
PERKIN·-ELMER

05/32 SUPERVISOR CALL (SVC)
Reference Manual

48-038 FOO R02

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo­
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

© 1981, 1982, 1983, 1984 by The Perkin-Elmer Corporation

Printed in the United States of America

TABLE OIF CONTENTS

PREFACE

CHAPTERS

1 SUPERVISOR CALLS (SVCs)

1.1
1.1.1

1.2
1.2.1
1.2.2

1.3

INTRODUCTION
Supervisor Call (SVC) Parameter Block

SUPERVISOR CALL (SVC) ERRORS
Supervisor Call (SVC) Error Messages
Supervisor Call (SVC) Status Codes

SVCO: USER-WRITTEN SUPERVISOR CALL (SVC)

2 INPUT /OU,]~PUT (I/O) REQUEST SUPERVI SOR CALL 1 (SVC1)

2.1

2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.5
2.2.1.6
2.2.1.7
2.2.2
2.2.2.1
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.7.1
2.2.7.2
.2.2.7.3

2.3
2.3.1

INTRODUCTION

SUPERVISOR CALL 1 (SVC1)
Data Transfer Requests
Test and Set
Input/Output (I/O) Proceed
Queuing Input/Output (I/O) Requests
Conditional Proceed
Unconditional Proceed
Wait Input/Output (I/O)
Wait Only
Command Function Requests
Halt Input/Output (I/O)
Logical Unit (lu)
Device-Independent status
Device-Dependent status
Buffer Start/Buffer End Addresses
Extended Options
Nonmagnetic Tape Devices
Magnetic Tape Devices
Device-Dependent Status Codes for Magnetic
Tape Operations

GAPLESS INPUT/OUTPUT (I/O) OPERATIONS
Gapless Mode Supervisor Call 1 (SVC1)
Parameter Block Format

48-038 FOO R02

xiii

1-1
1-3

1-6
1-6
1-8

1-9

2-1

2-3
2-5
2-8
2-14
2-15
2-16
2-16
2-16
2-17
2-17
2-18
2-19
2-19
2-20
2-21
2-21
2-22
2-25

2-30

2-33

2-33

i

CHAPTERS (Continued)

2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.6.1
2.3.6.2

2.3.7
2.3.8
2.3.9

2.4
2.4.1
2.4.2
2.4.3
2.4.4

standard Function Code Format - Gapless Mode
Logical Unit (lu)
Device-Independent status Codes
Device-Dependent status Codes
Buffer Queues
Using the Buffer Queue
Trap-Causing Events Resulting from Gap1ess
Input/Output (I/O) Operations
Buffer Length
Length of Last Buffer
Extended Options Field

SERIES 3200 INPUT/OUTPUT (I/O) BUS SWITCH
Normal Request Contention Mode
Master Request Contention Mode
Multiple Master Request Contention Mode
Programming Considerations

3 GENERAL SERVICE FUNCTIONS SUPERVISOR CALL 2 (SVC2)

3.1

3.2

3.3

3.4
3.4.1
3.4.2

3.5

3.6
3.6.1
3.6.2

3.7

3.8

3.8.1
3.8.2
3.8.3
3.8.4

3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.9.5

INTRODUCTION

SVC2 CODE 0: MAKE JOURNAL ENTRIES

SVC2 CODE 1: PAUSE

SVC2 CODE 2: GET STORAGE
SVC2 Code 2, Option X'OO'
SVC2 Code 2, Option X'80'

SVC2 CODE 3: RELEASE STORAGE

SVC2 CODE 4: SET STATUS
SVC2 Code 4, Option X'OO'
SVC2 Code 4, Option X'80'

SVC2 CODE 5: FETCH POINTER

SVC2 CODE 6: CONVERT BINARY NUMBER TO ASCII
HEXADECIMAL OR ASCII DECIMAL
SVC2 Code 6, Option X'OO'+n
SVC2 Code 6, Option X'40'+n
SVC2 Code 6, Option X'80'+n
SVC2 Code 6, Option X'CO'+n

SVC2 CODE 7: LOG MESSAGE
SVC2 Code 7, Option X'OO'
SVC2 Code 7, Option X'20'
SVC2 Code 7, Option X'40'
SVC2 Code 7, Option X'60'
SVC2 Code 7, Option X'80'

2-36
2-38
2-39
2-39
2-40
2-42

2-42
2-43
2-43
2-43

2-44
2-44
2-44
2-44
2-48

3-1

3-5

3-7

3-9
3-11
3-13

3-14

3-17
3-19
3-20

3-21

3-24
3-26
3-26
3-27
3-27

3-28
3-30
3-31
3-31
3-31
3-31

ii 48-038 FOO R02

CHAPTERS (Can't inued)

3.9.6
3.9.7
3.9.8

3.10
3.10.1
3.10.2
3.10.3
3.10.4

3.11

3.12

3.13

3.14
3.14.1
3.14.2
3.14.3
3.14.4

3.15

3.15.1
3.15.2
3.15.3
3.15.4

3.16
3.16.1
3.16.2
3.16.3
3.16.4
3.16.5
3.16.6
3.16.7
3.16.8
3.16.9

3.17
3.17.1
3.17.2

3.18
3.18.1
3.18.2

3.19
3.19.1
3.19.2
3.19.3
3.19.4

SVC2 Code 7, Option X'AO'
SVC2 Code 7, option X'CO'
SVC2 Code 7, Option X'EO'

SVC2 CODE 8: INTERROGATE CLOCK
SVC2 Code 8, Option X'OO'
SVC2 Code 8, Option X'80'
SVC2 Code 8, Option X'40'
SVC2 Code 8, Option X'CO'

SVC2 CODE 9: FETCH DATE

SVC2 CODE 10: TIME OF DAY WAIT

SVC2 CODE 11: INTERVAL WAIT

SVC2 Code 14, INTERNAL READER
SVC2 Code 14, Parameter Block for Option 0
SVC2 Code 14, Parameter Block for Option 1
SVC2 Code 14, status Codes
SVC2 Code 14, Programming Considerations

SVC2 CODE 15: CONVERT ASCII HEXADECIMAL
OR MC I I DEC I MAL TC) BINARY
SVC2 Code 15, Option X'OO'
SVC2 Code 15, Option X'40'
SVC2 Code 15, Option X'80'
SVC2 Code 15, Option X'CO'

SVC2 CODE 16: PACK FILE DESCRIPTOR
SVC2 Code 16, Option X'OO'
SVC2 Code 16, Option X'40'
SVC2 Code 16, Option X'10'
SVC2 Code 16, Option X'50'
SVC2 Code 16, Option X'20'
SVC2 Code 16, Option X'60'
SVC2 Code 16, Option X'80'
SVC2 Code 16, Option X'CO'
SVC2 Code 16, Options for Privileged Tasks

SVC2 CODE 17: SCAN MNEMONIC TABLE
Building a Mnemonic: Table
Executing SVC2 Code 17

SVC2 CODE 18: MOVE ASCII CHARACTERS
SVC2 Code 18, Option X'OO'+n
SVC2 Code 18, Option X'80'+n

SVC2 CODE 19: PEEK
Parameter Block for Option X'OO'
Parameter Block for Option X'Ol'
Parameter Block for Option X'02'
Parameter Block for Option X'03'

48-038 FOO R02

3 -32
3 --33
3-33

3-34
3-35
3-36
3-37
3-37

3-39

3-42

3-45

3-47
3-47
3-49
3-51
3-51

3-53
3-54
3-56
3-57
3-59

3-60
3-69
3-70
3-71
3-73
3-73
3-75
3-76
3-79
3-80

3-82
3-84
3-84

3-90
3-92
3-93

3-98
3-98
3-104
3-110
3-112

iii

CHAPTERS (Continued)

4

5

6

3.19.5 Parameter Block for Option X'04'

3.20 SVC2 CODE 20: EXPAND ALLOCATION
3.21 SVC2 CODE 21 : CONTRACT ALLOCATION

3.22 SVC2 CODE 23: TIMER MANAGEMENT
3.22.1· SVC2 Code 23, Parameter Block for Option X'OO'
3.22.2 SVC2 Code 23, Parameter Block for Option X'80'
3.22.3 SVC2 Code 23, Parameter Block for Option X'40'
3.22.4 SVC2 Code 23, Parameter Block for Option X'20'
3.22.5 SVC2 Code 23, Parameter Block for Option X'10'

3.23 SVC2 CODE 24: SET ACCOUNTING INFORMATION

3.24 SVC2 CODE 25: FETCH ACCOUNTING INFORMATION

3.25 SVC2 CODE 26: FETCH DEVICE NAME

3.26 SVC2 CODE 27: MEMORY MANAGEMENT

3.27 SVC2 CODE 29: UNPACK FILE DESCRIPTOR

END OF TASK SUPERVISOR CALL 3 (SVC3)

4.1 INTRODUCTION

4.2 SVC3: END OF TASK

FETCH OVERLAY SUPERVISOR CALL 5 (SVC5)

5.1 INTRODUCTION

5.2 SVC5: FETCH OVERLAY

INTERTASK COMMUNICATIONS SUPERVISOR CALL 6 (SVC6)

6.1

6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.4.1
6.2.4.2

6.2.5
6.2.6
6.2.7
6.2.7.1

INTRODUCTION

SVC6: INTERTASK COMMUNICATIONS
Function Code (SVC6.FUN)
Direction (SFUN.DOM, SFUN.DSM) Function
End Task (SFUN.ECM, SFUN.EDM) Function
Load Task Functions
Load Task (SFUN. LM) Funct ion .
Load Task with Extended Load Options
(SFUN.LXM) Function
Task Resident (SFUN.HM) Function
Suspend (SFUN.SM) Function
Send Data (SFUN.DM) Function
Send Data Message Buffer for Sending Task

3-118

3-121
3-123

3-124
3-124
3-127
3-129
3-133
3-135

3-138

3-140

3-143

3-145

3-148

4-1

4-1

5-1

S-l

6-1

6-2
6-5
6-10
6-10
6-11
6-12

6-13
6-16
6-17
6-17
6-17

iv 48-038 FOO R02

CHAPTERS (Continued)

6.2.7.2

6.2.7.3
6.2.S
6.2.S.1
6.2.9
6.2.10
6.2.11
6.2.12
6.2.13
6.2.14
6.2.15
6.2.16
6.2.17
6.2.1S

6.2.19

6.2.20

6.2.21
6.2.22
6.2.23
6.2.24
6.2.25
6.2.26
6.2.27

6.2.28

6.2.29

6.2.30
6.2.31

Free Send Data Message Buffers for Receiving
Task
Sample Programs Using SVC6 Send Data Function
Send Message (SFUN.MM) Function
Message Buffers
Queue Parameter (SFUN.QM) Function
Change Priority (SFUN.PM) Function
Send Logical Unit (lu) (SFUN.XSM) Function
Receive Logical Unit (lu) (SFUN.XRM) Function
Connect (SFUN.OM) Function
Thaw (SFUN.TM) Function
Sint (SFUN.IM) Function
Freeze (SFUN.FM) Function
Unconnect (SFUN.OM) Function
Assign Logical Processing Unit (LPU)
(SFUN.LPU) Function
Transfer to Logical Processing Unit (LPU)
(SFUN.TL) Function
Transfer to Central Processing Unit (CPU)
(SFUN.TC) Function
Release (SFUN.RM) Function
Nonresident (SFUN.NM) Function
Ro11ab1e (SFUN.RLM) Function
Nonro11ab1e (SFUN.NRM) Function
Start (Bit Positions 29, 30, 31) Function
Start Function for SVC6 (SFUN.SIM) Function
Start Function with Start Options for
SVC6 (SFUN.SOM) Function
Delay Start Function for SVC6 (SFUN.SDM)
Function
Delay Start Function with Start Options
for SVC6 (SFUN.SDM, SFUN.SOM)
Wait Status Field (SVC6.TST)
Error Codes (SVC6.STA)

7 FILE HANDLING SERVICES SUPERVISOR CALL 7 (SVC7)

7.1 INTRODUCTION

7.2 SVC7: FILE HANDLING SERVICES
7.2.1 Function Code Field (SVC7.0PT)
7.2.1.1 Allocate Function
7.2.1.2 Assign Function
7.2.1.2.1. Temporary File Allocation and Assignment

7.2.1.3
7.2.1.4
7.2.1.5
7.2.1.6
7.2.1.7
7.2.1.S
7.2.1.9

Function
Change Access Pr i v i leges Funct·ion
Rename Function
Reprotect Function
Close Function
Delete Function
Checkpoint Function
Fetch Attributes Function

4S-038 FOO R02

6-19
6-21
6-25
6-26
6-34
6-35
6-35
6-36
6-36
6-37
6-37
6-38
6-38

6-39

6-39

6-40
6-41
6-41
6-41
6-42
6-42
6-43

6-43

6-43

6-44
6-44
6-45

7-1

7-2
7-5
7-11
7-12

7-13
7-13
7-14
7-14
7-15
7-15
7-16
7-16

v

CHAPTERS (Continued)

8

9

7.2.1.10
7.2.1.11

7.2.1.12

7.2.1.13
7.2.1.14
7.2.1.15
7.2.1.16
7.2.1.17
7.2.1.1B
7.2.1.19
7.2.1.20
7.2.1.21

7.3
7.3.1
7.3.2

7.3.3
7.3.4
7.3.5

7.4

vertical Forms Control (VFC) Function
Fetch ~ime and Date Attributes from Disk
Directory Function
Fetch Logical Attributes of Open File
Function
Spoolfi1e Assign to Pseudo Device Function
Extended Assign to Spoo1file Function
Assign to Pseudo Device Function
Access Privileges
Change Terminal Mode
Data Communications Access Methods
File Types
Read/Write Key Fields (SVC7.RKY/SVC7.WKY)
File Size Field (SVC7.SIZ)

SVC7: EXTENDED FUNCTIONS FOR PRIVILEGED TASKS
SVC7: Bare Disk Assignment
SVC7 Code 0: Fetch Attributes for Bare
Disk Devices
SVC7: Device Rename
SVC7: Device Reprotect
SVC7: Code X'FFBO': Extended Close Function

SVC7 ERROR CODES

LOAD TASK STATUS WORD (TSW) SUPERVISOR CALL 9 (SVC9)

S.l INTRODUCTION

8.2 SVC9: LOAD TASK STATUS WORD (TSW)
8.2.1 Function and Description of the Task Status

Word (TSW)

OVERLAY LOADING SUPERVISOR CALL 10 (SVC10)

9.1 SVC10: OVERLAY LOADING

9.2 MESSAGES

7-19

7-20

7-23
7-24
7-26
7-27
7-27
7-29
7-29
7-30
7-31
7-32

7-33
7-34

7-37
7-39
7-40
7-42

7-44

B-1

8-2

8-3

9-1

9-1

10 AUXILIARY PROCESSING UNIT (APU) CONTROL SUPERVISOR
CALL 13 (SVC13)

10.1 SVC13: AUXILIARY PROCESSING UNIT (APU)
SERVICES 10-1

10.2 SVC13 CODE 0: READ AUXILIARY PROCESSING UNIT
(APU) ASSIGNMENT AND MAPPING INFORMATION 10-2

10.3 SVC 13 CODE 1: READ AUXILIARY PROCESSING UNIT
(APU)/APU QUEUE STATUS 10-5

vi 4B-038 FOO R02

CHAPTERS (Continued)

10.4

10.5

10.6

10.7

10.8

10.8.1

10.8.2
10.8.3

10.8.4

10.8.5

10.8.6

SVC13 CODE 2: AUXILIARY PROCESSING UNIT (APU)
MAPPING FUNCTIONS 10-16
SVC13 CODE 3: AUXILIARY PROCESSING UNIT (APU)
CONTROL 10-20
SVC13 AUXILIARY PB~OCESSING UNIT (APU)
HARDWARE STATUS FIELD (SV13.APS) 10-27

SVC13 ERROR STATUS CODE FIELD (SV13.ERR) 10-31

TYP I CAL OPTION COI:HNG SEQUENCE FOR SVC13 CODE
2 AND CODE 3 10-34
Auxiliary Processing Unit (APU) Initializa-
tion and Start-Up 10-34
Auxiliary Processing Unit (APU) Queue Mark On 10-34
Setting Auxiliary Processing Unit (APU) Queue
Discipline 10-35
Assigning Auxiliary ProceSSing Unit (APU) to
a Queue 10-35
Task Scheduling on the Auxiliary Processing
Unit (APU) 10-35
Auxiliary Processing Unit (APU) Queue
Mark Off 10-37

11 USER SUPgRVISOR CALL 14 (SVC14)

11.1 SVC14: USER

12 DATA CO~IDNICATIONS DEVICE-DEPENDENT INPUT/OUTPUT (I/O)
SUPERVISOR CALL 15 (SVC15)

12.1

FIGURES

2-1
2-2
2-3

2-4

2-5

2-6

2-7
2-8

SVC15: DATA COMMUNICATIONS DEVICE-DEPENDENT
INPUT/OUTPUT (I/O)

SVCl Parameter Block Format and Coding
Function Code Format for Data Transfer Requests
ExtEtnded Options Fullword Format for Nonmagnetic
TapEt Devices
ExtEtnded Options Fullword Format for Magnetic
Tape I/O Operations
SVCl Gapless Mode Parameter Block·Format and
Coding /
Function Code Format f,or Gapless Mode Data
Transfer Requests
IN-C:~UEUE or OUT-QUEUE structure
SVCl Parameter Block and Coding for Control I/O
Bus Switch

48-038 FOO R0I2

11-1

12-1

2-3
2-5

2-22

2-25

2-34

2-36
2-40

2-45

vii

FIGURES (Continued)

3-1 SVC2 Code 2 Parameter Block Format and Coding 3-5
3-2 SVC2 Code 1 Parameter Block Format and Coding 3-7
3-3 SVC2 Code 2 Parameter Block Format and Coding 3-9
3-4 Task Impure Segment for SVC2 Code 2, Option X'OO' 3-12
3-5 Task Impure Segment for SVC2 Code 2, Option X'80' 3-13
3-6 SVC2 Code 3 Parameter Block Format and Coding 3-14
3-7 Task Impure Segment for SVC2 Code 3 3-16
3-8 SVC2 Code 4 Parameter Block Format and Coding 3-17
3-9 Program Status Word (PSW) 3-18
3-10 SVC2 Code 5 Parameter Block Format and Coding 3-21
3-11 SVC2 Code 6 Parameter Block Format and Coding 3-24
3-12 SVC2 Code 7 Parameter Block Format and Coding 3-28
3-13 SVC2 Code 8 Parameter Block Format and Coding 3-34
3-14 SVC2 Code 9 Parameter Block Format and Coding 3-39
3-15 SVC2 Code 10 Parameter Block Format and Coding 3-42
3-16 SVC2 Code 11 Parameter Block Format and Coding 3-45
3-17 SVC2 Code 14 Parameter Block Format and Coding

for Option 0 3-48
3-18 SVC2 Code 14 Parameter Block Format and Coding

for Option 1 3-50
3-19 SVC2 Code 15 Parameter Block Format and Coding 3-53
3-20 SVC2 Code 16 Parameter Block Format and Coding 3-60
3-21 Packed File Descriptor Area 3-63
3-22 SVC2 Code 17 Parameter Block Format and Coding 3-82
3-23 SVC2 Code 18 Parameter Block Format and Coding 3-90
3-24 SVC2 Code 19 Parameter Block Format and Coding

for Option X'OO' 3-98
3-25 SVC2 Code 19 Parameter Block Format and Coding

for Option X'Ol' 3-104
3-26 SVC2 Code 19 Parameter Block Format and Coding

for Option X'02' 3-110
3-27 SVC2 Code 19 Parameter Block Format and Coding

for Option X'03' 3-113
3-28 SVC2 Code 19 Parameter Block Format and Coding

for Option X'04' 3-119
3-29 SVC2 Code 20 Parameter Block Format and Coding 3-121
3-30 SVC2 Code 21 Parameter Block Format and Coding 3-123
3-31 SVC2 Code 23 Parameter Block Format and Coding

for Option X'OO' 3-125
3-32 SVC2 Code 23 Parameter Block Format and Coding

for Option X'80' 3-127
3-33 SVC2 Code 23 Parameter Block Format and Coding

for Option X'40' 3-129
3-34 SVC2 Code 23 Parameter Block Format and Coding

for Option X'20' 3-133
3-35 SVC2 Code 23 Parameter Block Format and Coding

for Option X'lO' 3-136
3-36 SVC2 Code 24 Parameter Block Format and Coding 3-138
3-37 SVC2 Code 25 Parameter Block Format and Coding 3-140
3-38 Fixed-Size User Buffer Receiving Accounting

Information 3-141
3-39 Variable-Size User Buffer Receiving Accounting

Information 3-142

vi i i 48-038 FOO R02

PIGURES (Continued)

3-40
3-41
3-42

5-1

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11

7-1
7-2
7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10
7-11

7-12
7-13

7-14

7-15

8-1
8-2

10-1
10-2
10-3

SVC2 Code 26 Parameter Block Format and Coding
SVC2 r.ode 27 Parameter Block Format and Coding
SVC2 Code 29 Parameter Block Format and Coding

SVC5 Parameter Block Fc)rmat and Coding

SVC6 Parameter Block Fc)rmat and Coding
SVC6 Function Code Field
Extended Load Options Field
Send Data Message Buffer Format for Calling Task
Send Data Message Buffer Format for Directed Task
Message Buffer Format for Directed Task
Single Buffer Ring
Single Buffer Chain
Multiple Buffer Ring
Multiple Buffer Chain
Error Status Field

SVC7 Par.ameter Block F()rmat and Coding
SVC7 Function Code Field
SVC7 Par.ameter Block Fc)rmat and Coding for a
Fetch Attributes Function
SVC7 Par.ameter Block Fc)rmat and Coding for
VFC Function
SVC7 X'PFOO', X'FF01' c)r X'PF02' Parameter
Block Fc:>rmat and Coding for Petch Time and Date
Attributes Function
SVC7 X'FF03' Parameter Block Pormat and Coding
for Fetch Time and Date Attributes Function
SVC7 X'PF04' Parameter Block Format and Coding
for Fetch Time and Date Attributes Function
SVC7 X'PFOA' Parameter Block Format and
Coding for the Petch u)gical Attributes of
Open File Function
SVC7 Spc)olf ile Ass ign it-o Pseudo Device Parameter
Block
Extended Spoolfile Ass.ign Parameter Block
SVC7 Bare Disk Ass ignmt,nt Parameter Block
Format and Coding
SVC7 Code 0 Parameter Block Format and Coding
SVC7 Device Rename Parameter Block Format and
Coding .
SVC7 Device Reprotect l~arameter Block Format
Coding
SVC7 Code X'FF80' Par~neter Block Format and
Coding

SVC9 Parameter Block Ft:>rmat and Coding
Task Status Word (TSW)

SVC1.3 Code 0 Parameter Block Format and Coding
Data Buffer Format for SVCl3 Code 0
SVCl3 Code 1. Parameter Block Format and Coding

48-038 POO R02

3-1.43
3-145
3-148

5-1

6-2
6-6
6-13
6-18
6-20
6-26
6-28
6-28
6-29
6-31
6-46

7-2
7-6

7-17

7-20

7-21

7-22

7-23

7-24

7-25
7-26

7-35
7-37

7-39

7-41

7-43

8-2
8-4

10-3
10-4
10-7

ix

FIGURES (Continued)

10-4

10-5

10-8
10-9
10-10
10-11
10-12

TABLES

1-1

2-1

2-2
2-3
2-4
2-5

2-6
2-7
2-8

2-9
2-10

2-11

2-12
2-13
2-14

3-1
3-2

3-3
3-4
3-5
3-6

6-1
0·2
6-3
6-4
6-5

Data Buffer Format for SVC13 Code 1 Option X'80'
Only
Format of APU Processing Status Field Returned
to U-Task Buffer
Data Buffer Format for SVC13 Code.l X'40' Only
Format of APU Queue processing Status Field
Returned to U-Task Buffer
SVC13 Code 2; Parameter Block Format and Coding
SVC13 APU Mapping Options Field (SV13.0PT)
SVC13 Code 3, Parameter Block Format and Coding
SVC13 APU Control Options Field (SV13.0PT)
APU Hardware Response Byte (SV13.APS)

OS/32 SVCs

FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS
FUNCTION CODES FOR COMMAND FUNCTION REQUESTS
DEVICE-INDEPENDENT STATUS CODES
DEVICE-DEPENDENT STATUS CODES
SVC1 EXTENDED OPTIONS FOR LOCAL AND REMOTE
COMMUNICATIONS
EXTENDED FUNCTION CODES FOR CONTROL OPERATIONS
MAXIMUM NUMBER OF BYTES ERASED
EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS
MAGNETIC TAPE DEVICE-DEPENDENT STATUS CODES
FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS
MAGNETIC TAPE DEVICE-DEPENDENT STATUS CODES
(GAPLESS ONLY)
EXTENDED FUNCTION CODES FOR GAPLESS I/O OPERATION
FUNCTION CODES FOR THE I/O BUS SWITCH DRIVER
I/O BUS SWITCH STATUS CODES

SVC2 FUNCTION CODES
TIME OF DAY VALUES CALCULATED IN SECONDS FROM
MIDNIGHT
SVC2 CODE 14 STATUS CODES
TASK OPTIONS FROM THE TCB
SYSTEM OPTIONS FROM THE SYSTEM POINTER TABLE
TASK WAIT STATUS BIT DEFINITIONS

SVC6.FUN FUNCTIONS
DES:r.:~T:ON OF FUNCTION CODE FIELD FOR SVC6 CALLS
EXTENDED LOAD OPTIONS FIELD BIT DEFINITIONS
WAIT STATUS BIT DEFINITIONS
SVC6 ERROR CODES

10-9

10-11
10-13

10-14
10-17
10-19
10-21
10-23
10-27

1-1

2-5
2-18
2-19
2-21

2-23
2-26
2-27

2-28
2-31

2-36

2-39
2-44
2-46
2-47

3-1

3-43
3-51
3-100
3-106
3-116

6-6
6-7
6-14
6-45
6-46

x 48-038 FOO R02

TABLES (Cont jlnued)

7-1
7-2

7-3
7-4
7-5
7":'6

8-1

9-1

10-1
10-2

10-3

10-4

10-5

10-6

10-7
10-8
10-9

10-10

INDEX

SVC7 FUNCTION CODE BIT DEFINITIONS
DESeRIPTION AND MASK VALUES OF THE DEVICE
ATTRIBUTES FIELD
ACCE:SS PRIVILEGE DEF INITIONS
DATJ!~ COMMON I CAT IONS ACCESS METHOD DEF I NIT IONS
READ/WRITE PROTECTION KEYS DEFINITIONS
SVC7 ERROR CODES

TSW BIT DEFINITIONS

OVERLAY ERROR CODES AND MEANINGS

SVC13 FUNCTION CODES
BIT DEFINITIONS FOR APU PROCESSING STATUS
FIElD RETURNED TO U-TASK BUFFER
BIT DEFINITIONS FOR APU OPTIONS FIELD RETURNED
U-TJlU;K BUFFER
BIT DEFINITIONS FOR APU QUEUE PROCESSING STATUS
FIElD RETURNED TO U-TASK BUFFER
SVC13 CODE 2, APU MAPPING OPTIONS FIELD
(SV13.0PT) BIT DEFINITION
SVC13 CODE 3, APU CONTROL OPTIONS FIELD
(SV13.0PT) BIT DEFINITIONS
SVC13 CODE 3, APU COMMANDS (SV13.DOP)
APU HARDWARE RESPONSE BYTE BIT DEFINITIONS
ERROR CODES FOR ERROR CODE BYTE OF APU HARDWARE
STA,]~US FIELD (SV13. APS)
SVC13 ERROR STATUS CODES (SV13.ERR)

48-038 FOO R02

7-6

7-18
7-28
7-30
7-32
7-44

8-4

9-3

10-1

10-11
TO

10-12

10-15

10-19

10-23
10-25
10-28

10-29
10-32

IND-1

xi

PREFACE

This manual describes the OS/32 supervisor calls (SVCs) that
provide the task interface to OS/32 system services. The
information in this manual is intended for assembly language
programmers who design application level programs for operation
in an OS/32 processing environment.

Chapter 1 presents an overview of all OS/32 SVCs, their functions
and the data. st:ructure of the SVC parameter block. Chapter 2
describes the Input/Output (I/O) Request SVCl, which is used to
request specific I/O services from the OS/32 I/O supervisor.
This chapter also presents the SVCl interface to the Perkin-Elmer
Series 3200 I/O Bus Switch Driver. Chapter 3 details 22 general
service functions provided by the General Service Functions SVC2.
Chapter 4 presents the format for the End of Task SVC3, which is
used to terminate task execution. Chapter 5 provides information
on user-controlled loading of Link-generated overlays through the
Fetch Overlay SVC5. Chapter 6 describes the Intertask
Communications SVC6. Chaptel~ 7 details the File Handling
Services SVC7, which provides file and device handling functions
supported by the f ile mana~Jer and the data communications
subsystem. Chapter 8 describes how the Load Task Status Word
(TSW) SVC9 is used to replace the current TSW located in the task
control block (TCB) with a new user-specified TSW. Chapter 9
provides information on the Overlay Loading SVCIO, which handles
the automatic loading of overlays generated by Link. Brief
descriptions of the Auxiliary Processing Unit (APU) Control
SVC13, User SVC14 and Data Communications Device-Dependent I/O

. SVC15 are given in Chapters 10, 11 and 12, respectively.

Revision 02 includes additions to SVCl functions for the screen
editor along with new status codes for SVCI device-dependent and
device-indep~endent status f ielas for Mirror Disk. This manual
also introduces new SVCl extended functions to enable a-bit data
transfer, along with documentation of SVCI functions for the I/O
Bus Switch Driver. Changes have been made to SVC7 dealing with
3270 Emulatolt: support and the Perkin-Elmer Ser ies 7000 File
Transfer Ut~11ity. Also, there are changes made to SVC7 access
privileges. In addition, all SVCs previously documented in the
System Level Programmer Reference Manual have been added to this
manual. Thet~e additions include SVCO, SVC2· codes 0, 14, 26 and
27, SVC6 S)(stem Task Release, various SVC7 functions and all of
SVC13.

This manual :ls i.ntended for use, with the OS/32 R07. 2 software
release or higher.

48-038 FOQ R02 xiii

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-B1tSyetems User Documentation Summary_

xiv 48-038 FOO R02

1. 1 I NTRODUC~[, ION

CHAE'TER 1
SUPERVISOR CALLS (SVCs)

OS/32 provides each task with the support it needs to perform its
designated functi.on. In addition to programs that allow a user
to des ign, :Lmplement, test and execute tasks, OS/32 provides a
number of sys1:.em services that c:an be accessed by a task dur ing
execution. Included among these services are task timing,
interrupt hand 1 i.ng , input and output to dev ices or files,
resource allocati.ons and intertaLsk communication and control.

A task access.~s a system resourc:e by calling an OS/32 executor
routine. An assembly program calls an executor routine by
issuing an SVC. Table 1-1 list.s the SVCs that access OS/32
system services for assembly tasks. These SVCs are divided into
two groups:

• SVCs for g.~neral use in both application and system level
programs, Clnd

• SVCs for u~:le in system level programs only.

TABLE 1-1 OS/32 SVCs

SVC FUNCTION
_________ .,. __ B_

SVCO User-written SVC

SVCl Input/output (I/O) request

SVC2 code a Make journal entries
SVC2 code 1 Pause
SVC2 code 2 Get storage
SVC2 code 3 Release storaLge
SVC2 code 4 Set status
SVC2 code 5 Fetch pointeI'
SVC2 code 6 Convert binary to ASCI I hexadecimal or

ASCI I decimal
SVC2 code 7 Log message
SVC2 code 8 Interrogate clock
SVC2 code 9 Fetch date
SVC2 code 10 Time of day ~,ait

48-038 FOO RO,2 1-1

TABLE 1-1 OS/32 SVCs (Continued)

SVC FUNCTION

---SVC2 code 11
SVC2 code 14
SVC2 code 15

SVC2 code 16
SVC2 code 17
SVC2 code 18
SVC2 code 19
SVC2 code 20
SVC2 code 21
SVC2 code 23
SVC2 code 24
SVC2 code 25
SVC2 code 26
SVC2 code 27
SVC2 code 29

SVC3

SVCS

SVC6

SVC7

SVC9

SVClO

SVC13

SVCl4

SVClS

Interval wait
Internal reader
Convert ASCII hexadecimal or ASCII decimal
to binary
Pack file descriptor (fd)
Scan mnemonic table
Move ASCII characters
Peek
Reserved for sequential tasking machines
Reserved for sequential tasking machines
Timer management
Set accounting information
Fetch accounting information
Fetch device name
Memory management
Unpack fd

End of task

Fetch overlay

Intertask communication and control

File handling services

Load task status word (TSW)

Overlay loading

Auxiliary processing unit (APU) control

Function determined by user

Communications device-dependent I/O

Perkin-Elmer also provides run-time library (RTL) routines that
allow a program written in FORTRAN or Pascal to access system
services. These routines issue general user SVCs for the task.
A system macro library is also available that allows an assembly
program to issue an sve through a system macro call. See the
OS/32 Application Level Programmer Reference Manual for an
overview of the methods used by the application programmer to
access system services.

1-2 48-038 FOO R02

1.1.1 Supervisor Call (SVC) Parameter Block

Associated with each SVC (except SVC3) is an operating system·
data structure called a parameter block. The parameter block
contains the data required by the OS/32 executor. Each parameter
block has a specific length and format. The full length of a
parameter block must be reserved even if certain parameters are
not required by the particular SVC executor routine.

To issue an SVC, a task must sp,ecify the identifying number of
the SVC and t.he address of the SVC parameter block as operands to
the call.

Format:

SVC n,parblk

Operands:

n

parblk

is a decimal number specifying the SVC.

is the label or address of the parameter block
that contains the information necessary to
execute the call. All parameter blocks must
be fullword boundary-aligned.

Execution of an SVC causes an interrupt that is processed by the
Internal Interrupt Subsystem. See the OS/32 System Level
Programmer Reference Manual for a description of SVC processing
by the Internal Interrupt Subsystem.

When building a parameter block structure, it is possible to use
the standard symbolic names that. have been ass igned to the fields
and functional values for the parameter block. To obtain these
standard names and their defini1:ions, expand the appropriate data.
structure macro. These macros ilre contained in the OS/32 System
Macro Library utility, SYSSTRUC.MI....B. See the Common Assembly
Language Macro/32 (CAL MACRO/32) Processor and OS/32 System Macro
Library utility Reference Manuals.

48-038 FOO R02 1-3

Use the following Macro Library utility commands to display the
SYSSTRUC.MLB directory:

*L MLU32
*ST
PERKIN-ELMER OS/32 MACRO LIBRARY UTILITY 03-340 ROO-Ol
MLU)G MTM:SYSSTRUC.MLB/S
MLU)DIR
12/04/83
DCB TCB FCB $REGS$
$SVC1$ $ERRC$ $8VC13$ APB
$UREGS $PSW $8PT $SPTE
$SVT SSTE $PDCB $DDCB
$VFDCB $SDCB $EVN $SCV7SPL
$SDE $CTX $RCTX STCB
$TOPT $TSTT $TWT STLFL
$LIB $LOPT $LSG $RLST
$ACB $FD $FDE $PFCB
$DATB $DFLG $DXFL $SVCl
$SVC5 $SVC6 $SVC7 $SVC7EXT
SlOB $IOBF $IOH $SPOL
$ESYS $EMIL $MERC $ORT
$TQH STG27 INTCPARM $QH
$VFCHARS $HB SWAP STKQ
SAOPT STTB $LPMT $SYP
SLLE $ETHSTCM $ETHDCBS $ETHSTBF

SUDLS
$SOPT
SSSPT
$PSDCB
$SD
$OCB
$TFL
$ RSARCPY
$FCB
$SlXO
$SVC13
$ATF
$ODT
SIPCB
$APB
$QPBS

116 MACROS IN LIBRARY MTM:SYSSTRUC.MLB/G
MLU)

LIB
SRREGS
$TABLS
$DDE
SSPLMSG
$PSTCB
STPRC
SVD
$FFLG
SSVCIERR
SAPST
$GERC
$SPR
$IRCB
SAPRC
$QPB

IOB
$EREGS
SIVT
$MAGDCB
STMQ
$TSW
$LTCB
SDIR
SCCB
$SVC4
$UDL
$EFMG
STQE
$ICB
SAPS
$QPSTAT

Use the following Macro Library Utility command to list the
desired structure.

Format:

LIST fd,macro

1-4 48-038 FOO R02

Example:

MLU > LI M300:MAR,SSVCl
M~CRO

SSVCl
GSLS \SVCl
AIF (%SVC1)&SVC1X

\SVCl SETS 1
SPAC~: 2

SVC1. S'TRUC STRUCTURE OF SVC-l PARAMETER BLOCK
SPACE 1

SVC1.FC OS a
SVC1. FUN OS 1
SVC1.LU OS 1
SVC1.STA OS 1
SVC1.DN OS 1

SPACi': 1
SVC1.SAD OS ADC
SVC1.EAD OS ADC
SVC1.RAD OS ADC
SVC1. LXF OS 4

SVC1X
ENDS
STRUC
OS

SVC1.XIT OS
ENDS

SVC1.
4

SPACft: 2

FUNCTION CODE
(ALTERNATE MNEMONIC)
LOGICAL UNIT
STATUS FIELD
DEVICE NUMBER

BUFFER START ADDRESS
BUFFER END ADDRESS
RANDOM ADDRESS
LENGTH OF LAST TRANSFER

EXTENDED ITAM OPTION BITS

* * * *
SPACE
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
SPACE
E:QU
E:QU
E:QU
E:QU
E:QU
E:QU
E:QU
SPACE
E:QU
E:QU
E:QU
E:QU
SPACE

THE SVC-l FUNc'rION CODES
1

SV1.CMDF
SV1.READ
SV1.WRIT
SV1.BIN
SV1. WAIT
SV1.RAND
SV1.UPRO
SV1.IMG
SV1. XIT

SV1.REW
SV1.BSR
SV1.FSR
SV1.WFM
SV1.FFM
SV1.BFM
SV1.DDF

SV1.HLT
SV1.SET
SV1.WO
SV1.TEST

X'SO'
X'40'
X'20'
X'lO'
X'OS'
X'04'
X'02'
X'Ol'
X, 01'
1
X'CO'
X'AO'
X'90'
x'sS'
X'S4'
X' S2'
X' Sl'
1
X'SO'
X'60'
X'OS'
X'02'
1

COMMAND
READ
WRITE
BINARY
WAIT
RANDOM
UNCONDITIONAL PROCEED
IMAGE MODE
ITAM EXTENDED OPT

REWIND
BACKSPACE RECORD
FORWARD-SPACE RECORD
WRITE FILE-MARK
FORWARD-SPACE PILE-MARK
BACKSPACE FILE-MARK
DEVICE-DEPENDENT FUNCTION

HALT I/O
TEST , SET
WAIT ONLY
TEST I/O COMPLETION

* **************************************~************************
,SVC lX JI~OP

t-IEND
1 MACRO LlSTED TO M300:MAR
MLU >

48-038 FOO R02 1-5

1.2 SUPERVISOR CALL (SVC) ERRORS

The operating system informs the task of any error conditions
encountered during SVC processing. Depending on the kind of
error encountered, the operating system:

• pauses execution of the task and displays a message on the
system console, or

• stores an error code in the error status field of the sve
parameter block and/or sets the condition code.

The first method is used when an error condition occurs as a
result of a programming error in the task code (e.g., alignment
or illegal instruction fault). If the user wishes the task to
handle these errors, the task can take a trap that causes
execution to branch to the task trap-handling routine. See the
OS/32 Application Level Programmer Reference Manual for more
information on trap-handling.

The second method informs the user of the execution status of the
SVC executor.

1.2.1 Supervisor Call (SVC) Error Messages

When the user chooses not to take a trap when an illegal
instruction fault occurs, the illegal instruction trap bit is set
to 0 in the current TSW. On encountering an sve error, the
operating system pauses the task and outputs a message to the
system console.

If the sve error results from attempting to execute an undefined
or illegal SVC or from specifying an invalid code for an SVC2,
the following message is displayed:

ILLEGAL sve - INSTRUCTION AT xxxxxx(yyyyyy)

Where:

xxxxxx

yyyyyy

1-6

is the relative address of the SVC instruction
that caused the error.

is the physical address of the SVC instruction
that caused the error.

48-038 FOO R02

If an address or alignment error occurs, the following message is
displayed:

Format:

SVC ADDRE:SS ERROR - INSTRUC'TION AT xxxxxx(yyyyyy)
SVC P~~TER BLOCK AT xxxxxx(yyyyyy)

Where:

xxxxxx

yyyyyy

is the rel,ative address of the SVC
parameter b:Lock that caused the error.

is the physical address of the SVC
parameter block that caused the error.

NOTE

Systems equipped
translator (MAT)
message when an
error occurs:

with a memory address
display the following

address or alignment

SVC ADDRESS ERROR-INSTRUCTION AT xxxxxx(yyyyyy)
SVC PARAMETER BLOCK AT xxxxxx(yyyyyy)
MEMORY FAULT ADl)RESS = xxxxxx(yyyyyy)

An address or alignment error can result
from anyone of the following conditions:

• The address specified for the SVC
parameter block lies outside task
boundaries.

• The address sp~::cif ied for the SVC
parameter block is not aligned on a
fullword boundary.

• The address specified for
parameter block is not
writable segment,. which is
for that particular SVC.

the SVC
within a

required

or

or

48-038 FOO R02 1-7

1.2.2 Supervisor Call (SVC) status Codes

When an SVC execution error occurs, the operating system:

• returns an error code to the status field of the SVC parameter
block, and/or

• sets bits in the condition code (CVGL) to reflect the results
of SVC execution.

The status code returned depends on the particular SVC. Each SVC
described in this manual has a defined set of status codes. The
condition code (CC), if set for the SVC, depends on the
particular SVC. Generally, a CC of 0 indicates successful
execution and termination.

A nonzero error code may be returned to the status field of the
SVC parameter block as a result of one of the following
conditions:

• The buffer to which the SVC parameter block is pointing is not
aligned on the proper boundary.

• An SVC parameter block that must point to a task-writable
segment is pointing to a buffer outside a writable segment.

To test the CC, use a branch mnemonic that tests for a true
condition.

Example:

In the following example, the CC of the program status word (PSW)
is tested for the conditions specified by the mask. field PSW.CC.
PSW.CC is equated to X'F'. If any conditions tested are found to
be true, a branch is taken to the location ERROR. For more
information on branch instructions, see the Instruction Set
Reference Manual or the Processor User's Manual for the
appropriate processor model.

BTC PSW.CC,ERROR

1-8 48-038 FOO R02

SVCO

1.3 SVCO: US1~R-WRITTEN SUPERVISOR CALL (SVC)

SVCO is reserved for user-wI~itten OS/32 executor routines.
Before writing an executor routine that can be called by SVCO,
the operating system must be modified. This modification can be
done dynamically at run-time by an executive task (e-task).
However, the SVC executor table contains only halfword entries:
the first instruction of the executor routine called by SVCO must
lie within thc9 first 64kb of phys ical memory.

48-038 FOQ RQ~~ 1-9

CHAPTER 2
INPUT/OUTPUT (I/O) REQUEST SUPERVISOR CALL 1 (SVC1)

2.1 INTRODueTION

SVCl executee~ all general I/O data transfer requests and specific
command funct~ion requests. General I/O data transfer requests
refer to either a read or write operation. Before any data can
be transferrE~d, the user must specify whether it is a read or
write, the address and length of the I/O buffer that will receive
or send the data, and the logical unit (lu) assigned to the
device or file to which the I/O is directed. These
specifications are indicated through certain fields of the SVCl
parameter blc)ck.

When requestjLng a read or wr ite operation, the user must descr ibe
the data bE~ing transferred and the environment during the
transfer in the SVCl parameter block. For proper execution of a
simple data transfer request, specify the:

• structure of the file to or from which a record is being
transferred (sequential or random),

• form that the data is in when transferred (ASCII or binary,
formatted or image mode), and

• state that~ the calling task will be in dur ing IIO (liD
proceed, I/O wait or unconditional proceed).

If the device is busy when the data request is made, the user
must decide if task execution is to wait, whether to queue the
request and proceed or whether to proceed and retry the I/O
request latel:. Link specifies the maximum number of I/O requests
that are to be queued at one time. The user also has the option
to start I/O and continue task execution, then stop task
execution until the I/O is completed. If the device is free and
the user want.s exc ius i ve access to a record or file (any file
type), the user should execute a test and set operation to inform
other tasks that the record or file is being used.

48-038 FOO R02 2-1

Once the read or write operation is completed:

• test for I/O completion (check the condition code (CC), status
fields and task queue, or execute a test I/O complete) and, if
the status fields indicate that no error has occurred,

• check to verify that all of the specified data was actually
transferred (check the length of the data transfer field in
the SVCl parameter block).

All testing and checking for I/O completion can be accomplished
through the SVCl parameter block.

Specific I/O command function requests that can be made through
SVCl include:

• Rewind

• Backspace or forward space record

• Write filemark

• Backspace or forward space filemark

• User-specified, driver-dependent functions (reserved)

• Halt I/O

Before a command function request is issued, the desired command
must be specified and the lu must be assigned to the device to
which the command is directed. These specifications are
indicated in the SVCl parameter block shown in Figure 2-1.

2-2 48-038 FOD R02

SVCl

2.2 SUPERVISOR CALL 1 (SVCl)

The SVCl parameter block munt, be 24 bytes long, fullword
boundary-aligned and located in a task-writable segment.
Location within a writable segment is necessary so the status of
an I/O request can be returned to the status fields of the
parameter blolck. All fields in the parameter block are not
required for every I/O request but must be reserved (see Figure
2-1).

0(0) 11(1) 12(2) Device- 13(3) Device­
I independent I dependent Function code I lu

4(4)

8(8)

l2(C)

16(10)

20(14)

parblk

status I status

Buffer start address

'Buffer end address

Random address

Length of data transfer

Extended options

SVC l,parblk

1~IGN 4
DB X'function code'
DB
DS
DC
DC
DC
DS
DC

X'lu'
2 bytes for status
A(buffer start)
A(buffer end)
4 bytes for random address
4 bytes for length of data transfer
Y'extended options'

Figur.~ 2-1 SVCl Paramet.er Block Format and Coding

48-038 FOO R02 2-3

Fields:

2-4

Function
code

lu

Device­
independent
status

Device­
dependent
status

Buffer start
address

Buffer end
address

Random
address

Length of
data transfer

Extended
options

is a l-byte field indicating whether a request
is a data transfer or a command function, and
the specific operation to be performed. Bit
settings for data transfer requests are
described in Table 2-1. Hexadecimal function
codes for command function requests are
defined in Table 2-2.

is a l-byte field containing the logical unit
currently assigned to the device to which an
I/O request is directed.

is a l-byte field receiving the execution
status of an I/O request after completion.
The status received is not directly related to
the type of device used.

is a l-byte field receiving the execution
status of an I/O request after completion.
The status received contains information
unique to the type of device used.

is a 4-byte field used only for data
transfer requests and must contain the
starting address of the I/O buffer that
receives or sends the data being transferred.

is a 4-byte field used only for data
transfer requests and must contain the ending
address of the I/O buffer that receives or
sends the data being transferred.

is a 4-byte field containing the address
of the logical record to be accessed for a
data transfer request; a legal hexadecimal
number must be specified in this field if bit
5 of the function code is set to 1.

is a 4-byte field used only for data
transfer requests. It receives the number of
bytes actually transferred as a result of a
data transfer request. If an error occurs
during data transfer, this field is modified
with indeterminate data.

is a 4-byte field specifying device-dependent
and device-independent extended functions that
must be executed by the device when it is
servicing a data transfer request.

48-038 FOa R02

2.2.1 Data Transfer Requests

Figure 2-2 sh()ws the function code format for data transfer
requests, and Table 2-1 defines each function code bit position.

Format. Access Extended

~
Options

Test ~'ait Test I/OJ
and Set onty comPtete
~ --"- .-"'-,. --"-.. .-"'-,. --"-

I 0 I R I W I

Bits:
o 1 2 3 4 5 6 7

Figure 2-2 Function Code Format for Data Transfer Requests

TABLE 2-1 F'UNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS

BIT I
I

POSITION I BIT NAME BIT SETTING AND MEANING

--o I Function code I 0 ~ data transfer request.
I type I

1 I Read

2 I ~~rit,e

1-2 ~rest, and set

3 l~SC I I

48-038 FOO R02

I 1 s read operation. (Bit 2 must
I be set to 0.)

I 1 : write operation. (Bit 1 must
be set to 0.)

1 ~ test if a specific record in a
file is being used by another
task.

o ~ the internal data is in the
7-bit ASCII character set and
is translated to an equivalent
character set appropriate for
the external device.

2-5

TABLE 2-1 FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS (Continued)

BIT I
POSITION I BIT NAME BIT SETTING AND MEANING

__ a ________________ _

3

4

5

2-6

Binary

I/O proceed

Wait I/O

Wait only

Sequential
random

I = the internal data is 8-bit
binary and will not be trans­
lated. If bit 3 is set and an
image I/O extended option is
specified, the internal data
byte (eight bits) is trans­
ferred without translation.

o = if the device is not busy,
return control to the calling
task after initiation of data
transfer to the device. How­
ever, if the device is busy,
the request is queued and task
execution continues.

I = stop task execution, initiate
data transfer to the device,
and wait until the completion
of I/O.

I = task execution stops and waits
until the completion of all
queued I/O proceed requests to
the specified lu. When a wait
only request is issued, bit 4
is the only bit set in the
function code.

o access the next logical record.

I = access the logical record
specified by the hexadecimal
value in the random address
field of the parameter block.
The association of the hexa­
decimal values with the logi­
cal record must be established
before the data transfer
occurs.

48-038 FOO R02

TABLE 2-1 FUNCTION CODE BI'T POSITIONS FOR DATA TRANSFER
REQUESTS (Continued)

I BIT I
I POSITION I BIT NAME BIT SETTING AND MEANING 1 ___ n __

6

7

Conditional
proceed

Unconditional
proceed

'Ilest I/O
c:omplete

Format

48-038 FOO R02:

o - after the I/O request is
issued, put the task into a
wait state if the requested
device is busy and the total
number of queued requests
exceeds the maximum. Once the
I/O request is completed, the
task resumes execution. If
the maximum number of queued
requests is 1, a pending re­
quest causes the task to be
placed in a wait state.

1 = any I/O request made to a de-­
vice that is busy is rejected
if the total number of queued
requests exceeds the maximum,
and task execution continues.

1 = test to check for the comple­
tion of I/O to a specified lu.

If a previous I/O proceed
request or queued I/O proceed
request does exist, the CC is
set to X'F'. However, if there
is no outstanding I/O proceed
request, the CC is set to X'O' .

When a test I/O complete re­
quest is issued, bit 6 is the
only,bit in the function code
set. If bit 4 is set, it is
ignored.

o = the data being transferred is
formatted as indicated by the
bit 3 setting of the function
code and according to the
device type specified.

2-7

TABLE 2-1 FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS (Continued)

BIT I
POSITION I BIT NAME BIT SETTING AND MEANING

=------------------------=-----------=-------==---=-==-========= 7 Extended/
image options

2.2.1.1 Test and Set

1 = tests the setting of the XSVCl
task option. If XSVCl is off,
an image I/O transfer is per­
formed. If the option is on,
the extended options fullword
in the parameter block is
checked for specified options.

When an image I/O is performed,
the data being transferred is
in image mode and is not for­
matted. In effect, the user
must explicitly specify any
control characters such as
carriage returns (CRs) or line
feeds (LFs) on writes and will
receive exactly what is input
on reads.

The test and set function can be used to write a program that
prevents multiple tasks from modifying a record simultaneously.
A task that issues an SVC1 with the test and set bit enabled
notifies other tasks that it is using a record by setting the
first bit of that record to 1. This bit setting is called a
I-bit record lock. Any task subsequently performing a test and
set on the record is informed that the record is being accessed
by another task.

To use the test and set function, set both bits 1 and 2 of the
function code field to 1. If the test and set operation is used
to lock out a record written in binary image mode, make certain
~hat the first bit in the record is initially set to O. In
addition, the size of the user buffer should match the size of
the file record. The following diagrams demonstrate how a test
and set operation is performed.

2-8 48-038 FOO R02

In the first diagram, the calli.ng task issued an SVCl with test
and set enabled to read a record into its user buffer specified
by the SVCl parameter block. Notice that the bit setting for the
record lock bit is 0, indicating that the record is not being
used by another task.

Record
on
Disk

Record
Transferl~ed

t.o User
Buffer

Record
lock Record length
bit

1-~~
-----i ~------------------~

101 I
------1. ~----.----------------~
Bytes: .

~---------- -

't-----------
I
I

~~_~ __ ------~9~9~_----------_2~5~~J
Record
lock
bit ,
~-----·i l-----­
I 0 I
-------~ ~-----
Bytes:
o 99

1 sector

After the record is read into the user buffer, the test and set
operation tests the record lock bit. If the bit is 0, the record
lock bit in the user buffer is set to 1. The following diagram
shows the record lobk bit settings after the test operation is
performed.

Record
on
Disk

User
Buffer

48-038 FOO R02

Record
lock
bit
I

~-----i. l·-------------------t t--------------
101 I I
- - - - - - ~ l- - -. . - - - - - - - - - - - - - - 1. 't- - - - - - - - - - - - - -
Bytes:
o 99 255

Record
lock
bit
I
~------~ ~-------
III
--------i ~-------
Bytes:
o 99

2-9

After the record lock bit is tested, the SVCl test and set
function sets the record lock bit on disk to 1 so that other
tasks attempting to modify the record are notified that the
record is in use. SVCl sets the record lock bit on disk by
copying the contents of the user buffer to the record's original
location on disk. In addition, SVCl sets the CC to X'O' and
resets the record lock bit in the user buffer to O.

The following diagram shows the results of the completed test and
set operation.

Record
Returned
to Disk
with
Record
Lock Bit
Set

User
Buffer
with
Record
Lock Bit
Set to 0

Record
lock
bit
I

-::::-::.-----t t-----------------~ "/:----------
III I I
------~ ~----------------~ r---------
Bytes:
o 99 255

Record
lock
bit
I

~------i 't--------
101 1
--------i ~-------
Bytes:
o 99

Condition Code:

I C 1 V 1 GIL 1
1==-==---------=1
I 0 I 0 I 0 101

2-10 48-038 FOQ R02

If the calling task had performl~d a test and set operation on a
record that had a record lock bit setting of 1, the CC would be
set to X'F'. The following diagram shows the record lock bit
settings and CC resulting from this test and set operation.

Record
on Disk
with
Record
Lock
Bit Set

User
Buffer
with
Record
Lock Bit
Set to 1

Condition Code:

Record
lock
bit
I

-:::::.-----t, ?:---.---------------t t----------
III I I
------~ ~----------------i ?:----------
Bytes:
o 99 255

Record
lock
bit
I

~------i
III
--------1.
Bytes:
o

t---------
"t-.--------

99

I
I

I C I V I GIL I
1---------------1
111111111

After a test and set operation, a record protection program
checks the CC. I f the CC JLs 0, the task can then proceed to
modify the record. If the CC iES X' F', the task should retry the
test and set .operation before at:.tempting to modify the record.

To unlock the record on disk, the task that set the record lock
bit should write the record in its user buffer back into its
original loca'tion on disk, whether or not the task modified the
record.

48-038 FOO R02 2-11

If the size of the user buffer is less than the size of the
record, the following occurs when the record in the user buffer
is written back to disk:

• If the record in the user buffer is written back to an indexed
file, the remaining bytes of the record are filled with zeros.

• If the record in the user buffer is written back to a
contiguous nonbuffered indexed or extendable contiguous file,
the last two bytes of the record are propagated to the right
until the remaining bytes of the record are filled.

The following diagram illustrates how a user buffer smaller than
a 256-byte contiguous file record is returned to disk. Notice
that the last two bytes of the record in the user buffer are
propagated to the right to fill a 256-byte sector on disk.

99-byte
Record
in
User
Buffer

99-Byte
Record
Returned
to Oisk

Record
lock
,it

-::::.------i
101
--------1
Bytes:
o

Record
Lock
bit
I

-:::-:. ---- i
10 I
------i
Bytes:
o

Last two bytes
of record

I
t---~

1401501
t--------

99

Last two bytes
of , record

t-~--------------i
140150140150140150/401

t----------------------i
99

t------------
140150140/50/
t------------

255

The test and set operation can be executed as a wait I/O or I/O
proceed request. Setting the CC during a test and set operation
occurs only when wait I/O is specified. (Bit 4 of the function
code is set to 1.) However, if an I/O proceed is requested (bit
4 of the function code is set to 0), setting the CC is not useful
because it could be changed at any time during task execution
when data transfer and task execution take place concurrently.
Therefore, check the record lock bit in the buffer to determine
whether the record is currently being used. See the OS/32 System
Level Programmer Reference Manual for the devices supporting test
and set.

2-12 48-038 FOO R02

The following sample program demonstrates how the test. and set
function can be used to write a program that provides record
protection.

Sample Progr aJrrl:

'*
'*
'*
'*
'*
'*
'*
'*
'*
'*

TEST AND SET EXAMPLE

PRIOR TO PROGRAM EXECU,]~ION ASS IGN LU 1 AND LU 2
TO A TEXT FILE CREATED BY EDIT32.

LU 1 AND LU 2 SIMULATE ACCESS OF THE FILE BY TWO
TASK:9.

TESTSET PROG TEST AND SET EXMIPLE
ENTRY TESTSET

TESTSET EQU '*
'*
LOOP

'*

CONTOS

'*
'*
CONTIO

LIS
EQU
ST
ST

SVC
BZ
PAUS
EQU
LA
BAL

1,0
'*
l,PBl+IO.RECNU
l,PB2+IO.RECNU

SET UP FIRST RECORD NO.

FOR LU 1
FOR LU 2

l,PBl READ & TEST RECORD ON LU 1
CONTOS OK; RECORD IS NOT LOCKED
ERROR; RECORD IS LOCKED; SHOULD BE FREE
'*
14,PBl
15,@IOERR

'*

PB ADR FOR EOF TEST
CHECK FOR END-OF-FILE

EQU
SVC
BM
PAUS

l,PB2 READ AND TEST RECORD ON LU 2

'*
'*
CONT20

'*

'*
'*

'*
'*
CONT30

CaNT 2 0 OK;RECORD IS LOCKED
ERROR; RECORD IS FREE; SHOULD BE LOCKED

EQU '*
L 2,BIS MANIPULATE RECORD DATA
ST 2,BIS
WRITiE RECORD BACK TO FI.E AND UNLOCK IT
SVC l,PB3

SVC l,PB2 READ AND TEST RECORD ON LU 2
BZ CONT30 OK; RECORD IS FREE
PAUS ERROR; RECORD IS LOCKED; SHOULD BE FREE

EQU
SVC
BM
PAUS

'*
IvPBl READ AND TEST RECORD ON LU 1
CONT40 OK; RECORD I S LOCKED
ERROR; RECORD I S FREE; SHOULD BE LOCKED

48-038 FOO R02 2-13

*
*
CONT40

*

*
*

*

EQU
L
ST
WRITE
WRITE

AIS
B

*
3,B2S MANIPULATE RECORD DATE
3,B2S
RECORD BACK TO FILE AND UNLOCK IT
LU=2,RECNUMB=(1),ADDR=B2S,ENDADDR=B2E

1,1
LOOP

INCREMENT RECORD COUNTER
DO NEXT RECORD UNTIL EOF

PBl 10PCB FUN=X'76',LU=1,ADDR=BlS,ENDADDR=BlE,RESTART=CONT05
*
*
PB2 10PCB FUN=X'76',LU=2,ADDR=B2S,ENDADDR=B2E
*
*
PB3 10PCB FUN=X'36',LU=1,ADDR=B1S,ENDADDR=B1E,RECNUMB=(1)
*
*

BlS
BIE

*
*
B2S
B2E
*
*

ALIGN
DS
EQU

DS
EQU

END

ADC
80
*-1

80
*-1

2.2.1.2 Input/Output (I/O) Proceed

BUFFER FOR LU 1

BUFFER FOR LU 2

An I/O proceed request is initiated when bit 4 of the function
code is set to 0 and a read or write operation is specified.

If the device is free when a data transfer request is made with
I/O proceed specified, task execution and data transfer take
place concurrently. When the I/O is completed, the status of the
data transfer is returned to the status fields in the parameter
block. An illegal function code or illegal lu causes the status
to be returned to the status fields before data transfer starts,
resulting in rejection of the I/O proceed request. Since task
execution and data transfer take place concurrently, the task
must check for the completion of I/O. There are five ways to
check for I/O completion:

• Execute a test I/O complete operation.

