PERKIN-ELMER

0$/32 SUPERVISOR CALL (SVC)

Reference Manual

48-038 FOO RO2

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Eimer Corporation. The Perkin-Elmer Corpo-
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Eimer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Eimer.

The Perkin-Eimer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757
© 1981, 1982, 1983, 1984 by The Perkin-Elmer Corporation

Printed in the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

SUPERVISOR CALLS (SVCs)

1.1 INTRODUCTION

1.1.1 Supervisor Call (SVC) Parameter Block
1.2 SUPERVISOR CALL (SVC) ERRORS

l1.2.1 Supervisor Call (SVC) Error Messages
1.2.2 Supervisor Call (SVC) Status Codes

1.3 SVCO: USER-WRITTEN SUPERVISOR CALL (SV(C)

INPUT/OUTPUT (I/0) REQUEST SUPERVISOR CALL 1 (SVCl)

2.1 INTRODUCTION

2.2 SUPERVISOR CALL 1 (SVC1l)

2.2.1 Data Transfer Requests

2.2.1.1 Test and Set

2.2.1.2 Input/Output (I/0) Proceed

2.2.1.3 Queuing Input/Output (I/0) Requests
2.2.1.4 Conditional Proceed

2.2.1.5 Unconditional Proceed

2.2.1.6 Wait Input/Output (I1/0)

2.2.1.7 Wait Only

2.2.2 Command Function Requests

2.2.2.1 Halt Input/Output (I/0)

2.2.3 Logical Unit (1lu)

2.2.4 Device-Independent Status

2.2.5 Device-Dependent Status

2.2.6 Buffer Start/Buffer End Addresses
2.2.7 Extended Options

2.2.7.1 Nonmagnetic Tape Devices

2.2.7.2 Magnetic Tape Devices

2.2.7.3 Device-Dependent Status Codes for Magnetic

Tape Operations

GAPLESS INPUT/OUTPUT (1/0) OPERATIONS
.1 Gapless Mode Supervisor Call 1 (SVC1)
Parameter Block Format

48-038 FOO RO2

xiii

CHAPTERS (Continued)

2.3.2 Standard Function Code Format - Gapless Mode 2-36
2.3.3 Logical Unit (1lu) 2-38
2.3.4 Device-Independent Status Codes 2-39
2.3.5 Device-Dependent Status Codes 2-39
2.3.6 Buffer Queues 2-40
2.3.6.1 Using the Buffer Queue 2-42
2.3.6.2 Trap-Causing Events Resulting from Gapless
Input/Output (I/0) Operations 2-42
2.3.7 Buffer Length 2-43
2.3.8 Length of Last Buffer 2-43
2.3.9 Extended Options Field 2-43
2.4 SERIES 3200 INPUT/OUTPUT (I/0) BUS SWITCH 2-44
2.4.1 Normal Request Contention Mode 2-44
2.4.2 Master Request Contention Mode 2-44
2.4.3 Multiple Master Regquest Contention Mode 2-44
2.4.4 Programming Considerations 2-48
3 GENERAL SERVICE FUNCTIONS SUPERVISOR CALL 2 (SVC2)
3.1 INTRODUCTION 3-1
3.2 SVC2 CODE 0O: MAKE JOURNAL ENTRIES 3-5
3.3 SVC2 CODE 1: PAUSE 3-7
3.4 SVC2 CODE 2: GET STORAGE 3-9
3.4.1 SVC2 Code 2, Option X'00' 3-11
3.4.2 SVC2 Code 2, Option X'80' 3-13
3.5 SVC2 CODE 3: RELEASE STORAGE 3-14
3.6 SVC2 CODE 4: SET STATUS 3-17
3.6.1 SVC2 Code 4, Option X'00' 3-19
3.6.2 SVC2 Code 4, Option X'80' 3-20
3.7 SVC2 CODE 5: FETCH POINTER 3-21
3.8 SVC2 CODE 6: CONVERT BINARY NUMBER TO ASCII
HEXADECIMAL OR ASCII DECIMAL 3-24
3.8.1 SVC2 Code 6, Option X'0O'+n 3-26
3.8.2 SVC2 Code 6, Option X'40'+n 3-26
3.8.3 SVC2 Code 6, Option X'80'+n 3-27
3.8.4 SVC2 Code 6, Option X'CO'+n 3-27
3.9 SVC2 CODE 7: LOG MESSAGE 3-28
3.9.1 SVC2 Code 7, Option X'00' 3-30
3.9.2 SVC2 Code 7, Option X'20' 3-31
3.9.3 SVC2 Code 7, Option X'40' 3-31
3.9.4 SVC2 Code 7, Option X'60' 3-31
3.9.5 SVC2 Code 7, Option X'80' 3-31

ii

48-038 FOO RO2

CHAPTERS (Continued)

.
.

www
. .
0

O O Y
0o Jo

WwWwwww -

el g
0OO0OO0O0O0O

A

w
[
]

SvCc2 Code
8VC2 Code
8VC2 Code

5VC2 CODE
8VCZ2 Code
8VC2 Code
8VC2 Code
SVC2 Code

SVC2 CODE
SvVCcZ2 CODE
8VCZ2 CODE
85VC2 Code
8VC2 Code
SvVC2 Code

8VC2 Code
8VCZ2 Code

SvVCcZ CODE

7, Option X'AQ'
7, Option X'CO’
7, Option X'EOQ'

8: INTERROGATE CLOCK
8, Option X'00'
8, Option X'80'
8, Option X'40'
8, Option X'CO'

9: FETCH DATE

10: TIME OF DAY WAIT

11: INTERVAL WAIT

14, INTERNAL READER

14, Parameter Block for Option O
14, Parameter Block for Option 1
14, Status Codes

14, Programming Considerations

15: CONVERT ASCII HEXADECIMAL

OR ASCII DECIMAL TO BINARY

8VC2 Code
8VC2 Code
8VC2 Code
8VC2 Code

8VC2 CODE
8VC2 Code
8VC2 Code
8VC2 Code
8VC2 Code
8VC2 Code
8VCZ2 Code
8VC2 Code
8VCZ Code
8VC2 Code

3VC2 CODE

15, Option X'00°
15, Option X'40'
15, Option X'80'
15, Option X'CO'

16: PACK FILE DESCRIPTOR

16, Option X'00'

16, Option X'40'

16, Option X'10'

16, Option X'50°

16, Option X'20'

16, Option X'60"

16, Option X'80'

16, Option X'CO'

16, Options for Privileged Tasks

17: SCAN MNEMONIC TABLE

Building a Mnemonic Table

Executing

8SVC2 CODE
8SVC2 Code
8VC2 Code

8VC2 CODE
Parameter
Parameter
Parameter
Parameter

48-038 F0OO RO2

SVC2 Code 17

18: MOVE ASCII CHARACTERS
18, Option X'00'+n
18, Option X'80'+n

19: PEEK

Block for Option X'00°
Block for Option X'0O1l!
Block for Option X'02'
Block for Option X'03'

iii

CHAPTERS (Continued)

iv

3.19.5

3.20
3.21

3.22
3.22.1-
3.22.2
3.22.3
3.22.4
3.22.5

3.

3

3.
3.

23

.24

25
26

3.27

Parameter

sveca2
svcza

svc2
svca
svca2
svca
svce
svc2
svc2
svC2
svec2
svca

svec2

CODE
CODE

CODE
Code
Code
Code
Code
Code
CODE
CODE
CODE

CODE

CODE

20:
21:

23:
23,
23,
23,
23,
23,
24:
25:
26:
27:

29:

Block for Option X'04'

EXPAND ALLOCATION
CONTRACT ALLOCATION

TIMER MANAGEMENT

Parameter
Parameter
Parameter
Parameter
Parameter

Block for
Block for
Block for
Block for
Block for

Option
Option
Option
Option
Option

SET ACCOUNTING INFORMATION

X'00"
X'80'
X'40'
X'20'
X'10'

FETCH ACCOUNTING INFORMATION

FETCH DEVICE NAME

MEMORY MANAGEMENT

UNPACK FILE DESCRIPTOR

END OF TASK SUPERVISOR CALL 3 (SVC3)

4.1
4.2

INTRODUCTION

SVC3:

END OF TASK

FETCH OVERLAY SUPERVISOR CALL 5 (SVC5)

5.1

5.2

INTRODUCTION

SVC5:

FETCH OVERLAY

INTERTASK COMMUNICATIONS SUPERVISOR CALL 6 (SVC6)

6.1

N

) .
. s

NSO &> aBbwN

’—l

(o) el s) e) (o2 Me e el e sl
NN MDD N

INTRODUCTION

SVC6:
Function Code (SVC6.FUN)
Direction (SFUN.DOM,
End Task (SFUN.ECM,

INTERTASK COMMUNICATIONS

Load Task Functions
Load Task (SFUN.LM) Function
Load Task with Extended Load Options
(SFUN.LXM) Function
Task Resident (SFUN.HM) Function
Suspend (SFUN.SM) Function

Send Data (SFUN.DM) Function

Send Data Message Buffer for Sending Task

SFUN.DSM) Function
SFUN.EDM) Function

3-118

3-121
3-123

3-124
3-124
3-127
3-129
3-133
3-135
3-138
3-140
3-143
3-145

3-148

48-038 FOO RO2

CHAPTERS (Continued)

6.2.7.2 Free Send Data Message Buffers for Receiving

Task 6-19
6.2.7.3 Sample Programs U51ng SVC6 Send Data Function 6-21
6.2.8 Send Message (SFUN.MM) Function 6-25
6.2.8.1 Message Buffers 6-26
6.2.9 Queue Parameter (SFUN.QM) Function 6-34
6.2.10 Change Priority (SFUN.PM) Function 6-35
6.2.11 Send Logical Unit (lu) (SFUN.XSM) Function 6-35
6.2.12 Receive Logical Unit (lu) (SFUN.XRM) Function 6-36
6.2.13 Connect (SFUN.OM) Function 6-36
6.2.14 Thaw (SFUN.TM) Function 6-37
6.2.15 Sint (SFUN.IM) Function 6-37
6.2.16 Freeze (SFUN.FM) Function 6-38
6.2.17 Unconnect (SFUN.UM) Function 6-38
6.2.18 Assign Logical Processing Unit (LPU)

(SFUN.LPU) Function 6-39
6.2.19 Transfer to Logical Processing Unit (LPU)

(SFUN.TL) Function 6-39
6.2.20 Transfer to Central Processing Unit (CPU)

(SFUN.TC) Function 6-40
6.2.21 Release (SFUN.RM) Function 6-41
6.2.22 Nonresident (SFUN.NM) Function 6-41
6.2.23 Rollable (SFUN.RLM) Function 6-41
6.2.24 Nonrollable (SFUN.NRM) Function 6-42
6.2.25 Start (Bit Positions 29, 30, 31) Function 6-42
6.2.26 Start Function for SVC6 (SFUN.SIM) Function 6-43
6.2.27 Start Function with Start Options for

SVC6 (SFUN.SOM) Function 6~-43
6.2.28 Delay Start Function for SVC6 (SFUN.SDM)

Function 6-43
6.2.29 Delay Start Function with Start Options

for SVC6 (SFUN.SDM, SFUN.SOM) 6-44
6.2.30 Wait Status Field (SVC6.TST) 6-44
6.2.31 Exrror Codes (SVC6.STA) 6-45

7 FILE HANDLING SERVICES SUPERVISOR CALL 7 (SVC7)

7.1 INTRODUCTION 7-1
7.2 SVC7: FILE HANDLING SERVICES 7-2
7.2.1 Function Code Field (SVC7.0PT) 7-5
7.2.1.1 Allocate Function " 7-11
7.2.1.2 Assign Function 7-12
7.2.1.2.1 Temporary File Allocation and Assignment

Function 7-13
7.2.1.3 Change Access Privileges Function 7-13
7.2.1.4 Rename Function 7-14
7.2.1.5 Reprotect Function 7-14
7.2.1.6 Close Function 7-15
7.2.1.7 Delete Function 7-15
7.2.1.8 Checkpoint Function 7-16
7.2.1.9 Fetch Attributes Function 7-16

48-038 F00 RO2

CHAPTERS (Continued)

10

vi

7.2.1.10 Vertical Forms Control (VFC) Function 7-19
7.2.1.11 Fetch Time and Date Attributes from Disk

Directory Function 7-20
7.2.1.12 Fetch Logical Attributes of Open File

Function 7-23
7.2.1.13 Spoolfile Assign to Pseudo Device Function 7-24
7.2.1.14 Extended Assign to Spoolfile Function 7-26
7.2.1.15 Assign to Pseudo Device Function 7-27
7.2.1.16 Access Privileges 7-27
7.2.1.17 Change Terminal Mode 7-29
7.2.1.18 Data Communications Access Methods 7-29
7.2.1.19 File Types 7-30
7.2.1.20 Read/Write Key Fields (SVC7.RKY/SVC7.WKY) 7-31
7.2.1.21 File Size Field (SVC7.812) 7-32
7.3 SVC7: EXTENDED FUNCTIONS FOR PRIVILEGED TASKS 7-33
7.3.1 SVC7: Bare Disk Assignment 7-34
7.3.2 SVC7 Code 0: Fetch Attributes for Bare

Disk Devices 7-37
7.3.3 SVC7: Device Rename 7-39
7.3.4 SVC7: Device Reprotect 7-40
7.3.5 SVC7: Code X'FF80': Extended Close Function 7-42
7.4 SVC7 ERROR CODES 7-44
LOAD TASK STATUS WORD (TSW) SUPERVISOR CALL 9 (SVC9)
€.1 INTRODUCTION 8-1
8.2 SVC9: LOAD TASK STATUS WORD (TSW) 8-2
8.2.1 Function and Description of the Task Status

Word (TSW) : 8-3
OVERLAY LOADING SUPERVISOR CALL 10 (SVCl0)
9.1 SVC10: OVERLAY LOADING 9-1
9.2 MESSAGES 9-1
AUXILIARY PROCESSING UNIT (APU) CONTROL SUPERVISOR
CALL 13 (SVC13)
10.1 SVC13: AUXILIARY PROCESSING UNIT (APU)

SERVICES 10-1
10.2 SVCl3 CODE 0O: READ AUXILIARY PROCESSING UNIT

(APU) ASSIGNMENT AND MAPPING INFORMATION 10-2
10.3 SVC 13 CODE 1l: READ AUXILIARY PROCESSING UNIT

(APU) /APU QUEUE STATUS 10-5

48-038 FO0O0 RO2

CHAPTERS

10.4
10.5

10.6

10.7
10.8

10.8.

10.8.
10.8.

10.8.
10.8.

10.8.

11 USER

11.1

12 DATA COMMUNICATIONS DEVICE-DEPENDENT INPUT/OUTPUT (I1/0)

(Continued)

SVC13 CODE 2: AUXILIARY PROCESSING UNIT (APU)
MAPPING FUNCTIONS

SVC1l3 CODE 3: AUXILIARY PROCESSING UNIT (APU)
CONTROL

SVC13 AUXILIARY PROCESSING UNIT (APU)
HARDWARE STATUS FIELD (SV13.APS)

SVC1l3 ERROR STATUS CODE FIELD (SV13.ERR)

TYPICAL OPTION CODING SEQUENCE FOR SVC1l3 CODE
2 AND CODE 3

1 Auxiliary Processing Unit (APU) Initializa-
tion and Start-Up

2 Auxiliary Processing Unit (APU) Queue Mark On

3 Setting Auxiliary Processing Unit (APU) Queue
Discipline

4 Assigning Auxiliary Processing Unit (APU) to
a Queue

5 Task Scheduling on the Auxiliary Processing
Unit (APU)

6 Auxiliary Processing Unit (APU) Queue
Mark Off

SUPERVISOR CALL 14 (SVC1l4)

SVC1l4: USER

SUPERVISOR CALL 15 (SVC15)

12.1

FIGURES

NN N N N NN
|
0o~ o [8,) > W N

SVC1l5: DATA COMMUNICATIONS DEVICE-DEPENDENT
INPUT/OUTPUT (1/0)

SVCl Parameter Block Format and Coding

Function Code Format for Data Transfer Requests
Extended Options Fullword Format for Nonmagnetic
Tape Devices

Extended Options Fullword Format for Magnetic
Tape I/0 Operations

SVC1l Gapless Mode Parameter Block Format and
Coding /

Function Code Format for Gapless Mode Data
Transfer Requests

IN-QUEUE or OUT-QUEUE Structure

SVC1l Parameter Block and Coding for Control I/0
Bus Switch

48-038 FO00O RO2

10-16
10-20
10-27

10-31

10-34

10-34
10-34

10-35
10-35
10-35

10-37

11-1

12-1

vii

FIGURES (Continued)

| UL
HEHEOOJOUAWNDRH

[T A |
.—I
N O

W W W WWwWWwwwwwwwww
I 1
-
> w

|
-
o

3-36
3-37
3-36

viii

SVC2 Code 2 Parameter Block Format and Coding
SVC2 Code 1 Parameter Block Format and Coding
SVC2 Code 2 Parameter Block Format and Coding

Task Impure Segment for SVC2 Code 2, Option X'0O’
Task Impure Segment for SVC2 Code 2, Option X'80'

SVC2 Code 3 Parameter Block Format and Coding
Task Impure Segment for SVC2 Code 3

SVC2 Code 4 Parameter
Program Status Word (P
SVC2 Code 5 Parameter
SVC2 Code 6 Parameter
SVC2 Code 7 Parameter
SVC2 Code 8 Parameter
SVC2 Code 9 Parameter
SVC2 Code 10 Parameter
SVC2 Code 11 Parameter
SVC2 Code 14 Parameter
for Option 0O

SVC2 Code 14 Parameter
for Option 1

SVC2 Code 15 Parameter
SVC2 Code 16 Parameter
Packed File Descriptor
SVC2 Code 17 Parameter
SVC2 Code 18 Parameter
SVC2 Code 19 Parameter
for Option X'00'

SVC2 Code 19 Parameter
for Option X'01l'

SVC2 Code 19 Parameter
for Option X'02'

SVC2 Code 19 Parameter
for Option X'03'

SVC2 Code 19 Parameter
for Option X'04°'

SVC2 Code 20 Parameter
SVC2 Code 21 Parameter
SVC2 Code 23 Parameter
for Option X'00'

SVC2 Code 23 Parameter
for Option X'80'

SVC2 Code 23 Parameter
for Option X'40'

8VC2 Code 23 Parameter
for Option X'20'

8SVC2 Code 23 Parameter
for Option X'1l0'

SVC2 Code 24 Parameter
SVC2 Code 25 Parameter
Fixed-Size User Buffer
Information

Block Format
SW)
Block Format
Block Format
Block Format
Block Format
Block Format
Block Format
Block Format
Block Format

Block Format
Block Format
Block Format
Area

Block Format
Block Format
Block Format
Block Format
Block Format
Block Format
Block Format
Block Format
Block Format
Block Format
Block Format
Block Format
Block Format
Block Format

Block Format
Block Format

and
and
and
and
and
and
and
and
and
and

and
and

and
and
and
and
and
and
and
and
and
and
and
and
and

and

and
and

Coding
Coding
Coding
Coding
Coding
Coding
Coding
Coding
Coding
Coding

Coding
Coding

Coding
Coding
Coding
Coding
Coding
Coding
Coding
Coding
Coding
Coding
Coding
Coding
Coding
Coding

Coding
Coding

Receiving Accounting

Variable-Size User Buffer Receiving Accounting

Information

3-133
3-136
3-138
3-140
3-141

3-142

48-038 F0O0 RO2

FIGURES (Continued)

3-40 SVC2 Code 26 Parameter Block Format and Coding 3-143
3-41 SVC2 Code 27 Parameter Block Format and Coding 3-145
3-42 SVCZ Code 29 Parameter Block Format and Coding 3-148
5-1 SVC5 Parameter Block Format and Coding 5-1
6-1 SVC6 Parameter Block Format and Coding 6-2
6-2 SVC6 Function Code Field 6-6
6-3 Extended Load Options Field 6-13
6-4 Send Data Message Buffer Format for Calling Task 6-18
6-5 Send Dat.a Message Buffer Format for Directed Task 6-20
6-6 Message Buffer Format for Directed Task 6-26
6-7 Single Buffer Ring 6-28
6-8 Single Buffer Chain 6-28
6-9 Multiple Buffer Ring 6-29
6-10 Multiple Buffer Chain 6-31
6-11 Error Status Field 6-46
7-1 SVC7 Parameter Block Format and Coding 7-2
7-2 SVC7 Function Code Field 7-6
7-3 SVC7 Parameter Block Format and Coding for a

Fetch Attributes Function 7-17
7-4 SVC7 Parameter Block Format and Coding for

VFC Function 7-20
7-5 SVC7 X'FF00', X'FFOl' or X'FF02' Parameter

Block Format and Coding for Fetch Time and Date

Attributes Function 7-21
7-6 SVC7 X'FF03' Parameter Block Format and Coding

: for Fetch Time and Date Attributes Punction 7-22

7-7 SVC7 X'FF04' Parameter Block Format and Coding

for Fetch Time and Date Attributes Function 7-23
7-8 SVC7 X'FFOA' Parameter Block Format and

Coding for the Fetch Logical Attributes of

Open File Function 7-24
7-9 SVC7 Spoolfile Assign to Pseudo Device Parameter

Block 7-25
7-10 Extended Spoolfile Assign Parameter Block 7-26
7-11 SVC7 Bare Disk Assignment Parameter Block

Format and Coding 7-35
7-12 SVC7 Code 0 Parameter Block Format and Coding 7-37
7-13 SVC7 Device Rename Parameter Block Format and

Coding 7-39
7-14 SVC7 Device Reprotect Parameter Block Format

Coding _ 7-41
7-15 SVC7 Code X'FF80' Parameter Block Format and

Coding 7-43
8-1 SVC9 Parameter Block Format and Coding 8-2
8-2 Task Status Word (TSW) 8-4
10-1 SVC13 Code 0 Parameter Block Format and Coding 10-3
10-2 Data Buffer Format for SVCl3 Code 0 10-4
10-3 SVC1l3 Code 1 Parameter Block Format and Coding 10-7

48-038 FOO RO2 ix

- aber e s - e e A W - - ma.

—— e

FIGURES (Continued)

10-4
10-5

10-6
10-7

10-8
10-9
10-10
10-11
10-12

TABLES

I | i
e

]
e W

] |
= O s cBEN e}
o

1
-
-

wwww N NN V] SIS SN S N] PN N hY -
. 1]
U W N b w N~ [l

o> wn

w w
| 1

I [

[sal o2 e s e]
]

Data Buffer Format for SVC1l3 Code 1 Option
Only

X'80'
10-9

Format of APU Processing Status Field Returned

to U-Task Buffer

10-11

Data Buffer Format for SVCl1l3 Code .l X'40' Only 10-13
Format of APU Queue processing Status Field

Returned to U-Task Buffer

10-14

SVC1l3 Code 2, Parameter Block Format and Coding 10-17

SVC1l3 APU Mapping Options Field (SV13.0PT)

10-19

SVC1l3 Code 3, Parameter Block Format and Coding 10-21

SVC13 APU Control Options Field (SV13.0PT) 10-23
APU Hardware Response Byte (SV13.APS) 10-27
0s/32 SVCs 1-1
FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER

REQUESTS 2-5
FUNCTION CODES FOR COMMAND FUNCTION REQUESTS 2-18
DEVICE-INDEPENDENT STATUS CODES 2-19
DEVICE-DEPENDENT STATUS CODES 2-21
SVC1l EXTENDED OPTIONS FOR LOCAL AND REMOTE
COMMUNICATIONS 2-23
EXTENDED FUNCTION CODES FOR CONTROL OPERATIONS 2-26
MAXIMUM NUMBER OF BYTES ERASED 2-27
EXTENDED FUNCTION CODES FOR DATA TRANSFER

OPERATIONS 2-28
MAGNETIC TAPE DEVICE-DEPENDENT STATUS CODES 2-31
FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS 2-36
MAGNETIC TAPE DEVICE-DEPENDENT STATUS CODES

(GAPLESS ONLY) 2-39

EXTENDED FUNCTION CODES FOR GAPLESS I/0 OPERATION 2-44

FUNCTION CODES FOR THE 1/0 BUS SWITCH DRIVER 2-46
I/0 BUS SWITCH STATUS CODES 2-47
SVC2 FUNCTION CODES 3-1
TIME OF DAY VALUES CALCULATED IN SECONDS FROM

MIDNIGHT 3-43
SVC2 CODE 14 STATUS CODES 3-51
TASK OPTIONS FROM THE TCB 3-100
SYSTEM OPTIONS FROM THE SYSTEM POINTER TABLE 3-106
TASK WAIT STATUS BIT DEFINITIONS 3-116
SVC6.FUN FUNCTIONS 6-6
DEECT.ITTION OF FUNCTION CODE FIELD FOR SVC6 CALLS 6-7
EXTENDED LOAD OPTIONS FIELD BIT DEFINITIONS 6-14
WAIT STATUS BIT DEFINITIONS 6-45
SVC6 ERROR CODES 6-46

48-038 F0OO RO2

TABLES (Continued)

I
A o

! I 1
[= ooodw

O o2} NN ~N
l

=

oo
11

N

10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10

INDEX

SVC7 FUNCTION CODE BIT DEFINITIONS
DESCRIPTION AND MASK VALUES OF THE DEVICE
ATTRIBUTES FIELD

ACCESS PRIVILEGE DEFINITIONS

DATA COMMUNICATIONS ACCESS METHOD DEFINITIONS
READ/WRITE PROTECTION KEYS DEFINITIONS

SVC7 ERROR CODES

TSW BIT DEFINITIONS
OVERLAY ERROR CODES AND MEANINGS
SVC13 FUNCTION CODES

BIT DEFINITIONS FOR APU PROCESSING STATUS
FIELD RETURNED TO U-TASK BUFFER

BIT DEFINITIONS FOR APU OPTIONS FIELD RETURNED TO

U-TASK BUFFER

BIT DEFINITIONS FOR APU QUEUE PROCESSING STATUS

FIELD RETURNED TO U-TASK BUFFER

SVC1l3 CODE 2, APU MAPPING OPTIONS FIELD
(SV13.0PT) BIT DEFINITION

SVC13 CODE 3, APU CONTROL OPTIONS FIELD
(SV13.0PT) BIT DEFINITIONS

SVCl3 CODE 3, APU COMMANDS (SV13.DOP)

APU HARDWARE RESPONSE BYTE BIT DEFINITIONS

ERROR CODES FOR ERROR CODE BYTE OF APU HARDWARE

STATUS FIELD (SV13.APS)
SVC1l3 ERROR STATUS CODES (SV13.ERR)

48-038 FOO RO2

7-6
7-18
7-28
7-30
7-32
7-44
8-4
9-3
10-1
10-11
10-12
10-15
10-19
10-23
10-25
10-28

10-29
10-32

IND-1

x1i

PREFACE

This manual describes the ©08/32 supervisor calls (8V(Cs) that
provide the task interface to 0S/32 system services. The
information in this manual 1is intended for assembly language
programmers who design application level programs for operation
in an 0S/32 processing environment.

