HAL/S LANCUAGE FORMS

5 April 1973

INTERMETRICS

HAL/S LANGUAGE FORMS

5 April 1973

Approved by:
- “ F. H. Martin

Date:

CNTERMETRICS INCORPORATED « 701 COMCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617)(31'3“1mm

FOREWORD

This document has been prepared by Intermetrics, Inc.
under Purchase Order #M3M8XMX-48300 for Rockwell International.

INTERMETRICS INCORPORATED.» 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

PREFACE

The purpose of this document is to present the
acceptable forms of the HAL/S language in terms of a
compendium of syntax diagrams. The. diagrams and a conden-
sation of syntax rules have been abstracted from the HAL/S
Language Specification, while a larger set of examples has
been included to illustrate the use of HAL/S. .

- The organization of this document follows the HAL/S
Language Specification format exactly from Section 2 through
Section 10 to allow easier reference. Section 1 provides an
overview of the HAL/S language, Section 2 explains the manner
in which the syntax diagrams may be read, and includes other
format information such as the accepted character set, etc.
Sections 3 through 10 - present the HAL/S syntax as well as
illustrative examples. A series of appendices are included
which list keywords, built-in functions, and conversion
functions, and summarizes several classes of HAL/S operations.
Additionally, a more complex demonstration program is
provided. : o ' '

It is hoped that this document will serve as a refer-

ence for the HAL/S student, and an interim handbook until
publication of the HAL/S Programmers Reference Manual.

N AVENUE « CAMBRIDGE. MASSACHUSE TTS 02138 - (617) 661 1840

TABLE OF CONTENTS

BRIEF DESCRIPTION OF HAL/S

1.1
1.2
1.3

1.4

Source Input/Source Listing
Data Types and Computations
Real-Time Control
Program‘Reliability o

SYNTAX DIAGRAMS AND HAL/S PRIMITIVES

2.1

2.2

2.3

2.4

2.5

The HAL/S Syntax Diagram
Tﬁe HAL/S Character Set
HAL/S Primitives v
2.3.1 Reserved Words
2.3.2 Identifiers

2.3.3 Literals

Single Line and Multiple Line'Source
Text ‘

Other Aspects

HAL/S BLOCK STRUCTURE AND ORGANIZATION

3.1
3.2

3.3

3.4

3.5
O

3.7

rTﬁe.Unlt‘of Compllatlon
The PROGRAM Block

The PROCEDURE, FUNCTION, and TASK Blocks

Thé‘UpDATE Block
The COMPOOIL Block

"PROCEDURE) FUNCTTION, ard COMPOOL‘Témplates

Block Dellmltlng Statements

Simple Header Statements

The Function Header Statement
The CLOSE Statement

Cr e e R g T KLY IS AN N A A A AL IO T T ARy A

The Procedure Header Statcment G

-
o

2
= o o

14
16

17

17

19

21
23
24

‘27

27

28
29
.30

el
}g
o

O N WWN

T

¥

5.4

DATA

6.1

Name Scope Rules
AND LABEL DECLARATIONS

The DeclafevGroup

The Replace Statement

The Structure Template

The DECLARE statement

Label Declarative Inflectians:
Data Declarative Inflections
Type Specificaﬁion
Initialization

REFERENCING CONSIDERATIONS

Referencing Simple'Variablés
Referencing Structures

5.2.1 Unqualified Structures
5.2.2 Qualified Structures
Subscriptihg

5.3.1 Kinds of Subscripting

5.3.2 Forms of Subscripting

5.3.3 The Arrayness of Variables and
Expressions

The Natural Sequence of Elements

5.4.1 The Natural Sequence of Major and
Minor Structures :

5.4.2 The Natural Sequence of Simple
Variables and Structure Terminals

MANIPULATION AND EXPRESSIONS

Regular Expressxons

Ar;thmetlc Expresszons

6.1.2 Bit Expre531ons”“"”'

6.1.3 Character Expressions

e v N P N AAEAIN AN AT LT S ARAIIONIEN Y, AMAACCACIUICETYIT D11 . (Rl7\wﬂ'ﬂbl-1ﬁ4()

31
33
33
35
36
39
40
41

43
45

47

47
47

47
49
50

51
54

56

57
57
57

59

59
60
62
63

6.2

6.6

7.1
7.2
7.3

7.5

Regular Expression Operands |

6.1.4
6.1.4.1 Arithmetic Operandé-
‘6.1.4.2 Bit Operands ,
6.1.4.3 Character Operands
6.1.5 Array Properties of Expressions
Conditional Expreseions |
6.2.1 Arithmetic Comparisons
6.2.2 Bit Comparisons
6.2.3 Character Comparisons
‘6.2.4 Structure Comparisons
6.2.5 Comparlsons Between Arrayed Operands
Event Expressions
Normal Functions
Explicit Type Conversions _
6.5.1 Arithmetic Conversion Functions
6.5.2 The Bit Conversion Function
6.5.3 The Character Conversion Function
6.5.4 The SUBBIT Pseudo-Variable
Explicit Precision Conversion
EXECUTABLE STATEMEﬁTS
Basic Statement Deflnltlon
The IF Statement
The A551gnment Statement
The CALL Statement
The RETURN Statement
‘The DO...END Statement Group
- The Simple DO Statement
‘The DO CASE Statement
he DO WHILE and: DO UNTIL
Statements - -
The Discrete DO FOR Statement

L et s e R e A AACCACIITICETTS NP 118

64
64
65

66

67

68

69
70

71

72
72

73
74
75

77
78

.75

79

" 80
81

81
82
83
84

- 85

86
86

87

89

90

« {B817) 661- 1840

.10.

7.7
REAL

8.1
8.2
8.3

8.4
8.5

8.6

8.7
8.8
8.9
8.10

7.6.5 The Iterative DO FOR Statement
7.6.6 The END Statement

Other Basic Statements
TIME CONTROL

Real Time Processes and the RTE
Timing Considerations '
The SCHEDULE Statement

8.3.1 The Simple SCHEDULE Statement

‘ 8,3.2 . The Cyclic SCHEDULE Statement.

The CANCEL Statement

The TERMINATE Statement

The WAIT Statement

The UPDATE PRIORITY Statement
Events and SIGNAL StatémentA
Process-Events . _
Data Sharing ahd the Update Block -

ERROR RECOVERY AND CONTROL

9.1
9.2

The ON ERROR Statement
The SEND ERROR Statement

INPUT/OUTPUT STATEMENTS

10.1

10.2

Sequential I/0 Statements

10.1.1 The READ and READALL Statements

10.1.2 The WRITE Statement
10.1.3 I/0 Control Functions

Random Access I/0 - The FILE Statement

e e A L AOVEMINAE AAACCAMLIICETTC A1 . (ALY AR 14N

92
93

94
95
95
95
96
96
98

99
100
100
102
103
104
104

107
107
108
111
111

111
113

114

115

APPENDICES:

A. HAL/S Keywords 117
B. HAL/S Built-In Functions 119
C. Summary of HAL/S Operations 121
D. Conversion Functions : 129
E. Sample Program Listing 131

A LT P P PO IMAAODADATEMD & N1 CAANCONDD AVEMIIE « CAMIIIINCTE MAQQACHHRFTTSD?IW\-HHf\ﬁGIJBdO

1.0 BRIEF DESCRIPTION OF HAL/S

HAL/S is a programming language developed by ;
Ir-srmetrics, Inc. for the Space Shuttle. It is intended
tc satisfy the requirements for both on-board and support
s-<zware. The language contains features which provide for
rezl-time control, vector-matrix and array data handling,

arZ bit and character string manipulations. i

1.2 Source Input/Source Listing

A singular feature of HAL is that it accepts and lists
sc:rce code in a multi-line format, corresponding to. the
na-ural notation of ordinary algebra. An equation which
irwolves exponents and subscripts will be written, for example,.
as :

2 232
'c = (XA +YB)
SR K

irstead of (as in FORTRAN or PL/1)
C(I) = (X*A(J)**2+Y*B(K)**2)**(3./2)

HXZ alSo permits anuoptional Single—line input‘fdrmat;'its.
cc-struction is similar to FORTRAN, with some minor changes;
thes ‘ ‘

C$I .= (X AST**2+Y BSK¥*2)**3/2

HAL/S source code may be input on cards or by data
terminal. The input stream is free-form in that, for the most
part, card or carriage. column locations have no meaning;
stazements areiseparated simply by.semi-colons.

In an effort to increase program reliability and promoﬁe
HA- /S as a more direct communications medium between specifica-

INTERMETRICS " ORPORATED - 701 CONCORD AVENUE + CAMBRINGE, MASSACHUSETTS 02138 + (617) GG1-1840

tions and code, the HAL/S program listing is annotated with
special marks. Vectors, matrices and arrays of data are
instantly recognized by barg, stars and brackets. Thus, a
vector becomes V, a matrix M, and an array (A} .; Further,

bit strings appear with a dot, i.e., B and character strings
with a comma, €. With these special marks. as aids, the source
listing is more easily understood and serves as an important
step toward self-documentation. In addition to data marks
the HAL/S output listing has been standardized; logical para-
graphs, or blocks of code, are automatically indented so that
dependence of one block on another may be seen clearly.

HAL/S is a higher-order language, designed to-allow
programmers, analysts and engineers to communicate with the
computer in a form which approximates natural mathematical
expression. Parts of the English language are combined with
standard notation to provide a tool that .readily encourages
programming without demanding computer hardware expertise,

1.2 Data Types and Computations

HAL/S provides facilities for manipulating a number of
different data types. Arithmetic data may be declared as
scalar, vector, matrix or integer (whole number) . Individual
bits may be treated as Boolean quantities or grouped together
in strings. The language permits the user to manipulate
character strings, via special instructions. Organizations
‘of data may also be constructed; multi-dimensional arrays of
any single type can be formulated, partitioned, and used in
expressions. A hierarchical organization called a structure
can be declared, in which related data of different types
may be stored and retrieved as a unit or by individual refer-
ence. :

The arithmetic data types together with the appropriate
‘operators and built-in functions constitute a useful mathe-
matical subset. HAL/S may be used in a straightforward manner

as a "vector-matrix" language in implementing large portions
of both on-board and support software. For example, a simpli-
“fied equation of motion might appear as- ‘

- . -
A = B ACC;

ia%éf;ﬁU%UNIT(E)ZB,R;;

VDOT'= X + 5;‘
RDOT = V;
2

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) ££1-1840

*
w-=zre the matrix B transforms acceleration from measurement
- reference coordinates.

By combining data types within expressions and utilizing'
~<h implicit and explicit conversions from one type to another,
- ExI/S may be applied to a wide variety of problems with a

pcwerful and versatile capability.

1.3 Real-Time Control

HAL/S is a real-time control language; that is, certain
é=<ined blocks of code called programs and tasks can be
s=-2duled based on time and/or the occurrence of anticipated
e-znts. These events may include external interrupts, specific
éz-a conditions, and programmer-defined software signals. L
G-iesirable or unexpected events, such as abnormal conditions,
rz be handled by instructions which enable the programmer to

~stezcify appropriate action.

1.4 Program Reliability

Program reliability is enhanced when a software system
cz- create effective isolation for various subsections of code
az well as maintain and control commonly used data. HAL/S is
a ~lock-oriented language in that a block of code can be ‘
ez-zblished with locally defined variables that cannot be
a_zered by sections of program located outside the block.
I-iependent blocks can be compiled and run together with
c-—munication among the programs permitted through a centrally
rz-maged and highly visible data pool. For a real-time environ-
r=rt, HAL/S couples these precautions with a protection
c=-hanism which prevents, by programmer directive, the
L-zuthorized or untimely use of commonly shared data and/or

~zroutines.

, These measures cannot in themselves ensure total soft-
wzve reliability but HAL/S does offer the tools by which many
ar.-icipated problems, especially those prevalent in real-time
co~trol, can be isolated and solved.”

INTEARMETR ~3 *.CORPORATED » 701 CONCORD AVE NUé « CAMBRIDGE, MASSACHUSETTS 02138 ¢ (G17) 661-1840

INTERMETRICS INCORPORATED + 701 CONCORD AVENUEL - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

2.0 SYNTAX DIAGRAMS AND HAL/S PRIMITIVES

. In this Specification, the syntax of the .HAL/S
language is represented in the form of syntax diagrams.
These are to be read in conjunction with the associated sets '
of semantic rules. Together the two provide a complete,
unambiguous description of the language. The syntax diagrams
are mutually dependent in that syntactical elements referenced
in some diagrams are defined in others. There are, however,
a basic set of elements for which no definition is given.
These are the so-called "HAL/S primitives". '

This Section has two main purposes: to explain how to
read syntax diagrams, and to provide definitions of the HAL/S
primitives. - Various aspects of the format of HAL source
text which impact upon the meaning of the diagrams are also
discussed briefly:

2.1 The HAL/S Syntax Diagram °

Syntax diagrams are a flow-diagram like means of
representing the formal grammar of a language. By tracing
the paths on the diagrams, various examples of the language
construct represented may be generated. In the context of
HAL/S it is this generational aspect of the syntax diagrams
which is emphasized. It is stressed that although the flow
diagrams presented in this Language Forms manual are logically
complete, they are not meant to be viewed as constituting
.a-"working" grammar (that is, as an analytical tool for
compiler construction). Rather they are to be viewed as
purely instructional in nature.

A typical example of a syntax diagram is illustrated
below. Following the diagram a set of rules for reading
it correctly are given. The apply generating to all syntax

~diagrams to be presentedwiqvthemgpsuipg‘sections. ‘ :

5

INTERME ™S =5 INCORPORATED + 701 CONCORD.AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

-~ WAIT statement

basic :) c .
\ statement ,....__.....>......_..7..\

, -
____@_. arith exp _—T N —— -

FOR@ -) @

> J)
ev_ent exp @

L—GJNT!D—— arith exp }meae’
e O

"~ RULES :

1. In every diagram there is a syntactical element being
defined. The name of_the element being defined appears
in the hexagonal box@ . The title of the syntax
diagram is usually a discursive description of the
syntactical element. In the case illustrated, the
language construct depicted is a particularization of
the syntactical element defined (a "WAIT statement"
is an example of @) . ' :

2. - To generate samples of the construct, the line is to be
followed from left to right from box to box, startirg
at the point of juncture of the definition box@ , and
ending when the end of the line@is reached:

3. fThe line is moved along until a black dot @) is arrived

at. No "backing up" along points of convergence such as
is allowed. A black dot denotes: that a choice of

paths is to be made. The possible number of divergent
paths is arbitrary. : :

4. Potentially infinite loops such aS@may sometimes be
encountered. Sometimes there are semantic restrictions
upon how many times such loops may be traversed.

5. Every time a box is encountered, the éyntactical element
it represents is added to the right of the sequence of

INTERMETRICS INCORPORATED « 701 CONCORD AVE NUE + CAMBRIDGE, MASSACHUSETTS 2138 « (617) 661-1840

elements generated by moving along the line. For example,
moving along the path denoted by the dotted line (8)
generates the sequence "WAIT <ar1th exp>'" (see Rule 7.).

6. Boxes with squared corners such as(:)represent syntactlcal
elements defined in other diagrams. Circular boxes such
as () , or boxes with circular ends, such as Q) , repre-
sent HAL/S primitives.

7. In the text accompanying the syntax diagrams, boxes
containing lower case names are represented by enc1031ng
the names in the delimiters <>, Thuslu»c()becomes,
<arith exp>. Upper case names are reserved words of the
language. ' '

INTERMETRICS INCORPORATED - 701 CONCORD AVENUL + CAMBRINDGE, MASSACHUSETTS 02138 » (617) 661-1840

2.2

The HAL/S Character Set

The HAL/S character set consists of the 26 alphabetic

characters, the numerals zero through

. special characters.

nine, and certain

The restricted character set is the

set necessary for the construction of the HAL/S primitives

to be described.

The extended character set adds to the

restricted set certain extra special characters legal in

places like comments and character literals,

and used chiefly

for the purpose of compiler listing annotation.

The following table gives a

complete list of the charac-

ters in the extended set,.with a brief indication of their

principal usage.