• Monitor the status fields in the SVCl parameter block issuing
the request.

2-14 48-038 FOO R02

• Take a trap when I/O is completed and branch to a service
routine.

• Issue a wait I/O request to the device specified by the SVCl
making thE~ request. This function will stop task execution
until I/O is completed.

• Queue I/O l~equests by specifying the IOBLOCK parameter of
Link OPTION command and issuing the wait only function.
will stop task execution until all queued requests
specified device are completed.

the
This

to a

An SVCl I /0 pl~oceed request to an indexed file executes in a
different manner than an I/O proceed to other file types or
devices. See the OS/32 Application Level Programmer Reference
Manual for mOl~e information on I/O operations to indexed files.

2.2.1.3 Queuing Input/Output (I/O) Requests

When SVCl issues an I/O proceed request to a device that is busy,
the request is placed on the calling task's I/O control block,
and task eXE~cution continues. The request is serviced when the
device is freE~. Normally, each task has only one I/O control
block on whjLch to queue an I/O request. To queue more than one
request, use t:he IOBLOCK parameter of the Link OPTION command to
assign more blocks to the task.

Format:

OPTION .lilBLOCK-{;j}

Parameter:

b

48-038 FOQ RQ~l

is a decima,l number from 1 to 65,535
indicating the maximum number of I/O control
blocks assigned to a task. Each I/O control
block can contain one queued I/O request. If
this option is not specified by the user, Link
automatically assigns one I/O control block to
the task.

2-15

2.2.1.4 Conditional Proceed

If the number of queued requests exceeds the maximum number of
I/O blocks assigned to the task and bit 6 of the function code is
set to 0, SVCl places the task in a wait state until one of the
queued requests is serviced. Task execution resumes when the
number of queued requests equals the maximum number set by Link.

The number of I/O requests a task can issue before going into the
wait state is determin~d by the formula:

b + 1 + number of logical units assigned to task

Parameter b is the number of I/O control blocks assigned to the
task.

2.2.1.5 Unconditional Proceed

To prevent the task from going into the wait state when the
maximum number of requests specified by Link are queued, set bit
6 of the function code to 1. This code allows the task to reject
all I/O requests made to a busy device after the maximum number
of requests are queued. When a request is rejected, a status of
o is sent to the device-independent status field, and the CC is
set to X'F'. The user can retry the rejected I/O request during
task execution.

2.2.1.6 Wait Input/Output (I/O)

To stop task execution during a read or write operation, use the
wait I/O function. A wait I/O request is initiated when bit 4 of
the function code is set to 1 and a read or write operation is
specified.

If the device is free when a data transfer request is made with
wait I/O specified, task execution stops, I/O is initiated, and
the task waits to resume until I/O is completed. status of the
data transfer is returned to the status fields when the I/O is
completed. If the device is busy when a data transfer request is
made with wait I/O specified, the request is queued and task
execution is suspended until the queued request is serviced and
I/O is completed. Task execution then resumes.

2-16 48-038 FOO R02

2.2.1.7 Wait Only

A wait only request stops task execution until all I/O proceed.
requests to the specified lu (including queued requests) are
completed. 1When the last queued I/O proceed request is
completed, task execution conttnues. The status of the last
completed I/O proceed request ies returned to the status field of
its respective SVCl parameter block.

To issue the wait only request, set the SVCl function code field
to X'D8' and the lu field to the appropriate device. A nonzero
status code will be returned to the status field of the SVCl wait
only parameter block if any of t:he following conditions occur:

• The lu is illegal (code X'8l~).

• The lu is unassigned (code X f 8l').

• The wait only request is issued for a pseudo device without
SVC interception (code X'CD').

2.2.2 Command Function Requests

All command function requests and task execution take place
concurrently. Queued requestes are handled the same way as
conditional proceed data transfer requests. When the I/O is
completed, the status of the cc)mmand function is returned to the
status fields in the parameter block. An illegal function code
or illegal lu causes the status to be returned to the status
fields before the command function starts. This results in
r ej ect ion of 'the command f unct ic)n request.

Since task ex,ecution and command function requests take place
concurrently, the task must check for I/O completion. These
three methods are used to check for I/O completion:

• Execute a 'test:. I/O complete operation.

• Monitor the status fields in the parameter block for the
command function status to bE~ returned.

• Issue a wait only request to the device specified by the SVCl
making the request. This function stops task execution until
I/O is completed.

Table 2-2 d,ef ines the function codes .for command function
requests.

48-038 FOD R02 2-17

TABLE 2-2 FUNCTION CODES FOR COMMAND FUNCTION REQUESTS

FUNCTION I
CODE MEANING

========================-===-=------------===-======------------
X'CO'

X'AO'

X'90'

X'88'

X'84'

X'82'

X'81'

X'80'

2.2.2.1

Rewind - A rewind operation is to occur on the
specified lu.

Backspace 'record - The device assigned to the lu is
to backspace one record length.

Forward space record - The device assigned to the
lu is to move forward one record length.

Write filemark - A filemark is to be written at the
current pointer position on the device assigned
to the lu.

Forward space filemark - The device assigned to the
lu is to move forward past the next filemark to the
beginning of the next file.

Backspace filemark - The device assigned to the lu
is to backspace to the previous filemark. For disk
files, this positions the pointer to the beginning
of the previous file. For magnetic tape files, the
tape is positioned at the end of the previous file.

No echoplex - The device chooses no echoplex for
an image I/O and selects 8-bit no parity as an op­
tion for SVCl I/O. By preceding an I/O with an
additional SVCl with a function code Y'lOOOO DODO',
no echoplex is set in the data control block. This
applies to device 156 and 157 drivers.

Halt I/O - Cancel all previous I/O proceed requests
to the specified lu.

Halt Input/Output (I/O)

When a halt I/O request is issued, any previous I/O proceed
requests, whether they are in progress or queued to the specified
lu, are cancelled. When the I/O is terminated, the task that
issued the I/O proceed request takes a trap (if enabled), the
request is queued, and the status of the I/O operation (data
transfer or command function) is returned to the status fields of
the parameter block issuing the request. The time of actual
termination is asynchronous to the time the halt I/O is issued.
The independent status codes are listed in Table 2-3 and the
dependent status codes are listed in Table 2-4.

2-18 48-038 FOO R02

When an I/O request is issued to an lu and a previous I/O proceed
request exists for that same lu, the second request and any
subsequent requests to that lu cannot be serviced until the
previous I/O request is completed. By issuing a halt I/O
request, the first I/O request is cancelled, allowing I/O
requests issued after the cancE~llation to be started on the
device.

If the IOBLOCK option was specified by Link and at least one I/O
request to a specified lu is queued, execution of a halt I/O
request cancels any I/O to that specified lu already queued or in
progress. See the OS/32 System Level Programmer Reference Manual
for the devices supporting the halt I/O request.

2.2.3 Logical Unit (lu)

An lu is a decimal number ranging from 0 to 254. The highest lu
number to which a task can be assigned is determined by the lu
parameter of the Link OPTION corrunand. After loading the task
into memory, the lu should be assigned to a particular file or
device through SVC7 or an ASSIGN command. If no actual I/O
operation is desired, the lu should be assigned to NULL:, causing
a no-operation (no-op) to occur.

2.2.4 Device-Independent StatuB

Logical units provide device-independent I/O by causing all I/O
requests to be made directly to the lu and not to the device.
The execution status of an I/O request that is independent of the
physical characteristics of the device being used is returned to
the device-independent status field of the parameter block (see
Table 2-3). The data remaining in this field from a previous I/O
request is not modified until a subsequent I/O is completed or an
error occurs.

STATUS I
CODE

X'CO'

X'AO'

TABLE 2-3 DEVICE-INDEPENDENT STATUS CODES

MEANING

Illegal function - ~~ error is present in the func­
tion code~ the requested function is not supported
by the device or assigned access privilege or the
buffer transfer is tC)O small. (When using tape,
minimum buffer size is four bytes.)

Device unavailable - The device is either
inoperative or not configured into the system.

48-038 FOO R02 2-19

TABLE 2-3 DEVICE-INDEPENDENT STATUS CODES (Continued)

STATUS I
CODE MEANING

z= __ = _______________ =

X'90'

X'88'

X'84'

X'82'

X'81'

X'OO'

End of medium (EOM) - The I/O directed to the lu
reached the physical end of the device; e.g., end of
tape. During magnetic tape operations, this status
can be combined with one of the next three status
codes, yielding X'98', X'94' and X'92'.

End of file (EOF) - The logical end of file
specified by the assigned lu was reached.

Unrecoverable error - An error occurred and the I/O
request, which terminates task execution, cannot be
retried.

Parity - An even or odd parity error occurred on a
data transfer request.

Recoverable error - The I/O request is recoverable
and can be retried. A write request was issued to a
write-protected device.

No I/O currently being processed - If a halt I/O
request is executed, this bit is set, indicating
that no I/O is being processed at this time.

Illegal or unassigned lu - The lu specified in the
parameter block is either incorrect or was not
previously assigned.

Normal execution or successful 1/0 is completed, and
no error occurred.

2.2.5 Device-Dependent Status

The execution status of an I/O request that is directly related
to the unique characteristics of the device being used is
returned to the device-dependent status field of the parameter
block (see Table 2-4). The data remaining in this field from a
previous I/O request is not modified until a subsequent I/O
request is completed or an error occurs.

2-20 48-038 FOO R02

STATUS I
CODE

TABLE 2-4 DEVICE-DEPENDENT STATUS CODES

MEANING
===~:=============~==

X'8S' Exhausted retries on seeks - Seeks on disk devices
have been retried the maximum number of times.

X' 84' Queued I/O terminated - A queued I/O request is
terminated because a previous I/O request failed.

X'83' Device is wr ite-protected -. A wr ite operation to a
~Tite-protected device occurred.

X'82'

X' 81'

X'OO'

R.ead/write time-out - A read or write time-out
condition occurred.

Terminated by halt I/O - I/O was terminated by a
halt I/O operation.

Normal execution - I/O was completed and no error
occurred.

2.2.6 Buffer Start/Buffer End l\ddresses

The buffer start/buffer end addresses specify the buffer to be
used for data transfer requestf~o The start address is the first
byte in the buffer. The end address is the last byte in the
buffer that is included in the t.ransfer.

Starting
address
X'lSO' Data buffer

Ending
address
X'19F'

I I
~------------------------22---------------------~

----------------------------22------------------------
Bytes:
o 79

2.2.7 Extended Options

I
J

If bit 7 of the function code ifS set to 1 and the XSVCl option
was specified at Link time, the options specified by the SVCl
extended option field are executed_ The extended options
fullword format is dependent upon the device to which an I/O
request is directed. In general, there are two formats: one for
nonmagnetic t.ape devices and onE~ for magnetic tape devices.

48-038 FOO R02 2-21

2.2.7.1 Nonmagnetic Tape Devices

If a device is supported by the data communications subsystem,
the extended options provide device-dependent, communication­
dependent and device-independent features when a read or write
operation is performed.

Figure 2-3 illustrates the fullword format of the extended
options field of the SVCl parameter block for devices supported
by the communications ~ubsystem.

Bits:
a

Function modifiers Extended functions

15 16 25 26 31

Figure 2-3 Extended Options Fullword Format for Nonmagnetic Tape
Devices

Bits a through 15 are for general use in both local and remote
communications.

Bits 16 through 25 are used to expand a function's capability.
For example, the write edit function can be expanded to write
blinking by using a function modifier.

Up to 64 device-dependent I/O functions can be specified by bits
26 through 31. These extended functions are mutually exclusive;
however, an I/O with multiple requests or operations can be
performed.

Table 2-5 describes the SVCl extended options that can be
specified for both local and remote communications. See the
OS/32 Basic Data Communications Reference Manual for a listing of
device-dependent extended functions along with their applicable
function modifiers.

2-22 48-038 Faa R02

TABLE 2-5 SVCl EXTENDED OPTIONS FOR LOCAL AND REMOTE
COMMUNICATIONS

BIT I
POSITION I

o

BIT NAME

Connect (CON)

1 I lDisconnect
I (DCT)

2

3

4

5

Image/format
(IMG/FMT)

No echo read

Irransparent
mode

Monitor read

48-038 FOO R02

BIT SETTING AND MEANING

1 c terminal manager answers a
telephone ring on a dial-in
line during a read or write
line initialization sequence.

1 c terminal manager disconnects
from a switched line following
final data transfer.

o c data being transmitted is in
image mode and is not format­
ted.

1 ~ terminal manager performs
normal record buffering,
inserts or deletes line
control characters and
recognizes appropriate data
format control characters on
transmitted data.

1 ~ no characters will be echoed
on read. Specifies the state
of input character echo.
Applies to each read request
only.

1 ~ any nonprintable data will not
be translated by driver.
Specified the transparent
state for the read request.
Meaningful for a formatted
read only.

1 ~ any data input will be placed
on driver type-ahead queue.
Specifies a read request is
not intended to get input
data. Illegal unless type­
ahead has been turned on.
Break key and halt I/O
terminates the request.

2-23

TABLE 2-5 SVCl EXTENDED OPTIONS FOR LOCAL AND REMOTE
COMMUNICATIONS (Continued)

BIT I
POSITION I BIT NAME BIT SETTING AND MEANING

====--==------------------------------------=-=-==---------===-6 Read prompt

7

1 = data being written from a
buffer. Specifies data is to
be written from a buffer until
a CR or buffer limit. Then
read (without line formatting)
is to be performed. Meaning­
ful for formatted reads only.

I 0 = reserved

8 I Vertical I 1 = requests VFC option for an

9-11

12

13-15

16

17

18

19

2-24

I forms control I ASCII I/O operation.
I (VFC)

Bit check

Synchroniza­
tion complete

Synchroniza­
tion of data

Mirror read

I 000 = reserved.

1 = when set, the device-dependent
bits are checked. This option
deals exclusively with mirror
disk configurations. This bit
is set in conjunction with
bits 16, 17, 19, 20 or 21.

I 0000000 = reserved

1 = set when synchronization of
mirror disk is complete; it
clears the resynchronization
in progress field in the DCB
DXFL.REB.

1 = when set, data is read from
the primary disk and written
to the same sector on the se­
condary disk. (Pertains to
mirror disk configurations.)

I 0000000 = reserved

1 = when set, data is read from
the same position on both the
mirror disks into a double
size I/O buffer.

48-038 FOO R02

TABLE 2--5 SVCl EXTENDED OPTIONS FOR LOCAL AND REMOTE
COMMUNICATIONS (Continued)

BIT I
POSITION I BIT NAME BIT SETTING AND MEANING

_______________________________ • _____________________________ a_

20 BWOP

21 Read failure

I .: when set, the pr imary and
secondary disks of a mirrored
pair are exchanged. The disk
that was the secondary disk
becomes the primary disk and
vice versa. Read operations
are now performed on the new
primary disk.

1 ., when set, the call ing task is
notified when a read operation
fails on the primary disk.
(Pertains to mirror disk con­
figurations.)

2.2. 7.2 Magnetic: Tape Devices

The extended options fullword fctrmat differs when I/O is being
directed to a ma~netic tape device. Figure 2-4 illustrates the
fullword format of the extended options field of SVCl parameter
blocks used for magnetic tape 1/0 operations.

Bits:
o

Extended function code

26 27 31

Figure 2-4 Extended Options P'ullword Format for Magnetic Tape
I/O Operations

48-038 FOO R02 2-25

If the extended function code requires an additional parameter,
the most significant bits (MSBs) (0 through 7) contain the
parameter value.

Bits 8 through 26 are not used during magnetic tape I/O
operations. Bits 27 through 31 contain the extended function
code that indicates the type of I/O operation to be performed.
The extended function codes available for use in this field are
dependent upon the standard function code setting in the SVCl
parameter block. Table 2-6 contains the extended function codes
available when the standard function code bit setting indicates
a control operation.

TABLE 2-6 EXTENDED FUNCTION CODES FOR CONTROL OPERATIONS

EXTENDED
FUNCTION

CODE VALUE OPERATION/EXPLANATION

==============------=-------------------------------==------------

2-26

o I Rewind and unload - The tape is rewound to its
I beginning, then unloaded. Requires hardware
I support ..

1-6 I Reserved

"7 I Create a gap - The drive is instructed to erase a
I section of tape (approximately 3 to 3.5 inches) in
I the forward direction ..

8 Read drive status - A task can read eight status
halfwords into the buffer space specified in the
SVCl parameter block. The status returned depends
on the type of drive in use.. See the High
Performance Magnetic 'Ilape System (HPMTS) 125
Programming Manual for a list of the status
halfwords.. Requires hardware support.

9 I Reserved

10 Erase tape - Erases a variable length of tape,
beginning at the current position.. The length of
tape erased is determined by the following formula:

Length of Tape : Number of Bytes in User Buffer
Erased ------------------------------

Current Tape Density

48-038 FOO R02

TABLE 2·-6 EXTENDED FUNCTl:ON CODES FOR CONTROL OPERATIONS
(Continued)

EXTENDED
FUNCTION

CODE VALUE

10
(Continued)

11-31

OPERATION/EXPLANATION

The result is rounded up to a multiple of the
length of a hardware gap (approximately 3 to 3.5
inches). The maximum number of bytes that can be
erased depends upon the tape density (see Table
2-7). If an erase tape request exceeds the maximum I

number of bytes for the current tape density, the
operating system will erase the maximum number of
bytes, then output a message indicating that the
remaining bytes in the buffer were not erased. The
erase tape function is illegal if the tape is at
load point.

NOTE

For device code 65, the current density
is assumed to be 800 bits per inch (bpi).
If the current density for device code 65
is 1600 bpi, the length of tape erased is
twice as long as requested.

:i Reserved

TABLE 2-7 MAXIMUM NUMBER OF BYTES
ERASED

1 TAPE DENSITY (BPI) 1 NUMBER OF BYTES 1
1=--=---------=-------------=---=----=-1 1 800 200,000 1
1 1,600 400,000 I
1 6,250 1,000,000 1

Table 2-8 contains the extended function code available when the
standard function code bit setting indicates a data transfer
operation.

48-038 FOO R02 2-27

TABLE 2-8 EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS

EXTENDED
FUNCTION

CODE VALUE OPERATION/EXPLANATION

====-=-===-==-------=--------------------------=---------------o

1

2

3

2-28

No extended functions - The bit settings of the
standard function (byte 1 of the SVCl parameter
block) are read and used to determine the oper­
ation to be performed.

Read backward - The tape drive reads previous
records on a tape while the tape is moved
in the backward (rewind) direction. The task
buffer is filled, from start address to end ad­
dress, with bytes in the order they are read;
i.e., reverse. If an error occurs during a read
backward operation, the magnetic tape drive
performs retries on that operation up to a number
of times corresponding to the value set in the
system generation (sysgen) macro library. (The
read bit of the SVCl function code should be
set.) Requires hardware support.

Gapless operation - The driver reads or writes
multiple data buffers to or from magnetic tape
with no interrecord buffer gaps, using only one
SVCl. Gapless operation requires the use of a
special SVCl parameter block. The read or write
bit in this parameter block should be set.
Gapless operation is explained in Section 2.3.
Requires hardware support.

Gapless operation with buffer transfer
reporting - The driver reads or writes multiple
data buffers to or from magnetic tape with no
interrecorder gaps, using only one SVCl. The
task receives a buffer gap each time the driver
uses another buffer. Gapless operation requires
the use of a special SVCl parameter block. The
read or write bit in this parameter block should
be set. Gapless operation is explained in
Section 2.3. Requires hardware support.

48-038 FOG R02

TABLE: 2-8 EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS (Continued)

EXTENDED
FUNCTION

CODE VALUE

4

5

OPERATION/EXPLANATION

Read forward and ignore data transfer errors -
The tape drive reads from the tape and ignores
data transfer errors if encountered. If a data
transfer error occurs, the status halfword is
set to indicate normal completion of the read.
The position of the tape after the read is the
same as if no el:ror had occurred. Since sqme
errors terminate data transfer, the user should
check the length of the data transfer field to
verify that all of the specified data was
actually read. (The read bit of the SVCI
function code should be set.)

Read backward and ignore data transfer errors -
The tape drive reads previous records on a
tape while the t~ape is moved in the backward
(rewind) direction and will ignore data errors,
if encountered. If a data error occurs, the

status halfword is set to indicate normal
completion of the read. The position of the
t~ape after the l:'ead is the same as if no error
had occurred. Since some errors terminate data
transfer, the user should check the length of
data transfer field to verify that all of the
specified data was actually read. The user
buffer is filled, from start address to end
address, with bytes in the order they are read;
i.e., reverse. (The read bit of the SVCI
function code should be set.) Requires hardware
support.

6 User control of retries for data transfer
errors - If an error occurs during a data
transfer operation, the magnetic tape drive
will repeat the operation up to the number of
retries specified by the user in the first byte
of the extended options field. The maximum num­
ber of retries that can be specified for a read
operation is 255. The maximum number of retries
that can be specified for a write operation
is 45. (The read or write bit of the SVCl
function code should be set.)

48-038 FOO R02 2-29

TABLE 2-8 EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS (Continued)

EXTENDED
FUNCTION

CODE VALUE OPERATION/EXPLANATION

-------------=---

7

8-31

NOTE

If extended function code 6 is not
specified, the number of retries de­
faults to the value set in the sysgen
macro library.

Read backwards and allow user control of
retries for data transfer errors - The tape
drive reads previous records on a tape while
the tape is moved in the backward (rewind)
direction. The user buffer is filled, from
start address to end address, with bytes in the
order they are read; i.e., reverse. If an error
occurs, the magnetic tape drive repeats the
operation up to the number of retries specified
by the user in the first byte of the extended
options field. The maximum number of retries
that can be specified is 255. (The read bit of
the SVCl function code should be set.)

I Reserved

In both cases, extended function codes are mutually exclusive,
that is, only one extended function code can be specified in a
single SVCl.

2.2.7.3 Device-Dependent status
Operations

Codes for Magnetic Tape

The device-dependent and device-independent status fields of the
SVCl parameter block indicate the execution status of an I/O
operation performed to a magnetic tape. Table 2-9 lists the
status codes returned to these fields. Additional status codes
for gapless I/O operations are listed in Table 2-12. A magnetic
tape I/O operation ceases upon detection of most of these errors.

2-30 48-038 FOO R02

TABLE 4~-9 MAGNETIC TAPE DEVICE-DEPENDENT STATUS CODES

I STATUS I
CODE MEANING

1============================---=================================
8282 I Time-out - A read or write time-out condition oe­

I curred during data transfer.

8283 I Device write-protected - A write, write filemark,
I create gap, or erase tape operation was attempted to
I a write-protected device.

82F9 I McLximum buffer size exceeded - The buffer for the
I erase tape control operation is too large.

82FA I RE~tries exhausted - A read, read backward, or write
I operation was retried the maximum number of times.

82FC I Time-out - A control operation time-out occurred.

82FD I Time-out - A read, read backward, read drive status,
I wI:ite or write filemark time-out condition occurred.

82FE I RE~ad backward at load point - Load point was reached
I bE~fore a read backward operation terminated.

82FF I Ti.me-out - A read, read backward or write time-out
I cClndition occurred while waiting for a pr ior
I operation to be completed.

8301 I Short read - The buffer specified was too small for
I the tape block. This status is supported only by

8400

84FB

I the high performance tape systems.

BClttom of tape/end of tape check malfunction - An
error occurred during an attempt to position the
taLpeto determine whether the beginning or end of
tape was detected.

Seilector channel (SELCH) malfunction - The SELCH
ma,lfunctioned dur ing a read, read backward or wr ite
operation.

Retries exhausted for write filemark - A write
filemark operation w.as retried the maximum number of
times.

Re!try malfunction - j~ error occurred while attempt­
ing to position the tape to retry a read, read back­
wa.rd, wr ite or w:r: ite f ilemark operation that
resulted in a recoverable error.

AOOO I Device unavailable - the device is either inopera­
I tive or not configured into the system.

48-038 FOO R02 2-31

TABLE 2-9 MAGNETIC TAPE DEVICE-DEPENDENT STATUS
CODES (Continued)

STATUS I
CODE MEANING

z_== __ _

COOO

2-32

Illegal function - The function code indicated a
data transfer operation, but neither the read nor
write bit was set.

The function code indicated a control operation, but
none of the other bits in the function code were
set.

The function code indicated an extended control
operation, but the extended SVCI task option was
disabled.

The requested function is not supported by the
device or assigned access privileges.

Illegal extended function code - an undefined
function, or a function not supported by the
specified tape drive, was indicated.

The extended function code indicated a read
operation, but the standard function code has the
write bit set.

Buffer size too small - the buffer for a read, read
backward, or write operation was less than four
bytes. The buffer for the read drive status was
smaller than 16 bytes.

Erase tape at load point - an erase tape operation
was attempted when a tape was at load point.

User retries too large - the maximum number of
retries specified for a write operation was greater
than 45.

48-038 Faa R02

2.3 GAPLESS INPUT/OUTPUT (I/O) OPERATIONS

Data transfe!r operations in Igapless mode consist of a task
reading or writing data to or from a magnetic tape with no
interrecord gaps, using only one SVCl. A task can have only one
ongoing gapless SVCl at a 'time.. The format of a gapless mode
SVCl paramet,er block differs f:rom the standard SVCl parameter
block. The' gapless SVCl par.ameter block cannot be reused until
the gapless operation has been completed. To perform a gapless
I/O operation, the XSVCl Link option must be specified before an
I/O request is issued. Then, t.he task must issue an SVCl call
that specifies, among other things, a pair of buffer queues, the
IN-QUEUE and the OUT-QUEUE. The driver takes buffers from the
IN-QUEUE and returns used buffers to the OUT-QUEUE. The task
processes the buffers from 1the OUT-QUEUE and returns these
buffers to the IN-QUEUE for reuse by the driver.

The use and reuse of buffers during gapless I/O enables an amount
of data much greater than memolry capacity to be transferred by
breaking the data into smallelr segments, then transferring these
small segments of data sequentially. The gapless mode SVCl
parameter block can only be uSf~d for gapless I/O operations.

2.3.1 Gapless Mode Supervisor Call 1 (SVCl) Parameter Block
Format

The gapless mode SVCl parameteK' block must be 24 bytes long,
fullword boundary-aligned and located in a task-writable segment.
Location within a task-writable segment is necessary so that the
status of an I/O request can be returned to the status fields of
the SVCl parameter block. Figure 2-5 presents the gapless mode
SVCl parameter block and a coding example.

48-038 FOO R02 2-33

0(0) Function 11(1) 1 2(2) Device- 13(3) Device-
code I lu 1 independent dependent

status status

4(4)
OUT-QUEUE start address

8(8)
IN-QUEUE start address

12(C)
Buffer length

16(10)
Length of last buffer

20(14)
Extended options

SVC l,parblk

ALIGN 4
parblk DB X'function code'

DB X'lu'
DS 2 bytes for status
DC A (OUT-QUEUE buffer start address)
DC A (IN-QUEUE buffer start address)
DS 4 bytes for buffer length
DS 4 bytes for length of last buffer
DC Y'extended options'

Figure 2-5 SVCl Gapless Mode Parameter Block Format and Coding

Fields:

2-34

Function
code

is a I-byte field indicating that the request
is a data transfer request. This field also
specifies the operation to be performed (read
or write) and the extended options pOinter.
Bit settings for this field are presented in
Table 2-8. .

48-038 FDa R02

lu

Device­
independent
status

Device­
dependent
status

OUT-QUEUE

IN-QUEUE

Buffer length

Length of
last buffc:tr

48-038 FOO RO;~

is a I-byte field containing the logical unit
currently assigned to the device where the I/O
request is directed.

is a I-byte field receiving the execution
status of an I/O request after completion.
The status received is not directly related to
the type of device used. Table 2-3 presents
device-independent status codes.

is a I-byte field receiving the execution
status of a gapless I/O request after
completion. The status received contains
information unique to the type of device used.
Table 2-11 presents device-dependent status
codes for gapless operation.

is a 4-byte field containing the fullword
address of a queue where the driver places the
starting address of each buffer used in a
gapless I/O operation. If the operation is a
gapless write, these buffers have been
successfully written to tape. If the
operation is a gapless read, these buffers
contain data read from the tape.

is a 4-byte field containing the fullword
address of a queue where the task places the
starting addI'ess of each buffer to be used in
a gapless 1/0 operation. If the operation is
a gapless write, these buffers are written to
tape. If t.he operation is a gapless read,
these buffers are filled with data read off
from a tape.

is a 4-byte f'ield containing the length of
each buffer whose starting address is present
on the IN-QUEUE. Buffer length must be an
even number of bytes for both read and write
operations. All buffers, except the last,
must be the! same length within a single
gapless I/O clperation. The amount of space
used in the last buffer, however, can vary.

is a 4-byte field whose contents depend upon
the operation (read or write) being performed.
If the operat.ion is a gapless read, the driver
fills this field with the length of the last
buffer read off tape. The length of the last
buffer can be optionally supplied by the task.
If the operat.ion is a gapless write, the task
supplies the driver with the length of the
last buffer to be written.

2-35

Extended
options

is a 4-byte field containing one of two
possible extended function codes indicating
gapless mode I/O. Table 2-12 presents the
extended function codes available for gapless
mode I/O.

2.3.2 Standard Function Code Format - Gapless Mode

Figure 2-6 shows the standard function code format for a gapless
mode data transfer request, and Table 2-10 defines each function
code bit setting.

I 0 I R I W I

Bits:
o 1 2 3 4 5

Extended
Option

6 7

Figure 2-6 Function Code Format for Gap1ess Mode Data Transfer
Requests

TABLE 2-10 FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS

BIT
POSITION BIT NAME BIT SETTING AND MEANING

= __ = __ 3 ________________ 1

2-36

o I Function code 0 = data transfer request. Must

1

2

3

I type be set for gapless I/O
operations.

I Read I 1 -= read operation. (Bit 2
I must be set to 0.)

I Write I 1 = write operation. (Bit 1
I must be set to 0.)

I Not used in
I gapless mode

48-038 FOQ R02

TABLE 2-10 FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS (Continued)

BIT
POSITION

4

BIT NAME

I/O proceed

Wait I/O

Wa.it only

5 I Not used in
I gapless mode

6

48-038 FOO R02

Conditional
pr()ceed

BIT SETTING AND MEANING

o : if the device is not busy,
return control to the call­
ing task after initiation
of data transfer to the
device. However, if the
device is busy, the request
is queued and task execu­
tion continues. Suggested
for gapless mode.

1 : stop task execution, ini­
tiate data transfer to the
device, and wait until the
completion of I/O.

1 : task execution stops and
waits until the completion
of all queued I/O proceed
requests to the specified
lu.

When a wait only request is
issued, bit 4 is the only
bit set in the function
code.

o : after the I/O request is
issued, put the task into a
wait state if the requested
device is busy and the
total number of queued re­
quests exceed the maximum.
Once the I/O request is
completed, the task resumes
execution. If the maximum
number of queued requests
is 1, a pending request
causes the task to be
placed .in a wait state.

2-37

TABLE 2-10 FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS (Continued)

BIT

POSITION BIT NAME BIT SETTING AND MEANING

7

Unconditional
proceed

Test I/O
complete

Extended option

2.3.3 Logical Unit (lu)

1 - any I/O request made to a
device that is busy is re­
jected if the total number
of queued requests exceeds
the maximum and task exec­
ution continues.

1 test to check for the com­
pletion of I/O to a speci­
fied lu.

If a previous I/O proceed
request or queued I/O pro­
ceed request does exist,
the CC is set to X'F'.
However, if there is no
outstanding I/O proceed
request, the CC is set to
X' 0' .

When a test I/O complete
request is issued, bit 6 is
the only bit in the func­
tion code set. If bit 4 is
set, it is ignored.

1 = test to see if XSVCl
option was specified at
Link time. If set, the
extended options fullword
in the parameter block is
checked for specified gap­
less option. Both the
XSVCl option and this bit
must be set for gapless
operation.

An Iu is a decimal number ranging from 0 to 254. The highest Iu
number to which a task can be aSSigned is determined by the Link
OPTION command. After loading the task into memory, the lu must
be assigned to a tape drive which supports gapless I/O (device
codes 68-70) through SVC7 or an ASSIGN command.

2-38 48-038 FOO R02

If no actual I/O operation is desired, the lu should be assigned
to NULL:, causing a no-op to occur.

2.3.4 Device-Independent status Codes

Logical unitfs provide device-independent I/O by causing all I/O
requests to be made directly to the lu and not to the device.
The execution status of a gapless I/O request that is independent
of the physical characteristics of the device being used is
returned to the device-independent status field of the parameter
block. See Table 2-3. The data remaining in this field from a
previous I/O request is not modified until a subsequent I/O is
completed or an error occurs.

2.3. 5 Dev iCEt-Dependent Status Codes

The deVice-dependent status field, together with the
device-independent status field, indicates the execution status
of a gapless I/O request that is directly related to the unique
characteristics of the device being used. Tables 2-11 and 2-12
present the error status codes for gapless operation. A gapless
operation ceases upon detection of anyone of these errors.

TABLE 2:-11 MAGNETIC TAPE DEVICE-DEPENDENT STATUS CODES
(GAPLESS ONLY)

STATUS
CODE MEANING

===---------------------------~---------------~---------X'8485'

X'8487'

X'8489'

X'C08l'

X'C082'

X'C083'

X'C084'

48-038 FOO R02

A read or write time-out condition
occurred.

'rhe end address read/written by the SELCH
does not match the expected end address.

End address returned from SELCH is greater
than the expect43d end address on gapless
read.

No buffer is available on the task IN-QUEUE.

Address provided by the user on the IN­
QUEUE is outs id«:! user's address space.

Address of a qu«:!ue is not on a fullword
boundary.

Length of buf f e]~ is an odd number of
bytes. Length ()f last buffer is an odd
number of bytes for a write operation.

2-39

2.3.6 Buffer Queues

The OUT-QUEUE field and IN-QUEUE field are each 4-byte fields
that contain the address of a queue, where:

• The driver places the starting address of each buffer used in
a gapless operation (OUT-QUEUE) .

• The task places the. starting address of each buffer to be used
in a gapless operation (IN-QUEUE).

The address of the IN-QUEUE must be greater than the address of
the OUT-QUEUE or the SVCl handler rejects the operation. Figure
2-7 presents the format of both the OUT-QUEUE and IN-QUEUE.

The user sets up a queue via the OLIST xx command, where xx is
the total number of buffer entries allowed. See the Common
Assembly Language/32 (CAL/32) Reference Manual for instructions.

0(0)
Number of slots

4(4)
Current top

8(8)
Flags

12(C)
Flags

16(10)
Flags

19(9)

113(0)

117(11)

12(2)
Number used

16(6)
Next bottom

Address of first buffer

Address of second buffer

Address of third buffer

~ ~
I I

1---1
I

Flags Address of nth buffer I

Figure 2-7 IN-QUEUE or OUT-QUEUE structure

2-40 48-038 FOO R02

Fields:

Number of
slots

Number used

Current top

Next bottom

Flags

Address of
nth buffer

48-038 FOO R02

is a standard list parameter that is explained
in the Common Assembly Language/32 (CAL/32)
Reference Manual.

is a standard list parameter that is explained
in the Common Assembly Language/32 (CAL/32)
Reference Manual.

is a standard list parameter that is explained
in the Common Assembly Language/32 (CAL/32)
Reference Manual.

is a standard list parameter that is explained
in the Common Assembly Language/32 (CAL/32)
Reference Manual.

is a I-byte field. The setting of bit 0 in
this field identifies whether the buffer is
the last buffer in the list. If bit 0 is set
to 0, the buffer is not the last buffer. If
bit 0 is set to 1, the buffer is the last
buffer in the queue. Under abnormal
conditions, the last buffer on the OUT-QUEUE
may not have the flag bit set.

NOTE

To pr()per1y terminate a gapless
write ()peration, the flags field
for the address of the last buffer
to be written should have bit 0
set to 1. But a gapless read
operation can be terminated in two
ways. If the user wishes to read
only pa.rt of a record or the user
knows how long the record is, the
flags field for the address of the
last buffer read should have bit
o set to 1. If the user wishes to
read the entire record but does
not kn()W how long it is, the flags
field for the address of all
buffers should have bit 0 set to
O. In this case, it is mandatory
for the user to retain buffers on
the IN--QUEUE until the I/O proceed
has been completed. If exactly
the number of buffers needed is
placed on the IN-QUEUE, the last
buffer must be so indicated.

is a 3-byte field containing the hexadecimal
starting addlcess of a buffer.

2-41

2.3.6.1 Using the Buffer Queue

Gapless operations should be specified as I/O proceed completion
operations; therefore, task execution can continue during gapless
I/O. One of the functions a task can perform during gapless I/O
is to prevent the task from running out of buffer space. The
task can accomplish this by removing buffer entries from the
OUT-QUEUE and placing them on the IN-QUEUE after a buffer
transfer is completed. For example, if a task is required to
write 440kb in gapless.mode using only five 64kb buffers, the
total buffer space available is 320kb (or 120kb less than is
required to complete the write operation). After the first
buffer has been written, the starting address of the buffer is
placed on the OUT-QUEUE. While the second buffer is being
written, the task can transfer the address of the first buffer
from the OUT-QUEUE to the IN-QUEUE. This gives the task 64kb
more buffer space.

Similarly, the task can transfer the address of the second buffer
to the IN-QUEUE while the third buffer is being read. This
transfer provides the task with enough buffer space for the
remaining 56kb. Note that when the task transfers the address of
the second buffer from the OUT-QUEUE to the IN-QUEUE, bit 0 of
the flags field should be set to 1. The length of the last
buffer should be placed in the length of last buffer field of the
SVCl parameter block prior to the start of the operation.

The task should use an add
instruction to add buffer
library (RTL) instruction
OUT-QUEUE. See the
Reference Manual for more
RTL instructions.

to the bottom of the list (ABL)
entries to the IN-QUEUE and a run-time
to remove buffer entries from the

Common Assembly Language/32 (CAL/32)
information on how to use the ABL and

2.3.6.2 Trap-Causing Events Resulting from Gapless Input/Output
(I/O) Operations

Because a gapless I/O operation should be specified as an I/O
proceed completion operation, the task can be notified that a
gapless read or write has been completed via a task queue trap.
If the SVCl extended function code 3 (gapless I/O with buffer
transfer reporting) has been specified, the task can also receive
a task queue trap each time a buffer address has been added to
the OUT-QUEUE.

Before a task can be notified of gapless I/O completion or a
buffer transfer, the task has to be prepared to receive and
handle a task queue handle trap. See the 08/32 Application Level
Programmer Reference Manual for information on preparing a task
to handle traps.

2-42 48-038 FOO R02

2.3.7 Buffer Length

The buffer length field is given to the driver by the task to
inform the driver of the length of the buffers whose starting
addresses aret on the IN-QUEUE. Buffer length must equal an even
number of bytes for both read ,and wr ite operations. All buffers
must be of the same length with the possible exception of the
last buffer (see Section 2.3.8).

2.3.8 Length of Last Buffer

The use of this field is dependent upon the gapless I/O operation
being performed (read or write). The length of this buffer
cannot be greater than that of the other buffers. If a gapless
write operation is being performed, this field is given to the
driver by the task and contains the length of the last buffer to
be written. This information must be given even if the last
buffer is t.he same length as ·the previous buffers and should be
placed in thet SVCl parameter bllDCk before the wr ite is started.

On a gapless read operation, the driver fills this field with the
length of thet last buffer read from the tape. For example, if a
l50kb record is to be read gapless from a tape and 64kb buffers
are used, a total of three buffers is required. The first two
buffers cont.ains l28kb of info'rmation; however, the third buffer
contains only 22kb of information. The value 22kb is returned to
the length of last buffer field in this example. If desired,
this field can be given to the driver by the task. If the last
buffer is spetcified for a read (i.e., the flags field of the
address has bit 0 set to 1), this field must be given to the
driver by the task.

NOTE

If a gapless read does not reach normal
completion (status code 0), the contents
of the length of last buffer field are
meaningless.

On a gapless wri'te operation, the length of the last buffer must
be an even number of bytes.

2.3.9 Extended Options Field

The extended options field in a gapless mode SVCl parameter block
functions as detailed previous~y in Section 2.2.7. However, only
two extended function codes are recognized as valid in a gapless
mode SVC1. 1'hese codes are pre:sented in Table 2-12.

48-038 FOO R02 2-43

TABLE 2-12 EXTENDED FUNCTION CODES FOR
GAPLESS I/O OPERATION

EXTENDED I
FUNCTION I

CODE OPERATION
==================------------=====---

2 Gapless operation

3 Gapless operation with
buffer transfer reporting

Codes 0 through 1 and 4 through 31 are not used with the gapless
mode SVCl parameter block.

2.4 SERIES 3200 INPUT/OUTPUT (I/O) BUS SWITCH

The Perkin-Elmer Series 3200 I/O Bu~ Switch Driver (device code
143) provides software control of the I/O bus switch hardware.
This switch allows the sharing of I/O devices by two or more
Series 3200 Processors equipped with a multiplexor (MUX) and/or
a SELCH bus. It may also be used as a bus extender. The bus
switch hardware must be strapped for programmable mode.
Strapping options are available for normal request, master
request or multiple master request contention modes.

2.4.1 Normal Request Contention Mode

In the normal request contention mode, any central processing
unit (CPU) in the configuration can issue a request for the
services of the common bus. If the common bus is idle, control
is immediately granted to the requesting CPU. If the common bus
is in use (controlled by another CPU in the configuration) the
request is queued until the controlling CPU relinquishes the bus.

2.4.2 Master Request Contention Mode

In the master request contention mode, one CPU may be designated
as the master cpu. When this cpu issues a master request, it is
immediately granted control regardless of the state of the bus.

2.4.3 Multiple Master Request Contention Mode

In the multiple master request mode, several or all of the CPUs
in the configuration may issue a master request.

2-44 48-038 FOO R02

0(0)
Functic)n

code

4(4)

8(8)

12(C)

11 (1) 12(2)
lu status

ReseI'ved

Time-out constant

SVC! l,parblk

parblk
ALIGN 4
DB
DB
DS
DCF
DCF'

X'function code'
X'lu'
2 bytes for status
Y' 00' , Y , 00 '
X'Time-out constant'

F,1gure 2-8 SVCl PaI'ameter Block and Coding
for Cont~rol of I/O Bus Switch

Fields:

Function
code

lu

status

48-038 FOO R02

is a I-byt~e field indicating the switch
oper at ion t~o be per formed. Hexadec imal
function codes for bus switch operations are
described in Table 2-13.

is a I-byte field containing the logical unit
to which thE~ bus switch is currently ass igned.

is a 2-byte field. The first byte receives
the execution status of the switching request.
The second receives the ·hardware status of the
switch. Table 2-14 describes the hexadecimal
constants rE~turned to this field.

2-45

Reserved

Time-out
constant

is an 8-byte field that must contain zeros.

is a hexadecimal value ranging from X'l' to
X'7FFE' specifying the time-out delay in
seconds. The driver waits the indicated
number of seconds for connection before
time-out. This field is required only for
MASTER CONNECT, CONNECT and CLEAR requests.

Table 2-13 defines the"function codes for I/O bus switch command
function requests.

TABLE 2-13 FUNCTION CODES FOR THE I/O BUS SWITCH DRIVER

FUNCTION I
CODE MEANING

~==============--------------------------------==--------=-==-= X'4x'

X' 3x'

X'2x'

X'CO'

2-46

MASTER CONNECT - If the switch is strapped for the
master or multiple master options, the processor
issuing this command is granted control of the
common bus, provided another processor does not
control the bus via a MASTER CONNECT. Any active
normal connection is immediately disconnected and
all queued normal CONNECT requests are cleared.
The value of x determines whether the call is a
WAIT, PROCEED or UNCONDITIONAL PROCEED.
For possible values of x, see Table 2-1.

CONNECT - is the normal request/contention
sequence. If the common bus is idle, the processor
issuing this command is immediately granted
control. If the bus is busy, the CONNECT request
is queued. The value of the random field of the
SVCl parameter block is used to specify the number
of seconds the driver is to wait for connections
before time-out. The default is three seconds.
The value of x determines whether the call is
WAIT, PROCEED or UNCONDITIONAL PROCEED. For
possible values of x, see Table 2-1.

CLEAR - activates the common bus system clear
(SCLRO). This command causes all inter[uccu on
the common bus to be reset. The value of x
determines whether the call is WAIT, PROCEED or
UNCONDITIONAL PROCEED. For possible values of x,
see Table 2-1.

ENABLE - This command enables interrupts on the
common bus.

48-038 FOO R02

TABLE 2-13 FUNCTION CODE~~ FOR THE I/O BUS SWITCH DRIVER
(Continued)

FUNCTION I
CODE

X'AO'

X'S4'

X'SS'

X'90'

STATUS
CODE

MEANING

DISABLE - This co~~and prevents interrupts on the
common bus. Intel:rupts are queued, but not
serviced while this command is in effect.

DISARM - prevents the queuing and servicing of
interrupts on the common bus.

DISCONNECT - disconnects the common bus from the
controlling processors. Once disconnected, the
common bus is avaj~lable to all processors.

RETURN STATUS - rE~turns the hardware status of the
bus switch to the second byte of the device­
dependent status halfword of the SVCI parameter
block. The only operation performed by this
command is a senSE~ status of the switch hardware.
The state of the switch is not altered.

TABLE 2-14 I/O BUS SWITCH STATUS CODES

MEANING

=------=---X'OOnn'

X'COnn'

X'AOnn'

X'S4nn'

X'S2nn'

Normal completion of requested operation

Illegal function code

eommon bus unavailBLble

Hardware failure, bad status returned from connect
()r CLEAR

Time-out or connect requested with bus connected,
or clear requested with bus not connected

4S-03S Faa R02 2-47

NOTE

Inn' always indicates the switch hardware
status. The following list presents some
possible hardware status values. See the
Input/Output Switch (lOS) Installation
and Maintainence Manual for more
information.

• 00 - indicates that the switch is
selected by a normal or master
request.

• 01 - indicates that the switch is
unavailable due to power loss on
the common bus or disconnected
cables.

• 02 - indicates that the bus is busy
during a CLEAR interval
(100-200ms).

• 08 - indicates that the switch is
idle.

• OA - indicates that the bus is busy
servicing another processor.

2.4.4 Programming Considerations

After acquiring the common bus via a MASTER CONNECT, the
acquiring processor should immediately issue a CLEAR. This is
necessary because a MASTER CONNECT clears any active normal
connects, thereby leaving the state of interfaces unknown. The
CLEAR command causes the common bus to be initialized (same as
depressing the processor INIT button), which places interfaces in
a known state.

In a multiple master configuration, a processor acquiring the bus
via MASTER CONNECT should immediately relinquish the bus and
reacquire it via a NORMAL CONNECT. This will allow any other
master processors to acquire the bus via MASTER CONNECT.

After issuing a NORMAL CONNECT or a MASTER CONNECT, the calling
procedure should ENABLE interrupts. It is the user's
responsibility to know what devices were hung on the common bus
at sysgen. If a common bus is not connected with interrupts
enabled, a driver call to any device on the common bus results in
a device unavailable status return on a time-out from the
requesLed device's driver.

2-48 48-038 FOO R02

The parameter block fields used for switching operations are the
function code, status halfword and, optionally, the random
address field (used to specify wait time).

The followin9 examples illustrate the ways in which the I/O bus
switch may be used.

Examples:

This example shows the inclusion of the switch in the Sysgen/32
DEVICES statement.

DEVICES

IOS1:,32,143

ENDD

The I/O bus switch may then be assigned in the normal manner
(i .. e, via SVC7 or an operating system multi-terminal monitor
(OS/MTM) command).

LOAD DMO" SWCHDEMO
TASK DMO

AS 7, IOSJL:

START

*any task that uses switch
*not necessary from MTM

*sw'itch

The switch may then be controlled via standard SVCl function
codes, as illustrated by the following simplistic CAL routines.

BEGIN

SWCHLU
DELAY
NRML
ENAB
DISCON

EQU

EQU
EQU
EQU
EQU
EQU

48-038 FOO R02

*

7
5
X'38'
X'CO'
X'88'

SWITCH ASSIGNED TO LU 7
WAIT 5 SEC BEFORE TIME OUT
NORMAL CONNECT W/WAIT Fe
ENABLE FC
DISCONNECT FC

2-49

BAL 15,SWCHPREP

BAL 15,RLSEBUS

SVC 3,EOTCODE

SWCHPREP EQU
STM
LHI
LHI
LHI
LHI

GETBUS EQU
STB
STB
STB
SVC
LHI
CLHI
BNE
STB
SVC
LHI
CLHI
BNE
LM
BR

RLSEBUS EQU
ST
LHI
LHI
STB
STB
SVC
LHI
CLHI
BG
LM
BR

*
12, SAVEREGS
12,SWCHLU
13,DELAY
14,NRML
15,ENAB

*
12, SVC1. FC
13,SVC1.RAD
14, SVC1.FC
1,SVC1.FC
14,SVC1.STA
14,X'00'
CONNERR
15,ENAB
1, SVC1. FC
15,SVC1.STA
15,X'00'
ENABERR
12, SAVEREGS
15

12, SAVEREGS
14,DISCON
12,SWCHLU
14,SVCl.FC
12,SVC1.LU
1,SVCl.FC
14, SVC1. STA
14,X'00FF'
DSCNERR
12 , SA VEREGS
15

CONNERR EQU *

2-50

GO GET BUS

RELEASE BUS

SAVE REGISTERS
PICK UP LU #
PICK UP DELAY
PICK UP FC
PICK UP FC

LU # TO PARBLK
DELAY TO PARBLK
CONNECT W/WAIT TO PARBLK
ISSUE CONNECT REQUEST
PICK UP STATUS
CHECK FOR SUCCESSFUL CONNECT
GO TO ERR ROUTINE
ENABLE FC TO PARBLK
ISSUE ENABLE INTERRUPTS REQUEST
PICK UP STATUS
CHECK FOR SUCCESSFUL ENABLE
GO TO ERR ROUTINE
RESTORE REGISTERS
BUS READY - GO DO I/O

SAVE REGISTERS
PICK UP DISCONNECT FC
PICK UP LU #
DISCONNECT TO PARBLK
LU # TO PARBLK
REQUEST DISCONNECT
PICK UP STATUS
CHECK STAT - HARDWARE N/A
GO TO ERR ROUTINE
RESTORE REGISTERS
DISCONNECTED - DO WHATEVER

48-038 FOO R02

ENABERR EQU *

DSCNERR EQU *

* * DEFINITIONS
*

SAVEREGS DSF 9
EOTCODE DS 2

$SVCl

END BEGIN

REGISTER SAVE AREA
HALFWORD FOR EOT
PICK UP SVCl STRUC

48-038 FOO R02 2-51

CHAI)TER 3
GENElt~ SERVICE FUNCTIONS SUPERVISOR CALL 2 (SVC2)

3 . 1 I NTRODUC'r I ON

SVC2 provides general service functions distinguished from one
another by ,a specific function code number. Each SVC2 function
requires a sp,ecif ic parameter block for proper operation. Refer
to each individual code for its parameter block format and
required coding. Table 3-1 lists all available SVC2 function
codes with a brief description of each.

TABLE 3-1 SVC~2 FUNCTION CODES

------------~--
SVC2 CODE NAME FUNCTION

1=====_-----_1_----=-===----====----=============---============~
SVC2 code a I Make journal

I entries

SVC2 code 1 I Pause

SVC2 code 2 Get storage

SVC2 code 3 Release storage!

SVC2 code 4 Set status

48-038 Faa RO~~

I Makes an entry into the
I system journal from an
I executive task (e-task).

I Places the task in a
I suspended state.

Reserves a' workspace area
for external subroutines
called by the task during
execution.

Releases the temporary
storage locations obtained
by a previous SVC2 code 2.

Gets storage by decreasing
the task UTOP by the number
of user-specified bytes.

Modifies the arithmetic
fault interrupt bit and
condition code (CC) in the
program status word (PSW).

3-1

TABLE 3-1 SVC 2 FUNCTION CODES (Continued)

SVC2 CODE NAME FUNCTION

=====--SVC2 code 5

SVC2 code 6

SVC2 code 7

SVC2 code 8

Fetch pointer

Convert binary
to ASCI I
hexadecimal or
ASCII decimal

Log message

Interrogate
clock

SVC2 code 9 I Fetch date

SVC2 code 10 I Time of day
I wait

SVC2 code 11

SVC2 code 14

SVC2 code 15

3-2

Interval wait

Internal reader

Convert ASCII
hexadecimal or
ASCII decimal
to binary

Copies the address of UTOP,
CTOP and UBOT from the task
control block (TCB) and
stores them in the task
user-dedicated location
(UDL) .

Converts a binary number to
either an ASCII hexadecimal
or ASCII decimal number.

Sends a message to the
appropriate log device
regardless of the current
logical unit (lu) assign­
ments.

Sends the user the current
time of day calculated in
seconds from midnight in
binary or in formatted
ASC I I .

I Sends the user the current
I date in formatted ASCII.

I Places the calling task in
I a wait state until a
I specific time of day.

Places the calling task in a
wait state for an interval,
which is specified in
milliseconds from the time
the call is executed.

Allows a foreground task
loaded from the system
console to invoke operator
and command sUbstitution
system (CSS) commands.

Converts an ASCII hexa­
decimal or ASCII decimal
number to a binary number.

48-038 FOO R02

Tl~LE 3-1 SVC2 FUNC~TION CODES (Continued)

SVC2 CODE NAME FUNCTION
====-===-==-~======----====----.--===============-=======-=----=

SVC2 code 16

SVC2 code 17

SVC2 code 18

SVC2 code 19

SVC2 code 20

SVC2 code 21

SVC2 code 23:

48-038 FOO R02,

Pack file
descriptor

Scan mnemonic
table

Move ASCII
characters

Peek

Expand alloca­
tion

Processes a user-specified
unpacked file descriptor
(fd) into a packed format to
be used by the operating
system.

Scans for an ASCII character
string in a mnemonic table
and compares it with the
user-specified ASCII charac­
ter string for a match.

Moves a specified number of
ASCII characters in memory
from the sending location to
a receiving location.

I Obtains user-related infor­
I mation from operating system
I data structures.

Reserved for sequential
tasking machines. Provides
for compatibility with
current 32-bit operating
systems.

Contract alloca-I Reserved for sequential
tion tasking machines. Provides

for compatibility with
current 32-bit operating
systems.

Timer
management

Schedules the addition of a
parameter to a task queue on
completion of a specified
interval or a repetitive
interval.

Puts a task in a wait state
until completion of an
interval.

Determines the time remain­
ing for a previously estab­
lished interval to expire.

Cancels a previously estab­
lished interval.

3-3

TABLE 3-1 SVC2 FUNCTION CODES (Continued)

--------------------------------~---------~---------~----~~----
SVC2 CODE NAME FUNCT,ION

---1 SVC2 code 24 set accounting stores eight bytes of user-

SVC2 code 25

SVC2 code 26

information supplied information in the
accounting transaction file
(ATF) on task completion or
data overflow of accounting
records.

Fetch
accounting
information

Fetch device
name

Fetches accounting informa­
tion and stores it in a
user-specified receiving
area.

Searches the volume mnemonic
table (VMT) for a user­
supplied volume name and
returns the name of the
device on whi.ch that volume
is mounted.

SVC2 code 27 Memory manage- Allows a user task (u-task)
ment to access and modify entries

(except shared ones) within
the private segment table
(PST) in its TeB. 1

---1
SVC2 code 29 Unpack file Converts a packed fd f~om I

3-4

descriptor I the file directory or an I
I sve7 paramter block to its
I unpacked format.

48-038 FOO R02

I SVC2
I CODE 0

3 • 2 SVC2 CODE: 0: MAKE JOURNAL ENTR I ES

SVC2 code 0 mBLkes an entry into the system journal from an
e-task. The system journal provides a method to trace back
important eVEtnts (SVCs, input/output (I/O) operations, task
switching) that occurred during system operation. For example,
the journal is useful for tracing the cause of a system failure.
The paramete:r block format for SVC2 code 0 is shown in Figure
3-1.

0(0)

4(4)

8(8)

12(C)

16(10)

parblk

12(2)
Code

Value 1

Value 2

Value 3

Value 4

SVC 2,parblk

DC
DC
DC
DC
DC
DC

H'O'
H' journal code'
F'value l'
F'value 2'
F'value 3'
F'value 4'

Journal code

Figure 3-1. SVC2 Code 0 Parameter Block Format and Coding

48-038 FOO R02 3-5

During execution, a logical-OR operation is performed on a mask
and the journal code to indicate that the entry originates from
an SVC2 code 0, rather than from within the system. The value 1,
2, 3 and 4 fields of the parameter block are stored following the
journal code and calling task name in the journal. These values
can contain any desired information to be preserved for system
debugging.

3 -6

NOTE

This call has an effect only if the
journal is included in the system at
(source) system generation (sysgen).

48-038 FOO R02

1 SVC2
1 CODE 1

3.3 SVC2 CODE 1: PAUSE

SVC2 code 1 stops task execution and places the task into a
suspended sta.te. This is accc)mplished through the SVC2 code 1
parameter block shown in Figure :3-2.

10(0) 11(1)
option Code

SVC .2,parblk

ALIGN 4
parblk DB 0,1

Figure 3-2. SVC2 Code 1 ParaJrneter Block Format and Coding

This paramet.er block must be two bytes long, fullword
boundary-aligned, and does not have to be located within a
task-writable segment. Following is a description of each field
in the paramet.er block.

Fields:

option

Code

is a l-byte field that must contain a value of
o to indicate no options for this call.

is a l-byte field that must contain the
decimal value 1 to indicate code 1 of SVC2.

After executing SVC2 code 1, the following ·message is displayed
on the system console:

TASK PAUSE:D

48-038 FOO RO~~ 3-7

If the task is running under MTM, the above me~sage is 4!f:lplayed
on the user console.

While the
directed
continue
execution
code 1.

3-8

task is paused, the operator gan i~§ue command a
to the paused task to cnange the task envtrQoment. To
task execution, enter the CONTINUE 90mrnan£!, Ta.ek
resumes with the instruction immediately fol.low1n9 SVC2

48-038 FOO R02

I SVC2
I CODE 2

3 .4 SVC2 CODl~ 2: GET STORAGE

SVC2 code 2 rleserves a workspacE~ area for external subrout ines
called by the task dur ing E~xecut ion (e. 9 ., FORTRAN run -t ime
library (RTL) routines). This workspace is reserved in the
unused portion of the task's impure segment between UTOP and
CTOP. For mo:re information on this segment, see the OS/32
Application Llevel Programmer Reference Manual.

The SVC2 code 2 operation does not increase the task's allocated
memory size.

Figure 3-3 illustrates the par~leter block for SVC2 code 2.

10(0)
Option

4(4)

parblk

11(1) 12(2) 13(3)
Code Reserved User

register

Number of bytes

SVC 2,parblk

I~IGN 4
DB option,2,O
DB user register
DC F'number of bytes'

Figure 3-:3 SVC2 Code 2 ParclI1\eter Block Format and Coding

This parame'ter block must be eight bytes long, fullword
boundary-aligned, and located in a task-writable segment when
option X'80' is used. A general description of each field in the
parameter block follows.

48-038 FOO R02 3-9

Fields:

option

Code

Reserved

User
register

Number
of bytes

is a I-byte field that must contain one of the
following options:

• Option X'OO' reserves the user-specified
number of bytes in fullword increments in
the unused portion of the task impure
'segment between UTOP and CTOP.

• Option X'80' reserves the remaining unused
portion of the task impure segment between
UTOP and CTOP.

is a I-byte field that must contain the
decimal value 2 to indicate code 2 of SVC2.

is a reserved I-byte field that must contain
a o.

is a I-byte field that must contain a decimal
number ranging from 0 to 15 specifying the
register to receive the starting address of
the reserved workspace area.

is a 4-byte field containing different
information for each option.

• Option X'OO' contains the user-specified
number of bytes to be reserved for the
workspace area.

• Option X'80' receives the number of bytes
actually reserved for the workspace area.

When a task is link-edited, the default task workspace (the
difference between CTOP and UTOP) should be large enough to
provide enough workspace for both the task and the external
subroutines. The task workspace can be increased through the
WORK= parameter of the Link OPTION command, the LOAD command or
an SVC6.

3-10 48-038 FOO R02

After executing SVC2 code 2, the CC is set as follows.

Condition Code:

I C I V I GIL I
1=--------------1

Normal termination 1 0 101 010 I
101 1 1 0 I 0 I User-specified number of bytes is a nega­

tive value or a value greater than the
task's allocated memory size

NOTE

When SVC2 code 2 is ~~xecuted and the task
UTOP changes, the UTOP address stored in
the task UDL is not updated to contain
the most current tJTOP. SVC2 code 5
updates the address 1n the UDL.

