

display RAM which can be loaded or interrogated
by the CPU. Both right entry calculator and left
entry typewriter display formats are possible.
Read and write of the display RAM can be done
with auto-increment of the display RAM address.

The Intel 8294 Data Encryption Unit is designed to
encode and decode 64-bit blocks of data using the
algorithm specified in the Federal Information
Processing Data Encryption Standard. The DEU
operates on 64-bit test words using a 56-bit user
specified key to produce 64-bit cipher words. The
operation is reversible; if the cipher word is
operated upon, the original test word is produced.
Because the 8294 is compatible with the NBS
encryption standard, it can be used in a variety of
electronic funds. transfer applications as well as
other electronic banking and data handling
applications where data must be encrypted.

Finally, the Intel 8295 Dot Matrix Printer
Controller provides an interface to the LRC 7040
Series dot matrix impact printers. It may also be
used as an interface to other similar printers. The
chip may be used in a serial or parallel communica
tion mode with the host processor. Furthermore, it
provides internal buffering of up to 40 characters
and contains a 7 x 7 matrix character generator
which accommodates 64 ASCII characters.

Industrial Digital Processor

Intel produces the iSBC 941 Industrial Digital
Processor (IDP) which is programmed to handle
an assortment of typical industrial digital
interfaces and transducers. The controller can
function to provide any of the following:

1. Scan up to 16 inputs for a change of state.
2. Provide up to 8 gated one-shot outputs.
3. Provide eight gated outputs with program

mable pulse widths and periods.
4. Provide monitoring of up to 8 input lines for

event sensing or as a programmable divider.
5. Provide the period measurement of up to

eight inputs.
6. Provide a frequency to count conversion of

one input.
7. Provide for the control of a stepper motor

having up to eight phases.
8. Provide a simplex asynchronous serial

input.

3-66

9. Provide a simplex asynchronous serial
output.

In addition to providing one of the above
functions, the IDP can also handle simple parallel
1/0 through the unused port inputs or outputs.

III. FUNCTIONS OF THE INTELLIGENT
DIGITAL CONTROLLER

The iSBC 569 Intelligent Digital Controller (IDC)
is a versatile digital I/O processor. The IDC is
designed to operate in a system using anyone of
the following three modes:

1. Intelligent Slave
2. Stand-alone System
3. Limited Bus Master

Additional power is obtained by the utilization of
three OBS's to generate up to 48 parallel inputl
output data lines.

In the intelligent slave mode, the controller's RAM
is shared between the on-board 8085A and the
Multibus users via a dual-port controller. Thus, a
single bus master can control several intelligent
slaves using the dual-port RAM as the major
communications path. Switches are provided on
the board to allow the user to reserve lK bytes of
RAM for use by the 569's processor only. This
reserved memory is not accessible via the M ultibus
system interface and does not occupy any bus
address space.

In the stand-alone mode, the entire system can
consist of a single IDC, with cables, power supply
and enclosure. An IDC can be installed at a
remote site as a completely autonomous system.

The IDC may also be operated as a limited bus
master when it is the only bus master in the
system. Expansion memory and I/O boards may
be connected to the IDC via the Multibus system
bus to increase the input/output capabilities. This
mode could be used to configure one IDC as a bus
master with additional IDC's as intelligent
siaves. This mode is not available with any other
bus masters such as iSBC single board computers,
disk controllers, or DMA devices.

Input/Output Functions

The I/O interface between the iSBC 569 Intelligent
Digital Controller and the external devices to

8253-5
PROGRAMMABLE

INTERVAL
TIMER

2K RAM
DUAL
PORT

CONTROL

MULTIBUS SYSTEM BUS

8259A
PROGRAMMABLE

INTERRUPT
CONTROLLER

8085A
CPU

16K
ROM/PROM

Figure 2. IDC Functional Block Diagram

which it is to be connected normally consists of
various OBS devices. Each of these slaves has the
ability to provide sixteen individual input and/or
output lines. In addition, each provides two
specialized input lines. The IDC is designed to
accommodate up to three slave devices, so the
normal I/O configuration of the board will consist
of 48 digital data lines. If the specialized lines are
considered, this number could be raised to
54. Sockets are provided for the insertion of
drivers or terminators for use on the 48 digital
lines. The 6 special purpose lines can only be used
as inputs and are provided with pull-up resistors to
terminate the input signals.

The driver/termination socket configuration
limits the grouping of the 1/0 lines to be in groups
of four. Any slave data line being used for an input
must have its output latch placed into a logicall
state so as to allow the input line to be controlled
by the external signal.

3-67

IV. APPLICATION EXAMPLE
An example of the iSBC 569 controller in an
application will help to explain the techniques
used to implement a control system and to
interface between the various functional units.
The application chosen will consist of a typical use
but will be simple enough to allow the design
operations to be easily followed.

Suppose we choose to design a control system
which will be produced as a subsystem to interface
with and control a liquid applicator. As we go
through the steps required to design and imple
ment such a control system, we will see how the
various hardware and software tools which are
available from Intel can be utilized to allow easy
implementation of the task.

Before proceeding, we will spend some time to
insure there is a clear understanding about the
definition of the liquid applicator. When this
definition is complete, the design of the control
subsystem can begin.

A liquid applicator consists of two functional
parts: a device to control the flow of a solid
material, and a device to control the flow of a liquid
onto the material. We will actually be controlling
two continuous process loops which are related by
an input parameter which specifies the percentage
of liquid to be applied to the dry material.

Figure 3 shows the components making up a
typical weighbelt feeder. The operation of the
feeder is straightforward. The vertical gate is
adjusted manually to provide a desired gap
between the conveyor belt and the lower portion of
the gate. This will result in a nearly level
distribution of material on the belt when it is
moving. The weigh belt is connected to a load cell
to provide information back to the control system
giving the amount of weight on the belt at any
instant. If we know the speed of the conveyor, it is
simple to compute the amount of material flowing
through the feeder during any time period. This

flow rate is known as the Mass Flow and is usually
expressed as pounds per minute. The control of
the feeder system can be provided by varying the
belt speed until the desired flow rate has been
obtained.

Our control system will be designed to control the
belt speed and to monitor the weighbelt weight and
any other parameters which we determine will be
necessary to control the flow of material. A typical
control process will require an optimum flow rate
be established for each material of a different
density. With a known material flow through the
feeder, we can go about the process of applying the
liquid flow to the material in order to complete our
application example.

The second loop ofthe example will involve adding
the liquid to the material coming from the feeder
mechanism described above. Normally, the
percentage of material to be applied is fixed by the

Figure 3. A Welghbelt Feeder

3-68

formula or mix design ofthe product which we are
manufacturing. However, since the flow rate
through the weigh belt feeder can and does vary
(our first control loop will not always be able to
exactly control the flow due to many conditions
beyond our control), the liquid setpoint will
constantly be changing as a function of the actual
mass flow and the liquid percentage.

Figure 4 shows the liquid application piping
diagram for the liquid portion of the control
system. The items with which we will be directly
concerned are the liquid flow meter and the control
valve. The other components, while requiring
consideration in an actual implementation, will be
ignored in this aplication note for the sake of
clarity. Let us consider the details of each control
loop in more depth before we attempt to design the
control system.

Mechanical Specifications

In subsequent portions involving development of
the control system, we will be constantly referring
to data regarding the mechanical specifications of
the liquid applicator system. Therefore, we will

establish a set of theoretical technical specifica
tions for our system. Later, we will see how close
the control system can come to providing a control
which meets or exceeds these parameters. These
specifications will be broken down into two sets of
data, one for physical parameters over which we
have no control, and a second for the desired
control characteristics.

The physical data provides information on the
mechanical design and will be used for guidelines
in selecting interface equipment and in preparing
software algorithms. The physical data is:

Operating Belt Speed -
1.1 to 180 feet per minute. Adjusted by a
variable speed motor directly coupled to the
belt pulley mechanism.

Feed Output Rates -
Adjustable over a 10:1 range with a maxi
mum output of 960 pounds per minute.

Feeder Belt Characteristics -
The belt will be 9 inches wide by 2 feet in
length when installed. The belt pulley rollers
will have a radius of 4.5 inches.

FLOW
VALVE FLOW CONTROL

THREE-WAY METER { VALVE {

r----FRO- M -----l~~
W~~'b~~LT~ X{ Xt

LIQUID
SUPPLY

TANK

m MAIN AUXILIARY U STRAINER STRAINER

MIXERS {

STRAINER

PRESSURE RELIEF
VALVE

Figure 4. Liquid Flow Diagram

3·69

CHECK
VALVE

Feeder Weight Sensor -
The weigh belt feeder will incorporate a strain
gauge load cell to measure the weight on the
belt. Its linearity shall provide 0.1% of full

. scale range.

Liquid Flow Rates -
The liquid flow rates shall vary between 10.0
and 120.0 pounds per minute.

The desired operating characteristics of our
control system will provide the following general
responses:

Feeder Accuracy -
1 % of full scale over a 10: 1 range. The feeder
will maintain the set feed rate within 1 % of
full scale over anyone minute period. The
minimum sample must be at least one pound.

Liquid Accuracy -
1 % of full scale over the operating range.
Must be able to track mass flow variations
within the above limits.

These specifications will provide guidelines for
the decisions which we will later make in
providing a micro-computer control solution to the
weigh belt feeder application.

Interface Requirements

A logical place to begin the consideration of the
control system design is to examine the interface
requirements and define the characteristics of the
interfaces which will be required to implement the
control. We will consider each element of the
physical system separately.

Weighbelt Weight

The weighbelt weight will be sensed using a lever
system connected to a load cell integral to the
mechanical unit. The output of a strain gauge
load cell is a low level (approximately 20 millivolts
at full scale) analog output. Obviously, this signal
must be somehow converted into a digital level
before we can use its information to compute the
actual mass flow across our weigh belt feeder. Our
design process must define the characteristics of
the digital signal so that the appropriate analog to
digital converter system can be chosen. The
design path can take any of several equally valid
approaches, any of which will provide a func
tional control system. For the purposes of this

application note, we will assume that the design
path will utilize the Intel iSBC 569 Intelligent
Digital Processor.

This assumption requires us to utilize only signals
which can be generated or interpreted using the
computer board and its associated OBS's. We will
not be capable of handling an analog signal.
Since some type of signal conditioning would be
required of the low level analog voltage anyway,
this does not impose any serious restrictions on
our design. Indeed, it will cause us to consider a
technique which provides excellent noise rejection
characteristics. We will. assume that a voltage to
frequency converter (V IF) will be installed near
the load cell and the frequency will then be
transmited over a pair of wires to our digital
interface. Commercially available converters
provide a frequency output which varies between 0
and 10 kilohertz. With this in mind, we can
continue with the development of the interfaces
required in the application.

The load cell transducer will incorporate a local
unit which generates a pulse train whose fre
quency is proportional to the weight.upon the load
cell. This mechanical arrangement is typical of
many gravimetric feeder systems in use .today.

For purposes of this application, it will be assumed
that the system will be calibrated such that a
weight of 10.00 pounds on the weigh belt will
produce a pulse train frequency of 10 khz. No
weight on the belt will generate a frequency ofless
than 30 hertz. The accuracy of the pulse output
will be guaranteed to be proportional to the weight
within 0.05%. Again, this is typical of devices
available and in general use in similar applica,
tions.

3-70

The characteristics we have described above fall
within the performance range of the iSBC 941
processor when operated in its frequency to count
mode. If we assume a sample rate of 200 msec
(this value should provide an adequate control
characteristic since it is unlikely that the
mechanical equipment can respond rapidly
enough to warrant a faster control and sample
time), the frequency count read by the iSBC 941
counter will range between 6 and 2000. System
accuracy of reading the belt weight will thus
exceed 0.1% of the full scale weight reading.

We will discuss the electrical and programming
interfaces in subsequent sections of the applica
tion note.

Weighbelt Motor Control

The flow on the weighbelt will be controlled by
changing the speed of the belt movement. Since
the weighbelt is mechanically designed to main
tain a constant bed level, the amount of material
flowing will thus be adjusted.

The belt speed has traditionally been adjusted
using either SCR controllers or by using variable
transmissions between the motor and the con
veyor belt. The increased utilization and develop
ment of stepper motors is leading toward greater
use of direct stepper motor drives. This is the mode
which will be utilized for this application.

The manufacturer's specifications for the weigh
belt indicate that the following requirements exist
for driving the device:

REQUIRED TORQUE - 149 LB-IN-IN
REQUIRED MAX SPEED - 2.54 REV/SEC.

Referring to typical manufacturer specification
sheets for stepper motors, we find the torque vs.
speed characteristics shown in Figure 5. Our
application requires 2.54 revolutions/sec which
translates to 508 steps per second when the
stepper is used in a 1.8 degree per step mode. We
can see that the requirements fall well within the
capabilities of the particular motor.

400

320

240

160

80

~ V

100 200

i--

i"-t---

300 400 500

SPEED (STEPS PER SEC)

'"
600

Figure 5. Stepper Motor Torque/Speed

\
\

700

3-71

At this point, we have four routes which may be
pursued to actually interface with the motor. These
are:

1. Utilize the iSBC 941 stepper mode to drive
the stepper motor directly.

2. Utilize the iSBC 941 frequency generation
mode to drive a standard stepper translator.

3. Utilize parallel outputs to provide a digital
output to a stepper translater.

4. Utilize a 4-20 mao current signal to a stepper
translator.

Three of the above modes use a translator to drive
the motor. If possible, we should strive to
eliminate the cost of this intermediate device.

Again, we will refer to the published motor
specification sheets. For our typical motor, the
data is shown in Figure 6. The requirement for
providing in excess of six amperes per winding
exceeds the capabilities of the output drivers
which can be installed on the iCS 930 termination
board. We will be forced to either design a custom
high power driver board or to use a translator
module. To keep the application as simple as
possible, we will choose the latter.

ELECTRICAL RATINGS 1.8 DEGREE STEPPING MOTOR

Motor Time for DC Amperes Resistance Inductance
Type One Step Volts Per Winding Ohms MIllihenries

Ourtype 1.7 msec 2.3 6.1 0.37 2.4

Figure 6. Stepper Electrical Ratings

We have three choices left when the decision has
been made to use a translator module. The use of a
current output mode will necessitate the use of an
external analog board. This is undesirable, both
from the standpoint of interboard communication
requirements, and from a cost effective basis.

The use of a parallel output would commit many of
our output data ports and would require the
installation of UPI modules or iSBC 941 modules
to get the parallel output drivers. In addition,
parallel digital input is not a common option of
commercially available translators.

This leaves us with the use of a variable frequency
output to provide stepping information to the
translator module. This is a normal operational
mode of the iSBC 941 processor and the required
508 hertz is within the normal output range of the
device.

A definite advantage of our decision to use a
stepper motor drive for the weighbelt is that we do
not have to maintain accurate feedback and
control algorithms to maintain the conveyor
speed. Only a simple check need be made to verify
that the conveyor has not stalled. The stepper
motor will inherently maintain a speed propor·
tional to the frequency rate.

The actual electrical and programming interfaces
will be discussed in subsequent sections of this
application note.

Weighbelt Speed Measurement

We have mentioned that a control system using a
stepper motor for speed control can operate
effectively in an open loop configuration. How
ever, since a faulty component could result in
failure of the motor to run, we must verify that the
belt is indeed moving. This is easily accomplished
by adding a magnetic sensor to the weighbelt
rollers and counting the pulses generated as the
device operates.

Typical magnetic sensors and ring magnets for
installation on the weighbelt will provide us with
ten pulses per revolution of a belt pulley. Since the
pulley is operating at a maximum speed of 2.54
revolutions per second, we will receive between 0
and 25.4 counts per second. Using our sample
period of 200 milliseconds, this means that we will
count between 0 and 5 counts during each time
interval. Our decision to use a stepper control loop
rather than a conventional closed loop seems
justified as we would obtain rather poor control
with feedback having this poor of resolution.

We must make a decision to determine how the
speed will be sensed by the control board. An
obvious choice would be the use of an iSBC 941
processor operating in the period measurement
mode. This would require using our third socket
on the iSBC 569 host board and would leave us
without the ability to use an additional device to
support the liquid control loop. We should seek an
alternative solution.

The iSBC 569 controller board provides an 8253
programmable interval timer. A first approach
might be to attempt to configure one of these
counters to provide an event counting mode and
read the belt speed from the counter. However,
this is not possible since we would be required to
zero the counter after each reading and the
counter does not load the preset count until a clock
pulse is present. We would have no ability to
distinguish between no belt motion and the belt
motion which is the same as the previous reading!

An alternative approach is to create a software
counter by routing the belt movement pulse to one
of our interrupts and creating a program which
will increment a counter. Each time a count is
sensed, the software will increment a memory
location by an increment which corresponds to the
speed represented by one count.

Again, we will delay the discussion of the
electrical and programming interfaces until
subsequent sections of this application note.

Liquid Flow Control

The design of a control system to provide control
of flow through a liquiQ. valve is an integral part of
the liquid pipe and plumbing design. To optimize
the system operation and provide a system at the
minimum cost, the integration of control and
mechanical design must be made.

3·72

Several possibilities exist when making a decision
as to which control valve to use in adjusting the
liquid flow rate. The actual selection of the
physical valve mechanism should be based upon
the characteristics of the liquid flow. This
decision is outside of the scope of this application
note and will not be pursued. However, the valve
actuator is a device which becomes an integral
part of the control system and its selection is a
function of the control system design.

Figure 7 shows the common control valve types
which are used to vary the flow rate of liquids.
The automatic control system we are designing
precludes the use of a manual valve, so we must
make our selection between the air actuated and
the motorized control valve.

Classical control design has utilized air actuated
valves almost exclusively. This type of actuator
incorporates an intermediate transducer to

PROPORTIONAL CONTROL VALVES
I

AIR ACTUATED VALVES
I

MANUAL
I

MOTORIZED VALVES

FLOW

;11'
SUPPLY AIR

4-20 MA 0-10 KHZ

CONTROL
AIR

I I
SYNCHRONOUS STEPPER

Figure 7. Control Valve Family

convert the signal generated by the control system
into a variable air pressure. This air is used to
drive a pneumatic control actuator. Two types of
electrical to pneumatic transducers are in com
mon use. The most prevalent converts a 4 to 20
milliampere control signal into a proportional air
signal. The second type will accept a 0 to 10 khz
pulse train and convert this to an air output.

Both of the above systems provide excellent
electrical noise immunity and give reliable
operation in industrial environments. They do,
however, have disadvantages. A supply of air
must be present at the control devices and this air
must be maintained such that it is free from water
and oil. In many cases, this presents costly
installation and maintenance considerations.
The use of computerized control systems has led to
a recent concept of eliminating the intermediate
conversion and using instead a digitally control
led actuator.
A stepper motor can be connected to the actuator

of the control valve to provide a simple and
economical control path. The control outputs
from the PID control loop can be sent to the iSBC
941 processor's command queue and the controller
will handle the motor movements.

The electrical and programming interfaces of this
interface will be fully discussed in subsequent
sections.

Liquid Flow Measurement

The use of a liquid control valve to vary the liquid
flow cannot in i,tself provide an accurate control
loop. Because the flow rate through a fixed valve
will vary with material densities, temperatures,
and pressures, we must provide some type of
feedback into our control algorithm. Thus, a
flowmeter must be inserted into the liquid flow
and its output returned to the system.

The control system designer can choose from
several types of flow meters depending upon his
requirements. Figure 8 shows many of the more

MAGNETIC OVAL FLOWMETER
WOBBLE METER

TURBINE

4-20 MA
0,5% ACCURACY

0-500 PPS
3% ACCURACY

Figure 8. Flow Meter Classifications

3-73

30-1000 PPS PULSE
0.5 % ACCURACY

standard classifications of flow meters. Our
selection of the meter must take into account the
type of electrical interface available from the
meters. In our attempt to maintain a digital
system which does not require additional support
boards, we will reject the use of a magnetic
flowmeter because this type of meter provides an
analog type of output which would require the
addition of another board into our control
system. The wobble meter prov.ides a digital pulse
type output but its accuracy tends to discourage its
use in a refined control loop. We will utilize the
turbine meter for our liquid flow application.

The output of a turbine meter is a low voltage, low
current AC signal whose frequency is proportion
al to the liquid flow rate. The manufacturers of
the meters provide pre-amplifiers which convert
the signal into 10 volt peak to peak square waves
which are equivalent in frequenacy to the AC
pulses. The operating frequency ranges typically
from 100 to 1200 pulses per second.

It is desirable to measure the flow rate using a
single iSBC 569 controller. If we consider that a
200 millisecond control interval will be used, the
flow will result in a reading of between 20 and 240
pulses per sample period. These readings could be
performed using an iSBC 941 processor, but we do
not have the socket available for a fourth module,
so we must consider utilizing another interrupt
driven software counter as was done with the belt
speed.

All control and monitoring equipment for our
liquid control application has now been defined in
such a manner as to be compatible with the
utilization of a single iSBC 569 controller
board. The actual interfaces to perform the
interconnections and to provide control instruc
tions can soon be considered.