Chapter 1 presents an overview of all 0S/32 SVCs, their functions
and the data structure of the SVC parameter block. Chapter 2
describes the Input/Output (I/0) Request SVC1l, which is used to
request specific I/0 services from the O0S/32 1/0 supervisor.
This chapter also presents the SVCl interface to the Perkin-Elmer
Series 3200 I/0 Bus Switch Driver. Chapter 3 details 22 general
service functions provided by the General Service Functions SVC2.
Chapter 4 presents the format for the End of Task SVC3, which is
used to terminate task execution. Chapter 5 provides information
on user-controlled loading of Link-generated overlays through the
Fetch Overlay SVC5. Chapter 6 describes the Intertask
Communications SVC6. Chapter 7 details the File Handling
Services 8SVC7, which provides file and device handling functions
supported by the file manager and the data communications
subsystem. Chapter 8 describes how the Load Task Status Word
(TSW) SVC9 is used to replace the current TSW located in the task
control block (TCB) with a new user-specified TSW. Chapter 9
provides information on the Overlay Loading SVC1l0, which handles
the automatic loading of overlays generated by Link. Brief
descriptions of the Auxiliary Processing Unit (APU) Control
SVC1l3, User 8VCl4 and Data Communications Device-Dependent [/0
' 8VC1l5 are given in Chapters 10, 11 and 12, respectively.

Revision 02 includes additions to SVCl functions for the screen
editor along with new status codes for SVCl device-dependent and
device-independent status fields for Mirror Disk. This manual
also introduces new SVCl extended functions to enable 8-bit data
transfer, along with documentation of SVC1l functions for the 1/0
Bus Switch Driver. Changes have been made to SVC7 dealing with
3270 Emulator support and the Perkin-Elmer Series 7000 File
Transfer Utility. Also, there are changes made to SVC7 access
privileges. In addition, all SVCs previously documented in the
System Level Programmer Reference Manual have been added to this
manual. These additions include SVCO, SVC2. codes 0, 14, 26 and
27, 8SVC6 System Task Release, various SVC7 functions and all of
SVC13.

This manual is intended for use with the 08/32 R07.2 software
release or higher.

48-038 F00 RO2 xiii

- e amen mran e e e e . e wme - ——

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

xiv 48-038 FOO0 RO2

CHAPTER 1
SUPERVISOR CALLS (SVCs)

1.1 INTRODUCTION

0S/32 provides each task with the support it needs to perform its
designated function. In addition to programs that allow a user
to design, implement, test and execute tasks, 0S/32 provides a
number of system services that can be accessed by a task during
execution. Included among these services are task timing,
interrupt handling, input and output to devices or files,
resource allocations and intertask communication and control.

A task accesses a system resource by calling an 0S/32 executor
routine. An assembly program calls an executor routine by
issuing an SVC. Table 1-1 1lists the 8SVCs that access 0S/32

system services for assembly tasks. These SVCs are divided into
two groups:

® SVCs for general use in both application and system level
programs, and

® SVCs for use in system level programs only.

TABLE 1-1 08/32 SVCs

- ——— - ——— . — g W——— . . T —— ————— . Vo T S " S — G GBS e e e G G e W W S G — T o T — T —

H svc ! FUNCTION |
‘ 2 3 2 % 3 3 2 3 R/ 3 3 3.3 32 32 3 & 3 % 3 32 3 %2 3 32 32 2 32 2 % B 2 & &2 & 32 % 2 B R 2 3 2 32 3 & 32 B "B 2 B 3 & 2 3 & -3 J =
| SVCO | User-written SVC H
i i |
| SVCl | Input/output (I/0) request |
| i !
{ 8VC2 code 0 | Make journal entries |
| SVC2 code 1 | Pause '
| 8VC2 code 2 | Get storage |
| 8VC2 code 3 | Release storage |
| 8VC2 code 4 | Set status !
| 8VC2 code 5 | Fetch pointer !
| 8VC2 code 6 | Convert binary to ASCII hexadecimal or |
| | ASCII decimal !
| 8VC2 code 7 | Log message]
| 8VvC2 code 8 | Interrogate clock }
| 8VC2 code 9 | Fetch date !
| 8VC2 code 10 | Time of day wait !

48-038 FO0 RO2 1-1

TABLE 1-1 08/32 SVCs (Continued)

svec | FUNCTION
SVC2 code 11 | Interval wait
SVC2 code 14 Internal reader :
SVC2 code 15 Convert ASCII hexadecimal or ASCII decimal
to binary
Pack file descriptor (fd)
Scan mnemonic table
Move ASCI1 characters
Peek
Reserved for sequential tasking machines
Reserved for sequential tasking machines
Timer management
Set accounting information
Fetch accounting information
Fetch device name
Memory management
Unpack fd

SVC2 code 16
SVC2 code 17
SVC2 code 18
8SVC2 code 19
SVC2 code 20
8VC2 code 21
8SVC2 code 23
SVC2 code 24
8SVC2 code 25
SVC2 code 26
SVC2 code 27
SVC2 code 29

—m —— v Em SAAE NS AN EEE WEen T GmEs e e e L SR AMEE GREr GMEE Meer EEG EEG YRR R Gee Mber Ymer Sms wmte WG Gnen Gmes Emde endm =

svcs3 End of task

SvCs Fetch overlay

SVC6 Intertask communication and control
svc7 File handling services

sSVC9 ILoad task status word (TSW)

sSvVCi1o Overlay loading

svCcis3 Auxiliary processing unit (APU) control
svCcl4 Function determined by user

sSvCl1Ss Communications device-dependent 1/0

Perkin-Elmer also provides run-time library (RTL) routines that
allow a program written in FORTRAN or Pascal to access system
services. These routines issue general user SVCs for the task.
A system macro library is also available that allows an assembly
program to issue an SVC through a system macro call. See the
0s/32 Application Level Programmer Reference Manual for an
overview of the methods used by the application programmer to
access system services.

1-2 48-038 F0O RO2

l.l.l‘ Supervisor Call (SVC) Parameter Block

Associated with each SVC (except SVC3) 1is an operating system.

data structure called a parameter block. The parameter block
contains the data required by the 0S/32 executor. Each parameter
block has a specific length and format. The full 1length of a
parameter block must be reserved even if certain parameters are
not required by the particular SVC executor routine.

To issue an SVC, a task must specify the identifying number of
the SVC and the address of the SVC parameter block as operands to
the call.

Format:

SVC n,parblk

Operands:
n is a decimal number specifying the SVC.
parblk is the label or address of the parameter block

that contains the information necessary to
execute the <call. All parameter blocks must
be fullword boundary-aligned.

Execution of an SVC causes an interrupt that is processed by the
Internal Interrupt Subsystem. See the 0S/32 System Level
Programmer Reference Manual for a description of SVC processing
by the Internal Interrupt Subsystem.

When building a parameter block structure, it is possible to use
the standard symbolic names that have been assigned to the fields
and functional values for the parameter block. To obtain these

standard names and their definitions, expand the appropriate data.

structure macro. These macros are contained in the 0S/32 System
Macro Library Utility, SYSSTRUC.MLB. See the Common Assembly
Language Macro/32 (CAL MACRO/32) Processor and 0S/32 System Macro
Library Utility Reference Manuals.

48-038 FOO RO2 1-3

amam

o e Gmem s SEEE I GRS SREE GRS GSGE AR

Use the following Macro Library Utility commands to

SYSSTRUC.MLB directory:

Use the following Macro

desired structure.

XL, MLU32
xST

PERKIN-ELMER 0S/32 MACRO LIBRARY UTILITY 03-340 R00-01

MLU >G MTM:SYSSTRUC.MLB/S

MLU >DIR

12/04/83
DCBS
$SVC1§
$UREGS
$SVT
§VFDCB
$SDE
§TOPT
$LIB
$ACB
$DATB
$sVC5
$10B
$ESYS
$TQH
$VFCHARS
$AOPT
$LLE

MLU >

Format:

$TCBS
$ERRCS
$PSW
$STE
$SDCB
$CTX
$TSTT
$LOPT
$FD
$DFLG
$SVCH
$IOBF
$EMIL
$TG27
$HB
$TTB

$FCBS
$SVC13$
$SPT
$PDCB
$EVN
$RCTX
$TWT
$LSG
$FDE
$DXFL
$svc?
$IOH
§MERC
INTCPARM
$WAP
§LPMT

$REGSS
$APBS$
$SPTE
$DDCB
$SCV7SPL
$TCB
$TLFL
$RLST
$PFCB
§svcl
$SVCT7EXT
$SPOL
$ORT

$QH

$TKQ
§SYP

$ETHSTCM $ETHDCBS $ETHSTBF
116 MACROS IN LIBRARY MTM:SYSSTRUC.MLB/G

LIST fd,macro

Library Utility

UDL
$SOPT
$$SPT
$PSDCB
$sSD
$0CB
$TFL
$RSARCPY
$FCB
$S1X0
$sSvC13
$ATF
$0DT
$IPCB
$APB
$OPB§

command to

display the

FJLIBS $IOBS
$RREGS $EREGS
$TABLS $IVT
$DDE $MAGDCB
$SPILMSG $TMQ
$PSTCB $TSW
$TPRC $LTCB
$VD $DIR
$FFLG $CCB
$SVC1ERR §SVC4
$APST $UDL
$GERC $EFMG
$SPR $TQE
$IRCB $ICB
$APRC $APS
$OPB $OQPSTAT
list the
48-038 FOO ROZ2

Example:

MLU > LI M300:MAR, $SVC1l
MACRO
$SVCL
GBLB %SVCl
AIF (%$SVCl)&SVClX

$SVC1l SETB 1
SPACE 2
SVCl. STRUC STRUCTURE OF SVC-1 PARAMETER BLOCK
SPACE 1
SVCl.FC Ds 0 FUNCTION CODE
SVC1.FUN DS 1 (ALTERNATE MNEMONIC)
SVCl.LU Ds 1 LOGICAL UNIT
SVCl.STA DS 1 STATUS FIELD
SVC1.DN Ds 1 DEVICE NUMBER
SPACE 1
SVCl.SAD DS ADC BUFFER START ADDRESS
SVC1.EAD Ds ADC BUFFER END ADDRESS
SVC1l.RAD DS ADC RANDOM ADDRESS
SVCl.LXF DS 4 LENGTH OF LAST TRANSFER
ENDS
SVC1X STRUC
DS SVCl.
SVC1.XIT DS 4 EXTENDED ITAM OPTION BITS
ENDS
SPACE 2
X * % % THE SVC-1 FUNCTION CODES
SPACE 1
SV1.CMDF EQU X'80°’ COMMAND
SV1.READ EQU X'40' READ
SV1.WRIT EQU X'20' WRITE
SV1.BIN EQU X'lo' BINARY
SV1.WAIT EQU X'o8' WAIT
SV1.RAND EQU X'04' RANDOM
SV1.UPRO EQU X'o02' UNCONDITIONAL PROCEED
SV1.IMG EQU X'ol! IMAGE MODE
SV1.XIT EQU X'01l' ITAM EXTENDED OPT
SPACE 1
SV1.REW EQU X'co' REWIND
SV1.BSR EQU X'a0' BACKSPACE RECORD
SV1.FSR EQU X'90' FORWARD-SPACE RECORD
SV1.WFM EQU Xx'ss8! WRITE FILE-MARK
SV1.FFM EQU X'84' FORWARD-SPACE FILE-MARK
SV1.BFM EQU x's2’ - BACKSPACE FILE-MARK
SV1.DDF EQU X'81' DEVICE-DEPENDENT FUNCTION
SPACE 1
SV1.HLT EQU X'80' HALT 1/0
SV1.SET EQU X'60" TEST & SET
SV1.wo EQU x'o8' WAIT ONLY
SV1.TEST EQU X'o02' TEST 1/0 COMPLETION
SPACE 1

IR 2222222232323 2223322222222 R R R R s 2Rt

&SVC1X ANOP

MEND
1 MACRO LISTED TO M300:MAR
MLU >

48-038 FOO RO2 1-5

1.2 SUPERVISOR CALL (SVC) ERRORS

The operating system informs the task of any error conditions
encountered during SVC processing. Depending on the kind of
error encountered, the operating system:

® pauses execution of the task and displays a message on the
system console, or

e stores an error code in the error status field of the 8VC
parameter block and/or sets the condition code.

The first method is used when an error condition occurs as a
result of a programming error in the task code (e.g., alignment
or illegal instruction fault). If the user wishes the task to
handle these errors, the task can take a trap that causes
execution to branch to the task trap-handling routine. See the
0S/32 Application Level Programmer Reference Manual for more
information on trap-handling.

The second method informs the user of the execution status of the
SVC executor.

1.2.1 Supervisor Call (SVC) Error Messages

When the user chooses not to take a trap when an 1illegal
instruction fault occurs, the illegal instruction trap bit is set
to 0 in the current TSW. On encountering an SVC error, the
operating system pauses the task and outputs a message to the
system console.

If the SVC error results from attempting to execute an undefined

or illegal SVC or from specifying an invalid code for an SVC2,
the following message is displayed:

ILLEGAL SVC - INSTRUCTION AT xxXXxxX(YYYYYY)

Where:
XXXXXX is the relative address of the SVC instruction
that caused the error.

YYYYYY is the physical address of the SVC instruction
that caused the error. :

1-6 48-038 FOO RO2

If an address or alignment error occurs, the following message is
displayed:

Format:

SVC ADDRESS ERROR - INSTRUCTION AT XXXXXX(YYYYYY)
SVC PARAMETER BLOCK AT xxxxxx(YYYYYY)

Where:
XXXXXX is the relative address of the svc or
parameter block that caused the error.
YYYYYY is the physical address of the svc or

parameter block that caused the error.

NOTE

Systems equipped with a memory address
translator (MAT) display the following
message when an address or alignment
error occurs:

SVC ADDRESS ERROR-INSTRUCTION AT xxxxxX(YYYYYY)
SVC PARAMETER BLOCK AT xxxxxXX(YYYYYY)
MEMORY FAULT ADDRESS = XxXXXXX(YYYYYY)

An address or alignment error can result
from any one of the following conditions:

o The address specified for the SVC
parameter block 1lies outside task
boundaries.

e The address specified for the SVC
parameter block is not aligned on a
fullword boundary.

® The address specified for the SVC
parameter block is not within a
writable segment, which is required
for that particular SVC.

48-038 FOO RO2 1-7

1.2.2 Supervisor Call (SVC) Status Codes

When an SVC execution error occurs, the operating system:

@ returns an error code to the status field of the SVC parameter
block, and/or

® sets bits in the condition code (CVGL) to reflect the results
of SVC execution.

The status code returned depends on the particular SVC. Each SVC

described in this manual has a defined set of status codes. The
condition code (CC), if set for the 8VC, depends on the
particular SVC. Generally, a €CC of 0 indicates successful

execution and termination.

A nonzero error code may be returned to the status field of the
SVC parameter block as a result of one of the following
conditions:

e The buffer to which the SVC parameter block is pointing is not
aligned on the proper boundary.

® An SVC parameter block that must point to a task-writable
segment is pointing to a buffer outside a writable segment.

To test the CC, use a branch mnemonic that tests for a true
condition.

Example:

In the following example, the CC of the program status word (PSW)
is tested for the conditions specified by the mask field PSW.CC.
PSW.CC is equated to X'F'. |I[If any conditions tested are found to
be true, a branch 1is taken to the location ERROR. For more
information on branch instructions, see the Instruction Set
Reference Manual or the Processor User's Manual for the
appropriate processor model.

BTC PSW.CC,ERROR

1-8 48-038 F00 RO2

1.3 8VCO: USER-WRITTEN SUPERVISOR CALL (SVC)

SVCO0 is reserved for user-written 0S/32 executor routines.
Before writing an executor routine that can be called by SVCO,
the operating system must be mocdified. This modification can be
done dynamically at run-time by an executive task (e-task).
However, the SVC executor table contains only halfword entries;
the first instruction of the executor routine called by SVCO must
lie within the first 64kb of physical memory.

48-038 F0O RO2 1-9

CHAPTER 2
INPUT/OUTPUT (I/0) REQUEST SUPERVISOR CALL 1 (SVCl)

2.1 INTRODUCTION

SVC1l executes all general I/0 data transfer requests and specific
command function requests. General I/0 data transfer requests
refer to either a read or write operation. Before any data can
be transferred, the user must specify whether it 1is a read or
write, the address and length of the I/0 buffer that will receive
or send the data, and the logical unit (lu) assigned to the
device or file to which the I1/0 is directed. These
specifications are indicated through certain fields of the SVCl
parameter block.

When requesting a read or write operation, the user must describe
the data being transferred and the environment during the
transfer in the SVCl parameter block. For proper execution of a
simple data transfer request, specify the:

e structure of the file to or from which a record 1is being
transferred (sequential or random),

e form that the data is in when transferred (ASCII or binary,
formatted or image mode), and

e state that the calling task will be in during I/0 (I/O
proceed, /0 wait or unconditional proceed).

If the device is busy when the data request is made, the user
must decide if task execution is to wait, whether to queue the
request and proceed or whether to proceed and retry the I/0
request later. Link specifies the maximum number of I/0 requests
that are to be queued at one time. The user also has the option
to start I/0 and continue task execution, then stop task
execution until the 1/0 is completed. If the device is free and
the user wants exclusive access to a record or file (any file
type), the user should execute a test and set operation to inform
other tasks that the record or file is being used.

48-038 F0O0 RO2 2-1

Once the read or write operation is completed:

e test for I/0 completion (check the condition code (CC), status
fields and task queue, or execute a test 1/0 complete) and, if
the status fields indicate that no error has occurred,

® check to verify that all of the specified data was actually

transferred (check the 1length of the data transfer field in
the SVC1l parameter block).

All testing and checking for I/0 completion can be accomplished
through the SVC1l parameter block.

Specific I/0 command function requests that can be made through
SVCl include:

e Rewind

® Backspace or forward space record

e Write filemark

e Backspace or forward space filemark

® User-specified, driver-dependent functions (reserved)

e Halt I/0

Before a command function request is issued, the desired command
must be specified and the lu must be assigned to the device to

which the command is directed. These specifications are
indicated in the SVC1l parameter block shown in Figure 2-1.

2-2 48-038 FOO ROZ2

2.2 SUPERVISOR CALL 1 (SVCl)

The SVCl1l parameter block must . be 24 bytes 1long, fullword
boundary-aligned and located in a task-writable segment.
Location within a writable segment is necessary so the status of
an I/0 request can be returned to the status fields of the
parameter block. All fields in the parameter block are not
required for every 1/0 request but must be reserved (see Figure

e T ———— T ——— T — " " (o — U — — o ——— —— ———] = —— G S - Fou —— . S i T~ — o T ——— — — —

10(0) 11(1) 12(2) Device- |[3(3) Device- |
| Function code| lu { independent | dependent |
] |] status | status |
e e e e e e e e e e e e e e e e i
14(4) !
| Buffer start address |
| !
e e e e e e e e e e e e e i
18(8) !
| ‘Buffer end address |
!

e |
112(C) |
i Random address H
| '
! ___ =
116 (10) |
| Length of data transfer !
| |
e e e e e e e e e e e |
120(14)]
] Extended options H
! i

8VC 1,parblk

ALIGN 4

parblk DB X'function code'’

DB X'lu'

Ds 2 bytes for status

DC A(buffer start)

nc A(buffer end) .

nc 4 bytes for random address

Ds 4 bytes for length of data transfer

DC Y'extended options'

Figure 2-1 8SVCl Parameter Block Format and Coding

48-038 FOO0 RO2 2-3

Fields:

Function
code

lu

Device-
independent
status

Device-
dependent
status

Buffer start
address

Buffer end
address

Random
address

Length of
data transfer

Extended
options

is a l-byte field indicating whether a request

is a data transfer or a command function, and
the specific operation to be performed. Bit
settings for data transfer requests are
described in Table 2-1. Hexadecimal function
codes for command function requests are
defined in Table 2-2.

is a 1l-byte field containing the logical unit

currently assigned to the device to which an
I1/0 request is directed.

is a 1l-byte field receiving the execution
status of an 1I/0 request after completion.
The status received is not directly related to
the type of device used.

is a l-byte field receiving the
status of an I/0 request after
The status received contains
unigue to the type of device used.

execution
completion.
information

is a 4-byte field data
transfer requests and must contain the
starting address of the 1/0 buffer that

receives or sends the data being transferred.

used only for

is a 4-byte field used only for data
transfer requests and must contain the ending
address of the 1[/0 buffer that receives or
sends the data being transferred.

is a 4-byte field containing the address
of the logical record to be accessed for a
data transfer request; a legal hexadecimal

number must be specified in this field if bit
5 of the function code is set to 1.
is a 4-byte field used only for data

transfer requests. It receives the number of
bytes actually transferred as a result of a
data transfer request. If an error occurs
during data transfer, this field is modified
with indeterminate data.

is a 4-byte field specifying device-dependent
and device-independent extended functions that
must be executed by the device when it is
servicing a data transfer reguest.

48-038 FOO RO2

2.2.1 Data Transfer Requests

Figure 2-2 shows the function code format for data transfer
requests, and Table 2-1 defines each function code bit position.

Format Access Extended

Options
Test Wait | Test I1/0
and Set Cnly | Complete
e T ’L ‘T_’J:: g
POV REW L L
Bits:

Figure 2-2 Function Code Format for Data Transfer Requests

TABLE 2-1 FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER

REQUESTS
! BIT ' |
!} POSITION | BIT NAME | BIT SETTING AND MEANING
= R E R T R S R N R T E N O E RS R N RN EEEE S A E N EEE S EEEERE SRR MmN EIE I
H 0 | Function code | 0 = data transfer request.
H | Lype !
; ___
! 1 ! Read | 1 = read operation. (Bit 2 must
! | ! be set to 0.)
= ___
H 2 | Write | 1 = write operation. (Bit 1 must
! ! ! be set to 0.)
‘ ___
] 1-2 | Test and set | 1 = test if a specific record in a
!]] file is being used by another
! ! ! task.
l __________________________ - —— — —— —————— - ———— ———— — ——— o T~ oo > T T o
3 ASCII 0 = the internal data is in the

]

I

! 7-bit ASCII character set and
! is translated to an equivalent
| character set appropriate for
! the external device.