" INTERMETRICS INCORPORATCD - 701 CONCORD AVIENUE

. CAMBRIDGE, MASSACHUSETTS 02138 - (617 661-1840

alphabetic and numeric special character.
|

A a 1 identificrs

B b 3 o VW;M' :;‘)(-Lé.w)

C C - & 05 PheD YIY) .
X v‘—'ﬁ-TO(\‘ C , // AT

D d [y ,’1 j"‘ reide los e o
_— el lert "L ;

E e . a— K

P b /

) ' operators . _
. ; l A\>\-‘ 2/‘-’- ;w‘/ /l[éf“ "’"“"Z’I‘W‘A‘:'
H h . A ‘.

I i &] Lo (L Cav N>
J 3 =
K k identifiers <
rescrved words
L 1 literals >
M m 4 »
T e B T
N n o swgck
0 e} $
P P ,
Q aq ; separators
R X e
S S (blank) &7’ o =
! ¢ (delimiters
U u) A '
v v ' |
W w % keywords, (0 '»AL-‘UQ
X x [
Y .y . !
Z 2 (extended-set
0 characters
1 }
2 !
3 identifiers - TR
4 literals W\Wr
3 ¢
6 "
?
g
9
9

INTFHMFTRI(“‘ INCORPORATED » 701 CONCORD AVL NUE - CAMHHIDGL MASSACHUSETTS 02138 -

(617) 661-1840

2.3 HAL/S Primitives

- HAL/S syntax diagrams ultimately express all syntac-
tical elements in terms of a’ small number of uqdefined primi-
tives. Primitives are constructed from the characters '
comprising the HAL/S restricted character set. There are
three broad classes of primitives; "reserved words",
videntifiers", and "literals". '

2.3.1 Reserved Words

_ As their names suggest, reserved words are names
recognized to have standard meanings within the language, .
and which are unavailable for any other.use. With only one
or two exceptions they are constructed from alphabetic charac=
ters alone. Reserved words fall into two categories, keywords,
and built-in function names. In the syntax diagrams, and in
the accompanying text, reserved words are indicated by upper
case characters. A list of keywords is given in Appendix A.,

and of built-in function names in Appendix B.

2.3:2 Identifiers

An identifier is a name assigned by the programmer to
be a data item, label, or other entity. Before its attributes
are specified, it is syntactically known as an <identifier>.

. .

Each valid <identifier> must satisfy the following rules:

e the tctal number of characters must not exceed 32;
e the first character must be alphabetic;

e any character except the first may be alphabetic
or numeric;

® any character except the first or the last may be
a "break character" (_).

The first appearance of an <identifier> generally establishes
its attributes, and in particular its type. Thereafter

because its type is known, it is given one of the following
syntactical names, as appropriate: :) :

10

INTERMETRICS INCORPORATLD + 701 CONCORD AVENUE - CAMBRIDGE, MASZACHUSETTS 021238 « (617) €61-1840

<label>

<process-event name>

<§ var name> e where § ~ | ’arithmetic
' . v -} character
<structure template> ' bit
' event

structure

The manner in which its attributes are established is discussed
in Section 4. The manner in which it is thereafter referenced
is discussed in Section 5. ‘

'2.3Q3 Literals

, Literals are groups of characters expressing their
own values. During the execution of a body of HAL code their -
values remain constant. Different rules apply for the forma- °

tion of literals of differing type.

FORMATION RULES (arithmetic literals);

1. No distinction is made between integer- and scalar-valued
literals. They take on either integer or scalar type
according to their context. Similarly, no distinction
is made between single and double precision. Consequently,
arithmetic literals can be represented by the single
syntactical form <number>. ‘

2. The generic form of a <number> is:
+ 3dddddd.dddddddd <exponents> d = decimal digit
Any number of decimal digits, ihcluding‘nQne{\may‘appear
before or after the ‘decimal point. The sign and decimal

point are both optional. Any number of <exponents> may
-optionally follew.

11

INTEﬂMETﬁICS INCORPORATED « 701 CONCORD AVENUL + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661 -1840

3. The form of any of the'<exponents> may be

\

B <power> ' = 2<power>_
E <power> S = lo<power>l
= 16<power> ‘

H <power>

where <power> is a signed integer number .

EXAMPLES:
0.123E16B-3

45.9
-4

FORMATION RULES (bit literals)

1. Literals of blt type are denoted syntactically by

<bit literal>. . %;
2. They have one of the following forms shown below: ,Jﬁﬁ

binary digit C \Céfj;>/

octal dlglt

[

BIN <repetition> 'bbbbbbb'
OCT <repetition> 'ooooooo'
HEX <repetition> ‘hhhhhhh’
DEC <repétition> 'ddddaddd’

hexadecimal dlglt V

TR o N o
]

i

decimal digit

The <repet1tlon> is optlonal and consists of a parenthe-
sized positive integer number. It indicates how many
times the following string is to be used in creating
the value. -

12

lNTERMfTRKlalNCORPORATED 701 CONCCHH)AVFNUF . CAMBRIDGE, MASSACHUSETTS 02138-(617)66L1840

3. The following abbreviated forms are allowed:.

TRUE = ON

i
i

BIN'1"

]

n

FALSE = OFF = BIN'0"'

EXAMPLES : ;
BIN'11011000110'

HEX (3) 'F"

A . R ’ S
: v
- FORMATION RULES (character literals) 4“”T}V§ ‘
| | @ZM(’
1. therals of character type are denoted syntactlcally
by <char llteral> i

2;, The form of a character llteral is:

‘cccccCCCCCcccc'

where c is any character in the HAL/S extended character
set. : . o

3. A null character llteral (zero characters long) is
denoted by two ‘adjacent apostrophes.~

4. Slnce an apostrophe dellmlts the strlng of characters,
inside the literal an apostrophe character is denoted by
an apostrophe pair, (i.e. the representatlon of "dog s“
would be ’DOG"S' for example) . |

Tt

4. The character pair /* is always taken to be the openlng4gf

“wdellmiter -of-a-comment-even--in- a:character lrteral. ‘ ug;d'//
EXAMPLES 3

gt

' ONE TWO THREE'
] DON LI] T)

‘13;

AINTERMETMCSINCCRPORATED-7OLCONCORDAVENUC ~ CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2.4 Single Line and Multiple Line Source Text

In preparing the source text of HAL code, single or
multiple line format may optionally be used. 1In the single
line or "l-dimensional" format, exponents and subscripts
are written on the same line as the operands to which they
refer. 1In the multiple line or "2-dimensional" format -
exponents are written above, and subscripts are written below
respectively, the line where the operands they refer to are
written. Of the two formats, the 2-dimensional is regarded
as standard, since it follows usual mathematical practice.

RULES FOR EXPONENTS:

1. In the syntax diagrams, the l-dimensional format is
assumed for clarity. The operation of taking an exponent
is denoted by the operator *¥, ’

EXAMPLES :
| AT+ A**I
J

AI -> A**I**J

2. Operations are evaluated right to left (see Section 6.1.1).

3. If an exponent is subscripted, its subscript must be
given its l-dimensional description.

RULES FOR SUBSCRIPTS:

1. In the syntax diagrams, the 2-dimensional format is assumed
for clarity. Two special symbols are used to denote the
descent to a subscript line, and the return from it:

@
&

descent to subscript

. return from subscript

14

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1240

Effectively, Ehey delimit-the beginning and end
respectively, of'a‘SubscriptAexpression,

2, In the 1-dimensional form of the HAL/S subscript, the.
subscript expression is delimited at the beginning by
$(and at the end by a right parenthesis.

EXAMPLE:

Axs2

> AS(K+2)

s

3. For certain simple forms of subscript, the parentheses
may be omitted. These forms are: . - S

e a single number;
e a single unsubscripted <arith var>

EXAMPLE:

As > AST

4. IF a subscript expression contains an exponentiation
operation, the latter must be given its l-dimensional
representation.

15

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 -« (617) 661-1840

2.5 . other Aspects of the Source Text

Any HAL source text

consists of sequences of HAL/S

primitives of the types described. It is obviously of

great importance for a compiler to be able to tell the end

of one primitive from the beginning of the next. In many
cases the rules for the formation of primitives are sufficient
to define the boundary. In others a blank character is

required as a separator. Generally blanks are required as
"separators between identifiers., keywords, and literals.

Except in c¢haracter lite

.

syntacti

rals, consecutive blanks are

cally equivalent to a single blank.

Comments may be iﬁbedded within HAL source text

wherever blanks are legal.

beginning by the character

A comment is delimited at the
pair /* and at the end by the

character pair */. Any characters in the extended character -
set may appear in the comment, (except, of course, for

* followed by /).

INTERMETMCSINCORPORATED-701CONCORDAVB

16

UL+ CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1640

3.0 HAL/S BLOCK STRUCTURE AND ORGANIZATION

The largest syntactical unit in the HAL/S language
is the "unit of compilation”. In any implementation, the ,
HAL/S compiler accepts "source modules" for translation, and
‘emits "object modules" as a result. Each source module
consists of one unit of compilation, plus compiler directives
for its translation.

-

At run time an arbitrary number of object modules are

combined to form an executable "program complex”. Generally
a program complex contains three different types of object
modules: ’ :

@ program modules - characterized by being indepen-
‘dently executable. :

e external procedure and function modules - charac-
terized by being callable from other modules.

© compool modules - forming common data pools for
the program complex.

Each module briginates'from a unit of compilation of corres-
ponding type. ')

3.1 The Unit of Compilation

Each unit of compilation consists of a single PROGRAM,
PROCEDURE, FUNCTION, or COMPOOL block of code, possibly
preceded by one or more block templates. Templates in effect
provide the code block with information about other code
blocks with which it will be combined in object module form
at run time. : v

17

lNTEﬂMCTmCSINCORPORATED-?OICONCOHDAVENUC 'CAMBmDGE,MASCACHUSETHSMNSB'(GW)66L1&m

SYNTAX:

unit of compilation

function block

procedure block

= > - compool block
) i] l-—- program block

function template

il
procedure template ="

L—— compool template |—

A:

f””&“ ma’iwu«a /MR

N/ JK’I/A” ad

w@,wﬁ, ‘-

18

CAMURIDGF MASSACHUS [TT" 02138 « (617) €£° -~

INTERMETRICS INCORPORATLD « 701 CONCORD AVENUL -

o
I3

3.2 The PROGRAM Block

‘ The PROGRAM block delimits a main, independent body
of HAL/S code consisting of a <declare group>' and any number
of executable <statement>s and/or nested PROCEDURE, FUNCTION,
TASK, and UPDATE blocks. Delimiting .is done by a <program
header> and a <closing>. o -

SYNTAX:

PROGRAM block

program
block

Lags

~4{ statement —]
program header |—{ declars group - o closing t—

| task block 4

] update block *

—{ function block -

- procedure block

19

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMDRIDGE, MASSACHUSETTS 02138 « (G17) 661-1840

EXAMPLE : SAMPLE: PROGRAM;
DECLARE A SCALAR;
DECLARE B .VECTOR;

declare group

.
L4 .

BETA: FUNCTION(Y);

M function block
CLOSE BETA; _
ALPHA: PROCEDURE]
' . procedure block

CLOSE ALPHA;
A = K + BETA(X);

It
J 1

L]
T e
— —

B = R*V;

CALL ALPHA;
CLOSE SAMPLE;

_ executable stmts.

20

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAME?R ZZE, MASSACHUSETTS 02138 -+ (617) 661-1£40

3.3 The PROCEDURE, FUNCTION and TASK Blocks

PROCEDURE, FUNCTION, and TASK blocks share a common
purpose in serving to structure HAL/S code into an interlock-
ing modular form. The major semantic distinction between the
three types of blocks is the manner of their invocation
(described in Section 7.4, 6.4, and 8.3 respectively). Each
block is delimited by a header statement of the proper type
and a <closing>. The blocks consist of a <declare group> to
declare data local to the block, followed by any number of
executable <statement>s and/or nested PROCEDURE, FUNCTION,
and UPDATE blocks.

SYNTAX:

PROCEDURE .
FUNCTION' block
TASK

§

' [_ statement o
@ 6 § header —declare group closing

| update block

Y

A

— procedure block

_| function block

21

INTERMETRICS INCORPORATLD - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

EXAMPLE OF NESTING PROCEDURES AND FUNCTIONS:

NEST: PROCEDURE;
DECLARE A VECTOR;

~ ALPHA: PROCEDURE;]
DECLARE B;

BETA: FUNCTION (X) ; -
DECLARE X;

GAMMA: PROCEDURE;

CLOSE GAMMA;

CLOSE BETA; .

CLOSE ALPHA;

CLOSE NEST;

22

iNTEﬂMETmCSINCORPORATED-701CONCCWK)AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 + (£17; 661-1840

3.4 The UPDATE Block .

The UPDATE block is .used to control the sharing of
data by more than one real time process (see Section 7.) and,
is invoked when it is encountered in the normal flow of
execution. The UPDATE block is delimited by an <update header>
and a <closing>. The block consists of a <declare group> to ‘
declare data local to the UPDATE block, followed by any number
~ of executable <statement>s (except I/0 and real-time statements)

and/or nested PROCEDURE and FUNCTION blocks.

SYNTAX:

UPDATE block

update ‘
block

statement

) L update header declars group oo

closing

e T procedure block

_{ function block

EXAMPLE: A: TASK;
UPDATE;
M=N+P;
CLOSE; /* END OF UPDATE BLOCK */
CLOSE A;

23

INTCRAMETRICS lNCORPOﬂ/\TED - 701 CONCORD AVENUE - CAMBRIDGE, MAG

SACHUSETTS 02138 « (617) 661-1840

3.5 The COMPOOL Block

The COMPOOL block specifies data in a common data
pool to be shared at run time by a number of prpgram, proce-=
*dure, or function modules. The number of COMPOOL blocks
allowed in a program complex is implementation dependent.

SYNTAX:

COMPOOL block

compooi header dgclare group closing p—
" EXAMPLE: MAIN_COMPOOL: COMPOOL;
' DECLARE M MATRIX; deilare
DECLARE V VECTOR INITIAL(1,0,0) group

CLOSE MAIN COMPOOL;

24

INTERMETRICS INCORPORATED - 701 CONCORD.AVERNUL « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

3.6 PROCEDURE, FUNCTION, and COMPOOL Templates

Block templates are used to provide the outermost
code block of a <compilation> with information concerning
external code blocks. Both the <label> and the header
statement must be identical to those of the corresponding
code block, except the keyword EXTERNAL on the leftmost side
of the header statement distinguishes it from an otherwise
identical code block. A COMPOOL template declares a common
data pool identical to that of the corresponding COMPOOL
block; a PROCEDURE or FUNCTION template declares the formal
parameters of the corresponding PROCEDURE or FUNCTION block.
Depending upon implementation, the compiler system may
generate and maintain templates automatically. ‘

SYNTAX:

PROCEDURE
§ FUNCTION template
COMPOOL -)
EXTERNAD—— § header |— declare group |— closing |—
25

INTERMETRICS INCORPORATED - 701 CQNCOND"/\VENUE' - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

EXAMPLES :

ETA: EXTERNAL COMPOOL;
DECLARE S SCALAR;
CLOSE ETA;

BUZZ: EXTERNAL FUNCTION([X]);
DECLARE X ARRAY (4) VECTOR;
CLOSE BUZ23Z;

BAKER: PROCECURE (A) ASSIGN(B)
DECLARE VECTOR(6),A,B,C; procedure
AR block
A =B+ C;
" CLOSE BAKER; -
BAKER: EXTERNAL PROCEDURE (A) ASSIGN(B) ;
procedure

DECLARE VECTOR(6) ,A,B; /* NOTE ONLY ARGUMENTS ARE DECLARED */ template -
CLOSE BAKER;

ABLE: PROGRAM;

. ‘ progranm

" CALL BAKER(ZETA) ASSIGN (PHI); block

3
»

- CLOSE ABLE; -

26

INTERMETRICS INCORPORATED - 701 COMCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 6G1-1847

3.7 Block Delimiting Statements

: Both code blocks and block templates are delimited at
the beginning by a header statement characteristic of their .
type, and at the end by a <closing> statement. In all code
blocks except for the COMPOOL block the header statement is
the first statement of the block to be executed on entry, and
the <closing> statement is the last to be executed before
exit. A COMPOOL block, containing only declarations of data,
is not executable. ' v

3.7.1 simple Header Statements
‘Simple header statements are those which specify no

parameters to be passed into or out of the block. They are’
the compool, program, task, and update header statements.