Operator Interface

Finally, we must define the data communications
which must take place between the controller,
other system tasks, and the operator. Let us first
consider the system control variables and the data
which, if generated by the control process, might
be useful to the remainder of the control system.

The first variable which comes to mind is the
liquid flow setpoint. If we consider the entire

3-74

control system, this parameter will be found to be
actually expressed as a percentage of the total
output material. For example, if we assume the
recipe required the final product to consist of 5%
liquid by weight, we would require that our control
system add the correct amount ofliquid to perform
this task.

To allow maximum flexibility of the control
system, we should allow selection of various
density materials onto the weigh belt. A host
processor with computational capabilities can
calculate the optimum gravimetric feeder flow rate
for the materials being combined.

The control system can provide an integration
function to allow totalization of the amount of
material which has been transferred through the
system. A capability of outputting the amount of
material which has passed over the weighbelt and
the amount of liquid added will be included.

The implications of the parameter storage and
generation will be dealt with later when the
host/slave relationships ofthe iSBC 569 controller
are discussed.

Interface Summary

We have defined the required interfaces which will
be needed to perform our control task. These can
be grouped into external and internal interfaces.
The external interfaces are those which connect to
physical pieces of external equipment.

These are summarized in Figure 9. The internal
interface relates to the data which is to be passed
between the iSBC 569 Intelligent Slave board and
other boards which may be present on the
MULTIBUS system bus. These data areas are
shown in Figure 10.

v. HARDWARE CONFIGURATION

We have now defined the various components
which we will utilize on the controller board to
support the physical control and monitor hard
ware. Our next task is to provide an interface
between the controllers and the equipment which
we are to control. In so doing, we will define the
hardware I/O assignments for the iSBC 941
processors and for the counters which we will be
utilizing. The following paragraphs will deal
with the optimization of this configuration.

•••• DEViCE········· •••• SIGNAL TYPE' •••••• •••• BOARD ELEMENT' •••••••
iSBC 941 10 VDC PULSE

10 VDC PULSE
110 VAC PULSE

iSBC 941
WEIGHBEL T MOTOR
WEIGH BEL T WEIGHT
WEIGHBEL T SPEED
LIQUID VALVE
LIQUID FLOW

5 VDC MUL TIPHASE
10 VDC PULSE

8259A INTERRUPT
iSBC 941
8259A INTERRUPT

Figure 9. Control/Monitor Signals

••• INPUTS···················· OUTPUTS····
GRAVIMETRIC FLOW ACCUMULATED SOLIDS
LIQUID PERCENTAGE ACCUMULATED LIQUID

Figure 10. Communication Signals

Controller Interface

Good design practice dictates that we should
provide optical isolation between the controller
and the external equipment when designing for an
industrial environment. The optical isolation is
included if we utilize the Intel iCS series of signal
conditioning/termination boards. We find that
we have two types of digital termination panels
available, one for low current, low voltage
applications and second for higher current and
voltage uses. If we base our choice on the data
provided by Figure 8, we will lean toward using the
iCS 930 panel for our interface. This board can
handle a mixture of signal levels and will support
up to sixteen individual lines, providing almost
double our needs.

Even a cursory glance at the iSBC 569 controller
will provide the knowledge that three edge
connectors are utilized to bring the OBS signals
from the board. This would indicate that the
simplest (and most costly) solution is to use three
termination panels. Obviously, we should investi
gate further before making such a decision. Three
possibilities are readily apparent. First, we might

Socket 1 Socket 2

Port

10 Weight In
11
12
13
14
15
16
17
20 Conv. Mtr.
21
22
23
24
25
26
27

perform some type of re-routing of data lines on
the board so as to use only one connector. Second,
we can use more than one connector on the ribbon
cable and perform a parallel connection of the
various lines and choose them so that no
duplication of lines results. Finally, we can use
some scheme of connecting three cables to the
board and use the optional Port C connectors on
the termination panel.

The schematic drawings of the IDC indicate that
only six of the OBS I/O lines of each processor
socket are broken by wire wrap jumper posts. All
of the lines so configured are on the Port 2 data
lines. Unless we decide to cut etch and add
soldered wires, we will not be able to configure our
board with this technique. Some further ipvesti
gation is in order before we can make a decision.
The use of a parallel output technique using
multiple connectors on a single cable seems to
present a feasible approach if we can work out an
assignment of I/O which will not cause conflicts.
We will begin by building a trial port assignment
table in which we will assign the required
functions to input/output ports. We will group the
inputs and outputs into groups of four to handle
the terminator/driver arrangement which is built
into the board. This table is shown in Figure
11. We obviously have a small problem. We have

Socket 3 Direction

In
In
In
In

Out
Out
Out
Out

Valve Ph. 1 Out
Valve Ph. 2 Out
Valve Ph. 3 Out
Valve Ph. 4 Out

Figure 11. UP!'" Socket to Terminator Initial ASSignments

3·75

not yet shown the signals from the conveyor speed
and the liquid flow into the on-board interrupt
counters. The schematics show that these signals
are brought onto the board on the edge connectors
but the locations correspond to Port C lines which
do not exist on the iCS 930! We have available
input lines on the Port 1 connectors but there is no
provision to break the signal on the board to route
it to the counter interrupts.

Ifwe move on to the third alternative, we find that
the interconnection paths caused by tieing
various lines together cause even greater prob
lems. Either some fact must have been over
looked, or we must consider the use of more than

r-------, A3,

~:--L-_OC

one terminator board.

Figure 11 indicates that three lines are available
on the Port 2 data lines which go to jumper posts
and which could be used ifthey were not part of an
output driver of Port 20. If some technique can be
found to use these "output" lines as inputs, our
problem will be solved. The use of an open
collector driver can provide us with the ability to
use the line as an input so long as the drivers are
turned off! This should be no problem as we can
force the outputs to this state either through the
appropriate jumpering of inputs or by outputting
data to the OBS 1 ports corresponding to these
bits. The resulting electrical configuration can be
seen in Figure 12.

J1

RIBBON CABLE

--------------- P2 BO

OUTPUT ~ BELT
'~MOTOR

B1

MUST BE
LOW TO ALLOW
USE AS INPUTS

INPUT "". r::::---, BELT --'~L-_):;o":c-+---7 >--+-:.:.::,;::..:...-------7'~ SPEED

AVAILABLE AS
OUTPUT

IUPI1-:::::~~~~~S
USED TO GENERATE

220 MSEC
TIME PULSE

THESE SIGNALS

IN~~~~~~isE~~~ J~LT .L-_---t--~
SPEED AND LIQUID

FLOW RATE

B2
INPUT ~ Q

.--1-):JO~C--+---7)---+--f--"-:c.,=.'----7.~ L~L:SW

OUTPUT r.r-~-.,
~---+---7)---+--f---j----<i-7 I SPARE

--.....,r--1-_ L. ___ .J

J2

r--Ais--' , -7-1 -----7
, I
I I \,

I 7)------'
I
I

: 1
I

L _____ J 1 >-----------'

FIgure 12. Port AssIgnments 20-23

3-76

ICS 930
TERMINATOR

Let us examine the implications of performing
this interconnection. The physical layout of the
board and the use of the terminator/driver sockets
causes the I/O lines to be grouped into sets of four
data lines. W e must choose which of the three iSBC
941 modules will be responsible for supporting
each of the lines. In Figure 12, we can see that the
belt motor is driven by OBS Socket 1, Bit 20. This
requirement has placed output drivers onto data
Bits 21, 22 and 23. Our requirement is to provide
two signals which can be routed to the counter
inputs so we must place a terminator .into either
socket AlD or A16. We have arbitrarily chosen to
use socket AlD. The use of the terminators in
parallel with the drivers will not create a proplem
so long as those lines which are used as inputs

have the driver in the high impedence state. This
is done by requiring that the output Bits 21 and 22
of the device placed into socket 1 are driven
low. Finally, we see that the remaining Bit 23 may
be used as a general purpose output line if it
becomes required.

The wiring configurations for the remammg
connector groupings are shown in Figures 13, 14
and 15. In Figure 13, we see the assignments
which can be used for Bits 10, 11, 12 and 13. We
have earlier defined that an iSBC 941 processor
would be used in a high speed frequency counting
mode to determine the weigh belt weight. This
device will be placed into socket 2. The use of this
mode precludes the use of any general purpose

RIBBON CABLE

r
10

SLAVE I

J1 ~P2 AO

- - - - -_~!-I ---)7 >_-'I::.:.NPt'u:.:T _______ -7~ W~~I~~~LT
I

FREQUENCY
TO WEIGHT
CONVERTER

MUST BE
HIGH TO

ALLOW INPUTS

MUST BE
LOW IF A14

IS USED

SPARE
OUTPUTS

0

SLAVE
1

11

12

13

I
I

:
l) OUTPUT r.r-~-., -+-, ----7)---1--..:..:.+-'------7 I SPARE
I ~---~

I
I
I
I
I

L

A1 I

-.-l---'\7 > __ t-_-t-_O_UT""1P~U-T--7""-!'-~2- ~ SPARE
I 7~L ___ ~
I

_____ -.Jl-l---)7 >-__ t-_-t-_---i_O_U_TP_U...,T.....,,)-[= ~ = J SPARE

J2 r------, ICS 930
TERMINATOR

10t----l-----~----7

J3

)

~-"""'1 r-------'

>--1--.....,,) >------'

>-i-------7))--------'

Figure 13. Port Assignments 10-13

3-77

input/output operations of the processor if we
desire to maintain maximum accuracy of the
frequency measurement. We will arbitrarily
choose to use Bit 10 as the location of the
frequency count input. This will necessitate
installing a terminator into the socket correspond
ing to the processor input. If required, we can
install open collector drivers into socket A14 and
use the remaining three bits for general purpose
outputs. If this is done, care must be taken to
assure that Bit 10 of the device which is placed into
socket 3 is placed into a low state as was done in
the preceding example.

functions. These four bits may be used as inputs
or outputs as required by the application. For
example, we have ignored the fact that actual
control loops incorporate solenoids for flow
control routing. The unused bits can be used to
perform these tasks.

Figure 15 shows the interconnections for the
remaining group of bits. There are several
features shown on this drawing which should be
discussed in some detail. Let us first consider the
remaining function which we must implement.
This is the control for the liquid valve stepper
motor. An iSBC 941 IDP operating in the stepper
mode will provide the necessary control functions
to drive the motor. Since all four of this group's

The interconnection scheme for Ports 14 through
17 can be seen in Figure 14. Note that no ports of
this group are dedicated to our defined control

ABLE AVAIL
FO

INPUT OR
R

~
I->--

,.

15

SLAVE
0

16

17

,.

15

SLAVE
1

16

17

,.

15

SLAVE
2

16

17

r-

I
I
I

I
I
I
I

I
I
I
L

i
:
I
I
I
I

I
I
I

L

r

I
I
I

I
I
I

I
I
I

L

RIBBON CABLE

J1 --------------- P2 A4

- - - - ----11>-.--"'7 >--t--------~~---i SPARE
I 7 ~L ___ ~

I
I "" ~_~5_,
: 7 >----+-----,r-------7~L---lsPARE

A2 I A6

III '\'\....;---1 SPARE 7 ~L ___ .J

I
I '\ ,,-_r-e!-, ______ J 7 >----+----1f--+--~/""'L ___ J SPARE

------, '\. ICS9JO
·1 7 TERMINATOR

I

! 1 >---+---~
A9 I

! 1 >----t---+---1

I

______ : 1)---+---1---1-----1

JJ ------1 1
I

-t-! ---)7 f------'
A15

AVAILABLE
AS

ORIVER
OR

TERMINATOR

I

!)
I

-+:---)~ f---------~ ______ J

Figure 14. Port ASSignments 14-17

3·78

data lines are committed to drive the four phases of
the stepper motor, there are no other functions
available.

An important feature of the iSBC 941 processor is
illustrated in Figure 12. This is the ability to
enable the processor to generate an interrupt at
some point in its operation. We have earlier
indicated that we will use the processor in socket 2
(the frequency counter) to provide us with a 200
msec time reference. When the iSBC 941 proces
sor is enabled with an ENFLAG command and is
operating in the frequency count mode, it will
generate an interrupt on its output line, Port
25. Figure 15 shows how this interrupt can be
connected to the host board's internal interrupt
input structures.

The hardware configuration has been defined
through Figure 14. The actual implementation
can be handled through the use of the various
wire-wrap jumpers on the IDC. Drivers and
terminators can be installed as indicated in the
preceding discussion.

VI. SOFTWARE CONFIGURATION

As with most computer controlled systems, the
actual implementation of the task is handled with
software. In older designs and in many mini
computer systems, this task has become formid
able and has resulted in cost over-runs and
schedule delays. Intel provides many tools for use
by the designer to prevent this type of problem and
to assist him in easily creating a workable and well

RIBBON CABLE

J1 ~'-P2 84

SLAVE
o

H ----- -1 > '>--_O'-'U'-iTrPU=-T'--______ ~~ P'i.t..~VEE,

I 1 85

~ _-,-I __ j"" ' __ +-_O_U~Tt-PU-T ____ ___j~ VALVE
~~ ,.,r ODC5 PHASE 2
18 I I

I A4 I 86

I I '\ OUTPUT '" r:::::-, I-t--~I- -1-1---7"" '>---+---+----''-'--1r'---''''.~ P~~W3
I I
I I 87

t--t----t- --I-I--j "-_-t-__ t-_--t-0_U_T_PU_T,~>_EJ VALVE
" ODC5 PHASE 4

IUPIO-~==~.J L.. ______ .J J2

~------l > les 930
TERMINATOR

SLAVE
1

I I

I I > 0--1--- I >---t--~
44 43 I 1

42 I A11 I >
261-t--~1- -./-I----~)---f----+----+

I I
I I

_~==2=7[1----f~--_____ 1 >
'UPI1 J3

STEP SWITCH
CONTROLLER

70

26H-~

7438

27H---~LL-L.J~-;----j >-----------'
~======~ L ____ .?.:..J

Figure 15. Port ASSignments 24-27

3-79

documented software configuration. Let us look at
some of these tools in more detail and consider how
their use will help us to write our programs easily
and quickly.

High Level Programming Languages

A valuable tool, which Intel provides the designer
of small control systems, is the ability to program
even the smallest systems using a high level
programming language, PL/M-80. This language
offers relatively efficient and structured, program
ming capabilities. It has been determined that
PL/M -80 users can expect to use between 1.1 to
slightly more than 2 times as much program
memory as would be used for the same task written
in assembly language. At the same time, the
programmer's time to code a task will be consider
ably less than ifhe were to use assembly language.

The PL/M-80 Programming Manual indicates
that the language is highly structured and lends
itself very well to handle logical type operations.
Its weakness in handling complex mathematical
computations is compensated by the ability to
combine the user application software with
packaged Intel support software.

Fundamental Support Packages

The Intel 8080/8085 Fundamental Support Pack
age (FSP) provides a package of application
subroutines and functions which can be called
from programs written in either assembly lan
guage, PL/M-80, or in FORTRAN-80. It uses a
standard set of data structures and a unified status
and error reporting scheme. Nine major groups of
operations are fully supported by this package.
These are:

1. A primitive fast string handling and integer
arithmetic capability without error report
ing.

2. A binary integer arithmetic package which
performs operations on both signed and
unsigned integers of various lengths in
binary representation.

3. The floating-point arithmetic package
which provides operations on floating point
numbers in four formats: single precision,
single-precision extended, double precision,
and double-precision extended.

4. The decimal arithmetic routines which
perform integer and fixed point computa
tions on numbers which are stored as
strings of ASCII characters.

5. A string handling section which contains
routines to transform strings and to extract
and insert substrings. A routine for scan
ning of general input and one for formatting
of general output are included.

6. Routines for number conversion, for numer
ic I/O transformation of data from one
format to another, input scanning of
numeric strings, and formatting of numeric
strings for output are also available.

7. The floating point transcendental function
section provides trigonometric, exponential,
and other transcendental functions.

8. The statistics routines compute the mean,
variance, and standard deviation of one
group of statistical data, and the covariance
and correlation factor of two groups of data.

9. Finally, the PID procedures provide the user
with a version of the classical Proportional,
Integral, Derivative control algorithm.

Clearly, the use of the FSP support programs
enhance the logical PL/M-80 program operations.

Host/Slave Relationship

Before we proceed with our development, we
should take some time to examine the relationship
between our iSBC 569 IDC and other controllers
which may be installed in the system. The
utilization of intelligent slave boards provides the
capability to develop control concepts to an
extremely high level if certain guidelines are
followed. We will therefore assume that the
control solution which we are developing will be
but a part of an over all control concept which
utilizes multiple controllers sharing common
resources.

This concept allows us to develop control algo
rithms for each sub-process within our overall
control system. This development can provide
independent design and implementation of each
process. A host processor can be used to provide
any required inter-process communication tasks
and to provide the operator interface. We have
previously indicated that the operator interface
will provide some means to adjust the weighbeIt

3·80

feeder setpoints and the liquid ratio. It should also
allow the operator to display the current status of
the process. Since these operator interface func
tions are but a part of the overall control functions,
the interface should be programmed such that
maximum flexibility can be gained through its
use. Fortunately, such an interface is available
using Intel's RMX/SO BASIC-SO.

RMX/SO BASIC-SO Interpreter

The RMX/SO BASIC-SO Interpreter is a high level
language interpreter with extended disk capabili
ties. It operates on iSBC SO Single Board Compu
ters and allows the interpretation of BASIC-SO
source code into an internally executable form.
Many other features are available and many
configurations are possible depending upon the
exact system requirements (refer to the BASIC-80
Reference Manual, 9S0075S).

Maximum utilization of the operator interface
with a minimum of development time can be
achieved with the preconfigured version of the
software/hardware package. This will provide us
with complete disk 110 capabilities and the ability
to easily program and maintain any programs
which may become necessary to implement the
interface. The actual implementation of the
interface will be done later, after we have defined
the control task.

Software Tasks

The task of preparing the software can be broken
down into three major groupings or tasks. These
are defined to be:

Prepare the Software Drivers.
This involves defining the relationships
between the control algorithm parameters
and the input/output hardware devices and
creating software to implement these defini
tions.

Prepare the Control Algorithm.
This will involve developing a control
algorithm which defines the relationships
between the various system parameters. This

3-81

algorithm will draw heavily upon the re
sources of the FSP programs and the soft
ware drivers which relate the parameters to
the physical hardware.

Finally, the operator interface must be defined
which will relate the parameters used in the
control scheme to other controllers and to the
operator. This will allow the control task to
interact in such a manner as to provide a
meaningful element of the overall control
concept.

VII. SOFTWARE DRIVERS

Before developing the actual control algorithm, we
must create the drivers which communicate with
the three iSBC 941 processors in their assigned
operating modes. We will define two driver
sections for each processor, one to handle the
initialization, and a second to provide the ongoing
communications as required by the control
algorithm program.

Motor Speed Control Processor

The first processor which we will discuss is to be
located in slave socket number 0 and will be'used to
produce a variable frequency output. Let us
consider in some detail how this can be accom
plished using an iSBC 941 Processor. First,
consider the task of initializing the device to the
primary function operating mode, FREQ.

Referring to the iSBC 941 Industrial Digital
Processor User's Guide, we find that the initializa
tion requires the sequence of commands and data
shown in Figure 16. We will identify the meaning
of each of these terms and create a software

Description Command/Data

Request INIT C
FREQ Select D
Scale Factor D
Output Enable D
Initial State D
P20 Delay D
P20 Period D
Request PAUSE C

Figure 16. FREQ Initialization

program which will handle the required initializa
tion of the processor. The purpose and use of the
various commands to the processor are well
defined in the user's guide and will not be repeated
here.

The first byte of data, which must be sent
following the initialization command, is the data
byte signifying that the operational mode is to be
the frequency output. This is defined in the
manual as being equal to the data byte "OB5H" or
"035H" as expressed in the hexadecimal number
ing system. The choice of values to be sent is
dependent upon our desire to utilize the internal or
external time reference period for the operations.
If we utilize the internal time reference, our
minimum increment or resolution of operations
will be 86.72 microseconds.

To determine if this speed is adequate for our
frequency generator, we must consider the impact
that this resolution has on the output. A 550 hertz
signal has a period of 1.82 milliseconds. If we
increase this period by the 86.72 microsecond time
reference, we find that the next increment in the
frequency generators output will be approximately
372 hertz. This resolution is certainly not ade
quate to meet the motor control requirements! We
should consider using the external clock to provide
the time reference. One of the 8253 Interval
Timers on the iSBC 569 board can be used to
generate a reference time. If we arbitrarily choose
to use a 10 microsecond reference to the IDP, we
find that the worst case resolution for the 550 hertz
signal becomes about 4 hertz. This is certainly
within our requirements of motor control. The
primary function signal should then be sent as a
"OB5H".

The second byte is used to establish a scale factor
for the processor. This scale factor is used to
generate the basic time increment which can be
used to establish the frequency output; that is, the
minimum time increment which can be used to
establish a period or pulse width will be the scale
factor times the reference time period.