48-038 F0O RO2 2-5

TABLLE 2-1 PUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS (Continued)

BIT
POSITION

BIT NAME

Binary

1/0 proceed

Wait 1/0

Wait only

Sequential
random

BIT SETTING AND MEANING

the internal data is 8-bit
binary and will not be trans-
lated. If bit 3 is set and an
image 1/0 extended option is
specified, the internal data
byte (eight bits) is trans-
ferred without translation.

- — i ———————————— — ——————— ——— ————— — ————— i, T t— (" > " — VR rss Ge Garm B e S - ——— i —

if the device is not busy,
return control to the calling
task after initiation of data
transfer to the device. How-
ever, if the device is busy,
the request is queued and task
execution continues.

stop task execution, initiate
data transfer to the device,
and wait until the completion
of 1/0.

task execution stops and waits
until the completion of all
queued I1/0 proceed requests to
the specified lu. When a wait
only request is issued, bit 4
is the only bit set in the
function code.

access the next logical record.

access the logical record
specified by the hexadecimal
value in the random address
field of the parameter block.
The association of the hexa-
decimal values with the logi-
cal record must be established
before the data transfer
occurs.

48-038 FO0O RO2

TABLE 2-1 FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS (Continued)

BIT |
POSITION | BIT NAME
6 Conditional
proceed

BIT SETTING AND MEANING

0 = after the 1/0 request is
issued, put the task into a
wait state if the requested
device is busy and the total
number of queued requests
exceeds the maximum. Once the
1/0 request is completed, the
task resumes execution. If
the maximum number of queued
requests is 1, a pending re-
quest causes the task to be
placed in a wait state.

=
]

Unconditional
proceed

any I1/0 request made to a de-
vice that is busy is rejected
if the total number of queued
requests exceeds the maximum,
and task execution continues.

Test 1/0
complete

—
]

test to check for the comple-
tion of I1/0 to a specified lu.

If a previous 1/0 proceed
request or queued I/0 proceed
request does exist, the CC is
set to X'F'. However, if there
is no outstanding I/0 proceed
request, the CC is set to X'O0'.

When a test 1/0 complete re-
quest is issued, bit 6 is the
only bit in the function code
set. If bit 4 is set, it is
ignored.

! 0 = the data being transferred is

] formatted as indicated by the

! bit 3 setting of the function
1
i
i

- wen T e T — —an - - ——— e e - - S——— .- —— — T—w e e e e e - e e e ——] ——

code and according to the

!
|
|
!
|
| device type specified.

48-038 FOO RO2 2-7

. T S e G- RO T VRS M ———— —— — VR SRS WIS GG WM GRS MEAr GRAr WRGr YR Smar Gmes Smas GRER GEr GmeE SREs WRGE ShGe e Gmen e —— ——

TABLE 2-1 FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS (Continued)

BIT

POSITION BIT NAME BIT SETTING AND MEANING
Extended/ 1 = tests the setting of the XSVCl
image options task option. If XSVC1l is off,

' an image 1/0 transfer is per-
formed. 1If the option is on,
the extended options fullword

in the parameter block is
checked for specified options.

the data being transferred is
in image mode and is not for-
matted. In effect, the user
must explicitly specify any
control characters such as
carriage returns (CRs) or line
feeds (LFs) on writes and will
receive exactly what is input
on reads.

e e e = mm —— ———— —— —— . - W —— ——— - — -

i
|
i
]
|
i
i
|
!
H When an image I1/0 is performed,
]
i
i
i
]
1
]
)
]
]
]
1
]
]

2.2.1.1 Test and Set

The test and set function can be used to write a program that
prevents multiple tasks from modifying a record simultaneously.
A task that issues an SVCl with the test ‘and set bit enabled
notifies other tasks that it is using a record by setting the
first bit of that record to 1. This bit setting is called a
l-bit record 1lock. Any task subsequently performing a test and
set on the record is informed that the record is being accessed
by another task.

To use the test and set function, set both bits 1 and 2 of the
function code field to 1. If the test and set operation is used
to lock out a record written in binary image mode, make certain
that the first bit 1in the record is initially set to 0. In
addition, the size of the user buffer should match the size of
the file record. The following diagrams demonstrate how a test
and set operation is performed.

2-8 48-038 FOO RO2

In the first diagram, the calling task issued an SVCl with test
and set enabled to read a record into its user buffer specified
by the SVCl parameter block. Notice that the bit setting for the .
record lock bit is 0, indicating that the record is not being
used by another task.

Record
lock Record length
bit
w/'\/\
Record = ----- 2 F“‘:::l ____________) bmmmmmmm e -
on 104 ! !
Disk = ===--- O e R G
Bytes:
\ O 99 e —— 255
1 sector
Record
lock
?it
Recorad e 1 F-----
Transferred i O !
to User = W =—=—wew—e Q r-—-—-
Buffer Bytes:
0 99

After the record is read into the user buffer, the test and set
operation tests the record lock bit. If the bit is 0, the record
lock bit in the user buffer is set to 1. The following diagram
shows the record lock bit settings after the test operation is
‘performed.

Record
lock
?it
Record B i b
on 104 i !
Disk = wee--- q - e Q1 bt-—mmmmm
Bytes:
0 99 255
Record
lock
?it
User - Q -
Buffer 11} !
________ Q e
Bytes:
0 99

48-038 FOO RO2 2-9

After the record lock bit 1is tested, the S8VCl test and set
function sets the record 1lock bit on disk to 1 so that other
tasks attempting to modify the record are notified that the
record 1is in use. SVC1l sets the record lock bit on disk by
copying the contents of the user buffer to the record's original
location on disk. In addition, 8SVCl sets the CC to X'0' and
resets the record lock bit in the user buffer to 0.

The following diagram shows the results of the completed test and
set operation.

Record

lock

Tit
Record B B R
Returned i1} | !
to Disk = --=-—- o b R e —
with Bytes:
Record 8] g9 255
Lock Bit
Set

Record

lock

?it

~ = i e ———
User 10} !
Buffer = | —=——-=e- Q P
with Bytes:
Record 0] 99
Lock Bit
Set to O

Condition Code:

2-10 48-038 F0OO RO2

If the calling task had performed a test and set operation on a
record that had a record lock bit setting of 1, the CC would be
set to X'F'. The following diagram shows the record lock bit
settings and CC resulting from this test and set operation.

Record

lock

?it
Record TR b Q -
on Disk : 1) | |
with =] bm—rmmmm e Q -
Record Bytes:
Lock 0 99 255
Bit Set

Record

lock

?it

~ e D S —
User 11 H
Buffer = = -—-——--] -
with Bytes:
Record 0 99
Lock Bit
Set to 1

Condition Code:

After a test and set operation, a record protection program
checks the CC. If the CC is 0, the task can then proceed to
modify the record. If the CC is X'F', the task should retry the
test and set operation before attempting to modify the record.

To unlock the record on disk, the task that set the record lock
bit should write the record 1in its user buffer back into its
original location on disk, whether or not the task modified the
record.

48-038 F0OO0 RO2 2-11

If the size of the user buffer is 1less than the size of the
record, the following occurs when the record in the user buffer
is written back to disk:

e If the record in the user buffer is written back to an indexed
file, the remaining bytes of the record are filled with zeros.

e If the record in the user buffer is written back to a
contiguous nonbuffered indexed or extendable contiguous file,
the last two bytes of the record are propagated to the right
until the remaining bytes of the record are filled.

The following diagram illustrates how a user buffer smaller than
a 256-byte contiguous file record is returned to disk. Notice
that the last two bytes of the record in the user buffer are
propagated to the right to fill a 256-byte sector on disk.

Record Last two bytes
lock of record
99-byte krit ’
Record
in s~ 2 r--IT===
User 10} 14D} 50
Buffer = —-—-—--—-—- 1 t---————-
Bytes:
0 99
Record Last two bytes
Lock of record
bit
99-Byte l
Record B B e ittt Q2 -
Returned 10} 14D}|50{4D|50}4D}50{4D| }4D}|50}4D|50
to Disk = -——---- 1 bt 1 b
Bytes:
0] 99 255

The test and set operation can be executed as a wait I/0 or 1I/0
proceed request. Setting the CC during a test and set operation
occurs only when wait [/0 is specified. (Bit 4 of the function
code 1is set to 1.) However, if an I/0 proceed is requested (bit
4 of the function code is set to 0), setting the CC is not useful
because it could be changed at any time during task execution
when data transfer and task execution take place concurrently.
Therefore, check the record lock bit in the buffer to determine
whether the record is currently being used. See the 0S/32 System
Level Programmer Reference Manual for the devices supporting test
and set.

2-12 48-038 F0OO RO2

The following sample program demonstrates how the test and set

function can be used to write a program that provides record
protection.

Sample Program:
TEST AND SET EXAMPLE
PRIOR TO PROGRAM EXECUTION ASSIGN LU 1 AND LU 2

TO A TEXT FILE CREATED BY EDIT32.

LU 1 AND LU 2 SIMULATE ACCESS OF THE FILE BY TWO
TASKS.

O X O K X M X X %

TESTSET PROG TEST AND SET EXAMPLE
ENTRY TESTSET

TESTSET EQU *

*

LIS 1,0 SET UP FIRST RECORD NO.
LOOP EQU x

ST 1,PBl+10.RECNU FOR LU 1

ST 1,PB2+10.RECNU FOR LU 2
*

sve 1,PBl READ & TEST RECORD ON LU 1

BZ CONTO5 OK; RECORD IS NOT LOCKED

PAUS ERROR; RECORD IS LOCKED; SHOULD BE FREE
CONTO5 EQU *

LA 14,PB1 PB ADR FOR EOF TEST

BAL 15,@IOERR CHECK FOR END-OF-FILE

x
X

CONT10 EQU *
svc 1,PB2 READ AND TEST RECORD ON LU 2
BM CONT20 OK; RECORD IS LOCKED

PAUS ERROR; RECORD IS FREE; SHOULD BE LOCKED
*

b 4

CONTZ20 EQU x

L 2,B1S MANIPULATE RECORD DATA
ST 2,B1lS
* WRITE RECORD BACK TO FI.E AND UNLOCK IT

svcC 1,PB3

svcC 1,PB2 : READ AND TEST RECORD ON LU 2
BZ CONT30 OK; RECORD IS FREE

PAUS ERROR; RECORD IS LOCKED; SHOULD BE FREE
x

b 4

CONT30 EQU x
svC 1,PBl READ AND TEST RECORD ON LU 1
BM CONT40 OK; RECORD IS LOCKED
PAUS ERROR; RECORD IS FREE; SHOULD BE LOCKED

48-038 F0O0 RO2 2-13

*
X

CONT40 EQU x

L 3,B28 MANIPULATE RECORD DATE
ST 3,B28
* WRITE RECORD BACK TO FILE AND UNLOCK IT

WRITE LU=2,RECNUMB=(1),ADDR=B2S,ENDADDR=B2E

AlIs 1,1 INCREMENT RECORD COUNTER
B LOOP DO NEXT RECORD UNTIL EOF
x
PB1 IOPCB FUN=X'76',LU=1,ADDR=B1S, ENDADDR=B1E, RESTART=CONTO5
k 4
*
PB2 IOPCB FUN=X'76',LU=2,ADDR=B2S, ENDADDR=B2E
*
%*
PB3 IOPCB FUN=X'36',LU=1,ADDR=B1S, ENDADDR=B1E, RECNUMB=(1)
*
*
ALIGN ADC
B1S DS 80 BUFFER FOR LU 1
B1E EQU *-1
*
*
B2S DS 80 BUFFER FOR LU 2
B2E EQU *-1
*
*
END

2.2.1.2 Input/Output (I/0) Proceed

An I/0 proceed request is initiated when bit 4 of the function
code is set to 0 and a read or write operation is specified.

If the device is free when a data transfer request is made with
I/0 proceed specified, task execution and data transfer take
place concurrently. When the I/0 is completed, the status of the
data transfer is returned to the status fields in the parameter
block. An illegal function code or illegal lu causes the status
to be returned to the status fields before data transfer starts,
resulting in rejection of the 1/0 proceed request. Since task
execution and data transfer take place concurrently, the task
must check for the completion of I1/0. There are five ways to
check for I/0 completion:

e Execute a test I/0 complete operation.

e Monitor the status fields in the SVCl parameter block issuing
the request.

2-14 48-038 FOO RO2

e Take a trap when I/0 is completed and branch to a service
routine.

e Issue a wait I/O request to the device specified by the SVCl
making the request. This function will stop task execution
until I/0 is completed.

e Queue I/0 requests by specifying the IOBLOCK parameter of the
Link OPTION command and issuing the wait only function. This
will stop task execution until all queued requests to a
specified device are completed.

An SVC1l I/O proceed request to an indexed file executes in a
different manner than an [/0 proceed to other file types or
devices. See the 0S5/32 Application Level Programmer Reference
Manual for more information on I/0 operations to indexed files.

2.2.1.3 Queuing Input/Output (I1/0) Requests

When SVCl issues an I/0 proceed request to a device that is busy,
the request is placed on the calling task's 1I/0 control block,
and task execution continues. The request is serviced when the
device is free. Normally, each task has only one 1I/0 control
block on which to queue an I/0 request. To queue more than one
request, use the IOBLOCK parameter of the Link OPTION command to
assign more blocks to the task.

Format:

b
OPTION lQBLOCK={ }

Parameter:

b is a decimal number from 1 to 65,535
indicating the maximum number of I/0 control
blocks assigned to a task. Each I/0 control
block can contain one queued I/0 request. If
this option is not specified by the user, Link
automatically assigns one I/0 control block to
the task.

48-038 F00 RO2 2-15

2.2.1.4 Conditional Proceed

If the number of gueued requests exceeds the maximum number of
I/0 blocks assigned to the task and bit 6 of the function code is
set to 0, SVC1l places the task in a wait state until one of the
queued requests is serviced. Task execution resumes when the
number of queued requests equals the maximum number set by Link.

The number of I/0 requests a task can issue before going into the
wait state is determined by the formula:

b + 1 + number of logical units assigned to task

Parameter b is the number of 1/0 control blocks assigned to the
task.

2.2.1.5 Unconditional Proceed

To prevent the task from going into the wait state when the
maximum number of requests specified by Link are queued, set bit
6 of the function code to 1. This code allows the task to reject
all I/O requests made to a busy device after the maximum number
of requests are queued. When a request is rejected, a status of
0 is sent to the device-independent status field, and the CC is
set to X'F'. The user can retry the rejected 1/0 request during
task execution.

2.2.1.6 Wait Input/Output (I/0)

To stop task execution during a read or write operation, use the
wait I/0 function. A wait I/0 request is initiated when bit 4 of
the function code 1is set to 1 and a read or write operation is
specified.

If the device is free when a data transfer request is made with
wait I/0 specified, task execution stops, I/0 is initiated, and
the task waits to resume until I/0 is completed. Status of the
data transfer is returned to the status fields when the [/0 is
completed. 1If the device is busy when a data transfer request is
made with wait I/0 specified, the request 1is queued and task
execution is suspended until the queued request is serviced and
I/0 is completed. Task execution then resumes.

2-16 48-038 FOO RO2

2.2.1.7 Wait Only

A wait only request stops task execution until all 1I/0 proceed.
requests to the specified 1lu (including queued requests) are
completed. When the last queued 1/0 proceed request is
completed, task execution continues. The status of the last
completed I/0 proceed request is returned to the status field of
its respective SVCl parameter block.

To issue the wait only request, set the SVC1l function code field
to X'08' and the lu field to the appropriate device. A nonzero
status code will be returned to the status field of the SVC1l wait
only parameter block if any of the following conditions occur:

e The lu is illegal (code X'81'").
® The lu is unassigned (code X'81"').

e The wait only request is issued for a pseudo device without
SVC interception (code X'C0').

2.2.2 Command Function Requests

All command function requests and task execution take place
concurrently. Queued requests are handled the same way as
conditional proceed data transfer requests. When the 1I/0 is
completed, the status of the command function is returned to the
status fields in the parameter block. An illegal function code
or illegal 1lu causes the status to be returned to the status
fields before the command function starts. This results in
rejection of the command function request.

Since task execution and command function requests take place
concurrently, the task must check for I/0 completion. These
three methods are used to check for I/0 completion:

e Execute a test I/0 complete operation.

e Monitor the status fields in the parameter block for the
command function status to be returned.

e Issue a wait only request to the device specified by the SVC1l

making the request. This function stops task execution until
I/0 is completed.

Table 2-2 defines the function codes for command function
requests.

48-038 FOO RO2 2-17

TABLE 2-2 FUNCTION CODES FOR COMMAND FUNCTION REQUESTS

b e e e e —— —— - —————— ——— — ——— ————— " _—— — — —————— T ——— Tt = Mo T W W A0S @At Bm B M . S - ——

FUNCTION

CODE MEANING

3 T 3t 1 3 11 1 1 3 1 3 3% 1 3 % 33 3 3 % % 3 3 3 3 2 & &4 2 4 3 b 3 2 B R A} B 1 3 2 2 -3-3% 3 3_1} J

Rewind - A rewind operation is to occur on the
specified lu.

X'co’

X'AOQ' Backspace record - The device assigned to the lu is

to backspace one record length.
X'90" Forward space record - The device assigned to the
lu is to move forward one record length.

X'88' Write filemark - A filemark is to be written at the
current pointer position on the device assigned

to the 1lu.

Forward space filemark - The device assigned to the
lu is to move forward past the next filemark to the
beginning of the next file.

X'g82' Backspace filemark - The device assigned to the lu
is to backspace to the previous filemark. For disk
files, this positions the pointer to the beginning
of the previous file. For magnetic tape files, the
tape is positioned at the end of the previous file.
X'81' No echoplex - The device chooses no echoplex for

an image I/0 and selects 8-~bit no parity as an op-
tion for SVCl 1/0. By preceding an I/0 with an
additional SVC1l with a function code Y'10000 0000',
no echoplex is set in the data control block. This
applies to device 156 and 157 drivers.

Halt I/0 - Cancel all previous 1/0 proceed requests
to the specified 1lu.

i i — — ———— —— — - — A —————— ———— —— — " WD Gt e SN R W MES e 4V M NS A m A e e Gms M - . S e

i
|
i
I
'
|
|
!
|
!
|
|
i
i
i
i
1 X'84'
|
i
i
i
I
|
|
|
|
|
|
|
|
|
|
|
i
|

2.2.2.1 Halt Input/Output (1/0)

When a halt I/0 request is 1issued, any previous 1/0 proceed
requests, whether they are in progress or queued to the specified
lu, are cancelled. When the I/0 is terminated, the task that
issued the I/0 proceed request takes a trap (if enabled), the
request is queued, and the status of the I/0 operation (data
transfer or command function) is returned to the status fields of
the parameter block issuing the request. The time of actual
termination 1is asynchronous to the time the halt /0 is issued.
The independent status codes are listed in Table 2-3 and the
dependent status codes are listed in Table 2-4.

2-18 48-038 F0OO0 RO2

When an [/0 request is issued to an lu and a previous I[/0 proceed
request exists for that same 1lu, the second request and any
subsequent requests to that 1lu cannot be serviced until the
previous I/0 request is completed. By 1issuing a halt 1I/0
request, the first 1I/0 request 1is cancelled, allowing 1I/0
requests issued after the cancellation to be started on the
device.

If the IOBLOCK option was specified by Link and at least one 1[/0
request to a specified 1lu 1is queued, execution of a halt [/0
request cancels any I/0 to that specified lu already queued or in
progress. See the 0S/32 System Level Programmer Reference Manual
for the devices supporting the halt [/0 request.

2.2.3 Logical Unit (1lu)

An lu is a decimal number ranging from 0 to 254. The highest 1lu
number to which a task can be assigned is determined by the 1lu
parameter of the Link OPTION command. After loading the task
into memory, the 1lu should be assigned to a particular file or
device through SVC7 or an ASSIGN command. If no actual 1I/0
operation is desired, the lu should be assigned to NULL:, causing
a no-operation (no-op) to occur.

2.2.4 Device-Independent Status

Logical units provide device-independent [/0 by causing all 1[/0
requests to be made directly to the lu and not to the device.
The execution status of an I/0 request that is independent of the
physical characteristics of the device being used is returned to
the device-independent status field of the parameter block (see
Table 2-3). The data remaining in this field from a previous I[/0
request is not modified until a subsequent /0 is completed or an
error occurs.

TABLE 2-3 DEVICE-INDEPENDENT STATUS CODES

| STATUS | i
| CODE ! MEANING |
=============‘==t===-====n=ﬂ==1=========‘==-=-,-====-8===-==-=’ i
i X'CO! | Illegal function - An error is present in the func- |
| | tion code; the requested function is not supported |
| | by the device or assigned access privilege or the !
] ! buffer transfer is too small. (When using tape, !
! ! minimum buffer size is four bytes.) }
i | i
| X'AO' | Device unavailable - The device is either !
| ! H

inoperative or not configured into the system.

48-038 FO0O0 RO2 2-19

TABLE 2-3 DEVICE-INDEPENDENT STATUS CODES (Continued)

i e ————————————————— —— —————— (o ————————— ———— —— T - - ——— f— —— . —— o ———

STATUS |

CODE | MEANING
X'90' | End of medium (EOM) - The I/0 directed to the 1lu
reached the physical end of the device; e.g., end of
tape. During magnetic tape operations, this status
can be combined with one of the next three status
codes, yielding X'98', X'94' and X'92'.
X'88" End of file (EOF) - The logical end of file
specified by the assigned lu was reached.
X'84" Unrecoverable error - An error occurred and the I/0
request, which terminates task execution, cannot be
retried.

I

=

=

=

=

I

‘

=

=

=

=

=

;

i Parity - An even or odd parity error occurred on a
i data transfer request.
[}
|
3
|
3
i
|
|
|
|
l
|
i
I
|
[
|

Recoverable error - The I/0 request is recoverable
and can be retried. A write request was issued to a
write-protected device.

No I/0 currently being processed - If a halt I/0
request is executed, this bit is set, indicating
that no I/0 is being processed at this time.
X'81' Illegal or unassigned lu - The 1lu specified in the
parameter block is either incorrect or was not
previously assigned.

Normal execution or successful I/0 is completed, and
no error occurred.

]
|
]
|
=
=
=
=
=
!
=
]
!
i
i
i
i
i
i
| X'82"
i
i
i
i
i
i
|
i
i
|
|
i
i
i
1
}
|

2.2.5 Device-Dependent Status

The execution status of an I/0 request that is directly related
to the unique characteristics of the device being used is
returned to the device-dependent status field of the parameter
block (see Table 2-4). The data remaining in this field from a
previous 1/0 request is not modified until a subsequent 1/0
request is completed or an error occurs.

N
|

20 48-038 FOO RO2

TABLE 2-4 DEVICE-DEPENDENT STATUS CODES

| STATUS | i
{ CODE | MEANING |
.===========i===‘===ﬁ= ______ R N E T I N T T T TR E T IR EEENEE MmN W= |
| T e mEmmemmmmmmmmm—m————— - - =TT =) - |
| X'85' | Exhausted retries on seeks - Seeks on disk devices |
| |} have been retried the maximum number of times. i
' i !
| X'84" | Queued 1/0 terminated - A queued 1/0 request is !
| | terminated because a previous I/0 request failed. |
t i i
1 1 !
| X'83' | Device is write-protected - A write operation to a |
i | write-protected device occurred. i
{] |
1 | 1
| X'82' | Read/write time-out - A read or write time-out |
! | condition occurred. |
| i I
| X'81' | Terminated by halt 1/0 - I/0 was terminated by a |
| i halt 1/0 operation. i
| | |
i X'00' | Normal execution - I/0 was completed and no error |
| | |

occurred.

e . . . e - e . S — e M e Ve S S M W A R S Nee N A SEn e M e A N . AMe S M A v T AR M M . A e Gam e - e A -

2.2.6 Buffer Start/Buffer End Addresses

The buffer start/buffer end addresses specify the buffer to be
used for data transfer requests. The start address is the first
byte in the buffer. The end address is the 1last byte in the
buffer that is included in the transfer.

Starting Ending
address address
X}lSO' Data buffer X'l?F'
e S D R =t
b b
____________________________ Jd e e -
Bytes:

0 79

2.2.7 Extended Options

If bit 7 of the function code is set to 1 and the XSVCl option
was specified at Link time, the options specified by the SVCLl
extended option field are executed. The extended options
fullword format is dependent upon the device to which an [/0
request is directed. In general, there are two formats: one for
nonmagnetic tape devices and one for magnetic tape devices.

