

ON-LINE
COMPUTING

SYSTEMS

EDITED BY
ERIC BURGESS

DATA PROCESSING
LIBRARY SERIES

Proceedings of the Symposium sponsored by
The University of California

a t Los Angeles and Informatics Inc.

February 2-4, 1965
Los Angeles, California

© AMERICAN DATA PROCESSING, INC., 1965
22nd Floor, Book Tower, Detroit, Michigan 48226

Foreword

EARLY IN ITS HISTORY as a corporate entity,
Informatics Inc. sponsored a symposium on
disc files. The response to that symposium
was beyond all expectations. More applicants
were turned away than were able to register.

Experience with that disc file symposium
showed that much management time and effort
must be devoted to the staging and program
ming of a successful presentation. Therefore,
Informatics Inc. proposed to Engineering
Extension of the University of California, Los
Angeles, joint work on an On-Line Computing
Systems Symposium to be held early in 1965.
Acceptance of this proposal by UCLA meant
that the full facilities, prestige, and know-how
of a great university could be brought to work
on this symposium. The results have fully
vilJ.dicated the wisdom of this decision.

The final registration of 768 shows the great
current interest in on-line systems. This reg
istration also exceeded all estimates.

The cooperation of Informatics Inc. with its
heavy, first-hand skill and interest in pro
gramming and specifying on-line systems, and
the University of California, devoted through
such organizations as Engineering Extension
to bringing new and current fields of knowl
edge to people, provided an outstanding exam
ple of the benefits to be gained by education
and industry working together.

Jackson W. Granholm
Sherman Oaks, California

3

Library of Congress Catalog Card Number: 65-21221

Preface
ON-LINE DATA PROCESSING SYSTEMS have re
cently become of interest in digital computer
applications. Developments in digital trans
mission and availability of faster bulk storage
devices and the use of man/machine interface
devices have stimulated a new kind of data
processing. In this processing, information is
entered into the system as it is generated.
Outputs are requested as they are required.
These inputs and outputs are occasioned by
external stimuli-man or machine-to which
the computer responds.

On-line computing systems include at least
two important classes of systems. The first is
one in which response times are measured in
milliseconds. Such systems are automatic, and
many of them are closed loop, since the tim
ing requirements preclude the intervention of
men. Examples are process control applica
tions, military satellite control systems, and
radar tracking and recording systems.

The second important class includes com
puter systems to which several interrogation
and display devices are connected, thus es
tablishing man/machine communication.
Examples are found in military command and
control systems, space vehicle command and
control systems, and various commercial sys
tems.

The three-day symposium at the University
of California Extension, Los Angeles, spon
sored by the Department of Engineering and
Informatics Inc. included discussion of both
classes of on-line systems. In addition, it cov
ered, with a considerable degree of thorough
ness, the principles, disciplines, and practices
which are applicable to on-line systems design,
both in machinery and programming.

The symposium was divided into six morn
ing and afternoon sessions each with a sep
arate chairman. These sessions and their
chairmen were:

Session I: Motivations
Chairman-Dr. Gerald Estrin, Professor of

Engineering, UCLA
Session II: Techniques

Chairman-Francis V. Wagner, Vice Presi
dent, Plans and Programs, In
formatics Inc.

Session III: Approaches
Chairman-Dr. Michel A. Melkanoff, Asso

ciate Professor of Engineering,
UCLA

Session IV: Methods
Chairman-Jackson W. Granholm, Vice

President, Technical Communi
cations, Informatks Inc.

Session V: Applications
Chairman-Dr. Bertram Bussell, Assistant

Professor of Engineering, UCLA
Session VI: Examples and Summary

Chairman-Irving Cohen, Vice President,
Command and Control, Infor
matics Inc.

The proceedings are organized in parts to
correspond with the sessions.

The Welcome Address was given by Dr.
Paul H. Sheats, Dean, University of Califor
nia Extension. The Banquet Address was by
Dr. Simon Ramo, Vice Chairman of the
Board, Thompson Ramo Wooldridge Inc., and
President, Bunker-Ramo Corporation. Dr.
Walter F. Bauer, President, Informatics Inc.,
was Chairman of the Banquet, and Jackson W.
Granholm, Vice President, Technical Commu
nications, Informatics Inc., was Toastmaster.

The papers for the symposium were se
lected by an advisory board consisting of:

Dr. G. Estrin, Dr. C. B. Tompkins and Dr.
S. Houston, of UCLA, and Dr. W. F. Bauer,
F. V. Wagner, and J. W. Granholm, of Infor
matics Inc.

Secretarial assistance was given by Mrs.
Betty Leventhal of UCLA and Mrs Rose
Marie Gonzales of Informatics Inc. Public Re
lations were handled by Tom Kramer of
UCLA, and Frank Crane and Robert Stone
of Informatics Inc.

The assistance of many other people at
UCLA and Informatics Inc. who helped to
make the symposium possible is also grate
fully acknowledged.

Eric Burgess
Editor,
Informatics Inc.

5

CONTENTS

FOREwoRD-Jackson W. Granholm. 3

PREFACE-Eric Burgess, Editor. 5

PART I-MOTIVATIONS

THE FUTURE OF ON-LINE SYSTEMs-Dr. Ivan E. Sutherland. 9

ON-LINE SYSTEMS-THEIR CHARACTERISTICS AND MOTIVATIONs-Dr. Walter F. Bauer 14

MATHEMATICAL TECHNIQUES FOR ON-LINE SYSTEMs-Dr. C. B. Tompkins. 25

PART II-TECHNIQUES

MULTI-COMPUTERS ApPLIED TO ON-LINE SYSTEMs-Dr. Gene M. Amdahl...... ... 38

. ON-LINE USER LANGUAGES-Professor Joseph Weizenbaum " 43

PART III-APPROACHES

ON-LINE CRT DISPLAYS: USER TECHNOLOGY AND SOFTwARE-Werner L. Frank.. 50

PRIORITY INTERRUPT CHARACTERISTICS FOR ON-LINE CONTROL-Emil R. Borgers.. 63

GROUP COMMUNICATIONS IN ON-LINE SYSTEMs-Arthur M. Rosenberg. 69

PART IV-METHODS

MESSAGE SWITCHING PLus-Dr. Herbert F. Mitchell, Jr.. 84

GRAPHICAL COMMUNICATION IN AN ON-LINE SYSTEM-Donn B. Parker. 89

PART V-APPLICATIONS

ON-LINE SCIENTIFIC ApPLICATION-Dr. David A. Pope " 102

STRUCTURING COMPILERS FOR ON-LINE SYSTEMS-Dr. R. B. Talmadge 105

THE QUIKTRAN SYSTEM-John H. Morrissey 116

PART VI-EXAMPLES AND SUMMARY

THE PAT LANGUAGE-Glen D. Johnson 129

AN EXAMPLE OF MULTI-PROCESSOR ORGANIZATION-David V. Savidge 131

ON-LINE COMPUTING SYSTEMS: A SUMMARY-Dr. Harry D. Huskey " 139

List of Attendees (SYMPOSIUM ON ON-LINE COMPUTING SYSTEMS) 145

MOTIVATIONS
THE FUTURE OF ON-LINE SYSTEMs-Dr. Ivan E. Sutherland. 9

ON-LINE SYSTEMS-THEIR CHARACTERISTICS AND MOTIVATIONs-Dr. Walter F. Bauer 14

MATHEMATICAL TECHNIQUES FOR ON-LINE SYSTEMS-Dr. C. B. Tompkins.. 25

Dr. Ivan E. Sutherland*

The Future of On-Line Systems

THE SYSTEMS

THERE ARE SIX KINDS of on-line systems:
1. Systems for Processing Control let fac
tories manufacture products more cheaply.
Process control systems do everything from
simple feedback control to optimizing profits
through linear programming. These process
control systems have, and will have, a big
effect on our domestic production capability.
2. Inqu~ry Systems permit people at many dif
ferent locations to find out what is going on.
Most familiar is the airline reservations sys
tem, but more such systems will come into use
in the years ahead.
3. Specialized On-Line Systems perform par
ticular complicated tasks; often military tasks.
Industry is only just beginning to make use of
specialized on-line systems for engineering
and design.
4. On-Line Programming Systems put the raw
power of a computer at the immediate disposal
of a human user. Evidence of today's great
interest in on-line programming systems is
that more and more of them are being used.
5. On-Line Problem-Solving Systems will be
required for doing even the simplest tasks
without human help. Such systems will require
the techniques for pattern recognition, process
control, and heuristic programming, and will
unite them meaningfully. It will be so difficult
to do even the simplest tasks automatically
that we will be busy with these tasks for some
time to come.
6. On-Line Instrumentation will bring us
better understanding of the interplay of the
programs and data within the computer. Sim
ple devices and programs to keep track,
on-line, of what the computer does will bring
us better understanding of what our informa
tion reprocessing systems are actually doing.

THE FUTURE
I will try to divide the future into two

categories: the immediate future and the dis
tant future.

During the immediate future, we can expect
systems to come to fruition which we now
know how to design and how to build. In talk
ing about systems for the immediate future,
we talk about systems which have some recog
nizable place in the current scheme of society.
In the immediate future, there probably will
not be any tremendous political upheaval or
war, or natural catastrophe which would cause
the entire technology of the world to take a
new turn and, thus, render my predictions
ridiculous.

But, the future is long-probably longer than
the past. Information processing is something
we have proved can be done, and we are going
to do more of it. I believe that, in principle, it
is possible to make information processing
systems which will do intellectual tasks that
human beings cannot possibly hope to do. The
creation of such systems is a challenge that
society will accept. The only question is when?
About when we can only speculate, because the
future of any technology is so interwoven with
the political, social, and scientific develop
ments around it.

SYSTEMS OF THE FUTURE

1. Process Control Systems-There is no reason
why Man should have to work for a living.
Everyone recognizes the trend toward more
and more leisure time-time in which our

*Director for Information Processing Techniques
Advanced Research Projects Agency
Department of Defense
The Pentagon
Washington, D. C.

9

10

activities are not prescribed. Leisure time is
not necessarily idle time; if we do nothing
during leisure time the world will continue
as before. In the foreseeable future, process
control and automation will make possible
more leisure time for all of us.

One of the major social issues yet to be
faced is how to measure an individual's con
tribution in a leisure society. Today, we pay
people for working, or for concentrating on
a single assembly operation for a long and
unpleasant period, or for being away from
home, or for taking personal risk, or for art
istry-for making or doing something "beauti
ful", or for inventiveness-for devising some
thing which makes life more pleasant for
other people. Or, we pay people for responsi
bility-for making decisions which will have
to stand the test of history and expose the
decider to historical recognition or historical
contempt. In a leisure society, what would
people be paid for? How would you recognize
a person's contribution to society? If no one
works, except when he wants to, or no one
spends long onerous hours at menial labor,
except if he wants to, how do we recognize
a man's contribution to society? The long term
future of on-line systems for process control
and automation rests in our ability to answer
these questions.
2. Inquiry Systems-Today, you can find out
from anywhere in the country what space is
available on any airplane, almost instantly.
But that is only the beginning. In the fore
seeable future, we could automate all sorts of
information retrieval, from isolated inven
tories to the entire content of the Library of
Congress.

An important part of an information re
trieval system is its completeness. If I could
reach 75 per cent of the technical literature
and 99 per cent of the technical experts in a
field through a certain information retrieval
system, I would not need to keep a personal
library. Finding out what had been done in
a certain field would be a simple one-inquiry
task. Just as the utility of the telephone
system is that everyone has a telephone, so
the full potentiality of an information re
trieval system will come only when it contains
all pertinent information and almost everyone
interested uses it.

Today, our inquiry systems are systems of
which we ask questions, and not systems
which can phrase and ask questions of human

beings. On-lineness is a two-way street, and
our success in using it comes from our will
ingness to make systems which can ask us
questions as well as give replies to questions
asked. Think of Socrates teaching by merely
asking questions!

Automated libraries will be most useful
when they "understand" the information
stored in them. Suppose you wanted to find
out some fairly obscure technical fact. You
could go to the library and ask the sweet
young librarian a technical question. The
librarian may know all about the books in
the library and where they are stored, and
what the numbering systems mean, and the
procedures for signing them out, but she has
not the foggiest notion of the content of all
these books-and certainly not of the book
which will contain the information you want.

But imagine asking a technical colleague
the same question. Your colleague has at his
command the content of the book which con
tains the facts you need. He knows nothing
about libraries, or numbering systems, or
information retrieval, or cataloging methods,
but he does know the facts that you want.
Inquiry systems, in the future, will become
more and more able to understand and cor
relate the facts.

Imagine, if you will, in the far, far, distant
future a computer which contains in its files
all that has ever been written. In its spare
time, this computer mulls over these facts to
understand the implications of them and to
try to come to new conclusions. This computer
knows, of course, the interests of all the
people it serves, because it has records of all
the questions they have ever asked it. Given
a new question, this machine of the future
can not only regurgitate the information
which it contains but also can put the asker
in communication with other people interested
in that subj ect.

3. Elaborate Special Purpose On-Line Systems
have been devised primarily for military pur
poses. In the immediate future, we can expect
industry to start using specialized on-line sys
tems for design and management. There are
obvious benefits to automatically performing
mathematical computations which quickly and
accurately predict the strength and weakness
of designs and plans. There are bigger ben
efits to using on-line systems as a communica
tions medium between people.

When one person designs or plans some
thing, he has no communication problem with
himself. He can write cryptic notes on pieces
of paper and leave them scattered around his
desk in a positional notation which only he
need understand. He can look in the upper
right corner of his desk for that memo on
what he did yesterday. His individual work
will proceed at a certain pace.

When more than one person gets in the
act, however, a communication problem is
created. If a design job is divided up between
people, the separate parts have to mesh cor
rectly. If it is possible for the separate actions
of individuals to drastically affect the actions
of other individuals, then an almost hope
lessly confusing tangle is possible. Imagine
us designing an aircraft. My responsibility is
the electrical wiring; yours is the gas tanks.
If either of us changes his mind about the
position of our part of the design, the other
must be informed as quickly and easily as
possible. By merely providing up-to-date de
sign information to each user, an on-line
design system could be a big help.

We have only just begun to work with
computers as communication media between
people. Today, by linking remote stations, we
can allow one person to "look over the shoul
der" of another through a computer. We have
yet to combine the functions of the design
system and the inquiry system. The ability of
many people in widely separated locations to
know exactly what is going on has already
proved practical in the airline reservation
system. It must be included in our computer
assisted design systems.
4. Programming Systems-The biggest interest
in on-line systems, judged at least by the
noise people are making today, is in on-line
programming systems. In the past two years,
we have learned a great deal about how to
get on-line service for computer users. We
have a spectrum of on-line programming sys
tems, from simple and fast to complex but
slower. But we are only just learning how
to time share our computers. There is a great
deal still to be learned about memory sharing
and routine sharing. Such techniques will
enable more than one user to share the capac
ity as well as the time of the computer.

Today's on-line debugging techniques are
still rather crude. We can now communicate
with a computer program in symbolic assem
bly language if we used such a simple language

in writing the program in the first place. It
is possible to insert break-points in the pro
gram, to stop it when certain conditions arise,
and then to examine what went wrong. We
have not yet learned to communicate with
similar fluency in any higher-level language.
We have not yet built the systems-although
we could within the next year-which would
let us have the same fluency of on-line com
munication with programs written in higher
level languages.

At the moment, we are still adapting off
line techniques to our on-line systems. For
instance, we still see remnants of the card
image in on-line systems. If, in a truly on-line
system, there is no need for punched cards,
why maintain the card image? Of course, we
maintain the card image because it is more
economical to adapt our existing card-oriented
programming systems to our new on-line tech
niques than to start afresh. Our progress in
getting "on-line" can be measured by our suc
cess in abandoning entirely old concepts which
do not contribute to an on-line system.

Weare only just beginning to explore sys
tems where the computer asks questions of
the programmer to resolve ambiguities in
what it is told. Imagine a situation five years
from now when, given a problem to solve, I
approach a machine and say, "I have a prob
lem in numerical analysis to solve." The ma
chine asks me a few questions about my prob
lem and decides what the appropriate pro
gramming language is to use. I write a few
expressions in the language, making, as usual,
a few mistakes. The machine asks, in each
case, what I really meant-perhaps giving m,e
an interpretation of what I said in different
terms. I recognize my mistakes and correct
them immediately.