In our case, because of the wide frequency output
range, we cannot specify the scale factor at
initialization (later data will show the need for

multiple scale factor ranges). We will then only
need to send some arbitrary value at initialization
to allow the processor to complete its initialization
sequence.

The Output Enable data byte is used to select
which of the Port 2 output bits are to be used to
generate the output signals. The hardware
configuration established earlier placed the output
onto Bit 0 of the port, so this data byte shall be
specified as a byte having only Bit 0 set to a logical
one or equal to 01H.

The Initial Output parameter specifies whether
each bit selected as an output by the output enable
byte is to be initially set to a logical one or zero
when the processor is first enabled. For this
application, it really does not matter, but we will
arbitrarily pick the state to be equal to zero. The
byte will be defined as being set to OOH.

The Delay parameter is used to define the
waveform which will be generated and specifies
the number of time increments which must elapse
before the waveform will change states. Rather
than to constantly vary the delay to maintain a
square wave output, we can choose an arbitrary
value of one time increment before changing
state. The output will have a varying duty cycle as
the frequency changes. This should cause no
problems for the translator driving the weigh belt
motor. The byte will be defined as being set to a
value of 01H.

Finally, the Period of the waveform must be
chosen. Again, this parameter will be changed
according to the desired frequency, so only an
arbitrary value need be sent. Indeed, since this is
the last parameter, the value could be omitted
entirely by sending the PAUSE command in its
place.

The initial data definition can be defined using
PL/M-80 language conventions as a block of six
bytes as shown in Figure 17.

The actual communications between the host
processor on the iSBC 569 board and the IDP
utilizes the protocol explained in previous sections
of this note. The status register of the IDP will be
tested for the bit signifying that the input buffer

3-82

22
23
24
25
26
27

34

1* DECLARATION OF iSBC 941 #0 INITIALIZATION DATA *1
DECLARE FREQ LITERALLY 'OB5H';
DECLARE SF LITERALLY 'OOOH';
DECLARE OUTPUT$ENABLEO LITERALLY '001 H';
DECLARE INITIAL$STATE LlTERALLY'OOOH';
DECLARE DELAY LlTERALLY'001H';
DECLARE PERIOD LITERALLY 'OOOH';

f* DECLARATION OF iSBC 941 PRIMARY DATA *1
DECLARE INIT0TABLE(6) BYTE DATA (

FREQ,
SF,
OUTPUT$ENABLEO,
INITIAL$STATE,
DELAY,
PERIOD);

Figure 17, Initial FREQ Data Field

full is not set, This will indicate that the device is
ready to accept either a command or a data
byte, The command to request a primary function
will be sent, At this point, the processor will be
expecting a series of data bytes as specified by the

function being selected. A "Do Loop" can be used
to effectively transmit this data to the device, The
program to perform this function is illustrated in
Figure 18,

1* REQUEST PRIMARY FUNCTION *1
44 2 DO WHILE ((INPUT (UPIOSTATUS) AND IBF) < > 0);
45 3 END;
46 2 OUTPUT (UPIOCOMMAND) = INITPF;

1* LOAD INITIAL PARAMETERS *1
47 2 DO 1=0 TO 5;
48 3 DO WHILE ((INPUT (UPIOSTATUS) AND IBF) < > 0);
49 4 END;
50 3 OUTPUT (UPIODATA)=INITOTABLE(I);
51 3 END;

1* TERMINATE PARAMETER LOADING *1
52 2 DO WHILE ((INPUT (UPIOSTATUS) AND IBF) < > 0);
53 3 END;
54 2 OUTPUT (UPIOCOMMAND)=PAUSE;

f* START FREQUENCY FUNCTION *1
55 2 DO WHILE ((INPUT UPIOSTATUS) AND IBF) < > 0);
56 3 END;
57 2 OUTPUT (UPIOCOMMAND)=LOOP;

Figure 18. lOP Initialization

3·83

When all required data parameters have been sent,
the data portion of the initialization is terminated
by sending a PAUSE command as shown in
Figure 18. Note how, in each case before data or a
command is sent, we wait until the input buffer is
empty. Finally, the initialization is completed
when we have sent the LOOP command. The
processor will now be generating an output
frequency as specified by the parameters.

Remember that, according to our earlier discus
sion and as we have shown in Figure 12, the
unused output ports should be set to a logical low
condition to allow the use ofthose lines as inputs to
carry additional data into the controller. This
should be done as a part of the initialization
process. The secondary utility command, CLRP2
is used for this purpose. This process is illustrated
in Figure 19.

We should next direct our attention to establishing
a software interface which will take the desired

weigh belt speed term and convert it to a frequency
output suitable to drive the motor translator. We
know that this will involve selecting a particular
scale factor and period term which will generate
the correct waveform. Previously, we established
that, for a maximum frequency of 550 hertz, we
need to establish a period of 1.82 milliseconds.
Many combinations of Scale Factor and Period
parameter will generate this time interval. Ideally,
the smallest increment of change can be estab
lished by setting a constant period and modifying
the scale factor. If we make some calculations, we
will find that the fact that the scale factor is a byte
value (giving us a range of between 0 and 255)
limits the frequency range which can be produced
using anyone value for a period. It seems that we
will be forced to vary both the period and the scale
factor as a function of the desired frequency.

In Figure 20, we ha ve plotted the frequency output
for various values of Scale Factor and Period. Our

1* SET UNUSED SITS TO ALLOW EXPANSION *1

220

210

190

160

'50

~ 140

'20

110

100

90

80

70

60
0

59 2
59 3

DO WHILE ((INPUT UPIOSTATUS) AND ISF) < > 0);
END;

60 2 OUTPUT (UPI0COMMAND)=CLRP2;

61 2
62 3

DO WHILE ((INPUT (UPIOSTATUS) AND ISF) < > 0);
END

63 2 OUTPUT (UPIODATA)=INITIAL$OUTPUT;

Figure 19. Secondary Utility Command

\ \ I' I
" I

II '\ \

\ \ \ \ ~ CLOCK 10llsec

\1 \, '

\ \ I I I \' \
I I \ \ \

\ \ I I I I I I
II \ \ \

\ \ I \ \ \ \ \

\' \ \ \ \ \ \ \ \ \ \ \ ,\ \' \

\ \ \ \ "
\' \ '\-0 \~
\~-o '\\ \~ \~o
~,~\"O Ii:), \<1'

~~~\O \'cr " o ;,\ .... \ \ 
,.D\ \' \ 

\ \ \ " " 
\ \ " " 

'" \ "~I 'II ' .... , 

" " " ..... '",-"" '... ' ....... 
" '... '....... ... ........ 

100 200 300 400 SOO 
FAf;:O._(Hz) 

Figure 20. Frequency Vs. Parameters 

3·84 



intent is to maintain the highest resolution 
possible for the desired output range of 50 to 550 
hertz. Choosing four period base parameters will 
provide us with acceptable waveform generation 
characteristics. We will choose the data sets of 
Figure 21 based upon the data shown in Figure 20. 

the mathematical calculations required to deter
mine the corresponding scale factor. 

The principles above can be expanded into a 
complete interface package to offload the host 
processor of the need to generate the frequency 
waveform to the translator of the weighbelt 
motor. The complete program for the processor 
can be found in Appendix A. 

The Period can be determined by examining the 
desired frequency range. The scale factor can be 
calculated from the equation: 

Weight Input Processor 
SF = 10,000 I ( (FREQUENCY) x (PERIOD) ) 

Again, the PL/M-80 language program to imple
ment the interface between the host and the IDP is 
easily constructed. For example, Figure 22 

. provides the· code which will be required to 
determine the appropriate Period parameter and 
also illustrates the use ofFSP programs to handle 

The second use of an iSBC 941 Processor is to 
provide the capability of converting the high 
frequency inputs from the weight sensor of the 
weigh belt into a digital value equivalent to the 
actual weight on the belt. This frequency to digital 
conversion can be easily accomplished by the use 
of the Primary Function, FCOUNT. 

Frequency Period Scale Factor Resolution 

. 50 to 165 Hz. 9 221 to 67 3 Hz. 
166 to 225 Hz 5 121 to 89 3 Hz. 
226 to 285 Hz. 3 147 to 117 3 Hz. 
286 to 550 Hz. 2 175 to 91 6 Hz. 

Figure 21. FREQ Output Ranges 

i* COMPUTATION OF FREQUENCY RANGE *I 
57 3 IF FREQ < 285 

THEN DO; 
59 4 IF FREQ < 226 

THEN DO; 
61 5 IF FREQ < 166 

THEN RANGE = 9; 
63 5 ELSE RANGE = 5; 
64 5 END; 
65 4 ELSE RANGE = 3: 

66 4 END; 
67 3 ELSE RANGE = 2; 

1* LOAD MATH ACCUMULATOR WITH 100.000 *1 
68 3 CALL MQULD4 (.IR •. HUNDRED$K); 

1* TEST FOR MOTOR SHUTDOWN *1 
69 3 IF FREQ >1 

THEN DO; 

1* DIVIDE BY FREQUENCY *1 
71 4 CALL MQUDV2 (.IR,.FREQ); 

1* DIVIDE BY RANGE FACTOR *1 
72 4 CALL MQUDV1 (.IR,.RANGE); 

1* GET TWO'S COMPLEMENT FOR iSBC 941 SCALE FACTOR *1 
73 4 CALL MQUST1 (.IR,.FREQA); 
74 4 FREQA=NOT (FREQA + 1); 
75 4 END; 

Figure 22. Period and Scale Factor Computations 

3-85 



The FCOUNT Primary Function is selected by 
sending the INITPF command followed by four 
parameters. The process is identical to that which 
'Vas used in the previous example when we 
established the FREQ function. In this case, the 
sequence is described in the manual as is shown in 
Figure 23. 

Description Command/Data 

Request INIT C 
Select FCOUNT D 
Input Select D 
Output Enable D 
Sampling Interval 0 
Request PAUSE C 

Figure 23. FCOUNT Initialization 

Let us examine the derivation of the terms which 
must make up the data table which will be 
transmitted to the processor in order to initialize 
it. The FCOUNT function does not allow the use 
of an external clock so we have no option as to 
which command will be sent to select this 
function. It is defined to be equal to 33H. This 
becomes the first element ofthe byte array used to 
contain the initial data. 

The Input Select parameter describes which of the 
Port 1 inputs are to be measured. If we refer to 
Figure 13, we can see that a hardware assignment 
of Port 10 has been made for this function. This 
assignment corresponds to bit 0 of the parameter 
being set to a value of 1. The byte value for this 
parameter then becomes 01H. 

The Output Enable byte is used to enable an output 
port corresponding with the input to change states 
when the Sampling Interval time has elapsed. Our 
system has a requirement to operate the control 
algorithm once each 200 milliseconds and we have 
previously indicated that the frequency counter 
would be used to establish this time interval. If the 
output is enabled and connected to an interrupt 
line, it will provide our system with the required 
pacer clock. The output bit from Port 20 will then 
be enabled to provide the interrupt. The para
meter for this byte will be set to the same value as 
the Input Select and becomes OlH. 

The Sampling Interval will establish the time 
interval to be used when sampling the input 
frequency. This time interval should be set to 200 

milliseconds for our application. The parameter is 
then calculated from the equation: 

INTERVAL = (SAMPLE PERIOD) / (0.02222) 
OR 

INTERVAL = (0.200) / (0.02222) = 9 

The correct sampling interval for our control 
system should be set to a value of 09H. 

A similar procedure can be used to send this data 
to the processor. The actual code used to imple
ment the system can be found in Appendix 
A. Note that the unused bits of the device have 
been set to a predetermined value as was indicated 
by our hardware design of Figure 13. 

Once the processor has been initiated and is 
performing its function, we need only wait until 
the device signals us that the 200 millisecond time 
interval has passed and that it is ready with the 
belt weight. When this interrupt occurs, we will 
read the data and perform our control functions. 
An interface must be established between the 
control algorithm and the processor which 
enables it to receive a value which represents the 
actual weight. 

The total count received by the processor is 
available as a sixteen bit count made up of two 
eight bit bytes. The use of the Secondary Utility 
Commands, Read FCOUNT Measurements 
(RDFCO-RDFCF) allow the two bytes to be 
transferred into the host processor. We are using 
the first counter so we will use the corresponding 
commands, RDFCO and RDFCl. An example of 
the procedure to read one ofthe count bytes can be 
seen in Figure 24. 

The counter can be commanded to begin its next 
sample period by issuing a LOOP command to the 
processor. The two data bytes can be combined to 
form a 16-bit word and the resultant value divided 
by 2 to form a weight value. The division by two to 
obtain weight is required since the count range 
from 0 to 2000 corresponds to a weight of between 0 
and 10.00 pounds; thus, each count has a value of 
0.005 pounds. The integer numbers used in the 
control algorithm are fixed point with an implied 
scale factor of 100. The division by two provides a 
result which meets the criteria. 

3-86 



1* GET INPUT COUNT LOW BYTE *1 
106 2 
107 3 

DO WHILE ( (INPUT (UPI$1$STATUS) AND IBF) < > 0); 
END; 

10B 2 OUTPUT (UPI$1$COMMAND) = RDFCO; 

109 2 
110 3 

DO WHILE ( (INPUT$1$STATUS) AND OBF) = 0); 
END; 

111 2 LCOUNT = INPUT (UPI$1$DATA); 

Figure 24. FCOUNT Read Procedure 

Appendix A provides the complete listing of the 
code which was used to interface with the 
processor assigned to the primary function, 
FCOUNT. 

Stepper Motor Control Processor 

The third example of utilizing the iSBC 941 
Processor in an industrial application is provided 
by the processor installed into OBS socket 2. This 
device is used to drive a stepper motor which, in 
turn, controls the liquid valve position. Again, we 
will break the discussion into an initialization and 
an interface operational mode. 

We find that the User's Guide indicates that 
initialization to the STEPPER Primary Function 
is performed by sending the IN IT command 
followed by up to 21 data bytes. Figure 25 
provides the table which shows the necessary 
p arameters for this mode. 

The technique used to place the processor into the 
desired function is the same as we have seen with 
the two other processors so we will not spend time 
dealing with the communications sequence. In
stead, we will examine the techniques which can 
be used to determine the values of the initializa
tion parameter bytes. 

STEPPER is requested by sending a data byte of 
either 17H or 97H following the INIT command. 
Remember that the significance of setting bit 7 of 
the data high is to request that an external clock 
be used by the processor. There is no reason to use 
an external clock for our application, so we can 
choose a function request byte of 17H. 

The· remainder of the data is used to define the 
waveforms which are necessary to drive the 
stepper motor. We will derive the values for these 
parameters by beginning with the manufacturer's 
data sheet and moving until we have determined 
the correct value for each byte of data. 

The motor chosen for this application utilizes four 
phases to drive the shaft. The data sheet provided 

3·87 

Description Command/Data 

Request INIT C 
Select STEPPER D 
Select Scale Factor D 
Output Enable D 
Output Polarity D 
Common Period D 
P20TRAN1 D 
P20TRAN2 D 
P21TRAN1 D 
P21TRAN2 D 
P22TRAN1 D 
P22TRAN2 D 
P23TRAN1 D 
P23TRAN2 D 
P24TRAN1 D 
P24TRAN2 D 
P25TRAN1 D 
P25TRAN2 D 
P26TRAN1 D 
P26TRAN2 D 
P27TRAN1 D 
P27TRAN2 D 
Request PAUSE C 

Figure 25. STEPPER Function Initialization 

information for both a Four-Step Input Sequence 
(1.8 degrees per step) and for an Eight-Step Input 
Sequence (0.9 degrees per step). We will use the 1.8 
degree step angles for our example and applica
tion. The data provided by the manufacturer is 
shown in Figure 26. The first task is to con vert the 
switch state diagram into a desired waveform for 
each of the four phases. This has been done in 
Figure 27. 

Beginning with Scale Factor, let us determine the 
required data parameters which will yield a 
stepper controller compatible with our motor. The 
Scale Factor will provide the minimum time 
period for one step to take place. The minimum 
time which we can specify is a function of both the 
motor characteristics and of the TRP for the 
primary function, STEPPER. The minimum TRP 
is determined by referencing the IDP User's Guide 
for the desired function. In this case, it is found to 
be 325 + (13 x B) where B is the number of phases 



DC STEPPING CIRCUIT 

EIGHT-STEP INPUT SEQUENCE 

STEP SW1 SW2 SW3 SW4 

1 ON OFF ON OFF 

2 ON OFF OFF OFF 

FOUR-STEP INPUT SEQUENCE 3 ON OFF OFF ON 

STEP SW1 SW2 SW3 SW4 4 OFF OFF OFF ON 

1 ON OFF ON OFF 5 OFF ON OFF ON 

2 ON OFF OFF ON 6 OFF ON OFF OFF 

3 OFF ON OFF ON 7 OFF ON ON OFF 

4 OFF ON ON OFF 8 OFF OFF ON OFF 

5 ON OFF ON OFF 1 ON OFF ON OFF 

Figure 26. STEPPER Motor Input Sequence 

PHASE 1 

STEP 
o 

STEP 
1 

STEP STEP 
2 3 

STEP 
o 

STEP 
1 

----------., r----------
I I 
I I L _________ .... 

,..---------, 
PHASE 2 

I I _________ J L _______ _ 

----, r--------, 
PHASE 3 

I I I 
I I I L ________ 01 Lo ___ _ 

r--------., r----
PHASE 4 I I I 

I I I ----.. .._------ ..... 

Figure 27. STEPPER Motor Waveforms 

which are used. The result will be expressed in 
terms of processor cycles and can be converted 
into time by multiplying by 2.71 microseconds per 
cycle. This works out to be: 

325 +- (13 x 4) = 377 PROCESSOR CYCLES 
OR 

377 x 2.71 = 1.021 MILLISECONDS 

Now, let's examine the minimum time which can 
be utilized r-" :he stepper motor. This is given in 
the manufactuer's data sheets as being 2.86 milli
seconds for the motor which we have chosen to 

3-88 

use. This value must be used to compute the Scale 
Factor for this application. The Scale Factor is 
computed by dividing the minimum step time by 
86.72 microseconds or: 

SF=2.86 MILLISECONDS/86.72 MICROSECONDS=33 

This number is entered into the processor using 
two's complement which becomes equal to ODFH. 

The Output Enable is used to specify which of the 
eight possible control outputs are to be used to 
control the motor phases. The motor phase 
assignments to I/O ports was made in Figure 15 
and indicates that Ports 24 through 27 will be 
enabled for the primary function. Setting the 
corresponding bits provides a parameter to be sent 
to the processor of OFOH. 

The rest of the parameters deal with providing a 
definition of the waveforms generated in Figure 26 
to the processor. The following paragraphs deal 
with the operations required to convert the 
graphic representation into data parameters. 

Each phase must be initialized to an initial output 
state which corresponds to the signal level shown 
for Step 0 of Figure 27. A "I" will be placed into 
the bit corresponding to each of the port's output 
bits which are to be in a logical one state upon 



reaching step O. We see that Bits 24 and 26 are set 
corresponding to phase 1 and 3. The data byte for 
Initial Output is thus defined to be 050H. 

The Period parameter for a stepper motor function 
corresponds to the number of steps which are 
defined in the motor's step sequence. Our example 
uses a four step sequence so the Common Period 
will be set to a value of 04H. 

The remainder of the initialization parameters 
define the transitions of each of the phases. This 
involves the examination of the waveform and 
noting the points at which the output level 
changes. This data can be input to allow the 
device to accurately produce the control wave
forms for any stepper motor control mode. Weare 
not using the first four output bits so the transition 
definitions for these outputs is meaningless and 
will be output as zeroes. The waveform for output 
Port 24 shows a transition at steps 1 and 3. The 
parameter for the first transition of Port 24, 
P24TRANl is defined to be OOH. Likewise, the 
second transition, P24TRAN2 is set to a value of 
02H. 

The technique used above can be continued to 
define the constants, P25TRANl and P25TRAN2 
as being the same as for Port 24 or OOH and 02H 
respectively. 

The transitions for the phases driven from Port 26 
and 27 can be seen to occur at steps 1 and 3 so the 
data for those parameters can easily be seen to be 
set to OlH and 03H for each port. 

The initialization table can be sent to the 
processor using the same techniques as were used 

for the processors discussed previously. The 
complete program for the initialization can be 
found in Appendix A. 

A driver must next be prepared which will be used 
to provide the interface between the control 
algorithm and the IDP processor which supports 
the stepper motor. When the STEPPER primary 
function is used, a queue is utilized for supporting 
the step commands to the motor. Each command 
to the stepper consists of a data byte signifying the 
step rate to be used and a data byte which provides 
the signed magnitude of the number of steps to be 
moved. Using the motor to control a flow control 
valve allows us to use a constant step rate, but 
some type of program must be prepared which will 
convert the signed two's complement repref)enta
tion of the position from the control algorithm to a 
signed magnitude format. 

The number conversion is easily done and the 
PL/M -80 programming code to perform the format 
change is shown in Figure 28. 

The data queue allows up to six movement 
commands to be present and waiting to be 
serviced by the IDP. If the processor is behind in 
its operations and cannot accept a seventh 
request, the host must wait until one of the 
requests in the queue has been serviced. The 
queue status bits can be tested to determine ifroom 
exists for another command and the "queue not 
empty" bit can be tested to verify that all 
requested movements have been completed. 
Normal operation of our motor should be such that 
the queue is not allowed to fill to its maximum 
capacity. 

141 3 
1* SUPPORT CONVERSION TO SIGNED MAGNITUDE NUMBER *1 

IF POSITION> 127 

143 4 

144 4 
145 4 

THEN DO; 

1* GET MAGNITUDE OF MOVEMENT *I 
POSITION = 256 - POSITION; 

1* SET SIGN FOR CCW ROTATION *1 
POSITION = POSITION OR REVERSE; 

END; 

Figure 28. Number Format Conversion 

3·89 



The code which is required to test the queue and to 
send a stepper movement request is shown in 
Figure 29. The complete code can be seen in 
Appendix A. 

VIII. APPLICATION SOFTWARE 

Having developed the software which is required 
to support the Industrial Digital Processors, we 
can now devote our time to the task of implement
ing the application software and of handling any 
programs which are required to support functions 
unique to the host iSBC 569 board. This software 
can be grouped into two general categories, 
initialization programs, and control algorithm 
programs. 

Initialization Programs 

The initialization of the iSBC 569 involves setting 
up the required configuration of interrupt hand
ling and ofthe devices which are installed into the 
slave sockets. For the purposes of this applica
tion, we will include some system diagnostic 
capabilities within the process. These routines 
will be executed each time a RESET or a POWER
UP occurs. Only the highlights of the code used 
will be presented in detail; however, the complete 
listings of the initialization programs can be 
found in Appendix A by referring to the BCKGND 
Program listing. 

A unique feature of using the iSBC 941 processors 
is their ability to provide, upon request, an 

identification code. The initiation diagnostic 
program takes advantage of this fact by interro
gating each processor and verifying that the 
correct ID code is returned. If any of the proces
sors have failed catastrophically or if the internal 
data bus ofthe host board has failed, the program 
will provide an indication of this fact. 

Each of the slave processors has, associated with 
it, an individual hardware reset line which is 
under the control of the host. A reset or power up 
condition will cause the control lines to reset to the 
state which hold each sla ve in a reset state. Before 
any slave can be used, it's associated reset line 
must be de-activated. This is done by sending a 
logical one to the corresponding bit of the Reset 
Latch. Other bits ofthe Reset Latch can,be used to 
illuminate the on-board LED or to generate an 
interrupt to another board on the Multibus data 
bus. 

A special PL/M-80 command is utilized to disable 
the reset interrupts of the 8085A host processor. 
Execution of this command will allow all servic
able interrupts to enter via the 8259A Interrupt 
Controller. The command which will mask off the 
unused interrupt structure is shown in Figure 30. 

The initialization process must also initialize the 
FSP Integer Record. This will allow the use ofthe 
math support routines which will be required to 
support the control algorithm. 

1* VERIFY THAT QUEUE SPACE IS AVAILABLE *1 
146 3 
147 4 

148 3 
149 4 
150 3 

151 3 
152 4 
153 3 

34 

DO WHILE ( (INPUT (UPI$2$STATUS) AND QF) < > 0); 
END; 

1* REQUEST DESIRED STEP RATE *1 
DO WHILE ( (INPUT (UPI$2$STATUS) AND IBF) < > 0); 
END 
OUT'PUT (UPI$2$DATA) ~ STEP$RATE; 

1* REQUEST STEPPER MOVEMENT *1 
DO WHILE ( (INPUT (UPI$2$STATUS) AND IBF) < > 0); 
END; 
OUTPUT (UPI$DATA) ~ POSITION; 

Figure 29. STEPPER Movement Request 

1* MASK OUT THE RESET INTERRUPTS OF THE PROCESSOR *1 
CALL S$MASK (MASKS); 

Figure 30. PL/M-80 Sim Instruction 

3-90 



Control Algorithm Programs 

The program which actually handles the control 
algorithm for the two loops can be found in 
Appendix A, MAIN$CONTROL. The flow of the 
program is straightforward and can easily be 
followed by reading the listing. The operations 
are primarily handled by the use of repeated calls 
to the FSP integer math routines and to the 
processor interface modules which we have 
previously generated. 

It is beyond the scope of this application note to 
dwell upon the techniques which were used to 
generate the PID control routine; this aspect will 
be covered in a future application note. 

Limits were placed upon the control outputs so 
that the signals to the processors would not exceed 
the physical limits of the external devices. For 
example, the frequency range is limited to range 
between 0 and 550 to correspond with the 
operating range of the weigh belt as we have 
defined it. The limits upon the liquid control valve 
have been set at plus and minus 10 steps since this 
is the maximum distance which the stepper motor 
can travel in anyone 200 millisecond time period; 
increasing the possible count could result in filling 
the queue. This could cause the 200 millisecond 
time to be extended if we had to wait for the queue 
to empty. 

Master Processor 

A complete control solution to the weighbelt feeder 
and the liquid applicator has now been developed. 
The process ill stand alone and resides entirely 
upon a single board. It can operate without 
requiring any access from the MULTI BUS bus, 
thus freeing the bus for other control, monitoring 
or supervisory duties. 

The system developed for this application note 
requires a setpoint for the mass flow and a liquid 
ratio be provided to the control system. This 
information would normally be supplied by some 
type of bus master device. We have chosen to use 
the pre-configured RMX/SO BASIC-SO Interpreter 
to perform this task. A simple program needs to 
be prepared which will allow adjustment of the 
setpoints and monitoring of the operation of the 
control system. 

Using BASIC will provide full disk 110 capabil
ities to the operator. Communicating with the 

system through a CRT terminal, he can write and 
execute programs which use the resources of the 
system disk or of any of the con trollers which may 
be present on the bus. 

Two programs are required to perform this 
task. Since they are written in BASIC, they may 
easily be modified or expanded if the need should 
ever arise. Indeed, other programs could be 
written to perform other tasks, such as optimizing 
the control parameters. 

In both programs, the parameters involved with 
the control operation are accessed by using the 
PEEK and POKE instructions. Remember that 
the iSBC 569 controller allows the on-board 
memory to be made available to other devices on 
the bus through the dual port mechanism. In our 
application, this has been done by jumpering the 
board such that the on-board memory beginning 
at location SOOOH can be accessed on the bus at 
location 2000H. This mapping was done since the 
memory locations at 2000H are not used by BASIC 
unless requested to do so. A byte of data which is 
at location S27EH on the controller can be read by 
performing a PEEK of location 227EH. Some of 
the memory assignments for the controller have 
been shown in Figure 31. 

3·91 

MOD MAINCONTROLMODULE 

829 FH 
8233H 
825 FH 
OODCH 
ODE 6H 
827AH 
ODE 8H 
8280H 
8285H 
8288H 
OOEFH 
01ADH 
81 F 7H 
825DH 
8268H 
ODE 4H 
8277H 
827CH 
ODE 9H 
8282H 
8287H 
828AH 
3FOOH 
8209H 
825EH 
OOD4H 
OOE5H 
8278H 
827EH 
OOEAH 
8284H 
OOEBH 
OOEDH 
OOF 1 H 

SYM MEMORY 
SYM PRLO 
SYM CONSTANT$1 
SYM BOUNDS2 
SYM TIMEINTERVAL 
SYM LlOUIDFLOW 
SYM DISTREV 
SYM MASS FLOW 
SYM LlOUIDVALVE 
SYM DUMMY 
SYM ZERO 
SYM PIDRUN 
SYM IR 
SYM LlOCOUNT 
SYM CONSTANTS2 
SYM CONTROL 1 
SYM BEL TSPEED 
SYM MASSSETPOINT 
SYM CONVLENGTH 
SYM BELTCONTROL 
SYM SYSTEMRUNNING 
SYM ICW 
SYM JUMPTABLE 
SYM PRCV 
SYM BELTCOUNT 
SYM BOUNDS1 
SYM CONTROL2 
SYM BEL TWEIGHT 
SYM SETPOINT 
SYM SIX 
SYM LlOUIDRATIO 
SYM ERRORFIELD 
SYM THOUSAND 
SYM INITIATION 

Figure 31. Selected Memory Location Assignments 



The first program involves setting up the two 
control parameters and handling the control flag 
which causes the process to start and to stop. This 
program can be found in Figure 32. 

10 REM THIS PROGRAM IS USED TO INPUT SETPOINTS 
15 REM TO THE LIQUID CONTROL SYSTEM. 
20 POKE 02287H,0 
25 INPUT "ENTER MASS SETPOINT-";MS 
26 IF MS > 1200 THEN 25 
30 MS=CINT(MSx10/60) 
35 H=INT(MS/256) 
40 L=CINT(MS-Hx256) 
45 POKE 0227EH,L 
50 POKE 0227FH,H 
55 INPUT "PERCENT L1QUID-";LR 
60 LR=CINT(LR) 
65 IF LR > 127 THEN 55 
70 POKE 02284H,LR 
75 POKE 02287H,1 
80 RUN "STATUS" 

Figure 32. Basic Program for Parameter Initialization 

PROGRAM NAME: STATUS 

10 I=PEEK(02!!7EH) 
20 H=PEEK(0227FH) 
30 MS=((256xH)+L)x60/10 
40 L=PEEK(02278H) 
50 H=PEEK(02279H) 
60 WT=((256xH)+L)/100 
70 L=PEEK(022890H) 
80 H=PEEK(02281 H) 
90 AM=((256xH)+L)x60/10 

100 MT=PEEK(02294H) 
110 LR=(PEEK(02284H) )/1 00 
120 LS=AMxLR 
130 L=PEEK(0227AH) 
140 H=PEEK(0227BH) 
150 LF=((256xH)+L)/100 

Upon completion of the initialization program, a 
second program provides a display of the system 
operation. This program could have been an 
optional program which is only called when the 
operator desires to view the system operation. A 
program which provides a snapshot ofthe system 
operation is shown in Figure 33. Again, the 
program is interactive with the operator and can 
easily be modified at any time to reformat or 
display additional information. 

IX. CONCLUSION 

The purpose of this application note has been to 
demonstrate some of the techniques which can be 
used to provide a control system design solution 
using an intelligent slave concept. This has been 
done and the system has been constructed and has 
been found to operate as the design specified. The 
Intelligent Slave Concept does provide a single 
board solution to distributed control and certainly 
off-loads the master processor of control duties. 

160 PRINT "MASS SETPOINT","WEIGHT","ACTUAL MASS","MOTION" 
170 PRINT MS,WT,AM,MT 
180 PRINT "LIQUID RATIO","L1QUID SET","L1QUID FLOW" 
190 PRINT LR,Ls,LF 
200 Z=PEEK(02285H) 
210 IF Z < 128 THEN 230 
220 Z=256-Z 
225 Z=O-Z 
230 L=PEEK(02282H) 
231 H=PEEK(02283H) 
232 BS=((256xH)+L)x60/200 
239 PRINT "STEPPER";Z, "BEL T";BS 
240 PRINT"" 
250 PRINT"" 
260 FOR N=O to 1000 
270 NEXT N 
280 GO TO 10 

Figure 33. Basic Snapshot Program 

3·92 



This frees the master to provide supervisory 
control and human interface duties. 

Certainly, this concept can be expanded to 
encompass a broad variety of complex control 

3·93 

situations. At the same time, there is no reason 
why the Intelligent Slave board could not be used 
to provide a single board solution to a simple 
control application where no interaction with 
other processes is required. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



APPENDIX A 

3·95 



ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE BACKGROUNDMODULE 
OBJECT MODULE PLACED IN :Fl:BCKGND.OBJ 
COMPILER INVOKED BY: PLM80 :Fl:BCKGND.PLM DEBUG PAGEWIDTH(72) TITLE('BA 

-CKGROUND PROGRAM') 

1 

2 
3 
4 

5 
6 
7 

8 
9 

10 

11 

12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 

23 

24 

25 
26 

1 
1 
1 

1 
J. 
1 

1 
1 
1 

1 

1 
1 
1 
1 

1 
1 
1 
1 
1 

1 
1 

1 

] 

1 

1****************************************** 
* THIS IS THE MAIN BACKGROUND OPERATING * 
* PROGRAM FOR THE PID CONTROL SYSTEM. * 
******************************************1 

BACKGROUND$MODULE: DO; 

1* DECLARATION OF BOARD liD 
DECLARE UPI$0SSTATUS 
DECLARE UPISl$STATUS 
DECLARE UPI$2$STATUS 

DECLARE UPI$0SCOMMAND 
DECLARE UPI$I$COMMAND 
DECLARE UPI$2SCOMMAND 

ASSIGNMENTS *1 
LITERALLY 
LITERALLY 
LITERALLY 

LITERALLY 
LITERALLY 
LITERALLY 

'0E5H' ; 
'0E7H'; 
'0E9H'; 

'0E5H' ; 
'0E7H' ; 
'0E9H'; 

DECLARE UPI$0$DATA 
DECLARE UPI$I$DATA 
DECLARE UPI$2$DATA 

LITERALLY '0E4H'; 
LITERALLY '0E6H'; 
LITERALLY '0E8H'; 

DECLARE RESETSLATCHSADR LITERALLY '0EAH'; 

1* DECLARATION OF RAM TEST PARAMETERS *1 
DECLARE BEGIN$RAM LITERALLY '8000H'; 
DECLARE END$RAM LITERALLY '8500H'; 
DECLARE ZERO$PATTERN LITERALLY '000H'; 
DECLARE ONES$PATTERN LITERALLY '0FFH'; 

1* DECLARATION OF RESET LATCH 
DECLARE RESET$UPI$0 
DECLARE RESET$UPISI 
DECLARE RESET$UPI$2 
DECLARE LIGHT$LED 
DECLARE MULTI$INTR 

BIT ASSIGNMENTS *1 
LITERALLY '00000001B'; 
LITERALLY '00000010B'; 
LITERALLY '00000100B'; 
LITERALLY '00001000B'; 
LITERALLY '00010000B'; 

1* DECLARATION OF ISBC 941 STATUS BITS *1 
DECLARE IBF LITERALLY '00000010B'; 
DECLARE OBF LITERALLY '00000001B'; 

1* DECLARATION OF ISBC 9~1 COMMANDS *1 
DECLARE IDEN LITERALLY '0008'; 

1* DECLARATION OF ISBC 941 IDENTIFICATION CODE *1 
DECLARE SBC9~1 LITERALLY '41H'; 

1* DECLARATION OF MEMORY TEST ADDRESS REGISTER *1 
DECLARE I ADDRESS AT (87FEH); 
DECLARE MEMLOC BASED I BYTE; 

1* DECLARATION OF RESET MASKS FOR 8085 PROCESSOR *1 

3·96 



27 

28 
29 
30 

31 

32 

33 

34 

35 
36 
37 
38 

39 
40 
41 
42 

43 

44 
45 
46 
47 
48 
49 
50 

5i 
52 
53 
54 
55 
56 
57 

1 

1 
2 
2 

1 

2 

1 

1 

1 
2 
2 
3 

2 
2 
3 
2 

1 

1 
2 
1 
1 
2 
1 
2 

1 
2 
1 
1 
2 
1 
2 

DECLARE MASKS BYTE DATA (00FH); 

/* DECLARATION OF PL/M-80 SIM INSTRUCTION */ 
S$MASK: PROCEDURE (MASK) EXTERNAL; 

DECLARE MASK BYTE; 
END S$MASK; 

/* DECLARATION OF INITIATION TASK */ 
INITIATION: 

PROCEDURE EXTERNAL; 
END INITIATION; 

/* CLEAR ISBC 941 DEVICES USING ON-BOARD RESET */ 
OUTPUT (RESET$LATCH$ADR) = 0; 

/* MASK OUT THE RESET INTERRUPTS OF THE PROCESSOR */ 
CALL S$MASK (MASKS); 

/* TEST MEMURY RAM LOCATIONS */ 
DO I = BEGIN$RAM TO END$RAM; 

MEMLOC = ZERO$PATTERN; 

END; 

DO WHILE MEMLOC <> ZERO$PATTERN; 
END; 

MEMLOC = ONES$PATTERN; 
DO WHILE MEMLOC <> ONES$PATTERN; 
END; 

/* RELEASE 941 LOCKOUT/RESET 
OUTPUT (RESET$LATCH$ADR) 

BITS */ 
RESET$UPI$0 OR 
RESET$UPI$l OR 
RESET$UPI$2 OR 
MULTI$INTR; 

/* VERIFY THAT SBC941 PROCESSOR IS IN SOCKET 0 */ 
DO WHILE (INPUT (UPI$0$STATUS) AND IEF) <> 0); 
END; 
OUTPUT (UPI$0$COMMAND) = IDEN; 
DO WHILE (INPUT (UPI$0$STATUS) AND OBF) = 0); 
END; 
DO WHILE (INPUT (UPI$0$DATA) <> SBC941); 
END; 

/* VERIFY THAT SBC941 PROCESSOR IS IN SOCKET 1 */ 
DO WHILE ((INPUT (UPI$1$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$1$COMMAND) = IDEN; 
DO WHILE ((INPUT (UPI$1$STATUS) AND OSF) 0); 
END; 
DO WHILE (INPUT (UPI$1$DATA) <> SBC941); 
END; 

3·97 



58 
59 
60 
61 
62 
63 
64 

65 

66 

67 
68 
69 

70 

1 
2 
1 

1 
2 
1 
2 

1 

1 

1 
2 
2 

1 

/* VERIFY THAT SBC941 PROCESSOR IS IN SOCKET 2 */ 
DO WHILE ((INPUT (UPI$2$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$2$COMMAND) = IDEN; 
DO WHILE «(INPUT (UPI$2$STATUS) AND OBF) 0); 
END; 
DO WHILE (INPUT (UPI$2$DATA) <> SBC941); 
END; 

/* START-UP TEST OK- TURN OFF LED */ 
OUTPUT (RESET$LATCH$ADR) = RESET$UPI$0 OR 

RESE'l'$UPI$l OR 
RESE'l'$UPI$2 OR 
LIGHT$LED OR 
MULTI$INTRj 

/* INITIATE THE CONTROL DEVICES */ 
CALL INITIATION; 

/* PERFORM BACKGROUND TASKS */ 
DO WHILE 1; 

HALT; 
END; 

END BACKGROUND$MODULE; 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
128 LINES READ 
o PROGRAM ERROR(S) 

END OF PL/M-80 COMPILATION 

00D4H 
0000H 
0002H 

3·98 

212D 
0D 
2D 



1 

2 

3 
tJ 

5 

6 
7 

8 

9 
10 

11 

12 
13 

14 

15 
16 

17 

18 
19 

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE MAINCONTROLMODULE 
OBJECT MODULE PLACED IN :Fl:CNTTSK.OBJ 
COMPILER INVOKED BY: PLM80 :Fl:CNTTSK.PLM DEBUG 

1 

2 
2 

1 

2 
2 

1 

2 
2 

1 

2 
2 

1 

2 
2 

1 

2 
2 

$INTVECTOR(4,3Fe0H) 
$PAGEWIDTH (72) 
$TITLE('MAIN CONTROL') 
/**************************************************** 
* MAIN$CONTROL$TASK * 
* THIS TASK IS USED TO CONTROL THE TWO PID CONTROL * 
* LOOPS. ONE LOOP CONTROLS THE SPEED OF A CONVEYOR * 
* WHILE THE SECOND CONTROLS THE FLOW OF A LIQUID. * 
* THE TASK OPERATES EACH 200 MSEC. * 
* * 
******** VERSION 1.1 *******************************/ 

MAIN$CONTROL$MODULE: DO; 

/* DECLARATION OF PID RECORD SET-UP TASK */ 
UQPSET: 

PROCEDURE (PR$PTR,ERRORSFLD$PTR,PRIV$PTR) EXTERNAL 

DECLARE (PR$PTR,ERROR$FLD$PTR,PRIV$PTR) ADDRESS; 
END UQPSET; 

/* DECLARATION OF PID CONTROL BITS */ 
UQPSCT: 

PROCEDURE (PR$PTR,CONTROL$PTR) EXTERNAL; 
DECLARE (PR$PTR,CONTROL$PTR) ADDRESS; 
END UQPSCT; 

/* PROCEDURE TO SET UP PIO CONSTANTS */ 
UQPSCN: 

PROCEDURE (PR$PTR,CONSTANT$PTR) EXTERNAL; 
DECLARE (PR$PTR,CONSTANT$PTR) ADDRESS; 
END UQPSCN; 

/* DEFINE THE DEFAULT ERROR HANDLER */ 
UQPSBD: 

PROCEDURE (PR$PTR,BOUNO$PTR) EXTERNAL; 
DECLARE (PR$PTR,BOUND$PTR) ADDRESS; 
END UQPSBD; 

/* PROCEDURE TO CHANGE THE TIME IN'fERVAL * / 
UQPSTI: 

PROCEDURE (PR$PTR,TIME$INTERVAL$PTR) EXTERNAL; 
DECLARE (PR$PTR,TIME$INTERVAL$PTR) ADDRESS; 
END UQPSTI; 

/* DECLARATION OF THE PID CONTROL PROGRAM */ 
UQPPID: 

PROCEDURE (PR$PTR,IR$PTR) EXTERNAL; 
DECLARE (PR$PTR,IR$PTR) ADDRESS; 
END UQPPID; 

3-99 



20 

21 

22 

23 

24 

25 

26 

27 
28 

29 

30 
31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

1 

2 

1 

2 

1 

2 

1 

2 
2 

1 

2 
2 

1 

2 

1 

2 

1 

2 

1 

2 

1 

2 

1* DECLARATION OF WEIGHBELT SPEED INTERFACE *1 
V-:EIGHBELT$SPEED: 

PROCEDURE BYTE EXTERNAL; 
END WEIGHBELT$SPEED; 

It DECLARATION OF WEIGHBELT WEIGHT INTERFACE *1 
WEIGHBELT$WEIGHT: 

PROCEDURE ADDRESS EXTERNAL; 
END WEIGHBELT$WEIGHT; 

1* DECLARATION OF LIQUID FLOW RATE INTERFACE *1 
LIQUID$FLOW$RATE: 

PROCEDURE ADDRESS EXTERNAL; 
END LIQUID$FLOW$RATE; 

1* DECLARATION OF WEIGHBELT MOTOR DRIVE INTERFACE *1 
WEIGHBELT$MOTOR$DRIVE: 

PROCEDURE (SPEED) EXTERNAL; 
DECLARE SPEED ADDRESS; 
END WEIGHBELT$MOTOR$DRIVE; 

1* DECLARATION OF LIQUID VALVE INTERFACE *1 
LIQUID$VALVE$POSITION: 

PROCEDURE (POSITION) EXTERNAL; 
DECLARE POSITION BYTE; 
END LIQUID$VALVE$POSITION; 

1* DECLARATION OF PROCESSOR 0 INITIALIZATION MODULE *1 
PROCESSOR$0$INITIALIZATION: 

PROCEDURE EXTERNAL; 
END PROCESSOR$0$INITIALIZATION; 

1* DECLARATION OF PROCESSOR 1 INITIALIZATION MODULE *1 
PROCESSOR$1$INITIALIZATION: 

PROCEDURE EXTERNAL; 
END PROCESSOR$1$INITIALIZATION; 

1* DECLARATION OF PROCESSOR 2 INITIALIZATION MODULE *1 
PROCESSOR$2$INITIALIZATION: 

PROCEDURE EXTERNAL; 
END PROCESSOR$2$INITIALIZATION; 

1* DECLARATION OF PIT COUNTER 1 INITIALIZATION *1 
COUNTER$1$INITIALIZATION: 

PROCEDURE EXTERNALj 
END COUNTER$1$INITIALIZATIONj 

1* DECLARATION OF PIT COUNTER 2 INITIALIZATION *1 
COUNTER$2$INITIALIZATION: 

PROCEDURE EXTERNAL; 
END COUNTER$2$INITIALIZATIONj 

3·100 



42 1 
43 2 
44 2 
45 1 

46 2 
47 2 

48 1 
49 2 
50 2 
51 1 
52 2 
53 2 

54 1 
55 2 
56 2 
57 1 
58 2 
59 2 

60 1 
61. 2 
62 2 
63 1 
64 2 
65 2 

66 1 
67 2 
68 2 

69 1 
70 2 
71 2 

72 1 
73 2 
74 2 

75 1 
76 2 
77 2 
78 1 
79 2 
80 2 

/* DECLARATION OF FSP UNSIGNED LOAD PROCEDURES */ 
MQULDl: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 

DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQULD1; 

MQULD2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 

DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQULD2; 

/* DECLARATION OF FSP UNSIGNED MULTIPLY PROCEDURE */ 
MQUMLl: PROCEDURE (IR$PTR, VALUE$PTR) EXTERNAL; 

DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQUML1; 

MQUML2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQUML2; 

/* DECLARATION OF FSP UNSIGNED DIVIDE PROCEDURE */ 
MQUDV1: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 

DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQUDV1; 

MQUDV2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQUDV2; 

/* DECLARATION OF FSP SIGNED DIVIDE PROCEDURE */ 
MQSDV1: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 

DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQSDV1; 

MQSDV2: PROCEDURE (IR$PTR, VALUE$p'rR) EXTERNAL; 
DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQSDV2; 

/* DECLARTATION OF FSP SIGNED STORE PROCEDURE */ 
MQSST2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 

DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQSST2; 

/* DECLARATION OF FSP SIGNED LOAD PROCEDURE */ 
MQSLD2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 

DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQSLD2; 

/* DECLARATION OF FSP SIGNED SUBTRACT PROCEDURE */ 
MQSSB2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 

DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQSSB2i 

/* DECLARATION OF FSP UNSIGNED STORE PROCEDURE */ 
MQUST1: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 

DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQUST1i 

MQUST2: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQUST2; 

3-101 



81 
82 
83 

84 
85 
86 
87 

88 
89 
90 
91 
92 
93 

94 
95 
96 
97 
98 
99 

100 
101 
HJ2 

un 

104 
105 

106 

107 

1 
2 
2 

1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 
1 
1 

1 

1 
1 

1 

1 

/* DECLARATION OF FSP SIGNED MULTIPLY PROCEDURE */ 
MQSMLl: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 

DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQSMLl; 

$EJECT 
/****************************************** 
* DATA STORAGE AREAS FOR THE PID CONTROL * 
******************************************/ 

/* DEFINITION OF LIMITATION CONSTANTS */ 
DECLARE MAX$MOTOR$SPEED LITERALLY '55~'; 
DECLARE MIN$MOTOR$SPEED LITERALLY '0'; 
DECLARE MAX$VALVE$MOVEMENT LITERALLY 'IP'; 
DECLARE MIN$VALVE$MOVEMENT LITERALLY '-10'; 

/* DEFINITION OF PIO PARAMETER 
DECLARE FEEDER$C0 
DECLARE FEEDER$Cl 
DECLARE FEEDER$C2 
DECLARE FEEDER$C3 
DECLARE FEEDER$TIME$INTERVAL 
DECLARE FEEDER$SCALE$FACTOR 

DECLARE LIQUID$C0 
DECLARE LIQUID$Cl 
DECLARE LIQUID$C2 
DECLARE LIQUID$C3 
DECLARE LIQUID$TIME$INTERVAL 
DECLARE LIQUID$SCALE$FACTOR 

COEFFICIENTS */ 
LITERALLY '1'; 
LI'rERALLY '1'; 
LITERALLY '1'; 
LITERALLY '1'; 
LITERALLY '1'; 
LITERALLY '1'; 

LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 
LITERALLY 

, 1 ' ; 
, 1 ' ; 
, l' ; 
, l' ; 
, 1 ' ; 
, 10' ; 

/* DEFINITION OF RESET LATCH 
DECLARE RESET$LATCH$ADR 
DECLARE INDICATOR$ON 
DECLARE INDICATOR$OFF 

PARAMETERS */ 
LITERALLY '0EAH'; 
LITERALLY '07H'; 
LITERALLY '0FH'; 

/* RESERVE 18 BYTES FOR THE INTEGER RECORD */ 
DECLARE IR (18) BYTE PUBLIC; 

/* RESERVE 42 BYTES FOR EACH PID RECORD */ 
DECLARE PRCV (42) BYTE; 
DECLARE PRLQ (42) BYTE; 

/* RESERVE SPACE FOR COUNTER DATA */ 
DECLARE (LIQ$COUNT,BELT$COUNT) BYTE PUBLIC; 

/* RESERVE 
DECLARE 

C0 
Cl 
C2 
C3 
DT 
S 

12 BY'fES FOR EACH CONSTANT ARRAY */ 
CONSTANTSI STRUCTURE ( 
ADDRESS, 
ADDRESS, 
ADDRESS, 
ADDRESS, 
ADDRESS, 
ADDRESS ); 

3-102 



108 

109 

110 

III 
112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

1 

1 

1 

1 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

DECLARE CONSTANTS2 STRUCTURE ( 
C0 ADDRESS, 
Cl ADDRESS, 
C2 ADDRESS, 
C3 ADDRESS, 
DT ADDRESS, 
S ADDRESS); 

/* RESERVE 8 BYTES FOR EACH BOUNDS ARRAY */ 
DECLARE BOUNDS1 (4) ADDRESS DATA ( 

000H, 
000H, 
MAX$MOTOR$SPEED, 
MIN$MOTOR$SPEED ); 

DECLARE BOUNDS2 (4) ADDRESS DATA ( 
0fil0D, 
000D, 
MAX$VALVE$MOVEMENT, 
MIN$VALVE$MOVEMENT ); 

/* RESERVE 1 BYTE FOR EACH CONTROL BYTE */ 
DECLARE CONTROLI BYTE DATA (073H); 
DECLARE CONTROL2 BYTE DATA (053H); 

/* DECLARE TIME INTERVAL */ 
DECLARE TIME$INTERVAL ADDRESS DATA (1); 

/* RESERVE SPACE FOR THE CURRENT BELT SPEED */ 
DECLARE EELT$SPEED BYTE; 

/* RESERVE SPACE FOR THE CURRENT BELT WEIGHT */ 
DECLARE BELTSWEIGHT ADDRESS; 

/~ RESERVE SPACE FOR THE LIQUID FLOW */ 
DECLARE LIQUID$FLOW ADDRESS; 

/* RESERVE SPACE FOR THE EFFECTIVE SETPOINT */ 
DECLARE MASS$SETPOINT ADDRESS; 

/* RESERVE SPACE FOR THE DESIRED SETPOINT */ 
DECLARE SET$POINT ADDRESS; 

/* RESERVE SPACE FOR THE DISTANCE OF BELT PER REVOLUTION 
*/ 

DECLARE DIST$REV BYTE DATA (100); 

/* DEFINE THE CONVEYOR LENGTH */ 
DECLARE CONV$LENGTH BYTE DATA (200); 

/* DEFINE THE CONSTANT SIX */ 
DECLARE SIX BYTE DATA (6); 

/* RESERVE STORAGE FOR ACTUAL CURRENT MASS FLOW */ 
DECLARE MASS$FLOW ADDRESS; 

3-103 



123 

124 

125 

126 

127 
] 28 

129 

130 

13] 

132 

133 
134 
135 

13fi 
137 
138 

139 

140 

141 
142 

1 

1 

1 

1 

1 
1 

1 

1 

1 

1 

1 
1 
1 

1 
1 
1 

1 

2 

2 
2 

/* RESERVE SPACE FOR BELT CONTROL OUTPUT */ 
DECLARE BELT$CONTROL ADDRESS; 

/* RESERVE SPACE FOR LIQUID RATIO */ 
DECLARE LIQUID$RATIO BYTE; 

/* RESERVE SPACE FOR LIQUID CONTROL OUTPUT */ 
DECLARE LIQUID$VALVE ADDRESS; 

/* RESERVE SPACE FOR RUN/HALT CONTROL */ 
DECLARE SYSTEM$RUNNING BYTE PUBLIC; 

/* RESERVE SPACE FOR ERROR FIELD */ 
DECLARE ERROR$FIELD ADDRESS DATA (0F800H); 
DECLARE DUMMY ADDRESS; 

/* RESERVE SPACE FOR PIC ICW BYTE */ 
DECLARE ICW BYTE; 

/* DEFINE CONSTANT 1000 */ 
DECLARE THOUSAND ADDRESS DATA (1000); 

/* DEFINE CONSTANT 0 */ 
DECLARE ZERO ADDRESS DATA (0); 

/* DEFINE INTERRUPT JUMP TABLE */ 
DECLARE JUMP$TABLE BYTE AT (3F00H); 

/* DECLARATION OF PIC ADDRESSES ON ISBC 569 BOARD */ 
DECLARE PIC$ICW1$PTR LITERALLY '0ECH'; 
DECLARE PIC$ICW2$PTR LITERALLY '0EDH'; 
DECLARE PIC$INT$MASK$PTR LITERALLY '0EDH'; 

/* DECLARATION OF PIC CONSTANTS */ 
DECLARE CLR$LOW$BITS LITERALLY '0E0H'; 
DECLARE INTERVAL$4 LITERALLY '016H'; 
DECLARE INTERRUPT$MASK LITERALLY '0F4H'; 

$EJECT 
/******************************************* 
* INITIALIZE PROGRAM AT START-UP OF SYSTEM * 
* THIS PROCEDURE IS CALLED AT START-UP * 
*******************************************/ 

INITIATION: PROCEDURE PUBLIC; 

/* DISABLE THE INTERRUPTS */ 
DISABLE; 

/* INITIALIZE PID RECORD */ 
CALL UQPSET (.PRCV,.ERROR$FIELD,.DUMMY); 
CALL UQPSET (.PRLQ,.ERROR$FIELD,.DUMMY); 

3·104 



143 
144 

145 
146 
147 
148 
149 
J. 50 

151 
152 
153 
154 
155 
156 

157 
158 
159 

160 
161 

162 
163 

164 
165 

166 

167 

168 

169 

170 

171 

172 

2 
2 

2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 

2 
2 
2 

2 
2 

2 
2 

2 
2 

2 

2 

2 

2 

2 

2 

2 

/* INITIALIZE THE CONTROL BITS */ 
CALL UQPSCT (.PRCV,.CONTROLl); 
CALL UQPSCT (.PRLQ,.CONTROL2); 

/* SET UP THE PIO CONSTANTS */ 
CONSTANTSl.C0 FEEDER$C0; 
CONSTANTSl.Cl FEEDER$Cl; 
CONSTANTSJ.C2 FEEDER$C2; 
CONSTANTSl.C3 FEEDER$C3; 
CONSTANTS 1. DT FEEDER $T IME $INTERVl>.L ; 
CONSTANTS1.S FEEDER$SCALE$FACTOR; 

CONSTANTS2.C0 
CONS rl'ANTS 2. C 1 
CONSTANTS 2. C2 
CONSTMJTS2. C3 
CONSTANTS2.DT 
CONSTAN'I'S2. S 

LIQUID$C0; 
LIQUIO$Cl; 
LIQUID$C2; 
LIQUIO$C3; 
LIQUID$TIME$INTERVAL; 
LIQUIO$SCALE$FACTOR; 

/* CLEAR SETPOINTS */ 
SETPOINT = 0; 
LIQUID$RATIO = 0; 
SYSTEM$RUNNING = 0; 

/* INITIALIZE THE CONSTANTS */ 
CALL UQPSCN (.PRCV,.CONSTANTS1); 
CALL UQPSCN (.PRLQ,.CONSTANTS2); 

/* INITIALIZE THE BOUNDS */ 
CALL UQPSBD (.PRCV,.BOUNDSl); 
CALL UQPSBD (.PRLQ,.BOUNDS2); 

/* SET THE TIME INTERVAL */ 
CALL UQPSTI (. PRCV,. TIME$INTERVAL) ; 
CALL UQPSTI (.PRLQ, .TIME$INTERVAL); 

/* INITIALIZE PROCESSOR 0 */ 
CALL PROCESSOR$0$INITIALIZATION; 

/* INITIALIZE PROCESSOR 1 */ 
CALL PROCESSOR$l$INITIALIZATION; 

/* INITIALIZE PROCESSOR 2 */ 
CALL PROCESSOR$2$INITIALIZATION; 

/* INITIALIZE COUNTER 1 */ 
CALL COUNTER$l$INITIALIZATION; 

/* INITIALIZE COUNTER 2 */ 
CALL COUNTER$2$INITIALIZATION; 

/* INITIALIZE INTERRUPT CONTROLLER */ 
ICW = (LOW (.JUMP$TABLE) AND 

CLR$LOW$BITS ) OR 
INTERVAL$4 ; 

OUTPUT (PIC$ICWl$PTR) = ICW; 

3-105 



173 
174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

185 

186 
187 
188 
189 
190 
191 

192 
193 

194 

195 

2 
2 

2 

2 

2 

2 

1 

2 

2 

2 

2 

2 

2 
2 
2 
2 
2 
2 

2 
2 

2 

2 

ICW = HIGH (.JUMP$TABLE); 
OUTPUT (PIC$ICW2$PTR) = ICW; 

/* SET INTERRUPT MASKS */ 
OUTPUT (PIC$INT$MASK$PTR) 

/* ENABLE INTERRUPTS */ 
ENABLE; 

/* RETURN TO MAIN PROGRAM */ 
RETURN; 

END INITLl>TION; 

INTERRUPT$MASK; 

$EJECT 
/*************************************************** 
* THIS IS THE PID CONTROL ROUTINE. IT IS ENTERED * 
* EACH 200 MILLISECONDS THROUGH AN INTERRUPT GEN- * 
* ERATED BY THE FREQUENCY COUNTER UPI AND SENT TO * 
* mTERHUPT 3. * 
***************************************************/ 

PIDRUN: PROCEDURE INTERRUPT 3 PUBLIC; 

/* TURN THE LED INDICATOR ON */ 
OUTPUT (RESET$LATCH$ADR) = INDICATOR$ON; 

/* GET WEIGHBELT WEIGHT */ 
BELT$WEIGHT=WEIGHBELT$WEIGHT; 

/* GET LIQUID FLmv RATE * / 
LIQUID$FLOW=LIQUID$FLOW$RATE; 

/* CONTROL START-STOP RAMP */ 
IF SYSTEM$RUNNING 

THEN MASS$SETPOINT=SETPOINT; 
ELSE MASS$SETPOINT=0; 

/* DETER1ViINE ACTUAL MASS FLOW ON WEIGHBELT */ 
CALL MQULD2(.IR,.BELT$CONTROL); 
CALL MQUML2(.IR,.BELT$WEIGHT); 
CALL MQUMLl(.IR,.DIST$REV); 
CALL MQUDVl(.IR,.CONV$LENGTH); 
CALL MQSDV2(.IR,.THOUSAND); 
CALL MQSST2(.IR,.MASS$FLOW); 

/* COMPUTE ERROR SIGNAL ON WEIGHBELT */ 
CALL MQSLD2(.IR,.MASS$SETPOINT); 
CALL MQSSB2(.IR,.MASS$FLOW); 

/* HANDLE PID BELT CONTROL ALGORITHM */ 
CALL UQPPID(.PRCV,.IR); 

/* STORE OUTPUT SIGNAL */ 
CALL MQUST2(.IR,.BELT$CONTROL); 

3-106 



196 
197 
198 

199 

201 

202 

203 

204 

205 

206 

207 

208 
209 
210 

2 
2 
2 

2 

2 

2 

2 

2 

2 

2 

2 

2 
2 
1 

/* COMPUTE LIQUID SETPOINT */ 
CALL MQSLD2 (. IR, .MASS$FLOW); 
CALL MQSML1(.IR,.LIQUID$RATIO); 
CALL MQSML1(.IR,.SIX); 

/* VERIFY THAT WEIGHBELT IS MOVING */ 
IF WEIGHBELT$SPEED = e 
THEN CALL MQULD2(.IR,.ZERO); 

/* COMPUTE LIQUID ERROR */ 
CALL MQSSB2 (. IR,. LIQUID$FLOW); 

/* HANDLE PID LIQUID CONTROL */ 
CALL UQPPID(.PRLQ,.IR)i 

/* STORE OUTPUT SIGNAL */ 
CALL MQUST1(.IR,.LIQUID$VALVE)i 

/* OUTPUT WEIGHBELT CONTROL SIGNAL */ 
CALL WEIGHBELT$MOTOR$DRIVE (BELT$CONTROL); 

/* OUTPUT FLOW CONTROL SIGNAL */ 
CALL LIQUID$VALVE$POSITION (LIQUID$VALVE); 

/* SEND END OF INTERRUPT TO 8259 CONTROLLER */ 
OUTPUT(0ECH)=020H; 

/* TURN THE LED INDICATOR OFF */ 
OUTPUT (RESET$LATCH$ADR) INDICATOR$OFFi 

/* RETURN FROM CONTROL TASK */ 
RETURN; 
END PIDRUN; 

END; 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
465 LINES READ 
o PROGRAM ERROR(S) 

END OF PL/M-80 COMPILATION 

01C1H 
0094H 
000AH 

3-107 

4l19D 
148D 

10D 



ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE PROCESSORINITIALIZATIONMODULE 
OBJECT MODULE PLACED IN :Fl:SBC941.0BJ 
COMPILER INVOKED BY: PLM80 :Fl:SBC941.PLM DEBUG PAGEWIDTH(72) TITLE('PR 

-OCESSOR INITIALIZATION') 

1 

2 
3 
4 

5 
6 
7 

8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 

19 
20 
21 

22 
23 
24 
25 
26 
27 
28 

1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1. 

1 
1 
1 
1 
1 
1 
1 

/********************************************** 
* THIS PROGRAM IS USED TO INITIALIZE THE ISBC * 
* 941 PROCESSOR INSTALLED IN SOCKET 0. THE * 
* DEVICE WILL OPERATE IN THE FREQUENCY OUTPUT * 
* MODE. * 
**********************************************/ 

PROCESSOR$INITIALIZATION$MODULE: DO; 

/* DECLARATION OF ADDRESSES */ 
DECLARE UPI$0$STATUS LITERALLY '0E5H'; 
DECLARE UPI $0$COMMAND LITERALLY '0E5H'; 
DECLARE UPI$0$DATA LITERALLY '0E4H'; 

DECLARE UPI$I$STATUS 
DECLARE UPI$I$COMMAND 
DECLARE UPI$ISDATA 

DECLARE UPI$2$STATUS 
DECLARE UPIS2$COMMAND 
DECLARE UPI$2$DATA 

/* DECLARATION OF ISBC 941 
DECLARE SETPI 
DECLARE CLRPI 
DECLARE CLRP2 
DECLARE PAUSE 
DECLARE LOOP 
DECLARE INI'rPF 
DECLARE PACIFY 
DECLARE ENFLAG 

/* DECLARATION OF ISBC 941 
DECLARE RFC 
DECLARE IBF 
DECLARE QF' 

/* DECLARATION OF ISBC 941 
DECLARE FREQ 
DECLARE SF 
DECLARE OUTPUT$ENABLE0 
DECLARE INITIAL$STATE 
DECLARE DELAY 
DECLARE PERIOD 
DECLARE INITIAL$OUTPUT 

3-108 

LITERALLY '0E7H'; 
LITERALLY '0E7H'; 
LITERALLY '0E6H'; 

LITERALLY '0E9H'; 
LITERALLY '0E9H'; 
LITERALLY '0E8H'; 

COMMANDS */ 
LITERALLY '00BH'; 
LITERALLY '00DH'; 
LITERALLY '00EH'; 
LITERALLY '005H'; 
LITERALLY '004H'; 
LITERALLY '002H'; 
LITERALLY '001H'; 
LITERALLY '006H'; 

STATUS BITS */ 
LITERALLY '080H'; 
LITERALLY '002H'; 
LITERALLY '010H'; 

#0 INITIALIZATION 
LITERALLY '0B5H'; 
LITERALLY '000H'; 
LITERALLY '001H'; 
LITERALLY '000H'; 
LITERALLY '001H'; 
LITERALLY '000H'; 
LITERALLY '00EH'; 

DATA */ 



29 
30 
31 

32 

33 

34 

35 

36 

37 
38 

39 
40 
41 
42 
43 

44 
45 
46 

47 
48 
49 
50 
51 

52 
53 
54 

1 
] 

1 

1 

1 

1 

1 

1 

2 
2 

2 
3 
4 
3 
3 

2 
3 
2 

2 
3 
4 
3 
3 

2 
3 
2 

/* DECLARATION OF INTERVAL 
DECLARE PIT$0$MODE 
DECLARE PIT$0$INTERVAL 
DECLARE PITS0$MODE$WRD 

DeCLARE PIT$0SCOUNT 

TIMER PARAMETERS */ 
LITERALLY '016H'j 
LITERALLY '00EH'j 
LITERALLY '0E3H'j 

LITERALLY '0E0H'j 

/* DECLARATION OF COUNTER LOCATIONS */ 
DECLARE (LIQ$COUNT,BELT$COUNT) BYTE EXTERNALj 

/* DECLARATION OF ISBC 941 PRIMARY DATA */ 
DECLARE INIT$0$TABLE (6) BYTE DATA ( 

FREQ, 
SF, 
OUTPUTSENABLE0, 
INITIAL$STATE, 
DELAY, 
PERIOD ) j 

/* DECLARATION OF MISC PARAMETERS */ 
DEC LARE I BYT E j 

/*********************************************** 
* INITIALIZATION PROGRAM BODY * 
***********************************************/ 

PROCESSOR$0$INITIALIZATION: PROCEDURE PUBLICj 

/* INITIALIZE COUNTER 0 FOR 10 MICROSECONDS */ 
OUTPUT(PIT$0$MODE$WRD)=PITS0$MODEj 
OUTPUT(PIT$0SCOUNT)=PITS0$INTERVALj 

/* VERIFY THAT PROCESSOR IS RESET */ 
DO WHILE ((INPUT(UPI$0$STATUS) AND RFC) = 0)j 

DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> e)j 
END; 
OUTPUT (UPI$0$COMMAND)=PACIFYj 

END; 

/* REQUEST PRIMARY FUNCTION */ 
DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0)j 
END; 
OUTPUT(UPI$0$COMMAND)= INITPF; 

/* LOAD INITIAL PARAMETERS */ 
DO 1=0 TO 5; 

END; 

DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0); 
ENDj 
OUTPUT(UPIS0SDATA)=INIT$0STABLE(I); 

/* TERMINATE PARAMETER LOADING */ 
DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0)j 
ENDj 
OUTPUT (U PI $ 0$COMMAND) =PA USE; 

3-109 



55 
56 
57 

58 
59 
60 

61 
62 
li3 

64 

65 

66 
67 
68 
69 
70 

71 

72 

73 
74 
75 
76 
77 

2 
3 
2 

2 
3 
2 

2 
3 
2 

2 

2 

1 
1 
1 
1 
1 

1 

1 

2 
3 
4 
3 
3 

/* START FREQUENCY FUNCTION */ 
DO WHILE (INPUT(UPI$0$STATUS) AND IBF) <>0); 
END; 
OUTPUT (UPI$0$COMMAND)=LOOP; 

/* SET UNUSED BITS TO ALLOW EXPANSION */ 

DO WHILE «INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$0$COMMAND)=CLRP2; 

DO WHILE «INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$0$DATA)=INITIAL$OUTPUT; 

/* RETURN TO CALLING PROGRAM */ 
RETURN; 

END PROCESSOR$0$INITIALIZATION; 

$EJECT 
/************************************************ 
* THIS PROCEDURE IS USED TO INITIALIZE THE ISBC * 
* 941 PROCESSOR INSTALLED IN SOCKET 1. THE DE- * 
* VICE WILL OPERATE IN THE FCOUNT, HIGH FRE- * 
* QUENCY INPUT MODE. * 
************************************************/ 

/* DEFINE INITIALIZATION PARAMETERS */ 
DECLARE FCOUNT LITERALLY '033H'; 
DECLARE INPUT$SELECT LITERALLY '001H'; 
DECLARE OUTPUT$ENABLE$1 LITERALLY '001H'; 
DECLARE SAMPLING$INTERVAL LITERALLY '009H'; 
DECLARE INITIAL$STATE$1 LITERALLY '0EIH'; 

/* DECLARE PARAMETER INITIALIZATION TA8LE */ 
DECLARE INIT$I$TABLE(4) BYTE DATA ( 

FCOUNT, 
INPUT$SELECT, 
OUTPUT$ENABLE$I, 
SAMPLING$INTERVA.L ); 

/************************************************ 
* INITIALIZATION BODY * 
************************************************/ 

PROCESSOR$I$INITIALIZATION: PROCEDURE PUBLIC; 

/* VERIFY THAT PROCESSOR IS RESET */ 
DO WHILE «INPUT(UPI$I$STATUS) AND RFC) = 0); 

DO WHILE «INPUT(UPI$l$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$I$COMMAND)=PACIFY; 

END; 

3·110 



78 
79 
80 

81 
82 
83 
84 
85 

86 
87 
88 

89 
90 
91 
92 
93 
94 

95 
96 
97 

98 

99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 

2 
3 
2 

2 
3 
4 
3 
3 

2 
3 
2 

2 
3 
2 
2 
3 
2 

2 
3 
2 

2 

2 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

/* REQUEST PRIMARY FUNCTION */ 
DO WHILE «INPU'r(UPI$1$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$1$COMMAND)=INITPF; 

/* LOAD INITIAL PARAMETERS */ 
DO I=0 TO 3; 

DO WHILE «INPUT(UPI$l$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$1$DATA)=INIT$1$TABLE (I); 

END; 

/* TERI'l!INATE PARAMETER LOADING */ 
DO WHILE «INPUT(UPI$1$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$1$COMMAND)=PAUSE; 

/* SET UNUSED BITS HIGH FOR SPARE ENABLES */ 
DO WHILE «INPUT{UPI$1$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$1$COMMAND) =SETP1; 
DO WHILE «INPUT(UPI$1$STATUS) AND IBF)/<> 0); 
END; _ . 
OUTPUT (UPI$1$DATA)=INITIAL$STATE$1; 

/* START FREQUENCY COUNT OPERATION */ 
DO WHILE ({INPUT(UPI$1$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPIS1$COMMAND)=LOOP; 

/* RETURN TO CALLING PROGRAM */ 
RETURN; 

END PROCESSOR$1SINITIALIZATION; 

$EJECT 
/************************************************ 
* THIS PROCEDURE IS USED TO INITIALIZE THE ISBC * 
* 941 INSTALLED IN SOCKET 2. THE DEVICE WILL BE * 
* OPERATED AS A STEPPER MOTOR DRIVER. * 
************************************************/ 

/* DEFINE INITIALIZATION PARAMETERS */ 
DECLARE STEPPER LITERALLY 1017HI; 
DECLARE SCALE$FACTOR LITERALLY 10DFHI; 
DECLARE OUTPUT$ENABLE$2 LITERALLY 10F0H I ; 
DECLARE OUTPUT$POLARITY LITERALLY 1050HI; 
DECLARE COMMON$PERIOD LITERALLY 1004HI; 
DECLARE P20$TRAN1 LITERALLY 1000HI; 
DECLARE P20$TRAN2 LITERALLY 1000HI; 
DECLARE P21$TRAN1 LITERALLY 1000H I; 
DECLARE P21$TRAN2 LITERALLY 1000HI; 
DECLARE P22$TRAN1 LITERALLY 1000HI; 
DECLARE P22$TRAN2 LITERALLY 1000HI; 

3·111 



III 1 
112 1 
113 1 
114 1 
115 1 
116 1 
117 1 
118 1 
119 1 
120 1 

121 1 

122 1 

123 1 

124 2 
125 3 
126 4 
127 3 
128 3 

129 2 
130 3 
131 2 

/* 

DECLARE P23$TRANI LITERALLY '00r1lH' ; 
DECLARE P23$TRAN2 LITERALLY '00!:'1H' ; 
DECLARE P24$TRANI LITERALLY '000H' ; 
DECLARE P24$TRAN2 LITERALLY '002H'; 
DECLARE P25$TRANI LITERALLY '00!:'1H'; 
DECLARE P25$TRAN2 LITERALLY '002H'; 
DECLARE P26$TRANI LITERALLY '001H'; 
DECLARE P26$TRAN2 LITERALLY '003H' ; 
DECLARE P27$TRANI LITERALLY '001H' ; 
DECLARE P27$TRAN2 LI'rERALLY '003H'; 

DECLARE CLR$LOW$PORT LITERALLY '00FH' ; 

DECLARE PARAMETER INITIALIZATION TABLE */ 
DECLARE INIT$2$TABLE(21) BYTE DATA ( 

STEPPER, 
SCALE$FACTOR, 
OUTPUT$ENABLE$2, 
OUTPUT$POLARITY, 
COMMON$PERIOD, 
P20 $TRAN 1, 
P21O$TRAN2, 
P21$TRANl, 
P21$TRAN2, 
P22$TRAN 1, 
P22$TRAN2, 
P23$TRAN 1, 
P23$TRAN2, 
P24 $TRAN 1, 
P24$TRAN2, 
P25$TRANl, 
P25$TRAN2, 
P26 $TRAN 1, 
P215$TRAN2, 
P27$TRANl, 
P27$TRAN2 ); 

/************************************************ 
* INITIALIZATION BODY * 
*************~**********************************/ 

PROCESSOR$2$INITIALIZATION: PROCEDURE PUBLIC; 

/* VERIFY THAT PROCESSOR IS RESET */ 
DO WHILE ({INPUT{UPI$2$STATUS) AND RFC) = 10); 

DO WHILE ((INPUT{UPI$2$STATUS) AND IBF) <> 0); 
END; . 
OUTPUT (UPI$2$COMMAND)=PACIFY; 

. END; 

/* REQUEST PRIMARY FUNCTION */ 
DO WHILE «INPUT(UPI$2$STATUS) AND IBF) <> 0); 
END; 
OU'l'PUT (UPI$2$COMMAND)=INITPF; 

3-112 



132 
133 
134 
135 
136 

137 
138 
139 

140 
141 
142 

143 
144 
145 
146 
147 
H8 

149 

J.50 

151 

152 

153 

154 

2 
3 
4 
3 
3 

2 
3 
2 

2 
3 
2 

2 
3 
2 
2 
3 
2 

2 

2 

1 

2 

2 

2 

/* LOAD INITIAL PARAMETERS */ 
DO 1=0 TO 20; 

DO WHILE ((INPUT(UPI$2$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$2$DATA)=INIT$2$TABLE (I); 

END; 

/* TERMINATE PARAMETER LOADING */ 
DO WHILE ((INPUT(UPI$2$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$2$COMMAND)=PAUSE; 

/* START STEPPER CONTROLLER OPERATION */ 
DO WHILE ((INPUT(UPI$2$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$2SCOMMAND)=LOOP; 

/* SET UNUSED BITS LOW TO ENABLE GENERAL FUNCTIONS */ 
DO WHILE ((INPUT(UPI$2$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI $2$COMl'1AND) =CLRPl; 
DO WHILE ((INPUT(UPI$2$STATUS) AND IBF) <> e); 
END; 
OUTPUT (UPI$2$DATA)=CLR$LOW$PORT; 

/* RETURN TO CALLING PROGRAl'1 */ 
RETURN; 

END PROCESSOR$2$INITIALIZATION; 

$EJECT 
/*********************************************** 
* THIS PROCEDURE IS USED TO INITIALIZE COUNTER * 
* 1 TO PERFORM AS AN EIGHT BIT BINARY COUNTER * 
* WHICH WILL BE USED TO MEASURE THE BELT SPEED.* 
***********************************************/ 

COUNTERSl$INITIALIZATION: PROCEDURE PUBLIC; 

/* INITIALIZE COUNTER 1 FOR EIGHT BIT COUNTING */ 
LIQSCOUNT = 0; 

/* RETURN TO CALLING PROGRAM */ 
RETURN; 

END COUNTER$l$INITIALIZATION; 

$EJECT 
/*********************************************** 
* THIS PROCEDURE IS USED TO INITIALIZE COUNTER * 
* 2 TO PERFORl'1 AS AN EIGHT BIT BINARY COUNTER * 
* WHICH WILL BE USED TO MEASURE THE LIQUID * 
* FLOW THROUGH THE METER. * 
***********************************************/ 

3-113 



155 1 COUNTER$2$INITIALIZATION: PROCEDURE PUBLIC; 

/* INITIALIZE COUNTER 2 FOR EIGHT BIT COUNTING 
156 2 BELT$COUNT = 0 ; 

/* RETURN TO CALLING PROGRAM */ 
157 2 RETURN; 

158 2 END COUNTER$2$INITIALIZATION; 
159 1 END PROCESSOR$INITIALIZATION$MODULE; 

$EJECT 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXHWM STACK SIZE = 
329 LINES READ 
o PROGRAM ERROR(S) 

END OF PL/M-80 COMPILATION 

0201H 
0001H 
0000H 

3-114 

513D 
1D 
0D 

*/ 



ISIS-II PL/M-8fJ V3.1 COMPILATION OF MODULE PROCESSORINTERFACEMODULE 
OBJECT MODULE PLACED IN :Fl:0PR941.0BJ 
COMPILER INVOKED BY: PLM80 :Fl:0PR941.PLM DEBUG 

1 

2 1 
3 1 
4 1 

5 1 
6 1 
7 1 

8 1 
9 1 

10 1 

11 1 
12 1 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 1 
213 1 
21 1 

22 1 
23 1 
24 1 
25 1 
26 1 

27 1 
28 2 
29 2 
30 1 
31 2 
32 2 

$INTVECTOR(4,3F0~H) 
$PAGEWIDTH(72) 
$TITLE('PROCESSOR INTERFACE') 
/********************************************** 
* THESE PROGRAMS PROVIDE THE OPERATING INTER- * 
* r'ACE BETWEEN 'l'HE APPLICATION PROGRAM AND * 
* THE ISBC 941 PROCESSORS OR COUNTERS. * 
**********************************************/ 

PROCESSOR$INTERFACE$MODULE: DO; 

/* DECLARATION OF ADDRESSES */ 
DECLARE UPI$0$STATUS LITERALLY '0E5H'; 
DECLARE UPI$fIl$COMMAND LITERALLY '0E 5H' ; 
DECLARE UPI$0$DATA LITERALLY '0E4H'; 

DECLARE UPI$l $STATUS LITERALLY '0E7H'; 
DECLARE UPI$l$COMMAND LITERALLY 'filE 7H ' ; 
DECLARE UPI$l$DATA LITERALLY '0E6H'; 

DECLARE UPI$2$STATUS LITERALLY 'eE9H'; 
DECLARE UPI$2$COMMAND LITERALLY '0E9H'; 
DECLARE lIPI$2$DATA LITERALLY '0E8H'; 

/* DECLARATION OF ISBC 941 COMMANDS */ 
DECLARE SE'l'Pl LITERALLY '00BH' ; 
DECLARE CLRPI LITERALLY '00DH' ; 
DECLARE CLRP2 LI'rERALLY '00EH' ; 
DECLARE RDFCIlJ LITERALLY '042H' ; 
DECLARE RDfei LITERALLY '043H'; 
DECLARE PAUSE LITERALLY '005H'; 
PECLARE LOOP LITERALLY '1304H'; 
DECLARE INITPF LITERALLY 'fJ02H'; 
DECLARE PACIFY LITERALLY '001H'; 
DECLARE ENFLAG LITERALLY 'fJfJ6H' ; 
DECLARE SETOE LITERALLY '071H'; 

/* DECLARATION OF ISBC 941 STATUS BITS */ 
DECLARE RFC LITERALLY '080H'; 
DECLARE IBF LITERALLY '0e2H' ; 
DECLARE OBF LITERALLY '001H'; 
DECLARE QF LITERALLY '010H' ; 
DECLARE QNE LITERALLY '020H' ; 

/* DEFINE THE MATH ROUTINES USED BY MODULES */ 
MQULD4: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 

DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQULD4; 

MQUDV2 : PROCEDURE (IR$PTR, VALUE$PTR) EXTERNAL; 
DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQUDV2; 

3·115 



33 
34 
35 
36 
37 
38 

39 

40 

41 

42 

43 
44 

45 
46 

47 
48 

49 

51 
52 
53 

1 
2 
2 
1 
2 
2 

1 

1 

1 

2 

2 
2 

2 
2 

2 
2 

2 

3 
4 
3 

MQUDV1: PROCEDURE (IR$PTR,VALUE$PTR) EXTERNAL; 
DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQUDV1; 

MQUST1: PROCEDURE (IR$PTR, VALUE$p'rR) EXTERNAL; 
DECLARE (IR$PTR,VALUE$PTR) ADDRESS; 
END MQUST1; 

/* DEFINE THE MATH ACCUMULATOR STORAGE AREA */ 
DECLARE IR(18) BYTE EXTERNAL; 

/* DEFINE THE COUNTER LOCATIONS */ 
DECLARE (LIQ$COUNT,BELT$COUNT) BYTE EXTERNAL; 

$EJECT 
/************************************************ 
* THIS PROGRAM IS USED TO GENERATE A FREQUENCY * 
* OUTPUT USING THE ISBC 941 MODULE INSTALLED IN * 
* SOCKET NUMBER 0. TO PROVIDE MAXIMUM RESOLU- * 
* TION, FOUR PERIODS WILL BE USED. THE FHEQUEN-* 
* CY RANGES CORHESPONDING TO EACH PERIOD ARE: * 
* RANGE FREQ RESOLUTION * 
* 1 50 TO 165HZ 2 HZ * 
* 2 166 TO 225 HZ 3 HZ * 
* 3 226 TO 285 HZ 3 HZ * 
* 4 286 TO 550 HZ 6 HZ * 
* THE SCALE FACTOR IS COMPUTED BY THE FORMULA: * 
* SF=100000/«FREQ)*(RANGE FACTOR)) * 
************************************************/ 

WEIGHBELT$MOTOR$DRIVE: PROCEDURE (FHEQ) PUBLIC; 

/* DECLARATION OF CONSTANT, 100,000 */ 
DEC.LARE HUNDRED$K (4) BYTE DATA ( 

0A0H,086H,001H,000H ); 

/* DECLARATION OF ISBC941 PORT ENABLES */ 
DECLARE ENABLE$FREQ LITERALLY '01H'; 
DECLARE DISABLE$FREQ LITERALLY '00H'; 

/* DECLARATION OF ISBC 941 MEMORY LOCATION COMMANDS */ 
DECLARE WRRM$55 LITERALLY '055H'; 
DECLARE WRRM$74 LITERALLY '074H'; 

/* DECLARATION OF VARIABLES USED IN COMPUTATIONS */ 
DECLARE (RANGE,FREQA) BYTE; 
DECLARE FREQ ADDRESS; 

/* BEGIN COMPUTATION OF OUTPUT FOR FREQ > 48 HZ. */ 
IF FREQ > 49 
THEN DOi 

/* ENABLE FREQUENCY OUTPUT */ 
DO WHILE «INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPIS0$COMMAND) = SETOE; 

3·116 



54 3 
55 4 
56 3 

57 3 

59 4 

61 5 

63 5 
64 5 
65 4 

66 4 
67 3 

68 3 

69 3 

71 4 

72 4 

73 
74 
75 

76 
77 
78 
79 

80 
81 
82 

83 
84 
85 

86 
87 
88 

4 
4 
4 

3 
4 
4 
4 

3 
4 
3 

3 
4 
3 

3 
4 
3 

DO WHILE «INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$0$DATA) = ENABLE$FREQ; 

/* COMPUTATION OF FREQUENCY RANGE */ 
IF FREQ < 285 
THEN DO; 

END; 

IF FREQ < 226 
THEN DO; 

END; 

IF FREQ < 166 
THEN RANGE = 9; 
ELSE RANGE = 5; 

ELSE RANGE = 3; 

ELSE RANGE = 2; 

/* LOAD MATH ACCUMULATOR WITH 100,000 */ 
CALL MQULD4 (.IR,.HUNDRED$K); 

/* TEST FOR MOTOR SHUTDOWN */ 
IF FREQ > 1 
THEN DO; 

/* DIVIDE BY FREQUENCY */ 
CALL MQUDV2 (.IR,.FREQ); 

/* DIVIDE BY RNAGE FACTOR */ 
CALL MQUDV1 (.IR,.RANGE); 

/* GET TWO'S COMPLEMENT FOR ISBC 941 SCALE FACTOR */ 
CALL MQUST1 (.IR,.FREQA); 
FREQA = NOT (FREQA + 1); 

END; 

/* ADJUST FOR MOTOR STOP SIGNAL */ 
ELSE DO; 

FREQA 
RANGE 

END; 

000H; 
0FFH; 

/* SEND NEW SCALE FACTOR TO DEVICE */ 
DO WHILE «(INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$0$COMMAND) = WRRM$55; 

DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$0$DATA) = FREQA; 

/* SEND NEW PERIOD TO DEVICE */ 
DO WHILE «(INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$0$COMMAND) = WRRM$74; 

3-117 



89 
90 
91 

92 

93 

94 
95 
96 

97 

98 
99 

100 

101 

102 

103 

104 
105 

106 
107 
108 

109 
110 
III 

3 
4 
3 

3 

2 

3 
4 
3 

3 

4 
3 

3 

2 

2 

1 

2 
2 

2 
3 
2 

2 
3 
2 

DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$0$DATA) = RANGE; 

/* END OF FREQUENCY OUTPUT MODE */ 
END; 

/* HANDLE FREQUENCIES < 50 HZ. */ 
ELSE DO; 

/* DISABLE FREQUENCY OUTPUT GENERATION */ 
DO t .... HILE ((INPUT (UPI $0 $STATUS) AND IBF) <> 0); 
END; 
OUTPUT(UPI$0$COMMAND) = SETOE; 

DO WHILE ((INPUT(UPI$0$STATUS) AND IBF) <> 0); 

END; 
OUTPUT (UPI$0$DATA) = DISABLE$FREQ; 

/* END OF ALTERNATE FREQUENCY OUTPUT */ 
END; 

/* RETURN TO CALLING PROGRAM */ 
RETURN; 

END WEIGHBELT$MOTOR$DRIVE; 

$EJECT 
/***************************************************** 
* THIS PROGRAM GETS THE WEIGHBELT WEIGHT FROM THE * 
* NUMBER 1 ISBC941 PROCESSOR. THE WEIGHT WILL BE * 
* RECEIVED AS A COUNT WHICH RANGES BETWEEN 0 AND * 
* 2000, CORRESPONDING TO A WEIGHT BETWEEN 0.E AND * 
* le.00 POUNDS. EACH COUNT RECEIVED HAS A VALUE * 
* OF 0.005 POUNDS. * 
*****************************************************/ 

WEIGHBELTSWEIGHT: PROCEDURE ADDRESS PUBLIC; 

/* DECLARATIONS OF VARIABLES USED IN THE PROCEDURE * / 
DECLARE (LCOUNT,HCOUNT) BYTE; 
DECLARE WEIGHT ADDRESS; 

/* GET INPUT COUNT LOW BYTE */ 
DO WHILE ((INPUT(UPI$l$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UP!Sl$COMMAND) = RDFCeJj 

DO WHILE ((INPUT(UPI$l$STATUS) AND OSF) 
END; 
LCOUNT = INPUT(UPI$l$DATA); 

3,118 

o ) ; 



112 
113 
114 

115 
116 
117 

118 
119 
120 

121 
122 
123 

124 

125 

126 

127 

128 

129 

130 

131 
132 

133 

134 

2 
3 
2 

2 
3 
2 

2 
3 
2 

2 
2 
2 

2 

2 

2 

1 

2 

2 

2 

2 
2 

2 

2 

/* GET INPUT COUNT HIGH BYTE */ 
DO WHILE ((INPUT(UPI$l$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$l$COMMAND) = RDFC1; 

DO WHILE ((INPUT(UPI$l$STATUS) AND OBF) 
END; 
HCOUNT = INPUT(UPI$l$DATA); 

/* START NEXT WEIGHT SAMPLE PERIOD */ 

0) ; 

DO WHILE ((INPUT(UPI$l$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$l$COMMAND) = LOOP; 

/* CONVERT WEIGHT TO AN ADDRESS VALUE * / 
\oI/E IGHT HCOUNT; 
WEIGHT SHL(WEIGHT,8); 
WEIGHT WEIGHT + LCOUNT; 

/* DIVIDE BY TWO TO CONVERT TO POUNDS */ 
WEIGHT = SHR(WEIGHT,l); 

/* RETURN THE WEIGHTBELT WEIGHT */ 
RETURN WEIGHT; 

END WEIGHBELT$WEIGHT; 

$EJECT 
/************************************************** 
* THIS PROCEDURE TRANFERS THE WEIGHBELT SPEED TO * 
* THE CALLING PROGRAM AND CLEARS THE COUNTER FOR * 
* THE NEXT TEST. THE SPEED RESOLUTION PROVIDES * 
* ONLY FIVE SPEED RANGES. * 
**************************************************/ 

WEIGHBELT$SPEED: PROCEDURE BYTE PUBLIC; 

/* DECLARATIONS OF VARIABLES USED BY THE PROCEDURE */ 
DECLARE SPEED BYTE; 

/* LATCH COUNTER BEFORE READING SPEED */ 
DISABLE; 

/* GET COUNTER VALUE FROM COUNTER */ 
SPEED = BELT$COUNT; 

/* CLEAR COUNTER FOR NEXT OPERATION */ 
BELT$COUNT 0; 
ENABLE; 

/* RETURN DATA TO CALLING ROUTINE */ 
RETURN SPEED; 

END WEIGHBELTSSPEEDj 

3·119 



135 

136 

137 
138 

139 

141 

143 

144 
145 

146 
147 

148 
149 
150 

151 
152 
153 
154 

155 

156 

1 

2 

2 
2 

2 

3 

4 

4 
4 

3 
4 

3 
4 
3 

3 
4 
3 
3 

2 

2 

$EJECT 
/*************************************************** 
* THIS PROCEDURE PROVIDES COMMANDS TO THE STEPPER * 
* MOTOR TO OPERATE THE CONTROL VALVE. IT WILL COM-* 
* PUTE THE SIGNED MAGNITUDE REPRESENTATION FROM * 
* THE TWO'S COMPLIMENT INPUT AND WILL ISSUE THE * 
* APPROPRIATE STEP INCREMENT AND bIRECTION. A * 
* FIXED STEP RATE OF 100 STEPS PER SECOND WILL BE * 
* USED BY THE CONTROL DEVICE. * 
***************************************************/ 

LIQUID$VALVE$POSITION: PROCEDURE (POSITION) PUBLIC; 

/* DECLARATIONS OF VARIABLES USED BY THE PROCEDURE */ 
DECLARE POSITION BYTE; 

/* DEFINITIONS OF TERMS USED IN COMPUTATIONS */ 
DECLARE STEP$RATE LITERALLY '005Hl; 
DECLARE REVERSE LITERALLY '080H'; 

/* IF NO MOVEMENT, SKIP OPERATIONS */ 
IF POSITION <> 0 
THEN DO; 

/* SUPPORT CONVERSION TO SIGNED MAGNITUDE NUMBER */ 
IF POSITION > 127 
THEN DO; 

/* GET MAGNI.TUDE OF MOVEMENT */ 
POSITION = 256 - POSITION; 

/* SET SIGN FOR CCW ROTATION */ 
POSITION = POSITION OR REVERSE; 

END; 

/* VERIFY THAT QUEUE SPACE IS AVAILABLE */ 
DO WHILE «INPUT(UPI$2$STATUS) AND QF) <> 0); 
END; 

/* REQUEST DESIRED STEP RATE */ 
DO WHILE «INPUT(UPI$2$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$2$DATA) = STEP$RATE; 

/* REQUEST STEPPER MOVEMENT */ 
DO WHILE ((INPUT(UPI$2$STATUS) AND IBF) <> 0); 
END; 
OUTPUT (UPI$2$DATA) = POSITION; 

END; 

/* RETURN TO CALLING PROGRAM */ 
RETURN; 

END LIQUID$VALVE$POSITION; 

3·120 



157 

158 
159 

160 

161 

162 
163 

164 
165 
166 
167 
168 

169 

1713 

171 

172 

173 

1 

2 
2 

2 

2 

2 
2 

2 
2 
2 
2 
2 

2 

2 

1 

2 

2 

$EJECT 
/***************************************************** 
* THIS PROCEDURE TRANSFERS THE LIQUID FLOW Rll.TE FROM * 
* THE FLOW COUNTER TO THE CALLING PROGRAM. AFTER * 
* READING, THE FLO\", COUNTER WILL BE RESET TO FACILI- * 
* TATE THE NEXT READING. THE LIQUID FLOW COUNT WILL * 
* VARY BETWEEN 20 AND 240 PULSES IN EACH 200 MILLI- * 
* SECOND SAMPLE INTERVAL. THIS WILL CORRESPOND TO * 
* THE ACTUAL LIQUID FLOW RATE OF 10 '1'0 120 POUNDS * 
* PER MINUTE. * 
*****************************************************/ 

LIQUID$FLOW$RATE: PROCEDURE ADDRESS PUBLIC; 

/* DECLARATION OF VARIABLES USED BY THE PROGRAM */ 
DECLARE TEMP BYTE; 
DECLARE (FLOW,T$TWO,T$SXTN,T$THRTWO) ADDRESS; 

/* LATCH COUNTER BEFORE READING FLOW */ 
DISABLE; 

/* GET FLOW RATE VALUE FROM COUNTER */ 
TEMP = LIQ$COUNT; 

/* CLEAR COUNTER FOR NEXT OPERATION */ 
LIQ$COUNT = 0; 
ENABLE; 

/* CONVERT TO POUNDS PER MINUTE */ 
FLOW = TEMP; 
T$TWO = SHL(FLOW,I); 
T$SXTN = SHL(T$TWO,3); 
T$THRTWO = SHL(TSSXTN,I); 
FLOW = T$'1'WO + T$SXTN + T$THRTWO; 

/* RETURN FLOW RATE TO CALLING PROGRAM */ 
RETURN FLOW; 

END LIQUID$FLOW$RATE; 

$EJEq 
/******************************************** 
* COUN'rER FOR LIQUID FLOW RATE FROM LIQUID * 
* FLOW METER. COUNT PULSE vHLL GENERATE AN * 
* INTERRUPT AT LEVEL 1. * 
********************************************/ 

LIQ$CNT: PROCEDURE INTERRUPT 1 PUBLIC; 

/* INCREMENT FLOW COUNT */ 
LIQ$COUNT = LIQ$COUNT + 1; 

/* SEND END OF INTERRUPT */ 
OUTPUT (0ECH) = 020H; 

3-121 



174 

175 

176 

177 

178 

179 

1813 
181 

2 

2 

1 

2 

2 

2 

2 
1 

/* RETURN */ 
RETURN; 

END LIQ$CNT; 

$EJECT 
/******************************************** 
* THIS PROCEDURE WILL PROVIDE AN EVENT COUN-* 
* TER TO HANDLE THE BELT MOTION DETECTOR. * 
* IT WILL OPERATE BY DIRECTING THE MOTION * 
* PULSE TO INTERRUPT 2. * 
********************************************/ 

BELT$CN'r: PROCEDURE INTERRUPT 111 PUBLIC; 

/* INCREMENT BELT MOVEMENT */ 
BELT$COUNT = BELT$COUNT + 1; 

/* SEND END OF INTERRUPT */ 
OUTPUT (Q1ECH) = Q120H; 

/* RETURN */ 
RETURN; 

END BELT$CNT; 
END PROCESSOR$INTERFACE$MODULE; 

MODULE INFORMATION: 

CODE AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
4130 LINES READ 
13 PROGRAM ERROR(S) 

END OF PL/M-80 COMPILATION 

0251H 
011113H 
Q10Q18H 

3·122 

593D 
19D 

.8D 



ARTICLE 
REPRINT 

3·123 

AR·91 



Designing and Assembling 
Microcomputer Systems Grows Easier 
Although a single data bus standard yet eludes the microcomputer industry. numer
ous manufacturers of single-board computer and supplementary boards have cast a 
hardware vote for the Multibus. Intel's microcomputer backplane which they origina
ted in 1976. With a steady eye on the control industry market. Intel has designed a 
home to accommodate Multibus compatible equipment. the iCS-80 industrial chas
sis. It promises to significantly reduce the time and cost of assembling the housing 
and interface parts of a microcomputer-based control system. In thiS article. besides 
taking the first look at Intel's new chassis and signal conditioning panels. we've put 
together a comprehensive list of Multibus compatible equipment. 

MICHAEL J. McGOWAN. Control Engineering 

After the development of single-board 
computers nearly three years ago. ven
dors moved quickly to seize a fraction of 
the market. It seemed at first that every
thing from memories to analog 110 
boards had become available. With an 
astonishing suddenness, companies 
sprang up in Silicon Valley. Texas, New 
Jersey, and along the forested roadside 
of Rt. 128 outside of Boston. Late that 
year, we counted well over a hundred 
companies anxious to make their for
tune seiling the control engineer every
thing from one or two interface boards 
to complete microprocessor systems. 

Then the pleasant dream became a 
nightmare. From power supply require
ments to backplane pinouts. little was 
compatible. Even such an obvious thing 
as board size differed from vendor to 
vendor and many a hope for an ideal 
system was crushed in a pragmatic 
search for whatever would fit together. 

Seven months ago in our June 1978 
issue we noted that the number of mi
crocomputer system manufacturers 
had dwindled to about 60 and since 
then, we find still fewer. Some. no doubt. 
were forced out for lack of reliability. 
though most. despite remarkably ta
lented engineering. starved as the mar
ket saturated. 

Large scale integration of microcom
puter components has more than 
doubled the memory size of single
board computers. Sixteen bit word 
lengths will become commonplace in 
the next year as microcomputer perfor
mance begins to rival the mini
computer's and the lines of distinc
tion between micros and minis fades. 

The fight for a standard data bus 
drags on with leaders in the struggle but 
no winner. On the offensive. Pro-Log 
and Mostek jOintly introduced the STD 
bus last autumn in an attempt to gain a 
greater market share by espousing de
centralized system architectures. Their 
philosophy argues economics: the user 
should pay only for essential functions 
by selecting small, specialized boards 

and not squander funds on a general 
purpose board with extra features. 

Still. Intel. favoring more densely 
packed and versatile boards. continues 
to dominate the market while the Multi
bus retains its popularity. Today more 
30 manufacturers produce over one 
hundred different boards based on that 
bus structure alone. Not that Intel enjoys 
the strict fidelity of its outside vendors; 
Digital Equipment Corporation. for in
stance. boasts some 17 companies 
providing boards to mate with the 
LSI-11 and LSI-112. 

FOUR 
FANS 
TO 
IMPROVE 
COOLING 

SIGNAL 
CONDITIONING 
TERMINATION 
PANELS 

3·124 

But perhaps alone among its compet
itors. Intel has recognized that the ma
jOrity of ItS boards are being used in 
industrial applications and that the con
trol system designer needs more than 
components. 

An industrial chassis 
A microcomputer system designer must 
choose components that are electro
mechanically compatible. To that end. 
Intel is introducing the iCS-80 industrial 
chassis and termination panels. It 
makes all Multibus-compatible CPU 



MUL TlBUS Compatible 
Boards and Vendors 

ADAC Corp. 

Advanced Micro Computers 

Ampex 

Analog Devices 

Augat 

Burr-Brown 

Computer Marketing 

Data Translation 

Datacube 

Datel Systems 

Electronic Solutions 

Garry Manufacturing 

HT Instruments 

Hal Communications 

Heurikon 

IDEAS 

Intel 

Interphase 

Matrox Electronic Systems 

Megalogic 

Micro Memories 

Micro Networks 

MicroTec 

Micro/Tel 

Monolithic Systems 

Motorola 

MUPRO 

National Semiconductor 

North Star Compu ters 

Pertec (ICOMI 

Relational Memory Systems 

Systems, Computp.rs and I ntertaces 

1 homas Engineering Cu. 

Vector Electronic 

XEDAX 

ZIA Tech 

• 
• 

• 
• 
• • 
• 
• 
• 

• • 
• 
• •• • • • 

• 

• • 

• 

• • • • • 

• 
• 

3-125 

•• 

• 
• 
• 
•• 

• 
• 

• 
• 

• 

~ 

"0 
~ ~ 

~ '" CD 0 
CD 

00 " 00 u 
"12 
UJ ~ 

UJ l!l 
UJ c 

• 

• 

"E 
'" o 

CD 

2 e c: 
o 
U "E 
"E '" 
'" 0 o CD 
.0 £ 
it; '" ~ :;; 

• 

• 
•• 

• 
• 

• 

• 

• 

• 

• 
• • • • 

• • • • 

• • 
• 

• 
• 

• • • • 
• 

•••• • 
• 
• 

• •• • 

• 
• • 

• 
• 

• •• • • 

• • • 

• 
• 



and peripheral boards readily usable. 
The advantage of the ICS-80 is that 

most of the interconnflction and me
chanical details for assembling a 
microcomputer-based control system 
have already been worked out. 

The iCS-80 stands 15.75 inches high 
and can be mounted in a stardard 
RETMA 19 inch rack, or in a NEMA cabi
net secure from the industrial environ
ment. The minimum layout consists of a 
four-slot Multibus card cage with provi
sions for adding two more cages to a 
maximum of twelve cards. The cages fit 
vertically, like records in a rack, to aid 
convection cooling and permit front ac
cess for insertion and maintenance. 

On the right side of the chassis is 
room for either a 14 or 30 ampere power 
supply, the choice dictated by the ap
plication. The system will operate on 
either 115 or 230 volts with a range of 47 
to 63 Hertz specified in anticipation of 
international service. 

Cooling is assisted by four fans
three for the card cages and one for the 
power supply section. The intention 
here is to make the installation of addi
tional fans unnecessary even after the 
system has expanded. The fans are ex
pected to provide adequate cooling for 
most applications so'supplementary air 
conditioning can be eliminated or at 
least minimized. 

Signal conditioni.,g 
Three signal conditioning panels have 
been developed by Intel to simplify con
nections between the processing cards 
and the outside world. The principle is 
neatness, and with that follows reliabil
ity. Flat ribbon cables connect the sig
nal conditioners tothe processor cards, 
a safeguard from "which wire is which" 
and screwdriver slips in the vicinity of 
expensive boards. Field connections to 
the external ihputs and outputs are 
made (presumably by electricians with 
big hands and reputations for being 
less than delicate) through rugged, 
screw-type barrier strips that aocept 
wire as heavy as 14 AWG. The panels 
can mount either on RETMA cabinet 
brackets, NEMA wall spacers, or on the 
iCS-80 chassis itself. 

Each signal conditioning card gives 
the user a variety of options. The iCS-910 
analog Signal conditioning/termination 
panel accepts up to 16 differential or 32 
single ended input chaf1ners. The four 
2-wire analog output channels might be 
connected to 4 to 20 mA current loops. 

The digital signal conditioning termi
nation panel, iCS-920, handles 24 two
wire input or output channels with sig
nals up to 55 V, 300 mAo Inputs can be 
diode protected, and pads are pro
vided for current limiters or voltage di
viders. Optoisolators may be inserted in 

Vendors of Multlcompatible Boards 

ADAC Corp. 
Woburn, MA 
617/935-6668 

Advanced Micro Computers 
Santa Clara, CA 
408/732-2400 

Ampex 
EI Segundo, CA 
714/973-2970 

Analog Devices 
Norwood, MA 
617/329-4700 

Augat 
Attleboro, MA 
617/222-2202 

Burr-Brown 
Tucson, AZ 
602/655-8000 

Computer Marketing 
Waltham, MA 
617/894-7000 

Data Translation 
Natick, MA 
617/655-5300 

Datacube 
Reading, MA 
617/944-4600 

Datel Systems 
Canton, MA 
617/828-8000 

Electronic Solutions 
San Diego, CA 
714/292-0242 

Garry Manufacturing 
New Brunswick, NJ 
212/267-6844 

HT Instruments 
Marina Del Rey, CA 
312/822-4296 

Hal Communications 
Urbana,IL 
217/367-7373 

Heurikon 
Madison, WI 
60al255-9075 

ID~AS 
Se'ltsville, MD 
30ii937-3600 

Intel 
Aloha, OR 
503/642-2563 

Interphase 
Dallas, TX 
214/238-0971 

the DIP sockets for high voltage isola
tion or jumpers may be used instead 
when the input is TTL. Similarly, output 
sockets accept jumpers for direct TTL 
output, DIP optoisolators for transient 
suppression, or integrated circuit (open 
collector) drivers for high voltage' to 
high current outputs. Activity on each 
channel is indicated by LEOs. 

The ac signal conditioning/(solidas) 
termination panel, iCS-930, will actually 
work with ac or dc on its 16 channels. 
The user supplies optoisolators for input 
isolation and optically-isolated solid 

3-126 

Matrox ElectroniC Systems 
Montreal, Quebec 
514/735-1182 

Megalogic 
Brookville, OH 
513/833-5222 

Micro Memories 
Chatsworth, CA 
213/998-0070 

Micro Networks 
Worcester, MA 
617/852-5400 

MicroTec 
Sunnyvale, CA 
408/733-2919 

MicroiTel 
St. Louis, MO 
314/569-3450 

Monolithic Systems 
Englewood, CO 
303/770-7400 

Motorola 
Austin, TX 
512/928-6572 

MUPRO 
Sunnyvale, CA 
408/737-0500 

National Semiconductor 
Santa Clara, CA 
408/737-5262 

North Star Computers 
Berkeley, CA 
415/549-0858 

Pertec (ICOM) 
Chatsworth, CA 
213/998-1800 

Relational Memory Systems 
San Jose, CA 
4081248-6356 

Systems, Computers and Interfaces 
Waltham, MA 
617/899-2359 

Thomas Engineering Co. 
Concord, GA 
415/686-3041 

Vector Electronic 
Sylmar, CA 
213/365-9661 

XEDAX 
Alameda, CA 
415/521-6600 

ZIA Tech 
Cupertino, CA 
408/996-7082 

state relays for output isolation. Mount
ing pads for customer-supplied MOVs 
or snubber networks are included. As 
before, a fuse gives overload protection 
and LEOs indicate channel activity. 

The advantage of all this is that by 
plugging in some components and per
haps inserting a few resistors and capa
citors, the interface units can be tailored 
to a particular application. Since many 
mechanical and electrical connection 
problems have already been solved, a 
customized unit can be built with mini
mum effort. 0 



DOCUMJ:NTATION 





RELATED INTEL PUBLICATIONS 

System 80/10 Microcomputer Hardware Reference Manual, 98-00316B 

iSBC 80/10 and iSBC 80/10A Single Board Computer Hardware Reference Manual, 9800230F 

iSBC 80P and ISBC 80P10 Prototyping Package User's Guide, 9800223D 

iSBC 80/20 and iSBC 80/20-4 Single Board Computer Hardware Reference Manual, 98-317C 

ISBC 80/30 Hardware Reference Manual, 9800611A 

iSBC 86/12 Single Board Computer Hardware Reference Manual, 9800645A 

iSBC 544 Intelligent Communications Controller Board Hardware Reference Manual, 9800616B 

iSBC 569 Intelligent Digital Controller Board Hardware Reference Manual, 9800845 

ISBC 941 Industrial Digital Processor User's Guide, 9803077·02 

iCS 80 Industrial Chassis Hardware Reference Manual, 9800799A 

iSBC 310 High Speed Mathematics Unit Hardware Reference Manual, 9800410A 

iSBC 957 Intellec-iSBC 86/12 Interface and Execution Package User's Guide, 9800743A 

Intel MULTIBUS Specification, 9800683 

MCS-80 User's Manual, 98-153D 

MCS·85 User's Manual, 98-366C 

The 8086 Family User's Manual 

UPI-41 User's Manual, 9800504 

Introduction to the UPI-41A, AP-41 

RMXl80 User's Guide, 9800522C 

ISIS-II User's Guide, 98003060 

8080/8085 Assembly Language Programming Manual, 9800301C 

PUM·80 Programming Manual, 9800268B 

ISIS-II PUM·80 Complier Operator's Manual, 9800300 

FORTRAN-80 Programming Manual, 9800481A 

ISIS·II FORTRAN-80 Compiler Operator's Manual, 9800480B 

"How to use FORTRAN with other Intel Languages", Ap·44 

BASIC·80 Reference Manual, 9800758 

A Guide to Intellec Microcomputer Development Systems by Daniel D. McCracken, 9800558B 

8080/8085 Fundamental Support Package (FSP) Reference and Operating Instructions for ISIS·II Users, 9800887-01 

8086 Assembly Language Reference Manual, 9800640A 

MCS-86 Assembler Operator's Instructions for ISIS-II Users, 9800641A 

PUM-86 Programming Manual, 9800466A 

ISIS·II PUM·86 Compiler Operator's Manual, 9800478A 

ISIS·II 8086 Cross Development Utilities Operator's Manual, 9800639A 

3-127 





TECHNICAL LITERATURE LIST 

3-129 



""EMORY COMPONENTS 

Memory Design Handbook - 1979 
Growing Static RAM Family Album 
2115A/2125A Brochure 
RR 7 - 2107A/2107B Reliability 
RR 8 - Polysillcon fuse Bipolar PROM 
RR 11 - 2416 16K CCD Memory 
RR 12 - 2708 8K Erasable PROM 
RR 14 - 2115/2125 MOS Static RAMS 
RR 15 - 2104A 
RR 16 - 2116 
RR 18 - HMOS Reliability Update 
RR 19·2716'- UV Erasable PROM 
RR 20·2117 - Reliabilty 
AR 20 -:- ·16K RAM 

Title 

AR 35·2716 - Erasable PROM-16,384 Bits On·Chip 
AR 44 - Speedy RAM Runs Cool - 2147 
AR 46 - HMOS Scales Traditional Devices 
AR 78 - I8.SCC Reprint on Static RAMS 
AP 22 - Which Way for 16K 
AP 23 - 2104A 4K RAM 
AP 30 - App!i.~atlons of 5 Volt EPROM & ROM Family 
AP 46 - Error Detecting and Correcting Codes 

TELECOM 

AR 79 - ISSCC Reprint - 2920 
AR 80 - ISSCC Reprint - 2912 
AR 81 - Single Chip NMOS Micro·process Signals 
AR 88 - First Monolithic PCM Filter 

MAGNETICS 

Bubble Memory Design Handbook 
AR 92 - Megabit Bubble Memory Chip Gets Support from LSI 
AFi 96 - Here Comes A Million Bit Chip 
A Total System Solution to Magnetics Applications (Technical Paper) 

MICROCOMPUTER COMPONENTS 

MCS 48 User's Manual 
MCS 48 Product Description (98·615) 
MCS 48 Applications Handbook 
MCS 48 Reference Card (98·412)' 
AP 24 - MCS 48 Family (98;413) 
AP 40 - Keyboard/Display Scanning ... MCS 48 (98·755) 
AP 49 - Serial 1/0 and Math Utilities ... 8049 (98·904) 
AP 55A - High Speed Emulator for MCS 48 
AP 56 - Designing With Intel's 8022 Micro (98·954) 
AR 58 - Micrqcontroller Includes A·D Converter (98·718) 
AR 63 - Microcomputer's On·Chip Functions - 8022 (98·780) 
AR 102 - Designing Reliable Software for Auto Applications 
AR 107 - Use EPROM 1·Chip "Cs as Effective 1·Shot Lab Aids 
UPI-41 User's Manual ' . 
UPI·41 Reference Card (98-671) 
MCS·48 and UPI·41 Assembly Language Programming Manual 
MCS-BO User's Manual 
RR 10 - 80!!O/8080A Microcomputer 
MCS·85 User's Manual 
MCS-B5 Product Description (98·365) 
8080/8085 Reference Card (98·438) 
AP 29 - Using the Intel 8085 Serial I/O Lines (98·684) 
8080/8085 Assembly Language Programming Manual 
8080/8085 Floating Point Arithmetic Library User's Manual 

3·130 

Part No. 

011100 
010100 
001710 
006540 
006560 
006700 
006720 
006740 
006750 
006760 
006771 
006775 
006780 
006900 
007300 
007320 
007330 
007370 
008300 
008500 
008550 
008560 

007375 
007380 
007385 
007400 

900020 
900500 
900515 
900520 

98·270 
201710 
121511 
202300 
203800 
203805 
203810 
203815 
203820 
203605 
203610 
207350 
207355 
98·504 

2031QO 
98·255 
98·153 
207100 
98·36~ 
205770 
?05785 
207715 
98·940 
98-452 



Title 

MCS·86 User's Manual 
MCS·86 Product Description (98·723) 
AR 74 - Get Minicomputer Features at 10 lC Speed with 8086 (98·921) 
AR 82 - CPU Brings 6·Bit Performance (98·957) 
AP 50 - Debug Strategies for 8089 
AP 51 - Design 8086/8088/8089 with 8289 
MCS·86 Assembly Macro Language Reference Manual 
MCS·86 Assembly Language Reference Guide (98·749) 
Peripheral Design Handbook . 
Peripherals Product Description 
Microcomputers and Peripherals Pocket Guide (98·843) 
AR 53 - Micro Interfacing Characteristics (8253) - (98·647) 
AR 89 - Powerful 110 Processor Unloads CPU (8089) 
AP 15 - 8255 Programmable Peripheral Interface (98·333) 
AP 16 - Using the 8251 (98·334) 
AP 31 - Using the 8259 (98·658) 
AP 32 - 8275 and 8279 (98·576) 
AP 35 - Crystals Specifications (98·652) 
AP 45 - Using the 8202 Dynamic RAM Controller (98·809) 
AP 48 - Direct Memory Access w/8257 DMA Controller 
AP 54 - Dot Matrix Printer Controller Using the 8295 (98·816) 
AP 59 - Using 8259A Programmable Interrupt Controller 

INDUSTRIAL GRADE PRODUCTS 

Industrial Environment Brochure 
Industrial Grade Product Book 

MILITARY COMPONENTS 

Military Products Data Catalog 

GENERAL DATA CATALOGS 

1979 Components Data Catalog 
1979 Systems Data Catalog 

PROTOTYPE MICROCOMPUTER KITS 

SDK·85 User's Manual 
SDK·86 Assembly Manual 
SDK·86 User's Guide 

ICS INDUSTRIAL CONTROL SERIES 

iCS 920 Digital Signal Hardware Reference Manual 
ICS 80 Industrial System Site Planning Guide 
iCS 80 Industrial Chassis Hardware Reference Manual 
ISBC 711 Analog Input Board Reference Manual 
ISBC 724 Analog Output Board Reference Manual 
ISBC 732 Combination Analog Input/Output Board Hardware Reference Manual 
ISBC 941 Industrial Digital Processor User's Guide 
iCS Product Description (881-02) 
ICS Brochure 
AP 52 - Intel's Industrial Control Series in Control Applications (9!l·932) 

SYSTEMS SOFTWARE 

RMXl80 User's Guide 
AP 33 - RMXl80 (98·577) 
AP 47 - \Jsing FORTRAN·80 for ISBC Applications (98·836) 

OEM MICROCOMPUTER SYSTEMS 

iSBC 80/04 Hardware Reference Manual 
iSBC 80/05 Hardware Reference Manual 
iSBC 80/10 and ISBC 80/10A Hardware Reference Manual 

3·131 

Part No. 

98·722 
205880 
207310 
207320 
207755 
207760 
98·640 
205900 
98·676 
205600 
205615 
207305 
207330 
207700 
207705 
207720 
207725 
207730 
207745 
207750 
207765 
207770 

206000 
206005 

004150 

010200 
506000 

98·451 
98·697 
98·698 

98·801 
98·798 
98·799 
98·485 
98·486 
98·487 

98·3077 
500115 
500110 
511040 

98·522 
511020 
452015 

98·482 
98·483 
98·230 



AP 26 - iSBC 80/10-System 80/10 
RR 17 - iSBC 80/10 Reliability 

Title 

iSBC 80/20 and iSBC 80/20A Hardware Reference Manual 
AR 28 - Control Engineering iSBC 80/20 Description 
iSBC 80/30 Hardware Reference Manual 
AR 65 - Triple Bus Architecture (iSBC 80/30) 
iSBC 957 Intellec iSBC 86/12 User's Guide 
AP 43 - Using the iSBC 957 (98·816) 
iSBC 86/12 Hardware Reference Manual 
AR 72 - 16·Bit Single Board Computer 
AR 69 - Dual·Port RAM Hikes Throughput (iSBC 80/30) 
iSBC 016 16K RAM Expansion Board Hardware Reference Manual 
iSBC 032/048/064 Random Access Memory Boards Hardware Reference Manual 
iSBC 094 4K·Byte CMOS RAM/Battery Backup Board Hardware Reference Manual 
iSBC 104/108/116 Combination Memory and 110 Expansion Boards Hardware Reference Manual 
iSBC 202 Double Density Diskette Controller Hardware Reference Manual 
iSBC 204 Flexible Disk Hardware Reference Manual 
iSBC 206 Disk Controller Hardware Reference Manual 
iSBC 310 High·Speed Mathematics Unit Hardware Reference Manual 
iSBC 416 16K PROMIROM Expansion Board Hardware Reference Manual 
iSBC 464 PROMIROM Board Hardware Reference Manual 
iSBC 501 Direct Memory Access Controller Hardware Reference Manual 
iSBC 508 110 Expansion Board Hardware Reference Manual 
iSBC 517 Combination 110 Expansion Board Hardware Reference Manual 
iSBC 519 Programmable 110 Expansion Board Hardware Reference Manual 
iSBC 534 Four·Port Communications Expansion Board Hardware Reference Manual 
iSBC 544 Intelligent Communications Controller Board Hardware Reference Manual 
iSBC 556 Optically Isolated Programmable 110 Board Hardware Reference Manual 
iSBC 569 Intelligent Digital Controller Hardware Reference Manual 
iSBC 604/614 Cardcage Hardware Reference Manual 
iSBC 635 Power Supply User's Manual 
iSBC 640 Power Supply Hardware Reference Manual 
iSBC 660 System Chassis Hardware Reference Manual 
iSBC 915 GO·NO·GO Diskette Diagnostic and Monitor Program User's Manual 
System 80/10 Microcomputer Hardware Reference Manual 
System 80/20·4 Microcomputer Hardware Reference Manual 
System 80/30 User's Guide 
AR 48 - Reduce your Micro·based system design time 
AR 55 - Design Motivations for Multiple Processor Micro Systems 
AR 64 - Microcomputers - Single Chip or Single Board 
AP 28A - MULTIBUS Interfacing (98·587) 
Intel Delivers 8·bit/16·bit BM Configuration Envelopes 

INTELLEC MICROCOMPUTER DEVELOPMENT SYSTEM 

Intellec 800 Operator's Manual 
Intellec Reference Manual 
Intellec Diagnostic Confidence Test Operator's Manual 
Intellec Double Density DOS Hardware Reference Manual 
ISIS I DOS Operator's Manual 
Diskette Operating System Manual 
Paper Tape Reader Guide 
Series II Hardware Reference Manual 
Series II Model 210 User's Guide 
Intellec Series II Functional Description and Specifications (98·606) 
Intellec Series II Installation and Service Manual 
Intellec Series Hardware Interface Manual 
Success Manual for Single·Chip Microcomputer Users 
Success Manual for 8086 Users 
Microcomputer Development Package Booklet 
AR 97 - Minimizing Risk Through Use of Micro Development Systems 

3·132 

Part No. 

511000 
509000 
98·317 
510100 
98·611 

510140 
98·743 
511030 

98·3075 
510160 
510150 
98·279 
98·488 
98·449 
98·277 
98·420 
98·568 
98·567 
98·410 
98·265 
98·643 
98·294 
98·278 
98·388 
98·385 
98·450 
98·616 
98·489 
98·845 
98·708 
98·298 
98·803 
98·505 
98·350 
98·316 
98·484 
98·710 
510110 
510120 
510130 
511010 
501100 

98·129 
98·132 
98·386 
98·422 
98·206 
98·212 
98·016 
98·556 
98·557 
404010 
98·559 
98·555 
402050 
402100 
404000 
451130 



Title 

SOFTWARE 

iCIS Cobol Language Reference Manual 
iCIS Cobol Packet Reference Card (9S·929) 
2920 Assembly Language Manual 
2920 Simulator User's Guide 
FORTRAN·SO Programming Manual 
FORTRAN·SO Reference Card (9S·547) 
AR 73 - S080 gets a "full blown" FORTRAN (98·844) 
PUM Programming Manual 
AR 59 - Modular Programming in PUM 
PUM 86 Programming Manual 
BASIC·80 Reference Manual 
BASIC·80 Reference Guide (98·774) 
AR 61 - Microprocessor Software Development Tools 
AR 98 - Software Development Package for 8086 System Designers 
ISIS II FORTRAN·80 Compiler Operator's Manual 

"ISIS II PUM Compiler Operator's Manual 
ISIS II PUM 86 Compiler Operator's Manual 
ISIS II 8085 Macro Assembler Operator's Manual 
ISIS II System User's Guide 
ISIS II Reference Card (98·841) 
ISIS II CREDIT User's Guide 
CREDIT CRT·Based Text Editor Pocket Reference (98·903) 
MCS·S6 Assembly Language Converter Operating Instructions for ISIS II Users 
MCS-86 Assembly Operation Instructions for ISIS II Users 
MCS-86 Software Development Utilities Operating Instructions for ISIS II Users 
ICE·86 Operating Instructions for ISIS II Users 
ICE·49 Operating Instructions for ISIS II Users 
Multi·ICE Operating Instructions for ISIS II Users 
ICIS·COBOL Compiler Operator's Instructions for ISIS II Users 
8089 Assembler User's Manual 

EMULATORS 

ICE·30 Reference Manual 
ICE·41 Operator's Manual 
ICE·41 Reference Card (98·766) 
ICE-48 Operator's Manual 
MCS-48 ICE Reference Card (98-653) 
ICE-80 Reference Manual 
ICE-80 Operator's Manual 
ICE-85 Operating Instructions 
ICE-85 Brochure 
ICE-86 Pocket Reference (98-838) 
Multi-ICE Reference Card (98-810) 

PROM PROGRAMMERS 

Universal PROM Programmer User's Manual 
Universal PROM Programmer Reference Manual 

PROMPT 

PROMPT 48 Microcomputer User's Manual 
PROMPT 48 Reference Card (98-404) 
PROMPT 80/85 User's Manual 

,.SCOPE 

,.Scope 820 Operator's Handbook 
,.Scope Reference Card (98-582) 
,.Scope 8080A Probe Service Manual 
,.Scope 8085 Probe Service Manual 
,.Scope Console Service Manual 

3-133 

Part No. 

98·927 
409100 
98·987 
98·988 
98·481 
400600 
451125 
!:I8·268 
451115 
9S·466 
98·758 
400705 
451120 
451135 
98·480 
98·300 
9S·478 
98·292 
9!3·306 
403350 
98·902 
407700 
98·642 
98·641 
98·639 
98·714 
98·632 
98·672 
98·928 
98·938 

98-220 
98-465 
305075 
98-464 
303925 
98-167 
98-185 
98-463 
406215 
406310 
406505 

98-819 
98-133 

98-402 
304850 
98-307 

98-526 
408150 
98-592 
98-728 
98-593 



Title 

/LScope 820 Micro·Console Key Sequence Guide 
AP 42 - Writing Diagnostics for the /LScope (98·753) 

ADD·IN/ADD·ON MEMORY SYSTEMS 

in-7000/in·7001 Product Description 
In·1670 Product Description 
in·4011 Product Description 
in·5034 Product Description 
Series 90 Product Description - CM90 
Series 90 Product Description - CM92 
Series 90 Configuration Guide 
AP 63 - Control and Interleaving BXP Standard Memory Bus 

3·134 

Part No. 

98·826 
452005 

888200 
888210 
888220 
888230 
888240 
888250 
888790 
888510 



inter delivers. 

3065 Bowers Avenue 
Santa Clara, California 95051 

Tel : (408) 987-8080, TWX : 910-338-0026, TELEX : 34-6372 