48-038 FO00 RO2 2-21

2.2.7.1 Nonmagnetic Tape Devices

If a device is supported by the data communications subsystem,
the extended options provide device-dependent, communication-
dependent and device-independent features when a read or write
operation is performed.

Figure 2-3 illustrates the fullword format of the extended
options field of the SVCl parameter block for devices supported
by the communications subsystem.

Function modifiers Extended functions

Figure 2-3 Extended Options Fullword Format for Nonmagnetic Tape
Devices

Bits 0 through 15 are for general use in both 1local and remote
communications.

Bits 16 through 25 are used to expand a function's capability.
For example, the write edit function can be expanded to write
blinking by using a function modifier.

Up to 64 device-dependent [/0 functions can be specified by bits
26 through 31. These extended functions are mutually exclusive;
however, an I/0 with multiple requests or operations can be
performed.

Table 2-5 describes the SVCl extended options that can be
specified for both 1local and remote communications. See the
0S/32 Basic Data Communications Reference Manual for a listing of
device-dependent extended functions along with their applicable
function modifiers.

2-22 48-038 F0OO RO2

TABLE 2-5 SVCl1l EXTENDED OPTIONS FOR LOCAL AND REMOTE
COMMUNICATIONS

BIT |
{

POSITION | BIT NAME 4BIT SETTING AND MEANING

: terminal manager answers a
telephone ring on a dial-in
line during a read or write
line initialization sequence.

{ Disconnect ! 1 = terminal manager disconnects

{ (DCT) | from a switched line following

| | final data transfer.

o e e e et e et e e e e e e e e i e o e e

2 Image/format 0 = data being transmitted is in

(IMG/FMT) image mode and is not format-

ted.

{ |
i i
s k3
; 0 | Connect (CON) |
|]
| |
! |

— i
?

|

i

H

|

{ 1 = terminal manager performs

H normal record buffering,

! inserts or deletes line

! control characters and

| recognizes appropriate data
H format control characters on
! transmitted data.

| 1 = no characters will be echoed
i on read. Specifies the state
| of input character echo.

i Applies to each read request
| only.

Transparent
mode

{ 1 = any nonprintable data will not
| be translated by driver.

| Specified the transparent

] state for the read request.

H Meaningful for a formatted

! read only.

i 1 = any data input will be placed
i on driver type—-ahead queue.

| Specifies a read request is

| not intended to get input

| data. Illegal unless type-

! ahead has been turned on.

! Break key and halt 1/0

! terminates the request.

48-038 FOO RO2 2-23

= mmmm cram meem mmer oo mmee e mer mes

TABLE 2-5 SVC1l EXTENDED OPTIONS FOR LOCAL AND REMOTE
COMMUNICATIONS (Continued)

BIT H

POSITION | BIT NAME i BIT SETTING AND MEANING
6 { Read prompt | 1 = data being written from a

i buffer. Specifies data is to
] be written from a buffer until
] a CR or buffer limit. Then
| read (without line formatting)
| is to be performed. Meaning-
i ful for formatted reads only.

1
[}
1
1
]
|
]
1
]
!
[
I
1
[}
[}
!
1
1
1
t
1

1
H 7 i { 0 = reserved

| Vertical i 1 = requests VFC option for an

| forms control | ASCII I1/0 operation.

i (VFC) i

N i - — i ————————— - —— - - o e S v T - A — A M M A e e — S > W ——— —— - —_ o ————

! 9-11 H { 000 = reserved.

Bit check i 1 = when set, the device-dependent
| bits are checked. This option
i deals exclusively with mirror
i disk configurations. This bit
! is set in conjunction with

| bits 16, 17, 19, 20 or 21.

i 13-15 i i 0000000 reserved i
Synchroniza- | 1 = set when synchronization of
tion complete | mirror disk is complete; it

! clears the resynchronization

]

|

in progress field in the DCB
DXFL.REB.

Synchroniza- | 1 = when set, data is read from
tion of data | the primary disk and written
' to the same sector on the se-
]

!

condary disk. (Pertains to
mirror disk configurations.)

0000000 reserved

" ———————————— o ————————————————— o — - ——— i " - " —— ———— = ———

Mirror read { 1 = when set, data is read from

| the same position on both the
]

i

P
(o o]

mirror disks into a double
size I1/0 buffer.

2-24 48-038 F00 RO2

TABLE 2-5 SVCl1l EXTENDED OPTIONS FOR LOCAL AND REMOTE
COMMUNICATIONS (Continued)

| BIT i | : i
| POSITION | BIT NAME ' BIT SETTING AND MEANING |
i (-3 & 2 & % 3 3 % 4 3 3. 3% 3 2 32 32 32 32 32 3 3 3 3 & 3 32 3.3 3 3. 3 32 32 3 32 % % 32 B -0 0 3 & R & 32 32 R £ 3. 8 % 32 2 & & 2. % & §-3 J :
] 20 | SWOP | 1 = when set, the primary and H
| i | secondary disks of a mirrored |
| | | pair are exchanged. The disk |
| | | that was the secondary disk H
] |] becomes the primary disk and i
| i | vice versa. Read operations i
i | | are now performed on the new H
| 3 ! primary disk. !
et |
21 Read failure 1l = when set, the calling task is

!

i notified when a read operation
| fails on the primary disk.

' (Pertains to mirror disk con-
! figurations.)

- s 41— o ——— A R Am. G} W T e S S S — . Ae P EA W WD A e Gm G S et e S e e . M " S T o M v A o Mem Swe = .- -

2.2.7.2 Magnetic Tape Devices
The extended options fullword format differs when I/0 is being
directed to a magnetic tape device. Figure 2-4 illustrates the

fullword format of the extended options field of SVCl parameter
blocks used for magnetic tape I/0 operations.

Extended function code

———————————{— — - AV W% b s W e S WS A S W G M S O AN A Amh e e e M S ————— - - - ——————— - —

Figure 2-4 Extended Options Fullword Format for Magnetic Tape
I1/0 Operations

48-038 F0O0 RO2 2-25

—

If the extended function code requires an additional parameter,
the most significant bits (MSBs) (0 through 7) contain the
parameter value.

Bits 8 through 26 are not wused during magnetic tape 1I/0
operations. Bits 27 through 31 contain the extended function
code that indicates the type of 1/0 operation to be performed.
The extended function codes available for use in this field are
dependent upon the standard function code setting 1in the SVC1
parameter block. Table 2-6 contains the extended function codes
available when the standard function code bit setting indicates
a control operation.

TABLE 2-6 EXTENDED FUNCTION CODES FOR CONTROL OPERATIONS

EXTENDED |
FUNCTION |
CODE VALUE | OPERATION/EXPLANATION
0 | Rewind and unload - The tape is rewound to its
| beginning, then unloaded. Requires hardware
| support.
i-6 { Reserved
7 i Create a gap — The drive is instructed to erase a
| section of tape (approximately 3 to 3.5 inches) in
i the forward direction.
8 | Read drive status - A task can read eight status
| halfwords into the buffer space specified in the
| SVCl parameter block. The status returned depends
i on the type of drive in use. See the High
i Performance Magnetic Tape System (HPMTS) 125
i Programming Manual for a list of the status
| halfwords. Requires hardware support.
9 | Reserved
10 Erase tape - Erases a variable length of tape,

beginning at the current position. The length of
tape erased is determined by the following formula:

Length of Tape = Number of Bytes in User Buffer

Erased @ = = = -----mmmmmmmmmmm e
Current Tape Density

2-26 48-038 F00 RO2

TABLE 2-6 EXTENDED FUNCTION CODES FOR CONTROL OPERATIONS
(Continued)

EXTENDED |
FUNCTION |
]
i

CODE VALUE OFPERATION/EXPLANATION

3 A 3 31 22 3 L 3 3 & 2 2 2 2 232 B2 -2 3 % 3 R £ 3 % % 2 3 -4 % 3 L 3.3 2 L R R R 3 R-2 % 3 3 BB R R & B & % B R iR 3 % 3%

i

!

i

i

i 10 | The result is rounded up to a multiple of the

{ (Continued) | length of a hardware gap (approximately 3 to 3.5

i { inches). The maximum number of bytes that can be

| i erased depends upon the tape density (see Table

i i 2-7). 1If an erase tape request exceeds the maximum
| | number of bytes for the current tape density, the

| | operating system will erase the maximum number of

| | bytes, then output a message indicating that the

| | remaining bytes in the buffer were not erased. The
| | erase tape function is illegal if the tape is at

| | load point.

1 |

| 1

| | NOTE

¢ |

! |

H ! For device code 65, the current density

| | is assumed to be 800 bits per inch (bpi).

H ! If the current density for device code 65

i | is 1600 bpi, the length of tape erased is

| ! twice as long as requested.

= ___
! 11-31 | Reserved

TABLE 2-7 MAXIMUM NUMBER OF BYTES
ERASED

i ——— - — ———— f a—n S fe T — o 7 o Ty o i o m W o ——

TAPE DENSITY (BPI) | NUMBER OF BYTES

! :
: :
| 800 | 200,000 i
! :
| |

!
1,600] 400,000
6,250 | 1,000,000

Table 2-8 contains the extended function code available when the
standard function code bit setting indicates a data transfer
operation.

48-038 F0O RO2 2-27

TABLE 2-8 EXTENDED FUNCTION CODES FOR DATA TRANSFER

OPERATIONS

EXTENDED
FUNCTION
CODE VALUE

2-28

OPERATION/EXPLANATION

No extended functions - The bit settings of the
standard function (byte 1 of the SVCl parameter
block) are read and used to determine the oper-
ation to be performed.

Read backward - The tape drive reads previous
records on a tape while the tape is moved

in the backward (rewind) direction. The task
buffer is filled, from start address to end ad-
dress, with bytes in the order they are read;
i.e., reverse. If an error occurs during a read
backward operation, the magnetic tape drive
performs retries on that operation up to a number
of times corresponding to the value set in the
system generation (sysgen) macro library. (The
read bit of the SVC1l function code should be
set.) Requires hardware support.

Gapless operation - The driver reads or writes
multiple data buffers to or from magnetic tape
with no interrecord buffer gaps, using only one
SVCl. Gapless operation requires the use of a
special SVCl parameter block. The read or write
bit in this parameter block should be set.
Gapless operation is explained in Section 2.3.
Requires hardware support.

Gapless operation with buffer transfer

reporting — The driver reads or writes multiple
data buffers to or from magnetic tape with no
interrecorder gaps, using only one SVCl. The
task receives a buffer gap each time the driver
uses another buffer. Gapless operation requires
the use of a special SVCl parameter block. The
read or write bit in this parameter block should
be set. Gapless operation is explained in
Section 2.3. Requires hardware support.

48-038 F0O0 RO2

TABLE 2-8 EXTENDED FUNCTION CODES FOR DATA TRANSFER

EXTENDED |
FUNCTION |
CODE VALUE |

4 '

——— —— e . SnE e whe ESEe A Gm Ve mmGe m—— ——E. w—— -

48-038 F00 RO2

OPERATIONS (Continued)

OPERATION/EXPLANATION

A EE B R R R E T A A T I I R R T I T T T T E N S I E N EETS RN TR TE TR TS

Read forward and ignore data transfer errors -
The tape drive reads from the tape and ignores
data transfer errors if encountered. 1If a data
transfer error occurs, the status halfword is
set to indicate normal completion of the read.
The position of the tape after the read is the
game as if no error had occurred. Since some
errors terminate data transfer, the user should
check the length of the data transfer field to
verify that all of the specified data was
actually read. (The read bit of the SVC1l
function code should be set.)

Read backward and ignore data transfer errors -
The tape drive reads previous records on a
tape while the tape is moved in the backward
(rewind) direction and will ignore data errors,
if encountered. 1I1f a data error occurs, the
status halfword is set to indicate normal
completion of the read. The position of the
tape after the read is the same as if no error
had occurred. Since some errors terminate data
transfer, the user should check the length of
data transfer field to verify that all of the
specified data was actually read. The user
buffer is filled, from start address to end
address, with bytes in the order they are read;
i.e., reverse. (The read bit of the SVCl
function code should be set.) Requires hardware
support.

User control of retries for data transfer
errors — If an error occurs during a data
transfer operation, the magnetic tape drive
will repeat the operation up to the number of
retries specified by the user in the first byte
of the extended options field. The maximum num-—
ber of retries that can be specified for a read
operation is 255. The maximum number of retries
that can be specified for a write operation

is 45. (The read or write bit of the SVCl
function code should be set.)

TABLE 2-8 EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS (Continued)

EXTENDED |
FUNCTION |
CODE VALUE | OPERATION/EXPLANATION

| , NOTE

]

]

| If extended function code 6 is not

! specified, the number of retries de-

| faults to the value set in the sysgen
! macro library.

! Read backwards and allow user control of

| retries for data transfer errors - The tape

| drive reads previous records on a tape while

{ the tape is moved in the backward (rewind)

! direction. The user buffer is filled, from

i start address to end address, with bytes in the

| order they are read; i.e., reverse. If an error

]

i

]

i

i

i

occurs, the magnetic tape drive repeats the
operation up to the number of retries specified
by the user in the first byte of the extended
options field. The maximum number of retries
that can be specified is 255. (The read bit of
the SVC1l function code should be set.)

!
!
I
|
|
1
!
1
|
1
!
]
|
|
|
I
I
]
i
|
|
I
|
|
1
1
|
|
|
|
|
|
|
|
1
|
|
|
|
I
]
I
|
I
|
|
I
]
1
1
]
]
I
I
|
|
|
I
I
|
|
I
|

In both cases, extended function codes are mutually exclusive,
that is, only one extended function code can be specified in a
single SVC1.

2.2.7.3 Device-Dependent Status Codes for Magnetic Tape
Operations

The device-dependent and device-independent status fields of the
SVC1l parameter block indicate the execution status of an I[/0
operation performed to a magnetic tape. Table 2-9 1lists the
status codes returned to these fields. Additional status codes
for gapless I/0 operations are listed in Table 2-12. A magnetic
tape I/0 operation ceases upon detection of most of these errors.

2-30 48-038 FOO ROZ2

TABLE 2-9 MAGNETIC TAPE DEVICE-DEPENDENT STATUS CODES

0]
>
=
G
w0

CODE

1
I
I
i
l
i
it
]
—— | —— -

o — i — ———— — —— i ———— i ———— i —— ———— i ——— T ————— - — " . - . e o e e M ———— . — ———

©
X)
‘]
>

48-038 FO0O

MEANING

R Rk X 2§ 23 - & F 8 F F F 4 F . F B F- 2 2 F 4 273 ¥ 3 3 0§ 3 ¢ 2 F 3§ 3 F K

Time-out - A read or write time-out condition oc-
curred during data transfer.

- —— o ——— in i ——— o ——— - . - - - e — — ——— . S ——— - — — o — — —— — . ——— i ———

Device write-protected - A write, write filemark,
create gap, or erase tape operation was attempted to
a write-protected device.

e G —— . . Mim S S M - S e W —Ae S . . S S M M e S o M et Sn e e —— - Ean —— o ——_— -

Maximum buffer size exceeded - The buffer for the
erase tape control operation is too large.

Retries exhausted - A read, read backward, or write
operation was retried the maximum number of times.

Time-out - A read, read backward, read drive status,
write or write filemark time-out condition occurred.

Read backward at load point - Load point was reached
before a read backward operation terminated.

—— e nm —— M. —— ————— " —— T . - . —— — - ——— T — i —— T ————— o ——

Time-out - A read, read backward or write time-out
condition occurred while waiting for a prior
operation to be completed.

Short read - The buffer specified was too small for
the tape block. This status is supported only by
the high performance tape systems.

Bottom of tape/end of tape check malfunction - An
error occurred during an attempt to position the
tape to determine whether the beginning or end of
tape was detected.

Selector channel (SELCH) malfunction - The SELCH
malfunctioned during a read, read backward or write
operation.

Retries exhausted for write filemark - A write
filemark operation was retried the maximum number of
times.

Retry malfunction - An error occurred while attempt-
ing to position the tape to retry a read, read back-
ward, write or write filemark operation that
resulted in a recoverable error.

—————— t— — ———— ———————— T T - ——— T — {1 — ——— " - o T o S o e s S (o S S ———

Device unavailable - the device is either inopera-
tive or not configured into the system.

RO2 2-31

- e e S e w—es e e e w—a— —— ——

TABLE 2-9 MAGNETIC TAPE DEVICE-DEPENDENT STATUS
CODES (Continued)

- S —————————— o i S 7 i Bt P ——— ————— ——— - T ——— o — T " W TV G ——————————

STATUS |
CODE | MEANING
c0o00 Illegal function - The function code indicated a

data transfer operation, but neither the read nor
write bit was set.

The function code indicated a control operation, but
none of the other bits in the function code were
set.

The function code indicated an extended control
operation, but the extended SVC1l task option was
disabled.

The requested function is not supported by the
device or assigned access privileges.

!
=

=

]

I

i
}

=

]

)

i
H
i
i
i
i
!
{ Illegal extended function code - an undefined
i function, or a function not supported by the
| specified tape drive, was indicated.
]
|
i
i
i
i
i
i
i
i
i
|
i
|
i
i

The extended function code indicated a read
operation, but the standard function code has the
write bit set.

Buffer size too small - the buffer for a read, read
backward, or write operation was less than four
bytes. The buffer for the read drive status was
smaller than 16 bytes.

Erase tape at load point - an erase tape operation
was attempted when a tape was at load point.

User retries too large - the maximum number of
retries specified for a write operation was greater
than 45.

2-32 ‘ 48-038 FO0 ROZ2

2.3 GAPLESS INPUT/OUTPUT (I/O) OPERATIONS

Data transfer operations in gapless mode consist of a task
reading or writing data to or from a magnetic tape with no
interrecord gaps, using only one SVCl. A task can have only one
ongoing gapless SVCl at a time. The format of a gapless mode
SVC1l parameter block differs from the standard SVCl parameter
block. The gapless SVC1l parameter block cannot be reused until
the gapless operation has been completed. To perform a gapless
I1/0 operation, the XSVCl Link option must be specified before an
I/0 request is issued. Then, the task must issue an SVCl call
that specifies, among other things, a pair of buffer queues, the
IN-QUEUE and the OUT-QUEUE. The driver takes buffers from the
IN-QUEUE and returns used buffers to the OUT-QUEUE. The task
processes the buffers from the OUT-QUEUE and returns these
buffers to the IN-QUEUE for reuse by the driver.

The use and reuse of buffers during gapless I/0 enables an amount
of data much greater than memory capacity to be transferred by
breaking the data into smaller segments, then transferring these
small segments of data sequentially. The gapless mode SVC1
parameter block can only be used for gapless I/0 operations.

2.3.1 Gapless Mode Supervisor Call 1 (SVCl) Parameter Block
Format

The gapless mode SVC1l parameter block must be 24 bytes long,
fullword boundary-aligned and located in a task-writable segment.
Location within a task-writable segment is necessary so that the
status of an I/0 request can be returned to the status fields of
the SVCl1l parameter block. Figure 2-5 presents the gapless mode
SVC1l parameter block and a coding example.

48-038 F0O0 RO2 2-33

{code

120(14)

parblk

AL.IGN
DB

1(1) | 2(2) Device- [3(3) Device- |
lu | independent | dependent |
| status i status |
___ !
!
OUT-QUEUE start address |
1
___ |
!
IN-QUEUE start address !
!
e ;
=
Buffer length |
t
___ |
=
Length of last buffer i
[}
___ |
=
Extended options i
1
'
1,parblk
4
X'function code'
X'lu'

Figure 2-5

Fields:

Function
code

DB
DS
DC
DC
DS
DS
DC

2 bytes for status

A (OUT-QUEUE buffer start address)
A (IN-QUEUE buffer start address)
4 bytes for buffer length

4 bytes for length of last buffer
Y'extended options'

SVCl Gapless Mode Parameter Block Format and Coding

is a l-byte field indicating that the request
is a data transfer request. This field also
specifies the operation to be performed (read
or write) and the extended options pointer.
Bit settings for this field are presented in
Table 2-8.

48-038 F0O RO2

lu

Device-
independent
gstatus

Device-
dependent
status

OUT-QUEUE

IN-QUEUE

Buffer length

Length of
last buffer

48-038 FOO0 RO2

is a l-byte field containing the logical unit
currently assigned to the device where the 1/0
request is directed.

is a l-byte field receiving the execution
status of an I/0 request after completion.
The status received is not directly related to
the type of device used. Table 2-3 presents
device-independent status codes.

is a l-byte field receiving the execution
status of a gapless 1/0 request after
completion. The status received contains
information unique to the type of device used.
Table 2-11 presents device-dependent status
codes for gapless operation.

is a 4-byte field containing the fullword
address of a queue where the driver places the
starting address of each buffer used in a
gapless I/0 operation. If the operation is a
gapless write, these buffers have been
successfully written to tape. If the
operation 1is a gapless read, these buffers
contain data read from the tape.

is a 4-byte field containing the fullword
address of a queue where the task places the
starting address of each buffer to be used in
a gapless I/0 operation. If the operation is
a gapless write, these buffers are written to
tape. If the operation 1is a gapless read,
these buffers are filled with data read off
from a tape.

is a 4-byte field containing the 1length of
each buffer whose starting address is present
on the IN-QUEUE. Buffer length must be an
even number of bytes for both read and write
operations. All buffers, except the last,
must be the same 1length within a single
gapless I/0 coperation. The amount of space
used in the last buffer, however, can vary.

is a 4-byte field whose contents depend upon
the operation (read or write) being performed.
If the operation is a gapless read, the driver
fills this field with the length of the last
buffer read off tape. The length of the last
buffer can be optionally supplied by the task.
If the operation is a gapless write, the task
supplies the driver with the length of the
last buffer to be written.

Extended is a 4-byte field containing one of two

options possible extended function codes indicating
gapless mode 1/0. Table 2-12 presents the
extended function codes available for gapless
mode I/0.

2.3.2 Standard Function Code Format - Gapless Mode
Figure 2-6 shows the standard function code format for a gapless

mode data transfer request, and Table 2-10 defines each function
code bit setting.

Extended
Option
e,
i Ol R | W | | H | i i
Bits:

Figure 2-6 Function Code Format for Gapless Mode Data Transfer
Requests

TABLE 2-10 FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS

| BIT i | !
! POSITION | BIT NAME ! BIT SETTING AND MEANING |
;=====--','-------‘.----------------------------:--‘----------'---i
| 0 i Function code i 0 = data transfer request. Must |
i | type ' be set for gapless 1/0 !
i | ! operations. !
o e e e e e e e e e !
! 1 | Read | 1 = read operation. (Bit 2 |
| ' H must be set to 0.) |
T T T e e e e e e e i
| 2 i Write i 1 = write operation. (Bit 1

| | | must be set to 0.) i
| T T e e e e e i
] 3

i

| Not used in H
| gapless mode !

2-36 48-038 F0OO RO2

TABLE 2-10 FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS (Continued)

BIT i

POSITION | BIT NAME BIT SETTING AND MEANING
4 i 1/0 proceed 0 = if the device is not busy,

return control to the call-
ing task after initiation
of data transfer to the
device. However, if the
device is busy, the request
is queued and task execu-
tion continues. Suggested
for gapless mode.

———

|

[}

|

i

|

i

i

|

i

i

|

Wait I/0 i 1 = stop task execution, ini-
H tiate data transfer to the
! device, and wait until the
H completion of I1/0.

§

|

H

H

H

i

H

{

i

i

1l = task execution stops and
waits until the completion
of all queued 1/0 proceed
requests to the specified
lu. .

Wait only

When a wait only request is
issued, bit 4 is the only
bit set in the function
code.

| Not used in !

| gapless mode !

Conditional | 0 = after the 1/0 request is
proceed i issued, put the task into a
| wait state if the requested
H device is busy and the

| total number of queued re-

| quests exceed the maximum.

| Once the 1/0 request is
1
|
=
[}
'
i
1
I

completed, the task resumes
execution. If the maximum
number of queued requests
is 1, a pending request
causes the task to be
placed .in a wait state.

—— e men - ——— man ———— e e A S ——

48-038 FOO RO2 2-37

TABLE 2-10 FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS (Continued)

BIT i

POSITION | BIT NAME i BIT SETTING AND MEANING

i Unconditional i 1 = any I/0 request made to a

proceed device that is busy is re-
jected if the total number
of queued requests exceeds
the maximum and task exec-
ution continues.

1l = test to check for the com-
pletion of I/0 to a speci-
fied 1lu.