What languages are appropriate to on-line
use of a computer? McCarthy claims that pro
gramming a computer in English is like flying
an airplane with reins and spurs. But, pro
gramming a computer in English is a much
more reasonable proposition for me than pro
gramming it in Hindustani; just as flying
an airplane with my hands and feet is a much
more reasonable proposition for me than fly
ing it with my elbows and knees, because using
my hands and feet seems more "natural". To
improve all our on-line systems, we need more
and better languages of communication be
tween the man and the machine which are
"natural" in the sense that they are easy to

11

12

use and fit the task. Why can't I write math
ematical equations which look like mathemati
cal equations and have the machine accept,
compile and perform them? Why can't I de
scribe network problems to the computer by
means of the picture showing the network?
Why can't I, in filter design, place poles and
zeros on the complex plane? The answer in
each case is: I can in principle, but not in
practice. As yet, the techniques which let me
do these things are not widely used. The pros
pect of the next five years is exciting because
there is so much that we now know can be
done, so much that we even know how to do,
so much that we can put into use by just
taking the time and trouble to do so. The
prospect of the next five years is exciting
because we will be finding out which of the
things that we know how to do are actually
worth using, which are economically feasible,
and which are truly useful.
5. On-Line Problem-Solving Systems-The time
is ripe to collect the techniques of pattern rec
ognition, process control, and heuristic pro
gramming together to gain a new capability.
There are simple tasks to be done in places
such as space where humans cannot go, or
even communicate, which machines based on
these three techniques could do automatically.
In the near future, we can expect such ma
chines-"automata" if you will-to come into
experimental use.

The development of automata will be good
for the contributing disciplines. Pattern rec
ognition workers have taken little account of
systems which, by acting, can gather addi
tional information to clarify ambiguous pat
terns. Have you ever had to move your head
to complete your inspection of something? Of
course you have. Similarly, we must learn
how to make computers actively seek infor
mation about their environments. In the con
text of visual pattern recognition, this implies
"taking a better look." In the context of man
machine interaction, this implies that the
machine might pose a question to the man.

Process control today is little removed from
the servomechanism. While it is true that we
control very complex processes, the rules used
are relatively simple. We think naturally of
assembly line balancing, to optimize profit.
The processes controlled today are uniform ..
In fact, industries which deal in non-uniform
products have had some difficulty in automat
ing. For instance, an automated coal mining

scheme failed because of the variation in the
size of the coal seam. Automated shoemaking
is made difficult because of the variability of
leather. Pattern recognition and heuristic pro
gramming can contribute versatility to process
control. Opening up this new area for appli
cation of heuristics will stimulate our heur
istic techniques.
6. Instrumentation-On-lineness is a two-way
street. Not only can we put computers on-line
with human beings, but also we can- put human
beings on-line with computers. We can devise
and build instrumentation to let a human see
what is going on inside the computer. The in
formation processing industry is uniquely
wanting in good instrumentation; every other
industry has m,eters, gauges, magnifiers-in
struments to measure and record the perform
ance of the machines appropriate to that
industry. Think of a gasoline engine under
test. The test stand bristles with devices to
measure temperature, speed, vibration, fuel
consumption, and so-on. Civil engineers have
even instrumented a huge block of concrete,
a dam. Gauges embedded in the concrete meas
ure strain, temperature and humidity deep
within the structure. How else could you find
out what the internal conditions of the struc
ture are?

N ow think of a computer program under
test. We run several sample problems, and
check the answers. We rarely bother even to
measure the time it takes to run the program.
Certainly, we do not bother to take statistics
on the number of times the various program
paths are taken. Yet, in the inform,ation pro
ces$ing industry we are uniquely able to make
instruments out of the very same stuff, com
puter programs, out of which the device being
tested is made.

Some simple computer program instru
ments have been made. I have used a program
which interprets the program under test and
makes a plot of the memory address of the
instruction being executed versus time.1* Such
a plot shows the time the program spends
doing its various jobs. In one case, it showed
me an error which caused a loss of time in a
program which nonetheless gave correct an
swers. At Stanford University, a program
which plots the depth of a problem tree versus
time was used to trace the operation of a

*Numbers refer to bibliography at the end of each
paper.

Kalah-playing program. Kinslow printed out
a picture of which parts of memory were "oc
cupied" as a function of time for his time
sharing system2

• The result shows clearly the
small spaces which develop in memory and
must remain unused because no program is
short enough to fit into them. Project MAC
is using a display to show the dynamic activity
of jobs within its scheduling algorithm.
Watching this display, one can see jobs mov
ing to higher and lower priority queues as
time passes.

Such instrumentation is not in widespread
use. We can and will develop instrumentation
which will be automatically inserted at com
pile time. A user easily will be able to get a
plot of the various running times of his pro
gram. Think of the thousands of dollars saved
by tightening up that one most-used program
loop. Instrumentation can identify which loop
is the most used.

CONCLUSIONS
The future of on-line systems depends a

great deal upon the future of off-line systems.
There is a lot of talk these days about a semi
automated mathematical laboratory in which
a mathematician could prove theorems that he
could not prove without computer assistance.
How about having the computer prove the
theorems all by itself? Suppose the artificial
intelligence people make a machine which can,
in fact, prove new theorems all by itself. What
then becomes of our semi-automated math
ematical laboratory? It's useless. Suppose we
finally write a computer program which is able
to write computer programs. Suppose we could
state our problems to a computer able to pro
gram itself to solve the problems. What then
will become of the on-line programming sys
tem? It will be unnecessary.

Today, we are in a very exciting period
when interest in on-line systems is very high.
Our great surge of interest in on-line systems
cannot last forever. What is next? What comes
after the on-line systems? Perhaps we shall
return to off-line systems as our capability
grows to have machines become better able
to do things all by themselves. Probably it
takes a very large computer to solve useful
mathematical theorems automatically. But, it
is nonetheless likely that we shall eventually
build such a system. In the past, there have
been cycles in our interest in on-line systems.
In the early days, on-line use of computers

was common because no one knew anything
else to do. Then there were the bleak years
of insulation between users and computers to
gain computing "efficiency." N ow, we are
again in an outburst of interest in on-line
computer systems.

In the future, also, there will be changes
in the emphasis on on-line systems. In five
years, on-line programming systems will be
commonplace, and a conference on on-line
systems would be out of place. Research inter
est in on-line systems will have faded, although
application of them will still be widespread.
Perhaps general-purpose automatic problem,
solvers will come into use soon after that. If
so, even the use of on-line programming sys
tems may decrease.

Eventually, the process control on-line stud
ies and the automatic problem-solving work
will come together to make automata. Com
puters will then be truly on-line with the
physical world in the same sense that we
human beings are on-line with the physical
world. Once again, there will be a resurgence
of interest in on-line systems. What I am
predicting is that today's interest in systems
in which a man and a machine get together
on-line will be replaced in the distant future
by interest in systems in which a computer
gets directly on-line with the real world, sens
ing and interacting with it directly through
transducers. The "real world" with which
such systems interact will include human
beings, of course.

CHARGE

Weare embarked on the greatest adventure
of all time. We believe that human beings are
individually valuable and have inalienable
rights. We believe that human beings are not
to be used as slaves. We must find something
else to give us the freedom of action which we
call leisure. We turn, of course, to the ma
chine. It will do our work for us so that we
may be free to do only things which we
wish to do. We will be free to exercise our
creative impulses.

REFERENCES

IJ.C.R. Licklider and Welden E. Clark, "On-Line
Man-Computer Communications", AFIPS, Spring
Joint Computer Conference Proceedings, 1962.

2 Hollis A. Kinslow, "The Time-Sharing Monitor Sys
tem" AFIPS, Fall Joint Computer Conference Pro
ceedings Vol. 26, Part I, 1964.

13

14

Dr. Walter F. Bauer*

On -Line S ystems-Their Characteristics
and Motivations

INTRODUCTION

THE CURRENT CONSENSUS among computer
professionals is that on-line applications rep
resent the wave of the future. The existence
of this symposium itself stems from that
conviction. However, as with all new subjects,
some important basic questions arise. It is well
to contemplate what on-line computing is and
why it is becoming so important.

First, some estimates and forecasts (Figure
1): on-line computing probably represents 1
per cent of the total computer activity in the
country today. It will probably represent 50
per cent in five years. Within ten years it will
probably represent nearly all computer activ
ity. This symposium and our discussions come,
then, just at the beginning of this new "rev
olution" .

Modern computers are about fifteen years
of age. The computer profession has under
gone much strife during its formative years
but now has reached some degree of structure,
standardization and predictable growth pat
tern. Everyone in the computer world knows
what subroutines, assemblers and simulation
programs are. There is even a rather universal
acceptance of the difference between an assem
bler and a compiler. However, just as this
status is being reached, interest has rapidly
developed in drastically new approaches to
com.puter use. Weare now confronted with
new words and techniques: time-sharing, real
time, on-line, and multi-programming. In view
of this, it seems appropriate not only to define
these terms, but also to discuss the total struc
ture of on-line computing in an attempt to

*President, Informatics Inc.

interrelate the various aspects of this new
era. This is the major objective of this paper.

Another objective is to examine the motives
of those advocates of on-line computer use.
Is such use cheaper? What does it gain for
the user? What is to be gained by on-line
computing versus batch processing?

But the prime question may well be whether
on-line computing itself is basically new, or
does it represent a natural extension of older
techniques? It is interesting and instructive to
trace the evolutionary paths which brought us
to our present capability (or desire for capa
bility) of on-line computing.

Last, but not least, is the series of interest
ing questions dealing with techniques and
technologies which inspired or were made nec
essary by on-line computing. The implications
to the user, the programmer and the machine
designer are profound, but not unattainable.
They should be spotlighted early to allow time
for balanced development of all their facets.

DEFINITIONS AND STRUCTURE

First, it is the proper time for the comput
ing field to rid itself of old fashioned words
and adopt more meaningful terms. The phrase
"real-time" is itself a meaningless expression.
This hyphenated expression was important a
decade ago when a computer was lashed to
instrumentation or tied closely to the outside
world. The term was used to describe those
tasks that needed to be locked or synchronized
on a second or millisecond basis to some real
time occurrence. As applications of this type
branched out, the term became more and more
inappropriate. Question: is the SABRE sys
tem for airline reservations appropriately

90+

1965 1970 1975

% OF COMPUTING ACTIVITIES

FIGURE 1

ON-LINE COMPUTING GROWTH IN UNITED STATES

called a "real-time" system? The fact that
lengthy papers1* have been written attempt
ing to define real time is, in itself, ample evi
dence that this misnomer for an application
category and its description should be
straightforward and simple.

The word on-line has been chosen as the
title for this symposium. It is more meaning
ful than "real-time". It seems that definitions
are long lasting and meaningful only if they
are simple. With this in your minds, the fol
lowing definition of on-line computing is put
forth for your consideration.

"On-line computing is the efficient
use of a computer in a system in
which the computer interfaces with
man or other machines to which it
reacts in receiving and supplying

information."
Let us not attempt to define on-line or real

time by some abstract reference to the passage
of time or the urgency of the receipt of data,
but rather, let us define it in terms of the .
environment of the computer system itself
and the manner in which it is used.

The above definition should withstand your
scrutiny.

*Numbers refer to references at the end of the paper.

Analogi digital hybrid systems are on-line
computing systems since the analog computer
itself is a clever machine which, like man,
receives and supplies information.

An airline reservation system is on-line
since the computer reacts to signals generated
at the ticket office via an input device.

Systems oriented towards scientific problem
solving by use of a console are again on-line,
since the console itself is the interface which,
in turn, receives information from, and gives
information to, the human who has a need
to know.

The purist may argue that on-line comput
ing then refers to all computer systems, since
they must all have devices such as card read
ers and punches to give and receive informa
tion. We can avoid this weakness in the defi
nition by insisting that interfaces with men
and machines do not include conventional
input/ output equipment. We can also insist
that the words "to which it reacts" rule out
conventional input/output since, in those
cases, the computer itself controls or drives
the input or output process instead of reacting
to it. In other words, for on-line systems, the
computer is embedded in a system, and the
part of the system outside the computer syn
chronizes the system. The signals to which

15

16

the computer reacts are frequently random.
This is in contra-distinction to those applica
tions where the computer itself synchronizes
input/output equipments.

Referring to Figure 2, it seems natural to
divide on-line computing into two major areas:
man/machine oriented applications, and in
strumentation-oriented applications. In the in
strumentation-oriented case, the computer is
locked into instrumentation to which it reacts;
in this case human participation is incidental.
On the other hand, in the man/machine ori
ented case, instrumentation primarily enables
man to "talk" to the system. The system is
necessarily oriented to the console and to the
men who operate it.

We should hasten to add at this point that
in creating definitions and meaningful struc
tures, the obvious weakness is that many sys
tems are not pure but, in fact, blended. In
reality, larger systems are both instrumenta
tion-oriented and man/machine-oriented. A
large scale communication system, for ex
ample, will probably have an elaborate man/
machine subsystem which allows extensive
monitoring of message processing, or for
human intervention for pathological cases
which might arise.

Instrumentation structured systems might
further be broken down into "simulation" and
"discrete" types. A simulation type is one
which is closely synchronized by, or in concert
with, events as they are happening. Now with
the discrete type, the system reacts to signals
which are less frequent and are mostly ran
dom, such as those described by Poisson dis
tributions. The latter are systems in which
queues form and service may be relatively un
predictable, and may vary considerably rela
tive to demand.

But we are here to examine' the man/ma
chine systems. Therefore, let us look with
greater precision to applications and systems
where the man is closely interacting and
reacting with the system.

Referring again to Figure 2, there seem to
be three major areas for man/machine appli
cations; these are problem solving, program
ming and computer use. In problem solving,
man wants to have the computer carry out
complex processes whose parts are chosen
and initiated by him. The computer is solving
the problem in the sense of carrying out the
detailed m,anipulations required. The man acts
more as a control system monitor; he controls
the pieces of computation. One of the best

ON-LINE APPLICATIONS

I
PROBLEM
SOLVING

MAN/MACHINE
ORIENTED

PROGRAMMING

COMPUTER
USE

I

FIGURE 2

I

I
IN STRUMENT ATION

ORIENTED

I

DISCRETE

SIMULATION-TYPE

TWO MAJOR AREAS OF ON-LINE COMPUTING

examples in problem solving applications is
that developed by Culler and Fried2

• In their
application, the computer can perform a wide
variety of mathematical operations on a col
lection of points on an interval.

On-line programming is the second area
identified. In this application, the man uses
the computer to develop an end product; an
obj ect program which accomplishes a pre
scribed known processing result. The pro
grammer has used the computer to assist him
in the process of selecting subroutines, pre
paring programming pieces for proper em,
bedding into larger systems, for supplying
data, for correcting the format of his instruc
tions, or for examining the logic of his pro
gram structure. There seems to be little of
this being done now as I have defined the
problem here. Most on-line programming sys
tems involve simulation of problem-oriented
language statements which comes under the
heading of "computer use", as described in
the following paragraph.

The third area of on-line applications is
heavily oriented toward man. This refers
simply to the use of the computer by the man.
In this application the computer can be con
sidered as his strong right arm. The problem
is solved by the man assisted by the machine.
In input and output of data, for example, the
computer is assisting the man in establishing
formats, priorities, data locations, and so on.
Another application is the question of a data
base where the man is asking questions, and
succeeding questions depend on previous an
swers. Still another application in this cat
egory, is the control and monitoring of large
scale systems.

While we are in the business of defining and
naming processes, there is another term which
needs attention. We have already dissected
"real-time" and have concluded that it is an
old-fashioned phrase which has little meaning
in a modern sense. Another unfortunate
phrase is "time-sharing". This phrase is usu
ally used to describe the simultaneous use
of a machine by a number of programmers or
analysts. Many descriptions appear in the lit
erature3

,4,5,6. However, in these systems it is
not the sharing of the machine which is the
most important. Rather, it is the orientation
of the machine to the human. To be specific,
time sharing comes into the picture because
this is the only current efficient way of using
a computer in close cooperat~on with a human,

since the machine would not be used efficiently
during the "head scratching" period of the
operator, and in a "time shared" system, many
operators can use it simultaneously. Thus idle
time is reduced. Time sharing is a result of
the fact that there is the man/machine orien
tation. To illustrate, the most important thing
about an automobile is that it supplies trans
portation. The fact that it is efficient to have
round wheels and a gasoline engine is over
whelmed by the transportation factor. And so
with computers. Thus, the expression "time
sharing" puts the emphasis on a secondary
characteristic and is, therefore, not good ter
minology. I offer that "on-line" is a much more
accurate and representative name.

MOTIVATIONS FOR ON-LINE SYSTEMS

In general, the motivation for on-line sys
tems is to make the computer a more powerful
tool. The computer is being made into a more
powerful tool by building it more responsive
to the user-more responsive especially in re
spect to type of information obtained, and
time required to get it.

These systems greatly increase the efficiency
of the user by giving him information which
reduces red tape and mundane clerical opera
tions. They bring the user closer to the data
inside the computer and make it more acces
sible to him. They give the user only the infor
mation he needs, when he needs it. In other
words, with on-line systems there are no
lengthy outputs from which the operator must
laboriously select the desired information. The
on-line concept is the skeleton key to the files.