 SYNTAX:

COMPOOL

PROGRAM header statements
TASK . ’
UPDATE block .

task
header
program
header / .
PROGRAM)

COMPOOL

27

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

3.7.2 The Procedure Header Statement

The procedure header delimits the start of a PROCEDURE
block or PROCEDURE template. The <identifiers>ﬂfollowing
the PROCEDURE keyword are "input parameters" whose values -
may not be changed within the code block; the <identifiers>
following the ASSIGN keyword are "assign parameters" whose
values may be altered within the code block. All of these
parameters must have data declarations in the <declare group>
of the PROCEDURE block or template. The keyword REENTRANT
allows real-time sharing of the PROCEDURE block. The keyword
EXCLUSIVE allows only one real-time process to use the PROCEDURE
block at a given time; any other processes must wait to use
the PROCEDURE block until the first is finished executing it.
The keyword ACCESS places ‘implementation dependent managerial
restrictions on which <compilation>s may reference an external
PROCEDURE block.

SYNTAX:

PROCEDURE header statement

procedure
header

PROCEDURE

EXAMPLES: PROCEDURE ASSIGN(B);
—_ % — .
PROCEDURE (V,M) ASSIGN(N) EXCLUSIVE;

PROCEDURE (X) ACCESS;

28

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

3.7.3 The Function Header Statement

The function header delimits the start of a FUNCTION
block or FUNCTION template. The <identifiers> following the
FUNCTION keyword are "input parameters"” whose values may not
be changed within the code block, and whose data type. is
declared in the <declare group> of the FUNCTION block ox
template. <type spec> identifies the type of value returned
by the FUNCTION block (<type spec> may not be an event type).
The keyword REENTRANT allows real-time sharing of the FUNCTION
block. The keyword EXCLUSIVE allows only one real-time process
to use the FUNCTION at a given time; any other process must
wait to use the FUNCTION block. The keyword ACCESS places -
implementation dependent managerial restrictions on which
<compilation>s may reference an external FUNCTION block.

. SYNTAX:
FUNCTION header statement
-
header
|
FUNCTION type spe —
(REENTRANT
—_——— — 0\
N . | * : Al B
EXAMPLES: FUNCTION (A) SCALAR REENTRANT;

FUNCTION (ALPHA,BETA) VECTOR;

29

INTERMETRICE INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

.3.7.4. The CLOSE Statement

For all code blocks and block templates, the CLOSE
statement is the <closing> delimiter. If the CLOSE keyword
is followed by a <label>, the <label> must be the name of -
the block. The <closing>s of the COMPOOL blocks and block
templates cannot have a <label> to the left of the keyword

CLOSE.

SYNTAX:

closing of block

o Lo CLOSE * $o- D)
. : \ J 0/
® _

EXAMPLES: ALL_DONE: CLOSE;

.CLOSE MAJOR_COMPOOL;

o
o b
/‘?’r ‘{wy/

30
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (817) 661-1£4%

i¢/’//

3.8 Name Scope Rules

~ As a consequence of the code block structure of HAL/S,
the scope of a name (<identifier>), i.e. a <yvariable name> Or
<label> is defined as the block in which it is’declared and
potentially extends to all contained and nested blocks. “The .
scope of a name is therefore the region in which it is poten-
tially recognizable. For example, names defined in a
<compool block> are potentially recognized throughout every
compilation unit; i.e. <program block>s and external procedures
and functions; names defined in a <program block> may be '
recognized in all enclosed <task block>s, <procedure block>s, -
<function block>s, or <update block>s, etc. Duplicate names
are allowed in different blocks where the outer declaration
of the name is superseded, in the inner block only, by the
explicit declaration. A name defined only within an inner
block is never recognized in an outer block.

HAL/S does not permit GO TO's between blocks of code}
thus a branch from an inner block to an outer block is speci-
fically disallowed. -

EXAMPLE :

ALPHA: PROGRAM; -

outer DECLARE X; /* X IS KNOWN EVERYWHERE */
Zcope DECLARE Y; . /* Y IS KNOWN ONLY OUTSIDE BETA */

BETA: PROCEDURE; /* LABEL BETA KNOWN IN ALPHA */

inner
name - ~ZCLARE Y; /* NEW Y KNOWN ONLY IN BETA */
scope OSCIARE Z; /* 7 KNOWN ONLY IN BETA */
CLOSZ BETA; .
DELTA: Y=0; /* DELTA NOT KNOWN IN BETA */
CALL BETA; /* BETA CAN BE CALLED ONLY FROM ALPHA */

| CLOSE ALTHA;

31

INTFRMEHMCSlNCOﬁPORATED-“QICONCCNK)AVENUF'-CANHNNDGE.MASSACHUSETTSO?!NB-ﬂﬂ7)6614840

32

INTERMETRICS INCORPORATE.D . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4.0 DATA AND LABEL DECLARATIONS

The HAL/S language possesses a comprehensive set
of data types for use in both applications and systems
programming situations. To encourage clarity and decrease
the frequency of errors of omission, all data is required
to be defined in specific areas of a HAL/S compilation called
"declare groups"”. : » ' :

4.1 The Declare Group

A <declare group> is a collection of data and label
declarations possibly consisting of <replace statement>s,
<structure template>s, and <declare statement>s.

SYNTAX:

declare group

declare
group
) [_. _ _J L_* - _J L
replace statement structure template declare statement

y
L

 EXAMPLES: REPLACE PI BY '3.14159'; | Replace group
REPLACE MU BY '1234°';

1

STRUCTURE A:
{1 B SCALAR,
1 C INTEGER;

Structure. Template

33

INTERMETRIéS} INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

DECLARE A A_STRUCTURE;
DECLARE INTEGER,M,N; ‘ Déclare Group
DECLARE V VECTOR;

34

INT-ERM'ETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4.2 The REPLACE Statement

The REPLACE statement is used to define a name (i.e.
<identifier>) as a text substitution. Any HAL/S code contain-
ing reference to the <identifier> is treated as if the text
of <char literal> had instead appeared in that position.
<identifier> may not be a formal parameter in a <procedure
header> or <function header>, nor may an <identifier> in a
REPLACE statement be the subject of a replacement itself.

SYNTAX:

REPLACE statement

replace
statement

REPLAC E)—-@ntiﬁer BY char literal

EXAMPLES : REPLACE ALPHA BY 'J+1';

REPLACE TERMINATION BY 'GO TO FINISH';

35

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4.3 The Structure Template

In HAL/S, a "structure" is a hierarchical organization
of generally inhomogeneous data items. Conceptually the form
of the organization is a "tree", with a "root", "branches",
and with the data items as "leaves". The definition of the
"tree organization" (the manner in which root is connected"
to branches, and branches to leaves) is separate from the
declaration of structure data having that organization.

The tree organization is defined by a <structure template>.

The following figure shows a typical tree organization
in its conceptual form:

start of end of
tree walk - » tree walk
\

- NAME
- 1
- I - 2.
N> "branch” ‘
- - 3
© terminal data item
QO minor structurs /z/"leaf"
/\ template name _ 4

tree diagram for a typical structure template

36

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

| ~ The keywords DENSE and ALIGNED denote data packing
attributes of all structures possessing the <structure
template> as explained in Section 4.6. ‘

‘ The names of minor structures (i.e. each fork or
diagram) and terminal data items must be defined in the
same order as the tree walk (shown on diagram) passes them
on the left (see example below which shows this in relation
to the above diagram). ' ,

The form STRUCTURE identifier appearing after the
colon causes a previously defined <structure template>
called <identifier> to be incorporated as part of the
<structure template> being defined.

SYNTAX:

structure template statement

structure
“\ template

__g—éﬁmmnm{}{@mm@\ > ~<Z}______j

ALIGNED

©.

- .-—@entiﬁe} attributes
L{E}RUCTURE identifier

37

~ INTERMETR.CS INCORPORATED + 701 CONCORD AVENUE “+ CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

EXAMPLE (corresponding to tree diagram shown ongprevio‘us page) :

STRUCTURE OMEGA DENSE:-
1 PHI ARRAY(50) BIT(31),
1 ZETA SCALAR,
1 ALPHA,
2 BETA ARRAY(25),
2 GAMMA,
3 LAMBDA 1,
4 MHOS INTEGER,
4 COND SCALAR,
3 NU,
3 LAMBDA 2,
4 OHMS INTEGER,
4 RESIS SCALAR;

38

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.4 The DECLARE Statement

The DECLARE statement is used to declare variable
names, and labels, and to define their characteristics, or
< attributes >. Any <inflections> given immediately after the
keyword DECLARE are characteristics (factored <attributes >)
‘of all <identifier>s in the DECLARE statement. Each
<identifier> and associated <attributes > constitutes the
declaration of the particular <identifier>, and must not
.conflict with any factored < attributes >. The appearance
of either a label or a variable name determines the form of
the < attributes > (see Sections 4.5 and 4.6 respectively).

SYNTAX:

o declaration statement
declars
statement

DECLARE

()

B ‘ > @zntiﬁe} attributes
—L attributes _@_j

 EXAMPLES: ' DECLARE INTEGER, A,B, ARRAY(5);
DECLARE M ARRAY (10) MATRIX(2,3);
DECLARE ABLE FUNCTION SCALAR;

39

INTERMETRICS INCORPORATED + 701 CONCORD AVENUEC ~CAM0anc,MAssAcupsﬁrH;mnaa-(snychwwm

4.5 Label Declarative Inflections

Label declarations in HAL/S are used to define the
names of PROGRAM, TASK and FUNCTION code blocks. The forms
PROGRAM and PROGRAM EVENT may only appear in the <declare
group> of a <compool block> and its corresponding template
to allow any external <program block> to be referenced. by a ’
<compilation>. The keyword EVENT allows a process-event
(see Section 8.9) to be attached to the <program block>.

‘The form TASK EVENT may only appear in the <declare
" group> of a <program block> to allow the named <task block>
to have attached to it an identically named process-event.

The form FUNCTION <type spec> is used to define the
name and type of a <function block>. The function defined
this way must have at least one formal parameter, none of
which may be arrayed. A function declaratioh is required
whenever a function is used prior to the appearance of its
code block. ‘

SYNTAX:

Jabel declarative sttributes
attributes :
r——(PROGRAM }

. A
o— . —4(;hosRAM:}_{:EQE§E:>__+______
u—-(TAé}:)—(EVENT)——A
L—-GUNCTIOI\D——- type spec —

EXAMPLES : . DECLARE ALPHA PROGRAM;
" DECLARE USER FUNC FUNCTION INTEGER;
DECLARE BETA TASK EVENT;

40

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) €57 -840

4.6 Data Declaration Attributes

Data declaration attributes are used to define an
<identifier> to be a variable name or part of a structure
template, and to describe its characteristics. If .
<attributes > appears in a.<declare statement>, it defines a
variable name. If < attributes > appears in a <structure
template> it defines either a minor structure, or a terminal

“data item of the template. Terminal data items have very
similar properties to variable names.

- The keyword ARRAY allows the specification of the

number and sizes of the dimensions in the array. Each.

<arith exp> denotes the integral size of a dimension, while

an asterisk denotes a linear array of unknown length which is used
as a formal parameter of a procedure or function. The actual
length is that of the corresponding argument on invocation.

The following attributes are allowed for variable
names :

® AUTOMATIC/STATIC - an-<identifier> with the
AUTOMATIC attribute is initialized upon every
entry into the code block containing its :
declaration. An <identifier> with the STATIC
attribute is initialized once upon first entry.
into the code block. Generally if neither key-
word appears STATIC is assumed.

® DENSE/ALIGNED - If the <identifier> has the
ALIGNED attribute, its storage is arranged on
natural word or fractional word boundaries
so as to optimize speed of reference. If the
<identifier> has the DENSE attribute its storage
is packed so as to minimize the size of storage
area required. In the absence of either keyword,
ALIGNED is assumed. :

e ACCESS - causes managerial restrictions to be placed
‘upon the usage of the <identifier> as a variable
in assignment contexts, and may only be used in
the <declare group> of a <compool block> or its
template.

41

INTERMETRICS INCORPORATED - 701 CONCORD AVE NUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661 1840

e LOCKED ~ may only be used in .the <declare group> :
of a <compool block> or its template and causes
use of the <identifier> to be restricted to
" UPDATE blocks (see Section 8.10). ‘

e LATCHED - only applies to event v&riables as speci-
fied in Section 4.7.

e <initialization> - allows initialization of an
<identifier> as specified in Section 4.8.

Terminal data items and minor structures may only use the
attributes DENSE or ALIGNED.

SYNTAX:

{ «iributes

data declarative attributes

type spec p—— — -~

)
\J)

arith exp |

_ -
AUTOMATIC _@%xpE.
. STATIC ;\;w'
|

DENSE
ALIGNED
- G L T Wqu%-
B . “
ACCESS o '

LOCKED

h{ LATCHED >—-J
- inil‘ializa!ion
\. il v
42

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138‘ + (617) 661-1840

4.7 Type Specification

The type specification or <type spec> provides a means
of defining the type (and precision of VECTOR, MATRIX, INTEGER,
and SCALAR type only) of variable names and termlnal data.
items of structure templates. If there is no <type spec>
given, then the implied type of a variable name or terminal
data item is SCALAR with SINGLE precision; if <type spec>
consists only of the keyword SINGLE or DOUBLE then it 1s
SCALAR of the indicated. precision.

The <arith exp> of a VECTOR is its length; the default
value is 3. Similarly, the two <arith exp>s of a MATRIX
are its row and column dimensions respectively; the default
is a 3-by-3 matrix. The <arith exp> of a CHARACTER type
denotes its maximum length whose default value is 8.
BIT(<arith exp>) indicates a bit type of the specified length.
Both BOOLEAN and EVENT indicate a bit type of 1-bit length,
however, EVENT is used in real time programming situations
(see Section 8.8). o

The phrase <identifier>- STRUCTURE denotes structure
type with a tree organization given by a previously defined
template named <identifier>. 1If the structure variable name
in the declare statement is the same as the <template name>,
then the structure is said to be unqualified; if they dlffer
then the structure is said to be quallfled (see Section 5 2).
<arith exp> gives the number of copies of the structure. = The
copy specification may only be an asterisk if the structure
is a formal parameter of a procedure or function, in which
case the actual number of copies is supplied by the correspond-
ing argument on invocation of the procedure or function.

43

"INTERMETRICS INCORPORATED - 701 CONCORD, AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

SYNTAX:

- 0 { SCALAR)

" type specitication

F

— MATRIX 0

arith exp '—®— arith exp ~—@-

VECTOR o arith exp ——@

{MA }

TRIX }—
Lt J
{vecToRr)}

‘. SINGLE "

~——

’ templato) __(()
;(ﬂa?" e),—-(smuc'ru RE)

N/
{INTEGER)

—

{ CHARACTER }

DOUBLE

-\

——

CHARACTER {

B |

arith exp —-@

{ EVENT }

—

——

‘r_‘——‘—‘—‘-\ R
BOOLEAN -

EXAMPLES::

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138

MATRIX(2,2) DOUBLE

Z-STRUCTURE (15)
CHARACTER(7)
44

- (617) 661-1840

4.8 Initialization

The <initialization> starts with the keyword INITIAL
or CONSTANT. A CONSTANT <initialization> makes it illegal
for <identifiers> to appear in an assignment context since
its value may never be changed. : :

A simple <initial list> is a sequence of one or more
<expression>s of the proper type which are computable at
compile-time. A simple <initial list> may be repeated to
form a more complex <initial list> by the phrase <arith exp>#.
<arith exp># may also precede a single literal or a single
unsubscripted variable name, (d&enoted by § in the syntax diagram).

In general, the number of values in the <initial list>
must be equal to the total number of components of the
variable. However, an asterisk following the <initial list>
implies the partial initialization of a variable name.

If the variable has array specification, and is an
.integer or a scalar, a single value in the <initial list> may
be used to specify the initial value of all the array elements.
Similarly, for vector, matrix, bit or string initialization
a single value in the <initial list> can specify the initial
value of each individual component, or of each component of
an array of vector, matrix, bit or character type. If the
variable is an array of vectors or matrices, and the number
of values in the <initial list> is equal to the number of
components of the vector or matrix, then those values are
applied to all array elements alike. If the variable is a
structure with multiple copies, and the number of values in the
<initial list> is exactly equal to the total number of data
elements in one copy of the structure, then each structure
copy is identically initialized with those values.