3.4.1 SVC2 Code 2, Option X'OO'

If option X'OO' is specified, the address of the task's current
UTOP is adjusted to include the number of user-specified bytes in
the parameter block. Once the UTOP address is adjusted, the
starting address of the reserved workspace area, which is the
original or previous UTOP, i6 stored in the user-specified
register. This option can reserve new workspace areas until they
are needed during task execution in subsequent calls.

The number of bytes should be spE~cif ied in fullword increments
because the UTOP address is rounded up to the nearest fullword
boundary.

Example:

SVC 2,GET

ALIGN 4
GET DB 0,2,0

DB 5
DC Y'600' 1.SK

48-038 FOO R02 3-11

This example is illustrated in Figure 3-4. A task is loaded with
a task workspace area of 5.5kb specified in the LOAD command.
After the task is loaded, UTOP is located at X'C78' and CTOP is
located at X'lFFE'. After executing SVC2 code 2, UTOP is
adjusted to X'1278'. The remaining unused portion (area between
X'1278' and X'2000') can be used by subsequent routines when
needed during task execution.

If the user-specified number of bytes for option X'OO' is a
negative value or greater than the task current allocated memory
size (CTOP): .

• The UTOP address is not adjusted

• An address of 0 is returned in the user-specified register

• The CC is set to 4 (V bit set)

038-1

X'2000'
(ABOVE USER
TASK)

UTOP X'1278'
(AFTER SVC 2
CODE 2 EXECUTION)

X'600' BYTES
(RESERVED BY
SVC 2 CODE 2)

UTOP X'AOO'
(AT LOAD TIME)

X'lOO' I

UBOT X'O'

USER CODE

UDL

EXPANDED THROUGH
WORKSPACE FIELD OF
LOADCOMMAND--------~

X'l FFE' CTOP
(AFTER LOAD TIME)

5.5kb

X'A54' CTOP
(BEFORE LOAD TIME)

Figure 3-4 Task Impure Segment for SVC2 Code 2, Option X'OO'

3-12 48-038 FOO R02

3 .4. 2 SVC2 Code .2, opt ion X' SO '

If option X'SO' is specified, the parameter block must be located
in a wr itable segment. The addr~9ss of the task's current UTOP is
adjusted to include all of the r~9maining unused portion in the
impure segment, making UTOP equi:ll eTOP+2. Once the UTOP address
is adjusted, the starting addresl3 of the reserved workspace area,
which is the address of the original or previous UTOP, is stored
in the user-specified registelr. Also, t.he number of bytes
actually reserved is stored in the number of bytes field in the
parameter block.

Example:

sve 2,GET

ALIGN 4
GET DB X'SO',2,O

DB 5
DS 4

This example is illustrated in F.igure 3-5. A task is linked with
a workspace greater than 5.5kb. After the task is loaded wit.h a
load expand factor of 5.5kb, UTOP is located at X'e78'. After
executing SVC2 code 2, UTOP is adjusted to X'2000'.

038-2
UTOP X'1000'

(AFTER SVC 2
CODE 2 EXECUTION)

X"OO' BYT,J
UTOP)('FOO' .:l 1
(AFTEB SVC 2
CODE <I EXECUTION)

UTOP X'C78'
(,o,T LOAD TIME)

X'100'

UBOT X'O'

USER CODE

UDL

X'AFE' CTOP
(AFTER EXPANSION
BY LOAD)

3.75kb

X'CFE' CTOP
(BEFORE EXPANSION
BY LOAD)

Figure 3-5 Task Impure Segment for SVe2 Code 2, Option X'SO'

4S-038 FOO R02 3-13

I SVC2
I CODE 3

3 . 5 SVC2 CODE 3: RELEASE STORAGE

SVC2 code 3 releases the workspace area in the unused portion of
of the task impure segment that had been reserved by a previous
SVC2 code 2 (see Section 3.3). Releasing the reserved workspace
for external subroutines does not decrease the task's allocated
memory size. The SVC2 code 3 parameter block is shown in Figure
3-6.

0(0)
Option

4(4)

parblk

11(1)
Code

12(2)
1

Number of bytes

SVC 2,parblk

ALIGN 4
DB 0,3
DC H'O'
DC F'number of bytes'

Reserved

Figure 3-6 SVC2 Code 3 Parameter Block Format and Coding

This parameter block is eight bytes long, fullword
to be located in a
of each field in the

boundary-aligned, and does not have
task-writable segment. A description
parameter block follows.

Fields:

Option

Code

3-14

is a I-byte field that contains a value of 0
to indicate no options for this call.

is a I-byte field that must contain the
decimal value 3 to indicate code 3 of SVC2.

48-038 FOD RD2

Reserved

Number
of bytes

is a reserved 2-byte field that must contain
zeros.

is a 4-byte field that must contain the
user-specified number of bytes of the reserved
workspace to be released.

When executin~J this SVC, the address of the task's current UTOP
is adjusted to exclude the user-specified number of bytes of
reserved workespace. If the number of bytes is not specif ied in
fullword incl~ements, the UTOP address is adjusted by round ing
down to the nE~arest fullword boundary. After executing SVC2 code
3, the CC is set as follows.

Condition CodE~:

I C I V I GIL I
1-=------m=---~:1
I 0 I 0 I 0 I 0 I
101 1 I 0 I 0 I

Example:

Normal termination
User-specified number of bytes is a nega­

. tive value or a value greater than the
task's allocated memory size

SVC 2 , RELEASE

ALIGN 4
RELEASE DB 0 , 3

DC H'O'
DC F'256'

Figure 3-7 illust:rates this example. A task was linked with a
workspace of 3.75kb and loaded into memory. After the task is
loaded, UTOP is located at X'C78' and CTOP is located at X'FFE'.
After executing SVC2 code 2, UTOP is adjusted to X'lOOO'. After
executing SVC2 code 3, 256 bytes of reserved storage are
released, adjusting UTOP to X'FOO'.

48-038 FOO R02 3-15

038-3

UTOP X '2000'
(AFTER SVC 2

CODE 2 EXECUTION

X'FOO' BYTES

UTOP X'C7S'
(AT LOAD TIME)

X'lOO'

UBOT X'O'

USER CODE

UDL

iXPANDED THROUGH
THE LINK OPTION
COMMAND -------,

X'l FFE' CTOP
(AFTER EXPANSION
BY LOAD)

5.5kb

X'CFE' CTOP
(BEFORE EXPANSION
BY LOAD)

Figure 3-7 Task Impure Segment for SVC2 Code 3

If the user-specified number of bytes is a negative number or is
more than the number specified by Link, the UTOP address is not
adjusted and the CC is set to 4 (V bit set).

3-16 48-038 FOa R02

I SVC2
I CODE 4

3.6 SVC2 CODE 4: SET STATUS

SVC2 code 4 modif ies the ar ithmet:..ic fault interrupt bit and t.he
CC settings in the PSW. Figure 3-9 shows the PSW and the bits
affected by the set status operat:..ion. When the arithmetic fault
interrupt bit setting is modified, interrupts are enabled or
disabled. When the CC setting iE~ modified, t.he current 4-bit
setting is replaced with a new 4-bit setting. This is
accomplished through the SVC2 code 4 parameter block shown in
Figure 3-8.

10(0)
Option

parblk

!l(l) 12(2)ArithmeticI3(3) Conditionl
Code I fault I code

I parameter I parameter

SVC 2,parblk

ALIGN 4
DJB option,4
DJB arithmetic fault parameter, condition

code pararnete:r

Figure 3-8 SVC2 Code 4 Par~leter Block Format and Coding

This parameter block is four bytes long, fullword
not have to be located in a

general description of each field in
boundary-al ign1ed , and does
task-writable segment. A
the parameter block follows.

Fields:

option

48-038 FOO R02

is a I-byte fteld that must contain one of the
following options:

• Option X'OO' modifies the arithmetic fault
bit and CC in the PSW.

• Option X'80' modifies only the CC in the
PSW (see Figure 3-9).

3-17

Code

Arithmetic
fault
parameter

Condition
code
parameter

Reserved

Bits:
o

is a l-byte field that must contain the
decimal value 4 to indicate code 4 of SVC2.

is a l-byte field that must contain one of
the following parameters when option X'OO' is
specified. For option X'80', this field must
contain zeros.

• X'OO' disables all arithmetic fault
'interrupts for Models 7/32 and 8/32
Processors. For Perkin-Elmer Series 3200
Processors, only arithmetic fault
interrupts due to floating point underflow
are disabled.

• X'lO' enables
interrupts.

all arithmetic fault

is a l-byte field that must contain a
hexadecimal value ranging from X'OO' to X'OP'.

Arithmetic fault Condition
interrupt bit Reserved code
~~

, '~~~~~~~~~~~~~~~~~~~~~~~_ .., ',; ~~~~~~~~~~~ I
15 16 17 18 19 20 21 22 23 24 27 28 29 30 31

Reserved

Bits:
32

, ---------------1
, ' : :' : Locat ion

, , ',:, ; ; ,: : ---------------1
~----------------

~----------------

39 40 63

Figure 3-9 Program status Word (PSW)

I

3-18 48-038 FOO R02

An arithmetic fault. occurs during an arithmelic operation for any
of the following conditions:

• Fixed point quotient overflow

• Fixed point division by 0

• Floating point overflow and underflow

• Floating point division by 0

The CC (bits 28 through 31) is set after executing certain
instructions. Each bit in the CC corresponds to a result. or
condition caused by executing an instruction. The CC set.tings
for arithmetic operations follow.

Condition Code:

C I V I GIL
====" __ :O:_D:I ___ =~

1
o
o
o

o
1
o
o

(I

o
1
o

o
o
o
1

Arit.hmetic carry, borrow or shifted carry
Arithmetic overflow
Greater than 0
Less than 0

These four bit~l have different meanings for logical operat.ions,
branching opel:ations and I/O operations. For the definitions of
the bit settings for each particular operation, see the
appropr iate prc)cessor manual.

3.6.1 SVC2 Code 4, Option X'OO'

If the SVC2 code 4 parameter block cont.ains X'OO' in the option
field, X'OO' in the arithmetic fault field, and a value ranging
from X'OO' to X'OF' in the CC field, all arithmetic faults are
ignored for ~~odels 7/32 and 8/32 Processors. For Series 3200
Processors, only arithmetic faults resulting from floating point
underflow are ignored. For more information on Series 3200
arithmetic fault interrupts, see the appropriate Series 3200
Processor Manual. The current CC value in the PSW is replaced
with the value specified in the CC field of the parameter block.

48-038 FOQ R02 3-19

If the SVC2 code 4 parameter block contains X'OO' in the option
field, X'lO' in the ariLhmetic fault field, and a value ranging
from X'OO' to X'OF' in the CC field, all arithmetic fault
interrupts are enabled. The current CC value in the PSW is
replaced with the value specified in the CC field of the
paramet.er block.

3.6.2 SVC2 Code 4, Option X'SO'

If option X'SO' is specified and the CC parameter field cont.ains
a value of X'OO' through X'OF', the current CC value of the PSW
is replaced with the value specified in the Cc field of the
parameter block. The arithmetic fault field is ignored.

3--20 48-038 FDa R02

I SVC2
I CODE 5

3.7 SVC2 CODE 5: FETCH POINTER

SVC2 code 5 lo,ads the start.. ing address of a t.ask' s UDL inlo a
user-specified register. It.. then stores the current addresses of
UBOT, UTOP and CTOP, located in the TCB, into their corresponding
locations in the task UDL. This is accomplished through the SVC2
code 5 paramet,er block shown in Figure 3-10.

10(0)
Option

parblk

~l(l)
Code

SVC 2,parblk

ALIGN 4
D.B 0,5,0
DB user register

12(2) 13(3)
Reserved User

register

Figure 3-10 SVC2 Code 5 Parameter Block Format and Coding

This parameter block is four
not have

description

bytes long, fullword
t..o be located in a

of each field in t..he
boundary-aligned, and does
task-writable segment. A
parameter block f()llows.

Fields:

Option

Code

Reserved

48-038 FOO R02

is a l-byte field that must contain the value
o to indicate no options for this call.

is a l-byte field that must contain the
dec imal numbel~ 5 to ind icate code 5 of SVC2.

is a reserved l-byte field that must contain
a o.

3-21

User
register

is a i-byte field that must contain a
decimal number from 0 to 15, indicating the
register that receives the UDL starting
address.

When executing this call, the UDL starting address, which is
loaded into the user-specified register, varies for u-tasks and
e-tasks. The starting address for a u-task is the relative
address, which is always O. The starting address for an e-task
is the absolute address, which depends on the Lask memory
location.

If the user modified Lhe UDL by changing address pOinters or if
UTOP was changed by a GET or RELEASE STORAGE, the contents of
CTOP, UTOP and UBOT in the UDL might not be valid. SVC2 code 5
restores this data to a valid state by storing the current values
of CTOP, UTOP and UBOT into the UOL.

Example:

UDL after execution of SVC2 code 2 and before execution of SVC2
code 5:

UTOP
X'928'

1 1 1-____ 1

1
1
1

--1

..........
I
1

User code
..........

1
X'IOO' 1--1

1

..........

1 UDL 1
I 1
1 1

1- -------·-------·---------------------------------1
IX'FFE' IX'128' I X'O' I

UBOT X'O' --
CTOP UrOP

Invalid
Address

UBOT DMS TSKQ SDQ MSGR SV14

CTOP
X'FFE'

3-22 48-038 FOO R02

UDL after execution of SVC2 code 5:

I , ._----_.- -

UTOP
X'928' --

X'IOO'

User code
..--.

I ,
1--:
I

I OOL
, I
I I

1--:
IX'F'FE' IX'928'1 X'D' I

UBOT X'D' --
C'IIOP °lOP

Valid
Address

UBOT lDMS r:J,'SKQ SDQ MSGR SVl4

CTOP
X'FFE'

For more information on the UDL, see the OS/32 Application Level
Programmer Reference Manual.

48-038 FOO R02, 3-23

I SVC2
I CODE 6

3.8 SVC2 CODE 6: CONVERT BINARY NUMBER TO ASCII HEXADECIMAL OR
ASCI I DECIMAL

SVC2 code 6 converts an unsigned 32-bit binary number located in
user register a to· an ASCII hexadecimal number or an ASCII
decimal number. This is accomplished through the SVC2 code 6
parameter block shown in Figure 3-11.

O{O)
Option+n

4(4)

11(1) 12(2)
Code Reserved

Address of receiving buffer

SVC 2,parb1k

ALIGN 4
parblk DB option+n,6

DC H'O'
DCF A(receiving buffer)

Figure 3-11 SVC2 Code 6 Parameter Block Format and Coding

This parameter block is eight bytes long, fullword
boundary-aligned, and must be located in a task-writable segment.
A general description of each field in the parameter block
follows.

3-24 48-038 FOO R02

Fields:

- Option+n

Code

Reserved

Address of
receiving
buffer

is a I-byte field that must contain the
one of the following options and
specifies a decimal number from 0
indicating the number of bytes in the
specified in the SVC2 code 6 parameter

sum of
n (n
to 63
buffer

block) .

• Option X'OO'+n converts a binary number to
ASC I I hexa.dec ima 1 .

• Option X'40'+n converts a binary number to
ASCII hexadecimal, suppressing leading
zeros.

• Option X'80'+n converts a binary number to
ASC I I dec imal.

• Option X'CO'+n converts a binary number to
ASCII decimal, supressing leading zeros.

is a I-byte field that must contain the
decimal number 6 to indicate SVC2 code 6.

is a reserved 2-byte field that must contain
zeros.

is a 4-byte field that must contain the
address of the previously allocated buffer
that receives the converted number. This
address can be located on any byte boundary.

The receiving buffer should be defined to receive the largest
number, which is is 2,147,483,647 (231 -1), that can be converted
from register O. Allocate an 8-byte buffer for binary to ASCII
hexadecimal. Allocate a lO-byte buffer for binary to ASCII
decimal. If t~he user's largest number to be converted is less
than 231 -1, the receiving buffer can be less than the suggested
length of the buffer.

When the user--specified binary number located in register 0 is
converted, the result is stored right-justified in the receiving
buffer with the left-most significant digits filled with ASCII
zeros. However, if the converted number is longer than the
buffer, the lE~ft-most digits of the converted number are lost.
If suppression of leading zeros is requested, the left-most zeros
in the receiving buffer are filled with spaces (hexadecimal 20).

48-038 FOO RO:2~ 3-25

3.8.1 SVC2 Code 6, Option X'OO'+n

If option X'OO'+n is specified, the unsigned 32-bit binary number
located in the user register 0 is converted to an ASCII
hexadecimal number. The resulting number is stored
right-justified in the receiving buffer with the left-most
significant digits filled with ASCII zeros (hexadecimal 30).

Example:

LI 0,F'8520'

SVC 2,CONVERT

ALIGN 4
CONVERT DB X'00'+8,6

DC H'O'
DCF A(BUF)

BUF DS 8

Register 0 before and after execution of SVC2 code 6:

10 01 0 012 114 81 Hex

Receiving buffer after execution of SVC2 code 6:

Zero filled

~

13 01 3 013 013 013 213 113 413 81 Hex

3.8.2 SVC2 Code 6, Option X'40'+n

If option X'40'+n is specified, the unsigned 32-bit binary number
located in the user register 0 is converted to an ASCII
hexadecimal number. The resulting number is stored
right-justified in the receiving buffer with the left-most
significant digits filled with ASCII spaces (hexadecimal 20).

3-26 48-038 FOO R02

3 . 8 . 3 SVC2 Code 6, opt ion X' 80 ' ~~n

If option X'80'+n is specified, 1:he unsigned 32-bit binary number
located in the user register 0 is converted to an ASCII decimal
number. The resulting number is stored right-justified in the
buffer with the left-most significant digits filled with ASCII
zeros (hexadecimal 30).

Example:

PROG CONVERT

LI 0,F'l6322'

SVC 2, CONVERT

ALIGN 4
CONVERT DB X'80'+lO,6

DC H'D'
DCF A(BUF)

BUF DS 10

Register 0 before and after execution of SVC2 code 6:

10 01 0 013 FIC 21 Hex

Receiving buffer after execution of SVC2 code 6:

Zero-filled
~ ~~

13 01 3 013 013 013 013 113 613 313 213 21 Hex

3 .8.4 SVC2 Co,de 6, opt ion X' CO ' ·ton

If option X'CO'+n is specified, the unsigned 32-bit binary number
located in the user reg ister 0 il9 converted to an ASC I I dec imal
number. The resulting number is stored right-justified in the
receiving buffer with the left-most significant digits containing
zeros filled ~'ith ASCII spaces (hexadecimal 20).

48-038 FDO R02, 3-27

I SVC2
I CODE 7

3.9 SVC2 CODE 7: LOG MESSAGE

SVC2 code 7 sends a user-specified message to the system console,
user terminal or user-specified log device, depending on the task
environment. This is' accomplished through the SVC2 code 7
parameter block in Figure 3-12. Log devices for specific task
environments are:

• System console for background tasks

• System console for foreground tasks

• User MTM terminal for MTM terminal tasks

• User-specified log device for MTM batch task

If no user-specified log device is allocated for MTM batch tasks,
the message is lost.

0(0)
Option

4(4)

11(1)
Code

12(2)
I Length of message

Contents of message* or address of message buffer

parblk

SVC 2,parblk

ALIGN 4
DB option,7
DC H'length of message'
DC C'contents of message' or

A(message buffer)

* When the contents of message field is used, the size of
the parameter block can vary.

Figure 3-12 SVC2 Code 7 Parameter Block Format and Coding

3-28 48-038 FOO R02

This parameter block is eight bytes long if the address of
message buffet: field is used. It is var iable in length if the
contents of message field is used. It must be fullword
boundary-aligned and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:

option

Code

Length of
message

48-038 FOO R02

is a l-byte field that must contain one of the
following options:

• Option X'OO' indicates message contents,
formatted.

• Option X'20' indicates message contents are
formatted and sent to the system console
only.

• Option X'40' indicates message at specified
buffer address, formatted.

• Option X'60' indicates message at specified
buffer address is formatted and sent to the
system console only.

• Option X'8Q' indicates message contents,
image mode.

• Option X'AIO' indicates message contents are
sent in image mode to system console only.

• Option X'CIO' indicates message at specified
buffer add'ress, image mode.

• Option X'EIO' indicates message at specified
buffer add',ress is sent in image mode to the
system console only.

is a l-byte field that must contain the
dec imal numbe:r 7 to ind icate SVC2 code 7.

is a 2-byte field that must contain a decimal
number indicating the number of bytes the
message occupies. The message can be
truncated by the log device driver. If the
message is being logged to the system console,
its maximum length is determined at sysgen
time.

3-29

contents
of message

Address of
message
buffer

is a variable-length field that must contain
the message to be sent to the log device.

is a 4-byte field that must contain the
starting address of the buffer that contains
the message to be sent to the log device.
This buffer can be on any byte boundary.

When the message is sent to the appropriate log device, it is
either formatted or in image mode. When a formatted message is
sent to a device:

• All trailing blanks in the buffer or at the end of the message
are eliminated.

• A carriage return (CR) and line feed (LF) are automatically
appended to the message.

• The message terminates when the end of the buffer or message
is reached or when a CR is found in the message.

When a message is sent to a device in image mode, the message
terminates when the end of the buffer or message is reached. If
in image mode, a message with multiple lines can be sent by
executing a single SVC2 code 7 for each line. However, each line
should include a CR and LF at the end. The image options should
be used with caution because the amount of time that must remain
for a CR to occur differs on various console devices.

3.9.1 SVC2 Code 7, Option X'OO'

If option X'OO'
parameter block
device.

is specified,
is formatted

Example:

SVC 2 , LOGMSG

ALIGN 4
LOGMSG DB X'OO',7

DC H' 32'

the
and

message specified in the
sent to the appropriate log

DC C'OPERATOR-PLS MOUNlr TP028 ON MAG 1 ,

3-30 48-038 FOO R02

Contents of me~3sage buffer before and after execution of SVC2 code 7:

4F1501451521014!i1521 15212DI5014CI5312014DI4FI5514EI5412015415013013213812014FI4EI2014DI41146131 ASCII

o IP IE IR IA IT 10 IR 1- IP IL IS I 1M 10 IU IN IT I IT IP 10 12 18 I 10 IN I 1M IA IG 11

Log device after execution of SVC2 code 7:

OPERATOR-PLS MOUNT TP028 ON MAGi

3.9.2 SVC2 Code 7, Option X'20'

If option X'20' is specified, the message specified in the
parameter block is formatted as for option X'OO'. The message is
then sent unconditionally to the system console.

Option X'20' JLs used exclusively for tasks running under MTM.

3.9.3 SVC2 Code 7, Option X'40'

If option X'40' is specified, the contents of the message buffer
pointed to by the address specified in the parameter block are
formatted and sent to the appropriate log device.

3.9.4 SVC2 C()de 7, Option X'60'

If option X'60' is specified, the contents of the message buffer
are formatted as for option X'40'. The message is then sent
unconditionally to the system console.

Option X'60' :Ls used exclusively for tasks running under MTM.

3.9.5 SVC2 Code 7, Option X'SO'

If option X'80'
parameter block
log device.

48-038 FOO RO~~

is specified, the message specified in the
is in image mode and is sent to the appropriate

3-31

Example:

SVC 2, LOGMSGl
SVC 2 , LOGMSG2

ALIGN 4
LOGMSGl DB X'80',7

DC H'32'
DC C'OPERATOR-PLS MUUNT TP028 ON MAG 1 ,
ALIGN 4

LOGMSG2 DB X'80',7
DC H'19'
DC C'SET TAPE AT 800 BPI'

Contents of message buffer before and after execution of SVC2 code 1':

14FISOI4SIS2141IS414FIS212DISOI4CIS312014DI4FISSI4EIS4120IS4:S0130132138:2014FI4EI2014DI41146131IASCII
1---·------------------------1
:0 IP IE IR IA IT 10 IR 1- IP IL IS I IM:O IU IN IT I IT IP 10 12 18: 10 IN: 1M IA IG II I

contents of message buffer before and after execution of second
SVC2 code 7:

1531451541201541411501451201411541201381301301201421501491 ASCII
1--I
1 s 1 E 1 Til T I A I P IE I I A I Til 8 I 0 1 a I IB 1 P I I I

Log device after execution of second SVC2 code 7:

SET TAPE AT 800 BPI TP028 ON MAGl

(no line feed appended, message overwritten)

3.9.6 SVC2 Code 7, Option X'AO'

If option X'AO' is specified, the message specified in the
parameter block is in image mode, as for option X'80', but the
message is sent unconditionally to the system console.

Option X'AO' is used exclusively for tasks running under MTM.

3-32 48-038 FOO R02

3.9.7 SVC2 C()de 7, Option X'CO'

If option X'CO' is specified, the contents of the message buffer·
pointed to by the address specified in the parameter block are in
image mode and are sent to the a.ppropr iate log dev ice.

3.9.8 SVC2 C()de 7, Option X'EO'

If option X'EO' is specified, the contents of the message buffer
are in imagE;' mode as for option X, CO', but the message is sent
unconditionally to the system console.

Option X'EO' JLs u.sed exclusively for tasks running under MTM.

48-038 FOO RO;~ 3-33

I SVC2
I CODE 8

3.10 SVC2 CODE 8: INTERROGATE CLOCK

SVC2 code 8 sends the current time of day to a user-specified
buffer. This is accomplished through the SVC2 code 8 parameter
block shown in Figure 3-13.

0(0)
Option

4(4)

parblk

11(1) 12(2)
Code Reserved

Address of receiving buffer

SVC 2,parblk

ALIGN 4
DB option,8
DC H'O'
DCF A(receiving buffer)

Figure 3-13 SVC2 Code 8 Parameter Block Format and Coding

This parameter block is eight bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

3-34 48-038 FOO R02

Fields:

option

Code

Reserved

Address of
receiving
buffer

This l-byte field must contain one of the
following options:

• Option X'OIO' returns the time of day as two
fullwords of ASCII data in the form
hh:nun:ss.

• Option X' 8:0' returns the time of day as a
fullword of binary data indicating the
number of seconds past midnight.

• Option X'40' returns the time of day as
three fullwords of ASCII data in the form
hh:nun:ss.sss.

• Option X'CO' returns the time of day as two
fullwords of binary data. The first
fullword indicates the number of seconds
past midnight; the second fullword
indicates the number of milliseconds past
midnight.

is a l-byte field that must contain the
decimal number 8 to indicate SVC2 code 8.

is a reserved 2-byte field that must contain
zeros.

is a 4-byte field that must contain the
starting address of the buffer to receive
the current time of day.

The current tjLme of day is calculated as seconds from midnight
(midnight equals 0) and is taken from the line frequency clock
(LFC) maintained by the system.

3.10.1 SVC2 C~ode 8, Option X' 00'

If option X'OO' is specified, the current time of day is returned
in ASCI I fOl:mat to a user-specif ied buffer located in a
task-writable segment This buffer must be at least eight bytes
long. The cUl:rent time of day is returned as follows.

Format:

hh:mm:ss

48-038 FOO ROi~ 3-35

Parameters:

hh are two ASCI I characters representing the
number of hours.

mm are two ASCI I characters representing the
number of minutes.

ss are two ASCI I characters representing th~
number of seconds.

Example:

contents of buffer after execution of SVC2 code 8 option XIOO'
when the current time of day is 10:09:03:

13 11 3 013 AI3 013 913 AI3 013 31 H~x
1--------------------------------1
1 1 1 0 I : 1 0 1 9 1 : 1 0 I 3 I ASe I I

hh mm ss

3.10.2 SVC2 Code 8, option X'SO'

If option X'SO' is specified, the current time of day in seconds
from midnight is sent in binary format to a user-specified buffer
located in a task-writable segment. This buffer must be at least
four bytes long and aligned on a fullword pqllndal=Y.

Example:

Contents of buffer after execution of SVC2 code 8 option X'SO'
when the current time of day is 10:13:4S:

10 01 0 018 FID CI He~

36828 = 10:13:48
(decimal)

The contents of this buffer represent 36,828 seconds from
midnight.

3-36 48-038 FDD R02

3.10.3 SVC2 Code 8, Option X'40'

If option X'40' is specified, the current time of day is returned
in ASCII format to a user-specified buffer in a task-writable
segment. Thts buffer must be at least 12 bytes long. The
current time of day is returned as follows.

Format:

hh : mm: s s : f~ s s

Parameters:

hh are two ASCI I characters representing the
number of hours.

mm are two ASCI I characters representing the
number of minutes.

ss are two ASCI I characters representing the
number of seconds.

sss are three ASCI I characters representing the
number of milliseconds.

Example:

contents of buffer after execution of SVC2 code option X'40',
when the currE,nt time of day is 10: 41: 32.8:

I 31 I 30 I 3A I 34 I 31 I 3A I 33 I 32 I 3A I 38 1 30 1 30 1 Hex
1-------------·--1
I 1 I 0 I : I 4 I 1 I : I 3, 2, : I 8 I 0, 0 I ASC I I

hh mm ss sss

3.10.4 SVC2 C:ode 8, Option X, CO'

If option X'CO' is specified, the current time of day in seconds
and millisecc)nds from midnight is sent in binary format to a
user-specified buffer located in a task-writable segment. This
buffer must bE' eight bytes long and fullword boundary-aligned.

48-038 FOO RO~~ 3-37

Example:

contents of buffer after execution of SVC2 Code 8 option X'CO'
when the current time of day in ASCII is 10:41:32.a:

I 00 I 00 I 96 I SC I 00 I 00 I 03 I 20 I Hex

ss sss

The contents of this buffer represent 38,492 seconds and 800ms
from midnight.

3-38 48-038 FOO R02

I SVC2
I CODE 9

3.11 SVC2 CODE 9: FETCH DATE

SVC2 code 9 sends the current date to
This is accomplished through the
shown in Figure 3'-14.

a user-specified buffer.
SVC2 code 9 parameter block

0(0)
Option

4(4)

11(1) 12(2)
Code Reserved

Address of rec1eiving buffer

SVC 2,parblk

ALIGN 4
parblk DB 0,9

DC H'O'
DCF A(receiving buffer)

Figure 3-1.4 SVC2 Code 9 Par.ameter Block Format and Coding

This parame~ter block is eight bytes long, fullword
boundary-aligned, and does not. have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:

option

Code

Reserved

48-038 FOO R02,

is a I-byte field that must contain a 0 to
indicate no options for. this call.

is a I-byte field that must contain the
dec imal numbe:r 9 to ind icate SVC2 code 9.

is a reserved 2-byte field that must contain
zeros ..

3-39

Address
of receiving
buffer

is a 4-byte field that must contain the
starting address of the buffer receiving the
current date. The buffer must be eight bytes
long and located in a task-writable segment.
The buffer can be located on any boundary.

SVC2 code 9 sends the current date to the receiving buffer in
either one of the following:

Format:

mm/dd/yy

or

dd/mm/yy

Parameters:

nun

dd

yy

are two ASCII characters representing the
month.

are two ASCII characters representing the day.

are two ASCII characters representing the
year.

When the system is installed, one of these formats is chosen as
the default for all operations. To return the current date in
the alternate format, use the DATE conunandat sysgen.

3-40 48-038 FOD RD2

Example:

DATE

PAUSE
BUF

SVC 2,DATE
SVC 2, PAUSE

ALIGN 4
DB 0,9
DC H'O'
DCF A(BUF)
ALIGN 4
DB 0,1
DS 8

contents of recelvlng buffer after execution of SVC2 code 9
when the current date in ASCI I i:s 07/06/81:

13 013 712 FI3 013 612 FI3 813 11 Hex
1-------------------------------1
I 0 I 7 I / I 0 I 6 I / I 8 I 1 I ASCII

rnm dd yy

48-038 FOO RO;2 3-41

I SVC2 I
I CODE 10 I

3.12 SVC2 CODE 10: TIME OF DAY WAIT

SVC2 code 10 suspends the SVC calling task until a user-specified
time of day occurs. Then the calling task resumes execution.
This is accomplished through the SVC2 code 10 parameter block
shown in Figure 3-15.

0(0)
option

:1(1)

I
I

12(2)
Code Reserved

---1
4(4)

Time of day

SVC 2,parblk

ALIGN 4
parblk DB 0,10

DC H'O'
DC y'time of day'

Figure 3-15 SVC2 Code 10 Parameter Block Format and Coding

The SVC2 code 10 parameter block is eight bytes long, fullword
boundary-aLigned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:

Option

Code

Reserved

3-42

is a l-byte field that must contain a a to
indicate no options for this call.

is a l-byte field that must contain the
decimal number 10 to denote SVC2 code 10.

is a reserved 2-byte field that must contain
zeros.

48-038 FOO R02

Time of
day

is a 4-byte field that must contain a deci.mal
number from 0 to 268,435,455 (228 -1)
representing in seconds a specific time of day
when the calling task is to start execution.
The decimal number specified must be
calculated in seconds from midnight.

• 0 seconds equals 00:00:00 a.m.
of the current day.

(midnight)

• 86,399 seconds equals 23:59:59 p.m. of the
current day.

See Table 3-2 for a range of values in seconds
and the i r C01C r es pond ing time of day. Any
value greatelc than 86,399 refers to days in
the future. [f the specified time of day has
passed, the 13ame time on the following day is
assumed.

TABLE 3-2 TIME OF DAY VALUES CALCULATED IN
SECONDS FROM MIDNIGHT

I TIME OF DAY I TIME OF DAY
I 00:00:00 HOURS I 23:59:59 HOURS

DAY (MIDN~GHT) (P .M.)

1st
(current)

2nd

3rd

4th

5th

6th

7th

3,107th
(maximum)

0

86,400

172,800

259,200

345,600

432,000

518,400

268,358,,400

86,399

172,799

259,199

345,599

431,999

518,399

604,799

268,435,455*
(maximum)

* 268,435,455 seconds equals 21:24:15 hours
of the final day

48-038 FOO R02 3-43

After executing SVC2 code 10, the CC is eet to indicate if the
ca.ll was successful. The possible CC settings follow.

Condition Code:

I C I V I GIL I
I==----------r~wl
I a I a I a I a I
101110101

Normal termination
Sufficient system space is unavailable;
no wait occurred

If this call is executed and insufficient system space exists, no
wait occurs and the CC is set to 4 (V bit set).

Example:

WAITDAY

PAUSE

3-44

SVC 2,WAITDAY
SVC 2,PAUSE

ALIGN
DB
DC
DC
ALIGN
DB

4
0,10
H'O'
F'12l65'
4
0,1

EQUAL to 03:22:45 AM

48-038 FOO R02

I SVC2 I
I CODE 11 I

3.13 SVC2 CODE 11: INTERVAL WAIT

SVC2 code 11 suspends the SVC calling task unLil a user-specified
interval occurs. When the specific interval elapses, the calling
task begins execution. This is accomplished through the SVC2
code 11 parameter block shown in Figure 3-16.

0(0)
Option

4(4)

parblk

11(1) 12(2)
Code Reserved

Interval

SVC 2,parb1k

ALIGN 4
DB 0,11
DC H'O'
DC F'interval'

Figure 3-16 SVC2 Code 11 Parameter Block Format and Coding

This parameiter block is eight bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:

option

Code

48-038 FOO R02~

is a 1-byte field that must contain 0 to
indicate no options for this call.

is a I-byte field that must contain the
decimal number 11 to indicate SVC2 code 11.

3-45

Reserved

Interval

is a reserved 2-byte field that must contain
zeros.

is a 4-byte field that must contain a decimal
number from 0 to 268,435,455 (231 -1)
representing in milliseconds the interval that
must elapse before the calling task resumes
execution. The interval starts when this call
is executed and ends after the specified
milliseconds elapse.

After executing SVC2 code 11, the CC is set to indicate if the
call was successful. The possible CCs are:

Condition Code:

1 c 1 V 1 GIL 1
1:===========-::1

Normal termination I 0 I 0 I 0 I 0 I
101 1 I 0 1 0 I Sufficient system space is unavailable;

no wait occurred

If this call is executed and insufficient system space exists, no
wait occurs and the CC is set to 4 (V bit set).

Example:

WAITINT

PAUSE

3-46

SVC
svc

ALIGN
DB
DC
DC
ALIGN
DB

2,WAITINT
2,PAUSE

4
0,11
H'D'
F'32768'
4
0,1

EQUAL TO 32.768 SECONDS

48-038 FOO RD2

3.14 SVC2 CODE 14: INTERNAL READER

I SVC2 I
I CODE 14 I

SVC2 code 14 aL110ws a foreground task loaded from the system
console to invoke operator and CSS commands. These commands are
sent to the command processor where they are executed as if they
were entered from the system console. SVC2 code 14 provides two
options for sending commands to the command processor. Option 0
allows the Ulser to place the commands directly in the task
command buffet' field of the SVC2 code 14 parameter block. Option
1 allows the Ulser to store the c,ommands in a task command buffer
located on a fullword boundary within the task's address space.
The address of' this buffer is placed in the parameter block.

SVC2 code 14 t.ransfers the commands in a task command buffer
until the end of the buffer is reached. The parameter blocks for
both SVC2 code 14 options are described in the following
sections.

3.14.1 SVC2 Code 14, Parameter .B1ock for Option a

The parameter block format for option 0 of SVC2 code 14 is shown
in Figure 3-17.

48-038 FOO R02 3-47

0(0)
Option

11 (1)
Code

12(2)
status

4(4)

8(8)

l2(C)

16 (10)

parblk

User command
buffer length

SVC 2,parblk

0,14,0,0

16(6)

Task
command
buffer

Maximum system
command buffer

length

DB
DC
DC
DC

H'user command buffer length'
H'O'
'operator commands'

Figure 3-17 SVC2 Code 14 Parameter Block Format and Coding
for Option 0

This parameter block can be up to 1,032 bytes long. It must be
aligned on a fullword boundary and located in a task-writable
segment. A general description of each field in the parameter
block follows.

3-48 48-038 FOO R02

Fields:

option

Code

status

User commaLnd
buffer length

Maximum
system
command
buffer
length

Task command
buffer

is a i-byte field that contains a value of 0
to indicate that the task command buffer is
contained in the SVC2 code 14 parameter block.

is a l-byte field that contains the decimal
value 14 to indicate SVC2 code 14.

is a 2-byte field that receives a status code
indicating the status of the SVC processing.

is a 2-byte field specifying a decimal number
indicating the maximum length allowed for the
user command buffer.

is a 2-byte field to which the operating
system retu'rns the system command buffer
length established by CMDLEN at sysgen. This
value is returned only for status code
X'0003' (see Table 3-3).

is a variable length field
length of 1,024 bytes. This
the commands to be sent to
processor.

with a maximum
field contains
the command

3.14.2 SVC2 Code 14, Parameter 1310ck for Option 1

The parameter block format for option 1 of SVC2 code 14 is shown
in Figure 3-18.

48-038 FOO R02 3-49

--~--~---
0(0)

Option
11 (1)

Code
12(2)

status

--------------------------~-~-~~ -~-~-~---------------------

4(4) 16(6)
User command
buffer length

Maximum system
command buffer

length
------------------------~------- --~-~~--~-~~----~---~------
8(8)

Buffer address

SVC 2,parblk

parblk DB
DC
DC
DAC

1,14,0,0
H'user command buffer length'
H'O'
BUFADR

Figure 3-18 SVC2 Code 14 Parametet Block Format and Coding
for Option 1

This parameter block is 12 bytes long, fullword boundary-aligned,
and located in a task-writabl,e segment. A general description of
each field in the parameter block follows.

Fields:

3-50

Option

Code

status

User command
buffer
length

is a l-byte field that contains a value of 1
t.o indicate that the parameter block contains
t.he address of the task command buffer.

is a l-byte field that contains the decimal
value 14 to indicate SVC2 code 14.

is a 2-byte field that receives a status code
indicating the status of the SVC processing.
See Table 3-2 for a list of the SVC2 code 14
status codes.

is a 2-byte field specifying a decimal number
indicating the maximum length allowed for the
task command buffer.

48-038 FOO R02

Maximum
system
command
buffer

Buffer
address

is a 2-byte field to which the operating
system returns the system command buffer
length established by CMDLEN at sysgen. This
value is returned only for status code X'0003'
(see Table 3-3).

is a 4-byte field specifying the address of
the task co~nand buffer. This buffer must
be located on a fullword boundary within the
task's address space.

3.14.3 SVC2 Code 14, status Codes

The status codes for each of the SVC2 code 14 options are listed
in Table 3-3.

CODE

X'OOOO'

X' 0001'

TABLE 3-3 SVC2 CODE 14, STATUS CODES

MEANING

Successful completion - commands are sent to the
command processor for execution.

No free internal reader buffers are available.

X'0002' Option error - invalid option is specified for SVC.

X'0003'

X'FFFF'

User-specified the length of command buffer
incorrectly.

The length of the maJcimum allowed system command
buffer is returned to the maximum system command
lengt.h field.

No internal reader command buffers defined.

3.14.4 SCV2 Code 14, Programminn Considerations

Support for the internal reader must be included in the system at
sysgen. This is accomplished t.hrough the Sysgen/32 command,
IREADER. See the OS/32 System Generation (Sysgen/32) Reference
Manual. If the internal reader is not included at sysgen, an
attempt to execute an SVC2 code 14 results in an execution error
and an illegal SVC message is sent to the user console.

48-038 FOO R02 3-51

The internal reader requires a set of buffers to receive the
commands sent to it by SVC2 code 14. The OS/32 ope'rator command,
IRBUFFER, is used to create command buffers for the internal
reader. See the OS/32 Operator Reference Manual. The IRBUFFER
command can also be used to increase the number of command
buffers when no free buffers are available (status code X'OOOl').
IRBUFFER can be used at any time if support for the internal
reader has been generated into the system.

The following program demonstrates the us'e of SVC2 code 14.

Sample SVC2 code 14 program:

SVC214 PROG SVC2,14 EXAMPLE
SVC 2, COMMANDO
LH 0, COMMANDO +2
BNZ STOP
SVC 2, COMMAND 1
LH 0, COMMAND 1+2
BNZ STOP
SVC 3,0

STOP EQU *
SVC 2, PAUSE
SVC 3,0

ALIGN 4
PAUSE DB 0,1,0,0

ALIGN 4
COMMANDO DB 0,14,0,0

COMMAND 1

DC Z(4)
DCX °
DC C' D M '

ALIGN 4
DB 1,14,0,0

Z(CMDBUFFE-CMDBUFF)

° A(CMDBUFF)
4

SEND COMMAND
WAS IT SUCCESSFUL?
NO - ERROR
SEND COMMAND
WAS IT SUCCESSFUL?
NO - ERROR
EOT

PAUSE
EOT

DIRECT COMMAND BUFFER

INDIRECT COMMAND BUFFER ADDRESS

CMDBUFF
CMDBUFFE

DC
DCX
DC
ALIGN
DC
EQU
END

C'$WR ** CSS CALL BY lREADER ***. , CALLCSS.CSS
*

3-52 48-038 FOO R02

I SVC2 I
I CODE 15 I

3.15 SVC2 CO[~E 15: CONVERT ASCI I HEXADECIMAL OR ASCI I DECIMAL
TO BINMLY

SVC2 code 15, the inverse of SVC2 code 6, converts an ASCII
decimal or hexadecimal number to an unsigned 32-bit binary
number. CharaLcter str ings can be input in either upper-or
lower-case.

The result
accomplished
Figure 3-19.

10(0)
Option

parblk

i,s stored in
through the

11(1)
I Code

SVC 2,parblk

ALIGN 4

the user register O. This is
SVC2 code 15 parameter block shown in

12(2)
Reserved

13(3) 1
1 User register 1
I I
I I

DB option,15,Q
DB user register

Figure 3-19 SVC2 Code 15 Parameter Block Format and Coding

This par~eter block is four bytes long, fullword
not have to be located in a

general description of each field in
boundary-aligned, and does
task-writable segment. A
the parameter block follows.

Fields:

Option

48-038 FOO R02

is a l-byte field that must contain one of the
following options:

• Option X'OO' converts ASCII hexadecimal to
binary.

3-53

Code

Reserved

User
register

• Option X'40' converts ASCII hexadecimal to
binary, skips leading spaces.

• Option X'BO' converts ASCI I decimal to
binary.

• Option X'CO' converts ASCI I decimal to
binary, skips leading spaces.

is a ,l-byte field that must contain the
decimal number 15 to denote SVC2 code 15.

is a reserved I-byte field and must contain O.

is a I-byte field that must contain the
user-specified register number. This register
should contain the address of the buffer that
contains the ASCII hexadecimal or ASCII
decimal number to be converted. This buffer
can be located on any boundary. After
executing SVC2 code 15, register 0 contains
the result, and the user-specified register
contains the address of the byte following the
last number to be converted.

The valid ASCII hexadecimal numbers are 0 through 9 and A through
F. The valid ASCII decimal numbers are 0 through 9. Any
character other than those ASCII hexadecimal and ASCII decimal
numbers specified causes the conversion process to stop, the
nonconverted byte address to be stored in the user-specified
register, and the CC to be set to O. The possible CC settings
that can occur after executing SVC2 code 15 follow.

Condition Code:

C I V I GIL
==============-=
o
o

o

o
o

1

o
o

o

o
1

o

Normal termination
No numbers converted; register 0 contains
zeros
Value of the number to be converted is
greater than 2,147,483,647 (2 -1)

3.15.1 SVC2 Code 15, Option X'OQ'

If option X'OO' is specified, the ASCII encoded hexadecimal
number in the buffer specified by the address in the user
register is converted to a binary number. The resulting number
is stored right-justified in register 0 with the left-most
significant bits (MSBs) filled with zeros.

3-54 48-038 FOO R02

Example:

Buffer before and after execution of SVC2 code 15:

starting
address
X'14E'

I

Address
X't51 '

~-------.-,-=:::::::-
13 614 114 614 DI ASCII
1---------------1
I 6 1 A 1 F I M I

Register 0 after execution of SVC2 code 15:

10 010 010 61A FI

User-specified register before execution of SVC2 code 15:

10 010 010 It4 E\ Hex

User-specified register after execution of SVC2 code 15:

10 010 010 115 11 Hex

If a number ot.het' than a valid ASCI I number is
number is nc)t converted, and the address
user-specified register.

specified, that
is stored in the

If an ASCII. number is preceded by at least one space, no
processing takes place, the contents of the user-specified
register remain the same, register 0 contains all zeros, and the
CC is set to 1.

I f the value ()f the Ase I I number is greater than 2, 147 , 483,647
(231 -1), the number is converted, the resulting number is stored
right-justifiE~d in register 0 with the left-most significant bits
truncated, and the ee is set to 4 (V bit set).

48-038 FOO R02: 3-55

Example:

Buffer before and after execution of SVC2 code IS:

starting address
X'lS2'

I
--"-

Address
X'15C'

I
~

13 213 113 413 713 413 813 313 613 613 SI2 01 ASCII
1---1
1 2 1 114 1 7 141 8 I 3 I 6 I 6 I 5 I I

User-specified register before execution of SVC2 code 15:

10 010 010 115 21 Hex

Register a after execution of SVC2 code 15:

Overflow
21 14 714 813 616 SI ASCII

User-specified register after execution of SVC2 code 15:

10 010 010 115 CI Hex

Condition Code:

I C I V I GIL I
I========~======I
I 0 I 1 I a I 0 I ASCI I number greater than 231 -1

3.15.2 SVC2 Code 15, Option X'40'

If option X'40' is specified, the ASCII-encoded hexadecimal
number in the buffer, specified by the address in the user
register, is converted to a binary number with leading spaces
ignored during the conversion. The resulting number is stored
right-justified in register 0 with the left-most significant bits
filled with zeros.

3-56 48-038 FOO R02

Example:

Buffer before and after execution of SVC2 code 15:

starting
address
X'IS2'

I
.-"-

Address
X'156'

I
.-"-

I 2 0 I 3 6 I -4~ 11 4 6 I 2 0 I ASC I I
1-------------------1
I I 6 I A I F I I

Register 0 after execution of SVC2 code 15:

10 010 010 61A FI Hex

User-specified register before execution of SVC2 code 15:

10 010 010 115 21 Hex

User-specified register after execution of SVC2 code 15:

10 010 010 115 61 Hex

Condition Code:

I C IV I G IL I
I=-=---~-=----=~I
I 0 I 0 I 0 I 0 I Normal termination

3.15.3 SVC2 Code 15, Option X'80'

If option X'80' is specified, the ASCII-encoded decimal number in
the buffer, specified by the add)~ess in the user register, is
converted to a binary number.. The resulting binary number is
stored right-justified in reg:lster 0 with the left-most
significant bits filled with zer()s.

48-038 FOO R02 3-57

If a character other than a valid ASCII decimal number is
specified, that character is not converted and the invalid
character address is stored in the user-specified register.

Example:

Buffer before and after execution of SVC2 code 15:

Starting
address

X'152'
I

,.-"-..

Address of byte
not converted

X'154'
~----~!

--L
13 513 914 113 312 01 ASCII
1-------------------1
I 5 I 9 I A I 3 I I

Address
X'156'

I

Register a after execution of SVC2 code 15:

10 0:0 0:0 013 BI Hex

User-specified register before execution of SVC2 code 15:

10 010 010 115 21 Hex

User-specified register after execution of SVC2 code 15:

10 010 010 115 41 Hex

Condition Code:

: e I V I GIL I
I=~===========:~I
I 0 I 0 I 0 I 0 I
10111 0 I a I

Normal termination
Ase I I number gr eater than 231 -1

If a decimal number represented in ASCII code is preceded by at
least one space, no processing takes place, the contents of the
user-specified register remain the same, register 0 contains all
zeros, and the CC is set to 1.

3-58 48-038 FOO R02

If the value of the ASCII decimal number is greater than
2, 147 , 483,647 (231 -1), the nu.mber is converted, the r esu It ing
binary number is stored right-ju.stified in register 0 with the
left-most si9nificant bits truncated, and the CC is set to 4 (V
bit set).

3.15.4 SVC2 Code 15, Option X'CO'

If option X'CO' is specified, the ASCII-encoded decimal number in
the buffer, specified by the add.ress in the user register, is
converted to a binary number, with leading spaces ignored during
the conversion. The resulting number is stored right-justified
in register 0 with the left--most s ignif icant bits filled with
zeros.

48-038 FOO RO;2. 3-59

I SVC2 I
I CODE 16 I

3.16 SVC2 CODE 16: PACK FILE DESCRIPTOR

SVC2 code 16 formats a user-specified unpacked fd to the packed
format used within the SVC7 parameter block (see bytes 8 through
23 of the SVC7 parameter block). Figure 3-20 illustrates the
SVC2 code 16 parameter block format.

0(0)
Option

4(4)

11(1) 12(2)
Code User register

Address of packed fd area

SVC 2,parblk

ALIGN 4
parblk DB option, 16

DC H'user register number'
DCF A(packed fd area)

Figure 3-20 SVC2 Code 16 Parameter Block Format and Coding

This parameter block is eight bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:

Option

3-60

is a l-byte field that must contain one of the
following options:

• X'OO' indicates the default volume is the
user volume.

48-038 FOO R02

Code

• X'40' ind1.cates Lhe default volume is the
user volume. Skip leading spaces.

• X'lO' indi.cates Lhe default. volume is the
system volume.

• X'50' indi.cates t.he default. volume is t.he
system volume. Skip leading spaces.

• X'20' indicates the default volume is t.he
spool time' .

• X'60' indicates the default volume is t.he
spool volume. Skip leading spaces.

• X'BO' indicates there is no default volume.

• X'CO' indicates there is no default volume.
Skip leading spaces.

In a non-MTM environment, t.he default user
volume is the same as the default system
volume. Options X'OO' or X'40' are preferred,
since they are compatible with normal usage in
an MTM environment.

NOTE

The above options are intended for
use by nonprivileged u-tasks only.
These options pack fds that use
the IP, IG or IS file
classification. If a privileged
u-task or e-task uses these
options to pack an fd with alP,
IG or IS file classification, the
resulting packed fd has an account
number in its file class field.
See Section 3.14.9 for the SVC2
code 16 options for e-tasks or
privileged u-tasks.

is a l-byte field that must contain the
decimal number 16 to indicate SVC2 code 16.

User regislter is a 2-byte field that must contain the
user-specified register number containing the
unpacked fd address.

Address of'
packed fd
area

48-038 FOO R02~

is a 4-byte field that must contain the
address of the area that receives the packed
file descripbor.

3-61

The CCs set after packing an fd follow.

Condition Code:

-.--------------
C I V I G I L I I I

===--=---------0 0 0 0
0 0 0 1
0 0 1 0

0 1 0 0
1 0 0 0

Normal termination
No volume name present in unpacked fd

,An account number or file class present
in unpacked fd
Syntax error present in unpacked fd
No extension present in unpacked fd

If more than one condition results from a pack fd operation, a
combination of CCs are set.

NOTE

When a period followed by no valid
characters is specified in the unpacked
fd, it is treated as an explicit request
for an extension containing spaces. The
CC is set to 8 (C bit set).

All lower-case characters in the user-specified fd are converted
to their equivalent upper-case characters after the pack fd
operation occurs. The entire user-specified fd (unpacked format)
can be from 1 to 19 characters. Allowable characters are:

• A through Z (upper-case)

• a through z (lower-case)

• 0 through 9 (numerics)

• selected special characters (symbols)

The format of the user-specified fd is:

Format:

[{dVOev

ln
} :1 J [f i lenameJ

3-62 48-038 FOO R02

Parameters:

voln or dev: is a disk volume or device name from one to
four charactelt:s.

filename

. ext

IP
IG
/S

actno

is a filename from one to eight alphanumeric
characters .

is the extens :i.on name of f rom one to three
characters, preceded by a period.

are Single alphabetic characters representing
the file class. They are: P for private file,
G for group file and S for system file.

is an account number ranging from 0 to 65,535.

The area receiving the packed fd must be 16 bytes long, fullword
boundary-aligned, and located in a task-writable segment (see
Figure 3-21). Since this area i~3 identical to bytes 8 through 23
of the SVC7 par ameter block, the~3e bytes can be des ignated as the
receiving area.

0(0)

4(4)

8(8)

12(C)

Volume name or device name

Filename

Extension
IlS(F)
I File class/
laccount number

Figure 3-21 Packed File Descriptor Area

48-038 FOO R02 3-63

Fields:

Volume name
or
device name

Filename

Extension

File class!
account
number

is a 4-byte field that receives the packed
format of the volume name or device name. If
the volume or device name is less than four
bytes, it is left-justified with spaces
(X'20'). If no volume or device name is
specified, the user-specified option
determines the result.

is an 8-byte field that receives the
format of the user-specified filename.
filename is less than eight bytes,
left-justified with spaces (X'20').
filename is specified, this field is
with spaces.

packed
If the
it is

If no
filled

is a 3-byte field that receives .'the packed
format of the user-specified extension. If
the extension is less than three bytes, it is
left-justified with spaces (X'20'). If no
extension is specified, this field is filled
with spaces.

is a i-byte field that receives the packed
format of the user-specified file class. Any
value other than P, G or S in the file
class field of the unpacked fd causes a syntax
error. If no file class is specified in the
unpacked fd, an S is returned in the class
field of the packed fd when running under the
as. P is returned in the class field of the
packed fd when running under MTM.

NOTE

If the SVC2 code 16 options for
privileged tasks are used, an
account number is returned to this
field (see Section 3.16.9).

After the pack fd operation occurs, the user-specified register
contains the address of the byte following the unpacked fda If
a syntax error is detected, the user-specified register contains
the address of the first byte of the unpacked fda The following
examples show the results of issuing an SVC2 code 15 for a task
running under MTM. The default system volume is M300.

When a deVice name is encountered in the user-specified fd, the
pack fd operation returns spaces to the filename, extension and
file class/account number fields of the packed fda

3-64 48-038 FOO R02

Example 1:

Unpacked fd
address
X'IIS'

I
~

Address
X'126'

I

14 DI3 313 013 013 AI5 315 614 313 212 EI3 113 612 FI5 012 0: ASCII
1--:
IM1310101: IS:VICI21.11161/IPI

User-specified register before packing fd:

1001001011181 Hex

Packed fd:

14 DI3 313 013 015 315 614 313 212 012 012 012 013 113 612 015 01 ASCII
1---1
IMI31010lSlVICI21 11161 IPI

User-specified register after packing fd:

1001001011261 Hex

Condition Code:

1 c 1 V 1 G .1 L 1
1:=-------------1
I 0 1 0 I 0 1 0 1 Normal termination

48-038 FOO RO.2 3-65

Example 2:

Unpacked fd
address Address
X' tiB' X't lD '
~ ~ ---

14 DI3 313 013 013 AI3 115 614 313 212 EI3 113 612 FI5 01 ASCII
1---I
IM1310101: IIIVICI21.11161/IPI

User-specified register before packing fd:

1001001011181 Hex

Packed fd:

14 DI3 313 013 012 012 012 012 012 012 012 012 012 012 012 012 01 ASCII
1--~----I

I M I 3 I 0 I 0 I I I I I I

User-specified register after packing fd:

1001001011181 Hex

Condition Code:

I C I V I GIL I I======= ______ ~wl
11111 0 101 No extension present in unpacked fd;

syntax error present in unpacked fd

The unpacked fd contains a character that was interpreted as a
field separator.

3-66 48-038 FOO R02

Example 3:

Unpacked fd
address i~ddrese

X't18 ' Xi llF '
~ ~ ---

14 DI3 313 013 013 AI5 315 612 613 212 EI3 113 612 PIS 01 ASCII
1--I
IM1310101: ISIVI&121.11161/IPI

User-specified register before packing fd:

1001001011181 Hex

Packed fd:

14 DI3 313 013 015 315 612 012 012 012 012 012 012 012 012 015 01 ASCII
1---1
IMI31010lSlVI I I I I I I

User-specified register after packing fd:

1001001011181 Hex

Condition Codle:

1 c 1 V 1 GIL 1
1 -====·"·_:-----=-1
1 1 1 1 I 0 I 0 I No extension present in unpacked fd;

syntax error present in unpacked fd

The above example shows an ille'~al character within the filename.

48-038 FOD RD2 3-67

Example 4:

Unpacked fd:

14 315 214 415 212 EI ASCII
1-------------------1
ICIRIDIRI.I

Packed fd:

14 013 313 013 014 315 214 415 212 012 012 012 012 012 012 015 01 ASCII
1---1
IMI31010lciRIDIRI I I I IPI

Condition code:

1 C 1 V 1 GIL 1
1==-------------1
I a 1 a I a I 1 I No volume name present in unpacked format

The example above shows a default volume option with an explicit
request for an extension containing spaces.

Example 5:

Unpacked fd:

15 0/4 314 213 313 212 FI5 31 ASCII
1---------------------------1
1 PIC I B 1 3 1 21/ 1 S I

Packed fd:

14 DI3 313 013 015 014 314 213 313 212 012 012 012 012 012 015 31 ASCII
1---1
IMI31010lPICIBI3121 I I lSI

3-68 48-038 FDa R02

Condition Code:

1 C 1 V 1 GIL 1
1===============1
III 0 101 1 1 No extention present in unpacked fd;

no volume name present in unpacked fd

If a syntax error occurs, the scan of the unpacked fd terminates
at the byt~~ that caused the s;yntax error and the area receiving
the packed fd is filled with indeterminate code. Check the CC to
determine if a syntax error occurred.

3.16.1 SVC2 Code 16, Option X'OO'

If option X'OO' with no volume name is specified, the default is
the user volume. The first byte of the unpacked fd (currently
pointed to by the user-specified register) is the starting
location of the pack fd operation.

, The followin9 examples use M67A. as the default system volume.

Example 1:

Unpacked fd:

14 314 813 215 015 214 DI2 EI3 613 113 312 FI4 71 ASCII
1---1
I C I H I 2 I P I RIM I . 161 1 I 3 I / I G I

Packed fd:

I 4 D I 3 6'1 3 7 I 4 11 4 3 I 4 8 I 3 2 I 5 () I 5 2 I 4 D I 2 0 I 2 0 I 3 6 I 3 11 3 3 I 4 7 I ASCI I
1---1
IMI6171AICIHI21PIRIMI I 1611131GI

Condition Code:

I C I V I GIL I
1=====-=-===--==1
1 0 I a I 0 I 1 I No volume name present in unpacked fd

48-038 FDa R02 3-69

Example 2:

Unpacked fd:

12 014 DI3 313 013 114 314 813 215 015 214 DI2 EI3 613 113 312 FI4 71 ASCII
1---1

I M 1 3 101 1 I C I H 1 2 I P I RIM 1 . 161 1 I 3 1 / 1 G 1

Packed fd:

14 DI3 613 714 112 012 012 012 012 012 012 012 012 012 012 012 01 ASCII
1---1
1 M I 6 I 7 I A I I I I I I I I I I I I

Condition Code:

I C I V I GIL I
I:==----------~-I
111110111 No extension present in unpacked fd;

syntax error present in unpacked fd; no
volume name present in unpacked fd

As shown in the above example, if the first character in the
unpacked fd is not valid, processing stops. The system volume
name is the default, and the filename, extension and class fields
are modified to blanks.