However, it behooves us to look carefully at
on-line systems from the standpoint of the
areas of assistance which the computer can
provide to the user. If this is not done, the
danger exists that we would expect too much
from on-line systems; in our enthusiasm for
all their merits we could create a considerable
disenchantment among over-sold users.

In the situation of man interacting and re
acting with the cool gray computer, the appro
priate question is, "How can the computer
help the man 1" The following four state
ments about this assistance should represent
a mutually-exclusive and mutually-exhaustive
set of assistance areas. They are:

1. Correct an input.
2. Accept a query or the specification of an

operation, then perform the required de-

17

18

sired operation which should provide the
proper information to the user necessary
to accomplish the next step.

3. Accept and appropriately handle informa
tion to enable the computer to interpret
correctly future information which it may
receive from the user, or

4. Direct, on a step-by-step basis, a procedure
for information input and output.
Let us examine briefly each of these areas.

To correct an input and to immediately sig
nal the man in the loop for a correction or the
need for a correction, is an important time
saving factor. Many needless hours of "turn
around time" can be saved by finding out im
mediately that a transcription error exists.
This is just one example.

One of the important aspects of computer
use is in the area of computer aided processes.
The man is carrying out a number of logical
steps and needs the extra strength of the com
puter to help him in each of these steps. Be
cause the specification for each step depends
upon the results of the previous step, there is
need for fast response. Consider, for example,
a military commander asking questions about
the status of enemy forces. It should be easy
for you to imagine the series of interrelated
interrogations.

While carrying out the procedures in many
on-line systems, it frequently becomes obvious
that certain procedures should be changed. For
on-line problem solving, for example, if it is
found in solving certain problems or in solv
ing certain levels of problems that a pro
cedure, (e.g., multiply by cos X and integrate
over range 0 to 1) occurs frequently, it can be
specified as a standard instruction, and the
computer will react appropriately each time
this instruction is received.

Computer-directed procedures are an im
portant aspect of on-line computing and are
little understood or appreciated. For exam.ple,
they allow a complex query to be asked of a
machine under the control of another machine
and with the assistance of a third machine.

One thing should be borne in mind always
about on-line systems. They increase the bur
den on the computer so that the efficiency of
the man can be increased. We must realize
always that a penalty or a price is extracted
for each increment of increased human effi
ciency; more computer time, more complex
computers, greater input/output equipment,

and increased console costs. The tradeoffs
undoubtedly favor ever increasing on-line
capability. However, no system design should
occur without recognition of the prices de
manded.

COMPUTER-LEAD PROCEDURES

The importance of this area and its appar
ent lack of appreciation by computer users
suggests more attention should be given to
the definition and the benefits which can be
derived.

Consider for example, the process of com
plex interrogation of a large data base. The
computer must be an active participant in the
process or the operation becomes unwieldy.
Consider the functions as shown in the center
panel of Figure 3. The user must perform the
selection, but functions must be performed re
lating to the logic or syntax of the request and
to the consultation of a dictionary or format
specifications. These in turn require a look-up
operation to files which provide the required
data. In manual operation, as shown, the com
puter performs only the process of retrieval
and presentation. Obtaining the procedure to
be followed by consulting a comprehensive
operator's handbook is left as a burdensome
human-only operation.

In the console-computer automated oper
ation the only function left to the operator is
that which must be left to him; the selection.
The computer leads him by the hand, hope
fully by the proper digits, down the rocky
procedural path.

As a simple example of the principle es
poused, imagine that a military commander
wishes to have information about POL (petro
leum, oil, and lubrication) resources and
airfields in a certain section of the country.
Also, suppose he wishes to have a list of air
fields in five western states which have a POL
availability of 80 percent after an enemy at
tack. It is totally unacceptable and time con
suming for him to make the request to a
technician who would then transfer the infor
mation to an obscure code or punch it on a
card. Rather, he makes the request to a staff
officer who directly questions the machine.

Consider the following as a sample pro ...
cedure. The staff officer may specify to the
machine that he is interested in "installa
tions" and chooses, from a list of installations
which the machine gives him, the category

MANUAL
OPERATION

SELECTION

CONSOLE
COMPUTER
OPERATION

MANUAL

DICTIONARY -
FORMAT

OPERATIONS

LOGIC-SYNTAX
OPERATIONS

MANUAL

COMPUTER

DICTIONARY, CODE,
LOGIC, SYNTAX FILES

COMPUTER

RETRIEVAL AND
PRESENTATION

FIGURE 3

COMPUTER INTERROGATION PROCEDURES

"airfields". He then tells the machine he is
interested in "resources" and the machine
provides him with a list of resources from
which to choose. A similar procedure takes
place with respect to the geographic location.
When he tells the machine that he is inter
ested in an availability of 80 percent, the
machine responds with a form to fill out. The
officer enters the number 80 on the form and
the list is printed out.

The format of the request is natural. It is
neither highly stylized, nor codified. The staff
officer making the request and pushing the
buttons is himself a military man who under
stands the commander's request and the
reasons for it rather than the technical details
of how to make the machine accept or respond
to the request in its complex electronic way.

The benefits of computer-lead procedures,
however, are not limited to interrogations of
the data base. The inverse procedure benefits
equally man and machine. Consider the input
of data which is relatively unstructured. The
computer, of course, must finally accept and
file the information in a highly structured
form so that it may be retrieved efficiently.
The computer can direct a procedure which
allows the human to input the data in the
order and in the form which the machine can
accept.

THE EVOLUTION OF ON-LINE SYSTEMS

The advent of on-line computing systems
has not blossomed suddenly, nor has it sprung
full grown as a technical revolution. Rather,
it can be viewed as a normally evolving ca-

19

20

CONVENTIONAL
IN PUT / OUTPUT

OPERATOR
CONSOLE

UTILITY AND
ASSEMBLY PROGRAMS

STYLIZED
CONSOLE

MONITOR SYSTEM
OPERATION

COMPILER AND
ASSEMBLY SYSTEMS

CONSOLE DIRECTED
COMPUTER USE

USER STATION
QUERY LANGUAGE

ON-LINE
COMPUTER USE

ON-LINE
PROBLEM SOLVING

ON-LINE
PROGRAMMING

FIGURE 4

EVOLUTION OF ON-LINE SYSTEMS

pability. The capability and potential has been
there and recognized for some time; it is the
increased attention being given the techniques
which is sudden and dramatic.

To illustrate the evolutionary process, con
sider Figure 4. Portrayed there is capability,
increasing from top to bottom accompanied by
passage of time. In computer use in the early
'50s it was the conventional input/output, the
operator console and the utility and assembly
programs. People who used computers and sat
at consoles for long hours could not help but
conclude that there was a faster, better way
to give and receive information from an oper-

ating computer. The SAGE system7 and the
early output device using a cathode ray tube
were examples. Also, operator console pro
cedures became more sophisticated. Many sys
tem designers concluded that if you could
give information at the console for diagnos
ing hardware failures as the maintenance
men did, then why could not the user give
complex instructions to the machine dealing
with the processes and procedures being car
ried out by the machine? These were illus
trated in a number of systems which have
been described in literatures. At the same
time, strides were being made in non on-line

areas with the development of new, advanced
compiler and assembly systems in step with
powerful computer-user languages.

System designers, naturally, borrowed heav
ily from the techniques being developed in
stylized console and monitor system operation
to develop console-directed computer use. In
other words, instead of submitting informa
tion to the computer via punched cards and
waiting for the results to appear on the
printed edge, these designers suggested keying
in data directly into the computer at a con
sole or user station and receiving back almost
immediately the information at either loca
tion. The computer actions being directed by
the human then became very diverse and flex
ible. Many of these have been highlighted in
the literature9,10, especially those relating to
exotic military systems.

About this time people took still a different
-but related-approach to implementation of
query languages at user stations". The query
language approach borrowed heavily from the
technical developments of problem-oriented
languages. The resulting query language was
highly formatted, bearing many family re
semblances to the conventional compiler lan-

CONSOLE AND

guages which were designed for immediate
question and answer on-line use.

These two developments gave rise to what
seem to be the present three streams of effort;
on-line computer use, on-line problem solving,
and on-line programming.

PROGRAMMING STRUCTURE AND
FUNCTIONS

There are five major parts to the program
ming system of an on-line system,: the console
and communication programs, the executive,
the utility programs, the operating programs,
and the data base. These are shown schemati
cally in Figure 5 f along with the information
flow among them.

The console and communication program
provide the linkage between the human and
the system with a display console as interface.
In some cases where information is flowing
to and from communication devices, programs
to handle these functions would also come
under this category. Three major functions
are included: input/output data buffering,
input/output data formatting, and operator
logic controlling. Data which is carried into
the system at the console must be temporarily

COMMUNICATION EXECUTIVE .oil UTILITIES ["'I ... ~ r

1/
1/
o

PROGRAM

o DATA BUFFERING
o DATA FORMATTING
PERATOR LOGIC CONTROLLING

."

OPERATING
PROGRAM

PRODUCTION
PROGRAM OPERATING

""""'-
"""

.. ...

SCHEDULING DATA MOVING
MONITORING PRINT-OUT CONTROLLIN
CONTROLLING AUXILIARY MEMORY
SYNCHRONIZING CONTROLLING

.. ...

FIGURE 5

DATA
BASE

STORING PROGRAM RESULTS
OR WORK IN PROGRESS

MAJOR PARTS TO ON-LINE PROGRAMMING SYSTEM

G

21

22

buffered. Frequently a number of characters
are buffered until an "end of message" signal
is provided, after which the total message is
sent to the executive program. Also, format
changes are frequently required to shape in
formation to the form that the executive can
accept.

One of the newer concepts in operator con
soles is represented by operator logic control
ling. Under the topic computer lead pro;..
cedures described above, there is console pro
cedure logic which is implemented by the
console and communication programs. These
programs lead the operator; the steps depend
on the state of the system and the particular
operation being performed. They may lead
him by providing information on the next
step, by informing him which next console
steps are permissible, or by signaling him
when a console step has been initiated which
is not permissible. Properly designed, the con
sole and communication programs are flexible
and modular, and they can be modified easily
to accommodate changing procedures.

The executive program provides the basic
control for the system,. It schedules all work
to be performed; whether that work is to be
provided by operating programs or by central
ized input! output. It also monitors the entire
operation and reacts to ,any system interrupt
which signals the occurrence of an undesirable
circumstance. For example, the executive may
be alerted when a reserved portion of the
memory is about to be used up. The executive
also provides the functions of controlling the
entire operation; that is, it initiates the vari
ous programming pieces and provides them
with the operational parameters required to
define a requested task. Last, but certainly
not least, there is the job of synchronizing.
In time-sharing, for example, each operator
may receive computer time in cycles of, say,
200 millisecond increments, allotted to him by
the executive in synchronizing the system,
operation.

The utility programs provide three basic
functions: the movement of data within the
system required by time sharing -or pooled
procedures, the controlling of the printout of
information on a pooled basis, and the con
trolling of accesses to auxiliary memory.

One of the most challenging problems in on
line systems is the correct design of utility
programs which can be considered as overhead
programs initiated by the executive program.

Data must be moved, for example, from work
ing memory when the user or operator leaves
his console. Data is constantly shuffled within
the system to accommodate the various modes
of system operation and the requirements
placed on the system. Similarly, utility pro
grams are necessary for controlling the print
out of information when the printout facilities
are to be shared by all of the users, as they
usually are in an on-line system. Controlling
the auxiliary memory is another utility type
task since the bulk storage devices are usually
shared by all.

The last two parts of the programming sys
tem are the operating programs and the data
base, the latter referring to the storage of
intermediate or final data. The data base com
municates primarily with the operating pro
gram; for flexibility, there is a secondary link
to utilities. The utility routines may, at the
request of the operating program working
through the executive program, request utility
programs to handle certain data in the data
base.

Some of the general principles to be con
sidered here are:

1. Utility programs exist for the benefit of
each system user and for the system itself.
They are not considered part of the operat
ing programs, but rather they are of a gen
eral utility nature which is called u,pon by
the executive.

2. The executive is in reality the control de
vice of the system. Nothing occurs auto
matically within the system without its
being initiated and monitored by the exec
utive program.

3. Although the data base is a passive pro
gram it is included in this structure because
the data base can itself be a computer pro
gram which is being operated upon by an
operating program in an on-line program
m.ing configuration.

THE NEW TECHNOLOGY

On-line systems are giving rise to new hard
ware and software technology. Computers
must necessarily be designed quite differently
if they are to work efficiently in these kinds of
systems. Also, there are a number of badly
needed software and programming techniques
to provide efficient and economical system
implem,entation.

Some of the hardware aspects which need
attention are as follows:

1. Memory protect hardware. This is a device
which allows the currently operating pro
gram to be "locked out" of all but one part
of the memory. The capability must be dy
namic and under flexible control of the ex
ecutive program, since the allowed operat
ing areas of the memory change on a milli
second basis.

2. Inexpensive consoles. The computer indus
try must develop inexpensive consoles. A
reasonable goal is that the console should
sell for under $15,000, that it should have
a cathode ray tube or something equivalent,
that it should allow for some buffering of
information, and that it should have a flex
ible and adaptable keyboard structure and
status information display.

3. Multi-computers. Computers must be de
signed which allow the incremental addition
of modular components, the use by many
processors of high speed random access
memory, and the use by many processors
of peripheral and input/output equipment.
This implies that high speed switching de
vices not now incorporated in conventional
computers be cleveloped and integrated
with systems.

4. Improved input/output. The entire range
of input/output parameters needs overhaul.
For example, the random access memory
device must be accessible through two to
five channels. Channel logic and interrupt
procedures must provide greater capability
than they do on most present computers.

Of equal significance are some of the new
software techniques which need attention:

1. Automatic segmentation. Since running
programs will have access to only a portion
of the memory, frequent "page turning"
will be necessary . as the program goes
through its major operating pieces. Seg
menting of the program can be very diffi
cult if it must be done manually by the
programmer. Assemblers or compilers with
automatic segmentation or semi-automatic
segmentation are needed.

2. Relocatable programs and automatic, dy
namic relocation. There is the need to be
able to produce relocatable programs, and
to relocate these programs automatically
and dynamically. A part of a program in
auxiliary storage is seldom placed into the

same spot in high speed memory from
which it cam,e, and the program segment is
called into high speed memory under a
wide variety of circumstances and con
ditions.

3. Computer use and programming modifi
cation languages. Entirely new languages
are needed to allow flexible and powerful
use of the computer from remote stations.
A standardized set of macros is needed to
provide the user with many of the functions
he must perform very frequently. Two of
the simplest examples are "begin" and
"end" instructions. These signal the system
to make ready for the programmer's future
activities which he may call upon the sys
tem to perform, and they signal the end
of his activity to enable the system to begin
to accommodate other activties.

4. Console utility programs. Much of the new
procedure revolves around the display con
sole. Programs and techniques are neces
sary to allow operator efficiency, and to
allow the easy modifications of programs.

5. Scheduling algorithms. Increased atten
tion needs to be placed on the problem of
techniques for scheduling the many users
with their different priorities. Priorities,
for example, can be assigned externally or
they can be assigned on a dynamic basis
depending on how long the program has
been in the system, or how much time re
mains before the deadline for results.

SUMMARY AND CONCLUSIONS

Virtually all computer applications will be-
come on-line in the next ten years. '

"On-line" is much better terminology than
either real-time or time shared.

On-line applications can be considered man/
machine oriented or instrumentation oriented,
the latter breaking down into three major
on-line application areas; problem solving,
programming and computer use.

It is important to understand how the
computer can assist the man in on-line appli
cations, and it is likewise important to realize
that a price is paid in terms of computer time
and programming complexity in gaining this
user efficiency.

On-line computer developments are in real
ity normal evolutionary steps which developed
from early console and monitor system opera-

23

24

tion and the initial SAGE-type display con
soles.

There exists a canonical structure for the
programming system of on-line systems which
consists of five maj or pieces; console and
communication programs, executives, utilities,
operating programs and data base.

There are a number of challenging aspects
in computer technology generated by on-line
systems. Challenges in hardware designs must
result in hardware efficiencies to meet the new
software techniques and then the challenge
of efficiently blending the "hard and "soft"
for a truly efficient system ..

Respectful attention by all computer users
to these essential factors or opinions is neces
sary for the new technology to keep pace with
the demands and the potentials. Those com
puter professionals who are keenly aware of
the problems and needs, and who continue
offering improvements, will find the chal
lenges stimulating and their efforts well re
warded.