45

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

SYNTAX:

initialization

Initialization specification

initial list

. CONSTANT '
INITIAL

B expression

initial list

g
(55

EXAMPLES:

DECLARE A ARRAY (8) INTEGER INITIAL(2#(1, 3#5)),
| DECLARE B ARRAY (5) BIT(7) CONSTANT (5# (BIN' 101001
DECLARE C CHARACTER(5) INITIAL(' ALPHA');
DECLARE IDENTITY _MAT MATRIX INITIAL(l 0,0,0,1,0,0,0, '1);
DECLARE V ARRAY (4) VECTOR(5) INITIAL(l 2,3,4,5); :

)','):

‘ f : ! M)’t UM b‘f l}"" LUWJb //) u’ﬂ/"}/jé "
‘ - | 'jmﬂCklpv
o t 7 W . e
((L S

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 « (617) £51-1840

5.0 DATA REFERENCING CONSIDERATIdNS

Central to the HAL/S language is the ability to
access and change the values of variables. Section 4.
dealt comprehensively with the way in which variable names
are defined. This Section addresses itself to the various
ways these names can be compounded and modified when they
are referenced.

5.1 Referencing Simple Variables

A "simple variable" is any variable which is not a
structure or part of one. When a simple variable is defined
in a <declare group>, it is syntactically denoted by the
<identifier> primitive. Thereafter, since its attributes

~are known, it is denoted syntactically by the <8var name>
primitive, where § stands for any of the types arlthmetlc,
blt, character, or event.

5.2 Referencing Structures

When an <identifier>.is declared to be a structure,
its tree organization is that of the template whose '
<template name> appears in the structure declaration. Refer-
ences to the whole structure are obviously made by u31ng the
declared <identifier>, which syntactlcally becomes a
<structure var name>. The way in which parts of the struc-
ture (its minor structures and terminals) are referenced
depends on whether the structure is "qualified" or "unqualified"
(see Section 4.7).

5.2.1 Unqualified Structures

v If a structure is unqualified, then any part of it,
either minor structure or terminal, may be referenced by
using the name of the part as it appears in the <structure
template> definition. If a minor structure is referenced,
the name becomes syntactically a <structure var name>, If
a terminal is ‘referenced, then syntactically the namc becomes

47

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

a <f§var name> where § stands for any of the types, arithmetic,

bit, character, or event, as approprlate to the attrlbutes
of its definition in the template.

EXAMPLE :
STRUCTURE A:

1l B, .
2 C VECTOR,
2 .D SCALAR, | structure template
1l E,
2 H EVENT,
2 G INTEGER,
"1 H BIT(16);

DECLARE A A;STRUCTURE; .| unqualified declaration

MINOR _STRUCT = E;

M= G; ‘ | references to parts of
B~BIT = H; structure A

48

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSA‘CHUSETTS 02138 « (617, 661-1840

5.2.2 Qualified Structures

. f a structure is qualified, then any part of it,
eithe- inor structure or terminal, is referenced as follows.
First, che name of the part of the structure is taken. Then
the "branches" of the structure tree are traversed back from
it to the "root" or major structure (see Section 4.3). On
v »ssing through each "fork" or minor structure, the name is

»fixed with a period and then with the name of that minor

ucture. This process ends with the prefixing of the major

ructure name. If a minor structure is being referenced,
..1e resulting "qualified" name becomes syntactically a
<structure var name>. If a terminal is referenced, then
syntactically it becomes a <§var name>, where 8§ stands for
any of the types, arithmetic, bit, character, or event,
as appropriate to the attributes of its definition in the
template.

EXAMPLE:

STRUCTURE A:
1 B,
2 C VECTOR,
2 D SCALAR,
1E,
2 H EVENT,
2 G INTEGER,
1 H BIT(16);

structure template

DECLAKRE 2 A;ﬁTRUCTURE; :] qualified declaration
MINOR_STRUCT = Z.E;

M= 2.¢.G; references to parts of
., .. structure 2 :
B _BIT = Z.H;

49

INTERME TRIGS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (G17) 661-1840

5.3 Subscripting

For the remainder of this Section, unsubscripted
variable names are denoted syntactically by <§var name>,
where § stands for any of the types arithmetic, bit,
character, event, or structure. It is convenient to intro-
duce the syntactical terms <$var> to denote a subscripted
or unsubscripted <8var name>, and <variable> to mean any
type of <8var>. <bit pseudo-var> is a reference to the
SUBBIT pseudo-variable (see Section 6.5.4).

SYNTAX:

arith
bit
8 char variables
structure
event

1—@—'4 subscript —@—J »

variable

Y

§ var name

— event var eammam

bit var

o . Y { bit pseudo-‘var N

arith var

char var

structure var s

50

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 : (617) 661-1840

‘5.3.1 Kinds of Subscripting‘

In HAL/S there are three kinds of gubscrlptlng which
may potentially be applied to <§var name>s: component, array,
and structure subscripting.

e <component sub> can be applled to simple variables
and structure terminals which have one or more
component dimensions (i.e. made up of distinct
components). - The applicable types are vector,

~matrix, bit and character (e.g. 8)‘

¢ <array sub> can be applied:to any arithmetic,
~bit, character, and event variables which are
given array specification in their declaration.
This includes both simple variables and structure
“terminals (e. g I;6)

° <structure sub> can be applied to arithmetic,
bit, character, and event variables which are
terminals of a structure which has multiple
coples. It can also be applied to the major and
minor structure varlable names of such a struc-
ture.

51

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 -+ (617) 661-1840

SYNTAX:

subscript construct

Ccomponent
(1_sub N ‘ A
Sy o array sub ,—L@ 1 >
component
sub
r bt)

Component 1
“—{ structure sub sub J

[
\ o

() component]
. array sub | B
_ Y sub

52

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 62138 - (617) 661-1840

5.3.1.1 Subscripting Data Types and Arrays of Data Typcs.
Subscripting of an unarrayed vector, matrix, bit or character
is accomplished by use of the form <component sub> and refer-
ences a single component. ‘Subscripting of an array of
integers, scalars, or events is accomplished by use of the
form <array sub> and references a single data element (e.g.

).

Subscripting of an array of véétor, matrix, bit, or.
character type has three forms: '

e a <component sub> will yield an array (of same
array dimension) of the specified components.
An array of matrices subscripted with a * for one
index will yield an array of vectors; an array of
scalar yectors will yield an array of scalars, etc.
(e.g. [V]I or []4'3).‘ .

‘e the form <array sub>:* (where the * is optional) '
will yield all of the data elements of the speeci-
fied array component (e.g. B = [V]4,;)

e the form <array sub>:<component sub> will yield
the specified element of the specified array.

(e.g. B = 11&1:}'4:*,3; or C = 3‘@4;2‘,3’)

. ! -
ML—‘,](J% Vi M&*:‘—’,s;)
5.3.1.2 Subscripting Unarrayed Structure Terminals. The
use of the form <structure sub> specifies which structure
copy is referenced to find the given integer scalar or event
type structure terminal (e.g. A.st).' ’ ’

'If the structure terminal is of vector, matrix, bit -
or character type, then - :

e the form <component sub> will yieid all of thé
copies (in each structure copy) of the specified
component.

® the form <structure sub>; will yield‘tﬁe structure
terminal of the specified structure.

e the form <structure sub>; <component sub> will
yield the specified component of the structure
terwinal of the specified structure.

53-a

INTERMETMCSINCOHPORATED~701CONCORDAVLNUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

5.3.1.3 Subscripting Arraved Structure Terminals. If the
"structure terminal 1s of integer, scalar, or event type,

then:

the form <array sub> references the specified
array element of the terminal of each copy of

‘the structure. o r

the form <structure sub>; references the arrayed
structure terminal in the given structure copy.

the form <structure sub>; <array sub> references
the specified array element of the terminal of the
specified copy of the structure. '

If the structure terminal is an array of vector,
matrix, bit, or character type then:

the form <component sub> references the specified
component of each array element of the terminal
of each structure copy. - ’

the form <array sub>: references the specified
array component (i.e. vector, matrix, bit or
character type) of the terminal of each copy of
the structure. . o :

the form <structure sub>; references the arrayed.
matrix, vector, bit, character data type of the
terminal of the specified copy of the structure.

the form <array sub>:<component sub> references
the specified component of the specified array of
the terminal of each copy of the structure.

the form <structure sub> ;<component sub> réferences
the specified component of each array element of
the terminal of the specified copy of the structure.

+he form <structure sub>;<array sub>: references

the specified array component of the terminal of
the specified copy of the structure.

the form <structure sub>;<array sub>:<c .onent sub>
references the specified component of t. specified
array of the terminal of the specified copy of the
structure.: '

53-b

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (GA17) €61-°240

EXAMPLES :

1. M3,4 references the natrix-component in the third row,
- fourth column.

2. Ay references a scalar or integer array elemeént in
thé $econd plane, third row, fourth column of array.A.'

3. Az,3,4:3,4 references the component in the thlrd row,
fouréh column of the matrix located in the second plane,
third row, fourth column of the array, A.

4. BIT;g(A) references the 16th bit in the bit representation
' of A.

’ . - . .
5. TEXTg references the 8th character in the string.

* .
6. M3 4: references the matrix in the,third row, fourth

column of the array of matrices, [M].
7. STRUCTURE A:
1 B,
2 C ARRAY(4,4) MATRIX(3,3),
2 D INTEGER, '
1E,
' 2 G VECTOR(3),
1 F BIT(1);
DECLARE A ASTRUCTURE (50);

The following examples refer to the above structure template.
and declaration.

o >
a. Cg, 6 1,2

This represents the scalar component in the first row,
second column of the matrix which occuples the 4,2
_position in the array C. This array is in the 8th copy
of A.
b. ({6},

This repfesents the second component of the vector G
in all copies of A.

53-c

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

C. FZS;

This represents the single l-bit,‘bit—string in the
25th copy of A.

a. {-[5]}23:4'*:

This represents the array of all of the matrices
(specified by *, see Section 5.3.2) in the "4th row"
of the array C, in the 23rd copy of A, :

53-d

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 6F 40

5.3.2 Forms of Subscripting

A <structure sub>, <array sub>, or <component sub>
consists of a series of subscript expressions separated
by commas. Each subscript corresponds to the particular
structure, array or component dimension to which
it is attached. The form <sub exp> specifies the index
of one component, array element, or structure copy to be
selected. The TO phrase may be used to reference (or parti-
tion) a set of elements by specifying the lower and upper
index limits respectively. Similarly, the AT phrase may be:
used to reference a set of elements by specifying the size
(or length) of the set, and the lower index limit respectively.
The use of a number sign (#) results in the value of the upper
limit of the particular index. : :

The use of the * indicates "all.of a particular index"
and can be used to establish a cross section of a matrix '
or an array. :)

54-a

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSLTTS 02138 + (617) 661-1840

SYNTAX:

. { structure
sub

o H
e)
4 T o~ —— - A -

’ ‘_- arith exp ‘sub exp

—_ | sub exp sub exp
| *)

arith exp l———

- 54-b

INTERMETRICS INCORPORATED + 701 CONCORD. AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840.

EXAMPLES :
' *
My AT 5, 4 AT 7

E*’4

[VIZ,*:

Bs 1o 10.

(A peti—tp22) ,1 TO 3:4 TO #
PLITP

55

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSCTTS 02138 - (617) 661-1840

'5.3.3 The Arrayness of Variables and Expressions

A <§var name> which is a simple variable 'is said to
be "arrayed", or to possess "arrayness" 1f an array speci-
fication appears in its declaration. The numbér of dimen-
sions of arrayness is the number of dimensions given in the

array specification. o

A <Svar name> which is a structure terminal is said
to be arrayed or to possess arrayness 1f elther or both of
the following hold: , .

e an array specification appears in its declaratlon
in a structure template. :

° the structure of which <§var name> is a termlnal
has multlple-coples. -

The number of dimensions of arrayness is the sum of the
dlmen51ons orlglnatlng from each source.

Appendlng structure or array subscrlptlng to a
<fvar name> may reduce the number and size of array dimensions
of the resulting <§var>, :

The arrayness of HAL/S expressions originates from
that of their operands, and thus from the <§var>s appearing
in them. Although the forms of subscript dlstlngulsh
between array dimensions and structure copies, no
distinction is made between them as far as arrayness matching
1s concerned. ‘

EXAMPLE: STRUCTURE Z:
1 B ARRAY(5),
1 C SCALAR; ‘
DECLARE A Z_STRUCTURE (10) ,
C ARRAY(10,5) ;

fe} = {A.B} + [Cl; /* ARRAYNESS IS 10,5 */

56

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

(‘ oo v"Vr‘
/

5.4 The Natural Sequence of Elements

There are several kinds of operations in the HAL/S
language which require <§var>s with multiple components,
array elements, and structure copies, and also <expression>s,
to be unraveled into a linear array or strlng of data values.
The reverse process of "reravellng" a linear array or string
also occurs. The two major occurrences are in I/O (see
Section 10) and conversion functions (see Section 6. 5). The
order of unraveling is called the "natural ‘'sequence".

5.4.1 The Natural Sequence of Major and Minor Structures

° Each copy of the major or minor structure is _
unraveled in -turn, in order of increasing index.
(e.g. A.B31; A.By; A.B3; etc.)

® Each structure terminal defined under the major
or minor structure is unraveled in turn, in order
of their appearance in the structure template.

e FEach structure terminal is unraveled according to
the rules given below. :

5.4.2 The Natural Sequence of Simple Variables and Structure
Terminals

e If a structure terminal has multiple copies, each
copy is unraveled in turn, in order of increasing
index.

e If the simple variable is arrayed, each arruy,
dimension is unraveled in turn, startinq from
the leftmost defined dimension, and in order of

increasing index. (e.g. t T
(B12737, | ﬂll\l ?N P Pl
1'3 o /’ g’b @‘ J) Bl 2

e Integers, scalars, characters, bits and events are
considered as having only one component data
value.

e Vectors are unraveled componcnt by component, ln
ordcr of increasing 1ndex.

° Matrlces are unraveled row by row, in order of
increasing index. The components of each row are

unraveled in turn, in order of increasing index.
This process is similar to that for arrays -above,

57

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

58

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

6.0 DATA MANIPULATION AND EXPRESSIONS

An expression is an algorlthm used for computlng a

value. 1In HAL/S, expressions are formed by combining operators
with operands in a well-defined manner. Operands generally

are variables, llterals, other expressions, and functions. '
The type of an expression is the type of its result, which is
not necessarily the same as the types of its operands. Expres-
sions are divided into three major classes accordlng to their
usage: regular expressions, condltlonal expressions, and event
expressions,

6.1

Regular Expressions

Regular expre551ons comprise arithmetic expressions,

bit expressions, and character expressions, together with
structure variables. An <expression> can appear in an assign-
ment statement, as an input argument of a procedure or function
block, or in a WRITE statement.

SYNTAX:

expression

expression

=4 o arith exp e e
— bitexp i
o
D— char exp

‘- structurevar f———o-

INTERMETRICS '\

59

2ORPORATED - 701 CONCORD AVENUL + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

6.1.1 Arithmetic EkpresSions

~ An <arith éxp> is a sequence of <arith operand?s
(see Section 6.1.4.1) separated by arithmetic operators, .
and possibly preceded by a unary plus or minus.

The following table summariZes the precedence 4
(i.e. order of operation) rules for arithmetic operators:

OPERATOR PRECEDENCE

*k (FIRST)

1

<> 2
: 3

. 4
5

6

(LAST)

If the two operations with the same preceaenCe follow
each other then the following rules apply: .

e Operators **, / are evaluated right-to-left;

e operators <> are evaluated so as to minimize the
total number of elemental multiplications required;

e all other operators are evaluated left-to-right.

Table C. of the appendix summarizes the results of a given
operator applied to all possible types of <arith operand>s.