3.16.2 SVC2 Code 16, Option X'40'

If option X'40' with no volume name is specified, the default
user volume and all preceding spaces are ignored. All spaces are
ignored from the first byte of the unpacked fd (currently pointed
to by the user-specified register) to the first character in the
unpacked fda

3-70 48-038 FOO R02

The followingr example uses M67A as the default user volume.

Example:

Unpacked fd:

12 014 314 813 215 015 214 DI2 EI3 613 113 312 FI4 71 ASCII
1---1
I ICIH121PIRIMI.1611131/1GI

Packed fd:

14 DI3 613 714 114 314 813 215 015 214 DI2 012 013 613 113 314 71 ASCII
1---1
IMI6171AICIHI21PIRIMI 1611131GI

Condition Code:

1 C 1 V I GIL 1
1=======-=-=====\
I 0 I 0 II OIl 1 No volume name present in unpacked fd

3.16.3 SVC2 Code 16, Option X'lO'

If option X'lO' with no volume name is specified, the default is
the system volume. The first byte of the unpacked fd (currently
pointed to by the user-specified register) is the starting
location of the pack fd operation.

The fo11owin~J examples use M300 as the default volume.

Example 1:

Unpacked fd:

1 5 3 I 5 6 II 4 3 I 3 2 I 2 E I 3 11 3 6 I 2 F I 5 0 I ASC I I
1-----------------------------------1
I S I V ~ C I 2 1 • III 6 1 I I P I

48-038 FOO R02 3-71

Packed fd:

14 DI3 313 013 015 315 614 313 212 012 012 012 013 113 612 015 01 ASCII
1---1
IMI31010lSlVICI21 I I I 11161 IPI

Condition Code:

1 c 1 V 1 GIL 1
1===-=-------==-1
I 0 I 0 1 0 I 1 I No volume name present in unpacked fd

Example 2:

Unpacked fd:

12 014 DI3 613 714 113 AIS 31S 614 313 212 EI3 113 612 PIS 01 ASCII
1---1

IMI617IA/: IS\VICI21.11161/IPI

Packed fd:

14 DI3 313 013 012 012 012 012 012 012 012 012 012 012 012 012 01 ASCII
1---1
I M I 3 I 0 I 0 I I I I I I I I I I I I I

Condition Code:

leI V I GIL 1
1 =====-===-=-~-=-I
I 1 I 1 I 0 I 1 I No extension present in unpacked fd;

syntax error present in the unpacked fd; no
volume name present in the unpacked fd

As shown in this example, if the first character in the unpacked
fd is not valid, processing stops. The system volume name is the
default and the filename, extension and class fields are modified
to blanks.

3-72 48-038 FOO R02

3.16.4 SVC2 Code 16, Option X'SO'

If option X'SO' with no volume name is specified, t.he default.
system volume and all preceding spaces are ignored. All spaces
are ignored from the first byte of the unpacked fd (currently
pOinted to b}, the user-specified register) to the first character
in the unpacked fda

The followin~J example uses M300 as the def ault system volume.

Example:

Unpacked fd:

12 012 012 015 415 312 EI4 315 315 312 FI4 71 ASCII
1---1
1 1 ITISI.ICISISI/IGI

Packed fd:

14 DI3 313 013 015 415 312 012 012 012 012 012 014 315 315 314 71 ASCII
1---------,--1
I M I 3 I 0 I 0 I TIS I I CIS I S I G I

Condition Code:

I C 1 V II GIL 1
1=====-====-====1
I 0 I 0 Ii 0 I 1 I No volume name present in unpacked fd

3.16.5 SVC2 Code 16, Option X'20'

If option X'~~O' with no volume name is specified, the default is
the spool volume. The first byte of the unpacked fd (currently
pointed to by the user-specified register) is the starting
location of the pack fd operation.

48-038 FOO R0I2 3-73

Example 1:

Unpacked fd:

15 315 614 315 415 315 412 EI4 314 114 CI ASCII
1---------------------------------------1
1 S 1 VIC 1 TIS 1 T 1 . I CIA ILl

Packed fd:

15 313 313 013 015 315 614 315 415 315 412 012 014 314 114 CIS 01 ASCII
1---1
I S I 3 I a 1 a I S I VIC 1 TIS I T I I CIA I LIP I

Condition Code:

I C 1 V I G 11.1
I=====--=-----~-I
1 a I a I 0 1 1 1 No volume name present in unpacked fd

Example 2:

Unpacked fd:

12 012 015 315 614 315 415 315 412 EI4 314 114 CI ASCII
1---1
I 1 ISIVICITISITI.ICIAILI

Packed fd:

15 313 313 013 012 012 012 012 012 012 012 012 012 012 012 012 01 ASCII
1---1
1 S 1 3 1 a 1 a 1 1 I 1 1 1 1 I 1 1

3-74 48-038 FOO R02

Condition Code:

I CIVIGILI
1:========---===1
111110111 No extension present in unpacked fd;

syntax error in unpacked fd;
no volume name in unpacked fd

As shown in t~his example, if no volume name is spec if ied and the
filename is preceded by at least one space, the spool volume is
the default clnd the filename, extension and class fields are
modified to blanks.

3.16.6 SVC2 Code 16, Option X'60'

If option X'60' with no volume name is specified, the default is
the spool volume and all preceding spaces are ignored. All
spaces are igrnored from the first byte of the unpacked fd
(currently pointed to by the user-specified register) to the
first character in the unpacked fd. The default volume for the
following exa~ples is S300.

Example 1:

Unpacked fd:

14 914 CI5 415315 412 EI5 415 314 BI2 FI5 31 ASCII
1---1
1 I ILITISITI.ITISIKI/ISI

Packed fd:

15 313 313 013 014 914 CIS 415 315 412 012 012 015 415 314 BI5 31 ASCII
1--1
I S I 3 I 0 I 0 I I I LIT I SIT I I TIS I K I S I

Condition Code:

1 C 1 V I GIL I
I--=====u==-===-I
I 0 I 0 I 0 I 1 I No volume name present in unpacked fd

48-038 FOO R02 3-75

Example 2:

Unpacked fd:

12 014 914 CIS 415 315 412 EI5 415 314 BI2 FI5 31 ASCII
1---1
I 1 I ILITISITI.ITISII<I/ISI

Packed fd:

14 DI3 313 013 014 914 CIS 415 315 412 012 012 015 4:5 314 BI5 31 ASCII
1---1
1 S 1 3 1 0 I 0 1 IlL 1 TIS 1 TIl T : S I K 1 S I

Condition Code:

I C 1 V I GIL I 1==== ___ = ____ z~=1

I 0 I 0 1 0 1 1 I No volume name present in unpacked fd

If no volume name is specified and the filename is preceded by at
least one space, all preceding spaces are ignored, and the
default is the spool volume. The spool volume name and remaining
fd are packed.

3.16.7 SVC2 Code 16, Option X'SO'

If option X'80' with no volume name is specified, the contents of
the volume name field before executing the pack fd operation is
used as the volume name. The first byte of the unpacked fd
(currently pointed to by the user-specified register) is the
starting location of the pack fd operation.

Example 1:

Unpacked fd:

14 FIS 015 413 813 012 EI4 314 114 CI ASCII
1-----------------------------------1
101 PIT I 8 I 0 I . I C I A I L I

3-76 48-038 FOO R02

Packed fd location contents before pack fd operation:

13 013 013 013 015 714 814 115 414 515 614 515 214 514 CIS 314 51 ASCII
I------------------------~---------------------------------------1
101 0 I 0 I 0 I w 1 H I A I TIE 1 VIE 1 R 1 ElL I S lEI

Packed fd after pack fd operation:

13 013 013 013 014 FI5 015 413 813 012 012 012 014 314 114 CIS 01 ASCII
1---1
1010lOlOIOlPITI8101 I ICIAILIPI

Condition Code:

I C I V I GIL I
I==============~I
I 0 I 0 I 0 I I I No volume name present in unpacked fd

If a volume name is specified and is preceded by at least one
space, that volume name is ignored and the contents remaining in
the volume name field before executing the pack fd operation are
used as the volume name.. ~['he filename, extens ion and class
fields are modif :ied to blanks a~:l shown in Example 2 ..

Example 2:

Unpacked fd:

12 012 0~4 DI3 113 014 113 AI4 FI5 015 413 813 012 EI4 314 114 CI ASCII
1---1
I Il-IIIIOIAI: IOIPITI8101.ICIAILI

Packed fd location contents before pack fd operation:

15 313 313013 015 714 814 115 414 515 614 515 214 514 CIS 314 51 ASCII
1---1
I S I 3 I 0 1 0 I W I H I A I TIE I v lEI R I ElL I S I E I

48-038 FOO R02 3-77

Packed fd after pack fd operation:

15 313 313 013 012 012 012 012 012 012 012 012 012 012 012 012 01 ASCII
1---1
lSI 3 1 0 1 0 1 I I I

Condition Code:

I C I V I GIL I
I===========-==~I
111110111 No extension present in unpacked fd;

syntax error present in unpacked fd;
no volume name present in unpacked fd

If no volume name is specified and the filename is preceded by at
least one space, the contents remaining in the volume name field
before executing the pack fd operation are used as the volume
name. The filename, extension and class fields are modified to
blanks as shown in Example 3.

Example 3:

Unpacked fd:

12 014 FIS 015 413 813 012 EI4 314 114 CI ASCII
1---------------------------------------1

I 0 I PIT I 8 I 0 I . I C I A I L I

Packed fd location contents before pack fd operation:

14 013 213 512 015 714 814 115 414 515 614 515 214 514 CIS 314 51 ASCII
1---1
I M I 2 1 5 I I W I H I A I TIE I v I E I R I ElL I S I E I

Packed fd after pack fd operation:

14 DI3 213 512 012 012 012 012 012 012 012 012 012 012 012 012 01 ASCII
1---1
I M I 2 I 5 I I I I I I I

3-78 48-038 FOO R02

Condition Code:

I C I V ~ GIL I
I=============~=I

I 1 I 1 ~ a I 1 I No extension present in unpacked fd;
syntax error present in unpacked fd;
no volume name present in unpacked fd

3.16.8 SVC2 Code 16, Option X'CO'

If option X'CO' with no volume name is specified, the contents of
the volume nc~e field before executing the pack fd operation are
used as thE~ volume name and all preceding spaces are ignored.
All spaces are ignored from the first byte of the unpacked fd
(currently pointed to by the user-specified register) to the
first character in the unpacked fd.

Example 1:

Unpacked fd:

15 015 214 DI2 EI3 613 113 312 FI5 01 ASCII
1-----------------------------------1
IPIRIMI.1611131/1PI

Packed fd contents before pack fd operation:

14 415 314 313 315 714 814 115 414 515 614 515 214 514 CIS 314 51 ASCII
1---1
I DIS I C I 3 I W I H I A I TIE I v I E I R I ElL I S I E I

Packed fd aft~er pack fd operation:

14 415 314 313 315 015 214 DI2 0.12 012 012 012 013 613 113 315 01 ASCII
1---1
I DIS I C I 3 I P I RIM I I 6 I 1 I 3 I P I
----------------------------------~------ ----------------------

48-038 Faa R0I2 3-79

Condition Code:

I C I V I GIL I
I==========---=~I
I 0 I 0 I 0 I 1 I No volume name present in unpacked fd

If a volume name is specified and is preceded by at least one
space, all preceding spaces are ignored and that volume name and
remaining fd are packed as shown in Example 2.

Example 2:

Unpacked fd:

12 012 014 DI3 613 714 113 AI5 015 214 DI2 EI3 613 113 312 FI5 01 ASCII
1-----------------'--1

IM16171AI: IPIRIMI.1611131/1PI

Packed fd:

14 DI3 613 714 115 015 214 DI2 012 012 012 012 013 613 113 315 01 ASCII
1---1
IMI6171AIPIRIMI 1 I 1611131PI

Condition Code:

I C I V I GIL I
I~============~~I
I 0 I 0 I 0 I 0 I Normal termination

3.16.9 SVC2 Code 16, Options for Privileged Tasks

Only privileged u-tasks, e-tasks and privileged diagnostic
(d-tasks) are allowed to pack an fd so that the resulting
fd has an account number in its file class/account number
A u-task becomes privileged if the account privileges task
(ACPRIVlLEGE) is specified when the task is link-edited.

tasks
packed
field.
option

3-80 48-038 FOO R02

ACPRIVILEGE allows u-tasks to access files by account number
rather than file class. The range of account numbers available
to the task is 0 through 65,535, excluding 255. To access files
on account 2S5, the bare disk I/O task option (DISC) must also be
specified when the task is link-edited.

E-tasks always have account privileges.

CAUTION

IF THE OS/32 TASK LOADER HAS THE E-TASK
LOAD OPTION DISABLED, ALL U-TASKS WILL BE
DENIED ACCOUNT PRIVILEGES REGARDLESS OF
,]~HE TASK OPTIONS SPECIF lED BY LINK.

The followinCJ SVC2
privileged d-task
that has an cLccount
field:

OPTION

X'08'

X'48'

X'18'

X'58'

X'28'

X'68'

X'88'

X'C8'

code 16 options are used by an e-task,
or privileged u-task to produce a packed fd

number in its file class/account number

MEANING

Default volume is the user volume.

Default volume is the user volume; skip
leading spaces.

Default volume is the system volume.

Default volume is the system volume; skip
leading spac1es.

Default volume is the spool volume.

Default volume is the spool volume; skip
leading spac1es.

There is no default volume.

There is no default volume; skip leading
spaces.

When a privileged task uses one of the above options to pack an
fd that has either an account number or file class in its file
class/account number field, SVC2 code 16 returns an account
number to the resulting packed fd and sets the G bit in the CC.

If neither an account number no]c a file class is specified in the
unpacked fd, the file is packed with account number 0 (if the
task is running at the sys1:.em console) or the user's pr ivate
account number (if the task is lcunning under MTM).

48-038 FOO R02 3-81

I SVC2 I
I CODE 17 I

3.17 SVC2 CODE 17: SCAN MNEMONIC TABLE

SVC2 code 17 compares a user-specified mnemonic character string
to a table of previously defined mnemonic strings. If a match is
found, the user-specified mnemonic character string is accepted
as a valid mnemonic. The SVC2 code 17 parameter block is shown
in Figure 3-22.

0(0)
Option

4(4)

parblk

11(1)
Code

12(2)
User

register 1

Address of mnemonic table

SVC 2,parblk

ALIGN 4
DB 0,17

13(3)
User

register 2

DB user register 1, user register 2
DCF A(mnemonic table)

Figure 3-22 SVC2 Code 17 Parameter Block Format and Coding

This parameter block is eight bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

3-82 48-038 FOD RD2

Fields:

option

Code

User
register 1

User
register 2

Address of
mnemonic
table

is a l-byte field that must contain 0 to'
indicate no options for this call.

is a l-byte field that must contain the
decimal number 17 to indicate SVC2 code 17.

is a l-byte field that must contain a
user-specif ied register number. This reg.ister
should contain the starting address of the
buffer with the user-specified mnemonic
character string. After executing SVC2 code
17, this register contains the address of the
byte following the user-specified mnemonic
string or the unchanged starting address.

is a l-byte field that must contain a
user-specified register number. This register
receives a decimal number from -1 to
2,147,483,647 (2~ -1) corresponding to the
position of the mnemonic within the table that
matches the user-specified mnemonic character
string. If no match is found, this register
receives a value of -1. The first position in
the mnemonic table corresponds to a value of
o.

is a 4-byte field that must contain the
starting address of the mnemonic table. This
must be defined before executing SVC2 code 17.

The user-specified mnemonic character string can be any length
but can only contain the following characters:

• A through Z (upper-case)

• a throug~ z (lower-case)

• 0 through 9 (can be used only after the first byte of the
mnemonic)

• Special characters (can be used only as the first byte of the
mnemonic) .

All lower-case characters
mnemonic chaLracter str ing
equivalent.

48-038 FOQ R02

that
are

appear in the user-specified
accepted as their upper-case

3-83

3.17.1 Building a Mnemonic Table

The mnemonic table to be used in SVC2 code 17 must be defined in
a standard format. The mnemonics entered in the table can be any
length but can contain only certain legal characters:

• A through Z (upper-case)

• 0 through 9 (can be used only after the first byte of the
mnemonic)

• Special characters (can be used only as the first byte of the
mnemonic)

The characters for each mnemonic in the table must be in
contiguous order, beginning with the first character and ending
with the termination indicator, X'OO'. Every mnemonic entered in
the table has a minimum abbreviation. Each character required
for the minimum abbreviation must have an X'SO' added to the
character when the mnemonic is defined. The mnemonic table must
be terminated by an X'OO' after the last mnemonic entry. See the
example below.

Example:

TABLE EQU
DB
DB

:II:

C'G'+X'80',C'ET',X'00'
C'R'+X'80',C'E'+X'80',C'W'+X'80',C'IND',X'00'

DB C'S'+X'80',C'T'+X'SO',C'ART',X'00'
DB X'OO'

When the table is assembled, a logical OR operation is performed
on X'SO' and the character associated with it. This sets bit 0
of each character on which the OR operation was performed to 1.
A bit setting of 1 indicates that it is a required character; a
bit setting of 0 indicates that it is not a required character.

3.17.2 Executing SVC2 Code 17

When executing this call, the user-specified mnemonic character
string is compared to each entry in the mnemonic table until a
match is found. Once a match is found, the address of the byte
following the user-specified mnemonic character string is stored
in the user register specified by the user register 1 field of
the parameter block.

3-S4 48-03S FOO R02

The mnemonic's position (decimal number) within t.he table that
matched the user--spec if ied mnemonic character str ing is slored in
the user re9ister specified by the user register 2 field of t.he
parameter block. After executing SVC2 code 17, the CC is set.

Cond it ion Codle:

I C I V I GIL I
1===-=-=---=u=='1

Normal termination 10101 0 I 0 I
101 1 I 0 I 0 I User-specified mnemonic character string

does not match any mnemonic in the table

Example:

SCAN

STRING

PAUSE
TABLE

LA 3,STRING
BVC 2,SCAN
SVC 2,PAUSE

.ALIGN 4
DB
DB
DC
DB
.ALIGN
DB
:EQU
DB
DB
DB
DB

0,17
3,5
A(TABLE)
C'map'
4
0,1

*
C' A' +X' 80' , C II L' +X' 80' , C' LOCATE' , X' 00'
C'M'+X'80',C aA'+X'80',C'P'+X'80',X'00
C'T'+X'80',C~YPE',X'OO'

X'OO'

User-specified mnemonic strinu before and after execution of
SVC2 code 17:

Starting
address
X'lS8'

I
~

16 DI6 117 01 ASCII
1-----------1
I m I alp I

48-038 FOO R02 3-85

Table (after assembly) before and after execution of SVC2 code
17 :

C llC CI4 CI4 FI4 314 115 414 510 OIC DIC liD 010 0

A I L I L I 0 I CIA I TIE 10 01 M I A I P 10 0

D 415 915 014 510 010 01

T I YIP I E 10 010 01

User register 1 before execution of SVC2 code 17:

10 010 010 115 81 Hex

User register 1 after execution of SVC2 code 17:

10 010 010 115 BI Hex

User register 2 after execution of SVC2 code 17:

10 010 010 010 11 Hex

Condition Code:

I C I V I G 11.1
I========:===~=~I
10101 0 I 0 I

If the user-specified mnemonic character string is compared to
each entry in the mnemonic table and no match is found, the
starting address of the buffer containing the user-specified
mnemonic character string remains unchanged in user register 1.
A decimal value of -1 is stored in user register 2, and the CC is
set to 4 (V bit set).

3-86 48-038 FOO R02

Example:

SCAN

STRING

PAUSE
TABLE

LA 3,STRING
SVC 2,SCAN
SVC 2, PAUSE

I~LIGN 4
DB
DB
DB
DC
I~IGN

DB
)~QU

DB
DB
DB

0,17
3,5
A(TABLE)
C'AS'
4
0,1
*
C'A'+X'80',C'L'+X'80',C'LOCATE',X'00'
C'M'+X'80',C t A'+X'80',C'P'+X'80',X'OO'
C'T'+X'80',C'YPE',X'0000'

User-specified mnemonic string before and after execution of SVC2
code 17:

starting
address
X'158'

I
~

14 115 31 ASCII
1-------1
I A I S I

Table (after ,assembly) before and after execut ion of SVC2 code
17 :

C llC CI4 CI4 FI4 314 115 414 510 Ole Die liD 010 0

A I L I L I 0 I C I A I TIE 10 01 M I A I P 10 0

D 415 915 014 510 010 01

T 1 YIP I E 10 010 01

User register 1 before and after execution of SVe2 code 17:

10 010 010 ,liS 81 Hex

48-038 FOO RO,2 3-87

User register 2 after execution of SVC2 code 17:

IF FIF FIF FIF FI Hex

Condition Code:

I C I V I GIL I
I==============~I
101 1 I 0 101

If a nonalphanumeric character follows the first character in a
user-specified mnemonic string, the nonalphanumeric character is
treated as the end of the mnemonic. The address of the
nonalphanumeric character is returned to user register 1.

Example:

SCAN

STRING

PAUSE

TABLE

LA 3,STRING
SVC 2,SCAN
SVC 2, PAUSE

ALIGN 4:
DB
DB
DC
DB
ALIGN
DB
ALIGN
EQU
DB
DB
DB

0,17
3,5
A(TABLE)
C'TY&E'
4
0,1
4

C'A'+X'80',C'L'+X'80',C'LOCATE' ,X'OO'
C'M'+X'80',C'A'+X'80',C'P'+X'80',X'00'
C'T'+X'80',C'YPE',X'0000'

User-specified string before and after execution of SVC2 code 17:

3-88

Starting
address
X'lS8' X'lSA'

I I
~'_ ,-A-.... - - -- .. -- - -. - - -... - - - -

15 415 912 614 51 ASCII
I -- - -. -- _. - - - - - - - - .- I
I '}' 1 y : & I E: :

48-038 FOO R02

Table (after assembly) before and after execuLion of SVC2 code
17 :

C llC CI4 CI4 FI4 314 115 414 510 OIC DIe lID 010 0

A I L I L I 0 I C I A I TIE 10 01 M I A I P 10 0

D 415 915 014 510 010 01

T I YIP I E 10 010 01

User register 1 before execution of SVC2 code 17:

10 010 010 115 81 Hex

User register 1 after execution of SVC2 code 17:

10 010 010 115 AI Hex

User register 2 after execution of SVC2 code 1:

10 010 010 010 21 Hex

Condition Code:

I C I V I GIL I
1===========-===1
I 0 I 0 I 0 101

In the above example, the usor-specified mnemonic "TY&E" is
treated as "TY". The addross of the byte following the
user-specified mnemonic string JLs then X' 15A', which is returned
to user register 1. A decimal value of 2 is stored in user
register 2, and the CC is set to o.

48-038 FOO R02 3-89

I SVC2 I
I CODE 18 I

3 . 18 SVC2 CODE 18: MOVE ASC I I CHARACTERS

SVC2 code 18 moves a specified number of ASCII characters from a
sending buffer to a receiving buffer in memory. The SVC2 code 18
parameter block is shown in Figure 3-23.

0(0)
Option+n

11(1)
Code

12(2)
User

register 1

13(3)
I User

register 2

4(4)
Address of terminating character string

SVC 2,parblk

ALIGN 4
parblk DB option+n,18

DB user register 1, user register 2
DCF A(terminating character string)

Figure 3-23 SVC2 Code 18 Parameter Block Format and Coding

This parameter block is eight bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:

Option+n is a I-byte field that must contain the
addition of the hexadecimal number specified
for the option and the decimal number
specified as n.

• n is a decimal number ranging from 0 to 127
indicating an explicit number of bytes in
the ASCII character string that are to be
moved to the receiving buffer in memory.

3-90 48-038 FDD R02

Code

User
register JL

User
register ~~

Address of
terminating
character

• Option X'OO'+n means no terminating
character string is used.

• Option X'SO'+n means a terminating
character string is used.

is a l-byte field that must contain the
decimal number lS to indicate SVC2 code 18.

is a l-byte field that must contain a
user-specified register number. This register
must contain the starting address of the
buffer containing the user-specified ASCII
character string to be moved. After executing
SVC2 code lS, this register contains the
address of the byte in the sending buffer that
follows the last moved character.

is a l-byte field that must contain a
user-specified register number. This register
must contain the starting address of the
buffer that receives the user-specified number
of ASCII characters being sent. This buffer
must be located in a task-writable segment.
After executing SVC2 code lS, this register
contains the address of the byte in the
receiving buffer that follows the last
character received.

is a 4-byte field that must contain the
starting address of the user-specified string
of terminating characters. Each character of
this string can be used to indicate the end of
the ASCII character string to be moved. This
field is only used when option X'SO' is
specified.

When SVC2 codE~ lS is executed, the specified number of ASCII
characters are moved to the receiving buffer. The starting
addresses of t~he sending and receiving buffers located in the
user-specified registers are changed to the address following the
last byte sent in the sending buffer and the last byte received
in the receiving buffer. The CC is also set after executing SVC2
code lS. The possible CC settings follow.

Condition CodE~:

I C I V I GIL I
I===-----u----a-I
101010101
10111 0 I 0 I

4S-03S Faa RO~~

Normal termination
No terminating character found in
the ASCII character string

3-91

3.18.1 SVC2 Code 18, option X'OO'+n

If option X'OO'+n is used with a user-specified decimal number,
that decimal number determines the number of bytes moved from the
ASCII character string to the receiving buffer. After executing
SVC2 code 18, user register 1 contains the address of the byte in
the sending buffer that follows the user-specified number of
ASCII characters that were moved. User register 2 contains the
address of the byte in the receiving buffer that follows the
user-specified number of ASCII characters just received. The CC
is set to O.

Example:

LA 1,ASTRING
LA 2,RECBUF
SVC 2,MOVECHAR

ALIGN 4
MOVECHAR DB X'00'+17,18

DB 1,2
DS 4

ASTRING DB C'FLORIDA***VERMONT'
RECBUF DS 17

User reg.ister 1 before execution of SVC2 code 18:

10 010 010 116 21 Hex

User register 2 before execution of SVC2 code 18:

10 010 010 117 31 Hex

ASCII character string before and after execution of SVC2 code 18:

Starting address Last byte Address
X'T62' to be,rnoved X'~'

~---------------------------.--------------------------------~~
14 614 CI4 Fls 214 914 414 112 AI2 AI2 Als 614 515 214 DI4 FI4 Els 412 01 ASCII
1---(
1 F I L I 0 I R I I I 0 I A I * I * I * I V I E I RIM I 0 I NIT I

3-92 48-038 FOO R02

Receiving buffer after execution of SVC2 code 18:

starting address Address
X'173' X'184'

1 I
~- - - - - - - -- ._- ---~
14 614 CI4 PIS 214 914 414 112 AI2 AI2 AIS 614 515 214 DI4 FI4 EIS 412 01 ASCII
1---1
1 F I L I 0 I R I I I D I A I * I * I * I V I E I RIM I 0 I NIT I

User register 1 after execution of SVC2 code 18:

10 010 010 117 31 Hex

User register 2 after execution of SVC2 code 18:

10 010 010 1\8 4\ Hex

Condition Code:

I C I V I G \ L I
I==============~I
I 0 I 0 I 0 I 0 I

3.18.2 SVC2 Code 18, Option X'80'+n

If option X'BO'+n is specified, each character in the ASCII
string is compared to each-character in the terminating string
before it is moved. A match indicates that the end of the ASCII
character string to be moved was reached and the decimal number
n, which specifies the number of characters to be moved, is
ignored. The character or characters in the ASCII string that
match the character or characters in the terminating string are
not moved, and the SVC terminates. The CC is set to o.

The string of terminating characters can be any length and can
contain any character but must be specified by the user as
follows.

Format:

label DB m,C'xxx ... x'

48-038 FOO R0I2 3-93

Parameters:

label

DB

m

C'xxx ... x'

is the name of the terminating character
string the user specifies.

is the operation code, define byte.

is a decimal number indicating the
characters in Lhe terminating
string.

number of
character

is a character string indicating that the data
enclosed in the single quotation marks are
characters.

Example:

LA 3,ASTRING
LA 5,RECBUF
SVC 2,MOVECHAR
SVC 2, PAUSE

ALIGN 4
PAUSE DB

ALIGN
MOVECHAR DB

DB
DC

TSTRING DB
ASTRING DB
RECBUF DB

0,1
4
X'80'+17,18
3,5
A(TSTRING)
3,C'/&*'
C'FLORIDA*&/VERMONT'
17

ASCII character string before and after execution of SVC2 code 18:

starting
address Characters matching Address
X'162' terminating character string X'173'
~ ____________ . ___________ ~ ____________________________ 6
14 614 Cl4 FIS 214 914 414 112 AI2 612 FIS 614 SIS 214 DI4 FI4 EIS 412 01 ASCII
1---1
I F I L I 0 I R I I I D I A I * I & I / I V I E I RIM I 0 I NIT I I

User register 1 before execution of SVC2 code 18:

10 010 010 116 21 Hex

3-94 48-038 FaD R02

User register 2 before execution of SVC2 code 18:

10 010 O~O 117 31 Hex

Receiving buffer after execution of SVC2 code 18:

starting address Address
X'173' X'17A'

I I
~- - - - - ---- -- - -- - ----------~- ---- - - ---------- - --- - --- --- - -- - - --- - ---
14 614 e 14 F'I 5 214 914 D 14 112 012 10 1 2 012 012 012 0 12 012 012 0 I 2 0 I 2 01 Ase II
1---1
IFILIOIRIIIDIAI I I

User registel~ 1 after execution of SVC2 code 18:

10 010 010 116 91 Hex

User register 2 after execution of SVC2 code 18:

10 010 O~O 117 AI Hex

Terminating character string before and after execution of SVC2
code 18:

I 2 A I 2 6 Ii 2 F I ASe I I
1-------------1
I / I & :i * I

Condition Code:

1 C I V ~ GIL I

I=----=-D=----==I
I 0 I 0 ~ 0 I 0 I

48-038 FOO R02 3-95

If option X'80' is specified and the ASCII character string does
not contain any characters that match any terminating character,
the decimal number specified as m determines the number of bytes
to be moved. The CC is set to 4 (V bit set).

Example:

PAUSE

MOVE CHAR

TSTRING
ASTRING
RECBUF

LA 3,ASTRING
LA 5,RECBUF
SVC 2,MOVECHAR
SVC 2, PAUSE

ALIGN 4
DB 0,1
ALIGN 4
DB X'80' + 17,18
DB 3,5
DC A(TSTRING)
DB 3,C' ,$:'
DB C'FLORIDA*&/VERMONT'
DS 17

ASCII character string before and after execution of SVC2 code 18:

Starting address
X'162'

Last byte Address
to be moved X'I73'

I
~

,-I ------,1 I
~---~-

14 614 CI4 FIS 214 914 414 112 AI2 612 FIS 614 515 214 DI4 FI4 EIS 412 01 ASCII
1---1
1 F 1 L 1 0 1 R 1 liD 1 A 1 * 1 & 1 / 1 VIE 1 RIM 1 0 1 NIT I I

User register 1 before execution of SVC2 code 18:

10 010 010 116 21 Hex

User register 2 before execution of SVC2 code 18:

10 010 010 117 31 Hex

3-96 48-038 FDD R02

Receiving buffer after execution of SVC2 code 18:

starting
address Address
X'~73' X't84'

,~,; - .- - - -. - - - -. -- - - -. - - - - - - - -. - - - - - .. - - -- - - - - - - - - - - .-~--:"~.
:4 6:4 C:4 F:S ZI4 914 414 lIZ AIZ 612 FIS 614 515 ZI4 DI4 FI4 EIS 41Z 01 ASCII
: - - - _. - - .. - - - - - - -. - _ ... - -. - - - - - - - - - - - - - - - - •. - - _. - I
: F : 1. : 0 : R : 1 : D : A : * : & : I : V : E : R : M : 0 : N : 1': :

U~er register 1 after execution of SVC2 code 18:

10 010 010 117 41 Hex

User register 2 after execution of SVC2 code 18:

10 010 010 118 41 Hex

Terminating character string:

12 712 413 AI ASCII
1------------1
I , I $ I : I

Condition COdE~:

I C I V I GIL I 1:= ______ u __ = __ ~1

101 1 lOr 0 I

48-038 FOO RO.2 3-97

I SVC2 I
I CODE 19 I

3.19 SVC2 CODE 19: PEEK

SVC2 code 19 provides five parameter block options that can be
used to obtain and store task-related information. Each
parameter block option obtains a different set of information
from the system pointer table (SPT) and the TCB. Figures 3-21
through 3-25 illustrate the five peek parameter block option
formats.

3.19.1 Parameter Block for Option X'OO'

If SVC2 code 19 is executed with option X'OO' specified in the
parameter block option field, use the parameter block format in
Figure 3-24. This option is used to obtain task information.

0(0)
Option
(00)

11(1)
Code
(19)

12(2) Number ofI3(3) Maximum
I logical units I priority

I (MPRI)

4(4)

Name of operating system
--------------- (OSlO) ----------------
8(8)

12(C)

16(10)

20(14)

24(18)

Task name

Current task status word
(CTSW)

Task options
(OPT)

SVC 2,parblk

ALIGN 4

126(lA)
Logical

processing
unit (LPU)

parblk DB X'00',19
OS 25
DB 0

127(lB)
I

Reserved

Figure 3-24 SVC2 Code 19 Parameter Block Format and Coding
for Option X'OO'

3-98 48-038 FOO R02

This parameter block must be 28 bytes long, fullword
boundary-aligned, and located in a task-writable segment. A
general description of each field in the parameter block follows.

Fields:

option

Code

Number of
logical units

Maximum
priority
(MPRI)

Name of
operating
system
(OSID)

Task name

Current t.a.sk
status wo~rd
(CTSW)

Task opt ic)ns
(OPT)

Logical
processin9
unit (LPU)

Reserved

48-038 FOO RO;2

is a I-byte field that must contain the
hexadecimal number X'OO'.

is a I-byte field that must contain the
decimal number 19 to indicate SVC2 code 19.

is a l-byte field that receives from the TeB
the maximum logical unit number that can
be assigned to a task. This hexadecimal
number rangef~ from 0 to 254 (X' FE') .

is a I-byte field that receives from the TCB
the highest priority number at which the
assigned task can execute. This hexadecimal
number rangef5 from 10 (X' 04') to 249 (X' F9 ') .

is an 8-byte field that receives from the
SPT the operating system name in ASCII.

is an 8-byte field that receives from the TeB
the name of t~he task in ASC I I .

is a 4-byte field that receives from the TeB
the hexadecimal number representing bits 0
through 31 of the CTSW.

is a 2 -byt~e f ie Id that r ece i ves the
hexadecimal number representing bits 16
through 31 of the option field in the TCB.
Bits 0 through 15 are accessible through
option X'03' of SVC2 code 19. Table 3-4 lists
task options.

is a l-bytE! field that receives the
decimal nun~er of the task's current LPU
assignment from the TCB. The value of this
number ranges from X'OO' to X'09'; X'OO'
indicates the central processing unit (CPU).

is a reserved l-byte field that must contain
zeros.

3-99

TABLE 3-4 TASK OPTIONS FROM THE Tea

BIT I
POSITION I

BIT NAME
AND MASK BIT SETTING AND MEANING

=---=---------------

3--100

a I D-task \ a = task determined by bit 16
I (Y'8000 0000') I 1 - task is ad-task

1

2

3

4

Auxiliary
processing
unit (APU)
only
(Y'4000 0000')

\ APU
\ mapping
I (Y'2000 0000')

\ APU
I control
\ (Y '1000 0000')

Dynamic
priority
scheduling
(Y'0800 0000')

a : task can run on CPU or APU
1 : task cannot run on CPU

\ a : no APU mapping allowed
I 1 = task can perform APU

mapping functions

\ a ~ no APU control allowed
I 1 = task can perform APU

mapping functions

a = dynamic priority
scheduling disabled

1 dynamic priority
scheduling enabled

5 I Prompts \ a = MTM prompts disabled
\ (Y' 0400 0000') '\ 1 ~ MTM prompts enabled

6

7

8

9

Vertical forms
control (VFC)
(Y'0200 0000')

Extended SVCl
parameter
block
(Y'0100 0000')

Task event
service
(Y'0080 0000')

'rask event
registers save
(Y'0040 0000')

a = except where specified,
all I/O interpreted
without VFC

1 = all I/O interpreted with
VFC

a = SVCI extended parameter
block not used (excludes
communications I/O)

1 = extended SVCl parameter
block used

a = new task status word (TSW)
for task event service

1 - no new TSW for task event
service

a all register contents
saved and restored

1 : only contents of registers
that contain task event
data are saved and
restored

48-038 FDa R02

TABLE 3-4 TASK OPTIONS FROM THE TCB (Continued)

BIT : BIT NAME
AND MASK POSITION : BIT SETTING AND MEANING

10 I Task event
: register save
: (Y'0020 0000')

o task event register not
saved

1 = task event register saved

11 I System group I 0 = not in system group
: (Y'OOlO 0000') : 1 = in system group

12 : Console I/O : 0 no console I/O interrupt

13

: intercept : 1 = console I/O interrupt
: (Y "0008 0000'): enable (MTM)

Universal
status report
(Y'00040000')

o universal task status re­
ports not allowed

1 = universal task status re­
ports allowed

14 : E-task load : 0 = allow e-task load

15

: (Y'0002 0000') : 1 = prevent e-task load

: Queued I/O : 0
: (Y'OOOl 0000') :

1

queued I/O not purged on
error
queued I/O purged on error

16 : E-task : 0 = task is au-task
: (Y'OOOO 8000') : 1 = task is an e-task

17

18

Arithmetic
fault
(Y'OOOO 4000')

Single preci­
sion floating
point (SPFP)
(Y'OOOO 2000')

o = task abnormally terminates
on arithmetic fault

1 = task continues execution
on arithmetic fault

o = task does not support SPFP
1 = task supports SPFP

19 : Memory resident: 10 = task is nonresident
: (Y'OOOO 1000') : 1 = task is resident in memory

20

21

48-038 Faa RO~~

SVC6 control
functions
(Y'OOOO 0800')

SVC6 communi­
cation func­
tions
(Y'OOOO 0400')

o = task can execute all SVC6
control functions

1 = all SVC6 control functions
are prevented

o

I

task can execute all SVC6
communication functions
all SVC6 communication
functions are prevented

3-101

TABLE 3-4 TASK OPTIONS FROM THE Tea (Continued)

BIT I
POSITION I

BIT NAME
AND MASK BIT SETT I NG AND MEANING ======== __ =m ___ _

3-102

22

23

Illegal SVC6
(Y'OOOO 0200')

Double preci­
sion floating
point (DPFP)
(Y'OOOO 0100')

o : task abnormally terminates
on an illegal SVC6

1 = task continues execution
on an illegal SVC6

o ~ task does not support DPFP
1 = task supports DPFP

24 I Rollable I 0 = task is not rollable
I (Y'OOOO 0080') I 1 = task is rollable

25

26

Overlays
(Y'OOOO 0040')

I Accounting
I Facility
I (Y'OOOO 0020')

o = task does not support the
use of overlays

1 = task supports the use
of overlays

o = disable Accounting
Facility

1 ~ enable Accounting Facility

27 Intercept callsl 0 = task cannot issue inter-

2.8

2.9

30

31

(Y'OOOO 0010') cept calls

Account number
privileges
(Y'OOOO 0008')

Bare disk I/O
privilege
(Y'OOOO 0004')

Universal
communications
task
(Y'OOOO 0002')

E-task
keys
(Y'OOOO 0001')

1 ~ task can issue intercept
calls

o = task does not have file
account number privileges

1 = task has file account
number privileges

o ~ task cannot directly
assign to a disk device

1 = task can directly assign
to a disk device for bare
disk I/O (see Chapter 8)

o ~ task is not a universal
task

1 ~ task is a universal task

o ~ no keys are checked on an
assign for an e-task

1 = keys are checked on an
assign for an e-task

48-038 FOO R02

Example:

PEEK

PAUSE

SVC2,PEEK
SVC2,PAUSE

,~IGN 4
DB X'00',19
DS 25
DB 0
,~IGN 4
DB 0,1

Parameter block before execution of SVC2 code 19:

-------- --------
00 119 100 iOO

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 100 00

00 00 100 00

Parameter block after execution of SVC2 code 19:

00 119 IIOF 181

o S 3 2

M T o 6

M A R

00 00 00 00

[{ O~--~4-100--00-

OC84 = SVC6 control call prevented.
SVC6 communicatjon call prevented.
Task is rollable.
SVC6 load of e-task prevented.

48-038 FOO RO.2 3-103

3.19.2 Parameter Block tor Option X'Ol'

To execute SVC2 code 19 with option X'Ol' specified in the
parameter block option field, use the parameter block format in
Figure 3-25.

0(0)
Option

4(4)

11(1)
I Code

12(2)
I Maximum blocking factor
I

Name of operating system
--------------- (OSID) ------------------
8(8)

12(C)
Operating system update

level (OSUP)

16(10)

Il4(E)
CPU model numbers

System options
(SOPT)

20(14)
User account number

(UACT)

24(18)

122(16)
Group account number

(GACT)

System console name

SVC 2,parbik

ALIGN 4
parblk: DB X'01',19

OS 26

Figure 3-25 SVC2 Code 19 Parameter Block Format and Coding
for Option X'Ol'

3-104 48-038 FOO R02

This parameter block must be 28 bytes long, fullword
boundary-aligned, and located in a task-writable segment. A
general description of each field in the parameter block follows.

Fields:

option

Code

Maximum
blocking
factor

Name of
operating
system (OSID)

Operating
system update
level (OSUP)

CPU model
numbers

48-038 FOO R02~

is a I-byte field that must contain the
hexadecimal number X'Ol'.

is a l-bytE~ f ie Id that must conta in the
decimal number 19 to indicate SVC2 code 19.

is a 2-byte field that receives a number
ranging from X'Ol' to X'FF'. This number
indicates the maximum number of 256-byte
segments that can be specified in an ALLOCATE
conunand or an SVC7 for the data block size of
indexed files, and for the indexed block size
for indexed nonbuffered indexed and extendable
contiguous files. This blocking factor must
be set at sysgen. See the System
Generation/32 (Sysgen/32) Reference Manual.

is an 8-bytE~ field that receives from
SPT the operating system name in ASCII.

the

is a 2-byte field that receives from the
SPT the current update level of the operating
system in ASCII in the form nne

is a 2-byte field that receives in hexadecimal
from the SPT the model numbers of the CPU used
in the system. They are:

• A Model 7/32 System has a value of X'0007' .

• A Model 8/32 System has a value of X' 0008' .

• A Model 3200MPS System has a value of
X' OC80' .

• A Model 3205 System has a value of X, OC8S' .

• A Model 3210 System has a value of X' OC8A' .

• A Model 3220 System has a value of X' OC94' •

• A Model 3230 System has a value of X' OC9E' .

• A Model 3240 System has a value of X' OCA8' .

• A Model 3250 System has a value of X' DCB2' •

3-105

System
options
(SOPT)

is a 4-byte field that receives the
hexadecimal value of bits a through 31 of the
options field in the SPT. Table 3-5 lists
system options.

User account
number
(UACT)

is a 2-byte field that receives the user
account number from the TCB. This hexadecimal
number is right-justified with zeros filling
Lhe left-most portion.

Group account
. number

is a 2-byte field that receives the group
account number from the TCB. This hexadecimal
number is right-justified with zeros filling
Lhe left-most portion.

(GACT)

System
console name

is a 4-byte field that receives the name of
the device that is acting as the sysLem
console.

TABLE 3-5 SYSTEM OPTIONS FROM THE SYSTEM POINTER TABLE

BIT I
POSITION I

o

1

3

4

3-106

BIT NAME
AND MASK

Single preci­
sion floating
point (SPFP)
(Y'80000000')

Form date is
displayed
(Y'4000 0000')

Time display
(Y'2000 0000')

DPFP
(Y'lOOO 0000')

Writable
control store
(WeS)
(Y'0800 0000')

BIT SETTING AND MEANING

o ~ system does not support
SPFP

1 ~ system does support SPFP

o : date is displayed in the
form mrn/dd/yy

1 ~ date is displayed in the
form dd/mrn/yy

o ~ time is displayed on output
device specified by the
user

1 ~ time displayed on panel

o : system does not support
DPFP

1 c system does support DPFP

o ~ system does not support WCS
1 ~ system does support WCS

48-038 FOO R02

TABLE 3-5 SYSTEM OPTIONS FROM THE SYSTEM POINTER TABLE
(Continued)

I BIT I
I POSITION I

BIT NAME
AND MASK BIT SETTING AND MEANING

========~=m========_===_== ___ ================ __ ==~===_=== __
5

6

7

Address align­
ment error
checking
(Y'0400 0000')

Direct access
(Y'0200 0000')

I TAM
(Y'OlOO 0000')

o = hardware does not support
address alignment error
checking

1 = hardware supports address
alignment error checking

o = system does not support
direct access

1 system supports direct
access

o = system does not support
communications

1 = system supports communica­
tions

8 I Spool I 0 system does not support
I (Y' 0080 0000') I spooling

9

10

11

12

13

14

Roll
(Y'0040 0000')

Temporary
files
(Y'0020 0000')

Multiple
register sets
(Y'OOlO 0000')

Universal
reporting
(Y'00080000')

I General error
I recording
I (Y '0004 0000')

Memory error
recording
(Y'00020000')

48-038 FOO R02

1 - system supports spooling

o = system does not support
roll-in, roll-out

1 - system supports roll-in,
roll-out

o = system does not support
temporary files

1 = system supports temporary
files

o system does not support
multiple register sets

1 = system supports multiple
register sets

o inter task reporting between
universal tasks off

1 = inter task reporting between
universal tasks on

I 0 general error recording off
I 1 = general error recording on
I
I

o = memory error recording off
1 - memory error recording on

3-107

TABLE 3-5 SYSTEM OPTIONS FROM THE SYSTEM POINTER TABLE
(Continued)

BIT I
POSITION I

BIT NAME
AND MASK BIT SETTING AND MEANING :==== ___ = _______________ s _____________ = _____ ~ ______ s _______ ==

15

16

17

18

19

20

I Reserved

I Load real
I address
I (Y'OOOO 8000')

Memory
diagnostics
(Y'OOOO 4000')

Processor
model
(Y'OOOO 2000')

Memory address
translator
(MAT) hardware
(Y'OOOO 1000')

SPFP traps
functions
(Y'OOOO 0800')

I 0 = reserved for future use

o = load real address not
supported

1 = load real address supported

o : memory diagnostics
supported

1 = memory diagnostics not
supported

o = Model 7/32, 8/32 Processors
1 - Model 3205, 3210, 3220,

3230, 3240, 3250, 3200MPS
System Processors

1 = system has MAT hardware
o - system does not have MAT

hardware

1 ~ SPFP software traps present
control functions

o ~ SPFP software traps not
present

21 I DPFP traps I 1 ~ DPFP software traps present
I (Y'OOOO 0400') I 0 ~ DPFP software traps not

31

Example:

PEEK

PAUSE

3-108

I I present

I System debug
I mode
I (Y' 0000 0001')

sve 2,PEEK
sve 2, PAUSE

ALIGN 4
DB X'01',19
OS 26
ALIGN 4
DB 0,1

I 0 = normal operation mode
I 1 ~ system debug mode
I
I

48-038 FOD RD2

Parameter block before execution of SVC2 code 19:

01 119 100 00

00 00 00 00

00 00 00 00

00 00 1010 00

00 00 010 00

00 00 1010 00

00 00 010 00

Parameter block after execution of SVC2 code 19:

01 119 100 FF I
---------·------1
o S 3 2 I

M T o
I

6 I _________ . ______ I

o 2 100 08

{I~~--~~--~~--~~-
100 91 100 91
1---------·------
I CON

B2E08000 ~ SPFP

Time display on hexadecimal display panel

DPFP

Direct access support

Spooler option

Roll option

Temporary file support

Multiple register set support

Load read address support

48-038 Faa RO~~ 3-109

3.19.3 Parameter Block for Option X'02'

If SVC2 code 19 is executed with option X'02' specified in the
parameter block option field, use the parameter block format 1n
Figure 3-26.

0(0)
Option

4(4)

8(8)

12(C)

16(20)

20(24)

24(28)

11(1)
Code

12(2)
J Reserved

Name of operating system
(OSID)

Load volume

Filename

Extension

SVC 2,parb1k

ALIGN 4

127(31)
File class

parb1k DB X'02',19
DC H'O'
DS 24

Figure 3-26 SVC2 Code 19 Parameter Block Format and Coding
for Option X'02'

3-110 48-038 FDa R02

This parameter block must be 28 bytes long, fullword
boundary-aligned, and located in a task-writable segment. A
general description of each field in the parameter block follows:

Fields:

option

Code

Reserved

Name of
operating
system (OSID)

Load volume
filename
extension
file class

Example:

PEEK

PAUSE

SVC
SVC

ALIGN
DB
DC
DS
ALIGN
DB

48-038 FOO R02

is a I-byte field that must contain the
hexadecimal number X'02'.

is a I-byte field that must contain the
dec imal numbel: 19 to indicate code 19 of SVC2.

is a 2-byte field that is reserved and must
contain zeros ..

is an 8-byte field that receives from
sP'r the operat. ing system name in ASC I I .

the

represent the fd from which this task was
loaded. The fd can be used for subsequent
assignments.

2,PEEK
2, PAUSE

4
X'02',19
H'D'
24
4
0,1

3-111

Parameter block before execution of SVC2 code 19:

-,--------------
02 119 100 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 100

Parameter block after execution of SVC2 code 19:'

02 119 100 00

o S

M T

M 3

s u

v I

o v

3

o

o

p

S

2

6

o

R

R

Y I S

3.19.4 Parameter Block for Option X'03'

To execute SVC2 code 19 with option X'03' specified in the
parameter block option field, use the parameter block format in
Figure 3-27. This option is used to obtain extended information
on a task.

3-112 48-038 FOO R02

0(0)
Option

4(4)

8(8)

12(C)

16(10)

20(14)

24(18)

32(20)

36(24)

11(1)
I Code

12(2) Number
: of logical
: units

Taskid (TID)

Task name

Current task status word (CTSW)

Task options (OPT)

Task waits

User account number

Group account number (GACT)

Load volume

13(3) Maximum
priority
(MPRI)

__ 1

40(28)

Filename
44(2C)

tl8(30) 151(33)
Extension File class

,!;2(34)

Monitor task name
S6(38)

60(3C)
Originating user console device (legacy)

11)4 (40) 165(41)
1 'rask : Reserved
1 priority

SVC 2,parblk

ALIGN 4
parblk DB X'03' ,19

DS 2
DC Y'utask'
DS 57
DB 0
DS 1
DB 0

66(42)
LPU

67(43)
Reserved

Figure 3-27 SVC2 Code 19 Parameter Block Format and Coding
for Option X'03'

48-038 FOO RO~~ 3-113

This parameter block must be 68 bytes long, fullword
boundary-aligned, and located in a task-writable segment. A
general description of each field in the parameter block follows.

Fields:

option

Code

Number of
logical units
(NLU)

Maximum
priority
(MPRI)

Taskid
(TID)

Task name

Current task
status word
(CTSW)

Task options
(OPT)

3-114

is a I-byte field that mllst contain the
hexadecimal number X'03'.

is a I-byte field that must contain the
decimal number 19 to indicate SVC2 code 19.

is a I-byte field that
Tca the maximum number
that can be assigned to
hexadecimal number ranges
254 (X' FE ') •

receives from the
of logical units

a task. This
from 0 (X'OO') to

is a I-byte field that receives from the
Tca the highest priority number at which the
aSSigned task can execute. This hexadecimal
number ranges from 10 (X'OA') to 249 (X'F9').

is a 4-byte field that contatns a hexadecimal
number supplied by the user that identifies
the task for which the extended task
information is being requested. The user
obtains this number using the SVC intercept
software. See the OS/32 System Level
Programmer Reference Manual. The user's own
task can be examined by setting the TID field
to O.

is an 8-byte field that receives from the TCB
the name in ASCII of the task for which the
extended task information is being requested.
If the supplied TID is invalid or the task no
longer exists, the task name field is set to
binary zeros.

is a 4-byte field that receives from the
Tca the hexadecimal number representing bits
o through 31 of the CTSW.

is a 4-byte field that receives from Tea
the hexadecimal number representing bits a
through 31 of the task option field in the
Tca. Table 3-4 lists task opt.ions.

48-038 FOD R02

Task waits

User account
number (UACT)

Group account
number (GACT)

Load volume

Filename

Extension

File class

Monitor ta:6k
name

Originatin9
user console
device
(legacy)

Task priority

Reserved

Logical
processing
unit (LPU)

Reserved

48-038 FOO R02

is a 4-byte field that receives the
hexadecimal number representing bits 0 through
31 of the task wait field in the TCB. Table
3-6 lists the wait status bit definitions.

is a 4-byte field that receives the user
account number from the TCB. This hexadecimal
number is right-justified.

is a 4-byte field that receives the group
account number from the TCB. This hexadecimal
number is right-justified.

is the fd from which the task was loaded.
After the task is loaded, the fd can be
assigned to subsequent tasks.

is the fd from which the task was loaded.
After the task ·is loaded, the fd can be
assigned to subsequent tasks.

is the fd from which the task was loaded.
After the tclsk is loaded, the fd can be
assigned to subsequent tasks.

is the fd from which the task was loaded.
After the tclsk is loaded, the fd can be
assigned to subsequent tasks.

is an 8-byte field
the task that is
task.

that receives the name of
monitoring the specified

is a 4-byte field that receives the name of
the MTM consclle from which the specif ied
task was loaded. If the task is not running
under MTM, thi.s field contains zeros.

is a l-byte field indicating the priority of
the specified task at the time this call is
executed.

is a l-byte field that must contain zeros.

that receives the
of the task's current

the TCB. The value of
from X'OO' to X'09'; X'OO'

is a l-byte field
hexadecimal number
LPU assignment. from
this number ranges
indicates the cPU.

is a l-byte reserved field that must contain
zeros.

3-115

TABLE 3-6 TASK WAIT STATUS BIT DEFINITIONS

BIT I
POSITION I BIT MASK MEANING

==--------------------=------------------------------------0-14 I Y'OOOO 0000' I Reserved

3-116

15 I Y'OOOI 0000' I Intercept wait

16 I Y'OOOO 8000' I I/O wait

17 I Y'OOOO 4000' I Any lOB wait

18 I Y'OOOO 2000' I Console wait (paused)

19 I Y'OOOO 1000' I Load wait

20 I y'OOOO 0800' I Dormant

21 I Y'OOOO 0400' I Trap wait

22 I Y'OOOO 0200' I Time of day wait

23 I y'OOOO 0100' I Suspended

24 I y'OOOO 0080' I Interval wait

25 I Y'OOOO 0040' I Terminal wait

26 I Y'OOOO 0020' I Roll pending wait

27 I Y'OOOO 0010' I Interrupt initialization (MTM)

28 I Y'OOOO 0008' I Interrupt termination (MTM)

29 I Y'OOOO 0004' I System resource connection wait

30 I Y'OOOO 0002' I Accounting wait

31 I y'OOOO 0001' I Reserved

NOTE

If bits 0 through 30 are set to 0, the
t..ask is active.

48-038 FOO R02

Example:

SVC 2,PEEK
SVC 2, PAUSE

ALIGN 4
PEEK DB X'03',19

OS 2
DC Y'OO'
DS 57
DB a
OS 1
DB 0

Parameter b1oc'k before execution of SVC2 code 19:

03 119 100 100

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00
----------_ _--
00 00 00 00

00 00 00 00
-------------- --
aD 00 00 100

00 00 00 00

00 00 00 00

00 00 00 00

00 100 100 100

48-038 FDa R02 3-117

Parameter block after execution of SVC2 code 19:

03 119 IOF lSi

00 00 00 00

p E E K

p E E K

00 01 00 01

00 2D SO AS

00 00 SO 00

00 00 00 91

00 00 00 91

M 3 o o

S u p R

v I S p

o v Y I S

00 00 00 00

00 00 00 00

00 00 00 00

00 100 101 100

3.19.5 Parameter Block for Option X'04'

Option X'04' accesses the license number and current sysgen
version of the as that is currently running on the system. To
execute option X'04' of SVC2 code 19, use the parameter block
format shown in Figure 3-2S.

3-118 48-038 FOO R02

--_._--
0(0) 11(1) 12(2)

option Code Reserved

4(4)

8(8)

12(C)

16(10)

20(14)

24(18)

28(lC)

32(20)

36(24)

40(28)

Operating system
license number

Operating system version number

SVC 2,parblk

ALIGN 4
parblk DB X'04',19

DC H'O'
DS 40

Figure 3--28 SVC2 Code 19 Parameter Block Format
and Coding Option X'04'

48-038 FOQ R02 3-119

This parameter block must be 44 bytes long, fullword
boundary-aligned, and located in a task-writable segment. A
general description of each field in the parameter block follows.

Fields:

option

Code

Reserved

os license
number

OS version
number

3-1Z0

is a I-byte field that contains the
hexadecimal number X'04' indicating option 4
of SVCZ code 19.

is a I-byte field that contains the decimal
number 19 indicating SVCZ code 19.

is a Z-byte field that should contain zeros.

is a 3Z-byte (S fullwords) alphanumeric field
that receives the license number of the
operating system: e.g., E-017S. Data in this
field is left-justified with trailing ASCII
blanks (X'ZO').

is an S-byte (Z fullwords) alphanumeric field
that receives the version of the operating
system that was specified by the user at
sysgen: e.g., 6l3C.S19. Data in this field
is left-justified with trailing ASCII blanks
(X'ZO').

48-038 FOO R02

I SVC2 I
I CODE 20 I

3 .20 SVC2 CODE 20: EXPAND ALLOC.AT ION

SVC2 code 20 affects only those tasks running under previous
32-bit operatl.ng systems and should not be used in a multitasking
environment. This SVC provides for compatibility with existing
programs; no action is performed. The parameter block for this
call is shown in Figure 3-29.

10(0)
Option

parblk

11(1) 12(2)
Code Number of 2S6-byte blocks

SVC 2,parblk

}!~IGN 4
DB option,20
DC H'number of 2S6-byte blocks'

Figure 3-29 SVC2 Code 20 Par~eter Block Format and Coding

This parameter block is four bytes long, fullword
boundary-aligned, and located in a task-writable segment for
option X'80'. A general description of each field in the
parameter block follows.

Fields:

option

Code

Number of
2S6-byte
blocks

48-038 FOO R02

is a I-byte field that must contain option
X' 00' or X' 80' .

is a I-byte field that must contain the
decimal number 20 to indicate SVC2 code 20.

is an unused 2-byte field.

3-121

The CC is set after executing SVC2 code 20. Possible CCs follow:

Condition Code:

1 C I V I GIL I
1==---=---------1
I 0 I 0 ,01 1 I
I I I I I
10111 0 1 0 I

3-122

Normal termination with option X'80'
specified
Normal termination with option X'OO'
specified

48-038 FOO R02

I SVC2 I
I CODE 21 I

3.21 SVC2 CODE 21: CONTRACT AILOCATION

SVC2 code 21 8Lffects only those 'Lasks running under prev ious
32-bit operating systems and should not be used in a multitasking
environment. This call provides for compatibility with existing
user programs; no action is performed. The parameter block for
this call is s:hown in Figure 3-30.

10(0)
Option

parblk

11(1) 12(2)
Code Number of 2S6-·byte blocks

S:VC 2,parblk

ALIGN 4
DB 0,21
DC H'number of 2:56-byte blocks'

Figure 3-30 SVC2 Code 21 Pari:uneter Block Format and Coding

This parameter block is four bytes long, fullword
not have to be located in a

general description of each field in
boundary-aligned, and does
task-writable segment. A
the parameter block follows.

Fields:

Option

Code

Number of
256-byte
blocks

48-038 FOO R02

is a 1-byte field that must contain a 0 to
indicate no options for this call.

is a l-byte field that must contain the
decimal number 21 to indicate code SVC2 code
21.

is an unused 2-byte field.

