
PERKIN-El-MER
I . I
I

I
!
l
I

i

OS/32
MUL Tl-TERMINAL MONITOR (MTM)

Reference Manual

48-043 FOO ROO

The 1nformat1on in this document 1s sub1ect to change without notice and should not be
construed as a commitment by the Perkin-Elmer Corporation. The Perkin-Elmer Corpo­
ration assumes no responsibility for any errors that may appear on this document.

The software described 1n thos document os furnished under a license, and it can be used or
copied only 1n a manner permitted by that tocense. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain 1n The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no respons1b1lity for the use or rellabihty of its
software on equipment that 1s not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Computer Svstems Division 2 Crescent Place, Oceanport, New Jersey 07757

© 1981 by The Perkin-Elmer Corporation

Printed in the United States of America

TABLE OF CONTENTS

PP.EFACE

CHAFTEBS

1 GfNE~AL tESCFIFTION

1 • 1

1 • ::
1. ~.,
1 • 3. 2

1. ~

1 • f
1 • IS • 1
1. E. 2
1. ~. 3
1. 6. u
1.6.5
1. 6. 6

1.7
1 • 7. 1
1.7.2
1.1.2.1
1.7.3

1.7.4.1
1.7.4.2
1.7.4.3
1.7.4.i.+

INTROtUCTION

MTM CPERATICN

US~R INFORMA'IICN
M'IM tevices
Authcrization
Trans~itting ~essages

Number of T~rminal Users

:-IT!" ENVJF'ON~EN1S

MTr Terminal ~cje~

Inferactive 'Ia!~ to 1erminal Mode

lCADING ~. TASI(

MTM SFFCI'L FEATU~fi
Command Substitution System (CSS)
The H~Jp ?acility
Progra~ revelc~ment Commands
Spoolir:g
s~curity a~d Acc~ss Prctection of Disks
Signcn CSS

CONVENTIONS
From~t Conventicn$
TErminal C0nventions
Using tre ~reak Key
Command Conventious
File Conventions
Private Account Numbers
Group Account Numbers
System Account Numbers
Eile Cescrit:-tors

48-C43 F00 ~oc

ix

1-1

1-1

1-2
1-3
1-~

1-3
1-3

1-4
1-5
1-5

1-s

1-6
1-:,
1-6
1-6
1-7
1-7
1-7

1-'
1-7
1--'
1-9
1-10
1-10
1-10
1-10
1-11
1-11

i

CHAPTERS (Continued)

2 MULTI-TERMINAL MONITOR (MT~) USER COMMANDS

IN'TROOUCTION 2-1

2.2 ALLOCATE COMMAND 2-2

ASSIGN CO!IJMAND 2-5

RF'ILE COMMAND 2-10

BIJ.S COMMAND 2-11

R?EAK COMMANC 2-12

'S~ECORD CO:"!MAND 2-13

B~ILD AND ENDB COMMANDS 2-14

CAllCEL C0'.1MAND 2-1 ':i

CLOSE CG!'!!1.~ND 2-17

2. 1, CONTHWr COMl1ANC 2-P

2.12 2-1,}

DISPLAY ~C~01~TING CO~MAND 2-20

C ISP LA Y ~: ~ V IC F'. S C 0 ~ lH ~ D 2-.21

DISPL~Y ~FLOAT co~~AN0 2-'"1 ~ .. ,

? • , '5 DT~PLAY FILES \.OM~A~O 2-2 'J

2. 17 OlS~LAV FLO~T co~~AND 2-2'l

2.18 CISPLfY LO CCM~A~D 2-30

2.19 DISPLAY PActAMSTERS COMMA~u 2-32

2. '2 0 DISPLftY ~EGI~TERS CCMMA~D 2-37

nrSPLAY TI~E COMMAND 2- -. 8

DISPLAY USERS COMMAND 2-3~

ENA!3LF COMMAND 2-uo

EXAMI~E COt1MAND ~-1~,

2.2s FFilF COM!1ANC

ii

CHAPTERS (Continued)

2.27

2.29

2.30

2.31

:.32

2. 3 3

2.35

2.36

2.37

2. 38

2.40

2.41

2.42

2.43

2.44

2.49

2.so

2.51

HJ:'!P COMMAND

!NIT COMMAND

L0AD COMMAND

LCG COMMAND

MESSAGE COMMANt

MODIFY COM!HND

CPTICNS CO!'IMANt

PhUSE COMMANC

P R F V F N T C 0 11 M A N J:

PRINT COMM.r..ND

PUNCH COMMANC

REN.f..l'!E COMMAND

PEPROT~CT CO~MAND

RS~IND AND RW COMMANDS

RVOLUM~ C0!1M~NC

SEND COMMA~D

SIGNOFF COMMAND

SIGNON CO'.'lMAND

START CO!'!."!ANC

TASK COMMAND

TEMPFILE COMMJi. ND

VOLUWF.: COMM~.ND

WFILE COIHLri.ND

Xr..LLOCATE COM~A~D

XDELETF COMl'!ANt

48-043 FOO ~00

2-4 ~

2-48

2-:;0

2-52

2-s 3

2-55

2-SG

2-57

2-58

2-59

2-60

2-6,

2-52

2-63

2-66

2-67

2-58

2-7')

2-71

2-7 2

2-7u

2-7 5

2-76

2-73

iii

CHAPTERS (Continued)

3 PP.OGRAM CEVELOPMENT

3. 1

3.4

~ I: -. -

I~TRODUCTION

CPEATING A SOURCE PROGRAM
Creating a Data File

EXECUTING A FRCGRAM

MODIFYING A FRCGRAM

RE-EXECUTING ~ MODIFIEC PROGRAM

3.~ EXECUTING MULTIFLS PROGRAMS AS A SINGLE
F80GRA~

3.8

3.9

3.9.2
3.9.3
3.~.4

3.q.:
3 • 9 • 6
3.9.7

HG~ TO F.ECOVE2 FROM ERRORS

ASSIGNING LOGICAL UNITS

PROGRAr C~VELOfMENT COMMANDS
ADD Corrmani
COMPILE. Co"!lmaT'!d
CO!'!PLINK Command
EDIT Ccmmand
ENV Command
EXEC Comma!'ld
LIN!(Command

3.9.7.1 Link S@quences
3.9.8 LIST Com~a~d
3.9.9 RF~GVE Commanrj
3.q.10 FUN Comma!'ld

3. 1 c SAXPLE pp~;R~~ CEVELC~MENT SESSICNS

4 ~ULTI-TER~INAl MONITOB CMTH) BATCH ?ROCESSING

4. 1

4.2
4.2.1
4.2.2
4.2.3
4 • .2. 4
4.2.5
4.2.6

4.3

4.4

I~TRODUCTION

BATCH CCMMANI:S
ISQUIPF Co!!lmand
LCJG Command
PURGE Comm'ind
SIGNOFF Command
SIGNON Command
SUBMIT Command

BATCH JOB SUE~ISSION ~SING THE SPOOLEP

ERFOR H.n.NDLIN~

EFFECT OF RESTaICTEC DISKS CN 3ATCH Joas

3-1

3-1
3-~

3-4

3-5

3-'5

3-j

3-10

3-12
3-1 3
3-15
3-19
3-22
3-24
3-?6
3-29
3-30
3-3 3
3-34
3-35

3-37

4-1

4-1
4- 3
4-1.o
4-6
4-7
4-a
4-10

4-12

4-12

4-12

iv 48-043 FOC PQO

CHAPTERS (Continued)

5 COMMAND SUBSTITUTION SYSTEM (CSS)

5. 1

5.3

s.u
5. 4. 1
=.u.2
5.4.3
5.4.4

5.5.1
5.5.2
r:.5.3
=.s.4
5.5.5
5.5.6
5.5.7
s.s.a
5.5.9
5.5.10
5.5.11
5.5.12
5.5.13
5.5.14
5.5.15

5.5
5.f.1
: .• 11.2
5.6.3
:.fi.4

5.7

5.8

s.10
5.10.1
5.10.2
5.10.3

GENERAL DESCRIPTION

CALLING A CSS FILE

USF. OF PARAMETERS

USE OF VARIABLES
Types of Variables
Naming Variables
Defining Variables
Reserved Variables

COMMANDS £XECUlABLE WITHIN A CSS FILE
$BUILD an1 SENDB Commands
SCLEAR Command
SCONTI~UE Command
SCOPY and $NCCOPY ~ommands
SEXIT Command
SFPEE Command
$GLOBAL Comma::J.d
$JOB and 3TERMJOB Commands
SLOCAL Comm;::i.nd
SPAUSE Command
SSET Command
SET CODF Command
SSKIP Command
$~./AIT Command
SWPITE Command

LCGICAL IF CCMMAND3
End o: Tas~ Code Testing Commands
File Fxistence Testin~ Commands
Parameter Existence Testing Commands
SELSF. Ccmmand

SGOTO AGD $LABEL COMMANDS

SIFEXTFNSION CO~MA~D

SIFVOLU~F COMMAND

LOGICAL IF COMMANDS COMPARING TWO ARGUMEijTS
SIF ••• ECUAL, SIF ••• NEQUAL Commands
SIF ••• GEEATEF, SIF ••• NGREATER Commands
SIF ••• LESS, SIF ••• NLESS Commands

48-043 FOO FOO

5-1

5-2

5-2

5-5
S-5
5-5
s-:;
5-6

5-'5
5-7
5-8
5-9 is-, 0
5-11
5-12
5-13
5-1 4
5-16
5-17
5-18
5-1 9
s-20
s-21
r:;-22

s-22
5--:: 3
5-24
5-2 5
5-25

5-27

5-29

5-30

5-30
5-32
S-32
5-33

v

CHAPTERS (Continued)

6 SPOOLING

6.1

6.2

INTRODUCTION

INPUT SPOOLING
!np11t Card 6. 2. 1

6.2.2 Submit Carj - Addinq Batch Jobs to the
Batch Queue

6.3 OUTPUT SPOOLING

6.U SPOOLING ERRORS

APPENDIXES

A !'!Tl'! COii~AND SUM~A PY

B PP.OGRAM DEVELOP~ENT COMMAND SUMMA RY

c css C0!'11'1AND SUMMA RY

D MTM ~ESSAGE SUMM~.RY

E css !'!FSSAGE SUMMARY

F PROGFAM DEVELOP MF' NT M£~SAGE SUl'l~AP.Y

FIGURES

3-1 COMPILE Commar1d Functicns in th-9 LanQuage
Environment

3-2 COMPILE Command Functicns in the ~ulti-iiodule
Environment

3-3 CO!"PLINK Command Functions in the Lanc;uage
Environment

3-u CO~PLINl< Command functions in the Multi-Module
En v 1.ronmen t

3-5 EXEC Command. Functions in the Lanc;uage
Environment

3-6 EXEC r::omma nd Functions in the Multi-!'!odule
'Snvironm'!nt

3-7 LI~K Ccmmand functions in the Language
En viror. men t

5-1

1)- 1
6-1

6-4

6-6

3-17

3-13

3-20

3-21

3-27

3-29

3-31

vi 48-043 FOG ROO

FIGURES (Continued)

3-8

3-9

3-1C

TABLES

1-1
1-2

2-1
2-:
2-3
2-4

3-1
3-2

3-4

LINK Command Functions
Environment
RT~ N Command Functicn in
Environ111ent
RUN CotTomand Functicn in
Enviror.men4:

MTM PROMPT CONVENTIONS
TERMINAL CONVE!TIONS

in the Multi-Module

the language

the Multi-Module

ACCESS PRIVILEGE CC~PATIBILITY
DISPLAY PAf-AM~TEBS COMMAND FIELDS
TASK OPTION PIT tEFINITICNS
~AIT STATUS BIT CEFINITICNS

PROG~AM DSV~LOPMENT LANGUAGE COMMANDS
PROGFA~ CEVFLOPM!NT cor.MANt AVAILABILITY
FROCBA~ D~VELOPMEN! DeFAULT VARIABLE SETTINGS
AND LOGICAL UNIT ASSIGNMENTS
PROGRA~ tEVELOFME~T CO~MANCS THAT COMPILE,
LINK, A~r EYECUTE

48-043 FOO ROO

3-32

3-3~

3-36

1-8
1-9

2-7
2-3 2
2-33
2-_jC:.

3-1
3-o

3-1 (j

3-37

vii

PREFACE

The information about the Perkin-Elmer Multi-Terminal Monitor
(MTM) in this manual is written for the MTM user and can also be
heltful to the system operator and system programmer.

Chatter 1, which is reorganized, is a general description of the
MTM system, containing information on MTM system requirements,
MTM features, and various conventions~ Chapter 2 describes MTM
user commands, and Chapter 3 explains the program development
commands. Chapter 4 describes batch processing under MTM.
Cha~ter 5 describes the command substitution system (CSS) and
includes CSS commands. Chapter 6 describes spooling.

Appendix A sum~arizes the MTM user commands. Appendix B is a
summary of the program development commands. Appendix C
summarizes the CSS commands, ar.d Appendix D is an MTM command
message summary. Appendix £ is a summary of CSS messages, and
Aprendix F is a summary of program development command messages.

This manual replaces S29-591. Revision ROO adds Chapter 3,
describing the new program development commands. The signon CSS,
USERINIT.CSS, is· made more flexible. Vertical forms control
(VFC) is added, and changes ar~ made to several MTM user
commands. A Help facility enables a user to access information
about MTM and program development commands. For batch
proc~ssing, the SUEMir ccmsand is upgraded, and the batch signon
requirements are simplified. Global and local variables are
added tc CSS, requiring four new commands: SFREE, $GLOBAL,
SLOCAL, and SSET. Also, there is a reserved global variable for
end of task codes, and there are reserved variables for assigning
logical units in a program develcpment environment. The SWAIT
command is also added tc CSS. Logical units can now be
automatically assigned.

This revision appiies to the OS/32 R06.1 software release and
higher.

ix

The following publications can be used in conjunction with this
manual:

PUBLICATION
MANUAL TITLE NUMBE~

CS/32 AIDS User's Guide 529-374

OS/32 COPY User Guide 529-676

OS/32 LINK Reference Manual 48-005

CS/32 EDIT User Guide 48-008

OS/32 ~ulti-Terminal Monitor CMTM)
System Planning and Operator Reference Manual 48-023

OS/32 Operator Feference Manual 48-030

OS/32 System $upport Utilities
Reference Manual 48-031

OS/32 Supervisor Call (SVC)
Reference Manual 48-038

OS/32 Application Level Programmer
Reference Manual 48-039

32-3it Systems User Documentation Summary 50-003

For further information on
32-bit manuals, see the
Sum~ary.

t~~ contents of all Perkin-Elmer
32-9it Systems User Documentation

48-043 FOO POO

1.1 INTRODUCTION

CHAPTER 1
GENERAL DESCRIPTION

Multi-terminal monitor {MTM) permits several terminal users to
share system resources. Each user perceives that a computer is
at his disposal.

Concurrent access from online terminals is useful durinq
application task ievelopment because it reduces turn~round time.
Other advantages are that concurrent access can be used to extend
the type of data processing at an installation. Jsing the
system-supplied interactive softw~re means that editing, tasK
development, and documentation can be done simultaneously.
Furthermore, if the syste~-supplied interactive tasks are
supplemented by us~r tasks Cu-tasks): e.g., custoruer-vritten
tasks, MT~ ~P?lication becomes limitless, supporting a mixture of
terrr.inal users such as clerks, and software development and
op~ration personnel.

1.2 MTM OPERATION

Like all general purpose, multi-access, time sharin~ systems, ~T~

requires operatio~s involvement from the installation using it.
This involvement i~cludes those functions that accompany MT~ wnen
it is tailored to ~ specific installation along with dynamic
!unctions performed when MT~ is operating.

Examples of the MT~ tailoring functions are:

• Cataloging authorized us€rs

• ~ystem generation (sysgen)

• Fstabli~hinq an installation's procedures

Examples of dy~amic functions ~re:

• System console control

• reripheral device supervision

• ~pcole1 output dissemination

48-043 FOO ~00 1-1

Generally, tailoring functions are performed and maintained by
the custo~er's system support group responsible for making
computing facilities available to system users. Th3 dynamic
functiofis are performed by a system operator during system
operation and are distinct from those functions performed by
terminal us~rs.

The system operator can perform all the functions described in
the OS/32 Op~rator ~eference Manual, together with operator
functions required to administer MTM. At any time, the system
operator may be initiating and controlling multiple foreground
tasks and one background task while operating MTM.

1.3 USER INFORMATION

Under MTM control, a terminal user can:

• load and execute interactive tasks;

• sub~it ~ultiple batch job requests;

• perform proqram development;

• perfor~ program debu~ging~

• create, edit, and manipulate files~

• build, ~odify, and execute command streams;

• use spoolin7 functions;

• communicate with other terminal users; and

• communicate with the system operator.

A terminal user is either interactinq with MTM itself, via
ccmmands, or interactinq with tasks supplied with the system or
dev~loped by the installati~n. All of the vendor-supplied
languaqe translators can be operated as interactive tasks by a
terminal user. ~dditionally, a terminal user can use the
vendor-supplied support software programs such as: 05/32 Edit,
OS/32 Copy, and OS/32 ~IDS. It is the MTM software that performs
multi~l~ online accessibility; e.g., ti~e sharing, resourc~
mana~ement, batch scheduling, etc.

Th?. terminal user can be local or re~ote. T~e interactive
terminals for local users are directly connected to the computer
and do not require telecom~unication devices. Interactive
terminals f~r remote users require connection via
telecommunication equipment and data communications software.
Basic data communications supports both dedicated and dial-up
teleco~munication terminals.

1-2 48-043 FOO ROO

1.3.1 MTM Devices

ThEse devices can be used at any local or remote installation:

• Video Display Unit (VDU) SSOB

• VDU 1 , 0 C'

• VDU 120J

• VtU 1 '2 5 •)

• VDU 12 ~· 1

• Fer kin- Elmer SIGM~ , I') terminal

• !" 3 3 Teletype

• !'135 Teletype

• Nonediting VDU

• Carousel

• Carousel 300 and 3 00 EFC

1.3.2 Authorization

The user must b~ authorized tc use MTM facilities. During the
signon procedure, th@. user ~ust supply an account number and a
pass~ord that were rreviously catalo~ed within an MTM file called
the autho~ized user file (AUF). The ~UF is updated and
mair.tained by an MTM-supplied task that can be initiated only by
th~ ~yste~ operator. The terminal user can taen interact with
MT~ from a terminal.

1.3.3 Transmitting Messages

MT~ can transmit messages between terminal users, between a
ter~inal user and the system operator, and from the system
operator to all or designated terminal users.

1.3.4 Number of Terminal Users

~n installation can have up to 64 terminal users or 64 concurrent
batch str~~ms. The sum of terminal users and batch streQms
cannot ~xceed 64.

LlE-043 FOO ROO 1-3

1.4 MTK ENVIRONMENTS

The HT~ terminal user controls a ~ingle task at the terminal and
has the ability to run jobs through the batch streams. Using the
facilities provided by MTM, the user can load a task, start the
task, and then interact with the task during its execution. MTM
provides interactive and batch user environments.

In an interactive environment, the user has the ability to
interact with a task executing at the t~rminal. In this
environment, a dialogue is carried on between the user and MTM.
~TM waits f~r the user commands and processes them.

Gnly on~ interactive task at a time can be initiated by each ~Tr.
terminal. However, all interactive tasks initiated by ~T~
terminal users are executed concurrently. During interactive
task ~xecution, a terminal user can direct a comm1nd to and
receive a r~sponse from MT~ itself.

In ~ batch ~nvironm~nt, a number of jobs are run under a full set
of ~utomat~d proce~ures. Once a batch job is accepted for
execution, no further interaction takes place with the initiatinq
terwin!l ~~~r. Reques~s for multiple batch jobs can be sub~itted
by a user, a~1 the sa~e terminal can be used to initiate an
interactive task.

Unlike int~ractive tasks, requests for batch jobs will not
necessarily be initiated i~~ediately to ~TM. Instead, batch jobs
are queued by the system, ani then the queue of submitte1 batch
jots awaiti~g execution is serviced by the system. The number of
batch jobs that can be executing concurrently is specified by the
sy~tem operator.

A terminal ~sec can request on~ or more batch jobs to be run.
~TM maintains a crueue of sub1itted batch job~ and concurrently
pr~cesses a numter of bate~ jo~s specifi~~ during ~TM ~ystem

st~~t-up. A ter~inal U5er can monitor the 9rogress ~f a batch
jot by interrogating the MTM batch queu~. The returned status
will be either:

• twaitin~ executio~, or

If a job already has completed execution, the returned status
will be: no jobs found.

1-~

1.4.1 MTM Terminal Modes

An active terminal is defined to be in one of four t~rminal

modes. The current mode of the terminal determines wnich, if
any, MT~ terminal commands can be accepted. Thus, it is
important for the terminal user to be aware of the current mode
of the terminal. The user terminal is defined to be in one of
the following four ~odes:

• Command mode: No task is loaded, CSS
executing and BUILD is not in effect.
commands are accepted. An "*" prompt is
~ode.

procedure is not
All nontask-related
1isplayed in this

• Task loaded ~ode:
is paused. An "*"

rhe task was loaded but was not start~d,
prompt is displayed in this mode.

or

• Tas~ executing mode: A task vas started and is executing. If
started fro~ CSS, CSS mode is suspended. A "-" prompt is
displayed in ~his mode. If an interactive task •as started
and a data input is request~d by the task, then a ">" prompt
is displayed to the terminal user.

• CSS mode: A CSS crocedure is being built or executed. A "-"
~rompt is dis~layed ir. this mode. ~hen CSS terminates, the
terminal returns to command mode and a "*" prompt is output.
When a CSS procedure is being built, a "9>" prompt is
displayed.

1.4.1.1 Interactive Task to Terminal Mode

Wh~n a tas~ issues an SVC1 I/O operation to an active ter~inal

that i~ in task executing ~~de, MT~ treats the I/Oas a wait
operation. This is cf no concern for tasks that do SVC1 wait
I/0. Y~wev~r, users with tasks that issue SVC1 proceed I/0 (read
or write) should be awar~ that MTM suspends the task until the
I/r is complet€d. Then MT~ posts an SVC1 proceed I/0 completion
trar on the task's task ~ueue and allows the task to continue.
c~~~letion tra~ posting occurs only if the appropriate bit is set
in the TS~.

1.5 LOADING A TASK

The dynamic nature of OS/32 memory management guarantees loading
of a task irrespective of its size unless the task is greater
than the available task memory. If not enough memory is free to
load a task, then some other task is temporarily rolled out if
roll support is included in the operating system at sysgen time.
If MTM is sysgened with roll influence enabled, then MrM
co~tinually monitors the state of the roll queue to ensure that
rolled out tasks aLe given the opportunity to be rolled back in.
MT~ ensures equity for all its terminal operators by assigning
all the interactive tas\s an equal priority. ~atch tasks can
hav~ user-assigned ~riorities.

48-043 ?OO roo 1-5

1.6 MTM SPECIAL FZATURES

The following features are designed to make MTM easier ani more
efficient to use:

• Command substitution system (CSS)

• ~elp facility

• Prooram development commands

• Spooling

• Security and access protection cf disks

• Signon CSS

1.6.1 Co•mand Substitution Syste• (CSS)

A t~rminal user can build a command file on a disk. Once built,
a simple directive to ~TM ~ill cause MTM to obtain its directives
from the command file. When invoking the command file, the
termin~l u~er can supply parameters to the command file that can
be usAd to dynamically modify command execution. Therefore, a
single ter~inal input can easily initiate complex operations.

1.6.2 The Help Facility

The P.elP facility provi1es a user ~nline access to documentation
for M!~ and ~ro;ram develop~ent commands. This information is
obtained by entering the HELP com~and.

1.6.3 Program Development Commands

The program devel~pment commands are ~n integrated set of
standard CSS procedures that pe~fo~m two ~ajor functions:

• maintain information that remains constant throu~hou~ a
development effort; and

• keeo files current throughout a development effort in term~ of
checkin~ source, object, an1 image modules to ensure that
their dates are current.

1-f 48-043 200 ~00

1.6.4 Spooling

Both input and output spooling are provided for terminal users.
Tasks never ~eed to be delayed awaiting card readers, card
punching, or line printing because a batch job can be submitted
via the Spo~ler. The job runs unattended and output goes to the
Spocler.

1.6.5 Security and Access Protection of Disks

Privately owned disks can be marked
op~rator to offer an MTM use!
protection of files. The owner of
eual:le access of the disk to
operator, and non-MTM tasks.

i.6.6 Signon CSS

on restricted by the system
ccmplete security and access

the disk can restrict or
other MTM users, the system

MTM users can build a special CSS file, USERINIT.CSS, within
their private ~ccounts. The CSS ~ile can contain commands to
load and start a terminal session, assign logical units, and
specify a language environment. At signon time, MTM searches all
online 1isks within the user's private account for the file
USERINIT.CSS and automatically executes it.

1.7 CONVENTIONS

These conventions used by ~TM are detailed in the following
sections:

• Fro~pt conventions

• T~r~inal cor.ventions

• Command conventions

• Statement syntax conventions

• File conventions

1.7.1 Prompt Conventions

A prompt is output to a ter~inal device to indicate that the MTM
system is ready to accept input from the user. The prompts
dis~layed on the terminal devices are shown in Table i-1.

48-043 FOO ROO 1-7

TABLE 1-1 MTM PROMPT CONVENTIONS

I PROMPT I USE I
!=~==!

*

>

Indicates MTM system is ready to
accept a command.

Indicates a request for input
data.

B> Indicates ~ request that input
data be copied to a BUILD file.

Indicates that the system is
ready to accept a command while
an interactive task is active. A
new CSS cannot be initiated at
this time. A user can instruct
MT~ to suppress or enable the
appearance of this prompt while
an interactive task is running;
but not ~hile CSS i~ running.

1.7.2 Terminal Conventions

7~e conventions in effect for various terminal devices are shown
in Table 1-2.

1-8 48-043 FOO ROO

TABLE 1-2 TERMINAL CONVENTIONS

OPERATION I CONVENTION I
===!
Delete a line I To delete a line simultaneously de- I

I press the CTRL and character x ~eys I
I for all terminals except TEC 455 VDU I
I which uses the number sign (#). Basic I
I communications support both # and I
I CTRL x for line deletion for asynchro-1
I nous remote devices. I
I I

Delete a character I To delete a character, depress the I
I Backspace key. For terminals ~ithout a I
I Backspace key, simultaneously deoress I
I the CTRL and character h keys. I
I I

~nc an input line I To process an input line, depress the I
I carriaqe return CCR) key. I
I I

Communicate with MTM I To communicate with MTM while an I
I interactive task is executing or when I
I a BUILD com~and is active, depress the I
I Break ~ey and enter a com~and. I

1.1.2.1 Usin9 the Break Key

If the data request prompt (>) or a BUILD request prompt CB>) is
displayed an1 the user wishes to communicate with MTM, depress
the Break key nnd the system is ready to accept a command.

If input or output to the terminal is in progress, the 8reak key
interrupts the process. For example, if the DISPLAY or EXAMINE
command was entered and the output is in progress, depressin9 the
Freak key halts the output in progress. The system is then ready
to accept a command.

If CSS is currently running, the Break key interrupts the
execution of CSS. Th~ system is then ready to accept a command.
Once the co~mand has executed, CSS will resume operation unless
the entered command affects the status of CSS.

42-043 FOO PQO 1-9

1.7.3 Command Conventions

Commands are accepted one line at a time. ~ultiple commands can
appear on the same line, but each must be separated by a
semicolon. ~ultiple commands are executed sequentially. If an
error is e~countered in a multiple command line that was entered
from a terminal, the commands following the command in error are
ignored by MTM. For a command line entered from a CSS, the
commands on the command line are skipped until a STES~JOB is
found. A character string preceded by an asterisk in column 1 is
a comment.

1.7.4 File Conventions

A file is a collection of data stored on a direct access storage
device. ~TM provides terminal users with the capability of
creating and editing files in an interactive manner. Once
created, files re~ain on the system until they are deleted by the
owner. However, during the life of a file, ownership can change,
based on the needs of an installation or project. File ownership
is established and maintained by ~TM via an account number
mechanism.