60

INTERMETRICS INCORPORATED - 701 CONCORD AVEHNULE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) GO

-1840

SYNTAX:

arithmatic expression

< arith exp >
_L, .J — L[arith operand

0501099

]
{ - J
'EXAMPLES:
I+J- (k+2)3 INTEGER EXPRESSION: I,J,K INTEGERS
W (MAR) '~ VECTOR EXPRESSION
M | ‘ ‘ |
rY SCALAR EXPRESSION: R,P SCALARS
k42 S
(M + N) MATRIX EXPRESSION

A/B C: ' ; MULTIPLY DONE BEFORE DIVIDE

61

INTERMETS CS INCORPORATED - 701 CO‘NCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6.1.2 Bit Expressions

. A <bit exp> is a sequence of <bit operand>s (see
Section 6.1.4.2) separated by bit operators whose order of

evaluation is:

!

OPERATION

OPERATOR | PRECEDENCE
Catenation car, || | 1 (FIRsT)
Logical Intexsection | AND, & ,2 |
Logical Union - [OR, | 3 (LAST)

If two operations with the same precedence follow each
other, they are evaluated from left-to-right.

SYNTAX:

‘bit expression

> bit operand e ‘@
|
CAT

EXAMPLES :

Bsc|] D
A OR (ﬁ AND é)

62

" INTERMETRICS INCORPORATLD + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138

+ (617) 661-1840

6.1.3 Character EkpreééionS»

A <char exp> is a sequence of operands separated by
the operators: CAT or ||. Each operand may be a <char operand>
(see Section 6.1.4.3) or an integer or scalar <arith exp>.
The sequence of catenations is evaluated from left-to-right.

SYNTAX:

) ' character expression
= - char operand f @ '
. L arith exp —J "
EXAMPLES: Q|| T || o0Q;

}‘éExT{I'ﬁELP'Il(A/S)ll(ﬁjlé)]'

63

INTERMETRICS INCORPORATED « 701 CONCORD'AVFNUE + CAMBRIDGE, MASSACHUSGETTS 02138 + (617) 661-1840

'6‘1,4\ Regular Expression Operands

' Operands of the appropriate type are used with
operators to form regular arithmetic, bit or character
expressions. These operands include <arith operand>s,
<bit operand>s, and <char operand>s.

6.1.4.1 Arithmetic Operands. An <arith operand> may be

an arithmetic variable, an arithmetic expression enclosed
in parenthesis, a <normal function> of the appropriate
type, an <arith conversion> function, or a literal <number>.
Precision may be specified by a <precision> subscript (see
Section 6.7). ‘ : '

SYNTAX:

arithmetic operand

——— arith var

:
,-@ arith exp —@-\

. { number) -

) \ / - :
{ normal function —l@ precision

\— arith conversion f|—r

EXAMPLE: (A+B) @DOUBLE
’ SIN_‘(X)

[Aly 70 5
INTEGER (X?)
36.047

_ 64
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) GG1-1840

6.1. 4 2 Bit Operands. —N<bit operand> may be a <b1t var>

a <bit exp> enclosed in parentheSLS, a <bit literal>,

<nor:gl function> of bit type, a <bit conversion> functlon,
or a <bit pseudo-var>. In real time programming, a <bit
operzand> may be an <event var> or a <process-event name>

(see Section 8.9). Any form of <bit operand> may be prefaced
by NCT or T, causing its logical complement.

SYNTAX:

- bit operand
bit) .
’ .)
) , f_@-— bit exp —@-ﬁ
4 l - :< bit var] R >
‘f—_]\\ } - event var
“———@ocess -event n@-;‘
normal function
bit conversion
\-———-v bit pseudo-var |’
EXAMDLES : ~ BIT'11010110"
5
BIT(A)
¢ o
(alc)
. ,
c.

1 TO 8

65

. INTERMETRICS INC CRPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

6.1.4.3 Character Operands. A <char operand> may be a
<char var>, a <char exp> enclosed in parenthesis, a <char
literal>, a <normal function> of character type, or a
<char conversion> function.

SYNTAX:

character operand

,—-@—— char exp _._.G>ﬂ

- char var

normal function p————

char literal

\— ! char conversion j————

 EXAMPLE: 'DELTA'
(sTaTus||'0.K.")

CHARACTER (I+J)

66

T INTERMETRICS INCORPOH/\TEO . 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) GG1-1840

6.1.5 ‘Array Properties of Exbressions

Any regular expression may have an array property
by virtue of possessing one or more arrayed operands. The
evaluation of an arrayed regular expression implies an
element-by-element evaluation of the expression. If only
one operand is arrayed, then evaluation of the operation
using the unarrayed operand and each element of the arrayed:
operand is implied. If more than one operand is -an array of
equal dimension, evaluation of the operation for each of the
corresponding elements is implied. 1In all cases, the result
is an array of the same.dimension as the operand array.

67

INTERMETRICS INCORPORATED -« 701 GCONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6.2 Conditional Expressions

A A <condition> is a sequence of <ggnditi?na1 operand>s
separated by logical operators, whose order of 'evaluation is:

OPERATION o OPERATOR ~ PRECEDENCE
Logical Intersection AND, & 1 (FIRST)
Logical Union OR, | 2- (LAST)

SYNTAX:

2
conditional expression

Y

D — conditional operand >—\

\. o

conditiona! operand

conditiona
operand
> - comparison

@ .
[P 1 @—_ cqnydftion - 7)

EXAMPLES : “(A>B) | (A>C)

(A<=B)

X>100 AND T (Y<3 OR 2>2)

68
TERMETRICS INCORPORATED + 701 CONCORD AVENUE » CAMBRINGE, MASSACHUSETTS 02138 « (617) 661- 18406

6.2.1 Arithmetic Comparisons

An arithmetic <comparison> is a comphrison between
two <arith exp>s whose types must match (except for mixed
_integer and scalar operands when the integer operand is
converted to scalar). Valid combinations of ‘types of
<arith exp>s for comparison may be found in Appendix C.
1f the operands are vectors or matrices, the operator must
be =, "=, NOT=, and is compared element-by-element. -

SYNTAX:

arithmetic comparison .

NOT <

NOT >

comparison

-~

1 arith exp arith exp: s

P00

!

:

EXAMPLES : I
| (M+N) NOT <36

Xk *
K =1L

I <= (A+P V)

69

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

6.2.2 Bit Comparisons

A bit comparison is a.comparison between two <bit exp>s
which are said to be equal if they have identical bit
patterns. If the operands have different lengths, the
shorter operand is left padded with binary zeros to .match
the length of the longer <bit exp>. ~ '

SYNTAX:
) bit comparison
< comparison > '
- e—3——1 bitexp WJ —@- [l, bit exp —-——---
EXAMPLES : B~ = BIN'110'

70

INTFTRMETRICS INCOHf.’ORATFD . 701.CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

6.2.3 Character Comparisons

A character comparlson is a comparison between two
<char exp>s. If the operands have different lengths, the .
<char exp> of shorter length is right padded with blanks to
match the length of the longer operand.

SYNTAX:
o - character comparis_on. ‘
chaie;‘(p‘ - m,=, . _“chare.xp -.__......
NOT =
EXAMPLES L C='A"

71

\TERMETRICS INCOHPORATED 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

6.2.4 Structure Comparisons

A structure comparison is a comparison between two
<structure var>s whose tree organizations are identical ~
in all respects and whose number of copies are’equal. If the
<comparison> operator is =, the result is TRUE only if ‘it is

TRUE for each copy; if the <comparison> operator is °= or
NOT=, the result is TRUE if it is TRUE for at least one copy.

SYNTAX:

structure comparison .
comparison : i .

——] StTUCTUTE VET

Structurg Var |

6.2.5 Comparisons Between Arrayed Operands

A <comparison> of any one of the forms described may
have arrayed operands, although the <comparison> operators
are restricted to =, "= and NOT=. The <comparison> is done
on an element-by-element basis producing an unarrayed result.
If the operator is = then the result is TRUE only if it is
TRUE for all elements of the <comparison>; if the operator is
“= or NOT= then the result is TRUE if it is TRUE for at -
least one element of the <compariscn>. :

72

INTERMETRICS INCQRPORATLD + 701 CONCONRD AVENUE - CAVERIDGE, MASSACHUSETTS 02138 + (617) 661 ° 2

- 6.3 Event Expressions

An event expression, used in real time programming
(see Section 8.), ‘is an unarrayed sequencc of <event operand>s
separated by a subset of bit operators. The order of evalua-
tion of each operation is dictated by operator precedence:

OPERATION OPERATOR PRECEDENCE
Logical Intersection AND, & 1 (FIRST)

| Logical Union OR, | 2 (LAST)

If two successive operations have equal precedence,
they are evaluated from left-to-right. The <event operand>
may be optionally prefaced by the logical complementing
operators NOT or . ‘

SYNTAX:

. event expression

-

> event operand

\. -

event operand

event : g :
operand / . , ! .
' f-@—‘ ‘event exp
- > event var

process-event name

|

EXAMPLES : ALPHA OR BETA
~ (A&B)
: 73 -
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6.4 Normal Functions

Section 6.1.1 through 6.1.3 have made reference to
normal functions which are invoked by appearing as an operand
in an expression. Normal functions fall into two classes:

e "built-in" functions named by <label> and defined
as part of the HAL/S language (see Appendix B for
a list of these functions);

e "user-defined" functions named by <label> and
defined by the presence of <function block>s in
<compilation>s.

Each <expression> or "input argument” of a normal
function must match the corresponding input parameter of
the function definition in type, terminal size, structure
tree organization, etc.

. 1f a user-defined function is invoked before it is
defined by its <function block>, the name and type of the
function must be declared at the beginning of the containing

name scope.

SYNTAX:

normal function

normal
function

expression

()
U™

EXAMPLES : SIN(2X)
' UNIT (V) -
USER_COS ()

74

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) £51-1840

6.5 Explicit Type Conversions

HAL/S contains a comprehensive set of function-like
‘explicit conversions (see Appendix D.) some of which, called
shaping functions, also have the property of being able to
shape lists of arguments into arrays of arbitrary dimensions.
HAL/S contains conversion functions to integer, scalar, vector,
matrix, bit, and character types. '

6.5.1 Arithmetic Conversion Function

The keyword INTEGER, SCALAR, VECTOR, or MATRIX gives
the result type of the conversion. A <precision> specifier
gives the precision of the result while a <subscript> speci-
fier gives its dimensions. Any <expression>, may be preceded
by the phrase <arith exp># which denotes the number of times
the <expre551on> is to be used in generatlng the result of
the conversion.

A If INTEGER or SCALAR are subscripted, the <subscript>s
denote the size of each array dimension produced. If there
is no subscript, and if there is only one unrepeated arrayed
argument, a linear (l-dimensional) array is produced. In
all cases, INTEGER and SCALAR may have arguments of any type
except structure. .

A VECTOR <subscript> is an <arith exp> specifying
the length of the resultant vector. If no subscript -
is specified, VECTOR produces a 3-vector result.

A MATRIX sunscrlpt has the form: <arith exp>,
<arith exp> denoting the row and column dimensions
respectively of the matrix result. If no subscript is
specified, MATRIX produces a 3-by-3 matrix result.

VECTOR and MATRIX may have arguments of scalar, vector,
and matrix type only.

75

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

SYNTAX:

arithmetic conversion function

arith
“\ conversion

VECTOR

00

Y

MATRIX -

SCALAR precision | subscript l@'[

INTEGER - - _ e

I

—_——— @ 1 . ‘ expression ~ @
arith exp o ‘
() -
EXAMPLES : INTEGER2 2(4*I+J)
B r 3
SCALAR(A,B:C‘,].S#D) ‘
VECTOR,_ (A,0,B,E)

i
MATRIXV 4»’12‘“([A])

VECTOR (X,Y, Z)

76

< INTERMETRICS INCORPOR/\T(ZD - 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUGETTS 02138 ¢ (617) 6611846

6.3.2 The Bit Conversion Function

BIT converts an argument of integer, scalar, bit,

r character type argument to a bit result. If the argument
is zrrayed, the conversion result is identically arrayed.
<suzscript> represents terminal subscripting upon the results
of the conversion. "

<radix> has the following possible forms:

@HEX

@DEC
@ocT

@BIN

(hexadecimal digits)
(decimal digits)
(octal digits)-
(binary digits)

The <char exp> consists of the legal digits listed to
the right of each _ :
birnzary representation of <char exp>.

SYNTAX:

radix

form above. The conversion generates

bit .
conversion

AI@‘ radix —@-@-—charexp

bit conversion function

(
&

@—exprcssion
subscript’ —@.—I :

BIT(I+J)

BITml TO 8(A) .

BITaocr

B

ITanEx

('657"')

('r2p')

77

INTERMETRICS . ZORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 6G1-1840

6.5.3 The Character Conversion Function

CHARACTER converts an integer, scalar, bit or character
type argument to a character result. If the argument is
arrayed, the conversion result is identically darrayed.
<subscript> represents terminal subscripting-upon the results
of the conversion. : '

<radix> has the following possible forms:

@QHEX - - (hexadecimal string result)
@DEC (decimal string result)
eocCT 1octa1 string result)

@BIN (binary string result)

The value of <bit_exp> is converted to the character
string representation indicated above after left padding the
value with binary zeroes as required.

SYNTAX:

character conversion function

__<: > radix —@-@—- bit exp
P @-—- expression
l—@- subscript —@J

bit
conversion

CHARACTER

engx (B)
CHARACTER (A_SCALAR)

- EXAMPLES: " CHARACTER

CHARACTER (4567)

@DEC

78

ANTERMETRICS INCORPORATED - 701 CONCORD AVENLJE « CAMBRIDGL, MASSACHUSETTS 02138 « (617, £4° -840

6.5.4 The SUBBIT Pseudo-Variable

‘ The SUBBIT pseudo-variable allows access to other
data types without conversion. It may appear in an assign-
ment context with a <variable> argument, or as part of an
<expression> as an operand of a <bit exp>. <subscript> repre-
sents terminal subscripting of the pseudo-variable.

SYNTAX:

SUBBIT pseudo-variable

bit
pseudo-var / -

SUBBIT

variable

) - C() .
‘L®- subscript ‘®4]’ 1 expression

EXAMPLE: SUBBIT

5 10 g (I = Hll2s
‘c = SUBBITl TO 8 (A);
79

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

6.6 Explicit Precision Conversion

If <precision> is a subscript of an <arith operand>,
a conversion to the precision specified takes place. If
<precision> is a subscript of an <arith conversion> then
the conversion result has the indicated precision. In
referring to integer type, SINGLE implies a halfword and

DOUBLE implies a fullword.

SYNTAX:
: precision specifier
> (o) { singLE)
EXAMPLES :
A = Egsrnere * (®B*Cepousre) D) esinere

80

-INTERMEHMCSINCORPOHATCD-701CONCORD(“WNUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617, €61-1840°

7.0 EXECUTABLE STATEMENTS

Executable statements are the building blocks of the
-HAL/S language. ‘They include assignment, flow control, real
time programming, error recovery, and input/output statements.
Syntactically any statement of the- above types is de51gnated by
the term <statement>. The manner of a <statement>'s integration
" into the general organization of a HAL/S compllatlon was
discussed in Section 3.

7.1 Basic Statement Definition

All forms of <statement> except. the IF statement fall
into the category of a <basic statement>. Not all of the
<basic statement>s are described in this Section. Real time

: programmlng statements are described in Section 8., error
- recovery in-Section 9., and input/output in Section 10.

SYNTAX 1

basic 'statement'

> e basic statement

81

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSAC! JUSETTS 02138 - (617) 661-1840

7.2 The IF Statement

The IF statement.provides for the conditional execution
of segments of HAL/S code. If the ELSE clause is present, then
a second nested IF statement cannot appear preceding the key-
word ELSE. ' '

SYNTAX:

IF statoment

< statement >

condition

L%
|

Taqg}—----

bit exp

- - statement

1—- basic statement —(E LSE }— statement

EXAMPLES : IF J>0 THEN K=1;
' ELSE K=2;

ABLE: IF K>=J THEN K=J-1;

ELSE CALL TIME(V,T)ASSIGN (W) ;

* %

IF A=B AND M=N THEN DO; ‘
’ P=Q+1 7
2,
D=E” ;

END;

82

INTERMETRICS INCORPORATED + 701 COMNCORD AVENULE « CAMBRIDGE, MASSAGCHUSETTS 02138 ¢ (617) 661-1840

7.3 ‘The Assignment Statement

The assignment statement is used to change the current
value of a variable or a list of variables to that of an
expression evaluated in the statement. In general, the
dimensionality of <expression>s and <variable>s must match.