REFERENCES

1 T.B. Steel, "The Fabulous World of Real Time
land", Datamation, March 1964.

2 G. T. Culler, and B. D. Fried, "On-Line Computa
tions and Faster Information Processing", IEEE
Pacific Computer Conference, March 1963.

3 J. I. Schwartz, E. G. Coffman, C. Weissman, "A
General-Purpose Time-Sharing System", Proceed
ings of the SJCC, 1964.

4 A: J. Critchlow, "Generalized Multiprocessing and
Multiprogramming Systems", Proceedings of the
Fall Joint Computer Conference, 1963.

5 F. H. Corbato, et aI, "An Experimental Time Shar
ing System", Proceedings of the W JCC, May 1962.

6 J. C. R. Licklider, and W. E. Clark, "On-Line Man
Computer Communication", Proceedings of the SJCC,
1962.

7 R. R. Everett, C. A. Zraket, H. D. Bennington,
"SAGE, A Data Processing System for Air De
fense", Proceedings of the EJCC, 1957.

8 W. F. Bauer, "Integrated Computation System for
ERA-l103", ACM Journal, Vol. 3, pp. 181-185, 1956.

9W. F. Bauer, "Military Command: A Challenge for
Information Processing", Computers and Automa
tion, April 1963.

10 W. F. Bauer, and W. L. Frank, "DODDAC-An
Integrated System for Data Processing, Interroga
tion, and Display", Proceedings of the EJCC,
December 1961.

11 T. M. Dunn, J. H. Morrissey, "Remote Computing
An Experimental System", Part 1, External Specifi
cations, Proceedings of the SJCC, 1964.

Dr. C. B. Tompkins*

Mathematical Techniques for
On-Line Systems t

INTRODUCTION

My PERSONAL INTEREST might be more nearly
the study of mathematics and mathematical
techniques from on-line systems than the title
assigned me. However, the techniques which
are currently usable for on-line systems are
tools with which we shall expect to contrib
ute to the development of these new math
ematical ideas and techniques.

I do not agree that "on-line" computation
is almost synonymous with "multiple-console"
concurrent computation. I shall consider prob
lems which may impose small computing loads
and small communications requirem.ents and
are, therefore, also suitable for multiple-user
operation; but that will not be my aim. One
of the most famous multiple-user devices is
the chalkboard (as it might be used in an
old fashioned way to teach arithmetic or
algebra when a sizable fraction of a class is
sent to the chalkboard to work). A pad of
paper and a library can provide another
mUltiple-user system, at least under commu
nistic policies of using the paper, and under
reasonable rules for circulation of the library
volumes.

Use of a single computer by several users
concurrently is now one of the exciting sectors
in which computers and computation are de
veloping. To the extent that these applications
may make an extremely powerful, extremely
fast, and extremely economical analogue of
a desk calculator, the techniques are roughly
those of a desk calculator. The functioning is

tThe preparation of this paper was sponsored in part
by the Office of Naval Research. Reproduction in
whole or in part is permitted for any purpose of the
United States Government.

on-line, however, and such functioning is of
interest here.

An on-line computation has one principal
advantage over off-line computation-the ad
vantage of being subject to exploitation
through implicit decisions by the user. This
is independent of the multiplicity of simul
taneous uses. The classical view of automatic
computation (prevalent in the "remote" past
of, say, 1958) included a high evaluation of
austerity. Thus, then (and still in some labora
tories) efficient and effective use of the avail
able equipment required that sizable bites of
the calculation be described explicitly_ This
was so that every decision in the course of
the calculation of each bite could be carried
out by the automatic machine in accordance
with an explicit rule furnished to it in the
coding of the problem. If a process of sequen
tial decision was contemplated, with decisions
based on the calculations which had preceded
the decision, and if the proprietor of the
problem being processed planned to intervene
personally at the time of decision, then either
his intervention was seriously limited, or the
problem would be ej ected from the machine to
await the decision (and to await the next
period of machine operation at which it could
be introduced, often a wait of a sizable frac
tion of a day).

Men pursuing their various goals normally
find it necessary to assign various portions
of their problems to subordinates in an organ
ization. The assignments normally are of two
types: those which can be carried out me
chanically without exercise of ingenuity (al-

*Director, Computing Facility and Professor of
Mathematics, UCLA

25

26

though a high degree of professional compe
tency may be required), and those which call
for judgment and authority and which carry
more responsibility than that of blind but
competent obedience. The first of these types
of assignment might be compared to use of
compilers and computers in the austere clas
sical manner; the second is more like on-line
computing. The fact that formulas cannot
suffice for all the decisions made in the sim
plest of the pursuits of our lives, might indi
cate that the inventive process is required in
our attempts to solve our (formally) most
difficult problems.

Thus, I liken the console operator of an
on-line system to a leader of immediately and
competently responsive subjects in attempts
to solve problems which require exercise of
judgement by the leader from moment to
mom,ent, rather than from day to day. These
subjects comprise the computer system in
volved in the on-line operation.

In all this, we must recognize that the more
we can automate a desired operation, the more
tiDfe we have available for obscure inventive
processes. However, the formulation of a
problem in terms of available procedures
for automatic processing may impose un
economical difficulties. The inventor may be
able to describe his process of invention ex
plicitly, but it seems likely that the energy and
attention expended in this descriptive process
will seriously interfere with, or even annihi
late, his powers of invention.

The question of on-line mathematics is,
then, the question of determining when im
plicit observation, weighing, and exercise of
judgement involving one or more highly
competent scientists should be preferred to
automatic processing of data, with all ob
servation, weighing, and selection of sequence
of operations left to automation operating
under explicit rules.

THE MATHEMATICS OF GENERAL
SHAPES AND FORMS

In seeking an answer to the question of
on-line mathematics formulated above, we are
naturally drawn to consider those qualities
of concrete and abstract devices which are
still efficiently recognized by and reacted to
by humans. This immediately suggests "eye
balling," and this, in turn, brings to mind
topological aspects of mathematics, again in

the classical sense (which this time starts
with Gauss and continues through many of
the contributions of the less abstract current
contributions. to topology).

However, there are sensory devices which
determine general forms and shapes which
can be applied in non-topological ways. It
seems to be well established that the eye can
detect a straight line segment in a photograph
while limited resolution and other imperfec
tions effectively hide the segment from auto
matic recognition by instruments. The power
of the human to hear through noise is equally
remarkable. Patterns are recognized by hu
mans of low intelligence, while humans of
the highest intelligence find themselves unable
to explain the process satisfactorily. Finally,
the artistic fitting of theory to fact with a
feeling that "a slight modification right there
should do the trick" is sometimes known as
genius; here it is essential that the theorist
be provided with data which makes him be
lieve that the slight modification (or some
modification) is needed, and that he be able
to obtain experience which lets him "feel"
rather than know unequivocally the proper
direction and size of the modification.

To list all the interfaces which allow im
plicit judgement and implicit recognition to
enter into mathem,atical calculations would be
undesirable here-the list would be too lengthy
and would force me to depart from my sub
ject, and, besides, neither I nor anyone else
could possibly present a complete list. We
can only try to find the necessary interfaces
and mathematics in an implicit way by on-line
observation of candidates.

Therefore, I shall turn to some examples
of profitable on-line calculations.

THE ISOGRAPH AND ITS TOPOLOGICAL
PRINCIPLES

I shall not develop the topological tools
needed for calculation here, but I shall de
scribe them as I go along. An elementary
exposition of many of them can be found in
my paper1 and the references in its bibli
ography.

One fundamental problem which has always
been present in algebra is the problem of find
ing the roots of a polynomial. An ingenious
on-line device for using topological tools,
properly supported electrically and electron
ically, has been described by R. L. Dietzold2

•

This was an analogue device.

First, I shall describe a proof of the funda
mental theorem of algebra because the prin
ciples of this proof are pertinent here. In this
proof, I shall denote the polynomial by P and
its argument either by a number, a symbol z,
or another symbol to be introduced later when
the polynomial will be evaluated at all points
on a circle. I shall assume that the highest
power of the argument appearing in the poly
nomial is n, and that the coefficient of this

. highest power differs from zero. Such a poly
nomial is called a polynomial of n-th degree.
The fundamental theorem of algebra is:

THEOREM. If P is a polynomial of n-th
degree, where n ~ 1, in ·a single complex vari
able, there is some argument value for which
the value of the polynomial is o.

A proof is along the following lines. First,
examine the coefficient of the zero-th power
of the argument in P. If this coefficient is 0,
then the proposition is correct, for then
P(0) =0. If not, call this coefficient a o. A poly
nomial is a continuous function of its com
plex argument to the complex plane, and hence
for any argument value sufficiently close to
0, that is, for any z with Izl small enough, the

Imaginary Axis

The squigly
curve inside the
circle around 00

is the locus PR(ro)

Circular
locus I z I =ro

value of the polynomial will lie as close to a o
(in the complex plane) as any tolerance speci
fied in advance. At first we specify this toler
ance to be laol/2. In particular, we take ro
to be a positive number such that

a
IP (z)-ao I < I~I whenever Izl ~r o·

2

We now consider a circle in the complex
plane containing all values of z with absolute
value r, where r is any positive number to
be specified. We denote by PR (r) the set of
values taken by the polynomial as z takes on
all values on the circle Izi =r. For r=r 0 a
curve PR(r 0), restrained to lie close to a o'
is illustrated in Figure 1. The important
point is that the locus PR (r 0) does not sur
round the point z=O. If we think of the
circle Izl =r 0 being traversed by a moving
point, and of a small being at z=O watching
the image P(z) as z traverses this circle,
then this being might have to move his head
back and forth like a spectator at a tennis
match. But when the transit of the circle
has been finished the being at the center will
again look at the point on PR (r 0) where his
vigil started, and his neck will be untwisted.

Ci rc Ie of poi nts
of distance lao 1/2
from 00.

Real Axis

FIGURE 1

27

28

A curve looping Z = 0 once.

FIGURE 2

Now consider a value r 1 which is huge, its
value to depend on the values of the co
efficients in the polynomial being considered.
This value is to be taken so that the value of
the polynomial is determined to within a few
percent by the value of its leading term.
Since z n can be made to overshadow the
value of all lower powers of z by any amount,
simply by making Izl large enough, this value
of r 1 can be attained. If we considerPR (r 1)'
and view it from the point z=O, the locus
will surround the observation point, for the
locus zn for Izl =r is simply a circle, of radius
rn and center at z=O, traversed n times.
Thus, the being can now be assigned to follow
the generation of PR (r 1) as I z 1= r 1 is trav
ersed, and some of the tennis viewing exer
cise will follow, but if the being's body is
strapped firmly to prevent rotation, the neck
will have to twist n times.

The proof of the fundamental theorem of
algebra depends on noting that, unless the
locus PR(r) passes through the point z=O
for some value of r between r 0 and r l' the
number of twists in the neck generated by
watching the transit of PR (r 1) must be the
same as the number generated by watching
PR (r 0). Since these two numbers differ, at
least one circle Izl =r, for which PR(r) passes
through the point 0, exists; and this proves
the theorem.

The isograph used this principle in a con
structive way. Without going into details, J

assert that it is a comparatively easy job to
present PR(r) on the screen of a cathode ray
tube for any fixed value of r in the interval
(0,1] (that is, for O<r~l). The operator
starts with a low value of r and looks at the
screen; if the curve PR (r) does not loop the
center of the screen, his starting value is well
chosen. He then increases the value of r until
one of two things happens; either PR(r)
loops the center, or the operator runs against
the stop on the knob with which he adjusts
the value of r.

If the operator gets to a looping curve, he
adjusts the value of r with care, to make sure
that the curve actually passes through the
point ° (always, of course, within the tol
erance set by deflection irregularities, spot
size, and so on). Then the curve I z 1= r is
traversed slowly (and this again is an easy
electrical assignment), and the exact point on
this circle which gives the ° image is found.
This is a root.

(In seeking the root, the operator utilizes
the three-dimensional character of our space
and stands far enough in front of the cathode
ray tube to prevent twisting his neck irrep
arably.)

All roots with absolute value not exceeding
1 are found in this manner. Then the poly
nomial may be replaced by another in which
z is replaced by 1 iZ" (where z is the complex
conj ugate of z); the resulting expression is
replaced by its complex conjugate, and this
expression is multiplied by zn to form a poly
nomial. This polynomial has coefficients which
are the complex conjugates of those of the old
polynomial-occurring in reverse order. If the
old polynomial values were ~akzk, the new
ones will be ~an_kzk.

One can argue that the topological looping
principle is not necessary for the explanation
of the isograph, all that is necessary is that
the operator be sufficiently alert to perceive
any curve PR (r) which passes through the ° point. This argument is correct so long as it
is' convenient to vary r continuously, but in
many cases, particularly with current designs
of digital machines to be used on-line or off
line, this continuous variation is not conveni
ent, and the preferred method would be to try
r= 1 first; if the result indicates one or more
roots z with Izl ~1, the value r=% would be
tried, and so on.

I shall insert here some mathematics which
might plausibly have developed from on-line

computation; it is at least based on the idea
of considering PR (1). This ingenious scheme
is due to D. H. Lehmer3. It is an algorithm
which determines whether a polynomial P
has any roots inside the circle with center 0
and radius 1. It is a completely automatic
scheme, and it has been coded for convenient
operation on a digital computer without op
erator intervention.

To start with, it should be noted that simple
transformations will permit the search for
roots of a given polynomial in any circular
disc, to be carried out by searching for roots
of a related polynomial of the same degree
in the unit circular disc centered at O. All that
is necessary is to replace z in the polynomial
by (z-c), where c is the center of the circle
of interest, and then to replace z in this new
polynomial by z/r, where r is the radius of
the circle of interest. Lehmer's search con
verges on roots by pinning them into always
smaller circular discs; the general method is
illustrated in Figure 3.

We assume that Lehmer's algorithm to
determine whether any given circle has any
roots of P on its interior has been established.
We then seek a circle (starting with the unit
circle with center at 0) with at least one root
interior to it. We then try a circle with the
same center and half the radius. Thus, given
any circle with at least one root on its interior,

FIGURE 3

we test the circle with half the radius and
the same center. Assuming that the center
is not a root, eventually we shall arrive at a
circle of radius R with roots on its interior,
while the concentric circle of radius R/2 has
no roots on its interior. These two circles are
depicted in Figure 3. There are no roots in
the shaded region, but there are roots in
the annular ring. Lehmer then chooses eight
centers, Co through c7 in the figure. He
chooses an initial value of 5R/12 for the
radius, and he repeats the process for circles
centered at each ci. It is easy to show that
these eight initial circles completely cover
the annular ring.

Lehmer's algorithm is the following. Let P
be a polynomial with coefficient ak for the k-th
power of the argument. Let Q be the related
polynomial we constructed above; Q has co
efficient an-k for the k-th power of its argu
ment. Now create a new polynomial

P 1 =ao P-an Q.
This is a polynomial of lower degree than P.
If its constant term is negative, then P has a
root inside the unit circle with center at 0; if
its constant term is positive, then it has the
sam,e number of roots within the unit circle
as P. In the former case, the tracking down
process of Figure 3 is used; in the latter case
the polynomial Q1 related to P 1 is created,
and the elimination of the highest power of
the argument is repeated. Eventually, the
process leads to a negative constant term,
meaning that roots do exist within the unit
circle, or to a constant polynomial with pos
itive value meaning that no root exists inside
the unit circle.

The simplest proof of this theorem seems
to rely on the proposition that the roots of a
polynomial are continuous functions of the co
efficients-a well-known proposition with few
proofs in the literature. Although most pub
lished proofs involve study of symmetric
functions, the reader can furnish his own
proof by index arguments such as those in
reference 1. The proof is trivial if there are no
multiple roots. It can be shown that if the
constant term of P 1 is positive, then the poly
nomial ~aoP-anQ can not have roots with
absolute value 1 for any (f in the interval
[0,1]. This argument is mildly topological. A
proof of uniform continuity is available in
reference4 pp 156-158.

Thus, the isograph attack, perhaps subtly,

29

30

has grown into an attack suitable for either
on-line or off-line computation.

However, for functions more complicated
than polynomials, it is hard to find a suitable
algorithm to place roots. inside a simple closed
curve bounding a region. Still the turning
number method will frequently work. It was
applied successfully to solve equations of the
type P(z) e-z+Q(z) =0 by Arnold O. Allen.
While a deep study of equations of a particu
lar type might yield a better method of solu
tion, the old isograph principle is certainly
the easiest to apply if the worker stumbles
on an equation of unpredicted type for the
first time. There was no convenient method of
generating the graph of P(z)e-z+Q(z) for
all z with /z/ =r in the days when the isograph
was designed, but modern digital com,puters
can construct graphs of functions of a wide
class of considerable complexity. One method
developed and used with spectacular success
has been developed by G. J. Culler and B. D.
Frieds ; this method is described by D. A. Pope
during this symposium.