3-123

I SVC2 I
I CODE 23 I

3.22 SVC2 CODE 23: TIMER MANAGEMENT

SVC2 code 23 performs five timer management functions used in
coordination with real-time operations:

1. Schedules the addition of a parameter to a task queue when a
specified interval has elapsed (option X'OO').

2. Waits until completing a specified interval (option X'SO').

3. Schedules repetitive additions to a task queue as specified
intervals elapse (option X'40').

4. Reads time remaining for the specified interval (option
X'20').

5. Cancels a previous interval request (option X'lO').

Since the five options
parameter block formats
separate parameter blocks.
through the SVC2 code 23
through 3-34.

perform different functions, their
and coding differ and are shown as

These operations are accomplished
parameter blocks shown in Figures 3-30

3.22.1 SVC2 Code 23, Parameter Block for Option X'OO'

When specifying option X'OO', a timer interval is set up
concurrently with the subsequent task executions. Then, an item
with a reason code of X'09' is added to the calling task queue
when Lhe user-specified interval elapses. This is accomplished
through the SVC2 code 23 parameter block for option X'OO' shown
in Figure 3-31. See the OS/32 Application Level Programmer
Reference Manual for information on the task queue.

3-124 48-038 FOO R02

0(0)
Option

4(4)

parblk

11(1)
Code

12(2)
Reserved

Increment of time+count

SVC 2,parblk

Jl~IGN 4
DB X'00',23,O
DB user register

13(3)
IUser register
I
I

DC Y'increment of time'+F'count'

Figure 3-31 SVC2 Code 23 Parameter Block Format and Coding
for Option X'OO'

This paramet~er block is eight bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

Fields:

Option is a i-byte field that must contain the
hexadecimal number X'OO'.

Code is a i-byte field that must contain the
decimal number 23 to indicate SVC2 code 23.

Reserved is a i-byte field that must contain a zero.

User regi€lter is a i-byte field that must contain a
user-specified register number. Bits 8
through 31 of this register must contain the
parameter portion of the item that is added to
the task queue when the interval elapses.

Increment of is a 4-byte field that indicates the number
time+count of seconds or milliseconds that must elapse

before an item is added to the task queue.

48-038 FOO R02

The first four bits contain a hexadecimal
number indicating how the time period is to be
calculated:

3-125

• Y'OOOOOOOO' indicates that the time is
calculated in seconds from midnight (time
of day).

• Y'lOOOOOOO' indicates that the time is
calculated in milliseconds from the time
this call is executed (interval timing).

The remaining bits contain the count or
decimal number indicating the number of
seconds or milliseconds.

A decimal number greater than 86,399 indicates
days in the future. For a detailed
explanation of time of day and interval
timing, see sections 3.11 and 3.12.

Before executing this call, prepare the task to handle a task
queue trap. See the OS/32 Application Level Programmer Reference
Manual.

After the interval is
continues processing
follow:

Condition Code:

ICIVIGI!.I
1=======------==1
I 0 I 0 I 0 I 0 I
101110101

Example:

started and the CC is set, the task
or enters a trap wait state. Possible CCs

Interval started; normal termination
Insufficient system space available

1.1 3, C' ABC'
SVC 2,TIMRQ
SVC 9,TRAPWAIT

ALIGN 4
TIMRQ DB X'OO',23,O

DB 3
DC Y'lOOOOOOO'+F'30000'
ALIGN 4

TRAPWAIT DC Y'SS000200'
DC Y'O'

3-126 48-038 FOO R02

If this call is executed and insufficient system space is
avai lable, ntO t:.ime per iod elapses, no item is added to the task
queue and the CC is set to 4 (V bit set). If this call is
executed and ~he task is unprepared to handle this trap, no i~em
is added to the t:.ask queue and t,he ~ask has effectively losl an
interrupt.

If queue overflow occurs after the specified interval el.apses,
~he end of task code is set to 1000 and the task ~erminates
abnormally.

If the interval is calculated as time of day and ~hat specified
time has all~eady passed, the same time on the following day is
assumed.

3.22.2 SVC2 eode 23, Parameter Block for Option X'SO'

If option X'SO' is specified, the calling task is placed in a
timer wait sLate until a specified interval elapses. Nothing is
added to the calling task queue. This is accomplished through
the SVC2 code 23 parameter block for option X'SO' shown in Figure
3-32.

0(0)
Option

(4)

11(1) 12(2)
Code Reserved

Increment of time+count

---------------~---

parblk

S:VC 2,parblk

ALIGN 4
DB
DC
DC

X' 80' ,23
H' 0'
Y'increment of time'+F'count'

Figure 3,-32 SVC2 Code ;23 Parameter Block Format
and Coding for Option X'SO'

This parameter block is eight bytes long, fullword
boundary-aligned and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows.

48-038 FOO R02 3-127

Fields:

option

Code

Reserved

Increment of
time+count

is a l-byte field that must contain the
hexadecimal value X'80'.

is a l-byte field that must contain the
decimal number 23 to indicate SVC2 code 23.

is a reserved 2-byte field that must contain
zeros.

is a 4-byte field that indicates the number
of seconds or milliseconds that must elapse
before the task is released from the wait
state. The first four bits contain a
hexadecimal number indicating how the time is
to be calculated:

• Y'OOOOOOOO'
calculated
of day) .

indicates that the time is
in seconds from midnight (time

• Y'lOOOOOOO' indicates that the time is
calculated in milliseconds from the time
this call is executed (interval timing).

The remaining bits contain the count or
decimal number indicating the number of
seconds or milliseconds. A decimal number
greater than 86,399 indicates days in the
future.

After the specified interval elapses, the task resumes execution
with the instruction following SVC2. The possible CCs follow:

Condition Code:

I C I V I GIL I
1======-------=-1
I 0 I 0 I 0 I 0 I
101 1 I 0 101

Internal started; normal termination
Insufficient system space available;
no wait occurred

If this call is executed and insufficient system space is
available, no interval elapses, no item is added to the task
queue and the CC is set to 4 (V bit set).

3-128 48-038 FOO R02

If the interval is calculated as time of day and that specified
time has aLready passed, the same time on the following day is
assumed.

3.22.3 SVC2 C:ode 23, Parameter Block for Option X'40'

If option X'40' is specified, items with reason code X'D9' are
repetitively added to the calling task queue at user-defined
intervals within a specific time period until the task terminates
or cancels the time interval request with SVC2 code 23 option
X'ID. The user-defined intervals that are within a specific time
period must all be specified the same way, either as time of day
intervals or as interval-timing intervals. This is accomplished
through the SVC2 code 23 parameter block for option X'4D' shown
in Figure 3-33.

0(0)
Option

4(4)

11(1) 12(2)
Code Number of intervals

defined in table

Increment of time+address of interval table

BVC 2,parblk

J~IGN 4
parblk DB X'4D',23

DC H'number of intervals defined in table'
DC Y'increment of time'+A(interval table)

F igure 3-3~~ SVC2 Code 23 Parameter Block Format and Coding
for Option X'40'

This paramE~ter block is eight
boundary-aligned, and does not have
task-writable segment. A description
parameter block follows.

48-038 Faa R02

bytes long, fullword
to be located in a

of each field in the

3-129

Fields:

option

Code

Number of
intervals
defined in
table

Increment of
time+address
of interval
table

is a i-byte field that must contain the
hexadecimal number X'40'.

is a i-byte field that must contain the
decimal number 23 to indicate SVC2 code 23.

is a 2-byte field that must contain the
decimal number indicating the number of
intervals the user defined in the table.

is a 4-byte field that indicates the address
of the table containing all the user-defined
intervals within a specified time period. The
first four bits contain a hexadecimal number
indicating how the time designated by the
interval table is to be calculated:

• Y'OOOOOOOO'
calculated
of day) .

indicates that the time is
in seconds from midnight (time

• Y'lOOOOOOO' indicates that the time is
calculated in milliseconds from the time
this call is executed (interval timing).

The remaining bits contain a hexadecimal
address of the interval table. This
boundary-aligned and defined as follows.

number indicating the
table must be fullword

Format:

table

3-130

DC
DC
DC
DC

DC
DC

F'count'
F 'parameter ,
F'count'
F'parameter'

F'count'
F'parameter'

First interval

Second interval

Last interval

48-038 FOD RD2

Parameters:

table

DC

F

count

parameter

is the user -SpE~C if ied name for the interval
table.

is the operation code, define constant, for
the instruction.

is the type
instruction.

code, fullword, for the

is the decimal number indicating how many
seconds or milliseconds must elapse before an
item is added to the task queue. The decimal
numbers specified for time of day intervals
can be any number except 0 and must be
specified in ascending order with each count
at least one greater than the previous count.
The decimal number for interval-timing
intervals can be any decimal number except o.
This decimal value occupies bits 4 through 31
of the count field.

is the item to be added to the task queue when
its associated interval elapses. This item
occupies bits 8 through 31 of one slot of the
task queue. The first byte contains reason
code X'09'. See the OS/32 Application Level
Progranuner Refc::;,rence Manual.

'The time per iod in which the user·-def ined intervals occur differs
for time of day intervals and interval-timing intervals. The
time period for time of day intervals ranges from the day on
which the first interval occurs through and including the day on
which the last interval occurs. The time period is the sum of
days on which the intervals occur. In the following example, the
total time period is three days.

Example:

ALIGN 4
INTABLE DC F'5400Q' 1500 hours of current day

DC F' l'
DC F'140400' 1500 hours of second day
DC F'2'
DC F'226800' 1500 hours of third day
DC F'3'
DC F'230400' 1600 hours of third day
DC F'4'

The time period for interval timing is the sum of all intervals
in the table.

48-038 FOO R02 3-131

Example:

INTABLE
ALIGN
DC
DC
DC
DC

4
F'lSOOO'
F' AI'
F'36000'
F'A2'

first interval

second interval

In the above example, the time period is equal to 54000ms. The
time period is repetitively executed until the task cancels the
time interval request via SVC2 code 23 option X'IO' or goes to
end of task. Before executing this call, prepare the task to
handle this trap as described in the 08/32 Application Level
Programmer Reference Manual.

As the specified intervals are elapsing, the task can continue
processing. After executing this call, the CC is set to these
possible settings:

Condition Code:

ICIVIGILI
I=====--------~-I
10101 0 I 0 I
I a I 1 I a I a I

Normal termination
Insufficient system space available;
no wait occurred

If this call is executed and insufficient system space is
available, no interval elapses, nothing is added to the task
queue, and the CC is set to 4 (V bit set).

If this call is executed and the task is not prepared to handle
this trap, nothing is added to the task queue. The task has
effectively lost an interrupt.

If queue overflow occurs after one of the specified intervals
elapses, the end of task code is set to 1000 and the task
terminates abnormally.

If the time period is calculated as time of day and the specified
time for the first interval has already passed, the same time in
the following period is assumed.

If the time period is calculated as time of day and one of the
specified intervals in the interval table is 0 or not in
ascending order, the task is paused and a message is displayed.

3-132 4S-038 FOO R02

3.22.4 SVC2 C()de 23, Parameter Block for Option X'20'

SVC2 code 23 reads the time remaining until the interval
previously established with option X'OO' or X'40' elapses. This
is accomplished through the SVC2 code 23 parameter block for
option X'20' shown in Figure 3-34.

0(0)
Option

4(4)

parblk

11(1)
Code

12(2)
Reserved

Time returned

SVC 2,parblk

ALIGN 4
DB X'20',23,O
DB user register

13(3)
IUser register

DC Y'increment of time returned'

Figure 3-34 SVC2 Code 23 Parameter Block Format and Coding
for Option X'20'

This parameteir block must ble eight bytes long, fullword
boundary-aligned, and located in a task-writable segment. A
general description of each field in the parameter block follows.

Fields:

Option

Code

Reserved

48-038 FOO R02

is a I-byte field that must contain the
hexadecimal number X'20'.

is a I-byte field that must contain the
decimal number 23 to indicate SVC2 code 23.

is a I-byte field that must contain a O.

3-133

User register is a I-byte field that must contain the user
register number. Bits 8 through 31 of this
register should contain the parameter
associated with the desired starting interval.

Time returned is a 4-byte field that contains a hexadecimal
number indicating how the time is returned for
the type of interval being read, as follows:

• Y'OOOOOOOO' indicates the number of seconds
from midnight specified for the time of day
wait interval in the parameter block for
option X'OO' of SVC2 code 23 .

• Y'lOOOOOOO' indicates the milliseconds
remaining from the time this call is
executed to the completion of the time
interval specified in the parameter block
for option X'40' of SVC2 code 23.

NOTE

If the timer entry that is being
read is set for a time of day wait
interval (option X'OO'), only the
value for the time of day interval
can be read. An interval timing
readout cannot be made for this
task. Similarly, if the task is
set for interval timing (option
X'40'), only an interval readout
can be made~

The register in the user register field specifies the parameter
associated with the interval to be read. When executed, this
call finds the value of the time of day wait interval or the
milliseconds remaining for a timing interval by searching for the
parameter associated with the interval on the timer queue. The
value read is stored in bits 4 through 31 of the time returned
field. Bits 0 through 3 remain unchanged. Hence, the final
value in the time returned field after execution of the SVC can
be represented as follows:

Time returned increment of time + count

If the interval was started with option X'40' specified and more
than one interval in the table has the same parameter associated
with it, the current time in the desired interval might not be
the one that is read. Each interval must have a unique parameter
associated with it.

3-134 48-038 FDD RD2

After executing this call, the CC is set ~o ~he possible CCs
following.

Condition Code:

1 C 1 V I GIL 1
1=------------=21

Normal termination 1 0 1 0 1 0 I 0 I
101 1 I 0 101 No interval associated with parameter 2

located in user-specified register

Example:

TESTl

RDTlME

TIMRQ

TRAPWAIT

EQU
1.1
SVC
SVC
SVC

ALIGN
DB
DC
ALIGN
DB
DC
ALIGN
DC
DC

1
3,TESTl
2,TIMRQ
2,RDTlME
9,TRAPWAIT

4
X'20',23,O,3
Y'lOOOOOOQ'
4
X'00',23,O,3
Y'100OOOOO'+F'90000'
4
y'88000200'
Y'O'

3.22.5 SVC2 eode 23, Parameter Block for Option X'lO'

This SVC cancels an interval request that was previously
established with option X'OO' or X'40'. This is accomplished
through the SVC2 parameter block for option X'lO' shown in Figure
3-35.

48-038 FOO R02 3-135

0(0)
Option

4(4)

11(1)
Code

12(2)
Reserved

Increment of time cancelled

SVC 2,parblk

13(3)
IUser register
I
I

ALIGN 4
parblk DB X' 10 • , 23 , 0

DB user register
DC Y'increment of time cancelled'

Figure 3-35 SVC2 Code 23 Parameter Block Format and Coding
for Option X'lO'

This parameter block is eight bytes long, fullword
boundary-aligned, and does not have to be located in a
task-writable segment. A general description of each field in
the parameter block follows:

Fields:

option is a l-byte field that must contain the
hexadecimal number X'lO'.

Code is a I-byte field that must contain the
decimal number 23 to indicate SVC2 code 23.

Reserved is a l-byte field that must contain a O.

User register is a l-byte field that must contain the user
register number. Bits 8 through 31 of this
user register contain the parameter associated
with the interval to be cancelled.

3-136 48-038 FOO R02

Increment
of time
cancelled

is a 4-byte field that must contain a
hexadecimal number indicating how time is
being calculated for the interval to be .
cancelled. The increments of time are:

• Y'OOOOOOOO' indicates seconds from midnight
(t ime of deilY) .

• Y'IOOOOOOO' indicates milliseconds from the
time this call is executed (interval
timing) .

When this call is executed, all previous interval requests that
match both the increment of time specified and the parameter
located in the user register are cancelled. If the interval to
be cancelled is part of a periodic group, the entire time period
is cancelled.

After executing SVC2 code 23, the CC is set to the possible
conditions following.

Condition Code:

I C I V I GIL I
I~--------------I
I 0 I 0 I 0 I 0 I
I 0 I 1 I 0 101

48-038 FOO RtD2

Normal termination
No previous interval request exists that
matches the parameter provided

3-137

I SVC2 I
I CODE 24 I

3.23 SVC2 CODE 24: SET ACCOUNTING INFORMATION

SVC2 code 24 stores eight bytes of user-supplied information in
the ATF task completion or data overflow account records of the
ATF. This is accomplished through the SVC2 code 24 parameter
block shown in Figure 3-36.

0(0)
Reserved

11(1)
Code

12(2)
Reserved

4(4)

User-supplied information
8(8)

SVC 2,parblk

ALIGN 4
parblk DB 0,24

DC H'O'
DC D'user-supplied information'

Figure 3-36 SVC2 Code 24 Parameter Block Format and Coding

This parameter block is 12 bytes long, fullword boundary-aligned,
and does not have to be in a task-writable segment. A general
description of each field in the parameter block follows.

3-138 48-038 FOD RD2

Fields:

Reserved

Code

Reserved

is a l-byte field that must contain a 0 to
indicate no options for this call.

is a l-byte field that must contain the
decimal number 24 to indicate SVC2 code 24.

is a reserved 2-byte field that must contain
zeros.

User-supplied is an 8-byte field that must contain the
information user-supplied information to be stored in the

ATF task completion or data overflow account
records.

If more than one SVC2 code 24 is executed by a task, the
user-supplied information in the last SVC2 code 24 executed is
stored in the ATF. The CC is always set to o.

48-038 FOQ R02 3-139

I SVC2 I
1 CODE 25 I

3.24 SVC2 CODE 25: FETCH ACCOUNTING INFORMATION

SVC2 code 25 fetches task accounting information
into a user-specified fixed or variable buffer.
information accessed is:

• User CPU time

• Operating system CPU time

• APU execution time

• Wait time

• Roll time

and stores it
The accounting

This is accomplished through the SVC2 code 25 parameter block
shown in Figure 3-37.

10(0)
Option

parblk

11(1)
Code

SVC 2,parblk

ALIGN 4
DB 'option'
DB 25

12(2)
Buffer
length

DB 'buffer length'
DB user register

13(3)
User
register

Figure 3-37 SVC2 Code 25 Parameter Block Format and Coding

This parameter block is four bytes long, fullword
boundary-aligned, and does not have to be in a task-writable
segment. A general description of each field in the parameter
block follows.

3-140 48-038 FOO R02

Fields:

option is a l-byte field that must contain a number
specifying one of the following options:

• Option 0 means that the fixed-size user
buffer is specified.

• Option 1 means that the variable-size user
buffer is specified.

Code is a l-byte field that must contain the
decimal number 25 to indicate SVC2 code 25.

Buffer length is a l-byte field that specifies the length of
the buffer from 24 to 256 bytes for option 1.
Option 0 ignores this field.

User register is a l-byte field that must contain a
user-specified number of the register that.
contains the starting address of the area to
receive the accounting information. This area
is 16-bytes long, fullword boundary-aligned
and must be located in a task-writable
segment, as sho'fIn in Figure 3-38. The CC is
always set to O.

0(0)
User CPU time (lOOps)

4(4)
Operating System C]E>U time (lOOps)

----------------~--
8(8)

Wait time (lOOps)

12(C)
Roll time (lOOps)

Figure 3-38 Fixed-Size User Buffer Receiving Accounting
Information

48-038 FOa R02 3-141

For option 1, the buffer must be a minimum of 23 bytes long, its
contents, upon execution of the SVC, are shown in Figure 3-39.

----------------------------~-~~----~----~--------~------
10(0) 11(1)

Size of Buffer
I buffer I used

12(2)
Reserved

13{3)
Reserved

1---~-
J4(4) .

User CPU time (lOOps)

8(8)
Operating System CPU time (lOOps)

12(C)
Wait time (lOOps)

___ I

16 (10)
Roll time (lOps)

--~------
20 (14)

APU time (lOOps)

---I
Available for future

expansion of accounting

Figure 3-39 Variable-Size User Buffer Receiving ,Accounting
Information

For option 1, 'the CC is set to 0 if the r~eq.uestis _succ,e_~sful.
The V flag is set if the buffer is smaller than required.

3-142 48-038 FOO R02

I SVC2 I
I CODE 26 I

3.25 SVC2 CODE: 26: FETCH DEVICE NAME

SVC2 code 26 se~arches for a user-i9upplied volume name in t.he vwr
and returns the name of t.he device on which that. volume is
mounted. The format for t.he SVC2 code 26 parameter block is
shown in Figure· 3 -40.

10 (1)
Reserved

11 (1)
Code

12(2)
User

register 1

13(3)
User

register 2

SVC 2,parblk

parblk ALIGN 4
DB 0,26
DB user register number 1
DB user register number 2

Figure 3-40 SVC2 Code 26 Par~neter Block Format and Coding

This parameter block is four bytes long, fullword
boundary-aligned, and does not have to be in a task-writable
segment. The fields are described as follows .

. F 1elds:

Reserved

Code

User
register I

48-038 FOO R02

is a I-byte field that must contain a value of
o to indicate no options for this call.

is a I-byte field that must contain the
decimal value 26 to indicate SVC2 code 26.

is a I-byte field that must contain a
user-specified register number. The specified
register contains a pointer to a fullword
containing a 4--character volume name.

3-143

User
register 2

is a I-byte field that must contain a
user-specified register number. The specified
register contains the address of the area
receiving the device name. This area is four
bytes long, fullword boundary-aligned and must
be located in a task-writable segment.

NOTE

User registers 1 and 2 can specify
the same register number.

Possible CCs occurring after SVC2 code 26 execution follow:

Condition Code:

I C I V I GIL I
I~--------------I
I 0 I 0 I 0 I 0 I
10111 0 I 0 I

Example:

Normal termination
Specified volume off-line;
no fetch occurred

LA Rl,MTMVOLN
LA R2 , MTMDEVN
SVC 2,FTCHDEVN

ALIGN 4
FTCHDEVN DB 0,26

DB Rl
DB R2

3-144 48-038 FOO R02

3.26 SVC2 CODE: 27: MEMORY MANAGE:KE:NT

I SVC2 I
I CODE 27 I

SVC2 code 27 allows a task to access and modify entries (except
shared ones) within the PST in its TCB. This SVC can only be
called by taske~ running on MA'r machines. It. is used by the
virtual task nlanager (VTM) support routines. The format for the
SVC2 code 27 palrameter block is shown in Figure 3-41.

0(0) Il(1)
Option

(SV227.0P)
Code

(SV227.CD)

12(2) User
register 1
(SV227.Rl)

4(4)

parblk

A (destination buffer)
(SV227.BF)

SVC 2,parblk

ALIGN 4
DB option,27,regl,reg2
D}I~C BUFF ADR

13(3) User
register 2
(SV227.R2)

Figure 3-41 SVC2 Code 27 Parameter Block Format and Coding

This paramet.er block is eight bytes long, fullword
boundary-alignE~d arid located in a task-wr itable segment. A
general description of the parameter block follows.

48-038 FOO R02 3-145

Fields:

option
(SV227.0P)

Code
(SV227.CD)

User
register 1
(SV227.Rl)

User
register 2
(SV227.R2)

A
(destination
buffer)
(SV227.BF)

3-146

is a l-byte field that contains a
number specifying one of the following
codes:

decimal
option

• 0 (SV227.0) indicates the first byte of
each PST entry, starting at PSTE 0 and
ending with the last private segment table
entry (PSTE) of the task's impure segment
(PSTE indicated by TCB.CTOP), is moved
sequentially to a byte buffer specified
by the SV227.BF field. After byte is
is moved, the reference (bit 0) of each
PSTE is reset.

• 1 (SV227.1) indicates that bits 15 to 31 of
PSTE 0 are added to the user register
specified by the SV227.Rl field. The
result of the addition is stored in the
PSTE identified by the number contained in
the register specified by the SV227.R2
field.

• 2 (SV227.2) indicates the value in user
register 1 is stored in TCB.UTOP and the
value in user register 2 is stored in
TCB.CTOP.

is a l-byte field that contains the decimal
number 27 indicating SVC2 code 27.

is a l-byte field that contains a
user-specified register number. If option 0
is specified, this field is unused but must be
reserved.

is a l-byte field that contains a
user-specified register number. If option 0
is specified, this field is unused but must be
reserved.

is a 4-byte field that contains the address of
the first byte of a user-specified buffer to
which the entries in the PST are copied.
This buffer should be located in a
task-writable writable segment. This field is
omitted for options 1 and 2.

48-038 FOQ R02

SVC2 code 27 sets the CC field in the PSW as follows.

Condition Code:

C I V I G I L I I I

:===============
0 0 0 0 SVC2 code 27 completed. No errors.
0 0 0 1 Size of PSTE exceeds task allocation of

memory. Entry not stored in PST.
0 0 1 0 Illegal PSTE number.
0 1 0 0 Shared bit slet in PSTE. This entry cannot

be modified.
1 0 0 0 Value of UTOP is greater than value of

--------------- CTOP ..

48-038 FOO R02 3-147

I SVC2 I
I CODE 29 I

3.27 SVC2 CODE 29: UNPACK FILE DESCRIPTOR

SVC2 code 29 converts a packed fd from the file directory or an
SVC7 parameter block to its unpacked format. The format for the
SVC2 code 29 parameter block is shown in Figure 3-42.

0(0) 11(1)
Option

(UPFD.OPT)
I Code

(UPFD.COD)

12(2)
Source

I register

13(3)
Destination

I register

4(4)

8(8)

parblk

1 (UPFD. SRC) I (UPFD.DST)

Source pointer for option X'Ol'
(UPFD.SAD)

Destination pointer for option X'Ol'
(UPFD.DAD)

SVC 2,parblk

ALIGN 4
DB
DB
DB
DAC
DAC

option,29
source register
destination register
A(packed fd)
BUFFADR

Figure 3-42 SVC2 Code 29 Parameter Block Pormat and Coding

This parameter block is 12 bytes long, fullword boundary-aligned
and located in a task-writable segment. A general description of
each field on the parameter block follows.

3-148 48-038 FOO R02

Fields:

option
(UPFO.OPT)

is a l-byte field that contains a hexadecimal
"number indicat.ing one or more of the following
SVC2 code 29 option codes:

• X'SO' (UPFO.NNN) forces an account number
(nnn) into the unpacked fd even if the file
was allocat~ed wlthout account pr ivileges.

• X'40' (UPPO.PGS) forces alP, IG or IS
account designation into the unpacked fd
even if the file was allocated with account
pr i v i leges .. I f the account number in the
packed fd cannot be converted to a P, G or
S file class, P is returned to the unpacked
fd and the G bit of the CC is set.

NOTE

If neither X'SO' nor
specified, the fd is
according to the
privileges in effect when
was allc)cated.

X'40' is
packed

account
the file

• X'20' (UPFO.NOV) unpacks the fd in the file
directory E~ntry specified in the UPFO.SAD
field. WhE~n unpacked, the fd does not
include a volume name.

NOTE

If X'20' is not specified, SVC2
code 29 unpacks the fd contained
in the ~JVC7 parameter block whose
address is specified by the
UPFD.SRe or UPFD.SAD field. When
unpacked, the fd includes a volume
name.

• X'IO' (UPFO.WID) indicates the unpacked fd
includes clnyblanks that exist in the
packed fd. If option X'lO' is not
specified, all blanks are suppressed.

• X, OS' (UPFC). BLA) ind icates the unpacked fd
is formatted with blanks. If X'OS' is not
specified, the unpacked fd is formatted in
the standclrd unpacked fd format including
a colon (:), period (.) and slash (I).

48-038 FOO RI02 3-149

Code
(UPFD.COD)

Source
register
(UPFD.SRC)

Destination
register
(UPFD.DST)

Source
pointer for
option X' 01'
(UPFD.SAD)

Destination
pointer for
option X' 01'
(UPFD.DAD)

• X'Ol' (UPFO.ADR) indicates the source
addressed of the packed fd is specified by
the UPFD.SAD field of the SVC2 code 29
parameter block. The unpacked fd is to be
stored in the address location specified by
the UPFD.DAD field of the parameter block.

NOTE

If X'Ol' is not specified, the
source and destination addresses
are to be found in the registers
specified by the UPFD.SRC and
UPFD.DST fields, respectively.

is a i-byte field that contains the decimal
number 29 indicating SVC2 code 29.

is a l-byte field that specifies the number of
the register that contains the address of the
file directory entry or SVC7 parameter block
that contains the source of the packed fd.

is a i-byte field that specifies the number of
the register that contains the address of a
24-byte buffer in a task-writable segment
where the unpacked fd is to be stored.

NOTE

If option X'Ol' has been
specified, the source register and
destination register fields must
be filled with zeros.

is a 4-byte field that contains the address of
the file directory entry or SVC7 parameter
block that contains the source of the packed
fd. This field is used only if option X'Ol'
has been specified.

is a 4-byte field that specifies the address
of a 24-byte buffer in a task-writable segment
where the unpacked fd is to be stored. This
field is used only if option X'Ol' has been
specified.

The following examples demonstrate the use of SVC2 code 29.

3-150 48-038 FOO R02

Example 1:

SVC229 PROG
SVC
SVC

SVC2,29 EXAMPLE "- UNPACK FD
2,UFD UNPACK FD

PAUSE
UFO

SOURCE

DEST

2, PAUSE

ALIGN 4
DB 0,1,0,0
DB X'A1',29,0,0
DAC SOURCE
DAC DEST

DB

OS
END

C"TEST

24

CSS' , 71

Example 2:

PAUSE
NNN, FD, :./, SQUEZ, ADDR
PACK FD INPUT
UNPACK FD OUTPUT

INPUT PACKED FD

OUTPUT UNPACKED FD

SVC229A PROG
NLSTM
$SVC7
LA

SVC2, 29 EXAMPLE _. UNPACKED FD

LA
SVC
SVC

ALIGN
PAUSE DB

1,SVC7PBLK
2,DEST
2,UFD
2,PAUSE

4

ADDRESS OF SOURCE
ADDRESS OF DESTINATION
UNPACK FD

PAUSE
UFO DB

0,1,0,0
X'58',29,1,2
o

PGS, SVC7, BLANKS, BLANKS, REG
DAC
DAC

SVC7PBLK OS
ORG
DC
DC
DB
DB

DEST DS
END

o

SVC7.
SVC7PBLK+SVC7.VOL
C'MTM '
C'TEST
C'CSS'
C'G'

24

48-038 FOO R.02

INPUT PACKED FD

OUTPUT UNPACKED FD

3-151

CHAl)TER 4
END OF TASK SUPEllVISOR CALL 3 (SVC3)

4 • 1 I NTRODUC'r ION

The SVC3 inst:ruct:. ion terminates task execut ion.

4.2 SVC3: END OF TASK

The following is an example of an SVC3 instruction.

Format:

SVC 3,n

Fields:

SVC

3

n

is the mnemonic used as an operation code
specifying a supervisor call.

is a decimal number indicating it is SVC3.

is a decimal number ranging from 0 to 255 used
as the end of task code when the task
terminates. If this number is greater than
255, it is truncated to eight bits. End of
task codes greater than 255 are reserved for
system use. The end of task code can be used
in subsequE~nt command substitution system
(CSS) conditional testing. The following
standard end of task codes are used:

• 0 indicates normal termination.

• 255 indicates
cancellation.

termination caused by

• 1000 indicates termination caused by task
queue overflow on expiration of time
interval.

• 1100 indicates a mapping error in an impure
segment during roll-in.

48-038 FOO R02 4-1

• 1101 indicates a mapping error in a pure
segment during roll-in.

• 1102 indicates a pure segment was not found
during roll-in.

• 1105 indicates an input/output (I/O) error
on a roll file for an impure segment.

• 1106 indicates an I/O error on a roll file
for a pure segment.

• 1200 indicates termination
expiration of a central
(CPU) time limit.

caused by the
processing unit

• 1210 indicates termination caused by the
expiration of an I/O transfer limit.

In addition, the end of task code can be stored in a register.
For example, to generate a code of 4, use the following sequence:

LHI R8,4
SVC 3,0(R8)

If I/O is in progress when an SVC3 is executed, write operations
continue until completed and then terminate normally; read
operations terminate immediately.

For each logical unit (lu), read operations and SVC15 operations
are halted as if an SVCl halt I/O were issued. In addition, each
open lu is checkpointed (for a resident task) or closed (for a
nonresident task) as if the corresponding SVC7 had been issued.

The SVC3 may be intercepted by the task's monitor. Normally the
operating system generates messages for foreground and background
tasks and the multi-terminal monitor (MTM) generates messages for
terminal and batch jobs. The system messages contain the end of
task code and accounting information for the task.

For more information on using end of task codes in CSS, see the
OS/32 Operator Reference Manual.

4-2 48-038 FOO R02

CHMITER 5
FE,]~CH OVERLAY SUP~:RVISOR CALL 5 (SVC5)

5 . 1 I NTRODUC~r ION

SVC5 permits user-controlled loading of overlays generated by
Link or TET. Load ing of OVE!r lays is accompl ished through the
SVC5 parametelt:: block in Figure 51-I. The SVC5 parameter block is
12 bytes long, fullword boundary-aligned and must be in a
task-writable segment.

5 . 2 SVC5: FE~rCH OVERLAY

Figure 5-1 is an example of an SVC5 fetch overlay.

0(0)

4(4)

Overlay name
(SVCS.ID)

8(8) 19(9) IIO(A) Logical unit (lu)
assigned to overlay file

(SVCS.LU)
Error status 1 Options

(SVCS . ST1~) (SVCS . OPT >'

SVC 5,parblk

~!\LIGN 4
parblk DC C' 8 char acte!' over lay name'

DS 1
DB X'option'
DC H'lu'

F igur.e 5-·1 SVC5 Para.n)et~er Block Format and Coding

48-038 FOO R02 5-1

Fields:

5-2

Overlay name
(SVCS. ID)

Error status
(SVC5.STA)

Options
(SVC5.0PT)

is an 8-byte field specifying the name of
overlay to be loaded. If the overlay
requires less than eight characters, the
in this field must be left-justified
trailing spaces.

the
name
data
with

For overlays generated by TET, the overlay
name field is matched against the overlay name
in the loader information block (LIB) of the
overlay file. For overlays generated by Link,
this field is matched against the overlay name
specified in the OVERLAY command. (From the
overlay descriptor table (ODT) of the task
image file.) If the overlay name is found,
loading of the overlay proceeds as if an
automatic overlay load occurred.

is a l-byte field that receives the
appropriate error code when an error occurs
during the execution of SVC5. The status
returned is one of the following:

• X'OO' indicates overlay loaded
successfully.

• X'lO' indicates load failed.

• X'20' indicates a mismatch on overlay name.

• X'40' indicates the overlay would not fit
in allocated memory. This error code
applies to overlays generated by TET only.

is a l-byte field that must contain one of the
following options:

• Option X'Ol' indicates load from lu without
positioning.

• Option X'04' indicates load from lu after
rewind.

The option byte is not required for overlays
generated by Link and is ignored.

48-038 FOO R02

lu assigned
to overlay
file
(SVC5.LU)

is a 2-byte field containing the device to
which the c±>v«~rlay file must be assigned and
must be positioned to the first byte of the
LIB for the overlay generated by TET. This
field is not required for overlays generated
by Link and is ignored.

The calling task is placed in a wait state until the overlay is
loaded. If the overlay is successfully loaded, the calling
program can branch and link to 1:.he over lay.

Certain messages might be generated as a result of loading
overlays created by Link. These messages are discussed in the
OS/32 Link Reference Manual.

Example:

parblk

SVC 5,parblk

ALIGN 4
DC
DB
DB
DC

C 'MARIANNE ,
o
1
H' 2'

48-038 FOO R0I2

Initialize status to 0
Load without positioning
Overlay assigned to lu2

5-3

CHAP'.rER 6
INTERT'ASK COMMUNICATIONS SUPERVISOR CALL 6 (SVC6)

6.1 INTRODUCTION

SVC6 provides a task with the ab:ility to communicate with and
control another task. The tas]<: that issues an SVC6 is known as
the calling task. An SVC6 can be directed to any task within the
calling task's execution environment, including the calling task
itself. The task to which SVC6 is directed is called the
directed task.

Before a calling task can issue an SVC6, that task must be linked
with one of the following task options:

• COMMUNICATE - This option allows a calling task to perform
SVC6 intertask communications functions (see Section 6.2.1).

• CONTROL - This option allows Cl calling task to perform SVC6
intertask control functions (see Section 6.2.1).

• NOCOM - This option prevents t~he calling task from executing
SVC6 communications functions ,.

• NOCON - This option prevents t:he calling task from executing
SVC6 control functions.

• SVCCONT INUE - Th is opt ion Ccluses an SVC6 executed in a
background ,environment to be j'.gnored.

In an OS/32 real-time environment, only foreground tasks can
issue an SVC6. If a background t~ask attempts to issue this call,
the operating system treats the call as an illegal call or NOP,
depending on the SVCPAUSE task option in effect. See the OS/32
Link Reference Manual for more information on the task options
that apply to SVCE;.

NOTE

SVC6 cannot be executed in a
multi-terminal monitor (MTM) environment
unless specified as an MTM option at
system generation (sysgen). The use of
SVC6 in an MTM environment can also be
re:stricted on an account basis via MTM
account privileges. See the MTM System
Planning and Operator Reference Manual
fOjr: more information.

48-038 FOO R02 6-1

SVC6

6.2 SVC6: INTERTASK COMMUNICATIONS

Communication and control between tasks are accomplished through
the SVC6 parameter block shown in Figure 6-1.

6-2

0(0)

4(4)

8(8)

12(C)

Name of task
receiving SVC6

(SVC6.1D)

Function code
(SVC6.FUN)

Wait status
(SVC6.TST)

114(E)
1 Error status

(SVC6.STA)

16 (10) 1 17 (11) 118(12)
Current

priority
(SVC6.RPI)

119(13)
logical unit I Change
(lu) to load 1 priority
task 1 (SVC6.PRI)
(SVC6.LU)

20(14)
Starting address of1directed task

(SVC6.SAD)

24(18) 125(19)
Increment of 1

time 1
(SVC6.TIM)

28(lC)

Count
(SVC6.CNT)

Logical
processing
unit (LPU)
(SVC6.LPU)

Address of load image file descriptor (fd) or device
mnemonic

(SVC6.0MN)
1---
132 (20) 133(21)
1 Reserved Task queue parameter

(SVC6.PAR)

36(24)
Address of message buffer or address of start options

40(28)

(SVC6.MSG) (SVC6.S0P)

Segment size increment
(SVC6.SEG)

44(2C)
Calling lu
(SVC6.CLU)

145(20)
1 Directed lu

(SVC6.0LU)

146(2E)
Extended load options

(SVC6.ELO)

SVC 6,parblk

ALIGN 4
parblk DC C'8-byte name of task receiving SVC6'

DC Y'function code'
DS 2 bytes for wait status
DS 2 bytes for error statue
DB 1 byte for lu to load task
DB 1 byte for change priority
DS 1 byte for current priority
DB 1 byte for LPU
DC A(start address of directed task)
DC Y'increment of time+count'
DC C'4-byte device mnemonic' or A(fd)
DC Y'task queue parameter'
DC A(message buffer or start options)
DC Y'segment size increment'
DB 1 byte for calling lu number
DB 1 byte for directed lu number
DS 2 bytes for extended load options

Figure 6-1 sve6 Parameter Block Format and Coding

48-038 FOO R02

This parameter block must be 48 bytes long, fullword
boundary-aligned and located in a task-writable segment. For a
detailed description of the functions of each field in the
parameter block, see the appropriate section in this chapter. A
brief descripti.on of each field in the parameter block follows.

Fields:

Name of task
receiving
SVC6
(SVC6.ID)

Function
code
(SVC6.FUN)

Wait status
(SVC6.TST)

Error status
(SVC6.STA)

lu to load
t.ask
(SVC6.LU)

Change
priority
(SVC6. PRI)

48-038 FOO R02

is an 8-byte field that contains the task
name to which SVC6 is directed. If SVC6 is
a self-directed call, this field is not
required. The name must consist of one to
eight alphanumeric characters with the first
character always alphabetic. It is
left-justified in the field with spaces.

is a 4-byte field that contains the
hexadecimal number indicating the function to
be performed.

is a 2-byte field that receives the
hexadecimal value of bits 16 through 31 of the
directed task'i5 wait status fullword when a
SVC6 is executed. If the calling task wants
to check the wait status of the directed task
at any time, an SVC6 can be issued with the
function code set to Y'80000000' or
Y'COOOOOOO'.

is a 2-byt,e field that receives the
appropr iate er:ror code when an error occurs
during execution of the SVC6. If no error
occurs, a value of 0 is stored in this field.

is a I-byte field used only when a load
operation is requested. This field specifies
the logical unit (lu) currently assigned to
the directed task that is to be loaded.

is a I-byte field used only when a change
priority operation is requested. This field
must contain a user-specified hexadecimal
number indicating the new priority to which
the task is to be changed. The hexadecimal
number must have a decimal value ranging from
10 to 249.

6-3

6-4

Current
priority
(SVC6.RPI)

Logical
processing
unit (LPU)
(SVC6.LPU)

starting
address of
directed
task
(SVC6.SAD)

Increment of
time
(SVCfi.TIM)

Count
(SVC6.CNT)

Address of
load image fd
or
device
mnemonic
(SVC6.DMN)

is a l-byte priority field that receives a
hexadecimal number indicating the priority
at which the task is executing when an SVC6 is
executed. If the calling task wants to check
the current priority of the directed task at
any time, an SVC6 can be issued with bits 0
and 1 of the function code set to 10 or 11,
and the remaining bits set to O.

is a l-byte field used only when an LPU
assignment operation is requested. It
contains a user-specified hexadecimal number
indicating the LPU assigned to the task
(0 ... max LPU).

a start
must

number
directed

is a 4-byte field used only when
operation is requested. This field
contain a user-specified hexadecimal
indicating the address where the
task is to start execution.

is a l-byte field used in conjunction with the
count field only when the delay-start
operation is requested. This field must
contain a user-specified hexadecimal number
indicating how the time is to be calculated.
These hexadecimal numbers are:

• XIOO I indicates seconds from midnight (time
of day) .

• XI10' indicates milliseconds from the time
this call is executed (interval timing).

is a 3-byte field used in conjunction with the
increment-time field only when a delay-start
operation is requested. This field must
contain a user-specified decimal number
indicating how many seconds or milliseconds
must elapse before the directed task starts
execution.

is a 4-byte field that contains a
user-specified device mnemonic of a trap
generating device when the connect,
thaw, sint, freeze or unconnect operations are
requested. If a task is to be loaded with bit
3 (load and proceed) of ~he extended load
option field set, this field should contain
~he address of the file descriptor (fd) of the
file containing the task to be loaded.

48-038 FOO R02

Reserved

Task queue
parameter
(SVC6.PAR)

Address of
message
buffer
(SVC6.MSG)
or
address of
start options
(SVC6.S0P)

Segment s i2:e
increment
(SVC6.SEG)

Calling lu
(SVC6.CLU)

Directed lu
(SVC6.DLU)

Extended
load options
(SVC6.ELO)

is a reserved l-byte field that must contain
a o.

is a 3-byte field used only when the add to
task queue or connect to trap generating
device operations are requested. This field
must contain the user-specified parameter that
is to be added to the task queue of the
directed task.

is a 4-byte field used only when a send
message operation or start operation is
requested. For the send message operation,
this field must contain a user-specified
hexadecimal number indicating the address of
the buffer containing the message to be sent
to the directed task. For the start operation,
this field must contain the address of the
start options to be included at run-time.

is a 4-byte field used only when a load
operation is requested and must contain the
user-specified hexadecimal number indicating
the number of bytes used to expand the task's
allocated memory.

is a I-byte field that must contain the
user-specified hexadecimal number representing
the logical unit of the calling task.

is a l-byte field that must contain the
user-specified hexadecimal number representing
the logical unit of the directed task.

is a 2-byte f ileld used only when the extended
load options a're requested. This field must
contain a use'r-specif ied hexadecimal number
indicating onle or more of the options listed
in Table 6-3.

6.2.1 Function Code (SVC6.FUN)

SVC6.FUN has 21 functions for intertask communications and
control. These functions are listed in Table 6-1.

48-038 FOO R02 6-5

TABLE 6-1 SVC6.FUN FUNCTIONS

COMMUNICATION
FUNCTIONS CONTROL FUNCTIONS

==------------------------------=----------------------Send data
Send message
Add to task queue

Direction
End task
Load task
Resident task
Suspend
Change priority
Send lu
Receive lu
Connect
Thaw
Sint

Freeze
Unconnect
Assign LPU
Transfer to LPU
Transfer to CPU
Release
Nonresident
Rollable
Nonrollable
Start

These functions are specified by setting the appropriate bits in
the function code field shown in Figure 6-2. Each bit setting
and its corresponding function are listed in Table 6-2.

---------------~===~.~.== .. ~---------------------------------------
D E L I C I HIS I SDI M I Q I P I B I V I

Bits:
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reserved
I _._- --~ -----------

I 0 I T I I I FlU I AP I TL I TC I R I N I Y I Z ./:' :,'. i:
--_. .~

A

Bits:
16 17 18 19 20 21 22 23 24 25 26 27 28 29 31

Figure 6-2 SVC6 Function Code Field

6-6 48-038 FOO R02

TABLE 6-2 DESCRIPTION OF FUNCITION CODE FIELD FOR SVC6 CALLS

BIT I F'UNCTIONS AND I
POSITIONS I MASK NAMES lMEANING BIT SETTINGS

---=-----------------=, o (D)
1

2
3

4
5

(E)

6 (L)
7 (C)

8 (H)

9 (S)

10 (SD)

11 (M)

Direction
(SFUN.DOM-I0)
(SFUN.DSM-ll)

End task
(SFUN.ECM=Ol)
(SFUN.EDM=10
clr =11)

I N/A

Load task
(SFUN.LM=10
SFUN.LXM-Ol)

Resident task
(SFUN.HM)

Suspend
(SFUN.SM)

Send data
(SFUN.DM)

I Send message
I· (SFUN .MM)
I
I

48-038 FOO R02

The task to
which SVC6 is
directed

End or term-
inatetask
execution.

I Reserved

Load the
directed task.

Make the
directed task
resident
in memory.

Put the direc­
ted task into
a wait state.

The calling
task sends a
variable
length message
to the direc­
ted task.

The calling
task sends a
64-byte mes­
sage to the
directed task.

00 = illegal
01 - illegal
10 = other task
11 ~ self-directed

00 = no function
requested

01 cancel
10 :. delete direc-

ted task
11 :; delete direc-

ted task

I 00 = reserved

I 00 no function
requested

01 illegal
10 load task
11 :0 load task

(10) with
extended load
options (01)

o = no function
requested

1 make task
resident

o :. no function
requested

1 :. put task into
wait state

o = no function
requested

1 send message

o = no function
requested

1 send message

6-7

TABLE 6-2 DESCRIPTION OF FUNCTION CODE FIELD FOR SVC6 CALLS
(Continued)

---~----------~------
BIT I FUNCTIONS AND I

POSITIONS I MASK NAMES MEANING BIT SETTINGS

---12 (Q)

13 (P)

14 (B)

15 (V)

16 (0)

17 (T)

I Add to task
I queue
I (SFUN.QM)

Change
priority
(SFUN.PM)

Send lu
(SFUN.XSM)

Receive lu
(SFUN.XRM)

Connect
(SFUN.OM)

Thaw
(SFUN.TM)

Add parameter
to the direc­
ted task's
queue.

Change the
priority of
the directed
task.

Calling task's
lu is assigned
to the direc­
ted task.

Directed
task's lu is
assigned to
the calling
task.
A trap genera­
ting device
is connected
to the direc­
ted task.

Enable inter­
rupts on a
trap genera­
ting device
connected to
-the directed
task.

o == no function
requested

1 = 'add to task
queue

o == no function
requested

1 == change the
priority

o - no function
requested

1 == send lu

o == no function
requested

1 - receive lu

o ": no function
requested

1 == connect
device to
task

o == no function
requested

1 == enable inter­
rupts

-.--
18 (I)

19 (F)

6-8

Sint
(SFUN.IM)

Freeze
(SFUN.FM)

Simulate
interrupt on
a trap genera­
ting device
to the direc­
ted task.
Disable inter­
rupts on a
trap genera­
ting device
connected to
the directed
task.

o .. no function
requested

1 == simulate
interrupt

o '= no function
requested

1 - disable
interrupts

48-038 FOO R02

TABLE 6-2 DESCRIPTION OF FUNCTION CODE FIELD FOR SVC6 CALLS
(Continued)

BIT I F'UNCTIONS AND I
POSITIONS I MASK NAMES MEANING BIT SETTINGS

--=-=-=-----=-=====--=-=~ 20 (U) Unconnect
(SFUN.UM)

21 (AP) I ASSign LPU
I (SFUN .LPM)

22 (TL) I 'I'ransfer to
I LPU

23 (TC)

24 (R)

25 (N)

26 (Y)

27 (Z)

28

I (SFUN . XLM)

T'ransfer to
CPU
(SFUN.XCM)

:R~elease
(SFUN.RM)

Nonresident
(SFTJN.NM)

Rollable
(SFUN .RLM)

Nonrollable
(SFUN.NRM)

I N/A

48-038 FOO R02

Disconnect the
specified
trap genera­
ting device
from the
dir,ected task.

I Assign an LPU
I to 'the direc­
I ted task.

o no function
requested

1 -= disconnect
device from
task

o

1

no function
requested
assign LPU

I Make the task I 0 = no function
I LPU-directed. I 1 ~ set LPU­

directed

Mak,e ·the task
CPU-directed.

Remove the
dir,ected task
from a wait
state.

Mak,e the
directed task
non:r es ident .

Makle the
directed task
rollable.

Mak,e the
directed task
non:rollable.

I Res,erved

0 no function
requested

1 reset LPU-
directed

0 - no function
requested

1 -== remove task
from state

o '= no function
requested

1 = make task
nonresident

o '= no function
requested

1 make task
rollable

o '= no function
requested

1 = make task
nonrollable

I 0 = reserved

6-9

TABLE 6-2 DESCRIPTION OF FUNCTION CODE FIELD FOR sve6 CALLS
(Continued)

BIT I FUNCTIONS AND I

POSITIONS I MASK NAMES MEANING BIT SETTINGS

---29
30 (A)
31

Start
(SFUN.SIM-OIO)
(SFUN.SOM=Oll)
(SFUN.SDM-IOO)
or

(SFUN.SDM=llO)

Start
execution of
the directed
task.

6.2.2 Direction (SFUN.DOM, SFUN.DSM) Function

000 - no function
requested

001 - illegal
010 - start
011 = start with

start option
100 - delay start
101 - delay start

with start
option

110 = delay start

The direction function identifies the task to be affected by the
SVC6 call. The name of this task is located in the task name
field. The required parameter block fields for this function
are:

• Task name field (SVC6.ID)

• Bits 0 and 1 of the function code field (SVC6.FUN)

If the bit setting equals 10 (SFUN.DOM), the call is directed to
the task whose name is specified in the task name field. If the
bit setting equals 11 (SFUN.DSM), the call is self-directed
(directed to the task initiating the call). A self-directed call
does not require a name in the task name field. A call can also
be self-directed by setting the bits to 10 and specifying the
calling task name in the task name field of the parameter block.
Other bit settings for bit positions 0 and 1 are illegal and
cause an error code to be stored into the error status field of
the parameter block.

6.2.3 End Task (SFUN.ECM, SFUN.EDM) Function

The end task function abnormally terminates (cancels) execution
of the directed task. The required parameter block fields are
the task name field and bit positions 0, 1, 2 and 3 of the
function code field. When the bit setting equals 01 (SFUN.ECM)
and the directed task is resident, these operations occur:

6-10 48-038 FOO R02

• Task execution is cancelled (end of task code 255) .

• The task remains in memory.

• All of the task's assigned files and devices are checkpointed,
not closed.

When the bit setting equals 01 (SFUN.ECM) and the directed task
is nonresident, these operations occur:

• Task execution is cancelled (end of task code 255) .

• The task is removed from memol:y.

• All of the task's assigned files and devices are closed.

When the bit s4etting equals 10 OI' 11 (SFUN.EDM), these operations
occur:

• Task execution is cancelled (end of task code = 255).

• The task is made nonresident (if it was resident).

• The task is removed from memoI'y.

• All of the task's assigned files and devices are closed.

If this call if:! self-directed, SVC6 is immediately terminated.
After the call is executed, an end of task code 255 indicating
abnormal termination is returned to the user.

6.2.4 Load Task Functions

The load task 1Eunction loads the directed task into memory.
Options are provided for the calling task to wait until the load
is completed Olr to continue execultion and receive a trap when the
load is completed.

When a task is loaded, the operating system reads the loader
information block (LIB) of the task to see if any needed shared
segments are already in memory. If they are not in memory, the
auto loader feature automatically loads them, provided sufficient
memory exists. See the OS/32 Operator Reference Manual. When
all shared segments named in the LIB are memory resident, the
operating system builds linkages to them.

48-038 FOO R02 6-11

6.2.4.1 Load Task (SPUN.LM) Function

The required parameter block fields for bit setting 10 in bits 6
and 7 (SFUN.LM) are:

• Task name field (SVC6.ID)

• Bits 0, 1, 6 and 7 of the function code field

• lu to load task field (SVC6.LU)

Before executing this call, the lu specified in the parameter
block must be assigned to the file or device containing the
directed task image. This call is processed as a load wait.

The lu must be positioned to the first byte of the task LIB.
When this call is executed, the directed task is loaded from the
specified lu into a memory area large enough to· hold the task.
If such an area does not exist and the roll option is specified,
the directed task is rolled out to a file on the roll volume and
placed in a wait state. While the directed task is being loaded,
the calling task is placed in a wait state. When the directed
task is loaded, its task name becomes the name specified in the
task name field of the parameter block. The calling task is
released from the wait state, and the lu is positioned to the
record following the loaded task. If the same task is to be
reloaded from other than a direct access file with the same lu
assigned, the lu must be rewound by using SVCl prior to each
subsequent load. For direct access files, the load task function
automatically rewinds the file and initializes the start address
to zero.

If the following error conditions occur, SVC6 is rejected, and an
error code is stored in the error status field of the parameter
block:

• The receiving task is already loaded into memory.

• The task name specified in the parameter block is invalid.

• The call is self-directed.

• The system does not have a memory area large enough to hold
the receiving task and does not support the roll option.

• The requested memory size specified in the segment size
increment field is larger than the total system memory space.

• The directed task is a background task. (Background tasks can
be loaded only from the system console.)

• The lu is not positioned to the LIB or the LIB is invalid.

6-12 48-038 FOO R02

6.2.4.2 Load 1~aek with Extended Load Opt1one (SFUN.LXM) Function

The extended load options can be specified at load time and are
located in the extended load options field of the parameter block
(see Figure 6-3).

Reserved

I CM I RP I SZ I PF~ I ET I CT I RL lAC

Bits:
o 1 2 4 5 6 7 8 15

F i,gure 6-3 Extended Load Optione Field

The required parameter block fields for bit setting 11 in bits 6
and 7 (SFUN. LD,[) ar e :

• Task name f i.eld (SVC6. ID)

• Bits 0, 1, E, and 7 of the function code field

• lu to load t.ask field (SVC6.LU) (required when the load wait
extended option is specified)

• Address of load image fd (SVC6.DMN) (required when load and
proceed extended option is specified)

• Extended lOBld options field (SVC6.ELO)

• Segment siz€~ increment field (SVC6.SEG) (required only when
the extended load option SELO.SZM is set).

When a task is loaded with the SFUN.LXM enabled, any options
specified in the extended load options field are in effect during
the loading of the directed task. See Table 6-3 for a list of
the available options.

When the extended load and proceed option is requested, the
calling task continues executing while the directed task is
loaded. The di.rected task is loaded from the file indirectly
specified by the device mnemonic field in the SVC6 parameter
block. This fi.eld should contain the address of the fd of the
task image fi.le to be loaded. If the roll option had been
specified when the directed task was link-edited, the private
image segment of the task is rolled out to disk if sufficient
memory space iel not available.

48-038 FOO R02 6-13

When bit 3 (load and proceed) of the extended load options field
is not set, execution of the calling task is suspended during
loading of the directed task. This is called a load wait
operation. After a load wait operation is completed, the calling
task is released from suspension and the lu assigned to the
directed task image file is positioned at the record following
the last byte of the task image. If the task is again loaded
from the same lu, an SVCl rewind operation should be performed on
the task image file prior to that load.

TABLE 6-3 EXTENDED LOAD OPTIONS FIEID BIT DEFINITIONS

BIT I OPTION AND
pas I T I ON I MASK NAME MEANING

=======--------------------------------------=-----------------o (CM)

1 (RP)

2 (SZ)

6-14

Intertask
communication
(SELO.CMM)

Subtask
reporting
(SELO.RPM)

Segment size
increment
(SELO.SZM)

If bit 0 equals 1, the directed
task that was loaded into memory
can execute the SVC6 communica­
tion functions.

If bit 0 equals 0 and the loaded
receiving task issues an SVC6
communication function, the call
is rejected, and an error code is
stored in the error status field
of the parameter block.

If bit 1 equals 1, the calling
task becomes a monitor task and
the directed task becomes a sub­
task. This causes the subtask to
report all status changes during
execution to the monitor task
through task traps.

If bit 1 equals 0, the directed
task is not a subtask. No subtask
status changes are reported.
If bit 2 equals 1, the size of the
task workspace is increased by
adding a user-specified number of
bytes. This hexadecimal number
must be located in the parameter
block segment size increment
field.

If bit 2 equals 0, the workspace
set by the WORK: parameter of the
LINK OPTION command is used.

48-038 FDa R02

TABLE 6-3 EXTENDED LOAD OI?TIONS FIELD BIT DEFINITIONS
(Continued)

BIT I OPTION AND
POSITION I MASK NAME MEANING

=== __ ===========0==============£=======================_====_==
3 (PR)

4 (ET)

5 (CT)

LI::>ad and
P:roceed
(8ELO.PRM)

Plrevent
eJrCecutive
task (e-task)
Olr diagnostic
tclsk (d-task)
(BELD.ETM)

Intertask
C()ntrol
(SELO.CTM)

48-038 FOO R02

If bit 3 equals 1, the calling
task continues executing while
the directed task is being loaded
from the file specified by the
device mnemonic field of the SVC6
parameter block. A trap to the
calling task occurs if bit 20 of

I its task status word (TSW) equals
1 (load and proceed complete).
When the trap occurs, the reason
codE~ is 7 and the SVC6 par ameter
block address is added to the
task queue.*

If bit 3 equals 0, the calling
task is suspended while the direc­
ted task is loaded from the speci­
fied lu. This lu must be assigned
to t.he file or device from which
the task is to be loaded.

If bit 4 equals 1, any directed
task that is an e-task or d-task
is not loaded. If the calling
task issues an SVC6 call to load
an e-task or d-task with this bit
set, the call is rejected, and an
error code is stored in the para­
meter block error status field.
If the loading task has bit 4 set
and the directed task was linked
with the ACPRIVlLEGE, DISC or
INTERCEPT task option, the task
will be loaded but these options
will be disregarded.
If bit 5 equals 1, the directed
task that is loaded can execute
the control functions of SVC6.

If bit 5 equals 0 and the directed
task that is loaded issues an
SVC6 control function, the call is
rejected, and an error code is
stored into the error status field
of the parameter block.**

6-15

TABLE 6-3 EXTENDED LOAD OPTIONS FIELD BIT DEFINITIONS
(Continued)

BIT I OPTION AND
POSITION I MASK NAME MEANING

:==--=-----------------6 (RL)

7 (AC)

Roll
(SELO.RLM)

Accounting
(SELO.AEM)

If bit 6 equals 1, the directed
task is forced to be a rollable
task regardless of the ~oll option
established by Link.

If bit 6 equals 0, the directed
task uses the roll option estab­
lished by Link.

If bit 7 equals 1, the directed
task that is loaded is given the
accounting option .. This setting
overrides the NOACCOUNT option
established by Link.

If bit 7 equals 0, the directed
task uses the accounting option
established by Link.

*When bit 3 equals 1, all other SVC6 functions are ignored
except the Start function and send start options. If the
calling task terminates while the directed task is being
loaded, the load continues, no trap occurs, and no status is
stored in the parameter block error status field.

**Self-directed task generating device functions can be executed
if bit 5 equals 1.

6.2.5 Task Resident (SFUN.HM) Function

The task
resident

resident
regardless

function
of what

makes the
options

directed task memory
were specified by Link.

At end of task, the open logical units of a resident task are
checkpointed and the task remains in memory. A resident task can
be rollable. The required parameter block fields are:

• Task name field (SVC6.ID)

• Bits 0, land 8 of the function code field

6-16 48-038 FOD RD2

6.2.6 Suspend (SFUN.SM) Function

The suspend function places the directed task into a wait state.
The required pclrameter block fields are:

• Task name field (SVC6.ID)

• Bits 0, 1 and 9 of the function code

The directed task remains
releasing the suspended
executed. If this call is
task to suspend itself.
wait state, another task
release it.

in the wait state until an SVC6
task (bit 24 of the function code) is
self-directed, it causes the calling

To release the calling task from the
must be available to subsequently

This function can be used to suspend execution of· auxiliary
processing uni.t (APU) active or ready tasks. See the OS/32
System Level Pt:ogrammer Reference Manual for more information on
us ing SVC6 in cl Perkin-Elmer Model 3200MPS System.