Execution is as follows:

e subscript exbressions of the left-hand side are
evaluated)

e the <expression> is evaluated
° the;values of the <variable>s on the left hand
side are changed

SYNTAX:

basic »
statement |

assignment statement

.4 expression

variable

e

EXAMPLES: ETA,KAPPA=LAMBDA+L;
SUM_ARRAY, i, = VALUE;

<i
]

MalT/X%

=t
!

= VECTOR, (A,B,C,D) ; /* SHAPING. FUNCTION */

83

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

7.4 The CALL Statement

The CALL statement is used to invoke execution of a
procedure. Each <expression> is an "input argument , while
each of the <variable>s is an "assign argument} whose values
may be changed by the called procedure. '

~ SYNTAX:

CALL statament:

basic ’
statement

expression |

O

variable

EXAMPLE: ’ CALL EPSILON ASSIGN (KAPPA);
ABLE: CALL GAMMA (ALPHA) ASSIGN (BETA,SIGMA) ;-

- o e - . ’ —
CALL PHI (A+B,X2 ,C) ASSIGN(T,U,V);

84

 INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBHIDGE, MASSACHUSETTS 02136 » (617) £61-1840

7.5 The RETURN Statement

The RETURN statement is used to cause return of execu-
tion from a task, program, procedure, or function block.
The <expression> may only appear in a <functlon block> RETURN ‘
statement.

- SYNTAX:

RETURN statement

basic
statement

I'

= "~ —— —(RETURN } e {:E}
: L expression —J
EXAMPLE: ~IF X>0 THEN RETURN; /* PROCEDURE RETURN */
DONE: RETURN; /* PROCEDURE RETURN */

IF X>0 THEN RETURN X /* FUNCTION .RETURNS *x/
ELSE RETURN '~X3,

DONE: RETURN A+B; /* FUNCTION RETURN */

85

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

7.6 The DO...END Statement Group

The DO...END statement group is a way of grouping a
sequence of <statement>s together so that they;collectively
ljook like a single <basic statement>. Additionally, some
forms of DO...END group provide a means of executing a
sequence of <statement>s either iteratively, or conditionally,
or both. ' ' o .

SYNTAX::

DO . .. END statement group

~— procedure block F—\

- function block |

< basic >] ; ’
statement L~ task block =

—{ update block }—{

do statement -+ end statement [~

-

,f
A
)

L— statament

"~ 97.6.1 The Simple DO Statement

The simple DO statement merely indicates that the
- following sequence .of <statement>s comprising the group -

is to be viewed as a single <basic statement->. The sequence
is executed once only. . :

86

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE CAMBRIDGE, IAASSACHUSETTS 02138 « (617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCOND

SYNTAX:

- simple DO statement

do
statemeont
L GO0
®

EXAMPLE: ~ ABLE: IF %>SIG THEN
E DO;
. ALPHA=1;
'BETA=ALPHA/3;
END;
ELSE DO;
2=2/SIG;
. SIG=SIGHL;
END;

7.6.2 The DO CASE Statement

The DO CASE statement indicates that if the value of
<arith exp> is an integer K, then of the following sequence
of <statement>s comprising the group, the Kth statement of
the group is executed. If X is either less than or equal to
zero, or greater than the number of <statement>s in the group,
then the <statement> following the ELSE keyword is executed;
if there is no ELSE clause then a run time error occurs for
“such an invalid K-value. ,

87

AVENUE - CAMDRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 |

SYNTAX:

DO CASE statement

do
statement

o - “‘—\fDO CA%}— arith exp _b - @——
OG- L

statement

EXAMPLES: ALPHA: DO CASE J-1;
' BETA=BETA+TAU;
BETA=BETA/FACTOR+TAU;
BETA=BETA/FACTOR;
END;

DO CASE N-3 ELSE GO TO ERROR1;
SUM=VALUE+TAX; |
DIFF=TAX;
DO; B
" POTAL=VALUE+TAX-DISCOUNT;
CALL BILLER(VALUE) ;
CALL SUMMARY (TAX) ;
END;
END; ,
ERROR1: IF VALUE>=0 THEN GO TO CONTINUE;

88

INTERMETRICS IN(;O'HPOR/\T['D + 701 CONCORD AVENUL » CAMORIDGE, MASSACHUSETTS 02138 « (617) 661 1725,

7.6.3 The DO WHILE and DO UNTII Statements

‘ The DO WHILE statement causes the group of <statement>s
to be repeatedly executed until the value of <condition> or
<bit exp> becomes false. The value is tested prior to each-
cycle of execution. . ‘ :

The DO UNTIL statement causes the group of <statement>s -
to be repeatedly executed until the value of <condition> or ’
<bit exp> becomes true. The value is not tested prior to
the first cycle of execution, but is tested before all subse-
quent cycles of execution. : : ~ :

SYNTAX:

DO WHILE and UNTIL statements

do
statement

condition }

bit exp

89

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

EXAMPLES: DO WHILE I>0; -
J=0; '

.
L]

VALUE=VALUE/I;
ENDj

EQUIVALENTLY: DO UNTIL I<=0;"
J=0;

VALUE=VALUE/I;
END EQUIVALENTLY

DO WHILE A&(B|C);

END;

7.6.4 The Discrete DO FOR Statement

The discrete DO FOR statement causes execution of
the sequence of <statement>s in a group once for each of
a list of values of a "loop variable". Prior to each cycle
of execution, the next <arith exp> in the list is evaluated
- and assigned to thé loop variable. The presence of a WHILE
or UNTIL clause is used to cause execution to be dependent
on some condition being satisfied gs in Section 7.6.3.

90

~ INTERMETRICS INCORPORATED + 701 CONCORD AVINUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617, £5°-°

(33

N

SYNTAX:

discrate DO FOR statement

do
statemont

= o - ‘(DO FOR)- arith var

arith exp

()
X

condition

‘ bit exp

EXAMPLE : DO FOR I=10,20,30 WHILE J>0;
| NEWVAL=OLDVAL/I+INCRMT;

J+NEWVAL;
END;

91

NTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

'7.6.5 The Iterative DO FOR Statement .

The iterative DO FOR statement is similar in intent
and operation to the discrete DO FOR statement, except that
the list of values that the loop variable may take on is
replaced by an initial value, a final value, and an optional
increment (the default value is 1).

SYNTAX:

iterative DO FOR statement

do
statement
D ;A e \DO FOR arith var arith exp ———

- = — arithexp |-+ ——

BY Y arith exp condition

—{ bitexp

92

INTERMETRICS INCORPORATED + 701 CONCOHD AVENUE + CAMBRIDGE, MASSAGHUSETTS 02138 + (617) 661-1840

EXAMPLE:

EQUIVALENT TO_LAST_EX: DO FOR I=10 TO 30 BY 10 UNTIL J%=0;
NEWVAL=OLDVAL/I+INCRMT;

L
L]

J=NEWVAL;
.END EQUIVALENT_TO_LAST_EX;

DO FOR J=-30 TO 50 BY INCREMENT;

- END;

7.6.6 The END Statement

The END statement closes a DO...END statement group.
If the optional <label> follows the END keyword, then it
must match the label on the <do statement> opening the
DO...END group. ’ ~ ' ‘

SYNTAX:
S . END statem‘e}\t
nz;tement;
) o e f e
LN - (0 f—y—>),
0! T Le
EXAMPLE : LOOP: DO FOR...;}

L]
L]

FINISH: END LOOP;
93

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

7.7 Other Basic Statements

e The GO TO <label> causes a branch in execution to
an executable statement bearing the same <label>.

® The "null" statement has no effect ét run time.

e The EXIT statement is legal only inside a DO...END
group where it causes a branch to the first execu-
table statement after the end of the DO...END group.

® The REPEAT statement is legal only inside a DO...END
group opened with a DO FOR, DO WHILE or DO UNTIL
statement. It causes immediate abandcnment of the
current cycle of execution of the innermost such
group. :

SYNTAX:

GO TO, “null” EXIT and REPEAT statements

,_<EOT§>_<3n§:}q
S — B - ,
o-@) o
G —

basic
statements

o

EXAMPLES : DO FOR...;

 ABLE: IF X>0 THEN EXIT;
ELSE REPEAT; .
IF Y<10 THEN GO TO ABLE;
END; o ‘

94

INTERMETRICS INCORPORATED + 701 CONCORD AVEMUE + CAMBRIDGE, MASSACH LZETTS 02138 + (617) 661 1840

8.0 REAL TIME . (TROL

HAL/S contains a comprehensive facility.for creating
a multi-processing job structure in a real time programming ,
environment. At run time a Real Time Executive (RTE) controls
the execution of processes held in a process queue. HAL/S
contains statements which can schedule processes {enter them
in the process queue), terminate them (remove them from the
process queue), and otherwise direct the RTE in its controll-
ing function. HAL/S also contains means whereby the use of
data by more than one process at a time is managed in a safe,
protected manner at specific, localized points within the
processes. '

8.1 Real Time -Processes and the RTE

In HAL/S, a program or task block may be scheduled
as a process and placed in the process queue. Although the
process created is given the same name as the program or
task, it is important to distinguish the static program
or task block from the dynamic program or task process created.
Two processes are actually involved in the creation of a
process: the scheduling process, or "father"; and the
scheduled process, or "son". S

8.2 Timing Considerations

In the HAL/S system, the RTE accesses a clock measur-
ing elapsed time ("RTE-clock" time). Time is measured in
Machine Units (MU) whose correspondence with physical time

1 except of course for the first or "priﬁal“ process which
must be created by the RTE itself.

95

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (G17) 661-1840

is implementation dependent. HAL/S :
contains several instances of timing expressions which in
effect make reference to the RTE-clock.

8.3 The SCHEDULE Statement

o The SCHEDULE statement is used to reguest initiation
.of a program or task

a) at a specific time (AT<arith .exp>)
b) in an incremental time (IN<arith exp>)

c) on an event expression value of TRUE (ON<event exp>)

' The initiation priority is explicitly set by use of
the phrase PRIORITY (<arith exp>). If INDZZINDENT is speci-
fied, the scheduled program or task can continue in an active
(executing) state even after the scheduling block has been
terminated (although a task-son can never be independent of
‘its program-father).

: There are two forms of the SCHEDULE statement: the
simple SCHEDULE statement and the cyclic SCZEDULE statement.

8.3.1 The Simple SCHEDULE Statemenf

The simple SCHEDULE statement initiates a program oOr
task only once. Initiation will not occur if the value of
the <arith exp> to the right of the keyword UNTIL is less
than the RTE-clock time specified for initiation. Similarly,
initiation will not occur if the value of the <event exp> to
the right of the keyword WHILE is FALSE upc:r execution of
the SCHEDULE statement or at any time before the process is
initiated. The clause UNTIL <event exp> has no effect on a
simple SCHEDULE statement.

96

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MATLACHUSETTS 02138 + (617) 661-1840

SYNTAX:

Simple SCHEDULE Statement

basic
statement / -

arith exp

arithexp P

a8

> {SCHEDULE }—{label)4

¢

O-ED

!

-

PRIORITY o arith exp @

eventexp

@
L2

—— - e

UNTIL

arith exp

_—

arith exp

INDEPENDENT

. ,—@HiLE)—— eveént exp

-

EXAMPLES: SCHEDULE IOTA;

SCHEDULE RADAR ON R _RUPT OR C _RUPT PRIORITY (HIGH) ;

SCHEDULE TRACK AT 15

SCHEDULE TRACK ON TRACK_FLAG UNTIL 15;

97

INTERMETA &5 INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138

. (617) 661-1840

- 8.3.2 The Cyclic SCHEDULE Statement

‘The cyclic SCHEDULE statement contains a REPEAT
phrase which causes the RTE to cycllcally execute the process
as long as one of the following holds. ~

a) UNTIL <arith exp> is greater than the RTE-clock tlme.
b) UNTIL <event exp> is evaluated to be FALSE.
c) WHILE <event exp> is evaluated to be TRUE.

, These evaluations are made prior to each cycle; but
UNTIL <event exp> is not evaluated until the second and
subsequent cycles.

To cause a fixed RTE-clock time delay between the
completlon of the previous and the beglnnlng oz the . next
cycle, the qualifier AFTER <arith exp> is used. To cause
the beginning of successive cycles of execution to be
separated by a fixed RTE-clock tlme delay, the quallfler
EVERY <arith exp> is used.

SYNTAX:

The Cycllc SCHEDULE Statement .

arithexp

G-
f—Cl?\))-—w arith exp

> .[_ — i} (ScHEDULE }—{1abel)<
PRIORITY o arith exp |

-

B
- -

pou
Looas

I-—Q\FTE@— arith exp U[
REPEAT jo{— — - ' _J
‘l"@/ﬂ@— arith exp

I anin exp

arith exp }—/

98 K IR
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - - CAMBRIDGE, MASS/ ACJSETTS 02138 + (617) 661-1840

EXAMPLES: SCHEDULE DELTA INDEPENDENT, REPEAT EVERY 15.9
‘ UNTIL 75.9;

SCHEDULE STEERING AT TIG-5 PRIORITY(G), REPEAT
EVERY 2 WHILE ENG _ON;

8.4 The CANCEL Statement

Wwhen a CANCEL statement is used, if the process is
non-cyclic no action is taken. If the process is cyclic,
then the process is cancelled at the end of the current
cycle of execution after possibly waiting for any dependent
sons to terminate. :

SYNTAX:

CANCEL statement
basic
statement

4 - —o«—{ CANCEL) — @

EXAMPLE: CLEAN_UP: CANCEL ETA,NU;
l' . . . !
IF A&B&C THEN CANCEL TRACK;JOB;

99
TEAMETRICS INCORPONATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

8.5 The TERMINATE Statement

The termination of a process implies the immediate
cessation of execution of the process and all its dependent
sons, and their removal from the process queue{ The TERMINATE
statement is used to direct the RTE to terminate specified

processes.

SYNTAX:

TERMINATE statement '

" basic
statement

- - { TERMINATE)

EXAMPLE: -IMMED_STOP: TERMINATE ALPHA, BETA;

8.6 The WAIT Statement

The WAIT statement is used by an active program or
- task to suspend and reactivate itself: '

a) at a specific time: WAIT UNTIL <arith exp>

b) after an incremental time: WAIT <arith exp>.

100 |
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1i+ P

c) wupon termination of all dependent sons: WAIT FOR

d) wupon a TRUE value of an event expression evaluated
at each "event change point" (see Section 8.8):
WAIT FOR <event exp>. ‘ : ‘ :

SYNTAX:

WAIT statement

arith exp b

basic .
statement

]
o evgntexp -—J’ ‘ .
' %umﬁ.)-— arith exp f—-7"

EXAMPLES;.) NOW: WAIT UNTIL T+7.5;
WAIT 5;
WAIT FOR Z‘&BLE:
WAIT FOR; /* TERMINATION OF DEPENDENT SONS */

WAIT FOR™ ABLE OR BAKER;

10l

INTE:‘.'ETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

8.7 The UPDATE PRIORITY Statement

The SCHEDULE statement which creates a process can
also specify the priority of its initiation. At any time
between the scheduling and the termination of the process,
that priority may be changed to <arith exp> by means of the
UPDATE. PRIORITY statement. UPDATE PRIORITY with no <label>
specification is used to change the priority of the process
executing the UPDATE PRIORITY statement.

SYNTAX:

UPDATE PRIORITY statement

basic
statement
-— (i \eo
> > \UPD.ATE PRIORITY } » @-—-arim exp—@—
O~ .

EXAMPLE: UPDATE PRIORITY GAMMA TO 10;

UDPATE PRIORITY TO K+5;

102

. INTERMETRICS INGORPORATED + 701 CONCORD AVENUL - CAMBRIDGE, MASSACHUSETTS 02138 - (G17) 661-1647

8.8 - Events and the SIGNAL Statement

‘ At any instant of time the RTE may be viewed as having
knowledge of all existing events whenever the value of an event
changes, the RTE senses this "event change point" and may in
turn perform the evaluation of pending <event exp>s.

The value of an event variable can be changed by the
use of .the SIGNAL statement. Depending upon the implementation
and the available computer hardware, event variables shall also
respond to the external environment (either by activation
of the SIGNAL statement -or by special operating system provision).