1.7.4.1 Private Account Numbers

During the signon procedure a terminal user must supply the
private account number in addition to the correct password.
Whenever a terminal user allocates a file during an MTM session,
the MTM syste~ automatically associates the file with the
terminal user's account number. A file associated with the
terminal user's account number is referred to as a private fil8.

The owner of orivate files has unrestricted access to those files
a~d can update, execute, access, or delete as required.
Further~ore, no other termir.al user can gain access to another
user's private files. However, to supply greater flexibility for
file sharinq, MTM supports the concept of group files.

1.7.4.2 Group Account Numbers

Authorized MT~ terminal users are assigned both a private account
nu~cer and a group account number within the AUF. Unli~e the
private account number, a terminal user is not required to submit
the group account number during the signon procedure. In fact,
a terminal user does not need to know the group account number.
The group account number will generally be the private account
nu~ber of a different authorized terminal user. By using the
RENA~E co~mand and supplying the letter 'G' in the account field,
a terminal user can change a private file to a gr~up file.

1-10 48-043 ?00 BOO

As an illustration ~f the use of group files within an
install~tion, consider a normal development activi~y consisting
of two or more members working under a project leader's control.
During the early development phase, each member would probably
work alone, using private files. rtowever, during the project
integration phase~ the majority of the private files wouli be
switched to the project leader's private account number which was
defir.ed as the group account for the individual memb~rs.

Once a private file has been switched to a group fil~, ~he
original rrivate owner no longer possesses unrestricted file
manipulation capability. Inste~d, the file can be read or
executed by the original owner and any other terminal user with
th@ same group number. Updating or deleting the file can now be
performed by any terminal user who signs on with the group
acc-ount number.

Although the use of group files provides a somewhat flexible file
sharing capability, it does not address the problem of universal
sharing. for this purpose, MTM supports the concept of system
files.

i.7.4.3 System Account Numbers

In a way similar to switching a private file to a group file, a
ter~inal user can supply the letter 'S' in the file account field
in~tead of the letter 'G'. The letter S indicates that this
private file is now considered a system file. System files have
ar. account number of O. They can be read or loaded by ~ny

authorized MTM terminal user. However, updating or deletin~ a
system file can be performed only by the system operator.

Wi~hin an M7~ ~nvironment, the system operator is viewed as more
privileged than terminal users with respect to file ownership.
The ~y5tem operator can allocate system files and can also
designate an ~xistinq fil~ to n~ made priv~te, group, ~r syst~~.

Similar to a terminal user, the system operator uses the RENAME
command to change file own~rship.

1.7.4.4 File Descriptors

File descriptors are required ~ith some commands.
descriptor for ~TM generally i11cludes four fields:

• tisk volume name er device name

• filena;11 e

• File extension

• File class

48-CU3 FOO ?00

A file

1- 11

The format of the file descriptor is:

r{ voln: ';] t{P}] L filename G§xtJ] I G
us~r voln: s

Para11eters:

voln:

filename

.ext

F

1-1:::

is the name of the disk volume on which the
file resides, or the name of a device. V-::iln
can be from one to four characters. The.first
character must be alphabetic and the
remaining, alphanumeric. This parameter need
not be specified. If this parameter is not
specified, t~e default volume (set with the
VOLU~E ccmmand) is used. When voln is not
specified, the colon separating voln and
filename must not be entered. ~here voln
refers to a device name, a colon ~ust follow
the device name, and neither the filename nor
the extension is entered.

is the name of a file. A filename consists of
from one to ei9ht alphanumeric characters, the
first cf which must be alphabetic.

is a 1- to 3-character alphanumeric strin1
preceded by a period specifying the extension
to a filename. If the period (.) and
extension are omitted, a default extension
appropriate to the particular command in which
the fd appears is appended to the filena~e.

If the pe~iod is specified and the extension
is omitted, the default is blanks.

indicates a private file. A private file has
the same account number as the terminal user
who created the file. All of the facilities
for file manipulation are available to the
cwner cf this file. No other user has access
to this file unless it is also a 7roup file.
That is, the account number of the user who
createq the file is the same as some other
user's group account nu~ber. P is the defaul~
value if neither P, G, nor S is indicated in
th~ co111mand.

indicates a group file. A group file, which
is a user's private filer is accessible to
oth~r terminal users for read only. The groun
file acccunt number in the AUF indicates to
t~e system ~hich users can access this group
file.

s indicates a system file. A system file has
~ccount number o. A terminal user can only
read a system file.

The follo~ing are v~lid examples of file descriptors:

P~CK:FPED.TSK is a private file FRED.TSK on volume PACK.

FP.ED.~SK is the same file as in the previous example,
if PACK is the default user volume (private
file).

PBC:FOO/G is a group file with filename FOO with default
extension, on volume ABC.

CA RD:

~.: 8.C/G

48-C.43 '!='00 ?00

is a device name.

is a group file 8, with ~xtension C on volume
;. .

1-13

CHAPTER 2
MULTI-TERMINAL MONITOR CMTM) USER COMMANDS

2.1 INTRODUCTION

ThP following steps comprise a basic MT~ terminal ~ession:

v ~3J~

LO~D ~~IT3~

S FILE1

S!G~o~·

48-043 FOO ?00

Identify yourself to MTM by signing
on to the system. Soter your
us~rid, account number, 2nd a valid
p~ssword.

Establish the volume you will be
working on by entering the VOLU~E
command and a valid volume na~e.

Lodd the editor task into memory by
enterin~ LO~D an1 the task name.

Initiate ~xecution of the ta3k
by enteri~; the START com~and.

Sdve all ~dta appended to your file
by enteri~~ the SAVE command.

Ter~inate executi?n of the t~sk by
enterinq END.

Fnd the terminal $ession by signing
off.

2-1

ALLOCATE

2.2 ALLOCATE COMMAND

The ALLOCATE
co~munications

manager.

Format:

!,l,lOCA TE f d,

Parameters:

fd

CONTI';1'.JOiJS

fsize

IN~"t':X

!.reel

2-2

com:nard
line

crea te<S
control

a direct
bl-,ck for

access file
a buffered.

or. a
terminal

£QMTIGUOUS, f size C{ ke.ys }]

C ~oo.•

llDEI ar::l}J] ar:ze}J] ~[t~ze}]]
~{::}]

UH~[f,::cl}J] at~ze}J] [{:::}]

i~ the file descriptor of tne device or file
to ~.a all".>cated.

specifies that the file type to be all~cated

is contiguou5.

is a deci~al number indicating file siz~ which
is r~quire1 far contiguous fiies. It
srecifies the total allocation size in
256-byte sector~. This size may be any value
u~ to the nu~ber of contiguous free sectJrs
existing on the specified volume at the time
the command is entered.

specifies that the file type to be allocat8d
is indexed.

i::; a decimal number specifying the L>qi::al
r~cord length of an indexed file or Ir hr.\
device. It cannot exceed 65,535 bytes. Its
def,,,. ult i::; 126 bytes. It may optionally be

48-043 ~')0 liOO

bsize

isize

ITAM

keys

Functional Details:

followed by a slash {/) whi=h delimits lrecl
from bsize.

is a decimal number specifying the number of
256-byte sectors ccntained in a physical block
to be used for buffering. This parameter
cannot exceed the maximum block siz~

established at sysgen time. If bsize is
omitted, the default value is one sector.
When the file type is ITAM, bsize is the
buffer size in bytes.

i~ a decimal number specifying the indexed
block size. If isize is omitted, the default
value is one sector. Like bsize, isize cannot
exceed the maximum block size established at
sysgen time.

specifies that the device to be allocated is
a communications device.

specifies the write and read protection keys
for the file. These keys are in the form of
~ hexadecimal halfword, the left byte of which
signifies the write key and the right byte,
the read key. If this parameter is o~itted,
both keys default to o.

To assi~n an indexed file, sufficient room must exist in system
space for two buffers, each of the stated size. Therefore, if
bsize or isize is very large, the file might not be assignable in
some situations. ~t sysgen time, a maximum block size parameter
is ~stablished in the system, and bsize cannot exceed this
constant.

The ALLOCATE command can be entered in command mode, task loaded
mode, and task executing mode.

Examples:

AL JANE.TSK,C0,64

48-G43 FOO ROO

Allocates, on the default user
volume, a contiguous file named
JANE.TSK whose total length is 64
sectors (16kb} with protection keys
of o.

2-3

AL ~300:AJM.BLK,IN,132/4 Allocates, on volume ~300, an
indexed file named AJM.BLK with
logical record length of 132 bytes,
data block size of four sectors, and
default isize of one sector. rhe
protection keys default to o. When
this file is assigned, the system
must have 2.2Skb of available system
space for ~uffers.

AL THISFILE,IN,256/4/2 Allocates, on the default user
volume, an inlexed file name1
THISFILE (blank extension) ~ith a
logical record length of 256 bytes,
a data block size of four sectors,
an index block size of two sectors,
and protection keys of o.

AL VOL1:AJ~.OBJ,IN,126 Allocates, on volume VOL1, an
indexed file named AJM.OBJ whose
logical record length is 126 bytes.
The buffer size and indexed block
size default to one sector ani the
protection keys default to o.

AL V01:AJM.OBJ,IN,126//3 Allocates, on volume V01, an indexed
file named ~JM.OBJ with logical
record length of 126 bytes. The
data block size defaults to one
sector, the index block size is
three sectors, and the protection
keys default to o.

2-u 48-043 Foe ao~

ASSIGN

2.3 ASSIGN COMMAND

The ASSIGN co~mand assigns a device, file, or communications
device to one of a task's logical units.

Format:

~SIGN lu,fd ,

Parameters:

lu

fd

access
privileges

lreys

SVC15
SVCF

48-0U3 FOO ROO

access privileges

SR-II

SRO

ERO

is a decimal number specifying the lo~ical

unit numbet to which a device or file is to be
assiqne·.i.

is the fil~ descriptor of the devi=e or file
to be assigned.

are the desired access privileges.
default acce~s privileges are:

SP.J for contiguous and indexed files

sao fer private files within the qroup or
system acco Ul"l t

~'QC fer devices

signifies the read/write protection keys of
the file or device to be assigned.

signifies that the specified device is to be
assiqned for SVC 15 access. SVCF is the
hexadecimal equivalent of SVC15 and can also
be ~pecifi~d. This option pertains to
co~~unications devices only. If SVC 15 access
is ~9~Cified, v~rtical forms control cannot ne
specified.

2-5

VFC

If

specifies the use of vertical forms control
for the assigned lu. If this parameter is
specified, SVC 15 access cannot be specified.
If this parameter is omitted, there is no
vertical forms control for the device assigned
to the specified lu.

Full VFC support is in effect only if output
is to a line printer.

NOTE

the access privileges and keys
are omitted and VFC is parameters

specified,
belonging to
be omitted.

the positional commas
the omitted parameters can

If the access Privileges an1 VFC
parameters are specified and the keys
parameter is omitted, the positional
com~a bElongin; to the keys parameter can
be omitt~d.

Functional Details:

Access privileges can be one ot the following:

SRO
FRO
s~o

£WO
SRW
SRS~

ERS~

ER~

sharable read-only
exclusive read-only
sh~rabl~ write-cnl1
exclusive write-only
sharable read/write
sharable r~ad, exclusive write
exclusive read, sh~rable write
exclusive read/writ~

When the SVC 1~ option is specifi~d, only SRw, SRE~, £~S~, and
ER~ access privileges are accepted.

The DISPLAY LU command is used to determine the current access
privileqes of all assignP.d units. The command is rejected if the
requested access privilege cannot be granted.

2-6 48-043 FOO ~00

When a task assigns a file, it mi9ht want to prevent other tasks
from accessing that file while it is being used. For this
reason, the user can ask for exclusive access privileges, either
for read or for write, at assignment time. This is called
dynamic protection because it is only in effect while the file
remains as~igned.

A file cann~t be assi9ned with a requested access privilege if it
is inco~patible with some other existing assignment to that fil~.
h request to open a file for exclusive write-only is =om9atible
with an existing assignment for SRO or ERO, but is incompatible
with a~y existing assignment for other access privileges. Table
2-1 illustrates compatibilities and incompatibilities between
acc~ss privileges.

TABLE 2-1 ACCESS PRIVILEGE COMPATIBILITY

I I ER SW I ER 0 I SRO I SR W I SWO I EWO I SR EW I ER iii I
!==!

EFSW

ERO

S.80

SRW

SiJO •

EWO

SR'S~

ER\./

LEGEND

* compatible
incompatible

•

•

•

* ...

,. ... • • •

* * •

* • •

*

•

The keys format is a 4-1igit hexadecimal number. The left two
digits signify the write protection key and the right two digits,
the read protection key. If omitted, the default is 0000. These
keys are checked against the appropriate existing keys for the
file or device. The command is rejected if the keys are invalid.
The keys associated with a file are specified at file allocation
time. They ~ay be changed by a REPROTECT com~and or through an
SVC 7 reprotect function call.

48-C43 FOO ROO 2-7

If the values of the keys are within the range X'01' to X'FE',
the file or device cannot be assigned for read or write access
unless the requesting task supplies the matching keys. If a key
has a value of X'OC', the file or device is unprotected for that
access mode. Any key supplied is accepted as valid. If a key
has a value of X'FF', the file is unconditionally protected for
that access mode. It cannot be assigned for that access mode to
any user task, regardless of the key supplied.

Some example~ of protection using keys are:

wRITE ~EAD
KEY KFY

00 00

FF FF

C7 oc

\7

08 FF

27

MEANING

Completely unprotectei

Unconjiti~nally protected

Unprotected for read, conditionally
protected for write (user must
su~ply write key=X'07')

Unconiitionally protected for write,
conditionally protected for read

Un~rotected for write, uncon-
dition!lly protected for read

Conditionally protected for
read ~nd ~rite

both

An assigned direct access file is positioned at the eni of the
file for acce~s Drivileges SWO an1 EWO. It is positioned at the
beqinninq of the file for all other access privileges. The
com~and is rejected if the specified lu is already assigned. To
reassign an lu for an active task, the lu must first be closed.

The ASSIG~ command can be enter~d in task loaded mode.

Examples:

AS 2,FILE.DAT,EW0,99AA

2-8

Assigns a disk file to lu 2. The
E10 access privilege causes the file
to be positioned at the end. It i~
c~nditionally protected with write
and r~ad keys of 99AA. New recoris
are append~d.

48-043 ?so son

AS 2,TF.ST.JOB,VFC

AS 2,TEST.JOP,,,VFC

AS 2,TEST.J05,,YFC

~S 2,TEST.JOP,SRO,VFC

Invalid Examples:

AS 2,TFST.JOB,CCFF,VFC

Assi9ns
Vertical

a disk file to lu
forms control is in

2.
use.

Access privileges and keys
parameters are ?mitted along with
their respective commas.

Assig:is a
Vertical
A.ccess
parameters
positional

disk file to lu
forms :;ontrol is in
privileg~s a n:l

are omitted
commas are specified.

2.
use.
keys
but

Assi9ns a di~k file to lu 2.
Vertical forms =ontrol is in use.
The positional comma belonging t?
tne omitted access privileges
parameter must be specifie:l.

Assigns a disk file t~ lu ~.

Ve~tical forms control is in effe=t.
The Keys parameter, along with the
positional comma, is omitted. The
privilege is shared read only.

I:ivalid assignment because the
positional comma belonging to the
~mitted access privileges parameter
must be ~pecified.

AS 2,T~ST.JOE,~BO,VFC,3VC1~

48-043 FOO ROO

Invalij assignment because vertical
forms control and SVC 15 access are
mutually exclusive and cannot be
specified in the same assignment.

2-9

BFILE

2.4 BFILE COMMAND

The BFILE command backspaces to the preceding f ilemark on
magnetic tapes, cassettes, and direct access files.

Format:

fil:.ILE fd, lu

Parameters:

fd

lu

Functional Details:

is the file descriptor of the device or file
to be backspaced to a file~ark.

is the lu to which the file is assigned. If
lu is specified without fd, the operation is
performed on the lu reqardles~ of what i~
assigne·'i to it.

Th~ BFILE command can b~ enter~d in task loaded mode.

Examples:

BF 1

EF ~300:AJM.OEJ,4

2-10

Causes the device or file assigned
to lu 1 to bacxspace one filemark.

Caus~s file ~JM.ORJ, that is
assigned to lu 4 on volume M300:, to
backspace one filemar~.

48-043 F'JO R:JO

BIAS

2.5 BIAS COMMAND

The BIAS command sets a base address for the EXAMINE and MODIFY
commands.

Format:

{add:ess} .ai,.s _

Parameters:

adriresz

Functional Details:

is a hexadecimal bias to be added to the
address given in any subsequent EXAr:INE or
MODIFY command. For a u-task, the address
must b? a valid address that exists for the
u-task. For an e-task, the address can be any
vali1 address in the system. The addresses
rust bP aligned on a halfword boundary. If
addr~~s is omitted, it is assumed t~ be the
reginning nf the task.

sets nias to 0 for a u-task and to the
rhysical load address for an e-task.

A PIAS co~mand overrid~s all previous SIAS commands. The user
should ent~r a BIA~ comman1 if the current value is unknown.

Tht BIAS command can b~ entered in task loaded mode and task
executing mode.

Example:

BI 100 Sets bias to 100

48-043 FOO ROO 2- 11

BREAK

2.6 BREAK COMMAND

The BREAK command returns a break status (X'8200') to a task with
an outstandinq I/O on the MTM terminal.

Fermat:

Functional Details:

ThP. BREAK command can be entered in task executing mode.

2-12 48-C43 FOO ROO

BR ECORD

2.7 BRECORD COMMAND

The BRECOPD co~~and backspaces to the pr~:eding record on
magnetic tapes, cassettes, and direct access files.

Format:

Parameters:

fd

lu

Functional Details:

is th~ file descriptor of the device or file
to be backspaced one record.

is the lu to which the file is assigned. If
lu is ~pecified without fd, the operation is
performed on the lu re~ar11ess of what is
a!"siined to it.

The BRECOPD command can be entered in task loaded mode.

Examples:

BR 1

BR M300:AJM.OBJ,4

48-043 F'OO ~00

c~uses the device or file assigned
to lu 1 to backspace one record.

Causes the file AJM.OEJ, assigned to
lu 4 on volume M300, to backspace
one record.

2-13

BUILD
and EMDB

2.a BUILD AND ENDB COMMANDS

The BUILD and EYDB commands copy data from the comm~nd inp~t
device to the fd specified in the BUILD command.

Format:

.aQILD { fldu}

•

•
ENDE

Parameters:

fd

lu

APPEND

2-14

GAPP END]

i~ the file descriptor of the device or file
to -hich d~ta is copied. If fd does not
ccntain an extension, .CSS is use1 as a
1~fault. If a blank extension is desired, the
period following the filename must be ty9ed.
If f~ refers to a direct access fil~, an
indexed file by that name is allocated with a
logical record length e~ual to the command
buffer len~th established at sysgen ti~e, a
bloc~si~e or 1, and keys vf 0000. If the
specifi~d fd already exists, that fd is
deleted and a n~w fd is allocated.

is the lu to which the file is assiqned. A
temporar7 file is allocated and the BUILD data
i~ copied to it. When the ENDB is
encounta~ed, the temporary file is assiqned to
the s~ecified lu of the loaded task. This
form of the B~ILD command is only valid when
a task is loade1.

allows the user to append data to an existing
fd. If the fd does not exist, it is
allocated.

48-043 FOO R00

Functional Details:

Lines entered from the ter~inal after the BUILD com~and are
treated as data, and are copied to the specified device or file
until an ENDB command i~ encountered. iNDB may be followed by
until an ENDE command is encountered. ENDS may be followed by
other ccmm~ncts in the ccmmand line. Data followinQ the ENDB
comrnan1 is treated as a comffiand. If any data follows the BUILD
command on the same line, it is treated as a comment and no
action is taken. The BUILD command can be entered from the
tPrrrinal only if CSS is not active. It can b~ entered in
co~~and, tas~ load~d, and task executing modes.

Example:

EUILD ASSN
~s 1 , CR:
AS 2, OUT.OBJ
AS 3, PR:
AS 5, CON:
ENDB

U8-C43 FOO RCO 2-15

CANCEL

2.9 CANCEL COMMAND

The CANCEL command terminates a task with an end of task code of
2 55.

Format:

f!NCEL

Functional Details:

The normal response to t~is co~mand is:

Siqnon name FND OF TASK CODE=255 ~PUTIME=utime/ostime

The CAN~EL command can be entered in task loaded mode and task
ex~cutin; mode.

2-1.:. 48-Gu3 FOO ROO

CLOSE

2.10 CLOSE COMKAHD

The CLOSE command closes (unassigns) one or more files or devices
as~igned to the currently selected task's loqical units.

Format:

Parameters:

lu

ALL

Functional Details:

decimal numbers signifying the logical units
to be closed.

specifies that all logical units of the task
are to be closed.

Closing an unassigned lu does n~t produce an error message. A
CLOSE command can only be entered if the task is dormant or
pause:d.

The CLOSE com~and can be entered in task loaded mode.

Examples:

CL 1,3,5

CLO~E A

48-043 FOO BOO

Close~ loqical units 1, 3, and ~ of
the: task.

Closes all logical units of the
tdsk.

2-17

CONTINO E

2.11 CONTINUE COMMAND

The CONTINU~ command causes a paused task to resume operation.

For11at:

~QNTINUE (address]

Parameter:

address

Functional Details:

is a hexadecimal nu~ber that specifies where
the tas~ i5 to resume operation. If this
yarameter is not specified or is o, the task
resumes at the instruction followinq the
pause.

Tte CONTINJE command can be entered in task loaded mo1g.
Executinq this comman1 causes the terminal mode to be switched
fro~ task loaded mod~ to t~sk executin~ ~ode.

2-18 48-~43 fOO RO~

DELETE

2.12 DELETE COMMAND

The DELETE command deletes a direct access file.

Format:

Parameter:

fd ide~tifies ~~e file{s) t~ be deleted.

Functional Details:

The file being delP.ted must not be currently assigned to an lu of
any tas~. ~ file can be deleted only if its write and read
protection keys are 0 (X'OOOO'). If the keys are nonzero, they
can be changed using the REPROTSCT command. Only private files
can be deleted.

The DELETE command can be enter~d in command mode, task loaded
mode, and task executinq mode.

48-043 FOO ROO 2-19

I DISPLAY I
I ACCOUNTING I

2.13 DISPLAY ACCOUNTING CO!KAKD

The DISPLAY ACCOUNTI~G command displays accounting data collected
for a currently running or previously run task.

Format:

j2ISPLA Y ACCOUNT! NG [,{ f d }]
aser · eoJusole

Parameter:

fd is the file descriptor to which the accounting
information is displayed. !he user console is
the default.

Functional Details:

The DISPLAY ACCOUNTING command displays this information:

USER TIME hh:mm:ss.Ms
SVC TIMF hh:mm:ss.ms
~AIT TI~E hh:mm:ss.~~
POLL ~IME hh:m~:ss.Ms
I/0 n
ROLLS n

The ~!SPLAY ACCOUNTING command can be entered in co~m~nd mode,
(providing at least one task has been run during the current
terminal session), task loaded mode, and task executing mode.

2-20 48-043 FOO ROO

DISPLAY
DEVICES

2.14 DISPLAY DEVICES COMMAND

The DISPLAY DEVICES command displays to the specified fd the
physical address, keys, online/offline state, and the volum~ nam~
(for online direct access devices) of all devices in the system.

Format:

,I2IS PLAY ~EVI CES ({ f d }] r user eonscle

Parameter:

f d

Functional Details;

is the file descriptor specifyinq the file or
device to which the display is routed. If fd
is omitted, the default is the user console.

The DISPLAY DEVICES command can be entered in :ommand mode, task
loaded ~ode, and task executinq mode.

48-043 FOO ROO 2-21

Example:

D D
NAME DN KEYS
NULL 0 0000
CON 2 0000
CR 4 0000
PRT 62 0000
PTRP 1 3 0000
PR 0 0000 SPOL
SPL 0 0000 SPOL
CRT1 30 0000
CRT2 1 u 0000
MAG1 85 0000
DSC1 C5 0000 MUD1 PFOT CDI ct
DSC2 C7 0000 FIXD RES CDIR
DSC3 C6 0'100 MT l1 SYS
l:'SC4 07 0000 FIX4
DSCS E6 0000 OFF
t67A FC 0000 V67A CDIR
*

In the DISPLAY DEVICES output, columns 1, 2, and 3 contain the
device name, device number (address), and keys, respectively.
Column 4 is only definPd for pseudo-print (spool), ITAM
Ccor.munic~tions), and jirect access devices. !he characters SPOL
specify that the devices are ~seudo-print 1evices used in
spoc ling.

Fo~ direct access devices, coluTn 4 contains the characters OFF
to indicate that the device is offline. If online, the volume
na~e is output in column 4. For write-protect~d disks, column 5
contains the characters PROT. For MT~ users, if the disk is
write-prot~cted, column 5 ccntains the charact~rs SYS. If the
disk is restricted, column : contains the characters RES. If the
seccndary directory option is enabled, the last column contains
the charact~rs CDIP..

2-22 48-043 FOO El00

DISPLAY
DFLOAT

2.15 DISPLAY DFLOAT COMMAND

The DISPLAY DFLO~T command displays
contents of the double precision
associated with the loaded task.

to the specif iei fd the
floating point registers

Format:

QI S Pl A Y fil:1 O AT [,{ f d } J
user c.on.sol•

Parameter:

f d

Functional Details:

is the file descriptor specifying the file or
device to which the contents of the double
precision floating point registers associated
with a user-specified task are displayed. If
fd is omitted, the default is the user
console.

The user-~pecified task should have been built with the DFL~AT
option at Link time.

The DISPLAY DFLOA! command can be entered in task loaded and task
executing ~ode.

Example:

D DFL
0,2 00000000
4,6 00000000
8,A 00000000
C,E OOOOOOOC

48-043 FOO ROO

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000001)

00000000
00000000
00000000
00000000

2-23

I
I.
I
I
I

DISPLAY
FILES

2.16 DISPLAY FILES COMMAND

The DISPLAY FILES command permits information from the directory
of one or more direct access files to be output to a specified
fd.

Format:

l!ISPLAY IILES , [L£ .. :::n:$er ,,J] [filename] E ~·tJ]
1 [E}] ~L .. :dconsoJ]

NOTE

Please see Functional Details for variations on the DISPLAY
FILES command syntax.

Parameters:

voln:

filename

ext

2-24

specifies that all file~ with the user account
number be displayed reqardless of what volu~e
they reside on. Entering the col~n with part
of a £1len~me limits the file search to
filenames with the specified characters.

is ~ 1- to 4-character name of a disk volu~e.
The first character must be alphabetic, the
rem~ining alphanumeric. If voln is o~itte1,
the default is the user volume.

is a 1- to 8-character name of a file.
first character must be alphabetic,
remaining, alPhauumeric.

:rhe
\:he

is a 1- to 3-character extension to the
filename.

48-0£0 FOO ROO

p

s

G

f d

Functional Details:

indicates that information is requested for a
private file.

indicates that information is requested on a
system file; default is private files only.

indicates that information is requested for a
qroup file; default is private files only.

is the file descriptor specifying the file or
the device to which the display is output. If
fd is omitted, the default is the user
console.

A hyphen (-) in the command format requests that all
startinq with the characters preceding the - or followinq
are displayed, subject to any restrictions specifiei in
extension, account number, and fd fields. For example:

files
the -

the

CAL32-

-.MTM

CH-.043

displays all files whose first five characters
are C~L32.

displays all files named CAL32 with
extension.

any

displays all files with the the extension Mr~.

displays all files beginning with CH, with an
extension of 043.

The charact~r * recuPsts that all files with matchinq characters
in the same pcsition(s) as those entered are displayed. For
example:

CAL**CAL

****32.0BJ

48-043 FOO ROO

dis~lays all files between five
char~cters in length whose
characters are CAL32.

and
first

eight
five

displays all files, with a filename eight
characters long, whose first three and last
three characters are CAL.

displays all files with a filename containing
six characters whose fifth and sixth
characters are 32 and whose extension is .OBJ.