Test 1/0
complete

1

=

1

|

|

i

i

i

|

|

i

i

| If a previous [/0 proceed
i request or queued I/0 pro-
| ceed request does exist,

| the CC is set to X'F'.

| However, if there is no

| outstanding I/0 proceed

| request, the CC is set to
| X'0'.

|

i

i

i

i

i

When a test I/0 complete
request is issued, bit 6 is
the only bit in the func-
tion code set. 1If bit 4 is
set, it is ignored.
Extended option | 1 = test to see if XSVC1

! option was specified at

! Link time. If set, the

i extended options fullword

| in the parameter block is

i checked for specified gap-
!

|

g

=

e e e e e e W T en Erae e ARG ARAn e Mmem S e e R MR Gees G mes eEs AR mmEe men e anes
——— e e e . G AP w—m m— ——— ——— ———— aman mem e Mem mmam mem e EREE Cme weas e meas e e weas Sme=

less option. Both the
XSVC1l option and this bit
must be set for gapless
operation.

- e e s e mer Amas e - ——

2.3.3 Logical Unit (1lu)

An lu is a decimal number ranging from O to 254. The highest 1lu
number to which a task can be assigned is determined by the Link
OPTION command. After loading the task into memory, the lu must
be assigned to a tape drive which supports gapless 1/0 (device
codes 68-70) through SVC7 or an ASSIGN command.

2-38 48-038 FOO0 ROZ2

If no actual 1/0 operation is desired, the lu should be assigned
to NULL:, causing a no-op to occur.

2.3.4 Device-Independent Status Codes

Logical units provide device-independent 1/0 by causing all 1[/0
requests to be made directly to the lu and not to the device.
The execution status of a gapless I/0 request that is independent
of the physical characteristics of the device being used is
returned to the device-independent status field of the parameter
block. See Table 2-3. The data remaining in this field from a
previous I/0 request is not modified until a subsequent I/0 is
completed or an error occurs.

2.3.5 Device-Dependent Status Codes

The device—dependent status field, together with the
device-independent status field, indicates the execution status
of a gapless /0 request that is directly related to the unique
characteristics of the device being used. Tables 2-11 and 2-12
present the error status codes for gapless operation. A gapless
operation ceases upon detection of any one of these errors.

TABLE 2-11 MAGNETIC TAPE DEVICE-DEPENDENT STATUS CODES
(GAPLESS ONLY)

e — ————— T - —— — — . S S — i (o = - - S S - —— " . S - — i — o ———

bytes. Length of last buffer is an odd
number of bytes for a write operation.

- — . —————— S "—— e . — " — G ——— TED WS S St S S ——— — . — - —— ——— — — . —— ———— o —

i\ STATUS | !
| CODE | MEANING !
| X'8485' | A read or write time-out condition |
i | occurred. =
i i i
! X'8487' | The end address read/written by the SELCH !
i | does not match the expected end address. !
i i i
| X'8489' | End address returned from SELCH is greater H
| | than the expected end address on gapless !
| | read. !
i i i
| X'C081' | No buffer is available on the task IN-QUEUE. |
i i !
| X'Cc082' | Address provided by the user on the IN- |
i | QUEUE is outside user's address space.]
| ' |
| X'c083' | Address of a queue is not on a fullword |
| | boundary. |
i] !
! X'C084' | lL.ength of buffer is an odd number of |
[}]]
| | |

48-038 F00 RO2 2-39

2.3.6 Buffer Queues

The OUT-QUEUE field and IN-QUEUE field are each 4-byte fields
that contain the address of a gueue, where:

e The driver places the starting address of each buffer used in
a gapless operation (OUT-QUEUE).

e The task places the starting address of each buffer to be used
in a gapless operation (IN-QUEUE).

The address of the IN-QUEUE must be greater than the address of
the OUT-QUEUE or the SVC1l handler rejects the operation. Figure
2-7 presents the format of both the OUT-QUEUE and IN-QUEUE.

The user sets up a queue via the DLIST xx command, where xx is

the total number of buffer entries allowed. See the Common
Assembly Language/32 (CAL/32) Reference Manual for instructions.

10(0) 12(2) |
! Number of slots ! Number used !
1]]
[}] |
= e e e e e e e e e e I
14(4) 16(6) !
! Current top ! Next bottom

\] [}
]] !
o e e e e e e e e e e e —— - |
18(8) 19(9) ,
! Flags | Address of first buffer !
]] [}
S |
112(C) 113 (D) ‘
| Flags i Address of second buffer]
]]]
e |
116(10) 117(11) i
i Flags H Address of third buffer |
1 { !
S |
AL 4
T T
[T T T e e e i
i i i
i Flags] Address of nth buffer |
]]]
1)]

Figure 2-7 IN-QUEUE or OUT-QUEUE Structure

2-40 48-038 FO0O RO2

Fields:

Number of

slots

Number used

Current top

Next bottom

Flags

Address of
nth buffer

48-038 F0O RO2

is a standard list parameter that is explained
in the Common Assembly Language/32 (CAL/32)
Reference Manual.

is a standard list parameter that is explained
in the Common Assembly Language/32 (CAL/32)
Reference Manual.

is a standard list parameter that is explained
in the Common Assembly Language/32 (CAL/32)
Reference Manual.

is a standard list parameter that is explained
in the Common Assembly Language/32 (CAL/32)
Reference Manual.

is a l-byte field. The setting of bit 0 in
this field identifies whether the buffer is
the last buffer in the list. 1If bit 0 is set
to 0, the buffer is not the last buffer. If
bit 0 is set to 1, the buffer is the last
buffer in = the gueue. Under abnormal
conditions, the last buffer on the OUT-QUEUE
may not have the flag bit set.

NOTE

To properly terminate a gapless
write operation, the flags field
for the address of the last buffer
to be written should have bit O

set to 1. But a gapless read
operation can be terminated in two
ways. If the user wishes to read

only part of a record or the user
knows how long the record is, the
flags field for the address of the
last buffer read should have bit
0 set to 1. If the user wishes to
read the entire record but does
not know how long it is, the flags
field for the address of all
buffers should have bit 0 set to
0. In this case, it is mandatory
for the user to retain buffers on
the IN-QUEUE until the I[/0 proceed
has been completed. If exactly
the number of buffers needed is
placed on the IN-QUEUE, the last
buffer must be so indicated.

is a 3-byte field containing the hexadecimal
starting address of a buffer.

2-41

2.3.6.1 Using the Buffer Queue

Gapless operations should be specified as 1/0 proceed completion
operations; therefore, task execution can continue during gapless
1/0. One of the functions a task can perform during gapless 1/0
is to prevent the task from running out of buffer space. The
task can accomplish this by removing buffer entries from the
OUT-QUEUE and placing them on the IN-QUEUE after a buffer
transfer is completed. For example, if a task is required to
write 440kb in gapless mode using only five 64kb buffers, the
total buffer space available 1is 320kb (or 120kb less than is
required to complete the write operation). After the first
buffer has been written, the starting address of the buffer is
placed on the OUT-QUEUE. While the second buffer 1is being
written, the task can transfer the address of the first buffer
from the OUT-QUEUE to the IN-QUEUE. This gives the task 64kb
more buffer space.

Similarly, the task can transfer the address of the second buffer
to the IN-QUEUE while the third buffer is being read. This
transfer provides the task with enough buffer space for the
remaining 56kb. Note that when the task transfers the address of
the second buffer from the OUT-QUEUE to the IN-QUEUE, bit 0 of
the flags field should be set to 1. The length of the last
buffer should be placed in the length of last buffer field of the
SVC1l parameter block prior to the start of the operation.

The task should use an add to the bottom of the 1list (ABL)
instruction to add buffer entries to the IN-QUEUE and a run-time
library (RTL) instruction to remove buffer entries from the
OUT-QUEUE. See the Common Assembly Language/32 (CAL/32)
Reference Manual for more information on how to use the ABL and
RTL instructions.

2.3.6.2 Trap-Causing Events Resulting from Gapless Input/Output
(I1/0) Operations

Because a gapless I/0 operation should be specified as an 1[/0
proceed completion operation, the task can be notified that a
gapless read or write has been completed via a task queue trap.
If the SVCl extended function code 3 (gapless I/0 with buffer
transfer reporting) has been specified, the task can also receive
a task queue trap each time a buffer address has been added to
the OUT-QUEUE.

Before a task can be notified of gapless I/0 completion or a
buffer transfer, the task has to be prepared to receive and
handle a task queue handle trap. See the 0S/32 Application Level
Programmer Reference Manual for information on preparing a task
to handle traps.

2-42 48-038 FOO RO2

2.3.7 Buffer Length

The buffer length field is given to the driver by the task to
inform the driver of the length of the buffers whose starting
addresses are on the IN-QUEUE. Buffer length must equal an even
number of bytes for both read and write operations. All buffers
must be of the same length with the possible exception of the
last buffer (see Section 2.3.8).

2.3.8 Length of Last Buffer

The use of this field is dependent upon the gapless I/0 operation
being performed (read or write). The 1length of this buffer
cannot be greater than that of the other buffers. If a gapless
write operation is being performed, this field is given to the
driver by the task and contains the length of the last buffer to
be written. This information must be given even if the last
buffer 1is the same length as the previous buffers and should be
placed in the SVC1l parameter block before the write is started.

On a gapless read operation, the driver fills this field with the
length of the last buffer read from the tape. For example, if a
150kb record is to be read gapless from a tape and 64kb buffers
are used, a total of three buffers is required. The first two
buffers contains 128kb of information; however, the third buffer
contains only 22kb of information. The value 22kb is returned to
the length of last buffer field in this example. If desired,
this field can be given to the driver by the task. If the last
buffer is specified for a read (i.e., the flags field of the
address has bit 0 set to 1), this field must be given to the
driver by the task.

NOTE

If a gapless read does not reach normal
completion (status code 0), the contents
of the 1length of last buffer field are
meaningless.

On a gapless write operation, the length of the last buffer must
be an even number of bytes.

2.3.9 Extended Options Field
The extended options field in a gapless mode SVCl parameter block
functions as detailed previously in Section 2.2.7. However, only

two extended function codes are recognized as valid in a gapless
mode SVCl. These codes are presented in Table 2-12.

48-038 FOO RO2 2-43

TABLE 2-12 EXTENDED FUNCTION CODES FOR
GAPLESS I/0 OPERATION

o Q

{ EXTENDED | 1
{ FUNCTION | |
i CODE | OPERATION |
===================u-=---=-=-=========-‘
| 2 | Gapless operation |
1 i 1
1 [i
i 3 | Gapless operation with |
| i i

uffer transfer reporting

. ————— ———— - T — e M See M W e e e S W . . o -

Codes 0 through 1 and 4 through 31 are not used with the gapless
mode SVC1l parameter block.

2.4 SERIES 3200 INPUT/OUTPUT (I/0) BUS SWITCH

The Perkin-Elmer Series 3200 I/0 Bus Switch Driver (device code
143) provides software control of the I/0 bus switch hardware.
This switch allows the sharing of /0 devices by two or more
Series 3200 Processors equipped with a multiplexor (MUX) and/or
a SELCH bus. It may also be used as a bus extender. The bus
switch hardware must be strapped for programmable mode.
Strapping options are available for normal reguest, master
request or multiple master request contention modes.

2.4.1 Normal Request Contention Mode

In the normal request contention mode, any central processing
unit (CPU) in the configuration can issue a request for the
services of the common bus. If the common bus is idle, control
is immediately granted to the requesting CPU. If the common bus
is in use (controlled by another CPU in the configuration) the
request is queued until the controlling CPU relinquishes the bus.

2.4.2 Master Request Contention Mode

In the master request contention mode, one CPU may be designated
as the master CPU. When this CPU issues a master request, it is
immediately granted control regardless of the state of the bus.
2.4.3 Multiple Master Request Contention Mode

In the multiple master request mode, several or all of the CPUs
in the configuration may issue a master request.

2-44 48-038 FOO RO2

10(0)]
H Function]
! code }
, __________________
14(4)
'
]
= _____
18(8)
i
|
= __________________
112(C)
|
|
svc
ALIGN
parblk DB
DB
DS
DCF
DCF

- e B e — . —— ——) —————— - —— — —— - - - o mmd G} Gw A Mo \am mm

1(1) 12(2) '
lu ! Status !
i |
. 2t . € S S WS A BER N UES MR WD FER PG SN AN SE See GER N N MM N N A GMS AN MNS AN MG GEe dme e Gt :
i
i
i
Reservea = ==——- H
i
i
i
__ ;
i
Time-out constant |
]
)
1l,parblk
4
X'function code’
X'lu'
2 bytes for status
Y*'oo',Y'00?

X'Time—-out constant'

Figure 2-8 SVCl Parameter Block and Coding

Fields:

Function
code

1lu

Status

48-038 F00 RO2

for Control of I1/0 Bus Switch

is a 1l-byte field indicating the switch
operation to be performed. Hexadecimal
function codes for bus switch operations are
described in Table 2-13.

is a l-byte field containing the logical unit
to which the bus switch is currently assigned.

is a 2-byte field. The first byte receives
the execution status of the switching request.
The second receives the -hardware status of the
switch. Table 2-14 describes the hexadecimal
constants returned to this field.

Reserved

Time-ou

t

constant

Table 2-13 defines the function codes for I/0 bus switch

is an 8-byte field that must contain zeros.

is a hexadecimal value ranging from X'l' to

X'7FFE' specifying the time-out delay

in

seconds. The driver waits the indicated
number of seconds for connection before
time-out. This field 1is required only for

MASTER CONNECT, CONNECT and CLEAR requests.

function requests.

TABLE 2-13 FUNCTION CODES FOR THE 1/0 BUS SWITCH DRIVER

—— v ——————— 1 - — ———— T —— s —— — s o ————— O ——— " ——— . —— — " —— —— i ———— >

MEANING

2 X 2 & _F X3 F £ 2 & 2 2 2 3 3 F 3 ¥ J3 F F 5 F 3 F FF F F F R X 3 F 3 F 4 F F 3 2 3 3 X 3 J ¥

MASTER CONNECT - If the switch is strapped for the
master or multiple master options, the processor
issuing this command is granted control of the
common bus, provided another processor does not
control the bus via a MASTER CONNECT. Any active
normal connection is immediately disconnected and
all queued normal CONNECT requests are cleared.
The value of x determines whether the call is a
WAIT, PROCEED or UNCONDITIONAL PROCEED.

For possible values of x, see Table 2-1.

CONNECT - is the normal request/contention
sequence. If the common bus is idle, the processor
issuing this command is immediately granted
control. If the bus is busy, the CONNECT request
is queued. The value of the random field of the
SVC1l parameter block is used to specify the number
of seconds the driver is to wait for connections
before time-out. The default is three seconds.
The value of x determines whether the call is
WAIT, PROCEED or UNCONDITIONAL PROCEED. For
possible values of x, see Table 2-1.

CLEAR - activates the common bus system clear
(SCLRO). This command causes all interfaccs on
the common bus to be reset. The value of x
determines whether the call is WAIT, PROCEED or
UNCONDITIONAL PROCEED. For possible values of x,
see Table 2-1.

ENABLE - This command enables interrupts on the
common bus.

48-038 F0O RO2

command

e e mman e an when e m—— e W e G e . A W EmGR Wee Ween Wrem WA GEan Wmen WA Weim e wean wmas Wren WeAn Wen e e e wee

TABLE 2-13 FUNCTION CODES FOR THE 1/0 BUS SWITCH DRIVER

(Continued)
{ FUNCTION | :
| CODE i MEANING
l 3 2 P F 2 3 X 2 2 X X 7 5 & 3 ¥ 2 7 2 F 2 2 3 & 3 X3 7 3 F 3 7 32 F 3 3 £ 3 2 3 8 N ¥ F & 7 32 2 F 3 K3 F 2 _F 2 3 7
| X'A0' | DISABLE - This command prevents interrupts on the
] | common bus. Interrupts are queued, but not
| | serviced while this command is in effect.
| i
H X'84' | DISARM - prevents the queuing and servicing of
| | interrupts on the common bus.
! :
i X'88' | DISCONNECT - disconnects the common bus from the
| | controlling processors. Once disconnected, the
i | common bus is availlable to all processors.
]]
I '
| X'90' | RETURN STATUS - returns the hardware status of the
i | bus switch to the second byte of the device-
H { dependent status halfword of the SVC1l parameter
i | block. The only operation performed by this
| | command is a sense status of the switch hardware.
] i The state of the switch is not altered.
TABLE 2-14 1/0 BUS SWITCH STATUS CODES
STATUS |
CODE] MEANING

2 3 7 2 7 F F ¥ F F ¥ F F F 2 F K OF B3 3 3 7 7 F 2 F F 3 F § 2 £ ¥ R B 3 § F F ¥ ¥ ¥ $ 7 2 £ B F -2 7 ¥ £ £ £ 3 ¥ X 3 3 F J

X'00nn' | Normal completion of requested operation

!
]
X'cOnn' § Illegal function code
X'AOnn' E Common bus unavailable
X'84nn' ; Hardware failure, bad status returned from connect
E or CLEAR
X'82nn' i Time-out or connect requested with bus connected,
1

or clear requested with bus not connected

48-038 F00 RO2 2-47

—— e e wmtr e e Aeem whEs we A wees WmAm SEm EEe TEes mee W eae - s e e

—— e e - e v e wren wem wwen e e -
- e - dmen e m—en ——tm A—as weim Smee mam e w—em mmas e

NOTE

'nn' always indicates the switch hardware
status. The following list presents some
possible hardware status values. See the
Input/Output Switch (I0S) Installation
and Maintainence Manual for more
information.

e 00 - indicates that the switch is
selected by a normal or master
request.

e 01 - indicates that the switch is
unavailable due to power loss on
the common bus or disconnected
cables.

@ 02 - indicates that the bus is busy
dur ing a CLEAR interval
(100-200ms) .

e 08 - indicates that the switch is
idle.

e OA - indicates that the bus 1is busy
servicing another processor.

2.4.4 Programming Considerations

After acquiring the common bus via a MASTER CONNECT, the
acquiring processor should immediately issue a CLEAR. This is
necessary because a MASTER CONNECT clears any active normal
connects, thereby 1leaving the state of interfaces unknown. The
CLEAR command causes the common bus to be initialized (same as
depressing the processor INIT button), which places interfaces in
a known state.

In a multiple master configuration, a processor acquiring the bus
via MASTER CONNECT should immediately relinquish the bus and
reacquire it wvia a NORMAL CONNECT. This will allow any other
master processors to acquire the bus via MASTER CONNECT.

After issuing a NORMAL CONNECT or a MASTER CONNECT, the calling

procedure should ENABLE interrupts. It is the user's
responsibility to know what devices were hung on the common bus
at sysgen. If a common bus is not connected with interrupts

enabled, a driver call to any device on the common bus results in
a device unavailable status return on a time-out from the
requested device's driver.

2-48 48-038 FOO RO2

The parameter block fields used for switching operations are the
function code, status halfword and, optionally, the random
address field (used to specify wait time).

The following examples illustrate the ways in which the [/0 bus
switch may be used.

Examples:

This example shows the inclusion of the switch in the Sysgen/32

DEVICES statement.

DEVICES
I0Sl1:,32,143

ENDD

The I/0 bus gwitch may then be assigned in the normal manner
(i.e, via ©SVC7 or an operating system multi-terminal monitor
(0OS/MTM) command) .

LOAD DMO, SWCHDEMO *any task that uses switch
TASK DMO *not necessary from MTM
AS 7,I0S1: xgwitch

START

The switch may then be controlled via standard SVCl function
codes, as illustrated by the following simplistic CAL routines.

BEGIN EQU *

SWCHLU EQU 7 SWITCH ASSIGNED TO LU 7
DELAY EQU 5 WAIT 5 SEC BEFORE TIME OUT
NRML, EQU X'3s! NORMAL, CONNECT W/WAIT FC
ENAB EQU X'co' ENABLE FC

DISCON EQU x'8s’ DISCONNECT FC

48-038 F0OO R02 2-49

SWCHPREP EQU

GETBUS EQU

RLSEBUS EQU

15, SWCHPREP
15, RLSEBUS

3,EOTCODE

*

12 ,SAVEREGS
12,SWCHLU
13,DELAY

14 ,NRML
15,ENAB

X

12,SVCl.FC
13,SVC1.RAD
14,8VCl.FC
1,8VCl.FC
14,svCl.STa
14,X'00"
CONNERR
15,ENAB
1,SVCl.FC
15,8VCl.STA
15,X'00'
ENABERR

12 ,SAVEREGS
15

b

12, SAVEREGS
14 ,DISCON
12,SWCHLU
14,8VC1l.FC
1l2,s5vCl.LU
1,SVCl.FC
14,svCl.8TA
14,X'00FF"'
DSCNERR
12,SAVEREGS
15

X

GO GET BUS

RELEASE BUS

SAVE REGISTERS
PICK UP LU #
PICK UP DELAY
PICK UP FC
PICK UP FC

LU # TO PARBLK

DELAY TO PARBLK

CONNECT W/WAIT TO PARBLK
ISSUE CONNECT REQUEST

PICK UP STATUS

CHECK FOR SUCCESSFUL CONNECT
GO TO ERR ROUTINE

ENABLE FC TO PARBLK

ISSUE ENABLE INTERRUPTS REQUEST
PICK UP STATUS

CHECK FOR SUCCESSFUL ENABLE
GO TO ERR ROUTINE

RESTORE REGISTERS

BUS READY - GO DO I/0

SAVE REGISTERS

PICK UP DISCONNECT FC
PICK UP LU #

DISCONNECT TO PARBLK

LU # TO PARBLK

REQUEST DISCONNECT

PICK UP STATUS

CHECK STAT - HARDWARE N/A
GO TO ERR ROUTINE

RESTORE REGISTERS
DISCONNECTED - DO WHATEVER

48-038 FOO0 RO2

ENABERR EQU

DSCNERR EQU

-

X

* DEFINITIONS
*

SAVEREGS DSF
EOTCODE DS
$svCl

END

48-038 F0O RO2

9
2

BEGIN

REGISTER SAVE AREA
HALFWORD FOR EOT
PICK UP SVCl STRUC

CHAPTER 3
GENERAL SERVICE FUNCTIONS SUPERVISOR CALI 2 (SVC2)

3.1 INTRODUCTION

SVC2 provides general service functions distinguished from one
another by a specific function code number. Each SVC2 function
requires a specific parameter block for proper operation. Refer
to each 1individual code for its parameter block format and
required coding. Table 3-1 lists all available 8VC2 function
codes with a brief description of each.

TABLE 3-1 8V(C2 FUNCTION CODES

————— ——— — ——— o T {1 2 o — e i ooy T Ty osp B2e S e - SRS A M Svw Mm S M Sen - S M e e o hin e e . o ———a - o~ rwn - ara S —

executive task (e-task).

! 8VC2 CODE ! NAME ! FUNCTION |
= P2 2 ¢ F F 3 5 F 2 F R _F F F- &5 F F F - F 3 F 3§ 7 § 3 3 F F FOF F F yJ § F g £ F F 3 3 3 F 3 ¥ F F F 3y F FrF F ¥ 5y ¥FFyF i =
| SVC2 code 0 | Make journal | Makes an entry into the !
i { entries | system journal from an

i i i !
| i

| Places the task in a
| suspended state.

| Reserves a workspace area
{ for external subroutines

{ called by the task during
! execution.

Release storage Releases the temporary
storage locations obtained
by a previous SVC2 code 2.

Gets storage by decreasing
the task UTOP by the number
of user-specified bytes.

set status Modifies the arithmetic
fault interrupt bit and
condition code (CC) in the

program status word (PSW).

48-038 F0O0 RO2 3-1

TABLE 3-1 SVC 2 FUNCTION CODES (Continued)

SvC2 CODE | NAME i FUNCTION

| SVC2 code 6 | Convert binary | Converts a binary number to |
i i to ASCII | either an ASCII hexadecimal |
' | hexadecimal or | or ASCII decimal number.]
i i ASCII decimal i I
| == oo |
| SVC2 code 7 | Log message | Sends a message to the !
! H | appropriate log device !
i i | regardless of the current !
!] ! logical unit (lu) assign- !
i | { ments. |
et a
| SVC2 code 8 | Interrogate | Sends the user the current]
' ! clock { time of day calculated in |
! ! | seconds from midnight in !
' ! | binary or in formatted |
, | | ASCII. |
= e e e i
i SVC2 code 9 | Fetch date | Sends the user the current !
H | ! date in formatted ASCII. !
| e |
{ SVC2 code 10 | Time of day | Places the calling task in |
i I wait | a wait state until a ‘
] | | specific time of day. |
| = m e e e i
! SVC2 code 11 | Interval wait { Places the calling task in a |
i | | wait state for an interval, |
i - i | which is specified in '
H | | milliseconds from the time !
i | { the call is executed. }
T e e e e e e e e e e e e e e e e e e i
! SVC2 code 14 | Internal reader | Allows a foreground task |
i ! | loaded from the system !
| i { console to invoke operator |
]] | and command substitution !
i | | system (CSS) commands. !
f—————————————————,—,——,————r e e e e e !
{ SVC2 code 15 | Convert ASCII | Converts an ASCII hexa- H
! { hexadecimal or | decimal or ASCII decimal !
i i ASCII decimal { number to a binary number.]
‘ | to binary ' !
3-2 48-038 FOO RO2

8SVC2 code b

Fetch pointer

Copies the address of UTOP,
CTOP and UBOT from the task
control block (TCB) and
stores them in the task
user-dedicated location
(UDL) .

