

This statement uses the keyword IS to represent XOR, since the
purpose of the XOR is to test for bitwise equivalence of the
STATUS or RESULT fields and the mask expression. HAS is used
to represent AND, since the purpose of the test is to detect
common bits in the STATUS or RESULT fields and the mask

MCS - 02 - 49 - INSTRUCTION FORMAT

expression. The assembler will generate an unconditional skip
if the IF clause is not present.

Examples:

SKIP 1 IF STATUS IS X'11'
SKIP 4 IF RESULT HAS X'FC'
SKIP 3

Composite Examples:

RO := R4 SLL 4 SKIP 2 IF RESULT HAS LB
R6 := X+R4 SKIP 3 IF STATUS HAS OV

2.6.8 EXTERNAL BUS INSTRUCTIONS, BUS ([C]=2,3)

Bus From-To Instruction ([C]=2)

The external bus 'FROM-TO' Instruction (C=2) causes a
subsystem on the external bus to act as a source
(transmitter) and to place information on the 32 data
lines of the external bus. A second subsystem
activated by the command acts as a destination
(receiver). The 3230 CPU thus acts as an initiator and
monitor of the bus activity but does not itself
participate as source or destination.

The address field of the instruction initiating the
external bus operation is formatted to contain two
six-bit addresses. Bits 11-6 contain the bus source
subsystem address, and bits 5-0 contain the bus
destination subsystem address. Once issued, the bus
operation can proceed independently of the initiating
3230 CPU. However, the bus itself becomes active and
cannot be used forsubsequent operations until the
current activity is completed. If the initiating 3230
CPU should subsequently issue a second bus operation
before the current operation has completed, the 3230
CPU will stop and wait for completion. Should the
operation not complete within an additional 16 3230 CPU
clock cycles, the 3230 CPU will unconditionally
terminate it by removing the source and destination
addresses from the external bus control logic. In this
event, a positive pulse will be generated on the
external pin labeled IOTMO (input/output timeout).
This signal is used to set interrupt register bit 1.

MCS - 02 - 50 - INSTRUCTION FORMAT

In assembly format, the external bus FROM-TO statement has the
following form:

<bus_from to_stmt> ::= BUS FROM <source>
TO0 <destination>

where <source> and <destination> are expressions.

Examples:

... BUS FROM DRAM TO FPINPUT
... BUS FROM NODEIl TO NODE2

Composite Examples:

X := RO SLL 4 BUS FROM FPOUTPUT TO DRAM
NOP BUS FROM NODE2 TO NODE4
Fivira g

Bus Emit-Receive Instruction ([C]=3)

The external bus 'EMIT-RECEIVE' Instruction (C=3)
operates like that described above except that the
initiating 3230 CPU is always involved directly as a
bus source, destination or both. Three modes of
operation are possible, designated EMIT, RECEIVE and
EMIT-RECEIVE. Bits 11-10 of the address field of the
initiating instruction specifies one of the three modes
of operation as follows;

EMIT bit 11=0, bit 10=1

RECEIVE bit 11=1, bit 10=0

EMIT-RECEIVE bit 11=1, bit 10=1If both bits (11 and
10) are zero, the operation is a
'No-Operation' and initiates no bus

activity.
11 109 5 4 -0
Emit{ 0 1 Destination
Recieve| 1 0
Emit/Rec| 1 1 SOURCE
low order high
Emit - Receive Addressing
m——*

For the EMIT (from 3230 CPU to subsystem) mode of
operation, bits 5-0 of the address field contain a 6-
bit bus destination subsystem address. The source is

MCS - 02 . - 51 - INSTRUCTION FORMAT

the 3230 CPU itself, and the source data (32 bits) is
the value of the X register produced by the initiating
instruction.

For the RECEIVE (from subsystem to 3230 CPU) mode of
operation, bits 5-4 and bits 9-6 of the address field
contain a 6-bit bus source subsystem address. The
destination is the 3230 CPU itself and the receiving
register is the EIR.

For the EMIT-RECEIVE mode of operation, the two oper-
ations, EMIT and RECEIVE, are initiated in sequence.
The RECEIVE operation is delayed until the completion
of the EMIT operation has been detected by the 3230
CPU's External Bus logic. The EMIT and RECEIVE
subsystem addresses are encoded as described for the
individual bus operation modes. As bits 5-4 are common
to both bus addresses, there are restrictions as to
which subsystems can be involved in an EMIT-RECEIVE bus
operation. Obviously, only subsystems which have bit
values for bits 5-4 in common can be involved. Subsys-
tem addresses are normally established by strappings or
switch settings within the subsystems themselves and
thus the restriction relative to bits 5-4 is relatively
easy to accommodate.

For all three modes described above, if the initiating
3230 CPU should subsequently issue a second bus
operation before the current operation has completed,
the 3230 CPU will stop and wait for completion. Should
the operation not complete within an additional 16 3230
CPU clock cycles, the 3230 CPU will unconditionally
terminate it by removing the source and/or destination
addresses from the bus control logic. 1In this event, a
positive pulse will be generated on the external pin
labeled IOTMO (input/output timeout). This signal sets
interrupt register bit 1.Sta