2-25

The characters * and - can be combined in the command format, as
described previously, to further delimit files displayed. 2cr
example:

CAL**1-

... **32.0-

displays all files whose first three
characters are CAL, and whose sixth character
is 1.

displays all files, eight characters long,
whose last two characters are 32 and whose
extension begins with an o.

A colon entered with part of a filename and a 1ash displays all
filenames with the user account number starting with the
specified characters, regardless of what volume they reside on:

D F, :J1'1-

A colon entered with a specified extension displays all files
under the user account number with the specified extension,
regardless of what volume they reside on:

D F,:.J"'

An example of the display produced by the DISPLAY FILES command
is:

D F,FIXD:-.TSK/S

VOLUME= FIXD
FILEN.l\!'!E 'EXT TYFE LSN;TH ~EYS START /~LR C:!EAT£D WRITTEN ACT
DSKSPACE TSK co 9 **I) 0 E'* 6/09/79 6/09/79 0
OS COPY TST<' IN 2~6 *"00 21 6/09/79 ~/)9/79 'J
JFC TSK co d1 **00 E3* 4/07/79 4/07/7~ ')

COBOL TS!< co 26 **00 1 34* 7/27 /7 8 0/00/00 0

D F,TAS-/-

VOLUME= V679
FIL EN.a 11E EXT TYF'E LENGTH t< £Y S STAiiT/NLR C~EATED wRI TT EN ACT
TAS css IN 80 * *O 0 1 6/09/79 6/09/79 1 ~
TASKRT TSK co 105 0000 218 A* 4/07/79 4/07/79 22

D F,-.-/S

VOLUME= V67B
FI LENA :iE EXT TYPE LENt;TH KEYS START/:1LR CREATED WRITTE:i ACT
INA1 IN 1~6 **00 0 6/09/79 6/09/79 0
INA2 css IN 100 **00 1 6/09/79 6/09/79 0

48-043 FOO ROO

For contiguous files, TYPE is CO, LENGTH is the number of sectors
allocated to the file in decimal, and START/NLR is the starting
sector number in hexadecimal, followed by *•

For indexed files, TYPE is IN, length is the logical record
length in decimal, and the START/NLR is the numb.er 0£ logical
reccrds in decimal.

ACT is the associated user's account number. It is the user's
acccunt number for private files, the group account number for
group files and 0 for system files.

The DISPLAY FILES command can be entered in command mode, task
loaded mode, and task executing mode.

Examples:

D F

D F,CAL32.TSK/-

D F,-/-

D F,,MA~1:

D F,M300:

D F,M300:A-.TSK

D F,-.,PR1:

C F,CAL**1-.-

48-043 FOO ROO

displays to the user terminal all
files with the user's account ~umber
on th~ default user volume.

file CAl32.TSK in the displays
private, group, and system accounts.

displays all files in the
group and system accounts
default user volume.

private
on the

displays, to the device MAG1, all
files with the user•s account number
on the default user volume.

displays, to the. user's terminal,
all files with the user's account
number on volu~e M300.

displays all files on volume M300
with first character A and extension
TSK in the user's account number.

displays all files on the default
user volume in the user's account
number with blank extension,
regardless of filename. The display
is routed to device PR1:.

displays, to the user's terminal,
all files that start with CAL,
contain the character 1 in the sixth
position, have any extension and are
in the user's account number.

2-27

D F,M-:TASK.S*

D F,-:TASK.-

2-2~

displays to the user's terminal the
files named TASK th2t hav~ on~ or
two character extensi?ns starting
with the character :. ~ separate
display of these files is done for
each online 1isk volume whose name
starts with the letter M.

displays to the user's terminal the
files n~med TASK, with any
extension. A separate display of
thP-se files is done for each online
disk volume in the system.

48-0~3 200 0.00

2.17 DISPLAY FLOAT COMMAND

Th~ DISPLAY FLOAT command displays
contents of the sin;le precision
associated with a the loaded task.

Format:

QISPLAY f:I,.OAT [,{ fd }
user con:sol•

Parameter:

DISPLAY
FLOAT

to the specifiei fd the
floating point registers

fd is an optional file descriptor specifying the
file or device to which the display is output.
If td is omittej, the displ~y is output to the
user's t.erminal.

Functional Details:

The user-specified tasr. must be built with the FLOAT option
specified at Link tiree.

The DI~PLAY FLOAT ~ommand can be entered in ta~k loadei mode.

Example:

D FL
0,2
4,6
8,A
C,E

00000000
00000000
oocooooo
00000000

L.18-043 FOO ?00

00000000
00000000
00000000
00000000

2- 29

DISPLAY
LtJ

2.18 DISPLAY LU COMMAND

The DISPLAY LtJ command displays to the specified fd all assigned
logical units of the loaded tas~.

For•at:

.12ISPLAY I&U I,{ fd }l L \\Se: console J
Parameter:

fd is an optional file descriptor specifying ~he

file or davice to which the assigned logical
units are to be disolayed. If fd is omitted,
the cefault is the user console.

Functional Details:

The lu number, file or device name, current access privileges,
current record number, and percentage thru file are displayed.
The current record number and percentage thru file are disPlay~d

only for files.

LU FILE/DEVICF RECO~D THRU
1 ~~7A:EADPROC.CSS/OOO,SRO 30 15.03
3 CON:,SR\J
5 CON:,SEW
6 CON:,SF.W

1 M67A:RADPROC.CSS/~OO,SRO 200 100.03
3 CO~:,SRW
4 M67A:E2614586.001/000,SREW 1 100.0~

5 CON:,SRW
6 CON:,SRW

2-?0 48-043 FOO ROQ

The DISPL~Y LU com~and can be entered in task loaded mode and
task executing mode.

Example:

DISP L!J,FR:

48-043 FOO ROO

Displays assigned loQical units to
the printer device CPR:).

2- 31

I DISPLAY I
I PARAMETERS I

2.19 DISPLAY PARAMETERS COMMAND

The DISPt~Y FAPAMETERS command displays the parameters of the
loaded task.

Fermat:

~ISP LA y iA RA METERS I,{ f d }] l use·.c conso1e

Parameter:

fd is an optio~al file descriptor specifyinq the
file or device to which t~e display is output.
If f1 is omitted, the 1~fault is the user
console.

Functional Details:

Table 2-2 lists the field addresses and data displayed when ~he
DISPLAY PARAMETERS command is entered.

TABLE 2-2 DISPLAY PARAMETERS COMMAND FIELDS

FIELD I V~LUE I MEA~I~G I
==!

!ASK I xxxxxxxx I Task name, also user signon
I I name
I I

CTSW I xxxxxxxx I Status portion Of current rsw
I I

CLOC I xxxxx I Current location
I I

STAT I xxxxx I Task wait status
I I

TOPT I xxxxx I Task options
I I

~SSP I xxxxx I Current use1 system space
I I

2-32 48-043 FOO RO')

TABLE 2-2 DISPLAY PARAMETERS COMMAND FIELDS
(Continued)

I FIEI.D I VALUE I MEANING I
!==!

MUSP xxxxx

MXSP xxxxx

CTO? xxxxx

UTOP xxxxx

us or xxxxx

SLCC xxx

NLu xx

MPRI xxx

SVCL xxxx

Maximum used system space

Maximum allowed system space

'Iask CTOF

'Iask UTCF

Task. UBOT

'Iask starting location

Number of loqical units
(decimal)

Maximum rriority (decimal)

tefault volume ID

The addresses displayed as CTOP, UTOP, UBO!, and SLOC are not
physical addresses, but addresses within the task's own program
space. CLOC may be a program space address or a physical address
in a system subroutine being executed on behalf of the task. NLU
is given in decimal. SVCl is the ASCII system volume ID. The
fields CTOP, UTOP, UPOT, and SLOC are described in detail in the
0~/32 Application Level Pro9ra~mer ~eference Manual.

TCPT is given in hexadecimal. The definitions of task option
bits are listed in Table 2-3.

TABLE 2-3 TASK OPTION BIT DEFINITIONS

--·---
I BIT I MASK I M~ANING I
!==!
I 4 I 0800 COCO I O = Dynaffiic scheduling disabled
I I I 1 = Dyna~ic scheduling enabled
I I I
I 5 I 0400 0000 I J = Prompt disabled
I I I 1 = Prompt enabled
I I I
I 6 I 0200 0000 I O = I/C interpreted without VFC
I I I 1 = All I/O interpreted with VFC
I I I

48-043 FOO ROO 2- 33

TABLE 2-3 TASK OPTION BIT DEFINITIONS (Continue~)

-----------------~------·---------------------------------
I BIT I MASK MEANING
=======~==

I 7
I
I
I
I
I a
I
I
I 9
I
I
I 10
!
l
I 16
I
I
I 17
I
I
I 1&
I
I
I 19
I
I
I 20
I
I
I 21
I
I
I 22
I
I
I 23
I
I
' 24
I
I
I 25
I
I
I 26
I
I
I 27
I

I 0100 0000
I
I
I
I
I 0080 0000
I
I
I 00 i+O 0000
I
I
I 0020 ocoo
I
I
I OOOJ 8000
I
I
I 0000 uooo
I
I
I 0000 2000
I
I
I (JJOO 1000
I
I
I 0000 oaoo
I
I
I 0000 ouoo
I
I
I 0000 0200
I
I
I 0000 0100
I
I
I 0 1JOO OOAO
I
I
I 0000 ocuo
I
I
I onoo 0020
I
I
I 0000 co10
I

O = ~o extended SVC 1 parameter blocks
used (excludes communications I/0)

1 = ~xtended SVC 1 parameter blocks
used

O = New TSW for task event service
1 = No ne~ TSW for task event service

O = Task event all reqisters save1
1 = Task event partial registers saved

0 = Task event no reqister save1
1 = Task event reqister saved

O = U-tasic
1 = E-ta.sk

0 = AFPA!J.5E
1 = AFCONT

) = NOFLOAT
1 = ~inQlc floating point

I 0 = ~O~RE:.ID£NT
I 1 = RESIDENT
I
I O = SVC 6 control call
I 1 = Prev~nt SVC 6 control call
I
I O = SVC S communication ~all
I 1 = Prevent ~VC 6 co~municati6n call
I
I 0 = SVCPAUSE
I 1 = SVCCONT

' I 0 = NCFLCAT
I 1 = DFLOA'I'
I
I 0 = NCROLL
I 1 = ROLL
I
I 0 = No overlay
I 1 = 11 se overlay
I
I 0 = Accounting di~abled
I 1 = Accounting anabla1
I
I O = Task can issue i~tercept call
I 1 = T~sk cannot issue intercept call

US-043 FOO ROO

TABLE 2-3 TASK OPTION BIT DEFINITIONS (Continued)

I BIT I MASK MEANING
==

28 0000 OOC8 0 = No account privileges
1 = File account privileges

29 0000 ooou 0 = Rare disk assign not alljwed
1 = Sare disk assign allowed

30 0000 000/ 0 = Not universal , = Universal

31 0000 0001 0 = No ki:=ychecks
1 = Do k~ychecks

STAT is given in hexad~cimal. The definitions of wait status
bits ar~ ~hewn in Table 2-u.

TABLE 2-4 WAIT STATUS BIT DEFINITIONS

I 3IT I M.l.SK I MEAIHNG I
!==========~==!
I 15
I
I 16
I
I 17
I
I 18
I
I 19
I
I 20
I
I 21
I
I 22
I
I 23
I
I 24
I
I 25
I
I 26
I

I 0001 0000
I
I 0000 eooo
I
I sooo U000
I
I 0000 2000
I
I 0000 iooo

' I ooco oeoo
I
I 0000 0400
I
I 0000 0200
I
I 0000 0100

' I 0000 ooao
I
I 0000 0040
I
I 0000 0020
I

48-043 FOO ROO

I Intercept wait
I
I I/C wnit
I
I (Any) IOB/~AIT
I
I Ccnsole wait (paused)
I
I Lead ..,ait
I
I Dormant
I
I Trap wait
I
I Time of day wait
I
I Suspended
I
I Interval wait
I
I Terminal wait
I
I Rell pending wait
I

2- 3 5

TABLE 2-4 WAIT STATUS BIT DEFINITIONS (Continued)

-------t·---
I 9! T I MASI<' MEANING
===

27 0000 0010 Intercept initialization {MTM)

28 0000 CC08 Intercept termination (MT!'!)

29 0000 0004 System resource connection wait

30 0000 0002 ,\ccounting wait

NOTE

Zero status indicates an active task.

CTSw is expressed hexadecimally. For a definition of the status
portion of the TSW, see the OS/32 Application Level Program~er
Pef erence Manual.

The DISPLAY FAP.Ar.E1~~S command can be entered in task 10aded mode
anc ta~k executing mode.

Example:

The following is an example of the output qenerated in response
to a DI?.PLAY FAPA~ETSRS corn~and:

*DI~?LAY PARAMfTFBS

T.~.SI(MT~USFR

CTSW 00001000
PS\ol 477FO
CLOC F2B7C
STAT 2000
TOP':' 10021
USSP 1 u F B
:i!USP 2208
MXSP 3000
CTCP :?UFE
UTOP 237C
ueor 0
SLCC FOO':<;
NLU 15
MPRI 128
SVOL ~ 6 7 ;.,

2-36 48-043 C'()Q ~00

I DISPLAY
I REGISTERS

2.20 DISPLAY REGISTERS COMMAND

The ~ISPL~Y REGISTEPS command displays to the specified fd the
contents of the general ~urpose user registers associated with a
loaded task.

Format:

.QISPLAY ,BEGISTERS [,{ fd }]
user .console

Parameter:

fd

Functional Details:

~s the file descri~tor to which the contents
of the general purpose user registers ar.e
displayed. If fd is omitted, the display is
output to the user console.

The DISPLAY REGISTEFS command can be entered in task loaded ~~de
and task executing mode.

NOTE

The contents of each register will be 0
until the task has started.

Example:

D R
PSW 000077FO
0-3 00000000
4-7 OOOOE83C
8-R OOOOE8CB
C-F OOOO"E804

ue-r143 FOO ROO

OOOOE58B
00000000
00000000
00000000
00Q'.)E9DO

00000000
00000000
OOOOEB 48
OOOOE584

00004801
OOOOD2EA
1)0000028
OOOOEOSE

2-37

DISPLAY
TIME

2.21 DISPLAY TIME COMMAND

The DISPLAY TIME command displays the current date and time to a
specifie1 fd.

Format:

Parameter:

fd ~pecifies the file or device to which the
display is to be output. If fd is omitted,
the iefault is the user console.

Functional Details:

Th~ display has th~ following format:

mm/1d/yy hh:mm:ss

or alternatively (cy sysqen option):

dd/:nm/yy hh:ll':11:ss

Th~ CI~PLAY TI~E comMani can b~ entered in command mode, t~sk

loeded mod~, an1 tasY. executin; ~oJP..

2.22 DISPLAY USERS COMMAND

DISPLAY
USERS

Th~ DISPLAY USERS comma~d displays the userid and terminal device
names of all users currently signed on.

Format:

~!SPLAY llSERS C{ fd }]
L us=er console

Parameter:

fd ~pecifies the file or device
display is output. If fd
aef~ult is the user console.

to whicn the
is omitted., the

This command can b~ entered in command mode, task load~d mode,
and task executing ~ode.

Example:

t u
l"l E-t'.'.:TO 1: ST.~RTERI-CT02: AV~-CT03: JA.J-CT04:

48-C43 FOO i:ioo 2-39

ENABLE

2.23 ENABLE COMMAND

The ENARLE command
suppressed by the
console.

Format:

ffiBLE

11];SSAGE

PROMPT

allows the prompt or messaqez previously
PREVENT c~mmand to be displayed ~n the user

ll,M

S!A~IABLE

Parameters:

1-!ESSAGE

PROMPT

ET!i

~VARIABLE

Functional Details:

allows other MTM users to send messages to the
11ser termin~l.

requests the system to print the hyphen (-)
prompt in tdsk executing mode.

displays the end of tas~ message.

enables variable processing on a per user
basi.s.

The FNABLE command does not affect operator messages.

Variable support is included in the target system via the sysgen
option SGM.VAR.

2-uc 48-0U3 FiJO R00

EXAMINE

2.2Q EXAMINE COMMAND

The EXA~INF command examines the contents of a memory l~cation in
the loaded task.

Format:

filMINE address 1 [~~:ddress 2~1 C{ fd }] L user coasol•
.1

Para11eters:

ad:!ress

n

fd

48-043 FOO POI)

indicateE th~ starting and ending addresses in
memory whose contents are to be displayed in
hexadecimal. All addresses specifie1 are
rounded down to halfword boundaries by the
sy st.em.

is ~ decimal nu~ber specifying the number of
halfwords to be displayed. If n is omitted,
one halfword is displayed.

is the file descriptor specifying the file or
1evice to which the contents of ~emory are
dis~·layed. :a omitted, the default i-; •he
user ccnsol<!!.

2- 41

Functional Details:

Specifying only address1 causes the contents oi memory at that
location (as modified by any previous BIAS command) to be
displayed. Sp~cifying address1 and address2 causes all data fcom
the first to the second address to be displayed.

The EXAMINE co~~and can be entered in task loaded mode and ta~k
~x~cuting mode.

Any memory that can be accessed by the loaded task can be
examined with the FXAMINE command. For example, if a tas~ uses
a FU~E se~m~nt that is mnpped to segment register F, then
examining a1Jresses at FOOOC or greater will display the contents
of the PURE segment.

Example:

2-u:

RI 8100
EXA 100,10

Examines 10 halfwords starting at
relative address 100 (absolute
address B100) within the tas~.

48-043 ~co ROO

FFILE

2.25 FFILE COM!AND

The FFILE command forward spaces to the next filemark on magnetic
tapes, cassett?.s, and direct access files.

Format:

.UILE [jd,] lu

Parameters:

fd

lu

Functional Details:

is the tile descriptor of the device or file,
to be forwar1 spaced one filemark.

is the lu to which the file is assigned. If
lu is specified without fi, the operation is
performed on the lu regardless of what is
assiqned to it.

The FFILE c~mmand can be enter~i in task loaded mode.

Examples:

FF 1

FF ~300:AJ~.OBJ,4

48-C 4 3 FOC f 00

Causes the file or device assigned
to lu 1 to forward space jne
filemarK..

Causes the file AJM.OBJ on volume
~300 that is assi~ned t~ lu 4, to
furward space one f ilemark.

2-43

FR ECORD

2.26 FRECORD COMMAND

The FRECC?D co~mand for~ar1 spaces one record on magnetic tapes,
cassettes, and direct access files.

Format:

£.RECORD lfdJ lu

Parameters:

td

lu

Functional Details:

is the file descriptor of the device or file
to be forward spaced one re:ord.

is the lu to which the device or file is
assi1ned. If lu is specified without f1, the
operatic~ is performed on the lQ reryardless o:
what is assigned to it.

The FRECCg~ command can be entered in tas~ loaded ~ode.

Examples:

FR 1

F~ ~300:AJ~.OBJ,4

2-44

Causes the 1evice or f il~ assiqned
to lu 1 to forward space one record.

c~uses file M300:AJM.OBJ
M300 that is assiqned
forw~ra space one record.

".>n volu:ne
tt.l lu 4 to

48-043 :co 800

HELP

2.27 HELP Command r/t'll/.tJ<' ~f'.. /ti E'Ptl) Al If/IC-
\' fDf. HtL"J" * """" 1{£.L'I' p/ltvf_Jf't'iJ

The HELP command displays information on MTM use ani proqram
development co~~ands.

Format:

Parameters:

mnemonic

*

Functional Details:

is any valid MTM or program
comm~nd mnemonic.

developm~nt

causes a list of all
dev~lorment commands to
lis-t device.

~TM and p~ogram

be displayed to the

Th€ P.ELP command is implementei as a CSS procedure. ~hen a
mnemonic or command is enter~d, information on how to use that
particular commar.1 i~ displ~yed to th~ list device. Ii
parameters ar~ omitted, inf~rmation on how to use the HEL~
corrmand is 1is~lay~d to the list device.

Examples:

HF.LP LO·';

HELP CO!'.PILF

HELP

48-043 F~O ROO

Di~plays to the
i~forma~ion on how
LJG com;nand.

list 1evice
to use t~e !'!fM

Displays to the list 1evice
information on how to use the
pro~ra~ development c~mmand,

COMPILE.

Displays to
information on
command.

the list device
how to use the HELP

2-45

Example:

HELP*
ADD
BI< AS)
CAC NCEL)
CO?' PLINK
EDIT
EXA(l'IINE)
FOR TO
LIST
MECSSAGE)
PFI(NT)
REPCROTECT)
RW
SC!GNON)
V(CLU~E)
SUF{"!IT)
FOR HELP ON
1-!NEt"CNIC

* H FLP AS

AL(LOCATE)
BBC ECORD)
CL COSE)
COCNTINUE)
ENACBLE)
EXFC
FRCECORD)
LCOAD)
MODCIFY)
PUN(CH)
RF.WC IND)
B'/OL(UME)
STO RT)
WF(ILE:)
INQCUIRE)

ANY CF THE ABOVE

ASCSIGN)
BUCILD)
COBOL
DEC LET E)
ENDS
FFCILE)
HELP
LOG
PCAUSE)
REMOVE
PPG
SEN (D)
TC ASK)
XALCLOCATE)
PUR(GE)

BF(ILE)
CAL
COMPILE
O(ISPLAY)
ENV
FORT
LINK
MACRO
PR EC VENT)
REN(AME)
RU~

SI'.;NOF(F)
TEOYPFILE)
XD~CLETE)

CO~l'IAND MNEMONICS, !YPE HELP

ASSIGN: THE ASSIGN COMMAND ASSIGNS A DEVICE, FILE OR
CC~MUN!CATIONS DEVICE ro CNE OF A TASK'S LOGICAL UNITS.

C'S) SIGN try, FD, , ACCESS PPIVILEGES, KEYS, SVC15

2-45 48-043 FOO ROO

INIT

2.28 INIT COMMAND

ThA !NIT (file initialization) command initializes all data on a
contiguous fil~ to o.

Format:

[{
sec;;size increment}]

!NIT fd ,
1.

Parameters:

fd

st>gsize
increment

Functional Details:

is the file descriptor of any unassigned,
unprotected, contiguous file.

is the siza of the buffer space used.
default is 1kb.

:r he

INIT is implem~nted with a CSS procedure that loads and starts
the File Manager Support U~ility as a task.

The I~IT command can be entert>d io command mode.

Examples:

INIT DPTA.FIL

INIT DATA2.FIL,~O

48-043 FOO ROO

Initializes the file DATA.FIL.

Initializes the file DATA2.FIL using
a 50kb buffer.

2-47

LOAD

2.29 LOAD COMMAND

The LOAD command is used to load a user's task into memory.

Format:

10A D [ta skid,] fd (; seg size increment]

Parameters:

ta skid

fd

sei;size
incre111ent

Functional Details:

specifies the name of the task to be loa~ei.

specifies the file or device the task is being
loaded from.

specifies amount of m~mory in kb (above the
memory siz~) that the task needs for
processing. When a tas~ is built (via Link),
the OPTION WORK=n command adds additional
memory to a task. The size field in the LOAD
command overrides the amount of memory
specified by Link. The size is accepted in
.25kb increm~nts.

In order to maintain CSS compatibility, a background (.BG) task
also can be loaded into me~ory. ~ny valid taskid can be entered
but will be ignored.

If a t~sk is loaded from a direct access device, the system first
searches the user volu~e o~ the sp~cified volu~e under the user's
account. If the file i~ not found in the search, the system
automatically looks for the file on the system volume in the
system account. If only the fd is specified in the LOAD command,
the extension .TSK is assu~ed. The LOAD command can be entered
in command mode.

An error might occur if a user ID under MTM is the same as the ID
of a task loaded from the system console. If a load or fd error
is displayed, si0n off and sign on again with a different user
ID.

2-uB 48-043 FOO ROO

Examples:

NOTE

Th~ LOAD command loads the task file <fd>
into the terminal user's segment. The
TASK and the OPTION commands are ignored
if the task is currently loaded.

L VOL:CAL Load the task from file VOL:CAL.TSK.

L PTRP:

48-003 '='00 ROO

Load a task from the paper tape
reader punch device.

2-49

LOG

2.30 LOG COMMAND

The LOG com•and logs all user input and MTM responses to a
specified fd.

Formats:

LOG ~d] rn ~:::PY}]} [[{:5}]]

~ET ~ ~d] rn~:::PY}]} [[{:5}]]
Parameters:

fd

COPY

NOCOPY

n

2-5C

is the file descriptor of the log file or
device. I~ no fd is specified, lo~ging is
ter~inated. It fd is a file, it must be
previously ,11ocated. Fil~s are aqsigned EJO
privileges so t~at 1o~ge1 output is added to
the eni of the fil~. If a log is a=tive when
another LOG command is entered, the ~ld log i~
closed ~nd the new one is initiated.

specifies t~~t all output is written to both
the terminal and the ~og device.

specifies t~n.t all output (except messages) 'is
~ritten to tne log device and not to the
terminal. 1es~ages from other users and the
operator are Yritten to both the terminal and
the log device. If this parameter is omitted,
COPY is the default.

i~ a decimal number from 0 through 65,535
specifying the nu~ber of lines ~fter which the
user log file is to be checkpointed. r~ this
parameter is omitted, the default is 15 lines.
If ~ is specified as o, no checkpointing ~ill

occur.

48-043 FIJO ~00

Functional Details:

The LOG co~mand and the SET LOG command are the same. The
co~mand ca~ b~ entered either way, and both formats perform the
sa~e functi~n.

Checkpointing is only meaningful for indexed files on disk. The
LCG command ca~ be entered in command ~ode, task loaded mode, and
task executing mode.

Example:

LOG LOG.FIL,COPY,10

48-C43 FOO FOO 2-s1

MESSAGE

2.31 MESSAGE COMMAND

The MESSA~E command sends a message to a specified user.

Format:

l1l:SSAGE

Parameters:

user id

message

Functional Details:

is the name of the user the message is being
sent to. This ii can b~ obtaine~ from the
DISPLAY USE~S command. A userid of .OPERATOR
sen1~ a message to the system console.

is the t~xt of the ~essaqe that the us~r wants
to send.

The user r@ceiving the ~essage receives the userid of the senier
as •ell as the ~e~sage.

This co~~ani c1n b• entqred in co~m~nd mode, t~sk loa1ei ~oie,
and tas~ executing mode.

Example:

The following message is sent to userid "AVE" from userid "rK".
Tht format of the message ~ent is:

~E AVE HELLO M!M USER

The tormat of the messaqe received is:

TK-HELLO MT~ USER

L£8-043 FOO ROO

MODIFY

2.32 MODIFY COMMAND

The MODIFY command modifies the contents of a memory location in
thP loaded task.

Format:

Parameters:

addr?.ss

data

Functional Details:

i~ the halfword boundary ad1r.ess at which the
contents of memory are to be modified.

is a data field consisting of zero tc four
hex~decimal digits that represent a halfwor~

to be written into memory starting at ~ne
location ~p~cified by address. Any strinq of
data less than four characters is
right-justified and left-zero filled. If the
comma is ent~~ed but data is omitted, 0 i~
Pntered into one halfword.

This com~and causes
specified by addr?.SS
be replaced with data.
halfwcrd boundary.

the contents of the halfword location
(modified by any previous BIAS comm~nd) to

The modity address must be aligned on a

ThE ~CDIFY com~and can be entered in task loaded mode and t~~k

executing mode.

Any seg~ent (i~pure, shared, or task common) to wnich a u-task
has write access can be modified. Only the imp~re segment =an be
modified for an e-task.

48-043 FOO POO

Examples:

BIAS O
MOD 12F0,4,0,U,O

MOD DO 000, u

2-54

Modifies four halfwords at loca~ion
12FO to contain 0004 0000 0004
0000.

~odifies the first halfword of the
task common linked to the task using
segment ~egister D to 4.

48-043 ?00 ROO

OPTIONS

2.33 OPTIONS COKKAND

The OPTIONS com~and allows an MTM user to change the task options
of the curLently loaded task.

Format:

QPTIONS , > [{ .U:.fAUSE }] [{~!~fiUSE)]

!f~ONTINUE ~1~~0NTINUE)
G li.RESI DENT]

Parameters:

~.FCONTINUE

SVCPAUSE

~V':C·1NTINUS

NC~RESIDENT

Functional Details:

5~ecifies that the task is to pause after any
arithmetic fault.

specifies that it tne arithmetic fault (A~)
trap enable bit is set, a trap is taken. If
+he bit is not set, the tasK conti~~es after
~n arithmetic fault occurs, and a ~essage is
~ent tc the lo~ device.

specifies that SVC 3 is treated as a~ illegal
SVC (applies to bacKqround task~ onl1>. If an
SVC 6 is Pxecuted within a backqround tas~,

the task is paused.

~pecifies that SVC 6 is treated as a N~-0~

(applies to background tasks only). If an SVC
6 is executed within a background tasK, the
task is continu~d.

specifies t~at the task is to be removed from
memory at end of task.

The CPTIONS command can be entered in task loaded mode.

Example:

OPT AFC,SVCC

48-043 FOO ?00 2- 55

PAUSE

2.34 PAUSF COMMAND

The PAUSE com~and pauses the currently running task.

Format:

fAUSE

Functional Details:

Any I/O proceed, ongoing at the time the task is paused, is
allowed to ~o to completion. This co~mand is rejected if the
ta£k is dormant or paused at the time it is entered.

The PAUSE command can be enter~d in task loaded mode and task
executing mode.

2-SE 48-043 FOO EiOO

PREVENT

2.35 PREVENT COMMAND

The FR~VENT command suppresses either messages or the hyphen (-)
prompt while a~ interactive task is running.

Format:

lil;SSAGE

l~OMPT
lliVENT

SY.!f.IABLE

If a user did not input ar.y of these parameters the terminal will
receive both mPssaqes and (-) prompts. rhe hyphen prompt
indicat~s that eitter a ta5k or CSS is executing.

Parameters:

MESS AG!.

PROJ>TPT

ET!":

SVARIA3LE

Functional Details:

prevents other MTM users from being able to
send messages to the user terminal.

suppresses the printinq of the hyphen (-)
prompt durinq task executin1 mode.

supresses the display of en1 of tas~ mes~age.

disaole5 variable processing on a per user
basis.

If the MT~ system includes variable support and the SVARIAELE
parameter is entered, the overall perfor~ance of ~TM increases.

48-043 FOO FOO 2-57

PRINT

2.36 PRINT COMMAND

The PRINT comm~nd sends the file to be printed to the Spooler for
subsequent printing.

Format:

filNT fd G Q]!ICE=pseudo device] (;~QPIES=ri] Gll]1'ETE] (; VF<i]

Parameters:

f d

DEVI CF.=

COPIES=

DELE'l''E

VFC

Functional Details:

is the name of the file to be printe1.

~seudo device specifies the print device. If
this parameter is omitted, output is directed
to any available print device.

n allows the user to specify the number of
copies of the file fd to be output. From 1 to
255 copies can be ~ade. If this argument is
omitted, one copy is the default.

specifies th~ file fi is to be deleted after
the output op~ration is completed. If this
argument is omitted and the file is not a
spool file, the file is retained.

specifies that vertical forms control is in
use. ~urrP.ntly, the carj punch driver does
not su~pcrt VFC.

If ~he spool optio~ ~as not seldcted at sysgen tim~, this command
results in an error.

Th~ PBIMT command can be entered in command mode, task loa1ed
~od~, and task executing mode.

2-se. 48-043 FOO RJO

PUNCH

2.37 PUNCH COMMAND

The PUNCH com~and indicates to the Spooler that the specifiei
file i~ to be punched.

Format:

ill CH fd G ~.E!ICE=pseudo dev ic.LJ [,~PIES=i] Gi!.El&ETE] G VFC]

Parameters:

fd

DEVICE=

COPIES=

DELETE

VFC

Functional Details:

is the name of the file to b~ punched.

pseudo device specifies the name of the pse~do
out~ut device. If the DEVICE= parameter is
omitted, punch output is directed to any
available punch device.

~ is the nu~ber of copies desired.
255 ccpies can be made.
COPIES= parame~er is omitted, only
is output.

From 1 to
If the

one c:>py

specifies that the fd is to be
the output ~Pe ration is
omit~ed, the file is retained.

deleted aft-er
performed. If

specifies ~~at vertical for~s control is in
use. Currently, the ccari punch driver does
not clU~pcrt~ VFC.

If the spool optior. wa~ not selectea at sysgen time, this commar.1
vill result in an error.

The PUNCH command can be entered in command mode, task loaied
mode, and task executin~ mode.

48-043 FOO FOO 2-59

PENAKE

2.38 RENAKE COMMAND

The RENAME command changes the name of an unassigned, 1irect
access file.

Format:

~~!AME oldfd,n~wfd

Parameters:

old!d

neilfd.

Functional Details:

is the current file descriptor of the file to
be renamed.

is the file descriptor of the renamed file.

The volume id field of the new file descriptor (newfd) ~ay be
emitted. ~ file can only be renamed if its write and read
protection keys are O CX'OOOO').

The RE~AME command can be enterP.d in command mode, task loaded.
mode, and task executing mode.

Example:

2-60

REN VOL:AJ~.CUR,AJM.NE~ 3enames file AJM.CUR to AJM.NEW on
volume VOL.

48-043 ~00 ROO

I BEPROTECT

2.39 REPROTECT COMMAND

The REPROTECT command modifies the protection keys of an
ur.assigned, direct access file.

Format:

£I~ROTF.CT fd,new keys

Parameters:

fd

new keys

Functional Details:

is the file descriptor of the file to be
rP.protected.

i~ a hexadecimal halfword whose left byte
signifies the new write keys and wnose riqnt
byte signifies the new read keys.

U~ccnditionally protected files can be conditionally reprotected
or ur.protected.

The REPRCTECT co~mand can be entered in command mode, task loaded
ffiC1e, ~ni task executinq mode.

48-0ti3 FOO ROO 2-51

REWIND
and RW

2.40 REWIND AND RW COKKANDS

The REWIND and RW commands rewind magnetic tapes, cassettes, and
direct access files.

Format:

Bl::.EIND lfd J lu

or

RW [td J lu

Parameters:

f d

lu

Functional Details:

is the file descriptor of the device or file
to be rewound.

is the io;ical unit to which the ievice or
file is assign~d. If lu is specified without
fd, the op~ration is performed on the lu
r~qardless of what is assiqned to it.

The REWI~D and RW co~mands can be entered i~ task loaded mode.

Examples:

FFW 1

REW M3CO:AJM.C8J,U

2-f2

Causes the file or device assiqned
to lu 1 to be rewound.

Causes file AJM.OBJ, as assiqned to
lu 4 on volume M300, to be rewound.

48-043 FOO ROO

RVOLUME

2.4i RVOLUME COMMAND

The RVOLUMF command enables an MTM user to allow/disallow accesE
to a privat~ly owned disk.

Format:

.R!.Q1UME voln,

Parameters:

voln

ADD

actno

U8-043 FOO ROO

!DD,

,BE MOVE,

[{
actno ~]

, actno1 - actno2

0•255

!!SERS

is the volume name of the restricted disk.

indicates that tne specified accounts will
have access to the restricted disk.

is a decimal number from O through 255
indicating the accounts allowed/1isallowed
access to the restricted disk. If ALL is
specified, accounts O through 255 have ac=ess
to the restricted disk.

2- 53

RW

FO

REMOVE

USERS

Functional Details:

indicates that the specified account
read/write access to the restricted disk.
this ar~ument is omitted, only the default
read.

indicates that the specified account has
only access to the restricted disk.

has
If
is

read

indicates that the specified accounts ire
disallowed access to the restricted disk. If
~LL is specified, all accounts having access
to the restricted disk are disallowed access
with the exception of the owner's account.

displays all accounts havinq access to the
restricted disk along with the access
privileges.

A disk mar~~d on as a system disk is treated as a restricted
disk. Account number 255 is the owner.

The owner of a private disk can allow/disallow other
th@ syste~ operator, and other ncn-MTM tasks
restricted disk.

MTM users,
access to th@

If an owner enters a RE~OVE Parameter specifying a priv~te
account, accese will be deni~d to the disk; the owner can still
add accounts, remove accounts, and display accounts that have
access, along with the respective access privileqes.

For a user with ?W access to a restricted disk, accessinq
private, group, and system files is exactly the same as accessing
fil@s on any other disk.

Fer a user with RO access to a restricted disk, accessinq group
and system accounts is the sa~e as accessinq files on any other
disk. Files within the user•s private acc~unt can only be
assigned SRO or ERO. The user cannot allocate# rename,
reprotect, or delete any files.

Once a restricted disk is dismounted by the system operator, any
accounts that ~nee had acc~ss no longer have access privileges.

2-64 48-043 FOO ROO

Examples:

RVOl FIXD,U
4/RW 20/RW 77/RW 8 2RW

RVOL FIXD,A,ALL
RVOL FIXD,U

O/RO 1/RO 2/RO 3/RO 4/RO 5/RO 6/RO
7/RO 8/RO 9/RO 10/RO 11/RO 12/RO 13/RO

14/RO , 5 /F' 0 16/RO 17/RO 18/RO 19/RO 20/P.O

•
•

2 52/ P. 0 753/PO 2!:4/RO 2!:15/RO
RVOL FIXt,R,ALl
FVOL FIXD,U

82/RW
RVOL FIXC,A,ALL/RW
P.VOL FI"{J;,U

0/Rw 1 /lHi 2/RW 3/RW 4/RW S/RW 6/RW
7/RW ~/RW 9/RW 10/RW 11/RW 12/RW 13/3W

14/&tl 15/P~ 16/RW 17/RW 18/RW 19/RW 20/RW
•
•
•

252/BW 2'53/RW 254/RW 255/RW
RVOL FIXC,R,ALL
RVCL FIXD,U

82/Rtl

48-043 FOO ROO 2-65

SEND

2.42 SEND COMKAID

The SEND co~mand sends a messaqe to the currently selected task.

Format:

~!lit message[u

Parameters:

messaq~ is a 1- to ~4-character alphanumeric string.

Functional Details:

The messa~e is passed to the selected task the same way as an SVC
6 send message. Following standard SVC 6 procedures, the message
consists of an 8-byte taskid identifying MTM as the sender,
followed by the user-supplied character string. The message
passed to the selected task begins with the first nonblank
character ~ollowing SEND and ends with a carriage return CCR) or
se~icolon (;) as a line terminator. A message cannot oe sent to
a task currently rolled out.

The receiving task must have intertask message traps enabled in
its TS~ a~d must have an established ~essage buffer area. Refer
to the OS/32 Supervisor Call (SVC) Reference Manual for ~ore

information on SVC 6.

The SE~D co~mand can be entere1 in task executing mode.

Example:

SEND CLOSE LU2,ASSIGN LU3

The following is received by the task:

.MTM CLOSE LU2, ASSIGN LU3

2-tf 48-043 Foo aoo

SIGNOFF

2.43 SIGNOFF COMMAND

The SIGNOFF command terminates the terminal session. If a user
signs ofi when a task is loaded, the task is cancelled.

Format:

S.I~liQ.£F

Functional Details:

When a terminal user siQns off the system, these messaqes are
displayed:

ELAPSF.D TIME=hh:~m:ss
SIGNCN LEFT=hh:mm:ss
TIME OFF=mm/dd/yy hh:mm:ss

CPUTIME=utime/ostime
CPU LEFT=hh:mm:ss

The SIGNOFF command can be enter~d in command mode, task loaded
mode, and task executing mode. It cannot be followed by another
comman1 on the same command line.

ue-cu3 FOO ROO 2-67

SIG NON

2.44 SIGMON COMMAND

The SIGNON command allows a user to communicate with MTM. No
commands ~re accepted until a valid SIGNON command is entered.

Format:

~IGNON userid,actno,password r E!!IRONMENT= { fd }] l JfULL[:J
~~~Qil~E=maxtimeJ 

~classid=iocount1 ~ ••• ,classid=iocount 3~J 

Parameters: 

user id 

actno 

i;:assword 

E~VIRON!1ENT= 

2-68 

is a 1- to a-character alphanumeric string -
specifying the terminal user's identification. 

is a 3-digit decimal number between 1 and 250 
specifyi~g the terminal user's account number. 

is a 1- to 12-character alphanumeric string 
specifying the terminal user's password. 

fd is the file descriptor specifyinq an 
existing file that will establish the user's 
environ~~nt at signon time. 

NULL sp~cifie~ that the signon CSS routine, 
USERINIT.CSS, should be ignor~d ani the user 
~ill establish the environment at signon time. 

If the entire keyword parameter is omitted, 
MTM searches all online disks ±or the signon 
CSS procedure USEBINIT.CSS/P. The system 
account, on the system volume, is se~rche1 
last. If US!RINIT.CSS is found, MTH calls the 
CSS and executes the routine. If it i~ not 
founi, ~TM enters command mode. 

48-043 FOO ROO 



CPUTIME= 

classid= 

Functional Details: 

maxtime is a decimal number specifyinq the 
maximum CPU time to which the job is limited. 
If this parameter is omitted, the default 
established at sys9en time is used. If O is 
specified, no limits are applied. The 
parameter can be specified as: 

mmmm:ss 
hhhh:mm:ss 
ssss 

is one of the 4-character alphanumeric 
mnemonics specified at sys9en time associated 
with each specified device or file class. 

iocount is a decimal number specifyin9 the 
maximum number of I/O transfe=s associated 
with a particular device class to which the 
job is limited. If this parameter is o~itted, 
the default established at sysgen time is 
used. If 0 is specified, no limits are 
applied to that class. 

The SIGNON command can be entered in command mode. It cannot be 
followed by another command on the same line. 

When ENVIRONMENT=NULL is specified, the colon is optional. This 
allows the user the ability to specify the null device (NULL:). 

Examples: 

SIGNON ME,12,PASSWD 

SIGNO~ ME,118,SWDOC,ENV=NULL 

SIGNON ~E,118,SWDOC,ENV=XYZ 

48-043 FOO ROO 2-69 



START 

2.45 START COMMAND 

The ST~RT command initiates execution of a dormant task. 

Format: 

[{ address }] 
START 

tra.nafe·r· address 
~parameter,, ••• ,parameterzJ 

Parameters: 

ad1r.ess 

parameter 

Functional Details: 

specifies the a1dress at which task execution 
is to begin. For user tasks, this is not a 
phy~ical address but an address within the 
task's o~n program. For executive tasks, it 
is a physical address. If address is omitted 
or is O, the loaded task is started at the 
transfer address specified when the task was 
established. 

specifies optional parameters to be passed to 
the ta~k for its own decoding and processin1. 
All user specified parameters are moved to 
~emory beginning at UTOP. If no parameters 
are s~ecified, a carriage return is stored at 
HTOP. 

The ST,PT command can b~ entered in task loaded mode. 

Examples: 

ST 138 

ST 100,NOSEG,SC~AT 

ST ,1oco,ARC 

2-70 

Starts the currently selected t~sk 

at X'138'. 

Starts the currently selected ta~k 
at X'100' and passes NOSEG,SCRA! to 
the task. 

Starts the currently selected task 
at transfer ajdress and oass~s 

1000,ABC to the t~sk. 

48-0Ll3 FOO ROO 



TASK 

2.46 TASK COftMAND 

The TASK command maintains CSS compatibility of MTM 
action is performe~ 

to the 
by this operatinq system. No specific 

command. 

Format: 

!ASK [{ taskid }] 
,a.liROUND 

Parameters: 

task.id 

• BG~O'..JND 

Examples: 

T • BG 

T COPY 

48-043 FOO ROO 

is the name of the taskid that has been loaded 
into the foreQround se~ment of m~mory • 

indicates that the task has been loaded as a 
back?round task. 

2-71 



TEMPFILE 

2.47 TEMPFILE COMMAND 

The TEMPFILE command allocates and assigns a temporary file to an 
lu for the currently selected task. A temporary file axists only 
for the juration of the assignment. When a temporary file is 
closed, it 1~ deleted. 

Format: 

Parameters: 

lu 

CO~TIGUOUS 

fsize 

lrecl 

bsize 

2-7'2 

is a decimal number specifying the lu number 
to ~hich a temporary file is to be ~ssigned. 

~peci£ies that the file type to be all~cat~d 
is contiguous. 

t"Jtal 
This 

of 
the 

is a decimal number specifying the 
allocation size in 256-byte sectjrs. 
size can be any value up tc the number 
contiguous free sectors existin; on 
sp~cifi~d v~lu~~ at the time the Cj~mdnd is 
entered. 

specifie~ that the file type to be allocated 
is indexed. 

is a decimal number specifying logicdl record 
lengt~ in byt~s. It cannot exceed 65,535 
bytes~ its default is 126. 

is a iecimal number specifying the nu~ber of 
256-hyte sectors contained in a physical bl"Jck 
to be used for buffering. If bsize is 
omitted, the default value is 1. bsize cannot 
exceed the maxinum bloc~ size established at 
sysq~n time. 

48-1~3 FOO '{Q.J 



isize 

Functional Details: 

i~ ~ decimal number specifying the index bl~ck 
~ize in 25f-byte sectors. If isize is 
omitted, the default value is 1. isize cannot 
exceed the maximum block size established at 
sysgen time. 

A temporary fil@ is allocated on the temporary volume. 

To dSsign this file, sufficient room must exist in system space 
for thre~ buffers, each of the stated size. rherefore, if bsize 
or isize is very large, th~ file cannot be assigned in s'me 
situations. A maximum block size parameter is e$tablished in the 
system at sysqen ti~e. The bsize and isize cannot exceed this 
con~tant. 

The TEMPFILE command can be entered in task loaded mode and task 
executing mode. 

Examples: 

~E 14,IS,126 

48-C43 FOO ~00 

Allocates, on the temporary volum~, 
a contiguous file with a total 
le~gth of 64 sectors (16kb) and 
assi9ns it to the loaded task's lu 
2. 

Allocates, on the temporary volume, 
an index file with a logi:al record 
length of 126 bytes. The buffer 
~i?e and i~dex block size jef~ult to 
one s~ctor. The file is assigned to 
lu 1U of the loadea task. 

2-73 



VOLUME 

2.48 VOlU~E COMMAND 

The VOLUME com~and sets or changes the name of the default user 
volume. It may also be used to query the system for the current 
na~es associated with the user system, roll, spool, or temporary 
volume. 

Format: 

YOLUME [volit) 

Parameter: 

voln 

Functional Details: 

is a 4-character volume identifier. If this 
parameter is omitted, all current default 
user, system, roll, spool, and temporary 
volume names are displayed. 

Any co~mand~ that do not explicitly specify a volume name use the 
default user volume. No test is made to ensure that the volume 
is actually online at the time th~ command is entered. If voln 
is not specified, the names of the current default volumes are 
out~ut to tMe user con3ole. 

The default us~r volume is initially set to the syst:m volume 
when the user signs on. T~e VOLUME command can be entered in 
com~and modP, task executing mode and task loaded mode. 

Example: 

2-7 4 

VOL 
USR=MT:1 '.';YS=1"TM SPL=M679 TEM=:1301 ~VL=MTM 

48-043 FOO ?00 



WFILE 

2.49 WFILE COMMAND 

The WFILE command writes a filemark on ~agnetic tapes, cassettes, 
and direct access files. 

Format: 

£.EILF (tdd lu 

Parameters: 

fd 

lu 

Functional Details: 

is the file descriptor of the file or device 
to which a filemark is to be written. 

is the lu to which the device or file is 
assigned. If lu is specified without fd, the 
operation is performed on the specified lu 
regardl~ss of what is assigned to it. 

The WFILE command can be entered in ta~k loaded mode. 

Examples: 

W F 1 

48-04.3 FOO ROO 

Causes a filemark to be written on 
the device or file as~iqned to lu 1. 

Causes a filemark to be written on 
file AJM.OSJ, which is assigned to 
l~ 4 on volume M300. 

2-75 



I XALLOCATE 

2.so XALLOCATE COMMAND 

The XALLCCATE comm~nd is used to create a direct access file. 

Format: 

lllLOCATE fd, 

Parameters: 

f d 

CC ~TI:; UO US 

f siz.:: 

INDEX 

lrecl 

2-76 

is the file descriptor of the file to be 
allocated. 

specifies that the file type to be allocated 
is contiguous. 

i~ a decimal nu~ber indicating file size which 
is required for contiguous files. It 
specifi~s the total allocation size in 
256-b1te sectors. This size may be any value 
up to th~ nu~ber of contiguous free sectors 
~xi~ting on the specified volume at the time 
the command is entered. 

specifies that the file type to be allocated 
is indexed. 

is a decimal number specifying the logical 
record length of an indexed file OL 
communications device. It cannot exceed 
65,535 bytes. Its default is 126 bytes. It 
may O?ticnally be followed by a slash (/) 
which delimits lrecl fro~ bsize. 

48-043 FOO ROC 



bsize 

isize 

!TAM 

keys 

Functional Details: 

is ~ decimal number specifyinq the number of 
256-byte sectors contained in a physical block 
to be used for bufferinQ. This parameter 
cannot exceed the maximum block size 
established at sysQen time. If bsize is 
o~itted, the default value is one sector. 

is a decimal number specifyinQ the indexed 
block size. If isize is omitted, the default 
value is one sector. Like bsize, isize cannot 
exceed the maximum block size established at 
sysgen time. 

specifies that the device to be allocated is 
a communications device. 

specifies the write and read protection keys 
for the file. These keys are in the form ~f 

a hexadecimal halfword, the left byte of which 
signifies the write key and the right byte the 
read key. If this parameter is omitted, both 
keys default to o. 

The XALLOCATE command is different from the ALLOCATE command. If 
the fd to be allocatod is a device name instead of a filename, a 
DFL-ER& TYPE=VOL Occurs. Ii a filename is ~pecifie1, the 
XALLOCATE command reallocates the file. If fd is an existing 
file, it is deleted and reallocatea. If fd does not exist, it is 
allocated. This co~mand permits the user to have CSS procedures 
that allow a file or device name to be specified. 

The YALLOCATf corema~d ca~ be entered in commani mode, task loaded 
mode, and t~s~ executing mod~. 

48-043 FOC P.00 2-77 



XDELETE 

2.51 XDELETE COMMAND 

The XDELETE command is used to delete one or more files. If the 
file does not Pxist, no error is generated. 

Format: 

Parameter: 

f d 

Functional Details: 

is the file descriptor of the file to be 
deleted. 

A file can only be deleted if it is not currently assigned to a 
task an1 its write and read protection keys are 0 CX'OOOO'). 

Example: 

XDEL FIXD:OS323240.817,RADPROC.FTN 

2-78 48-0~3 fOO ROO 



3.1 INTRODUCTION 

CHAPTER 3 
PROGRAM DEVELOPMENT 

This chapt~r is written a! a program development tutorial session 
for new to intermediate users. The program development commands 
enatle you to easily create a program and modify, maintain, and 
execute it from the terminal. 

3.2 CREATING A SOURCE PROGRAM 

To enter a source program that will exist in a single source file 
(language environment), enter a program development language 
command with a user-s~ecified filename. Source filename 
extensions are proqram sup~li~d and language dependent. The 
language command entered must he consistent with the language of 
the source file. When a language command is entered, a file is 
allocated with the user-specified filename and program-supplied 
filename extenEion, and the editor is loaded and started. 

Table 3-1 lists the program development language command syntax 
and program-supplied filename extensions. 

TABLE 3-1 PROGRAM tEVELOPMENT LANGUAGE COMMANDS 

I PROGRAM 
I DEVELOPMENT 
I LANGUAGE I COMMAND SYNTAX !FILENAME EXTENSIONS I 
!===============================================================! 
I CAL/32 I CAL [(vcln:l filename] I .CAL I 
I I I I 
I CAL Macro/32 I MACBO [ (vcln: l filename} I .MAC I 
I I I I 
I FOPT~AN VII I FOR'l' [ [voln: l filename] I .FTN I 
I I (using development I I 
I I compiler) I I 
I ~ I I I 
I FOP.TRAN VII I FORTO [ [vcln: J filena!fle] I .FTN I 
I I (using oi;:tiinizing I I 
I I compiler) I I 
I I I I 

4e-C43 FOO ROO 3-1 



TABLE 3-1 PROGRAM DEVELOPMENT LANGUAGE COMHANDS (Continued) 

I 
I 

PROGRAM 
DEVELOPMENT 

I LANGUAGE I CO!MAND SYNTAX !FILENAME EXTENSIONS I 
!===============================================================! 
I CCBCL I CCBCL ( (voln: 1 filend.me) I .CBL I 
I I I I 
I REPORT I PPG {[voln:J filP.name] I .RPG I 
I PRC GRAM I I I 
I GENERATOR I I I 
I I I I 
I F.A.SCAL I PAS ( rvoln:J filename] I .PAS I 

Program dP.velop~ent l~ngua~e commands automatically specify that 
certain processes be S?t up for the remainder of the development 
effcrt. These processes are: 

• Assignment of the stan1ard source file language extensions 

• The compiler or ass?.mbl~r to be used 

• The standard Perkin-Elmer run time libraries to be linked 

• The language tab character, a back slash, (\), and tab 
settings pertinent to the specified language, displayed when 
the editor is entered 

ThEse automatic specificaticns free you from c~~stantly having to 
remember them. The user-supplied filename with the 
progra~-supplied extension will identify the source file 
thrcu~hout the program develcp~ent se~sion. 

Once the editor is loaded and startea, the full range of Edit 
com~ands are available tc create the source file. See th~ OS/32 
Edit User Guide. 

Example: 

3-2 

*FORT ?f.OG1 
** 'fEw PROGR.1\1'! 
-EDIT 
-G PROG1.FTN 
-0 '!'A = \,7,73 
-c cc~ = CCN: 



(~dit ses~ion) 

>SAVE* 
>END 
-WCRK FILE= M67E: PROG1.000/P 
-RENUMBERED INPUT FILE AVAILABLE, M67B: PROG1.FTN/P 

In this example, the FORTRAN language command entered with a 
user-sup~lied filename allocates an Pmpty file, PROG1.FTN, and 
loads and starts the editcr. The FORTRAN tab settings are 
displayed. The fi:ename you specify is called the current 
program and is always accessed and/or executed if you do not 
specify another filename. You can start to enter your program 
after these messages are displayed: 

** NSW PPOGRAM 
-Et IT 
> 

You can also creat~ a source file by entering a language command 
without a filename. Then ~nter the EDIT co~mand with a filename. 
The EtIT command allocates a file and loads and starts the 
editor. You can employ all of the Edit commands to create your 
source file. 

Example: 

*FORT 
*ECIT FRCG1 
-Err: - PROG1.FTN 

(edit session) 

>SAVE* 
>END 

The FORT command creates the language environment. The EDIT 
command entered with PROG1 loads and starts the edit?r and 
allocates PROG1.FTN for the source file that will be created via 
the Edit commands. PBOG1.FTN is saved dnd the edit session is 
ended. 

3-3 



3.2.1 Creating a Data File 

To create a data file, save the source program file to iisk, and 
clear the edit buffer by deleting all lines currently in the 
buff er. 

Exam~le: 

>SAVE* 
>DELETF. 1-
>AP 

• 

(use the editor tc create PROG1.DTA) 

• 
>SAVE P~OG1.DTA 
>END 

In this exampl~, PRCG1.FTN is saved and then cleared fro~ the 
edit buffer. The Edit APPEND command allows data to be entered 
in the data file. The data fil~ is saved, and the edit session 
is ~erminated with the END command. 

3.3 EXECUTING A PROGRAM 

The progr~m development EXEC command loads and runs the cur=ent 
program. 

Example: 

*EXEC 
** EXECUTION OF PROG1.FTN FOLLOWS: 
-END OF TASK CODE=O 

This example assumes that PROG1.FTN already exists as the current 
program. The EXEC command loads and runs the current pro9r~m, 
PROG1.FTN, and displays a zero end of task code. 

3.4 MODIFYING A PROGRAM 

To modify your program, enter the appropriate language comm~nd 

with the filename of the source file to be modified. Ent~r the 
EDIT comman1 to accP.ss the editor. 

3-4 48-043 FOO 900 



Example: 

*FORT P~OG1 

*EDIT 
-EDIT - PROG1.FTN 

(edit session to modify PROG1) 
• 

>SAVE* 
>END 

In this example, the FORTRAN language command is entered with ~he 
filename PP.0~1. The editcr is accessed via the EDIT command, aJd 
the name of the current progra~ is displayed. The edit~r is used 
to modify the scurce file, P~OG1. 

3.5 RE-EXECUTING A MODIFIED PROGRAM 

Wh~n the EXEC command is issued, the source program is compiled, 
linked, and executed, creating object and image modules. If the 
source file is subsequently modified, the dates assigned to the 
previously compiled object and previously linked image modules 
will not be curr~nt. 

Dates and times are assigned to source, obj~ct, and image modules 
when they are created. The dates are in Julian format and are 
stored in the syst~w directory. 

The FXfC command causes the object and image modules to be 
datechecked. They are then c~mPiled and/or linked if they are 
out of date. The FXEC commnnd then loads and runs the image 
program. 

Example: 

*EXEC PROG1 
-FORTRAN PPOG1.FTN 
-END OF TASK CODF=O 
-LINK P~OG1.0BJ 
-END OF TASK CODE=O 
** EXECUTION OF PROG1 FOLLOWS: 
-END OF TASK CODE=O 

This example assumes that PROG1.FTN alrea1y axists. The EXEC 
command, entered with PROG1, compiles, links, and then executes 
the ima7e program. A zero end of task cod~ is displayed aft~r 

each process. 

48-043 FOO ROO 3-5 



The program development RUN command can also be used to execute 
a progra~. The P.UN com~and does not datecheck, compile, or link. 
It simply runs a proqram that was already compiled and linked. 

Example: 

*RON P?OG1 
** EXECUTION OF PROG1 FOLLOWS: 
-END OF TASK CODE=O 

If thP. EXEC or the RUN command is entered with?ut a filename, the 
current progra~ is executed. If there is no current program, 
this message is displayed: 

** CURRENT PRCGPAM NOT SPECIFIED 

If you only want to compile a progra~ ~ithout linking or 
executing it, the program development COMPILE command can be 
used. The proqram development COMPLINK command compiles ind 
links a program, if necessary, but does not executP. it. !he 
progra~ development LINK comman1 links tne object program but 
dces not execute it. These commands are exglained fully in th~ir 
respective sections. 

3.6 EXECUTING MULTIPLE PROGRAMS AS A SINGLE PROGRAM 

If a source prograc exists in multiple source files (multi-module 
environment), you must include the file descriptors (fd) of each 
socrce file in an environment descriptor file (EDF). The EDF 
retains the identity of all th~ source files in the multi-module 
environ~ent that will be used to create a 9rogram. 

rihe~ you enter the program dev~lopment ENV command, y0u indicate 
tha~ your source program ~xists in more than one file and is to 
be created in a multi-~odule ·environment. The ENV command 
creates the raulti-mo1ule environment and allocates an EDF to 
contain the fds of the source files. 

Example: 

*ENV atLPROG 
** ~EJ F.NVIRONMENT 

In this example the ENV command with the user-specif iea EDF name, 
ALLPPOG, creat~s th~ multi-module environment. 

3-6 48-043 FOO ROO 



The extenstion to the EDF filename is program supplied. If you 
enter it, an error is generated. The user-s~ecified or default 
volu~e is searched for ALLPROG. If it is not found, an empty 
file na~ed ALLPFOG is allocated, and the message, NEW 
ENVIRONMENT, i5 displayed. The EDF is now ready to receive the 
fds of the multiple source f~les. The program development ADD 
command is used to add source program fds to the the multi-module 
environment. 

Example: 

*ENV ALLPROG 
** ~Ew tNVIRONMENT 
*ADD PROG1.FTN 
*ADD P?.OG2.CBL 

The multi-module environment is created and an EDF, ALLPROG, is 
allocated via the ENV command. The ADD command adds the fis, 
PPCG1.FT~ and PROGL.CBL, to the multi-module environment. 

Wh~r the ADD command is entered with a user-specified f1, the EDF 
is searched for that fd. If tn~ fd does not already exist in the 
multi-module environment, it is added. If it already is in the 
multi-m.odule environment, this message is displayed: 

** FILFNAMF CON~LICT - ENT~Y NJT ADDED 

Ycu must rename the file er re~~ve the existing entry from the 
environment. 

The pro~ra~ deveJop~ent LI3~ comman1 dis~lays the fds in the 
multi-module envirnnme~t, and the program dev~lop~ent ?EMOV~ 
command removes fds from the multi-module environment. 

Example: 

*LIST 
** CUP3ENT ENVIRONMENT = ALLPROG 
-PFOG1.FTN 
-PROG2.CBL 
*RFMOVE PROG2 
*LIST 
** CURRENT ENVIRONMENT = ALLPROG 
-PROG1.FTN 
*EXEC 
** EXECUTION OF ALLPPCG FOLLO~S: 

** END OF TASK rODE=O 
> 

48-043 FOO ROO 3-7 



The list command displays PROG1.FTN an1 PROG2.CBL ~s the f1s in 
the multi-module environment. The REMOVE command removes PR0~2. 
CBL and the LIST command displays the :ontents of the 
multi-module environment. The EXEC comman1 runs the proqram, 
ALLFRCG. 

If the ADD or PEMOV~ command is entered without an fd or if the 
fd is incorrect, this message is displayed: 

** SYNTAX ERFC~ 

Not all program development commands are available in both 
language and multi-module environments. Table 3-2 shows the 
co~mands that are available in the environments. 

TABLE 3-2 PROGRAK DEVELOPMENT 
COMMAND AVAILABILITY 

I LANG- I MULTI- I 
I CGl'!!'!ANC I \JAG~ I MOD1JLE I 
!=============================! 
I ADD I I x I 
I COMPILE I x I x I 
I COMPLINK I x I x I 
I ~D IT I x I x I 
I ENV I I x I 
I F.X FC I x I x I 
I LI~~ I x I x I 
I 1IS7 I I x I 
I P EMO VE I I x I 
I f(U N I x I x I 
----------------------~------

If a command that is meanin;£ul only in a multi-module 
environment is entered in a la,~uage environment, this message is 
dist:layed: 

** NOT IN ~ULTI-~ODULE ENVIRON~ENT 

In order to re-access a scurce pro9ram, modify the source file, 
and include it in ~ multi-mod~le environment, enter tne ~~V 
command followed by the EDIT command and use the editor to ~odiiy 
the source file. 

3-8 48-043 FOO R00 



Example: 

*ENY ALLPROG 
*ADD PROG1.FTN 
*LIST 
** CURRENT ENVIPONMENT = ALLPROG 
-Pt<Or;2.CEL 
-PROG1.FTN 
*EDIT PRCG1.FTN 
-E~I'I PROG1.FTN 

(edit session) 

>SAVE* 
>END 
*EXEC 
-PERKIN-ELMER OS/32 LINKA~E ECITOR 03/242 R00-01P3 
-F.ND OF TASK CODE = 0 
** EXECUTION CF ALLPRCG FOLLOWS: 
-E~D OF TASK CODE = 0 
** EXECUTION Of PPOG2 FOLLOwS: 
-END OF TASK COLS = 0 
** EXF.CUTICN CF PROG1 FCLLO~S: 

-END OF TASK corE = 0 
> 

The multi-module Anvironment is accessed via the ENY command and 
the EDF name, ALLPROG. PROG1.FTN is added to the multi- module 
environemnt. The LIST comm~nd displays the filenames remembered 
in the EDF. The E1it command access~s the editor to modify 
PPOG1. When tte ed!t sessicn is ended,the EXEC co~mand executes 
PRCG2 and FBOG1, displaying a zero end of task code after each 
successful execution. 

3.7 HOW TO RECOVER FROM ERRORS 

If an error cccurs in 
process aburts, ~nd 

m~ssage are displayed. 

Example: 

program compilation or execution, the 
a ncnzero end of task code and an er=or 

** COMPILE ERRORS, LISTING ON PR: 

48-('43 FOO POO 3-9 



Program dev~lopment makes it easy for the user to recover from 
errors. Compile P.rrors are printed in the listin? of the source 
file containing the error. 

Use the editor to correct the error and re-execute the program. 
The EXEC c~mmand will recompile only the modified modules. 

In some instances the EXEC command will recompile a successfully 
com~iled mcdule if the time between the creation of the source 
and object is less than one minute. 

s~e the OS/32 Link Peference Manual for an explanation of link 
i:rror messages. 

3.8 ASSIGNING LOGICAL UNITS 

Prc~ram development 1efines and sets global variables that are 
as~~ciated with particular devices. These devices have default 
lc~ical unit (lu) assignments. The global v~riable names and 
settings a=e 1isplayed when the user sign~ on. Table 3-3 shows 
the default variable names, th~ir setti~qs, and lu assignments. 

TABLE 3-3 PROGRAM DEVELOPMENT DEFAULT VARIABLE 
SETTINGS AND LOGICAL UNIT 
ASSIGBMEMTS 

V~RIABLE I LOGICAL I 
I NAME I DEVICE I UNIT I 
!================================! 
I @SSYSIN I CO~: I 1 I 
I I I I 
1 ~ssysou·r 1 :o~: I 2 I 
I I I I 
I ilSSYSPdT I ?P.: I 3 I 
I I I I 
I .vssyscol'! I r:o~: I s I 
I I I I 
I iiJSSYSMSG I COM: I 7 I 

Before running a program, ensure that the default variable and lu 
settings are apprcpri~te. To chan1e any of the vari~ble 
settings, use the ~SET command. The input device can be chanqed 
frcm the console (default) to a pre-allocated file. 

Example: 

*SSET @SSYS!~ = FILE.IN 

3-1C 48-043 FOO ~00 



Listings can be sent directly to a file rather than to the 
printer (default). 

Example: 

*$SET iilSSYSFPT = FILE.OUT 

Any variable settings you change supercede the default variable 
settings and are in effect until you change them again or sign 
off. 

You can also redefine qlobal variables via the $GLOBAL command 
and then s~t their values via the $SET command. You can then 
~ssign their lus via the ASSIGN command. 

Example: 

*$GLOBAL @SSYSFILE 
*SSET @SSYSFILE = FILE.IN 
*AS 1,FILE.IN 

Tr.~ $GLOBAL command can al5o be used to assign lu O through lu 1~ 

by defining the @lu variable and setting the variable to the 
desired device or file. 

Example: 

·~~LO'q~L iilliJ1 
*SSJ::T @LU1=CON: 

User-defined variables and their lu assignments 
other variabl~ names and device lu assignments. 
efiect until you chang~ thP.rr., sign off, or free 
SFP EE command. 

Example: 

*AS1, FILE.IN 
*SFRt.E @LU1 

48-C43 F00 PQO 

supercede all 
They remain in 
them via the 

3- 11 



The $GLOBAL command can also be used to specify task start 
parameters to be used with the RUN or EXEC command. 

Example: 

*$GLOBAL ~SOPTC32} 
*SSET @SOPT = 'CPOSS, SQUEZ' 

In this example, start parameters are contained in the variable, 
@SCFTC32), and supercede any other start parameters. 

3.9 PROGRAM DEVELOPMENT COMMANDS 

This section describes the functions cf each of th?. followinQ 
pro9ram d~vRlop~ent commands: 

• .HD 

• COMPILE 

• CCMFLI!'lK 

• EL: I '1' 

• ENV 

• EXEC 

• LINK 

• LIST 

• REMO'/ E 

• ? UN 

3-12 48-043 FOO R:'.l·) 



ADD 

3.9.1 ADD Command 

The ADD command adds the fds of source programs to the 
multi-module environment. These fds are remembered in the EDF. 
The ADD command is valid in the multi-module environment only. 

Format: 

ADD fd Gcsspro{] 

Parameters: 

fd 

cssprod 

Functional Details: 

i~ the file descriptor ~f the source file t~ 

b~ added to the multi-module environment. 

i~ the name of the CSS procedure to be used 
w~e~ nonstandard cc~pilation is required. 

The ADD command causes tie current EDF to be searched for the 
specified fd. If the s~ecif ied fd is not found, it is added to 
the ~ulti-~odule environment. If the fd currently exists in the 
envircnm~nt, the ~ollowing messa7e is displayed: 

** FILEN~ME CONFLICT - ENT~Y NCT ~ODED 

If the fd is o~itted, or is in an incorrect format, this messa;e 
is displayed: 

**' SY~TAX FRPOP 

If the fd iz ~ntPred without an extension, this message is 
displayed: 

** EXTFNSION OMITTED 

U8-043 FOO 0 00 3-13 



The cssprod parameter must be used if the extension of the 
specified file differs f tom the language extensions listed in 
Table 3-~. If this parameter is omitted when you are using a 
nonstandard extension, the following messages are displayed: 

** NONSTANDARD FXTENSION 
** ALTEPNATE CSS REQUIRED 

The alternate CSS cannot be specified by just a volume name. It 
must contain at least a filename. 

3-1U 48-043 FOO ROO 



COMPILE 

3.9.2 COMPILE Command 

ThP. COMPILE co~mand unconditionally compiles a source module and 
creates an obj~ct module if an up-to-date object module does not 
already exist in the language environment. The COMPILE command 
conditionally compiles when the ALL parameter is specified in the 
multi-modul.e ~nvironment. The COMPILE command does n~t execute 
a program. 

language Format: 

CO!'!F'ILF. [{ 
voln: ~ fj{ f ilena111e }] 

uset: voln.; 8 LJcurren·t pro~n:a111. 

Multi-Module Format: 

COMPILF. [{ 
volr,: }] 

user vol.n: 
[

' filename fl 
~cm::: pro~ru ~J 

Parameters: 

voln: 

filename 

ALL 

48-043 FOO ?00 

is a 1- •o 
specifying the 
resides. If 
default is the 

is a i - t~ 
specifying the 
is omitted, 
default. 

4-character alphanumeric na~e 

volume on which the source file 
this parameter is omitted, the 
user volume. 

f:!-character 
source file. 
the current 

alphanumeric name 
If this parameter 

proqram is the 

specifies that all files in the multi-module 
environment whose fds are remembered in the 
EDF are to be compiled, if necessary. When 
this parameter is specified, the COMPILE 
com~and conditionally compiles all the files 
that are in the multi-module environment. 

3-15 



Functional Details: 

A successful compilation ends ~ith a zero end of task code. An 
end of task code other than zero indicates a compilation error 
that will be printed on the listinq created as a result of 
compile. 

If the environment is null when you enter the COMPILE commani, 
this message is displayed: 

** ENVIRONMENT NOT SET 

If a filename is not entered and a current program is not 
specified, this message is displayed: 

** CURRENT PROGRAM NOT SET 

If a specified filename does not exist, the following message is 
displayed: 

** file.fd NOT FOUND 

The CC~PILE command functions are illustrated in Figures 3-1 1nd 
3-2. 

3-16 48-043 ~oo ~oo 



SOURCE MODULE BEFORE COMPILE 

' I 
I 
f ALLPROG.EDF 
I 
I 
I 
I 
I 

I IPROG1.FTNI 
I-> I I 
I I 6/20 I 
I ---------
! 
I ---------
1 IPR0;2.C.SLI 
1->1 
I I 6/20 

SOUPCE MODULE AFTER COMPILE 

IPROG1.FTN I IPROG1.0BJ I 
I I I I 
I 6/2C I I 6/20 I 

lt'ROG2.CBLI IPROG2.0BJI 
I I I I 
I 61~0 I I 6/20 I 

I ... 

'----------' Cut1PI LE 

NO 
EXECUTION 

Fiqure 3-1 COMPILE Command Functions in the Language 
Environment 

48-043 FOO ROO 3-17 



SOUP.CE AND OBJECT MODULES BEFORE COMPILE ALL 

I I P R CG 1 • FT N I 
I I I 

I 1->1 6/20 I 
l~LLPROG.EDFI ---------
1 I 
I I --------- ---------
1 j->tPROG2.CBLI IPROG2.0BJJ 
I I I I I I 
I I I 5/20 I I 6/ 1 s I 

SOU?CE AND OBJECT MODULES AFTER COMPILE ALL 

IPROG1.FTNI 
I I 
I 6170 I 

IPP.OG2.CBLI IPROG2.0BJI 
1---> I I 

6/20 I I 6/15 I 

'------------' DATECHECK 

I PROG1. FTN I I PROG1. OBJ I 
I 1---> I 
I 6/20 I I 6/20 

IPROG2.CBLI IPROG2.0?JI 
1---> I I 

6120 I I 6/20 I 

... 

'--------------' COMPILE 

~o 

EXECUTION 

Figure 3-2 COMPILE Command Functions in the Multi-Module 
Environ sent 

3-18 48-043 FOO ROO 



COMPLINK 

3.9.3 COMPLINK Command 

The COMPLINK command performs a conditional. compile and a 
conditional link by datechecking source, object, and image 
modules in language and multi-module environments. If all 
modules are up-to-date, this command does not perform any 
function. This command does not execute the program. 

Lanquaoe Format: 

COMPLIN~ 
~{ voln: }LJfj{ filename }] 

l user voln: ~D current program 

Multi-Module Format: 

CCMPLINK 

Parameters: 

voln: 

filename 

Functional Details: 

is a 1-
specify ing 
re sides. 
default is 

to 4-character alphanumeric name 
the volume on which the source file 
If this parameter is omitted, the 
the user volume. 

is a 1- to 8-character alphanumeric naMe 
specifying the source file. If this parameter 
is omitted, the current program is the 
default. Filename specification is meaningful 
in a languaJe environment only. 

When the CO~PLINK command is used in a multi-module enviro~ment, 
all the fds contained in the EDF are datechecked, compiled if 
necessary, and linkAd. 

If the specified Eource file is not found, the COMPLINK sequence 
ter~inates, and this message is di~Played: 

* * f d N 0 T f 0 r; N D 

48-043 FOO ?00 3- 19 



If you specify any arguments in a multi-module environment, this 
~essage is displayed: 

** TOO MANY ARGUMENTS 

The CO~PLiijK command functions are sho~n in Figures 3-3 and 3-4. 

SOURCE, OBJEC7, AND IMAGE MODULES BEFORE COMPLINK 

IPROG4.CBLI 
I I 
I 6/20 I 

IPROG4.0BJI 
I I 
I 6/15 I 

IPROG4.TSKf 
I I 
I 6/15 I 

SOURCE, OBJECT, AND IMAGE MODULES AFTER CO~PLINK 

IPROG4.CElf 
I I 
I 6/20 I 

f PROG4.0BJI 
I I 
I 6/15 I 

IPROG4.TSKI 
I I 
I 6/15 I 

A ~ I 

'~-----------'~-~------' DA,,,ECHECK 

!FRCG4.CBLI IPPOG4.0BJI l?ROG4.TSKI ~o 
I 1->I 1->I I EXECUTION 
I 6/20 I I 6/20 I I 15/20 I 

I A ~ 

'-------------'-----~----' COMPILE LINK 

Figure 3-3 COMPLINK Command Functions in the Language 
Environment 

3-20 48-043 FOO ROO 



SOURCE, 

SOUFCE, 

OBJECT, A ND IMAGE MOI:ULES BEFORE COMPLINK 

----------- --------- ---------
IPROG1.FTNI IPROG1.0BJI 

I I I I I I 
l~LLPFOG.EDFl->I 6/20 I I 6/10 I 
I I --------- ---------
I I 
I I --------- ---------
I 1->IFROG2.CBLI IPROG2.0BJI 
I 61& I I I I I 
I I I 6/20 I I 6/10 I 
---------- --------- ---------

OJ B ECT, ANI:' I MAGE FILE3 AFT ER COMPLINK 

I PRrr.1.1'.'!'N I 
I I 
I F>/20 I 

f PROG2.CBLI 
I I 
I o/20 I 

IPRCG1.0BJI I 
I t-> I I 
I 6/10 I IALLPROG.TSKI 

--------- I I 
--------- I I 

f PROG2.0BJl->I I 
I I I 6/8 I 
I 6/10 I I I 

"' I "' I 

'~---------' '-------------' D.~I'ECH.C:CK 

------·---
IPROG1.FTNt->IPROG1.0BJl->I I 
I I I I I I 
I 6/20 I I E/20 I I I 
--------- --------- I !\LLPROG. TSK I NO 

--------- --------- I I EXECUTIJ~ 
IPROG2.CBLl->IPROG2.0BJl->I I 
I I I I I I 
I 6/20 I I ~120 I I 6/20 I 

I ,. 

'----------' 
, __ __: ______ , 

CCMPILE LI Nft' 

Fiqure 3-4 COMPLINK Command Functions in the Multi-Module 
Environment 

48-C43 FOO ~00 3-21 



EDIT 

3.9.4 EDIT Command 

The program development language commands load and start the 
editor for you to create a source or data file. You can also 
enter the EDIT command to create or modify a source or data file. 

Format: 

EDIT ~ vol n: ~ ~ f ilena !lie }~ 
u~er ~oln:DQcurrent program~ 

Parameters: 

voln: 

filename 

Functional Details: 

is a 1-
specifying 
resides. 
default is 

to 
the 
T-f: 
.!. ~ 

the 

4-character alphanuffiaric na~e 
volume on which the source file 
this parameter is omitted, the 
user volume. 

is a 1- to a-character alphanumeric n~me 
specifying the file to be created or eiitad. 
If this parameter is omitted, the current 
pro7ram is the default. 

A l3nguage command entered with a filename loads and starts the 
e~itcr if the file doe5 not exist. However, if the language 
command is entered without a filename, enter the EDIT command 
with a filename to access the editor and create or modify a 
source fil~. 

If this co~mand is 
character is ~et 
set. 

entered in a NuLL environment, the tab 
an1 displayed, but the langua~e t~bs ~re not 

If this command is entered with a filename not contained i~ a 
multi-module environment, this ~essage is displayed: 

** FILENAME NOT IN ENVI~CNMSNT 

3-2:;: 48-043 ?0'J .'iOi 



If this command is entered without a filename in the multi-module 
environment and there is no current program, this message is 
di~~layed: 

** CURRENT PROGRAM NOT SPECIFIED 

If this command is entered without a filename when there is a 
current program in the multi-module environment, the name of the 
current program is displayed: 

*• FDIT - current program 

For informatin on the Edit commands, see Section 1.6.2, or the 
OS/32 Edit User Guide. 

48-043 FOO ROO 3-23 



EMV 

3.9.5 ENV Command 

The ENV command entered with a3 EDF name creates the multi-module 
environment and allocates the user-specified EDF, if necessary. 
This ccm~and also can be used to clear the current environ~ent. 

Multi-Module Format: 

ENY 

Parameters: 

voln: 

filena:ne 

NULL 

Functional Details: 

is a 1- to 4-character alphanumeric name 
specifying the volume on which the F.DF 
resides. If this parameter is omitted, th~ 
d~fault is the user volume. 

is a 1- to a-character alphanumeric name 
specifying the EDF, filename.EDF. If this 
parameter i~ omitted, the default is the 
curr~nt prcqram. The EDF extension is 
auto~atically appended and must not be entered 
by the user. 

clears the current environment. 

If the filenam~ parameter is ~ntered with an extension, this 
message is displayed: 

*'* SY~TAX ERROR 

If the ENV command is entered without a parameter, the na~e of 
the current environment is displayed: 

** cryF~ENT SNVI?ON~ENT = xxxxxxxx 

3-24 48-0~3 ?00 ROO 



If the environment was not set or the NULL parameter was 
specified, this message is displayed: 

** NO CURRENT ENVIRONMENT 

48-0~3 FOO POO 3-25 



EXEC 

3.9.6 EXEC Command 

The EXEC comma~d datechecks source, object, and image modules in 
languaqe and multi-module environments and compiles or links them 
if they are outdated. When the imaqe program is current, it is 
loaded and run. 

Format: 

EXEC [{ voln: ll [{ filename ll ~"start pa=ameters'~ 
aser voln:}J current. pr;oqra•.fJ 

Parameters: 

voln: 

filename 

"start 
;a ra mete rs" 

Functional Details: 

is a 1-
specifying 
resides. 
default is 

to 
the 
If 
the 

4-character alphanumeric name 
volume on which the source file 
this Parameter is omitted, the 
iJse r volu!!te. 

is a 1- to a-character alphanumeric name 
specifying the proqram t~ be run. If this 
parameter is omitted, the current program or 
environment name is the default. 

are parameters particular to the compiler 
or assembler to be used. These parameters, 
usually specified with the operator START 
command, can now be specified with the proqram 
development EXEC command. Start parameters 
must be entered with their beginning and 
endinq quotation marks. 

When the EXEC command is entered in a multi-module environment, 
all modules contained in the EDF are compiled and linked if they 
are outdated. The task is then loaded and run. 

If start parameters are entered, they are invoked every time the 
task is executed. 

3-2'5 



Start parameters can also be specified by setting a variable, 
@SOPT(32) with the $GLOBAL command. 

Exa111ple: 

*$GLOBAL @SOPT(32) 

Start parameters of up to 32 characters can be specified in the 
SOPT variable, and they supercede all other start parameters. If 
the start parameters are null and $GLOBAL @SOPT (32) is null the 
task is started without start parameters. 

EXFC command functions are shown in Figures 3-5 and 3-6. 

SCURCE, OBJECT, AND IMAGE MODULES BEFORE EXEC 

I PR OG 1. FTN I 
I I 
I r.120 I 

IPROG1.0BJI 
I I 
I 6/18 I 

f PROG1.TSKI 
I I 
I 6/18 I 

SOURCE, OBJECT, AND IMAGE MODULES AFTER EXEC 

IPROG1.FTNI 
I I 
I 6/20 I 

IPROG1.0BJI 
I I 
I 6/18 I 

IPROG1.TSKI 
I I 
I 6/18 I 

" I " I 

'------------' '-----------' tATECHECK 

IPROG1.FTNI IPROG1.~BJI IPROG1.TSKI 
1->t t->f I-> TASK 

6/20 I I 6/20 I I 6/20 I EXECUTION 

I ~ I " 

'-----------' '-----------' car.PILE LINK 

Figure 3-5 EXEC Command Functions in the Lanquage 
Environment 

48-043 FOO POO 3-27 



SOURCE, OBJECT, AND IMAGE MODULES BEFORE ~XEC 

l->f PROG1.FTNI 
I I I I 
fALLPROG.EDFI I 5/20 I 

IPROG1.0BJI 
I I 
I . 5/15 I 

I I ---------
1 I 
I I ---------1 l->IPROG2.CBLI 
I I I I 
I I I 6/20 I 

IPROG2.0BJI 
I I 
I 6/15 I 

SOURCE, OBJECT, AND IMAGE MODULES AFTER EXEC 

IPROG1.FTNI 
I I 
I 6/20 I 

IPROG2.CBLI 
I I 
I 6/20 I 

IPROG1.0BJI I 
I 1-> I 
I 5/ 1 s I I I 
--------- IALLP?.OG.TSKI 

I I 
--------- I I 

IPROG2.0BJI I I 
I-> I I 

6/15 I I 6/5 I 

I ... I 

'-----------' '------------' DATECHEC!C 

fPROG1.FTNf f?ROG1.0BJf I 
t-> I 1-> I 

6120 i I 5/20 I I I 
--------- --------- IALLPROG.TSKf-> TASK 

"" I I I EXECUTION 
--------- --------- I I 

f PROG2.CBLI 1PROG2.0BJI I I 
I 1->f 1-> I I 
I 6/20 I I 6/20 I I 6/20 I 

I ... I 
, ___________ I '------------' 

COMPILE LINK 

Figure 3-6 EXEC Command Functions in the Multi-Module Environment 

3-28 48-043 FOO ROO 



LINK 

3.9.7 LINK Command 

The LINK command links the object module to yield the image 
module in language and multi-module environments. If no object 
module existsr the LINK command compiles the source module to 
yield the object module. The LINK command does not iatecheck, 
load, nor execute a program. 

Language Format: 

LINK n{ voln: rn{ filename }] 

[us@r Yoln: LJ Llc:urrent prograa 

Multi-Module Format: 

LINK 

Parameters: 

voln: 

filename 

Functional Details: 

is a 1-
specifyinQ 
resides. 
default is 

to 
the 
If 
the 

4-character alphanumeric name 
volume on which the source file 
this parameter is omitted, the 
user volume. 

is a 1- to 8-character alphanumeric n~me 

specifying the files to be compiled and/or 
linked. If this parameter is omitted, the 
current program is the default. A filename is 
meanin9f ul only in a langua;e environment. 

When the LINK command is entered in a multi-module environment 
and no object module exists, all source file fds contained in the 
EDF are compiled. The resulting object modules are then linked. 
If a link error occurs, the link sequence aborts, and this 
message is displayed: 

** LINK ERRORS:EXECUTION ABORTED 

48-043 FOO ROO 3-29 



If a LINK command is e~tered when no environment was set, this 
message is dis~layed: 

** NO ENVIRONMENT SPECIFIED 

If there is a compilation error, the process ends with a nonzero 
end of task code, the link procedure never starts, and the 
process is aborted. This message is then displayed: 

** COMPILE ERROR - LINK NOT EXECUTED 

The LINK command also links all of the standard Perkin-Elmer run 
time libraries specified by the lanquaqe extension assiqned vhen 
the source file was created. 

3.9.7.1 Link Sequences 

The user can specify a link sequence by building a link file that 
must have the extension .LNK. When the link sequence is 
specified, the system searches the default user volume for a file 
with the .LNK extension with a filename matchinq the EDF name or 
the current program. When it is found, it is executed. 

Example: 

*BUILD JOB.LNK 
B>~STA3LISH TASK 
B>INCLUDE PROG1.0BJ 
B>I~CLUDE PROG2.0BJ 
B>LI3RARY F7FTL,COBOL.LIB 
B>~AP PF:,AD,AL,XBEF 
B>BUILD PROG.TSK 
B>END 
B>~NDB 

If the user-specified link file is not found, the system 
default link sequence. There is a default link sequence 
language environment. Following is an example of a 
FORTRAN link sequence: 

>ESTABLISH TASK 
>INCLUDE curr~nt program 
>INCLUDE LIBP~RY SYSV:F7RTL.OBJ/S 
>OP CFLOAT, FLOAT, ~ORK=3072 

>BUILD f ilename.TSK 
>END 

uses the 
for each 
default 

3-30 48-043 FOO ROO 



The LINK command functions are shown in figures 3-7 and 3-8. 

SOURCE AND OBJECT 

---------IPROG1.FTNI 
I I 
I 6/20 I 
---------

SOURCE AND OBJECT 

1PROG1.FTNI 
I I 
I 6/20 I 

MODULES BEFORE LINK 

---------
IPROG1.0BJI 
I I 
I 6/20 I 
---------

MODULES AF'!:ER LINK 

IPROG1.0BJI IPROG1.TSKI 
I I-> I NO 
I 6/20 I I 6/20 EXECUTION 

... 

'------------' LINK 

SOURCE PROGRAM BEFORE LINK 

I PFOG1.FTN I 

' 1 I 6/20 I 

SOURCE PROGRAM AFTER LINK 

IPROG1.FTNI IPROG1.CBJI IPROG1.TSKI 
I 1->t 1->I I NO 
I 6/20 I I 6/~C I I 6/20 I EXECUTION 

I ... ... 

'~~------~'----~~-~' COMPIL~ LINK 

Figure 3-7 LINK Command Functions in the Language Environment 

48-043 FOO ROO 3-31 



SOURCE AND OBJECT PROGRAKS BEFORE LINK 

l->tPBOG1.FTNI 
I I I 

I I I 6/20 I 
IALLPROG.EDFI ---------
1 I 
I I ---------1 f->f PROG2.CBLf 
I I I I 
I I I 6/20 I 

IPROG1.0BJI 
I I 
I 6/20 I 

IPROG2.0BJ I 
I I 
I 6/20 I 

SOURCE AND CBJFCT PROGRAMS AFTER LINK 

IPROG1.FTlf I 
I I 
I 6/20 I 

IPROG2.CBLJ 
I I 
I 6/20 I 

SOURCE ~ODOLE BEFORE LINK 

I IPROG1.FTHI 
1->1 I 

I I I 6/20 I 
IALLPROG.EDFI ---------
1 I 
I t ---------1 l->IPROG2.CBLI 
I I I I 
I I I 6120 I 

SOURCE MODULE AFTER LINK 

I PROG1. ETH I 
I I 
I 6120 I 

tPROG2.CBLI 
I I 
I 6/20 I 

IPROG2.0BJI I 
I 1->I 
I 6/20 I I 
--------- I I fAlLPROG.?SKI MO 
--------- I I EXECUTION 

I PROG2. OBJ I I I 
1->1 I 

6/20 I I 5/20 I 

I .. , ____ _ 
LINK 

f PROG1.0BJI I I 
1-> I I 

6120 I I I 
--------- I I IALLPROG.TSKI MO 
--------- I I EXECUTION 

IPROG2.0BJI I I 
I-> I I 

6/20 I I 6/20 I 

I ' .. I 

'--~---~~' '~--------' COMPILE LINK 

FiQure 3-8 LINK Com•and Functions in the Kulti-Module 
Environment 

3-32 48-043 FOO ROO 



LIST 

3.9.8 LIST Command 

The LIST command lists the f ds of all the multi-module 
environment programs that are contained in the current EDF. 

Format: 

LIST 

Functional Details: 

The LIST command causes a listing to be sent to the list device 
specified by @SSYSPPT when lu assignments were made. When this 
command is enteredr this message is displayed: 

** CURRENT ENVIRONMENT = current EDF 

If the LIST command is entered and no fds are in the multi-module 
environmentr the folloving ~essage is displayed: 

** ENVIRONMENT EMPTY 

If an argument is specified with the LIST command, this message 
is displayed: 

** TOO MANY AFGUMENTS 

48-C43 FOO P.00 3-33 



REMOVE 

3.9.9 REMOVE Command 

The REMOVE command deletes specified source fds from the current 
multi-module environment. 

Format: 

REMOVE fd 

Parameters: 

fd 

Functional Details: 

is a file descriptor of a 
contained in the EDF. 

source file 

When the REMOVE command is entered, the current EDF is searched 
for. the specified fd. when found, the fd is removej from the 
multi-module environment. If the fd is not found, the following 
message is displayed: 

** FILENAME NOT IN ENVIRONMENT 

If the fd is omitt~d or is in an incorrect format, this message 
is displayed: 

** SYNTAX ERROR 

When all of th~ fds have been removed from the multi-module 
environment, this message is displayed: 

** ENVIRONr.ENT EMPTY 

3-34 48-043 FOO ROO 



-------------RUN 
-------------

3.9.io RUN Command 

The RUN command loads and runs the image program in language and 
multi-module environments. This command does not datecheck, 
compile, or link. 

Format: 

[s voln: r~ filename }] 

RUN luser voln:LJQcurrent program 
(!"start param~ters"] 

Parameters: 

voln: 

filename 

"start 
i;:a ra meters" 

Functional Details: 

is a 1- to 4-character alphanumeric name 
specifyinq the volume on which the image 
module resides. If this parameter is omitted, 
the default is the user volume. 

is a 1- to 8-character name specifying the 
image mcdule. If this parameter is omitted, 
the default is the current program. 

are Qarameters particular to the assembler 
or comi;:iler being used. These parameters, 
usually specified vith the operator START 
command, now can be specified with the program 
cevelopment RUN command. 

If a filename is not entered with the BUN command and a task with 
the filename of the current program does not exist in the 
language environment, this message is displayed: 

** fd NONEXISTENT 

See Section 3.9.6 for more information on start parameters. 

48-C43 FOO ROO 3- 35 



Figures 3-9 and 3-10 illustrate the RUN command functions. 

IMAGE MODULE BEFORE RUN 

IPROG1.TSKI 
I I 
I 6/20 I 

IMAGE MODULE AFTER RUN 

IPROG1.TSKf 
I f-> TASK 
I 6/20 I EXECUTION 

RUN 

Figure 3-9 RUH Command Function in the Language Environment 

IMAGE ~ODULE BEFORE RUN 

I 
I 

I I 
l~LLPRCG.!SI<I 

I I 
I I 
I I 
I I 
I S/20 I 

!~AGE MODULE AFTER RUN 

I 
I 
I 

I I-> TASK 
IALLPPOG.TSKI EXECUTION 
I I 
I I 
I I 
I 6/20 I 

RUN 

Figure 3-10 RUN Command Function in the ~ulti-Module Environment 

3-36 48-043 FOO jQQ 



Table 3-4 explains the functions of the commanis used to compile, 
link, and run a program. 

TABLE 3-4 PROGRAM DEVELOPMENT COMMANDS THAT COMPILE, 
LINK, AND EXECUTE 

---------------------------------------------------
COMMAND FUNCTION 

=================================================== 
COMPILE I Compiles source modul9 into object 

I module when object module does not 
I exist or is outdated. 

---------------------------------------------------
COMPLI~K Datechecks source, object, and image 

modules, and compiles and/or links 
them if outdated to form image 
program. 

---------------------------------------------------
LINK Compiles source module into object 

module when object module does not 
exist. Then links object module and 
standard run time libraries to form 
i~age ~rogram. , __________________________________________________ _ 

EXEC ~atechecks image, object, and source 
modul~s. Compiles and links them if 
outdated. Loads and runs up-to-date 

1---------------------------------------------------I RUN 
I 

I Loads and runs image program with~ut 
I datechecking, compiling, or linking. 

3.10 SAMPLE PROGRAM DEVELOPMENT SESSIONS 

This section presents coding exam~les 
development commands. 

using the program 

*FORT TEST 
** NEW PROGRAM 
-EDIT 

(edit session) 

SAVE* 
>END 

48-043 FOO ?00 

Create lanquaqe 
environment with the 
FORTRAN lanquaqe command. 

Specify TEST as filename 
to be allocated. FORr com­
~and loads and starts editor 
with TEST.F7N as current 
proqram. 

3-37 



3-38 

SGLOBAL @SSYSIN,@SSYSO~!,@SSYSLIST 
*SSET @SSYSIN=CON: 
*SSET @SSY~OUT=CON: 
*SSET @SSYSLIST=PF: 
*EXEC TEST 
-FORTHN:T'C'ST 
** COMPILE ERRORS, LISTING ON PR: 

*EDIT 
-EDIT - TEST 

(edit session) 

SA'IE* 
>END 

*EXEC 

(compilation sequence) 

-FORTRAN - TEST 
-END OF TASK CODF=O 
-LINK - TEST 

(linlt sequence) 

-END OF TASK CODE=O 
•• EXECUTION OF TEST FOLLOWS: 

(exe~ution sequence) 

-E~D OF TASK CODE=O 

*EXEC 
** EXECUTION OF TEST FOLLO~S: 

. 
(execution sequence) 

*RUN 
-ENC o: TASK CODE = 0 

*• EXfC~TION OF TEST FOLLOWS: 

Define and set ~lobal variables. 

Execute TEST.FTN. 
Compile TEST.FTN. 
Compilation errors in r~sr. 

Find and correct errors. 

Execute current program. 

Compile. 

Sucessful compilation. 
Llnltedlt. 

Successful linlt. 
Run. 

Successful execution. ee-execute. 
Ensure program is compiled 
and linked. 
Compile, link unnecessary. Object 
and ima;e up-to-date • 

Successful execution. 

Rerun, compile, or linlt. 

48-043 FOO ROO 



(execution sequence) 

-END OF TASK CCDE=O 

*EXEC HEWPROG 
** FILE NEwPROG.FTH HOT FOUND 

*MACRO 

*EXEC llEWPROG 
-MACRO - NEWPROG 
-CAL - N EWPROG 
-LINK - NEWPROG 

Clink sequence) 

** EXECUTION OF NEWPRCG FOLLOWS: 

(execution sequ~nce) 

-END OF TA~r CODE=O 

*EDIT 

(edit session) 

SAVE* 
>END 

*EXEC 
-MACRO - NBWPP.OG 
-CAL - NEW PP OG 
-LINK - NEWPROG 

Clink sequence) 

** EXECUTION OF NEWPROG FOLLOWS: 

(execution sequence) 

-END OF TASK CODF.=O 

48-C43 FOO FOO 

F:xecute NEWPROG. 
System finds NEWPROG.M~C. Cannot 
find NEWPROG.FTN. Specify MACRO 
command to access NEWPROG.MAC. 

Execute NEWPROG.MAC 
Expand. 
Assemble. 
Linkedit. 

Successful execution. 

Edit current proqram. 

Execute current proaram. 
Expand. 
Assemble. 
Linkedit. 

Successful execution. 

Create multi-module environ­
ment with EHV command. 

3-39 



3-40 

* ENV BIG TA SK BIGTASK. EDF alloca tad. 
** NEW ENVIRONMENT 
*ADD SUB.CAL Add 3 fds to EDF. 
*ADD MACRTY.CAL 
*ADD FTOR. FTN 
*LIST List all proqrams in EDF. 
** CURRENT ENVIRON~ENT=BIGTASK.EDF 
-SUB.CAL 
-!!ACRTY. CAL 
-FTOR.FTN 
*ADD SUBFUNC.FTN Add 2 more fds t? EDF. 
*ADD YSUB.~AC 

*REMOVE SUB.CAL Remove fd from EDF. 
*FORT SU9FUNC 
-EDIT - SUB~UNC !'falte chanqes to SUBFUNC.FT!f. 

(edit session) 

SA VE* 
>END 
*EDITYSUB 

(edit session) 

SAVI:;* 
>END 

* ENV BIGTAS!< 
*EXEC 
-FORTRAN - FTOR.FTN 
-FOP.TRAN - SUBFUNC.FTN 
-MACRO - YSUB.MAC 
-CAL - MACFTY.CAL 
-LIN!< - BIGTA~K 

(link sequence) 

** EXECUTION OF BI~TASK FOLLOWS: 

(execution sequence) 

-END OF TASK CODE=2 

*MAC 
*EDIT YSUB 

(edit session) 

Malte chanqes to YSUB.MAC. 

Create multi-module environment. 

Execute modul-.s remembered in 
BI GT ASK. 
FTOR.FT~ and !SUB.object 
modules are outjated. 

Link BIGTASK. 

Execution errors traced to YSUB. 

Create lanquaqe environment. 
Correct errors in !SUB.MAC. 

48-043 FOO ROO 



SAVE* 
>END 

*ENV BIGTASl<: 
*EXEC 
-l'li\CRO: YSUB. !'!AC 

-CAL - YSUB. l'IAC 
-LINK - BIGTASK 

(link sequence) 

** EXECUTION OF BIGTASK FOLLOWS: 

(execution sequence) 

-END OF TASK CODF.=O 

48-043 FOO ROO 

Create multi-module environment. 

YSUB.l'IAC object is outdated. Expand, 
assemble, an1 linkedit. 

3-4, 





CHAPTER 4 
MULTI-TERMINAL KONITOR CKTK) BATCH PROCESSING 

4.1 INTRODUCTION 

In addition to interactive processinQ capabilities, MTM also 
supports concurrent batch processino, allowing the user to run 
multiple batch jobs from a single batch queue. This feature 
enables the user to effectively utilize the capabilities of the 
system with minimal interference to the interactive users. 

The number of concurrent batch jobs allowed at any time under MTM 
is set by the operator from the system console. This number 
cannot exceed 64. If more batch jobs are submitted than there 
are active jobstreams, MTM queues the requests until a jobstream 
becomes available. 

The batch queue is an indexed file containino the file descriptor 
(fd) of the jobs to be pro~essed. Each job is identified in the 
queue by the fd of the command file. The batch queue is ordered 
in priority order and in first-in/first-out (FIFO) basis within 
a priority. 

Tasks executin9 in the batch environment run at a priority lower 
than or equal to the tasks in the terminal environment. Thus, a 
batch job executes when the system is not occupied with work from 
a terminal user. Batch jobs use the processor's idle time and 
therefore increase the efficiency of the system. 

4.2 BATCH COMMANDS 

The batch job file consists of a series of MTM user commands 
and/or command substitution system (CSS) calls. The commands 
presented in this section are unique to the batch environment. 

To submit a batch job a user must have created a batch job file 
on disk. This file must have a SIGNON command as the first 
record, and a S!GNOFF command 1s the last record. The only valid 
commands to be used between the SIGNON and SIG~OFF commands are 
MTM user commands (Chapter 2), program development commands 
(Chapter 3), bate~ processing conmmands, and calls to a CSS file 
(Chapter 5). ~ batch job file is not a CSS. Therefore, CSS 
commands, with the exception of SIF ••• , SELSE, and $ENDC, are 
invalid. Any command that can be used at a terminal can be used 
in the batch job file. 

48-043 FOO ROO 4-1 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I. 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Example of a single batch job file: 

SIGNON TEST1,1,PWD 
l TEST 1 
ST 
SIGNOFF 

Example CSS to build a batch job file and submit the job: 

u-2 

** ASM.CSS [MODULE] 
** 
** ~ 1 (MODULE TC BE ASSEMBLED) 
** 
** EXA~PLE: ASM EXIN 
** 
$BU @1.JOR 
SIGNON @1.JOB 
XAL @1.LOG,IN,80 
LOG a>1.LOG,5 
ASM/G @1 
SIFE 0 

MESS LEE *** @1.JOB COMPLETE *** 
SELSE 
MESS LEE *** @1.JOB ERROR *** 
-SEN DC 
SIGNOFF 
SEN DB 
SUB a1.JOB,DEL 
INQ 
SEXIT 

48-043 FOO ROO 



I INQUIRE I 

4.2.1 INQUIRE Coamand 

The INQUIRE command queries the status of a job on the batch 
queue. 

Format: 

Paraaeters: 

f d 

fd1 

Functional Details: 

which the status is 
not specified, ~11 jobs 

the same as the user's 

identifies the job for 
desired. ·If fd is 
with account numbers 
are displayed. 

specifies the file or device to which the 
display is output. If this par~meter is 
omitted, the default is the user console. 

This command can be entered in command mode, task loaded mode, 
and task executing mode. 

Possible responses to the INQUIRE command are: 

JOB f d NO! FOUND 

JOB fd EXECUTING 

JOB fd WAITING BEHINC=n 

NO JOBS WITH YOUR ACCOUNT 

Examples: 

INQ All jobs with the user 
number are displayed. 

account 

I N QUI R E TA.SK • J 0 B The status of TASK.JOB is displayed. 

48-043 FOO ROO 4-3 



LOG 

4.2.2 LOG Coamand 

The user can invoke a batch job to produce a log of its commands 
by including the LOG command and the $COPY command within the 
batch stream. 

Format: 

LOG (fd] rn::pym m:s}]] 

~ET ~ (fd] rn~:::P!rn [[{:s}]] 
Parameters: 

f d 

COPY 

NOCOPY 

n 

4-4 

is the file descriptor of the loq file or 
device. If no fd is specified, logging is 
terminated. If fd is a file, it must be 
previously allocated. Files are assigned EWO 
privileqes so that loqqed output is added to 
the end of the file. If a log is active when 
a second LOG command is entered, the old log 
is closed and the new one is initiated. 

specifies that all output is written to both 
the terminal and the log device. 

specifies that all output, except messages, is 
written to the log device and not the 
terminal. ~essages from other users and the 
operator are written to both the terminal and 
the log device. 

is a decimal number from 0 through 65,535 
specifying the number of lines after which the 
log file is to be checkpointed. If this 
parameter is omitted, the default is 15 lines. 
If n is specified as o, no checkpointing 
occurs. 

48-043 FOO ROO 



Functional Details: 

The LOG and the SET LOG commands are the same. 
be entered either way, and both formats 
function. 

The command can 
perform the same 

Checkpointin9 is only meaninQful for indexed files on disk. 

Example: 

LOG PR: 

48-043 FOO POO 4-5 



PURGE 

4.2.3 PURGE Command 

The PURGE command purges a submitted job from the batch queue. 

Format: 

~QS,GE f d 

Parameter: 

f d 

Example: 

PUR:;E TASK.JOB 

4-6 

is the file descriptor of the job to be 
purged. Only jobs with the user account 
number can be purged. 

TASK.JOB is pu~ged. 

48-043 FOO ROO 



I SIGNOFF I 

4.2.4 SIGNOFF Command 

The last command in a batch stream must be the SIGNOFF command. 

Format: 

Functional Details: 

When a terminal user signs off the system, these messages are 
displayed: 

ELAPSED TIME=hh:mm:ss 
SIGNON LEFT=hh:mm:ss 
TIME OFF=mm/dd/yy hh:mm:ss 

CPUTIME=utime/ostime 
CPU LEFT=hh:mm:ss 

The SIGNOFF command can be entered in command mode, task loaded 
mode, and task executing mode. 

48-043 FOO ROO 4-7 



I SIGMON 

4.2.5 SIGNON Command 

SIGNON must be the first command in a batch job. 

Format: 

~!GNON userid,actno,password r ~li!IRONMEHT= { fd }] l PfULL[:J 
~~.f!!.U ME=ma xt im~ 

~classid=iocount 1 ~ ••• ,classid=iocount 3iJ] 

Parameters: 

user id 

actno 

password 

ENVIRONMENT= 

4-8 

is a 1- to a-character alphanumeric strin; 
specifying terminal user identification. 

is a 3-digit decimal number from 1 through 250 
specifying the terminal user's account number. 
If this parameter is omitted, the password 
parameter should also be omitted. MT:i will 
use ~he account number of the user submitting 
the batch job. 

is a 1- to 12-cha racter alphanumeric string 
specifying the terminal user's password. This 
para meter should be omitted if the act no 
parameter is omitted. MrM will use the 
password of the user submittin9 the job. 

fd is the file descriptor specifying the file 
that will establish the user's environment at 
signon time. 

NOLL specifies that the signon CSS procedure, 
USERINIT.CS3, should be ignored and the user 
will establish the environment at siqnon time. 
If the entire keyword parameter is omitted, 
MTM searches all online disks for the siqnon 
CSS procedure, USERINIT.CSS/P. The system 
volume, system account, is searched last. If 
USERINIT.CSS is found, MTM calls the CSS and 
executes the routine. If it is not found, MrM 
enters command mode. 

48-043 FOO ROO 



CPUTIME= 

classid= 

Functional Details: 

maxtime is a decimal number specifying the 
maximum CPU time to which the batch job is 
limited. If this ~arameter is omitted, the 
def~ult established at sysqen is used. If O 
is specified, no limits are applied. The 
parameter can be specified as: 

mmmm:ss 
hhhh:mm:ss 
ssss 

is one of the 4-character alphanumeric 
mnemonics, specified at sysgen, associatP.d 
vith each specified device or file class. 

iocount is a decimal number specifying the 
maximum number of I/0 transfers associated 
with a particular device class to which the 
batch job is limited. If this parameter is 
omitted, the default established at sysqen is 
used. If 0 is specified, no limits are 
applied to that class. 

Between the SIGNON and SIGNOFF commands, any command or CSS call 
that is valid from the terminal is allowed. A SIGNON command 
cannot be followed by another command, on the same line, 
separated by semicolons. When ENVIRONMENT=NULL is specified, the 
colon is optional. This allows the user the ability to specify 
the null device (NULL:). 

The account number and password can be omitted if a batch job is 
submitted from a user terminal. If a batch job is submitted from 
the system console or via the Spooler, the account number and 
password must be specified. 

Examples: 

SIGNON ME 

S ME,12,PSWD,CPUTIME=2:30:00,DEV1=150 

S ME,CPUTIME=120 

S ME,ENV=NULL,CPUTIME=120 

S ME,ENV=XYZ 

48-043 FOO ROO 4-9 



I. 
I 
I 
I 

I SUBKIT 

4.2.6 SUBMIT Command 

The terminal user adds a job to the batch queue with the SUBMIT 
command. 

Format: 

SJJ,~MIT fd j!~ELETE] G.fRIORITY=priorityJ 

Para•eters: 

f d 

DELETE 

PRIORITY= 

Functional Details: 

is the file descriptor of the file submitted 
to batch. 

deletes the batch submit file the user created 
to submit a batch job. If this parameter is 
omitted, the batch submit file remains on the 
user volume. 

'priority is a decimal number from 10 through 
249 specifying the priority at which a batch 
job will run. If this Parameter is omitted, 
a batch job will run at the default batcn 
priority (two priorities lower than the 
priority at which MTM runs) or the Link 
priority (the priority established when the 
task was built), whichever is lower. 

The priority at which a batch job runs is relative to the default 
priorities established at MTM sysgen. The u-task priorities are 
established at link time and can be reset with the PRIORITY 
parameter of the SUBMIT command. Interactive tasks run at one 
priority lower than MT~. Batch jobs run at two priorities lower 
than MTH. If the MTM sysgen priority is set to equal 1 (128), 
interactiv~ jobs will run at priority +1 (129), or one lower than 
MTM: batch jobs will run at priority +2 (130), two lower than 
!'!TM. 

The rules for establishing ~ri~rities are: 

• Batch jobs can run at the same priority as interactive tasks 
but not higher than interactive tasks. 

4-10 48-043 FOO ROO 



• If a valid priority is specified, the batch job runs at that 
priority or the link priority, whichever is lower. 

• If the specified priority is invalid, the default priority is 
assiqned by MTM, and the followinq messaqe is displayed: 

WARNING - F.EQUESTED PRIORITY n ILLEGAL, n OSED 

• If ~o u-task priority is specified with 
the batch job runs at the default 
priority, whichever is lower. 

the SUBMIT command, 
priority or the link 

The SUBMIT command can be entered .in command mode, task loaded 
mode, and task executinq mode. 

Example: 

Create a batch job stream from the terminal via the BUILD ••• ENDB 
sequence: 

BUILD TEST.JOB 
SIGNON ME,ENV=NULL 
LOG PR: 
L TEST.TSK 
AS 3,PR: 
START 
SIGNOF 
ENDB 

Submit the job from the terminal for batch processinq: 

SUBMIT TEST.JOB 

Submit a batch submit file and have it deleted after the batch 
job execution is complete: 

SUBMIT XYZ.JOB, DELETE 

Submit a batch job and have it run at the same priority as an 
interactive job: 

SUBMIT XYZ.JOB, P=129 

48-043 FOO ROO 4-11 



4.3 BATCH JOB SUBMISSION USING THE SPOOtEB 

The Spooler is also used to submit batch jobs to the 
for execution under MTM. Batch jobs submitted 
Spooler later can be resubmitted as a batch job 
terminal. 

4.4 ERROR HANDLING 

batch queue 
throuqh the 

throuqh the 

Any error that occurs in a batch job causes automatic termination 
of the job, and a message is written to the log file or device. 
If a batch task pauses, the task is cancelled by MTM, and the end 
of task code is 255. · The job will continue at the command 
followinq the START: i.e., the next task will be loaded. The 
task end of task code can be tested by subsequent commands in the 
batch stream to determine if the task completed normally. 

4.5 EFFECT OF RESTRICTED DISKS OM BATCH JOBS 

I When accounts with access to restricted disks are qiven 
I read/write access, batch jobs are not affected. If read-only or 
I. no access is specified, messaqes are not displayed on the user 
I console. If a submit file for a batch job is on a restricted 
I disk and account 0 does not have read/write access, the following 
I message is displayed on the system console: 

.MTM:BATCH ASGN-ERR TYPE=PRIV JCB=fd 

l 

4-12 48-043 Foo aoo 



CHAPTER 5 
COMMAND SUBSTITUTION SYSTEM (CSS) 

5.1 GENERAL DESCRIPTION 

The command substitution system (CSS) is ~n extension to the 
OS/32 command language enabling the user to establish files of 
dynamically modifiable commands that can be called from the 
terminal or other CSS files and executed in a predefined 
sequence. In this way, complex operations can be carried out by 
the terminal user with only a few commands. CSS provides: 

• the ability to switch the command input stream to a file or 
device: 

• a set of logical operators to control the precise sequence of 
commands; 

• parameters that can be passed to a CSS file so that general 
sequences can be written to take on specific meaning when the 
parameters are substituted; and 

• the ability for one CSS file to call another, in the manner of 
a subroutine, so complex command sequences can be developed. 

A CSS file is simply a sequential text file. It can be a deck of 
cards, a magnetic tape, or a disk file. An example of a simple 
CSS file is: 

*THIS IS AN EXAMPLE OF A C3S FILE 
LOAD TEST.TSK/G,S 
ALLOCATE XXXDIX.DTA,CC,40 
AS 1,INPUT.DTA 
AS 2,XXXDIX.DTA;AS 5, CON: 
ASSIGN 3,PRT:;*LU3-LINEFRINTER 
START 
$EXIT 

48-043 FOO POO 5-1 



5.2 CALLING A CSS FILE 

A CSS file is called and executed from the terminal by specifying 
the file descriptor (fd) cf the CSS file. Any valid fd can be 
used. If the leading characters of a CSS fd are the same as a 
command, MTM assumes a command: 

Example: 

ClO.CSS 
AS3.CSS 

CLOSE 
ASSIGN 3 

KTM assumes the CLOSE command. 
MTM ~ssumes the ASSIGN command. 

By specifying a volume name and/or extension, a CSS file that 
otherwise would conflict with an KTM command can be called. 

Example: 

M300:CLOSE 
M300:CLOSE.CSS 

5.3 USE OF PARAMETERS 

The CSS filename can have parameters. The parameters are entered 
after the CSS fd and are separated ~rom it by one character 
space. If there is more than one parameter, each is separated by 
comma~. If a parameter contains the double quote character ("), 
all parameters up to the next double quote character are passed 
as one parameter• Null parameters are permitted. 

Example: 

ABC P1, "P2A, P2B" calls CSS file ABC on the default volume with 
two parameters. Parameter 1 is P1. Parameter 2 is P2A, P2B. 

JUMP ,,c calls CSS file JU~P.CSS on the default volume with three 
parameters; the first two are null. 

Within a CSS file, a para~eter is referenced by the use of the 
special symbol "@n" where n is a decimal inteqer number 
indicating which parameter the user is referencing. Parameters 
are numbered starting with 1. Parameter O has special meaning 
and is defined later in this section. The first parameter is 
referenced by @1, the second @2, etc. A straightforward text 

·substitution is employed. 

5-2 48-043 FOO ROO 



Example: 

A CSS file ROG consists of: 

LOAD 
START 

@1 
@3,@2 

It is called as follows: 

ROG PROGRAM,NOLIST,148 

Before each line of the CSS file is decoded, it is preprocessed, 
and any reference to a parameter is substituted with the 
correspondinQ text. Thus, the file ROG with the previous call is 
executed as: 

LOAD PROGRAM 
START 148,NOLIST 

Example: 

All of the following references to parameter 12 are valid 
expressions: 

@12 or @12ABC or @12.EY.T 

This mechanism allows concatenation. For instance, if the first 
command in file ROG were LOAD @1.TSK, only those files with the 
extension .TSK would be presented to the loader. Concatenation 
of numbers requires care. 123@1 references parameter 1, but 
@1123 is a reference to parameter 1123. A reference to a 
nonexistent parameter is null. 

The multiple @ facility enables a CSS file to access parameters 
of higher level files. CSS files can call each other to a 
maximu~ depth specified at sysgen time. Thus, @@2 in a CSS file 
refers to the second parameter of the calling file. 

u:-043 FOO ROO 5-3 



Example: 

Given the CSS call: 

CSS1 arg1,ar;2 

and assuming that in file CSS1 there is another call: 

CSS2 arq3,arg4 

the following references can be made in CSS2: 

Q) 1 
@2 
Q)ci) 1 
@@2 

= 
= 
= 
= 

arg3 
arg4 
arq1 
arg2 

If a multiple @ sequence is such that the calling level referred 
to is nonexistent, the parameter is null. 

Parameter @O 
the CSS file 
during the 
same f d used 

Example: 

is a special parameter used to reference the name of 
in which it is contained. Parameter @O is replaced 
preprocessing of the command line with precisely the 
to call the file. 

A CSS file consists of: 

AS 1,tilO 
SEXIT 

If this file is called from the card reader CCR:), then lu 1 is 
assigned to the card reader (CR:). Likewise, a call from the 
magnetic tape (MAG1:) results in: 

AS 1,MAG1: 

5-4 48-043 FOO ROO 



5.4 USE OF VARIABLES 

MTM and batch users can allocate a specified number of pseudo 
device variables to be used within a CSS. The maximum number of 
variables that can be defined is established at sysgen time. See 
the OS/32 Multi-Terminal Monitor CMTM) System Planning and 
Operator Reference· Manual. 

5.4.1 Types of Variables 

There a~e two types of pseudo device variables: 

• Global variables 

• Local variables 

Global variables exist from signon to si9noff or until they are 
freed via the SFBEE command. Local variables can be used only 
within the css levels in which they are defined. When a 
particular css level is exited, all local variables defined 
within it are freed. 

s.u.2 Naming Variables 

A variable name can consist of one through eight characters and 
is preceded by the commercial @ sign. The character following 
the @ sign must be alphabetic: the remaining characters can be 
alphanumeric. 

Examples: 

@A 

@B19 

clJABC123 

5.4.3 Defining Variables 

All variables must be defined by name using the $GLOBAL and 
SLOCAL commands. To set a variable to a specific value, use the 
$SET command. 

48-043 FOO ROO 5-5 



S.4.4 ReserYed Variables 

Variable names starting with the character string @SYS are 
reserved for system use. A user cannot define variables starting 
with @SYS. However, a user does have read and write access to 
@SYS variables. 

The global variable @SYSCODE is reserved and contains the value 
of the last end of task code for a particular session. 

S.S COMMANDS EXECUTABLE WITHIN A CSS FILE 

All of the MTM supported commands can be used in a CSS file, as 
well as a number of commands specifically associated with the CSS 
facility. 

All of the CSS commands start with the S character except for the 
SET CODE command. The S indicates where a CSS was used. 

The CSS command~ entered within a CSS file are described in the 
following sections. Ref er to Appendix E for CSS message 
descriptions. 

5-6 

NOTE 

If a task is started when CSS is running, 
CSS becomes dormant until the task is 
terminated. Execution of the CSS stream 
will resume after the task terminates. 

48-043 FOO ROO 



$BUILD and 
$EHDB 

S.S.1 $BUILD and SENDB Commands 

The $BUILD command causes succeeding lines to be copied to a 
specified file up to, but excluding, the corresponding SENDB 
command. Before each line is copied, parameter substitution is 
performed. 

Format: 

• 
• 
• 

SEN DB 

Parameters: 

f d 

lu 

APPEND 

Functional Details: 

is the output file. If fd 1oes not exist, an 
indexed file is allocated with a logical 
record length equal to the command buffer 
length. If the fd specified does n~t contain 
an extension, .css is the default. If a blank 
extension is desired, the period following the 
filename must be specified. 

specifies that a temporary file is to 
created and the $BUILD data is copied to 
When SENDB is encountered, the file 
assigned to the specified logical unit of 
loaded task. 

allows the user to add data to an existing 
If the fd does not exist, it is allocated. 

be 
it. 
is 

the 

fi. 

The $BUILD command must be the last command on its input line. 
Any further information on the line is treated as a comment and 
is not copied to the file. 

The SENDB command must be the first command in the command line, 
but it need not start in column 1. Other commands can follow 
SENDB on the command line, but nesting of SBU!LD and SENDB is not 
permitted. 

48-043 FOO ROO 5-7 



$CLEAR 

5.5.2 $CLEAR Command 

The $CLEAR command terminates a CSS stream, closes all CSS files, 
and deactivates CSS. 

Format: 

Functional Details: 

The SCLEAR command can be entered in command mode, task loaded 
mode, and task executinq mode. 

5-8 48-043 FOO ROO 



$CONTINUE 

5.5.3 $CONTINUE Command 

The $CONTINUE command resumes execution of a CSS procedure 
suspended by a SPAUSE or SWAIT command. 

Format: 

~~QliTI !fU E 

48-043 FOO BOO 5-9 



$COPY and 
SHOCOPY 

5.5.4 SCOPY and SKOCOPY Commands 

The $COPY and SNOCOPY commands control the listinq of CSS 
commands on the terminal or log device (if from batch). SCOPI 
initiates the listing and all subsequent commands are copied to 

· the terminal before being executed. The $NOCOPY command 
deactivates the listing, but is itself listed. The SCOPY command 
is an aid in debugging CSS job streams. 

Format: 

~H,QCOPY 

s-10 48-043 FOO ROO 



SEIIT 

5.5.5 SEXIT Command 

The SEXIT command terminates a CSS procedure. Control is 
returned to the calling CSS procedure or the terminal if the CSS 
procedure vas called from the terminal. All commands on the 
lines after the $EXIT command are iqnored. 

Format: 

UB-043 FOO ROO 5-11 



SFREE 

5.5.6 $FREE Command 

The $FREE command frees one or more pseudo variables. 

Format: 

SFREE varname 1 G ••• ,varname n] 

Parameters: 

varname 

Example: 

SFREE @A 

s-12 

is a 1- to a-character name specifyinq the 
variable whose name and value are to be freed. 

48-043 FOO ROO 



$GLOBAL 

S.5.7 $GLOBAL Coaaand 

The $GLOBAL command names a 9lobal variable and specifies the 
maximum length of the variable to which it can be set by the $SET 
command. 

Format: 

$GLOBAL varname 

Parameters: 

varname 

length 

Example: 

$GLOBAL .iJA(6) 

48-043 FOO ROO 

is a 1- to a-character name (the 
character is alpabetic) preceded by 
sign, identifying a global variable. 

first 
the @ 

is a decimal number from 4 through 32 
specifying the length of the variable defined 
by the SSET command. If this parameter is 
omitted, the default is 8. 

5-1 3 



SJOB and 
STERMJOB 

5.5.8 $JOB and STERKJOB Coaaands 

The SJCB and STERMJOB commands set the boundaries of a CSS job. 
The $JOB command indicates the start, and the STERMJOB command 
indicates the end of a CSS job that contains all the user CSS 
commands and tasks. 

Format: 

UOB 
[~iillM E=ma xti m~ 

Gclassid=iocoun t iJ [;: ••• ,classid=iocount 32] 

• 
• 
• 

.i.IERMJOB 

Paraaeters: 

CPUTH!E= 

classid= 

5-14 

maxtime is a decimal number specifying the 
maximum CPU time to which the CSS routine is 
limited. If this parameter is omitted, the 
default established at MTM sysgen is used. If 
O is specified, no limits are applied. 

is one of the 4-character alphanumeric 
mnemonics specified at MrM sysqen that is 
associated with each specified device or file 
class. 

iocount is a decimal number specifying the 
maximum CPU time to which the CSS routine is 
limited. If this parameter is omitted, the 
default established at sysgen time is used. 
If O is specified, no limits are applied to 
that class. 

48-043 Foo aoo 



Functional Details: 

The SJOB and STERMJOB commands are not necessary in a CSS 
procedure. However, they help prevent errors in one CSS job from 
aff ectinQ other CSS jobs. If a CSS job contains an error, the 
statements remaining in that job are skipped until a STERMJOB 
command is found. The next command executed is the first command 
found after a STERMJOB command. If the next command is a SJOB 
command signifying the start of a new CSS job, it could be 
skipped because the system is looking for a STERMJ09 that 
signifies the end of the CSS job containing the error. 

The CSS job containing an error is aborted, and the end of task 
code is 255. The $JOB command resets the end of task code to 0 
for the next CSS job. 

Interactive jobs have no default limits established at sysqen 
time. However, the user can specify CPU time and I/O transfer 
limits for a particular job through the $JOB command. 

Any limits in the SJOB command found in a batch stream are 
ignored if limits were already specified in the SIGNON command. 

48-043 FOO ROO 5-15 



$LOCAL 

5.5.9 $LOCAL Coaaand 

The SLOCAL command names 
maximum length variable 
command. 

a local variable and specifies the 
to which it can be set by tha $SET 

Format: 

Pa.rameters: 

varname 

lenqth 

Example: 

$LOCAL @A(l.1} 

~-16 

is a 1- to a-character name (the first 
character is alphabetic) preceded by the @ 
sign, identifying a local variable. 

is a decimal number from 4 through 32 
specifying the length of the variable defined 
by the SSET command. If this parameter is 
omitted, the default is a. 

48-043 FOO ROO 



--------------$PACJSE 

5.5.10 $PAUSE Coamand 

The SPAUSE command suspends execution of a CSS procedure. 

Format: 

~£AUSE 

Functional Details: 

When SPAUSE is entered, the CSS procedure remains suspended until 
the SCONTINUE command is entered or the $CLEAR command is entered 
to terminate a procedure suspended by a $PAUSE. 

48-043 FOO ROO 5-17 



SSET 

~-----------.-.-

5.5.11 SSET Command 

The SSET command establishes the value of a named pseudo device 
variable. 

Format: 

$SET varname=e 

Parameter: 

varname= e is an expression, variable, or parameter 
established as the value of the variable. 

Functional Details: 

Expressions for this command are concatenations of variables, 
parameters, and character strings. No operators are allowed in 
an expression. If a character string is included in an 
expression, it must be enclosed between apostrophes('). If an 
apostrophe is part of the character string, it must be 
represented as two apostrophes(''). 

The initial value of the variable is 
SIFNULL and SIFNNULL commands to 
value. 

Examples: 

$SET @A = @A1@A2 

SSET @A = @A1 1 .MAC 1 

SSET @A = @1 

$SET @A = I A I • B. 

5-18 

blanks. This allows the 
test for a null or not null 

48-043 FOO ROO 



SET CODE 

5.5.12 SET CODE Command 

The SET CODE command modifies the end of task code of the 
currently selected CSS task. 

Format: 

~,ET £ODE n 

Parameter: 

n is a decimal numbe~ from 1 through 254. 

48-043 FOO ROO 5-19 



$SKIP 

S.S.13 SSKIP Command 

The SSKIP command is used between the $JOB and STEBMJOB commands. 
The $SKIP command indicates that subsequent commands are to be 
skipped until a STERMJOB command is found. The end of task code 
is set to 255. 

Format: 

~KIP 

s-20 48-043 Foo aoo 



SWAIT 

S.S.14 SWAIT Command 

The SWAIT command suspends execution of a CSS for a specified 
period of time. 

Foraat: 

SWAIT [{:}] 

Parameter: 

n 

Functional Details: 

is a decimal number from 1 through 300 
specifying the number of seconds CSS execution 
will be suspended. If this parameter is 
omitted, the default is 1 second. 

The SWAIT command will only function from a CSS routin~. 

When the SWAIT command is entered and the user does not want to 
wait the specified time, a $CONTINUE command can be entered. 

48-043 FOO ROO 5-21 



$WRITE 

S.S.15 $WRITE Command 

The $WRITE command writes a message to the terminal or log device 
for both interactive and batch jobs. 

Format: 

llRITE text [;] 

Functional Details: 

The message is output to the terminal or log device. It begins 
with the first nonblank character after $WRITE and ends ~ith a 
semicolon or carriage return. The semicolon is not printed. 

5.6 LOGICAL IF COMMANDS 

The logical IF commands all start with the three characters, SIF, 
and allow one argument; e.g., SIFE 225, SIFX B.CSS, SIF~ULL @1. 

Each logical IF command establishes a condition that is tested by 
the CSS processor. If the result of t~is test is true, commands 
up to a correspondinQ SELSE or SENDC command are execu~ed. If 
the result is false, these same commands are skipped. 

The SENDC command delimits the range of a logical IF; ho•ever, 
nesting is permitted so each $IF must have a c~rresponding $ENDC. 

5-22 48-043 Poo aoo 



In the following exampl~s, the ranQes of the various l~gic~l IF 
commands are indicated by brackets: 

There is no restriction on the depth 
commands are used within a CSS file. 
previous CSS commands in that each one 
defined condition rather than causes a 

of nesting. Logical IF 
However, they differ from 

tests a specific built-in, 
specific action. 

The logical IF commands fall into three categories: 

• End of task code testing 

• File existence testing 

• ParametP.r existence testing 

5.6.1 End of Task Code Testing Commands 

The end of task code is a halfword quantity maintained for each 
user by the system. It is set or reset in any of the following 
ways: 

SET CO DE n 

$JOB 

48-043 FOO ROO 

This command, which can be included in a CSS 
file or entered at the terminal, sets the end 
of task code to n. 

As part of its start job function, this 
command resets the end of task code for the 
current CSS task to o. 

5-23 



Command error A command error causes the CSS mechanism to 
skip to STERMJOB assuming that a $JOB was 
executed. (If no SJOB was executed, CSS 
terminates.) To indicate that the skip took 
place, the end of task code is set to 255. 

$SKIP This command has the same effect as a command 
error. 

EOT (SVC 3,n) When any task terminates by executing t~e end 
of task program command (SVC 3,n), the end of 
task cede for that task is set to n. 

CANCEL When a task is cancelled, the end of task code 
is set to 255. 

The six comman1s available for testing the ~nd of task code of 
the currently selected CSS task are as follows: 

SIFE n 
SIFNE n 
SIFL n 
SIFNL n 
SIFG n 
SIFNG n 

Test 
Test 
Test 
Test 
Test 
Test 

end 
end 
end 
end 
end 
end 

of task code 
of task code 
of task code 
of task code 
of task code 
of task code 

equal to n 
not equal to n 
less than n 
not less than n 
greater than n 
not ~reater than n 

In all cases, if the results of the test are "false", CSS skips 
commands until the cortes~onding SELSE or SENDC. If a CSS 
attempts to skip beyond EOF, a command error is generated. 

5.6.2 File Existence Testinq Commands 

There are two commands dealing with file existence: 

SIFX f1 Test fd for existence 

~IIliX f d Test fd for nonexistence 

If the result of the test is false, CSS skips to the 
corresponding $ELSE or SENCC command. If a CSS attempts to skip 
beyond EOF, an error is generated. 

5-24 48-043 FOO ROO 



5.6.3 Parameter Existence Testing Commands 

There are two commands dealing with the existence of parameters: 

~lf:ULL @n 

~I.£:Ji1!ULL @n 

Test @n null 

Test @n not null 

If the result of the test is false, CSS skips to the 
corresponding SELSE or SENtC command. If such skipping attempts 
to skip beyond EOF, a command error is given. 

The use of the multiple @ notation to test for the existence of 
hiqher level parameters is permitted. In addition, a combination 
of parameters can be tested simultaneously. 

Exa11ple: 

In effect, this tests the logical OR of @1, @2, and @3 for 
nullity. If any of the three is present, the test result is 
false. 

48-043 FOO ROO 5-25 



SELSE 

5.6.4 $ELSE Coa•and 

The SELSE command is used between the SIF and SENDC command to 
test the opposite condition of that tested by SIF. Thus, if the 
condition tested by SIF is true, SELSE causes commands to be 
skipped up to the corresponding SENDC. If the condition is 
false, SELSE terminates skipping and causes command execution to 
resume. 

For11at: 

5-26 48-043 FOO ROO 



5.7 $GOTO AND $LABEL COKBANDS 

$GOTO and 
$LABEL 

The SGOTO command is used to skip forward within a CSS procedure. 
The $LABEL is used to define the object of a $GOTO. 

Foraat: 

~OTO label 

~LABEL label 

Parameters: 

Label is from one to eight alphanumeric characters, 
the first of which must be alphabetic. 

Functional Details: 

The $GOTO command causes all subsequent commands to be ignored 
until a $LABEL command with the same label as the $GOTO command 
is encountered. At that point, command execution resumes. 

The SGOTO cannot branch into a logical IF command range but can 
branch cut from one. 

An example of an illegal $GOTO is: 

SIF Condition 
$GOTO OUTIF 

• 

SEN DC 
SIF Condition 
$LABEL OUTIF 

The SLABEL occurs within an IF block (the second IF condition) 
that was not active when $GOTO was executed. 

48-043 FOO ROO 5-27 



The following is valid, however: 

$IF Condition 
$GOTO OUTIF 

• 
• 
• 

SEN DC 
SIF Condition 

• 
• 

SEN DC 
SLABEL OUTIF 

5-28 48-043 FOO ROO 



I SIFEXTENSION I 

5.8 SIFEXTENSIOM COMMAMD 

The SIFEXTENSION command is used to test for tne existence of an 
extension for a given fd. If the extension exists, subsequent 
commands are executed up to the next SELSE or SENDC command. If 
an extension does not exist, subsequent commands are skipped up 
to the next $ELSE or SENDC command. 

Format: 

~If.ilTENSION fd 

Parameter: 

f d 

Functional Details: 

is the file descriptor to be tested 
determine if an extension is included. 

SIFEX (with no fd) is always considered false. 
SIFNEX (with no fd) is always considered true. 

48-043 FOO ROO 

to 

5-29 



__ .... ._ .. __ .... _ .... _ 
SIFVOLUME 

5.9 SIFVOLUME CO!!AID 

The SIFVOLUME command tests for the existence of a volume name in 
an fd. If a volume exists, subsequent commands are executed up 
to the next $ELSE or SENCC command. If the volume is omitted in 
the fd, subsequent commands are skipped up to the next SELSE or 
SENDC command. 

Format: 

~1!.!0LUME fd 

Parameter: 

f d is the file descriptor tested to determine if 
a volume name is included. 

5.10 LOGICAL IF COMMANDS COMPABIIG TWO ABGUMEITS 

The followinq loqical IF co~mands are used to compare two 
arguments. They differ from the other loqical IF commands in 
that they do not test specific built-in conditions but, rather, 
test conditions provided by the user. These commands are 
available only with MTM. 

SIF ••• EQUAL 
SIF • • • NEOUAL 
SIF ••• GREATER 
SIF ••• NGREATFR 
SIF • • • LESS 
$IF ••• NLESS 

For each of the logical commands, two arguments are compared 
according to the mode. There are three valid modes: 

• Character 

• tecimal 

• Hexadecimal 

5-30 48-043 FOO ROO 



For character mode, the comparison is left-to-rioht and is 
terminated on the first pair of characters that are not the same. 
If one strino is exhausted before the other, the short string is 
less than the long string. If both strings are exhausted at the 
same time, they are equal. For character mode, the arouments can 
be enclosed in double quotes if they contain blanks. !he quotes 
are not included in the compare. 

For decimal and hexadecimal mode, the comparison is performed by 
comparing the binary value of the numbers. 

If after comparing the arguments for each of the commands, the 
condition is determined to be true, subsequent commands are 
executed up to the corresponding $ELSE and SENDC. If the 
condition is false, commands are skipped up to the corresponding 
$ELSE or SENDC. 

48-043 FOO ROO 5-31 



SIF 

s.10.1 SIF ••• EQUAL, SIF ••• NEOUAL Comaands 

The SIF ••• EQUAL command is used to determine if two arquments are 
equal, while the SIF ••• NEQUAL is used to determine if two 
arguments are not equal. 

Format: 

SIF 

SIF 

s.10.2 SIF ••• GREATER, SIF ••• NGREATER Commands 

The SIF ••• GREATER command is used to determine if arq1 is qreater 
than arq2. The SIF ••• NGREATER command is used to determine if 
arq1 is not qreater than arg2. 

Format: 

~liARACTER 

SIF ~ DECBAL ~ arq1 ~.B,EATE:R arg 2 

.HEXADECIMAL 

~JiARACTER 