A BRIEF GLANCE AT OTHER
TOPOLOGICAL PROBLEMS

The idea of looping closed curves in 3-space
goes back to Gauss, and generalizations of the
turning number argument above have been
developed. Two curves in 3-space are looped
if every orientable surface bounded by one
is cut by the other. The degree to which two
curves are looped is determined imm,ediately
by eye, and with difficulty by a computer. The
computer would use Gauss's integral formula:

x-y
dx
dy

J=_1_ sn ~
W [(X_y)2]3/2

If J f:. 0 the curves are looped. In the for
my.la, x and yare parametrized closed curves
which do not intersect each other; both x and
yare to be considered to be vectors in 3-space.
Vector subtraction and scalar multiplication
of vectors are intended at appropriate places
in the formula.

Figure 4 depicts a pair of looping curves;
J computed in accordance with Gauss's for
mula would take a value -1 or 1, depending
on the relative orientation of the param-

etrized curves. Also in Figure 4 is a pair of
curves which are tangled but not looped; they
would give a value 0 in Gauss's formula. Also
related to the subject of loops and tangles is
the subject of knots. A knotted curve is even
hard for a novice to define; it may be defined
as a polygon which is not the boundary of
a non-intersecting continuous image of a
closed circular disc.

All this might leave a physicist cold. How
ever, it is true that Gauss developed his for
mula in his study of magnetic forces. It is also
true that physicists now deal with concepts
that occur in quanta, that some of these phys
ical entities should be determinable by inte
gration around an enclosing surface or hyper
surface, and that integrals of the general type
of Gauss's form the most general type of
integer-valued integrals known. This type is
described roughly as the integral of the solid
angle in (m+n+l)-space swept out by a non
zero vector which is a continuous function of
an orientable (m+n)-dimensional closed com
pact manifold. It requires little im,agination to
believe that one would rather look at the
looped curves of Figure 4 than compute the
value of J in the formula.

And, finally, a word about knots. It seems
impossible that we can not tell whether two
knots are equivalent under reasonable tran
formation laws, but derivation of a complete
set of invariants seems to be terribly difficult.
A pessimistic approach to this problem might
have been an attempt to create a knot whose
reduction to some "most elementary" form
would involve some temporary increase of
complexity en route. I shall not stress these
matters, however, except to note that modern
on-line methods are easier to use than string
and that they can be made to record all inter
mediate stages so that any success in experi
ments is automatically documented.

I close this part of my discussion with an
obvious remark concerning tameness require
ments of current systems. Generally on-line
displays represent only tame curves. The
UCLA version of the Culler-Fried system in
terpolates linearly between 125 computed
points, thus creating a polygon or an arc
of broken line segments. Wild curves not
adequately described by polygonal approxi
mations currently are infrequently treated
by computers. I furnish one example pre
sented by Ralph H. Fox~ It is an infinite
sequence of crochet stitches. In the sketch I

c _____
Two looping curves

x-y
dx

1 dy
J=W- f/J gJ [(X_y)2]3/2

~
Tang led curves not looping

Gauss·s Formula
FIGURE 4

A knotted curve

have added a parallel line to the right of the
oriented curve when one string passes over
another. I have also added dotted lines to show
how any finite number of stitches could be
unravelled. It seems probable that some subtle
method of implicit description would be re
quired before a computer could be called' on
to aid in the study of such a wild curve.

LOW REDUNDANCY DESCRIPTORS

One of the really powerful tools of math
ematical analysis is the construction of con
venient complete bases in Hilbert space. The
most familiar example, perhaps, is Fourier
series. Fourier series uses positive, zero, and
negative integral powers of the imaginary
exponential function as a complete basis for
the space of functions which are of class L2
(square integrable in the sense of Lebesgue)
on the interval (O,27T). Fourier integrals fur
nish the same service for functions defined
over an infinite domain. This type of con
sideration of a function as a vector in a vector
space of infinitely many dimensions has great
value in abstract studies in that (among other
things) it permits the mathematician to prove
the existence of solutions to various problems
and to describe these solutions, at least in
principle.

A great practical value is also realized, for
many functions described by Fourier series

are described sufficiently well for practical
purposes by their first few Fourier coeffi
cients.

An example of this practical value is the
familiar study of bandwidth in connection
with radio transmission on a frequency in
a crowded spectrum. Here, the harmonics can
be attenuated by properly chosen filters, and
the whole study leads (through a development
which is familiar to or easily available to
all readers of this paper) to fairly efficient

•
•• ••

.. / •.•• I
/'

.,...-.--

The wild knot of R. H. Fox

FIGURE 5

31

32

use of the available frequency spectrum in
single side-band suppressed carrier transmis
sion, magnetic tape recording of digital in
formation, and so on (but not yet for the
internal structure of digital computers!). The
point is that the Fourier description of a
function presents partial descriptors of the
function which are adequate for the purposes
at hand, and that only a small, wisely chosen
part of this Fourier description needs to be
computed or used. This part furnishes a de
scri ption of high efficiency (or low redundancy)
for the purpose intended.

Various practical considerations also enter
into this picture. First, we should note that
we have no access to really existing physical
entities extending in time or in space both to
- 00 and to +00. Secondly, we have no per
fectly periodic functions. In response to these
philosophical objections we reply, of course,
that our instruments are far from perfect,
and that their reactions to the existing stimuli
are indistinguishable from what their re
actions would have been to the idealized stim
uli which cannot exist. Thus, we stretch or
contract quasi-periods of quasi-periodic func
tions where the actual application is insensi
tive to minor local variations in rate.

Still considering Fourier analysis, we turn
to the Gibbs phenomenon. The Fourier series
might converge in the mean (that is, roughly
in the sense of power or energy) but still miss
the function it should approximate rather
badly at some points. In particular, near a dis
continuity with different left or right limits,
the partial sums of the Fourier series over
shoot by a sizable fraction of the jump at the
discontinuity, this overjump is bounded away
from O. This phenomenon was noticed by
Gibbs and probably by workers before Gibbs,
and it undoubtedly has been rediscovered
many times after the time of Gibbs. Untold
labor would have been saved if the Culler
Fried on-line system had been available. Dr.
Culler once demonstrated the phenomenon to
me in about one minute starting from scratch,
without having considered the problem before
so far as its connection with their on-line
system is concerned.

Another application in which small varia
tions in rate of generating a pattern can some
times be ignored is in the study of electro
cardiograms. Briefly, the electric potential
difference measured by a pair of electrodes

attached to the skin shows one large sharp
spike and several lower wiggles during each
pulse cycle of a normal person. If the patterns
of the pulse cycles are similar except for dura
tion of the cycle, one might try to describe
the normal cycle by carrying out a Fourier
description of one chosen cycle. If this is done,
it turns out (not surprisingly) that a dis
couragingly large number of components is
required to get agreement. This is a phenom
enon related to the large amount of spectrum
usurped by any suddenly changing signal.
(Radio transmitters are required to soften
their key clicks by filtering out the higher
harmonics, and a result is the lengthening of
rise time and fall time of keyed signals; in
the same way, transmitters of voice or music
have limited bandwidth allowance so that
they must remove some of the high frequency
sounds necessary for high fidelity broad
casting.)

This is not a failure of Fourier series, for
the harmonic content of an electrocardiogram
might not be a terribly useful bit of informa
tion in any event. However, if a formal de
scription of a cardiogram wave is desired
(and I doubt that anyone will contest this),
then the description should be in terms of a
few numbers, and the wave synthesized from
these numbers should have properties indis
tinguishable under normal examination pro
cedures from those of a true normal wave.

The instrument for describing a sharp spike
is not the Fourier instrument (unless some
application requires spectral analysis) but
rather some instrument like the Bernstein
polynomial. The Bernstein polynomial is usu
ally defined over the interval [0,1] rather than
[0,271"], and I shall conform with this; unde
m,anding arithmetic adjustments must be made
to transform its effective domain to the inter
val [0,271"]. The Bernstein polynomials are
indexed by two integers, n and v. The index n
is always positive, and O~v~n. The polynomial
is defined as

B(n,v ;x) =(~)xv (l_x)n-v

The quantity'(~) =n!1 [v! (n-v)!] is a bi
nomial coefficient used to normalize the poly
nomial. For fixed n and v, the graph of the
polynomial attains a maximum at x=v In. The
function is monotone increasing to the left
of this maximum, and monotone decreasing
to the right; it remains positive on the open
interval (0,1) and takes the value 0 at X=O

and x = 1. As n increases, the sharpness of the
peak increases. Professor T. S. Motzkin sug
gests that periodicity be restored by setting

. e
x SIn -- •

27T
While there is no apparent theoretical rea

son for using what seems to be an unnatural
mixture of polynomials and sinusoidal com
ponents to describe a function, there may be
sound practical reasons for using the mixture
to provide efficient descriptions of sufficient
accuracy for calculation. In calculation there
is frequently no demand for a complete non
redundant basis, or, perhaps, the knowledge
that such a basis exists is sufficient to guaran
tee the soundness of a calculation.

The suggestion made above that Bernstein
polynomials be used to remove troublesome
peaks should not be interpreted to imply that
all uses of Bernstein polynomials in computa
tion are efficient. For example, the polynomials
are a means of proving the Weierstrass ap
proximation theorem that any continuous
functions on [0,1] can be approximated arbi
trarily well by a polynomial. For the function
f, the n-th approximation is given by

f ~ ~ f(v/n) B(n,v)

The summation is over all values of v, start
ing with 0 and continuing through n. The use
of the polynomials to prove the Weierstrass
theorem is convenient. Roughly, the proof con
sists of showing that the method works for
any quadratic function, noticing that the ap
proximation is monotone in the sense that if
g~f for every point on [0,1], then the n-th
approximation to g is nowhere smaller than
the n-th approximation to f, and finally that
any continuous function can be squeezed arbi
trarily closely at any point by two quadratic
functions, one of which is nowhere smaller
than the squeezed function and the other is
nowhere larger than the squeezed function.

Even though this is a convenient line of
proof, there are usually more efficient ways of
expressing a polynomial approximation to a
function; these include the classical interpola
tion polynom.ials, which are easily computed;
although they may not converge to the func
tion approximated.

However, with good display and reasonably
powerful means of computation, an on-line
system might reveal the adequacy or inad
equacy of a set of descriptors, and an ingeni
ous operator might note peculiarities of the
residue after a partial description, and might

use these peculiarities to furnish progressing
low redundancy descriptions.

I cannot stress too highly the value of such
descriptors. Those of you who have dealt with
the problem of recognizing patterns must rec
ognize that labored descriptors, which are in
some sense adequate from the point of view
of a mathematical theorem, are inefficient and
at least inadequate (more likely impossible)
from a constructive computational point of
view. With all this, however, we have few tools
at hand to use in abandoning classical math
ematical approaches toward description. The
on-line systems now developing present a fine
opportunity for augmenting our knowledge,
or at least our practice, in this important field.
Use of descriptors which are not orthogonal
and do not form a linear set becomes difficult
in classical functional analysis, but we can
still use on-line displays from powerful com
puters to experiment. In short, then, one of
the fields in which great interaction between
formal manipUlative mathematics and schol
arly computation can be expected is the field
of convenient description of functions or other
mathematical entities. This description is clas
sical through measure of interaction with
each of a set of test entities, and our new
power, if one is found, will lie in the enhance
ment of the allowable classes of testing enti
ties, so that interaction between themselves,
for example, can be tolerated more easily. An
application of a low redundancy description
might typically be construction of a Wiener
Hopf type of filter7 to remove unwanted sig
nals in a record, and to preserve the desirable
ones. In some cases, it might be more conveni
ent to use a small number of low redundancy
descriptors abstractly than to subject large
quantities of data to spectral analysis.

One field in which careful plotting and
measuring might be substantially aided by
good on-line displays is in the rational de
scription of functions. This system of approxi
mation was described and developed by Cheb
yshev, perhaps reintroduced by Hastings and
his coworkers8

, augmented with tables by C.
Lanczos9, and applied in many laboratories
with automatic computers. A recent presenta
tion has become available through work spon
sored by Control Data Corporation and par
ticipated in by Hans Maehly and many associ
ates10

• The set of approximations in this last
reference is a fine set to consider in connec
tion with on-line systems where the aproxima
tions might be suitable.

33

34

I close this discussion of description by
noting one additional development of our times
which will certainly continue to interact
strongly with on-line use of computers, and,
for that matter, with development of computer
languages for on-line or off-line use, and with
more subtle uses of computers in the future.
This is the development of quantitative stud
ies of the conceptual aspects of all the
communications sciences. This exciting field
crosses many boundaries of classical factoring
of scientific disciplines-biology, physics, engi
neering, psychology, linguistics, mathematics,
and many separate divisions within these
disciplines. One might profitably spend a few
minutes considering what these newly expand
ing studies imply in connection with computa
tion, and especially on-line computation. In
this contemplation, the titles of the lectures of
a series of lectures starting at UCLA might
be illuminating. I present a list of titles as
bibliographic references11

•

QUESTIONS OF STABILITY
It becomes clear that no one paper nor book

can possibly describe the mathemati9s appro
riate for on-line computation. We all have rec
ognized the growing awareness among appli
ers of mathematics to questions of stability.
Perhaps one of the most valuable contribu
tions made to m,athematics by analogue equip
ment used during the last twenty-five years
has been this growing awareness. Mathemati
cians have reviewed their work, and tech
niques have been discarded. Engineers have
designed damping features with much greater
care than was exercised in earlier times. The
pace of current life has forced utilization of
these studies of stability.

Where linear models are adequate, the anal
ysis of stability is comparatively straightfor
ward. However, as we become more and more
dependent on models which are not adequately
descriptive after linearization, these stability
studies become more difficult and probably
more important. It seems to me that we might
expect on-line systems tailored for a class of
stability studies as we develop greater needs
for understanding the behavior of complicated
non-linear reactors. The study which may de
velop into such systems is already being car
ried out in many different ways in many dif
ferent places. I note the activities of the group
called RIAS, first as a part of The Martin
Company, in Baltimore, and more recently at

Brown University. There under the leadership
of Professor J. P. LaSalle and the inspiration
of Professor S. Lefschetz, a productive group
has developed many techniques which have
not yet been widely applied to on-line analysis
and simulation. At UCLA, other studies are
progressing, and these are more or less typical
of the type of thing developing at many
places. They, too, tend to ferret out instabili
ties and near instabilities through computa
tion, although the basic hope is usually to
choose a technique which will be stable in the
solution of some special problem in which in
stability is a nuisance, and not something to
be studied for itself.

I look forward to further developments of
our on-line systems to take into account the
information now being accumulated and doc
umented so that subtle, sensitive and more
reliable simulations can be undertaken to de
termine behavior of complicated systems. I
feel that on-line computation will contribute
materially to this.

And, finally, I note that, except for physical
control purposes, on-line computation has a
kind of built-in suicide. As we learn more
through its use, we must hope to formulate
this knowledge, so that it is available without
human judgement and intervention. In short,
it must be included in the repertoire available
for explicit off-line computing in much the
same way as the development of D. H. Leh
mer's technique, mentioned above, has enabled
us to replace the isograph in solving poly
nomial equations.

ADDITIONAL TOPICS
I list here, mainly without reference, topics

which now demand computational attention
most of it on-line.

In one-dimensional problems of the calculus
of variations and in many similar problems,
ordinary differential equations with end con
ditions arise. These may be solved by gradiant
or relaxation methods, but such solution is
frequently extremely laborious. On the other
hand, they may be solved by initial value
methods, creating a field of solutions with
one to be chosen to pass through the second
end point.

There seems to be some purpose in combin
ing these two schem,es. By on-line (or later,
off-line) experimentation one might seek a
well computed solution which passes close to
the second end point. Then in some cases

perturbation methods applied to this solution
through relaxation methods might give a very
accurate solution with correct end values. I
believe that experiments along these lines are
planned at our Computing Facility by D. A.
Pope and by James Dyer.

Similar studies might be applied to stochas
tic population process problems. These prob
lems may yield partial differential equations
or very large systems of ordinary differential
equations. Some type of scaling experiments
are well worth while in an effort to replace
either system of equations by a set of ordinary
equations small enough to be handled.

Another interesting study in stochastic
population processes is the nature of config
urations which are almost stable. In various
attritive processes, a condition of almost sta
bility occurs even though it is clear that com
plete annihilation of the population must
eventually occur with probability one under
the model used. Simulation of such situations
seems attractive.