—— i —————— —————— i ———— - — O o — T —_—— o ——— ———— - ———— o

TABLE 3-1 SVC2 FUNCTION CODES (Continued)

am - . - e o A v A — A4 e — . . " —— S o e M - A . i e - — e n A= ey e - . e am ees o e imm

SvCc2 CODE

SVC2 code 16

48-038 F00 RO2

descriptor

Scan mnemonic
table

Move ASCII
characters

Expand alloca-
tion

Contract alloca-
tion

Timer
management

NAME i FUNCTION
Pack file | Processes a user-specified

unpacked file descriptor
(fd) into a packed format to
be used by the operating
system.

—— T —— - — - — it W — e A M A i A i . M. e e S L o n - e ot e NS i . fmn en s - = an Amm -

Scans for an ASCII character
string in a mnemonic table
and compares it with the
user-specified ASCII charac-
ter string for a match.

———— - - i M M = — - . = e v e v el S S - o — s S S . e o e S —— . — s o

Moves a specified number of
ASCII characters in memory
from the sending location to
a receiving location.

Obtains wuser-related infor-
mation from operating system
data structures.

Reserved for sequential
tasking machines. Provides
for compatibility with
current 32-bit operating
systems.

Reserved for sequential
tasking machines. Provides
for compatibility with
current 32-bit operating
systems.

o ——n r ————— ———) i o T — " . - A" T e S e A A R ——— i —— . = ——— et an S . ————— o — - —— ——

Schedules the addition of a
parameter to a task queue on
completion of a specified
interval or a repetitive
interval.

Puts a task in a wait state
until completion of an
interval.

Determines the time remain-
ing for a previously estab-
lished interval to expire.

Cancels a previously estab-
lished interval.

TABLE 3-1 8SVC2 FUNCTION CODES (Continued)

e — - ———— - ——————— — —— - —— - — - —— e o Sl " - — .~ how " i oo w— — wn e

SVC2 CODE ' NAME ! FUNCTION

SVC2 code 24 | Set accounting | Stores eight bytes of user-
information | supplied information in the

| accounting transaction file

! (ATF) on task completion or

| data overflow of accounting

! records.

| Fetch | Fetches accounting informa-

{ accounting i tion and stores it in a
]]
| |

—— ———— —— ——— — — —

information user-specified receiving
area.
Fetch device | Searches the volume mnemonic
name | table (VMT) for a user-
| supplied volume name and
]
|
i

returns the name of the
device on which that volume
is mounted.

Memory manage- | Allows a user task (u-task)
ment { to access and modify entries
| (except shared ones) within
|

the private segment table
(PST) in its TCB.
Unpack file | Converts a packed fd from
descriptor | the file directory or an

| SVC7 paramter block to its
| unpacked format.

o —— —— o ——— o —— —— ——— —— —— — - —— " —————— - [" S W o~ — " - - " - v —— - - -

3-4 48-038 FOO RO2

1))
<
Q
()

3.2 8VC2 CODE 0: MAKE JOURNAL ENTRIES

SVC2 code 0 makes an
e-task. The

entry into the system journal from an
system journal provides a method to trace back
important events (SVCs, input/output (I/0) operations, task
switching) that occurred during system operation. For example,
the journal is useful for tracing the cause of a system failure.

The parameter block format for SVC2 code 0 is shown in Figure

3-~-1.

10(0) 12(2) !
! Code | Journal code i
{]]
. |
14(4) |
! Value 1 |
| i
e !
18(8) i
! Value 2 i
i !
= o :
112(C) i
HEE Value 3 !
i i
= o= o o e - :
116(10) i
! Value 4 i
i]

svce 2,parblk

parblk DC H'O'

DC H'journal code'

DC F'value 1'

DeC F'value 2'

pc F'value 3'

DC F'value 4'

Figure 3-1 8VC2 Code 0 Parameter Block Format and Coding

48-038 F00 RO2

——— e e b i e —er Wee T Wee e OV b mmen mem mmen amas Gnas dmas @mer wmas

—— - ——— ——— t—en —— —— —— —

—— e e e - -

During execution, a logical-OR operation is performed on a mask
and the journal code to indicate that the entry originates from
an SVC2 code 0, rather than from within the system. The value 1,
2, 3 and 4 fields of the parameter block are stored following the
journal code and calling task name in the journal. These values
can contain any desired information to be preserved for system
debugging.

NOTE
This call has an effect only if the

journal is included in the system at
(source) system generation (sysgen).

3-6 48-038 FO0O RO2

3.3 8sVC2 CODE 1l: PAUSE

SVC2 code 1 stops task execution and places the task into a
suspended state. This is accomplished through the SVC2 code 1
parameter block shown in Figure 3-2.

e S o G o B B o . e St S (> G o . S o ot o £ S0 Gn G e o s P v S e 0 - e~ S - - —— - - ——

O
e
cr
(=
]
o]
Q
o
Q
[

———— i —————————— T — ——— - " - — > —— i ————_——— = - —— - - - —— - — e

svc 2,parblk

~ ALIGN 4
parblk DB 0,1

Figure 3-2 8SVC2 Code 1 Parameter Block Format and Coding

This parameter block must be two bytes 1long, fullword
boundary-aligned, and does not have to be located within a
task-writable segment. Following is a description of each field
in the parameter block.

Fields:
Option is a 1l-byte field that must contain a value of
0 to indicate no options for this call.
Code is a 1l-byte field that must contain the

decimal value 1 to indicate code 1 of SVC2.

After executing SVC2 code 1, the following message 1is displayed
on the system console:

TASK PAUSED

48-038 F0OO RO2 3-7

If the task is running under MTM, the above message is displayed
on the user console.

While the task is paused, the operator can issue commands
directed to the paused task to change the task environment. To
continue task execution, enter the CONTINUE command. Task
execution resumes with the instruction immediately following SV(C2
code 1.

3-8 48-038 F0OO RO2

3.4 8SVC2 CODE 2: GET STORAGE

SVC2 code 2 reserves a workspace area for external subroutines
called by the task during execution (e.g., FORTRAN run-time
library (RTL) routines). This workspace 1is reserved in the
unused portion of the task's impure segment between UTOP and
CTOP. For more information on this segment, see the 0S/32
Application Level Programmer Reference Manual.

The SVC2 code 2 operation does not increase the task's allocated
memory size.

Figure 3-3 illustrates the parameter block for SVC2 code 2.

10(0) 11(1) 12(2) 13(3) '
! Option ! Code H Reserved | User |
' ! | | register !
| T T T T e e e e e e e e e e e e i
I 4(4) |
i Number of bytes !
i [}
1 ¥

3vce 2,parblk

ALIGN 4

parblk DB option, 2,0
DB user register

Dc F'number of bytes'

Figure 3-3 8VC2 Code 2 Parameter Block Format and Coding
This parameter block must be eight bytes 1long, fullword
boundary-aligned, and located in a task-writable segment when

option X'80' is used. A general description of each field in the
parameter block follows.

48-038 FOO RO2 3-9

Fields:

Option is a l-byte field that must contain one of the
following options:

e Option X'00' reserves the user-specified
number of bytes in fullword increments in
the unused portion of the task impure
segment between UTOP and CTOP.

e Option X'80' reserves the remaining unused
portion of the task impure segment between
UTOP and CTOP.

Code is a 1l-byte field that must contain the
decimal value 2 to indicate code 2 of SVC2.

Reserved is a reserved l-byte field that must contain
a 0.

User is a l-byte field that must contain a decimal

register number ranging from 0 to 15 specifying the

register to receive the starting address of
the reserved workspace area.

Number is a 4-byte field containing different
of bytes information for each option.

e Option X'00' contains the user-specified
number of bytes to be reserved for the
workspace area.

e Option X'80' receives the number of bytes
actually reserved for the workspace area.

When a task is 1link-edited, the default task workspace (the
difference between CTOP and UTOP) should be large enough to
provide enough workspace for both the task and the external
subroutines. The task workspace can be increased through the
WORK= parameter of the Link OPTION command, the LOAD command or
an SVC6.

3-10 48-038 FOO RO2

After executing SVC2 code 2, the CC is set as follows.

Condition Code:

- ——— ——————— —— -

|

|

i Normal termination

| User-specified number of bytes is a nega-
———————————————— tive value or a value greater than the
task's allocated memory size

NOTE

When SVC2 code 2 is executed and the task
UTOP changes, the UTOP address stored in
the task UDL is not updated to contain
the most current UTOP. 8VC2 code 5
updates the address in the UDL.

3.4.1 SVC2 Code 2, Option X'00'

If option X'00' is specified, the address of the task's current
UTOP is adjusted to include the number of user-specified bytes in
the parameter block. Once the UTOP address is adjusted, the
starting address of the reserved workspace area, which 1is the
original or previous UTOP, is stored in the user-specified
register. This option can reserve new workspace areas until they
are needed during task execution in subsequent calls.

The number of bytes should be specified in fullword increments
because the UTOP address is rounded up to the nearest fullword
boundary.

Example:
sve 2,CGET
ALIGN 4
GET DB 0,2,0
DB 5
DC Y'600' 1.5K

48-038 F00 RO2 3-11

This example is illustrated in Figure 3-4. A task is loaded with
a task workspace area of 5.5kb specified in the LOAD command.
After the task is loaded, UTOP is located at X'C78' and CTOP is
located at X'lFFE'. After executing SVC2 code 2, UTOP is
adjusted to X'l1278'. The remaining unused portion (area between
X'1278' and X'2000') can be used by subsequent routines when
needed during task execution.

If the user-specified number of bytes for option X'00' is a
negative value or greater than the task current allocated memory
size (CTOP):

® The UTOP address is not adjusted

@ An address of 0 is returned in the user-specified register

® The CC is set to 4 (V bit set)

038-1

EXPANDED THROUGH
WORKSPACE FIELD OF
X’2000° - LOAD COMMAND
(ABOVE USER -;
TASK) X‘1FFE' CTOP
(AFTER LOAD TIME)
UTOP X'1278"
(AFTER SVC 2 . 5.5kb ‘
CODEZEXECUﬂONJF

X'600' BYTES
(RESERVED BY
SVC 2 CODE 2)

X'AB4’ CTOP
(BEFORE LOAD TIME)

UTOP X'AQ0Q"
(AT LOAD TIME) L

USER CODE

X100 '

ubL

UBOT X'0’

Figure 3-4 Task Impure Segment for SVC2 Code 2, Option X'00'

3-12 48-038 FOO RO2

3.4.2 8VC2 Code 2, Option X'80'

If option X'80' is specified, the parameter block must be located
in a writable segment. The address of the task's current UTOP is
adjusted to include all of the remaining unused portion 1in the
impure segment, making UTOP equal CTOP+2. Once the UTOP address
is adjusted, the starting address of the reserved workspace area,
which is the address of the original or previous UTOP, is stored
in the user-specified register. Also, the number of bytes
actually reserved is stored in the number of bytes field in the
parameter block.

Example:
svc 2,GET
ALIGN 4
GET DB X'80',2,0
DB 5
DS 4

This example is illustrated in Figure 3-5. A task is linked with
a workspace greater than 5.5kb. After the task is loaded with a

load expand factor of 5.5kb, UTOP is located at X'C78'. After
executing SVC2 code 2, UTOP is adjusted to X'2000'.
038-2

UTOP X‘1000°
(AFTER SVC 2~

CODE 2 EXECUTION) -

.

X‘AFE’ CTOP
(AFTER EXPANSION
BY LOAD)

X'100" BYTES
UTOP X'FO0’

(AFTER SVC 2
CODE 3 EXECUTION)

3.75kb

X'CFE' CTOP
(BEFORE EXPANSION

UTOP X'C78'] BY LOAD)
(AT LOAD TIME) —

USER CODE

X'100°

UoL

UBOT X0

Figure 3-5 Task Impure Segment for SVC2 Code 2, Option X'80'

48-038 F00 RO2 3-13

3.5 8VC2 CODE 3: RELEASE STORAGE

SVC2 code 3 releases the workspace area in the unused portion of
of the task impure segment that had been reserved by a previous
SVC2 code 2 (see Section 3.3). Releasing the reserved workspace
for external subroutines does not decrease the task's allocated
memory size. The SVC2 code 3 parameter block is shown in Figure
3-6.

10(0) 11(1) 12(2) '
H Option | Code | Reserved !
| i | i
T T e e e e e e e e e e e e !
14(4) |
H Number of bytes]
1 [}
1 [}

svc 2,parblk

ALIGN 4

parblk DB 0,3
DC H'O'

DC F'number of bytes'

Figure 3-6 8SVC2 Code 3 Parameter Block Format and Coding

This parameter block is eight bytes long, fullword
boundary-aligned, and does not have to be 1located in a
task-writable segment. A description of each field 1in the
parameter block follows.

Fields:
Option is a l-byte field that contains a value of 0
to indicate no options for this call.
Code is a 1l-byte field that must contain the

decimal value 3 to indicate code 3 of SVC2.

3-14 48-038 FOO ROZ2

Reserved is a reserved 2-byte field that must contain

zeros.
Number is a 4-byte field that must contain the
of bytes user-specified number of bytes of the reserved

workspace to be released.

When executing this SVC, the address of the task's current UTOP
is adjusted to exclude the user-specified number of bytes of
reserved workspace. If the number of bytes is not specified in
fullword increments, the UTOP address is adjusted by rounding
down to the nearest fullword boundary. After executing SVC2 code
3, the CC is set as follows.

Condition Code:

il vVvie L
‘ -3 3 -3 3 3 2 3 2 32 & 3 % %3 J :
{1 0} 0} O} 0} Normal termination
i 0} 1} 0} 0} User-specified number of bytes is a nega-
---------------- -tive value or a value greater than the
task's allocated memory size
Example:
svc 2 ,RELEASE
ALIGN 4
RELEASE DB 0,3
DC H'O'

DC F'256"

Figure 3-7 illustrates this example. A task was 1linked with a
workspace of 3.75kb and loaded into memory. After the task is
loaded, UTOP is located at X'C78' and CTOP is located at X'FFE'.
After executing 5VC2 code 2, UTOP is adjusted to X'1l000'. After
executing SVC2 <code 3, 256 bytes of reserved storage are
released, adjusting UTOP to X'F0O'.

48-038 F00 RO2 3-15

038-3 !XPANDED THROUGH
THE LINK OPTION
COMMAND

UTOP X’2000'
(AFTER SVC 2 ¥ x1reer cToP
CODE 2 EXECUTION (AFTER EXPANSION
BY LOAD)
X'FO0’ BYTES 5 5kb <
77 / X'CFE’ CTOP
(BEFORE EXPANSION
UTOP X'C78' ‘ ’
(AT LOAD TIME} | ayNi | BYLoaD)
USER CODE
X‘100°
uDL
UBOT X0’

Figure 3-7 Task Impure Segment for SVC2 Code 3

If the user-specified number of bytes is é negative number or is
more than the number specified by Link, the UTOP address is not
adjusted and the CC is set to 4 (V bit set).

3-16 48-038 FOO RO2

3.6 8VC2 CODE 4: SET STATUS

SVC2 code 4 modifies the arithmetic fault interrupt bit and the
CC settings in the PSW. Figure 3-9 shows the PSW and the bits
affected by the set status operation. When the arithmetic fault
interrupt bit setting 1is modified, interrupts are enabled or
disabled. When the CC setting is modified, the current 4-bit
setting is replaced with a new 4-bit setting. This is
accomplished through the SVC2 code 4 parameter block shown in
Figure 3-8.

10(0) 11(1) {2(2)Arithmetic|3(3) Condition|
| Option | Code 1 fault | code |
i i | parameter | parameter |
sv¢ 2,parblk
ALIGN 4
parblk DB option,4
DB arithmetic fault parameter, condition

code parameter

Figure 3-8 8SVC2 Code 4 Parameter Block Format and Coding

This parameter block is four bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:

Option is a l-byte field that must contain one of the
following options:

e Option X'00' modifies the arithmetic fault
bit and CC in the PSW.

e Option X'80' modifies only the CC in the
PSW (see Figure 3-9).

48-038 F00O RO2 3-17

Code

Arithmetic
fault
parameter

Condition
code
parameter

Reserved

is a 1l-byte field that must contain the
decimal value 4 to indicate code 4 of SvV(C2.

is a 1l-byte field that must contain one of
the following parameters when option X'00' is
specified. For option X'80', this field must
contain zeros.

e X'OO0' disables all arithmetic fault
interrupts for Models 7/32 and 8/32
Processors. For Perkin-Elmer Series 3200
Processors, only arithmetic fault
interrupts due to floating point underflow
are disabled.

e X'l0' enables all arithmetic fault
interrupts.

is a 1l-byte field that must contain a
hexadecimal value ranging from X'00' to X'OF'.

Arithmetic fault Condition
interrupt bit Reserved code

{IM |[A |I |[RP|Q | iV iG L |
0 15 16 17 18 19 20 21 22 23 24 27 28 29 30 31
Reserved
2._ ________________
!
b———mmm o
Bits:
32 39 40 63
Figure 3-9 Program Status Word (PSW)
3-18 48-038 F00 RO2

An arithmetic fault occurs during an arithmetic operation for any
of the following conditions:

e Fixed point gquotient overflow

e Fixed point division by O

e Floating point overflow and underf low

e Floating point division by O

The CC (bits 28 through 31) is set after executing certain
instructions. Each bit 1in the CC corresponds to a result or

condition caused by executing an instruction. The CC settings
for arithmetic operations follow.

Condition Code:

ey vioe L

:=====-L‘4======‘=ﬂ=

i 1401} 01} 0} Arithmetic carry, borrow or shifted carry
it 0} 14} 01} 0} Arithmetic overflow

10}y 01}V 1L} 0} Greater than 0

i1 0} 0)04} 1} Less than O

These four bits have different meanings for 1logical operations,
branching operations and I/0 operations. For the definitions of
the bit settings for each particular operation, see the
appropriate processor manual.

3.6.1 8SVC2 Code 4, Option X'00'

If the SVC2 code 4 parameter block contains X'00' in the option
field, X'00' 1in the arithmetic fault field, and a value ranging
from X'00' to X'OF' in the CC field, all arithmetic faults are
ignored for Models 7/32 and 8/32 Processors. For Series 3200
Processors, only arithmetic faults resulting from floating point
underflow are ignored. For more information on Series 3200
arithmetic fault interrupts, see the appropriate Series 3200
Processor Manual. The current CC value in the PSW is replaced
with the value specified in the CC field of the parameter block.

48-038 F0O0 RO2 3-19

If the SVC2 code 4 parameter block contains X'00' in the option
field, X'10' 1in the arithmetic fault field, and a value ranging
from X'00' to X'OF' 1in the CC field, all arithmetic fault
interrupts are enabled. The current CC value in the FSW is
replaced with the value specified in the CC field of the
parameter block.

3.6.2 SVC2 Code 4, Option X'80'

If option X'80' is specified and the CC parameter field contains
a value of X'00' through X'OF', the current CC value of the PSW
is replaced with the value specified in the CC field of the
parameter block. The arithmetic fault field is ignored.

3-20 48-038 F0OO RO2

3.7 8VC2 CODE 5: FETCH POINTER

SVC2 code 5 loads the starting address of a task's UDL into a
user-specified register. It then stores the current addresses of
UBOT, UTOP and CTOP, located in the TCB, into their corresponding
locations in the task UDL. This is accomplished through the SVC2
code 5 parameter block shown in Figure 3-10.

| t i |
' Option ; Code ! Reserved | User |
1 1 1]
i | t]

ALIGN 4

parblk DB 0,5,0
DB user register

Figure 3-10 8VC2 Code 5 Parameter Block Format and Coding

This parameter block is four bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A description of each field 1in the
parameter block follows.

Fields:
Option is a l-byte field that must contain the value
0 to indicate no opticns for this call.
Code is a l-byte field that must contain the
decimal number 5 to indicate code 5 of SVC2.
Reserved is a reserved l-byte field that must contain

a 0.

48-038 FOO RO2 3-21

User is a l-byte field that must contain a

register decimal number from 0 to 15, indicating the
register that receives the UDL starting
address.

When executing this call, the UDL starting address, which is
loaded 1into the user-specified register, varies for u-tasks and
e-tasks. The starting address for a u-task 1is the relative
address, which 1is always 0. The starting address for an e-task
is the absolute address, which depends on the task memory
location.

If the user modified the UDL by changing address pointers or if
UTOP was changed by a GET or RELEASE STORAGE, the contents of
CTOP, UTOP and UBOT in the UDL might not be valid. SVC2 code 5
restores this data to a valid state by storing the current values
of CTOP, UTOP and UBOT into the UDL.

Example:

UDL after execution of SVC2 code 2 and before execution of 8SVC2
code 5:

] oo} CTOP
! i X'FFE'
{ []
| S]
UTOP | | H
X'928' |- ———— |
[]]
]]
-~ User code ~
{ |
X'100' |-—mmm e e e H
i !
! UDL |
! |
= __ =
IX'"FFE'{X'128'} X'0"' | | i i i i
UBOT X'0' ~—————mm oo e

CTOP UTOP UBOT DMS TSKQ SDQ MSGR SV14

Invalid
Address

3-22 48-038 FOO RO2

UDL after execution of SVC2 code 5:

] (I |

! g

] 1

| R, {

UTOP | | i
X'928 ! |~ H
| 1

~ User code ~

| |

X'100' | e e e e e e e e e e e e |
| i

| UDL ’T

| |

o ommmm oo oo S :
{X'FFE'}X'928'} X'0°' | H ! |] |

UBOT X'0' e e e e e e e e i e o e s e

CTOP UTOP UBOT DMS TSKQ SDQ MSGR SV14

Valid
Address

For more information on the UDL, see the 0S/32 Application Level

Programmer Reference Manual.

48-038 F0OO RO2

3.8 8SVC2 CODE 6: CONVERT BINARY NUMBER TO ASCII HEXADECIMAL OR
ASCII DECIMAL

SVC2 code 6 converts an unsigned 32-bit binary number located in
user register 0 to an ASCII hexadecimal number or an ASCII
decimal number. This is accomplished through the §SVC2 code 6
parameter block shown in Figure 3-11.

10(0) 11(1) 12(2) !
i Option+n | Code | Reserved i
]]] |
e |
14(4) ;
| Address of receiving buffer !
i |

svce 2,parblk

ALIGN 4

parblk DB option+n,b
DC H'O'

DCF A(receiving buffer)
Figure 3-11 8SVC2 Code 6 Parameter Block Format and Coding
This parameter block is eight bytes long, fullword
boundary-aligned, and must be located in a task-writable segment.

A general description of each field in the parameter block
follows.

3-24 48-038 FOO RO2

Fields:

" Option+n is a l-byte field that must contain the sum of
one of the following options and n (n
specifies a decimal number from 0 to 63
indicating the number of bytes in the buffer
specified in the SVC2 code 6 parameter block).

® Option X'00'+n converts a binary number to
ASCII hexadecimal.

® Option X'40'+n converts a binary number to
ASCII hexadecimal, suppressing leading
zeros.

® Option X'80'+n converts a binary number to
ASCII decimal.

® Option X'CO'+n converts a binary number to
ASCII decimal, supressing leading zeros.

Code is a 1l-byte field that must contain the
decimal number 6 to indicate SVC2 code 6.

Reserved is a reserved 2-byte field that must contain
zeros.

Address of is a 4-byte field that must contain the

receiving address of the previously allocated buffer

buffer that receives the converted number. This

address can be located on any byte boundary.

The receiving buffer should be defined to receive the largest
number, which is is 2,147,483,647 (2% -1), that can be converted
from register 0. Allocate an 8-byte buffer for binary to ASCII
hexadecimal. Allocate a 10-byte buffer for binary to ASCII
decimal. If the user's largest number to be converted is less
than 2% -1, the receiving buffer can be less than the suggested
length of the buffer.

When the user-specified binary number located in register 0 is
converted, the result is stored right-justified in the receiving
buffer with the left-most significant digits filled with ASCII
zeros. However, if the converted number is longer than the
buffer, the left-most digits of the converted number are lost.
If suppression of leading zeros is requested, the left-most zeros
in the receiving buffer are filled with spaces (hexadecimal 20).