6.2. 7 Send Dat~a (SFUN. DM) Funct ion

Blocks of data that are communicated from one task to another are
called messagef~. The send data function allows a task to send
variable length messages to another task.

6.2.7.1 Send Data Message Buffer for Sending Task

To pass a messclge from one task to another v ia the send data
function, cet:tain data structures are required. The most
important of these structures is the send data message buffer.
The structure of this message buffer allows the directed task to
receive a variable length message in the format in which it was
sent. The maximum length of a message that can be sent is
determined by t~he size and number of the message buffers set up
by the directed task to receive the message. However, the actual
length of thE~ message is determined by the number and size of
message bufferf~ set up by the task issuing the SVC6.

Hence, two data structures are required by the calling task: the
SVC6 parameter block and the send data message buffer. The
required SVC6 parameter block fields for this function are:

• Task name f j~eld (SVC6. ID)

• Bits 0, 1 M~ 10 of the function code field

• Address of t~he buffer containing the message to be sent
(SVCG.MSG) (if a chain of buffers is to be sent, only the I.
address of t~he first buffer in the chain is required)

48-038 FOO R02 6-17

The format of the send data buffer for the calling task is shown
in Figure 6-4.

0(00) 11(01)
Function code
(SBF.FC)

Buffer link address
(SBF.NXT)

4(04)

Reserved
(SBF.MLEN)

I 6(06)
Message field length

(SBF.LEN)
-------------------------------~---------------------------
8(08) Reserved (1st buffer only)

or
Beginning of message

(SBF.DATA)

16(10) Reserved for sending task name

(1st buffer only)
or

Continuation of message
--
24(18)

Message

Header

Body
of
Message

Figure 6-4 Send Data Message Buffer Format for Calling Task

Each send data message buffer can vary in length provided that
the buffer is aligned on a fullword boundary and its total length
is equal to an integral number of fullwords. Note that the
message buffer consists of two parts: the header and the body of
the message. The message body holds the data that is to be sent.
Because the send data function allows the size of a message to be
variable, the length of the body is determined only by the
quantity of data that is to be sent by SVC6.

Note that if the buffey is the only buffer containing the message
to be sent (or the first buffer in a chain), the first 16 bytes
of the message body are reserved and filled with zeros. When the
message is transferred to the directed task buffer, the first
eight bytes of the message body of the directed task buffer are
filled with zeros, the next eight bytes are filled with the
sending task's name (left-justified and padded with blanks). All
remaining buffers in.the chain use these first 16 bytes of the
message body to hold data.

6-18 48-038 FOQ R02

A description of the fields in the message header follows:

Function code
(SBF.FC)

Buffer link:
address
(SBF.NXT)

Reserved
(SBF.MLEN)

Message field
length
(SBF.LEN)

is a l-byte field indicating whether the
buffer is the only buffer to be sent or is a
member of a. message buffer chain. The
function codes are:

• X'OO' indicates that the buffer is an
intermediate buffer in a chain.

• X'lO' indica.tes that the buffer is the last
buffer in a chain.

• X'20' indicates that the buffer is the
first buffer in a chain.

• X'30' indicates that the buffer is the only
buffer to be sent.

is a 3-byte field specifying the address of
the next buffer in the chain. The operating
system ignores this field in buffers with
a function code of X'lO' or X'30'.

is a 2-byte field reserved for use by the
directed task.

is a 2-byte field specifying the length in
bytes of the message body for that buffer.
This length must be a multiple of 4.

6.2.7.2 Free Send Data Message Buffers for ReceiVing Task

Before a directed task can receive a message, the following
structures must be contained within the task address space:

• Free send data message buffers

• Free buffer list queue

• Task queue

• User-dedicat.ed location (UDL) containing the address of the
task queue, free buffer list queue and TSW with address of
send data trap service routine

• TSW initiali.zed to enable send data traps

48-038 FOO R02 6-19

The total length of the send data message buffers should be
sufficient to hold the entire message transferred to those
buffers by the calling task. The format of the send data message
buffers is shown in Figure 6-5.

0(00)
Reserved
(SBF.FC)

11(01)
Reserved
(SBFLNXT)

4(04) I 6(06)

8(08)

16(10)

24(18)

Maximum message length Reserved
(SBF.MLEN) (SBF.LEN)

Reserved (1st buffer only)
or

Beginning of message
(SBF.DATA)

Sending task name
(1st buffer only)

or
Continuation of message

Message

Header

Body
of
Message

Figure 6-5 Send Data Message Buffer Format for Directed Task

Like the calling task's message buffers, each free message buffer
can vary in length as long as the buffer is fullword
boundary-aligned and the total length in bytes is an integral
number of fullwords.

When initialized, the maximum message length field contains the
number of bytes that are available for the body of the message.
The remaining fields of the message header are reserved.

The address of each of the free message buffers is placed on a
standard Perkin-Elmer circular list established in the task
address space. This list is known as the free buffer list queue.
The address of the queue is placed in the UDL.SDQ field of the
UDL.

6-20 48-038 FOO R02

When a calling task issues an SVC6 to send a message, 'Lhe
operating system takes the address of the free buffer list queue
from the UDL and 'lhen takes a free buffer address off 'lhe queue.
Once 'Lhe free buffer is found, the operating system sets the
reserved field of the message body 'Lo blanks and enters the name
of the calling task in the sending 'Lask name field
(left-justified and padded with blanks). After the buffer is
filled with the data from the calling task's message buffer, the
operat ing syste~m places the number of bytes of the message body
(including the~ reserved and sending task name fields) into
SBF.LEN.

If the entire n\essage has not been transferred, the operating
system fetches the address of another free message buffer, places
the address of this buffer in the SBF.NXT field and sets the
function code. It then begins transferring message data to the
free message buffer, the address of which is now specified by
SBF.NXT. However, this time the message data begins at the first
fullword follo~7ing the SBF.LEN field. After this buffer is
filled, the length of the message body is placed in the SSF.LEN
field. The value in this field can never be larger than the
maximum message length field.

The operating system continues to fetch and fill the directed
task's free buffers until the entire message is tranferred or
until no buffers are left on the queue. If the directed task
runs out of buffers to hold the message data, the entire message
is returned to the calling task buffers. The addresses of the
directed task buffers are returned to the queue. The operating
system outputs an error message indicating no message was sent.

If the entire message is successfully transferred, the operating
system places reason code X'04' and the address of the first
filled message buffer on the task queue of the directed task. If
the directed task has been properly initialized to receive a task
queue trap, the task then branches to a trap-handling routine to
process the message. It is good practice to have the
trap-handling routine return each message buffer address to the
free buffer list queue after the data in that buffer is
processed. SeE~ the OS/32 Application Level Programmer Reference
Manual for more information on preparing directed tasks to handle
send data traps.

If the directed task trap structures have not been properly
initialized (E~.g., no task queue has been established), the
message is returned to the calling task.

6.2.7.3 Samplo Programs Using SVC6 Send Data Function

The following fJample programs demonstrate the data structures
used to send a message via the SVC6 send data function.

48-038 FOO R02 6-21

Sample send data application: Sending Task

6-22

SEND
SENDE

MES1

MES2

MES3

START

ERROR

MLIBS
SSVC6
DS
EQU
ORG
DB
ORG
DC
ORG
DC
ORG

EQU
DC
DC
DC
DS
DS
DC
DC

8,9

SVC6.
*
SEND+SVC6.ID
C'RECDATA'
SEND+SVC6 . FUN
SFUN.DOM!SFUN.DM
SEND+SVC6.MSG
A(MES1)
SENDE

*
Y'20000000'+A(~~S2)
H'O'
H'80'
8
8
C'THIS IS A MESSAGE
C'WITH THE SEND'

START THE PCB
END OF PCB
GO INTO THE I.D. FIELD
STORE THE TASKID
GO TO THE FUNCTION FIELD
SEND DATA:OTHER TASK
GO TO ADDR OF DATA FIELD
STORE THE ADDR OF THE 1ST BUFFER
GO TO THE END OF THE PCB

ADDR OF 1ST BUFFER
1ST BUFF+ADDR OF 2ND
NOT USED BY CALLER
I OF BYTES WE ARE SENDING
RESERVED FIELD FOR 1ST BUFFER
SENDING TASK NAME FOR 1ST BUFFER
FROM ANOTHER TASK.'

DC C' , TOTAL 80 BYTES
ALIGN 4
EQU * ADDR OF 2ND BUFFER
DC Y'0'+A(MES3) MIDDLE BUFFER + ADDR OF NEXT BUFF
DC H'O' NOT USED BY CALLER
DC H'80' I OF BYTES WE ARE SENDING
DC C' DATA FUNCTION WE CAN SEND' .
DC C ' VAR I ABLE LENGTH MESSAGES TO TASKS.
DC C'THIS EXAMPLE'
DC C' TOTAL 80 BYTE BUFFER
ALIGN 4
EQU
DC
DC
DC
DC
DC
DC
DC
EQU
SVC
LH
BNZ
SVC
EQU
SVC
END

* ADDR OF 3RD BUFFER
Y'10000000' LAST BUFFER IN CHAIN CODE
H'O' NOT USED BY CALLER TASK
H'80' # OF BYTES WE ARE SENDING
C' SENT 3 BUFFERS AS ONE MESSAGE '
C'FROM ONE TASK TO ANOTHER'
C'AS ONE MESSAGE'
C'
*
6,SEND
1,SEND+SVC6.STA
ERROR
3,0
*
3,1
START

LET'S GO
SEND THE DATA
GET THE STATUS
AND BRANCH I F AN ERROR OCCURRED
EOT

RETURN CODE OF 1 ON ERROR
TRANSFER ADDR

48-038 FOO R02

Sample send da'ta application: RE~ceiving Task

MLIBS
$ VOL
$SVCl
$TSW

MBF STRUC
SBF.FC EQU
SBF.NXT DS
SBF.MLEN DS
SBF.L1'-:!N DS
SBF.DATA EQU

ENDS
MYUDL DS
M.YlJl)l ,I-~ EQU

ORG
DC
ORG
DC
ORG
DC
DC
ORG

START EQU

*

LA
ABL
LA
ABL
LA
ABL
SVC

QSERVICE EQU
RBL
LR
NI
CI
BNE

DATA EQU
L
NI
CI
BE
CI
BE
CI
BE

8,9

*
4
2
2

*
256

*
MYUDL+UDL. TSKQ
A,(TRAPQ)
M:YUDL+UDL. SDQ
A,(QUEUE)
MYUDL+UDL.TSKN
o
A.(QSERVICE)
M[YUDLE
*
1, BUlj'F 1
1, QUEUE
1,BUFF2
1, QUEUE
1,BUFF3
1, QUEUE
9,TSW

*
3,TRAPQ
2.,3
2:, Y' FFOOOOOO'
2: , TRC . SDTA
E:RROR

2~,0(3)

2~, Y' FFOOOOOO'
2~, Y' 20000000 '
F'IRST
2,Y'10000000'
lAST
~~, Y' 30000000'
ONLY

48-038 FOO R02

ST'RUCTURE FOR THE MESSAGE BUFFER FORMAT
FUNCTION CODE FIELD
ADDR OF NEXT BUFFER
MA.X LENGTH OF BUFFER
LENGTH OF DATA TRANSFER
STIART OF DATA AREA

s'rART OF UDL
END OF UDL
GO TO TASK Q ADDR
S'I'ORE ADDR OF TASK QUEUE
GD TO ADDR OF FREE BUFFER LIST
S'I'ORE ADDR OF FREE BUFFER LIST
GO TO NEW TSW AREA FOR Q SERVICE
S'I'ATUS OF NEW TSW
LOCATION COUNTER OF NEW TSW
GO TO END OF THE UDL
U:T'S GO
GE:T THE ADDR OF BUFF 1
ADD TO BOTTOM OF FREE LIST
GET THE ADDR OF BUFF2
ADD TO BOTTOM OF FREE LIST
GET THE ADDR OF BUFF3
ADD TO FREE LIST
ENTER TRAP WAIT

TRAP ROUTINE
GE:T THE REASON CODE
s'rORE IT IN 2
CI..EAR THE FIELD
IS IT A SEND DATA REASON CODE
BRANCH I F NOT

GE:T THE FUNCTION CODE
S'l?RIP OliF THE ADDR
IS LT THE FIRST BUFFER

IS IT THE LAST BUFFER

IS IT THE ONLY BUFFER

6-23

NEXT

PIRST

LAST

ONLY

PINI
*

ERROR

*
WRITE

6-24

EQU
LA
LHL
AR
SIS
ST
ST
SVC
L
LR
B
EQU
LA
LHL
AR
SIS
ST
ST
SVC
L
LR
B
EQU
LA
LHL
AR
SIS
ST
ST
SVC
EQU
LA
LHL
AR
SIS
ST
ST
SVC
EQU
THE
LA
ABL
LA
ABL
LA
ABL
LIS
ST
SVC
EQU
SVC

*
8,MBP(3)
9,SBP.LEN(3)
9,8
9,1
8,WRITE+SVCl.SAD
9,WRITE+SVCl.EAD
1,WRITE
2,0(3)
3,2
DATA
*
8,MBP+16(3)
9,SBF.LEN(3)
9,8
9,1
8,WRITE+SVCl.SAD
9,WRITE+SVCl.EAD
1,WRITE
2,0(3)
3,2
DATA
*
8,MBP(3)
9,SBP.LEN(3)
9,8
9,1
8,WRITE+SVCl.SAD
9,WRITE+SVCl.EAD
1,WRITE
*
8,MBP+16(3)
9,SBP.LEN(3)
9,8
9,1
8,WRITE+SVCl.SAD
9,WRITE+SVCl.EAD
1,WRITE
*

OS REMOVES PROM THE
1, BUPP 1
1, QUEUE
1,BUPP2
1, QUEUE
I,BUPP3
1, QUEUE
1,0
1,UDL.TSKO
9,UDL.TSKO
*
3,2

ALIGN 4
OS SVCl.

GET THE STARTING ADDR OP BUFP
GET THE LENGTH OF DATA TRANSPER
ADD STARTING ADDR
SUBTRACT ONE PROM ENDING ADDR
STORE THE START I NG ADDR
ENDING ADDR
WRITE THE NEXT BUFPER
GET THE ADDR OP THIS BUFFER
STORE I N THREE
CONTINUE

GET THE STARTING ADDR OP DATA
GET THE LENGTH OF DATA TRANS PER
ADD THE STARTING ADDR
SUBTRACT ONE PROM ENDING ADDR
STORE THE START ING ADDR
STORE THE END ING ADDR
WRITE THE FIRST BUFPER
GET ADDR OF FIRST BUFPER
SAVE IN THREE
CONTINUE

GET THE STARTING ADDR
GET THE # OP BYTES TRANS
ADD TO MAKE END I NG ADDR
SUBTRACT ONE FROM END
STARTING ADDR
ENDING ADDR
WRITE OUT THE LAST BUFFER

GET THE STARTING ADDR
GET THE # OP BYTES rRANS.
GET AN END I NG ADDR
SUBTRACT ONE
STARTING ADDR
ENDING ADDR
WRITE THE ONLY BUFPER

TOP OF THE FREE LIST
ADDR OF 1ST BUFF
ADD TO PREE LIST
ADDR OF 2ND BUFP
ADD TO FREE LIST
ADDR OF 3RD BUFF
ADD TO FREE LIST
GET A ZERO
ZERO THE STATUS
LOAD A TSW

RETURN CODE OF 2

START OF PCB

48-038 FOO R02

WRITEE EQU * END OF PCB
ORG 'WRITE+SVCl. FC GO TO THE FUNCTION CODE FIELD
DB SVl.WRIT!SVl.WAIT WRITE AND WAIT
ORG 'WRITE+SVCl. LU GO TO THE LU FIELD
DB 2 LU 2 FOR A WRITE
ORG 'WRITEE GO TO END OF PCB
ALIGN 4

TSW EQU * NEW TSW
DC TSW. WTM 1 TSW . TSKM! TSW' . SDM WA IT, Q TRAP, SEND DTA
DC 0 LOCATION COUNTER
ALIGN 4

QUEUE DLIST 3 FREE LIST SIZE
TRAPQ DLIST 3 TASK QUEUE SIZE
BUFFI EQU * 1ST BUFF

OS 4 FUNCTION CODE AND LINK ADDR
DC H'SO' MAX SIZE OF THIS BUFFER
DC H'O' # OF BYTES TRANS. SET BY OS
DS 16 RESERVED FIELD FOR 1ST BUFFER
DS SO # OF BYTES WE CAN ACCEPT IN BUFF

BUFF2 EQU *
DS 4 FUNCTION CODE AND LINK ADDR
DC H'SO' MAX SIZE OF THIS BUFFER
DC H'O' # OF BYTES TRANS SET BY OS
DS SO # OF BYTES WE CAN ACCEPT IN BUFF

BUFF3 EQU * 3RD BUFF
OS 4 FUNCTION CODE AND LINK ADDR
DC H'SO' MAX SIZE OF THIS BUFFER
DC H'O' # OF BYTES TRANS SET BY as
DS SO # OF BYTES WE CAN ACCEPT IN BUFF
END START T'RANSFER ADDR

6.2.8 Send Message (SFUN.MM) Function

The send message function allows the calling task to send a
64-byte message to the directed task. SVC6 appends the calling
task name to the message, finds the address of the receiving task
buffer in the UDL of the directed task, fills the receiving
buffer, and places the addres~3 of that buffer onto the directed
task queue.

The required SVC6 parameter block fields are:

• Task name field (SVC6.ID)

• Bits 0, 1 and 11 of the function code field

• Address of message buffer f il9ld (SVC6.MSG)

48-038 FOO R02 6-25

To prepare a directed task to accept the message sent by the SVC6
send message function:

• Allocate message buffers to receive the message. (Use the
message buffer format described in Section 6a2.8.1.)

• Write a routine to service task queue traps as described in
the OS/32 Application Level Programmer Reference Manual.

• Store the address of the
address of the message
directed task.

recelvlng message buffer in the
buffer ring field in the UDL of the

6.2.8.1 Message Buffers

When allocating receiving message buffers for the send message
function, use the buffer format shown in Figure 6-6.

Buffer-­
full
bit

f

76 bytes

~---i
I I I I
I I' I

101 Link I Calling task I Message
I I address I name
------------------------------------~--------i
Bytes:
o 3 4 11 12

't----

t-----
75

Figure 6-6 Message Buffer Format for Directed Task

I
I

This message buffer must be 76 bytes long and aligned on a
fullword boundary-aligned. A description of each field in the
message buffer format follows.

Fields:

6-26

Buffer-full
bit

is a I-bit field indicating whether or not the
buffer can receive the message being sent from
Lhe calling task.

48-038 FOO R02

Link addrE;)ss

Calling
task name

Message

If bit 0 equals 0, the buffer is available to
receive the message.

If bit 0 equals 1, the buffer is full and the
message is rejected. After the message sent
by the calling task is stored in the message
buffer, the system sets the buffer-full bit to
1 to indica.te the message buffer is full.
After the directed task processes the message,
the user must reset the buffer-full bit to 0
to indicate that it is available to receive
the next message.

is a 4-byte field containing the address of
the subsequent message buffer to receive the
next message sent by the calling task. If
this field contains an invalid address, the
call is rejected.

is an 8-byt,e field receiving the
task's name from the system.

calling

is a 64-byte field receiving the message sent
by the calling task.

Using the Link address field, the user can construct the
following structures from the ba.s ic message format:

• Single buffer ring

• Single buffer chain

• Multiple buffer ring

• Multiple buffer chain

A single buffE;)r ring cons ists of one buffer as shown in Figure
6-7. The buffer-full bit init,ially should be set to 0, and the
link address 1:ield should contain the buffer's own starting
address (points to itself). When a message is sent to a single
buffer ring, the system sets the buffer-full bit to 1. All
subsequent mE;)Ssages are rejected until the user resets the
buffer-full bit to O.

48-038 FOO RO~~ 6-27

starting
address
X'lSO'

~-----------------------------i
I I I
I I I

101 150 Data
I I I
I I I

--~---------------------i
gytesJ 3 4

t------------------

~------------------

75

Figure 6-7 Single Buffer Ring

I
I

A single buffer chain consists of one buffer as shown in Figure
6-8. The buffer-full bit should initially be set to 0, and the
link address field should contain zeros (terminating the chain).
When a message is sent to a single buffer chain, the system sets
the buffer-full bit to 1 and stores the link address field
contents into the address of the message ring field of the UDL of
the directed task. All subsequent messages are rejected until
the user stores the empty buffer address into the UDL address of
the message ring field and resets the buffer-full bit of the
empty message buffer to o.

Starting
address
X'lSO'
I

~-----------------------------i
I I I
I I I

101 000 Data
I I
I I

-------------------------------i
Bytes:
o · 3 4

t------------------

~------------------

75

Figure 6-8 Single Buffer Chain

I
I

A multiple buffer ring consists of a variable, unlimited number
of buffers. Each buffer-full bit should initially be set to 0,
and each link address field should contain the address of a
subsequent buffer. The last buffer's link address field should
contain the first buffer's address (forming a ring). When a
message is sent to a multiple buffer ring, the first buffer,
pointed to by the address stored in the UDL address of the
message ring field, receives the message if the buffer-full bit
is O.

6-28 48-038 FOO R02

The system then stores the contents of the first buffer link
address field into the UDL address of the message ring field.
That UDL field now pOints to the second buffer in the ring. If
the calling task sends another message, the second buffer
receives the message if the buffer-full bit is O.

The system stores the contents of the second buffer link address
field into the UDL address of the message ring field, which now
points to the third buffer in thf9 ring. When the last buffer in
the ring receives a message and the contents of the link address
field are stored into the UDL, that UDL field points to the first
message buffer in the ring. If· the calling task sends another
message, the first buffer receivf9s the message if the buffer-full
bit is reset to O~ otherwise, the message is lost (see Figure
6-9) .

I I
I I

Address
X'lSO'

-.L /-----------
I I I
I I I

101 leSI Data
I I
---l--------------

Address
X'lCS'
I .-...-

I I I
I I I

\01 23e I
I I
I I

\0\ 150 Data

Address
X'23C'

I --.-.

I I I
I I I

101 284 I
~ II

I I

~ ~-------~---.---

Data

Figure 6-9 Multiple Buffer Ring

48-038 FOO R02

Data

6-29

A multiple buffe~ chain consists of a va~iable, unlimited numbe~
of buffe~s. Each buffe~-full bit should initially be set to 0,
and each link add~ess field should contain a subsequent buffe~
add~ess. The last buffe~ link add~ess field should contain ze~os
(te~minating the chain). When a message is sent to a multiple
buffe~ chain, the fi~st buffe~, pointed to by the UDL add~ess of
the message ~ing field, ~eceives the message if the buffe~-full
bit is O.

The system then sto~es the contents of the fi~st buffe~ link
add~ess field into the UDL add~ess of the message ~ing field.
That UDL field now points to the second buffe~ in the chain. If
the calling task sends anothe~ message, the second buffe~

~eceives the message if the buffe~-full bit is o.

The system then sto~es the contents of the second buffer link
add~ess field into the UDL address of the message ~ing field.
That UDL field points to the thi~d buffe~ in the chain. When the
last buffe~ in the chain ~eceives a message and the system sto~es
the contents of the link address field into the UDL, all
subsequent messages a~e ~ejected until the use~ sto~es an empty
buffe~ add~ess into the UDL address of message ~ing field and
resets the buffer-full bit of that message buffer (see Figure
6 -10) .

6-30 48-038 FOQ R02

48-038 FOO R02

Address
X'lS0'

I I I
I I I

101 ICa 1 Data
I I
I ,

Address
X'leS' z

~-----------------

I I I
I' ,
101 23C 1 Data
I I , ,

_Address
X'23C' 7

_- --------.-----

I I I
'I ,
I 0 1 2B4 I' Data
I I
I ,

,Address -7---------------
X'2B4'

I I I
'I ,

101 000 I Data
I I , ,

Figure 6-10 Mu1'tip1e Buffer Chain

6-31

The following sample programs demonstrate the data structures
used to send a message via the SVC6 send message function.

Sample send message application: Sending task

SEND PROG SVC6 EXAMPLE - SEND MESSAGE

* * This task sends a message to task RECEIVE.
*
*

SEND

NLSTM
NLSTU
$SVC6
REG

EQU
SVC
LB
SVC

*
6,SVC6 SEND THE MESSAGE
R1S,SVC6+SVC6.STA+l GET ERROR STATUS
3,0(R1S) END OF TASK

4
SVC6

ALIGN
OS
ORG
DC
ORG
DC
ORG
DC

SVC6.
SVC6+SVC6. ID
C'RECEIVE '
SVC6+SVC6.FUN
SFUN.DOM!SFUN.MM
SVC6+SVC6.MSG
A(MESSAGE)

RESERVE SPACE FOR SVC 6 PBLl(
NAME OF TASK MESSAGE IS SENT TO

MESSAGE DC
DC
DC
END

SEND MESSAGE TO ANOTHER TASK

ADDRESS OF MESSAGE TO BE SENT

C'Message from SEND t.o RECEIVE '
C'
C'
SEND

Sample send message application: Receiving task

RECE rVE PROG SVC6 EXAMPLE - RECE IVE MESSAGE
*
*
*
*
*
*

This task receives a message sent to it by another
task. The message is logged to the console device.

NLSTM
NLSTU
UDL
REG

6-32 48-038 FDO R02

*
*
*
*
*

Set up UDL imd link message buffers into a message ring.

RECEIVE EQU *
SVC 2,FETCHPTR
LI Rl4,TSW.PMM
LA Rl5,QSERVICE
STM Rl4,UDL.TSKN(Rl)
LA Rl5,TSKQ
ST Rl5,UDL.TSKQ(Rl)
LA Rl5,MESSQ
ST Rl5, UDL.MSGR(Rl)

LHI Rl5,NMESS
LA Rl4,MESSQ

LINKRING EQU *
SIS Rl5,1
BNP LINKDONE
LA Rl3,76(Rl4)
ST Rl3,O(Rl4)
LR Rl4,Rl3
B LINKRING

LINKDONE EQU *
LA Rl3,MESSQ
ST Rl3, 0 (Rl4)

SVC 9,TRAPENA
*
*
* Service task queue traps
*
*
QSERVICE EQU *

REL R2,TSK
BO QEMPTY
LA Rl5,O(R2)
SRL R2,24
CLHI R2,6
BNE QSERVICE
LA Rl4,4(RlS)
ST l4,LOGMESS+4
SVC 2,LOGMESS
L RO,O(RlS)
NI RO,Y'7FFFFFFF'
ST RO,O(RlS)
L RO,l2(RlS)
CLI RO,C'STOP'
BNE QSERVICE
SVC 3,0

48-038 FOO RO:2

GET ADDRESS OF UDL IN ROl
ALLOW MESSAGES TO BE QUEUED
ADDRESS OF QUEUE SERVICE ROUTINE
SAVE TASK QUEUE NEW TSW
ADDRESS OF TASK QUEUE

ADDRESS OF MESSAGE BUFFER RING

NUMBER OF MESSAGES IN RING
HEAD OF MESSAGE RING

GET ADDRESS OF NEXT BUFFER
LINK NEXT TO CURRENT
CURRENT IS NEXT
CONTINUE LINKING OF RING

ADDRESS OF FIRST MESSAGE
LINK FIRST TO LAST

ENABLE RECEIVE OF MESSAGES

AN ITEM ON THE TASK QUEUE?
NO - ENTER TRAP WAIT
GET PARAMETER
ISOLATE REASON CODE
MESSAGE RECEIVED?
NO - IGNORE IT
SKIP OVER MESSAGE LINK
ADDRESS OF MESSAGE TO BE LOGGED
LOG SENDER ID AND MESSAGE
RESET MESSAGE ACTIVE FLAG

GET FIRST FOUR BYTES OF MESSAGE
IS IT "STOP"?
NO - CHECK FOR MORE MESSAGES
YES - STOP TASK

6-33

QEMPTY EQU
SVC

*
9,TRAPWAIT

ALIGN 4
TRAPENA DC TSW.PMM,O

ENTER TRAP WAIT

TRAPWAIT DC TSW.WTM!TSW.TSKM!TSW.PMM,0

FETCHPTR DB 0,5,0,ROl FETCH UDL POINTERS

LOGMESS DB X' 40' , 7
DCX 72
DC 0

TSKQ DLIST 5 TASK QUEUE

NMESS EQU 3 NUMBER OF MESSAGE
MESSQ DS 76*NMESS MESSAGE BUFFERS

END RECEIVE

6.2.9 Queue Parameter (SFUN.QM) Function

BUFFERS

The queue parameter function adds the user-specified parameter,
located in the task queue parameter field of the parameter block,
to the directed task's queue. The required parameter block
fields are:

• Task name field (SVC6.ID)

• Bits 0, land 12 of function code field

• Task queue parameter field (SVC6.PAR)

Before the directed task can receive the parameter sent from the
calling task, the directed task must prepare to service traps as
described in the OS/32 Application Level Programmer Reference
Manual.

If the directed task's queue is full, the call is rejected, the
parameter is lost, and an error code is stored into the error
status field of the caller's parameter block.

6-34 48-038 FOO R02

6 .. 2 . 10 ChangE~ Pr ior i ty (SFUN. PM[) Funct ion

The change priority function changes the directed task's current
priority to t:he user-specified priority located in the parameter
block change priority field. It then stores the previous
priority value of the directed task into the current priority
field of the parameter block. The required parameter block
fields are:

• Task name field (SVC6.ID)

• Bits 0, 1 and 13 of the function code field

• Change priority field (SVC6.PRI)

I f the change pr io'r i ty value spec if ied in the parameter block is
greater than the maximum priority value established by Link, that
maximum priol:ity is used. However, if the change priority value
the user spectfied is outside the range of 10 through 249, the
call is rejE~cted, and an error code is stored in the parameter
block error status field (see Table 6-5).

6.2.11 Send Logical Unit (lu) (SFUN.XSM) Function

The send lu function assigns to the specified lu of the directed
task the device or file currently aSSigned to the specified lu of
the calling task and then closes the lu assigned to the calling
task. The required parameter block fields are:

• Task name f'ield(SVC6.ID)

• Bits 0, 1 8lnd 14 of the function code field

• Calling lu field (SVC6.CLU)

• Receiving Iu field (SVC6.DLU)

Before the directed task accepts the lu that the calling task
sends:

• the directed task's lu must not be assigned, and

• the directed task must be in either a dormant or paused wait
state or be~ suspended by an SVC6.

48-038 FOO R02: 6-35

6.2.12 Receive Logical Unit (lu) (SFUN.XRM) Function

The receive logical unit function assigns to the specified lu of
the calling task the device or file currently assigned to the
specified lu of the directed task, and then closes the lu
assigned to the directed task. The required parameter block
fields are:

• Task name field (SVC6.ID)

• Bits 0, 1 and 15 of the function code field

• Calling lu field (SVC6.CLU)

• Receiving lu field (SVC6.DLU)

Before the calling task accepts the lu, the directed task sends:

• the calling task's lu must not be assigned, and

• the directed task muat be in either a dormant or paused wait
state or be suspended by an SVC6.

6.2.13 Connect (SFUN.OM) Function

The connect function connects the trap generating device
specified in the device mnemonic field of the parameter block to
the directed task. The required parameter block fields are:

• Task name field (SVC6.ID)

• Bits 0, 1 and 16 of the function code field

• Device mnemonic field (SVC6.DMN)

• Task queue parameter field (SVC6.PAR)

Before the connection is made:

• The user-specified device must be a trap generating device.

• The device must not be currently connected to the directed
task or any other task; it can be connected to only one task
at a time. However, a task can be connected to more than one
trap generating device at the same time.

• The directed task must be prepared as described in the OS/32
Application Level Programmer Reference Manual if traps are to
be serviced as they occur.

6-36 48-038 FOO R02

When the connection is made and t.he thaw function is specified,
an interrupt occurs, and the user-specified parameter located in
the task queue parameter field of the parameter block is placed
on the directed task queue with a reason code of O. The connect
function does not enable intc~rrupts. The operating system
provides capabilities to connect APUs as a trap generating device
to a task. The actual APU signals are defined in the 08/32
System Level Programmer Referencc~ Manual.

6.2.14 Thaw (SFUN.TM) Function

The thaw function enables interrupts from the specified trap
generating device connected to the directed task. The required
parameter block fields are:

• Task name field (SVC6.ID)

• Bits 0, 1 and 17 of the function code field

• Device mnemonic field (SVC6.DMN)

Before this function is effected, the task should be prepared to
handle traps as described in the 05/32 Application Level
Programmer Reference Manual.

When the thaw function is execut1ed, the system first ensures that
the trap generating device is connected to the directed task
specified in the parameter block; it then enables interrupts.
Interrupts ar€~ disabled when the directed task terminates or if
an unconnect c~r freeze function is specified. If a thaw function
is executed when interrupts are ,already enabled, this call has no
effect. NotE! that an APU can be treated as a pseudo trap
generating device.

6.2.15 Sint (SFUN.IM) Function

The sint funct~ion simulates an interrupt from the specified trap
generating device connected to the directed task only if the thaw
function was specified. If interrupts are disabled, this call
has no effect. The required parameter block fields are:

• Task name field (SVC6.ID)

• Bits 0, 1 and 18 of the function code field

• Device mnemonic field (SVC6.DMN)

48-038 FOO RO~~ 6-37

When the simulate interrupt function is executed, the system
first ensures that the trap generating device is connected to the
directed task specified in the parameter block; it then simulates
an interrupt from the specified device. Note that an APU can be
treated as a pseudo trap generating device.

6.2.16 Freeze (SFUN.FM) Function

The freeze function disables interrupts from the specified
trap-generating device connected to the directed task. The
required parameter block fields for this function are:

• Task name field (SVC6.ID)

• Bits 0, 1 and 19 of the function code field

• Device mnemonic field (SVC6.DMN)

When the freeze function is executed, the system first ensures
that the trap-generating device is connected to the directed task
specified in the parameter block; it then disables interrupts
from the specified device. When the freeze function disables
interrupts, the trap-generating device and directed task remain
connected, but all generated interrupts are lost. If interrupts
are already disabled, this call has no effect. Note that an APU
can be treated as a pseudo trap-generating device.

6.2.17 Unconnect (SFUN.OM) Function

The unconnect function disconnects the specified trap-generating
device from the directed task. The required parameter block
fields for this function are:

• Task name field (SVC6.ID)

• Bits 0, 1 and 20 of the function code field

• Device mnemonic field (SVC6.DMN)

When the unconnect function is executed, the system first ensures
that the trap-generating device is connected to the directed task
specified in the parameter block; it then disables all interrupts
and disconnects the specified device from the directed task. The
device can now be connected to another task. Note that an APU
can be treated as a pseudo trap-generating device.

6-38 48--038 FDO R02

6.2.18 Assign Logical Processing Unit (LPU) Function (SFUN.LPU)
Functton

The assign LPU function assigns the directed task to a new LPU
number. This assignment has no effect until the directed task is
transferred by the task dispatcher. The required parameter block
fields for this function are:

• Task name t:ield (SVC6.ID)

• Bits 0, 1 clnd 21 of the function code field

• LPU assignment field (SVC6.LPU)

If task mapping to a waiting APU has been changed, the wait
condition is t:emoved and the APU is restarted.

6.2.19 Transfer to Logical Processing Unit (LPU) (SFUN.TL)
FunctjLon

The transfer t~o LPU function mak,es the directed task LPU-directed
and transfers the directed task to its assigned LPU the next time
the task is dispatched, provided that all requirements for
transfer are met. See the OS/32 System Level Programmer
Reference Manual for more information on the task dispatcher. If
this function is self-directed, it duplicates the function of the
RSCH 2 instruction. If a calling task executing on the CPU
directs this function to itself, the task is made LPU-directed,
and the calling task is dispatched to its assigned LPU. If the
LPU is mappE~d to the CPU, no transfer occurs. If the LPU is
mapped to an }\.PU, a transfer to the APU occurs.

The required parameter block fields for this function are:

• Task name 1: ield (SVC6. ID)

• Bits 0, 1 and 22 of the function code field.

NOTE

If both bits 22 (SFUN.TL) and 23
(SFUN.TC) are set in the same SVC6
parameter block, only bit 23 is
rE~cognized when the call is complete.

48-038 FOO R02 6-39

6.2.20 Transfer to Central Processing Unit (CPU) (SFUN.TC)
Function

The transfer to CPU function makes the directed task
CPU-directed. As a result, the next time the task is dispatched
from the CPU ready queue, it will execute on the CPU regardless
of its LPU assignment and eligibility. If the calling task
directs this function to a task that is active or ready on an
APU, the LPU-directed status is reset after the task is returned
to the CPU for any reason.

If a calling task executing on the CPU directs this function to
itself, it duplicates the function of the RSCH 0 instruction with
the following exception.

If the task's TCB specified a trap block, which has a nonzero
wait bit in the SVC new program status word (PSW),the APU halts
and waits for the task to resume execution on the APU. The APU
remains halted while the task executes on the CPU until:

• The task is transferred back to the LPU.

• The task is assigned to a different LPU.

• The task goes to end of task or is cancelled.

• LPU mapping for the task's LPU is changed.

If a calling task operating on the APU directs this function to
itself, the calling task is transferred to the CPU. Normally,
APU processing continues after the task is transferred unless the
wait bit in the SVC new PSW field of the APU trap block has been
set. In this case, APU processing is explicitly suspended while
the task executes on the CPU until:

• The task is explicitly transferred back to the APU via SVC6.

• The task is assigned to a different APU through an LPU
assignment.

• The task is cancelled or goes to end of task.

• LPU mapping for the task's LPU is changed.

See the 09/32 Application Level Reference Manual for more
information on setting the trap block to suspend APU processing.
The required parameter block fields for this function are:

• Task name field (SVC6.ID)

• Bits 0, land 23 of the function code field

6-40 48-038 FOO R02

NOTE

If both bits 22 (SFUN.TL) and 23
(SFUN.TC) are set in the same SVC6
parameter block, only bit 23 is
recognized when the call is completed.

6.2.21 Release (SFUN.RM) Functi()n

The release function releases a directed task currently suspended
by a previous SVC6 by taking it out of a wait state. Once
released, the task continues executing with the instruction
following the instruction executed before the task was suspended
if the task is not in another wait state at this time. The
required param.eter block fields lEor this function are:

• Task name field (SVC6-ID)

• Bits 0, 1 and 24 of the function code field

The SVC6 release function cru~ be used by a system task
(.CMDP, .CSL, .MTM and .SPL) to remove another task from a
suspended state. After the task is released, it continues
execution at the location specified in the SVC6.SAD field of the
SVC6 parameter block. If this SVC is used by other than a system
task, the cont,inuation address (SVC6.SAD) is ignored. Figure 3-6
shows the parameter block format and coding for the SVC6 release
function for system tasks.

6.2.22 Nonresident (SFUN.NM) Function

The nonresident function makes the directed
regardless of the Link options specified.
task goes to end of task, it is removed from
required parameter block fields are:

• Task name field (SVC6.ID)

• Bits 0, 1 and 25 of the function code field

6.2.23 Rollable (SFUN.RIM) Func'tion

task nonresident
When a nonresident
the system. The

The rollable function makes the directed task rollable. The
directed task must have been linked as a rollable task. If this
function is dtrected to a task linked as nonrollable, an error
status is returned. The required parameter block fields are:

• Task name field (SVC6 .. ID)

• Bits 0, 1 and 26 of the function code field

48-038 FOO RO~~ 6-41

6.2.24 Non~ollable (SFUN.NRM) Function

The nonrollable function prevents the directed task from being
rolled. The required parameter block fields are:

• Task name field (SVC6 .. ID)

• Bits 0, 1 and 27 of the function code field

If both the rollable and nonrollable functions are specified,
only the nonrollable function is recognized.

6.2.25 Sta~t (Bit Positions 29, 30, 31) Function

The start function starts execution of the directed task. This
call is rejected if it is self-directed. Four methods of
starting are:

• start (bit setting equals 010)

• start with start options (bit setting equals 011)

• Delay start (bit setting equals 100 or 110)

• Delay start with start options (bit setting equals 101)

The required parameter block fields are:

• Task name field (SVC6.ID)

• Bits 0, 1, 29, 30 and 31 of the function code field

• Address of start options field (SVC6.S0P) (only required when
start with start options or delay start with start options is
specified in the function code)

• Increment of time field (SVC6.TIM) (only required when delay
start or delay start with start options is specified)

• Count field (SVC6.CNT) (only required when delay start or
delay start with start options is specified)

• starting address of directed task field (SVC6.SAD)

Before the start function is executed, the directed task must be:

• loaded or present in memory, and

• in a dormant or console wait state.

6-42 48-038 FOO R02

6.2.26 start][i'unction for SVC6 (SFUN.SIM) Function

When t.h is funct ion is spec if ied, execut ion of t.he d irect-ed t-ask
is started at it.he address in the parameter block starting address
of the directed task field. However, if the user-specified
starting address is 0, the directed task is started at. the
default start address specified by Link. If the user-specified
starting address is outside the established task boundaries, this
call is reject,ed, and an error code is stored in the parameter
block error status field.

6.2.27 start Function with start Options for SVC6 (SFUN.SOM)
Functilon

When this function is specified, the st-art options, optionally
specified in certain language and utility programs at execution
time, ar e also inc luded as run -t jLme inf ormat ion when the d i r ected
task starts execution. When the start function is executed, the
start options located at the address specified in the parameter
block are stored into the directed task UTOP area. If sufficient
memory is not available between UTOP and CTOP, this call is
rejected and an error code is st()red in the parameter block error
status field. The task should then be reloaded into a larger
segment using the extended load option segment size increment
field.

The user-specified start options must be located on a fullword
boundary. The maximum length of the start options are defined at
sysgen through the CMDLENGTH opt:. ion. If the length of the start
options is greater than that specified at sysgen or a carriage
return (CR) is present within the start options, only those
characters up to the maximum nu~)er or the CR are stored in the
task UTOP area.

Since the address of the start options field is also the address
of the message buffer field in t.he parameter block, this field' s
contents are always assumed to bE~ the start option address when
the start function is specified.

6.2.28 Delay Start Function for SVC6 (SFUN.SDM) Function

When this function is specif:i.ed, the directed task starts
execution after a user-spec:i.fied interval located in the
parameter block increment of time and count fields elapses. This
can be specified as a time-of-day or interval-timing interval.

When this start function is executed for the directed task, bytes
192 through 251 of the directed task's UDL are used by the
operating system for SVC6 delay f3tart function use.

48-038 FDD RD2 6-43

When this start function is executed,
immediately placed into a time
user-specified interval elapses, the
execution.

the directed task is
wait state. When the
directed task starts

6.2.29 Delay start Function with start Options for SVC6
(SFUN.SDN, SFUN.SON)

When this
execution
parameter
interval
interval.

function is specified, the directed task starts
after a user-specified interval located in the

block increment of time and count fields elapses. The
can be specified as a time-of-day or interval-timing

When this start function is executed for the directed task, bytes
192 through 251 of the UOL are used by the operating system for
SVC6 delay start function use.

When the start function is executed, the start options located at
the address specified in the parameter block are stored into the
directed task UTOP area, and the directed task is immediately
placed into a time wait state. If sufficient memory is not
available between UTOP and CTOP, this call is rejected, and an
error code is stored in the parameter block error status field.
The task should then be reloaded into a larger segment using the
extended load option segment size increment field (see Section
6.2.4 .. 2).

The user-specified start options must be located on a fullword
boundary. The maximum length of the start options is defined at
sysgen through the CMDLENGTH option. If the length of the start
options is greater than that specified at sysgen or a CR is
present within the start options, only those characters up to the
maximum number or the CR are stored in the task UTOP area. Since
the address of the start options field is also the address of the
message buffer field in the parameter block, this field's
contents are always assumed to be the address of the start
options when the start function is specified. When the
user-specified interval elapses, the directed task starts
execution.

6.2.30 Wait status Field (SVC6.TST)

The wait st.atus is sent to the wait status field in the parameter
block each time an SVC6 is executed.

If the calling task wants to check the wait status of the
directed task, an SVC6 should be executed with bits 0 and 1 of
the function code set to 10 and the remaining bits set to O.
This operation also causes the current priority field of the
directed task to be returned to the cu~rent priority field in the
parameter block. Table 6-4 lists the wait status bit
definitions.

6--44 48-038 FOO R02

TABLE 6-4 WAIT ST'ATUS BIT DEFINITIONS

BIT I WAIT STATUS I
POSITION 1 FIELD MASK MEANING

~========~.====-------=--------==-=-----=--==--=-:--==-=-=~I o (10) 1 X'8000' 1 I/O queue wait I

--I
1 (CN) X ' 4000 ' 1 Conne c t ion wa i t 1

2 (CW) X'2000'

3 (LW) X'lOOO'

4 (DM) X'0800'

5 (TW) X'0400'

6 (TO) X'0200'

7 (TK) X'OlOO'

8 (TM) X'0080'

9 (TR) X'0040'

10 (RO) X'0020'

11 (II) X'OOlO'

12 (IT) X'0008'

13 (CO) X'0004'

14 (AC) X'0002'

15 X'OOOl'

1 Console wait (task paused)

1 Load wait~ calling task waiting
1 for receiving task to be loaded

1 Dormant; task not started or at
1 end of task

I Trap wait

1 Time-of-day wait

1 Task suspended

1 Interval wait

1 Terminal wait

1 Roll pending wait

I Intercept initialization

1 Intercept termination

I Connection wait

I Accounting wait

I Reserved for future use

6.2.31 Error Codes (SVC6.STA)

If an error occurs, execution of the current SVC6 function stops,
and any other functions specified in the function code to the
right of the current function are not executed. The position of
the function code bit, which indicates the function being
executed when the error occurred, is stored in bits 0 through 7
of the paramet~er block error status field. The bit position
value ranges from a to 31. The error code indicating the error
type is stored in bits 8 through 15 of the parameter block error
status field shown in Figure 6-11. Table 6-5 lists SVC6 error
codes.

48-038 Faa RO~~ 6-45

Function code
bit position

Bits:
o

Error code

7 8

Figure 6-11 Error status Field

TABLE 6-5 SVC6 ERROR CODES

15

ERROR !FUNCTION CODE!
CODE IBIT POSITIONS I

HEXADECIMAL! CAUSING THE I
(DECIMAL) I ERROR MEANING

================a=_=====_== _______ ============================
o All

1 All

2 All

3 6 (L)

4 All except
6 (L)

6 (L)

5 13 (P)

6 6 (L)

6-46

I No error occurred. All requested
I functions terminated normally.

Syntax error present in parameter
block task name field. This error
does not include self-directed
calls.

I Illegal function code

I Directed task is already loaded
I intp memory.

I The specified directed task is not
I present in the calling task
I environment.

The directed task is not present,
but the calling task has the SVC6
intertask control function dis­
abled.

I The specified priority is outside
I of the range of 10 through 249.

The directed task requires float­
ing point facilities that are not
sysgened into the system.

48-038 FOO R02

,]~ABLE 6-5 SVC6 ERROR CODES (Continued)

ERROR I F' UNCT I ON CODE I
CODE IBIT POSITIONS I

HEXADECIMAL I CAUSING THE I
(DECIMAL) I ERROR

7

8

9

A (10)

B (11)

C (12)

D (13)

E (14)

F (15)

48-038 FOO R02~

9 (S)

1.4 (B)
15 (V)
29
30 (A)
31

11 (M)
29
30 (A)
31

All

29
30 (A)
31

10 (SD)
11 (M)

10 (SO)
11 (M)
12 (Q)

16 (0)
17 ('I')
18 (I)
19 (F)
20 (U)

16 (0)
17 (T)
18 (I)
19 (F)
20 (U)

16 (0)

MEANING

The specified directed task is
dormant, paused or suspended. The
specified directed task is not
dormant, paused or suspended.

The message is not fullword
boundary-aligned, or an invalid
starting address was specified for
a directed task.

I The calling task cannot execute
I SVC6 control or communication
I functions.

I The values specified for the
I increment of time and count fields
I are invalid.

I The calling task message was not
I sent to the directed task.

Task queue service in the directed
task TSW is disabled. The
directed task queue is full. The
directed task has no queue.
The device mnemonic specified in
the parameter block does not exist
in the system.

'I'he device mnemonic specif ied in
the parameter block is not a con­
nectable device.

The device mnemonic specified in
the parameter block is busy and
cannot be connected.

6-47

TABLE 6-5 SVC6 ERROR CODES (Continued)

ERROR IFUNCTION CODE I
CODE :BIT POSITIONS:

HEXADECIMAL I CAUSING THE I
(DECIMAL) I ERROR MEANING

10 (16)

11 (17)

12 (18)

13 (19)

14 (20)

16 (22)

17 (23)

18 (24)

19 (25)

IB (27)

21 (23)

42 (66)

6-48

17 (T)
18 (I)
19 (F)
20 (U)

6 (L)

14 (B)
15 (V)

14 (B)
15 (V)

14 (B)
15 (V)

29
30 (A)

26 (Y)

29
30 (A)
31

18 (I)

6 (L)

6 (L)

6 (L)

The device mnemonic specified in
the parameter block is not con­
nected to the specified directed
task.

: The lu specified in the lu to load
I task field of the parameter is
: invalid.

: The lu the calling task sends or
I receives is greater than the
I maximum allowed value.

: The directed task is currently
: assigned to an lu during a send lu
: operation.

: The calling task is currently
: assigned to an lu during a receive
I lu operation.

I The specified directed task to be
: started is currently rolled out.

The directed task did not specify
the roll option by Link and,
therefore, cannot be rolled out.
There is insufficient room between
the task UTOP and CTOP to store
the task-specified start options.

: An interrupt cannot be simulated
: on the specified device.

Loading the direct task exceeds
the maximum number of sysgen­
established tasks that can be
present in the system at one time.

: An error occurred while loading a
I pure segment.

The run-time library (RTL) or a
TCOM required by the directed task
is not present at load time.

48-038 FOO R02

T'ABLE 6 - 5 SVC6 ERROR CODES (Cont inued)

ERROR IFUNCTION CODE I
CODE :BIT POSITIONS:

HEXADECIMAL: CAUSING THE :
(DECIMAL): ERROR

43 (67)

44 (68)

45 (69)

46 (70)

47 (71)

48 (72)

49 (73)

4A (74)

50 (80)

51 (81)

48-038 FOO R02~

6 (L)

6 (L)

6 (L)
14 (B)
15 (V)
29
30 (A)
31

6 (L)

6 (L)

6 (L)

6 (L)

6 (L)

6 (L)

6 (L)

MEANING

The calling task specified load
options and the directed task
specified Link options are not the
same.

I The LIB format is invalid.

Insufficient system space exists
to load or start the directed
task. There is insufficient
system space in the directed task
to accept the lu of the calling
task being sent.

Attempt was made to load tree­
structured overlays from a device
that does not support random
access.

I System does not support loading
: of tree-structured overlays.

Data in the ODT of a three­
structured overlay is invalid.
Memory does not have a large
enou9h area into which the
directed task can be loaded. 'J'he
roll option was not specified as a
Link option.

: An error occurred while mapping a
I shared segment. Previously mapped
I or shared segment table was full.

I The allocation of or assignment to
I the specified roll file is invalid,
I and the task cannot be loaded.

An I/O error occurred when the
directed task was rolled out
(written) to the roll volume; it
cannot be loaded back into memory.

6-49

TABLE 6-5 SVC6 ERROR CODES (Continued)

ERROR ,FUNCTION CODE!
CODE !BIT POSITIONS I

HEXADECIMAL! CAUSING THE I
(DECIMAL) I ERROR MEANING

~===== ____ =_== ____ = ___________ ~ ________ =_=_=D=~===============

52 (82)

53 (83)

54 (84)

55 (85)

1 I
I I

6 (L)

6 (L)

21 (AP)

21 (AP)
23 (IC)

I The physical size of a sharable
I segment was smaller than the
I minimum size required.

I The access privileges of a
I sharable segment were incompatible
I with those requested by the task.

I The LPU number is outside the
I range specified by the MAXLPU
I parameter at sysgen.

I The directed task is an APU-only
I task and cannot be transferred to
I the CPU.

I---~----------
80-FF I 6 (L) An I/O error occurred when the

(128-255) I directed task was being loaded
I (read) into memory. An SVCl error
I occurred.

The calling task can check the parameter block for functions the
directed task executed before the error occurred and for
functions that were not executed.

6-50 48-038 FOO R02

CHAPTER 7
FILE HANDLING SERVICES SUPERVISOR CALL 7 (SVC7)

7.1 INTRODUCTION

SVC7 provides file and device handling functions supported by the
file manager and the data communications subsystem. These
functions are accomplished through the SVC7 parameter block shown
in Figure 7-1. For a description of the OS/32 file management
services, see the OS/32 Application Level Programmer Reference
Manual and the OS/32 Basic Data Communications Reference Manual.

48-038 FOO R02 7-1

SVC7

7.2 SVC7: FILE HANDLING SERVICES

0(0)

4(4)

Function code
(SVC7.0PT)

15(5)

12(2) 13(3) logical
1 Error status 1 unit (lu)
1 (SVC7.STA) 1 (SVC7.LU)

16(6)
Write key
(SVC7.WKY)

Read key
(SVC7.RKY)

Logical record length
(SVC7.LRC)

8(8)

12(C)

16(10)

20(14)

24(18)

parblk

Volume name or device mnemonic
(SVC7.VOL)

Filename
(SVC7.FNM)

Extension
(SVC7.EXT)

File size
(SVC7.SIZ)

SVC 7,parblk

ALIGN 4
X'function code'
1
lu
'write key'
'read key'
H'record length'

123(17) File
1 class/account
1 (SVC7.ACT)

DC
DS
DB
DB
DB
DC
DC C'4-character volume name or device

mnemonic'
DC C'8-character filename'
DC C'3-character extension'
DB C'file class'
DC F'file size'

Figure 7-1 SVC7 Parameter Block Format and Coding

7-2 48-038 FOO R02

This paramet.er block must be 28 bytes long, fullword
boundary-aligned and located in a task-writable segment. A
description of each field in the parameter block follows:

Fields:

Function
code
(SVC7.0PT)

Error
status
(SVC7.STA)

lu
(SVC7.LU)

Write key
(SVC7.WKY)

Read key
(SVC7.RKY)

Logical
record
length
(SVC7.LRC)

48-038 FOO R02:

is a 2-byte field that contains the
hexadecimal number indicating the function to
be performed.

is a i-byte field that receives the
appropriate error code when an error occurs
while executing SVC7. If no error occurs, a
value of 0 is stored in this field.

is a i-byte ~E ield that contains a hexadecimal
number indica'ting the logical unit used for
all SVC7 functions (except the allocate and
delete functions).

is a i-byte field that contains a hexadecimal
number indicating the write protection keys
for direct access and data communications
files and devices when the allocate, assign,
reprotect and delete functions are executed.

is a i-byte 'field that contains a hexadecimal
number indicating the read protection keys for
direct access and data communications files
and devices when the allocate, assign,
reprotect and delete functions are executed.

When executing the SVC7 fetch attributes
function, the device and file attributes are
stored in the write and read key fields of the
parameter block.

is a 2-byte field that contains a decimal
number indic,ating the logical record length
for indexed files, nonbuffered indexed files,
or buffered logical terminal manager
(communications).

When executin~~ a fetch attr ibutes function,
this field ~t:eceives a device physical record
length.

7-3

7-4

Volume name
or device
mnemonic
(SVC7.VOL)

Filename
(SVC7.FNM)

Extension
(SVC7.EXT)

File class/
account
(SVC7.ACT)

is a 4-byte field that contains the ASCII code
indicating the volume name of a direct access
device, the device mnemonic of a nondirect
access device or the name of the data
communications access line, when the allocate,
assign, delete and fetch attributes functions
are executed.

is an 8-byte field that must contain the ASCII
code indicating:

• A filename on a direct access device when
the allocate, assign, rename and delete
functions are executed; a filename is not
required for nondirect access devices.

• The buffered logical terminal described by
the line control block (LCB) that is being
allocated or assigned

When executing a fetch attributes
this field receives the filename
direct access or data communications
currently assigned to the lu specified
parameter block. If it isa nondirect
device, this field is blank.

function,
from the

device
in the
access

is a 3-byte field that contains the ASCII code
indicating further identification of the
filename or the file type (.CAL, .OBJ, .TSK,
.eSS) on direct access devices.

is an optional I-byte field that contains the
account number or class to which the file is
allocated. If SVC7 is issued by an executive
task (e-task) or a user task (u-task) that was
link-edited with the ACPRIVILEGE option, an
account number can be specified in this field.

NOTE

To specify a file with an account
number, the file descriptor (fd)
must be packed into the SVC7
parameter block using SVC2 code 16
(see Section 3.14.9). The account
number can range from 0 to 65,535.

48-038 FOO R02

File size
(SVC7.SIZ)

If SVC7 is issued by a u-task that was
link-edited '~ith the NACPRIVILEGE option, the
file class is specified as follows:

• IP indicat:.es the file is allocated under
a private account.

• IG ind icat:.es the file is allocated under
a group account.

• IS ind icat:.es the file is allocated under
a system account.

See the OS/32 Link Reference Manual for more
information on the account privileges task
option.

is a 4-byte field that contains a hexadecimal
number indicat.ing the file size established
when a file is allocated to a direct access
device.

7.2.1 Function Code Field (SVC7 .. 0PT)

SVC7 has nine functions specifiE~d by the first byte of the
function code, called the command byte, and has four modifier
fields specified by the second byte of the function code, called
the modifier byte.. The modifier fields are:

• Access privileges for the allocate function and change access
privilege function

• Access method (data communjLcations only) for the ass ign
function

• File types for the allocate function

• Density selection for the assign function (magnetic tape
drives)

There are no modifier fields for the rename, reprotect, close,
delete, checkpoint:. and fetch attl~ ibutes functions.

These functions and modifier fields are specified through
different function code bit sE~ttings shown in Figure 7-2. The
functions specified in the function code are executed from
left-to-right.

48-038 FOO R02 7-5

Command byte Modifier byte

I A I A I C I R I RIC I D I C I Access IAccess I
I LIS I H I NIP I L I 1. I K Iprivileges Imethod I

File
types

Bits:
o 1 2 3 4 5 6 7 8 10 11 12 13 15

Figure 7-2 SVC7 Function Code Field

The function of each bit setting in the SVC7 function code field
is explained in Table 7-1.

BIT
POSITION

TABLE 7-1 SVC7 FUNCTION CODE BIT DEFINITIONS

1 MEANING
1--------------------------------1

1 DATA 1
FUNCTION DEVICE/FILE I COMMUNICATION I BIT SETTING

-=---o (AL)

1 (AS)

2 (CH)

7-6

Allocate

Assign

Change
access
privi­
lege

Reserves space
on a direct
access device.

Assigns an lu
to a device or
file.

Changes the
user's current
access privi­
lege to a new
access privi­
lege.

Reserves an
LCB for a
buffered
terminal
manager.

Assigns an
lu to line
driver
(SVC1S) and
terminal
managers
(SVC1) .

Changes the
communica­
tions user
current
access privi­
lege to a new
access privi­
lege.

o ". no function
requested

1 - reserve
space

o ". no function
requested

1 assign an
lu

o .. no function
requested

1 - change
access
privilege

48-038 FOO R02

TABLE 7-1 SVC7 FUNCTION CODE BIT DEFINITIONS (Continued)

BIT
POSITION FUNCTION

MEANING I
I

1--------------------------------1 I DATA 1
DEVICE/FILE. 1 COMMUNICATION I BIT SETTING

---3 (RN)

4 (RP)

5 (CL)

6 (DL)

7 (CK)

Rename

Repro­
tect

Close

Delete

Ch.eck­
point.

48-038 FOO R02

Changes the
current file­
name to a new
user-specified
filename.

Changes the
files current
read/write
protection
keys to new
protection
keys.

Closes an lu
assignment for
a particular
device or
file.

Releases re-·
served spaCE!
on a direct
access device.

Copies buf­
fered file
data to a
direct access
device.

Changes the
name of the
communica­
tions line
(SVCIS) or
terminal
(SVCI.)

Changes the
read/write
protection
keys of the
communi­
cations line
(SVCIS) or
terminal
(SVCI) to new
protection
keys.

Closes an lu
assignment
for a partic­
ular line
driver or
terminal

Releases a
reserved LCB.