Other on-line simulations are desirable for
the generation of models, for training pur
poses, and so on. The Link Trainers, intro
duced many years ago and improved since
then, are famous examples of on-line com.pu
tation somewhat specialized. Other training
functions have been carried out spectacularly
at the System Development Corporation. We
still need models, systems, and simulation of
highway traffic control and air traffic control.
The UCLA Institute of Transportation and
Traffic Engineering is carrying out interesting
highway traffic studies, including many on
line simulations. The air traffic control studies
are far less productive than one would have
estimated ten years ago. They may have been
hampered by poor models, on-line equipment
inadequate for the purpose, or by other de
terrent conditions. One thing which seems
clear is the controlled traffic must be assigned
to parametrized traj ectory (the parameter
being time) from take-off to touchdown. Thus,
the awkward holding patterns used in the
past (in which aircraft cruising at speeds in
excess of a hundred knots pretend that they
sit still to await their landing turn) must con
tinue to be revised into long trajectory assign
ments terminating (hopefully) in routine
landings.

Many of us would prefer that radical mod
ifications of the approach and landing pro
cedures be simulated first and then tried out

on aircraft removed from our own position by
some considerable distance.

Continuation of this list seems pointless.
About the only thing to say is that simulation
generally means that the result of some activ
ity is estimated without actually going through
the action. Newton's second law of motion is
a simulation under this description-and I be
lieve that it is best to accept this. Simulation
is, of course, essential to the continuation of
our ordered lives, and every plan is a result
of some sort of simulation. Under these con
ditions, it seems clear that simulation of
material activities will resume its place of
exciting importance as the present trend of
building up powerful on-line computing math
ematical m.ethods and computing and console
response continues.

REFERENCES
1 C. Tompkins, "Sperner's Lemma and Some Exten
sions," Applied Combinatorial Mathematics, Edwin
F. Beckenbach (editor), John Wiley & Sons, New
York, 1964, 416-455.

2 R. L. Dietzold, "The Isograph, a Mechanical Root
Finder," Bell Laboratories Record, 16 (1937) 130-
134.

3 D. L. Lehmer, "A Machine for Solving Polynomial
Equations," Journal of ACM, 8 (1961) 151-162.

4 T. S. Motzkin, "From Among n Conjugate Algebraic
Integers, n-1 Can be Approximately Given." Bull
American Math. Soc. 5 (1947), 156-162.

5 STL On-Line Computer (volume 1, "General Descrip
tion," by B. D. Fried, and volume 2, "Users'
Manual," by C. C. Farrington and D. Pope) TRW
Space Technology Laboratories, Los Angeles, 1964.

6 R. H. Fox, "A Remarkable Simple Closed Curve,"
Ann. of Math., 50 (1949) 264-5;
Richard H. Crowell and Ralph H. Fox, Introduction
to Knot Theory, Ginn, Boston, 1963, p. 5.

7 N. Wiener, Extrapolation, Interpolation and Smooth
ing of Stationary Time Series, MIT Technology
Press and Wiley, New York, 1950.

8 C. Hastings, Approximations for Digital Computers,
Princeton University Press, Princeton, 1955.

9 Cornelius Lanczos, Tables of Chebyshev Polynomials,
volume 9, National Bureau of Standards Applied
Mathematics Series, Washington, D. C., 1952.

10 Control Data Corporation, A Study of Mathematical
Approximations, 6600 Computer System Program
ming System Library Functions, Control Data Cor
poration, Minneapolis, 1964.

" University of California Extension Announcement,
"Conceptual Bases and Applications of the Com
munications Sciences," (Spring, 1965) ; C. Tompkins,
Introduction; Theodore H. Bullock, Neurons and
the Simplest Transducers and Communication Chan
nels; John L. Barnes, Laplace-Fourier Transforms
and Mathematical Probability; Leo Breiman, Dis
crete Signaling and Coding Systems; E. Roy John,
Electrophysiological Studies of Conditioned Re
sponses; H. P. Edmundson, Mathematical and
Computational Linguistics; Robert G. Gallager,
Information Theory and Quantitative Measures of
Information; Richard L. Masland, Manifestations of
Structural Defects of the Central Nervous System;
Joseph C. R. Licklider, Human Reception and
Assimilation of Information; Ray L. Birdwhistell,
Communication: A Continuous Multi-Channel Proc
ess; William J. McGill, Counting Processes in
Psychophysics; W. K. Estes, Learning and Memory;
David G. Hays, Representation of Meaning in Nat
ural Languages; Gunther S. Stent, Storage and
Translation of the Genetic Information; and Edward
C. Carterette, Conclusion and Summary.

35

TECHNIQUES
MULTI-COMPUTERS ApPLIED TO ON-LINE SYSTEMs-Dr. Gene M. Amdahl.... 38

ON-LINE USER LANGUAGES-Professor Joseph Weizenbaum. .. 43

38

Dr. Gene M. Amdahl*

Multi-Computers Applied to
On -Line Systems

THE PRINCIPAL MOTIVATIONS for multiplicity
of components functioning in an on-line sys
tem are to provide increased capacity or in
creased availability or both. The selection of
a configuration should be based on sound
economic valuation, just as the selection of
the goals of the on-line system itself must be
determined.

The use of multi-computers implies inter
communication, with the associated implica
tions of interconnection, reconfiguration and
interlocking. Some of the techniques, alterna
tives and effects of these impli'cations are
discussed.

CAPACITY
Although one of the principal reasons for

mUltiplying components in a system is that
of increased capacity, the efficacy of this pro
cedure is not uniformly good. Generally multi
plication for capacity is an economically de
sirable approach only for those components
whose capacity is limited by technology. This
is particularly true at present in electrome
chanical devices, such as peripheral storage
and input/output (I/O) c;omponents. It is
less true for electronic devices such as memory
and central processing units (CPU's), in that
order. In CPU's, adequate examples exist to
demonstrate that doubling the component
count more than doubles the performance,
whereas duplexing the CPU less than doubles
the performance. Doubling the cost of a mem
ory would probably more than double its ac-

*Manager, Systems Architecture, IBM Data Systems
Division

cess rate, or certainly more than double its
capacity, but probably not both simultaneously.

When multiplication is the most effi.cacious
way to increase capacity, one can not expect
a rate of capacity increase as great as the
increase in components. The closest approach
to a linear improvement can be achieved if
the components can be partitioned, either for
concurrent correlated use (such as in tape
sorting) or concurrent independent use (such
as spooling). The only factor limiting linear
improvement in this circumstance is non-uni
form loading, which almost always occurs.
The second closest approach,and the only other
technique known to this author, to linear im
provement is by distributing, so that statisti
cally a multiplicity of like functions can be
performed concurrently. This can not always
be done, for example, in printing, but can
generally be done if extra-functional con
straints do not make the component dedicated
for extended time periods. To exploit the
increase of capacity gained by distributing,
the system must provide for queuing. The
queue depth permissible should be at least as
great as the number of components over which
the function is distributed.

If more than one CPU resides in the system,
another advantage of the multiplicity of other
components appears. This advantage derives
from the common pooling of equipment, even
though the computer tasks may be independ
ent. By pooling, the number of components
provided need not be large enough to accom
modate peak requirements occurring concur
rently in each computer, but may instead
accommodate a peak in one occurring at the

same time as an average requirement in the
other.

Even though the capacity increase due to
multiplication grows less rapidly than linearly,
the hardware complement grows more rapidly
than linearly. The additional hardware is re
quired to provide the gating, selection, priority
determination, and power needed to make the
desired interconnection. This added circuitry
not only increases hardware costs, but also
reflects in increased failure rates and increased
transmission delay. The increased transmis
sion delay may be crucial in shared electronic
memory, for the CPU -memory communication
time is quite critical if the CPU is designed to
attain maximum performance in combination
with this memory.

A further precaution to observe when in
creasing capacity by multiplication is that even
though functions may distribute very nicely
in a statistical sense, not all devices are satis
fied by good statistics. A prime example of
this occurs in the use of shared electronic
memories to accept or provide data to two
or more high speed I/O devices concurrently.
In this situation, even though the effective
bandwidth is more than adequate to match
the sum of the I/O device bandwidths, the
interference, and consequent delays, may cause
one or both devices to overrun. Overcoming
this difficulty requires the inclusion of buffer
ing to average the peak requirement to the
effective bandwidth of the shared memory.

An alternative to multiplication is sometimes
available, particularly in the CPU. This alter
native consists of separating specialized func
tions from the CPU workload and providing
a separate independent specialized component
for this purpose. This approach is commonly
taken in single computer systems, the most
common example being I/O channels. This is
also the essential point in those systems where
a separate limited function, quite highly spe
cialized, I/O control computer is introduced.
In these particular systems, a performance
gain can be greater than linear with respect
to hardware increase. At present, there are
not too many heavily employed specialized
functions that are identified and substantiated,
but this approach provides the greatest capac
ity gain payoff when it is applicable.

AV AILABILITY
The structure of a multi-computer system

planned for high availability is principally

determined by the permissible reconfiguration
time and the ability to fail safely or softly. The
multiplicity and modularity of system com
ponents should be chosen to provide the most
economical realization of these requirements.

The system components involved in a given
task form a configuration. The process of
eliminating and introducing components when
changing tasks is reconfiguration. The time
required to reconfigure upon occurrence of a
malfunction may be a critical system param
eter. This reconfiguration time includes the
time required for fault detection, fault loca
tion, switching, possible manual intervention,
program restart, as well as supervisory pro
gram execution. If the lack of this faulty com
ponent requires performing the tasks in a
different manner, new programs for the alter
native procedures must be acquired.

The minimum reconfiguration time achiev
able appears in a duplexed pair of computer
systems, each performing the task independ
ently. If a component malfunctions, the re
configuration time consists only of fault detec
tion, fault location (to one of two computers),
and possible switching of computer outputs to
the on-line system. The supervisory task can
be held to a minimum, and can even be im
plemented in hardware.

A multi-computer system which can perform
the full set of tasks in the presence of a single
malfunction is fail-safe. Such a system re
quires at least one more unit of each type of
system component, with the inter-connection
circuitry to permit it to replace any of its type
in any configuration. More than one additional
component is needed if a type serves as a
repository for essential system information as
well as other functions. Also, isolation must
be provided, so that failure of one component
cannot cause any other component to which
it is attached to fail as well. The duplexed
system described earlier is fail-safe.

A mUlti-computer system which can per
form a satisfactory subset of its tasks in the
presence of a malfunction is fail-soft. The
set of tasks which must still be performed to
provide a satisfactory though degraded- level
of operation, determines the minimum number
of each component required after a failure of
one of its type. Similarly the full set of tasks
determines the maximum number of each com
ponent required, unless, of course, this num
ber is not at least one greater than the mini
mum. Typically the fail-soft system consists of

39

40

two CPU's with a complement of I/O and
storage. If the CPU's are unequal in power,
the smaller must be capable of providing the
necessary degraded performance. Any excess
capacity in the fully operative system can be
exploited by running diagnostic programs to
detect potential or actual malfunction before
production processing is affected. Significant
advantages accrue if the CPU's are logically
equivalent, even if not of equal performance.
Such compatibility perm.its interchangeable
programs and procedures which may multiply
to accommodate to the various degraded con
figurations. Not only a smaller number of pro
grams need be written, but also a smaller
number need be retained in electronic memory,
permitting more effective use of this always
insufficiently provided commodity.

The degree of integration of the components
used in the system may affect the availability
as well as the cost of the system. Integration
means combining two or moOre logically in
dependent and separately interconnectable
components so that common equipment is
shared. The shareable equipment m,ay be
frames, power supplies, and even major por
tions of logic and data flow. It may even
include common, but separately controllable,
interconnection circuitry, if sources or desti
nations of data are common. The principal
factors to consider when determining the de
gree of integration are the cost and circuit
reductions achieved compared to the probable
performance loss due to interference in the
use of shared paths and vulnerability to the
loss of both functional entities if common
equipment fails. There are several reasons
why the vulnerability to loss of both functions
need not necessarily reduce the availability
of the system. Firstly, if interconnection cir
cuitry is common, the mating interconnection
circuitry in the adjoining components is re
duced equally. Secondly, the degraded system
arrived at by failure of one function may not
be able to exploit the second. Thirdly, the
integrated components' functions may both be
required for diagnosing the failing part. In
practice, multi-computer systems are defined
in which the integrated structures are sig
nificantly less costly and have somewhat
greater availability with only a minimal loss
of capacity arising from data path sharing.

COMMUNICATION AND
INTERCONNECTION

So that the CPU's in a multi-computer sys-

tern can function cooperatively, some com
munication between them is necessary. To be
reasonably effective, two kinds of communica
tion should be provided-a control signalling
system which allows each CPU to gain the
attention of the other, and a means of ex
changing reasonably large quantities of infor
mation. The information exchange can be
either by transmitting information between
the CPU's over a connecting link, or by giving
them access to a shared storage medium. The
control signalling can be a separate connecting
link or can be in common with the transmis
sion link, if present. It should be able to ini
tiate interruptions.

The transmission interconnection can be
made for either local or remote CPU's in a
system. For local transmission, a common
control unit can be connected between chan
nels of the CPU's, the control unit effectively
making one channel appear to be sending in
formation to a peripheral device and the other
appearing to be receiving from a peripheral
device. By such a tactic it is possible to achieve
high speed transmission rates while utilizing
existing system components for the major
functions, and also permitting concurrent
operation of both CPU's involved. For remote
transmission a control unit is needed at both
terminals of the transmission line with as
sociated modulation-demodulation interfacing
to provide proper operation. Since sending and
receiving are essentially simultaneous, proper
control signalling must preface transmission
to establish rapport between the CPU's.

When two or more CPU's have access to
a common storage medium" information placed
in this medium by one CPU can be read by
another CPU. In contrast to transmission,
recording and retrieving are not simultane
ous nor necessarily performed by different
CPU's. Communication, differing in applica
tion and probably in implementation, is
achieved by sharing of electronic memory,
drums, disk files, or tape drives.

Shared electronic memory is useful for
storage of common data and programs; in
particular, the system supervisory programs
and associated system status and component
allocation data. Shared memory also permits
distribution of tasks between CPU's on a more
finely divisi ble basis, for the reconfiguration
time for program switching of just the CPU
is relatively very short. Shared drums and
disk. files are very useful for restart infor-

mation, permitting recovery on reconfigura
tion after malfunction. These shared peri
pheral storage devices also provide the capa
bility for maintenance of a common program
library which is useful not only for recon
figuration but also for the majority of pro
grams normally required but not currently
residing in electronic memory.

Shared storage media can appear in a num
ber of configurations. All storage components
of a given type may be shared, or some may
be shared, while others are retained for pri
vate use by a CPU. For shared peripheral
storage devices, the sharing interconnections
may take place at several levels. Firstly, a
pool of devices may be shared by several con
trol units, permitting concurrent operation of
a separate device by each control unit. Sec
ondly, a group of control units may be shared
by several channels, permitting concurrent
operation of a separate control unit by each
channel. Thirdly, the channels may be shared
between CPU's, permitting partitioning of
these facilities according to task requirements.
The sharing of devices among control units is
particularly important if a number of the
devices become dedicated to particular roles
in performance of a task. This applies to
tape drives in sorting operations, and in this
example the ability to share drives by pairs
significantly improves the operation. For disk
files and drums a single control unit frequently
suffices for several devices, since each can
play several roles within one task. Sharing of
the control unit provides an effective sharing
technique. If electronic memory is shared, the
sharing of channels between CPU's need not
necessarily involve any additional physical
interconnection since the CPU desiring the
channel function need not necessarily be the
CPU which physically asks the channel to
start in order to get equivalent action.

An additional point in shared electronic
memory is that the commonly accessible por
tions should have the same addresses when
referenced by different CPU's. By maintain
ing this convention, any CPU can pick up a
partially completed task and begin execution
from the current point. If addresses were not
identical, the CPU would have to return to
some earlier appropriate restart point and be
gin from there.

The interconnection circuitry which per
mits N out of M units to be operated concur
rently by N controllers is an NXM crossbar

switch. The crossbar switch may be built as
a stand-alone unit, which then requires its
own frame and power supply. It may also be
distributed among either the controlled units
or the controlling units, in which case it can
be integrated to share frames and power. If
distributed among controlled units, N points
appear in each unit. If distributed among
controlling units, M points appear in each.
Usually there is no particularly strong reason
to choose one over the other. For electronic
memory, where transmission delays are very
important, the distribution through memory
units is more favorable, because priorities
may be determined and put into effect slightly
faster.

SOME DESIRABLE CHARACTERISTICS
In a multi-computer system designed for

high availability, it is not sufficient to back
up components with other components; it is
also necessary to determine when and how
this backup should take place. For this reason,
extensive checking is very important. The de
sign of the components should also be such
that if they fail they do not cause malfunction
of components with which they interface Such
events as power failure introducing spurious
pulses on the interface, or circuit failure hold
ing an interface line at an inappropriate level,
should be carefully investigated. These occur
rences can make it almost impossible for the
system to accomplish its own recovery.