The operation of the SIGNAL statement is summarized
as follows:

type of event type of SIGNAL statement »
end initial value SIGNAL . . ON SIGNAL . . OFF SIGNAL ..
= tv—y
T T , T
* -) * -
unlatched, FALSE n ’ ” L
t F ot F ! F

| S -— T B * EXE

latched, FALSE I : ‘ ” .

| { F t F | t F|

1 —————- T -- T -- T
latched, TRUE R | I fl
- o \ F ’ t F ‘ ‘ F

* The <eveént Var> is TRUE for a period of time invisiblé
to the HAL/S user but long enough to be detectable by

the RTE. ’
NOTE: T & TRUE
F ¥ FALSE

103

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

SYNTAX:

SIGNAL statement

basic
statement

. R =) N -
> [o] \SIGNAL event var -1 V { { : }

"EXAMPLE: - SIGNAL IOTA ON;

8.9 Process Events

Any program or task block may have associated with it
a so-called “process event" of the same name. This process-
event behaves in every way like a latched event except that
it may not appear in SIGNAL statements. Its purpose is to
indicate the existence of its associated program or task
process. If a process of the same name as the process-event -
exists in the process queue, the value of the process- event
is TRUE, otherw1se it is FALSE.

, 8.10 Data Shating and the Update Block

The update block provides a controlled environment
for the use of data variables which are shared by two or more
processes. If controlled sharing of certain variables is
desired, they must be declared with the LOCKED attribute.
LOCKED Varlablos may only be used inside update blocks.
A LOCKED variable appearing inside an update block is said _
to be "changed" within the block if it appears in one or more
statements which may change its value (the left-hand side

104

INTCHMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (Gl?) 66

-
Pha it

of an assignment for exampie), "It is said to be "referenced"
“if it only appears in contexts other than the above.

‘ A formal specification of the update block appears in
Section 3.4. The manner of operation of an update block is
implementation dependent, but is such as to provide certain

safety measures.

105

NTERMETRICS INCORPORATED « 701 CONCORD AVENUE = CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

106

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIGZE MASSACHUSETTS 02138 - (617) 661-1%+"

9.0 ERROR RECOVERY AND CONTROL

References to so-called 'run time errors' have been
made elsewhere in this document. Such errors arise at execu-
tion time through the occurrence of abnormal hardware or
system software conditions. Each HAL/S implementation
possesses a unique collection of such errors. The errors in
the collection are said to be "system-defined”. 1In any imple-
mentation every possible system-defined error is assigned '
a unique positive integer, called the "error code" of that
error. 1In addition, a number of other legal error codes not
assigned to system-defined errors may exist. These can be
used by the HAL programmer to create "user-defined" errors.

, At run time an Error Recovery Executive (ERE) senses
errors, both system-defined and user-defined, and determines
what course of action to take. HAL/S possesses two error
recovery and control statements. The ON ERROR statement is
used to modify the error environment of a process at any time
during its life. The SEND ERROR statement is used for the
two-fold purpose of creating user-defined error occurrences,
and simulation system-defined error occurrences.

9.1 The ON ERROR Statement

The ON ERROR statement is used to modify the action
of the error defined by <number> prevailing in the current
program, task, procedure, function or update block, in the
following manner: ’

a) the GO TO <label> clause causes the ERE to branch
to <label> when the specified error occurs.

b) the IGNORE clause allows execution as if the error
had not occurred.

c) the SYSTEM clause causes the ERE to take standard
system recovery action.

GO TO and/or IGNORE action may not be permitted for
some errors. ‘ -

107

INTERUETMCSINCORPORATED-701CONCCHH)AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

SYNTAX:

ON ERROR statsment

basic
statament

EXAMPLES: |
ERRONEOUS: ON ERROR, IGNORE;
ON 'ERROR‘Z'7 GO TO RECOVERY;
9.2 The SEND ERROR Statement

The SEND ERROR statement is used to announce the error
condition defined by <number> to the ERE. If <number>
corresponds to a system defined error, then that error is said
to be simulated by the ERE. The action of the ERE is dictated by
the error environment prevailing at the time of execution of
the SEND ERROR statement.

108

g INTERMETRICS INCORPORATLD « 701 CONCORD AVENUE - CAMORIDGE, MASSACHUSETTS 02138 + (G17) 661-1840

SYNTAX:

SEND ERROR statement

basic
statement
> - —(SenD ERROR—S) @ <) o

EXAMPLE: TEST_CONDITION: IF ERR_FLAG THEN SEND ERRORlS;

109

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

110

INTERMETRICS INCOHPORATE D - 701 COHCORD AVENUE + CAMBRIDGE, MASSACHUSITTS 02138 + (617) (61 1840

10.0 INPUT/OUTPUT STATEMENTS

The HAL/S language provides for two forms of I/O:
sequential I/O with conversion to and from an external
character string representation; and random-access record-
oriented I/0.

All HAL/S I/O is directed to one of a number of input/
output "channels". These channels are the means used to
interface HAL/S software with external devices in a run time
environment. In any implementation each channel is assigned
a unique unsigned 1nteger identification number.

10.1 Sequential I/O Statements

All sequential I/O in HAL/S is to or from character— :

oriented files. HAL/S pictures these files as consisting

of lines of character data 51mllar to a series of printed
“lines or punched cards. An "unpaged" file simply consists

of an unbroken series of such lines. 1In a "paged" file the
lines are blocked into pages, each being fixed implementation
dependent number of lines in length. The choice of paged or -
unpaged file organization for each sequential .I/0 channel is
specified in an implementation dependent manner.

HAL/S pictures"the physical device as moving a read
or write "device mechanism", which actually performs the data
transfer, across the file. The device mechanism has at
every instant a definite column and line position on the
file. The action of transmitting one character to or from
the file is followed by the positioning of the device
mechanism to the next column on the same line. When the end
of the line is reached the device mechanism moves on to the
first (1eftmost) column -of the next line.

10.1.1 The READ and READALL Statements
The READ. statement is used for the sequential input
of data in a standard external format., Each field of conti=-

guous characters separated by commas, semicolons or blanks
is converted to an appropriate HAL/S data value assigned to

111

‘NTERMETRICS INCiORPOR/\TCD 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 6GG1-1840

the <variable>. A semicolon field separator terminates the
READ statement with any unassigned <variable>s left unchanged.

The READALL statement is used for the sequential input
of unconverted, arbitrary character string images to be o
assigned to any character variable and/or structure contain-
‘ing only character strings. ’

<number> is any legal I/O channel number. <i/o control>

is an optional control function used to position the device
mechanism explicitly (see Section 10.1.3).

SYNTAX:

READ and READALL statements

basic
statement

varigble T
i/o control

112

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (G17) 661-1840

EXAMPLES : READ (CARDS) A,B,C,D,[E],{F};
READ (CARDS) COLUMN (20) ,A, B,

SKIP(1l), COLUMN(20),C,D,

SKIP(1l), COLUMN(20),E,F,

L]
L]

etc,

1 ’
READALL (CARD) C, COLUMN(40),D;
READ (CARDS) A, TAB(40),C;

10.1.2 The WRITE Statement

: The sequential output of data in standard external
format on the channel specified by <number> is accomplished
by using the WRITE statement. Unless overridden by an
'<i/o control>, between the transmission of two consecutive
elements, the device mechanism is moved.to the right by a
fixed implementation dependent number of columns.

SYNTAX:

WRITE statsment

WRITE ° @) - O_

expression
il control

113

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

EXAMPLES:
_ S .
WRITE (LISTING)A,B,C,D, [E],{F};

WRITE (LISTING)A,TAB(10),B,COLUMN (50) ,C;
WRITE(6) ALPHA, SKIP(2), BETA;

10.1.3 I/0 Control Functions

An I/O control function in a READ, READALL or WRITE
statement causes the explicit movement of the device mechanrism, If

the value of K is specified by the signed integer value of
<arith exp>, then: _ ' . R

e TAB(K) specifies relative movement of the device
mechanism across the current line. Motion is to
the right by K character positions for positive X.

e COLUMN(K) specifies absolute movement of the device
mechanism to column K of the current line. '

® SKIP(K) specifies line movement of K lines relative
to the current line of the file. subject to imple-
mentation restrictions, backward movement is indica-
ted by negative values of K. :

® LINE(K) specifies line movement to the specifiéd
~ line number: ' -

paged files - LINE(K) advances the file
unconditionally, advancing to line K
of the next page if K is less than the
current line number. ,

unpaged files - LINE(XK) positions the device
mechanism at some absolute line number in
the file. ’

e PAGE(K) is applicable to paged files only and steci-
fies movement K pages forward relative to the current
page. Subject to implementation restrictions,. .
backward movement is indicated by negative values
of K. 1In cither case, the line value relative to
the beginning of the page is unchanged.

114
INTERM'™ RICS INCORPORATED - 701 CONCORD AVCHUL - C{\M[SRIDGE. MASSACHUSETTS 02132 « £17) 661-18£40

'SYNTAX:

/o control function

< ilo control) { TAB -

COLUMN

SKIP r—-@-— arith exp ——-@—

LINE

$-
b

im

PAGE

19.2‘ Random Access I/O -~ The FILE Statement

Individual records, spe01f1ed by the <f11e exp>
’"record address", on a file may be written, retrieved,
or updated via the FILE statement. <number> is a legal
random access channel number. <arith exp> is any unarrayed
1nteger or scalar eXpre551on.. ‘

INPUT: When <f11e exp> is on the right-hand side
of the assignment, the statement is an input
FILE statement where <variable> is any
variable‘usable in an assignment context.

OUTPUT: When <file exp> is on the left-hand side,
‘ the statement is an output FILE statement

‘where there are no semantic restrictions
on <expression>.

115

INTERMETRICS INCCRPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MAGSACHUSETTS 02138 - (617) 661-1840

. SYNTAX:

FILE :tétements

basic
statement
' J,- file exp -—@»—eaquim
= . - variable -—-@—— file exp 1—@—

EO- OG- HO—

EXAMPLES:
FILE(3,J-}2) = ALPHAl“TO 1000°

FILE(TAPE,I) = [A]; /* TAPE IS AN INTEGER LITERAL */
{B} = FILE(DISC,A;); /* DISC IS AN INTEGER LITERAL */

116

INTERMETRICS INCORPORATLD « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) €51-1£40

APPENDIX A.
HAL/S Keywords
(not including built-in functions)

ACCESS EXCLUSIVE PROGRAM
AFTER EXIT
ALIGNED EXTERNAL READ
AND READALL
ARRAY FALSE REENTRANT
ASSIGN FILE REPEAT
AT FOR REPLACE
AUTOMATIC FUNCTION RETURN
BIN GO SCALAR
BIT SCHEDULE
'BOOLEAN HEX SEND
BY SIGNAL
- IF SINGLE
CALL IGNORE SKIP
CANCEL IN | STATIC
CASE INDEPENDENT STRUCTURE
CAT INITIAL SUBBIT .
CHAR INTEGER SYSTEM
CHARACTER o
CLOSE LATCHED TAB
COLUMN LINE TASK
COMPOOL LOCKED TERMINATE
CONSTANT THEN
MATRIX TO
DEC TRUE
DECLARE NOT
DENSE UNTIL
DO OCT UPDATE
DOUBLE OFF ‘
ON VECTOR
ELSE OR
~END WAIT
ERROR PAGE WHILE
EVENT PRIORITY WRITE
EVERY PROCEDURE
117

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

118

.’

INTERMETRIGS INCORPORATED + 701 CONGORD AVIHUE + CAMBAIDGE, MASSAGHUSETTS 02136 + (617) 661-12+"

APPENDIX B.

HAL/S Built-In Functions*

A. String Functions (Bit or Character String Argumenté)

INDEX (string, configq)
LENGTH
LJusT
RJUST (character-string, length)

[applies to character-strings only]

B. Arithmetic Functions (Integer or scalar arguments)

ABS
CEILING
FLOOR
ROUND
SIGNUM
SIGN
TRUNCATE
MOD (numerator, denominator)
DIV
REMAINDER
MAX

MIN

ODD

C. Mathematical Functions (Integer or scalar arguments)

ARCCOS
ARCSIN
ARCTAN
Cos

SIN

TAN

EXP

LOG
SQRT
ARCCOSH
ARCSINH
ARCTANH
COSH
SINH
TAEH

* Note: This list is typical; the actual list in force is
implementation-dependent. All functions require single

arguments except where that or more arguments are shown
in parentheses following the name.

| 119
INTERMETRICS NCORPORATED + 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

D. Matrix-Vector Fﬁnctions_

ABVAL

DET
INVERSE
TRACE
TRANSPOSE
UNIT

E. Linear Array Functions

SUM
PROD
MAX
MIN
SIZE

F. Miscellaneous Functions

RANDOM
RANDOMG
DATE
RUNTIME
CLOCKTIME
PRIO

120

CINTERMCTRICS INCORPORATED « 701 CONCORDL AVECNUE + CAMBRIDGE, MAGSACHUSETTS 02138 - 1277 £61-1840

APPENDIX C.

summary of HAL/S Operations

The following tables summarize the allowable operations
‘between two operands. - In most cases the valid result-type
(or an error) and any implied data conversions are indicated
within the boxes. '

121

INTERMETRICS INCORPORATED = 701 CONCORD AVENUE -+ CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

AN AV GQUOONOD 104 + UILVUOSUOONI SOIMLINYILNI

199 (£19) + 8€120 SLLISNHIVSSYN "IDUINONYD -

- zzt

. [+]
Operation Prefix {S}OPZ o { }
P Frelix : Q: NOT (=)
op, v CHARACTER

INTEGER SCALAR VECTOR MATRIX BIT STRING STRING

P P P P Q
"INTEGER SCALAR VECTOR MATRIX BIT

STRING
Table«C-1

OVGPLQ)QIW°imla)3uJSﬂHOVSSVW'BOGMGWVQ“ 3ﬂN3AVOUODNODlOZ'OBLVUOdUOONIéOMLEA:BlNl

£€CT

Operation _Addition & Subtract : Opl * Op2
Op2
: —Op. INTEGER SCALAR - VECTOR MATRIX
e §
INTEGER INTEGER SCALAR ERROR ERROR
I+S
SCALAR SCALAR SCALAR ‘ ERROR ERRQR
' I+S
'VECTOR ERROR ERROR VECTOR ERROR
d
.~ MATRIX ERROR ERROR ERROR. MATRIX
I+S = conversion of integer to scalar
d = dimension check

Table C-2

bet

rel-199 (I_IS)). + BELCO SLLISNHOVSSVIA 'i]':)(]lHUW\/U < INMIAY QHODNOD 104+ QF1LVUOJUOINI SO LIWUILINI |

-
s

Operaﬁion Multiplication: - ' Opi Op,
OPERAND,
j ' INTEGER SCALAR VECTOR MATRIX
OPERAND, '
' INTéGER INTEGER SCALAR VECTOR MATRIX
‘ 1+S I+S I+S
SCALAR _ | SCALAR SCALAR - VECTOR MATRIX
d I+S : ‘
. . " MATRIX (1)
VECTOR VECTOR VECTOR SCALAR(2) - VECTOR
o o VECTOR (3) g
MATRIX | MATRIX MATRIX VECTOR. MATRIX
; I+Ss | ’ ' d - d
Notes: (1) Vector outer product V V ' d: dimension check
(2) Vector DOT product 7.7(d) A I+S: integer to scalar conversion
(3) Vector cross product VsV (d, restricted to
' 3-element vectors) '

Table C-3

01;81'199 (£19) - 8E120 SLLISNHOVSSVIN '3DAIENYD » 3NN3AV QYOONOD 104 + G3LVHOJUOOINI SOIYLIWYILNI

SeT

Operation Division 091/092
INTEGER SCALAR VECTOR MATRIX
'vINTEGER SCALAR SCALAR ERROR ERROR
’ - I+S I+S
SCALAR SCALAR SCALAR ERROR ERROR
I+S ' :
. VECTOR VECTOR VECTOR ERROR ERROR
. I+S
. MATRIX - MATRIX MATRIX ERROR ERROR
- 1+S

 I+S: integer to scalar conversion

Table Cf4

NI SO LIWUILNI

-’
~

GONSSYI IDAIAVVD + INNIAY GHOONOD 10/ + Q2 1LVHOJHO

-~
!