Copies buff­
ered file
data to a
logical
terminal.

o

I

no function
requesfed
change
filename

o = no function
requested

1 change
protection
keys

o no function
requested

I = close an lu

o

I

no function
requested
release
reserved
space

o no function
requested

I - copy
buffered
file data

7-7

TABLE 7-1 SVC7 FUNCTION CODE BIT DEFINITIONS (Continued)

BIT
POSITION FUNCTION

I
I MEANING
1--------------------------------1

DEVICE/FILE
1 DATA 1
1 COMMUNICATION 1 BIT SETTING

---8
9
10

11
12

7-8

Access
privi­
leges

Access
method

Specifies a
file's reading
and writing
restrictions.

Specifies ver­
tical forms
control (VPC)
for devices
that support
VPC.

Specifies the
terminal's
reading and
writing
restrictions.

Indicates
file access
method for
data commun­
ications.

000 ,. shared
read-only
(SRO)

001 - exclusive
read-only
(ERO)

010 ... shared
write­
only
(SWO)

011 = exclusive
write­
only
(EWO)

100 - shared
read/
write
(SRW)

101 ... shared
read,
exclusive
write
(SREW)

110 - exclusive
read,
shared
write
(ERSW)

111 ... exclusive
read/
write
(ERW)

00 .. terminal
level
(SVC1)
access

01 - terminal
level
(SVC1)
access
with VFe

10 ,. reserved
11 .. line

level
(SVC1S)
access

48-038 FOO R02

TABLE 7-1 SVC7 FUNCTION CODE~ BIT DEF INITIONS (Continued)

I MEANING I
�--------------~-----------------I
I I DATA I BIT

POSITION FtffliCTION I DEVICE/FILE I COMMUNICATION I BIT SETTING '-=--=_= ____________________________ -= ________________ -------------------

13
14
15

File
types or
software
density
selec­
tioln

48-038 FOO RO~~

Indicates
file type or
mag tape
density bein'~
used.

Indicates if
buffered
terminal or
line access
is being
used.

000 = contig­
uous
files or
enable
manual
density
selection
on Telex
mag tape
drives;
no action
on other
mag tape
drives

001 extend-
able con­
tigous
files

010 - indexed
files

011 nonbuff-
ered
indexed
files

110 "'" long
record
files

100 = select
800 bpi
nonreturn
to zero
inverted
(NRZ I)
density
(STC and
Telex
drives
only)

101 Select
1600 bpi
PE
density
(STC and
Telex
drives
only)

7-9

TABLE 7-1 aVC7 FUNCTION CODE BIT DEFINITIONS (Continued)

BIT
POSITION

MEANING 1
1--------------------------------1
1 I DATA I

FUNCTION 1 DEVICE/FILE 1 COMMUNICATION I BIT SETTING

---13
14
15

(Contin­
ued)

0-15

0-15

0-15

7-10

I Fetch
I attri­
I butes

VFC

Fetch
time and
date
attri­
butes
from
disk Di­
rectory

I Returns the physical attri-
I butes of a file or device to
I the parameter block.

Turns VFC on or off for de­
vices that support VFC.

Returns the time and date that
the file was created and last
written to.

110 - select;
6250 bpi
group
coded
recording
(GCR)
density
(STC and
Telex
drives
only)

III - communi­
cations
buffered
terminal
manager

X'OOOO' ~ fetch
attributes

X'FF20' - VFC
on

X'FF2l' = VFC
off

X'FFOO - re­
turns time
and date
in system
generation
(sysgen)
format

X'FFOl' - re­
turns time
and date
in
mm/dd/yy;
hr:min:sec
format

X'FF02' - re­
turns time
and date
in
dd/mm/yy;
hr:min:sec
format

48-038 FDD R02

TABLE 7-1 SVC7 FUNCTION CODE BIT DEFINITIONS (Continued)

I MEANING I
�--------------~-----------------I

BIT . I I I DATA I
POSITION I Frn~CTION I DEVICE/FIL!: I COMMUNICATION I BIT SETTING

--------------,._---0-15
(Contin­
ued)

0-15 Fe'tch
lOfgical
attri­
bu'tes
of open
file

Returns current total logical
records, current logical
record position, index
blocksize and data
blocksize.

7.2.1.1 Allocate Function

X'FF03' = re­
turns time
and date
in Julian
format

X'FF04' = re­
turns time
and date
in direc­
tory for­
mat

X'FFOA'

The allocate1:unction makes a d i,rectory entry and reserves space
on a direct access device for the file type specified in the
mod if ier byte,. The required parameter block fields for this
function are:

• Bits 0 and 13 through 15 of t.he function code

• Write key field

• Read key field

• Logical record length field

• Volume namt:;, field

• Filename f :i.eld

• Extensionfield

• File class field

• File size field

48-038 FOO R02 7-11

When a contiguous file is allocated, the file sectors are
reserved, and the filename, sector starting address, read/write
keys, file type and dates created and written are entered into
the directory. A contiguous file is not buffered. When an
indexed file is allocated, the filename, number of logical
records, read/write keys, file type and dates created and written
are entered into the directory.

When an extendable contiguous file or nonbuffered indexed file is
allocated, the file directory is set up as for an indexed file.

When doing an allocation using a data communications terminal
manager, two data buffers, each equal to the device physical
block size, are reserved in memory for the LCB. The buffered
terminal filename, logical record length, and read/write keys are
entered into the LCB. See the OS/32 Basic Data Communications
Reference Manual.

7.2.1.2 Assign Function

The assign function uses an lu to establish a logical connection
between the task issuing the SVC7 and a file or device, and the
communications line and buffered terminal. The required fields
in the parameter block are:

• Bits 1 and 8 through 12 (and 13 through 15 for magnetic tape
drives) of the function code

• lu

• Write key field*

• Read key field*

• Volume name field

• Filename field*

• Extension field*

• File class field

* Used for direct access devices

When assigning to disk devices, the user-specified read/write
keys corresponding to the specified access privileges are
compared to the read/write keys in the file directory entry. If
there is a match, the file is assigned according to the specified
access privileges. If the access privileges are SWO or EWO and
the user executes an assign function, the file is pOSitioned at
its logical end (append mode);, otherwise, the file is pOSitioned
at the beginning. The access method '01' specifies the use of
VFC.

7-12 48-038 FDO R02

When assignin~~ to nondirect access devices, only the access
privileges alre examined. If the file is an indexed file, two
data buffers and one indexed buffer are allocated in system space·
when the file is assigned. Each data buffer equals the file data
block size~ the index buffer equals the file index block size.
If the file is an extendable. contiguous file or nonbuffered
indexed file, one index buffer i.s allocated in system space when
the file is assigned.

7.2.1.2.1 Temporary File Allocation and Assignment Function

The allocation and assignment functions can also reserve space
temporarily on a direct access device for the file type specified
in the modifi4er byte. Such a fi.le is temporary because it exists
only while the file is assigned to an lu and is deleted when the
file is closed. The required parameter block fields for this
function are:

• Bits 0, 1, 8 through 10, and 13 through 15 of the function
code field

• lu field

• Logical record length field

• File size field

To allocate a temporary file, specify an allocate or assign
function and an ampersand (&) as the first character of the
filename. Whc9n the temporary f'ile is allocated, a directory
entry is made for the filename and the file is placed by default
on the temporary volume. The temporary file is then assigned to
the lu specified in the parameter block. A temporary file also
can be allocait.ed and ass igned from the system console through the
operator TEMP1PlLE command. See the OS/32 Operator Reference
Manual.

7 • 2 . 1. 3 Chan~;Je Access Pr i v ileges Funct ion

The change accessl pr ivileges function changes the current access
privileges of an assigned file or device to the access privileges
specif ied in it.he parameter block. The new access pr ivileges must
be compatib149 with the existi.ng ones ~ otherwise, the change in
access privileges would result in increased access. For example,
to change SRO to SRW, the appropriate protection key must be
supplied. The r.equired paramet.er block fields for this function
are:

• Bits 2 and 8 t,hrough 10 of the function code field

• lu field

48-038 FOO RO;2 7-13

• Write key field

• Read key field

7.2.1.4 Rename Function

The rename function causes the filename and extension identifiers
currently in effect to be changed to the filename and extension
identifiers specified in the parameter block. The file must be
currently assigned to the specified lu with ERW access privileges
and exist on a direct access storage device (DASD). The required
parameter block fields for this function are:

• Bit 3 of the function code field

• lu field

• Filename field

• Extension field

• File clasa/account field

When executing the rename function, the parameter block volume
name is ignored, and the specified filename and extension replace
the current filename and extension in the device directory.

NOTE

An e-task is allowed to rename a device.
See the OS/32 System Level Programmer
Reference Manual for more information.

7.2.1.5 Reprotect Function

The reprotect function changes the read/write protection keys of
a currently assigned file to the contents of the read and write
key fields. The file must be on a direct access device and
assigned to the specified lu with access privileges. The
required parameter block fields are:

• Bit 4 of the function code field

• lu field

• Write key field

• Read key field

7-14 48-038 FOO R02

When executing the reprotect function, the specified read/write
keys replace the current read/write keys of a specified file in
the device directory.

NOTE

An a-task is allc:>wed to reprotect a
device. See the OS/32 System Level
Programmer Reference Manual for more
information.

7.2.1.6 Close Function

The close function breaks the logical connection between the task
and file or between the device ()r a data communication line and
terminal by closing the currently assigned lu. The parameter
block's required fields are:

• Bit 5 of the function code field

• lu field

When the lu is closed, all data in system buffers or terminal
buffers are copied to the user file.

7.2.1.7 Delete Function

The delete function removes the file directory entry and releases
the reserved space of a currently unassigned file on a direct
access device. When deleting through the communications buffered
terminal manager, a currently unassigned LeB is removed from
memory. The 'required parameter block fields are:

• Bit 6 of the function code fjLeld

• Write key :f ield

• Read key field

• Volume namle field

• Filename field

• Extens ion ;f ield

• File class/account field

48-038 FOO RO;2 7-15

If the contents of the parameter block volume name, filename,
extension and read/write keys fields match the fields in the file
directory entry, the file is deleted. If the logical terminal
name matches the name in the LCB, the LeB is deleted.

7.2.1.8 Checkpoint Function

The checkpoint function copies the buffered file data to the
indexed file or the buffered terminal data to the terminal and
updates the directory entries. Executing a checkpoint function
on a nonbuffered indexed file or extendable contiguous file
updates the directory entries for the file. Executing a
checkpoint function on a contiguous nondirect access device or
unbuffered file has the same effect as an SVCl wait-only call.
The required parameter block fields for this function are:

• Bit 7 of the function code field (bits 11 and 12 for data
communications)

• lu field

After executing a checkpoint function, the file pointer is not
repositioned to the beginning of the file as in a close function.
If a system failure occurs and data exists in the file buffers,
all data up to the last close or checkpoint function is
recoverable; any data appended after the last close or checkpoint
function is lost. Therefore, to prevent 10s5 of data, use the
checkpoint function frequently, especially after a large amount
of data or any important data has been written to a buffered
file.

7.2.1.9 Fetch Attributes Function

The fetch attributes function sends to the SVC7 parameter block
the physical attributes of the file or device currently assigned
to the specified lu. These attributes include the device
mnemonic or volume name, filename, extension, file class and file
size, which are sent to their respective fields in the SVC7
parameter block. Device codes are sent to the modifier byte of
the function code field. Device attributes are stored in the
write and read key fields. The logical record length field can
receive either a file logical record length or a device physical
record length. These field differences for the fetch attributes
function are illustrated in Figure 7-3.

7-16 48-038 FOO R02

0(0) 11(1) 12(2) 13(3)
Command byte 1 Device codes I Error status 1 Iu

I 1 1

4(4) 16(6)
Device attributes 1 Physical record length

8(8)

12(C)

16(10)

20(14)

24(18)

parblk

1

Volume name o:r device mnemonic

Extension

SVC 7,parblk

ALIGN
DB
DS
DB
DS

4
0,0
1
lu
24 bytes

Filename

123(17)
File class

File size

for device attributes

Figure 7-3 SVC7 Paramet.~r Block Format and Coding
for a Fetch Attributes Function

When executing this function, the device codes field receives a
hexadecimal number indicating the file or device type. The OS/32
System Generation 132 (Sysgen/:~2) Reference Manual lists all the
devices and their device codes. The command byte, error status
and lu fields are the same as those defined in Section 7.2.

The device attributes field receives a hexadecimal number
indicating certain file or device attributes. Table 7-2 lists
all supported attr ibutes and cOl:responding masks.

48-038 FOO R02 7-17

TABLE 7-2 DESCRIPTION AND MASK VALUES OF THE DEVICE
ATTRIBUTES FIELD

BIT I

POSITION I MASK ATTRIBUTES
___ a ___________ _

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

X'8000'

X'4000'

X'2000'

X'lOOO'

X'0800'

X'0400'

X'0200'

X'OlOO'

X'0080'

X'0040'

X'0020'

X'OOlO'

X'0008'

X'0004'

X'0002'

X'OOOl'

Interactive device

Supports read*

Supports write*

Supports binary

Supports wait I/O

Supports random access

Supports unconditional proceed

Supports image mode and
extended options

Supports halt I/O

Supports rewind

Supports backspace record

Supports forwardspace record

Supports write filemark

Supports forward space filemark

Supports backspace filemark

Device-dependent function

* Indicates the current access privilege

The physical record length field receives the logical record
length of the file or physical record length of the device
assigned to the specified lUi e.g., 80-byte record for card
readers and 120- or 132-byte record for line printers. If the
device has variable length recorda, a value of 0 is returned to
this field; e.g., magnetic tape. However, variable length record
devices are normally used as fixed record length devices.

7-18 48-038 FOe R02

For direct access devices, contiguous and extendable contiguous
files may be t~reated as having either a sector-length record size
(256 bytes) 01: a variable length record. Indexed and nonbuffered
indexed filee5 have a fixed record length, which is the file's
logical record length established at allocation time.

The direct access device volume name, filename, extension and
file class are seht to their corresponding fields in the
parameter block. For a nondirect access device, the device
mnemonic is sent to the volume name field, and the filename,
extension and file class fields of the parameter block are filled
with blanks.

For direct access devices, the file size field receives an
unsigned hexcldecimal number indicating the current size of a
direct access file. For indexed. "and nonbuffered indexed files,
this field cont.ains the numbetr of log ical records in the file.
For contiguous or extendable contiguous files, this field
contains the number of sectors 1,n the file.

For bare disk devices, the first. two bytes of the file size field
contain the cont,roller device address if the bare disk is
attached to a controller. If t.he bare disk is not attached to a
controller, the f'irst two bytes equal zero. The remaining two
bytes of th:Ls field contain the selector channel (SELCH) device
address if th.;, di.sk is accessed via a SELCH device; otherwise,
this 2-byte f :i.eld contains a zeI'O.

124(18) 126(LA)
Controller device address I SELCH device address

After executing a fetch attribut~es call, the file size field
receives the current size of a file on a direct access device.
The file size field is not used for nondirect access devices.

7.2.1.10 Vert.ical Forms Control (VPC) Function

The VFC option turns the VFC function on or off for a particular
device. To execute this funct~ion, only the first four bytes of
the SVC7 parameter block are required as shown in Figure 7-4.

48-038 FOQ R02 7-19

10(0) 11(1) 12(2) 13(3)
1 Command byte I Modifier 1 Error status I lu
I I byte

parblk

SVC 7,parblk

ALIGN 4
DB
DB
OS
DB

X'FF'
X'20' or '21'
1
lu

Figure 7-4 SVe7 Parameter Block Format and Coding
for VFC Function

This parameter block must be fullword boundary-aligned and
located in a task-writable segment.

To turn on the use of the VFC function for a particular device,
set the modifier byte to X'20'. To turn the function off, set
the modifier byte to X'21'. The error status and lu fields are
the same as for all SVC7 services.

7.2.1.11 Fetch Time and Date Attributes from Disk Directory
Function

The fetch time and date attributes function returns to the SVC7
parameter block the date and time the disk file was created and
last written to.

FUNCTION
CODE

X'FFOO'

X'FF01'

X'FF02

X'FF03'

X'FF04'

FORMAT

Defined during sysgen

Month/day/year
hours:minutes:seconds

Day/month/year
hours:minutes:seconds

Julian

Directory

The parameter block fields for receiving the first three options
are shown in Figure 7-5. Sysgen can define either format
deSignated by function code X'FF01' or X'FF02'.

7-20 48-038 FOO R02

0(0) 11(1) 12(2) 13(3)
Conunand byte I Modif ier byt.e I Error status 1 lu

1 1

4(4)

Created date
8(8)

12(C)

- _---------- Crea.ted time
16(10)

20(14)

Last written date
24(18)

28(IC)

Last written time
32(20)

SVC 7,parb1k

parb1k DB
DB
DS
DB
DS
DS
DS
DS

X'PF'
X'On' n=O,l, or 2
1
1u
8 bytes for created date
8 bytes for created time
8 bytes for last written date
8 bytes for last written time

Pigure 7-5 SVC7 X'FPOO', X'FF01' or X'FP02' Parameter
Block Pormat and Coding for Fetch Time and
Date Attributes Function

48-038 POO R02 7-21

The SVC7 parameter block fields for receiving the Julian format
are shown in Figure 7-6. The date is represented by a five-digit
number. The first two digits indicate the year; the last three
digits indicate the number of days since January 1. The time is
the number of minutes since midnight. Both the date and time are
returned as binary numbers.

0(0) 11(1) 12(2) 13(3)
Command byte I Modifier byte 1 Error status I 1u

4(4)

8(8)

12(C)

16(10)

parblk

1 I

Created date

Created time

Last written date

Last written time

SVC 7,parblk

DB
DB
OS
DB
OS
OS
OS
OS

X'FF'
X'03'
1
lu
4 bytes for created date
4 bytes for created time
4 bytes for last written date
4 bytes for last written time

Figure 7-6 SVC7 X'FF03' Parameter Block Format and Coding
for Fetch Time and Date Attributes Function

The SVC7 parameter block fields for receiving the dates and times
exactly as they appear in the directory are shown in Figure 7-7.

7-22 48-038 FOO R02

0(0) 11(1) 12(2) 13(3)
Command byte I Modifier byte I Error status I lu

1 I I I
------------------------~-----------------------------------1
4(4)

Created date and time
I
I

--1
8(8)

Last written date and time

SVC 7,parb1k

parb1k DB X'FF'
DB X'04'
DS 1
DB 1u
DS 4 bytes for created date and time
DS 4 bytes for last written date and time

Figure 7-7 SVC7 X'FF04' Parameter Block Format and Coding for
Fetch Time and Date Attributes Function

7.2.1.12 Fetch Logical Attributes of Open File Function

The fetch logical attributes of open file
following attributes for an open file
block:

function returns the
to the SVC7 parameter

• Total lo~,ica.l records currently in the file

• Current logical record position if the file is accessed
sequent iellly

• Index blocksize of indexed nonbuffered indexed and extendable
contiguous open files

• Data bloc::ksi,ze of inde.xed nonbuffered indexed and extendable
contiguous open files

48-038 FOO lR02 7-23

The function code for this SVC7 is X'FFOA. Figure 7-8 shows the
SVC7 parameter block fields for receiving the logical attributes
of an open file.

0(0) 11(1) 12(2) 13(3)
Command byte I Modifier byte I Error status 1 lu

4(4)

8(8)

12(C)

parblk

I I I
I I I

Total logical records

Current logical records

114(E)
Index blocksize Data blocksize

SVC 7,parblk

OB
OB
OS
OB
OS
OS
OS
os

X'FF'
X'OA'
1
lu
4 bytes for total records
4 bytes for current logical record
2 bytes for index blocksize
2 bytes for data blocksize

Figure 7-8 SVC7 X'FFOA' Parameter Block Format and Coding for
the Fetch Logical Attributes of Open File Function

7.2.1.13 Spoolfile Assign to Pseudo Device Function

The spoolfile assign to pseudo device function will enable the
user to specify such things as preprinted forms, number of copies
to be output, output priority, image or formatted I/O, multiple
assignments to the same spoolfile and specification of data-index
block sizes for the spoolfile. Additionally, the printing of a
spoolfile can be delayed until its output is requested.

This spoolfile assign is intercepted by SPL/32, which is solely
responsible for its handling. If the SPL/32 fails to intercept
this SVC7, an error will result (error code X '0': SPL/32
inactive) .

7-24 48-038 FOO R02

1 00(00) 1 02(02) I 03(03)
I Function code: X'FF40' I Error status I lu
I Assign spoolfile I
1---
I 04(04) 1 05(05) 1 .06(06)
1 Previously I Number of Logical record length
1 assigned lu I copies

08(08)

12(00)

16(10)

20(14)

24(18)

28(10)

32(20)

Pseudo device

FormES file
(f i lE~name)

preprinted form name

Forms file extension
(ROI only)

I 23(17)
I Forms file
I account(ROl)

Index block size Data block size

options

Forms file volume
(ROI only)

I 32 (22)
I Priority
I
I

I 35(23)
1 Reserved
I

Figure~ 7-9 SVC7 Spoolfile Assign to Pseudo Device
Parameter Blfock

The l-byte error status field receives the appropriate error code
from SPL/32 when an error occurs while servicing an SVC7. If no
error occurs, the error status field contains zeros. For error
codes returned by SPL/32, see Table 7-6.

48-038 Faa R04~ 7-25

7.2.1.14 Extended Assign to Spoo1fi1e Function

If multi-terminal monitor (MTM) is doing an assign on behalf of
a task, it assigns the 1u to itself, then sends the lu to the
task. If the assign is intercepted, the information retrieved
via the PEEK option 3 is about MTM and not the expected task.
For this reason, an extended spoolfile assign has been created.

1 00(00) 1 02(02) 1 03(03)
Function code - X'FF41' 1 Error status J lu

1 Extended assign spoolfile ~ ~

1---1
1 04(04) 1 05(05) 1 06(06)

Previously 1 Number of 1 LRECL
ass igned lu 1 copies 1 (Logical record length) J

---J'
08(03) 1

Pseudo device

---1
12(00)

16(10)

Forms file
(filename)

preprinted form name
-----------1

---1
20(14) t 23(17)

Forms file extension 1 Forms file
(ROI only) 1 ~ccount(ROI)

24(18)
Index block size Data block size

28(10)

32(20)
options

36(24»

40(28)

44(20)

1-----------
I 48(30)

52(34)

56(38)

Forms file volume
(ROI only)

I 34(22)
I Priority

u-task name

Origin identifier
(010)

Authority Identifier
(AID)

1 35(23)
Reserved

-----------,

Figure 7-10 Extended Spo01file Assign Parameter Block

7-26 48-038 FOQ R02

Fields:

u-task name

oro

AID

Priority

is the name of the u-task for which the assign
is being performed.

is the origin identifier. The oro is used to
determine the default print location for those
devices or tasks associated with a group.

is the authority identifier. The AID is used
by SPL/32 to identify if an origin location
has authority to perform the requested
function.

is the current priority of the task requesting
the assign.

7.2.1.15 Assign to Pseudo Device Function

In order to utilize spooling from the task level, the user can
issue an SVC7 assignment (function code bit 1) for a pseudo
device. The spooler will intercept the SVC7 assign and will
process it.

The task's monitor name, priority and task name will be available
through the PEEK option 3. If the task is running under the
control of ~fiM, its AID and 010 will be available as the
originating user console device; otherwise this field will
contains zer()s. Any u-task that uses this standard SVC7 assign
to a spooler pseudo device will continue to function without
modification.

7.2.1.16 Access Privileges

This 3-bit modifier field contains the access privileges
indicating the file's current. reading and wr iting restr ictions
and is requ ir.~d for these funct i.ons:

• Assign

• Change access privilege

• Rename

• Reprotect

Access pr i v i lieges allow other tasks to access an ass igned file or
prevent such ,access. Table 7-3 lists access pr ivileges and their
meanings that are established 'Ilhen the file is ass igned and
subsequently changed through the change access privilege
function. The rename and reprot~ect functions require the file to
have an assigned ERW access privilege before executing.

48-038 FOO R02 7-27

TABLE 7-3 ACCESS PRIVILEGE DEFINITIONS

ACCESS
PRIVILEGE MEANING

I BIT
I SETTING

7-28

SRO

ERa

SWO

EWO

This task can read from the OOO-SRO
assigned file but cannot write
to it. Other tasks can read I
from and write to the assigned I
file. I

This task can read from the
assigned file but cannot write
to it. Other tasks can write
to but cannot read from the
assigned file.

This task can write to the
assigned file but cannot read
from it. Other tasks can read
from and write to the assigned
file.

This task can write to the
assigned file but cannot read
from it. Other tasks can read
from but cannot write to the
assigned file.

OOI-ERO

OIO-SWO

Oll-EWO

SRW I Tasks can read from and write I IOO-SRW
I to the assigned file. This is I

S~W

ERSW

ERW

I the default.

This task can read from and
write to the assigned file.
Other tasks can read from but
cannot write to the assigned
file.

This task can read from and
write to the assigned file.
Other tasks can write to but
cannot read from the assigned
file.

I This task can read from and
I write to the asaigned file.
lather tasks cannot read from
I or write to the assigned file.

lOl=S~W

1IO=ERSW

lll-ERW

4&-038 FOO R02

7 • 2 . 1. 17 Change Terminal Mode,

This SVC7 ies used to change the access method of a Model 3270,
drop without eliminating and regenerating a Model 3270 support
LCB. This E~xtended SVC7 allow's a task to switch between Model
3270 Pass Thru and Model 1200 Emulation, and/or change the read
method bet\«,een read immedia.te modified and read immediate
unprotected as the application requires. The format is similar
to other ext~ended SVC7 parameter blocks with the exception of the
following sE~ttings in the function code.

FUNCTION
CODE EXTENDED SVC7 FUNCTIONS

X'FF30' Model 1200 terminal emulation read immediate
unprotected

X'FF3l' Model 3270 rerminal pass thru read immediate
unprotected

X'FF32' Model 1200 terminal emulation read immediate
modified

X'FF33' Model 3270 terminal pass thru read immediate
modified

7.2.1.18 DSLta Communications ,Access Methods

This 2-bit modifier field contains the access methods used by
data communi.cations. The access methods are listed in Table 7-4 ..
See the OS/;32 Basic Data Communications Reference Manual.

48-038 FOO R02 7-29

TABLE 7-4 DATA COMMUNICATIONS ACCESS METHOD DEPINITIONS

DATA I
COMMUNICATIONS I

ACCESS METHOD I MEANING BIT SETTING

--Terminal level
access

Line level
access

This device-independent support
of a communications terminal
through the data communications
terminal manager is in both
buffered and unbuffered mode.
This is accomplished through
SVCl.

This is the device-dependent·
support of a communications
line through the data communi­
cations driver. This is accom­
plished through SVClS.

7.2.1.19 File Types

00 .. ter­
minal
level
access

01 - ter­
minal
level
access
with
VFC

11 - line
level
access

This 3-bit modifier field contains file types used and required
by the allocate function. The file types are:

• Contiguous files

• Extendable contiguous files

• Indexed files

• Nonbuffered indexed files

• Long record files

• Data communications buffered terminal manager

The file type field is also used to select the density of write
operations to a magnetic tape drive. This selection is made when
the magnetic tape driver is assigned to an lu through the SVC7
assign function. The software density selections available to
the assign function are described below.

7-30 48-038 FOO R02

BIT
SETTING

000

DENSITY SELECTION

Manual density (Telex drives only)

100 800 bits per inch (bpi) NRZI density (STC and
Telex drives only)

101 1600 bpi PE density (STC and Telex drives only)

110 6250 bpi GCR density (STC and Telex drives only)

For STC and Telex drives, neither software density selection nor
manual denslity selection has any effect on read operations. The
tape is alw8lYs read at the dens ity at which it was recorded.

For dr ives t~hat require software enabling of manual dens ity
selection (i.e., Telex drives), a value of zero should be placed
in Lhe file type field if manual density selection is desired.
For drives that require manual enabling of software density
selection (i.e., STC), software select should be enabled. on the
operator p8lnel before the first output operation is attempted.
Otherwise, t~he tape is wr itten at the manually selected dens ity.
In addition, if the magnetic tape drive does not support software
selection of density and the file type field does not contain
zero, the dl:ive is not assigned and status code X'09' is returned
in the SVC7 parameter block.

7.2.1.20 RElad/Write Key Fields (SVC7.RKY/SVC7.WI<Y)

The read/wr i.te key fields should contain the hexadecimal number
indicating the file or device read/write protection keys
established at allocation time. When a task is assigned to a
file or dEtvice through an lu, the read/wr ite protection keys
specified at~ assign time are compared to the keys established at
allocation time for a match. If they match, the condition is
met, and thEt task can be ass igned for the protected access mode
(conditionally protected). Files and devices can be unprotected,
allowing any key specified at assign time to be accepted. Files
and dev icesl can also be uncond it ionally protected, caus ing
rejection of any keys specified at assign time. Table 7-5 lists
the read/wr i.te protection keys.

48-038 FOO R02 7-31

TABLE 7-5 READ/WRITE PROTECTION KEYS DEFINITIONS

KEYS MEANING

-=---00 Unconditionally unprotected; the file or
device is unprotected for the specified
access mode (read or write). Any key
specified at assign time is accepted. If no
keys are specified, this key is the default.

01 through FE Conditionally protected; the file or device
is protected for the specified access mode
(read or write). Matching keys must be
specified at assign time to gain access to
the device or file.

FF Unconditionally protected; the file or device
is protected for the specified access mode
(read or write). No u-task can assign for
protected access mode.

7.2.1.21 File Size Field (SVC7.SIZ)

The file size field must contain a hexadecimal number indicating
the file size established at allocation time on a direct access
device. For contiguous files, this field must contain the number
of sectors in the file.

124(18)
Number of sectors

For indexed, nonbuffered indexed and extendable contiguous files,
the first two bytes of the file size field must contain the index
block size in increments of sectors (256 bytes); the remaining
two bytes of the file size field must contain the data block size
in increments of sectors. If zeros are specified for index block
size or data block size, the file is allocated to the system
default appropriate for that particular parameter.

124(18)
I

7-32

Index block size
(sectors)

(SVC7.ISZ)

126(lA)
I
I

Data block size
(sectors)
(SVC7.DSZ)

48-038 FOO R02

For data con~unications buffered terminals, this field must
contain the physical block size in bytes.

124(18)
I Physical block size (bytes)

For bare disk devices, the first two bytes of the file size field
contain the controller device address if the bare disk is
attached to a controller. If the bare disk is not attached to a
controller, t~he first two bytes equal zero. The remaining two
bytes of this field contain the SELCH device address if the disk
runs from a SELCH device; otherwise, this 2-byte field contains
a zero.

124(18) 126(lA)
ControllE~r device address I SELCH device address

After executing a fetch attributes call, this field receives the
current size of a file on a direct access device. This field is
not used for nondirect access devices.

7.3 SVC7: EX,]~ENDED FUNCTIONS FOR PRIVILEGED TASKS

The OS/32 f ilE~ manager provides additional resource management
services to privileged tasks. These services are accessed
through the extended function codes of SVC7. These functions
include:

• bare disk Clssignment,

• fetch attributes for bare disk devices,

• device renc~e and reprotect, and

• extended close.

The following sections describe how to access the SVC7 extended
functions for privileged tasks.

48-038 FOO RO~~ 7-33

7.3.1 SVC7: Bare Disk Assignment

An e-task, privileged u-task or diagnostic task (d-task) with
bare disk privileges can bypass the file manager and directly
assign to a disk device. When such a task issues an SVCl I/O
request directly to a disk device, the operation is referred to
as bare disk I/O and should always be random access. The
supported I/O functions are read, write and test and set.

Direct assignment to a disk device can be performed only by a
task that has the bare disk task option enabled. E-tasks always
have this option enabled. A u-task or d-task is given bare disk
privileges by specifying the disk privilege option in the OPTION
command (OPTION DISC) when the task is built by Link. However,
if the task loader has the e-task option prevented, the
privileged task is loaded into memory with the bare disk
privilege option changed to the default, no bare disk privilege.
Therefore, bare disk I/O cannot be performed by the task.

The SVC7 parameter block and coding for bare dis"k assignments are
shown in Figure 7-11.

7-34 48-038 FOO R02

0(0)

4(4)

8(8)

l2(C)

16 (10)

24(18)

parblk

12(2) Error 13(3)
Function code

(SVC7.0PT)
1 status code
1 (SVC7.STA)

Reserved
(SVC7.WKY)

Device mnemonic
(SVC7.VOL)

Reserved
(SVC7.FNM)

SVC 7,parblk

ALIGN 4
DC
DB
DB
DC
DC
DC

X'function code'
o
lu
o
C'4-character device mnemonic'
0,0,0,0

lu
(SVC7.LU)

Figure 7-11 SVC7 Bare Disk Assignment Parameter Block
Format and Coding

This paramet::.er block must be 28 bytes long, fullword
boundary-aligned and located in a task-writable segment. A
descr iption of each field in the~ parameter block follows.

48-038 FOO RO:2 7-35

Pields:

7-36

Function
code
(SVC7.0PT)

Error
status
codes
(SVC7.STA)

lu
(SVC7.LU)

Reserved
(SVC7.WKY)

Device
mnemonic
(SVC7.VOL)

Reserved
(SVC7.FNM)

is a 2-byte field that contains the
hexadecimal number indicating the assign
function (bit 1 must be set). In addition,
the appropriate access privileges (bits 8
through 10) must be set as follows:

•
•
•
•
•
•
•
•

000 = SRO

001 .. ERO

010 == SWO

011 == EWO

100 = SRW

101 == SREW

110 &I ERSW

III &I ERW

CAUTION

IF THE BARE DISK IS MARKED
ON-LINE, ONLY ASSIGNMENTS FOR SRO
ARE ALLOWED. ANY OTHER ACCESS
PRIVILEGE IS REJECTED, AND A
PRIVILEGE ERROR STATUS (07) IS
GIVEN.

is a I-byte field that receives an error code
when an error occurs during SVC7 execution
If no error occurs, a value of 0 is returned
to this field. See Table 7-6 for a list of
SVC7 error codes.

is a I-byte field that contains a hexadecimal
number indicating the logical unit to be
assigned to the bare disk device.

is a 4-byte reserved field that must contain
a zero.

is a 4-byte field containing the device
mnemonic of the bare disk device.

is a l6-byte field that must be reserved with
zeros.

48-038 FOO R02

7.3.2 SVC7 Code 0: Fetch Attributes for Bare Disk Devices

The fetch attributes function fetches the attributes of a bare
disk device through its assigned lu. The write attribute is
reset in the a'ttr ibutes halfword field (SVC7.ATRB) of the
parameter block i'f the disk is m~arked on protected.

This SVC7 function is available only to tasks with bare disk
privileges or to e-tasks. Before issuing this SVC, the task must
have the bare disk already assigned to the lu. Figure 7-12 shows
the parameter block format and c,:)ding for SVC7 code o.

0(0) 11(1) 12(2) 13(3)
Option code I Device code status lu

I

4(4) 16(6)
Attributes Device number

8(8)
Volume

l2(C)
F lta.gs

16 (10)
Si:ze

20(14) \22(16)
Tracks per cylinder sectors per track

24(18) \26(lA)
Controller address SELCH address

SVC 7,parablk

ALIGN 4
parblk DB 0

DS 2
DB lu
DS 24

Figure 7-12 aVC7 Code 0 Parameter Block Format and Coding

48-038 FOO R02 7-37

This parameter block must be 28 bytes long, fullword
boundary-aligned and located in a task-writable segment. A
general description of each field in the parameter block follows.

Fields:

7-38

option

Device code

status

lu

Attributes

is a I-byte field that must contain X'OO' to
indicate the fetch attributes function.

is a I-byte field that receives the device
code of the bare disk device.

is a l-byte field that receives the return
status of the bare disk device.

is a I-byte field that must contain the
logical unit for which attributes are
returned.

is a 2-byte field that receives the attributes
of the bare disk device.

Device number is a 2-byte field that receives the device
address of the bare disk.

Volume is a 4-byte field that receives the device
mnemonic for the bare disk.

Flags

Size

Tracks per
cylinder

Sectors per
track

Controller
address

SELCH
address

is a 4-byte field that receives the device
flags for the bare disk.

is a 4-byte field that receives the number of
sectors on the bare disk.

is a 2-byte field that receives the number of
tracks per cylinder on the bare disk.

is a 2-byte field that receives the number of
sectors per track on the bare disk.

is a 2-byte field that receives the controller
address for the bare disk device.

is a 2-byte field that receives the selector
channel address for the bare disk device.

48-038 FOO R02

7.3.3 SVC7: Device Rename

E-tasks can usc~ the SVC7 rename function to rename devices. The
e-task must have the device already assigned to the lu with ERW
access privileges.

The SVC7 paramc~ter block format BLnd coding for renaming devices
is shown is Fi~~ure 7-13.

0(0)

4(4)

8(8)

12(C)

,116(10)

1------
124(18)

Function code
(SVC7.0PT)

12(2) Error
1 status code
I (SVC7 . STA)

Resel:ved
(SVC7.WKY)

Device mnemonic
(SVC7.VOL)

Resel:ved
(SVC7.FNM)

SVC 7,parblk

13(3)
lu

(SVC7.LU)

f":'o.I ------1
1

parblk
ALIGN
DC

4
X'lOOO'
o DB

DB
DC
DC
DB

lu
o
C'4-character device mnemonic'
0,0,0,0

Figure 7--13 SVC7 Device Rename Parameter Block
Format and Coding

48-038 FOO R02 7-39

This parameter block must be 28 bytes long, fullword
boundary-aligned, and located in a task-writable segment. A
description of each field in the parameter block follows.

Fields:

Function
code
(SVC7.0PT)

Error
status
codes
(SVC7.STA)

iu
(SVC7.LU)

Reserved
(SVC7.WKY)

Device
mnemonic
(SVC7.VOL)

Reserved
(SVC7.FNM)

is a 2-byte field that contains the
hexadecimal number X'lOOO' indicating that the
rename function is to be performed.

is a l-byte field that receives an error code
when an error occurs during SVC7 execution.
If no error occurs, a value of 0 is returned
is returned to this field. See Table 7-6 for
a list of SVC7 error codes.

is a l-byte field that contains a hexadecimal
number indicating the logical unit assigned to
the device that is to be renamed.

is a 4-byte reserved field that must contain
a zero.

is a 4-byte field containing the device
mnemonic that is to replace the current device
mnemonic in the device mnemonic table.

is a l6-byte field that must be reserved with
zeros.

7.3.4 SVC7: Device Reprotect

E-tasks can use the SVC7 reprotect function to define the type of
access allowed to a device (e.g., read-only, write-only, etc.).
The e-task must have the device already assigned to the lu with
ERW access privileges.

The SVC7 parameter block format and coding for reprotecting
devices is shown in Figure 7-14.

7-40 48-038 FOO R02

0(0)

4(4)

Function code
(SVC7.0PT)

15(5)

12(2) Error 13(3)
1 status code lu

(SVC7.STA) (SVC7.LU)

16(6)
Write key
(SVC7.WKY)

Read key
(SVC7.RKY)

Reserved
(SVC7.IRC)

8(8)

,.L

'I
ResE~rved

(SVC7.VOL) "..,
I

1------ ------1
124(18)

parblk

SVC 7,parblk

ALIGN
DC
DB
DB
DB
DB
DC
DC
DB

4
X'0800'
o
lu
'write key'
'read key'
H'O'
o
0,0,0,0

Figure 7-14 SVC7 Device Reprotect Parameter Block
Format and Coding

I
I

This parameter block must be 28 bytes long, fullword
boundary-aligned, and located in a task-writable segment. A
description of each field in the parameter block follows.

48-038 FOQ R02 7-41

Fields:

Function
code
(SVC7.0PT)

Error
status
codes
(SVC7.STA)

lu
(SVC7.LU)

Write key
(SVC7.WKY)

Read key
(SVC7.RKY)

Reserved
(SVC7.LRC)

Reserved
(SVC7.VOL)

is a 2-byte field containing the hexadecimal
number X'0800' indicating that the reprotect
function is to be performed.

is a I-byte field that receives an
when an error occurs during SVC7
If no error occurs, a value of 0
to this field. See Table 7-6 for
SVC7 error codes.

error code
execution.

is returned
a list of

is a I-byte field that contains a hexadecimal
number indicating the logical unit assigned to
the device that is to be reprotected.

is a I-byte field that
number indicating the
keys for the device.

contains a hexadecimal
new write protection

is a I-byte field that contains a hexadecimal
number indicating the new read protection keys
for the device.

is a 2-byte reserved field that must contain
a zero.

is a 20-byte unused field that should be
initialized with zeros.

7.3.5 SVC7 Code X'FFBO': Extended Close Function

The extended close function closes an lu and replaces the date
and time of allocation and the last write (or write filemark)
operation in the disk directory with information stored in the
SVC7 parameter block. This SVC7 function is available only to
e-tasks or privileged u-tasks and d-tasks with the bare disk task
option enabled.

Figure 7-15 shows the parameter block format and coding for SVC7
code X'FFBO'.

7-42 48-038 FOO R02

0(0) 12(2) 13(3)
Function code I Error status I lu

4(4)

8(8)

parblk

Allocation date/time
(moved into DIR.DATE)

Last write operation date/time
(moved into DIR.LUSE)

SVC 7,parblk

ALIGN 4
DC X'FFSO'
DB 1
DB lu
DC Y'allocation date/time'
DC y'last write operation date/time'

Figur.e 7-15 SVC7 Code X'FF80' Parameter Block
Format and Coding

This parametel~ block must be! 12 bytes long, fullword
boundary-alignc~d, and located in a task-wr itable segment. A
general description of each field in the parameter block follows.

Fields:

Function code" is a 2-byte field that contains the function
code X' FF 80' i.nd icat ing that the SVC7 extended
close function is to be performed.

Error status is a l-byte f i.eld that receives an error code
when an error occurs during SVC7 execution.
If no error occurs, a value of 0 is returned
to this field. If a nonprivileged task
attempts to ell:ecute this SVC, a value of 1 is
returned. See Table 7-6 for a list of SVC7
error codes.

48-038 FOO R02 7-43

Allocation
date/time

Last write
operation
date/time

is a 4-byte field that contains the date and
time that is to replace the date and time of
allocation in the DIR.DATE field of the disk
directory. The format of the date and time
must be the same format generated by the
DATE.DIR routine in the File Manager utility
(FMUT) module.

is a 4-byte field that contains the date and
time that is to replace the date and time of
the last write operation in the DIR.LUSE field
of the disk directory. The format of the date
and time must be the same format generated by
the DATE.DIR routine in the FMUT module.

7.4 SVC7 ERROR CODES

If an error occurs during execution of an SVC7 function,
execution of the current function stops, and any other functions
to the right of the current function are not executed. The error
code indicating the type of error is stored in the error status
field of the parameter block. See Table 7-6 for the list of SVC7
error codes.

TABLE 7 -6 SVC7 ERROR CODES

ERROR I FUNCTIONS
CODE I AFFECTED MEANING

==---~-----------------

7-44

o I All I Normal termination

I I All I Illegal function code

2 I All except I Illegal lu specified
I allocate I

3 I All except I Specified volume is not mounted.

4

5

I rename I

Allocate
rename

ASSign

Allocate

Specified filename already exists on
specified volume.

Specified filename does not exist on
specified volume.

Insufficient space exists on specified
volume to allocate a file of the
specified size.

48-038 FOO R02

~[,ABLE 7 -6 SVC7 ERR.OR CODES (Cont inued)

ERROR I FUNCTIONS
CODE I AFF1~CTED

6

7

8

9

Assign

Change

ACCE~SS

privilege

Allocate
assign

Change
aCCE~SS

pr i"ilege

Repl~otect

DelE~te

Rencune

Assign

Cloe~e

DelE~te

Assign

Renat.me

RepI'otect

Fetch
attI'ibutes

Change
accetSS
privileges

48-038 FOO R02:

MEANING

Read/write protection keys do not match.

Read/write protection keys do not match.

Entire disk is currently assigned as
ERW. Specified filename or device
cannot be assigned because requested
access privileges cannot be granted.

Current access privileges are not
changed to new access privileges
because the requested access
privileges cannot be granted.

File is not assigned ERW.

File assigned to another task (not
closed) .

Read/write protection keys do not match.
File is not assigned ERW.

There is insufficient space for file
control block (FCB) and buffers.

System space pointer or pOinters have
become corrupted.

Task has exhausted its allocation of
dynamic system space determined by Link.

The lu is already assigned or device is
off-line. Magnetic tape drive does not
support software density selection.

The lu is not assigned.

7-45

TABLE 7-6 SVC7 ERROR CODES (Continued)

ERROR I FUNCTIONS
CODE I AFFECTED MEANING

---I VFC
--------------------------------~~---------------~---~~-------~

A I Allocate
I rename

I Specified volume is not a direct access
I device.

B I Reprotect I The fd format is incorrect.
I all

C Assign Specified trap-generating device does
not exist in the system, is not a
connectable device or is busy and
cannot be connected.

--~----~~~---------
D

E

F

Allocate
delete

Spoolfile
assign to
pseudo
device

Spoolfile
assign to
pseudo
device

Spoolfile
Assign to
Pseudo
Device

Allocation or deletion was attempted on
a system or group file.

SPL/32 is inactive.

Specified form is not recognized by
SPL/32.

There are conflicting options.

10-7F I N/A I Reserved t
---1

80-FF I N/A I SVCI I/O error; see Tables 2-3 and 2-4. I

7-46 48-038 FDD R02

CHlU'TER 8
LOAD TASK STATUS WORD (TSW) SUPERVISOR CALL 9 (SVC9)

8.1 INTRODUCTION

SVC9 sets the initial TSW or replaces the current TSW located
the task control block (TCB) with a new user-specified TSW.
SVC9 parameter block is shown in Figure 8-1. Other methods
for setting the TSW are:

• The TSW is optionally specified by Link.

in
The

used

• A resident task terminates by reaching end of task, which
causes the current TSW to be replaced with zeros.

• A task trap occurs causing a TSW swap.

Stor ing TSW values into the USE~r -ded icated locat ion (UDL) does
not change the current TSW.

48-038 FOO R02 8-1

8.2 SVC9: LOAD TASK STATUS WORD (TSW)

'WI Queue entry
al Trap enable/ I : enable/disable Condition
il disable bits :Reserved: bits code (ee)
t: (8] I (6] [13] (4]
---1

parblk

Location counter I
(32]

SVC 9,A(parblk)

ALIGN 4
DC Y'bits a through 31'
DCF A(location counter)

The decimal
brackets ([])
indicate the
contains.

NOTE

numbers enclosed within
in the parameter block

number of bits the field

Figure 8-1 SVC9 Parameter Block Format and Coding

This parameter block must be eight bytes
boundary-aligned. A description of each field
block follows.

long and fullword
in ~he parameter

Fields:

8-2

Wait

Trap
enable/
disable bits

is a I-bit field indicating whether the task
is to enter a suspended state or is currently
waiting for a trap. This field corresponds to
bit 0 of the TSW.

is an 8-bit field that must indicate, through
its trap bit settings, whether a trap is
to be taken when a trap-causing condition
occurs. This field corresponds to the trap
enable/disable bits of the TSW.

48-038 FOO RD2

Reserved

Queue entry
enable/
disable bits

Conditi()n
code (Ce)

Location
counter

is a reserved 6-bit field that must contain
zeros.

is a l3-bit field that must indicate, through
its queue bit settings, whether an item is to
be added to the task queue when a queue
entry-causing condition occurs. This field
corresponds to the queue entry enable/disable
bits of the TSW.

is a 4-bit field stored in the processor
CC. For an explanation of the CC, see the
appropriate processor user's manual. This
field corresponds to the CC bits of the TSW.

is a 4-byte field that must contain the
address where task execution is to start or
resume. This field corresponds to the
location counter (LOC) of the TSW.

8.2.1 Funct~ion and Description of the Task status Word (TSW)

The TSW conelists of two fullwords (see Figure 8-2). The first
fullword, the status portion of the TSW, contains the:

• Trap wait bit

• Trap enable/disable bits

• Reserved bits

• Queue entry enable/disable bits

• CC bits

The second fullword of the TSW contains the LOC.

SVC9 allows the user to enable or disable the trap wait, trap and
queue entry bits in the status portion of the TSW. It also
allows the user to set the CC setting in the status portion and
the LOC in t.he counter portion of the TSW. See Table 8-1 for the
TSW bit definitions.

48-038 FOO R.02 8-3

5616-2 RESERVED RESERVED

CC

BITS 0 1 2 3 4 5 6 7 8 14 15 16 17 18 19 20 21 22 23 24. 26 27 28 31

RESERVED

LOC

BITS 32 39 40 63

Figure 8-2 Task status Word (TSW)

TABLE 8-1 TSW BIT DEFINITIONS

BIT I
POSITION I BIT NAME AND MASK MEANING

:========--o (W)

1 (P)

2 (A)

3 (S)

8-4

I Trap wait (TSW.WTM)
I (Y' 80000000')

Power restoration
trap enable/disable
(TSW.PWRM)
(Y'40000000')

Arithmetic fault
trap enable/disable
('I'SW . AFM)
(Y'20000000')

SVC14 execution
trap enable/disable
('I'SW. S14M)
(Y'lOOOOOOO')

I Task is suspended until a
I trap occurs or until
I cancelled.

A trap occurs when power is
restored after a power fail­
ure.

After power is restored, all
outstanding timer traps are
lost. Any trap wait or time
wait conditions in effect
are lost, and task execution
continues with the instruc­
tion following the one that
caused the trap.

A trap occurs when an arith­
metic fault occurs.

Allows execution of SVC14.

48-038 FOO R02

TABLE 8-1 TSW BIT' DEF INITIONS (Continued)

BIT I
POSITION I BIT NAME AND MASK MEANING sa ________ •• __ =_

4 (Q)

5 (M)

6 (1)

7 (R)

task queue service
trap enable/disable
(1"SW . TSKM)
(Y'08000000')

Memory access fault
trap enable/disable
(1ISW.MAFM)
(Y'04000000')

Illegal instruction
trap enable/disable
(TSW. lITM)
(Y'02000000')

I· Data format trap
I enable (TSW.DFFM)
1 (Y'OlOOOOOO')

A trap occurs when an item
is added to the task queue
or when at least one item
exists on the queue.

A trap occurs when the task
attempts to access memory
outside its task boundaries.

A trap occurs when the task
tries to execute an illegal
instruction.

1 A trap is taken when the
1 task executes an instruction
1 that causes a data format or
1 alignment fault.

---1
8 (C) Central processing Task is executed on the CPU

9-14

15 (X)

16 (D)

17 (T)

unit (CPU)-override and cannot be transferred to
status (TSW.CPOM) an auxiliary processing unit
(Y' 00800000') (APU) for processing. (This

bit applies only to tasks
running on the Model 3200MPS
System.)

1 Reserved

Subtask queue entry
enable/disable
(TSW.SUQM)
(Y'OOOlOOOO')

Device interrupt
queue enable/
disable (TSW.DIQM)
(Y'00008000')

Task call queue
entry enable/
disable (TSW.TCM)
(Y'00004000')

1 Must contain zeros.

An item is added to the
monitor task queue each time
the subtask status changes.

An item is added to the task
queue when a trap-generating
device connected to a task
interrupts task execution,
or when an SVC6 sint func­
tion is directed to a task.

An item is added to the task
queue when an SVC6 queue
parameter function is
directed to this task.

48-038 FOO R02 8-5

TABLE 8-1 TSW BIT DEFINITIONS (Continued)

BIT I
POSITION I BIT NAME AND MASK MEANING

==_:_-------==---18 (AP)

19 (E)

20 (L)

21 (0)

22 (Z)

23 (F)

24-25

26 (TE)

8-6

Queue entry on
signal from APU
(TSW,APTM)
Y'OOOO 2000'

Adds a parameter to the task
queue when an APU signals
the cpu.

Task Message Queue I An item is added to the task
Entry Enable/Disable I queue when an SVC6 send mes-
(TSW.PMM) sage function is directed to
(Y'OOOOlOOO') a task.

Load and Proceed
Completion Queue
Entry Enable/
Disable (TSW.LODM)
(Y'00000800')

Input/Output (I/O)
Completion Entry
Enable/Disable
(TSW.IOM)
(Y'00000400')

Time Interval
Completion Queue
Enable/Disable
(TSW.TMCM)
(Y'00000200')

SVC15 Function
SVCl Buffer Trans­
fer Completion
('lISW. I TM)
(Y'OOOOOlOO')

I Reserved

Event Queue Service
Enable/Disable
('!ISW . TESM)
(Y'00000020')

An item is added to the task
queue when an SVC6 load and
proceed function is executed
and the load is completed.

An item is added to the task
queue when an SVCl I/O and
proceed function is executed
and the I/O is completed.

An item is added to the task
queue when an SVC2 code 23
is executed and the interval
has elapsed.

An item is added to the task
queue when an SVCl5 function
is completed. See the OS/32
Basic Data Communications
Reference Manual. An item
is added to the task queue
each time the magnetic tape
driver adds a buffer to the
OUT-QUEUE.

I Must contain zeros.

A trap occurs when an item
is added to the system event
queue or when at least one
item exists on that queue.
For more information on the
event queue service enable/
Disable, see the OS/32
System Level Programmer
Reference Manual.

48--038 FOO R02

~rABLE 8-1 TSW BIT DEFINITIONS (Continued)

BIT I
POSITION I BIT NAME AND MASK MEANING

27 (SD)

28-31
(CC)

32-63
(LaC)

Queue entry on send
data call enable
(~ISW .SDM)
(Y'OOOOOOlO)

I cc

I Location counter
I (TSW.LOC)

An item is added to the
queue when an SVC6 send
message function is directed
to the task.

I The CC following SVC9 is set
I from these bits.

I Contains the current loca­
I tion counter.

NOTE

See the OS/32 Application
Programmer ReferE~nce Manual
description of the items that
added to the task queue.

Level
for a

can be

If execution of an SVC9 loads a TSW with the
enabled, the task is placed in a suspended state
traps that are enabled in thE~ same TSW occurs.
task is placed in a suspended state and all other
disabled in the same TSW, thE~ task remains in a
indefinitely or until it is cancelled.

trap wait bit
until one of the

However, if the
trap bits are
suspended state

If execution of an SVC9 loads a TSW with one of the trap bits
enabled and that trap occurs, t.he trap is handled as described in
the OS/32 Application Level Programmer Reference Manual.

If execution of an SVC9 loads a TSW with one of the queue entry
bits enabled and a previouE3ly allocated item is placed on the
task queue, no trap occurs unless the queue service trap bit of
the TSW is enabled.

When a TSW swap occurs and the current TSW is replaced with a new
TSW, task execution resumes with the instruction located at the
address specified by the LaC of the new TSW. If the address of
the new TSW is outside the task boundaries, the task is paused
and a message is displayed. If execution of an SVC9 loads a TSW
that has zeros in the LaC field, execution resumes with the
instruction following the SVC9.

When SVC9 loads a new TSW, the CC of the new TSW becomes the
current CC. Any value ranging from 0 to 15 (X'OO' to X'OF') is
legal. If the TSW being loaded was previously saved as an old
TSW during a TSW swap, the CC is restored.

48-038 FOO R.02 8-7

CHAPTER 9
OVERLAY LOADING SUPERVISOR CALL 10 (SVCIO)

9.1 SVC10: OVERLAY LOADING

SVCIO is an internal call that provides for the automatic loading
of overlays generated by Link. SVClO is not available to users.

If an overlay load fails to occur, a message indicating the
reason for the failure is displayed to the log device. Overlay
load failure can result from an input/output (I/O) error or from
faulty coding that destroys 1:he overlay control structure. For
example, user code can be wr it1:en in such a way as to destroy
data in the overlay reference table. This table, which forms a
part of the root segment and of each overlay area, contains
pOinters into the task overlay descriptor table (ODT), which
contains the information needed to process the overlay. Without
this information, SVClO cannot perform the load function.

The overlay descriptor table entry (OOTE) is part of the overlay
reference table and represents the position in the aOT that
contains processing information for the overlay to be loaded.
Both the overlay reference table and the oo-r are operating system
data structures and are defined in the system macro library.

9.2 MESSAGES

The following message is displayed when a load failure occurs as
a result of an I/O error.

Format:

I/O ERROR xxxx LOADING OVE1~Y nnnnnnnn
FAULT LOCATION yyyyyy (ZZZ4~ZZ)

48-038 FOO R02 9-1

Where:

xxxx

nnnnnnnn

yyyyyy

zzzzzz

is the I/O ~rror status (see Table 9-1).

is the name of the overlay that was being
processed when the error occurred.

is the virtual address of the SVC that caused
entry into the SVC10 handler.

is the physical address of yyyyyy.

The following message is displayed when an overlay load failure
occurs as a result of faulty coding within an overlay control
structure.

Format:

OVERLAY ERROR xx NAME = nnnnnnnn
FAULT LOCATION yyyyyy (zzzzzz)

Where:

xx

nnnnnnnn

yyyyyy

zzzzzz

is the error status. See Table 9-1 for error
definitions.

is the name of the overlay that was
processed when the error occurred.
cannot be determined whether the
occurred in the root or in an overlay,
nnnnnnnn 1s omitted from the message.

is the virtual address of the SVC that
entry into the SVC10 handler.

is the physical address of yyyyyy.

being
If it
error

NAME =

caused

If the overlay load failure resulted from a malfunction of SVC10,
the task is paused with the current program status word (PSW)
pointing to the SVC10 instruction causing the failure.

9-2 48-038 FOO R02

'lIABLE 9-1 OVERLAY :ERROR CODES AND MEANINGS

ERROR I
CODE MEANING

10* .OOTE exists outside the range of the ODT range.

20 There is user space violation of overlay start
address.

21 There is user space violation of overlay end
address.

22 Highest level overlay required by this SVC was
not found.

23 OVL size is less than 10 bytes; eight bytes for
two fullword overlay reference table entry
pointers plus a 2-byte instruction (BR) is the
minimum size for an overlay.

30 There is user s~ace violation of the overlay
reference table address in ODT entry.

31* Pointers to overlay reference table entries are
unreliable. The address difference between
these pointers must be zero or an even multiple
of eight bytes.

32* There is user space violation of overlay
reference table entry pointers.

33* .OOTE index in OR~r is out of DDT range.

* Indicates possible destruction of data

48-038 FOO R02 9-3

CHAPTER 10
}\UXILIARY PROCESSING UNIT (APU) CONTROL

SUPERVISOR CALL 13 (SVC13)

10.1 SVC13: I\UXILIARY PROCESSING UNIT (APU) SERVICES

SVC13 provides a task with an interface to the APU in a Model
3200MPS System environment. SVe13 gives a task the ability t.o:

• access status information on all APUs and APU task queues in
the systemlr

• direct the flow of tasks to an APU task queue, and

• direct the execution of tasks on an APU.

Table 10-1 li~3ts the SVe13 function codes, which provide t.hese
capabilities.

Functions 0 and 1 are available to any task in a Model 3200MPS
System. Function 2 is availablE! only to tasks in a Model 3200MPS
System that have been linkeCl with the APMAPPING task option.
Function 3 is available only to tasks in a Model 3200MPS System
that have blgen linked with the APCONTROL task option. See the
OS/32 Link Reference Manual for more information on building a
task with these task options set.

TABLE 10-1 SVC~13 FUNCTION CODES

FUNCTION CODE I MEANING

SVC13 code 0 Read APU assignment and mapping information.

SVC13 code 1 Read APU/APU queue status.

SVC13 code 2 Execute queue mapping option.

SVCl3 code 3 Execute APU control option.

48-038 FOO R02 10-1

The following sections describe how to access each of the SVC13
functions from an application task running on a Model 3200MPS
System.

10.2 SVC13 CODE 0: READ AUXILIARY PROCESSING
ASSIGNMENT AND MAPPING INFORMATION

UNIT (APU)

SVC13 code 0 enables a task to copy onto a data buffer the
maximum number of APUs (m) and logical processing units (LPUs)
(n) allowed on the system followed by the tables of APU-to-APU
queue assignment and of LPU-to-APU queue mapping. Both m and n
are determined at OS/32 system generation (sysgen). See the
System Generation/32 (Sysgen/32) Reference Manual.

The table of APU-to-APU queue assignment contains one entry for
the central processing unit (CPU) and each APU number. Each
entry is l-byte, sequentially arranged starting with the entry
for CPU (always 0), then for APUl and ending with the entry for
APUn, and containing the number of APU queue to which the
respective processor is assigned. The APU gueue number value
varies from 0 to n.

The table of LPU-to-APU queue mapping contains one entry for each
LPU number. Each entry is l-byte, sequentially arranged starting
with the entry for LPUO (always 0) and ending with the entry for
LPUn, and containing the number of the APU queue to which the LPU
is mapped. The APU queue number varies from 0 to n.