If interrupts involve the use of defined mem
ory locations, provision should be made to
permit redefinition of these locations. If these
locations are redefined, a CPU becomes in
dependent of a specific memory unit for its
operation.

Use of shared electronic memory permits
several CPU's to alternately run supervisory
programs. Since anyone CPU does not know
what any other CPU is doing at a particular
instant, it is probable that two will vie for
the sam.e role at some time. So that chaos does
not result, means for breaking such ties must
be provided. The tie breaking can be per
formed by a reasonably simple program, but
if this program is repeated too many places,
its use is onerous. It is preferable to supply
an instruction for the tie breaking facility
required.

For a fully automatic system, it is impera
tive that the allocation of system resources be
under control of a supervisory program .. Pro-

41

42

vision for this control may be made by includ
ing the following characteristics:

1. A supervisory mode with associated privi
leged instructions which must be used to
allocate a resource initially, but not neces
sarily control its use after allocation.

2. Storage protection to ensure survival of the
supervisory program and its resource al
location data, with storage protection
changes performed only by privileged in
structions.

3. Hardware monitoring of changes in system
component status with the ability to re
turn the CPU control to the supervisory
program by interrupting current processing.

4. An interval timer to return control periodic
ally to the supervisory program, so it can
take stock of the system status.

5. A wait state, sensitive to interrupts, avail
able to the supervisory program, rather
than a stop or halt instruction available to
other programs.

By means of these provisions, a multi-com
puter system can be made capable of sustain
ing an on-line status in spite of a wide variety
of possible circumstances which can arise in
practice.

SUMMARY
The use of mUlti-computers in on-line sys

tems is clearly of growing importance as these
new applications continue to be formulated
and developed. The multiplication of compo
nents in these on-line systems is not a desir
able end in itself, for their usage efficiency per
unit drops and many new problems are intro
duced. This multiplication does, however, pro
vide for capacity gains not otherwise achiev
able and for system availability of very high
level. Without these gains in sight, the useful
on-line system applications would be quite re
stricted.

On-line application itself implies the need
for certain system characteristics. Such char
acteristics provide the ability to remain re
sponsive by controlling the marshalling of
system resources to best m.eet the current
needs. Such marshalling requires the ability
to reconfigure to exclude malfunctioning units
or to reallocate assigned units when necessary.

ACKNOWLEDGEMENT

The author is indebted to Dr. G. A. Blaauw for
organizing and providing much of the material pre
sented in this paper. His published article on a similar
topic with respect to IBM Systemj360 is recom
mended for reference-G. A. Blaauw, The Structure of
Systemj360, Part V, "Multisystem Organization",
IBM Systems Journal, Volume Three, Numbers Two
and Three, 181-195, 1964.

Joseph Weizenbaum*

On-Line User Languages t

THE TITLE suggests that there is some differ
ence between on-line and off-line user lan
guages. The fact that such a paper was
invited at all at this time suggests further
that there is a renewed interest in that dis
tinction. I say "renewed" because our experi
ence with computer languages began with
on-line systems. Those of us who are now
privileged to have on-line access to large scale
computers often have a distinct deia vu feel
ing; we have been there before. Of course we
have. It was in those far away days when the
only way to communicate with computers was
by the direct coupled input/output devices
euphemistically called "consoles", often con
sisting of arrays of switches and buttons of
such bewildering complexity as to provide a
challenge to a modern airplane pilot. A little
later, some computers were designed by peo
ple who had actually used earlier models them
selves. That accounts for the appearance of
typewriters on some early machines. Many
of the modern small machines are direct de
scendants of these early models, differing from
them only in that they have core memories
in place of drums or mercury delay lines, and
in that they are very much cheaper. The early
machines were operated in an on-line mode
because techniques for efficient batch process
ing were not yet developed, today's small
macltines are operated that way because their
economics are not prohibitive. On the con
trary, most large scale computer systems are
not operated in an on-line mode because the
economics of such operation are prohibitive.
I shall return to the economic question below.
For the moment, I wish merely to implant

tThe preparation of this paper was sponsored in part
by the Office of Naval Research. Reproduction in
whole or in part is permitted for any purpose of the
United States Government.

the idea that, were it not for economic con
straints, most computer users-certainly most
programmers-would prefer to deal with a
computer on-line.

It is sometimes suggested that a very large
fraction of computer time is used in running
programs merely to find out why they do not
work. Whatever the statistics might be, it is
certainly true that debugging of programs is
one of the chief preoccupations of computer
users. But it ought to be remembered that a
progra.m is somebody's strategy for solving
some problem, no matter whether that pro
gram has bugs in it or not. The debugging of
a program is another problem. It is such a
common one that sets of techniques for attack
ing it emerge out of the common experience.

What is really going on when a program
mer is engaged in debugging his code? In
effect he is doing science. By this I mean that
he is interrogating some ill understood aspect
of nature. He forms hypotheses based on his
current understanding, designs and applies
tests for verifying them, intellectually ana
lyzes the outcomes of his experiments, modi
fies his hypotheses, and so on. When he finally
understands the nature of a particular bug,
he modifies his code to remove the difficulty.
The crucial difference between this kind of
activity and that of writing programs is that
debugging is an exploration of a solution
space with the aid of a computer, while the
latter is merely the encoding of solutions
already arrived at by other means! We all
know how absolutely necessary the computer
is to the debugging process. It is difficult to
the point of impossibility to diagnose an ail
ing program by pure reason alone. This then

* Associate Professor, Dept. of Electrical Engineering,
Massachusetts Institute of Technology.

43

44

explains why the first language systems which
can truly be classified as "on-line" were those,
like DDT for PDP-I, designed as debugging
aids.

What I am really trying to emphasize by
this argument is the principal operational
advantage to being on-line with a computer;
namely, that that mode of operation permits
the computer aided exploration of solution
spaces, as opposed to the mere exercise of pro
grams representing solutions already encoded.
It seems to me that the facilitation of this
exploratory use of computers is the entire aim
and direction of all work in computer lan
guage development, and of all computer sys
tems design not motivated by pure data
reduction requirements. It follows then, that
on-line computer languages should be looked
upon from this point of view, and judged on
the basis of criteria derived accordingly.

On-line access to large scale computer sys
tems has now been made possible as a conse
quence of the development of sophisticated
time" sharing systems, such as the ones of
which Project MAC, at the Massachusetts
Institute of Technology, is an example. While
it is no doubt appropriate to list the various
on-line languages which have been developed
within Project MAC, and to catalogue their
characteristics, it is perhaps more useful to
first call attention to an important difference
between simply having on-line access to a
large computer system and having on-line
access to a large time shared computer sys
tem. A user having his own IBM 7094 has
access to whatever software happens to come
with his machine plus all he manages to add
to the library as a consequence of his own
efforts. A time shared system, on the other
hand, is constantly enriched by the combined
efforts of all its participants. Our experience
with Project MAC underlines the importance
of this distinction with very great force. Of
course, an extensive executive system is re
quired to make programs developed by any
one available to everyone, and to honor con
straints imposed by program and file protec
tion conventions at the same time. However,
the operation of a time shared computer sys
tem demands a complex executive program in
any case; not much more is needed to meet
this somewhat expanded goal.

The above observations are relevant to the
discussion of on-line user languages in that
the various system commands which are, so

to speak, at the fingertips of the user of the
time shared system, constitute a kind of on
line language in themselves. As it happens, no
one has taken the set of such commands
within Project MAC and codified them in, say,
Backus Normal Form. That may, in fact, not
be possible. If it is not, then this must be
because this set is very much ad hoc. But,
lest this be taken as a criticism, let me add
quickly that it follows from the very way in
which such commands are added that no strict
advance plans can be made. It is not possible
to predict, after all, when some user may
come up with something of general interest
and utility.

For the present purpose, we may look upon
the time sharing executive as an elaborate
interpretive program. Most interpreters have
some mechanism for getting at the "next" in
struction. There may be a pseudo program
counter, for example. The time sharing execu
tive gets its "next" instruction from the input
buffer associated with a currently active pro
gram whenever that program has ascended,
so to speak, to the system. level. The set of
instructions which it will understand, and to
which it will respond, constitutes the set of
"system commands" alluded to above. The
"interpreter" itself imposes some syntactic
constraints on the sequences of commands it
will accept (e.g. certain sequences of com
mands are ungrammatical). The view of the
time sharing executive as an on-line language
structure is reinforced when it is noted that
it is possible (within the MAC system) to file
chains of system commands, i.e., in effect, to
write a program in the vocabulary provided
by the set of system commands, such that
when that program is subsequently executed,
the effect is as if each command were typed
in separately and in sequence after the previ
ous command has been obeyed. One way of
lnaking a new program, i.e., one written by
one of the MAC users, publicly available to all
MAC users, is to modify the interpreter to
enable it to respond to a new instruction,
namely, that which loads that new program
into core when called upon, and prepares it
for execution.

There are, however, certain languages
within the MAC system which may be charac
terized as "on-line languages" in a more con
ventional sense. These all share the property
that they are interpreters. (I use the word
"interpreter" somewhat guardedly for I do

not believe that a very precise distinction be
tween interpretation and compilation can be
lnade-nor do I believe that such dichotomies
are useful.) Clearly an on-line language
within a time sharing system should have the
property that its user be able to engage the
machine in more or less intimate conversa
tion; i.e., to exchange messages with it on a
give and take basis and with human tolerable
frequency. This means that the user will write
generally very short programs leading to in
termediate results, on the basis of which he
then decides on his next course of action. It is
fairly obvious, and indeed it proves to be so
in practice, that this mode of operating a pro
gram contributes greatly to the kind of ex
ploratory use of the computer mentioned
earlier. An important consequence of such
operating practice is that the programmer
does not have to anticipate every possible
eventuality and account for it somehow in
his program (even if only to provide an error
exit) .

Any already existing interpretive system
(e.g. LISP), which normally expects its in
puts in the form of sequences of cards, and
delivers its outputs to either tape or printers,
can easily be modified to look for its inputs
from the typewriter console, and deliver its
outputs to the same instrument. One such pro
gramming system is an interpretive version
of SLIP augmented by arithmetic and control
functions. This system is called OPL (On-Line
Programming Language). Up to a point,
OPL's architecture is a prototype for a num
ber of other such systems operational in MAC.

The basic input to OPL is a list structure.
Generally speaking, an input list structure
contains a number of expressions in func
tional notation; for example, "LOG(SQRT
(X))", separated by "$". All the functional
operators, except the four basic arithmetic
operators and "=", are prefix operators; the
exceptions are infix operators. Since, in more
or less standard list notation, a "(" denotes
the beginning of a list or sublist, and a ")"
the end of one such, the input list structure
is already in the form of a tree by the time
it needs to be interpreted by the OPL ma
chinery. OPL is itself written in SLIP, and
SLIP list processing operators are used to
administer the entire interpretive process.
This means that a large part of the SLIP
library must be in core during the interpre
tive cycle. Since this is necessary in any case,

the same SLIP functions used by OPL inter
nally may as well be made available to the
OPL user explicitly. OPL, therefore, contains
a table (essentially a large transfer vector)
which associates with the name of each avail
able SLIP function the entry point to that
function. The same table similarly gives the
entry points to the non-SLIP functions which
round out the OPL system.

The final result is a quite general purpose
programming language of a power roughly
equivalent to that of LISP. It is, however,
considerably more mnemonic than the latter.
Since it was designed to be an on-line lan
guage, it has certain features which merely
transformed interpreters, arising out of dif
ferent motivations, do not (but could easily
be made to) have. One example of such a
feature is that a previously undefined function
may be called in a program (no matter how
deeply nested). When the call is encountered,
a message is typed out that an undefined oper
ation has been encountered, and the program
held in abeyance until the programmer enters
a program defining that function. From then
on (and for the purposes of that program) the
newly defined function behaves just as any
other built-in or previously defined function.

OPL programs and their associated data
structures may, of course, be stored on the
disk. The OPL user may, therefore, build up
very complex data structures over a long pe
riod of time, experiment with them on line
whenever he wishes, and freeze them in inter
mediate states for subsequent exploration. A
simulation of the effects of various organiza
tions of a business firm may, for example,
start with a quite simply developed tree repre
sentation of a small firm. Programs which
compute differing budgeting strategies for
8uch a firm may be exercised on line, and the
most interesting ones saved on the disk file.
As experience with the behavior of the model
accumulates, the firm can gradually be grown
both in size and complexity. The model maker
may sit at his typewriter for hours, pushing
the model around, modifying it, testing its
sensitivity to this or that. In the process he
is, of course, spending most of his tim,e think
ing-in fact he is using (and being charged
for) very little machine time. At some point
he will store his program in its then current
state to continue manipulating it a few hours,
days, or even weeks later.

45

46

OPL is, as I pointed out, a general purpose
on-line language. There exist a number of
special purpose languages within MAC which
have roughly the same structure as OPL. One
of these is COGO (Coordinate Geometry Pro
gram) which was developed and is used by
the M.LT. Civil Engineering Department. It
is similar to OPL in that it too uses essen
tially the same transfer vector philosophy.
The functions which may be called have all
been previously defined and compiled in either
FORTRAN or MAD. COGO is used by stu
dents in the Civil Engineering Department
for laying out highway interchanges and like
purposes. The programmer defines points in a
two dimensional space and asks for them to
be connected by various curves and straight
lines. He then interrogates the system about
the consequences of such connections, e.g., the
areas determined by various enclosed sur
faces. An important property of COGO and
other programs in the same class is that the
student needs to know literally nothing about
the structure of the COGO program itself nor
about programming in general. STRESS is a
similar program which deals with the stress
analysis of structures under loads.

The principal reason the users of these pro
grams need know nothing about programming
is that both COGO and STRESS are essen
tially self teaching. By this I mean that they
not only respond to the stim,uli provided by
their users in the sense of yielding interme
diate results, but give directions for their
proper use. A particularly strong example of
such a program is one developed by Hansen
and Pyle for the design of nuclear reactors.
This program not only asks for its relevant
parameters by name e.g. "What fuel do you
intend to use?" -but also comments on the
relative appropriateness of the response un
der certain condition - e.g. "That's rather
large" -and gives the user a chance to change
his mind before going into its calculation
phase.

OPL, COGO, and STRESS are each pro
grams which, while being on-line, are still
conventional in the sense that their users
specify procedures in terms which are gen
erally recognizable as program steps and pro
duce results which other programs might well
also produce. A radically different class of
on-line programs is represented by the "ed"
and "typset" programs available within the
l\1AC system. These are both editing pro-

grams. They differ from one another mainly
because the "ed" is designed to process com
puter code (in whatever language), while
"typset" is a general text editor. I will take
up only the latter.

Typset operates in either the "input" or the
"edit" mode. In the former the user types in
whatever text he pleases, using all characters
available on either the IBM 1050 or the Tele
type keyboard (with the exception of two
escape characters, one of which is used to
delete an entire line and the other a single
character-both may be changed at will). In
the edit mode the text is edited entirely by
context. There are no concepts such as line
numbers nor any others requiring the user to
remember the appearance of the original text.
In the edit mode, paragraphs may be inter
changed, new text inserted between pairs of
words or characters, strings of characters de
leted, and so on. Text which has been input
via the typset program is ultimately stored
on the disk and may be output on any kind of
paper (e.g. ditto masters) at any time. Since
it does reside on the disk until intentionally
deleted therefrom, it may be re-edited repeat
edly days, weeks, or months after its original
composition.

It seems to me that the "typset" and "ed"
programs are significant for two separate
reasons. One is that they provide examples
of programs which anyone may use to very
good advantage-anyone, regardless of how
little or much computer programming he has
behind him. Even I have been able to turn out
papers with lines properly centered, left and
right margins justified, and the proper spac
ing between paragraphs. Perhaps of more
immediate importance is the fact that both
these programs were written, debugged, and
put into general use within a few weeks of
their inception. This, while of credit to their
authors, certainly also serves as a comment
on the utility of a time sharing system and
the on-line program writing and debugging
facilities it provides to each of its users.