48-038 F00 RO2 3-25

3.8.1 8VC2 Code 6, Option X'00'+n

If option X'00'+n is specified, the unsigned 32-bit binary number
located in the user register 0 1is converted to an ASCII
hexadecimal number . The resulting number is stored
right-justified in the receiving buffer with the left-most
significant digits filled with ASCII zeros (hexadecimal 30).

Example:

LI 0,F'8520°
svC 2, CONVERT
ALIGN 4

CONVERT DB X'00'+8,6
DC H'0'
DCF A(BUF)

BUF DS 8

Register 0 before and after execution of SVC2 code 6:

o T~ 2 o —

Receiving buffer after execution of SVC2 code 6:

Zero filled

3.8.2 8VC2 Code 6, Option X'40'+n

If option X'40'+n is specified, the unsigned 32-bit binary number
located in the wuser register 0 is converted to an ASCII
hexadecimal number. The resulting number is stored
right~-justified 1in the receiving buffer with the left-most
significant digits filled with ASCII spaces (hexadecimal 20).

3-26 48-038 F0OO RO2

3.8.3 8VC2 Code 6, Option X'80'+n

If option X'80'+n is specified, the unsigned 32-bit binary number
located in the user register 0 is converted to an ASCII decimal
number . The resulting number is stored right-justified in the
buffer with the left-most significant digits filled with ASCII
zeros (hexadecimal 30).

Example:

PROG CONVERT
LI 0,F'16322"
svcC 2, CONVERT
ALIGN 4

CONVERT DB X'80'+10,6
DC H'O?
DCF A(BUF)

BUF DS 10

Register 0 before and after execution of SVC2 code 6:

{0 0 0 03 F'C 2| Hex

Recelving buffer after execution of SVC2 code 6:

Zero—-filled

{3 0} 3 0}3 0!3 0}3 013 113 613 313 2|3 2| Hex

3.8.4 8VC2 Code 6, Option X'CO'+n

If option X'CO'+n is specified, the unsigned 32-bit binary number
located in the user register 0 is converted to an ASCII decimal
number . The resulting number is stored right-justified in the
receiving buffer with the left-most significant digits containing
zeros filled with ASCII spaces (hexadecimal 20).

48-038 F0O0 RO2 3-27

3.9 8SVC2 CODE 7: LOG MESSAGE

SVC2 code 7 sends a user-specified message to the system console,
user terminal or user-specified log device, depending on the task
environment. This 1is accomplished through the SVC2 code 7
parameter block in Figure 3-12. Log devices for specific task
environments are:

e System console for background tasks

e System console for foreground tasks

® User MTM terminal for MTM terminal tasks

® User-specified log device for MTM batch task

If no user-specified log device is allocated for MTM batch tasks,
the message is lost.

10(0) 11(1) 12(2) |
| Option i Code ! Length of message |
1]]
A |
14(4) |
| Contents of message* or address of message buffer |
(|

svc 2,parblk

ALIGN 4

parblk DB option,7
DC H'length of message'
DC C'contents of message' or

A(message buffer)

* When the contents of message field is used, the size of
the parameter block can vary.

Figure 3-12 8SVC2 Code 7 Parameter Block Format and Coding

3-28 48-038 FOO RO2

This parameter block 1is eight bytes 1long if the address of
message buffer field is used. It is variable in 1length if the

contents of message field is |used. It must be fullword
boundary-aligned and does not have to be located in a
task-writable segment. A general description of each field in

the parameter block follows.

Fields:
Option is a l-byte field that must contain one of the
following options:

e Option X'00' indicates message contents,
formatted.

e Option X'20' indicates message contents are
formatted and sent to the system console
only.

e Option X'40' indicates message at specified
buffer address, formatted.

e Option X'60' indicates message at specified
buffer address is formatted and sent to the
system console only.

e Option X'80' indicates message contents,
image mode.

e Option X'A0' indicates message contents are
sent in image mode to system console only.

e Option X'CO0' indicates message at specified
buffer address, image mode.

e Option X'E0' indicates message at specified
buffer address is sent in image mode to the
system console only.

Code is a 1l-byte field that must contain the

decimal number 7 to indicate SVC2 code 7.

Length of is a 2-byte field that must contain a decimal
message number indicating the number of bytes the
message occupies. The message can be
truncated by the log device driver. If the

message is being logged to the system console,
its maximum length is determined at sysgen
time.

48-038 FOO RO2 3-29

Contents is a variable-length field that must contain

of message the message to be sent to the log device.

Address of is a 4-byte field that must contain the
message starting address of the buffer that contains
buffer the message to be sent to the log device.

This buffer can be on any byte boundary.

When the message is sent to the appropriate 1log device, it is
either formatted or in image mode. When a formatted message is
sent to a device:

e All trailing blanks in the buffer or at the end of the message
are eliminated.

® A carriage return (CR) and line feed (LF) are automatically
appended to the message.

® The message terminates when the end of the buffer or message
is reached or when a CR is found in the message.

When a message is sent to a device in image mode, the message
terminates when the end of the buffer or message is reached. If
in image mode, a message with multiple 1lines can be sent by
executing a single SVC2 code 7 for each line. However, each line
should include a CR and LF at the end. The image options should
be used with caution because the amount of time that must remain
for a CR to occur differs on various console devices.

3.9.1 8VC2 Code 7, Option X'00'
If option X'00' 1is specified, the message specified 1in the

parameter block is formatted and sent to the appropriate log
device.

Example:
svC 2 ,LOGMSG
ALIGN 4
LOGMSG DB X'oo',7
DC H'32'

DC C'OPERATOR-PLS MOUNT TP028 ON MAG1'

3-30 48-038 FOO RO2

Contents of message buffer before and after execution of SVC2 code 7:

Log device after execution of SVC2 code 7:

OPERATOR-PLS MOUNT TP028 ON MAG1

3.9.2 8vVC2 Code 7, Option X'20°'

If option X'20' 1is specified, the message specified in the
parameter block is formatted as for option X'00'. The message is
then sent unconditionally to the system console.

Option X'20' is used exclusively for tasks running under MTM.

3.9.3 8VC2 Code 7, Option X'40°'

If option X'40' is specified, the contents of the message buffer
pointed to by the address specified in the parameter block are
formatted and sent to the appropriate log device.

3.9.4 8VC2 Code 7, Option X'60°'

If option X'60' is specified, the contents of the message buffer
are formatted as for option X'40'. The message is then sent

unconditionally to the system console.

Option X'60' is used exclusively for tasks running under MTM.

3.9.5 8VC2 Code 7, Option X'80'
If option X'80' 1is specified, the message specified in the

parameter block 1is in image mcde and is sent to the appropriate
log device.

48-038 FO00 RO2 3-31

Example:

SvC 2,LOGMSG1
SvC 2 ,LOGMSG2

ALIGN 4
LOGMSG1l DB X'80',7
DC H'32'
DC C'OPERATOR-PLS MOUNT TP028 ON MAGL'
ALIGN 4
LOGMSG2 DB X'80',7
DC H'19'

DC C'SET TAPE AT 800 BpPI'

Contents of message buffer before and after execution of SVC2 code 7:

|4F150I45I52:41}54!41"!52:2D|50|4Ci§3}20|4D|4PI55.’4EIS4I20:54:50]30:32:38:20{4?{4E‘20l4D}4l'46'313ASCII
1

I
1O IP {E {R {A {T |O IR {- (P |L IS | M O (U N IT | |T {P 10 |2 |8 | 1|0 |N| 'MHAIGIII

Contents of message buffer before and after executlon of second
SVC2 code 7:

i53i45354:20}54{41}50{45}20}41}54'20138!30!30'20'42‘50'49' ASCII

o o e - —————— " — ———— . - o T . - W - Al e o -

Log device after execution of second SVC2 code 7:

SET TAPE AT 800 BPI TP0Z28 ON MAGl

(no line feed appended, message overwritten)

3.9.6 8VC2 Code 7, Option X'AO'

If option X'AO' 1is specified, the message specified in the
parameter block is in image mode, as for option X'80', but the
message is sent unconditionally to the system console.

Option X'A0' is used exclusively for tasks running under MTM.

3-32 48-038 F0OO RO2

3.9.7 8vVC2 Code 7, Option X'CO’

If option X'CO' is specified, the contents of the message buffer:
pointed to by the address specified in the parameter block are in
image mode and are sent to the appropriate log device.

3.9.8 8vVC2 Code 7, Option X'EOQ'

If option X'EQ' is specified, the contents of the message buffer
are in image mode as for option X'C0', but the message is sent

unconditionally to the system console.

Option X'EO' is used exclusively for tasks running under MTM.

48-038 FOO RO2 3-33

3.10 SVC2 CODE 8: INTERROGATE CLOCK
SVC2 code 8 sends the current time of day to a user-specified

buffer. This 1is accomplished through the SVC2 code 8 parameter
block shown in Figure 3-13.

— i ————— ——— . —— — o ———— — Y T Tt/ T 7o o o i S e s S o i e s Sk W Bk s S e e o g o Vo e Bt M it St Bt

10(0) 11(1) 12(2) i
! Option H Code ! Reserved !
o i i |
e e e e e e e e e e e e o e o e - — - ———— — —— T o~ " o o — " S Y et e i St et el e St e o b s e o]
' |
14(4) |
; Address of receiving buffer |
]]
] 1
svc 2,parblk
ALIGN 4
parblk DB option,8
DC H'0O!

DCF A(receiving buffer)
Figure 3-13 8VC2 Code 8 Parameter Block Format and Coding
This parameter block is eight bytes long, fullword
boundary-aligned, and does not have to be located in a

task-writable segment. A general description of each field in
the parameter block follows.

3-34 48-038 F0OO RO2

Fields:

Option This l-byte field must contain one of the
following options:

e Option X'00' returns the time of day as two
fullwords of ASCII data in the form
hh:mm:ss.

® Option X'80' returns the time of day as a
fullword of binary data indicating the
number of seconds past midnight.

e Option X'40' returns the time of day as
three fullwords of ASCII data in the form
hh:mm:ss.sss.

® Option X'CO' returns the time of day as two
fullwords of binary data. The first
fullword indicates the number of seconds
past midnight; the second fullword
indicates the number of milliseconds past

midnight.
Code is a 1l-byte field that must contain the
decimal number 8 to indicate SVC2 code 8.
Reserved is a reserved 2-byte field that must contain
zeros.
Address of is a 4-byte field that must contain the
receiving starting address of the buffer to receive
buffer the current time of day.

The current time of day is calculated as seconds from midnight
(midnight equals 0) and is taken from the line frequency clock
(LFC) maintained by the system.

3.10.1 8VC2 Code 8, Option X'00'

If option X'00' is specified, the current time of day is returned
in ASCII format to a user-specified buffer located in a

task-writable segment This buffer must be at least eight bytes
long. The current time of day is returned as follows.

Format:

hh:mm:ss

48-038 FO0O RO2 3-35

Parameters:
hh are two ASCII characters representing the
number of hours.

mm are two ASCII characters representing the
number of minutes.

ss are two ASCII characters representing the
number of seconds.
Example:

Contents of buffer after execution of 8VC2 code 8 option X'00'
when the current time of day is 10:09:03:

3.10.2 8VC2 Code 8, Option X'80'

If option X'80' is specified, the current time of day in seconds
from midnight is sent in binary format to a user-specified buffer
located in a task-writable segment. This buffer must be at least
four bytes long and aligned on a fullword boundary.

Example:

Contents of buffer after execution of SVC2 code 8 option X'80°
when the current time of day is 10:13:48:

36828 = 10:13:48
(decimal)

The contents of this buffer represent 36,828 seconds from
midnight.

3-36 48-038 FOO RO2

3.10.3 8VC2 Code 8, Option X'40'

If option X'40' is specified, the current time of day is returned
in ASCII format to a user-specified buffer in a task-writable

segment.. This buffer must be at 1least 12 bytes long. The
current time of day is returned as follows.
Format:
hh:mm:ss:sss
Parameters:
hh are two ASCII characters representing the
number of hours.
ram are two ASCII characters representing the
number of minutes.
ss are two ASCII characters representing the
number of seconds.
888 are three ASCII characters representing the
number of milliseconds.
Example:
Contents of buffer after execution of 8SVC2 code option X'40',
when the current time of day is 10:41:32.8:
i 31 | 30 | 3a 34 | 31 | 3A | 33 | 32 | 3A | 38 | 30 | 30 | Hex
e e e e e e e e e e e e e e e e e e !
i1 0| 4 | 1| i 34+ 24 :«:}V 841 0} 0} AsCII
________________ i ety ittt ettty
hh mm ss sss
3.10.4 8VC2 Code 8, Option X'CO'
If option X'C0' is specified, the current time of day in seconds

and milliseconds

from midnight

is

user-specified buffer located in a task-writable

48-038 F0OO ROZ2

segment.

sent in binary format to a
This
buffer must be eight bytes long and fullword boundary-aligned.

i

Example:

Contents of buffer after execution of SVC2 Code 8 option X'CO'
when the

current time of day in ASCII is 10:41:32.8:

The contents of this buffer represent 38,492 seconds and 800ms
from midnight.

38 48-038 FO0 RO2

3.11 8SVC2 CODE 9: FETCH DATE
8SVC2 code 9 sends the current date to a wuser-specified buffer.

This 1is accomplished through the SVC2 code 9 parameter block
shown in Figure 3-14.

e A ————— " T Rt o St e A A e S S s o A S et e S S e T - o e R Wt S o i St S bae b . S A Mo i o e B o W (o e o S

10(0) 11(1) 12(2) :
| Option | Code | Reserved }
|]]]
A |
14(4) !
| Address of receiving buffer |
! i

svC 2,parblk

ALIGN 4

parblk DB 0,9
bC H'O'

DCF A(receiving buffer)

Figure 3-14 8VC2 Code 9 Parameter Block Format and Coding

This parameter block is eight bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:
Option is a l-byte field that must contain a 0 to
indicate no options for.this call.
Code is a 1l-byte field that must contain the
decimal number 9 to indicate SVC2 code 9.
Reserved is a reserved 2-byte field that must contain

zeros.

48-038 F00 RO2 3-39

Address is a 4-byte field that must contain the
of receiving starting address of the buffer receiving the
buffer current date. The buffer must be eight bytes

long and 1located in a task-writable segment.

The buffer can be located on any boundary.

SVC2 code 9 sends the current date to the receiving buffer in
either one of the following:

Format:
mm/dd/yy
or
dd/mm/yy
Parameters:
mm are two ASCII characters representing the
month.
dd are two ASCII characters representing the day.
YY are two ASCII characters representing the
year.

When the system is installed, one of these formats is chosen as
the default for all operations. To return the current date in
the alternate format, use the DATE command at sysgen.

3-40 48-038 FOO RO2

Example:

SvC 2,DATE
svc 2,PAUSE

ALIGN 4

DATE DB . 0,9
DC H'O'
DCF A(BUF)
ALIGN 4
PAUSE DB 0,1
BUF DS 8

Contents of receiving buffer after
when the current date in ASCII is 07/06/81:

48-038 F0OO ROZ2

execution of

SVC2 code

41

| 8vC2 |
| CODE 10 |

3.12 SVC2 CODE 10: TIME OF DAY WAIT
SVC2 code 10 suspends the SVC calling task until a user-specified
time of day occurs. Then the calling task resumes execution.

This 1s accomplished through the SVC2 code 10 parameter block
shown in Figure 3-15.

10(0) 11(1) 12(2) i
! Option { Code ! Reserved
i i] i
T T T T T T T T T T e e i
14(4) i
' Time of day !
‘ :

sve 2,parblk

ALIGN 4

parblk DB 0,10
DC H'O'
DC Y'time of day'

Figure 3-15 SV(C2 Code 10 Parameter Block Format and Coding

The §SVC2 code 10 parameter block is eight bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:
Option is a l-byte field that must contain a 0 to
indicate no options for this call.
Code is a 1l-byte field that must contain the
decimal number 10 to denote SVC2 code 10.
Reserved is a reserved 2-byte field that must contain

Zeros.

3-42 48-038 FOO ROZ2

Time of
day

is a 4-byte field that must contain a decimal
number from O to 268,435,455 (228 -1)
representing in seconds a specific time of day
when the calling task is to start execution.
The decimal number specified must be
calculated in seconds from midnight.

e 0 seconds equals 00:00:00 a.m.
of the current day.

(midnight)

® 86,399 seconds equals 23:59:59 p.m. of the

current day.

See Table 3-2 for a range of values in seconds
and their corresponding time of day. Any
value greater than 86,399 refers to days in
the future. If the specified time of day has
passed, the same time on the following day is
assumed.

TABLE 3-2 TIME OF DAY VALUES CALCULATED IN

SECONDS FROM MIDNIGHT

TIME OF DAY

| | TIME OF DAY
{ 00:00:00 HOURS |
t {

23:59:59 HOURS

‘ !
| !
} DAY | (MIDNIGHT) | (P.M.) !
| 1st ' | i
| (current) | 0] 86,399 !
i ' | i
| 2nd | 86,400 ! 172,799 !
| i } |
H 3rd ! 172,800 H 259,199 i
i i] i
| 4th ! 259,200 ! 345,599 H
i | | |
| 5th H 345,600 ! 431,999 H
! | i i
H 6th] 432,000 ! 518,399 |
| i i i
] 7th ! 518,400 | 604,799 !
i i ! |
| . | . | i
| . | ' |
| i ! |
! | i : H
| 3,107th | 268,358,400 ! 268,435,455* |
! (maximum) | | (max imum) !

* 268,435,455 seconds equals 21:24:15 hours

of the final day

48-038 F0O0 RO2

After executing SVC2 code 10, the CC is set to indicate if the

call was successful.

Condition Code:

——— ——————— —————

Sufficient

The possible CC settings follow.

]
]
| 'Normal termination
1
i

system space is unavailable;

no wait occurred

If this call is executed and insufficient system space exists, no
wait occurs and the CC is set to 4 (V bit set).

Example:

WAITDAY

PAUSE

svc
svc

ALIGN
DB
DC
DC
AL.IGN
DB

2,WAITDAY
2 ,PAUSE

4

0,10
H'O'
F'12165"
4

0,1

EQUAL to 03:22:45 AM

48-038 F00 RO2

| svc2 |

3.13 SVC2 CODE 11: INTERVAL WAIT

SVC2 code 1l suspends the SVC calling task until a user-specified
interval occurs. When the specific interval elapses, the calling
task begins execution. This is accomplished through the 8SVC2
code 11 parameter block shown in Figure 3-16.

10(0) 11(1) 12(2) '
| Option i Code d Reserved H
| i | i
b e e e e e e e e e e e e e e e e e e l
14(4) |
! Interval i
i %

svc 2,parblk

ALIGN 4

parblk DB 0,11
DC H'O!
DC F'interval'

Figure 3-16 SVC2 Code 11 Parameter Block Format and Coding

This parameter block is eight bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:
Option is a 1-byte field that must contain 0 to
indicate no options for this call.
Code is a 1l-byte field that must contain the

decimal number 11 to indicate SVC2 code 11l.

48-038 F00 RO2Z 3-45

Reserved

Interval

After executing SVC2 code 11, the CC is set to
call was successful.

Condition Code:

is a reserved 2-byte field that must contain

Zeros.

is a 4-byte field that must contain a decimal
number from O to 268,435,455 (2% -1)
representing in milliseconds the interval that
must elapse before the calling task resumes

execution. The interval starts when this call
is executed and ends after the specified
milliseconds elapse.

indicate 1if the

The possible CCs are:

i Cci1 Vi G
:==========
{04}y 00
P01 11to

If this call is
wait occurs and

]

1

|

{ Normal termination

{ ©Sufficient system space is unavailable;
no wait occurred

executed and insufficient system space exists,

no

the CC is set to 4 (V bit set).

Example:

sveC 2,WAITINT
SvC 2 ,PAUSE
ALIGN 4

WAITINT DB 0,11
nc H'O'
DC F'32768' EQUAL TO 32.768 SECONDS
ALIGN 4

PAUSE DB 0,1

48-038 F00 RO2

| 8vC2 |

3.14 8VC2 CODE 14: INTERNAL READER

SVC2 code 14 allows a foreground task loaded from the system
console to invoke operator and CSS commands. These commands are
sent to the command processor where they are executed as if they
were entered from the system console. SVC2 code 14 provides two
options for sending commands to the command processor. Option O
allows the user to place the commands directly in the task
command buffer field of the SVC2 code 14 parameter block. Option
1l allows the user to store the commands in a task command buffer
located on a fullword boundary within the task's address space.
The address of this buffer is placed in the parameter block.

SVC2 code 14 transfers the commands in a task command buffer
until the end of the buffer is reached. The parameter blocks for
both 8SVC2 cocde 14 options are described in the following
sections.

3.14.1 8VC2 Code 14, Parameter Block for Option O

The parameter block format for option 0 of SVC2 code 14 is shown
in Figure 3-17.

48-038 F0OO RO2 3-47

- me em e s e A GmeE EEEE e e Atdn S S—ae Gmas Mmar e e AR mee A Eme AmAn AnAe mm— ——

—— —n i ————————————— T —— i — - o~ — ———— - - —— o ——— - "> w— -

10(0) 11(1) 12(2) |
] Option i Code ' Status 1
! : | |
T T e e e e e e e e e e e e |
14(4) 16(6) Maximum system !
H User command | command buffer !
i buffer length] length !
| = e e e e !
18(8) '
I !
I |
T e |
112(C) !
| Task i
! command |
=== buffer 0 e—e—— |
116(10) '
i I
i |
e e i
i |
i |
i |
i |
, |

svc 2,parblk

parblk DB 0,14,0,0

DC H'user command buffer length'

DC H'O'

DC ‘operator commands'

Figure 3-17 8SVC2 Code 14 Parameter Block Format and Coding

This parameter
aligned on a fullword boundary and 1located in a task-writable

segment.

A ge

block follows.

for Option O

block can be up to 1,032 bytes long. It must be

neral description of each field in the parameter

48 -038 FOO RO2

Fields:

Option

Code

Status

User command
buffer length

Max imum
system
command
buffer
length

Task command

buffer

is a l-byte field that contains a value of 0
to indicate that the task command buffer is
contained in the SVC2 code 14 parameter block.

is a l-byte field that contains the
value 14 to indicate SVC2 code 14.

decimal

is a 2-byte field that receives a status code
indicating the status of the SVC processing.

is a 2-byte field specifying a decimal number
indicating the maximum length allowed for the
user command buffer.

is a 2-byte field to which the
system returns the system
length established by CMDLEN at
value is returned only for
X'0003' (see Table 3-3).

operating
command buffer
sysgen. This
status code

is a variable 1length field with a maximum
length of 1,024 bytes. This field contains
the commands to be sent to the command
processor.

3.14.2 8SVC2 Code 14, Parameter Block for Option 1

The parameter block format for option 1 of SVC2 code 14 is shown
in Figure 3-18.
48-038 F0O0 RO2 3-49

10(0) 11(1) 12(2) s
H Option | Code ! Status |
t 1 i]
;_-—‘-—_-_—--———-"—'——'—'————_————',-l—‘ S SN D G S L M D R SRR S MR SN D e —— - ;
14(4) 16(6) Maximum system i
! User command | command buffer |
| buffer length i length |
Tt ettt]
18(8) :
| Buffer address !
i |

svc 2,parblk

parblk DB 1,14,0,0

DC H'user command buffer length'

DC H'O'

DAC BUFADR

Figure 3-18 8SVC2 Code 14 Parameter Block Format and Coding

for Option 1

This parameter block is 12 bytes long, fullword boundary-aligned,
and located in a task-writable segment. A general description of
each field in the parameter block follows.

Fields:

Option

Code

Status

User command

buffer
length

is a l-byte field that contains a value of 1
to indicate that the parameter block contains
the address of the task command buffer.

is a l-byte field that contains the decimal
value 14 to indicate 8SVC2 code 14.

is a 2-byte field that receives a status code
indicating the status of the SVC processing.
See Table 3-2 for a list of the SVC2 code 14
status codes.

is a 2-byte field specifying a decimal number

indicating the maximum length allowed for the
task command buffer.

48-038 F00 RO2

Max imum is a 2-byte field to which the operating

system system returns the system command buffer

command length established by CMDLEN at sysgen. This

buffer value is returned only for status code X'0003'
(see Table 3-3).

Buffer is a 4-byte field specifying the address of

address the task command buffer. This buffer must

be located on a fullword boundary within the
task's address space.

3.14.3 8VC2 Code 14, Status Codes

The status codes for each of the SVC2 code 14 options are 1listed
in Table 3-3.