The data buffer where the above information is copied must be
located in a writable segment of the task's address space. This
buffer must begin on a fullword boundary. Figure 10-1 shows the
parameter block and coding for SVC13 code o.

10-2 48-038 FOO R02

0(0) 11(1) 12(2)
Reserved

(SV13 . OP'r)
IFunction code I Reserved

(SV13.FUN) (SV13.DOP)

13(3)
Reserved

(SV13.APU)

4(4)

8(8)

12(C)

parblk

Reserved
(SV13.APS)

16(6)
Error status code

(SV13.ERR)

Data buffer start address
(SV13. BUF)

Buffer used
(SV13. USE)

SVC 13,parblk

ALIGN 4
DB 0,0,0,0
DB H'O'
DS 2
DC A(BUFFER)
DS 2
DC H'number of

114(E)

bytes'

Length of buffer
(SV13.LEN)

Figure 10-·1 SVC13 Code 0 Parameter Block Format and Coding

This paramE~ter block must be 16 bytes long, fullword
boundary-aligned, and located in a task-writable segment. A
general descl:iption of each field in the parameter block follows:

Fields:

Reserved is a l-byte unused field that should be
(SV13 . OP'l~) initialized to zero.

Function code is a l-byte field that must contain the
(SV13.FUN) decimal number o to indicate SVC13 code O.

Reserved is a l-byte unused field that should be
(SV13.DOP) initialized to zero.

Reserved is a l-byte unused field that should be
(SV13.APU) initialized to zero.

48-038 FOO R02 10-3

Reserved
(SV13.APS)

Error
status code
(SV13.ERR)

Data buffer
start address
(SV13.BUF)

Buffer used
(SV13.USE)

Length of
buffer
(SV13.LEN)

is a 2-byte unused field that should be
initialized to zero.

is a 2-byte field that receives the execution
status of SVC13 code O. See Table 3-10 for
a list of the SVC13 status codes.

is a 4-byte field that contains the address of
a user-specified buffer to which the operating
system returns the assignment and mapping
information. The buffer can be variable in
length but must begin on a fullword boundary
in a task-writable segment.

is a 2-byte field that receives the actual
number of bytes used in the buffer specified
by the SV13.BUF field.

is a 2-byte field
number indicating
bytes) of the data
SV13.BUF field.

that contains a decimal
the maximum length (in

buffer specified in the

When SVC13 code 0 is executed, APU assignment and mapping
information is returned to the user's buffer in the format shown
in Figure 10-2.

0(0)
Reserved

4(4)

8(8)

12(C)

16 (10)

11 (1)
I Maximum APU

number

12(2)
I Maximum LPU

number

13(3)
Reserved

APU-to-APU queue assignment table

LPU-to-APU queue mapping table

Figure 10-2 Data Buffer Format for SVC13 Code 0

10-4 48-038 FOD RD2

Fields:

Reserved

Max imum A.PU
number

Maximum LPU
number

Reserved

APU-to-APU
queue
assignment
table

LPU-to-APU
queue mapping
table

is a l-byte field that is reserved for future
use.

is a l-byte field containing the maximum APU
number allowled in the system. This number is
determined at sysgen.

is a l-byte field containing the maximum LPU
number allowled in the system. This number is
determined at sysgen.

is a I-byte field that is reserved for future
use.

is a variable length array (O:m) of I-byte
entries, each entry number i containing the
number of the APU queue to which APUi is
mapped, where APUO : cpu. The cpu entry is
always o. lPor example, in a system with four
APUs, this table might represent byte sequence
003230000000, where the cpu entry is 0, APU2
and APU4 are assigned to queue 3, and APU3 is
assigned to queue 2.

is a variable length array (O:n) of I-byte
entries, each entry number k containing the
number of the APU queue to which LPUk is
mapped. The LPUO is always mapped to queue O.
For example, in a system with six LPUs, this
table might represent a byte sequence
021033xx, where LPUO and LPU3 are mapped to
queue 0, LPUI is mapped to queue 2, LPU2 is
mapped to queue 1, LPU4 and LPU5 are mapped to
queue 3, and the table is filled with
undefined bytes x to the fullword boundary.

10.3 SVC13 CODE 1: READ AUXILIJ~Y PROCESSING UNIT (APU)/APU
QUEUE STATUS

SVC13 code 1 allows a task to access information on the status of
each APU and/or APU queue in a Model 3200MPS System. The APU
status includes the:

• APU hardware status

• Number of the APU queue to which APU is assigned

• status of APU writable control store (WeS)

• APU software status

48-038 FOO R02 10-5

• APU software status after power fail

• Configuration options set for the APU

• Name of the task currrently active on the APU or of the task
for which the APU is waiting

• Name of task with control rights over the APU

• WCS image file descriptor (fd)

The APU queue status includes the:

• Queue processing status

• Number of APUs assigned to the queue

• Number of LPUs mapped to the queue

• Name of the task with mapping rights over the queue

• Names of all tasks in the queue (or name of the task having
exclusive rights to the queue)

Figure 10-3 shows the parameter block format and coding for SVC13
code 1.

lG-6 48-038 FOD RD2

0(0) 11(1) 12(2) 13(3) APU/APU
Options

(SV13.0PT)
I Function codel Reserved

(SV13.FUN) (SV13.DOP)
I queue number
I (SV13. APN)

4(4)

8(8)

12(C)

APU hardware status
(SV13.APS)

16(6)
Error status code

(SV13.ERR)

Data buffer start address
(SV13.BUF)

Buffer used
(SV13.USE)

SVC 13,parblk

114 (E)
Length of buffer

(SV13.LEN)

parblk ALIGN 4
DB
DC
DS
DC
DS
DC

0,1,0
'APU or APU queue number'
4
A(buffer)
2
H'number of bytes in buffer'

Figure 10-·3 SVC13 Code 1 Parameter Block Format and Coding

This parametter block must be 16 bytes long, fu11word
boundary-a1igrned, and located in a t.ask-wr itable segment. A
general descI'iption of each field in the parameter block follows.

Fields:

Options
(SV13 . OP'l')

48-038 FOO R02

contain one or both of the following fetch
status functions:

OPTION FUNCTION

X'80' Fetch APU status.

X'40' Fetch APU queue status.

NOTE

If both options are specified, the
APU status is fetched; then the
status of the queue to which the
APU is assigned is fetched.

10-7

10-B

Function code is a l-byte field that must contain the
(SV13.FUN) decimal number 1 to indicate SVC13 code 1.

Reserved
(SV13.DOP)

APU/APU queue
number
(SV13.APN)

APU hardware
status
(SV13.APS)

Error status
code
(SV13~ERR)

Data buffer
start address
(SV13.BUF)

Buffer used
(SV13.USE)

Length of
buffer
(SV13.LEN)

is a l-byte unused field that
initialized to zero.

should be

is a l-byte field specifying
that represents:

a decimal number

• APU number (1-9) to which this call is
directed if option X'BO' is specified.

• APU queue number (0-9) to which
is directed. Applicable only
X'40' is specified by itself.

this call
if option

is a 2-byte field that receives the APU
response status from the APU processor
hardware for option X'BO'.

is a 2-byte field that receives the execution
status of SVC13 code 1. The first byte of
this field indicates bit position (0 through
1) of the SVC13 code 1 option being executed
when the error occurred. The second byte
contains one of the SVC13 error status codes.
See Table 10-10 for a list of the SVC13 status
codes. If no error occurs, both bytes contain
o.

is a 4-byte field containing the address of a
data buffer to which SVC13 is to return the
fetched status information. The buffer can be
variable in length, but it must begin on a
fullword boundary and be located in a
task-writable segment. If the buffer is less
Lhan eight bytes in length, an error code
(insufficient buffer space) is returned and no
data is written to the buffer.

is a 2-byte field that receives a decimal
number indicating the actual number of bytes
used in the buffer specified by the SV13.BUF
field.

is a 2-byte field
number indicating
bytes) of the data
SV13.BUF field.

that
the

buffer

contains a decimal
maximum length (in
specified in the

48-038 FOO RD2

When SVC13 code 1 option X'80' only is executed, information on
the status of the specified APU is returned to the user's buffer
in the format shown in Figure 10-4.

0(0) 11(1) 12(2) Queue 13(3)
APU number I Queue 1 number at Reserved

number I power fail

4(4)
APU processing status APU options

8(8)

12(C)

16 (10)

20(14)

24(18)

28(lC)

32(20)

36(24)

Active task name
or

Waiting task name

control task name

WCS image fd

Figure 10-4 Data Buffer Format for SVC13 Code 1
Option X'80 1 only

48-038 FOO R02 10-9

Fields:

APU number

Queue number

Queue number
at power fail

APU
processing
status

APU options

Active task
name or
waiting task
name

Control
t.ask name

WCS image
fd

10-10

is a l-byte field containing the number of the
APU to which the status information applies.

is a l-byte field containing the number of
t.he APU queue to which the APU is assigned.

is a 2-byte field containing the number of the
APU queue to which the APU has been assigned
at the time of the last power fail.

is a 2-byte field that contains the WCS
state for the specified APU, the current APU
software state and the APU state at the time
of the last power fail.

Figure 10-5 shows the APU processing status
field. See Table 10-2 for the bit definitions
for this field.

is a 2-byte field that is set according to the
configuration options in effect for the
specified APU. See Table 10-3 for the bit
definitions for this field.

is an 8-byte field containing the name of the
currently active task. If the APU is stopped
and waiting for a task, this field contains
t.he name of the currently waiting task. The
t.ask name is left-justified with trailing
blanks. If no currently active or waiting
t.ask exists, the entire field is filled with
blanks.

is an 8-byte field containing the name of the
t.ask having control rights over the specified
APU. If no control task exists, the entire
field is filled with blanks.

is a l6-byte field containing the file
descriptor of a writable control store image
file loaded into the APU during its power-up
initialization.

48-038 FOO R02

IWCS I I start at lastl Current.
sLatus Istatus I Reserved I power fail Reserved

Bits:
o 1 2 5 6 .., 8 13 14

Figure 10--5 Format of APU Process ing status F ie1d Returned
to U-Task Buffers

TABLE 10-2 BIT DEFINITIONS FOR APU PROCESSING STATUS
FIELD RETURNED TO U-TASK BUFFER

I BIT 1

APU STATUS I POSITION 1 B I'r SETT I NG AND MEAN I NG

WCS state I
I
I
I

o I 1 =- WCS initialized
1 0 ~ WCS not initialized

1--
I 1 1 1 = WCS loaded

Reserved 1 2-5
for future I
use

state at
last power
fail

6·-7

I 0 = WCS not loaded

00 = APU disabled
10 - APU enabled
11 - APU enabled and wait­

ing for task
-----------~---
Reserved 1 8-13
for future 1

use

Current
statu~~

14-15 00 = APU disabled
10 = APU enabled
11 APU enabled and wait­

ing for task

15

48-038 FOO R02 10-11

TABLE 10-3 BIT DEFINITION FOR APU OPTIONS
FIELD RETURNED TO U-TASK BUFFER

APU I
CONFIGURATION I BIT

OPTION POSITION BIT SETTING AND MEANING
======-=========-=------=---=----=====-----=-===----====

WCS

Floating
point support

Trap block
wait

o

1

2

Reserved for 3-15
future APU
options

I 0 = APU has WCS
I 1 - APU has no WCS

o = APU has floating point
support

1 = APU has no floating
point support

o APU will continue pro­
cessing during CPU
fault handling

1 = APU will stop process­
ing and wait for a task
during CPU fault
handling

When SVC13 code 1 option X'40' is executed, information on the
status of the specified APU queue is returned to the user's
buffer in the format shown in Figure 10-6.

10-12 48-038 FOO R02

0(0) 11(1) 12(2)
Reserved Queue Number of tasks

in t.he queue number

4(4)
Queue processing status

16(6) Number
of APUs
assigned

17(7) Number
of LPUs
mapped

8(8)

12(C)

16(10)

20(14)

Mapping task name

Queue task name (1)
or current exclusive task name

or exclusive task name at power fail

Queue task name (n)

Figure 10-6 Data Buffer Format for SVC13 Code 1
Option X'40' Only

48-038 FOO R02 10-13

Fields:

Queue number

Number of
tasks in the
queue

Queue
processing
status

Number of
APU assigned

Number of
LPUs mapped

Mapping task
n~e

Queue task
n~e (n) or
exclusive
task n~e

is a i-byte field containing the number of the
queue to which the status information applies.

is a 2-byte field containing the total number
of tasks waiting in the specified APU's queue.
Any task currently executing on the APU is not
included in the total.

is a i-byte field that contains the current
queue status and the queue status at the time
of the last power fail.

Figure 10-7 shows the APU queue processing
status field. See Table 10-4 for the bit
definitions for this field.

is a i-byte field containing the number of
APUs assigned to the specified queue.

is a i-byte field containing the number of
logical processor mapping table (LPMT) entries
mapped to the specified APU.

is an 8-byte field containing the n~e of the
task having mapping rights over the specified
APU. If no mapping task exists, the entire
field is filled with blanks.

is a variable length table of 8-byte fields
containing the n~e of each task in the APU
queue. The order of entries corresponds to
the order of the tasks in the queue.

When the specified queue has been marked on
exclusively for one task, the queue is always
empty. In this case, this field contains the
name of the task having exclusive rights to
the queue.

I Reserved I state at last I Reserved I Discipline I Reserved I Current I Reserved I
I I power fail I I I I state I I

Figure 10-7

10-14

Format of APU Queue Processing status Field
Returned To U-Task Buffer

48-038 FOD RD2

TABLE 10-4 BIT DEFINITIONS FOR APU PROCESSING STATUS
FIELD RETURNED TO U-TASK BUFFER

QUE:UE
STP~TUS

I BIT I
I POSITION I BIT SETTING AND MEANING

=====================================~===========

Reserved I 0-2
for future I
use

State at I 3 and 4
last power I
fail I

Reserved I 5
for future I through
use I 7

Queue I 8 and 9
Discipline I

I

Reserved I 10
for future I
use

I 00 = queue OFF
I 01 == queue ON
I 11 = queue ON-exclusive

I 00 no priority
I 01 = priority
I 11 = priority-enforced

Curl:ent
stat~us

11 and 121 00 = queue OFF
I 01 = queue ON

Reserved I 13
for future I through
use I 15

I 11 = queue ON-exclusive

When SVC13 code 1 option X'CO' (options X'80' and X'40' combined)
is executed, information on the status of the specified APU
followed by information on the status of the queue to which the
APU is assigned is returned to the user's buffer. The first part
(APU status) format is presented in Figures 10-4 and 10-5 and
Tables 10-2 and 10-3. The second part (queue status) starts at
byte offset 36(24), and its format is presented in Figures 10-6
and 10-7 and Table 10-4 where byte addresses of the Figure 10-4
are increment:.ed by 36 (24) .

48-038 FOO R02 10-15

10.4 SVC13 CODE 2: AUXILIARY PROCESSING UNIT (APU) MAPPING
FUNCTIONS

SVC13 code 2 allows a task to perform mapping functions on a
specified APU queue, provided the task has the mapping rights to
the specified queue. A task is granted mapping rights to a queue
only if:

• the requesting task has been link-edited with the APMAPPING
option, and

• no other task has been granted mapping rights to that queue.
Operator commands for APU mapping are not accepted if a task
already has these mapping rights.

Once a task has been granted mapping rights to an APU, the task
can:

• Mark the queue on or ON-exclusive to only one task.

• Map an LPU to the queue.

• Map to queue 0 all LPUs that are mapped to the specified
queue.

• Set new queue discipline.

• Mark the queue OFF.

NOTES

1. Queue 0 is always marked on. Marking
it ON-exclusive or OFF-exclusive is
prohibited.

2. Marking a queue ON-exclusive is
disallowed if more than one APU is
assigned to the queue.

Figure 10-8 shows the parameter block format and coding for SVC13
code 2.

10-16 48-038 FOO R02

0(0)
Options

(SV13 . OP'r)

4(4)

11(1) Function 12(2)
code DirecLive

(SV13.FUN) (SV13.DOP)

16(6)

13(3) APU queue
number

(SV13.APN)

Reserved
(SV13.APS)

Error
slatus code

(SV13.ERR)

8(8)

12(C)

Data buffer starL address
(SV13. BUF)

114 (E)
Queue discipline

(SV13.USE)
Lengt.h of buffer

(SV13.LEN)

SVC 13, parblk

parblk
ALIGN
DC
DB
DC
DC
DC
DS
DC
DC
DC

4
X'option(s),
2
'LPU number' or 0
'APU queue number'
H'O'
2
A(BUFFER)
H'queue discipline'
H'number of bytes in buffer'

Figure 10--8 SVC13 Code 2, Parameter Block Format and Coding

This parameter block must be
boundary-aligned, and located in a
general description of the fields
follows.

16 bytes long, fullword
Lask-writable segment. A

in this parameter block

Fields:

Options
(SV13 . OPf)~)

48-038 FOO R02

is a I-byte field containing a
number specifying one or more of
functions.

hexadecimal
the mapping

Figure 10-9 shows the APU mapping option field
format. See Table 10-5 for the available
options for this field. If more than one APU
mapplng option is specified, the options are
executed in a left-to-right order.

10-17

Function code
(SV13.FUN)

Directive
option
(SV13.DOP)

APU queue
number
(SV13.APN)

Reserved
(SV13.APS)

Error status
code
(SV13.ERR)

Data buffer
start address
(SV13.BUF)

Queue
discipline
(SV13.USE)

Length of
buffer
(SV13.LEN)

10-18

is a l-byte field that must contain the
decimal number 2 to indicate SVC13 code 2.

is a l-byte field that contains the LPU
number for option X'lO'. Allother options
ignore this field.

is a l-byte field that must contain the number
of the queue to which this SVC is directed.

is an unused 2-byte field that should be
initialized to zero.

is a 2-byte field that receives the execution
status of SVC13 code 1. The first byte of
this field indicates the bit position (0-7) of
the SVC13 code 2 option being executed when
~he error occurred. The second byte contains
one of the SVC13 error status codes (see Table
10-10). If no error occurs, both bytes
contain o.

is a 4-byte field that specifies the address
of the buffer containing the name of the task
to be granted exclusive access to the
specified queue. The task name specified in
~his buffer must be eight bytes long and
left-justified with trailing blanks. If the
entire buffer is filled with blanks, the task
issuing the SVC is granted exclusive access to
the specified queue. This field applies to
option X'40' only; all other options ignore
this field.

is a 2-byte queue field that contains
queue discipline code for option X'40'. All
other options ignore this field~ The
discipline code is one of the following
decimal numbers:

• 0 indicates no-priority

• 1 indicates priority

• 3 indicates priority-enforced

is a 2-byte field indicating the length of the
data buffer containing the name of the task to
be granted exclusive access to the specified
queue. This field applies to option X'40'
only; all other options ignore this field.

48-038 FOD RD2

--
I Mal~k Map

I Gain I queue I Mark I LPU
I mapping I ON--ex- I queue I to
I rights I clusivel on I queue

Bits:
o 1 2 3

Map all I Set I I
queue I queue I Mark I Release I

LPUs to I discip-I queue I mapping I
queue 0 I line off I rights

4 5 6 7

Figure 10-9 SYC13 APU Mapping Options Field (SY13.0PT)

TABLE 10-5 SYC13 CODE 2: APU MAPPING OPTIONS FIELD (SYC13.0PT)
BIT DEFINITION

APU MAPPING I BIT I HEX
OPTION I POSITION I CODE

Gain
mapping
rights

Mark queue
ON-exclu­
sive

Mark queue
I on

o

1

2

X'BO'

X'40'

X'20'

DESCRIPTION

Gain mapping
rights to the
specified APU
queue for the
task.

M:ark spec if ied
queue available
for scheduling
only the task with
the name in the
buffer starting at
address SVl3.BUF
(see below).

Mark specified
queue available
f'or scheduling
arbitrary tasks.

Map LPU to
queue

3 X'lO' Map LPUn to queue.

Map all
queue LPUs
Lo queue 0

48-038 FOO R02

4 X'OB'

I n is indicated in
I SVl3.DOP.

Map to queue 0 all
LPUs mapped to
8pecified queue.

PREREQU I SITES

Task linked with
APMAPPING
task option.

No other task
has mapping
rights to the
specified queue.

Other than queue
o specified.

No more than one
APU assigned
to the queue.

None

None

None

10-19

TABLE 10-5 SVC13 CODE 2: APU MAPPING OPTIONS FIELD (SVC13.0PT)
BIT DEFINITION (Continued)

APU MAPPING I BIT I HEX
OPTION I POSITION I CODE DESCRIPTION PREREQUISITES ====-___ = __ a _________________ _

Set queue
discipline

5 X'04' Set discipline None
I for specified I
I queue. Discipline I
I code is indicated
I in SVC13.USE.

Mark queue
off

6 X'D2' I Mark specified I Other than queue
I queue unavailable I D specified.
I for task schedul-
ling.

Release
mapping
rights

7 X'Dl' I Give up mapping I None
I rights to the spe- I
I cified APU queue
I for the task.

10.5 SVC13 CODE 3: AUXILIARY PROCESSING UNIT (APU) CONTROL

SVC13 code 3 allows a task to perform control functions on a
specified APU provided the task has obtained the control rights
to the specified APU. 05/32 grants APU control rights to a
requesting task only if:

• the task has been link-edited with the APCONTROL option, and

• no other task has been granted control privileges to the
specified APU. Operator commands for APU control are not
accepted if a task already has these control rights.

SVC13 code 3 gives a task the ability to:

• Initialize an APU (perform a power up link check), enabling it
for execution.

• Send a directive to control APU task execution.

• stop the APU and preempt the currently executing task.

• Select the next task to execute on the APU.

• Assign the APU to an APU queue.

• Disable an APU for on-line maintenance.

10-20 48-038 FOO R02

Figure 10-10 shows the paramete'r block formal and coding for
SVC13 code 3.

10(0) APU
1 control
1 options

11(1) 12(2)
Function codel Directive

(SV13.FUN) I option

13(3)
APU number

(SV13.APN)
(SV13 . OP'r) I (SV 13 . DO P)

4(4)

8(8)

APU hardware status
(SV13.APS)

16(6)
Error status code

(SV13.ERR)

Data buffer start address
(SV13.BUF)

APU queue number
(SV13.USE)

SVC l3,parblk

ALIGN 4

Length of buffer
(SV13.LEN)

parblk DB
DB
DB
DB
OS
OS
OS
DC
DC
DC

X'option'
3
X'directive option'
'APU number'
1
1 or DB 'byte sent for link check'
2
A(BUFFER)
H'APU queue number'
H'length of buffer'

Figure 10-·10 SVC13 Code 3, Parameter Block Format and Coding

This parametter block must be 16 bytes long, fullword
boundary-aligned, and located in a task-writable segment. A
general description of each field in the parameter block follows.

48-038 FOO R02 10-21

Fields:

APU control
options
(SV13.0PT)

is a l-byte field specifying a hexadecimal
number indicating the APU control option to
be executed. Figure 10-11 shows the APU
control option field format. See Table 10-6
for the available options for this field. If
more than one APU control option is specified,
the options are executed in a left-to-right
order.

Function code is a l-byte field that must contain the
(SV13.FUN) decimal number 3 to indicate SVC13 code 3.

Directive
option
(SV13.DOP)

APU number
(SV13.APN)

APU hardware
status
(SV13.APS)

Error status
code
(SV13.ERR)

10-22

is a l-byte field specifying a hexadecimal
command code to be sent to the specified
APU (see Table 10-7). This field is used only
if X'OS' was specified in the APU control
options field. The directive option field is
ignored for all other APU control options.

is a l-byte field
specified APU.

that identifies the

is a 2-byte field that contains one of the
following:

• If option X'OS' is specified and any
command other than LINK CHECK (X'SO') is
specified in the SV13.DOP field, this field
receives the APU response status returned
after execution of the specified command.

• If option X'OS' is specified and the LINK
CHECK command (X'SO') is specified in the
directive option (SV13.DOP) field, the
right-most byte of the halfword defines a
data pattern (determined by the user),
which is sent to the APU. The APU
complements the byte and sends it back to
the left byte of the field.

is a 2-byte field that receives the execution
status of SVC13 code 3. The first byte of
this field indicates the bit position of the
option being executed when the error occurred.
The second byte of this field contains one of
the SVC13 error status codes. See Table 10-10
for a list of the SVC13 error codes.

48-038 FOO R02

Data buffer
sLart address
(SVl3. LEN)

APU queue
number
(SVl3.USE)

Leng"th of
buffer
(SVl3.LEN)

is a 4-byLe field that specifies the address
of a buffer containing the name of the task
on the APU ready queue that is to be selecLed
as "the next "task to be executed. This task
must be an existing member of the queue.

This field applies to option X'IO' only and is
ignored for all oth~r APU control options.

is a 2-byte reserved field that specifies the
number of the queue to which the APU is being
assigned. This field applies to option X'04'
only and is ignored for all other APU control
options.

is a 2-byte field specifying a decimal
number (8 or greater) indicating the length of
the data buffer specified by the SV13.BUF
field. This field applies to option X'IO'
only and is ignored for all o"ther APU conLrol
opti.ons.

: Gain: : stop and : Select: Send : Assign : : Release :
: control : Enable : reschedule: next : APU : to : Disable : control :
: right APU APU taske: task : command: queue APU: rights

Bits:
o 1 2 3 4 5 7

Figure 10-11 SVC13 APU Control Options Field (SV13.0PT)

TABLE 10-6 SVC13 CODE 3, APU CONTROL OPTIONS FIELD
(SV13.0PT) BIT DE~INITIONS

I
I

BIT I HEX
APU CONTROL I

PRIVILEGE
OPTION POSITION I CODE

Gain
control
rights

48-038 FOO R02

o X'80'

DESCRIPTION

Task gains control
I: ights to the
specified APU.

PREREQUIS ITES

Task link-edited
with APCONTROL
task option.

No other task
has control
rights to
specified APU.

10-23

TABLE 10-6 SVC13 CODE 3 APU CONTROL OPTIONS FIELD
(SV13.0PT) BIT DEFINITIONS (CONTINUED)

APU CONTROL
PRIVILEGE

OPTION

Enable APU

stop and
reschedule
APU task

Select next
task

Send APU
Command

10-24

I
I

BIT I HEX
POSITION I CODE

1 X'40'

2 X'20'

3 X'lO'

4 X'OS'

DESCRIPTION

Initializes speci­
fied APU by per­
forming a power up
link check. After
power up Link
check, APU is in
an ENABLED state
and idle.

stops execution of
the current task
on the specified
APU, saves the
task context, and
returns the task
to the queue
according to queue
discipline and
task priority.
APU becomes idle.

Select the task
specified in the
buffer from the
APU queue as the
next task for the
APU to run. Tasks
appearing in the
APU ready queue
after this task
executes in order.

Send the APU
command specified
in the SVC
directive option
field (SV13.DOP)
to the specified
APU.

PREREQU I SITES

APU must be in
DISABLED state.
APU must be
self-initial­
ized. APU
initailizes
itself when
powered up.

APU must be in
ENABLED state.

l APU must have a
currently
executing task.

APU must. be in
ENABLED state.
The queue must
be no-priority
with a single
APU assigned.

See Table 10-7.

48-038 FOO R02

APU CONTROL
PRIVILEGE

OPTION

I
I

BIT I HEX
POSITION I CODE DESCRIPTION PREREQUISITES =------------ . ___ B ___ ~ _ __________ .. ____________ .____ _e _______ r. ____ ~_._

Assign to
queue

Disable APU I

5

6

X'04' stop execution of
current task if
any, save the task
context and return
the task to the
queue according to
~he queue disci­
pline and task
priority. Assign
the APU to the
queue.

I X'02' I Disable the
I specified APU.

None

1 APU must be in
I ENABLED state. I

--1
Release 1 7 I X'Ol' I Task gives up con- I None
control 1 trol rights to the 1
rights I specified APU.

TABLE 10-7 SVC13 CODE 3, APU COMMANDS (SV13.DOP)

HEX
CODE MEANING PREREQUIS ITES

==--X'Ol' I start APU for task execution. I APU must be idle.

X'02'

X'04'

X'07'

I APU enters running state.

Execute single instruction.

Transfer current task tC) CPU
Not recommended for usel:­
written tasks. See SVC6
example in Chapter 6.

start APU for nontask
execut ion loads and stclrts
APU using power fail image.

48-038 FOO R02

APU must be idle.

Reserved for diagnostic
use.

APU must be idle.

APU must have a current
task.

APU must be idle.

Reserved for diagnostic
use.

10-25

TABLE 10-7 SVC13 CODE 3 APU COMMANDS (SV13.DOP) (Continued)

HEX
CODE MEANING PREREQU I SITES

-==========-=--=-=-=-----------------------------==-----------------
X'OS'

X'OS'

X'SO'

X'S3'

X'SS'

store power fail image.

stop APU if task state
saves context of currently
executing task and stops APU
(APU enters idle state.)

Real-time support module
(RTSM) link check - APU sends
back complement to data byte
received.

Reschedules task on APU; APU
reschedules the current task
to the rear of the APU queue.

NOTE

APU must be idle.

Reserved for diagnostic
use.

APU must be running in
task state (program status
word (PSW) bit 15=0).

APU must have a current
task.

APU must be idle.

Reserved for diagnostic
use.

APU must have a current
task.

APU must be idle.

The X'S3' command temporarily disrupts task
order in a priority or priority-enforced
queue until the operating system restores it
based on APU signals. A better method of
rescheduling a task on an APU is to issue an
SVC13 code 3 with the X'20' APU control option
specified.

stop APU and save power fail
image - APU saves context of
currently executing task and
stops APU (APU enters idle
state) .

Use only after attempt to
stop APU with X'OS' has
failed.

X'S6' I NO-OP - APU sends its status I None
I only.

X'S9' I Fetch APU error code.

X'SA'

10 -- 2 6

Checkpoint task state saves
context of cu~rent task.
Task continues execution if
previously running or remains
idle if previously idle.

I Reserved for diagnostic
I use.

APU must have a current
task.

48-038 FOO R02

NOTE

/1~n undef ined command code in the SV13. DOP
field is sent to the APU without OS/32
intervention. The APU identifies the
c:ode sent as an unrecognizable command
c:ode or as a sequence error. For more
i,nformat ion on t.he SVC13 APU commands,
s,ee the Model 3200MPS System Inst.ruct ion
Set Reference Manual.

10.6 SVC13 AUXILIARY PROCESSING UNIT (APU) HARDWARE STATUS
FIELD (SV13.APS)

After execution of SVC13 code 1 opt.ion X'80' or SVC13 code 3
option X'08', the status of the APU hardware is saved in the APU
status (SV13.APS) field of the parameter block. This field
consists of two bytes, a response byte and an error code byt.e,
representing the response and error fields of the program status
word (PSW). The hardware status is returned to this field in the
format shoWT.t in Figure 10-12. See Table 10-8 for the response
byte bit definitions. Error codes returned t.o the error code
byte are listed in Table 10-9. See the Model 3200MPS System
Instruction Set Reference Manual for more information.

P
A
R

Bits:
o

R
U
N

BtESPONSE BYTE

NON-

TASK

W
A
I
T

R
E
S
P

E
R
R
o
R

M
o
D
1

M
o
D
2'

7 8

ERROR CODE BYTE

ERROR CODE

F iguret 10-12 APU Hardwa're Response Byte (SV13 .APS)

15

48-038 FOO R02 10-27

TABLE 10-8 APU HARDWARE RESPONSE BYTE/BIT DEFINITIONS

BIT I I
POSITION I BIT NAME I BIT SETTING AND MEANING

========-------------------------------------==================
o

1 I R~

l~ ensures that the response byte has
an odd parity.

0= odd number of bits have been set for
the remainder of the byte.

I 1= APU is running.
I 0= APU is idle.

2 NONTASK 1= current PSW bit 15 is set, indicat-
ing no context save area is
available.

0= APU executing a task; the current
PSW bit 15 is not set, indicating
that the current task's context save
area is ready to receive the
processor task state. t

---1
3

4

5

6,7

10-28

WAIT

RESP

ERROR

MODl
MOD2

1= current PSW bit 16 is set, indicat­
ing APU is in a wait state or APU is
working in an internal service state
(e.g., scheduling a task).

0= current PSW bit 16 is not set,
indicating the APU is executing
instructions.

1= APU is responding to a command from
the cpu.

0= APU is generating a signal indi­
cating a change in APU function.

1= APU detects an error condition that
causes the APU to stop; the error
condition is indicated by the set­
ting of the error code bit (see
Table 10-9).

0= no error condition is detected by
APU.

Bit definitions for MODl and MOD2
depend on the definitions for RESP and
ERROR, as follows:

RESP=O, ERROR=O

00 undefined
01 - APU entering queue wait state
10 = task rescheduled to APU ready

queue
11 task rescheduled to CPU

48-038 FOO R02

TABLE 10-8 APU HARDWARE RESPONSE BYTE/BIT DEFINITIONS
(Continued)

BIT I I
POSITION I BIT NAME I

6,7
(cont'd)

BIT SETTING AND MEANING

RESP=O, ERROR=l

00 general error status
01 = error occurred while APU in

queue wait state
10 error occurred while locking

queue
11 undefined

RESP=l, ERROR=O

00 general response status
01 task is waiting on APU queue
10 = APU attempting to lock a queue
11 command sequence error; command

was ignored

RESP=l, ERROR=l

00 = error as a result of command
01 = response, error in queue wait
10 - response, error in queue lock
11 .: E!rror and command sequence error

NOTE

See the Model 3200MPS System Instruction
SC9t Reference Manual for more information
on the nontask and wait states that
reflect the PSW bit definitions.

TABLE 10-9 ERROR CODES FOR ERROR CODE BYTE OF APU
HARDWARE STATUS FIELD (SV13.APS)

ERROR I
CODE·

X'80'
X'OO'
X' 01'
X'02'
X'83'

48-038 FOO R02

MEANING

No error
No response from the APU
APUID DEVICE F}~SE SYNC
ZERO APUID RETURNED BY RTSM
CAN'T FETCH WOlm @ X'C4' - ECC

10-29

10-30

TABLE 10-9 ERROR CODES FOR ERROR CODE BYTE OF APU
HARDWARE STATUS FIELD (SV13.APS)
(Continued)

ERROR I
CODE MEANING

=====-====-====------------------=--=---========== X'04'
X'SS'
X'S6'
X'07'

X'OS'
X'Sg'
X' SA'
X'OS'

X'SC'
X'OD'
X'OE'
X'8P'

X'lO'
X' 91'
X'92'
X'13'

X'94'
X'lS'
X'16'
X'97'

X'98'
X'19'
X'lA'
X'9S'

X'lC'
X'9D'
X'9E'
X'lF'

X'20'
X, Ai'
X'A2'
X'23'

X'A4'
X, 2S'
X'26'
X'A7'

APUID > MAX APU @ X'C7'
BAD A(APB_DIR) - ECC/ZERO/ALIGN
BAD A(APB) - ECC/ZERO/ALIGN
BAD APB (FLAGS:APB#) WORD - ECC

WRONG APB# IN APB
APB PASSBACK
UNRECOGNIZED COMMAND
BAD APB A(CTCB) - ECC/ZERO/ALIGN

BAD A (APU TCB QUEUE) - ECC/ZERO/ALIGN
QUEUE LOCK TIMEOUT
EXECUTION SUSPENDED (TRAP PSW WAIT)
BAD SSTD - ECC

CAN'T LOAD TASK CONTEXT
CAN'T STORE TASK CONTEXT
CAN'T LOAD PWR FAIL IMAGE
CAN'T STORE POWER FAIL IMAGE

CAN'T LOAD PSTD - ECC
BAD APB PFAIL PTR - ECC/ZERO
BAD APB MMF NEW PSW - PCC/ZERO
BAD CTCB CTX PTR - ECC/ZERO/ALIGN

BAD APB TCB CNT WORK - ECC
BAD A(APU FRONT TCB) - ECC/ZERO/ALIGN
FRONT TCB PTR(TCB CNT DISAGREE
QUEUE TCB CNT UNDERFLOW

BAD APS A(CPU QUEUE) - ECC/ZERO/ALIGN
BAD TCB QHPTR - ECC/ZERO/ALIGN
INCORRECT TCB QUEUE HEAD PTR
BAD TCB BPTR - ECC/ZERO/ALIGN

SAD BACK TCB FPTR - ECC/ZERO/ALIGN
BACK TCa FPTR NOT TO FRONT TCB
BAD FRONT TCB FPTR - ECC/ZERO/ALIGN
BAD FWD TCB BPTR - ECC/ZERO/ALIGN

FWD TCB BPTR NOT TO FRONT TCB
INCONSISTENT FRONT TCS FPTR & BPTR
BAD FRONT TCB PTR - ECC/ZERO/ALIGN
BAD BACK TCB FPTR - ECC/ZERO/ALIGN

48-038 FOO R02

TABLE 10-9 ERROR CODES FOR ERROR CODE BYTE OF APU
HARDWARE STATUS FIELD (SV13.APS)
(Continued)

ERROR I
CODE

X'AB'
X'29'
X'2A'
X'AB'

X' 2C"
X'AD,I
X'AE"
X, 2F II

X, BO II

X' 31"
X, 32 II

X'B3"

X'B4"
X'BS"
X'B6"

MEANING

BACK TCB'S FPTR NOT TO FRONT TCB
TCB QUEUE OVERFLOW (CPU OR APU)
BAD MSH TIME ACCUMULATOR - ECC
BAD LSH TIME ACCUMULATOR - ECC

BAD TCB START TIME WORD - ECC
CAN'T READ RTSM: CLOCK DATA
TCB ELAPSED TIME OVERFLOW
TCB "PENDING" FLAGS SET ON QUEUE OR CTCB

BAD "PENDING" FLAGS WORD - ECC
INTERRUPT FROM RTSM XMTR
CAN'T LOAD PFAIL PSTD - ECC
CAN'T LOAD PFAIL SSTD - ECC

BAD APB MSH TASK TIME ACC - ECC
BAD APB LSH TASK TIME ACC - ECC
WRONG LAST APUID IN CTCB

10.7 SVC13 ElmOR STATUS CODE FIELD (SV13.ERR)

When execution of SVC13 is completed, the execution status is
returned to the error status code (SV13.ERR) field of the
parameter block. If no error occurs, a value of 0 is stored in
this field. If SVC13 code 1, 2 or 3 is issued and an error
occurs, the first byte of this field contains the bit position of
the option that caused the error.

Table 10-10 lists the SVC13 error status codes and their
applicable function codes.

4B-038 FOO RO;2. 10-31

TABLE 10-10 SVC13 ERROR STATUS CODES (SV13.ERR)

I
I

STATUS I
CODE

APPLICABLE
FUNCTION

CODES MEANING

-=======-----=----------------=-------=-===-==~================ o

1

2

3

4

5

6

All

All

0,1

All

2,3

2,3

1 option
X'80',3

I No errors occurred.

I The specified data buffer does not
I begin on a fullword boundary.

I The specified data buffer is not locat­
I ed in a writable segment of the task.

Insufficient space was available in the
supplied data buffer. For functions 0
and 1, any data that does not fit in
the available space is lost.

I Task establishment options prohibit the
I task from gaining mapping or control
I rights.

I Task has not been granted the rights to
I perform the attempted mapping or
I control function.

I The APU number specified is greater
I than the maximum allowed.

7 2 option I The LPU number specified is greater

8

9

10

11

12

10-32

X'lO' I than the maximum allowed.

1,2,3

2,3

2

3

1 option
X'40', 2,
3 option
X'04'

I An invalid option was specified for
I this function.

I The requested privilege is currently
I held by another task and cannot be
I granted.

I The specified queue cannot be marked
ION-exclusive from an ON state.

I The function requested cannot be
I completed because the specified APU is
I in a DISABLED state.

Access to the APU queue could not be
obtained; SVC13 request aborted.

48-038 FOO R02

TABLE 10-10 SVC13 ERROR STA'TUS CODES (SV13.ERR) (Continued)

•
•

STATUS I
CODE

APPLICABLE
F'UNCTION

CODES MEANING

13 2 option I The task has not been granted mapping
X'lO' I rights over the APU queue to which the

I specified APU is currently mapped.

14 3: option I Cannot enable APU unless in a DISABLED
X'40' I state.

15 3 option I APU could not pass power-up link check
X'40' I sequence. APU left in disabled state.

16 3 option I Cannot disable APU unless in an ENABLED
X'02' I state.

17 2 opt ion I The APU cou ld not be marked ON·-
X'40' I exclusive because the specified task

I could not be found in the system.

18 3: option I Error encountered in transmission of
X'08' I the specified control command.

19 3: option I The preemptive task could not be found
X'lO' I on the specified APU ready queue. The

I APU queue is unchanged.
------------._--.

20 3 option I The preemptive task is not on a no-

21

22

X'lO' I priority queue to which a single APU is
I assigned. The queue is unchanged.

1 option
X '40' ,2

3: option
X'04'

2

The queue number specified is greater
than the maximum allowed.

I The specified option is not applicable
I to queue 0 to which the mapping
I function is directed.

23 2 option I The queue discipline specified is
X'04' I undefined.

24 2 option I The queue cannot be marked ON-exclusive

25

48-038 FOO R02

X'40' I because more than one APU is currently
I assigned to it.

3 I No response from APU.

10-33

10.8 TYPICAL OPTION CODING SEQUENCES FOR SVC13 CODE 2 AND
CODE 3

The options field (SVl3.0PT) in the SVCl3 parameter blocks for
codes 2 and 3 allows the user to issue one call to execute
multiple APU mapping or control functions. Multiple options are
executed from left-to-right. Care must be taken when selecting
the sequence of options to perform a designated mapping or
control function. The following sections demonstrate specific
option coding sequences that would be used by a typical APU
control task in a Model 3200MPS System.

10.8.1 Auxiliary
Start-up

Processing Unit (APU) Initialization and

Before a task can run on an APU, the APU must be initialized and
started for task execution. This is accomplished through an
SVC13 code 3 with the following sequence of option codes
specified:

OPTION
CODES

X'80'

X'40'

X'08'

X'Ol'

FUNCTIONS PERFORMED

Gain control rights for task.

Enable (initialize) APU.

Send APU start directive (X'Ol') specified in
SV13.DOP field.

Release control rights.

At system start-up, the APU is assigned to a queue with the same
number as that of the APU. The queue is defined as no-priority.

10.8.2 Auxiliary Processing Unit (APU) Queue Mark On

Before a task can be scheduled to an APU queue, the queue must be
activated and the task's LPU mapped to it. ·This is accomplished
through an SVC13 code 2 with the following sequence of option
codes specified:

OPTION
CODES

X'80'

X'20'

X'lO'

X'Ol'

10-34

FUNCTIONS PERFORMED

Gain mapping rights for task.

Mark APU queue on.

Map LPU to the queue.

Release mapping rights.

48-038 FOO R02

If the APU is to be marked on exclusively for one ~ask, ~he
following opt.ion coding sequence is used for SVC13 code 2:

OPTION
CODES

X'80'

X'40'

X'lO'

X'Ol'

FUNCTIONS PERFORMED

Gain mapping rights for task.

Mark APU queue ON-exclusive.

Map LPU to the queue.

Release mapping rights.

10.8.3 Setti.ng Auxiliary Processing Unit (APU) Queue Discipline

To change the existing queue discipline definition, use SVC13
code 2 with the following sequence of option codes specified:

OPTION
CODES

X'80'

X'40'

X'Ol'

FUNCTIONS PERFORMED

Gain mapping rights for task.

Set queue discipline.

Release mapping rights.

10.8.4 Assigrning Auxiliary Processing Unit (APU) to a Queue

To change the existing APU assignment, use SVC13 code 3 with the
following sequence of option codes specified:

OPTION
CODES

X'80'

X'04'

X'Ol'

FUNCTIONS PERFORMED

Gain control rights for task.

Assign APU to queue.

Release control rights.

10.8.5 Task Scheduling on the Auxiliary Processing Unit (APU)

Normally, taslks are executed according to queue discipline and
task priority. Consequently, it is possible to control the order
of task eXE~cution on an APU priority or priority-enforced queue
by changing t~ask priorities through SVC6 mechanisms.

48-038 FOO R02 10-35

When minimal task context switch time is desired, a no-priority
discipline can be used. Controlling the order of task execution
on the APU no-priority queue may be accomplished by preempting
(stopping) the current active task, rescheduling the task to the
rear of the queue, and

• selecting the next task from the front of the queue for
execution or

• selecting a task (by name) on the queue for execution.

To schedule the current task to the rear of the queue, use SVC13
code 3 with the following sequence of option codes specified:

OPTION
CODES

X'80'

X'20'

X'08'

X'Ol'

FUNCTIONS PERFORMED

Gain control rights for task.

stop APU task execution and reschedule current task
to rear of the queue.

Send APU start directive (X'Ol') specified in
SV13.DOP field to select the task at the front of
the APU ready queue for execution.

Release control rights.

To preempt the next ready task, the~eby explicitly selecting the
next task to be run, use SVC13 code 3 with the following sequence
of option codes specified:

OPTION
CODES

X'80'

X'20'

X'lO'

X'08'

X'Ol'

10-36

FUNCTIONS PERFORMED

Gain control rights for task.

stop APU task execution and reschedule current task
to rear of the queue.

Select designated task on the queue (changing the
pointer in the task queue head to point to the
task).

Send APU start directive (X'Ol') specified in
SV13.DOP field to start task.

Release control rights.

48-038 FOO R02

10.B.6 Auxiliary Processing Unit (APU) Queue Mark Off

An APU queuE~ can be marked off with or without remapping
respective LPUs. To mark off an APU queue without remapping, use
SVC13 code 2 with the following sequence of option codes
specified:

OPTION
CODES

X'BO'

X'02'

X' 01'

FUNCTIONS PERFORMED

Gain mapping rights for task.

Ma.rk queue off.

Release mapping rights.

To mark an APU queue off and remap respective LPUs to queue 0,
use SVC13 code 2 with the following sequence of option codes
specified:

OPTION
CODES

X'BO'

X'OB'

X'02'

X, 01'

FUNCTIONS PERFORMED

Gain mapping rights for task.

Map queue's LPUs to queue o.

Mark queue off.

Release mapping rights.

4B-03B FOO R02 10-37

CHAPTER 11
USER SUPERVISOR CALL 14 (SVC14)

11.1 SVC14: USER

SVCl4 gives a user-written task a means of accepting an SVC from
a part of itself; e.g., a subroutine or other module.

Format:

SVC
SVC

14,A(X2) or
l4,A(FX2,SX2)

RXl,RX2 FORMATS
RX3 FORMAT

The address field of SVCl4 is not interpreted by 05/32 but can be
defined by the task. Normally, it might be used to point ~o a
parameter block.

If the user SVC trap enable bit in the current task status word
(TSW) is enabled, SVCl4 is enabled; otherwise, SVCl4 is
considered an illegal SVC.

When SVCl4 i~s executed, the operating system stores the effective
program addrE~ss of the SVCl4 second argument into the SVC14
address pointer location in the task user-dedicated location
(UDL) . A TS~i swap then occurs, us ing the SVCl4 TSW swap area in
the UDL. ~rhe interpretation of this SVC is then left to the
user. The effective program address is calculated as for an RXl,
RX2 or RX3 instruction. This facility permits the user to build
a virtual executive task (e-task) within a single task
environment.

OS/32 AIDS, the OS/32 debugging utility, makes use of SVCl4;
consequently,. a task should not use SVCl4 while the OS/32 AIDS
software is in operation.

See the OS/3;~ Application Level Programmer Reference Manual for
more informa1:.ion on enabling an.d handling SVCl4 task traps.

48-038 FOO R02 11-1

CHAPTER 12
DATA COMMUNICATIONS DEVICE·-DEPENDENT INPUT/OUTPUT (I/O)

SUPERVISOR CALL 15 (SVC15)

12.1 SVC15: DATA COMMUNICATIONS DEVICE-DEPENDENT INPUT/OUTPUT
(I/O)

SVC15 allows a user-written task to access data communications
devices at the device-dependent level. See the 08/32 Basic Data
Communications Reference Manual for more information.

48-038 FOO R02 12-1

Access privileges
APU

assigning it queue
byte bit dE~f in it ions
commands
contr 0 1 opt: ions
error codefs
error status cCldes
function c()des
hardware status field
initializat:ion and
start-up

mapping functions

mapping op1:ions field
opt ion cod :Lng sequences
processing status field
queue mark off
queue mark on
queue processing status
field

setting quc:lue discipline
task scheduling

Arithmetic fault
fixed point. division by
fixed po into quat ient
overflow

floating pc)int division
by 0

float ing PC) int
overflow/underflow

interrupt
ASCII decimal to binary

conversion
ASCII hexadecimal to binary

conversion
Auxiliary processing unit.

See APU.

Bare disk
assignment
devices

Buffer
full bit
length of last buffer
start/buffler end address

Buffer queue, using

Calling task
Central processing unit.

See cpu.
CMDLENGTH option
Command function requests

48-038 FOO R0I2

0

INOgX

7-5
10-1
10-35
10-28
10-~5
10-23
10-29
10-32
10-1
10-27

10-34
10-16
10-16
10-19
10-34
10-11
10-37
10-34

10-14
10-35
10-35

3-19

3-19

3-19

3-19
3-17

3-53

3-53

7-34
7-19

6-27
2-43
2-21
2-42

6-1

6-43
2-17

Conditional proceed
CPU

model numbers
CTOP

D

Data communications access
methods

definitions
Data transfer requests

function code bit
positions

function code format
Device-dependent status
Device-independent status

E

Extended function codes
control operations
data transfer operations

Extended options
communication dependent
device-dependent
device-independent
field
local and remote
communications

nonmagnetic tape devices

F

File size field (SVC7.SIZ)
File types

contiguous
data communications
buffered-terminal manager

extendable contiguous
indexed
long record
nonbuffered indexed

Function codes
data transfer requests
data transfer requests,
gapless

general service functions
I/O bus switch driver

G

Gapless I/O operations
buffer queues
device-dependent status

codes
device-independent

status codes

2-16

3-105
3-10

'7-29
7-30

2-5
2-5
2-20
2-19

2-26
2-28
2-21
2-22
2-22
2-22
2-43

2-23
2-22

7-32

7-30

7-30
7-30
7-30
7-30
7-30
2-18
2-5

2-36
3-1
2-46

2-33
2-40

2-39

2-39

IND-l

Gapless I/O operations
(Continued)
trap-causing events

Gapless mode
parameter block format

H

Halt I/O

I,J ,K

I/O bus switch
driver
master request

contention mode
multiple master request

contention mode
normal request
contention mode

programming
considerations

Series 3200
I/O proceed
IN-QUEUE
Input/output. See I/O.

L

Logical processing units.
See LPUs.

Logical unit. See lu.
LPUs
lu

M

Magnetic tape devices
MASTER CONNECT
Multiple buffer chain

N

NACPRIVlLEGE option
Nonmagnetic tape devices

O,P

Options

IND--2

APU control
APU mapping
CMDLENGTH
coding sequences
extended
extended load
from the SPT
NACPRIVlLEGE
privileged task
start

2-42

2-33

2-18

2-46

2-44

2-44

2-44

2-48
2-44
2-14
2-33

10-2
2-19
2-38

2-25
2-48
6-31

7-5
2-22

10-23
10-19
6-43

10-34
2-21
6-14
3-106
7-5
3-80
6-43

options (Continued)
XSVCl Link

OUT-QUEUE

Q

Queuing I/O requests

R

Read APU
assignment and mapping

information
Read APU/APU queue status
Read key
Read/write key fields
RTL
Run-time library. See RTL.

S

Set status
Single buffer chain
Single buffer ring
Software enabling of manual
density selection

SPT
system options

Standard function code
gapless

Status codes
device-dependent
device-dependent

(magnetic tape)
device-independent
I/O bus switch
mag tape

device-dependent, gapless
magnetic tape

device-dependent
Supervisor call. See SVC.
sve

error messages
status codes

SVCO: user-written SVC
SVCl: I/O requests

data transfer requests
gapless I/O operations

SVC2: function codes
SVC2: general services
SVC2 code 0: make journal
entries

SVC2 code 1: pause
SVC2 code 2: get storage

option X'OO'
option X'80'

SVC2 code 3: release storage
SVC2 code 4: set status

option X'OO'
option X'80'

SVC2 code 5: fetch pointer
SVC2 code 6: convert binary

2-33
2-33

2-15

10-2
10-5
7-3
7-31
1-2

3-17
6-28
6-28

7-31
3-98
3-106

2-36

2-21

2-30
2-19
2-47

2-39

2-31

1-6
1-8
1-9
2-1
2-5
2-33
3""-1
3-1

3-5
3-7
3-9
3-11
3-13
3-14
3-17
3-19
3-20
3-21

48-038 FOO R02

to ASCI I
option
option
option

SVC2 code
option
option
option
option
option
option
option
option

SVC2 code
clock

option
option
option
option

SVC2 code
SVC2 code
wait

X'40'+n
X'80'+n
X'CO'+n
7: log message
X'OO'
X'20'
X'40'
X'60'
X'80'
X'AO'
X'CO'
X'EO'
8: interrogate

X'OO'
X'40'
X'80'
X'CO'
9: fetch
10: time

date
of day

SVC2 code 11: interval wait
SVC2 code 14: internal reader

option 0
option 1
progranuning

cons ider a.t ions
status cod.es

SVC2 code 15: convert ASCII
to binary

option X'OO'
option X' 4,0'
option X, 8.0'
option X'CO'

SVC2 code 16: pack file
descriptor

descriptor area
option X'OO'
option X'lO'
option X'2:0'
option X, 4,0'
option X'SO'
option X' SIO'
privileged task options

SVC2 code 17: scan mnemonic
table

building BL table
execution of

SVC2 code 18: move ASCII
characters

option X'OO'+n
option X'BO'+n

SVC2 code 19: peek
option X'OO'
option X' 01'
option X'02'
option X'03'
option X'04'
task opticlns from Tca
task wait status bit

def initiclns
SVC2 code 20: expand
allocation

SVC2 code 21: contract
allocation

48-038 FOO R02

3-24
3-26
3-27
3-27
3-28
3-30
3-31
3-31
3-31
3-31
3-32
3-33
3-33

3-34
3-35
3-37
3-36
3-37
3-39

3-42
3-45

3-47
3-49

3-51
3-51

3-53
3-54
3-56
3-57
3-59

3-60
3-63
3-69
3-71
3-73
3-70
3-73
3-76
3-80

3-82
3-84
3-84

3-90
3-92
3-93

3-98
3-104,
3-110
3-112.
3-1181
3-100

3-116

3'-121.

3-123

SVC2 code 23: timer
management

option X'OO'
option X'lO'
option X'20'
option X'40'
option X'80'

SVC2 code 24: set accounting
information

SVC2 code 25: fetch
accounting information

fixed-size
variable size

SVC2 code 26: fetch device
name

SVC2 code 27: memory
management

SVC2 code 29: unpack file
descriptor

SVC3: end of task
SVC5: fetch overlay
SVC6: error codes
SVC6: functions

assign LPU (SFUN.LPU)
change priority (SFUN.PM)
connect (SFUN.OM)
delay start function

(SFUN.SOM)
delay start options

(SFUN.SOM,SFUN.SOM)
direction (SFUN.DOM,

SFUN.OSM)
end task (SFUN.ECM,

SFUN.EOM)
freeze (SFUN.FM)
load task
load task (SFUN.LM)
nonresident (SFUN.NM)
nonrollable (SFUN.NRM)
queue parameter (SFUN.QM)
receive lu (SFUN.XRM)
release (SFUN.RM)
rollable (SFUN.RLM)
send data (SFUN.OM)
send lu (SFUN.XSM)
send message (SFUN.MM)
s int (SFUN. 1M)
start (bit pOSitions 29,

30, 31)
start function (SFUN.SIM)
start options (SFUN.SOM)
suspend (SFUN.SM)
task resident (SFUN.HM)
thaw (SFUN.TM)
transfer to CPU (SFUN.TC)
transfer to LPU (SFUN.TL)
unconnect (SFUN.OM)

SVC6: inter task
communications

error codes
error codes (SVC6.STA)
extended load options
free send message for
receiving task

function code (SVC6.FUN)
function code field

3-124
3-135
3-133
3-129
3-127

3-138

3-140
3-141
3-142

3-143

3-145

3-148
4-1
5-1
6--46

6-39
6-35
6-36

6-43

6-44

6-10

6-10
6-38
6-11
6-12
6-41
6-42
6-34
6-36
6-41
6-41
6-17
6-35
6-25
6-37

6-42
6-43
6-43
6-17
6-16
6-37
6-40
6-39
6-38

6-1
6-46
6-45
6-14

6-19
6-5
6-7

IND-3

message buffers
multiple buffer chain
multiple buffer ring
send message for calling
task

send message for
directed task

send message for sending
task

wait status bit
definitions

wait status field
(SVC6.TST)

SVC7 code 0: fetch
attribute/bare disk devices

SVC7 code X'FF80': extended
close function

SVC7: file handling services
access privileges
bare disk assignment
change terminal mode

SVC7: file handling services
data communications
access methods

device attributes field
device rename
device reprotect
error codes
file size (SVC7.SIZ)
function code (SVC7.0PT)
privileged tasks
read/write key fields

SVC7: functions
allocate
assign
assign to pseudo device
change access privileges
checkpoint
close
delete
extended assign to
spoolfile

extended close
fetch attributes
fetch logical attributes
fetch time and date
attributes

rename
reprotect
spoolfile assign to

pseudo device
temporary file
allocation/assignment

VFC
SVC9: load TSW
SVCIO: overlay loading

error codes and meanings
messages

SVC13: APU services
APU byte/bit definitions
APU control options
APU hardware status

(SV13.APS)
APU mapping options
field (SVC13.0PT)

INO-4

6-26
6-31
6-29

6-18

6-20

6-17

6-45

6-44

7-37

7-42
7-2
7-27
7-34
7-29

7-29
7-18
7-39
7-40
7-44
7-32
7-5
7-33
7-31

7-11
7-12
7-27
7-13
7-16
7-15
7-15

7-26
7-42
7-16
7-23

7-20
7-14
7-14

7-24

7-13
7-19
8-2

9-3
9-1

10-28
10-23

10-27

10-19

APU processing status
APU queue mark off
APU queue processing
status

assigning APU to a queue
bit definitions/APU
optlons

SVC13: APU services
bit definitions/APU
processing status

code 0
code 1
code 2: APU mapping
functions

code 3: APU commands
(SVI3.DOP)

code 3: APU control
error codes for hardware
status

error status codes
(SV13.ERR)

function codes
initialization and
start-up

queue mark on
setting APU queue
discipline

task scheduling on an APU
typical option coding

SVC14: user
SVC15: device-dependent I/O
System macro library

utility commands
System pointer table. See

SPT.

T

Task control block. See TCB.
Task scheduling APU
Task eta.tueword._ See TSW.
TCB
TEMPF I LE command
Test and set
TSW

bit definitions
function and description

u

UBOT
Unconditional proceed
User SVC14
UTOP

10-11
10-37

10-14
10-35

10-12

10-11
10-15
10-2
10-5

10-16

10-25
10-20

10-29

10-32
10-1

10-34
10-34

10-35
10-35
10-34
11-1
12-1

1-3
1-4

10-35

3-21
7-13
2-8
8-1
8-2
8-4
8-3

3-21
2-16

11-1
3-10

48-038 FOO R02

v

Vertical forms control. See
VFC.

VFC 7-12

Wait I/O 2-16
device-dependent status 2-20
device-independent status 2-19
extended options 2-21

Wait only 2-17
Write key 7-3

X,Y,Z

XSVC1 Link option 2-33

48-038 FOO R02 IND-5

PERKIN-EL~~ER

PUBUCATION COMMENT FORM

We try to make Clur publications easy to understand and free of errors. Our
users are an Int61gral source of Information for Improving future revisions.
Please use this p~ostage paid form to send us comments. corrections.
suggestions. etc:.

1. Publication number _ _ ... _. __________ , ____ ._ .. _..,_~ ____________________ _

2. Title of publlcation ______________ . _______________ . ____________ _

3. Describe. priovldlng page numbers. any technical errors you
found. Attach additional sheet If neccessary.

4. Was the pubilication easy to understand? If no. why not?

5. Were IIIustra1tlons adequate?

6. What additions or deletions would Y4)U suggest? __________________ _

7. Other commonts: ______________________________________ _

---_. ---
From _________ . ___ . ______________ . ___ Date ______________________ .

Position/Title ____________ . _______ . __ _

Com pa ny ______ . _________________ . __ __

Address

&417

STAPLE STAPLE

FOLD' FOLD

----------------------------~

ATTN:

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER
Data Systems Group
106 Apple Street
Tinton Falls, NJ 07724

TECHNICAL SYSTEMS PUBLICATIONS DEPT.

FOLD

STAPLE

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

STAPLE

643:

