PERKIN ELMER

MODEL 3250 PROCESSOR

User’'s Manual

50-001 ROO




The information in this document is subject to change without notice and should not be
construed as a commitment by the Perkin-Elmer Corporation. The Perkin-Eimer Corpo-
ration assumes no responsibility for any errors that might appear in this document.

The hardware description in this document is intended solely for use in operation, installa-
tion, maintenance, or repair of Perkin-Elmer equipment. Use of this document for all other
purposes, without prior written approval from Perkin-Eimer, is prohibited.

Any approved copy of this manual must include the Perkin-Elmer copyright notice.

The Perkin-Elmer Corporation, Computer Systems Division 2 Crescent Place, Oceanport, New Jersey

(© 1982 by The Perkin-Eimer Corporation

Printed in the United States of Arerica

07757




PREFACE

CHAPTERS

TABLE OF CONTENTS

1 SYSTEM DESCRIPTION

P JE W G N W e
e ® & o ¢ o & o o
[o s el < Je Mo e Je 2o eI < R0 o]

e © o o o o s o

O~ MEWND =

-
.
@®
.
O

50-C01 ROO

INTRODUCTION

PROCESSOR

Program Status Word (PSW)
Register Set Select (R)
Condition Code (C, V, G, L)
Location Counter

General Registers
Floating-Point Registers

PROCESSOR INTEERKRUPTS
RESERVED MEMORY LOCATIONS

DATA FORMATS
Fixed-Point Lata
Floating-Point Data
Logical Data

Decimal String TLata
Alphanumeric String Data

DATA ALIGNMENT
INSTRUCTION ALIGNMENT
INSTRUCTION FORMATS
Introduction

Branch Instruction Formats
Programming Exanmples

Register-to-Register (RR) Format

Short Form (SF) Format

Register and Indexed Storage One (RX1) Format
Register and Indexed Storage Two (RX2) Format
Register and Indexed Storage Three (RX3)

Format

Register and Immediate Storage One (RI1)

Format

xiii

-
[}
-

P e = Y B )
1 !
DO A FE &

[



CHAPTERS (Continued)

ii

1.8.10

1.2.11

Register and Immediate Storage Two (RI2)
Format

Register and Indexed Storage/Register and
Indexed Storage (RXRX) Fcrmat

SYSTEM CCNTROL

2.1

N
L]
N

NN
¢« o o
w w Ww
. o
N -

NN N
« o

e o @
=& & e
e ® e o o
w N =

.
MM n o, o an
e o o &
oYUt E W N -

NN
.

[ .

INTRODUCTION
CONFIGURATION

SYSTEM CONTRCL PANEL SWITCHES AND INDICATORS
Key-Operated Security Lock
Control Switches

CPERATING INSTRUCTIONS
Power=-up

Entering Conscle Service
Initial Program Load (IPL)

SYSTEM TERMINAL COMMANDS

Select an Address and Examine "a"
Increment and Examine Next Location "+"
Decrement and Examine Prior Location "-"
Modify Current Location "="

Examine Ceneral Register "R"

Modify General Register "="

Examine Single-Precision Floating-Point
Register "“F"

Modify Single-frecision Floating-Point
Register "=

rxamine Double-Precision Floating-Point
Register "D"

Modify Double-Frecision Floating-Point
Register "="

Examine Program Status Word "pP"

Modify Program Status Word “="

Enter Run Mode "<

MEMORY INITIALIZATION

PROGRAMMING INSTRUCTIONS

LOGICAL CPERATIONS

3.1
3.2
3.3

3.3.1

INTRODUCTION
LCGICAL DATA FCRMATS

OPERATIONS
Boolean Operaticns

N
t
-

NN
| I |
= w W

k})l\)f\)l\)
]
g J1 Ui

DN NDNDN
[}
NNy O

50-001 ROO



CHAPTERS (Continued)

w W
P
w W
¢ o
w N

w
.
=

rTOVMUtmTNnmoctooonuionaouToomOoeoooautmoun;moomor;m o

WWWWWWWRNONNNONNNNNNDNDN Q@A @030 E W

w
NONFWN2000NIANEFEWNa0OVWREIAADFEFWN O

. ') * . . L) . . L] L] L L L ] L . . . L[] L] ° L] L) L] L] L] L] . ] L] . L] L] ] L] L] L]

L L] L] e L] L] ) L L] L] . . L] . . L]

WWLWWLWWLwLWLWWWLWLLWLWWLWWLWLWWWLWWWLLWLLWLWWLWWLWWLWWLWWWLWWLWWWLWWWWW

e e

3.5.38
3.5.39
3.5.40
3.5.41

50-001 ROO

Translation
List Processing

LOGICAL INSTRUCTION FORMATS

LOGICAL INSTRUCTIONS

Load (L, LR, LI)

Load ITmmediate Short (LIS)

Load Complement Short (LCS)

Load Halfword (LH, LHI)

Load Address (1A)

Load Real Address (LRA)

Load Halfword Logical (LHL)

load Multiple (LM)

Load Byte (LB, LBR)

Exchange Halfwcrd Pegister (EXHR)
Exchange Byte Register (EXBR)
Store (ST)

Store Halfword (STH)

Store Multiple (STH)

Store Byte (STBR, STBR)

Compare Logical (CL, CLR, CLI)
Compare Logical Halfword (CLH, CLHI)
Compare Logical Byte (CLB)

AND (N, NR, NI)

AND Halfword (NH, NHI)

OR (0, OR, 0OI) ‘

OR Halfword (OH, OHI)
Exclusive-0OR (XH, XHI)
Exclusive-0OR Halfword (XH,XHI)
Test Immediate (TI)

Test Halfword Immediate (THI)
Shift Left Logical (SLL, SLLS)
Shift Right Logical (SRL, SRLS)
Shift Left Halfword Logical (SLHL, SLHLS)
Shift Right Halfword Lcgical (SRHL, SRHLS)
Rotate Left logical (RLL)

Rotate Right Lcgical (RRL)

Test and Set (TS)

Test Bit (TBT)

Set Bit (SBT)

Reset Bit (RRT)

Complement Bit (CBT)

Cyclic Redundancy Check (CRC12, CRC16)
Translate (TLATE)

Add To List (ATL, ABL)

Remove From list (RTL, RBL)

iii



CHAPTERS (Continued)

4 BRANCHING

4.1 INTRODUCTION

4.2 CPERATIONS

4.2.1 Decision Making

0.2.2 Subroutine Linkage

4.3 BRANCH INSTRUCTION FORMATS

4.4 BRANCH INSTRUCTIONS

4,4,1 Branch on True (BTC, BTCR, BTBS, BTFS)
.b4.2 Branch on False (BFC, BFCR, BFBS, BFFS)
G.4.3 Branch and Link (BAL, BALR)

Lol Branch on Index Low or Equal (BXLE)
L.Yy.cE Branch on Index High (BXH)

4.5 EXTENDED BRANCH MNFMONICS

4.5.1 Branch on Carry (BC, BCR, BCS)

4.5,2 Branch on No Carry (BNC, BNCR, BNCS)
4Le5.3 Branch on Equal (BE, BER, BES)

b.5.4 Branch on Not Equal (BNE, BNER, BNES)
4.5.5 Branch on Low (EL, BLR, BLS)

beE.56 Branch on Not low (BNL, BNLR, BNLS)
4.547 Branch on Minus (BM, BMR, BHMS)

4.5.8 Branch on Not Minus (BNM, BNMR, BNMNS)
4b.5.9 Rranch on Plus (BP, BPR, BPS)

4.5410 Branch on Not Flus (BNP, BNPR, BNPS)
4.5.11 Branch on Overflow (BC, BOR, BOS)
4e5412 Branch on No Overflow (BNO, BNOR, BNOS)
4,5.13 Branch on Zero (BZ, BZIR, RZS)

Gbe5a14 Rranch on Not Zero (BNZ, BNZR, BNZS)
4.5.1% Franch (Unconditional) (B, BR, BS)
4.E.16 No Operation (NCP, NCPR)

5 FIXED-POINT ARITHMETIC

NUMBER RANGE

FIXED-POINT INSTRUCTION FORMATS

FTXED-POINT INSTRUCTICNS

AI, AIS)

£.1 INTRODUCTION
5.2 DATA FORMATS
.3 FIYED-POINT
5.4 CPERATIONS

£.6 CONDITION COLE
5.6

5.7

Se7e1 Add (A, AR,
7.2

iv

Add Halfword (AH,

AHI)

50-001 ROO



CHAPTERS (Continued)

[LEGEOGEGEOEGOEGEGOES NGRS RSG NGRS NS
N NN NN NN NNNNN
& @ & e & & o 9 6 o ©* o s o o
P S G T G G QT N Vo 3= « BN I'e S ) I N UV}

NounesE w20

Add to Memory (AM)

Add Halfword tc Memory (AHHM)

Subtract (S, SR, SI, SIS)

Subtract Halfwcrd (SH, SHI)

Compare (C, CR, CI)

Compare Halfword (CH, CHI)

Multiply (M, ME)

Multiply Halfword (MH, MHR)

Divide (D, DR)

Divide Halfword (DH, LHR)

Shift Left Arithmetic (SLA)

Shift Left-Halfword Arithmetic (SLHR)
Shift Right Arithmetic (SRA)

Shift Right Halfword Arithmetic (SRHA)
Convert to Halfword Value Register (CHVR)

6 FLOATING-FOINT ARITHMETIC

6.1

h
.
N

AN O
e o o o o ¢ * & o
Wwwwwwwww
* ¢ o o o s o o
ONOAUMTEWN -

[« W ey
e o

DA DO

o o o
Mmooty btraom
e ¢ 5 2 & o & o o

JER QN W WP QI N Ve I e s IR e .Y

FWN a0

50-001 ROO

INTRODUCTION
DATA FORMATS

FLOATING-POINT NUMBER
Floating-Point Number Range
Normalization

Fqualization

True 7Zeroc

Exponent Overflow

Exponent Underflow

Guard Digits and R*-Rounding
Conversion from lecimal

CONDITION CODE

FLOATING-POINT INSTRUCTICNS

Load Floating-Point (LE, LEEK, LEGR)
Load Positive Floating-Point Register
(LPER)

Load Complement Floating-Point Register
(LCER)

Load Multiple Floating=-Point (LME)

Load General Pegister frcm Floating-Point
Register (LGER)

Store Floating-Point (STE)

Store Floating-Point Multiple (STME)
Add Floating-Point (AE, ALR)

Subtract Floating-Point (SE, SER)
Compare Floating~Point (CE, CER)
Multiply Floating-Point (ME, MER)
Divide Floating-Point (DE, DER)

Fix Register (FXR)

Float Register (FLR)

h
1
N

TR O OO YD
1
AV D IJINE W



CHAPTERS (Continued)

vi

6.5.15

6.5.16

6.5.17

6.5.18

Load Double-Precision Floating-Point

(LD, LDR, LDGR)

Load Positive L[ouble-Precision Register
(LPDR)

load Complement Double-Precision Register
(LCDR)

Load Multiple Couble-Precision Floating-
Point (LMD)

Load General Registers from Double-Precision
Floating—Point Register (LGDR)

Store Double-Precision Floating-Point (STD)
Store Multiple Double-Precision Floating-
Point (STMD)

Add Double-Precision Floating-Point (AD, ADR)
Subtract Double~Precision Floating-Point
(SD, SDR)

Compare Double-Precision Floating-Point

(CD, CDR)

Multiply Double-Precision Floating=Point
(MD, MDR)

Divide Double-Frecision Floating-Point

(DD, DDR)

Fix Register Double-Precision (FXDR)

Float Register Double-Precision (FLDR)

Load Single-Frecision Floating-Point
Register from Louble (LED, LEDR)

Load Couble-Precision Floating-Point Register
from Single (LLE, LDER)

Store Double-Precision Floating-Point
Register in Single-Precision Memory (STDE)

STRING OPERATIONS

71

Ndd
¢ o O
NN
L 4

N -

~J
.
(U]

NN NN
e & o s o o o o
R =g o o i o S o
e o ¢4 o & ¢
NN EWwWN -

INTRODUCTION

CECIMAL TATA FCRMAT CEFINITIONS
Packed Decimal
Unpacked (Zoned) Decimal

INSTRUCTION FORMATS

STRING INSTRUCTIONS

Load Packed TCecimal String as Binary (LPB)
Store Rinary as Packed Decimal String (STBP)
Move Translated Until (4AVTU)

Move (MOVE, MOVEP)

Compare (CPAN, CPANP)

Pack and Move (PMV, PMVA)

Unpack and Move (UMV, UMVR)

NN NaY
|
L P N N ¢ BN N ¥ ) I ol OV

I~ S N o]

50-201 ROO



CHAPTERS (Continued)

8 HIGH-SPEEL DATA HANDLING INSTRUCTIONS (OPTIONAL)

8.1 INTRODUCTION

8.2 CATA HANDLING INSTRUCTION FORMATS
8.3 DATA HANDLING INSTRUCTIONS

8.3.1 Process Byte (ER)

8e3.2 Process Byte Register (PBR)

9 INPUT/QUTPUT (I/O) OPERATIONS

9.1 INTRODUCTION ANLC CONFIGURATION OF I/O SYSTEM

9.2 DEVICE CONTRCLLERS

9e2.1 Function

9.2.2 Device Addressing

9.2.3 Processor/Controller Communication

9.2.4 Cevice Priorities - External Interrupt
Levels; Interrupt Queuing

9.3 INTERRUPT SERVICE POINTER TABLE

9.4 CONTROL OF I/O OPERATICNS

9.5 STATUS MONITORING I/O

9.6 INTERRUPT DRIVEN I/O

9.7 SELECTOR CHANNEL I/O

9.7.1 Introduction

9.7.2 Selector Channel Devices

9.7.3 Selector Channel Operaticn

9.7.4 Selector Channel Programming

9.8 I/0 INSTRUCTION FORMATS

9.9 I/0 INSTRUCTIONS

9.9.1 Output Command (0C, OCR)

9.9.2 Sense Status (SS, SSR)

9.9.3 Read Data (RD, RDR)

9.9.4 Read Halfword (RH, RHR)

9.9.5 Write Data (WD, WDR)

9.9.6 Write Halfword (WH, WHR)

9.9.7 Autoload (AL)

9.9.8 Simulate Channel Program (SCP)

9.10 AUTO DRIVER CHANNEL

9.11 CHANNEL COMMAND BLOCK

Se11e1 Introduction
9.11.2 Subroutine Address

50-001 ROO

§-1

[Yo Ve JuVe JNe}
[ |

[}
NN A

VoIV JRVe Ve JETe IV o IRV BN JRN o]
1

P QI QT N Y WD GRIE Qi Ve

N OV E WN - O

1

O
1
-
@

9-18
9-18
9-16

vii



CHAPTERS (Continued)

10

viii

Buffers

Translation

Check Word

Channel Command Word

Valid Channel Command Codes

General Auto Driver Channel Programming
Procedure

STATUS SWITCHING AND INTERRUPTS

10.1
10.2

10.2.1

10.2.141
10.2.1.2
1062.1.3
1024148
1002‘1.5
102.1.6
10.2.1.7
10.2.1.8
10.2.1.9

10.2.1.10
1062111
10241412

10.2.2
10.2.3

10.3

10.3.1
10.3.2
10.3.3
10.3.4

10.4

10.4.1
10.4.2
10.4.3

10.5
10.5.1
10.5.2
10.5.2.1
10.542.2
10.5.3
10.5.4
105441

10544 .2

INTRODUCTION

FROGRAM STATUS WORD (PSW) AND RESERVED
MEMORY LCCATIONS
EFSW Status Werd
Memory Access level Field (LVL)
Floating-Point Masked Mode (FLM)
Interruptible Instruction in Progress (IIP)
Wait State (W)
I/0 Interrupt Mask (I)
Machine Malfunction Interrupt Fnable (M)
Floating-Point Underflow Interrupt Enable
(FLU)
Relocation/Protection Enable (R/P)
System Queue Service Interrupt Enable (Q)
Protect Mode Enable (P)
Register Set Select Field (R)
Condition Code (C, V, G, L)
PSW Location Ccunter (LOC)
Reserved Memory Locations

INTERRUPT TIMING AND PRIORITY
Maskable and Ncnmaskable Interrupts
Interrupt Timing

Interrupt Precedence

Interrupt Instructions

PRCCESSOR MOLES
Ccocnsole Mode

Run Mode
Single-Step Mode

STATUS SWITCHING

Illegal Instruction Interrupt

Data Format Fault Interrupt

Alignment Faults :

Invalid Digit Faults

Relocation/Protection (MAT) Fault Interrupt
Machine Malfunction Interrupt

Early Power Fail Detect and Automatic
Shutdown

Fower Restore

9-20
9-20
9-21
9-22
9-23

10-1

10-2
10-3
10-3
10-3
10-3
10-14
10-4
10-5

10-5
10-6
10-6
10-6
10-7
10-8
10-8
10-9

10-9
10-9
10-10
10-12
10-13

10-13
10-14
10-15
10-16

10-17
10-17
10-18
10-19
10-19
10-20
10-21

10-22
10-24

50-C601 ROO



CHAPTERS (Continued)

M

12

1M0.5.4.2.1 If the LSU is Disabled

10.5e8.2.2 If the LSU is Enabled

10.5.4+43 Noncorrectable Memory Error

10.5.4.4 Nonconfigured Memory Address

10.5.5 Input/Output Device (I/0) Interrupts
10+5.5«1 Priority Levels

10.5.5.2 Immediate Interrupt-Auto Driver Channel

Oreration
10546 Simulated Interrupt
106567 System Queue Service (SQS) Interrupt
10.5.8 Supervisor Call (SVC) Interrupt
10.5.9 System Breakroint Interrupt
10.5.10 Arithmetic Fault Interrurpt

10.6 STATUS SWITCHING INSTRUCTIONS

10.6.1 Load Program Status Word (LPSW)

10602 Load Program Status Word Register (LPSWR)
10.603 Exchange Program Status Register (EPSR)
10.6.4 Simulate Interrupt (SINT)

10.6.5 Supervisor Call (SVC)

10.646 System Breakpoint (BRK)

10.6.7 Privileged System Function (PSF)

10.6.7.1 Read Error Logger (REL)
10e6e7+1¢1 Initializing and Clearing
10.6¢7.1.2 Reading the Error Lcgger
10+6.7.1.3 Analyzing the Error
10.6+7+.1.4 Testing the Error Lcgger
1066¢7+2 Load Process Segment Table Descriptor (LPSTD)
10¢6¢7.3 Load Shared Segment Table Descriptor (LSSTD)
10.6+7.U4 Store Process State (STPS)
1046.7.5 Load Process State (LDPS)
10.6.7.6 Save Interruptible State (ISSV)
10.6.7.7 Restore Interruptible State (ISRST)
10.647«8 Store Byte, No ECC (XSTR)
7.9

Reset Memory Vcltage Failure (RMVF)

WRITABLE CONTROL STORE (WCS) INSTRUCTIONS (OPTIONAL)
111 INTRODUCTION

1.2 WRITABLE CONTRCL STORE INSTRUCTIONS

11¢2.1 Write Control Store (WLCS)

11.2.2 Read Control Store (RDCS)

11.2.3 Branch to Control Store (BDCS)

11.2.4 Enter Control Store (ECS)

MEMCRY MANAGEMENT

121 INTRODUCTION

12.2 ADDRESS SPACE

50-001 ROO

10-24
10-25
10-25
10-27
10-28
10-28

10-29
10-32
10-33
10-34
10-35
10-35

10-36
10-37
10-38
10-39
10-40
10-41
10-42
10-43
10-44
10-47
10-48
10-49
10-%1
10-53
10-54
10-55
10-56
10-58
10-59
10-60
10-61

11-1
11-1
11-2
11-13
11-4
11-5

12-1

12-1

ix



CHAPTERS (Continued)

APPENDIXES

Physical Address Space

Program Address Space

Segment Field

Offset Field

Selection of Program or Physical Addressing

TRANSLATION FRCM PROGRAM TO PHYSICAL ADDRESS
SPACE

Shared and Private Segments

Segment Table [Cescriptors and their Use
Format of a Segment Table Descriptor

Setting the Prcgram Address Space Size
Segment Table Entries

Segment Table Entry Size

Hardware Segment Table Entry

Software Segment Table Entry

MEMORY ADDRESS TRANSLATOR FAULTS
Conditions that Cause MAT Faults

PST or SST Size Exceeded Fault
Nonpresence Fault

Access Llevel Fault

Access Mode Faults

Segment Limit Fault

Fault Precedence

MAT Fault Handling Routine
Reexecution of Faulting Instructions
Effect of System Initialization on the MAT

MEMORY MANAGEMENT INSTRUCTIONS
Load Process Segment Table Descriptor (LPSTD)
Load Shared Segment Table Descriptor (LSSTD)

A CP-CODE MAP

B INSTRUCTION SUMMARY -~ AIPHABETICAL BY MNEMONIC

c INSTRUCTION SUMMARY - NUMERICAL

D ARITHMETIC REFERENCES

E I/70 REFERENCES

F CONSOLE SERVICE RCUTINE EFLOW CHART

12-3
12-3
12-4
12-5
12-5

12-6
12-6
12-6
12-7
12-7
12-8
12-8
12-8
12-11

12-15
12-15
12-15
12-16
12-16
12-16
12«16
12-17
12-17
12-18
12-18

12-18
12-19
12-290

50-001 ROO



FIGURES

NN P N T G
Pt | [
N - AN EWN -

Wwwwwww
!
N W) A

Model 3250 Processocr Block Diagranm
Program Status Wcrd

Register Set Numbering

Instruction Formats

Sample Progran

RXRX Formats

System Control Panel
Model 550 Keyboard Layout

Logical Data

Translation Table Entry
Circular List Definition
Circular List

LRA Example

Flow Chart for CRC Generation
List Processing Instructions

5-1 Fixed-Point Data Fcrmats

6-1 Exponent Overflow

6-2 Exponent Underflow

7-1 Packed Decimal Format

T7=-2 Unpacked Decimal Fcrmat

9-1 Channel Command Blcck

9-2 Channel Command Word

9-3 Auto DPriver Channel Flow Chart

10-1 Program Status Wecrd (PSW)

10-2 Reserved Memory locations

10-3 Schematic Diagram of the Model 3250 Processor
Interrupt System Architecture

10-4 Machine Malfunction Status Word (MMSW)

12-1 Memory Address Translation

12-2 Program Address

12-3 Segment Table Descriptor

12-4 Segment Table Entry

TABLES

2-1 SYSTEM TERMINAL SUPPORT COMMAND SUMMARY

5-1 FIXED-POINT FORMAT RELATIONS

6-1 FLOATING/FIXED-PCINT RANGES

10-1 INTERRUPT PRIORITY LEVEL/REGISTER SET SUMMARY

12-1 SEGMENT ACCESS FIELL SETTINGS

INDEX

50-001 ROO

|
-

1

d wd = e o
1
N = a1 &N

£ N

NN
H
JUREEY

(O3] wwwwwww

| |

- JE 2T W
oo U

[o,3e)
]
@ 3

10-30

12-9

Ind-1

xi






PREFACE

This manual provides programming and operating information for
the Perkin-Elmer Model 3250 Processor. The programmer is
provided with information on the 32-bit system architecture and
the unigue memory management scheme, as well as a description of
each instruction in the processor's repertoire. The instruction
descriptions include valuable system-related information
presented in the form of programming notes and instruction
examples.

Information on the system control ©panel 1is presented to
facilitate ©program preparation and execution by the system
programmer and operatore.

MANUAL TITLE PUBLICATION
NUMBER
EDMA Bus Universal Interface Instruction Manual 29-423

Common Micro-Code Assembler Language (MICROCAL)

User's Manual 29-478
ESELCH Programming Manual 29-529
Common Assembler Language (CAL) User's Manual 29-640

Model 3250 Processor Installation and Maintenance
Manual 47-029

32-Bit Systems User Documentation Summary 530-003
Model 3250 Processor Microprogramming Reference

Manual 50-004

For additional information on the contents of all Perkin-Elmer
32-bit manuals, see the 32-Bit Systems User Documentation
Summarye.

50-001 ROO x1iii






CHAPTER 1
SYSTEM DESCRIPTION

1.1 INTRODUCTION

The processor 1is designed to meet the neseds for higher
performance and reliability of a 32-bit minicomputer. This
represents a logical, upward compatible evolution from the Models
7/32 and 8/32 product 1lines and includes some significant
enhancements directed towards scientific and commercial
applications. The architecture has 4improved error recovery
capabilities for +those applications where fault tolerance is a
necessity, and allows direct addressing up to 16Mb of memory
implemented in MOS with Error-Correction Code (ECC).

Using 32-bit general registers and a comprehensive instruction
set, the processor provides fullword data processing power and
direct memory addressing up to a limit of sixteen megabytes. The
system is shown in block diagram form in Figure 1-1. The
instruction set includes:

Halfword and fullword arithmetic and logical operations
Single precision and double precision floating point

List processing

Cyclic redundancy checking

Bit and byte manipulations

Alphanumeric and decimal character string processing
Decimal/binary conversions

Instructions designed to improve operating system performance

With this enriched repertoire and direct memory addressing,
coding and debugging time is reduced to a minimum.

Eight sets of 16 32-bit general registers are provided. Register
set selection 1is controlled by bits in the program status word.
Register-to-register instructions permit operations between any
of the 16 registers in the current set, eliminating redundant
loads and stores. The multiple register set organization
eliminates the overhead which might otherwise be incurred in
saving and restoring registers when responding to interrupts.

The Memory Address Translator (MAT) provides automatiz progran
segmentation, relocation, and protectione. The protect mode
enables detection of privileged instructions. These two features
are invaluable in ©process control, data communication, and
time-sharing operations because they prevent a running program
from interfering with system integrity.

50-001 ROO 1-1



@

0010
TvsuIAING [T

H3av3d
ayvd

Bl

2510
vigan
Add0OTd

"

¥

$N8 4OXINILINKW

Y3LNIHd
LT
3dvL
OILINOVA
TI3NNVHD
HO10313S
asia
ERLUEAR:) o)

weIberq YO0Tg IO0SEdD0IJ 0GZE T®oPOH 1-1 2InbTd
ndo
A}
b v i)
; 91901 30093d
QNY ONIDN3IND3S m v d
v NOILONYLSNIOHDIW
[ Y
LIND I |
21901 F3 3401S ] |
JI1IWHLIBY z Jouinoa| | !
INIOd-G3X14 o qax14 1 1
3 1| nNorwdo |
m SoM ]
2 ! _
3 ! I
! I
1
N ]
[T — |
r N T T T T T T T T T T TR
— Al L} NOILJO|LNIOd ONILYONS
IA | nv
| INIOd ]
— X__JIW -
Wi o “ SNILYOYd [y T |
— 43151934
> NOILONYISNI |
S 1
2 uy3dane I
Bl noi1Lonyisn I
[ w31Nn0D NOILYOT \_ 1
SHILSIOIY TYHINIO L18-2€ 91 305135 8 3 b = | s43151938 SU3LS1939
> 1 4340 8 434S 8
[CERBL ] 1 | i
3 8 ot e, ——— —-_————-
(SNLVLS) MSd
3 S ]
_.||||Ia HOLYISNVHL NOILOIVYHOD | 4399071
ss3yaav HOHY3 40443
AHOWIN r
3OVAHILNI
AHOWIW AHOWIN
V201 IHOVD NIV
$S300V
AHOW3W
193910 1-965

50-001 ROO



The processor supports 16Mb of directly addressable MOS Memory,
which consists of a maximum of 64 256kb modules. Frror
correction is standard and is performed across every 32-bit
fullword in memory using a 7-bit modified error-correcting code
(ECC). All single Dbit errors are detected and corrected; all
double bit errors and most multiple bit errors are detected. The
memory error logger identifies the memory module reporting an
error and indicates the location of the faulty memory chip.

The 8kb high speed cache memory is situated between main memory

and the processor. When the processor requests memory data
already in the cache, the data is read from the cache rather than
from the slower main memory. This allows a significant

improvement in memory access times so that overall performance
improvements of 10% to 25% c¢an be realized, depending on the
application. Optional 2-way or 4-way interleaving of the main
memory allows substantial additional performance improvements.

In addition to <conventional means of programmed I/0O, the
processor automatically acknowledges all I/0 interrupts and
performs much of the required overhead before activating an
interrupt service routine. The auto driver channel can perform
data transfers with character translation, longitudinal or zyclic
redundancy checking, and data buffer chaining without
interrupting the running programe.

The 2k Writable Control Store (WCS) option allows the wuser to
microprogram the processor to suit a particular application.
Scientific algorithms, communication ©protocols, or special
subroutines can ‘be implemented in WCS and executed up to three
times as fast as an equivalent assembly level implementatione.

50-001 ROO ’ 1-3



1.2 PROCESSOR

The Central Processing Unit (CPU), or processor, controls
activities in the system. (See Figure 1-1.) It executes
instructions in a specific sequence and performs arithmetic and
logical functions. Included in the processor's compsnents are
the: :

Program status word register
General registers

Floating point registers
Hardware multiply and divide
Floating point hardware

1.2.1 Program Status Word

The 64-bit program status word (PSW) defines the state of the
processor at any given time. (See Figure 1-2.)

3164

0 ' 10 11 12 1314 15 161718 1920 21 22 23 24 27 2829 30 31
v IXIL[ ARk
v
L Mm|P witrimigltsale R civigiL
32 39 40 63
LOCATION COUNTER

Figure 1-2 Program Status Word

Rits 0:31 are reserved for status information and interrupt
masks. Bits 32:63 contain the location counter. Unassigned
program status word bits must not be used and must always be
zerc. Status information and interrunt mask bits are defined as
follows:

Bits 0:9 Reserved Must be zero

Bits 10:11 LVL Memory access level

Bit 12 Reserved Must be zero

Bit 13 FLM Floating-point arithmetic masked mode
Bit 14 IIP Interruptible instruction in progress
Bit 15 Reserved Must be zero

Bit 16 W Wait state

Bit 17 I I/0 interrupt mask

Bit 18 M Machine malfunction interrupt mask
Bit 19 FLU Floating-point arithmetic underflow mask
Bit 20 I I/0 interrupt mask

Bit 21 R/P Relocation/praotection interrupt mask
Pit 22 0] System queue interrupt mask

Bit 23 P Protect mode

Bits 24:27 R Register set select bits

Bits 28:31 c,v,G,L Condition code

Bits 32:39 Reserved Must be zero

Bits 40:63 Program address (location counter)

Refer to Chapter 10 for details on the interrupt mask bits.

1-4 50-001 ROO



1.2.1.1 Register Set Select (R)

Bits 24:27 of the PSW are used to designate the current register
set. Register sets are numbered 0 through 15. The processor has
8 sets of general registers. (See Figure 1-3.)

558
REGISTER
SET DESIGNATION
NUMBER
0
; RESERVED FOR INTERRUPTS
3
4
5 MAY BE ALLOCATED BY THE 0S
6 FOR GENERAL PURPOSE USE.
7
8
9
10 UNIMPLEMENTED
> SETS
12
13
14
15 GENERAL PURPOSE

Figure 1-3 Register Set Numbering

1¢e2.1.2 Condition Code (C,V,G,L)

Bits 28:31 of the PSW contain the condition code. As part of the
execution of certain instructions, the state of the coniition
code may be changed to indicate the nature of the result. Not
all instructions affect the condition code. The state of the
condition code may be tested with conditional branch
instructions. Fach bit 'in the condition code is set if the
corresponding condition occurred as a result of the 1last
instruction that affected +the condition code. The normal
interpretation of these bits is:

Arithmetic carry, borrow, or shifteld carry
Arithmetic overflow

Greater than zero

Less than zero

O OO aM
QO O ald<

O = O Oj&)
EYeNoNe il

50-001 ROO 1-5



1¢2¢1«3 Location Counter

The location counter contains the address of the 1instruction
currently being executed by the processor, and points to that
instruction until it has successfully completed execution. Jdnce
this execution is completed, the location counter is incremented
by 2, 4, 6, 8, 10, or 12 (depending wupon the instruction
executed), and the next instruction is fetched. In the case of
a branch instruction, the location counter 1is 1loaded with the
address to which control is being transferred, ani the next
instruction is fetched from that address.

If an instruction is not successfully completed due to a fault or
other interrupting condition, the location counter contains the
address of the faulting or interrupted instruction. When a
program interruption is due to an incorrect branch address, the
location counter contains the branch address and not the location
of the branch instruction.

1¢242 Generél Registers

The processor has eight register sets, numbered 0 through 6, and
15 (see Figure 1-3). Each register is 32 bits wide. Register
set selection is determined by the state of bits 24:27 of the
current PSW. Registers 1 through 15 of any set may be used as
index registers.

When an interrupt occurs, the proce ssor loads pertinent
information 4into preselected registers of +the register set
selected by the new program status word. For details of this

operation, refer to Chapter 10.

12.3 Floating-Point Registers

There are eight optional single-precision floating-point
registers, each 32 bits wide. These registers are identified by
the even numbers 0 through 14.

There are eight optional double-precision floating-point
registers, each 64 bits wide. These registers are also
identified by the even numbers 0 through 14 and are separate from
the single-precision floating-point registers. Floating-point
operations must always specify the registers with even numbers.

1.3 PROCESSOR INTERRUPTS

The PSW that is loaded in the processor at any point in time 1is
called the «current PSH. If either the status word or both the
location counter and status word are changed, a status switch 1is
said +o have occurred. This status switch can be caused
explicitly by executing special instructions or can be forced to
occur by an interrupt or fault. At the time of a status switch,
the current PSW that is saved is called the old PSW. The PSW
that replaces the current PSW is called the new PSW.

1-¢ 50-001 ROO



Interrupt conditions cause the entire PSW to be replaced by a new

PSW thus breaking the usual sequential flow of instruction
execution. When an interrupt condition occurs, the processor
saves its current PSW either in memory or in a pair of general

registers belonging to the register set selected by the new P3W.

It loads information related to the interrupt condition in other
registers of this same set. A new PSW is loaded from a memory
location reserved for the specific interrupt condition. The

immediate interrupt 1is an exception to the rule. In this case,
the status portion of the new PSW, bits 0:31, 1is forced to a
preset value, and the location counter is loaded from a memory
location reserved for that interrupting device. Refer to Chapter
10 for details on interrupt processing.

1.4 RESERVED MEMORY LOCATIONS

Physical memory locations X'0'-X'2CF' are called reservad memory
locationse. These locations contain +the various nesw PSWs and
other information needed to handle interrupts.

X'000000*'-X*00001F"
X*000020'-X*'000027"
X*'000028°*-X*00002R"

Reserved; must be zero
Machine malfunction interrupt old P3SW
Used by console service microcode

X*00002C"~-X"'00002F"

X'000030°*~-X'000037"
X*000038"-X"00003F"
X*000040°*-X'000043"
X*oooo0uyu*-x*o000u7"

X'000048*~-X*00004F"*
X*'000050°*-X"00007F"

X*000080*'-X*'000083"
X*000084*-X'000087"
X'000088*'-X*00008F"
X'000080"-X*000097"
X*'000098"-X'00009B"
X*'00009C*-X*0000BB"

X'0000BC*~-X"0000RF"
X'0000CO'=-X'0000C7"
X*0000C8*-X*0000CF"
X*'0000D0O"~-X'0002CF"
X*0002D0"-X*0004CF"

X*'0004p0O*~X*0008CF"

50-001 ROO

Machine malfunction
address

Illegal instruction

Machine malfunction

Machine malfunction

Machine malfunction
address

LM block start

interrupt new PSW
interrupt new P3W
status word

virtual (Program)

Arithmetic fault interrupt new PSH

Bootstrap loader and
table

System queue pointer

Power fail save area

System queue service

device definition

pointer
interrupt new PSW

Relocation/Protection interrupt new PSW

Supervisor call new
Supervisor call new

counter values (16
Reserved; must be ze
Reserved; must be ze
Data format fault ne

PSW status
PSW location
halfworis)

ro
ro
w PSW

Interrupt service pointer table
Expanded interrupt service pointer

table

Expanded interrupt service pointer

table



These reserved locations play an important role in both interrupt
and input/output processing. Refer ta Chapters 9 and 10.

All location counter values are subject to MAT relocation if . the
new PSW enables the MAT (bit 21 = 1). All other pointers contain
absolute addresses not subject to MAT relocation.

1.5 DATA FORMATS

The processor performs 1logical and arithmetic operations on
single bits, B-bit bytes, 16-bit halfwords, 32-bit fullwords, and
64-bit doublewords. This data may represent a fixed-point
number, a floating-point number, logical information, a bit or
byte array, or a decimal or alphanumeric byte string.

1.5.1 Fixed-Point Data

Fixed-point arithmetic operands may be either 16-bit halfwords or
32-bit fullwords. In fullword multiply and d4ivide operations,
64-bit operands are manipulated. Fixed-point data is treated as
15-bit signed integers in the halfword format. Positive numbers
are expressed in true Linary form with a sign bit of zero.
Negative numbers are represented in two's complement form with a
sign bit of one. The numerical value of zero is represented with
all bits zero. Refer to Chapter 5 for details of fixed-point
data representation.

In fixed-peoint arithmetic and logical operations between a
fullword register and a halfword operand, the halfword operand is
expanded to a fullword by propagating the most significant bit
into the high order bits before the operation is startad. This
permits the use of halfword +to fullword operations with
consistent results and provides space economy, since small values
need not require fullword locations.

Arithmetic operations on fixed-point halfword quantities may
produce results not entirely consistent with those obtained in a
16-bit processor. If this problem exists, the Convert to
Halfword Value Register instruction (CHVR) may be used to adjust
the result and the condition code, making them consistent " with
the same operations in a 16-bit processor.

1.5.2 Floating-Point Data

A floating-point number consists of a 7-bit exponent in excess-5%4
notation and a signed fraction. The gquantity expressed by this
number is the product of the fraction and the number 16 raisedi to
the power represented by the exponent. Each floating=-point value
requires a 32-bit fullword or a 64-bit double-word, of which
eight bits are used for the sign and exponent. The remaining
bits are wused for the fraction. Refer to Chapter 6 for details
of floating-point data representatione.

1-8 50~-001 ROO



Floating-point operations take place between the contents of a
floating-point register and another floating-point register, a
floating-point operand contained in a fullword or double-word in
memory, or a general register or pair of general registers.

1.5.3 Logical Data

Logical operations manipulate 8-bit bytes, 16-bit halfwords, and
32-bit fullwords. It is also possible to perform logical
operations on single bits Jlocated in bit arrayse. Refer to
Chapter 3 for details of logical data representation.

1.5.4 Decimal String Data

Decimal strings are strings of consecutive bytes in memory that
begin and end on byte boundaries. Information contained in a
decimal string may represent packed or unpacked decimal data.
Refer +to Chapter 7 for details of decimal data formats and
operationse.

5.5 Alphanumeric String Data

Alphanumeric strings are strings of consecutive bytes in memory
that begin and end on byte boundaries. Information contained in
an alphanumeric string may represant any character streanm
including decimal string data. Refer to Chapter 7 for details of
alphanumeric string data format and operations.

1.6 DATA ALIGNMENT

Locations in main memory are numbered consecutively, beginning at
address '000000°'.

A byte of information is addressed by 1its specific hexadecimal
address. Two bytes form a halfword. A halfword has an even
address, the address of the left-most byte in the pair. Two
halfwords comprise a fullword. A fullword address is a multiple
of four (4 bytes) and is the address af the left most halfword in
the pair. The hardware actually truncates the least significant
two address bits on fullword accesses, forcing proper alignmente.
A data format fault is generated if a fullword access is directed
to an address that has bit 30 or 31 set; or if a halfword access
is directed to an address that has bit 31 set.

The CAL Assembler generates an error flag i1f it sees halfword

operations directed to an odd byte address or if it sees fullword
operations directed to other than a fullword aidress.

50-001 ROO 1-9



1.7 INSTRUCTION ALIGNMENT

User 1level instructions are always aligned on halfword
boundariese. Any halfword address 1is valid regardless of the
length of the instruction word. The CAL assembler generates

boundary errors if the assembled location <counter for an
instruction becomes odd. At the machine 1level, an attempt  to
make the instruction location counter odd by branching or causing
a status switch results in a data format fault.

1.8 INSTRUCTION FORMATS

1.8.1 Introduction

Instruction formats provide a <concise method of representing
reaguired operations for easy interpretation by the processor.
Figure 1-4 shows the eight basic formats. The following 1is a
list of abbreviations and their meanings as used in Figure 1-4.

P Operation code

R1 First operand register

R2 Second operand register

N A 4-bit immediate value

X2 Second operand single index register

D2 Second operand displacement

FX2 Second operand first index register

SX2 Second operand second index register

A2 Second operand direct address

I2 Second operand immediate value

1.1 Specifies the length of the first operand

L2 Specifies the length of the sezond operand

OPMOD Specifies a particular instruction within

the class specified by OP

ADD1 The effective first operand address

ADD2 The effective second operand address
Many instructions may be expressed in two or more formats. This
feature provides flexibility in data organization and instruction
Ssequencing. When working with the Common Assembler Language
(CAL) assembler, it is unnecessary to specify the instruction
format. The assembler selects the most economical format and
supplies the required bits in the machine code. When double

indexing 1is required, the assembler always chooses the RX3
formate. Refer to the Commen Assembler Language (CAL) Manual,
Publication Number 29-640.

1-10 _ 50-001 ROO



357

REGISTER TO REGISTER (RR)

0 1 15
orP R1 R2
SHORT FORMAT (SF)
0 1 15
oP R1 N
REGISTER AND INDEXED STORAGE (RX1)
0 1 15 18 31
A e
opP R1 X2 0 E -3
REGISTER AND INDEXED STORAGE 2 (RX2)
0 11 15 17 31
op R1 X2 D2
REGISTER AND INDEXED STORAGE 3 (RX3)
0 11 15 17 20 24 . 47
7 7/
op R1 FX2 1]lo0}o0 SX2 A2
o F
REGISTER AND IMMEDIATE STORAGE 1 (RI1)
0 11 15 31
op R1 X2 12
REGISTER AND IMMEDIATE STORAGE 2 (RI12)
0 1 15 47
op R1 X2 12
REGISTER AND INDEXED STORAGE, REGISTER AND INDEXED STORAGE (RXRX)
0 112 31/47 39/55 43/59 63/79/95
7 7/
op L1 _ ADD1 OPMOD L2
77
Figure 1-4 Instruction Formats
50-001 ROO 1-11



1.8.2 Branch Instruction Formats

Branch instructions use the RR, SF, and all variations of the RX
formats. In the conditional branch instructions, however, the R1
field does not specify a register; instead, it contains a mask
value (labeled M1 in the instruction descriptions). This mask
value is tested with the conditian c¢ode. The CAL assembler
provides a series of extended branch mnemonics, which make it
possible to specify a conditional branch without specifying the
mask value explicitly.

1«8.3 Programming Examples

Each of the following examples refers +to +the sample assembly
language program shown in Figure 1-5., Note the use of symbolic
equates for general registers. Machine code generated and the
result of each instruction are dependent upon the physical and
logical placement of the instructions, respectively.

360

SERIES 3200 INSTRUCVION FORMAT EXAMILES PAGE 1 18:21:484 02709779
PROG= $3200 ASSEMBLED RY CAL 03-066R05-01 (32-817)
1 S3200 PROG SERIES 3200 INSTRUCTION FORMAT EXAMPLES
2 CROSS
NOR X3
0C00 0005 5 RS £Qu ) GENERAL REGISTER 5
0000 0006 5 6 EQU [ GENERAL REGISTER &
0000 0007 .1 RrR? EQU 7 GENERAL REGISTER 7
ocoo0C 0008 8 RS EQU 8 . GENERAL REGISTER 8
0000 0009 9 19 FQuU 9 GENERAL REGISTER 9
0000 000A 10 R10 EQu 10 GENERAL REGISTER 10
0000 0008 11 R1t EGU 11 GENERAL REGISTER 11
0000001 245E 13 SF LIS RSe16 tR5) = *0000000€E"
0000021 0865 15 RR LR R6eRS (Re) = *0000000E"
0000041 4050 1000 17 RX1.EX1 STH R54X*1000° (X*1000°*) = X*000E*
000D0BI &4C56 O0FF2 19 3IX1eEX2 STH R5eXPDFF2*(R6) (X*1000°) = Xx*000E"°
00000C1 4050 8004 =0000141 21 RX2.,EX] STH RS5eLOCI (LOC1) = X°QO00E*
00003101 4300 8004 =000N181 22 8 RI1.EX1
00001641 0000 COO0O 2% Loc1 [+] Fe)e TWO HALFVUO0IDS OF STORAGE
0000181 C850 8000 25 RJ1.EX1 LHI R9eX*B8000° (R9) = Y*FFFFA000*
00001CI €895 8000 27 RI1.EX2 LHI R9¢X*8000*(RS5) (R9) = YOFFFFBOOF®
0000201 FBAQ 0000 8000 29 RJ2.EX1 LI R10eX*8000°" (10) = Y*DO00OBOOO®
0000261 F@8BA 0001 7FFE 31 RJI2.EX2 L1 R114Y*1T7FFE®*(R10) (R11) = Y*QOOCLFFFE?®
00002CT 4050 FFEA =000G141 33 RNZ2.EX2 STH R5¢LOC1 (LOC1) = X*000E®
0000301 4056 FFD2 =0000061 35 RX2.EX3  STH R5¢L0C1=-18(R&) CLOC1) = X'000E"
0000341 SB70 4001 0000 37 RX3.EXY1 L R74Y*10000° (R7) = (Y*(010000°)
00003A1 5885 4601 FFEA 39 INIJLEA2 L RBeY®*20200'-29(R54R6) (RB) = (Y®C20000°)
0000401 4300 FFBC =0000001 40 B SF
0000461 42 CND
— J e e N \ AN J
[} ! 1 ] 1
LOCATION OBJECT INFORMATION l LABEL | OPERANDS COMMENTS
COUNTER STATEMENT OP-CODE
NUMBER

Figure 1-5 Sample Progranm

1-12 50-001 ROO



561

562

1e8s4 PRegister-to-Register (RR) Format

REGISTER TO REGISTER (RR) FORMAT
0 7 8 11 12 15

op R1 R2

In this 16-bit format, bits 0:7 contain the operation code; bits
8:11 contain the R1 field; and bits 12:15 contain the R2 field.
In most RR instructions, the register specified by R1 contains
the first operand, and the register specified by R2 contains the
second operand. For example:

Machine Code Label Assembler Notation

0865 RR LR R6,R5

I————————Second operand

First operand

Load Register (LR) instruction op-code

1485 Short Form (SF) Format

Wi
\qi—
SHORT FORM (SF) FORMAT e DIHTE
mY-
0 7 8 1112 15 T opTh

oP R1 N

This 16-bit format provides space economy when working with small
values. Bits 0:7 contain the operation code; bits 8:11 contain
the R1 field; and bits 12:15 contain the N field., In arithmetic
and logical operations, the register specified by R1 contains the
first operande The N field <contains a U4-bit immediate value
(0:15) used as the second operand. For example:

Machine Code Label Assembler Notation

245E SF LIS R5,14

[;———————Second operand

First operand ﬂ'ﬂﬁ&@'f? (DBST'NGT’W)

Load Immediate Short (LIS) instruction op-code

50-001 ROO 1-13



1.8.6 Register and Indexed Storage One (RX1) Format

s REGISTER AND INDEXED STORAGE ONE (RX1) FORMAT
0 7 8 1 12 16 16 17 18 31

OP R1 X2 ojo QZ

This is a 32-bit format in which bits 0:7 contain the operation
code; bits B8:11 contain the R1 field; bits 12:15 contain the X2
field; bits 16 and 17 must be zero; and bits 18:31 contain the D2
fielde In general, the register specified by R1 contains the
first operand. The second operand is located in memory at the
address obtained by adding the contents of the second operand
index register (specified by X2) and the 14-bit absolute address
contained in the D2 field. For example:

Machine Code Label Assembler Notation
4050 1000 RX1.EX1 STH RS5,X*1000°
TT T .
{ L Defines second operand address
No index register specified
First operand

Store Halfword (STH) instruction op-code

The second operand address is calculated as follows:

564BITS 16 19 20 23 24 27 28 31
0001 0000 0000 0000
L J
I - 14-bit absolute address X'1000’
Indicates RX1 format

No indexing is specified; therefore, the second operand address
is X*1000°'.

Machine Code Label Assembler Notation

4056 OFF2 RX1.EX2 STH R5,X*0FF2° (R6)

Defines second operand address

Register 6 to be used for indexing

First operand

Store Halfword (STH) instruction op-code

1-14 50-001 ROO



5635

566

The second operand address is calculated as tollows:

BITS 16 19 20 23 24 27 28 31

0000 1111 1111 0010
LJt J
L 14-bit absolute address X'OFF2’
Indicates RX1 format

Second Operand Address

= contents of D2 field + contents of index register 6 (see
Figure 1-5)

= X'OFF2* + Y'0000000E"

= Y*'00001000"

1.8.7 Register and Indexed Storaje Two (RX2) Format

0 7 8 1 12 15 16 17 31

opP R1 X2 1 D2

This format provides relative addressing capability in a 32-bit
instruction word. Bits 0:7 contain the operand code; bits 8:11
contain the R1 specification; bits 12:15 contain the X2
specification; bit 16 must always be one; and bits 17:31 contain
the relative displacement, [2.

In the RX2 format, the register specified by R1 contains the
first operand. The address of the second operand, in memory, is
calculated by adding the value contained in the incremented
location counter (the address of the next sequential instruction)
and the sum of (1) the 32-bit representation of the 15-bit signed
number contained in the D2 field, and (2) the contents of the
index register specified by X2. Negative numbers in the D2 field
are expressed in two's complement notation. For example:

Machine Code Label Assembler Notation
ig%o 8oou RX2.EX1 STH R5,L0C1
l L —Defines second operand address
No index register specified

First operand

Store Halfword (STH) instruction op-code

50-001 ROO : 1-15



The second operand address is calculated as follows:

BITS 16 19 20 23 24 27 28 31

367

1000 0000 0000 0100
| ]
( 15 bit positive relative displacement
Indicates RX2 format

Second Operand Address

= 32-bit expansion of contents of D2 field + <contents
incremented location counter (see Figure 1-5).
= Y*'00000004" + Y*00000010"°

= Y'00000014"

Machine Code Label Assembler Notation
4050 FFE4 RX2.EX2 STH RS,LOC1
] L Defines second operand address
i No index register specified
First operand

Store Halfword (STH) instruction op-code

The second orerand address is calculated as follows:

ses BITS 16 19 20 23 24 27 28 31

111 1mn 1110 0100

[ }
15-bit negative relative displacement
Indicates RX2 format

Second Operand Address

32-bit expansion of contents of D2 field + <contents
incremented location counter (see Figure 1-5).

Y*FFFFFFEu4* + Y*00000030°

11

Y*00000014"

1-16 50-001

of

of

ROO



569

570

Machine Code Label Assembler Notation

4056 FFD2 RX2.EX3 STH R5,L0C1-14 (R6)
T 1
[ L. Defines second operand address
, Register 6 to be used for indexing
First operand

Store Halfword (STH) instruction op-code

The second operand address is calculated as follows:

BITS 16 19 20 23 24 27 28 31

1M 1111 1101 0010

l

15-bit negative relative displacement
Indicates RX2 format

Second Operand Address

= 32-bit expansion of D2 field + <contents of incremented
location counter + contents of index register 6 (see
Figure 1-5).

= Y'FFFFFFD2' + Y*00000034* + Y*00O0O0O0O0OE"

= Y'00000014°

1.8.8 Register and Indexed Storage Three (RX3) Format

0 | 7 1) 15,16 17 18 19|20 24 b g
i | i | !

op R1 FX2 oji1jojo SX2 A2

L
L4

-\

This is a 48-bit format in which double indexing 1is permitted.
Bits 0:7 contain the operation code; bits 8:11 contain the R1
specification; bits 12:15 contain the first index specification,
FX2; bit 16 must be zero; bit 17 must be one; bits 18:19 must be
zero; bits 20:23 contain the second index specification, SX2; and
bits 24:47 contain a 24-bit address, A2. Second level 1indexing
is allowed even if first level indexing is not specified.

50-001 ROO 1-17



574

In this format, the register specified by R1 contains the first
operand., The 32-bit effective second operand is obtained by
adding together 32-bit representation of the signed 16-bit value
contained in the 1I2 field, and the contents of the register
specified by X2. For example:

-

Machine Code Label Assembler Notation

800 RI1.EX1 LHI R9,X°*8000°

C
=

1o
e

————18

—————16-bit immediate value

No index register specified

First operand

Load Halfword Immediate (LHI) instruction op-code

The second operand is calculated as follows:

BITS 16 20 24 28 31

1000 0000 0000 0000

L Sign Bit

Second Operand

32-bit representation of X'8000'

Y'FFFF8000"*

Machine Code Label - Assembler Notation
€895 8000 RIT.EX2 LHI R9,X'8000°(RS)
T EAAAd
] ‘————16~-bit immediate value
Index register S5 specified
First operand

Load Halfword Immediate (LHI) instruction op-code

1-20 50-001 ROO



578

576

The second operand is calculated as follovws:

BITS 16 20 24 27 31

1000 0000 0000 0000

Sign Bit

Second Operand

32-bit representation of X°8000' + the contents of the
index register 5 (see Figure 1-5).

= Y'FFFF8000° + Y*0000000E"
= Y*FFFFBO00E"

1.8.1C Register and Immediate Storage Two (RI2) Format

0 7 1 15 47

opP R1 X2 12

This is a 48-bit 1instruction format. Bits 02:7 contain the
operation code; bits 8:11 contain the R1 specification; bits
12:15 contain the X2 specification; and bits 16:47 contain the
32-bit immediate value, I2,

The first operand is contained in the register specified by R1.
The second operand is obtained by adding the contents of the
index register, specified by X2, and the 32-bit immediate value
contained in the I2 field. For example:

Machine Code Label Assembler Notation

E A0 0000 8000 RI2.EX1 LI R10,X'8000°
————32-bit immediate field

No index register specified

First operand

Load Immediate (LI) instruction op=-code

50-001 ROO . 1-21



The second operand is calculated

577

as follows:

BITS 16 20 24 28 32 36 40 44 47
0000 0000 0000 0000 1000 0000 0000 0000
| |
'—_ 32-bit immediate value
Second Operand
= contents of I2 field
= Y'00008000"
Machine Code Label Assembler Notation
FEeBA 0001 7TFFE RI2.EX2 LI R11,Y*17FFE* (R10)
I L————32-bhit immediate field
: Specifies index register 10
First operand
Load Immediate (LI) instruction op-code
The second operand is calculated as follows:
578
BITS 16 20 24 28 32 36 40 44 47
0000 0000 0000 0001 o111 111 111 1110
L ]|
| I
32-bit immediate value
Second Operand
= contents of I2 field + contents of index register 10 (see
Figure 1-%).
= Y*00017FFE®' + Y*'00008000"
= Y*OOO1FFFELE*
1-22 50-001 ROO



17¢8.11 Register and Indexed Ztorage/Register ani Indexed Storage
(RXRX) Format (See Figure 1-5)

The RYXRX format resembles a pair of adjacent RX format
instructions, but Trepresents only one instruction. Fach member
of the instruction pair may have any one of‘ the standiard RX
formats. For example, the first member might be RX1 and the
second member might be RX3, resultinjy in a 10 byte instruction.
The rparticular RYX format chosen by the assembler for one member
is independent of that <chosen for the other; thus, the
instruction can require 8, 10, or 12 bytes.

OP contains the operation code that defines the RXRX instruction
class. The actual operation to be performed is defined by the
OPMOD field.

The 11 field specifies the length of the first operand string.
If bit 0 of CPMOD is set, L1 is the length with a maximunm value
of 15, If bit 0 of OPMOD is zero, the general register specified
by L1 contains the length. The L2 field specifies the length of
the second operand string. If bit 1 of OPMOD is set, this field
contains the 1length with a maximum value of 15. If bit 1 of
OPMOD is zero, the general register specified by L2 contains the
lengthe.

The effective address <calculated for the first member is the
address of the left-most (lowest-address) byte of the first
operand string. The effective address calculated for the second
member is the address of the left-most byte of the second operand
string. An RX2 displacement calculated for either member is with
respect to the incremented location counter for that member.

Machine Code Label Assembler Notation

BC50 1000 0160 OFFO  RX1.RBX1 MOVE R5,X'1000°',R6,X'FFO"

Defines second operand address

No 2nd operand index

Register 6 contains length of 2nd operand

OPMOD value for MOVE

Defines first operand address

No 1st operand index

Register 5 contains length of 1st operand

RXEX format op-code

In this example both members of the RXRX instruction use the RX1
formate. No indexing is specified for either member so the first
operand address is X'1000°', and the second operand address |is
X*'0FFO*. 8

50-001 ROO , 1-23

li



H39W3W ANOD3S

sjewIog Y¥XY

5-1 2anb13

H3IGW3INW LSHI4

v zxs | ooto} zxa | 21 AOWdO v ZXs | oolo) ex4 | 11 d0
~" — - ~
€Xd £XY
ca ¢X a1 AoOWdo v CXS | 00L0) Z2X4 | 11 dO
~— N
ZXYH HO LXd £XY
A ZXS | 0010 ¢x4d a1 QOWdO Za ZX 11 d0
N N TN —
£XY ZXH HO LXY
cd X A JOWndo Za ZX 17 d0
¢XH YO LXY ¢XHd HO LXY 6.5

50-001 ROO

1-24



Machine Code Label Assembler Notation

YBEA_ 3q0 FFE4 E160 3002 8000 RX3.RX3 YO0VFP =10,Y'1FFF4"

*"’ T 1T "HW ’ (R5,R6),=5,Y'280300"
Defines second operand address
No 2nd op second level indexing

Specifies RX3 format

No 2nd op first level indexing

2nd op length is 6 bytes

OPMOD value for MOVEP, immediate
lengths 1 and 2

Defines first operand address

Register 6 is second level
index for 1st op

Specifies RX3 format

Register 5 is first level index
for 1st op

1st op length is 10 bytes

RXRX format op-code

In this example, both members of the RXRX instruction use the RX3
format. Double indexing is specified for the first member and no
indexing is specified for the second member. The first operand
address is X'1FFE4' plus the contents of index registers 6 and 5.
The second operand address is X°*28000°'. The length of each of
the first operand is ten bytes and the second operand 1is six
bytes.

50-001 ROOQ : 1-25






580

CHAPTER 2
SYSTEM CONTROL

2.1 INTRODUCTION

Operator control is provided by the systenm control panel and the
System Terminal, a microcode-supported device interfaced to the
system by an asynchronous line controller. The system terminal
may be used as the operating system's console device, and may be
a visual display unit or a printing terminal. The asynchronous
interface must be strapped as device numbers X*'10* and X'11'.

2.2 CONFIGURATION

The system control panel, shown in Figure 2-1, controls power to
the system and Initial Program Loading (IPL). It also provides
controls for system initialization, processor halt/run and single
step. Light Emitting Diodes (LEDs) on the systenm console
indicate current system state.

CPU SYSTEM
POWER POWER WAIT FAULT
SINGLE HALT/RUN ENABLE INIT <:) <:> (:) (:)
LOCK @
\PL ON READY FAIL

STANDBY

DISABLE

Figure 2-1 System Control Panel

Keyboard commands through the Systenm Terminal allow the operator
to examine and modify processor registers and main memory
locations and then begin program execution. (Refer to Figure
2-2.) Hexadecimal characters and a number of special characters
are recognized by the System Terminal support microcode. The
characters accepted and their meanings are shown in Table 2-1.
No other <characters are accepted and cause a question mark (?)
to be written to the System Terminal. When not in use for
operator control, the System Terminal is available to a running
program for use as an I/0 device. See Appendix F for a flowchart
of the console service routine.

50-001 ROO 2-1




TABLE 2-1

SYSTEM TERMINAL SUPPORT

COMMAND SUMMARY

581
KEY SYSTENM
COMMAND MEANING TERMINAL
SEQUENCE DISPLAY
[@2)n]nfnn]n]n]lcRl | select memory address <annnnnn
- - and display halfword nnnnnn_ YYYY
contents <
[R][n][cH Select general register | <Rn
and display contents YYYYYYYY
<
Select single-precision| <Fn
floating-point register | YYYYYYYY
and display contents <
@E Select double-precision| <Dn
floating-point register| YYYYYYYY YYYYYYYY
and display contents <
[p][cR] Select program status | <P
vord and display YYYYYY YYYYYY
contents <
Increment memory <+
location cocunter to nnnnnn YYYY
display next sequential | ¢
halfword
[] Decrement memory <
location counter to nnnnnn YYYY
display previous <
halfwvord
Emﬁﬂm Replace contents of <=YYYY for memory
currently selected <
menory location or £=YYYYYYYY for register
register with new data <
Begin program execution| <<
at current menmory
location
[] Delete Command <a10#
<

50-001 ROO




582

4.

Characters in boxes indicate operational key strokes
required for commands.

Character symbol of lower case "n" wused to indicate
hexadecimal address of memory or register.

Character symbol of upper case "Y" < used to indicate
hexadecimal contents of memory or register.

Underlined characters are those output from the systenm.
Characters not underlined are those typed by the
operator.

L back arrow, or underline (X°'53F'), or a back space
(X'08') character may be used to delete the previously
input hexadecimal character.

Space characters may be entered as desired. They are
ignored by the processor.

.I[ IIE
II.IL_,

Figure 2-2 Model 550 Keyboard Layout

2.3 SYSTEM CONTROL PANEL SWITCHES AND INDICATORS

2.3.1

Key Operated Security Lock

This is a three-position, STANDBY-ON-LOCK key-operated switch
that controls primary power to the system. It can also disable
(LOCK) the initialize and console switches, thereby preventinjg
any accidental manual input to the system. The pover indicator
lamp (POWER) is on when the security lock is in the ON or LOCK
position.

50-001 ROO : 2-3




2.3.2 Control Switches

A1l the control switches, with the exception of the IPL switch,
are enabled only when the key-operated security lock is in the ON
position, and primary AC power is applied.

HALT/RUN

SINGLE

ENABLE

DISABLE

HALT/RUN

This momentary contact switch causes program
execution to be halted if the system was running,
or resumed if the system was halted. When halted,
control is given to the System Terminal support
routine through which the memory or registers can
be examined or modified and program execution

restarted. If the processor was already in the
System Terminal support routine, program execzution
is started. This switch 1is disabled if +the

security lock is in the LOCK position.
SINGLE STEP

When in the up position, control is automatically
given to the System Terminal support routine at
the conclusion of each wuser 1level instruction.
The program status word is displayed, including
the address of the next sequential instruction
(location counter). Execution of the next
instruction is caused by pressing the HALT/RUN
switch or by typing a less than (<) character on
the System Terminal. To resume normal run mode
execution, return the SINGLE STEP switch to the
down position and begin execution by pressing the
HALT/RUN switch or by typing the less than (<)
character on the System Terminal. The SINGLE STEP
switch is disabled when the security lozk is in
the LOCK position. Attempts to single step
through instructions that do I/0 to the Systenm
Terminal do not produce meaningful results.

IPL

This switch is not disabled by the security 1lock.
When in the ENABLE position, an Initial Program
Load (IPL) from the Loader Storage Unit (LSU) is
performed after any of the following steps:

1. turning the security lock from the STANDBY to
ON position

2. depression of the Initialize (INIT) switch

3. return of AC power to the systen

50-001 ROO



INITIALIZE

INIT This momentary contact switch causes the system to
be initialized. The initialization sequence
clears all device controllers on the I/0 bus ani
resets certain functions in the processor. The
fault 1lamp (FAULT) comes on when the switch is
depressed and is extinguished with the <completion
of the initialization sequence.

2.4 OPERATING INSTRUCTIONS

2.4.1 Power-Up

To prevent IPL on power-up, place the IPL switch in the DISABLE
position. To power up the system, turn the key-operatel security
lock clockwise from the STANDBY to the ON position. The power
lamp (POWER) 1lights, and power is provided to the systen. The
fault lamp (FAULT) on the system control panel also lights, and
the microdiagnostic routine is entered. This routine exercises
internal data paths and registers. If main memory power has
fallen out of regulation since the system was last running,
locations X'000000' to X'O3FFFF' are initialized. The diagnostic
routine tests the lowest 256k bytes of memory before
extinguishing the FAULT lambp. This diagnostic is 1limited in
scope, serving only to indicate a go/no go condition. If an
error is detected in any portion of the microdiagnostic, the
microcode 1loops indefinitely, and the FAULT lamp remains on. If
no errors are detected, the FAULT lamp is turned off.

2.4.2 Entering Console Service

If power was lost while the microcode was in the consols service
routine, control is returned to the console when the power-up
sequence is complete, provided that IPL is not enabled. If the
system wWas executing a program when power was lost, execution
resumes when power returns, provided that IPL is not enabled. To
enter console service in this case, depress the HALT/RUN switch.

2.4.3 Initial Program load (IPL)

To perform IPL, place the IPL switch in the ENABLE position; then
initialize the system by depressing the INIT switch momentarily.
A power down/power up sequence is emulated, and diagnostics are
per formed. At the successful completion of the microdiagnostic
sequence, an JIPL from the LSU is ©performed. Control is
transferred to the newly-loaded progranm.

50-001 ROO 2-5



2.5 SYSTEM TERMINAL COMMANDS

When the System Terminal support routine is entered fronm power up
or initialize, a carriage return and 1line feed seguence are
output. The current value of the PSW status and location counter
are output, followed by another carriage return and line feed
sequence. Finally, the less than (<) operator prompt character
is output to indicate that the system |is ready to receive
operator commandse. If memory power was lost, the location
counter is set to X'QOFFFFFE', and the PSW is set to X*00008000°".
In this case, the first 256k bytes of memory are written during
power-up to establish the error correcting code bits.

Space characters may be used as desired in any of the described
system terminal commands. Spaces are ignored by the console
routine.

2.5.1 Select an Address and Examine ™a"

The "commercial at" sign (@) places the System Terminal support
routine in the address mode. This character may be followed by
up to six hexadecimal digits of address. Leading zeros are not
required. If more than six digits are input, only the least
significant six are used. A carriage return is used to signal
the end of the address; then the address input is copied into the
location counter. A carriage return and line feed seguence are
output, followed by the new value of the location counter and the
halfword contents of that location. Note that the data fetch is
subject to memory relocation if enabled by the current P3W.
After this display, a carriage return and line feed sequence are
output, followed by a new orerator prompt.

If an invalid character is input by the operator, the systenm
responds by outputting a question mark (?), a carriage return.,
line feed, and an operator prompt.

2.5.2 Increment and Examine Next Location "+"

After examining a memory location, the plus character (+) can be
used to advance the location counter by two. No other operator
input is required. A carriage return and line feed are output,
followed by the new 1location counter value and the halfword
contents of that location. This memory access is subject to the
relocation defined by the current PSW. After outputting another
carriage return and line feed, the operator prompt character is
output. This procedure may be repeated to examine sequential
memory locations.

2-6 50-001 ROO



2.5.3 Decrement and Examine Prior Location "-"

After examining a memory location, the minus character (-) can be

used to decrement the 1location counter by two. No other
operation 1is required. A carriage return and line feed are
output followed by the new location counter value and the
halfword contents of that location. This memory access 1is

subject to the relocation defined by the <current PSH. After
outputting another carriage return and line feed the operator
prompt character is output. This procedure may be repeated to
examine sequential memory locations.

2.5.4 Modify Current Location "="

After examining a memory location, the equal sign (=) can be used
to put the System Terminal support routine in the memory write
mode. This character may be followed by up to four hexadecimal
digits of data to be written. Leading zeros are not regquired.
If more than four digits are input, only the least significant
four are used. A carriage return is used to signal the end of
the data. At that time, the accumulated data is written into the
memory location currently addressed by the location counter.
This memory write is subject to the relocation defined by the
current PSW. The current location counter is incremented by two
and a carriage return, line feed, and operator prompt are output.
This procedure may be repeated to modify sequential memory
locations.

2.5.5 Examine General Register "R"

The character (R) causes the System Terminal support routine to
interpret subseguent hexadecimal input as the number of a general
register (in the set selected by the current PSW) to be
displayed. A carriage return is wused to signal the end of
hexadecimal input. At that time, the least significant four bits
of the accumulated hexadecimal data are taken as the desired
register number. The fullword contents of that register are
output followed by a <carriage return, line feed, and operator
prompte. Plus and minus commands are invalid for general
registers.

2.5.6 Modify General Register "="

Immediately after examining a general register, the egual sign
(=) can be used to change the contents of the currently selected
register. The wequal sign can Dbe followed by up to eight
hexadecimal digits of data. Leading zeros are not required. If
more than eight digits are input, only the 1least significant
eight are |used. A carriage return is used to signal the endi of
the data input. At that time, the accumulated data 1is copied
into the currently selected general register. A carriage return,
line feed, and operator prompt are then outpute.

50-001 ROO 2-1



2.5.7 Examine Single-Precision Floating-Point Register "F"

The character (F) causes the System Terminal support routine to
interpret subsequent hexadecimal input as the number of a
single-precision floating-point register to be displayei. If the
processor does not have =single-precision floating point, this
command character causes a question mark sequence to be output.
A carriage return is used to signal the end of hexadecimal input.
At that time, the least significant four bits of the accumulated
hexadecimal data are taken as the desired register number. If
necessary, this number is rounded to the next lowest even number.
The fullword contents of that register are output followed by a
carriage return, line feed, and operator prompt. Plus and minus
commands are invalid for floating-point registers.

2.5.8 Modify Single-Precision Floating-Point Register "=

Immediately after examining a single-precision floating-point
register, that register is available for modification. Type an
equal sign (=) followed by up to eight hexaidecimal iigits of
data. Leading zeros are not required. If more than eight digits
are input, only the least significant eight are used. A carriage
return is used +to signal the end of the data input. At that
time, the accumulated data is copied into the currently selected
single-precision floating-point register. This data is not
tested for normalization; - therefore an unnormalized
floating-point number «can be manually placed in the register.
The system outputs a carriage return, line feed, and operator
prompte.

2.5.9 Examine Double-Precision Floating-Point Register "D"

The character (D) causes the System Terminal support routine to
interpret subsequent hexadecimal input as the number of a
double-precision floating-point register to be displayed. TIf the
processor does not have double-precision floating point, this
command character causes a question mark sequence to be output.
A carriage return is used to signal the end of hexadecimal input.
At that time, the least significant faur bits of the accumulated
hexadecimal data are taken as the desired register number. If
necessary, this number is rounded to the next lowest even number.
The doubleword contents of that register are output, followed by
a carriage return, line feed, and operator prompt. Plus and
minus commands are invalid for floating-point registers.

2-8 50-001 ROO



2.5.10 Modify Double-Precision Floating-Point Register "="

Immediately after examining a double-precision floating-point
register, that register is available for modification. Type an
equal sign (=) followed by up to 16 hexadecimal digits. Leading
zeros are not required. If more than 16 digits are input, only
the last 16 digits are used. A carriage return is used to signal
the end of the data input. At that time, the accumulated data is
copied into the currently selected double-precision register.
The data is not tested for normalization; therefore, an
unnormalized floating-point number can be manually placed in a
double-precision register. The system outputs a carriage return,
line feed, and operator prompt.

2.5.11 Examine Program Status Word "Pp"

The character (P) puts the System Terminal support routine 1into
the PSW display mode. A carriage return is required to complete
this command input. Upon receipt of the <carriage return, the
contents of the PSW are output followed by a carriage return,
line feed, and operator prompte. The plus and minus commands are
invalid for the PSW.

2.5.12 Modify Program Status Word "="

Immediately after examining the PSW, the equal sign (=) «can be
used to change the contents of the PSW status field. The equal
sign can be followed by up to six hexadecimal digits of data.
Leading Zzeros are not required. If more than six digits are
input, only the least significant six are used. A carriage
return is used to signal the end of the data input. At that
time, the accumulated data is copied into the PSW, which is then
displayed. A carriage return, line feed, and operator prompt are
then output.

2.5.13 Enter Run Mode "<"
Entering the character (<) causes the processor to begin progranm

execution starting with the instruction indicated by the location
countere.

50-001 ROO , 2~9



2.6 MEMORY INITIALIZATION

The following example shows how to set up dedicated low menory
for lcading the 32-bit relocating loader from magnetic tape.

583

< [@] 3] [9] Select adiress '30°

000030 0000 Location '30' already = °'0000°

< Advance to address '32°'

000032 8000 Location *32' already = °8000°*

< Advance to address °'34°

000034 0000 Location '34' already = '0000°

< Advance to address *'36°

000036 1536 Location *36° contains *1536°

<[=] =] [9] Change contents of *36°' to °0050°

000038 0000 Location ®*38° contains '0000°

g@ @ @ Select address *50°

000050 D500 Location °"50"' already = °D500°*,
the auto-load instruction

< Rdvance to address '52°

000052 00CF Location °*52*' already = °*00CF*,
the usual ending address

< Advance to address °'Su4°

000054 4300 Location *54*' already = '4300°
a branch instruction

< Advance to address °®56°

000056 0080 Location '56° already = °0080°
the usual branch address

<[a] Select address *78°

000078 C186 Location *78°' contains *C186°

2-10 50-001 ROO



3168

1=} 8 5| Al 1]]|cr Change '78' to '85A1', the device
number and command byte for
magnetic tape

00007A 0000 Llocation '7R' contains '0000°
<+ | Advance to address '7C'
00007C 0000 location '7C' contains '0000°
<te|l3]10]}cr Select starting address '30°
000030 0000

<]« Start program execution

After loading, the relocating loader places the processor in the
wait state. The wait lamp on the consolette is on. Depress the
HALT/RUN switch to regain control at the System Terminal. The
terminal respcnse, for examrle is:

008000 03FBOD
<

which shows the PSW and the LOC pointing at the 1loader start
address of *3FB0OO'. Type the less than (<) character to begin
execution of the relocating loader.

2.7 PROGRAMMING INSTRUCTIONS

The System Terminal (ST) wuses either a 2-line asynchronous
communication multiplexor or an 8-l1line asynchronous mux
interface. Since the microprogram of the precessor must
communicate with the ST, the device address is fixed at X'010°
and X'011'. The interface must be <straprped for full duplex
operation. Refer to the appropriate instruction manual for
complete programming information.

The microprogram programs the ST for highest clock rate, two stop

bits per character, seven data bits, and even ©parity. Echoplex
is not turned on.

50-001 ROO 2-11






In general, the first operand 1is <c¢contained in the register
specified by R1. The second operand is located in memory. Its
memory address is obtained by adding the contents of the first
index register and the contents of the second index register, and
then adding to this result the contents of the A2 field. For

example:

Machine Code Label Assembler Notation

EQ%O 4001 0000 RX3.EX1 L R7,Y*10000"

Defines second operand address

Second level indexing not specified

Specifies RX3 format

First level indexing not specified

First operand

Load (L) instruction op-code

The second operand address is calculated as follows:

571
BITS 16 20 24 28 31 32 36 40 44 47

0100 0000 0000 0001 0000 0000 0000 0000

24 -bit absolute address Y'10000’
Indicates RX3 format

Second Operand Address

contents of A2 field

Y*00010000"

1-18 50-001 ROO



Machine Code Label Assembler Notation

5883 #601 FFEU RX3.EX2 L R8,Y*20000°'-28 (R5,R6)

Defines second operand address

Register 6 to be used for second level indexing

Specifies RX3 format

Register 5 to be used for first level indexing

First operand

Load (L) instruction op-code

The second operand address is calculated as follows:

572
BITS 16 20 24 28 31 32 36 40 44 47

0100 0110 0000 0001 1"Mn 11 1110 0100

24 -bit absolute address Y'1FFE4’
Indicates RX3 format

Second Operand Address
= contents of A2 field + contents of index register 6 +
contents of index register 5 (see Figure 1-5).
= Y*OO0OO1FFE4* + Y'O0OO000Q00OE" + Y'00O0J000E"

= Y'00020000°"

1.8.9 Register and Immediate Storage One (RI1) Format

573 0 7 8 1 12 15 16 31

op R1 X2 12

This format represents a 32-bit instruction word. Bits 0:7
contain the operand code; bits 8:11 contain the R1 specification:
and bits 16:31 contain the 16-bit immediate value, I2.



585

CHAPTER 3
LOGICAL OPERATIONS

3.1 INTRODUCTION

The set of logical instructions provides a means for the
manipulation of binary data. Many of the instructions grouped
with the logical set may also be used in arithmetic and other
operations. These instructions include loads, stores, compares,
shifts, 1list processing, translatian, and cyclic redundancy
checks.

3.2 LOGICAL DATAR FORMATS

Logical data may be organized as bytes, halfwords, fullwords, or
bit arrays of up to 2% bits as shown in Figure 3-1.

0] BYTE 7
0 HALFWORD 16
0 FULLWORD 31
0 BIT ARRAY N
S L
7 J
— 5

Figure 3-1 Logical Data

50-001 ROO 3-1




3.3 OPERATIONS

In logical operations between the contents of a generil register
and a halfword operand, the halfword operand is expanded to a
fullword before the operation starts. The halfword is expanded
by propagating the most significant bits through bits 0:15 of the
fullword. For example, the halfword 'A00O0' is expanded to
'FFFFA000"' before participating in the operation.

3.3.1 Boolean Operations

The Boolean operators AND, OR, and Exclusive OR (XOR) operate on
halfword and fullword gquantities. A1l bits in both operands
participate individually. The Boolean functions are defined as
follows:

AND O
AND 1
AND 0
AND 1

(logical product)

- 200
- O 0O D

OR
OR
OR
OR

(logical sum)

- OO0
—_- O -0
Inn un
- O

XOR
XOR
XOR
XOR

(logical difference)

e Ne
_ O a0
[ VI [ 1}
O a0

3.3.2 Translation

The translate instruction is wused to +translate a character
directly, or to effect an unconditional branch to a special
translate subroutine. Associated with the translate instruction
is a translation table. The entries in the table are halfwords
as shown in Figure 3-2.

586

0 7 8 15

1 CHARACTER ENTRY SPECIFYING TRANSLATED
CHARACTER

0 | (CHAR. HANDLING ROUTINE ADDRESS) /2 ENTRY SPECIFYING ADDRESS OF

A CHARACTER HANDLING ROUTINE

Figure 3-2 Translation Table Entry

3-2 50-001 ROO



587

The character to be translated is a byte of logical data. This
unsigned quantity is doubled and used as an index into the
translation table. If the corresponding table entry has a one in
bit position zero, then Dbits 8:15 contain the character to be
substituted for the data character. If there is a zewro in bit
position =zero, bits 1:15 contain the address, divided by two, of
the translation routine. When the translate instruction results
in a branch, this value is doubled to produce the address of the
routine., Because this result is a 16-bit address, the software
routine must be located in the first 6U4kb of the program address
space. The program may reside anywhere in memory 1if it is
relocated by the Memory Address Translator (MAT). The
translation table may contain up to 256 entries. However, if the
data characters are always less than eight bits, fewer entries
are required.

3.3.3 List Processing

The list processing instructions manipulate a circular 1list as
defined in Figure 3-3.

)

L

0 15 16 31
NUMBER OF SLOTS NUMBER USED
CURRENT TOP NEXT BOTTOM
SLOTO
SLOT 1
_ ‘ 7
SLOT N

Figure 3-3 Circular List Definition

The first four halfwords, called the list header, contain the
list parameters. Immediately following the header is the 1list
itself. The first fullword in the list is designated Slot O.
The remaining slots are designated 1, 2, 3, etc., up to a maximunm
slot number which is equal to the number in the list minus one.
An absolute maximum of 65,535 fullword slots may be specified.
(Slots are designated 0 through X'FFFE'.)

50-001 ROO 3-3



The first halfword of the header indicates the number of slots
(fullwords) in the &entire list. The second halfword indicates
the current number of slots being  used. When this halfword
equals =zero, the 1list is empty. When this halfword equals the
number of slots in the 1list, the list is full. Once initialized,
this halfword is maintained automatically. It 1is incremented
when elements are added to the list and decremented when elements
are removed.

The third and fourth halfwords of the 1list header specify the
current top of the 1list and the next bottom of the list,
respectively. These pointers are also updated automatically.
Refer to Figure 3-4.

588 p —
[ /

[ SLOT n ]
[ stoto ]

CURRENT TOP — SLOT 1

OCCUPIED SLoT 2
SECTION SLOT 3
SLOT 4

NEXT BOTTOM —’\ SLOT 5

\
\

N———

' -

Figure 3-4 Circular List

3-4 50-001 ROO



3.4

The logical instructions use the Register to Register
Form (SF), the Register and Indexed Storage (RX).,
Register and Immediate Storage (RI) instruction formats.

Short

The instructions described in this section are:

LIS
LCS
LH

LHI

LRA
LHL
LM
LB
LBR
EXHR
EXBR
ST
STH
STHM
STB
STBR
CL
CLR
CLI
CLH
CLHI
CLR

NR
NI
NH
NHI

OR
(0D
OH
OHI

XR
X1
XH
XHI
TI
THI

50-00

LOGICAL INSTRUCTION FORMATS

LOGICAL INSTRUCTIONS

Load

Load Register

Load Immediate

Load Immediate Short
Load Complement Short
Load Halfword

Load Halfword Immediate
Load Address

Load Real Address

Load Halfword Logical
Load Multiple

Load Byte

Load Byte Register
Exchange Halfword Register
Exchange Bvte Register
Store

Store Halfword

Store Multiple

Store Byte

Store Byte Register
Compare logical

Compare Logical Register
Compare Logical Immediate
Compare lLogical Halfword

Compare Logical Halfword Immediate

Compare Logical Byte
AND

AND Register

AND Immediate

AND Halfword

AND Halfword Immediate
OR

OR Register

OR Immediate

OR Halfword

OR Halfword Immediate
Exclusive OR

Exclusive OR Register
Exclusive OR Immediate
Exclusive OR Halfword

Exclusive OR Halfword Immediate

Test Immediate
Test Halfword Immediate

1 ROO

the

and the



SLL
SLLS
SRL
SRLS
SLHL
SLHLS
SRHL
SRHLS
RLL
RRL
TS
TBT
SBT
CBT
RBT
CRC12
CRC16
TIATE
ATL
ABL
RTL
RBL

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift
Rotate
Rotate
Test a
Test B
Set Bi
Comple
Reset
Cyclic
Cyclic
Transl
Add to
Add to
Remove
Remove

Left Logical
Left Logical Short
Right Logical
Right Logical Short
Left Halfword Logical
Left Halfword Logical Short
Right Halfword Logical
Right Halfword lLogical Short
Left Logical
Right Logical
nd Set
it
t
ment Bit
Bit
Redundancy Check Modulo 12
Redundancy Check Modulo 16
ate
Top of List
Bottom of List
from Top of List
from Bottom of List

50-001 ROO



3.5.1 Load

Load (L)
Load Register (LR)
Load Immediate (LI)

Assembler Notation Op-Code Format

L R1,D2(X2) 58 RX1,RX2

L R1,A2(FX2,SX2) 58 RX3

LR R1,R2 08 RR

LI R1,I2(X2) F8 ' RI2

Operation

The second operand replaces the contents of the register

specified in R1.

Condition Code

Value is zero
Value is not zero
Value is not zero

oo Rell{p]
O O Ol
- O Ol
O a O

Programming Notes

When the Load instructions operate on fixed-point data, the
condition code indicates zero (no flags), negative (L flag), or
positive (G flag) value.

In the RR format, if R1 equals R2, the Load instruction functions
as a test on the contents of the register. sg7s ceNd ConE

In the RX formats, the second operand must be located on a
fullword boundarye.

50-001 ROO 3-7



3.5.2 Load Immediate Short (LIS)

Assembler Notation Op-Code Format
LIS R1,N 24 SF
Operation

The U4-bit second operand is expanded to a 32-bit fullword with
high order bits forced to =zero. This fullword replaces the
contents of the register specified by R1.

Condition Code

ClV]G|L
0jJojojo Value is zero
010 110 Value is not zero

Programming Note

When this instruction operates on fixed-point data, the condition
code indicates zero (no flags), or positive (G flag) value.

Example: LIS

Assembler Notation Machine Code Comments
LIS REG4,15 244F LOAD 15 INTO REGU4

Result of LIS Instruction

(REG4) = 0000000OF
Condition Code=0010 (G=2)

3-8 50-001 ROO



3.5.3 Load Complement Short (LCS)

Assembler Notation Op-Code Format
LCS R1,N 25 SF
Operation

The 4-bit second operand is expanded to a 32-bit fullword with
high order bits forced to zero. The two's complement value of
this fullword then replaces the contents of the register
specified by R1.

Condition Code

C|V]G]L
0]0jo0}]0O0 Value is zero
0jojol1 Value is not zero

Programming Note

When this instruction operates on fixed-point data, the condition
code indicates zero (no flags), or negative (L flag) value.

Example: LCS

Assembler Notation Machine Code Comments

LCS REG8,7 2587 LOAD -7 INTO REGS

Result of LCS Instruction

(REG8) = FFFF FFF9
Condition Code=0001 (L=1)

50-001 ROO , 3-9



3.5.4 Load Halfword

Load Halfword (LH)
Load Halfword Immediate (LHI)

Assembler Notation Op-Code Format
LH R1,D2(X2) 48 RX1,RX2
LH R1,A2(FX2,5X2) us8 RX3

LHI R1,12(X2) o} RI1
Operation

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. This
fullword replaces the contents of the register specified by R1.

Condition Code

Value is zero
Value is not zero
Value is not zero

[eNoNele]
O O Of<s
- O Ol
O w Of

Programming Notes

When the Load Halfword instructions operate on fixed point data,
the condition code indicates zero (no flags), negative (L flag),
or positive (G flag) value.

In the RX formats, the second operand must be 1located on a
halfword boundarye.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

3-10 50-001 ROO



3.5.5 Load Address (LA)

Assembler Notation Op-Code Format
LA R1,D2(X2) E6 RX1,RX2
LA R1,A2(FX2,SX2) E6 RX3
Operation

The effective address of the second operand (24 bits) replaces
bits 8:31 of the register specified by R1. Bits 0:7 of the
register specified by R1 are forced to zero.

Condition Code

Unchanged

Programming Note

The length of the address quantity depends on the internal
structure of the particular machine; thus, in this processor,
with a maximum address length of 24 bits, the calculated address
replaces bits 8:31 of the register specified by R1, and bits J3:7
are replaced by 2zero. In a processor Wwith a maximum:  address
length of 20 bits, the calculated address replaces bits 12:31 of
the register specified by R1, and bits 0:11 are forced to zero.

50-001 ROO 3-11



3.5.6 Load Real Address (LRR)

Assembler Notation Op-ngg. Format
LRA R1,D2(X2) 63 RX1,RX2
LRA R1,A2(FX2,5X2) 63 . RX3
Operation

This instruction simulates the operation of the Memory Address
Translator. The register specified by R1 contains a progranm
address (not relocated). The second aperand address points to a
relocation/protection module parameter block, in the format
shown:

BYTE

OFFSET 0o 1 141 15 31
+0 (PST ENTRIES) -1 A(PROCESS SEGMENT TABLE)/128
+4 (SST ENTRIES) -1 A(SHARED SEGMENT TABLE)/128

The address contained in the register specified by R1 is
relocated, using the apprcopriate parameters. The relocated
address replaces the contents of the register specified by R1.

Condition Code

Segment not mapped
Nonpresent segment
Write-protected segment
Execute-protected segment
No restrictions

O > - O Ol
O - > O Ol

O OO O N
O OO a0l

The condition code is determined on priority basis with segment
table size exceeded checked first, nonpresent segment second,
segment limit exceeded third, and all protect keys (as a group)
last.

Programming Notes
Segment tables must conform to the rules given in the section on
Memory Management; otherwise, the results of the LRA instruction

are undefined.

If the address 1is not mapped or not present, the register
specified by R1 is unchanged.

Segment table size exceeded or segment limit exceeded results in
condition code 1000 (unmapped).

The second operand location must be on a fullword boundary.

3-12 50-001 ROO

PSTD

SSTD



Example: LRA

This example performs an address translation in the same manner
as the Memory Address Translator (MAT). The steps shown are not
optimal, and do not reflect the actual operation of the MAT,
which is a high-speed device capable of performing several of the
steps simultaneously.

To set up for this example, register R1 contains X'053147°, the
program address to be translated. RELOCBLK is the address of a
relocation/protection module parameter block. This block
contains two fullwords. The first of these 1is the Process
Segment Table Descriptor (PSTD), with the value X'000EO06BF'. The
second is the Shared Segment Table Descriptor (SSTD), with the
value X'000C06CO"*. Memory location X'035FA8' contains the
Process Segment Table Entry (PSTE) to be wused, with the value
X'588A0028°'. Memory location X'036028' contains the Shared
Segment Table Entry (SSTE) to be used, with the value
X'58126880'. The instruction proceeds as follows:

LRA R1,RELOCBLK TRANSLATE ADDRESS IN R1

1« The PSTD 4is fetched from RELOCBLK, and ANDed with
X*'FFFE0000' to extract the segment table size field.
The result, X'000EQ000*', is shifted right 17 bit
positions, yielding X'00000007'. This value 1is the
number of entries in the Process Segment Table (PST),
minus one. Therefore, the PST has entries for segments
0 through 7.

2. The program address from register R1, X°053147*', is
shifted right 16 Dbit positions to yield the specified
segment number, X*'00000005°. The segment number is
compared with the PST size. If the PST size were less
than the segment number, this would mean that no entry
existed in the PST for the specified segment, and that
the segment was unmapped (condition code = 8). However,
such is not the case, and the instruction proc=eds.

3. The PSTD is ANDed with X'0001FFFF' to extract the
segment table address field. The result, X'000006BF’,
is shifted left seven bit positions, to multiply it by
128. This yields the address of the PST, X'35F80°'.

4. The segment number specified by the program address in
R1 (X'053147') is used as an index into the PST.
Because each Segment Table Entry (STE) requires eight
bytes, the segment number, X'00000005', is shifted left
three bit positions, to multiply it by -eight. The
result, X'00000028*, and the address of the PST,
X'035F80°', are added. The result is the address
X*035FA8', and the PSTE at that address is fetched.
This PSTE has the value X'588A0028°'.

50-001 ROO 3-13



The PSTE is ANDed with the value X*40000000°' to test the
Presence bit in the STE. If the bit were =zero, this
would mean the segment was not present (condition code
= 4)., But such is not the case, ani the instruction
proceeds.

The PSTE is then ANDed with X*'00800000°', to test the
Shared Segment bit. If the bit were zero, the LRA
instruction would use the data in the PSTE as data in
the SSTE also, and perform the operations in step 9
below; but such is not the case.

The Shared Segment bit in the PSTE is set, which means
that an entry from the Shared Segment Table (S5ST) must
also be used in translating the program address. The
SSTD (X*'000C0AC0"'") is ANDed with X'FFFEQ0000' to extract
the segment table size field. The result, X'000C0000°,
is shifted right 14 bit positions to yield X*00000030°.
This value is the maximum SST offset, the offset 1in
bytes from the start of the SST to the beginning of the
last entrye.

The SSTD 1is ANDed with X*“0001FFFF*' to extract the
segment table address field. The result, X*'000006C0"*,
is shifted left seven bit positions to yield the address
of the Shared Segment Table (SST), X*'036000°.

The PSTE is now ANDed with X'0001FFFF° to extract the
Segment Relocation Field (SRF). This field has the
value X'00000028'. If this value exceeded tha maximum
SST offset, this would mean that no entry existed in the
SST for the specified segment, and that the segment was
unmapped (condition code = 8}); but such is not the case,
and the instruction proceeds. The SRF is added with the
PST address, X'036000'. The Shared Segment Table Entry
(SSTE) pointed to by the PSTE 4is located at the
resulting address, X'036028"'.

The SSTE 1is fetched, and its value foundi to be
X*58126880°. This value is ANDed with X'40000000' to
test the STE Presence bit. If the bit were =zero, this
would mean the segment was not present (condition code
= 4); but such is not the <case, and the instruction
proceeds.

The SSTE, with a value X'58126880', is ANDed with the
value X'003E0000' to extract the Segment Limit Field
(SLF). The resulting value, X'00120000', is shifted
right six bit positions, yielding an SLF value of
X'0o000u4800°*. The program address from R1, X'053147*', is
ANDed with X*0000F800. The resulting value,
X'00003000*, 1is compared to the SLF value, X'0000u4800°'.
If the SLF value were the lesser of the two values, this
would indicate that the program address was in an
unreachable part of the segment (segment limit

50-001 ROO



1771

R1=

10.

11.

violation), and thus unmappred (condition code = 8); but
such is not the case, and the instruction proczeis.

At this point, address translation can be performed.
The SSTE, with value X'58126880', 1is ANled with the
value X'0001FFFF' to extract the SRF. This field has
the value X*'00006880°. The SRF is shifted left seven
bit positions, giving the relocation value X'00344000'.

The program address from R1, X'053147', 1is ANDed with
the value X'0000FFFF', giving the value X°'00003147'. To
this value 1is added the relocation value, X'00344000°'.
The result is the translated program address, X*'347147°',
which replaces the contents of register R1.

The PSTE, with value X'588A0028°', and the SSTE, with
value X'58126880°, are ANDed, yielding the value
X'58020000*., This value contains the <combined segment
access keys. If ANDing the keys with X'08000000°
yielded a zero result, the G flag would be set in the
condition code to indicate a write-protectei segment.
If ANDing the keys with X'10000000' yielded a zero
result, the L flag would be set in the condition code to
indicate a read-protected segment; but neither is the
case. ANDing the keys with X'04000000° does yield a
zero result, and the L flag is set in the condition code
to 1indicate that the segment is execute-protected. The
LRA instruction terminates once these tests have been
performed. (Refer to Figure 3-5.)

00063147 VIRTUAL ADDRESS

g

SEGMENT NUMBER
I L——-——BYTEOFFSET
SEGMENT NUMBER
RELOCBLK Lt PST g;L?Eg?Fsow
PSTD DOOEOBBF ; SBYIES
SSTD 000C06CO -
\_»SST (AT X'36000') 2
8BYTES 0 3
8BYTES 8 4
8-BYTES 10 35FA8 ———— 5| 588A0028 SHARED BYTE
8BYTES 18 AN ” OFFSET 28
8-BYTES 20 ! '
36028 ————»| 58126880 28 : |
\ ]
N e /
SEGMENT (AT 'X344000")
0
1
BYTE OFFSET = 3147 AT 347147

Figure 3-5 LRA BExample

50-001 ROO 3-15



3.5.7 Load Halfword Logical (LHL)

Assembler Notation Op-Code Format
LHL R1,D2(X2) 73 RX1,RX2
LHL R1,A2(FX2,5X2) 73 RX3
Operation

The halfword second operand replaces bits 16:31 of the register
specified by R1. Bits 0:15 of the register specified by R1 are
replaced by zero.

Condition Code

ClV]IG|L
cjojoj]o Value is zero
o] o 110 Value is not zero

Programming Note

The second operand must be located on a halfword boundary.

3-16 50-001 ROO



3.5.8 Load Multiple (LM)

Assembler Notation Op-Code Format
LM R1,D2(X2) D1 RX1,RX2
LM R1,A2(FX2,SX2) D1 RX3
Operation

Successive registers, starting with the register specified by R1,
are loaded from successive memory locations, starting with the
location specified as the effective address of the second
operand. Fach register is loaded with a fullword from memorye.
The process stops when Register 15 has been loaded.

Condition Code

Unchanged

Programming Notes
The second operand must be located on a fullword boundary.

The second operand address is formed before any registers are
loaded; therefore, X2, FX2, and SX2 can be among the registers
loaded.

In the event of a machine malfunction due to a noncorrectable
memory error, or to a MAT Fault, the effective address calculated
at the beginning of the instruction is available should a retry
be desired. For details, refer to Chapter 10 and Chapter 12.

50-001 ROO 3-17



3.5.9 Load Byte

Load Byte (LB)
Load Byte Register (LBR)

Assembler Notation Op-Code Format
LB R1,D2(X2) D3 RX1,RX2
LB R1,A2(FX2,SX2) D3 RX3
LBR R1,R2 93 RR

Operation

The 8-bit second operand replaces the 1least significant bits
(bits 24:31) of the register specified by R1. Bits 0:23 of the
register are forced to zero.

Condition Code

Unchanged

Programming Note

In the Load Byte Register instruction, the second operand is
taken from the least significant eight bits (bits 24:31) of the
register specified by R2.

w
1
Y
@

50-001 ROO



3.5.10 Exchange Halfword Register (EXHR)

Assembler Notation Op-Code Format
EXHR R1,R2 34 RR
Operation

Bits 0:15 of the register specified by R2 replace bits 16:31 of
the register specified by R1. Bits 16:31 of the register
specified by R2 replace bits 0:15 of the register specified Dby
R1.

Condition Code

Unchanged

Programming Note
If R1 equals R2, the two halfwords contained within the register

are exchanged. If R1 does not equal R2, the contents of R2 are
unchanged.

Example: EXHR

Assembler Notation Machine Code Comments

LI REG5, Y'OABCDEF9' F850 OABC DEF9 (REG5) = OABCDEF9
LI REG7, Y'123u45678" F870 1234 5678 (REG7) = 123U45678
EXHR REGS, REG7 3457

Result of EXHR Instruction
(REG5) = 56781234

(REG7) = 12345678
Condition Code Unchanged

50-001 ROO 3-19



3.5.11 Exchange Byte Register (EXBR)

Assembler Notation Op-Code Format
EXBR R1,R2 9y RR
Operation

The two 8-bit bytes contained in bits 16:31 of the register
specified by R2 are exchanged and loaded into bits 16:31 of the
register specified by R1. Bits 0:15 of the register specified by
R1 are unchanged. The register specified by R2 is unchanged.

Condition Code

Unchanged

Programming Note
R1 and R2 may specify the same register. In this case, the two

bytes in bits 16:31 of the register specified by R2 are
exchanged.

Example: EXBR

Assembler Notation Machine Code Comments

LI REG7, X'SA6B3CuD" F870 5A6B 3Cu4D (REG7) = 5A6B3Cu4D
LI REG3, Y'98761234" F830 9876 1234 (REG3) = 98761234
EXBR REG7,REG3 9473

Result of EXBR Instruction

(REG7) 5A6B3412
(REG3) 98761234
Condition Code Unchanged

3-20 50-001 ROO



3.5.12 Store (ST)

Assembler Notation Op—Cdde | Format
ST R1,D2(X2) 50 RX1,RX2
ST R1,A2(FX2,SX%X2) 50 RX3
Operation

The 32-bit contents of the register specified by R1 replace
contents of the fullword memory location specified by
effective address of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location must be on a fullword boundary.

50-001 ROO

the
the



3.5.13 Store Halfword (STH)

Assembler Notation Op-Code Format
STH R1,D2(X2) Lo RX1, RX2
STH R1,A2(FX2,SX2) 40 RX3

Operation
Bits 16:31 of the register specified by R1 replace the contents

of the halfword memory location specified by the effective
address of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location must be on a halfword boundary.

3-22 50-001 ROO



3.5.14 Store Multiple (STM)

Assembler Notation Op-Code Format
STM R1,D2(X2) DO RX1, RX2
STHM R1,A2(FX2,5X2) DO RX3
Operation

The fullword contents of registers, starting with the register
specified by R1, replace the contents of successive fullword
memory locations, starting with the location specified by the
effective address of the second operand. The process stops when
register 15 has been stored.

Condition Code

Unchanged

Programming Note

The second operand location must be on a fullword boundarye.

50-001 ROO 3-23



3.5.15 Store Byte -

Store Byte (STR)
Store Byte Register (STBR)

Assembler Notation Op-Code Format
STB R1,D2(X2) D2 RX1,RX2
STB R1,A2(FX2,5X2) D2 RX3
STBR R1,R2 92 RR
Operation

The least significant eight bits (bits 24:31) of the register
specified by R1 are stored in the byte second operand location.

Condition Code

Unchanged

Programming Note
In the Store Byte Register instruction, the 8-bit quantity is

stored in bits 24:31 of the register specified by R2. Bits 0:23
of the register are unchanged.

Example: STBR

Assembler Notation Machine Code Comments

ILT REG4, Y*13577531° Fsu0o 1357 7531 (REGU) = 13577531
LI REG3, Y'24688642" F830 2468 8642 (REG3) = 24688642
STBR REG4,REG3 9243

Result of STBR Instruction

(REGY) 13577531
(REG3) 24688631
Condition Code Unchanged

nn

3-24 50-001 ROO



3.5.16 Compare Logical

Compare Logical (CL)
Compare Logical Register (CLR)
Compare Logical Immediate (CLI)

Assembler Notation Op-Code Format
CL R1,D2(X2) 55 RX1,RX2
CL R1,A2(FX2,SX2) 55 RX3

CLR R1,R2 05 RR

CLI R1,I12(X2) F5 RI2
Operation

The first operand, the contents of the register specifisd by R1,
is compared logically to the second operand. The result is
indicated by the condition code sSettinge. Neither operand 1is
changede.

Condition Code

First operand equal to second
First operand less than second
First.operand less than second
First operand greater than second
First operand greater than second

OO a 20N
e R Rl R
=2 0O 2 OO0
D 2O O

Programming Notes

In the RX formats, the second operand must be located on a
fullword boundary.

The state of the V flag is undefined.
If the second operand is zero, the C filag cannot set.

It is meaningful to check the following condition code mask (M1)
after a logical comparison:

Mask True/False* Inference
3 False First operand egual to second
3 True First operand not equal to second
8 False First operand greater than or eqgual to
second
8 True First operand less than second
*Refer to Chapter 4 for True/False concept in branch

instructions.

50-001 ROO 3-25



3.5.17 Compare Logical Halfword

Compare Logical Halfword (CLH)
Compare Logical Halfword Immediate (CLHI)

Assembler Notation Op-Code Formag
CLH R1,D2(X2) 45 RX1,RX2
CLH R1,A2(FX2,5X2) 45 RX3
CLHI R1,I2(X2) C5 RI1
Operation

The halfword second operand is expanded to a fullword by
provagating the most significant bit through bits 0:15. The
first operand, the contents of the register specified by R1, is
compared to this fullword. The result is indicated by the
condition code setting. Neither operand is changed.

Condition Code

First operand equal to sscond
First operand less than second
First operand less than second
First operand greater than second
First operand greater than second

[eNeoptaryelle!
e I P
- O a2 O Ol
O A O - Ot

Programming Notes

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

The state of the V flag is undefined.

If the second operand is zero, the C flag cannot set.

It is meaningful to check the following condition code mask (M1)
after a logical comparison:

Mask True/False* Inference
3 False First operand equal to second
3 True First operand not equal to sezond
8 False First operand greater than or
equal to second
8 True First operand less than second
*Refer to Chapter 4 for True/False concept in branch

instructions.

3-26 50-001 ROO



3.5.18 Compare Logical Byte (CLB)

Assembler Notation Op-Code Format
CLB R1,D2(X2) Dy RX1,RX2
CLB R1,A2(FX2,SX2) Dy RX3
Operation

The byte quantity, contained in bits 24:31 of the register
specified by R1, is compared with the 8-bit second operand. The
result is indicated by the <condition <code setting. Neither
operand is changed.

Condition Code

First operand equal to second
First operand less than second
First operand greater than second

O a Ol
<<
EYeNellp]
Q - Ol

Programming Notes
Both operands are treated as unsigned gquantities.
If the second operand is zero, the C filag cannot set.

It is meaningful to check the following condition code mask (M1)
after a logical comparison:

Mask True/False* Inference
2 False First operand not greater than
second
2 True First operand greater than second
operand
3 False First operand equal to second
3 True First operand not egual to second
8 False First operand greater than or
eqgqual to second
8 True First operand less than seconid
*Refer to Chapter U for True/False concept in branch

instructions.

50-001 ROO . 3-27



3.5.19 AND

AND (N)
AND Register (NR)
AND Immediate (NI)

Assembler Notation Op-Code Format
N R1,D2(X2) 54 RX1,RX2
N R1,A2(FX2,5X2) 54 RX3

NR R1,R2 04 RR

NI R1,I2(X?2) Fy RIZ2
Operation

The logical product of the 32-bit second operand and the contents
of the register specified by R1 replace the contents of the
register specified by R1. The 32-bit logical product is formed
on a bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

- O OlG)
O Ol

[eNeNeolle)
O O Ol

Programming Notes

In the RX formats, the second operand must be located on a
fullword boundary.

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

3-28 50-091 ROO



3.5.20 AND Halfword

AND Halfword (NH)
AND Halfword Immediate (NHI)

Assembler Notation Op-Code Format
NH R1,D2(X2) uy RX1,RX2
NH R1,A2(FX2,5X2) 4o RX3

NHI R1,I2(X2) cu RI1
Operation

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
logical product of this 32-bit quantity and the contents of the
register specified by R1 replace the contents of the register
specified by R1. The 32-bit 1logical product 1is formed on a
bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

O O O|N
[eNeNel L
- O O|la
O a O

Programming Notes

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

50-001 ROO 3-29



3.5.21 OR

OR (0)
OR Register (OR)
OR Immediate (0OI)

Assembler Notation Op-Code Format
0 R1,D2(X2) 56 RX1,RX2
0 R1,A2(FX2,SX2) 56 RX3
OR R1,R2 06 RR
0I R1,I2(X2) Fé RI2

Operation

The logical sum of the 32-bit second operand and the contents of
the register specified by R1 replace the contents of the register
specified by R1. The 32-bit 1logical sum is formed on a
bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

[oNeoNelle]
O O ol
= O O|®n
O a Ot

Programming Notes

In the RX formats, the second operand must be located on a
fullvword boundary.

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

3-30 50-001 ROO



3.5.22 OR Halfword

OR Halfword (OH)
OR Halfword Immediate (OHI)

Assembler Notation Op-Code - Format
OH R1,D2(X2) 46 RX1,RX2
OH R1,A2(FX2,5X2) u6 RX3

OHI R1,I2(X2) Cé6 RI1
Operation

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 2:15. The
logical sum of this 32-bit quantity and the <contents of the
register specified by R1 replace the contents of the register
specified by R1. The 32-bit logical =sum is formed on a
bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

O O Ols
- O Ol
o_-or.—‘

C
0
0
0

Programming Notes

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operande.

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

50-001 ROO ' 3

31



3.5.23 Exclusive OR

Exclusive OR (X)
Exclusive OR Register (XR)
Exclusive OR Immediate (XI)

Assembler Notation Op~-Code Format
X R1,D2(X2) 57 RX1,RX2
X R1,A2(FX2,5X2) 57 RX3

XR R1,R2 " 07 RR

XTI R1,I2(X2) F7 RI2

Operation

The logical difference of the 32~bit second operand and the
contents of the register specified by R1 replace the contents of
the register specified by R1. The 32-bit logical difference 1is
formed on a bit-by-bit basis.

Condition Code

Result is gzero
Result is not zero
Result is not zero

O O OlM
O O Ol
= 0O Ol
O 2 O

Programming Notes

In the RX formats, the second operand must be located on a
fullword boundary.

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

w
!

32 50-001 ROO



3.5.24 Exclusive OR Halfword

Exclusive OR Halfword (XH) ,
Exclusive OR Halfword Immediate (XHI)

Assembler Notation Op-Code Format
XH R1,D2(X2) 47 RX1,RX2
XH R1,A2(FX2,SX2) L7 RX3

XHI R1,12(X2) c7 RI1
Operation

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits J:15. The
logical difference of this 32-bit quantity and the contents of
the register specified by R1 replace the contents of the register
specified by R1. The 32-bit logical difference is formed on a
bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

O O OlN
O O O
-2 O ol
O = Ojt

Programming Notes

In the RX formats, the second operand must be 1located on a
halfword boundary.

In the RI1 format, the 16=-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

When operating on fixed-point data, the condition code 1indicates
zero (no flags), negative (L flag), or positive (G flag) result.

50-001 ROO , 3-33



3.5.25 Test Immediate (TI)

Assembler Notation Or-Code Format
TI R1,12(X2) F3 RI2
Operation

Each bit of the second operand is 1logically ANDed with the
corresponding bit in the register specified by R1. Neither
operand is changede.

Condition Code

Result is zero
Result is not zearo
Result is not zero

S OO0
O OOl
- O Ol
O - Ot

Programming Notes

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

This instruction works the same as the AND Immediate instruction
(NI) except that the first operand is not changed.

Example: TI

This example tests if bit 16 of register 9 is set.

(REG9) = 7EFBC230

Assembler Notation Comments
TI REG9, Y'00008000"° Test Bit 16
BNZ LABEL Branch if bit is set

Result of TI Instruction
(REG9) Unchanged

Condition Code = 0010 (G=1)
The conditional branch is taken.

3-34 50-001 ROO



3.5.26 Test Halfword Immediate (THI)

Assembler Notation Op-Code A Format
THI R1,I2(X2) C3 RI1
Operation

The halfword second operand 1is expanded to a fullword by
propagating the most significant bit through bits 0:15. Each bit
in this quantity is logically ANDed with the corresponding bit
contained in the register specified by R1. Neither operand 1is
changed.

Condition Code

Result is zero
Result is not zero
Result is not zero

O O Oln
O O QO|s

- O Ol
O = Ol

Programming Notes

When operating on fixeid-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

In the RI1 format, the 16-bit I2 field iz extended to a fullword
by propagating the sign bit through bits 0:15. The contents of

the index register specified by X2 are then added to form the
fullword second operand.

This instruction works the same as the AND Halfword Immediate
instruction (NHI) except that the first operand is not changed.

Example: THI
This example tests if any of bits 0:16 of register 9 is set.

(REG9) = 80800000

Assembler Notation Comments
THI REG9,X*'8000" Test bits 0:16
BNZ LABEL Branch if any set

Result of THI Instruction

(REGY9) Unchanged
Condition Code = 0001 (L=1)
The conditional branch is taken.

50-001 ROO 35

W
|



3.5.27 Shift Left Logical

Shift Left Logical (SLL)
Shift Left Logical Short (SLLS)

Assembler Notation Op-Code Format
SLL R1,I2(X2) ELC RI1
SLLS R1,N 11 SF

Operation

The first operand, the contents of the register specified by R1,
is shifted 1left the number of places specified by the second
operand. Bits shifted out of position 0 are shifted through the
carry flag of the condition code and then lost. The last bit
shifted remains in the <carry flag. Zeros are shifted into
position 31.

Condition Code

Result is zero
Result is not zero
Result is not zero
Carry

- >4 > |0
[eNeNolNe] -]
< a0 Ol
<O - O

Programming Notes

In the RI1 format, the shift count is specified by the least
significant five bits of the second operand. The maximum shift
count is 31.

In the SF format, the maximum shift count is 15,

The state of the C flag indicates the =state of the 1last bit
shifted out of position 0.

If the second operand specifies a shift of zero places, the
condition code 1is set in accordance with the value contained in
the register. The C flag is zero in this case.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

3-36 50-001 ROO



3.5.28 Shift Right Logical

Shift Right Logical (SRL)
Shift Right Logical Short (SRLS)

Assembler Notation _ Op-Code Format
SRL R1,12(X2) EC RI1
SRLS R1,N 10 SF
Operation

The first operand, the contents of the register specified by R1,
is shifted right the number of places specified by the second
operand. Bits shifted out of position 31 are shifted through the
carry flag of the condition code and then lost. The last bit
shifted remains in the <carry flag. Zeros are shifted into
position 0.

Condition Code

Result is zero
Result is not zero
Result is not zero
Carry

B el lall®!
[oReNolNej Lo
-0 Ol
<O a ol

Programming Notes

In the RI1 format, the shift count is specified by the least
significant five bits of the second operand. The maximum shift
count is 31.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the last bit
shifted out of position 31,

When the register specified by R1 contains fixed-point data, the
1 flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the

condition code 1is set in accordance with the value contained in
the register. The C flag is zero in this case.

50-001 ROO : 3-37



3.5.29 Shift Left Halfword Logical

Shift Left Halfword Logical (SLHL)
Shift Left Halfword Logical Short (SLHLS)

Assembler Notation Op-Code Format
SLHL R1,I2(X2) crL RI1
SLHLS R1,N 91 SF
Operation

Bits 16:31 of the register specified by R1 are shifted left the
number of places specified by the second operand. Bits shifted
out of position 16 are shifted through the carry flag and 1lost.
The 1last bit shifted remains in the <carry flag. Zeros are
shifted into position 31. Bits 0:15 of the first operand remain
unchanged. :

Condition Code

Result is zero
Result is not zero
Result is not zero
Carry

- > XN
O O O Oi<
M- OO
> O - O

Programming Notes

The condition code setting is based on the halfword (bits 16:31)
resulte. .

In the RI1 format, the shift count is specified by the 1least
significant four bits of the second operand. The maximum shift
count is 15.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the last bit
shifted out of position 16.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the

condition code is set in accordance with the value contained in
bits 16:31 of the register. The C flag is zero in this case.

3-38 50~-001 ROO



3.5.30 Shift Right Halfword Logical

Shift Right Halfword Logical (SRHL)
Shift Right Halfword Logical Short (SRHLS)

Assembler Notation Op-Code Format
SRHL R1,I2(X2) cC RI1
SRHLS R1,N 90 SF
Operation

Bits 16:31 of the register specified by R1 are shifted right the
number of places specified by the second operand. Bits shifted
out of position 31 are shifted through the carry flag and lost.
The 1last bit shifted remains in the <carry flag. Zeros are
shifted into position 16. Bits 0:15 of the first operand remain
unchanged.

Condition Code

Result is zero
Result is not zero
Result is not zero
Carry

= g e O
O OO Ol
XN a o oln
O a O

Programming Notes

The condition code setting is based on the halfword (bits 16:31)
resulte.

In the RI1 format, the shift count is specified by the 1least
significant four bits of the second operand. The maximum shift
count is 15.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the 1last bit
shifted out of position 31.

When the register specified by R1 contains fixed-point data, the
1 flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of 2zero places, the
condition code is set in accordance with the halfword value
contained in bits 16:31 of the register. The C flag is zero in
this case.

50-601 ROO ‘ : 3

39



3.5.31 PRotate lLeft Logical (RLL)

Assembler Notation Op-Code Format
RLL R1,I2(X2) EB RI1
Operation

The 32-bit first operand, contained in the register specified by
R1, 1is shifted 1left, end around, the number of positions
specified by the second operand. Bits shifted out of position 0
are shifted into position 31.

Condition Code

Result is zero
Result is not zero
Result is not zero

o O oln
O O Ol
- O O
O = O

Programming Notes

The shift count is specified by the least significant five bits
of the second operand. The maximum shift count is 31.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the

condition code 1is set in accordance with the value containedi in
the register specified by R1.

Example: RLL

1. Assembler Notation Machine Code Comments
LI REG9,Y'56789ABC* F890 56789ABC (REG9)=56789ABC
RLL REG9,X'0004" EB90 0004

Result of RLL Instruction

(REG9) = 6789ABCSH
Condition Code = 0010 (G=1)

2. Assembler Notation Machine Code Comments
LT REG9,Y*'88880000" F890 8888 0000 (REG9)=88880000
RLL REG9,X'03° EB90 0003

Result of RLL Instruction

(REG9) = 44400004
Condition Code = 0010 (G=1)

3-40 50-001 ROO



3.5.32 Rotate Right Logical (RRL)

Assembler Notation Op-Code Format
RRL R1,I12(X2) EA RI1
Operation

The 32-bit first operand, contained in the register specified by
R1, is shifted right, end around, the number of positions
specified by the second operand. Bits shifted out of position 31
are shifted into position 0.

Condition Code

Result is zero
Result is not zero
Result is not zero

- O Ol
O - Ot

[eReoNalle]
loNeoNal b -]

Programming Notes

The shift count is specified by the least significant five Dbits
of the second operand. The maximum shift count is 31.

When the register specified by R1 containg fixed-point data, the
I flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the
condition code 4is set in accordance with the value contained in
the register specified by R1.

Example: RRL

1e Assembler Notation Machine Code Comments

LI REGU4,Y'123u5678" F8u0 1234 5678 (REGU4) = 12345678
RRL REGU,X'04° EA40 OO0OO0U4

Result of RRL Instruction

(REGU4) = 8123u567
Condition Code = 0001 (L=1)

2. Assembler Notation Machine Code Comments
LI REG4,Y*00001111" F840 0000 1111 (REG4) = 00001111
RRL REGH,X*01° EA40 0001

Result of RRL Operation

. (REGYH) = *'800000888"°
Condition Code = 0001 (L=1)

50-001 ROO . 3-u1



3.5.33 Test and Set (TS)

Assembler Notation Op-Code Format
TS D2(X2) EO RX1,RX2
TS A2(FX2,5X2) EQ RX3
Operation

The halfword operand is read from memory and, osn the same cycle,
written back with the most significant bit set. The other bits
in the halfword are unchanged. On the read cycle, the most
significant bit of the operand is tested. The condition code
reflects the state of this bit at the time of the memory reade.

Condition Code

ClV]|IG| L
X1 X1 Xt|o Most significant bit is zero
X1 X1 X1} 1 Most significant bit is set

Programming Notes
The second operand must be located on a halfword boundary.

The TS instruction provides a mechanism for software
synchronization and can be used in a single-processor environment

as follows: Two or more user tasks running under an operating
system share a halfword. This halfword is located in a memory
area referred to as Task Common. Each task can access the

halfword using the TS instruction. The synchronization segquence
may be as follows:

TASK 1 Sets the most significant bit using the TS instruction.

TASK 2 Senses the most significant bit using the TS
instruction, sees that it is set, performs the necessary
software synchronization, and then =zeros the most
significant bit of the halfword.

The TS instruction can be used in a multi-processor system as
follows: Two or more processors share a halfword. This halfword
is 1located in a memory area referred to as Shared Memory. Each
processor can access the halfword using the TS instruction. The
synchronization sequence can be as explained for user tasks with
the following slight difference. Whereas TASK 1 and TASK 2
cannot access the halfword at the same (real) time, two
processors can. The access is granted according to the relative
priority of the two processors.

The hardware ensures that no other accesses to the halfword are
made during the execution of the TS instruction.

3-42 50-001 ROO



3.5.34 Test Bit (TBT)

Assembler Notation Op-Code

TBT R1,D2(X2) 74 )
TBT R1,A2(FX2,S5X2) T4 RX3
Operation

Format

RX1,RX2

The second operand address points to a bit array starting on a
byte boundary. The value contained in the register specified by
R1 is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit 0. The argument bit
is located and tested. The test does not change the bit.

Condition Code

Programming Note

Cl VIGLl L ,
0] 01 0] O Tested bit is zero
0] O 11 0 Tested bit is one

For software compatibility with other processors, the bit array

should start on a halfword boundary.

Example: TBT

Assembler Notation Machine Code
LIS REGS8, 3 2483
TBT REG8,LABEL 7480 OBCu4

Result of TBT Instruction

Memory Location X*BC4' unchanged
(REG8) unchanged

Comments

(REG8) = 3

LABEL = halfworid

in memory at location
X'0BC4'. It contains
X'B34A’.

Condition Code = 0010 (G=1)...Bit 3 of location X'BC4*' is set.

50-001 ROO

3-43



3.5.35 Set Bit (SBT)

Assembler Notation Op-Code Format
SBT R1,D2(X2) 75 RX1,RX2
SBT R1,A2(FX2,5X2) 78 RX3
Operation

The second operand address points to a bit array starting on a
byte Dboundary. The value contained in the register specified by
R1 is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit 0. The argument bit
is located and set to one.

Condition Code

ClV]I G| L
0101 O} O Previcus state of bit was zero
0} 0 11 0 Previcus state aof bit was one

Programming Note

For software compatibility with other processors, the bit array
should start on a halfword boundary.

Example: SBT

Assembler Notation Machine Code Comments

LIS REGS5, 8 2458 (REG5) = 8

SBT REGS, LABEL 7550 1520 LABEL lLocated at
X*1520'. It contains
X*2134°,

Result of SBT Instruction
Contents of LABEL = 21Bu4

(REG5) unchanged
Condition Code = 0000 (G=0)

3-44 ' 50-001 ROO



3.5.36 Reset Bit (RBT)

Assembler Notation Op-Code Format
RBT R1,D2(X2) 76 RX1,RX2
RBT R1,A2(FX2,5SX2) 76 RX3
Operation

The second operand address points to a bit array starting
byte boundary. The value contained in the register specified by
R1 is the bit displacement into the array. Bits in the array are
argument

counted from left to right starting with bit zero. The

bit is located and forced to zero (reset)e.

Condition Code

clv] Gl L
0}1]0] 0] 0 Previous state of bit was zero
ojo} 110 Previojs state of bit was one

Programming Note l

For software compatibility with other processors, the
should start on a halfword boundary.

Example: RBT

bit

Assembler Notation Machine Code Comments

LIS REG2,3 2u23 (REG2) = 3

RBT REG2,LABEL 7620 1A42 LABEL located
) at X*'1A42°

contains X*3143°

Result of RBT Instruction
Contents of LABEL = 2143

(REG2) unchanged
Condition Code = 0010 (G=1)

50-001 ROO

on a

array



3.5.37 Complement Bit (CBT)

Assembler Notation Op-Code Format
CBT R1,D2(X2) 77 RX1,RX2
CBT R1,R2(FX2,SX2) 77 RX3
Operation

The second operand address points to a bit array starting on a
byte boundary. The value contained in the register specified by
R1 is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit 0. The argument bit
is located and complemented.

Condition Code

clyVv G| L
0j]01 0] O Previous state aof bit was zero
0y 0 110 Previous state of bit was one

Programming Note

For software compatibility with other processors, the bit array
should start on a halfword bcundary.

Example: CBT

Assembler Notation Machine Code Comments

LIS REG9, 3 2493 (REG9) = 3

CBT REG9, LARBEL 7790 OCUA LABEL located at
X*C4A*. It contains
X'2813°.

Result of CBT Instruction
Contents of LABEL = 3813

(REG9) unchanged
Condition Code = 0000 (G=0)

3-46 50-001 ROO



3.5.38 Cyclic Redundancy Check

Cyclic Redundancy Check Modulo 12 (CRC12)
Cyclic Redundancy Check Modulo 16 (CRC16)

Assembler Notation ‘ Op-Code Format
CRC12 R1,D2(X2) 5E - RX1,RX2
CRC12 R1,A2(FX2,5X2) 5E - RX3
CRC16 R1,D2(X2) 5F RX1,RX2
CRC16 R1,A2(FX2,5X2) 5F RX3
Operation

These instructions are used to generate either a 12-bit or a
16-bit Cyclic Redundancy Check (CRC) residual halfword. The
register specified by R1 contains, in Dbits 24:31, the data
character to be included in the CRC residual. The second operand
is the accumulated (o0ld) CRC residual. The polynomial used for
the 12-bit CRC generation is:

X12+x11+X3+X2+X +1
The polynomial used for the 16-bit CRC generation is:

X16 +X15 +x2+1
The halfword second operand is replaced by the generated CRC
residual.

Condition Code

Unchanged

Programming Notes
The register specified by R1 remains unchanged.
The second operand must be located on a halfword boundary.

Figure 3-6 illustrates a flow chart for CRC generation.

50-001 RQO , 3-47



589-1 '
START STEP

(TEMP) «—(R1 26.31} () OLD CRC

-_

(COUNT) +—6 2
SHIFT RIGHT
(TEMP) e (TEMP) 3
BY 1
CARRY YES
AO
(TEMP) <+—— (TEMP)(3) X‘0F01° 4
-
(COUNT)  g————— (COUNT) — 1 5
NG l//,//\\\\
COUNT =0 7>
YES
SECOND OPERAND ———— (TEMP) 6

END '

CRC12 ALGORITHM SHOWN

FOR CRC 16 ALGORITHM, USE: R1 94.31 INSTEAD OF R19g.31 INSTEP 1
8 INSTEAD OF 6 IN STEP 2
X'A001° INSTEAD OF X'OF01" INSTEP4

Figure 3-6 Flow Chart for CRC Generation

3-48 50-001 ROO



3.5.39 Translate (TLATE)

Assembler Notation Op-Code Format
TLATE R1,D2(X2) E7 RX1,RX2
TLATE R1,A2(FX2,SX2) E7 RX3
Operation

The least significant eight bits (bits 24:31) of the register
specified by R1 contain the <character to be translated. The
fullword location specified by the second operand address
contains the address of a translation table. The table is mnade
up of 256 halfwords. The character contained in the register
specified by R1 is used as an index into the table.

If bit 0 of the table entry corresponding to the index character
is one, bits 8:15 of the table entry replace the index character,
and the next sequential instruction is executed.

If bit 0 of the table entry is zero, bits 1:15 of the table entry
contain the address, divided by two, of a special <character
handling routine. In this case, no translation takes place. The
address contained in bits 1:15 is shifted left by one (multiplied
by two). This address replaces the current location counter,
thereby effecting an wunconditional branch to the special
character handling routine. Translation of character string data
may also be performed wusing the MVTU instruction. Refer to
Chapter 7.

Condition Code

Unchanged

Programming Notes

The second operand address must be located on a fullword
boundarye.

0 718 15

TRANSLATED
1 CHARACTER

0 (CHAR.HANDLING ROUTINE ADDRESS)/2

Example: TLATE

This example illustrates the use of the TLATE instruction. The
translation table mnust either Dbe initialized or assembled to
contain up to a total of 256 halfword entries. In this example,
the table contains 2 entries:

50-001 ROO 3

49



Label Assembler Notation Comments

LHT REG5, X'8052°* LOAD TABLE ENTRY INTO REGS

STH REG5, TABLE PUT ENTRY INTO TABLE

LA REG7, TRANLAB LOAD ANOTHER TABLE ENTRY

SRLS REG7,1 DIVIDE BY 2

STH REG7, TABLE+4 PUT ENTRY INTO TABLE
TABADR DC A(TABLE)

Alternatively, this table may be assembled with the proper
constant values. The T +type constant may be used to assemble
subroutine addresses in the proper format. For example:

ALIGN 2
TABLE EQU *
DO 256
DC H'O"
ORG TABLE+4
DC T(TRANLAB)
ORG TABLE+512

Since a program is normally assembied as a relocatable program,
the address of TRANLAB is not known, but for illustrative
purposes assume the address of TRANLAB is ¥X'864°".

0 15

TABLE+0
TABLE+2
TABLE+4 8
TABLE+6
TARLE+S8
TABLE+10 0
TABLE+12

[$,]
N

w

~o

TABLE+508 Fr

mabaned ool bl B B B
e e £ U S S N

At TABLE+10 is the address of TRANLAB divided by 2 (X'864°'/2)

1. Using this table, this example translates the character in
register 2.

Label Assembler Notation Comments
LIS REG2,2 (REG2) = 0000 0002
TLATE REG2,TABADR

3-50 50-001 ROO



Result of TLATE Instruction

(REG2) = 0000 0052
Condition Code unchanged

data at address of (2 times contencts
of REG2) + TABLE

data at address TABLE + 4

X*'8052"

The entry used

Since the first bit of the entry is 1, direct translation is
used and the contents of REG2 are replaced by X'0000 0052°'.

Using the table, the following example shows how the TLATE
instruction can be used to branch to a special character
handling routine:

Label Assembler Notation Comments
LIS REGS5,5 ’ (REG5) = 0000 0005
TLATE REGS5,TABADR

TRANLAB LR R6,R5 THESE INSTRUCTIONS
LB R3,0(R6) OPERATE ON THE
R SPECIAL CHARACTER.

L]

Result of TLATE Instruction (continued)

(REG5) = 0000 0005
Condition Code Unchanged

Control is transferred to the subroutine at address TRANLAB
(X*'s864').

data at address of (2 times contents
of REGS5) + TABLE

data at address TABLE + A

X'ou32*

The entry used

Since the first bit of the entry is 0, the entry is multiplied
by 2, a transfer occurs to TRANLAB (at address X'864'), and
the processor executes instructions from the new address.

50-001 ROO 3-51



3.5.40 Add to List

Add to Top of List (ATL)
ARdd to Bottom of List (ABL)

Assembler Notation Op-Code Format
ATL R1,D2(X2) 64 RX1,RX2
ATL R1,A2(FX2,5X2) 64 RX3

ABL R1,D2(X2) 65 RX1,RX2
ABL R1,A2(FX2,5X2) 65 RX3
Operation

The register specified by R1 contains the fullword element to be
added to the 1list, which is located in memory at the address of
the second operand. The number of slots used tally is compared
with the number of slots in the list. If the number of slots
used equals the number of slots in the 1list, an overflow
condition exists. The element is not added to the 1list and the
overflow flag in the condition code is set.

If the number of slots used tally is 1less than the number of
slots in the 1list, it 1is incremented by one, the appropriate
pointer is changed, and the element is added to the list. Refer
to Figure 3-4,

Condition Code

CivVv]G| 1L
0cl0}joO0}] O Element added successfully
ol1]lo0]0 List overflow

Programming Notes

These instructions manipulate circular lists as described in the
introduction to this chapter.

The second operand location must be on a fullword boundarye.

The ATL instruction manipulates the current top pointer in the
list. If no overflow occurs, the current top pointer, which
points to the last element added to the top of the 1list, is
decremented by one. The element is inserted in the slot pointed
to by the new current top pointer. If the current top pointer
was zero on entering this instruction, the current top pointer is
set to the maximum slot number in the list. This condition is
referred to as list wrap.

3-52 50-001 ROO



The ABL instruction manipulates the next bottom pointer. If no
overflow occurs, the element is inserted in the slot pointed to
by the next bottom pointer, and the next bottom pointer is
incremented by one. If the incremented next bottom pointer is
greater than the maximum slot number in the 1list, the next bottonm
pointer is set to zero. This conditian is referred to as list
Wrape.

For the nonoverflow situation, pointer halfwords in the 1list
header are not manipulated until after the element has been
successfully added. This facilitates error recovery in the event
of a memory fault.

Refer to examples in the next section.

50-001 ROO , 3-53



3.5.41 Remove From lList

Remove from Top of List (RTL)
Remove from Bottom of List (RBL)

Assembler Notation Op-Code Format
RTL R1,D2(X2) 66 RX1,RX2
RTL R1,A2(FX2,5X2) 66 RX3

RBL R1,D2(X2) 67 RX1,RX2
RBL R1,A2(FX2,5X2) 67 RX3
Operation

The element removed from the list replaces the contents of the
register specified by R1. The list is located at the address of
the second operand. If, at the start of the instruction
execution, the number of slots used tally is zero, then the list
is already empty and the instruction terminates with the overflow
flag set in the condition code. This condition is referred to as
list underflow; in this case, R1 is undefined. 1If underflow does
not occur, the appropriate pointer is changed, the element is
extracted and placed in the register specified by R1, and the
number of slots used tally is decremented by one.

Conditicn Code

List now enmpty
List is not yet empty
List was already empty

[eNeNelle]
- O Ol
(e el ]
O O Ot

Programming Notes

These instructions manipulate circular lists as described in the
introduction to this chapter.

The second operand location must be on a fullword boundary.

In the case of 1list underflow, the <contents of the register
specified by R1 are unchanged.

The RTL instruction manipulates the current top pointer. If no
underflow occurs, the current top painter points to the element
to be extracted. The element is extracted and placed in the
register specified by R1. The current top pointer is incremented
by one and compared to the maximum slot number. TIf the current
top pointer is greater than the maximum slot naumber, the current
top pointer 1is set to zero. This condition is referred to as
list wrape.

3-54 50-001 ROO



The RBL instruction manipulates the next bottom pointer. If no
underflow occurs, and the next bottom pointer is zero, it is set
to the maximum slot number (list wrap); otherwise, it is
decremented by one, and the element now pointed to is extracted
and placed in the register specified by R1.

For the nonunderflow situation, pointer halfwords in the list
header are not manipulated wuntil after the element has been
successfully removed. The register specified by R1 1is not
modified until the header has been updated. This facilitates
error recovery in the event of a memory fault.

Examples: List Instructions (ATL, ABL, RTL, RBL)

The following are examples of the use of the four list processing
instructions.

The original list is normally set up as shown in Figure 3-7.

590

LIST 0005 0000 WHERE HALFWORDS AT

0000 0000 LIST = MAXIMUM # OF SLOTS
SLOTO UNDEFINED = 5{IN THIS EXAMPLE)
SLOT 1 UNDEFINED LIST +2 = # OF ENTRIES USED
SLOT 2 UNDEFINED = 0
SLOT 3 UNDEFINED LIST +4 =  CURRENT TOP OF LIST
SLOT 4 UNDEFINED =  SLOTO

LIST+6 = NEXT BOTTOM OF LIST

= SLOT O

Figure 3-7 List Processing Instructions

50-001 ROO 3-55



Assembler Notation

LIS

STH

ST

LIS
LIS
LIS
LIS
LIS
LIS

STH

w
1

56

REGO,0

REGO,LIST+2

REGO ,LIST+4
REG1,1
REG2,2
REG3,3
REGu4 ,u
REGS5,5
REG6, 6

REGS,LIST

Results and Comments

INITIALIZE NUMBER OF ENTRIES
USED TO 0O

INITIALIZE POINTERS TO 0
REGISTERS 1 THROUGH 6 CONTAIN

1 THROUGH 6 RESPECTIVELY

TCTAL NUMBER OF ENTRIES = §

50-001 ROO



592

REF1

REF2

REF3

50-001 ROO

ATL REG1,LIST

ATL REG2,LIST

ATL REG3,LIST

LIST

SLOT 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

00050001

0004 {0000

UNDEFINED

UNCEFINED

UNDEFINED

UNDEFINED

0000 0001

Condition Code = 000
Current Top Pointer
Next Bottom Pointer

LIST

SLOT 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

0

0005({0002

0003|0000

UNDEFINED

UNDEFINED

UNCEFINED

0000 0002

0000 0001

Conditicn Code = 0000
Current Top Pointer
Next Bottom Pointer

LIST

SLOT O
SLOT 1
SLOT 2
SLOT 3

SLOT 4

0005|0003

0002:i0000

UNDEFINED

UNCEEFINED

0000 0003

0000 0002

0000 0001

Conditicn Code = 0000
Current Top Pointer
Next Bottom Pointer

Slot 3
Slot ©

Slot 2

Slot O

(List Wrap)



594

REFU4

REFS

REF6

58

ABL REGU4,LIST

ABL REGS5,LIST

ABL REG6,LIST

LIST 0005} 0004
0002{0001

SLOT O 0000 0004
SLOT 1 UNCEFINED
SLOT 2 D000 0003
SLOT 3 0000 0002
SLOT 4 0000 0001

Conditicn Code = 0000
Current Top Pointer =

Next Bottom Pointer =
LIST 0005{0005
0002|0002

SLOT 0 0000 0004
SLOT 1 0000 0005
SLOT 2 0000 0003
SLOT 3 0000 0002
SLOT 4 0000 0001

Condition Code = 0000

Current Top Pointer =
Next Bottom Pointer =
LIST 0005|0005

00020002
SLOT 0 10000 0004
SLOT 1 0000 0005
SLOT 2 0000 0003
SLOT 3 0000 0002
SLOT 4 0000 0001

Condition Code = 0100
Current Top Pointer =
Next Bottom Pointer

Slot 2
Slot 1

Slot 2
Slot 2

(List
Slot 2
Slot 2

overflow)

50-001 ROO



593

REF7 RTL REG7,LIST LIST

SLOT C

SLoT 1

SLOT 2

S1O0T 3

SLOT 4

(REG7)

0005

ooou

0003

0002

0000

ooou

0000

0005

0000

0003

0000

0002

0000

0001

Condition Code
Current Top Pointer
Next Fottom Pointer

REFS8 RBL REG8,LIST LIST

50-001 ROO

SIOT 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

(REGS8)

0000 0003

001

0

0005

0003

0003

0001

0000

ooou

0000

0005

0000

0003

0000

0002

0000

0001

Conditicn Code
Current Top Pcinter
Next Bottom Pocinter

X = Entry removed

accessible

NOTE

0000 0005

001

from list,
through
manipulation Lty list instructions.

0

Slot 3
Slot 2

Slot 3
Slot 1

and is not
further



595

REF9

REF10

RTL REGY9,LIST

RBL REG10,LIST

LIST 0005{0002
000410001
SLOT 0 0000 000U

SLOT 1 X 2000 0005

SLOT 2 X 0000 0003

SLOT 3 X 0000 0002

SLOT 4 0000 0001

(REG9) = 0000 0002

Conditicn Code = 0010
Current Top Pointer = Slot U
Next Bottom Pointer = Slot 1

LIST 0005{0001

00oc4j0000

SLOT 0 X 0000 0004

SLOT 1 X 0000 0005

SLOT 2 X 0000 0003

SLOT

w
>

0000 0002

SLOT 4 0000 0001

(REG10) = 0000 0004
Condition Code = 0010
Current Top Pointer = 4
Next Eottom Pointer = 0

NOTE
X = Entry removed from list, and is not
accessible through further

manipulation by list instructions.

50-001 ROO



596

REF11- RTL REG11,LIST LIST - .10005({0000

0000{0000

SLOT 0 X 0000 0004

- SLOT 1 X 0000 0005

SLOT 2 X 0000 0003

SLOT 3 X 0000 0002

SLOT 4 X 0000 0001

(REG11) = 0000 0001

Condition Code = 0000 (List is now empty)
Current Top Pointer = 0

Next Bottom Pointer = 0

REF12 RTL REG12,LIST LIST 0005|0000

0000|0000

SLOT 0 X 0000 0004

SLOT 1 X 0000 0005

SLOT 2 X 0000 0003

SLOT 3 X 0000 0002

SLOT 4 X 0000 0001

(REG12) = UNDEFINEL

Conditicn Code = 0100 (List was
Current Top Pointer = 0 already empty)
Next Bottom Pointer = 0

NOTE

X = Entry removed from 1list, and is not
accessible thrcugh further manipulation
by list instructions.

50-001 ROO 3-61



CHAPTER 4
BRANCHING

4,1 INTRODUCTION

In normal operations, the processor executes instructions in
sequential order. The branch instructions allow this sequential
mode of operation to be varied, so that programs can loop,
transfer control to subroutines, or make decisions based on the
results of previous operations.

4.2 OPERATIONS

The second operand of a branch instruction is the address of the
memory location to which control is transferred. The address may
be contained in a register or it may Dbe specified in the
instruction as the second operand address or as a displacement.

4.2.1 Decision Making

The conditional branch instructions parmit the program to ma ke
decisions based on some result. In these instructioans, the R1
field contains a U4-bit mask, M1, which is tested Dby ANDing it
with +the condition code. The result of the test determines
whether the branch is taken, or the next sequential instruction
is executed.

The following examples show previous condition code, ma sk
specified in a branch instruction, and the result of the test on
which the branch or no branch decision is made.

, Branch Branch
Condition Result (True/ True False
Code Mask(M1) of Test False) Taken Taken
0000 0010 0000 (False) No Yes
0001 1010 0000 (False) No Yes
1001 1000 1000 (True) Yes No
0100 0100 0100 (True) Yes No
1010 0010 0010 (True) Yes No
0010 0011 0010 (True) Yes No
0010 0000 0000 (False) No Yes

50-001 ROO _ 4-1



4.,2.2 Subroutine Linkage

The branch and link instructions allow branching to subroutines
in such a way that a return address is passed to the subroutine.
For these instructions, the address of the memory 1location
immediately following +the branch instruction is saved in the
register specified by R1.

4.3 BRANCH INSTRUCTION FORMATS
The branch instructions use the Register-to-Register (RR), the

Short Form (SF), and the Register and Indexed Storage (RX)
formatse.

4.4 BRANCH INSTRUCTIONS

The instructions described in this section are:

BFC Branch on False Condition

BFCR Branch on False Condition Register

BFBS Branch on False Condition Backward Short
BFFS Branch on False Condition Forward Short
BTC Branch on True Condition

BTCR Branch on True Condition Register

BTBS Branch on True Condition Backward Short
BTFS Branch on True Condition Forward Short
BAL Branch and Link

BALR Branch and Link Register

BXLE Branch on Index Lcw or Equal

BXH Branch on Index High

4-2 50-001 ROO



4.4.1 Branch on True

Branch on True Condition (BTC) .

Branch on True Condition Register (BTCR)
Branch on True Condition Backward Short (BTBS)
Branch on True Condition Forward Short (BTFS)

Assembler Notation Op-Code Format
BTC M1,D2(X2) 4?2 RX1,RX2
BTC M1,A2(F¥2,SX2) 42 RX3
BTCR M1,R2 02 RR

BTBS Mi1,N 20 SF

BTFS M1, N 21 SF
Operation

The condition code of the Program Status Word (PSW) is tested for
the conditions specified by the mask field, M1. If any
conditions tested are found to be true, a branch is taken to the
second operand location. If none of the conditions tested 1is
found to be true, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register
specified by R2.

In the SF format, the N field contains the number of halfwords to
be added to or subtracted from the current location <counter to
obtain the branch address.

In the RR and RX formats, the branch address must be 1located on
a halfword boundary.

Example: BTC

Assembler Notation Machine Code Comments
LH R1,X*100"* 4810 0100 Load halfword (X*1234")
BTC 3,L0C 4230 ABCO located at X'100°'. Condi-

tion code is set to CVGL =
0010. Mask is 3, i.e.,
¥1=0011. Perform 1logical
AND between CVGL and M1,
i.e., 00210 AND 0011« The
result is 0010, i.e., true;
therefore, a branch is
taken to LOC.

50-001 ROO _ 4-3



4.4.2 Branch on False

Branch on False Condition (BFC)

Branch on False Condition Register (BFCR)
Branch on False Condition Backward Short (BFBS)
Branch on False Condition Forward Short (BFFS)

Assembler Notation Op-Code Format
BFC M1,D2(X2) 43 RX1,RX2
BFC M1,A2(FX2,5X2) 43 RX3
BFCR M1,R2 03 RR

BFBS M1, N 22 .SF

BFFS M1,N 23 SF
Operation

The condition code of the PSW 4is tested for the conditions
specified in the mask field, M1. If all conditions tested are
found to be false, a branch is taken to the seconil operand
location. If any of the conditions tested is found to be true,
the next segquential instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register
specified by R2.

In the SF format, the N field contains the number of halfwords to
be added to or subtracted from the current location counter to
obtain the branch address.

In the RR and RX formats, the branch address must be 1located on
a halfword boundary.

Example: BFC

Assembler Notation Machine Code Comments
LCS R1,2 2512 (R1) = FFFFFFFE. Condition
BFC 9,L0C 4390 ABCO code, CVGL = 0001 mask is

1001, Perform logical AND
between mask and CVGL,
i.e., 1001 AND 0001. The
result is 0001, i.e., true;
therefore, a branch is not
taken to LOC.

4=y 50-001 ROO



4.4.,3 Branch and Link

Branch and Link (BAL)
Branch and Link Register (BALR)

Assembler Notation Op-Code Format

BAL R1,D2(X2) 41 RX1,RX2
BAL R1,A2(FX2,SX2) 41 RX3
BALR R1,R2 01 RR
Operation

The address of the next seguential instruction is saved in the
register specified by R1, and a branch is taken to the second
operand address.

Condition Code

Unchanged

Programming Notes
The second operand location must be on a halfword boundary.

The branch address is calculated before the register specified by
R1 is changed. R1 may specify the same register as X2, FX2, SX2,
or R2.

Example: BAL

The following example illustrates the use of the BAL instruction.
This instruction causes control to be transferred to a subroutine
called SUBROUT. After completion of the subroutine, the 1linking
register is used to branch back to the next sequential
instruction after the BAL; i.e., the instruction labeled RETURN.

50-001 ROO 4-5



Label Assembler Notation Comments

BEGIN BAL REG4,SUBROUT TRANSFER TO SUBROUT
MAIN RETURN XR R6,R6
PROG STH R6,LAB+4
SUBROUT LHL R8,LOC THE RETURN ADDRESS
OF THE SUBROUTINE
IS IN REG4
SUBROUTINE — AHI RS8,10
RTNEND BR REGUY RETURN TO XR INST.
NOTE

The linking register (REGY4 in
example) should not be used within
subroutine.

Result of BAL Instruction

(REGU4) = Address of instruction at SUBROUT
Condition Code Unchanged

the
the

50-001 ROO



4.4.4 Branch on Index Low or Equal (BXLE)

Assembler Notation Op-Code Format
BXLE R1,D2(X2) C1 RX1,RX2
BXLE R1,22(FX2,5X2) C1 ’ RX3
Set Up

0 31
R1 Starting index value
kK1+1 Increment value
R1+2 Limit or final value

Before execution of this instruction, the register specified by
R1 must contain a starting index value. The register specified
by R1+1 must contain an increment value. The register specified
by R1+2 must contain a comparand (limit or final value). All
values may be signed.

Operation

Execution of this instruction causes the increment value to be
added to the index value, creating a new index value. The result
is compared 1logically to the limit or final value. If the new
index value is less than or equal to the limit value, a branch is
taken to the second operand location. If the new index value is
greater than the 1limit value, the next sequential instruction is
executed.

Condition Code

Unchanged

Programming Notes

The incremented index value replaces the contents of the register
specified by R1.

Any three consecutive registers of the same set may be used by
this instruction as specified by R1. These registers may be 6,
7, 8; or 14, 15, 0; or 15, 0, 1, etc.

The secondi operand location must be on a halfword boundary.

The branch address is calculated before incremanting the starting
index value contained in the register specified by R1.

R1 may specify the same register as X2, FX2 or SX2.

50-001 ROO ‘ 4-7



Example: BXLE

Transfer 10 bytes in memory starting at the memory location
labeled BUFO to the memory location labeled BUF1.

Label Assembler Notation Comments
LIS REG3,0 (REG3)=STARTING INDEX VALUE=0
LIS REGU4L, 1 (REGU) =INCREMENT VALUE
LIS R5,9 (REG5)=FINAL VALUE=9
RGAIN ' LB REGO, BUFO(R3) (REGO)=1 BYTE FROM BUFO
STB REGO, BUF1(R1) COPY 1 BYTE TO BUF1
LABEL BXLE R3,AGAIN IF (REG3)>(REGS5) ,DONE
BUFO DS 10
BUF 1 DS 10

Result of BXLE Instruction

Code between the instructions labeled AGAIN and LABEL is executed
ten times.

Condition Code Unchanged by BXLE Instruction

(REG3) = 0000000A
(REG4) = 00000001
(REG5) = 00000009

4-8 50-001 ROO



bolte5 Branch on Index High (BXH)

Assembler Notation Op-Code Format
BXH R1,D2(X2) co RX1,RX2
BXH R1,A2(FX2,SX2) Co RX3
Set Up

0 31
R1 Starting index value
R1+1 Increment value
R1+2 Limit or final value

Before execution of this instruction, the register specified by
R1 must contain a starting index value. The register specified
by R1+1 must contain an increment value. The register specified
by R1+2 must contain a comparand (limit or final value). All
values may be signed.

Operation

Execution of this instruction causes the increment value to be
added to the index value, creating a new index value. The result
is 1logically compared to the limit or final value. If the new
index value is greater than the 1limit value, a branch is taken to
the second operand location. If the new index value is less than
or equal to the limit value, the next sequential instruction is
executed.

Condition Code

Unchanged

Programming Notes

The incremented index value replaces the contents of the register
specified by R1.

Any three consecutive registers of the same set may be wused by
this instruction as specified by R1. These registers may be 6,
7, 8; 14, 15, 0; or 15, 0, 1, etc.

The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting
index value contained in the .register specified by R1.

R1 may specify the same register as X2, FX2 or SX2.

50-001 ROO : 4-9



Example: BXH

The following example shows how to set up a counter (1-9) using
the BXH instruction:

Label Assembler Notation Comment

LIS REG1,1 (REG1)=0000 0001 (INDEX)

LIS REG2, 1 (REG2)=0000 0001 (INCREMENT)

LIS REG3,9 (REG3)=0000 0009 (COMPARAND)
BEGIN BXH REG1,LABEL COMPARE INDEX WITH COMPARAND

LH R6,COUNT

B BEGIN BRANCH TO BXH INSTRUCTION
LABEL LA R8,RTN EXIT FROM BXH

ST R8,MEM

Result of BXH Instruction

Code between the instructions labeled BEGIN ani LABEL is executed
9 times.

Condition Code Unchanged by BXH instruction

(REG1) = 0000 00O0A
(REG2) = 0000 0001
(REG3) = 0000 0009
4-10 50-001 ROO



4.5 EXTENDED BRANCH MNEMONICS

The CAL assembler supports 47 extended branch mnemonics that
generate the branch op-code (true or false conditional) and the
condition code mask required. The programmer must supply the
second operand address (symbolic or absolute). In the case of
Short Format (SF) branch instructions, the second operand branch
address must be within 15 halfwords of the current location
counter. The CAL assembler determines the backward or forward
relationship of the second operand address and generates the
appropriate operation code.

The instructions described in this section are:

BC Branch on Carry

BCR Branch on Carry Register
BCS Branch on Carry Short
BNC Branch on No Carry

BNCR Branch on No Carry Register
BNCS Branch on No Carry Short

BE Branch on Equal

BER Branch on Equal Register
BES Branch on Egual Short
BNE Branch on Not Equal

BNER Branch on Not Equal Register
BNES Branch on Not Egqual Short

BL Branch on Low

BLR Branch on Low Register
BLS Branch on Low Short
BNL Branch on Not Low

BNLR Branch on Not Low Register
BNLS Branch on Not Low Short

BM Branch on Minus

BMR Branch on Minus Register
BMS Branch on Minus Short
BNM Branch on Not Minus

BNMR Branch on Not Minus Register
BNMS Branch on Not Minus Short

BP Branch on Plus

BPR Branch on Plus Register
BPS Branch on Plus Short
BNP Branch on Not Plus

BNPR Branch on Not Plus Register
BNPS Branch on Not Plus Short

50-001 ROO _ 4-11



BO
BOR
BOS

BNO
BNOR
BNOS

BZ
BZR
BZS

BNZ
BNZR
BNZS

BR
BS

NOP
NOPR

=
1

12

Branch on Overflow
Branch on Overflow Register
Branch on Overflow Short

Branch on No Overflow
Branch on No Overflow Register
Branch on No Overflow Short

Branch on Zero
Branch on Zero Register
Branch on Zero Short

Branch on Not Zero
Branch on Not Zero Register
Branch on Not Zero Short

Branch (Unconditional)
Branch Register (Unconditional)
Branch Short (Unconditional)

No Operation
No Operation Register

50-001 ROO



4.%5.1 Branch on Carry

Branch on Carry (BC)
Branch on Carry Register (BCR)
Branch on Carry Short (BCS)

Assembler Notation ' Op-Code+M1 Format
BC D2(X2) 428 RX1,RX2
BC A2(FX2,5X2) 428 RX3
BCR R2 028 RR
BCS A 208 (Backward) SF

218(Forwvard)

Operation

If the Carry (C) flag in the condition code is set, a branch is
taken to the second operand location. If the C flag is zero, the
next sedquential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.
In the RR format, the branch address is contained in the register

specified by R2.

Example: BCS

Assembler Notation Machine Code Comments
SHIFT SLLS R9,1 1191 Register 9 is shifted
BCS SHIFT 2081 left until the first

zero bit is shifted
out of position 0.

50-001 ROO , 4-13



4.5.2 Branch on No Carry

Branch on No Carry (BNC)
Branch on No Carry Register (BNCR)
Branch on No Carry Short (BNCS)

Assembler Notation Op-Code+M1 Format
BNC D2(X2) 438 RX1,RX2
BNC R2(FX2,5X2) 438 RX3
BNCR R2 038 RR

BNCS A 228 (Backward) SF

238 (Forward)

Operation

If the Carry (C) flag in the condition code is zero, a branch is
taken to the second operand location. If the C flag is set, the
next sequential instruction is executead.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-14 50-001 ROO



4.5.3 Branch on Equal

Branch on Equal (BE)
Branch on Equal Register (BER)
Branch on Egual Short (BES)

Assembler Notation ‘ Op-Code+M1 Format
BE D2(X2) 433 RX1,RX2
BE A2(FX2,5X2) 433 RX3
BER R2 033 RR
BES A 223 (Backward) SF

233 (Forward)

Operation

Tf the G flag and the L flag are both zero in the condition code,
a branch is taken to the second operand location. If either flag
is set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.
In the RR format, the branch address is contained in the register

specified by R2.

Example: BE

Assembler Notation Machine Code Comments
CLHI R4,X* 23" C540 0023 If R4 contains X'23°,
BE OPTIN 4330 OAOO a branch is taken to

location X'A0O°'.
Otherwise, the next
sequential instruction
is ex=acuted.

50-001 ROO 4-15



4.5.4 Branch on Not Equal

Branch on Not Equal (BNE)
Branch on Not Egual Register (BNER)
Branch on Not Equal Short (BNES)

Assembler Notation Op-Code+M1 Format
BNE D2(X2) 423 RX1,RX2
BNE A2(FX2,8X2) 423 RX3
BNER R2 023 . RR

BNES A 203 (Backward) SF

213 (Forward)

Operation
If the G flag or the L flag is set in the condition code, a

branch 1is taken to the second operand location. If both flags
are zero, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-16 50-001 ROO



4.5.5 Branch on Low

Branch on Low (BL)
Branch on Low Register (BLR)
Branch on Low Short (BLS)

Assembler Notation Op-Code+M1 Format
BL D2(X2) 428 RX1,RX2
BL A2(FX2,S5%2) 428 RX3

BLR R2 028 RR

BLS A 208 (Backward) SF

218 (Forward)

Operation

If the Carry (C) flag in the conditiom code is set, a branch is
taken to the second operand address. If the T flag is zero, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.
In the RR format, the branch address is contained in the register

specified by R2.

Example: BL

Assembler Notation Machine Code Comments
CLHI R1,X'FF? C510 OOFF (R1) is compared to
BL RESTART 4280 OAOQOO X*00FF's. If (R1) is 1less

than X*00FF*', a branch
is taken to memory
location X'O0AOQO'.

50-001 ROO v 4-17



4.5.6 Branch on Not Low

Branch on Not Low (BNL)
Branch on Not Low Register (BNLR)
Branch on Not Low Short (BNLS)

Assembler Notation Op-Code+M1 Format
BNL D2(X2) 438 RX1, RX2
BNL A2(FX2,5X2) 438 RX3

BNLR R2 038 RR

BNLS A 228 (Backward) SF

238 (Forward)

Operation

If the Carry (C) flag in the condition code is zero, a branch is
taken to the second operand address. If the C flag is set, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address irs contained in the register
specified by R2.

&
1
-
@

50-001 ROO



4.5.7 Branch on Minus

Branch on Minus (BM)
Branch on Minus Register (BMR)
Branch on Minus Short (BMS)

Assembler Notation Op-Code+M1 Format
BM D2(X2) 421 RX1,RX2
BM A2(FX2,S5X2) 421 RX3

BMR R2 021 RR

BMS A 201 (Backward) SF

211 (Forward)

Operation

If the Less Than (L) flag in the condition code is set, a branch
is taken to the second operand location. TIf the L flag is zero,
the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.
In the RR format, the branch address is contained in the register

specified by R2.

Example: BHM

Assembler Notation Machine Code Comments

SIS R3,1 2631 If (R3) is less than O

BM CONTINUE 4210 10A0C after the subtraction,
a branch is taken to
X' 10A0°'.

50-001 ROO 4-19



4.5.8 Branch on Not Minus

Branch on Not Minus (BNM)
Branch on Not Minus Register (BNMR)
Branch on Not Minus Shnrt (BNMS)

Assembler Notation Op-Code+M1 Format
BNM D2(X2) 431 RX1,RX2
BNHM R2(FX2,S5X2) 431 RX3
BNMR R2 031 RR
BNMS A 221 (Backward) SF

231 (Forward)

Operation
If the Less Than (L) flag in the condition code is Zero, a branch

is taken to the second operand locatian. If the L flag is set,
the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-20 50-001 ROO



4.5.9 Branch on Plus

Branch on Plus (BP)
Branch on Plus Register (BPR)
Branch on Plus Short (BPS)

Assembler Notation ' Op-Code+M1 Format
BP D2(X2) 422 RX1,RX2
BP A2(FX2,S5X2) 422 RX3
BPR R2 022 RR
BPS A 202 (Backward) SF

212 (Forward)

Operation

If the Greater Than (G) flag in the condition code 1is set, a
branch is taken to the second operand location. If the G flag is
zero, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

50-001 ROO 4-21



4.5.10 Branch on Not Plus

Branch on Not Plus (BNP)
Branch on Not Plus Register (BNPR)
Branch on Not Plus Short (BNPS)

Assembler Notation Op-Code+M1 Format
BNP D2(X2) 432 RX1,RX2
BNP A2(FX2,SX2) 432 RX3
BNPR R2 032 RR

BNPS A 222 (Backward) SF

232 (Forward)

Operation

If the Greater Than (G) flag in the condition code is =zero, a
branch is taken to the second operand location. If the G flag is
set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

£
|

22 50-001 ROO



4.5.11 Branch on Overflow

Branch on Overflow (BO) _
Branch on Overflow Register (BOR)
Branch on Overflow Short (BOS)

Assembler Notation ' Op-Codet+M1 Format
BO D2(X2) 424 RX1,RX2
BO A2(FX2,5X2) uay RX3
BOR R2 024 RR
BOS A 204 (Backward) SF

214 (Forward)

Operation

If the Overflow (V) flag in the condition code is set, a branch
is taken to the second operand location. If the V flag is zero,
the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address dis contained in the register
specified by R2.

50-001 ROO _ 4-23



4.5.12 Branch on No Overflow

Branch on No Overflow (BNO)
Branch on No Overflow Register (BNOR)
Branch on No Overflow Short (BNOS)

Assembler Notation Op-Code+M1 Format
BNO D2(X2) 434 RX1,RX2
BNO A2(FX2,SX2) 434 RX3
BNOR R2 034 RR

BNOS A 224 (Backward) SF

234 (Forward)

Operation
If the Overflow (V) flag in the condition code is zero, a branch

is taken to the second operand location. If the V flag is set,
the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

=
)

24 50-001 ROO



4.,5.13 Branch on Zero

Branch on Zero (BZ)
Branch on Zero Register (BZR)
Branch on Zero Short (BZS)

Assembler Notation Op-Code+M1 Format
BZ D2(X2) 433 RX1,RX2
BZ A2(FX2,5X2) 433 RX3
BZR R2 033 RR
BZS A 223 (Backward) SF

233 (Forward)

Operation

If the C and L flags are both =zero in the condition <code, a
branch is taken to the second operand location. If the G or L
flag is set, the next sequential instruction is executei.

Condition Code

Unchanged

Programming Notes
The branch address must be located .on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

50-001 ROO 4-25



4.5.14 Branch on Not Zero

Branch on Not Zero (BNZ)
Branch on Not Zero Register (BNZR)
Branch on Not Zero Short (BNZS)

Assembler Notation Op-Code+M1 Format
BRZ D2(X2) 423 RX1,RX2
BNZ A2(FX2,SX2) 423 RX3
BNZR R2 023 RR
BNZS A 203 (Backward) SF

213 (Forward)

Operation
If the G or L flag in the condition code is set, a branch is

taken +to the second operand address. If the G and L flags are
both zero, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

i~
|

26 50-001 ROD



4.5.15 Branch (Unconditional)

Branch (Unconditional) (B)
Branch Register (Unconditional) (BR)
Branch Short (Unconditional) (BS)

Assembler Notation ' Op-Code+M1 Format
B D2(X2) 430 RX1,RX2
B A2(FX2,5X2) 430 RX3

BR R2 030 RR

BS A 220 (Backward) SF

230 (Forward)

Operation

A branch is unconditionally taken to the seconi operand address.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

This instruction is assembled as a Branch on False Condition

instruction, with no condition specified (M1=0). Therefore, the
branch test is always false and the branch is always taken.

Example: B

Assembler Notation Machine Code Comments

B OPTIN 4300 O0OAO0O An unconditional branch
is taken to location
X*0AQ0'.

50-001 ROO , 4-27



4.5.16 No Operation

No Operation (NOP)
No Operation Register (NOPR)

Assembler Notation Op-Code+M1 Format
NOP D2(X2) 420 RX1,RX2
NOP A2(FX2,5X2) 420 RX3
NOPR R2 020 RR
Operation

The next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

D2(X2) or A2(FX2,SX2) and R2 are ignored and usually egqgual =zero
(0).

This instruction is assembled as a Branch on True Condition

instruction with no condition specified (M1=0). Therefore, no
branch is taken and the next instruction is fetched and executed.

Example: NOP,NOPR

Assembler Notation Machine Code Comments

NOP 0(0,0) 4200 4000 0000 No operation
NOP 0 4200 0000 No operation
NOPR 0200 No operation

4-28 50-001 ROOC



599

CHAPTER 5
FIXED-POINT ARITHMETIC

5.1 INTRODUCTION

Fixed-point arithmetic instructions provide a complete set of
operations for «calculating addresses and indices, for counting,
and for general purpose fixed-point arithmetic.

5.2 DATA FORMATS

There are three formats for fixed-point data: the halfword, the
fullword, and the double "word. 1In each of these formats, the
most significant bit (bit 0) is the sign bit. The remaining 15,
31 or 63 bits represent the magnitude. See Figure 5-1.

0 1 ‘ HALFWORD 15

s

0 1 FULLWORD 31
S

0 1 DOUBLE WORD - 63
S Y B -4

Figure 5-1 Fixed-Point Data Formats

Positive <values are represented in true binary form with a sign
bit of zero. Negative values are represented in two's complement
form with a sign bit of one. To change the sign of a number, the
two's complement of the number may be produced by subtracting the
number from zZero. Another way would be to:

1« Change all zeros to ones, and all ones to zeros.

2. Add one.

50-001 ROO ‘ 5-1



5.3 FIXED-POINT NUMBER RANGE
Fixed-point numbers represent integers. Table 5-1 shows

relations between different formats, along with decimal values.

TABLE 5-1 FIXED-POINT FORMAT RELATIONS

600

DOUBLE WORD FULLWORD HALFWORD DECIMAL
8000000000000000 -9 223 372036 854 775 808
(MOST NEGATIVE)
80000000 -2 147 483 648
(MOST NEGATIVE)
8000 (MOST NEGATIVE) -32 768
FFFFFFFFFFFFFFFF FFFFFFFF FFFF (LEAST NEGATIVE) -1
0000000000000000 00000000 0000 0
0000000000000001 00000001 0001 (LEAST POSITIVE) 1
7FFF (MOST POSITIVE) 32 767
7FFFFFFF 2 147 483 647
(MOST POSITIVE}
JFFFFFFFFFFFFFFF 9223 372 036 854 775 807

(MOST POSITIVE)

5.4 OPERATIONS

Fixed-point instructions include both fullword and halfword
operations. Fullword operations take ©place (a) between the
contents of two general registers; (b) between the contents of a
general register and a fullword stored in memory:; or (c) between
the contents of a general register and a fullword obtained from
the instruction stream. Fullword multiply produces a double word
result which 1s <contained in two adjacent registers. Fullword
divide operates on double word data contained in two adjacent
registers.

Halfword operations take place bhetween a fullword contained in
one of the general registers and a halfword contained in memory.
Before the operation is started, +the halfword in memory is
expanded to a fullword by propagating the most significant bit
(sign bit) into the high order bits of the fullword. The
halfword multiply and divide instructions are exceptions to this
rule.

5-2 50-001 ROO



5.5 CONDITION CODE

As a general rule, all fixed-point arithmetic instructions,
except multiply and divide, affect the <condition code, to
indicate the effect of the operation on the 32-bit result.

In fixed-point add and subtract operations, the arguments are
represented in two's complement form; therefore, all bits,
including sign, participate in forming the result. Consequently,
the occurrence of a <carry or borrow has no real arithmetic
significance.

For example, an add operation between a minus one (FFFF FFFF) and
a plus two (0000 0002) produces the correct result of plus one
(0000 0001) and a carry. The condition code is set to 1010 (C =
1 and G = 1). Carry means that the complete result, which in
this case would have been 1 0000 0001, would not fit in 32 bits.

An overflow occurs when the result does not fit in 31 bits. Note
that bit zero must be reserved for the sign of the result. For
example, adding one to the largest positive fixed-point value
produces an overflow:

7FFF FFFF
+0000 0001
=8000 0000

The resulting condition code is 0101 (V=1 and L=1).

The result, 8000 0000, is logically correct, but because the sign
bit is negative when the result should be positive, the overflow
condition exists.

The columns of the condition ;ode table given for each
instruction description show the state of the C, V, G and I flags
for the possible results.

An *'X' in a condition code column means that the particular flag
is not defined, and may be either 0 or 1. Hence, no inference
should be drawn by testing that particular flag.

5.6 FIXED-POINT INSTRUCTION FORMATS

The fixed-point instructions use the Register to Register (RR),

the Short Form (SF), the Register and Indexed Storage (RX), and
the Register and Immediate (RI) instruction formats.

50-001 ROO 5-3



5.7 FIXED-POINT INSTRUCTIONS

The fixed-point instructions described in this section are:

A Add

AR Add Register

Al Add Immediate

AIS Add Immediate Short

AH Add Halfword

AHI Add Halfword Immediate

AM Add to Memory

AHM Add Halfword to Memory

S Subtract

SR Subtract Register

SI Subtract Immediate

SIS Subtract Immediate Short
SH Subtract Halfword

SHI Subtract Halfword Immediate
C Compare

CR Compare Register

CI Compare Immediate

CH Compare Halfword

CHI Compare Halfword Immediate
M Multiply

MR Multiply Register

MH Multiply Halfword

MHR Multiply Halfword Register
D Divide

DR Divide Register

DH Divide Halfword

DHR Divide Halfword Register
SLA Shift Left Arithmetic

SLHA Shift Left Halfword Arithmetic
SRA Shift Right Arithmetic

SRHA Shift Right Halfword Arithmetic
CHVR Convert to Halfword Value Register

5-4 50-001 ROO



5.7.1 Rdd

Add (A)

Add Register (AR)

Add Immediate (AI)

Add Immediate Short (AIS)

Assembler Notation Op-Code Format
A R1,D2(X2) 5A RX1,RX2
A R1,A2(FX2,S5X2) 52 RX3

AR R1,R2 OA RR

AT R1,I2(X2) FA RI2

AIS R1,N 26 SF
Operation

The second operand is added algebraically to the contents of the
register specified by R1. The result of this 32-bit addition
replaces the contents of the register specifiei by R1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Carry

== >4 >4 < IO
<000
e NeNe] ]
M4 O = OfH

Programming Notes

The second operand for the AIS instruction is obtained by
expanding the U4-bit data field, N, to a 32-bit fullword by
forcing the high order bits to zero.

In the RI2 format, the contents of the index register specified
by X2 are added to the 32-bit I2 field to form the fullword
second operand.

In the RX formats the second operand must be 1located on a
fullword boundarye.

50-001 ROO ‘ 5-5



Example: A

Add contents of memory location labeled LAB to the contents of
REGU. )

1. REGU contains X'7F341234"*
Fullword in memory at LAB contains X*7F124321"

Assembler Notation Comments
A REG4,LAB ADD (LAB) TO (REG4)

Result of A Instruction

(REGU4) = X'FEU65555"
(LAB) unchanged by this instruction
Condition Code = 0101 (V=1, L=1)

2. REGS contains X*'8000 0001
Fullword in memory at LAB contains X'80200002"

Assembler Notation Comments
A REG5,LAB ADD (LAB) TO (REGS)

Result of A Instruction
(REGS5) = X'00000003"

(LAB) unchanged by this instructian
Condition Code = 1110 (C=1, V=1, G=1)

5-6 50-001 ROO



5.7.2 Add Halfword

Add Halfword (AH) :
Add Halfword Immediate (AHI)

Assembler Notation ' Op-Code Format
AH R1,D2(X2) 1y ' RX1,RX2
AH "R1,A2(FX2,5X2) 4A RX3

AHT R1,I2(X2) CA RI1
Operation

The 16-bit second operand is expanded to a 32-bit fullword by
propagating the most significant bit through bits 0:15 of the
fullword. The fullword operand is added to the fullword contents
of the register specified by R1. The result replaces the
contents of the register specified by R1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Carry

= b4 > N

> -2 O O Ols
- O Ol

> O - O

Programming Notes

Tn the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

50-001 ROO ; : 5-7



Example: AH

This example adds the halfword at memory location labeled LAB to
the contents of register 4.

1. REGY contains X'00230002°"
Halfword at memory location LAB contains X'FFFF'

Assembler Notation Comments

AH REG4, LAB ADD (LAB) TO (REG4)

Result of AH Instruction

(REGY4) = X'00230001"
(LAB) unchanged by this instruction
Condition Code = 1010 (C=1, G=1)

2. REG5 contains X'FFFF FFF5°
LAB contains X*FFF2°

Assembler Notation Comments
AH REG5, LAB ADD (LAB) TO (REGS5)

Result of AH Instruction
(REGS) = 'FFFF FFE7°

(LAB) unchanged by this instruction
Condition Code = 1001 (C=1, L=1)

5-8 50-001 ROO



573 Add to Memory (AM)

Assembler Notation Op-Code Format
AM R1,D2(X2) 51 RX1,RX2
AM R1,A2(FX2,SX2)‘ 51 RX3
Operation

The first operand contained in the register specified by R1 is
added algebraically to the fullword second operand. The result
replaces the fullword second operand in memory. The contents of
the register specified by R1 are not changed.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflaw

Carry

=54 bd M N
M - O O 0Ol
> >4 = O Ola
> 54 O = Oft

Programming Note

The second operand must be located on a fullword boundary.

Example: AM

1. RPdd contents of register 8 to memory location labeled LOC:
REG8 contains X'00000008"*
Fullword in memory at LOC contains X*034289AB"*
Assembler Notation Comments

AM REG8,LOC ADD (REG8) TO (LOC)

50-001 ROO , 5-9



Result of AM Instruction
(REG8) unchanged by this instruction
(LOC) = X°*034289BR3"
Condition Code = 0010 (G=1)
2. Add contents of register 7 to memory location labeled LOC:

REG7 contains X'7F341234"
Fullword in memory at LOC contains X°'7F124321"

Assembler Notation Comments
AM REG7,L0OC ADD (REG7) TO (L2C)

Result of AM Instruction
(REG7) unchanged by this instruction

(LOC) = X'FFE465555"
Condition Code = 0101 (V=1, L=1)

5-10 50-001 ROO



S¢7.4 Add Halfword to Memory (AHNM)

Assembler Notation Op-Code Format
AHM R1,D2(X2) 61 RX1,RX2
AHM R1,A2(FX2,5X2) 61 RX3

Operation

The halfword second operand is added algebraically to the 1least
significant 16 bits (bits 16:31) of the register specified by R1.
The 16-bit result replaces the contents of the memory location
specified by the effective address of the second operand. The
contents of the register specified by R1 are not changed.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Carry

R ek lalle]
a2 00 Ooiw

X a0 on

M4 O O

Programming Notes
The second operand must be located on a halfword boundary.

The condition code settings are based on the halfword result.

Example: AHM

This example adds the contents of register 5 to the contents »of
memory location LAB.

1. REGS5 contains ¥X'00230002°
Halfword in memory at LAB contains X'FFFF"*

Assembler Notation Comments
AHM REG5,LAB ADD (REG5) TO (LAB)

50-001 ROO : 5-11



Result of AHM Instruction

(REG5) unchanged by this instruction

(LAB) = 0001
Condition Code = 1010 (C=1, G=1)

2. REGS6 contains X'FFFF FFF5'
LAB contains X'FFF2*

Assembler Notation Comments
AHM REG6,LAB ADD (REG6) TO (LAB)

Result of AHM Instruction

(REG6) unchanged by this instruction

(LAB) = FFE7
Condition Code = 1001 (C=1, L=1)

5-12 50-001 ROO



5.7.5 Subtract

Subtract (S)

Subtract Register (SR)
Subtract Immediate (SI)
Subtract Immediate Short (SIS)

Assembler Notation Op-Code Format
S R1,D2(X2) 5B RX1,RX2
S R1,A2(FX2,5X2) 5B RX3

SR R1,R2 0B RR

SI R1,I2(X2) FB RI2

SIS R1,N 27 SF
Operation

The fullword second operand is subtracted algebraically from the
contents of the register specified by R1. The result replaces
the contents of the register specified by R1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Borrow

= bd > KO
M- 000w
XM - O Oon
MO o

Programming Notes

The second operand for the SIS instruction is obtained by
expanding the U4-bit data field, N, to a 32-bit fullwori by
forcing the high order bits to zero.

In the RI2 format, the contents of the index register specified
by X2 are added to the 32-bit I2 field to form the fullword
second operande.

In the RX formats, the second operand must be 1located on a
fullword boundary.

50-001 ROO : 5-13



Examples:

This example subtracts the fullword at memory location LOC fron
the contents of register 9.
l. REG9 contains X'4uuuugyyt
LOC contains X'44444444"
Assembler Notation Comments
S REG9,LOC SUBTRACT (LOC) FROM (REG9)
Result of S Instruction
(REG9) =0
(LOC) unchanged by this instruction
Condition Code = 0000
2. PREGY9 contains X'23456789"
LOC contains X*'FFFF4321°*
Assembler Notation Comments
S REG9,L0OC SUBTRACT (LOC) FROM (REG9)
Result of S Instruction
(REG9) = 23462368
(LOC) unchanged by this instruction
Condition Code = 1010 (C=1, G=1)
5-14 50«001 ROO



S.7.6 Subtract Halfword

Subtract Halfword (SH)
Subtract Halfword Immediate (SHI)

Assembler Notation v Op-Code Format

SH R1,D2(X2) uB RX1,RX2
SH R1,A2(FX2,S8X2) 4B RX3

SHI R1,I2(X2) CB RI1
Operation

The 16-bit second operand is expanded to a 32-bit fullword by
propagating the most significant bit through bits 0:15. This
fullword is subtracted from the contents of the register
specified by R1. The result replaces the contents of the
register specified by R1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Borrow

- > > O
MO O Ol
M A O O

5 > O Ol

Programming Notes

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

50-001 ROO _ 5-15



Example: SH

This example subtracts the halfword at memory location

the contents of register 9.

1. REG9 contains X'00123456"°
LOC contains X*'FFF4°

Assembler Notation Comments

LOC fronm

SH REG9,LOC SUBTRACT (LOC) FROM (REG9)

Result of SH Instruction
(REGS) = 00123462
(LOC) unchanged by this instructian
Condition Code = 1010
2. REG9 contains X'FFFF4567"
LOC contains X'2345"

Assembler Notation Comments

SH REG9, LOC SUBTRACT (LOC) FROM (REG9)

Result of SH Instruction

(REG9) = FFFF2222
(LOC) unchanged by this instruction
Condition Code = 0Q01

50-001 ROO



5.7.7 Compare

Compare (C)
Compare Register (CR)
Compare Immediate (CI)

Assembler Notation _ Op-Code Format
C R1,D2(X2) 59 RX1,RX2
Cc R1,22(FX2,5X2) 59 RX3

CR R1,R2 09 RR

CI R1,I2(X2) F9 RI?2
Operation

The first operand contained in the register specified by R1 is
compared algebraically to the 32-bit second operand. The result
is indicated by the condition code setting. Neither operand 1is
changed.

Condition Code

First operand is equal to second operand
First operand is less than second operand

C
0
1
0 First operand is greater than seconi operand

> > <
EYeNollp]
O = Ol

Programming Notes

In the RX formats, the second operand must be located on a
fullword boundary.

The state of the V flag is undefined.
Example: C

This example compares the contents of register 3 to the contents
of the fullword in memory location LAB.

REG3 contains X'4u4567894"
Fullword at LAB contains X'043212u43"

Assembler Notation Comments

c REG3,LAB COMPARE (REG3) TO (LAB)

Result of C Instruction

(REG3) unchanged by this instruction
(LAB) unchanged by this instruction
Condition Code = 0010 (G=1)

50-001 ROO _ 5-17



5.7.8 Compare Halfword

Compare Halfword (CH)
Compare Halfword Immediate (CHI)

Assembler Notation Op-Code Format
CH R1,D2(X2) 49 RX1,RX2
CH R1,A2(FX2,S8X2) 49 RX3

CHI R1,I2(X2) C9 RI1
Operation

The halfword second operand 1is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
first operand, the contents of the register specified by R1, is
compared algebraically to the effective second operand. The
result is indicated by the condition code setting. Neither
operand is changed.

Condition Code

First operand is equal to second operand
First operand is less than second operand
First operand is greater than seconi operand

O A OlNn
>d <
- O OiN
O - Of

Programming Notes

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

Condition code settings are based on the fullword comparison.
The state of the V flag is undefined.

5-18 50-001 ROO



Example: CH

This example compares the contents of Register 8 to the
at LAB.

REGS8 contains X'Fu4567891°
Halfword at LAB contains X*3123°

Assembler Notation Comments

CH REG8,LAB COMPARE (REG8) TO (LAB)

Result of CH Instruction
(REG8) unchanged by this instruction

(LAB) unchanged by this instruction
Condition Code = 1001 (C=1, L=1)

50-001 ROO

halfword

19



5.7.9 Multiply

Multiply (M)
Multiply Register (MR)

Assembler Notation Op-Code Format
M R1,D2(X2) 5C RX1,RX2
M R1,A2(FX2,5X2) 5C RX3

MR R1,R2 1C RR
Operation

The fullword first operand contained in the register specified by
R1+1 is multiplied by the fullword second operand. The 6AU-bit
result 1is stored in the registers specified by R1 and R1 + 1.
The sign of the result is determined by the rules of algebra.

Condition Code

Unchanged

Programming Notes

The R1 field of these instructions must specify an even numbered
register. If the R1 field of these instructions is odd, the
result is undefined.

In the RX formats the second operand must be 1located c¢n a
fullword boundary.

The most significant bits of the Tesult are placei in the
register specified by R1:; the least significant bits are placed
in the register by R1+1.

Example: M

This example multiplies the <contents of register 9 by the
contents of memory location LOC and places the result in
registers 8 and 9 (64 bits).

REG8 contains unknown data

REG9 contains X*'00002431"
Fullword at location LOC contains X'43120000°

5-20 50-001 ROO



Assembler Notation Comments

M REGS,LOC MULTIPLY (REG9) BY (LOC)

Result of M Instruction

REG8 and REGY9 together contain the result
(REG8, REG9) = 0000 097B, 5E72 0000

(LOC) unchanged by this instruction
Condition Code unchanged by this instruction

Example: MR

This example multiplies the <contents of rsgister 9 by

the

contents of register 8 and places the result in registers 8 and

9 (64 bits).

REG8 contains X*'00010000°*

REG9 contains X'123u45678"*

Assembler Notation Comments

MR REGB,REGS8 ’ MULTIPLY (REG9) BY (REGS8)

Result of MR Instruction
REG8 and REGY9 together contain the result

(REG8, REG9) = 0000 1234, 5678 0000
Condition Code unchanged by this instruction.

50-001 ROO



5.7.10 Multiply Halfword

Multiply Halfword (MH)
Multiply Halfword Register (MHR)

Assembler Notation Op-Code Format
MH R1,D2(X2) 4c RX1,RX2
MH R1,A2(FX2,SX2) 4c RX3

MHR R1,R2 ocC RR
Operation

The first operand, contained in bits 16:31 of the register
specified by R1, is multiplied by the 16-bit second operand,
taken from memory or from bits 16:31 of the register specified by
R2. Both operands are 16-bit signed two's complement values.
The 32-bit result replaces the contents of the register specified
by R1. The sign of the result is determined by the rules of
algebrae.

Condition Code

Unchanged

Programming Note

In the RX formats, the second operand must be located on a
halfword boundary.

Example: MH

This example multiplies the halfword contents of register 8 by
the halfword in memory location LAB.

REG8 contains X*ABCD o004s5*
Halfword at memory location LAB contains X'867u4°*

5-22 50-001 ROO



Assembler Notation Comments

MH REGS,LAB MULTIPLY LEAST SIGNIFICANT HALF

OF (REG8) BY (LAB)

Result of MH Instruction

(REG8) = FFDF3Duu

(LAB) unchanged by this instruction
Condition Code unchanged by this instruction

Example: MHR

This example multiplies the halfword contents of register 11
the halfword contents of register 4.

REG11 contains X'"37210004°
REGH4 contains X'FFFF0307*

Assembler Notation Comments

MHR REG11,REGU MULTIPLY LS HALF OF (REG11)
BY LS HALF OF (REGH)

Result of MHR Instruction
(REG11) = 00000C1C

(REG4) unchanged by this instruction
Condition Code unchanged by this instruction

50-001 ROO

by

23



5.7.11 Divide

Divide (D)
Divide Register (DR)

Assembler Notation Op-Code Format
D R1,D2(X2) 5D RX1,RX2
D R1,A2(FX2,5X2) 5D RX3
DR R1,R2 1D RR

Operation

The 64-bit signed dividend contained in the +two registers
specified by R1 and R1+1 is divided by the signed fullword second
operand. The 32-bit signed remainder replaces the contents of
the register specified by R1. The signed 32-bit guotient
replaces the contents of the register specified by R1+1.

The sign of the quotient is determined by the rules of algebra.
the sign of the remainder is the same as the sign of the
dividend.

Condition Code

Unchanged

Programming Notes

The R1 field of these instructions must specify an even numbered
register. If the R1 field of these instructions is odd, the
result is undefined.

The most significant bits of the dividend must be contained in
the register specified by R1. The least significant bits of the
dividend must be contained in the register specified by R1+1.

In the RX formats, the second operand must be located on a
fullword boundary.

If the divisor is equal to zero, the instruction is not executed,
the operand registers remain unchanged, and the arithmetic fault
interrupt is taken.

If the value of the gquotient is more positive than X'7FFFFFFF' or
more negative than X*80000000*', gquotient overflow is said to
occur. If quotient overflow occurs, the operand registers remain
unchanged, and the arithmetic fault interrupt is takene.

5-24 50-001 ROO



Example: D

This example divides the contents of registers 8 and 9 by the
fullword contents of memory location LOC.

1.

REG8 contains X*12345678"'
REG9 contains X'98765u432°

Most significant half cf dividend
Least significant half
of dividend

1LOC contains YX'34343434* = Divisor
Assembler Notation Comments

D REG8,LOC DIVIDE (REG8,9) BY (LOC)

Result of D Instruction

(REG8) = 1E1E1E1E = Remainder

(REG9) = 59455459 = Quotient

(1L.OC) unchanged by this instruction
Condition Code unchanged by this instruction

Most significant half of dividend
Least significant half
of dividend

REG8 contains X'FFFF1234"
REG9 contains X°'00000000°

1.0OC contains X'12345678°' = Divisor
Assembler Notation Camments
D REGS8, LOC DIVIDE (REG 8,9) BY (LOC)

Result of D Instruction

(REGS8) F250D9E0 = Remainder

(REG9) FFF2EFFC = Quotient

LOC unchanged by this instruction

Condition Code unchanged by this instruction

i u
I

50-001 ROO : 5-25



3. REG8 contains X'43657898"
REG9 contains X*12123456°

Most significant half of dividend
Least significant half
of dividend

1nn

LOC contains X'00000000' = Divisor
Assembler Notation Comments
D REGS8,LOC DIVIDE (REGS8,9) BY (LOC)
Result of D Instruction
Division by zero causes arithmetic fault to be taken. Operands

and condition code remain unchanged by this instruction.

Most significant half of dividend
Least significant half
of dividend

4. REG8 contains X'80000000"°
REGY9 contains X*00000001"

LOC contains X'00000001* = Divisor
Assembler Notation Comments
D REG8,LOC DIVIDE (REG8,9) BY (LJC)
Result of D Instruction
Quotient overflow causes arithmetic fault to be taken. Operands

and condition code remain unchanged by this instruction.
Example: DR

This example divides the contents of registers 8 and 9 by the
contents of register 2.

REG8 contains X'FFFFFFFF'
REGY9 contains X'FFFFFFFD*

Most significant half of dividend
Least significant half of dividend

i n

REG2 contains X'FFFFFFFE® Divisor
Assembler Notation Comments
DR REG8,REG2 DIVIDE (REG8,9) BY (REG2)
Result of DR instruction
(REG8) = FFFFFFFF = Remainder
(REG9) = 00000001 = Quotient

(REG2) unchanged by this instruction
Condition Code unchanged by this instruction

()]
L}

26 50-001 ROO



5.7.12 Divide Halfword

Divide Halfword (DH)
Divide Halfword Register (DHR)

Assembler Notation Op-Code Format
DH R1,D2(X2) 4D RX1,RX2
DH R1,A2(FX2,5X2) 4D RX3

DHR R1,R2 0D RR
Operation

The 32-bit signed dividend contained in the register specified by
R1 is divided by the 16-bit signed second operand. The 16-bit
signed remainder is <copied to R1 (bits 16:31) and the halfword
value is converted to a fullword value. The 16-bit signed
quotient is copied to the register specified by R1 + 1 after
conversion to a fullword value.

The sign of the quotient is determined by the rules of algebra.
The sign of the remainder 1is the same as the sign of the
dividend.

Condition Code

Unchanged

Programming Notes

In the RX formats, the second operand must be 1located on a
halfword boundary. In the RR format, the second operand is taken
from bits 16:31 of the register specified by R2.

If the divisor is equal to zero, the instruction is not executed,
the operand registers remain unchanged, and the arithmetic fault
interrupt is taken.

If the value of the guotient is more positive than X"7FFF* or
more negative than X'8000°, quotient overflow is said to occur.
If gquotient overflow occurs, the operand registers remain
unchanged, and the arithmetic fault interrupt is taken.

50-001 ROO | 5-27



Example: DH

This example divides the contents of register 7 by the halfword
contents of memory location LOC. -

1« REG7 contains X'0000 0054' = Dividend
LOC contains X'0008"* = Divisor
Assembler Notation Comments
DH REG7,L0C DIVIDE (REG7) BY (LOZ)

Result of DH Instruction

(REG7) 0000 0004 = Remainder
(REGS) 0000 O0OOA = Quotient

(1L0C) unchanged by this instruction
Condition Code unchanged by this instruction

inn

2. REG7 contains X'1234 5678' = Dividend
LOC contains X'0000° = Divisor
Assembler Notation Comments
DH REG7,L0OC DIVIDE (REG7) BY (LOC)
Result of DH Instruction
Division by zero causes arithmetic fault to be takene. Operands

and condition code remain unchanged by this instruction.

3. REG7 contains X'8000 0002' = Dividend
LOC contains X'0001"

Assembler Notation Comments
DH REG7,L0C DIVIDE (REG7) BY (LOC)

Result of DH Instruction

Quotient overflow causes arithmetic fault to be taken. Operands
and condition code remain unchanged by this instruction.

5-28 50-001 ROO



5.7.13 Shift Left Arithmetic (SLRA)

Assembler Notation Op-Code Format
SLA  R1,I2(X2) EF ~ RI1
Operation

Bits 1:31 of +the first operand, contained 1in the register
specified by R1, are shifted left the number of places specified
by the second operand. The sign bit (bit 0) remains unchanged.
Bits shifted out of position 1 are shifted through the carry flag
and then loste The last bit shifted remains in the carry flag.
Zeros are shifted into position 31.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

>4 XN
O O o<
- O Ol
O - O

Programming Notes

The state of the C flag indicates the state of the last bit
shifted.

The shift count is specified by the least significant five Dbits
of the second operand. The maximum shift count is 31.

A shift of zero places causes the condition codle to be set in
accordance with the value contained in the register specified by
R1e The C flag is zero in this case.

Example: SLA

This example shifts the bits in register 5 1left by the number
specified by the second operand.

REGS contains X*'80005647"°

Assembler Notation Comments
SLA REGS5,4 SHIFT (REG5) LEFT 4 PLACES

Result of SLA Instruction

(REG5) = 80056470
Condition Code = 0001 (L=1)

50-001 ROO . 5-29



5.7.14 Shift Left Halfword Arithmetic (SLHA)

Assembler Notation Op-Code Format
SLHA R1,I2(X2) CF RI1
Operation

Bits 17:31 of the register specified by R1 are shifted 1left the
number of places specified by the second operand. Bit 16 of the
register, the halfword sign bit, remains unchanged. Bits shifted
out of position 17 are shifted through the carry flag and then
lost. The last bit shifted remains in the carry flage Zeros are
shifted into position 31. Bits 0:15 of the first operand
register remain unchanged.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

> IO
O O Ol<
- O Ot
O Ot

Programming Notes

The condition code settings are based on the halfword (bits
16:31) result.

The state of the C flag indicates the state of the last bit
shifted,

The shift count is specified by the least significant four bits
of the second operand. The maximum shift count is 15.

A shift of zero places causes the condition code to be set in
accordance with the halfword value contained in bits 16:31 of the
register specified by R1. The C flag is zero in this case.

(6]
[}

30 50-001 ROO



5.7.15 Shift Right Arithmetic (SRA)

Assembler Notation Op-Code Format
SRA R1,12(X2) EE RI1
Operation

Bits 1:31 of the first operand, contained in the Tregister
specified by R1, are shifted right the number of places specified
by the second operand. The sign bit (bit 0) remains unchanged
and is propagated right as many positions as specified by the
second operand. Bits shifted out of position 31 are shifted
through the C flag and lost. The last bit shifted remains in the
C flag.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

e N (@]
oNo N S
- O O
O 20|

Programming Notes

The state of the C flag indicates the state of the 1last bit
shifted.

The shift count is specified by the least significant five bits
of the second operand. The maximum shift count is 31.

A shift of zero places causes the condition code to be set in
accordance with the value contained in the register specified by
R1. The C flag is zero in this case.

Example: SRA

This example shifts the contents of register 9 right the number
of places specified by the second operand.

REG9 contains X'80000u4256"

Assembler Notation Comments

SRA REGY9,8 - SHIFT (REGY9) RIGHT 8 PLACES

Result of SRA Instruction

(REG9) = X*'FF800042"*
Condition Code = 0001 (L=1)

50-001 ROO ‘ 5-31



5.7.16 Shift Right Halfword Arithmetic (SRHA)

Assembler Notation Op-Code Format
SRHA R1,I2(X2) CE RI1
Operation

Bits 17:31 of the register specified by R1 are shifted right the
number of places specified by the second operand. Bit 16 of the
register, the halfword sign bit, remains wunchangei and is
propagated right the number of positions specified by the second
operand. Bits shifted out of position 31 are shifted through the
C flag and lost. The last bit shifted remains in the C flag.
Bits 0:15 of the first operand register remain unchanged.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

> 4 N
[« NeNe )L
- O Ol
O = Oj

Programming Notes

The condition code settings are based on the halfword (bits
16:31) result.

The state of the C flag indicates the state of the 1last bit
shifted.

The shift count is specified by the least significant four bits
of the second operand. The maximum shift count is 15.

A shift of zero places causes the condition code to be set in

accordance with the halfword value contained in bits 16:31 of the
register specified by R1. The C flag is zero in this case.

5-32 50-001 ROO



5.7.17 Convert to Halfword Value Register (CHVR)

Assembler Notation Op-Code Format
CHVR R1,R2 : 12 RR
Operation

The halfword second operand, bits 16:31 of the register specified
by R2, is expanded to a fullword by propagating the most
significant bit (bit 16) through bits 0:15. This fullword
replaces the contents of the register specified by R1.

Condition Code

CIVIG]|L

X1 X|0]O Result is zero

X{X|o}|1 Result is less than zero

X|X|11]¢0 Result is greater than zero

X111 X1 X Source operand cannot be represented by a
16-bit signed number

11X 1 X1X Carry flag was set in previous condition
code

O| X | X} X Carry flag was zero in previous coniition
code

Programming Notes

The V flag is set when bit 15 of the second operand 1is not the
same as bit 16 of the second operand. The G and L flags reflect
the algebraic value of bits 16:31 of the seconi operand.

Execution of this instruction following halfword operations
guarantees the same results as those obtained if the program were
run on a 16-bit machine. For example, if location A in memory
contains the halfword value of X'7FFF.!" (decimal 32767) then,

LH R1,A. R1 contains X'00007FFF"'
AIS R1,1 R1 contains X'00008000"

50-001 ROO , 5

33



Following the add operation, the condition code is:

CiV]|]G|L
cjfoj1}|o

indicating a result greater than zZzero, which 1is <correct for
fullword operations. If the same sequence were executed on a
16-bit processor, as:

LH R1,A R1 contains X'7FFF°
AIS R1,1 R1 contains X°'8000°

Following this, the condition code in the halfword processor is:

C{V]|GI|L
011011
indicating overflow and a negative result. Going back to the

original sequence and adding the Convert to Halfword Value
Register instruction produces the following:

LH R1,A R1 contains X'00007FFF"
AIS R1,1 R1 contains X'00008000°
CHVR R1,R1 R1 contains X'FFFF8000"

Following this sequence, the condition code is:

CIVIGIL
0111011

which is identical to that of the 16-bit processor, and can be
tested in the same manner.

5-34 50-001 ROO



’ CHAPTER 6
FLOATING-POINT ARITHMETIC

6.1 INTRODUCTION

Floating-point arithmetic instructions provide a means for rapid
handling of scientific data expressed as floating-point numbers.
Single-precision and double-precision floating-point
instructions, as well as mixed mode floating-point instructions,
are described in this chapter. The comprehensive set of
instructions includes load and store filoating-point numbers; add,
subtract, multiply, divide and compare two floating-point
numbers; convert fixed-point to floatding-point and vice versa;
and mixed mode operations that translate single precision to
double precision and vice versa.

Floating-point is a means of representing a quantity in any
numbering systene. For example, the decimal number 123 (base =
10), can be represented in the following forms:

123.0 x 10°
1.23 x 102
0.123 x 103
0.0123 x 10%

In this example, the decimal point moved; this 1is called a
floating point. In actual floating-point representation, the
significant digits are always fractional and are collectively
referred to as fractions. The power to which the base number is
raised is called the exponent. For example, in the number .45578
x 102, 45678 is the fraction and 2 is the exponent. Both the
fraction and the exponent <can be signed. If w2 have a
floating-point representation such as,

(sign of fraction) (exponent) (fraction)

the following representation applies:

Number . Floating point
+32.94 = +.3204 x 102 [+ | +2 | 3294
-23760000.0 = -.2376 x 10% [ = +8 2376
+0.000059 = +.59 x 10-% [ + | -u 59
-0.0000000092073 = =-.92073 x 10 [ - -8 | 92073

50-001 ROO , 6-1



602

603

large or small numbers can be easily expressed in floating-point,
making it ideally suitable for scientific computation. Note the
compactness of floating-point notation in the above examples.

Floating-point representation in the processor is similar to
above representatione. The differences are:

the

1« Hexadecimal, instead of

used.

decimal, numbering system is

2. Physical size of the number is 1limited,

magnitude and precision are limited.

therefore the

6.2 DATA FORMATS

Floating-point numbers occur in
precision and double precision.
requires a fullword (32 bits). When such a value is contained in
memory, it must exist on a fullword address boundary. The sign
(S), exponent (X), and fraction (consisting of the digits F1, F2,

cne of two formats: single

The single-precision format

F3, Fu4, F5, and F6) fields are designated as follows:

0 7 8 11 12 15 16 19 20 23 24 27 28 31
S X F1 F2 F3 Fa F5 F6
The double-precision format requires a doubleword (64 bits).
When two general registers hold a double-precision value, an
even/odd pair of general registers must be used. The

even-numbered register contains the most significant 32 bits, and
the next sequential odd register contains the least significant
32 bits. The sign (S), exponent (X), and fraction (consisting of
digits F1 through F14) fields are designated as follows:

0o 1 7 8 11 12 15 16 19 20 23 24 27 28 31
S X F1 F2 F3 F4 F5 F6
32 35 36 39 40 43 44 47 48 51 52 55 56 59 60 63
F7 F8 F9 F10 F11 F12 F13 F14
6-2

50~001 ROO



6.3 FLOATING-POINT NUMBER

In the processor, a floating-point number is represented in the
following form:

Sign Exponent Fraction
Sign The most significant bit of a floating-point number
is the sign bit. The sign bit is zero for positive
numbers and one for negative numberse. The
floating-point value of zero always has a positive
signe.
Exponent The 7-bit field, bits 1:7, is designated as the

Exponent in
excess=-64
notation

00
3F
40
41
TF

exponent field. The exponent 1is expressed in
excess-64 notation. The number in this field
contains the true value of the exponent plus X'40°
(decimal 64). This helps to represent very small
magnitudes between 0 and 1. Some of the exponent
values are as follows:

True True
exponent in exponent in Multiply
hexadecimal decimal fraction by
-40 -64 16- 64
-1 -1 16~ 1
0 0 160
1 1 161
3F 63 1693

The exponent field for true zero is always 00.

Fraction

50-001 ROO

The fraction field is 6 hexadecimal digits for
single-precision floating-point numbers (thus
limiting the precision), and 14 hexadecimal digits
for double-precision floating-point numbers. A= in
any other fraction, the floating-point fraction 1is

expressed with most precision when the most
significant hexadecimal digit (not necessarily the
most significant bit) is non=-zero. The

floating-point number with such a fraction is ~called
a normalized floating-point number. 1In the Series
3200 Processors, normalized numbers are always used
to obtain the maximum possible precision. For
hexadecimal fraction conversion, refer to Appendix D.



Examples: The following examples illustrate the sign, exponent,
and fraction concept of a floating-point number:

Numbers in Hex Sign-exponent-
integer-fraction fraction shown Single-precision
notation for clarity Floating-point numbers
S{E F
+1.3R25678 0 41 13A25678 4U113A256
-6.89F2C 1 41 689F2C C1689F2C
+1A.C39D21 0 42 1AC39021 421AC39D
-3C1DF.82A3 1 45 3C1LCF82A3 C53C1DFs8
+ABCDEF12.9AC 0 48 ABCDEF129AC 48ABCDEF
+0.0032A9CF2 0 3E 32A9CF2 3E32A9CF
-0.000002C7BS 1 3B 2C7B5s BB2C7B50

631 Floating-Point Number Range

The range of magnitude (M) of a normalized floating-point number
is as follows:

Single precision: 16'22 < M < (1 - 1675 * 1663
Double precision: 16=°°> < M < (1 - 16-14) * 1693
Approximately for both: 5.4 * 10°79 < M < 7.2 * 1079

Table 6~1 shows the floating-point range in relation to the
fixed-point range along with the decimal values.

TABLE 6-1 FLOATING/FIXED-POINT RANGES

606-1

FLOATING-POINT FIXED-POINT DECIMAL
NUMBEES INTEGER NUMBERS
(most negative) FFFF FFFF -7.2% 1075

€880 0000 | 8000 0000 (most negative) |-2 147 483 648

C110 0000 | FFFF FFFF (least negative) -1
(least negative) 8010 0000 -5.4%10°79
(true zero) 0000 0000 | 0000 0000 0
(least positive) 0010 0000 +5.4%10°79
4110 0000 | 0COO 0001 (least positive) +1
487F FFFF | 7FFF FFFF (most positive) [+2 147 483 647
(most positive) 7FFF FFFF +7.2%107°

6-4 50-001 ROO




6.3.2 Normalization

Normalization 1is a process of making non-zero the most
significant digit (F1) of the fraction of a floating-point
number. In the normalization process, the floating-point
fraction is shifted 1left hexadecimally (i.e., four bits at a
time), and its exponent 1is decremented by one for each
hexadecimal shift until the most significant digit (not

necessarily the most significant bit) of the fraction is
NONn-zero.

607

FRACTION
A\

S EXPONENT F1 F2 F3 F4 F5 F6

e L ]
SHIFT LEFT FRACTION HEXADECIMALLY UNTIL F1>0

DECREMENT EXPONENT BY ONE FOR EACH SHIFT

Except for the load instructions, all floating-point operations
assume and require normalized operands for consistent results.
The load instructions normalize an unnormalized operand.

Example:
Operands After normalization
1« 42012345 41123450
2. 21000ABC 1EABCO0O
3. C900FE12 C7FE1200
4, 6C000000 00000000 (true zero)
In Example 4, the fraction of the operand is zero. During the

normalization process, such a fraction 1is detected, and the
floating~point number is set to true zero.

Normalized results are always produced in floating-point

operations, assuming the operands are normalized. Results of
operations between unnormalized numbers are uniefined.

50-001 ROO ' 6-5



6.3.3 Equalization.

Equalization 1is a process of equalizing exponents of two
floating-point numbers. The fraction of the floating-point
number with the smaller exponent is shifted right hexadecimally,
i.e., four bits at a time, and its exponent is incremented by one
for each hexadecimal shift until the two exponents are egual.

608

INCREMENT EXPONENT BY ONE FOR EACH SHIFT

SHIFT FRACTION RIGHT HEXADECIMALLY UNTIL EXPONENTS EQUAL

o- -
S EXPONENT F1 F2 F3 F4 F5 F6
\ J
N
FRACTION
During floating-point addition and sSubtraction, the two

floating-point operands are equalized.

Example:
Floating point After equalization
operands
1. 43123456 43123456
3F789ABC 43000078
2 C7FE1234 C900FE12
4956789A 4956789A

In this example, normalized floating-point numbers are shown
because addition and subtraction require normalization. If the
exponents differ by more than 6 for single precision or more than
14 for double precision, the representable significance of the
lower exponent floating-point number is lost in the process of
egqualization. Digits shifted out are shifted through the guard
digits and may still have an effect on the result, sum, or
difference.

6-6 50-001 ROO



6.3.4 True Zero

A floating-point number is true zero when the exponent and the
fraction fields are all zeros; therefore, all data bits must be
zero. A 7zero value always has a positive sign. In general, zero
values participate as normal operands in 2all flosting-point
operationse.

A true =zero may be used as an operand. It may also result from
an arithmetic operation that caused an exponent underflow, in
wvhich case the entire number may be forced to true zeroe. If an
arithmetic operation produces a result whose fraction digits are
all zeros (sometimes referred to as loss of significance), the
entire number is forced to true zero.

Examples:

Numbers Operation Result Reason
030000AB Normalize 0000 0000 exponent
underflow
41ABCDEF
41ABCDEF Subtract 0000 0000 loss of
significance

6.3.5 Exponent Overflow

In floating-point operations, exponent overflow occurs when a
resulting exponent is greater than +63. If overflow occurs, the
result register is unchanged. The condition code 1is set to
reflect the overflow situation and the resulting sign. Figure
6-1 illustrates exponent overflow using a line representation of
numbers.

609-2

MOST NEGATIVE TRUE " MOST POSITIVE
NUMBER ZERO NUMBER
-— —e o o— .
FFFFFFFF o, 7FFFFFFF
| l
-
EXPONENT = 7F UNDERFLOW EXPONENT = 7F
= 6349 RANGE = 6349
— _————
OVERFLOW OVERFLOW

Figure 6-1 Exponent Overflow

If overflow occurs, the V flag in the condition code is set, and
an arithmetic fault interrupt is taken. Exponent overflow
interrupts cannot be disabled.

50-001 ROO 5=7



6.3.6 Exponent Underflow

The normalization process, during a floating-point operation, may
produce an exponent underflow. This underflow occurs when a
result exponent 1is 1less than =-64., Figure 6-2 illustrates
exponent underflow using a line representation of numbers.

610-2
LEAST NEGATIVE TRUE LEAST POSITIVE
NUMBER ZERO NUMBER
U § S——Y [} L oS <
80100000 0010000
EXPONENT = 00 EXPONENT = 00
= '6410 = ~6410
UNDERFLOW UNDERFLOW

Figure 6-2 Exponent Underflow

If wunderflow occurs, an arithmetic fault interrupt is taken, if
enabled by the current P3SW. Both operands remain unchanged. If
underflow is disabled by the current PSW, the result is forced to
zero (the closest possible answer), the V flag in the condition
code is set, and the next sequential instruction is executed.

6-8 50-001 ROO



6.3.7 Guard Digits and R*-Rounding

When an intermediate floating-point result has been formed, it
consists of a =sign, an exponent, and a fraction field. The
fraction field is extended by a number of guard digits containing
the least significant fraction digits of the intermediate result.
Before the result is copied to a destination, it 1is rounded to
compensate for the loss in the final result of the guard digits.

The rules for the R*-Rounding scheme are:

e If the most significant guard digit is hexadecimal 7 or less,
no rounding is performed. (See Example 1.)

® If the most significant guard digit is hexadecimal 8, and all
other guard digits are 0, the least significant bit of the
final result is forced to 1. (See Example 2.)

° If the most significant guard digit is hexadecimal 8, and
another guard digit is non-zero; or if the most significant
guard digit is hexadecimal 9 or greater, 1 is addeid to the
fraction field of the final result. (See Example 3.) 1If
this addition produces a carry out of the fraction field
(i.e., fraction field was all 1s), the result exponent is
incremented by 1, the most significant fraction digit (F1) is
set to hexadecimal 1, and all other fraction digits are set
to 0. (See Example 4.) Note that exponent overflow could
occur as the result of rounding.

Examples of R*-Rounding

INTERMEDIATE RESULT FINAL SINGLE-PRECISION
RESULT
1. U42ABCD12(32680000 42ABCD12
2. €$1183756|80000000 C118 3757
3. 3E265739/80100000 3E26573A
4, U41FFFFFF|{F0000000 421000090

50-001 ROO , 6-9



6.3.8 Conversion from Decinmal

To convert a decimal number into the excess-6U4 notation usei
internally by the processor, the follawing steps must be taken:

1. Separate the decimal integer from the decimal fraction:
182.375,,=(182 + .375)49
2. Convert each part to hexadecimal by referring +to the
integer conversion table and the fraction conversion
table in Appendix D.
18249 = Bb4g +37549 =646
3. Combine the hexadecimal integer and fraction:
B6.616 = B6.6,5 X160
4., Shift the radix point:
B6.6,X16° = .B66,5X162
5. BAdd 64 (X'u40') to the exponent:
B046 +216 =U2¢
6. Convert the exponent field and fractions to binary
allowing 1 bit for the sign, 7 bits for exponent field,

and 24 or 56 bits for the fraction.

42B66 = 0100 0010 1011 0110 0110 0000 0000 0000

6.4 CONDITION CODE

Most floating-point operations affect the condition code. For
each instruction description, the possible condition code
settings are showne.

6-10 50-001 ROO



6.5 FLOATING-POINT INSTRUCTIONS

Floating-point instructions use the Register to Register (RR),
and the Register and Indexed Storage (RX) instruction formats.
In all of the RR formats, except for fiix and float, the R1 and R2
fields specify one of the floating-point registers. There are
eight single-precision floating-point registers and eight
double-precision floating-point registers numbered 0, 2, 4, 6, 8,
10, 12, and 14. Except for FXR, FXDR, LGER, and LGDR
instructions, the R1 field always specifies a floating-point
register.

Floating-point arithmetic operations, excluding loads and stores,

require normalized operands to ensure correct results. If the
operands are not normalized, the results of these operations are
undefined. Floating-point results are normalized. The

floating-point 1load instructions normalize +the floating-point
data presented as the second operand.

The single-precision floating-point instructions described in
this section are:

LE Load Floating-Point

LER lLoad Floating-Point Register

LEGR Load Floating-Point from General Register
LPER load Positive Floating-Point Register
LCER Load Complement Floating-Point Register
LME load Floating-Point Multiple

LGER load General Register from Floating-Point Register
STE Store Floating-Point

STME Store Floating-Point Multiple

AE Add Floating-Point _

AER Add Floating-Point Register

SFE Subtract Floating-Point

SER Subtract Floating-Point Register

CE Compare Floating-Point

CER Compare Floating-Point Register

ME Multiply Floating-Point

MER Multiply Floating-Point Register

DE Divide Floating-Point

DER Divide Floating-Point Register

FXR Fix Register

FLR Float Register

|
-
-

50-001 ROO , ‘ 6



The double-precision floating-point instructions
this section are:

LD
LDR
LDGR
LPDR
LCDR
LMD
LGDR
STD
STMD
AD
ADR
SD
SDR
CD
CDR
MD
MDR
DD
DDR
FXDR
FLDR

Load DPFP

Load Register DPFP

Load DPFP from General Registers
Load Positive Register DPFP
Load Complement Register DPFP
Load DPFP Multiple

Load General Register from DPFP register
Store DPFP

Store Multiple DPFP

Add DPFP

Add Register DPFP

Subtract DPFP

Subtract Register DPFP
Compare DPFP

Compare Register DPEFP
Multiply DPFP

Multiply Register DPFP

Divide DPFP

Divide Register DPFP

Fix Register DPFP

Float Register DPFP

described in

The mixed mode floating-point instructions described in this
section are:

LED
LEDR
LDE
LDER
STDE

Load SPFP from DPFP
Load Register SPFP from DPFP
Load DPFP from SPFP
Load Register DPFP from SPFP
Store DPFP in SPFP

50-001 ROO



65.1 Load Floating-Point

Load Floating-Point (LE)
Load Floating-Point Register (LER)
Load Floating-Point from General Register (LEGR)

Assembler Notation Op-Code Format
LE R1,D2(X2) 68 RX1,RX2
LE R1,A2(FX2,5%X2) 68 RX3

LER R1,R2 28 RR

LEGR R1,R2 . AS RR
Operation

The floating-point second operand is normalized, if necessary,
and placed in the single-precision floating-point register
specified by R1.

Condition Code

Floating-point result is zero
Floating-point result is less than zero
Floating-point result is greater than zerd
Exponent underflow

O O O ojN
- O O Ol
(o= N eNe] (]
QO O - Ot

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X'0000 0000°'.

Normalization can produce exponent underflow. If PSW bit 19 is
set, an arithmetic fault interrupt is taken, and the register
specified by R1 is unchanged. If an exponent underflow occurs,
and bit 19 of the <current PSW 1is zero, no arithmetic fault
occurs. ZLeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be 1located on a
fullword boundarye.

50-001 ROO 6-13



Example: LE

This example normalizes the fullword at memory location
places it in floating-point register 8.

Floating-point REG8 contains unknown data
LOC contains X'4200 1000°

Assembler Notation Comments
LE REGS8,LOC LOAD FROM LOC AND NORMALIZ

Result of LE Instruction:

(REG8) = X'4010 0000"
(LOC) Unchanged by this instruction
Condition Code = 0010

LOC and

E

50-001 ROO



6.5.2 Load Positive Floating-Point Register (LPER)

Assembler Notation Op-code Format

LPER R1,R2 13 RR

Operation
The floating-point second operand specified by R2 1is forced

positive, normalized if necessary and placed in the
single-precision floating-point register specified by R1.

Condition Code

Floating=-point result is zero
Floating-point result is greater than zero
Exponent underflow

[eReNelle]
OO0l
Qa0
[eRoNol o

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X'0000 0000°'.

Normalization can produce exponent underflow. If PSW bit 19 1is
set, an arithmetic fault interrupt is taken, and the register
specified by R1 is unchanged. If an exponent underflow occurs,
and bit 19 of the <current PSW 1is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified Dby
R1.

Example:

Floating-point REG6 contains unknown data
Floating-point REG8 contains X*'C11921FB"

Assembler Notation Comments

LPER REG6,REGS LOAD REG6 WITH
POSITIVE OF (REGS8)

Result of LPER Instruction:
(REG6) = X*U411921FB"*

(REG8) unchanged by this instruction
Condition Code = 0010

50-001 ROO : _ 6-15



6.5.3 Load Complement Floating-Point Register (LCER)

Assembler Notation Op-Code Format
LCER R1,R2 17 RR
Operation

The sign of the floating-point second operand specified by R2 is
complemented. The resulting floating-point number is normalized,
if necessary, and placed in the single-precision floating-point
register specified by R1.

Condition Code

Floating-point result is zero
Floating-point result is less than zero
Floating-point result is greater than zero
Exponent underflow

[eNeNeoNollp]
- O O O|l<
O = O ol
O O s Ol

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X'0000 0000°'.

Normalization can produce exponent underflow. If PSW bit 19 is
set, an arithmetic fault interrupt is taken, and the register
specified by R1 is unchanged. If an exponent underflow occurs,
and bit 19 of the current PSW is Zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

(@)
!

16 50-001 ROO



6.5.4 Load Multiple Floating-Point (LME)

Assembler Notation Op-Code Format
LME R1,D2(X2) 72 RX2,RX2
LME R1,A2(FX2,SX2) 72 RX3
Opreration

Successive single-precision floating-point registers, starting
with the register specified by R1, are loaded from successive
fullword memory locations starting with the adiress of the second
operand. The process stops when floating-point register 14 has
been loaded.

Condition Code

Unchanged

Programming Notes

Values loaded into the floating-point registers are assumed to be
normalized, and no test or adjustment is performed.

The second operand must be located on a fullword boundarye.

50-001 ROO 6-17



6.5.5 Load General Register from Floating-Point Register (LGER)

Assembler Notation Op-Code Format

LGER R1,R2 15 RR

Operation

The floating-point second operand, contained in the
single-precision floating-point register specified by R2, is
placed in the general register specified by R1. The seconi

operand is unchanged.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

[oNeNel @]
O O Ol<
- O Oln
O - Ol

6.5.6 Store Floating-Point (STE)

Assembler Notation Op-Code Format

STE R1,D2(X2) 60 RX1,RX2

STFE R1,A2 (FX2,SX2) 60 RX3

Operation

The floating-point first operand, contained in the

single-precision floating-point register specified by R1, is
placed in the fullword memory location specified by the second
operand address. The first operand is unchanged.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

6-18 50-001 ROO



6.5.7 Store Floating-Point Multiple (STME)

Assembler Notation Op-Code Format

STME R1,D2(X2) 71 RX1,RX2

STME R1,A2(FX2,S%X2) 71 RX3

Operation

The contents of successive single-precision floating-point

registers, starting with the even numbered register specified by
R1, are stored in successive fullword memory locations, <starting
with the address of the second operand. The operation stops when
the contents of floating-point register 14 have been stored.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

.

50-001 ROO , . 6-19



6.5.8 Add Floating-Point

Add Floating-Point (AE)
Add Floating-Point Register (AER)

Assembler Notation Op-Code , Format
AFE R1,D2(X2) 6RA RX1,RX2
AE R1,A2(FX2,SX2) 6A RX 3

AER R1,R2 2A RR
Operation

The two operand exponents are compared. If the exponents differ,
the fraction with the smaller exponent is shifted right
hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift, wuntil +the two
exponents are equal. The hexadecimal digits (of four bits each)
are shifted through the guard digits for additional precision.
If no equalizing shifts are required, the guard digits remain
Zzero. The fractions are then algebraically added. The guard
digits participate in this addition.

If the addition of fractions produces a carry, the exponent of
the result is incremented by one, and the fraction of the result
is shifted right one hexadecimal digit. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction,
producing a normalized result. This result is then R*-rounded
and replaces the contents of the single-precision floating-point
register specified by R1.

If the addition of fractions does not produce a carry, the result
is normalized, if necessary, and R*-rounded. This result
replaces the contents of the single-precision floating-point
register specified by R1.

Condition Code

CljVvi]|GclL

Ojo]J]o}]o Floating-point result is zero

OJ]o]JoO| 1 Floating-point result is less than zero

ojol1410 Floating-point result is greater than zero

Oj1]101] 1 Exponent overflow, result is less than zero

011 110 Exponent overflow, result is greater than
Zero

0cj]1j101}0 Exponent underflow

6-20 50-001 ROO



Programming Notes

When the addition of the fractions praduces a carry, incrementing
the exponent of the result by one can produce exponent overflow.
In +this case, the arithmetic fault interrupt is taken and the
contents of the register specified by R1 remain uncharged.

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, an arithmetic fault interrupt is taken, ani
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified Dby
R1.

In the RX formats, the second operand must be located on a
fullword boundary.

Fastest results occur when the first operand is larger than the
second operand.

Example: AE
This example adds the contents of LOC to the <contents of
floating-point register 8 and places the result in floating-point

register 8.

Floating-point REG8 contains X'7EFF FFFF'.
LOC contains X'7EFF FFFF'

Assembler Notation Comments

AE REGS8,LOC ADD (LOC) TO (REG8)
Result of AE Instruction

(Floating-Point REG8) = 7F1F FFFF

(LOC) unchanged by this instruction
Condition Code = 0010

()}
]

50-001 ROO 21



6.5.9 Subtract Floating-Point

Subtract Floating-Point (SE)
Subtract Floating-Point Register (SER)

Assembler Notation QE:Code Format
SE R1,D2(X2) 6B RX1,RX2
SE R1,A2(FX2,5X2) 6B RX3

SER R1,R2 2B RR
Operation

The two operand exponents are compared. TIf the exponents differ,
the fraction with the smaller exponent is shifted right
hexadecimally (four bits at a time), and 1its exponent is
incremented by one for each hexadecimal shift, wuntil +the two
exponents are equal. The hexadecimal digits (of four bits each)
are shifted through the guard digits for additional precision.
If no equalizing shifts are required, the guard digits remain
ZEero. The second operand fraction is then subtracted
algebraically from the first operand fraction. The guard digits
participate in this subtraction.

If the subtraction of fractions produces a carry, the exponent of
the result is incremented by one, and the fraction of the result
is shifted right one hexadecimal digit. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction,
producing a normalized result. This result is then R*-rounded
and replaces the contents of the single-precision floating-point
register specified by R1.

If the subtraction of fractions does not produce a carry, the
result is normalized, if necessary, then R*-rounded. This result
replaces the contents of the single-precision floating-point
register specified by R1. :

Condition Code

CiviGcl L

0J]ojJoj]o Floating-point result is zero

0] 0] O] 1 Floating-point result is less than Zero

0|0} 10 Floating-point result is greater than zero

o110} 1 Exponent overflow, result is less than zZero

o} 11110 Exponent overflow, result is greater than
zZero

0|l1}]0]0 Exponent underflow

o)
|

22 50-001 ROO



Programming Notes

When the subtraction of the fractions produces a carrys
incrementing the exponent of the result by one can produce
exponent overflow. In this case, the arithmetic fault interrupt
is taken, and the contents of R1 remain unchanged.

Normalization of the result can produce exponent underflowe. If
PSW bit 19 is set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be located on a
fullword boundary.

Fastest results occur when the first operand is larger than the
second operande.

Example: SE

This example subtracts the contents of LOC from the contents of
floating-point register 8 and places the result in floating-point
register 8.

Floating-point REG8 contains X'7EFF FFFF'

LOC contains X*7A10 0000°*

Assembler Notation Comments

SE REGS,LOC SUBTRACT LOC FROM REGS
Result of SE Instruction
(Floating-point REG8) = 7EFF FFEF

(LCC) unchanged by this instruction
Condition Code = 0010

50-001 ROO A 6-23



6.5.10 Compare Floating-Point

Compare Floating-Point (CF)
Compare Floating-Point Register (CER)

Assembler Notation Op-Code Format

CE R1,D2(X2) 69 RX1,RX2

CE R1,D2(FX2,SX2) 69 RX3

CER R1,R2 29 RR

Operation

The first and second operands are comparei. Comparison is

algebraic, and the sign, fraction, and exponent of each number
must be considered. The result is indicated by +the condition
code setting. Neither operand is changed.

Condition Code

First operand is equal to second operand
First operand is less than second operand
First operand is greater than seconi operand

O aoln
> dd M
- O Ot
O A O

Programming Notes
The state of the V flag is undefined.

In the RX formats, the second operand must be located on a
fullword boundary.

[=,]
|

24 50-001 ROO



6.5.11 Multiply Floating-Point

Multiply Floating-Point (ME)
Multiply Floating-Point Register (MER)

Assembler Notation Op=-Code Format
ME R1,D2(X2) 6C RX1,RX2
ME R1,A2(FX2,5X2) 6C RX3

MER R1,R2 2C RR
Operation

The exponents of each operand, as derived from the excess-64
notation used in floating-point representation, are added to
produce the exponent of the result. This exponent is converted
back to excess-64 notation, and the fractions are then
multiplied.

If the product is zero, the entire floating-point value is forced
to zero, X'0000 0000'. If the product is not zero, the result is
normalized. The sign of the result is determined by the rules of
algebra. The R*-rounded result replaces the contents of the
single-precision floating-point register specified by R1.

Condition Code

ci{V]GI|L

0J]0(0]0 Floating-point result is zaro

cjotoj Floating-point result is less than zero

0|0 110 Floating-point result is greater than zero

ol1]0{1 Exponent overflow, result is less than zero

0] 1 110 Exponent overflow, result is greater than
zero

oj1j01}]¢0 Exponent underflow

Programming Notes

Multiplication of two S$-hexadecimal-digit fractions effectively
produces a result of 6 hexadecimal digits and a number of guard
digits. The guard digits participate in the R*-rounding of the
final result.

The addition of exponents can produce exponent overflow. In this

case, an arithmetic fault interrupt is taken, and both operands
remain unchanged.

50-001 ROO 6

25



The addition of exponents or the normalization process can
produce exponent underflow. If PSW bit 19 is set, an arithmetic
fault interrupt is taken and the register specified by R1 1is
unchanged. If exponent wunderflow occurs and bit 19 of the
current PSW is zero, no arithmetic fault occurs. Leros replace
the contents of the register specified by R1.

In the RX formats, the second operand must be located on a
fullword boundary.

Fastest results occur when the second operand multiplier contains
sets of four or more contiguous ones or zeros.

Example: ME

This example multiplies the contents of floating-point register
8 by the contents of memory location LOC and places the result in
floating-point register 8.

Floating-point REG8 contains X'SFFF FFFF*
LOC contains X'60FF FFFF'

Assembler Notation Comments
ME REGS8,LOC MULTIPLY (REG8) BY (LOC)

Result of ME Instruction
(Floating-point REG8) = 7FFF FFFE

(LOC) unchanged by this instruction
Condition Code = 0010

6-26 50-001 ROO



6.5.12 Divide Floating-Point

Divide Floating-Point (DE)
Divide Floating-Point Register (DER)

Assembler Notation . Op-Code Format
DE R1,D2 (X2) 6D RX1,RX2
DE R1,A2 (FX2,SX2) 6D RX3

DER R1,R2 2D RR
Operation

The exponents of each operand, as derived from the excess-6U4
notation used in flecating-point repregentation, are subtracted to
produce the exponent of the result. This exponent is converted
back to excess-64 notation.

The first operand fraction is then divided by the second operand
fraction. Division <continues until the gquotient is normalized,
adjusting the exponent for each additional division reguirede.

No remainder is returned. The sign of the quotient is determined
by the rules of algebra. The R*-rounded gquotient replaces the
contents of the single-precision floating-point register
specified by R1.

Condition Code

cC|lVIGLlL

0jlo010¢}t0 Floating-point result is zero

ojo0|1O0]1 Floating-point result is less than zero

ojofl1]10 Floating-point result is greater than zero

ol 11041 Exponent overflow, result is less than zero

o1l 1 110 Exponent overflow, result is greater than
Zero

0 010 Exponent underflow

1 1 0 Divisor equal to zero

Programming Notes

Before starting the divide operation, the divisor is checked. If
it is equal to zero, the operation is aborted, and the arithmetic
fault interrupt is taken. Neither operand is changed.

Subtraction of exponents may produce exponent overflow. In this
case, an arithmetic fault interrupt is taken, and both operands
remain unchanged.

50-001 ROO 6-27



The subtraction of exponents or the division process can produce
exponent underflow; normalization of +the result can produce
exponent underflow. If PSW bit 19 is set, an arithmetic fault
interrupt is taken, and the register specified by R1 is
unchanged. If exponent underflow occurs and bit 19 of the
current PSW 1is zero, no arithmetic fault occurs. Zeros replace
the contents of the register specified by R1.

The 6-hexadecimal digit first operand fraction is divided by the
6-hexadecimal digit second operand, effectively producing the
6-hexadecimal digit quotient along with a number of guard digits.
The guard digits participate in the R*-rounding of the final
resulte.

In the RX formats, the second operand must be 1located on a
fullword boundary.

Example: DE
This example divides the contents of floating-point register 4 by
the contents of memory location LOC and places the result in

flcating-point register 4.

Floating-point REGY4 contains X'44FF FFFF' = dividend
LOC contains X'0611 1111*' = divisor

Assembler Notation Comments
DE REG4,LOC DIVIDE (REG4) BY (LOC)

Result of DE Instruction:

(Floating-point REGU4) = TFFO 0000
(LOC) unchanged by this instruction
Condition Code = 0010

(s,
{

28 50-001 ROO



6513 Fix Register (FXR)

Assembler Notation Op-Code Format
FXR R1,R2 2E RR
Operation

R1 and R2 specify a general-purpose register and a floating-point
register respectively. The normalized floating—-point number
contained in the floating-point register is converted to a two's
complement notation integer value by shifting and truncating.
The result is stored in the general register specified by R1.

Condition Code

Result is zero or underflow

Result is less than zero

Result is greater than zero

Overflow, result is less than zero
Overflow, result is greater than zero

>4 >4 b M O
- A 000Iw
= O 200N
O OO

Programming Notes

The range of floating-point magnitudes (M) that produces a
non-zero integral result is:

+X'4880 0000'> M > +X*4110 0000°

Floating-point magnitudes greater than +X'u87F FFFF* or
-X*4880 0000° cause overflow. The result is forced to

X*7FFF FFFF* if positive, or to X*8000 0000" if negative.

The V flag is set in the condition code along with either the &

or L flag, depending on the sign of the result.

Floating-point magnitudes 1less than +X°4110 0000° cause
underflow, and the result is forced to zero.

In the event of overflow or underflow, no arithmetic fault
interrupt is taken, even if enabled in the current PSW.

Example: FXR

This example converts the contents of floating-point register 8
to a fixed-point number and places it in register 3.

(o)}
]

50-001 ROO 29



Floating-point REG8 contains X*u46FF FFO0O*
REG3 contains unknown data

Assembler Notation Comments
FYR REG3,REGS CONVERT (REG8) TO FIXED-POINT

Result of FXR Instruction

(REG3) = Q0FFFFOO
(Floating-point REG8) unchanged by this instruction
Condition Code = 0010

[e)}
!

30 50-001 ROO



6.5.14 Float Register (FLR)

Assembler Notation Op-Code Format
FLR R1,R2 2F RR
Operation

R1 and R2 specify a floating-point register and a general-purpose
register, respectively. The integer value contained in the
general register specified by R2 is converted to a floating-point
number and stored in the single-precision floating-point register
specified by R1.

Condition Code

Floating-point result is zero
Floating-point result is less than zero
Floating-point result is greater than z=ro

>4 > PG

v
0
0
0

e Nol (3]
O a0

Programming Note

The full range of fixed-point integer values can be convertad to
floating point. The fixed-point value X'7FFF FFFF*', the largest
positive integer, converts to the floating-point value X'487F
FFFF*'. The fixed-point value X'8000 0000', the most negative
integer, converts to the floating-point value X'C880 0000°'. The
result in R1 is normalized and truncated, if necessary, to fit in
the six fraction digits.

Example: FLR
This example converts the fixed-point contents of Register U4 to
a floating-point number and places it in floating-point register

8.

REGU4 contains X'7FFF FFFO'
Floating-point REG8 contains unknown data

Assembler Notation Comments

FLR REGS8,REGH A CONVERT (REGU) TO FLOATING POINT
Result of FLR Instruction:
(Floating-point REG8) = UBT7FFFFF

(REGU4) unchanged by this instruction
Condition Code = 0010

50-001 ROO : . 6-31



6.5.15 Load Double-Precision Floating-Point

Load Double-Precision Floating-Point (LD)

Load Register Double-Precision Floatimg-Point (LDR)

Load Double-Precision Floating-Point Registers from General
Registers (LDGR)

Assembler Notation Op-Code Format
LD R1,D2(X2) 78 RX1,RX2
LD R1,A2(FX2,5X2) 78 RX3

LDR R1,R2 38 RR

LDGR R1,R2 A6 RR
Operation

The floating-point second operand is normalized, if necessary,
and placed in the double-precision floating-point register
specified by R1.

Condition Code

Double-precision result is zero
Double-precision result is less than zero
Double-precision result is greater than zero
Double-precision result is greater than =zero
Exponent underflow

[eNsNeNoNokin!
- O O OO
(o =R e ]
OO O aOftt

Programming Notes

If the argument fraction is zero, the entire ;esult is forced to
zero, X'0000 0000 0000 0000'.

Normalization can produce exponent underflow. If PSW bit 19 is
set, the arithmetic fault interrupt is taken, and the register
specified by R1 remains unchanged. If exponent underflow occurs,
and bit 19 of the current PSW is =zero, no arithmetic fault
OCCULS. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be 1located on a
fullword boundary.

The R1 field for LDGR must specify the even number of an even/odd
pair of general registers.

6-32 50-001 ROO



6.5.16 Load Positive Double-Precision Register (LPDR)

Assembler Notation Op-Code Format
LPDR R1,R2 33 RR
Operation

The double-precision floating-point second operand contained in
the double-precision floating-point register specified by R2 is
forced positive. The result 1is normalized if necessary and
placed in the double-precision floating-point register specified
by R1.

Condition Code

Double-precision nesult is zero
Double~-precision result is greater than zero
Exponent underflow

o NoNe]lo]
- O O
O a Ol
O O ot

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X'0000 0000 0000 0000°'.

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, the arithmetic fault interrupt is taken, and
the register specified by R1 remains unchanged. If exponent
underflow occurs, and bit 19 of +the current PSW is zero, no
arithmetic fault occurs. Zeros replace the <contents of the
register specified by R1.

50-001 ROO _ 6-33



6.5.17 Load Complement Double-Precision Register (LCDR)

Assembler Notation Op-Code Format
LCDR R1,R2 37 RR
Operation

The sign of the double-precision floating-point secondi operand
contained in the double~precision floating-point register
specified by R2 is complemented. The result 1is normalized if
necessary and placed in the double-precision floating-point
register specified by R1.

Condition Code

Double-precision result is zero
Double-precision result is less than zero
Double-precision result is greater than zero
Exponent underflow

[oNeoNoNel @]
- 0O o Ol
(e e Nallp]
OO A O

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X'0000 0000 0000 000O°'.

Normalization may produce exponent underflow. If PSW bit 19 is
set, the arithmetic fault interrupt is taken and the register
specified by R1 remains unchanged. If an exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurse. Zeros replace the contents of the register specified by
R1.

6-34 50-001 ROO



65.18 Load Multiple Double-Precision Floating-Point (LMD)

Assembler Notation Op-Code Format
LMD R1,D2(X2) 7F RX1,RX2
LMD R1,A2(FX2,SX2) 7F RX3
Operation

Successive double-precision floating-point registers, starting
with the register specified by R1, are loaded from successive
fullword memory location pairs, starting with the address of the
second operand. The process stops when double-precision
floating-point register 14 has been loaded.

Condition Code

Unchanged

Programming Notes

Values loaded into the double-precision floating-point registers
are assumed to be normalized, and no test or adjustment is
performed.

The second operand must be located on a fullword boundarye.

50-001 ROO 6-35



6.5.19 Load General Registers from Double-Precision
Floating-Point Register (LGDR)

Assembler Notation Op-Code Format
LGDR R1,R2 16 RR
Operation

The double-precision floating-point second operand, contained in -
the double-precision register specifiied by R2, is placed in the
general register pair specified by R1. The second operand is
unchanged.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

O C Ol
- O Ole
O = Oft

QOO0

Programming Notes

The R1 field must specify the even member of the even/odd pair of
general registers receiving the result. The even numbered
register receives the most significant 32 bits while the next
sequential odd numbered register receives the 1least significant
32 bits.

It R1 1is not an even numbered register, unpredictable results
oCcCcure.

[e,]
!

36 50-001 ROO



6.5.20 Store Double-Precision Floating-Point (STD)

Assembler Notation Op-Code Format

STD R1,D2(X2) 70 RX1,RY2

STD R1,A2(FX2,SX2) 70 RX3

Operation

The floating-point first operand, contained in the

double-precision floating-point register specified by R1, is
placed in the double word memory location specified by the second
operand address. The first operand is unchangad.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundarye.

50-001 ROO , 6-37



6.5.21 Store Multiple Double~Precision Floating-Point (STMD)

Assembler Notation Op-Code Format
STMD R1,D2(X2) TE RX1,RX2
STMD R1,A2(FX2,5X%2) 7E RX3

Operation

The contents of successive double-precision floating-point
registers, starting with the even numbered register specifieid by
R1, are stored in successive fullword memory 1locatiosn pairs,
starting with the address of the second operand. The operation

stops when the «contents of double-precision floating-point
register 14 have been stored.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundarye.

6-38 50-001 ROD



6.5.22 Add Double-Precision Floating-Point

Add Double-Precision Floating-Point (AD)
Add Register Double-Precision Floating-Point (ADR)

Assembler Notation _ Op-Code Format
AD R1,D2(X2) 7A RX1,RX2
AD R1,A2(FX2,SX2) 7A RX3

ADR R1,R2 33 RR
Operation

The two operand exponents are compared. If the exponents differ,
the fraction with the smaller exponent 1is shifted right
hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift until the two
exponents are egual. Hexadecimal digits are shifted through the
guard digits to retain precision. The fractions are then added
algebraically.

If the addition of fractions produces a carry, the exponent of
the result 4is incremented by one and the fraction of the result

is shifted right one hexadecimal position. The carry bit |is
shifted back into the most significant hexadecimal digit of the
fraction, producing a normalized result. This result is

R*-rounded and replaces the contents of the double~-precision
floating-point register specified by R1.

If the addition of fractions does not produce a carry, the result

is normalized, if necessary., and placed in the double-precision
floating-point register specified by R1.

Condition Code

ci{v]GclL

ojo|]O}]O Double-precision result is zero

ojoloj}1 Double-precision result is less than zero

ofol110 Double-precision result is greater than zero

o101 Exponent overflow, result is less than zero

oj1111}60 Fxponent overflow, result is greater than
Zero

o}l11010 Exponent underflow

50-001 ROO , 6-39



Programming Notes

When the addition of fractions produces a carry, incrementing the
exponent of the result by one may produce exponent overflow. . In
this case, the arithmetic fault interrupt is taken and both
operands remain unchanged.

Normalization of the result can produce exponent underflow. If
PSW bit 19 1is set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

Fastest results occur when the first operand is larger than the
second operand.

In the RX formats, the second operand must be 1located on a
fullword boundary.

(e,
[

40 50-001 ROO



6.5.23 Subtract Double-Precision Floating-Point

Subtract Double-Precision Floating-Point (SD)
Subtract Register Double-~Precision Floating-Point (SDR)

Assembler Notation Op-Code Format
SD R1,D2(X2) 7B RX1,RX2
SD R1,A2(FX2,5X2) 7B RX3

SDR R1,R2 3B RR
Operation

The two operand exponents are compared. If the exponents differ,
the fraction with the smaller exponent is shifted right
hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift, until the two
exponents are equal. Hexadecimal digits are shifted through the
guard digits to retain precision. The second operand fraction is
then subtracted algebraically from the first operand fraction.

Tf the subtraction of fractions produces a carry, the exponent of
the result is incremented by one and the fraction of the result
is shifted «right one hexadecimal position. The carry bit is
shifted back into the most significant hexadecimal digit of the
fraction producing a normalized result. This result is
R*-rounded and replaces the contents of the double-precision
floating-point register specified by R1.

If the subtraction of fractions does not produce a CAarryr the

result is normalized, if necessary, then R*-rounded and placed in
the double-precision floating-point register specified by R1.

Condition Code

Double-precision result is zero
Double-precision result is less than zero
Double-precision result is greater than zero
Exponent overflow, result is less than zero
Exponent overflow, result is greater than
zZero

Exponent underflow

leNeoNoNeoNollp]
- OO0 0
-0 w0 0oIn
O a2 O 0|

o
-
o
o

50-001 ROO : 6- 41



Programming Notes

When the subtraction of fractions produces a carry, incrementing
the exponent of the result by one may produce exponent overflow,.
In this case, the arithmetic fault interrupt is taken and the
contents of R1 remain unchanged.

Normalization of the result can produce exponent wunderflow. If
PSW Dbit 19 is set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSVW is zZero, no arithmetic fault
occurse. Zeros replace the contents of the register specified by
R1.

Fastest results occur when the first operand is larger than the
second operand.

In the RX formats, the second operand must be 1located on a
fullword boundary.

42 ' 50-001 ROO

(o))
1



6.5.24 Compare Double-Precision Floating-Point

Compare Double-Precision Floating-Point (CD)
Compare Register Double-Precision Floating-Point (CDR)

Assembler Notation _ Op-Code Format

CD R1,D2(X2) 79 RX1,RX2

CD R1,A2(FX2,5X2) 79 RX3

CDR R1,R2 39 RR

Operation

The first and second operands are compared. Comparison 1is
algebraic, taking into account the sign, exponent and fraction of
each numbher. The result is 4indicated by the condition code

setting. Neither operand is changed.

Condition Code

First operand is equal to second operand
First operand is less than second operand
First operand is greater than seconi operand

O 4 Ol
1 R
Y eNel ]
QO - Ot

Programming Notes
The state nf the overflow flag is undefinede.

In the RX formats, the second operand must Dbe located on a
fullword boundarye.

50-001 ROO 6-43



6.5.25 MNMultiply Double-Precision Floating-Point

Multiply Double-Precision Floating-Point (MD)
Multiply Register Double-Precision Floating~Point (MDR)

Assembler Notation Op-Code Format
MD R1,D2(X2) 7C RX1,RX2
MD R1,A2(FX2,SX2) 7C RX3

MDR R1,R2 3C RR
Operation

The exponents of the two operands, as derived from the excess-64
notation wused in floating-point representation, ar=2 addei to
produce the exponent of the result. This exponent 1s converted
back to excess-f4 notation. The fractions are then multiplied.

If the product is zero, the entire double-precision wvalue is
forced to zero, X'0000 0000 0000 0000°'. If the product is not
zero, the result is normalized, if necessary. The sign of the
result is determined by the rules of algebra. The R*-rounied
result replaces the contents of the double-precision floating-
point register specified by R1.

Condition Code

ClV]|G]| L

0j10]J]0]0O Double-precision result is zero

OlO0]10] 1 Double-precision result is less than zero

0101 1¢{0 Double-precision result is greater than zero

O]l 1101{ 1 Exponent overflow, result is less than zero

011 110 Exponent overflow, result is greater than
Zero

O11]1]0¢}0 Exponent underflow

Programming Notes

Multiplication of two 14-hexadecimal-digit fractions effectively
produces a result of 14 hexadecimal digits and a number of guard
digits. The guard digits participate in the R*-rounding of the
final result.

The addition of exponents may produce exponent overflow. In this

case, an arithmetic fault interrupt is taken and both operands
remain unchanged.

6-414 50-001 ROO



Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified Dby
R1.

In the RX formats, the second operand must be 1located on a
fullword boundarye.

Fastest results occur when the second operand multiplier contains
sets of 4 or more contiguous ones OIr ZerOS.

50-001 ROO : 6-45



6.5.26 Divide Double-Precision Floating-Point

Divide Double-Precision Floating-Point (DD)
Divide Register Double-Precision Floating-Point (DDR)

Assembler Notation Op-Code Format
DD R1,D2(X2) 70 RX1,RX2
DD R1,A2(FX2,SX2) 7D RX3

DDR R1,R2 3D KRR
Operation

The exponents of the two operands, as derived from the excess-64
notation used in floating-point representation, are subtractei to
produce the exponent of the result. This exponent is converted
back to excess-6U4 notation.

The first operand fraction is then divided by the seconi operand
fraction, Pivision continues until the quotient is normalized,
adjusting the exponent for each additional division required.

No remainder is returned. The sign off the result is determined
by the rules of algebra. The R*-rounded quotient replaces the
contents of the double-precision floating=-point register
specified by R1.

Condition Code

C{V| G| L

010]901|O0 Double-precision result is zero

01 0] 0} 1 Double-precision result is less than zero

0]J]0| 1] 0 Double-precision result is greater than zero

0111011 Exponent overflow, result is less than zero

0Ot1]1]o0 Exponent overflow, result is greater than
zZero

0111 0}0 Exponent underflow

1 0 Divisor equal to zero

6-46 50-001 ROO



Programming Notes

Before starting the divide operation, the divisor is checked. If
it is equal to zero, the operation is aborted, and the arithmetic
fault interrupt is taken. Neither operand is changed.

The subtraction of exponents may produce exponznt overflow. In
this case, an arithmetic fault interrupt is taken and both
operands remain unchanged.

Subtraction of exponents or the division process <can bproduce

exponent underflow. Normalization of +the result can produce
exponent underflow. If PSW bit 19 is set, an arithmetic fault
interrupt is taken, and the register specified by R1 1is

unchanged. If exponent underflow occurs and bit 19 of the
current PSW 1is zero, no arithmetic fault occurse. Zeros replace
the contents of the register specified by R1.

The 14-hexadecimal-digit first operand fraction is diviided by the
14-hexadecimal-digit second operand fraction, effectively
producing the 14-hexadecimal-digit guotient along with a number
of guard digits. The guard digits participate in the R*-rounding
of the final result.

In the RX formats, the second operand must Dbe located on a
fullword boundary.

50-001 ROO

(e,
t

47



6.5.27 Fix Register Double-Precision (FXDR)

Assembler Notation Op-Code Format
FXDR R1,R2 3E RR

Operation

R1 and R2 specify a general purpose register and a
double-precision floating-point register, respectively. The
normalized floating-point number contained in the floating-point
register is converted to an integer value by shifting and
truncating. The result is placed in the general register
specified by R1.

Condition Code

Result is zero or underflow

Result is less than zero

Result is greater than zero

Overflow, result is less than zero
Overflow, result is greater than zZero

R R e]
- - OO0 Oj<
- O a2 0 Ol

O a4 O a Ojt+

Programming Notes

The range of the floating-point magnitude (M) that produces a
non-zero integral result is:

+ X'4880 0000 0000 0000* > M > + X'4110 0000 0000 0000°*

Double-precision floating-point magnitudes greater than +X'487F
FFFF FFFF FFFF' or -X'4880 0000 0000 0000' cause overflow. The
result is forced to X'7FFF FFFF' if positive or to X'8000 0000°
if negative. The V flag is set in the condition code along with
either the G or L flag, depending on the sign of the result.

Double-precisgion floating-point magnitudes less than +X'4110 0000
0000' cause underflow, and the result is forced to zero.

In the event of overflow or underflow, no arithmetic fault
interrupt is taken even if enabled in the current PSW.

6-u48 50-001 ROO



6.5.28 Float Register Double-Precision (FLDR)

Assembler Notation Op-Code Format
FLDR R1,R2 3F RR
Operation

R1 and R2 specify a double-precision floating-point register and
a general purpose register, respectively. The integer value
contained in the general register specified by R2 is converted to
a floating-point number and placed in the double-precision
floating-point register specified by R1.

Condition Code

Double-precision result is zero
Double-precision result is less than zero
Double-precision result is greater than zero

O O Ol
- O Ot
O - O

C
X
X
X

Programming Notes

The full range of fixed-point integer values may be converted to
double-precision floating-point. The fixed-point value X'7FFF
FFFF', the largest positive integer, converts to a double-
precision floating-point value of X'u487F FFFF FF0O0 0000°'. The
fixed-point value X'8000 0000', the most negative integer,
converts to a double-precision floating-point value of X'C880
0000 0000 0000°'.

The result in R1 is normalized.

50-001 ROO 6-49



6.5.29 Load Single-Precision Floating-Point Register From Doubie

Load Single-Precision Floating-Point Register fronm Double-
Precision Memory (LED)

Load Single-Precision Floating-Point Register from Double-
Precision Register (LEDR)

Assembler Notation Op-Code Format
LED R1,D2(X2) 84 RX1,RX2
LED R1,A2(FX2,SX2) 84 RX3
LEDR R1,R2 Ay RR

Operation
Double-precision floating-point data fronm the second operand

location 1is R*-rounded to single-precision accuracy, and placed
in the single-precision floating-point register specified by R1.

Condition Code

Floating-point result is zero
Floating-point result is less than zero
Floating-point result is greater than zero
Exponent underflow

Exponent overflow, result is less than zero
Exponent overflow, result is greater than
zZero

[eNeNeoNeNoNolle)
-_ OO0 QO
D2 O O a0 0o
Q= OO a0

Programming Notes
R1 and K2 must specify even-numbered registers.

Kounding of the result may cause exponent overflow. In this
case, the register specified by R1 is unchanged, and the
arithmetic fault interrupt is taken.

Normalization of the result may produce exponent underflow. If
enabled by PSW bit 19, the arithmetic fault interrupt is taken,
and the register specified by R1 remains unchanged.,. If bit 19 of
the current PSW is =zero, =zeros replace the contents of the
register specified by R1.

In the RR format, double-precision data is contained in the
even/odd pair of general registers specified by R2. R?2 contains
the most-significant 32 bits, and R2+1 contains the
least-significant 32 bits. If R2 1is not an even numbered
register, unpredictable results occur.

In the RX formats, the second operand must be located on a
fullword boundary.

6-50 50-001 ROO



6.5.30 Load Double-Precision Floating-Point Register From Single

Load Double-Precision Floating-Point Register from Single-
Precision Memory (LDE)

Load Double-Precision Floating-Point Register from Single-
Precision Register (LDER)

Assembler Notation Op-Code Format
LDE R1,D2(X2) 87 RX1,RX2
LDE R1,A2(FX2,5X2) 87 RX3
LDER R1,R2 A7 RR
Operation

Single-precision floating-point data from the second operand
location is converted to double-precision data by appending
trailing =zeros. The result replaces the contents of the
double-precision floating-point register specified by R1.

Condition Code

Double-precision result is zero
Double-precision result is less than zero
Double-precision result is greater than zero
Exponent underflow

[cNeNeoNelle]
- O O Ol
[ WoNe] [P
O O - O

Programming Notes

The registers specified by R1 and R2 must be even-numbered
registerse.

Normalization of the result may produce exponent underflow. If
enabled by PSW bit 19, the arithmetic fault interrupt is taken,
and the register specified by R1 remains unchanged. If bit 19 of
the current PSW is =zero, no arithmetic fault occurs, Zeros
replace the contents of the register specified by R1.

In the RX formats, the second operand must Dbe located on a
fullword boundary.

50-001 ROO 6-51



6.5.31 Store Double-Precision Floating-Point Register in Single-
Precision Memory (STDE)

Assembler Notation Op-Code Format
STDE R1,D2(X2) 82 RY1,RX?2
STDE R1,R2(FX2,SX2) 82 RX3

Operation

Data from the double-precision floating-point register Specified
by R1 1is R*-rounded to single-precision accuracy, and stored in
the fullword second operand location.

Condition Code

Unchanged

Programming Notes

The register specified by R1 must be an even-numbered register.
Normalization of the rounded result nmay produce 2xponent
underflow. In this case, zero, X'0000 0000*', replaces the
contents of the second operand location.

Rounding of the result may cause exponent overflow. In this
case, the contents of the second operand 1location remain
unchanged, and the arithmetic fault interrupt is taken.

The second operand must be located on a fullword boundary.

6-52 50-001 ROO



7.1 INTRODUCTION

String operations

consecutive
boundaries.

bytes

Information

packed decimal data
unpacked decimal data.

7.2 DECIMAL DATA FORMAT

deal

in

or

CHAPTER 7

STRING OPERATIONS

with operands that are strings of
memory beginning and ending on byte
contained in such a string may represent
ASCII <character information including

DEFINITIONS

Decimal operands can be in either packed or unpacked (zoned)

formate The

decimal

operands are considered as right-aligned

integers. The address of a decimal operand specifies the address

of the left-most or most

7.2.1 Packed Decimal

significant byte of the operande.

A number represented in packed decimal format is a fixed-point,

signed 1integer,

(See Figure

thus each byte,
two decimal

e | BytET1 |

7"1-)

and consists of from 1 to 16 consecutive bytese.

Fach byte is divided into two digit fields;

except for the right-most in the string, contains

digits represented in binary code. The only values
allowed in a decimal digit field are 0 through 9. The right-most
byte in the string contains the least significant decimal digit
and the sign digit.

BYTE 2

BYTE3 | | BYTE14 | ByTeI5 | BYTE 16

D1 Dy D3 Dy

Dsg

%

Deg Dg7 | D2g | D29 | P30 | D31 S

D, Dy, Dgeeveee
S
50-001 ROO

45

=SIGN DIGIT

Figure 7-1 Packed Decimal Format



612

There are two standard values for the sign S: hexadecimal C for
plus and hexadecimal D for minus. However, the hexadecimal
values 3, A, E, and F are also recognized for plus, and
hexadecimal B is recognized for minus. Other values, ) through
2 and 4 through 9, are illegal in the S position.,

A packed decimal number contains an odd number of decimal digits.
The most significant digit (zero or nonzero) of the number is in
bit positions 0-3 of the left-most byte. TI'he 1least significant
digit occupries bit positions 0-3 of the right-most byte of the
string, immediately preceding the sign digit, S. Any unused
digit at the beginning of the string is filled with a leading
ZErOs

7.2.2 Unpacked (Zoned) Decinmal

R number represented in unpacked decimal format is a fixed-point
signed 1integer, and consists of from 1 to 31 consecutive bytes.
(See Figure 7-2.) Each byte, with the exception of the
right-most byte, is assumed to contain the 7-bit ASCII equivalent
of a decimal digit. Thus, the top four bits contain zone
information and the bottom four bits in each byte <contain the
birary equivalent of a decimal digit from 0 through 9.

When the processor generates an unpacked decimal byte string, the
Zone digit is always '3°. However, any zone value is accepted in
an unpacked decimal operand, since the zone has no effect on the
operation of the instructions and is not examined. In the
right-most byte of the string, S is the sign digit. RAcceptable
values for the sign digit are the same as those defined for
packed decimal data.

| Byrer | BYTE2 | BYTES I« | ByTe20 | BYyTE30 | BYTE31 |
ZONE | D, [ZONE | D, |ZONE | Dy ZONE | Dag |ZONE | Dy, s | b3
35
ZONE = ZONE DIGIT
D;.DD....D30.D3, DECIMAL DIGITS
s = SIGN DIGIT

Figure 7-2 Unpacked Decimal Format

The most significant digit of an unpacked decimal number occupies
the 1left-most byte of the string. The least significant digit
occupbies the right-most byte of the string,

7-2 50-001 ROO



7.3 INSTRUCTION FORMATS

The two binary/decimal conversion instructions use the standarid
RX formate. The remaining string operations use the RXRX format.

In the instruction descriptions, the RXRX format is diajrammed as
follows:

{R1 } {02 (X2) R1 } {D2 (X2) }
oP =L1f,\A2 (FX2,SX2)f,1=L2f,l A2 (FX2,SX2)

where any field may have either one of the options shown in the
braces. R1/=L1 refers to the first operand length and R2/=L2
refers to the second operand length. Length of operand strings
is always expressed as a number of bytes. These can vary from O
to 15 for immediate length formats, and from 0 to maximum memory
for register length.

7.4 STRING INSTRUCTIONS
The instructions described in this section are:

LPB Load Packed Decimal String as Binary
(convert from decimal to binary)
STBP Store Binary as Packed Decimal String
(convert from binary to decimal)
MVTU Move Translated Until
MOVE Move and Pad
MOVEP Move and Pad with Default Pad
CPAN Compare Alphanumeric
CPANP Compare Alphanumeric with Default Pad
PMV Pack and Move
(convert unpacked decimal string to packed decimal string)
PMVA Pack and Move Absolute (force positive result)
UMV Unpack and Move
(convert packed decimal string to unpacked decimal string)
UMVA Unpack and Move Absolute (force positive result)

50-001 ROO 7-3



7.4.1 Load Packed Decimal String as Binary (LPB)

Assembler Notation Op-Code Format

LPB R1,D2(X2) 6F R¥X1,RX2

LPB R1,A2(FX2,SX2) 6F RX3
Operation

The second operand address points to the left-most byte of 23
packed decimal string of length sixteen bytes (31 packed decimal
digits plus sign)e. Digits of the operand are checked for
validity as the operand is converted to a 64-bit, two's
complement binary number. The result replaces the contents of
the even/odd general register pair specified by R1 and R1+1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Overflow

O O O OoOlN
- O O Ol

O - OOl
O O a0

Programming Notes
This instruction is interruptible.

R1 must specify an even-numbered register. If not, unpredictable
results occur.

If an illegal decimal digit or sign digit is detected during
conversion, the registers specified by R1 and R1+1 remain
unchanged, and a data format fault interrupt is taken.

The largest positive number that can be processed without
overflow ;s 9,223,372,036,854,775,807.

7-4 50-001 ROO



7.4.2 Store Binary as Packed Decimal String (STBP)

Assembler Notation Op-Code Format

STBP R1,D2(X2) 6FE RX1,RX2

STBP R1,A2(FX2,SX2) 6E RX3
Operation

The contents of the even/odd general register pair specified by
R1 and R1+1 are converted and stored in memory as a packed
decimal string of length 16 bytes (31 packed decimal digits plus
sign). The left-most byte is stored at the address specified by
the second operand.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

[eNeoNel @]
o O oOl=
- O O
QO - Of

Programming Notes
This instruction is interruptible.

R1 must specify an even-numbered register. If not, unpredictable
results occur.

50-001 ROO 7-5



7.4.3 Move Translated Until (MVTU)

Op- Function

Assembler Notation Code Code Format
R1) §D2(X2) } { RZ} {DZ(XZ) } 8C 00 RXRX
MVTIU \=L1f,A2(FX2,S%2)f, |=L2 +\A2(FX2,5X2)

Operation

General register 0 contains the eéscape character whose occurrence
causes the instruction to terminate. General register 2 contains
the address of a translation table. This translation table is a
simple 1list of 256 single byte entries, not to be confused with
the table used by the translate instruction. The first operand
string begins at the address specified by the first operand
address. The length of this string is equal to either +the
contents of the register specified by R1, or the value of L1.
The second operand string begins at the address specified by the
second operand address. The length of this string is equal to
either the contents of the register specified by R1, or the value
of L2.

Successive bytes from the second operand string are moved to the
first operand string, as follows:

1 A byte is fetched from the second operand string (this
is the argument byte). The contents of general register
2 are tested. If general register 2 contains zero, no
translation occurs. If general register 2 does not
contain zero, it contains the address of a translation
table of maximum size 256 bytes. In this case, the
argument byte fetched from the seconi operand string is
used as an index into the +translation table, and the
byte at the resulting address is fetched and used as the
argument byte.

2. The argument byte is compared with the escape character

contained in bits 24:31 of general register 0. If +the
bytes are the same, the C flag is set in the condition
code, and the instruction +terminates. Otherwise, the

argument byte is stored in the first operand string, and
the next successive byte is processed. This operation
is repeated until either the escape character is
encountered, the first operand string has been filled,
or the second operand string has been exhausted.,

7-6 50-001 ROO



3. When the instruction terminates, the address of the next
byte to be moved from the second operand string is
returneq in general register 1.

Condition Code

cClVv|G|L

oj04j010 Entire string moved

011010 First operand filled before entire string
moved

1401010 Escape character encountered

Programming Notes
This instruction is interruptible.

The contents of general register 1 may change during instruction
execution, but are not valid until instruction termination.

Bytes are moved from the second operand string to the first
operand string in a left-to-right sequence. If the strings
overlap, such that the source is to the left of the destination,
unpredictable results occur.

50-001 ROO 7-7



7.4.4 Move

Move and Pad (MOVE)
Move and Pad with Default Pad (MOVEP)

Op- Function

Assembler Notation Code Code Format
MOVE { R1} {D2(X2) { RZ} {D2(X2) 8c 01 RXRX
=L1f,\A2(FX2,5X2)f ,1=L2f, \A2(FX2,SX2)
MOVEP { R1} {D?(X2) { Rz} {thxz) }sc 21 RXRX
=L1) ,\A2(FXx2,5x2)f , =12, A2(FX2,SX2)

Oreration

The first operand string begins at the address specified by the
first operand address and has a length equal either to the
contents of the register specified by R1, or to the value of L1.
The second operand string begins at the address specified by the
second operand address and has a length equal either to the
contents of the register specified by R2, or to the value of L2.

Successive bytes from the second operand string are moved to the
first operand string. If the second aperand string is exhausted
before the first operand string is filled, the remaining bytes in
the first operand string are filled using the pad character. If
MOVE is specified, the pad character is contained in bits 24:31
of general register 0. If MOVEP is specified, the remainder of
the first operand is filled with ASCII space characters (X'20°).
If the first operand string is filled before the second operand
string is exhausted, overfilow results, and the operation is
terminated.

When the instruction terminates, the address of the next byte to

be moved from the second operand string is returned in general
register 1. -

Condition Code

CivV]|G|L

Oj0]0¢{oO entire string moved

0Oj1101]0 first operand filled before entire string
moved

7-8 50-001 ROO



Programming Notes
These instructions are interruptible.

The contents of general register 1 may change during instruction
execution, but are not valid until instruction terminatione.

If MOVEP 1is specified, the contents of general register 0 are
ignored.

Bytes are moved from the second operand string to the first
operand string in a left-to-right sequence. If the strings
overlap such that the source is to the left of +the destination,
unpredictable results occurse.

50-001 ROO 7-9



7.4.5 Compare

Compare Alphanumeric (CPAN)
Compare Alphanumeric with Default Pad (CPANP)

Op- Function

Assembler Notation Code Code Format
CPAN R1 D2(X2) } R2 {D2(X2) 8C 02 RXRX
=L1f ,1A2(FX2,SX2)f, \=L2f,|A2(FX2,5X2)
CPANP R1 D2(X2) R2}{D2(X2) }BC 22 RXRX
=L1f, A2(FX2,SX2)f, |=L2f,1A2(FX2,SX2)

Operation

The first operand string begins at the address specified by the
first operand address and has a length =equal either to the
contents of the register specified by R1, or to the value of L1.
The second operand string begins at the address specified by the
second operand address and has a length equal either to the
contents of the register specified by R2, or to the value of L2,

The two strings are compared a byte at a time until the first
unequal byte pair is found, or until the length of both strings
is exhausted.

If the strings are of wunequal length, the shorter string is
logically extended to the length of the longer string. If CPAN
is specified, this is done by using the pad character contained
in bits 24:31 of general register 0. If CPANP is specified, the
ASCII space character (X'20') is used as the default pad
character.

Upon termination, general register 1 is set equal to one less
than the number of second operand bytes that successfully matched
corresponding bytes in the first operand string. This count
includes pad characters if the second operand string was 1longer
than the first.

For example, a first operand string of length 3 bytes contains
the characters ABC. A second operand string of 1length 6 bytes
contains the characters ABCDDD.

~
1

10 50-001 ROO



A CPANP instruction returns a condition cods of 0001 (first
operand string less. than second operand string) and general
register 1 is set equal to 2. The first non-matching character
was the character '*D' in the second operand string. Given the
same operand strings, a CPAN instruction with general register 0
set equal +to a pad character of '*D' returns a condition code of
0000 (strings are equal including pad characters) and general
register 1 is set equal to 5.

Condition Code

clv|G| L

00| D1} 0 Strings are equal

olof 1] 0 First operand string greater than second
operand string

110} 01 1 First operand string less than second operand

string

Programming Notes

If CPANP is specified, the contents of general register 0 are
jgnored.

These instructions are interruptible.

|
-
=y

50-001 ROO 7



7.4.6 Pack and Move
Pack and Move (PMV)

Pack and Move Absolute (PMV1)

Op~- Function Format

Assembler Notation Code Code
PMV R1} {DZ(X2) } { RZ} {DZ(X2) } 8¢C 03 RXRX
\=L1 ,\A2(FX2,SX2)f, |=L2f, | A2(FX2,SX2
PHMVA R1} {Dz(xz) } { RZ} {D2(X2) }ac 23 RXRX
=L1f,\A2(FX2,SX2)f, \=L2f,  A2(FX2,5X2)
Operation

The first operand string begins at the address specified by the
first operand address. The length of this string in bytes is one
greater than either the contents of the register specified by R1,
or the value of L1. The second operand string begins at the
address specified by the second operand address. The length of
this string in bytes is one greater than either the contents of
the register specified by R1, or the value of L2.

The second operand string consists of unpacked decimal data
digits with a sign digit. Data in this string is packed and
replaces the first operand stringe. Leading zeros are supplied as
required to fill the higher-order positions of the first operand
string.

Condition Code

Result is zero

Result is less than zero

Result is greater than zero

Overflow

Invalid digit in second operand string

- O OO O|N
> Ol
X< = O O
PP O - O

~
[

12 50-001 ROO



Programming Notes

PMVA causes the sign digit of the first operand string to Dbe
forced positive.

Overflow occurs if the length of the first operand string is not
sufficient to contain the packed representation of the second
operand string. The V flag is set in the condition code, and the
specified number of digits in the first operand string receive
packed data from the second operand string. Higher-order digits
of packed data are lost in this case.

Leading zero digits do not cause overflow. They are truncated if
necessarye.

These instructions are interruptible instructions.

Since packing 1is done conceptually from right to left with any
overlapping allowed, the instruction PMV can be used to check the
validity of decimal datas.

If the destination string is to the left of the source string,
such that the signed byte of the destination string is taken as
data from the source string, the sign digit is found to be an
illegal data digit, and the C flag is set at completion of the
instruction.

)
-
w

50-001 ROO 7



7.4.7 Unpack and Move
Unpack and Move (UMV) Unpack and Move Absolute (UMVA)

Op-~ Function Format
Assembler Notation i Code Code

UMV R1 D2(X2) R2 D2(X2) 8C ou (RXRX)
L1 ,|A2(FX2,5%X2) , |=L2(, )A2(FX2,5X2)

UMVA R1 D2(X2) R2 D2(X2) 8C 24 (RXRX)
=L1 ,|A2(FX2,SX2) , |=L2( ,|A2(FX2,5X2)

Operation

The first operand string begins at the address specifield by the
first operand address. The length of this string in bytes is one
greater than either the contents of the register specified by R1,
or the value of L1. The second aperand string begins at the
address specified by the second operand address. The 1length of
this string in bytes is one greater than either the contents of
the register specified by R2, or the value of L2.

The second operand string consists of packed decimal data digits
with a sign digit. Data in this string is unpacked and replaces
the first overand string. Leading zeros are supplied as required
to £ill the higher-order positions of the first operand stringe.

Condition Code

Result is zero

Result is less than zero

Result is greater than zero

Overflow

Invalid digit in second operand string

EReleNoRoll@]
XN QOIS
AN - O Ol
MO e Ot

Programming Notes

UMVA causes the sign digit of the first operand string to be
forced positive.

7=14 50-001 ROO



Ooverflow occurs if the length of the filrst operand string is not
sufficient to contain the unpacked representation of the second
operand string. The V flag is set in the condition code, and the
specified number of digits in the first operand string receive
unpacked data from the second operand string. Higher-order
digits of unpacked data are lost in this case.

Leading zero digits do not cause overfilow. They are truncated if
necessarye

These instructions are interruptible instructionse.

Since unpacking is done conceptually from right to left with any
overlapping allowed, the instruction UMY can be used to check the
validity of decimal data.

If the destination =string is to the left of the source string
such that the signed byte of the destination string is taken as
data from the source string, the sign digit is found to be an
illegal data digit, and the C flag is set at the completion of
the instruction.

50-001 ROO , 7-15






CHAPTER 8
HIGH-SPEED DATA HANDLING INSTRUCTIONS (OPTIONAL)

8.1 INTRODUCTION

The data handling instructions are used to <compute polynomial
error check redundancy characters, as used by most data
communications protocols. Communications protocols supported Dby
this option include, but are not 1imited to, the following:

1. Binary Synchronous Communications (BISYNC or BSC) -
IBM's widely accepted half-duplex protocol usss the CRC

3ISYNC error check polynomial (x16 + x5 + x2 +1).

2. Synchronous Data Link Control (SDLC) - 1IBM's new
full-duplex protocol uses the CRC SDLC error check
polynomial (x18 + x'2 + x3 +1).

3. Advanced Data Communications Control Procedure (ADCCP)
- ANSI's proposed National Standard full-duplex protocol
uses CRC SDILC.

4. High Level Data Link Control (HDLC) - The International

Standard Organization's full-duplex protocol uses CRC
SDLC.

8.2 DATA HANDLING INSTRUCTION FORMATS

The optional data handling instructions use the Register tco
Register (RR) and Register and Indexed Storage (RX) formats.

8.3 DATA HANDLING INSTRUCTIONS

PB Process Byte
PBR Process Ryte Register

50-001 ROO 8-1



615

R1

8.3.1 Process Byte (PB)

Assembler Notation Op-Code Format
FE R1,D2(X2) 62 RX1, RX2
PB R1,A2(FX2,SX2) 62 RX3
Set-Up
0 7 8 15 16 23 24 31
X CHECK CODE X DATABYTE

Bits 24:31 of the register specified by R1 contain the data byte
to be processed. Bits 8:15 of the register specified by R1
contain a check code to indicate the type of processinge. This
byte is interpreted as follows:

X'00° Cumulative check zero (CRC BISYNC)
X'e1! Cumulative check one (CRC SDLC)
X'c2 Cumulative check two (LRC)

The second operand address points to a halfwori residual checksum
to be included in the cumulative check.

Operation

If CRC BISYNC is specified, the data byte and the old residual
checksum participate in the generation of a new residual checksunm
based on the evaluation of the polynomial (x'® + x5 + x2 +1).

similar operation is performed, using

If CKkC SDLC is specifi
+ x> +1).

s a
the polynomial (x16 2 4

In both of these cases, the new residual checksun replaces the
0ld residual checksum at the second operand location.

If LRC is specified, the EXCLUSIVE OR of the data byte with the
0ld residual checksum replaces the old residual checksum at the
second operand location.

Condition Code

Unchanged

8-2 50-001 ROO



Programming Notes

Bits 0:7 and 16:23 of the register specified by R1 are ignored.

The register specified by R1 remains unchanged.

The second operand must be located on a halfword boundarye.
Undefined check codes should not be used. If they are,
results are undefined.

Example: PB

This example performs a Process Byte instruction and stores
residue in RESIDUE.

Register 1 contains X'0001007A"
where: 01 = CRC SDLC
7R = DATA BYTE
RESIDUE contains X'D053* = old residue
Assembler Notation Comments
PB R1,RESIDUE RESIDUE on halfword boundary

Result of PB Instruction
(R1) unchanged by this instruction

(RESIDUE) = X'BC13' = new residue
Condition Code unchanged by this instruction

50-001 ROO

the

the



R1

R2

8.3.2 Process Byte Register (PBR)

Assembler Notation Op-Code Format
PBR R1,K2 32 RR
Set-Up
0 7 8 15 16 ) 23 24 31
X CHECK CODE X DATABYTE
0 RESIDUAL CHECKSUM
Bits 24:31 of the register specified by R1 contain the data byte
to be processed. Bits 8:15 of +the register specified by R1
contain a check code indicating the +type of processinge. This

byte is interpreted as follows:

X*oo0'* Cumulative check zero (CRC BISYNC)
X'01"* Cumulative check one (CRC SDLC)
X'o2' Cumulative check two (LRC)

The second operand 1is a fullword contained in the register
specified by R2. Bits 16:31 of the second operand contain the
residual checksum to be included in the processing.

Operation

If CRC BISYNC is specified, the data byte and the o0ld residual
checksum participate in the generation of a new residual

cgecksum, based on the evaluation of the polynomial (x'6 + x'5 +
x< + 1),

If CRC SDLC is specified, a similar operatlon is performed, using
the polynomial (x'0 + x12 + x5 + 1),

In both these cases, the new Tresidual checksum replaces the
contents of bits 16:31 of the register specified by R2.

If LRC is specified, the EXCLUSIVE OR of the data byte with the

old residual <checksum replaces the 0ld residual checksum in the
second operand.

8-4 50-001 ROO



Condition Code

Unchanged

Programming Notes

Bits 0:7 and 16:23 of the register specified by R1 are ignored.
The register specified by R1 remains unchanged. Bits 0:15 of the
register specified by R2 are not used and must be zero.

Undefined check codes should not be used. If they are, the
results are undefined.

50-001 ROO 8-5






CHAPTER 9
INPUT/OUTPUT (I/0) GPERATIONS

9.1 INTRODUCTION AND CONFIGURATION OF I/O SYSTEM

I1/0 operations, as defined for the processor, provide a versatile
means for the exchange of informatiaon between the processor,
memory, and external devices. Communication between the
processor and external devices is accomplished over the I/0 bus.
Data transfers over the I/0 bus require processor intervention,
either programmed or automatic, for each item transferred.

Direct data transfers between external devices and memory are

accomplished over the DMA Bus, and proceed independently of the
processor so other program processing can proceed simultaneously.

9.2 DEVICE CONTROLLERS

9.2.1 Function

The basic function of a device controller is:
1. To provide synchronization with the processor
2. To provide device address recognition

3. To transmit operational commands from the processor to
the device

. To translate device status into meaningful information
for the processor

5. To request processor attention when required

In addition, a controller may g¢generate parity; convert serial
data to parallel: buffer incoming or outgoing data; or perforn
other device-dependent functions.

50-001 ROO 9-1



9.2.2 Device Addressing

The system design allows as many as 1,023 external devices. Each
device must have its own address or device number, ranging from
X'001*' through X'3FF'. (Device number X*'000°' is not assigned.)
The minimum system provides for 255 device numbers. Larger
systems may have either 511 or 1,023,

9.2.3 Processor/Controller Communication

Device controllers may communicate with the processor either
directly, using the 1I/C bus, or indirectly through a selector
channel. Communication between the processor and controller is
a bi-directional, reguest/response operation.

The processor can initiate communication by sending the device
number out onto the I/0 bus. When a controller recognizes that
number as its address, it returns a synchronization signal to the

processor and remains ready to accept commands from the
pProcessor. The processor waits up to 40 microseconds for the
synchronization signal. If no signal is received within this

period, the processor aborts the operation and notifies the
controlling progranm. In this case, the status returned is X'J4°
known as False Sync. The condition code in the PSW is also set
to XY'4' (V flag=1). Controller malfunction and software failure
(incorrect device address) are the most common causes of this
type of time-out.

A controller <can initiate <communication with the processor by
generating an attention signal. If the ©processor is 1in an
interruptible state as defined by bits 17 and 20 of the PSW, this
signal causes the processor to temporarily suspend the normal
"fetch instruction/execute/fetch next instruction" operation at
the end of the execute phase, and to transmit an acknowledge
signal over the I/0 bus. The <controller requesting attention
responds with a synchronization signal and transmits its device
number to the processor.

9.2.4 Device Priorities - External Interrupt Levels;
Interrupt Queuing

External Interrupt lLevels

The architecture of the processor provides four external
interrupt levels. PSW bits 17 and 20 define the external
interrupt enable status of the processor.

When interrupt reguests occur on more than one intéerrupt level,
the request on the highest priority interrupt 1level is
acknowledged first. Level 0 is the highest; 1level 3 1is the
lowest in prioritye.

9-2 50-001 ROO



Interrupt Queuing

Any device <controller attempting +to interrupt the processor
activates one of the four attention lines sensed by the processor
and holds that line active until the processor acknowledges the
interrupt. Requests for attention are asynchronous; therefore
more than one request may be pending at any time on any interrupt
level. The system resolves these conflicts according to device
priority, determined by the physical placement of the device
controller on the I/0 bus. When two or more device controllers
on the same interrupt level request attention at the same time,
the controller nearest to the processor in the RACKO/TACKO
priority wiring pattern captures the acknowledge signal from the
processor and is serviced first. All other interrupting
controllers of lower priority must wait for the next acknowledge
signal from the processor.

9.3 INTERRUPT SERVICE POINTER TABLE

Device requests for service may result in either an immediate
interrupt or an auto driver channel operation. The processor
chooses one of these options according to information contained
in the interrupt service pointer table.

The interrupt service pointer table is an ordered list containing
one entry for each possible device number in the system. The
table starts at memory location X'0000DO' and contains a halfword
entry for each device number in the system. For a minimum system
(255 device numbers), the table extends through memory 1location
X*0002CF*; for a maximum system (1023 device numbers), the table
extends through memory 1location X'0008CF"'. The sof tware
controlling I/0 operations must set up the table.

When the processor receives the device address after
acknowledging a regquest for service, it adds twice the device
address to X'0000DO°'. The result is the address, within the
table, of the entry reserved for the device rejuesting attention.

If the entry in the table is even (bit 15 equals 0), the
processor takes an immediate interrupt and transfers contrel to
the software interrupt service routine at the address contained
in the table. If the entry in the table is odd (bit 15 equals
1), the processor transfers control to the auto driver channel,
without interrupting the currently running program.

At the time the processor transfers control to the software
interrupt service routine, the old PSW (current at the time of
the device request) has been saved in registers 0 and 1 of the
new register set. The device number is saved in register 2 and
the status in register 3. The status portion of the current PSH
has been replaced by the value X'000028nX*, where n 1is the new
register set number equal to the device interrupt level, and X is
the least significant 4 bits of the device status. Machine
malfunction 4interrupts and higher 1level 1I/0 1interrupts are
enabled and all other interrupts are disabled. The entry in the
interrupt service pointer table is now the new location counter.

50-001 ROO 9-3



9.4 CONTROL OF I/O OPERATIONS

The 32-bit I/0 structure allows several data transfers depending
on the particular application and on the characteristics of the
external devices. Primary methods of data transfer Dbetween the
processor and external devices are:

® One byte or one halfword to or from any of the general

registers
® One byte or one halfword to or from memory
° A block of data to or from memory under control of a selector

channel or DMA universal interface

° Multiplexed blocks of data to or from memory under control of
the auto driver channel

Standard device controllers regquire a predetermined segquence of
commands to effect data transfers. These commands address the
device, put it in +the <correct mode, and <cause data to be
transferred. Because all I/0 instructions are privileged
operations, I/0 control programs must run in the supervisor mode,
i.ee., with bit 23 of the current PSW zero. I/J control programs
should disable immediate interrupts or enable only higher level
interrupts, as controlled by PSW bits 17 and 20.

9.5 STATUS MONITORING I/O

The simplest form of I/0 programming is status monitoring 1I/0.
In this mode of operation, only one device is handled at a tinme,
and the processor cannot overlap other operations with the data
transfer. The sequence of operations in this type of programming
is:

1. Address the device and set the proper mode (output
command instruction).

2. Test the device status (sense status instruction).
3. Loop back to the sense status instruction wuntil the
status byte indicates that the device 1is ready

(conditional branch instruction).

4. When the device is ready, transfer the data (read or
write instruction).

5. If the transfer is not complete, branch back to the
sense status instructione. If it is complete, terminate.

9-4 50-001 ROO



9.6 INTERRUPT DRIVEN I/0

Interrupt driven I/0 allows the processor to take advantage of
the disparity in speed between itself and the external devices
being controlled. With status monitoring, the processor spends
time waiting for the device. With interrupt driven programming,
the processor can use this time performing other functions. This
kind of programming establishes at least two levels of operation.
On one level are the interrupt service prograns. On the other
level are interruptible ©programs that run with the immediate
interrupt enabled.

Before starting interrupt driven operations, the interrupt
service pointer table must be set up. This table starts at
memory location X'0000D0' and must contain a halfwordi addresss
entry for every possible device. The table is ordered according
to device addresses in such a way that X'0000D0' plus two times
the device address equals the memory address of the table entry
reserved for that device. The value placed 1in the 1location
reserved for a device is the address of the interrupt service
routine for the device.

For example, if a terminal is connected at an address of X*o02"*
and the interrupt routine resides in memory at address X*3000°,
the setup involves writing X'3000' at memory location X'Dy'.
Note that X'D4'=X*'D0'+ 2 times the terminal address.

Although there may be gaps in device addiress assignments, the
interrupt service pointer table shauld be completely filled.
Entries for non existent devices should point +to an errcor
recovery routine. This precaution prevents system failure in the
event of spurious interrupts caused by hardware malfunction or by
improper use of the simulate interrupt instruction.

The next step is to prepare the device for the transfer,
preferably with the 1immediate 1interrupts disabled. Once the
table pointer has been set up and the device prepared, the
processor can move on to an interruptible program.

The sequence of operation in this type of program is:

1. Set up the interrupt service pointer table to vector to
error addresses for undefined devices.

2. Store the address of the software interrupt service
routine at two times the device number plus X'DO' (X'DO’
is starting address of service pointer table).

3. Set up the software interrupt service routine.

4. Set up the device and enable device interrupts.

5. LEnable I/0 interrupts in the PSW.

50-001 ROO 9-5



When the device signals a need for service, the Dprocessor saves
its current state and transfers control to the interrupt service
routine at the location specified in the 1interrupt service
pointer table. At this time, the current PSW has a status that
indicates running state, machine malfunction interrupt enabled,
higher 1level I/0 interrupts enabled, and all other interrupts
disabled. The condition code containsg bits uU4:7 of the device
status. Registers 0 and 1 of the new set contain the old PS5SW,
indicating the status and location of the interrupted progranm.
Regicster 2 of that set contains the device address. Register 3
contains the device status.

The interrupt service routine should:

1« check the device status in Register 3, and if
satisfactory,

2. make the transfer, and

3., return to the interrupted program by reloading the o014
PSW from registers 0 and 1 (LPSWR RO).

The interrupt service routine should not enable immediate
interrupts on its own interrupt level. This would allow other
interrupt requests to be acknowledged, and the contents of
registers 0O:4 could be lost. If it is necessary to enable
immediate interrupts on the same level, the routine should save
the register set, switch to a different register set, save it 1if
necessary, and then enable immediate interrupts.

9.7 SELECTOR CHANNEL I/O

9.7.1 Introduction

The selector channel controls the transfer of data directly
between high spreed devices and memory. As many as 16 devices may
be attached +to the selector channel, only one of which may be
operating at any one time. The advantage in using the selector
channel is that other program processing may proceed
simultaneously with the transfer of data between the external
device and memory. This is possible because the selector channel
accesses memory on a cycle stealing basis, permitting the
processor and the <channel to share memory. In some cases,
execution time of the program in progress may be affected, while
in others, the effect is negligible. This depends upon the rate
at which the selector channel and processor compete for memory
cycles.

The selector channel is linked to the processor over the I/J bus.
It has its own unicue device number which it recognizes when
addressed by the processor. Like other device controllers, it
can reguest processor attention through the immediate interrupt.

9-6 50-001 ROO



9.7.2 Selector Channel Devices

The selector chHannel has a private bus similar to the processor's
I/0 Dbus. Controllers for the devices associated with the
selector channel are attached to this bus. When the selector
channel is idle, its private bus is connected directly to the I/O
bus. If this' condition exists, the processor can address,
command, and accept interrupt requests from the devices attached
to the selector channel. When the selector channel is busy, this
connection is broken. All communication between the processor
and devices on the selector channel is cut off. Any attempt by
the processor to address a device on the channel when the channel
is busy results in instruction time-out.

9.,7.3 Selector Channel Operation

Two registers in the selector channel hold the <current memory
address and the final memory address. With the use of write
instructions, the control software places the address of the
first byte of the data buffer into the current address register
and the address of the last byte into the final address register.
This is done 'before starting a selector <channel operation.
During the data transfer, the channel increments the current
address register by one for each byte transferred. When the
current address equals the final address, the last byte has been
transferred, ahd the channel terminates.

The selector channel accesses memory a minimum of one halfword at
a time; therefore, the transfer must always involve an integral
number of halfwords. The starting address of the data buffer
must always be on an even byte (halfward) boundary. The final
address must always be on an odd byte boundary. The starting
address must be less than the final address.

Upon termination, the software should read back from the selector
channel the address contained in the <current address register.
If this address is not equal to the final address specified for
the transfer, and if the buffer 1limits were properly checked
before the  transfer, this condition indicates a device
malfunction or an unusual condition within the device. For
example, crossing a cylinder boundary on a iisc is an abnormal
termination. The reason for the termination is indicated in the
selector channel status or the device status.

50-001 ROO ‘ 9-7



9.7.4 Selector Channel Programming

The usual method of programming with the selector channel uses
the immediate interrupt. The first step in the operation is to
check the status of the selector channel. If the selector
channel 3is not busy, the address of the termination interrupt
service is routine is placed in the lacation within the interrupt
service pointer table reserved for the selector channel. The
program should then proceed as follows:

1. Give the selector <channel a command to stop. This
command initializes the selector channel registers and
assures the idle condition with the private bus

connected to the I/0 bus, so that the device may be set
up for data transfer.

2. Give the selector channel the starting and final
addresses.

3., Prepare the device for the transfer with the reguired
commands and information.

4. Give the selector channel the command to start.

With the start command, the selector channel breaks the
connection between 1its private bus and the processor's 1/0 bus,
and provides a direct path between memory and the last device
addressed over 1its bus. When the device becomes ready, the
channel starts the transfer, which praceeds to completion without
further processor intervention. Once the start command has Dbeen
given, the processor can be directed +to the execution of
concurrent programs.

Upon termination, the <channel signals the processor that it
requires service. The processor subseguently takes an immediate
interrupt, transferring control to the selector channel interrupt
service routine. At this time, registers 0:3 of the new set are
set up as for any other immediate interrupt.

If a power fail/restore sequence occurs while using the selector

channel, the contents o¢f the selector channel's internal
registers are undefined.

9-8 50-001 ROO



9.8 TI/0 INSTRUCTION FORMATS

I/0 instructions use the Register to Register (RR) and the
Register and Indexed Storage (RX) instruction formats.

9.9 I/0 INSTRUCTIONS

Following most I/O instructions, the VY flag in the condition code
indicates instruction time-out. This means that the operation
was not completed, either because the device did not respond at
all, or because it responded incorrectly.

In the Sense Status and Autoload instructions, the V flag can
also mean examine status. To distinguish between these two
conditions, the program should test bits 0:3 of the device status
byte. If all of these bits are zero, device time-out has
occurred.

The instructions described in this section are:

SS Sense Status

SSR Sense Status Register
oC Qutput Command

OCR Output Command Register
RD Read Data

RDR Read Data Register

RH Read Halfword

RHR Read Halfword Register
WD Write Data

WDR Write Data Register

WH Write Halfword

WHR Write Halfword Register
AL Autoload

SCP Simulate Channel Progranm

50-001 ROO 9-9



9.9«1 Output Command

Output Command (OC)
Output Command Register (OCR)

Assembler Notation Op-Code Format
ocC R1,D2(X2) DE RX1,RX2
ocC R1,A2(FX2,5X2) DE RX3
OCR R1,R2 9E . RR

Operation

Bits 22:31 of the register specified By R1 <contain the 10-bit
device address. The processor addresses the device and transfers
an eight-bit command byte from the second operand location to the
device. Neither operand is changed.

Condition Code

C|V ]G T
0(0]0]|0 Operation successful
0f{1]101]0 Instruction time-out (FALSE SYNC)

Programming Notes

In the RR format, bits 24:31 of the register specified by R2
contain the device command.

These instructions are privileged operations.

9-10 50-001 ROO



9.9.2 Sense Status

Sense Status (SS)
Sense Status Register (SSR)

Assembler Notation _ Op-Code Format
SS R1,D2(X2) DD RX1,RX2
SS R1,A2(FX2,SX2) DD RX3
SSR R1,R2 9D RR

Operation

Bits 22:31 of the register specified by R1 contain the 10-bit
device addresse. The device is addressed and the 8-bit device
status is transferred to the second operand location. The
condition code is set equal to the least significant four bits of
the device status byte. The first operand is unchanged.

Condition Code

Bits 4:7 of the device status byte are copied into the condition
code. See the appropriate device manual for a description of
this status.

If the device is not in the system, the condition code is set to
0100 (false sync). In this case, the status byte returned is
X'ou'.

Programming Notes

In the RR format, the device status byte replaces bits 24:31 of
the register specified by R2. Bits 0:23 are forced to zero.

These instructions are privileged operationse.

Instruction time-out does not prevent the second operand location
from being modified.

50-001 ROO : 9~-11



9.9.3 Read Data

Read Data (RD)
Read Data Register (RDR)

Assembler Notation Op-Code Format
RD R1,D2(X2) DB RX1,RX2
RD R1,A2(FX2,SX2) DB RX3
RDR R1,R2 9B RR

Operation

Bits 22:31 of the register specified by R1 <contain the 10-bit
device address. The processor addresses the device and transfers
an 8-bit data byte from the device to the second operand
location.

Condition Code

ClVI|[G{ L
cJ]0]0}oO Opreration successful
o|l1101l0 Instruction time-out (FALSE SYNC)

Programming Notes

In the RR format, the 8-bit data byte replaces bits 24:31 of the
register specified by R2. Bits 0:23 of the register are forced
to zZero.

These instructions are privileged operations.

Instruction time-out does not prevent the second operand location
from being modified.

9-12 50-001 ROO



9.9.4 Read Halfword

Read Halfword (RH)
Read Halfword Register (RHR)

Assembler Notation ‘ Op-Code Format
RH R1,D2(X2) D9 RX1,RX2
RH R1,R2(FX2,5X2) D9 RX3
RHR R1,R2 99 RR

Operation

Bits 22:31 of the register specified Dby R1 contain the 10-bit
device address. The processor addresses the device., If the
device is halfword-oriented, the processor transfers 16 bits of
data from the device to the second operand location. If the
device is byte-oriented, the processor transfers two 8-bit bytes
in successive operations.

Condition Code

c{VvI|G|L
ololofoO Operation successful
o0j110]0 Instruction time-out (FALSE SYNC)

Programming Notes

If the device is byte-oriented, it must be capable of supplying
both bytes without intervening status checks. This instruction
does not perform status checking between the two byte transfers.

In the RR format, the data transferred from a halfword device
replaces bits 16:31 of the register specified by R2. Bits 0:15
are forced to zero. The first byte of data from a byte device
replaces bits 16:23 of the register specified by R2 and the
second byte replaces bits 24:31. Bits 0:15 of the register
specified by R2 are forced to zero.

In the RX format, the second operand must be located on a
halfword boundarye. The first byte of data from a byte device
replaces bits 0:7 of the halfword operand in memory and the
second byte replaces bits 8:15.

These instructions are privileged operations.

Instruction time-out does not prevent the second operani location
from being modified.

50-001 ROO _ 9~-13



9.9.5 Write Data

Write Data (WD)
Write Data Register (WDR)

Assembler Notation Op-Code
WD R1,D2(X2) DA
WD R1,A2(FX2,SX2) DA
WDR R1,R2 9A
Operation

Bits 22:31 of the register specified by

device address. The processor addresses
an 8-bit data byte from the second
device. Neither operand is changed.

Condition Code

cClVv G|L
0OJ]0t0]oO Operation successful
0}l1101]0 Instruction time-out

Programming Notes

In the RR format, the 8-bit data byte is
24:31 of the register specified by R2.

Format

RX1,RX2
RX3
RR

R1 contain the 10-bit
the device and transfers
operand location to the

(FALSE SYNC)

transferred from bits

These instructions are privileged operations.

[¥e)
t
-
r

50-001 ROO



9.9.6 Write Halfword

Write Halfword (WH)
Write Halfword Register (WHR)

Assembler Notation Op-Code Format

WH R1,D2(X2) D8 RX1,RX2

WH R1,A2(FX2,5%2) D8 RX3

WHR R1,R2 98 RR
Operation ‘
Bits 22:31 of the register specified by R1 contain the 10-bit
device addresse. The processor addresses the device. If the

device is halfword-oriented, the processor transfers 16 bits of
data from the second operand location to the device. TIf the
device is byte-priented, the processor transfers two 8-bit data
bytes in successive operations.

Condition Code

cCiVv]|GlL
o(ojoto Operation successful
ol1]l0}O0 Instruction time-out (FALSE SYNC)

Programming Notes

If the device ;s byte-oriented, it must be capable of accepting
both bytes without intervening status checks. This instruction
does not perform status checking between the two byte transfers.

In the RR format, data is transferred to a halfword device from
bits 16:31 of the register specified by R2. The first byte of
data is transferred to a byte device from bits 16:23 of the
register specified by R2; the second byte comes from bits 24:31.

In the RX format, the second operand must be located on a
halfword boundary. The first byte of data is transferred to a
byte device from bits 0:7 of the halfword operand in memory and
the second byte is transferred from bits 8:15.

These instructions are privileged operations.

50-001 ROO ' 9-15



9.9.7 Autoload (AL)

Assembler Notation Op-Code Format
AL D2(X2) D5 RX1,RX2
AL A2(FX2,5X2) D5 RX3

Operation

The AL instruction loads memory with a block of data from a
byte-oriented input device. The data is transferred a byte at a
time to successive memory locations starting with 1location
X*000080°'. If the device status is bad, the operation is
terminated with V, G or L flags set. The 1last byte is loaded
into the memory location specified by the address of the second
operand. If any blank or zero bytes are input before the first
non-zero byte, these bytes are considered to be leader and are
ignored. All other zero bytes are stored as data. The 8-bit
input device address is specified by memory location X'000078°*.
The device command byte is specified by memory location
X'000079°*.

Condition Code

Operation successful or aborted
Examine status or time out

End of mediunm

Device unavailable

el Nelle]
> < O

> 2 OIR
= > O

Programming Notes

This instruction may be used only with devices whose addresses
are less than, or equal to, X'FF°'.

This instruction is a privileged operation.

Bad status termination results if any of the least significant
three bits of the device status are set.

The starting and ending addresses for this instruction are
relocatable. Address translation should be disabled before
attempting to use this instruction.

If the second operand address is less than X'80°' the operation is
aborted.

The R1 field of this instruction must be zero.

9-16 50-001 ROO



9.9.8 Simulate Channel Program (SCP)

Assembler Notation Op-Code Format
SCP R1,D2(X2) E3 RX1,RX2
SCP R1,AR2(FX2,5X2) E3 RX3

Operation

The second operand address is the address of a Channel Command
Block (CCB). The buffer switch bit of the Channel Command Word
(CCW) specifies the buffer to be used for the data transfer. If
this bit is set, buffer 1 is used. If it is zero, buffer 0 is
used. If the byte count field of the current buffer 1is greater
than =zero, the V flag in the condition code is set, and the next
sequential instruction is executed. If the byte count field is
not greater than zero, the following data transfer operation is
performede.

If the CCW specifies read, a byte of data 1is moved from bits
24:31 of the register specified by R1 to the appropriate buffer
location. If the CCW svecifies write, a byte of data 1is moved
from the appropriate buffer location to bits 24:31 of the
register specified by R1. Bits 0:23 are forced to zero.

After a byte has been transferred, the count field of the
appropriate buffer is incremented by one. If the count field is
now greater than zero, and if the fast bit of the CCW 1is zero,
the buffer switch bit of the CCW is complemented.

Condition Code

Count field is now zero

Count field is now less than zero
Count field is now greater than zero
Count field was greater than zero

[eNeNoNalle!
- OO o<

[« N No ] [3]
O O - Ot

Programming Notes

If the CCW specifies fast mode, buffer 1 may be used, but the
buffer bit is not switched when the count field becomes greater
than Zzero.

The second operand must be located on a fyllword boundary.

This instruction is a privileged operation.

50-001 ROO 9-17



9.10 AUTO DRIVER CHANNEL

The auto driver channel provides a means for multiplexing block
data transfers between memory and 1low or medium speed I/0
devices. The channel operation is similar, in some respects, to
interrupt driven I/0. The channel is activated as a result of a
service request from a device on the I/0 bus. Upon receipt of
such a request, the processor uses the device number to index
into the interrupt service pointer table. If the value contained
in the table is even, the processor transfers control +to the
interrupt service routinee. If the value is odd, it transfers
control to the auto driver channel.

To the auto driver channel, the address in the interrupt service
pointer table 1is the address plus one (making it odd) of a
Channel Command Block (CCB). The <channel command block is a
channel program consisting of a description of the operation to
be performed, and a 1list of parameters associated with the
operation. In addition to the functions of read and write, the
channel can also:

1e translate characters
2. test device status
3. chain buffers

b. <calculate 1longitudinal and cyclic redundancy check
values

5. transfer control to software routines to take care of
unusual situations

9.11 CHANNEL COMMAND BLOCK

9.11«1 Introduction

The Channel Command Block (CCB), as shown in Figure 9-1, consists
of a channel command word (16 bits) that describes the function;
count fields (16 bits each) for two buffers; final addresses (32
bits each) for two buffers; a check word (16 bits) for the
longitudinal or cyclic redundancy check: the address (32 bits) of
a translation table; and the address (16 bits) of a software
routine. The CCB requires 22 bytes of Memory.

Many interrupt service routines may be available at any time to
service device requests. There may also be many channel command
blocks in the system ready to handle data transfers as required.
Each channel command block must be aligned on a fullword
boundary. The channel command block address, plus one, must be
placed in the interrupt service pointer table location for the
device involved in the transfer.

9-18 50-001 ROO



617-1

0 CHANNEL COMMAND WORD (HALFWORD)

2 : BUFFEROBYTE COUNT (HALFWORD)

4 BUFFER 0 END ADDRESS (FULLWORD)

8 ’ CHECK WORD {HALFWORD)

ﬁ AL i BUFFER 1 BYTE COUNT (HALFWORD)
C,.-‘-Z . j BUFFER 1 END ADDRESS (FULLWORD)
{O:lﬁ" TRANSLATION TABLE ADDRESS (FULLWORD)
]l—, 20 SUBROUTINE ADDRESS {(HALFWORD)

jFiqure 9-1 Channel Command Block

9.11.2 Subroutine Address

To handle special situations, channel control is transferred to
the software $ubroutine, whose address is contained in the
channel command block. When this occurs, registers 0:4 of the
appropriate set have already been set up by the processor to
contain the old PSW, the device number, the device status, and
the address of the channel command block. The current PSW status
specifies run - state, machine malfunction interrupt enabled,
higher level I/0 interrupts enabled, and all other interrupts
disabled.

The channel transfers control to the subroutine either
unconditionally (controlled by a pit in the channel command
word), because of bad device status, because of special character
translation, or because it has reached the limit of a buffer. It
indicates 4its reason for transferring control by adjusting the
condition code as follows:

Unconditional transfer or special character
Bad status
Buffer limit

o O OO

- O Ol
QO = O

[N =Nalis]

The subroutine address in the CCB is a 16-bit physical addresse.
For this reason, the subroutine at that address, or at least the
first instruction of the subroutine, must reside in the first
64kb of memory.

50-001 ROO 9

'
-
O



9.11.3 Buffers

There is a space in the CCB to describe two data buffer areas.
The data areas may be located anywhere in memory. The limits of
each data area are described by an address field and a count
field. The address field contains the physical address of the
last byte in the data area. This address is right justified in
the fullword provided. If the device being controlled is a
halfword-oriented device, the final address must be odd. If the
device 1is a byte-oriented device, the address may be either odd
or even. The active buffer is selected by a bit in the channel

command word. When one buffer has been exhausted, the channel
may reverse the state of this bit and thus switch to the
alternate buffere. Automatic buffer switching is available only

for byte-oriented devices and if the Fast bit of the CCW is Zero.
If the Fast bit is set, buffer 0 is always usei.

The count field, in most operations, contains a negative number
which has an absolute value equal to one less than the number of
bytes to be transferred. This includes the case of a single data
transfer, for which the count field cantains zero.

During data transfers, the channel adds the value contained in
the count field to the final address in order to obtain the
current address. It makes the transfer, using the current
address, then increments the value in the count field by one for
a byte device or by two for a halfword device. When the count
field becomes greater than zero, the channel sets the G flag in
the <condition <code and transfers control to the specified
software subroutine. If the count field is greater than zero
upon channel activation, the channel makes no transfer and
relinquishes control of the processor.,

9.11.4 Translation

The translation feature is available only for byte-oriented
devices and if the Fast (F) bit in the CCW is zero. If
translation is specified, the fullword providei in the channel
command block must contain the address, right justified, of a
translation table. This table, which nmust be aligned to a
halfword boundary, can contain up to 256 halfword entries,
During data transfers, the channel multiplies the data byte by
two and adds this value to the translation table address. The
result is the address within the translation table of the
halfword entry corresponding to the data byte.

9-20 50-001 ROO



The channel tests this entry, and, if bit 0 of the halfword is
set, it substitutes bits 8:15 of the halfword for the data byte
and proceeds with the operation. If bit 0 of the halfword is a
zero, the channel:

® does not increment the byte count for the appropriate buffer.

) puts the data byte, untranslated, in bits 24:31 of register
3, of the appropriate set, and forces bits 0:23 of register
3 to zero.

° multiplies the value contained in the +translation +table by
two, and transfers control to the software special character
translation routine located at the resulting address.

Upon transfer to the translation subroutine, registers 0 and
1 contain the old PSW; register 2 contains the device number;
register 3 contains the untranslated character; and register
4 contains the address of the channel command block. The
current PSW indicates run state, machine malfunction
interrupt enabled, higher level I/0 interrupts enabled and
all other interrupts disabled. The condition code is zero.

9.11.5 Check Word

The <check word in the channel command block contains the
accuhulated residual for 1longituddnal or «c¢yclic redundancy
checking. The initial value for the check word is usually =zero.
(There are data dependent exceptions, e.g., where initial
characters are not to be included in the check.)

The longitudinal check is an exclusive OR of the character with
the check word.

The cyclic check uses the formula for CRC 16:
X165 +x15 +3x2 +1

If the data communication option is equipped, the <cyclic check
may optionally use the formula for CRC SDLC:

x16 +x12 +X5+1

On input, if both redundancy checking and translation are
required, the character 1is translated first; then the cyclic
redundancy check is done using +the original <character input
rather than the translated character. On output, the translated
character participates 1in the redundancy check. Redundancy
checking may be wused only with byte devices, and is only
performed if the Fast bit (F) of the CCW is zero.

50-001 ROO : 9-21



9.11.6 Channel Command Word
The Channel Command Word (CCW), as shown in Figure 9-2, consists

of two parts. Bits O0:7 contain a status mask. Bits 8:15
describe the channel operation.

618

0 7 8 9 10 11 12 15
STATUS MASK E RC |BRMT]|F
NR|
L— FAST
TRANSLATE
EXECUTE L  READ/WRITE (0/1)
BUFFER SWITCH

REDUNDANCY CHECK TYPE

Figure 9-2 Channel Caommand Word

Status Mask

On every channel operation, if the Execute (E) bit is set, the
status mask is ANDed with the device status. This operation does
not change +the status mask. If the result is zero, the channel
proceeds with the operation. If +the result 4is non-zero, the
channel sets the L flag in the condition code, and transfers
control to the specified software subroutine.

-

i o Wl (BuFFER Fuel ET

srecate BIL (B p g says somETHING 1S wkO RREV T/0 0T £

If this bit 1is =zero, the <channel unconditionally transfers

control to the specified subroutine, without taking any other

action. The condition code is zZero. If this bit is set, the

channel <continues with the operation as specified in the channel
command word.

Fast Bit (F)

If this bit is set, the channel performs the I/0 transfer in the
fast mode. In this mode, buffer switching, redundancy checking,
and translation are not allowed. This bit must be set for
halfword devices. If this bit is set, buffer 0 is always used.

Read/Write Bit (R/W)

This bit indicates the type of operation, If this bit is =zero,
a byte or a halfword is input from the device. If this bit is
set, a byte or a halfword is output to the device.

0
|

22 ’ 50-001 ROO

;)
SHER



Translate Bit (T)

If this bit is set, and the Fast bit 1is zero, the channel
translates the data byte, using the translation table defined in
the CCB.

Redundancy Check Type Bits (RC)

These two encoded bits specify the type of redundancy check
required. No check is performed if the fast bit is set. CRC
SDLC may be performed only if the data communication option 1is
installed. If the option is not installed, CRC BISYNC (CRC 16)
is performed when SDLC 1is specified. The following table
contains the valid types of checks:

Bit Bit
10 1M Redundancy Check Typre
0 0 LRC
0 1 CRC BISINC
1 0 Reserved - must not be specified
1 1 CRC SDLC - Should omly be specified if
the data communication option is installed.

Buffer Switch Bit (B)

When zero, this bit specifies that buffer 0 is to be used for the
transfer. If it is set, buffer 1 is used. The <channel chaias
buffers, when the <count field becomes greater than zero, by
complementing the buffer switch bit before transferring control
to the specified software routine. Buffer 0 is always used if
the Fast bit in the CCHWH is set.

9.11«.7 Valid Channel Command Codes

The following is a list of valid codes for the channel command
word. Note that only the first three may be used with halfword
devices.

50-001 ROO _ 9

23



CHANNEL COMMAND WORD BITS 8:15

HEXADECIMAL BINARY
00 00000000
81 10000001
85 10000101
80 10000000
82 10000010
84 10000100
86 10000110
88 10001000
8A 10001010
8C 10001100
8E 10001110
%0 10010000
92 10010010
94 10010100
96 10010110
98 10011000
9A 10011010
9C 10011100
9E 10011110
BO 10110000
B2 10110010
B4 10110100
B6 10110110
B8 10111000
BA 10111010
BC 10111100
BE 10111110

9«24

MEANING

Transfer to subroutine

Read fast

mode

Write fast mode

LRC, Buffar 0, reai

LRC, Buffer 0, read, translate
LRC, Buffer 0, write
LRC, Buffer 0, write, translate

LRC, Buffer 1, read

LRC, Buffer 1, read, translate
LRC, Buffer 1, write

LRC, Buffer 1, write, translate
CRC BISYNC, Buffer
CRC BISYNC, Buffer

translate

CRC BISYNC, Buffer
CRC BISYNC, Buffer

translate

CRC BISYNC, Buffer
CRC BISYNC, Buffer

translate

CRC BISYNC, Buffer
CRC BISYNC, Buffer

translate
CRC SDLC,
CRC SDLC,
translate
CRC SDLC,
CRC SDLC,
translate
CRC SDLC,
CRC SDLC,
translate
CRC SDLC,
CRC SDLC,
translate

Buffer 0O,
Buffer 90,

Buffer O,
Buffer 0,

Buffer 1,
Buffer 1,

Buffer 1,
Buffer 1,

0, read
0' read’

0' write
0, write,

1, read
1, read,

1, write
1, write,

read
read,

write
write,

read
read,

write
write,

50-001 ROO



9.11.8

General Auto Driver Channel Programming Procedure
(see Figure 9-3)

Set up interrupt service pointer table to vector

error routines for undefined devices.

Set up address of channel command word + 1 (odd)

to

in

table at 2 times device number plus X'D0' (start of

interrupt service pointer table).
Set up complete channel command blocke.
Set up device and enable device interrupt.

Enable I/0 interrupts in PSW (auto driver
performs I/0 operation).

Check for good termination of auto driver

channel

channel

operation when the subroutine defined in the CCB is

enterede.

50-001 ROO



620

CHANEL

NORMAL

FASTMODE

cHAN om

R4-=-A(CCB),
FORCED EVEN

‘FAST’
BIT SET IN
Cccw?

BUFFER O
BYTE COUNT
POSITIVE

ADD BYTE COUNT
TO BUFFER 0 END

EXSUBO

"AND” STATUS
MASK WITH
INTERRUPT

STATUS

EXAUTO

RESTORE
ENTRY
PSW & LOC

PSW ~—
*28N0’

EXSUB1

PSW «w—
'28N1°

EXSU

B2

PSW ==—
'28N2

LOC+CCB
SUBROUTINE
ADDRESS

ADDRESS, TO
FIND ADDRESSED
DATA BYTE
. EXECUTE AT
SUBROUTINE v
ADDRESS
QUEUE FLAG
FOR
TWAIT MALFUNCTION
TEST WAIT BIT IN CHANNEL
OUTPUT DATA w:g;w&%
HALFWORD, ALFWORD .
INCREMENT DEVICE HALFWORD INCREMENT MMEINT
BUFFER 0 BYTE ? DE‘QCE BUFFER 0 BYTE
COUNT BY 2 » COUNT BY 2
MACHINE MALFUNCTION
INTERRUPT
OUTPUT DATA INPUT DATA
BYTE, BYTE,
INCREMENT INCREMENT
BUFFER O BYTE BUFFER 0 BYTE
COUNT BY 1 COUNT BY 1
\ - - Y
NOTES:
ON ENTRY FROM AUTOIO,
PSW = '000028NX’
EXSUB2 WHERE N = ATTENTION LINE CAUSING INTERRUPT
X = 4 LS DEVICE STATUS BITS
RO = OLD PSW
R1=0LD LOC
R2 = INTERRUPT DEVICE ADDRESS
R3 = INTERRUPT DEVICE STATUS
MPE STATUS 1S TRUE IF A
MACHINE MALFUNCTION
OCCURRED WITHIN THE CHANNEL.
EXAUTO
Figure 9-3 Auto Driver Channel Flow Chart
§-26 50-001 ROO



NORMAL

SETUPTO
USE
BUFFER 1

NFWRIT

REDCHK

CHECKWORD USING

GENERATE NEW

CRC16 ALGORITHM
IN MICROCODE,
WRITE TO MEMORY

GENERATE
NEW CHECKWORD
USING COMM
ASSIST UNIT,
WRITE TO MEMORY

EXCLUSIVE OR
SET UP TO DATA WITH -
USE CHECKWORD, -
BUFFER 0 REWRITE TO
MEMORY
RETURN
\
NOTE: BYTE USED IN /O FIGURES
IN CHECKWORD
BUFFER
BYTE COUNT EXAUTO RETURN
POSITIVE
?
N
ADD BYTE COUNT ¢
TO BUFFER END sfak !
ADDRESS, TO i “’fff’w
FIND ADDRESSED ISEATe e
DATABYTE -
NFREAD
INPUT
- DATA BYTE
ccw v
SUBROUTINE TBIT SUBROUTINE
TRANSL SET TRANSL
?
N J N ‘
) -
OUTPUT SUBROUTINE DEVELO P CHECK wbh
BYTE REDCHK
SUBROUTINE
REDCHK
| /
'NCSWEENT WRITE BYTE
COUNT TO
BY 1, WRITE MEMORY
TO MEMORY

BYTE

COUNT
POSITIVE
?

COMPLEMENT
CCB
BUFFER BIT

(0 J o

EXAUTO

< TRANSL ’

IS TRTBL
INDEX. READ
ENTRY

2 TIMES DATABYTE

FETCH
TRANSLATION
BYTE

RETURN

LOC =2 TIMES
TABLE ENTRY
(ADDRESS OF
TRANSLATION
ROUTINE)

NOTE: USER SOFTWARE
MUST UPDATE BUFFER
BYTE COUNT AS
APPROPRIATE

Figure 9-3 Auto Driver Channel Flow Chart (Continued)

50-001 ROO






CHAPTER 10
STATUS SWITCHING AND INTERRUPTS

10.1 INTRODUCTION

The processor's interrupt system provides a mechanism for escape
from the normal processing sedquence to handle external and
internal events. The software routine that 1s executed in
response to an interrupt is called an interrupt service routine.
Before transferring control to a service routine, the <current
state of the processor is preserved so that, upon completion of
the service routine, the execution of an interrupted program may
be resumed.

Interrupts may be classified as being synchronous or
asynchronous, depending on whether they occur in fixed
relationship +to the execution of instructions, or whether they
occur at random times due to events external +to the ©processor.
Examples of asynchronous interrupts include power fail, console
attention, and peripheral device interrupts.

Synchronous interrupts occur due to fault conditions, or in the
case of software interrupts, may be programmed +to occure.
Examples of fault conditions which cause synchronous interrupts
include noncorrectable memory errors, illegal instructions, and
arithmetic faults.

Software interrupts occur when the Supervisor Call (SVC) or
Simulate Interrupt (SINT) instructions are executedi, or as a
result of adding an entry to the system queue. The Breakpoint
(BRK) instruction causes program execution to be suspended so
that the system console terminal may be activated. Refer to the
chapter on the System Console Terminal.

Each interrupt condition 1is reset when the <corresponiing
interrupt occurse.

50-001 ROO _ 10-1



10.2 PROGRAM STATUS WORD (PSW) AND RBSERVED MEMORY LOCATIONS

The Program Status Word (PSW), shown in Figure 10-1, is a 64-bit
quantity that controls the operation of the processor. The PSW
provides information about various states and conditions
affecting the operation of the processor. The PSW is composed of
two fullwords: bits 0:31 are the status word, and bits 32:63 are

the location coudnter. The various PSW fields are described
below:
3165
9 1011 12131415 161718 1920 21 22 23 24 27 2829 30 31
v ML ANk
v wle WL IMIG LY 4 ]alr R clvic|L
STATUS WORD
32 39 40 63

LOCATION COUNTER

LOCATION COUNTER

Figure 10-1 Program Status Word (PSW)

Bits 0-9 Unused, must be zero

Bits 10-11 LVL Memory access level

Bit 12 Unused, must be zero

Bit 13 FLM Floating-point masked mode

Bit 14 IIP Interruptible instruction in progress
Bit 15 Unused, must be zero

Bit 16 W Wait state

Bit 17 I I/0 interrupt mask

Bit 18 M Machine malfunction interrupt mask
Bit 19 FLU Floating-point underflow mask

Bit 20 I I/0 interrupt mask

Bit 21 R/P Relocation/protection mask

Bit 22 Q System gueue service interrupt mask
Bit 23 P Protect mode

Bits 24 - 27 R Register set select field

Bits 28 - 31 c,v,G,L Condition coade

Bits 32 - 39 Unused, must be zero

Bits 40 - 63 Location counter

10-2 50-001 ROO



10.2.1 PSHW Status Word

Bits 0:31 of the PSW are called the status word. This word
controls interrupts, defines the status of the processor, and
contains the condition code. The following sections provide
detailed definitions of various states of the processor and how
the status word controls them. Unused bits of the status word
must always be zero.

10.2.1.1 Memory RAccess Level Field (LVL)

When PSW bit 21 (R/P) is set, PSW bits 10 and 11 participate in
‘an access level <check for any memory access attempted by the
current program. The LVL field of PSW is compared numerically to
the Access lLevel field of the appropriate segment table entrye.
If the LVL field contains a lesser value than the access level
field, a Memory Address Translator (MAT) fault interrrupt accurs.

WHhen PSW bit 21 is zero, PSW bits 10 and 11 are ignored, and no
access level check is performed.

10.2.1.2 Floating-Point Masked Mode (FLHM)

On processors with the floating-point option, when bit 13 of the
current PSW is zZero, a program may execute any 1legal
floating-point instruction.

When bit 13 of the current PSW is set, the processor is 1in the
Floating-Point Masked (FLM) mode. A program running in this mode
is not allowed to execute floating-point arithmetic instructions.
If execution of any floating-point arithmetic instruction is
attempted in FLM mode, an illegal instruction interrupt occurs.
If the processor is in FLM mode when a context switch is made by
the system program and the processor state must be saved, the
contents of the floating-point registers need not be saved. This
results in a faster context switch.

10.2.1.3 Interruptible Instruction in Progress (IIP)

PSW bit 14 is set by the processor while an interruptible
instruction is in progress, and is zero when the interruptible
instruction terminates. This bit is set by the ©processor to
indicate that the scratchpad registers contain valid parameters
for the interruptible instruction and that these parameters need
not be recalculated before resuming the interrupted instruction.

If bit 14 of the current PSW is set when the processor transfers
control to a software interrupt service routine, that routine
must not allow the contents of the scratchpad registers to be
modified before the interruptible instruction is resumed. The
STPS, LDPS, 1ISSV, and ISRST instructions provide the means for
saving and restoring these registers if they must be used by the
interrupt service routine.

50-001 ROO 10-3



10.2.1.4 Wait State (W)

When PSW bit 16 is set, the processor is in the wait state. In
the wait state, the normal fetch instruction/execute
instruction/fetch next instruction sequence is suspendei. While
in the wait state, the processor is responsive to console
attention interrupts and primary power fail, as well as any
interrupts specifically enabled by the current PSW.

PSW bit 16 is zero when the processor is executing instructionse.
This bit is forced to zero whenever the single-step, run switch,
or system console terminal is used to initiate instruction
execution. This bit is not forced set by entry to the console
mode.

If an interrupt occurs, PSW bit 16 is set according to the new
PSW defined for servicing the interrupt. Bit 16 of the new PSW
for any I/0 interrupt is zero.

Except for an I/0 interrupt, the state of bit 16 of the new PSW
is tested as the PSW is loaded. If bit 16 of the newly loaded
PSW is set, the processor enters the wait state, provided that no
interrupt is still pending. All pending interrupts are serviced
before the processor enters the wait state.

10.2.1.5 I/0 Interrupt Mask (I)

PSW bits 17 and 20 are used together +to enable or disable
recognition of interrupt requests generated by peripheral devices
on any of the four interrupt levels, as detailed below:

BIT 17 BIT 20 MEANING
0 0 All lewvels disabled
0 1 Higher levels enabled
1 0 All levels enabled
1 1 Current and higher levels enabled

The interrupt levels are numbered from 0 to 3, with level 0 being
the highest priority interrupt level and level 3 being the lowest
priority interrupt level.

An I/O0 interrupt request is queued until the processor
acknowledges the interrupt unless the request is programmed
reset, or power fail occurs. The state of PSW bits 17 and 20 is
ignored by the Simulate Interrupt (SINT) instruction.

10-4 50-001 ROO



10.2.1.6 Machine Malfunction Interrupt Enable (M)

PSW bit 18 is used to enable and disable detection of various
malfunction conditions within the ©processor and the resulting
machine malfunction interrupt. When this bit is set, any of the
following conditions results in a machine malfunction interrupt.

early power failure

power restore

noncorrectable memory data error
nonconfigured memory address

The processor is designed with the concept that all software must

enable the machine malfunction interrupt for maximum data
integritye. Unlike other processors, this processor does not
require that this interrupt ever be disablei. The processor

resets each detected interrupt condition as it occurs.

While performing a machine malfunction interrupt PSW swap, the
processor sets PSW bit 18 to allow error detection for the new
PSW data fetched from memory. If the new PSW cannot be fetched
correctly, the processor effectively stops by entering the
console mode. This prevents a runaway situation in the event of
a double fault.

If PSW bit 18 is zero, any noncorrectable memory dati error is
logged by the optional error logger. Cache accesses to memory
using a nonconfigured memory address result in undefined data
being loaded into the optional high-speed cache, with no error
indication. (Subsequent access to the same area of cache results
in another memory fetch, as cache data |is invalidated.) No
machine malfunction interrupt occurs for any of the reasons given
above. A machine malfunction due to early power failure is
gqueued until PSW bit 18 is set by software, or until automatic
shutdown occurse. The interrupt is not queued for any other
reason.

10.2.1.7 Floating-Point Underflow Interrupt Enable (FLU)

PSW bit 19 controls response of the processor to an arithmetic
underflow resulting from a single- or double-precision
floating-point arithmetic operation.

If this bit is set when the underflow occurs, an arithmetic fault
interrupt occurs, and the participating floating-point registers
remain unchangede.

If +this bit is zero when the underflaw occurs, the result of the
operation is replaced by zero, and the condition code is set to
0100 (V-flag only), as defined in the description of the specific
floating-point instruction.

50-001 ROO 10-5



10.2.1.8 Relocation/Protection Enable (R/P)

PSW bit 21 is used to enable and disable the relocation and
protection programmed into the Memory Address Translator (MAT).
When this bit is set, relocation, protection, and the MAT fault
interrupt are enabled. When this bit is =zero, relocation,
protection, and the MAT fault interrupt are disabled.

10.2.1.9 ©System Queue Service Interrupt Enable (Q)

If bit 22 of the new PSW loaded by any of the instructions listed

below is set, the state of the system queue is tested. If the
system gueue is not empty, a System Queue Service (5Q0S) interrupt
occurs. If the system queue is empty, the next instruction is

fetched and executed, according to the newly-loaded PSW.

If bit 22 of the newly-loaded PSW is zero, the SQS intarrupt is
disabled.

The following instructions test the state of the system queue:

MNEMONIC MEANING
EPSR Exchange Program Status Register
LDPS Load Process State
LPSW Load Program Status Word
LPSWR Load Program Status Word Register

10.2.1.10 Protect Mode Enable (P)

When PS5W bit 23 is set, the processor is in the protect mode.
Any attempt by a program running in this mode to execute a
privileged instruction causes an illegal instruction interrupt to
occur. The processor does not attempt to execute the offending
instruction. The Breakpoint (BRK) instruction is a privileged
instruction.

When PSW bit 23 is zero, the processor is in privileged mode. A
progranm running in privileged mode may execute any legal
instruction, within the constraints imposed by the systenm

configuration and the state of PSW bit 13 (FLM).

10-6 50-001 ROO



10.2.1.11 Register Set Select Field (R)

Bits 24, 25, 26, and 27 of the <current PSW select the active
general register set. Although 16 different sets may be
specified by using the four bits of this field, only eight sets
of general registers are implemented 1in this processor. The
implemented sets are numbered 0, 1, 2, 3, 4, 5, 6, and 15.

Set 0, 1, 2, or 3 is automatically selected by the processor in
handling an I/0 interrupt on the corresponding interrupt level.
Registers (0 through 4 of that set are used to maintain
information pertaining to an I/0 interrupt request which is
acknowledged on the I/0 interrupt level corresponding to the
selected register set. Therefore, sets 0, 1, 2, and 3 should not
be used for general purpose processing. These sets may, however,
be used for processing internal interrupts, which use registers
11 through 15 of the selected set *to maintain information
pertaining to the interrupt. '

Sets 4, 5, 6, and 15 may be allocated according to processing
needs, without special consideration. Sets 7 through 14 are not
implemented. An attempt to select a set which is not implemented
may result in the selection of any set, without any special
indication of the error.

When a new PSW is loaded, the specified register set becomes the
active set for the next instruction executed.

PSW BIT SELECTED REGISTER SET

24 25 26 27

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

1 1 1 1 15

50-001 ROO 10-7



10.2.7.12 Condition Code (C, V, G, L)

PSW bits 28:31 contain the condition code. As part of the
execution of certain instructions, the state of the condition
code may be updated to reflect the nature of the result. Not all
instructions affect the condition code.

For most interrupts, bits 28:31 of the new PSW are simply copied
to the condition code. For immediate interrupts, the least
significant four bits of the status byte for the interrupting
device are copied to the condition code after the new PSW has
been loaded. No restrictions are imposed on the condition code
field of a new PSW contained in a memory location or register.
Any condition code value may be specified.

The condition code of the current PSW may bé tested by the
conditional branch instructions described in Chapter 4.

10.2.2 PSW Location Counter (LOC)

PSW bits 32:63 comprise the location counter, which contains the
address of the instruction currently being executed by the
processor. When the current instruction is successfully
completed, the value contained in the 1location counter is
incremented by the length of the instruction in bytes, and the
instruction at the resulting address is fetchei.

An instruction which results in a branch being taken causes the
contents of the 1location counter to be replaced with the
effective branch address; i.e., with the address of the
instruction to which control is to be transferred. The
instruction at the new address is the next instruction to be
fetched and executed.

When an interrupt occurs, the entire PSW, bits 0:63, is replaced.
If bit 16 of the new PSW (the wait bit) is set, the instruction
indicated by the new contents of the location counter is not
fetched. Manual intervention is required to cause the wait bit
to be zero, and the instruction to be fetched and executed. If
an interrupt causes the PSW with the wait bit set to be replaced
by another new PSW that has the wait bit zero, the instruction
indicated by the location counter of that new PSW is fetched and
executed.

If an instruction has not been successfully completed when an
interrupt PSW swap occurs, the 64-bit PSW, in effect for the
instruction being executed at the time of the interrupt, is saved
before the interrupt handler is entered. The location counter in
the saved PSW points to the instruction being executed at the
time the interrupt occurred. If the interrupt occurs after the
successful completion of one instruction and before beginning
another, the location counter in the saved PSW points to the next
instruction to be executed. :

Refer to the section on the Interrupt System for an explanation

of old, current, and new PSW, and of the use of these PSWs by the
processor in scheduling interrupt service routines.

10-8 50-001 ROO



10.2.3 Reserved Memory Locations

Physical memory locations
locations.
service pointer tables,
X'0002D0"

memnory

X*0o00ucCrF®*

locations.
servicing

or

X'000000* - X'0002CF'" are reserved
systems with expandied I/0 interrupt

physical memary locations X'0002DO°
- X'0008CF' are also reserved memory

These locations contain assorted information used

interrupts,

as shown in Figure 10-2.
these locations as the result of an interrupt is detailed in

section describing the interrupt.

X'000000"
X*000020"
X'000028"
X*'o0o0002cC’
X*'000030"
X'000038"
X'000040"
Xxr'oooouy’

xtoooous8"*
X'000050"

X*000080"
X*000084"
X*000088"
X'000090°

X*000098"
X'o00009C*

X*0000BC*
X*'oo000Cs8"
X*oo000DO°
X*'0002D0"

X'oo04D0"

10.3

10.3.1

Maskable interrupt conditions are controlled by bits in the
request to interrupt due to a maskable condition occurs,
the

When a

the corresponding control bit in the PSW 1is
control bit indicates that the interrupt is enabled, an interrupt
control is transferred to the appropriate service
paragraph
details about the control bit(s),

is taken

routine.

and
The

X'00001F"*
X*000027"
X'00002B"
X*00002F"
X*'000037"
X*00003F"
x*ooo0u3"
Xx*'oo00047"*

X*00004F*
X*00007F"

X*000083"
X*000087"
X*00008F"
X'000097°*

X*00009B"*
X*'0000BB*

X*oo000C7"
X*0000CF*
X*'0002CF"
X*000ucCF®

X*0008CF*

Reserved, must be zero

Machine malfunction interrupt old

Used by console service microcode

LM effective address word

Illegal instruction interrupt new

Machine malfunction interrupt new

Machine malfunction status woril

Machine malfunction virtual (program)
address word

Arithmetic fault interrupt new PSW

Bootstrap loader and device definition
table

System dgueue pointer

Power fail save area pointer

System queue service interrupt new PSW

Relocation/Protection (MAT fault)

new PSW

Supervisor call new PSW status word

Supervisor call new PSW location
counter values

Reserved, must be zero

Data format fiault new PSW

Interrupt service pointer table

Expanded interrupt service poianter
table

Expanded
table

PSHW

PSH¥
PSW

interrupt service pointer

Figure 10-2 Reserved Memory Locations

INTERRUPT TIMING AND PRIORITY

Maskable and Nonmaskable Interrupts

examined. If

describing each interrupt

disabled, and the effects of enabling or disabling an interrupte.

50-001 ROO

10-9

Use 2f data in
the

PSWe.

provides
how the interrupt is snabled or



Nonmaskable interrupts are those which have no corresponding
control Dbits in the PSW. Examples of nonmaskable interrupts are
SVC, SINT, Illegel Instruction, and Console Attention. Sections
describing each interrupt provide further details. .

Figure 10-3 shows the various maskable and nonmaskable
interrupts.

10¢3.2 Interrupt Timing

Asynchronous interrupts are normally permitted to occur only
after execution of an instruction has been completed, and before
execution of the next instruction begins. However, asynchronous
interrupts are permitted to occur at the end of any iteration,
while an interruptible instruction is being exzcuted.

A synchronous interrupt is permitted to occur at the time the
condition causing the interrupt is detected. The SQS interrupt,
which occurs at some indefinite time following addition of an
entry to the system gqueue, is called a deferred synchronous
interrupte. A synchronous interrupt due to a fault causes the
offending instruction to be aborted with no modification of the
contents of registers or memory locations resulting from
execution of that instruction. Fixed and floating-point
Load/Store Multiple, and Store Double Precision are exceptions to
this rule. 1In the case of an interruptible instruction, the
current iteration of the instruction is aborted by such an
interrupt without modification of the contents of registers or
memory as a result of the faulted iteration.

For all interrupts, the old PSW location counter presented to the
interrupt handler points to the next 1logically-executed
instruction in the interrupted progranm. If the interrupt is
caused by a fault, the instructian causing the fault was not
completed and is logically the next instruction to be executed.
The o01d PSW 1location counter presented to the fault interrupt
service routine, therefore, always points +to the instruction
which caused the fault.

Multiple memory accesses are required for the manipulation of a
circular list structure using the ATL, ABL, RTL, or RBL
instruction. For each of these instructions, the list header is
not wupdated wuntil the body of the list has been successfully
accessed. For the RTL and RBL instructions, no registers are
modified wunless the list element has been successuflly accessed,
and the list header has been successfully updated.

10-10 50-001 ROO



1231340
TIvd d3IM0Od —9
AYOW3IW T3IHVHS

123130
NOILYHO1S3d —4
H3M0d

103130

vy
H3MOd
AHVI —g

©®
©®

(NOILVHO1SIH H3IMOJ)

18V1S38 JILVWOLNY =&

(vd H3MOd)
NMOQLNHS

JILVWOLAY =—g

® ©

1dNYHYILINT 1dNYE3LNI
NOILONA4TVIN NOILNILLY NOILINNSIVW
SidNYY3ILNI O INIHOVIA 3TOSNOD INIHOVIN
IIAVIASVYIN I19VISYWNON
SNONOHYHINASY

L

2In3093TYOIy we3siS 3dnizaljul
Joss8s201d 0GZE TOPOK @Yy JO welIbeTq OT3eWAYS>S ¢€-0L 2InbTJ

3gow
A3Xsvw
HOwH3 321S 1Sd 1d 174 NI
NOILONHISNI T~ Liqaxis
HOYY3 3215 1SS —— LNI0d 0H3IZ A9 ~—
17NVd LNIWNODITY -ONILVO1d 3a1A10
NOILVIOIA T3A37 $S3O0V —— agom1INg —e
NOILYIOIA 123104d AQv3y -— 17Nvd4 INIWNDITY hOwhOM.“uOn“,“ 1d'ONILVOTS
QHOMITYH —  NOILonuLsN T T Cu3z A8 Ss3uaqv
NOILYIOIA 103108d 31N03X3 =4 Q35371184 30IMG —@ AHOWIW
Viva 03NIvd a3yNndIINGD
NOILYIOIA 1031084 3LIEM —g 11910 v1va MO14H3A0 NON =——@
QrivaNl —g@ NOILONNL8NS LN31LOND
179Av3 LN IN3WO3s —@ WOITH —@  1d-03IXId —4 H0uHE3
v.ivad g3XIvd AHOWINW
1nv4 11010 NOIS 3002-d0 MO 74830 MOT3H3ANN 318v193HH0D
LN3ISIHINON LNIND3IS —g IR 7S T— AVOIT g IN3NOJX3 ——g ININOIXI —@ ‘NON —4
o »zn_.wa INI0d
NILV El
(88 ONILYOTS
1NIOdXV3Hg I‘— (19nv4 NOIL
s) W3ILSAS
(P 30N 39 INNITYW AHOWIW)
301AH3S (INIS) HOLVISNVHL 1nv4 1Inv3 LdNyYILN
3N3aN0 LdNYYILNI (OAS) 1IVO $S3°0av 1VWHO4 NOILONYLSNI 1nv4 1Invd NOILONNSTYIN
W3LSAS ILVINNIS 4OSIAYIdNS AHOW3W viva RLOERRT JILIWHLIYY OILIWHLIEY INIHOVI
m._mmv.mﬂz J19VHSYWNON 3TSYNSYIWNON ’ 318VSYI
‘— ' 3LON 339 _
SL1dNYYILNI IHVMLIO0S @ munﬁ
. SNONOBHONAS
. _ ‘NOILONYLSNI ONIMO1104 3HL OL SINIOd
- MSd Q10 GONV NOILONYISN! 1N3¥HND 3HL 40
SNOILONYLSNI SO ANV 'dSd3 ‘HMSd ON3 JHL 1V Q3ZINDOO3H UV SLdNHYILNI ¥3H1IO
‘MSd1 3HL 4O 1HVd S¥Y ATINO HNOJ0 AVIW SOS (P) "NOILONYLISNI ONILINYS IHL OL SINIOd MSd Q10
JHL 'NOILONHLSNI LNIHHND IHL L1HO8V SLINV4 [C]}
'NOILONYISNI 1X3N 3IHL
W
$LdNE¥3.NI 0528 1300 S0 NOWVILINI 3HL ONV NOILONYISNI INIHEND "ALIHOIYd LSIHOIH IHL SINISIHAIY L 'SLNYYILNI
40 NOILITAWOD 3HL N3IIMLI8  d3IZINDOD3H 40 ALIHOIYd 3IHL JLVDIANI S3TOYID NI SHIGWNN (e)
JHV  SLANYHILNI SNONOYHONASY 'HN3D0 A3IHL
SV Q3ZINDOJ3H 38V SLJNHY3LNI SNONOHHONAS ) S3LON

veZ9

10-11

50-001 ROO



10.3.3 Interrupt Precedence
Considering the instant of instruction fetch request as the time

of reference, interrupts have the following precedence (highest
to lowest):

INTERRUPT PRECEDENCE TABLE

Synchronous {Fault interrupts
Interrupts System queue service
Primary power fail/restore
Asynchronous Console attention
Interrupts Machine malfunctian interrupt due to early

power fail

Machine malfunction interrupt due to Shared
Memory Power Fail

I/0 interrupts

Fault interrupts are caused by various conditions that have the
following logical precedence in descending priority ordere.

° Relocation/protection fault on an instruction fetch

° Data format fault due to alignmenit error on an instruction
fetch
) Machine malfunction fault due to memory malfunction on an

instruction fetch
° Tllegal instruction fault
° Illegal subfunction fault

° Data format fault due to alignment error on a data read/write
operation

° kelocation/protection fault on a data read/write operation

® Machine malfunction fault due to memory malfunction on a data
read/write operation

® Data format fault for other than boundary alignment error
° Arithmetic fault

Since any fault interrupt causes execution of an instruction to
be aborted at the point of the fault interrupt condition, no more
than one fault interrupt condition can occur at a time. However,
other interrupts in the synchronous and asynchronous interrupt
classes given in the preceding Interrupt Precedence Table <can
occur simultaneously. In such a case, the order given in the
table governs the servicing sequence for the interrupts.

10-12 50-001 ROO



10.3.4 Interruptible Instructions

For any interruptible instruction, execution consists of the
following phases: instruction fetch, instruction decode, an
jterative loop, and termination. An interrupt during any phase
of an interruptible instruction does not affect the operation of
the instruction. It may simply be reexecuted once the interrupt
has been serviced. An interrupt during the iterative phase of
the instruction causes the processor to resume the iterative
phase when the instruction is reexecuted, as though the interrupt
never occurred. If +the interrupt was caused by a fault, the
iteration which resulted in the interrupt is repeated when the
instruction is reexecuted.

When an interrupt occurs during execution of an interruptible
instruction, except for Read Contral Store (RDCS) or Write
Control Store (WDCS), the processor sets bit 14 (IIP) of the old
PSW presented to the interrupt service routine. If PSW bit 14 is
set when an interruptible instruction is fetched, the processor
assumes that valid information for controlling the instruction is
contained in the scratchpad registers. For this reason, if
return to the interruptible instruction is anticipated, the
contents of the scratchpad registers must be preserved when PSW
bit 14 is set. It is also important that the contents of these
registers be saved or restored as necessary during a context
switch by the system progranme.

To abort an interruptible instruction when it is interrupted, PSW
bit 14 must be forced to zero before any subsequent interruptible
instruction (except RDCS or HWDCS) is attempted.

CAUTION

SOFTWARE - MUST NEVER SET PSW BIT 14
UNLESS RESUMING EXECUTION OF THE
INTERRUPTIBLE INSTRUCTION THAT CAUSED
BIT 14 OF THE PSW TO BE SET.
RESUMPTION CF ANY INTERRUPTIBLE
INSTRUCTION MUST NEVER BE ATTEMPTED IF
THE CONTENTS OF THE SCRATCHPAD
REGISTERS ARE NOT KNOWN TO HAVE BEEN
PRESERVED BETWEEN INSTRUCTION
INTERRUPTION AND RESUMPTION.

10.4 PROCESSOR MODES

At any given time, the processor may be in the console mode or
run mode. The single-step mode provides a means for alternating
between the console and run modes. Wait and run states only have
meaning for the run mode.

50-001 ROO 10-13



10.4.1 Console Mode

While the processor is dedicated to cammunicating with the systenm
console terminal, it is said to be in the console mode. In -this
mode, program execution is suspended so that the user may examine
and modify the data «contained in certain registers and memory
locations.

Appendix F provides a flowchart for the console service routine.
The console mode may be entered in any of the following ways:

1« The Breakpoint (BRK) instruction is executed by a
running program when PSW bit 23 is zero.

2. Execution of an instruction is completed while in the
single-step mode.

3. The HALT/RUN Switch or the SINGLE switch is depressed
momentarily while the processor is in the run mode.

4. Following a system initialization sequence, backup power
to memory is found not to have been maintained within
regulation, and the LSU is not enableid when the seguence
is complete.

5. Following a system initialization sequence, if backup
power to memory was maintained within regulation, but
the LSU is not enabled and the <contents of physical
memory location X'000028' indicate that the processor
was in the <console mode when system initialization
occurred.

6. An attempt to fetch a machine malfunction interrupt new
PSW results 1in a noncorrectable memory error. In this
case, the error code for the initial malfunction is
stored in the machine malfunction status word at
X'000040', and LOC is loaded with the address of the
status word before the console mode is entered.

7. If control has been passed to wuninitialized Writable
Control Store or an errant WCS microprogram, control can
be regained at the system console by depressing and
holding the INIT switch.

Note that system initialization occurs when the powesr supply
detects that AC 1line voltage 1is failing; when the Initialize
(INIT) switch on the consolette is momentarily depressed:; or when
the key-operated LOCK/ON/STANDBY switch is moved to the STANDBY
position. The initialization sequence completes when power is
restored to the processor. System 1initialization resets all
rending interrupts for the system console and other I/0 devices
in the system. DMA operations are also terminated.

10-14 50-001 ROO



While the processor is in the console mode, interrupt conditions
are not handled in the same manner as they are if detected during
execution of a programe.

Interrupt requests for the system console terminal and all other
I/0 devices remain queued until the run mode 1is entered. DMA
operations are not affected by changing processor modes.

PSW bit 16 is always forced to =zero before the run mode is
entered from the console mode.

Fault conditions caused by memory accesses while in the <console
mode are reset when they occur, and do not cause interrupts when
the run mode is entered. If a fault condition occurs while
attempting to modify a memory location, that location may not be
changed. If a fault occurs while attempting to examine a memory
location, the console service routine is aborted and restarted.

System initialization, while in the <console mode, results in
automatic shutdown, with no machine malfunction interrupt due to
power failure.

If the optional module Start Time Failure (STF) is equipped, a
start time failure interrupt while in the console mode may be
queued until program execution is begun.

10.4.2 Run Mode

When the processor is not dedicated to communicating with the
system console terminal, it is in the run mode. 1In this mode,
program execution is controlled by the contents of the 6U4-bit
Program Status Word (PSW). While the processor is in the run
mode, it may be in either the wait state (PSW bit 16 is set), or
the run state (PSW bit 16 1is 2zero). In the run state, the
processor performs a repetitive fetch instruction/execute
instruction/fetch next instruction sequence. In the wait state,
this sequence is suspended.

The run mode may be entered in any of the following ways:

1. The 'less than' prompt character (<) is enterel from the
system console terminal when the processor is in the
console mode. :

2. The HALT/RUN switch is depressed momentarily while the
processor is in the console mode.

3. The LSU 4is installed and enabled when a system
initialization sequence is completed. In this case, the
program loaded from the 1SU 1is given control of the
processor.

50-001 ROO 10-15



Interrupt conditions cannot cause the processor to enter the run
mode from the console mode, with the following two exceptions:

1« An initialization sequence performed while the processor
is in the console mode causes the program to be loaded
from the enabled LSU, and control of the processor is
given to the program.

2. The HALT/RUN switch is depressed momentarily while the
processor is in the console mode.

10.4.3 Single-Step Mode

When the SINGLE switch is in the SINGLE position, the processor
is in the single-step mode. 1In this mode, whenever execution of
an instruction is completed, the processor leaves the run mode
and enters the console mode. Manual intervention is normally
required to execute the next instruction.

Interrupts are handled according to the methods detailed in the
previous paragraphs. If the processor is in the single-step mode
and the run state when an interrupt regquest occurs, the processor
completes the current instruction (or iteration) and then
performs the interrupt PSW swap. The first instruction of the
interrupt service routine is not executed.

If system initialization occurs while in the single-step mode,
any instruction in progress (or the current iteration of an
interruptible instruction) completes. When the initialization
sequence is complete, a maximum of one instruction is executed
before the processor again enters the console mode.

If the processor is in the wait state when the SINGLE switch is
placed in the SINGLE position, the console mode is entered.

Note that in the single-step mode, PSW bit 16 is always forced to
Zero before entering the run mode to fetch a user instruction.

NOTE

If interrupts are enabled at the systen
control terminal interface by software,
entering the console mode —causes
interrupts to be queued from device
X'011*' (the write side). Depression of
any key at the console may cause an
interrupt to be queued from device
X'010" (the read side).

10-16 50-001 ROO



10.5 STATUS SWITCHING

The PSW that is loaded in the processor, at any given time, is
called the <current PSW. The register set selected by this PSH,
the data contained in the general, floating-point, or scratchpad
registers accessible by the user program, and the machine status
defined by the PSW collectively constitute the "process state".
If the status word or both the location counter and status word
are changed, a status switch has occurred. A status switch can
be caused explicitly by executing a status switching instruction
or may be forced to occur by an interrupt. When the value of the
PSW that was current at the time of a status switch 1is saved,
that value is called the old PSWH.

The scheduling of 4interrupt service routines is based upon the
concepts of old PSW, current PSW, and new PSW. When an interrupt
occurs, the following status switch takes place: the current PSHW
becomes the old PSW; the new PSW defined for the interrupt is
loaded, and becomes the current PSW.

For a status switch resulting from an interrupt, the old PSW is
stored in dedicated registers of the set specified by the new PSW
defined for the interrupt. The machine malfunction interrupt is
the exception to this rule; for this interrupt, the old PSW is
stored in dedicated memory locations.

For meaningful processor response to multiple interrupts, it 1is
important that the new PSW defined for a particular interrupt
class does not enable interrupts of the same class.

The various interrupts which may occur, and the response of the
processor to each interrupt, are described in the following
sections.

10.5.1 Illegal Instruction Interrupt

The illegal instruction interrupt occurs if an attempt is made to
execute an instruction whose operation code is not one of those
permitted by the system. This interrupt may occur for any of the
following reasons:

1. The operation code 1is undefined for the system or
optional eguipment necessary to execute the instruction
is not present in the system.,

2. The operation code has several possible sub-function
specifications, and the sub-function specified 1is
undefined.

3. The instruction is a privileged instruction, and PSW bit
23 is set.

4. The instruction is a floating-point instruction, and PSW
bit 13 is set.

50-001 ROO 10-17



The illegal instruction interrupt cannot be disabled. The
floating-point instructions, high speed data handling
instructions, and writable control store instructions require
optional equipment, and are therefore optionally illegal.. No
attempt is made by the ©processor ¢to execute an illegal
instruction.

When an 1illegal 1instruction interrupt occurs, the following
actions are taken:

1« The current PSW is stored in registers 14 and 15 of the
set selected by the illegal instruction interrupt new
PSW found in memory at physical address X*000030°'.

2. The illegal instruction interrupt new PSW becomes the
current PSW.

The old PSW location counter presented to the interrupt service
routine in register 15 points to the illegal instruction.

10.5.2 Data Format Fault Interrupt

The data format fault interrupt occurs if the regqguired halfword
or fullword alignments are violated for memory accesses, or if it
is otherwise determined that data is not properly aligned to the
specified fields. The data format fault interrupt <cannot be
disabled.

When a data format fault interrupt occurs, the following actions
are taken:

1. The current PSW is stored in registers 14 and 15 of the
set selected by the data format fault new PSW found in
memory at physical address X*0000C8"'.

2. Register 13 of the selected set is loaded with a code to
indicate the reason for the interrupt, as shown in the
following list:

-CODE REASON FOR INTERRUPT

Reserved code

Reserved code ‘

Invalid sign digit, packed data
Invalid data digit, packed data
Reserved code

Reserved code

Fullword alignment fault
Halfword alignment fault

NOnNnEFEWN-aO

10-18 50-001 ROO



3. If the interrupt was caused by a halfword or fullword
alignment fault, register 12 of the selected set is
loaded with the non-aligned virtual address causing the
fault.

4, The data format fault interrupt new PSW b=2comes the
current PSW.

The old PSW location counter presented to the interrupt service
routine in Tregister 15 points to the instruction being executed
when the fault occurred. A data format fault causes the current
instruction, or the current iteration of an interruptible
instruction, to be aborted immediately.

10.5.2.1 Alignment Faults

An attempt to fetch a fullword of data from memory, or to write
a fullword of data to memory, using a program address which does
not have zeros as its two least-significant bits, causes a
fullword alignment fault.

An attempt to write a halfword of data to memory, or read a
halfword of data from memory using a program address which does
not have zero as its least significant bit, causes a halfword
alignment fault. An alignment fault can occur during an
instruction fetch on this processor.

If an alignment fault occurs while attempting to write to memory.
the fullword or halfword at the next lower aligned address may be
modified.

10.5.2.2 Invalid Digit Faults

If an invalid sign or data digit is encountered while processing
numeric string data, it is presumed that the data is not aligned
to the specified fields. Additional information may be found in
the description of the instruction used to process the numeric
string.

50-001 ROO : 10-19



10.5.3 Relocation/Protection (MAT) Fault Interrupt

This fault interrupt occurs if an executing program violates any
of the relocation and protection conditions programmed into the
Memory Address Translator (MAT). MAT error checking and the MAT
fault interrupt are enabled when PSW bit 21 is set. MAT faults
are not queued.

When a MAT fault interrupt occurs, the following actions are
taken:

1« The current PSW is stored in registers 14 and 15 of the
set selected by the MAT fault interrupt new PSW found in
memory at physical address *YX000090°.

2. Register 13 of the selected set is loaded with a code to
indicate the reason for the interrupte. This code 1is
copied from the MAT status register while simultaneously
resetting the fault.

CODE REASON FOR INTERRUPT

e

Reserved code

Execute protect violation
Write protect violation
Read protect violation
Access level fault
Segment limit fault
Nonpresent segment

SST size exceeded

PST size exceeded

O EWN O

3. Register 12 of the selected set is loaded with the
program address which caused the fault.

4o TIf the fault occurred on a data fetch while attempting
to 1load the general registers using the Load Multiple
(LM) instruction, register 11 of the selected set is
loaded with the effective seconi operani address
calculated at the start of the LM instruction.

5. The MAT fault interrupt new PSW becomes the current PSW.
The o0ld PSW location counter presented to the vinterrupt service
routine 1in register 15 points to the instruction being executed

when +the fault occurred. Further information on memory
management may be found in Chapter 12.

10-20 50-001 ROO



10.5.4 Machine Malfunction Interrupt

The machine malfunction interrupt occurs when any of the
following conditions are detected:

Early power fail

Power restore

Noncorrectable memory error

Nonconfigured memory address

Module start time failure (strappable option)

Detection of the listed conditions and the machine malfunction
interrupt are enabled when PSW bit 18 is set. Early power fail
detect is gqueued until primary power fail occurs if PSW bit 18 is
zero. MAll other malfunction conditions are 1ignored, and the
interrupts are lost.

When a machine malfunction interrupt occurs, the following
actions are taken:

1. The current PSW is stored in memory beginning at
physical address X'000020°'.

2. The Machine Malfunctidn Status Word (MMSW) at physical
address X'000040' is loaded with a code to indicate the
reason for the interrupt. Only one bit is set in this

code:
BIT NUMBER REASON FOR INTERRUPT

0 PF - Power failure

1 PR - Power restoration

2 NCD - Noncorrectable memory error
during data fetch

3 NCI - Noncorrectable memory error
during instruction fetch

4 NCA - Noncorrectable memory error
during auto driver channel
operation

5 NVD - Nonconfigured memory address
during data fetch

6 NVI - Nonconfigured memory address
during instruction fetch

7 NVA - Nonconfigured memory address
during auto driver channel
operation

30 SMPF - Shared memory power fail
(optional)

31 STF - Module start time failure
(optional)

3. If the interrupt was caused by a noncorrectable memory
error, or nonconfigured memory addiress, the virtual
address used for the memory access 1is stored in the
machine malfunction virtual address word at physical
address X'000044°',., Otherwise, the contents of this word
are undefined.

50-001 ROO : 10-21



3166

4. TIf the interrupt was caused by a noncorrectable memory
error, or nonconfigured memory address, and the fault
occurred on a data fetch while attempting to 1load the
general registers using the LM instruction, . the
effective second operand address calculated at the start
of that instruction is stared in the LM effective
address word at physical address X'00002C*'. OJtherwise,
the contents of this word are undefined.

5« The machine malfunction 4interrupt new PSW found at
physical address X'000038' becomes the new PSH.

If the interrupt was caused by executing an instruction, the old
PSW location counter presented to the interrupt service routine
points to the offending 4instruction. Otherwise, the o0l1ld PSW
location counter presented to the 4interrupt service routine
points to the instruction to be executed once the interrupt has
been serviced.

If the interrupt was caused by executing the LM instruction, bits
2 and 5 of the Machine Malfunction Status Word (MMSW) may be used
to determine if any registers were modified before the interrupt
occurred. If the o0ld PSW 1location counter points to an LM
instruction, and if bits 2 and 5 of the MMSW are both Zero, no
registers were modified. If bit 2 ar bit 5 of the MMSW is set,
then:

1« If the data stored at physical addresses X'000044°' and
X'00002C* are equal to one another, no registers were
modified by the instruction before the fault occurred.

2. If the data stored at physical addresses X'000044°' and
X*00002C*' are not equal to one another, at least one
register was modified by the instruction before the
fault occurred. The number of registers modified may be
determined by taking the difference of the data stored
at physical addresses X'000044' and X'00002C*', and
dividing the result by four.

01 2 3 45 6 7 30 31
PIPIN|N|ININJN|N SIS
FFR]C]C|C]V]V]V MT
DI{I}A|D} I|A P| F

F

Figure 10-4 Machine Malfunction Status Word (MMSW)

10.5.4.1 Early Power Fail Detect and Automatic Shutdown

Early power fail detect occurs when the primary power failure
sensor detects a low voltage; when the power switch is turned
from the ON to STANDBY position; or when the INIT switch is
depressed.

10-22 50-001 ROO



At the end of execution of the current instruction or the current
jteration of the current interruptible instruction, a machine
malfunction interrupt is taken if PSW bit 18 is set.

Following early power fail detect, software has one millisecond
before the automatic shutdown procedure of the processor takes
control as a result of Primary Power Fail. During this
procedure, the following actions occur:

1« The fullword power fail save area pointer 1is fetched
from location X'000084"'.

2. The following information is saved by firmware in the
power fail save area:

OFFSET IN SAVE
DATA AREA (IN BYTES)

Current PSW 0-7

The eight general register
sets (in order, 0 through F) 8-519

Interruptible instruction
state (scratchpad registers) 520-583

Floating-point registers,
single and double 584-679

3. The processor waits for power restore.
NOTES

1« If the processor iss not equipped
with the optional floating-point
registers, the area between offsets
584 and 679 is not used.

2. If the pointer found in 1location
X'000084* does not specify a save
area aligned to a fullword
boundary, the processor forces
correct alignment by replacing the
2 least-significant bits of the
pointer with Zerose The new
pointer is stored in memory
location X'000084", before the
power-down sequence is performed.

3. The floating-point masked mode bit
in the PSW has no effect on the
saving of the floating-point
registers.

4, The IIP bit has no effect on the
saving of the scratchpad registers.

50-001 ROO , 10-23



10.5.4.2 Power Restore

When power restore occurs, a simple go/no go selftest of various
internal buses and registers is performed. If the back-up supply
voltages to memory were not maintained within margins between
shutdown and power restore, the first 256k bytes of memory are
filled with a data pattern to prevemt spurious noncorrectable
memory error indications, and the general registers, scratchpad
registers, and floating-point registers are loaded with
pre-determined data.

The first 256k bytes of memory are then tested to see if data can
be held. This test does not modify the data contained in memory.
Failure of selftest or the memory test causes that test to
execute, as long as the failure persists. During the test, the
processor is responsive only to a primary power fail which
results in an automatic shutdown; and the FAULT lamp on the
consolette switch panel is on.

When memory testing is complete, the FAULT lamp is turned off,
and the state of the optional Loader Storage Unit (LSU) is
tested. If the LSU is not equipped, it 4is presumed to be
disabled. In all cases, bit 1 of the machine malfunction status
word at physical address X'000040' 4is set to indicate power
restore.

10.5.4.2.1 If the LSU is Disabled

If the back-up voltages to memory were not maintained within
margins between shutdown and power restore, then memory is
assumed not to contain valid data. Imn this case, a PSW status of
'00008000*' (wait bit only) and location counter of *'Q0FFFFFE' are

loaded and displayed on the system console terminal. Manual
intervention 1is required to restart the processor. I'he Memory
Voltage Failure (MVF) indication is reset in this case. MVF is

discussed under "If the LSU is Enabled", below.

If the back-up voltages to memory were maintained, the data saved
in the power fail save area by the automatic shutdown procedure
is reloaded.

If the data in memory at physical address X'000028' indicates
that the processor was in console mode when power failed, the
reloaded PSW is displayed, and communication with the systenm
console terminal resumes.

10-24 50-001 ROO



If the processor was not in console made when power failed, bit
18 of the reloaded PSW is tested. If the bit is set, a machine
malfunction interrupt occurse

If bit 18 of the reloaded PSW 1is =zero, program execution 1is
resumed using the reloaded PSW. Note that the state of the wait
bit (bit 16) of the PSW 1is tested Defore executing any
instruction.

NOTE

Data in the Memory Address Translator
and Selector Channel control registers
and writable control store is volatile,
and must be considered invalid
following any power fail/restore
sequence.

106584622 If the LSU is Enabled

After the FAULT lamp is turned off, the progranm in +the LSU 1is
loaded, and control is transferred to it, using the PSW specified
in the program. If the memory start address is greater than the
memory end address specified for the 1LSU program, the program is
not loaded, and the console mode is entered.

A Memory Voltage Failure (MVF) indication is available to the
processor if memory voltages are not maintainsd within margins
between shutdown and power restore. MVF is reset when the
console mode is entered, or 1is reset when the Reset Memory
Voltage Failure (RMVF) instruction is executed.

If MVF 4is indicated following power restore, it is assumed that
Memory does not contain an executable programe The MVFE
indication 4is retained until reset as described above, even if
multiple shutdown/power restore seqguences OCCUr. Software loaded
via the optional LSU should execute the RMVF instruction once the
load 1is «complete and all interrupt new PSHs have been
established. Proper use of the RMVF instruction prevents a
potential runaway condition in the =event of multiple power
failurese.

10.5.4.3 Noncorrectable Memory Error

During write operations to memory, an Error Correcting Code (ECC)
is generated. This code enables the memory system to correct any
single bit error detected on a subsequent read operation in each
fullword of memory. If the operation is only a byte or halfword
Wwrite to memory, the memory system reads and updates the error
correcting code for the fullword of memory that contains the byte
or halfword that is being written.

50-001 ROO 10-25



Each time data is read from memory, the error correcting code is
recreated and compared to the code generated when data was last
written to any part of the fullword memory location. If a data
error 1is detected, and the error is a single bit error, it is
corrected transparent to the processor. If, however, a multiple
bit error 1is detected, a memory malfunction fault is generated,
since multiple bit errors cannot be carrected.

Note that data with three or more bits in error may not result in
a fault. Detection of any error causes a bit to be set in the
optional error 1logger for subsequent readout wusing the REL
instruction.

A noncorrectable memory error can be caused by performing a byte
or halfword store to memory. This is possible because the data
and ECC for the corresponding fullword are fetched so that a new
ECC code may be generated.

If PSW bit 18 1is =zero when the error occurs, the error is
ignored, but is logged in the optional error logger.

If PSW bit 18 is set, occurrence of a noncorrectable memory error
causes the current instruction (or the current 4iteration of an
interruptible instruction) to be aborted immediately; and a
machine malfunction interrupt occurs. Bit 2, 3, or 4 of the
machine malfunction status word at physical address X'000040' is
set to indicate the reason for the interrupt. The virtual
(program) address used for the memory access is stored in the
machine malfunction address word at physical address X'000044°.

If the error occurs on a data fetch while attempting to load the
general registers using the LM instruction, the effective second
operand address calculated at the start of the LM instruction is
stored in the LM effective address word at Physical address
X'00002C*'s This data allows the instruction to be simulated in
the event specified index registers were modified.

If the error occurs while fetching an instruction, the o0ld PSW
location counter, presented to the interrupt service routine,
points to the first halfword o