TABLE 3-3 SVC2 CODE 14, STATUS CODES

CODE i MEANING
X'0000' | Successful completion - commands are sent to the

command processor for execution.

X'oo0ol! No free internal reader buffers are available.

X'0002' Option error - invalid option is specified for SVC.

incorrectly.

The length of the maximum allowed system command
buffer is returned to the maximum system command
length field.

i
=
;
=
=
:
]
1
X'0003' | User-specified the length of command buffer
|
1
!
=
=
=
]
1

X'FFFF! No internal reader command buffers defined.

3.14.4 8SCV2 Code 14, Programming Considerations

Support for the internal reader must be included in the system at
sysgen. This is accomplished through the Sysgen/32 command,
IREADER. See the 08/32 System Generation (Sysgen/32) Reference
Manual. If the internal reader is not included at sysgen, an
attempt to execute an SVC2 code 14 results in an execution error
and an illegal SVC message is sent to the user console.

48-038 F00 RO2 3-51

The internal reader requires a set of buffers to receive the
commands sent to it by SVC2 code 14. The 0S/32 operator command,
IRBUFFER, 1is wused to create command buffers for the internal
reader. See the 05/32 Operator Reference Manual. The IRBUFFER
command can also be used to increase the number of command
buffers when no free buffers are available (status code X'0001').
IRBUFFER can be used at any time if support for the internal
reader has been generated into the system.

The following program demonstrates the use of SVC2 code 14.

Sample SVC2 code 14 program:

svcal4 PROG SVCZ2,14 EXAMPLE

svc 2, COMMANDO SEND COMMAND
LH 0, COMMANDO +2 WAS IT SUCCESSFUL?
BNZ STOP NO - ERROR
svC 2,COMMAND1 SEND COMMAND .
LH 0,COMMAND1+2 WAS IT SUCCESSFUL?
BNZ STOP NO - ERROR
sSvC 3,0 EOT
STOP EQU *
svC 2,PAUSE PAUSE
SvC 3,0 EQT
ALIGN 4

PAUSE DB 0,1,0,0

ALIGN 4
COMMANDOC DB 0,14,0,0 DIRECT COMMAND BUFFER
DC Z(4)
DCX 0]
DC cC'DM'’
ALIGN 4
COMMAND1 DB 1,14,0,0 INDIRECT COMMAND BUFFER ADDRESS
DC Z (CMDBUFFE-CMDBUFF)
DCX 0
DC A (CMDBUFF)
ALIGN 4
CMDBUFF DC C'$§WR ** CSS CALL BY IREADER ***; CALI.CSS.CSs
CMDBUFFE EQU *
END

3-52 48-038 F00O RO2

3.15 8SVC2 CODE 15: CONVERT ASCII HEXADECIMAL. OR ASCII DECIMAL
TO BINARY

SvVCc2 code 15, the inverse of SVC2 code 6, converts an ASCII
decimal or hexadecimal number to an unsigned 32-bit binary
number. Character strings can be input in either upper-or
lower -case.

The result 1is stored in the user register O. This is

accomplished through the SVC2 code 15 parameter block shown in
Figure 3-19.

S —— A S o s W W s e Tt Mt St (i s St B . e (e S S (i e o P B Pt Tt S i e P Ny e A e A e P M T T S o (e St o S

10(0) 11(1) 12(2) 13(3) |
| Option | Code | Reserved | User register |
! ! : ! :
sveC 2,parblk
ALIGN 4
parblk DB option, 15,0
DB user register

Figure 3-19 8VC2 Code 15 Parameter Block Format and Coding

This parameter block is four bytes long, fullword
boundary-aligned, and does not have to be 1located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:

Option is a 1l-byte field that must contain one of the
following options:

e Option X'00' converts ASCII hexadecimal to
binary.

48-038 F00 RO2 3-53

e Option X'40' converts ASCII hexadecimal to
binary, skips leading spaces.

e Option X'80' converts ASCII decimal to
binary.

e Option X'CO' converts ASCII decimal to
binary, skips leading spaces.

Code is a 1l-byte field that must contain the
decimal number 15 to denote SVC2 code 15.
Reserved is a reserved l-byte field and must contain O.
User is a l-byte field that must contain the
register user-specified register number. This register

should contain the address of the buffer that
contains the ASCII hexadecimal or ASCII
decimal number to be converted. This buffer
can be located on any boundary. After
executing SVC2 code 15, register 0 contains
the result, and the user-specified register
contains the address of the byte following the
last number to be converted.

The valid ASCII hexadecimal numbers are 0 through 9 and A through
F. The valid ASCII decimal numbers are O through 9. Any
character other than those ASCII hexadecimal and ASCII decimal
numbers specified causes the conversion process to stop, the
nonconverted byte address to be stored in the user-specified
register, and the CC to be set to 0. The possible CC settings
that can occur after executing SVC2 code 15 follow.

Condition Code:

¢ty vi G| L

= 133 12 32 21 % % 2% ’

i Ot 0O} 0} 0O} Normal termination

{ 0Oy 0}t 01} 1 { No numbers converted; register 0 contains
]]]]] Zeros

1 1 } ! L

10114014} 01} Value of the number to be converted is

——————————————— greater than 2,147,483,647 (2 -1)

3.15.1 8VC2 Code 15, Option X'00'

If option X'00' 1is specified, the ASCII encoded hexadecimal
number in the buffer specified by the address in the user
register is converted to a binary number. The resulting number
is stored right-justified in register 0 with the left-most
significant bits (MSBs) filled with zeros.

w
!

54 48-038 FOO RO2

Example:

Buffer before and after execution of SVC2 code 15:

Starting

address Address
X'14E' X'}Sl'
/.fl\--\ "

{0 010 0{0 1i{4 E| Hex

User-specified register after execution of SVC2 code 15:

—— i — — — — — " —— " ———

10 010 0{0 1i5 1} Hex

If a number other than a valid ASCII number is specified, that
number is not converted, and the address is stored in the
user-specified register.

If an ASCII . number 1is preceded by at least one space, no
processing takes place, the contents of the user-specified
register remain the same, register 0 contains all zeros, and the
CC is set to 1.

If the value of the ASCII number is greater than 2,147,483,647
(2% -1), the number is converted, the resulting number is stored
right-justified in register 0 with the left-most significant bits
truncated, and the CC is set to 4 (V bit set).

48-038 F00 RO2 3-55

Example:

Buffer before and after execution of SVC2 code 15:

Starting address Address
X'152! X'l?C'
/—-’L~ e

i3 213 113 443 713 413 8/3 3|3 613 63 5{2 0{ ASCII

—— i ————— . ——————

Register 0O after execution of SVC2 code 15:

overflow ———ccmccmmeme——
21 14 714 8!3 6i6 5| ASCII

ASCII number greater than 23' -1

3.15.2 8VC2 Code 15, Option X'40°

If option X'40' is specified, the ASCII-encoded hexadecimal
number in the buffer, specified by the address in the user
register, is converted to a binary number with leading spaces
ignored during the conversion. The resulting number is stored
right-justified in register 0 with the left-most significant bits
filled with zeros.

3-56 48-038 F0OO RO2

Example:

Buffer before and after execution of SV(C2 code 15:

Starting

address Address
X'152°" X'156"
,—/L\ ,-/I\-\

———— ——— —— — ————

{0 010 0i0 115 6} Hex

FCcCi v iGe L |
; k-2 1 & 32 3 & 3 3 & % & & % J ’
i 0} 0O} 0O ¢ O} Normal termination

3.15.3 8vVC2 Code 15, Option X'80°

If option X'80' is specified, the ASCII-encoded decimal number in
the buffer, specified by the address in the user register, is
converted to a binary number. The resulting binary number is
stored right-justified in register 0 with the left-most
significant bits filled with zeros.

48-038 F0O0 RO2 3-57

If a character other than a valid ASCII decimal number

is

specified, that character 1is not converted and the invalid

character address is stored in the user-specified register.

Example:
Buffer before and after execution of SVC2 code 15:

Starting Address of byte

address not converted Address
X}152' X'154" X'}56'
/./\’\/-A"\/vj\—\

P CHViIG I L

==ﬂ============ﬂ=

10} 0} 0} 0O} Normal termination

i 0}J 1} 0} 01} ASCII number greater than 2% -1

If a decimal number represented in ASCII code is preceded by

at

least one space, no processing takes place, the contents of the

user-specified register remain the same, register 0 contains
zeros, and the CC is set to 1.

all

3-58 48-038 FOO RO2

If the value of the ASCII decimal number is greater than
2,147,483,647 (2% -1), the number 1is converted, the resulting
binary number is stored right-justified in register 0 with the
left-most significant bits truncated, and the CC is set to 4 (V
bit set).

3.15.4 SVC2 Code 15, Option X'CO'

If option X'CO' is specified, the ASCII-encoded decimal number in
the buffer, specified by the address in the wuser register, is
converted to a binary number, with leading spaces ignored during
the conversion. The resulting number is stored right-justified
in register O with the left-most significant bits filled with
zeros.

48-038 F0OO RO2 3-59

| svez2 |
| CODE 16 |

3.16 SVC2 CODE 16: PACK FILE DESCRIPTOR

SVC2 code 16 formats a user-specified unpacked fd to the packed
format used within the SVC7 parameter block (see bytes 8 through
23 of the SVC7 parameter block). Figure 3-20 1illustrates the
8VC2 code 16 parameter block format.

10(0) 11(1) 12(2) !
| Option | Code | User register H
1]]]
b e e e |
| 1
14(4) =
' Address of packed fd area H
] 1
' 1

svC 2,parblk

ALIGN 4

parblk DB option, 16
DC H'user register number'

DCF A(packed fd area)

Figure 3-20 8SVC2 Code 16 Parameter Block Format and Coding

This parameter block is eight bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:

Option is a 1l-byte field that must contain one of the
following options:

® X'00' indicates the default volume 1is the
user volume.

3-60 48-038 FOO RO2

Code

User register

Address of
packed fd
area

48-038 FOO ROZz

e X'40' indicates the default volume 1is the
user volume. Skip leading spaces.

® X'1l0' indicates the default volume is the
system volume.

e X'50' indicates the default volume is the
system volume. Skip leading spaces.

® X'20' indicates the default volume is the
spool time. ‘

® X'60' indicates the default volume 1is the
spool volume. Skip leading spaces.

e X'80' indicates there is no default volume.

e X'CO' indicates there is no default volume.
Skip leading spaces.

In a non-MTM environment, the default user
volume is the same as the default system
volume. Options X'00' or X'40' are preferred,
since they are compatible with normal usage in
an MTM environment.

NOTE

The above options are intended for
use by nonprivileged u-tasks only.
These options pack fds that use
the /P, /G or /S file
classification. If a privileged
u-task or e-task uses these
options to pack an fd with a /P,
/G or /S file classification, the
resulting packed fd has an account
number in its file class field.
See Section 3.14.9 for the SVC2
code 16 options for e-tasks or
privileged u-tasks.

is a 1l-byte field that must contain the
decimal number 16 to indicate SVC2 code 16.

is a '2—byte field that must contain the
user-specified register number containing the
unpacked fd address.

is a 4-byte field that must contain the
address of the area that receives the packed
file descriptor.

The CCs set after packing an fd follow.

Condition Code:

FCcCivicec i L

= ECEEEEEERETTWREET :

i 0} 0} 0| 0] Normal termination

i 0} 0} 0} 1} No volume name present in unpacked fd
10} 01} 11} 01} ,An account number or file class present
i | i ' | in unpacked fd

i 011} 0} 0} Syntax error present in unpacked fd
{11 0} 0} 0} No extension present in unpacked fd

If more than one condition results from a pack fd operation, a
combination of CCs are set. '
NOTE
When a period followed by no valid
characters is specified in the unpacked
fd, it is treated as an explicit request

for an extension containing spaces. The
CC is set to 8 (C bit set).

All lower-case characters in the user-specified fd are converted
to their equivalent wupper-case characters after the pack fd
operation occurs. The entire user-specified fd (unpacked format)
can be from 1 to 19 characters. Allowable characters are:

e A through Z (upper-case)
e a through z (lower-case)
e O through 9 (numerics)

® selected special characters (symbols)
The format of the user-specified fd is:
Format:

[{:Zin}] [t ilename] [[ext]] /{g}

actno

3-62 48-038 F00 ROZ2

Parameters:

voln or dev:

f ilename

.ext

/P
/G
/S

actno

is a disk volume or device name from one to
four characters.

is a filename from one to eight alphanumeric
characters.

is the extension name of from one to three
characters, preceded by a period.

are single alphabetic characters representing
the file class. They are: P for private file,
G for group file and S for system file.

is an account number ranging from 0 to 65,535.

The area receiving the packed fd must be 16 bytes long, fullword

boundary-aligned,

and located 1in a task-writable segment (see

Figure 3-21). Since this area is identical to bytes 8 through 23
of the SVC7 parameter block, these bytes can be designated as the

receiving area.

Filename = = ————mmmmmmeem

115(F) |
Extension ! File class/ |
laccount number |

- —— - - MR E W e T e M M O AR Sa an e e e W e TR G S M e RAe S G B A G . M M e M e

Figure 3-21 Packed File Descriptor Area

48-038 F0O0 RO2

Fields:

Volume name is a 4-byte field that receives the packed
or format of the volume name or device name. If
device name the volume or device name is less than four
bytes, it is left-justified with spaces
(X'20'). If no volume or device name is
specified, the user-specified option

determines the result.

Filename is an 8-byte field that receives the packed
format of the user-specified filename. If the
filename 1is 1less than eight bytes, it is
left-justified with spaces (X'20'). If no
filename 1is specified, this field is filled
with spaces.

Extension is a 3-byte field that receives .the packed
format of the wuser-specified extension. If
the extension is less than three bytes, it |is
left-justified with spaces (X'20'). If no
extension is specified, this field 1is filled
with spaces.

File class/ is a l-byte field that receives the packed
account format of the user-specified file class. Any
number value other than P, ¢ or S in the file
class field of the unpacked fd causes a syntax
error. If no file class is specified in the

unpacked fd, an S is returned in the class
field of the packed fd when running under the
0s. P 1is returned in the class field of the
packed fd when running under MTM.

NOTE

If the 8VC2 code 16 options for
privileged tasks are used, an
account number is returned to this
field (see Section 3.16.9).

After the pack fd operation occurs, the user-specified register
contains the address of the byte following the unpacked fd. If
a syntax error is detected, the user-specified register contains
the address of the first byte of the unpacked fd. The following
examples show the results of issuing an SVC2 code 16 for a task
running under MTM. The default system volume is M300.

When a device name 1is encountered in the user-specified fd, the

pack fd operation returns spaces to the filename, extension and
file class/account number fields of the packed fd.

3-64 48-038 F0OO ROZ

Example 1:

Unpacked fd

address Address
X'118' X'126"'
N 1

4 Di{3 3/3 03 03 A!{5 3|5 64 313 212 E{3 113 612 Fi{5 0}2 0} ASCII

1
f M} 3107071 18 ViICY o2 P16 10 /1P |

— ——— ———— " ———

i4 D3 3|3 0I3 0I5 315 614 3{3 2|2 012 0f2 0{2 03 1}3 612 0}5 0' ASCII

Normal termination

48-038 FO00 RO2

Example 2:

Unpacked fd

address Address

X'}lB'

i4 D|3 3{3 0{3 0}3 A|3 1}5 614 3|3 2|2 E|{3 1|3 612 F|5 0' ASCII

————— ——— - ————— ————— "~ ——

{4 D|{3 3{3 0}3 0}2 0}2 0}2 0i2 02 0}2 0{2 042 0}2 012 0}2 0}2 O} ASCII

The unpacked fd contains a character that was

field separator.

No extension present in unpacked fd;
syntax error present in unpacked fd

interpreted as a

48-038 F0OO RO2

Example 3:

Unpacked fd

address Address
X'}lS' XIllF'

e e e e T e
!4 DI|3 313 0}

3 0i13 A|5 3|5 6/2 6/3 2/2 E|{3 1{3 6}2 F|5 0‘ ASCII

o ——— - - — o — ————— ——————— A - — - — A — e G ——— = v e —tmn Sea " ——

{4 DI3 313 0i3 0j5 35 6/2 012 0j2 0}/2 012 0}2 0{2 02 0}2 0}5 0' ASCII
= ___

No extension present in unpacked fd;
syntax error present in unpacked fd

The above example shows an illegal character within the filename.

48-038 F0OO0 RO2

Example 4:

Unpacked fd:

- ————— " — o ——— —————

i4 315 214 4|5 2|2 E| ASCII

—— v —————— - ————

No volume name present in unpacked format

The example above shows a default volume option with an explicit
request for an extension containing spaces.

Example 5:

Unpacked fd:

o ———— s ot s Tt ot o it g T e

i4 Di3 33 0{3 0i5 0}4 314 2|3 313 2}2 0}2 012 0}2 0}2 0}2 0}5 3} ASCII

3-68 48-038 F0OO0 ROZ

Condition Code:

No extention present in unpacked fd;
———————————————— no volume name present in unpacked fd

If a syntax error occurs, the scan of the unpacked fd terminates
at the byte that caused the syntax error and the area receiving
the packed fd is filled with indeterminate code. Check the CC to
determine if a syntax error occurred.

3.16.1 8VC2 Code 16, Option X'00'

If option X'00' with no volume name is specified, the default is
the user volume. The first byte of the unpacked fd (currently
pointed to by the user-specified register) is the starting

location of the pack fd operation.

The following examples use M67A as the default system volume.
Example 1:
Unpacked fd:

14 314 8{3 2|5 0|5 24 D|2 E|{3 6{3 1|3 32 Fi4 7| ASCII

.
-
-
.
-
-
.
.
-
-
-

{4 D|3 6/3 7!4 1}4 3}4 8|3 2i5 0{5 2{4 D|2 0{2 0}3 6}3 1|3 3}4 7! ASCII
]

No volume name present in unpacked fd

48-038 F0O0 RO2 3-69

Example 2:

Unpacked fd:

{2 014 DI3 3!3 0}3 114 3|4 813 2|5 015 2|4 D|2 E|3 613 1|3 3}2 F{4 7| ASCII

i iM{i3j1o0{1yJciH}{2|PIRIM|].I6]12]3]/}c]|

e o — — ———— —— — T]~ o T o i T i T o S et o o7t e s B o

14 Di3 6/3 714 1!2 02 0}2 0|2 0]2 0}2 0}2 02 0]2 012 0}2 0}2 0} ASCII

No extension present in unpacked fd;
——————————————— syntax error present in unpacked fd; no
volume name present in unpacked fd

As shown in the above example, if the first character in the
unpacked fd 1is not valid, processing stops. The system volume
name is the default, and the filename, extension and class fields
are modified to blanks.

3.16.2 8VC2 Code 16, Option X'40'

If option X'40' with no volume name 1is specified, the default
user volume and all preceding spaces are ignored. All spaces are
ignored from the first byte of the unpacked fd (currently pointed
to by the user-specified register) to the first character in the
unpacked fd.

3-70 48-038 F00 RO2

The following example uses M67A as the default user volume.

Example:

Unpacked fd:

{2 014 314 8{3 2|5 0i{5 2{4 Di2 E|{3 63 1}3 3{2 Fi{4 7} ASCII

——————— - ———t— - o —— o ——— —— S "t - o L -, T M e - — e S S e G ——— T —— o —

— i ————— - ————— —- T i . - e Mas St S T M S e e M s i b e —

{4 D|3 6|3 7/4 14 3}4 8|3 2|5 0|5 2|4 D|2 0}2 0§43 63 1{3 3}4 7' ASCII

No volume name present in unpacked fd
3.16.3 8VC2 Code 16, Option X'10'

If option X'10' with no volume name is specified, the default is
the system volume. The first byte of the unpacked fd (currently
pointed to by the user-specified register) is the starting
location of the pack fd operation.

The following examples use M300 as the default volume.
Example 1:
Unpacked fd:

15 315 614 313 212 Ei{3 1|3 6{2 F{5 0} ASCII

48-038 F0O0 RO2 3-71

Packed fd:

% Mi3j0}l0isiVviciai] | ! | 116} i P

No volume name present in unpacked fd

Example 2:

Unpacked fd:

{2 014 D{3 613 7]/4 1{3 A|5 3|5 6}4 3|3 2|2 E{3 1{3 612 F|5 0' ASCII

|
|
|
|
|
|
|
|
|
|
!
|
t
|
|
1
]
|
|
l
1
|
!
|
]
|
l
|
|
1
|
1
|
1
]
1
1
!
|
|
|
|
1
|
1
|
1
1
|
|
1
|
!
1
|
|
|
1
l

{4 D{3 3|3 0{3 0{2 0|2 0j2 0}2 012 0}2 012 0{2 0}2 0}2 0}2 0}2 0O} ASCII

No extension present 1in unpacked fd;
--------------- syntax error present in the unpacked fd; no
volume name present in the unpacked fd

As shown in this example, if the first character in the unpacked
fd is not valid, processing stops. The system volume name is the
default and the filename, extension and class fields are modified
to blanks.

3-72 48-038 FOO RO2

3.16.4 8SVC2 Code 16, Option X'50'
If option X'50' with no volume name 1is specified, the default
system volume and all preceding spaces are ignored. All spaces

are ignored from the first byte of the unpacked fd (currently

pointed to by the user-specified register) to the first character
in the unpacked fd.

The following example uses M300 as the default system volume.

Example:

Unpacked fd:

{2 0/2 0}2 0}5 45 312 E|4 3|5 3|5 312 F|{4 7| ASCII

s e - — A — i - ——" i . " e M = e Mas S e e e e

14 DI3 3}3 0{3 05 415 3{2 0}/2 012 0}2 0}j2 0i{2 0}4 3}5 3|5 314 7} ASCII

icivice L
g==== WmEIRTSEEWmETIES =
i 0} 01! 0} 1} No volume name present in unpacked fd

3.16.5 SVC2 Code 16, Option X'20°

If option X'20' with no volume name is specified, the default is
the spool volume. The first byte of the unpacked fd (currently
pointed to by the user-specified register) is the starting
location of the pack fd operation.

48-038 FOO RO2 3-73

Example 1:

Unpacked fd:

I15 315 614 3|5 4|5 3|5 4|2 E{4 3|4 114 C} ASCII

{5 313 313 0{3 0|5 3|5 6{4 3|5 4}5 3}5 412 0/2 0}4 3}4 1i{4 C|5 0} ASCII

No volume name present in unpacked fd

Example 2:

Unpacked fd:

12 0j2 0|5 3}5 6}4 3|5 4]5 3|5 4|12 E{4 3/4 1i4 C| ASCII

f
| i P8t viecil T8I TH .1 CHATL|

i5 3{3 3{3 013 02 0{2 0{2 012 042 0i2 012 0|2 0l2 0}2 0}2 0}2 O} ASCII
e S e

I 81341040 | i | | | | | | ! ! | !

3-74 48-038 F0O0 RO2

Condition Code:

No extension present in unpacked fd4d;
———————————————— syntax error in unpacked fd4d;
no volume name in unpacked fd

As shown in this example, if no volume name is specified and the
filename is preceded by at least one space, the spool volume is
the default and the filename, extension and class fields are
modified to blanks.

3.16.6 8VC2 Code 16, Option X'60'

If option X'60' with no volume name is specified, the default |is
the spool volume and all preceding spaces are ignored. All
spaces are ignored from the first byte of the unpacked fd
(currently pointed to by the user-specified register) to the
first character in the unpacked fd. The default volume for the
following examples is S300.

Example 1:

Unpacked fd:

— . . - —— - v - - — o —— "~ ——— —— f———

!5 3}3 3/3 0/3 0}4 9i/4 C|5 4}5 3}5 412 0}2 0}2 0|5 4|5 3{4 B|{5 3| ASCII

48-038 FO00 RO2 3-75

Example 2:

Unpacked fad:

12 014 914 Ci5 4|5 3|5 4|2 E|5 4|5 3|4 B{2 Fi5 3| ASCII

14 DI3 33 0!3 0{4 9}4 Ci5 415 315 4}2 0}2 012 0!5 415 314 B}5 3| ASCII

P81 341o037 01T VLYTHS T i i P TS 1K s |

No volume name present in unpacked fd

If no volume name is specified and the filename is preceded by at
least one space, all preceding spaces are ignored, and the
default is the spool volume. The spool volume name and remaining
fd are packed.

3.16.7 8VC2 Code 16, Option X'80°

If option X'80' with no volume name is specified, the contents of
the volume name field before executing the pack fd operation is
used as the wvolume name. The first byte of the unpacked fd
(currently pointed to by the wuser-specified register) 1is the
starting location of the pack fd operation.

Exampl