SIF ~ DECIHL ~ arq1 !QR EATER arq 2 

H.EXADECIMAL 

5-32 48-043 FOO ROO 



5.10.3 SIF ••• LESS, SIF ••• NtESS Commands 

The SIF ••• LESS command is used to determine if argi is less than 
arg2. The SIF ••• NLESS command is used to determine if argi is 
not less than arg2. 

Foraat: 

~[ARACTER 

SIF ! DECIHL ~ ar9 1 1.,ESS arq 2 

H.EXADECIMAL 

£!iARACTER 

SIF ! DECIMAL ~ arg 1 !l:J;SS arg 2 

HEXADECIMAL 

US-043 FOO ROO 5-33 





6.1 INTRODUCTION 

CHAPTER 6 
SPOOLING 

The OS/32 package comes with a spooler task for both input and 
output spooling. At system generation (sysgen) time, the spool 
option must be included and the pseudo print devices declared in 
order to incorporate the spooling facility. 

6.2 INPUT SPOOLING 

The input spooling feature enables a batch stream of 
as source programs, operator commands, command 
system CCSS) files, or other user data to be copied 
file for immediate or subsequent processing. 
control commands available for input spooling: 

/@INPUT 

/@SUBMIT 

cards such 
substitution 

onto a disk 
There are two 

In all cases, each deck of cards to be copied must end with a 
control card with the /@ appearing in columns 1 and 2. 

6.2.1 Input Card 

The /@INPUT card copies all the data between the /@INPUr and the 
/@ cards to a disk file. The resulting file can be explicitly 
assigned and read by the user in order to access the spooled 
infcrmation. 

Cards to be copied must be ~receded by a control card with the 
format: 

L~lHPUT fd/actno ,QELETE 

48-043 FOO ROO S-1 



Parameters: 

f d 

actno 

DELETE 

Example: 

is the file descri~tor of the disk file in the 
form of voln:filename.ext. The only required 
field is filename. If voln is omitted, the 
default spool volume is used. 

is the account number the terminal user signs 
on with. 

specifies that if a file with the same name 
and account number already exists, that file 
is deleted and reallocated. 

CAUTION 

IF THE WRONG ACCOUNT NUMBER IS ENTERED, 
THE USER MIGHT tELETE ANOTHER USER FILE. 

A certai~ task CTEST.TSK} requires five input data records in 
order to execute. The following statements place these five 
input statements on a disk file named TEST.OTA (associated vith 
account number 12} and delete and reallocate TEST.OTA if it 
already exists: 

/~IN TEST.DTA/12,D 
u INPUT TEST 
122735 
545627 
889710 
6321~2 
/@ 

6.2.2 Submit Card - Addinq Batch Jobs to the Batch Queue 

The Spooler can also be used to submit batch jobs to the 
multi-terminal monitor CMTM). This is done through the /@SUBMIT 
command which copies card files to the disk and submits the file 
as a batch job. The commands are executed in sequence. The file 
remains on the disk after execution. 

To add batch jobs to the batch queue via the Spooler, submit a 
control card with the format: 

F~rmat: 

Li~UBMIT fd/actno ,~ELETE 

6-2 48-043 FOO ROO 



Parameters: 

f d 

actno 

DELETE 

is the name of the command file; i.e., the 
batch jcb, that is to be placed on the batch 
queue. 

is the account number the terminal user signs 
on with. 

specifies that if a file with the same name 
and account number exists, that file is to be 
deleted and reallocated. 

Each deck of cards must eud with a control card with /@ appearing 
on columns 1 and 2. 

Refer to the OS/32 System Support Utilities Reference Manual for 
more information on the Spooler. 

There are two ways to submit a batch job usinq the Spooler. 

Method 1: 

First a CSS file is copied from a card file to a disk file named 
TEST.CSS (associated with account number 12) on the default spool 
volume. If TEST.CSS already e~ists, it is deleted and 
reallocated. This is done as follows: 

/@INPUT TEST.CSS/12,D 
LO TEST 
AS 1,TEST.DTA 
AS 1,PR: 
AS 5,MAG1: 
START 
I@ 

The CSS file TEST.CSS now can be executed by the batch job 
TEST.JOB. If a file already exists on the disk with the name 
TEST.JOB, it is deleted and reallocated. When running concurrent 
batch jobs, each signon ID must be unique. Submit this job as 
follows: 

/@SUBMIT TEST.JOB/12,t 
SIGNON ME,12,PASSWD 
LOG PR: 
TEST.CSS 
SIGNOFF 
/@ 

48-043 FOO ROO 6-3 



~ethod 2: 

Only one step is required to build the file TEST.JOB 
it as a batch job. The commands are executed in 
the file TEST.JOB already exists on the disk, it is 
reallocated. After this batch job completes, the 
remains on the disk: 

/~SUBMIT TEST.JOB/12,D 
SIGNON ME,12,PASSWD 
LOG PR: 
LO TEST 
AS 1,TEST.DTA 
AS 3,PR: 
AS S,MAG1: 
START 
SIGNOFF 
/@ 

6.3 OUTPUT SPOOLING 

and s~bmit 
sequence. If 
deleted and 

file TEST.JOB 

Output spooling allows more than one task to be assigne1 to one 
or more print or punch devices simultaneously. Data to be 
printed or punched is written to disk files wher~ it is then 
copiad by the Spooler to the available print or punch ievices on 
a task priority basis. 

To make use of the output Spooler, assign any logical units (lu) 
to be printed or punched to one or ~ore pseudo devices. As soon 
as the lu is closed, the Spooler automatically will print or 
punch the results. Printing or punching may be delayed because 
of a backlog to the device. 

There is no limit to the number of tasks or logical units that 
can be assigned to a pseudo device. After the user makes an lu 
assignment, the following occurs int~rnally: the operating 
system automatically intercepts all assign~ents to a pseudo 
d~vice and allocates an indexed file called a spool file on the 
spool volume. Subsequent output calls cause data to be written 
to this file and not to the device. The Spooler supports both 
image and formatted writes. 

When the lu assigned to the spool file is closed, the filename, 
task name, a~d priority are placed into the Spooler print or 
punch queue. The queue is maintained as a file on the spool 
volume. If there is an entry on the queue, the output Spooler 
begins printing or punching and stays active as long as there i~ 

something on the queue. Files are spooled and output on a task 
priority basis. The user must ensure that sufficient disk space 
is available to accommodate output spooling. The user task is 
responsible for handling end of medium (EOM) status while writing 
to spool files within their own standard I/O error ~ecovery 
routines. 

6-4 48-043 FOO P.00 



Printing multiple copies of a disk file or punching multiple 
copies of a card deck is accomplished through use of the Spooler. 
To print or punch a disk file using the Spooler, issue a command 
through MTM fr~m the terminal. This is done with the PRINT and 
PUNCH commands. See Sections 2.36 and 2.37. 

If the device specified in a PRINT or PUNCH 
support printed output or output punching 
output will be generated in the way that is 
specified device. 

com~and does not 
respectively, the 

supported on the 

For print files, a header page precedes each file printed. The 
header page has the format: 

USERID 

ACCOUNT NUMBER 

TIME OF DAY 

DATE 

When a file is directed to a card punch 
is 80 bytes in length. A header 
output; a trailer card terminates the 
suppression is not supplied. 

Example: 

file, each output record 
card precedes the punched 
punched output. Header 

To list and punch a file named TEST.CSS in account number 12 on 
the volume MTM using the Spooler, enter: 

SIGNON ME,12,MEPASS 
PRINT ~TM:TEST.CSS 
PUNCH MTM:TEST.CSS 
SIGNOFF 

The header page for the print examples reads: 

TEST 
AC=00012 
14:36:50 
07/08/77 

48-043 FOO ROO 6-5 



6.4 SPOOLING ERRORS 

The following message is generated by the operating system in 
response to a spooler command. 

FILE voln:filename.ext/acct NOT ENTERED ONTO PRINT QUEUE 

A spool file was closed but the spooler task was not loaded or 
started. The system operator can reenter a .SPL PRINT command 
when the Spooler is started. 

6-6 48-043 FOO ROO 



ll,LOCA TE fd, 

APPENDIX A 
MTM COMMAND SUMMARY 

~NTIGUOUS, £size r,{keys }] 
L ~·O.Ot 

l!DEX Hr::l}J] ~[r:ze}]] r[t~ze}]] 
H:::}J 

llA{[f :;;l}J] at~ze}J] [{::;}] 
access privile~es 

!~SIGN lu,fd , 
SRV 

SRO 

ERO 

~rr 1 E f d , i u 

{add :ess} 
.aIP.S ~ 

~,!iECORD [fd:J lu 

48-043 FOO ROO A-1 



.aQILD { fldu} GAPP END] 

ENDB 

~.h)I C EL 

£QNTINUE [address] 

~.ISPLAY ACCOUNTING [{ fd }] 
' user console 

~I:'Fi.AY QEVICES I { fd }] L user console. 

.Q.ISPLAY fil:10AT [{ fd }] 
user console 

tISPLAY IILES [~ . ~] 
. 

, voln: . [filename] 

defau1.t, aser vo.l 
1 

G ~xtJJ 

QI S PL A Y f:10 .a. T [, { f d } 
user console 

A-2 48-043 FOO ROO 



DISPLAY iiu L{ fd }] L user console 

QISPLA y iA PA METERS I,{ fd }] L user console 

.QISPLAY JlEGISTERS [{ fd }] 
user eonsole 

QISPLAY IIME [{ fd }] 
oser console 

QISPLAY !lSERS I,{ fd }] L user console 

Efil.BLE 

US SAGE 

UOMPT 

.EIM 

S!!,EIABLE 

_E!flMINE address 1 [~~:ddress 2~1 C { fd }] L user console 
, 1 I 

.[£ILE (#d,] lu 

fiECORD [f dJ lu 

!NIT fd [ {"eosize ~ncrement}] 

48-043 FOO ROD A-3 



1'CAD l}askid,] fd [;segsize increment] 

{
user id ) 

~ISSAGE I message 
.:..QPERATOR) 

11.ESSAGE 

F,!tO MPT 

SY.iRIABLE 

.Eli.INT fd G12]YICE=pseudo device] G~QPIES=t!] G!H~1.ETE] GvFcj 

.I:J.lliCH f:i G.l2l:YICE=pseudo device] [,~.QPIES=tl] Gf2.E1ETE] GvFc] 

I:.!.1.S.GE fd 

liEN~ME oldfd,nevfd 

£~RCTECT fd,new keys 

A-4 48-043 FOO ROO 



or 

!DD, 

!\!Q1 UM E vo ln r 

.REMOVE, 

llSERS [ { 
actno ~ J 

, actno1 - actno2 

0··2ss 

S~lit message [~J 

~liliQIF 

~IGNON userid,actno,password tEJ!YIRONMENT= 

k~~Q.IIME=maxtime] 

~c la ssid =iocoun t 1 ~ ••• ,classid=iocount 3 iJ] 

[{ address }] 
START 
-- transfer address 

~parameter,, ••• ,parameterzJ 

48-043 FOO ROO A-5 



[~I:L]MIT fd ,QELETE] G.fRIORITY=priorit:r] 

[{ 
taskid }] 

TASK 
~QBOUND 

Y.OLUME [voln] 

l~1LOCATE fd, 

A-6 48-043 Foo aoo 



APPENDIX B 
PROGRAM DEVELOPMENT COMMAKD SUMMARY 

ADD fd Gcssprod] 

COMPLINK 

EDIT 

ENV 

LINK 

LIST 

48-043 FOO ROO :s -1 



REMOVE f d 

B-2 48-043 FOO ROO 



APPENDIX C 
CSS COMMAND SUMMARY 

• 

• 
SEN DB 

~~liTINUE 

~NOCOPY 

S F P E E var n a '11 e 1 (; ••• , v a r name. n] 

~~OTO label 

iLABEL label 

48-043 FOO ROO C-1 



~JiARACTER 

SIF { DECIMAL ~ ar91 ~UAL ar<J2 

!iEXADECIM~L 

~HARA CT ER 

SIF { DECIMAL ~ arg1 !i~OUAL arq2 

HEXADECIMAL 

~liARACTER 

SIF { DECIMAL ~ arq1 ~lEATER arg2 

HEXADECIMAL 

~li.ARACTER 

SIF { DECIHL ~ arg1 !QR EATER arq 2 

H.EXADECIMAL 

~l:f.ARACTER 

SIF { DECIMAL ~ arg 1 ,ilSS arq 2 

li.E~ADECIMAL 
~li.ARACTER 

SIF 1 DEC!KAL ~ arq 1 ~L~SS arg2 

HEXADECIMAL 

~ll.EXTENSION fd 

C-2 48-043 FOO ROO 



SIFL n 

SIFNE n 

·s IFNG n 

SIFNL n 

~ITEQLL @n 

~lililiULL @n 

~l[YOLUME f d 

SIFX fd 

~liliX f d 

£.£JITIME=maxtime 

~ c la ssid=iocoun t 1J k ... ,clas sid=iocoun t32] 

~IEBMJOB 

i:EAUSE 

SSET varname=e 

~_ET f ODE n 

48-043 FOO ROO C-3 



~~KIP 

iJ!RITE text (~J 

C-4 48-043 FOO ROO 



APPENDIX D 
MTM MESSAGE SUftMARI 

ACCFSS PRIVILEGE ADDRESS ERROR AT XXXXXX 
MEMORY FAULT ADDRESS=XXXXXX 

An attempt was made to access a valid segment in an invalid 
mode; i.e., store into a write protected segment; execute 
instructions from an execute protected segment; load from a 
read protected segment. 

ACCT-ERR 

The account number specified is not between 0 and 255. 

ALIGNMENT FAULT INSTRUCTIC~ AT XXXXXX 
MEMOFY FAULT ADDRESS=XXXXXX 

Data instruction not prcperly aligned to specific fields for 
fullword or halfword alignment. The memory fault address is 
the memory location that is not properly aligned. The memory 
fault address is given only on Perkin-Elmer 3200 Series 
Machines. 

ALLO-ERR TYPE=NAME 

A desired filename currently exists on the specifiei volume. 

The block size of an indexed file exceeds limit established 
at sysgen time. 

For an indexed file, a zero logic~l record length or data 
block size was specified. 

ALLO-ERR TYPE=TYPE 

The volume specified is not a direct access device. 

ALLC-ERR TYPE=VOL 

The volume name specified, or the name it defaulted to, is 
not the name of any cf the disks currently online. 

48-0il3 FOO RCO D-1 



ACCT-ERR 

The account number specified is not between o and 255. 

ARGS-ERR 

The amount of space between CTOP ~nd UTOP is insufficient for 
placement of START ccmm~nd arguments by the command 
processor. 

APITHMETIC FAULT AT XXXXXX 

A fixed or f loatinq point error was detected at address 
xxxxxx, or an attempt was made to divide by zero. This only 
occurs on Perkin-Elmer Models 7/32 and 8/32 Machines. 

ASGN-EBR 

The assign failed for reason denoted by TYPE field. 

ASGN-ERR TYPE=BUFF 

An attempt was made to assign a file when there was 
insufficient system space available to accommodate the FCB. 

ASGN-ERR TYPE=LU 

An attempt was made to assign to an lu that is greater than 
the maximum lu number specified at Link time. 

ASGN-ERR TYPE=NAME 

An assignment is being directed to a nonexistent file. 

ASGN-ERR TYPE=PRIV 

A file, currently assigned to an lu with a given privilege, 
is assigned to another lu; e.g., an assignment of F.R~ is 
directed towards a file currently assigned for SRO. 

ASGN-ERR TYPE=PROT 

D-2 

The file being assigned to is unconditionally protected (read 
and/or write keys=X'FF') or the read/write keys specified in 
the ASSIGN command do not correspond to those associated •ith 
the file, and tne file is conditionally protect~d (read 
and/or write keys not x•oo• or X'FF'}. 

48-043 FOO BOO 



ASGN-E~R TYPE=SIZE 

An indexed file is being assigned and there is n~t enough 
room on the disk to allocate a physical block. 

ASGN-ERR TYPE=SPAC 

An assign is refused because the available task system space 
was exceeded. 

ASGN-ERR TYPE=TGD 

An attempt was made to assign a trap generating device. 

ASGN-ERR TYPE=VOL 

Volume name specified or defaulted to is not the name of any 
of the disks currently online. 

BTCH-ERR 

The batch capability was not started and is not available for 
a SUBMIT command. 

BUFF-ERR 

The expanded CSS line overflowed CSS buffer size. 

CLOS-ERR 

Close failed for reason denoted by TYPE field. 

DELE-ERR TYPE=ACCT 

An attempt was made to delete a file not on the user's 
private account. 

DEL-ERR TYPE=ASGN 

An attempt is being made to delete a file that is currently 
assigned, or is being processed by the CSS processor. 

DELE-ERR TYPE=BUFF 

There is insufficient memory available in system space to 
per=orm a delete functicn. 

48-043 FOO ROO D-3 



DELE-ERR TYPE=DU 

An attempt was made to delete a file from a device that is 
not on line. 

DELE-EF.R TYPE=IO 

An I/O error was encountered while attempting to delete a 
file. 

DELE-ERR TYPE=NAME 

File with a specified name was not found. 

DELE-ERR TYPE=PROT 

An attempt is being made to delete a file with nonzero 
protection keys. 

DELE-ERR TYPE=TYPE 

The volume name specified or defaulted to is not a direct 
access device. 

DELE-ERR TYPE=VOL 

Nonexistent file is assigned to a task. 

DUPLICATE USERNAME 

Userid is already in use. 

FD-EPP. 

The file descriptor is syntactically incorrect or invalid, or 
a program on the disk is being loaded without enough system 
space. 

fd IS NOT A CONTIGUOUS FILE 

D-4 

The INIT command can only be used to initialize contiguous 
files. 

48-043 FOO ROO 



FILE voln: filename. ext/acct NOT ENTERED ONTO PRINT QUEUE 

A spool file was closed but the spooler task was not loaded 
or started. 

FIXED POINT-ZERO DIVIDE ERROR AT XXXXXX 
NEXT INSTRUCTION AT XXXXXXX 

An attempt was made to divide by zero. Current instruction 
aborted, and next instruction at address xxxxxx. 

FIXED POINT-OVERFLOW ERROR AT XXXXXX 
NEXT INSTRUCTION AT XXXXXX 

Fixed point arithmetic ~esult is too lar9e to be represented. 
Instruction aborts. Next instruction at xxxxxx. 

FLOATING POINT-UNDERFLOW ERROR AT XXXXXX 
NEXT INSTRUCTION AT XXXXXX 

Results of floating point operation are too small to be 
represented. Instruction aborts. Next instruction at 
xxxxxx. 

FLOATING POINT-OVERFLOW ERROR AT XXXXXX 
NEXT INSTRUCTION AT XXXXXX 

Floating point arithmetic procedure is too lar9e to be 
represented. Instruction aborts. Next instruction at 
xxxxxx. 

FLOATING POINT-ZERO DIVIDE ERROR AT XXXXXX 
NEXT INSTRUCTION AT XXXXXX 

An attempt was made to perform a floating point divide by 
zero. 

FORM-ERR 

The command format is invalid. 

GOTO-ERR 

A SLABEL that is ter~inating the range of the $GOTO is 
branching into an IF group. 

48-043 FOO RJO D-5 



ILLEGAL INSTRUCTION AT XXXXXX 

The user task attempted to execute an illegal instruction at 
location XXXXXX. 

ILLEGAL SVC-INSTRUCTION AT XXXXXX 
SVC PARAMETER BLOCK AT XXXXXX 

The user task attempted to execute an illegal SVC at location 
xxxxxx. 

INVALID SEGMEN1 ADDRESS ERROR AT XXXXXX 
MEMORY FAULT ADDRESS=XXXXXX 

An atte~pt was made to access a memory location not within a 
valid mapped segment; i.e., an attempt to access a memory 
location outside of the task space. 

INVALID ACCOUNT 

Invalid or unrecognized account number. 

I~YALID P~SSWORD 

Password is invalid. 

I/0-ERR 

A device/file being accessed by MTM is returning a nonzero 
I/G status. 

I/0-ERR TYPE=DU 

The device is unavailable. 

I/O-E?.R TYPE=EOM I/0-ERR TYPE=EOF 

The device reached an EOM or EOF before completing the 
operation. 

I/0-ERR TYPE=FUNC 

D-6 

An invalid operation is being directed toward a device: e.g., 
attempting to write to a read-only device. 

48-043 FOO ROO 



I/0-ERR TYPE=LU 

An illegal or unassigned lu. 

I/0-ERR TYPE=PRTY 

A parity or other recoverable error occurred. 

I/0-ERR TYPE=UNBV 

An unrecoverable error occurred. 

JO~S-ERR 

A SJOB statement was encountered followinq another $JOB 
statement but prior to a STERMJOB statement. 

JOB NOT FOUND 

The fd of job to be pur9ed is invalid. 

LOAD-ERR TYPE=ASGN 

Load could not be accom~lished because the specified fd is 
already exclusively assigned. 

LOAD-ERR T!PE=DU 

Attempt was made to load from an unavailable device. 

LOAD-ERR TYPE=I/0 

An I/O error was generated during the load operation. 

LOAD-ERR TYPE=LIB 

The data in the loader information block is invalid. This 
error most frequently occurs when an attempt is made to load 
a task which was not built with Link. 

LOAD-ERR TYPE=LOPT 

Task options are incompatible with the system environment 
that attempts to load the task; i.e., attempt to load an 
e-task under MTM where e-task loading under MTM is net 
enabled. 

48-043 FOO POO D-7 



LOAD-ERR TYPE=MEM 

A load was attempted without a large enough seqment. 

LOAD-ERR TYPE=MTCB 

The maximum number of tasks specdfied at sysqen time was 
exceeded. 

LOAD-ERR TYPE=NOFP 

A task requiring floating point support is being loaded, and 
the required floating point option is not supported in the 
system. 

LOAD-ERR TYPE=SEG 

A task requiring a task common area CTCOM) and/or a run time 
library (RTL) is being loaded. The TCOM/RTL is not in the 
system and cannot be loaded. 

LOAD-ERR TYPE=ROIO 

There is an I/0 error on the roll volume. 

LOAD-ERR TYPE=RVOL 

There is a roll file allocation or assignment error. 

LU-ERR 

An lu specified in an assign statement is invalid. 

LVL-ERR 

The number of sysgen CSS levels ~as exceeded. 

MEMORY EHROR ON DATA FETCH AT XXXXXX 
MEMORY FAULT ADDRESS=XXXXXX 

D-8 

Attempt was made to retrieve or to load data from a failing 
memory area on Perkin-Elmer 3200 machines. If affected 
memory is within task space and the operating system has 
memory diagnastic sup~ort, the affected page is automatically 
marked off, and this message is displayed: 

AFFECTED MEMORY PAGE MARKED OFF AT XXXXXX 

48-043 FOO ROO 



MEMORY ERROR ON INSTRUCTION FETCH AT XXXXXX 
ME~C8Y FAULT ACDFESS=XXXXXX 

A Perkin-Elmer Moael 3200 machine attempted to execu~e an 
install~ent from an area of memory that is failinQ. If 
affect~1 memory is within task space and the operatinq sys~em 
has memory diagnostic support, the affected ~ag~ is 
automatically marked cff, and this message is disPlayea: 

AFFECTED MEMORY PAGE MARKED OFF AT XXXXXX 

r.EMORY PARITY ~RROR AT XXXXXX 

PttemPt made to acc~ss ncnexistent or bad ~~mory on Moiel 
7/32 and R/32 machine~. 

riISSING PASSWO~D 

Fassword omitted. 

Th~ command mnemonic entered is unrecognizable. 

No floating point support exists in the system. 

NON FXISTENT SFGMENT EBROR (FST) AT XXXXXX 
~f~C~Y FAULT ADDPESS=XXXXXX 

~n atte~pt was made tc acc~ss a memory location greater than 
th~ maximum valid program address; j.e., an att~mpt to access 
a m~mory location outside of the task space. 

NOPR-ER? 

~ comma~d was ~n~er2J that required mere pararue~ers than 
specified i~ the command line. 

FACY.ED FORMAT-SIGN ERROR AT XXXXXX 
MEMCB.Y FAULT ADDRESS=XXXXXX 

An illegal siqn di~it was detected in a packed 1acimal numoer 
at xxxxxx for Perkin-Elmer 3200 Model machines only. 

UB-043 FOO ROO D-9 



PACKED FORMAT-DATA ERROR AT XXXXXX 
MEMORY FAULT ADDRESS=XXXXXX 

A data error was detected in a packed decimal number at 
xxxxxx for Perkin-Elmer Model 3200 machines only. 

PARM-EBR 

A command was entered with invalid or missing parameters. 

PRIV-ERR 

The access privilege mnemonic is syntactically incorrect, or 
an MT~ user without access privileges tried to access a 
restricted file. 

BENM-ERR TYPE=NAME 

A filename already exists in the volume directory. 

RENM-ERR TYPE=PRIV 

The file/device cannot be assigned 
perform the rename) because the 
assigned to at least cne lu. 

for ERW (required to 
file/device is currently 

The protection keys cf the file to be renamed are not 
x•oooo•. 

REPR-ERR TYPE=PRIV 

The file/device cannot te assigned for ERW (required to carry 
out the reprotection) because the file/device is currently 
assigned to at least cne lu. 

RCll-ERR 

The task is currently rolled out. 

SEGMENT LIMIT ~DDRESS ERRCR AT XXXXXX 
MEMORY FAULT ADDRESS=XXXXXX 

D-10 

An attempt was made tc access a memory location within a 
valid mapped segment, but the paqe number in the seqment is 
greater than the larg@st valid page number for the segment: 
i.e., an attempt to access a memory location outside of the 
task space. 

48-043 FOO ROO 



SEQ-ERR 

A command was entered out of sequence. Task was not loaded 
when a BUILD command was entered. 

S!GNON REQUIRED 

Attempt to enter a command before signon or a mistake in the 
SIGNON command. 

SKIF-ERR 

An attempt was made to skip beyond the end of a CSS job. 

SPAC-ERR 

Task exceeds established maximum system space. 

SVC ADDRESS ERROR-INSTRUCTION AT XXXXXX 
SVC FARAMETER BLOCK AT XXXXXX 

Incorrect address of SVC paramete~ block at xxxxxx. The SVC 
parameter block must be on a fullword boundary. 

SVC6-ERR TYPE=ARGS 

There is insufficient room between UTOP and CTOP to contain 
the start option string. 

SVC6-ERR TYPE=DORM 

A command was issued t~ a specified task that is dormant. 

SVC6-ERR TYPE=NMSG 

The task currently executing at the terminal could not 
receive a message tra~. 

SVC6-ERR TYPE=PRES 

The Spooler was not loaded when it was requested. 

SVC6-ERR TYPE=QUE 

Spooler is dormant. 

48-043 FOO ROO D-11 



TASK-ERR 

A task-rela~ed command was entered and there is no currently 
loaded task. 

TIME-ERR 

A task cannot be loaded because the user account CPU limit 
expired. 

UNDEFINED DATA FORMAT FAULT AT XXXXXX 
MEMORY FAULT ADDRESS=XXXXXX 

An undefined data format/alignment fault was detected at 
xxxxxx for Perkin-Elmer 3200 Series machines. 

USEF.-ERR 

An invalid userid was entered in ~ MESSAGE command. 

VOLS-ERR 

The volume specified is not online or the volume name is 
invalid. 

xxxx ERROR ON fd SECTOR n 

D-12 

An I/O error occurred while attempting to initialize sector 
n of file fd. xxxx is the type of error; it may be 
unrecoverable I/O, recoverable I/O, or device unavailable. 

48-043 FOO ROO 



APPENDIX E 
CSS MESSAGE SUMMARY 

BUFF-ERR 

indicates an expanded command line exceeds the CSS buffer. 
The task skips to STERMJOB. 

FD-ERR 

indicates not enough space to build an fd, or required file 
support is not in system. The task skips to STERKJOB. 

FORM-ERB 

indicates a command syntax is invalid. 
STERMJOB. 

The task skips to 

GOTO-ERR 

indicates a $LABEL occurred inside an IF block that was not 
active at the time cf the $GOTO command. The task skips to 
STERMJOB. 

I/0-ERR 

indicates an EOF was found while skipping to SENDC, 
was found before a SENDB while building a file, or a 
was found while skipping to SENDC within a job. 
skips to STERMJOB, or end of task code is 255 and 
ended. 

JOBS-ERR 

indicates a second $JOB was fouqd. 

LVL-ERR 

indicates the CSS levels required 
established at sysqen time. 

48-043 FOO ROO 

exceed the 

an EOF 
STERMJOB 
The task 

job is 

number 

E-1 



M~EM-ERR 

indicates the command entered is not recoqnized. 
skips to STERMJOB. 

PARM-ERR 

The task 

indicates a command was entered with invalid or missing 
parameters. 

SEQ-ERR 

indicates a command was entered out of sequence. 

TASK-ERR 

indicates a task-related command was entered and there is no 
currently loaded task. The task skips to STERMJOB. 

I. @SYSXXXX VARIAPLE ERROR, ILLEGAL NAME 

I , 
I 
I 

indicates that a variable was 
reserved characters @SYS or 
system variable. 

defined beginning with the 
an attempt was made to free a 

@XXXX-VARIABLE ERROR, ALREAtY EXISTS 

indicates an attempt was made to define a local variable that 
already exists. 

@XXXX-VARIABLE ERROR, EXCEEtS USER LIMIT 

indicates that the variable limit set at sysgen was exceeded. 

@XXXX-VARIABLE ERFOB, DEFINITION TOC LONG 

indicates that the length of the defined variable is greater 
than 32. 

@XXXX-VARIABLE ERROR, DOES NOT EXIST 

E-2 

indicates an attempt to set or free the value of a 
nonexistent variable. Also, during CSS execution, a variable 
definition is required. 

48-043 FOO ROO 



@XXXX-VARIABLE ERROR, DEFINITION DOES NOT EXIST 

indicates an attempt to set the value of a variable to the 
value of a second nonexistent variable. 

@SYSCODE-VAPIABLE ERROR, UNABLE TO ACCESS PAGE-FILE 

indicates that at siqnon time MTM was unable to access the 
variable page file. 

VARIABLE ERROR, VARIABLE PROCESSING NOT SUPPORTED 

indicatPs that one of the followino variable related commands 
was entered into a system that does not support variable 
processing: 

SFREE 
$GLOBAL 
$LOCAL 
SSET 

VARIABLE ERROR, VARIABLE PRCCESSING DISABLED 

indicates that one of the following variable related commands 
was entered into a system with variable processin~ support 
that is disabled: 

SFREE 
$GLOBAL 
~LOCAL 

SSET 

US-043 FOO ROO E-3 





APPENDIX F 
PROGRAM DEVELOPMENT MESSAGE SOKMARY 

** ALTERNATE CSS REQUIRED 

The fd entered with the ADD command contains a nonstandard 
extension, and the cssprod parameter was not specified. 

** CCMPILE ERROR - LINK NOT EXECUTED 

In a complink process, a compilation error was found, and the 
process aborted before the link procedure began. 

** COMPILE ERROBS, LISTING ON PR: 

Errors were encountered while com~iling. 
listed on the specified pr:. 

These errors are 

** CURRENT ENVIRONMENT - filename 

The ENV command, entered without ~ filename, causes the name 
of the current environment to be displayed. 

** CURRENT PROGRA~ NOT SET 

A filename was not specified, or no current program exists. 

** EDIT - filename.ext 

In the multi-module environment, the EDIT command was entered 
without a filename. The fd of the current source program is 
displayed. 

** ENVIRON~ENT EMPTY 

The LIST commar.d was entered, but there are no 
descriptors in the EDE. 

** EXTENSION O~ITTED 

file 

A filename entered with the ADD or REMOVE command did not 
contain the required extension. 

48-043 FOO ROO F-1 



** EXECUTION OF filename FOLLOWS: 

An image program is loaded and is executing. 

** FILE fd NOT FOUND 

The specified £11ename cannot be found in the language 
environment. 

** fd NONEXISTENT 

A specified fd does not exist in the environment. 

** FILENAME CONFLICT - ENTRY NOT ADDED 

An attempt was made to add an already existing fd to the EDF. 

** FILENAME NOT IN ENVIRONMENT 

An fd specified with the REMOVE command does not exist in the 
EDF. 

** LANGUAGE ENVIRONMENT NOT SET 

A development command such as EDIT, 
EXEC was entered without f~rst 
environment. 

** LINK ERRORS - EXECUTION ABORTED 

COMPILE, 
setting 

COMPLINK, or 
the lan9uage 

Program execution aborted when a link error was encountered 

** NEW ENVIRONMENT 

An empty EDF has been allocated. 

** ?JEW PROGRAM 

An empty source file is 
environment. 

** NO CURRENT EDF 

allocated in the language 

The ENV command was entered without. an EDF name, or there is 
no current EDF. 

F-2 48-043 FOO ROO 



** NON-STANDARD EXTENSION 

An attempt was made to add an fd with a nonstandard lanquaqe 
extension to the EDF without specifying a cssprod parameter. 

** NOT IN MULTI-MODULE ENVIRONMENT 

A command that is only meaningful in a multi-module 
environment was specified in a language environment. 

** SOURCE FILE NOT FOUND 

The specified source file cannot be found. 

** SYNTAX ERRCR 

An fd was not specified with the ADD or REKOVE command. 

** TASK fd NOT FOUND 

The specified task cannot not be found. 

** TOO MANY ARGUMENTS 

Arguments were specified in a multi-module environment. 

48-043 FOO BOO F-3 