OyyL-199 (£19) - 8€1¢0 S11.3

9¢1

Operation Exponentiation

: Opl**Op2
Op2
op INTEGER SCALAR VECTOR MATRIX
1l .
1) ., (1)
INTEGER SCALAR SCALAR ERROR ERROR
I-+S I+S
}
SCALAﬁ SCALAR SCALAR ERROR ERROR
I+S
VECTOR ERROR ERROR ERROR ERROR
MATRIX MATRIX " MATRIX ERROR ERROR
ST

Note (1) Result is Integer if Op2 is a whole number literal >

 Table C-5

(no I-+S)

0vB1-199 (£19) » 86120 SLLISNHOVSSYIN 'IDUINOWYD INNIAY QUOONOD 104 + QILVHOJUOONI GOIYLIWUILNI

(XA

=, =
. : L P ,
Operation Relational : Opl{Qg 092 =,m=,>, <=, >=,1<,”>
INTEGER SCALAR - VECTOR MATRIX BIT STRING CHARRCIER
op, , : STRING
INTEGER | =~ Q) Q ERROR ERROR ERROR ERROR
I+S
SCALAR 0 B Q- ERROR ERROR ERROR ERROR
' 1+S -
VECTOR ERROR ERROR P ERROR ERROR ERROR
MATRIX ERROR ERROR ERROR - P ERROR ERROR
BIT STRING ERROR ERROR ERROR ERROR p (1) ERROR
CHARACTER . o : (2)
STRING ERROR ERROR ERROR ERROR ERROR ' P
Special: <structure>P<structure> ~Notes: (1) Operand padded on left to equalize lengths if

Table C-6

(2) Operand

necessary.
padded on right to equalize lengths if
necessary.

INOD 107+ QILVHOJUODNI SOIULIWYILNI

Ia
~.

2 (219) « 8120 SLLISOHOVSSVYIA “IDOINUWYD -« INHIAV GHO

‘0,
v

821

(P - p: ||
1@ 2 . o ||

beratios . . _
Operation S?rlng , AND, OR
N\QFERAND (, _
: < 2 INTEGER SCALAR BIT STRING CHARACTER
OPERANDl STRING
INTEGER P P ERROR P
1+C 1+C CHARACTER
1+C S+C 1+C
- P p P
SCALAR s+C s+C ERROR CHARACTER
1-C S+C
. BIT STRING ERROR ERROR Q ERROR
: BIT STRING
| CHARACTER P P _ P
~ STRING CHARACTER CHARACTER ERROR CHARACTER
j 1+C S+C

I+C: Conversion from integer to character

g§+C: Conversion from scalar to character

Table C-7

APPENDIX D.

Conversion Functions

1. Summary of conversion function results when unsubscripted'
e.J. SCALAR(V).

- with single (unrepeated) argument;

A. INTEGER, SCALAR, BIT, CHARACTER
arguments : : - - '* .
[X]a [X]a,b Yy '[V]ézl Mm,h [M]a:m,n

INTEGER. [Y]a [Y]a,b [Y] 9 [Y] axt (Y] mxn [Y] n
SCALAR [Y?a [Y]a,b [“]zv -[Y]axz [Ylmxn [Y]axmxn
BIT [yl_ [Y] Error Error Error Erxror
CHARACTER [Y]a [Y], ,, | Exror Error |Error |Error
A , : Sl v
X may be integer, scalar, bit or character type.
Y 1ndlcates same data type as function.
a,b 1ndlcate array shape (in general, may be etc.).

L 1nd1cates vector length.

a,b,c,

m,n lndlcate matrix row and column dlmen51ons respectlvely.

x (lower case x) 1ndlcates "by" as in 'axmxn" = "a by m by n"
Y Y

INTERMETRICS INCORPORATED - 701 CONCORDAVENUE » CAMBRIDGE, MASSACHUSETTS 02138 »

129\

(617) 661-1840

B. VECTOR, MATRIX
(arguments may be of integer and scalar type only)

An unsubscripted VECTOR always produce$ a 3-vector;
therefore the number of elements in the argument
must be exactly 3. ‘ .

'An unsubscripted MATRIX always produces a 3-by-3
matrix; therefore the number of elements in the
argument must be exactly 9.

2. Summary of Conversion Function Argument Types.

The checkmarks in the following table indicate the legal
argument types for each conversion function.

conversion argument type

function integer | scalar |vector |matrix bit |character

INTEGER 4 4 - Y A Y v

SCALAR v Y v Y v VA

VECTOR v v AR B)

MATRIX | 4 4 4

BIT / v £ v

BIT with | - v

<radix>

CHARACTER Y 4 . v/ v

CBARACTER_ o | Y

with <radix> f

SUBBIT S f/’ E : 2 | v
130

L

CINTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MAGSACHUSETTS 02138 « (617, £ -1240

APPENDIX E.

Sample Program Listing

- The following program was written in HAL/360, and
is included only as an example of the main features of the
HAL language.

131

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

H2a 1
HAL

TCOAY I

sSTNT

1
1 %
2 "
2'31
2 ¥
3

11

&
3

oo, [V,
M 4

N
by 3

7 oy

5 M|
B M
¢
10 ¥
1 v

12 =4
21

I»PLlICY

C\E

CONPILATIO xj -~ PHASE 1 =-- INTERMETRICS,
COYPTLER PHASE 1 =-- VERSTON OF AUGUST 24, 1972. CLOCK TIME = 18:58:37.08.

S OCTOBER 1, 1972. CLOCK TINZ = 12:31:44.20.

SOURCE

.CONIC_STATE_EXTRAP:

PROGRAM; é
DECLARE Usrvsasas-xs§Lza PPOCEDURE,
SECANT_ITER §aocsnnas,
EXTRAP_STATE PPOCEDURE;

DECLARE PI CONSTANT(3.14159);

DECLARZ M7 CONSTANT (1234);

DECLARE DELT, X, DEL?_CPRIHE,,x_CPRIuB;

“DEICLARE VECTOR, :
| 30, VO, R? v:

DECLARE DELT_C, x_c:?
uyrvsysxi_xzpnsaz f ,

PROCEDNRE(C1, C2, x,ézz, ROMAG) ASSIGN (DELT_C, S_OF_XI, C_OP_XI);
LICLARE C1, C2, X, XI, RONRG;
PECLART S_OP_XI, é_or_xx; DELT_C;
oxe = 1; |

CLOSE UNIVBRS&L_KSPL?R:

0:C K SUMMARY

TLY DECLARED VARIABLES:

INC.

VERSION 360-7 PAGE

CURPENT SCOPE

CORIC_STATE_EITFAP
CONIC_STATE_EXTRAP
CONIC_STATE_EXTZAP
CONIC_STATE_EXTRAP

CONTC_STATE_EXTRAP

CONIC_STATE_EXTRAP

CONIC_STATE_EXTRAP

CONIC_STATE_EITRA?

 CONIC_STATE_EXTRAP

CONIC_STATE_EXTRAP
CONIC_STATE_EXTRAP

ONIVERSAL_KEPLER

"UNIVESSAL_KEPLER

ONIVERSAL_KEPLER
UNIVERSAL_KEPLER
ONIVEPSAL_KEPLER

CNIVERSAL_KEPLER

1

oMYPILATION - P HASE 1 - TNTFRMFTRICS, INC.

SOUPCE

13 ¥§ STTAM

13 %1

PTOCTDPYRES(DEL™_C, DELT_CPRIME, T_ERR, X) ASSIGHN (XMIN, YMRAX, DELX,‘S[:
DTCLART T_ERYX, DELT_C, DELT_CP?I‘!E,- X3
CECLART XMIN, X“AX, DELY, S
%0 = 2

CLOSZ SECANT_TTER:
v sSs"T"MYERERY

SFCIAPED VARIABLES:

VERSION 260-7
CUPPENT SCOPE
| SEZCANT_ITER
| SECANT_ITER
| SECAKT_ITER
| SECANT_ITER
| SECANT_ITER

] SECANT_ITER

PAGE

o

“A: CO%PILATION -- PHASEZ 1 =- INTEPEEZTRICS, INC. VEFSION 360-7 PAGE 3

ST ‘ ; SOYRCE " CURRENT SCOPE
18 ey TXTPAP_STATI: § o o o I‘EXTR§P_STAIE
18 < SROCEDRT (RO, VO, x,ixr, S_OF_XI, C_O7?_XI, DELT_C) RSSIGN{R, V); _ | EXTRAP'STATE.
19 =y DECLARE XI, s_oy_#:, C_OP_XI, X, DELT_C; |"zxrRAP_stxrs
20 1 DECLARE VFCTOR, f - ' . | EXTRAP_STATE
20 %) ' R, V, éo,‘vﬁg, | EXTRAP_STATE

21 %y TEREET = 3% | { EXTRAP_STATE
22 %1 CLOSE ZXTRAP_STATE; 1 EXTRAP_STATE

(o]
©
rg
(2]
]
ne
i
(3]
o
-3
fogt
0
H.
ne
o
-
t4
w
.

sSTHT

i

vt

"

h 3]

b |

Cey

i

“

"1

i

XTOLFR_ROMTINT:

r

13

ol .iR0

-

- DECLARE O

DECLARE V

CECLARE D
DECLARE F
DECTARE E
DICLARE I
DTCLA®E B
BOMAG = A
T P = ONI

C1 = ®0 .

e = powa

ALPHA = (

Ie ALPHD <. 0 THEN

XMAX =

. V0) A
ELT, DE
FCTOR,
20, ¥
FLTEAX
PS_T CO
PS_Y CO
_rAY CO

T, LocC

BVAL(RO

T(RO):

Vo s S

G V0 .

1-c2

59?!‘ (=

2 pr /

oK --

0, P, V, I_P;

CONSTA”T(3U5)€.

NSTANT (22) 3

MSTANT (12) 3

PING:

.s

DRT(M11) 3

VO / %7 - 1;

/ PONAG:

50 / ALPERA);

I / SOPT(ALPHA):

IF P ¢ DILTYAY THFY

PO WHTTE ADS(DTITY >= Py
PELT = DILT = STGN{(DELTY P

LT_CPRIFE, Y_CPRIFE, X:

ALPHA SOPT (ALPHY MU) 3

SOURCF

I

£

SSIGN (R, V, ¥_C, DELT, ¥, DELT_CPRINE, X_CPRIME, DELT_C):

VERSION 360-7

CORFENT SCOPE

KEPLER_ROUTINE
KEPLER_POUTINE
KEPLER_ROUTINE
xzpiza_aourzuz

KEPLEZR_ROUTINE

KEZPLER_ROUTINE.

KEPLER_ROUTINE
KEPLER_ROUTINE

KEPLER_ROUTINE

KEPLE®_ROCTIRE
KEPLER_ROOUTINE .

KEPLEP_ROUTINE

KEPLER_ROUTINE

KEPLER_ROUTINE

KEPLER_RODTINE

KEPLER_ROUTINE

KEPLER_BOUTINE

KEPLER_FOUTINE

 KEPLER_POUTINE

KEPLER_ROUTIKE

KEFLER_POUTINE

“KEPLER_ROUTINE

KEPLER_WONTINE
KEPLE® _POUTINE
KEPLER_ROUTINE

KEPLE®?_POUTINE

PAGE

. “ '

48

gk

47

48

un

39

49

‘gu

55

54

57

59
59
€0
61
61
62

63

b |

vi
"1
“t

vy

>

o

M
~i

Y1

L00PINS = ON:

®"PILARTION - PHASE 1

X = SIGN{DELT) XMAX / 2:

DELT_CPRIN
po Do T »

IF DSLT >= 0 THE
HIN = 03

FLST

003

X¥IN = -XM2

INAX = O3
END;

DELY = X - X_CPR

DO FOR I = ¢ TO

2
XT = ALPHMA X

CALL UNIVERSA

£, X_CPRINE = 03

™E;

DEL™_C;

>= ABS(EPS_T DELT) THIM

S

DELX) >= EP5_X THEN

ELT_CP®THNE = DELT_C;

= X + DELY;

SOURCE

(T_MAX = 1) WYILE LOOPING;

<= 0.0ﬂi(AES(X) = XMAX) >= 0 THEN

)

S

’

INC.

L_¥ZPLER(C1, T2, X, XI, RO%AG) ASSIGN (DELT_C, S_OF_XI, C CP_XI)3

CANT_ITER(DELT_C, DELT_CPRINE, T_FR?, ¥) ASSTGN(XMIN, XMAX, DELY, $)3

VEFSION 360-7 pade
| kcuexgsr‘scopz
’vl.KEPLER_ROUI:KE

{ KEPLER_POUTINE

| KEPLER_ROUTINE

{ KEPLER_POUTINE

{ KEPLER_ROUTINE

1 xEPLﬁR_aoctIaz

| KEPLER_ROUTINE

{ KEPLER_POUTINE

1 KEPLER_POUTINE

{ szLsa_aouzzns,'
‘1 xsp}zs_eourixz

{ KEPLER_ROUTINE

{ KEPLER_ROUTINE
| KEPLER_RONTINE
| KEPLER_POUTINE

1 KEIPLER_ROUTINE
| KEPLER_ROUTINE
| KEPLER_ROUTINE
| KEPLER_ROUTINE
| KEPLER_ROUTINE
| KEPLER_RONTIXE
| KEPLER_ROUTINE
| KEPLER_ROCTINE
'| KEPLER_ROUTINE
| KEPLER_ROUTINE

| KEPLER_RQUTINE

5

R

=
§TuT

65

55

e

se

57

87

AR

PTOTINTTES CAlL

UNITERSAL

"4

T

1
*l

b |

“1

it

e

“1

PILrarc

Iox

CALL EXTRAP_STATE

x_¢

=X

FETNRNG

=~ PHASF 1 -- INTEIRME"R2ICS, 1IN C.

\

SONUPCE

LCOPING = NFP:

{r0, VO, X, XI, S_OF_XI," C_OF_XI, OFLT_C) ASSIGN(®, V) :

ClOST KEBLER_POUTTINE:

S ¥¥MADIY

.

LED
T

LIR, SECANT_IT

-

SMITR VARTATLES ETFERIVCED:

v

¥

~

-

s PT

-

T

~

-

n0MAG, €1, €2}

ER, FYTRAP_S

4

ATE

ALPHA, XXRL, P, X¥IN, DELX, I, XI, S_OF_XT, C_OP_XI, TERR, T_EPR, §

VERSIOK 3606=-7

CUPPENT SCOPE

KEPLER_ROUTINE

KEPLER_ROUTINE

KPPLER_ROUTIXE

KEPLE®_ROUTINE

KEPLER_ROUTINE

KEPLER_POUTINE

KEPLER_ROUTINE

KEPLER_ROUTINE

KEPLEP_POUTINE ~

KEPLER_ROUTINE

?1%5

6

'An Introduction to- IIAL/S : April 9-12, 1973
Carl T. Heclmers
- INTERMETRICS, INC.

The Workshop Philosophy

Each afternoon, I will preside over a HAL/S "workshop"
session which will be of interest to those technically-
oriented individuals attending the course. The primary

- purpose of these sessions is to supplement the lectures in
several areas: ’

1. In the first portion of each afternoon, I will
field written and/or oral questions upon the
lecture material or any related HAL/S topic.

2. On Monday, I will present a HAL/S application problem
to be designed and coded by each student. The :
- particular application coded can be either the one
I suggest, or a program with which the individual
student is familiar. The major portion of each
workshop will be devoted to independent work by
each student on his problem.

3. For those who are interested, I will be available
for informal discussions of HAL/S, the compiler
system, run-time characteristics, and related
topics during the workshop periocds.

Due to the time schedule of this course, the workshops
on Monday and Tuesday are pre-mature in relation to the lecture
presentation material. To remedy this, and also to serve as
a guide to the lectures, I am handing out a document entitled,
"HAL/S Language Forms" which outlines the course material and
contains sufficient syntactic and semantic information for each
student to begin designing his application programs.

In order to make the workshop portions interesting and
informative, for all concerned, I would like éach student to
prepare the following:

1. During each lecture, a list of questions, so that
' all ground will be covered thoroughly during the
question period. These may be given to me just
prior to the lunch break, or held until the after-
noon session.

2. During Monday's lecture, think about a HAL/S application
with which he is familiar - to code as a HAL program
during the Monday and Tuesday workshops.

-

INTERMZ™2 =S INCORPORATED - 701 CONCORD AVENUC - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053a
	053b
	053c
	053d
	054a
	054b
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	_01