N ow to return to the question of economics
which I postponed earlier. As already indi
cated, I believe the economic issues related to
the on-line use of computers must be sepa
rated according to whether one is speaking
of small computers operated from their directly
connected consoles or large time shared com
puter systems. The more challenging and
interesting questions certainly lie in the latter

category. Visitors to Project MAC are con
stantly asking how much machine time a
problem they solved on a batch processing sys
tem would require on the MAC system to come
to the same state of solution. I suppose they
want the answer in terms of numbers of ma
chine cycles or some related measure. Perhaps
these questions can be answered with preci
sion in some cases. Whether such answers
would be impressive would depend, of course,
on the efficiency of the batch processing sys
tem with which the MAC system is being
compared. Batch processing also entails over
head. However, I do not believe such questions
to be very meaningful-no more so, for ex
ample, than asking for the average floating
point add time of a machine like the STRETCH
leads to any insight into the overall effective
ness of such a machine in relation to specific
problem classes. It must be remembered that
economics deals with the allocation of scarce
resources. To consider the number of machine
cycles required to solve a particular problem
to be the principal measure of effectiveness of
a system assumes that the scarce resource to
be conserved is machine time. It is not. In any
case, one would probably not take the same
code as that which was generated for the
batch processor and run it in the time shared
environment. In the batch processing environ
ment the programmer knew that access to the
machine was limited to a few shots a day.
He wrote his code in anticipation of every
conceivable event, asked for large dumps,

interleaved the operationally significant por
tions of his program with elaborate diagnos
tics, and so on. None of these precautionary
measures are necessary with on-line oper
ation. Programs are therefore shorter and run
correspondingly faster.

The scarce resource which is being con
served in the on-line mode of computer oper
ation is the energy and time of people. Our
experience with Project MAC has taught us
that the exploratory use of computers, such
as has by now become habitual with us, serves
to amplify the effectiveness of people in dra
matically visible ways. Just as the introduc
tion of the computer itself made possible
attacks on problems which simply could not
be attempted earlier, so we find that our mode
of operation encourages people to search their
own problems more deeply, to be dissatisfied
with sloppy solutions which might have
passed earlier because "after all, they work".
In short, we are beginning to see the use of
the computer as a real and significant assist
ant to human beings engaged in problem
solving. Who is to say what economic values
accrue to an institution when creative people
complete their tasks in days instead of weeks,
or when a problem which could previously not
be attacked at all is now solved?

ACKNOWLEDGEMENT
Work reported herein was supported by Project MAC,
an M.LT. research program sponsored. by the Ad
vanced Research Projects Agency, Department of De
fense, under Office of Naval Research contract NONR-
4102 (01).

47

APPROACHES
ON-LINE CRT DISPLAYS: USER TECHNOLOGY AND SOFTWARE-Werner L. Frank.. 50

PRIORITY INTERRUPT CHARACTERISTICS FOR ON-LINE CONTROL-Emil R. Borgers.. 63

GROUP COMMUNICATIONS IN ON-LINE SYSTEMs-Arthur M. Rosenberg. 69

50

Werner L. Frank*

On-Line CRT Displays:
User Technology and Software

INTRODUCTION

THE INCREASING APPLICATION of on-line data
processing systems has accelerated interest in
visual display devices for augmenting the
interaction of man and machine. To date, this
technology had been primarily developed for
the military, where the requirements of air
defense stimulated the first application of in
dividual display console devices for the Semi
Automatic Ground Environment (SAGE) and
the Naval Tactical Data System (NTDS).

Visual displays have been with us from the
earliest days of computing. For example, one
of the first display devices associated with a
computer system was the cathode-ray tube
(CRT) display. One of these displays was
available in 1953 on the ILLIAC (University
of Illinois) computer where two tubes were
driven in paralleL One CRT was mounted for
visual observation, the second was associated
with a camera capable of photographing the
computer generated display. The computer
controlled the film advance. While the pri
mary use of this display was the rapid gener
ation of graphic information, another use was
on-line monitoring of the progress of a calcu
lation. By appropriate displays, a programmer
could detect programming errors, or, during
prod uction runs, make better initial guesses
for iterative procedures or parameter studies.
Subsequently, such systems became available
commercially as, for example, peripheral de
vices to the IBM 704 computer system.

*Vice President, Eastern Operations, Informatics Inc.

This paper explores the current state of the
art of CRT displays and discusses, from the
user's point of view, potential applications and
the computer programming software neces
sary to implement these systems.

CRT DISPLAY CONSOLE
CHARACTERISTICS

From many points of view, all of the fol
lowing are on-line display devices: typewriter,
plotter, printer, closed circuit TV, document
viewers, CRT consoles, and tote boards.

This paper discusses the CRT display con
sole which meets three on-line capability cri
teria. First, it is directly tieable to a data
processing system. Second, it has ability to
initiate messages or control signals from a
data entry keyboard 'or switches for transmis
sion to the computer. Finally it has ability to
receive digital messages or control signals
from the computer and display them to the
operator or viewer.

Typical Features.

The CRT display console is a desk type unit
with varying combinations of features and
capabilities for information entry and dis
play. The primary entry devices are the alpha
numeric keyboard and switch action keys. The
output is typically produced via a CRT and
status indicators. Aids to data entry and
output observations are provided. Table 1
summarizes these features, and includes as
sociated check points which allow a specific
device to be evaluated. Figure 1 is a concep
tual drawing of a display console identifying
these generic features. An important distinc
tion is made between the m,arker, light pen

and cursor, each representing a unique capa
bility for data entry.

The marker defines a position on the face
of the CRT where a character appears when
selected from the keyboard. This advances
across the face of the display as characters
are successively entered.

The light pen is a photoelectric device which
can be aimed at any position on the CRT.
When the light pen is activated, and the point
on the CRT at which it is aimed emits light,
a message is generated to the computer iden
tifying the location of that point.

The cursor is a feature which permits the
location of any point on the CRT, independent
of the presence of light.

These three capabilities can be satisfied un
der software control and in conjunction with
several variable function keys. It is also pos
sible to meet these requirements with hard
ware features in several ways. For example,
the "position-pencil control" of the IBM 7460
Special Image Processing System encompasses
the features of both the light pen and cursor.

CONTROL
KEYS

~. ~

FIGURE 1

TYPICAL CRT DISPLAY CONSOLE

CRT

STATUS & ERROR
INDICATORS

LIGHT PEN/
CURSOR CONTROL

FUNCTION KEYS

TABLE 1

CRT DISPLAY CONSOLE FEATURES

Check Points Assoc i ated Features Associated Features
for Data Ent ry for Output Observation

Alphanumeric Keyboard Number of characters Marker i nd i cat i ng on CRT
Availability of special point of character entry Symbols

Switch Action Keys Number of keys under Li ghts assoc i ated with
program control keys for i nd i cat i ng:
(Variable Function Keys - key selected

Number of keys under - allowable key selection
hardware control
(Fixed Function Keys)

Cathode Ray Tube Size of screen Light pen for point selection Selected output fea tu res:
Number of characters on CRT -blinking of characters

that can be displayed Cursor for locating position -intensity variation

Pos i t ion accu racy -character size variation

Abi I ity to draw vectors
-character rotations

Number of character sizes Mix analog and/or video
information with computer
generated dig ita I information

Color prese'ltat ion

Status I nd i cators Number of light sunder Ab i I ity to bl ink light
program control Abi I ity to control audible alarm

Number of lights under
ha rdwa re cont ro I

51

52

A summary of a number of commercially
a vailable display devices and features is given
in Table 2.

Operations

The utility of the features associated with
on-line display consoles is measured in terms
of each application. It is possible, however,
to define operations common to many applica
tions and assess the need for the capabilities
identified in Table 2. Such a list of common
operations includes: initiate an action or pro
gram in the system; send a message to one
or more other console stations or the com
puter; request a hard copy output product;
view an output generated for the CRT dis
play; perform a logical operation at the con
sole by a man/machine oriented procedure
(e.g., data base query or special computa
tions); control access and viewing of back
ground proj ections; and generate visual dis
plays for storage and later viewing, specifically
with reference to background projections.

The console hardware capabilities or fea
tures required for performance of these oper
ator functions are shown in Table 3.

Consider the first item. To initiate an ac
tion, a key must be pressed. This is usually
one of the variable function keys. For illus-

AVAILABLE MODES

(CHOOSE ONE)

REAL TIME, PROGRAM A

REAL TIME, PROGRAM B

SPECIAL RUN

COMPILE RUN

BATCH PROCESSING

TIME SHARED , MULTI USERS

HARDWARE SYSTEM DIAGNOSTICS

SOFTWARE SYSTEM MAINTENANCE

FIGURE 2

LIST OF CHOICES: "MODE SelECTION"

tration, let such a key be labeled "Mode Selec
tion .. " The pressing of this key may cause,
under program control, the display of a list
of alternatives as shown in F-igure 2. The
desired mode is then selected by pointing the
light pen at the appropriate asterisk, say
opposite HARDWARE SYSTEM DIAGNOS-

TABLE 2

SUMMARY OF ON-LINE CRT DISPLAY CONSOLE CHARACTERISTICS

-r-
~ VI

>- C
U

VI
Q) 0

~ >-
::.:: C ?:

III Q) C VI U 0 ::J
~ ::.:: 0 ... Q) Co VI

C'l
U

C B, C C e ~ - 2 0
C Q) >- 0 U III t 0

N

i C u a.. 0 ~ C 0
>- ~ ::J III cc:: .
III ~ VI

C
U IJ.. -g -g ... III

Q) C ;;;. C « 0
~

Q
~

Q) ~ ::J ! C'l ::J 2 .J:l > 0 a.. IJ.. C Q) e >- CJ:lCJ:l VI U Q)
Q B 1110 Q)

~ ! 't:I III ~ ~ .J:l C'l ~ ::.:: U III
.~ ~ ~ Q) C ~ !.;: z U C'l 4- X ... ~ 't:I U III Z VI

"- Q) Ill'" III ::J ::J ~ III CD ::J III ~ "- Q) III 0 « > >0 ...J ~ U CD > (I) « !O u « (I» u

Remarks

Typewriter (for compari son) x x x x 3.5

Data Displays: DOlO x x x x 5.2
Up to 64 displays per
control unit at $25K
extra

Data ~isplay: 0080 x x x x x x x x 125
Has assoc i ated fi 1m

x x x
record i ng capabi I i ty

General Dynamics: 5C 1090 x x x x 40 Add i t ional opt ions
avai lable

Bunker Ramo: BR85 x x x x x x x x x x x x x 160

Raytheon: 0105500 x x x x x x x x ?
Joyst ick provides
equivalent of light pen

lIT: I nformat ion Oi splay Console x x x x)(x x x x x 200
I nc I udes color
presentation

IBM: 2550 x x x x x x x 75
Buffer memory opt iona I

TABLE 3

RELATIONSHIP OF CONSOLE FEATURES TO GENERIC MAN/MACHINE OPERATIONS

>-
111

~
Q

U

'-
Ql >-
E
::J .-

~=
111-0
~ co

Function a. a.
- co <cu

Initiate Action of Program x

Send a Message to Other Consol es or x
to the Computer

Request a Hard Copy Output Product x

View on Output x

Perform a Logi cal Operation x

Contro 1 Background Projection x

Generate Vi sual Displays for Storage x

*Can be implemented hardware or software

TICS. It may be that the item selected requires
further detailing. Hence, a second display
automatically appears forcing the operator to
make a further choice, as in Figure 3. Actions
for manipulating the "list" display require
only the variable functionke.ys, an alpha
numeric display capability, and the light pen
for selection.

The selection of CORE MEMORY from the
list in Figure 3 may force the format of Fig
ure 4 on the CRT, requiring the indicated
input from the operator. The symbol" "
represents the "marker" and indicates the
first entry point when the alphanumeric key
board is used for data entry. This marker
moves either under hardware or software
control to the next succeeding underline as
each character is entered.

For this latter action of handling "format"
displays, the marker and data entry keyboard
is required, completing the explanation of fea
tures needed to accomplish the first function
of Table 3.

APPLICATIONS
The on-line CRT display console is rapidly

reaching a degree of acceptance in the commer
cial environment as evidenced by the availabil
ity of display devices as standard peripherals
to many of the newly announced computer
systems. The development of application areas
and user techniques has, however, lagged so

VI

0
..a
E
>-

III

x

x

Conso 1 e

c:
Ql
a.

'-.... Ql
~ -t Ol

III
-' ~

x x

x

x

x x

x (r x x

x o(x x

Features

VI
>-
Ql
~

VI
>- c:
Ql 0
~

u
c: U

I..
0 5 g>

Ql I.J..
E u 3:
::J c: Ql ~ "Cz ::J

I.. I I.J.. ..a Q
co 111 III
O~ '0 Ql
-0 a. Ql '- c:
>-- X 111
1Il<C

I.J..
::- -' :.:

x x

x xo', x

x xo" x

x

x x

x x x

X x'!, X X

AVAILABLE SYSTEM DIAGNOSTICS

(CHOOSE ONE)

CORE MEMORY

TAPES, CHANNEL A

TAPES, CHANNEL B

DRUM 1

DRUM 2

DISC 1

DISC 2

CARD READER

CARD PUNCH

PRINTER 1

PRINTER 2

FIGURE 3

c:
0

....
'- u
Ql Ql

-;; '-' e 0
a.

I..

0 '0
c:

Ol ::J
c: e
~ Ol
c: .>/.

u
a; III

<0

x x

X

LIST OF CHOICES: "SYSTEM DIAGNOSTICS"

CORE MEMORY DIAGNOSTICS

TEST LOCATION:

1 ___ TO

BIT PATTERN (OCTAL):

(IF NONE STATED, STANDARD IS USED)

FIGURE 4

FORMAT FOR ENTERING REQUESTED INFORMATION

53

54

that there is still considerable potential user
caution and hesitancy.

Three major application areas have devel
oped: demand query, monitoring, and analysis.
In the first, a service is provided to a person
who wishes immediate information that must
be extracted from a large mass of data and may
require some rudimentary analysis or trans
formation before it is useful to him. Examples
are: a manufacturing planner wants to know
the status of a release order for certain parts;

an investor wants to know the status of his
account with his broker; and a policy holder
wants to know how much he can borrow on
his life insurance policy.

Included as candidate applications for de
mand query are: reservations (travel, hotel,
etc.), merchandising inventory, manufactur
ing inventory, manufacturing and production
control, insurance policy information, credit
information, bank or brokerage customers ac
count information, real estate information,

TABLE 4

DISPLAY CONSOLE OPERATING CHARACTERISTICS FOR SELECTED APPLICATIONS

Characteristics
Man/Computer

General Output Input Interaction

--:- '-
--:- I- Q)

10 C
0' l- .e 10 :l

10 U ::E C.
0 .e E
0 u 0 " >- 0

0' - 0 c CD u
0 0 10 en - E 0 - E c >- >-- Q) .- - ..0

E 0 Q I- 11'1 en
0 E E Q) C 11'1 ~ - c en .- c c 0

~ '-' 0 0 . - 10 0 0 ::E
C 0 0 en c " 11'1 C 11'1
0 11'1 - - c >- 0 Q) 11'1 .- Q) 0

11'1 C '-' '-' ~ u - ::E " Q) 0 u u C ::E C 0 ~ c 0 ::E 0.. ~ ~ 0

~ 0 C l- E 0 11'1 U Q Q)
..... ~ >- 0 Q) >- :l C c:- en ~ ~ c

<J) ~ d E Q C. 0 w C 11'1 0

~ d u :l 0 :l :l ~ .- c C Q
CIl <J) C I- U 0 C ~ - - 11'1

<J) - Q) I- 10 0 .- ~ ~ en >- - en Q) .e ~ "e .- ~ -c ~ C 10 l- E c. U 10 C en f Q) 2 11'1 10 10
Appl ications .- 10 E 10 :l :;: Q) 10 Q) 0 .- C. 10 C C

<J) ::E <J) ...J Z > :J: ex: u :J: ~ 0 <J) ~ ~

QUERY

Reservations (travel, hotel, etc.) x x x x x x

Merchandising Inventory x x x x x x x x

Manufacturing Inventory x x x x x x x x

Manufacturing and Production Control x x x x x x x x

Insurance Pol icy Information x x x x x x x x x x

Credit I nformat i on x x x x x x x x

Bank or Brokerage Customers Acct.lnfor. x x x x x x x x x

Real Estate I nformat ion x x x x x x x x

Stock Quotation x x x x x x x x

Management Control x x x x x x x x x x x

Computer System Status x x x x x x x x

Patent or Law Precedent Search x x x x x x x x

~
Computer-Monitored Tests,Process Contro x x x x x x x x x x

Hospital Operations x x x x x x x x x

Simulation x x x x x x x x x

Stock Status x x x x x x x

ANALYSIS

Information Retrieval x x x x x x x x x x

Input Data Screening and Updating x x x x x x x x x

Tape File Editing x x x x x x x x

Remote On-Line Programming or Debugging x x x x x x x x x x x
Electro Computer Aided Draft i ng x x x x x x x x x x
Teaching Machines x x x x x x x x x x
War-Gaming x xl x x x x x x

stock quotation, management control, com
puter system status, and patent or law prece
dent search.

For a demand query, the user is interacting
with a display in a very active manner. The
user has an objective in mind. He makes an
inquiry of a general nature; a display is pre
sented. Based upon this newly acquired infor
mation, the user may particularize his inquiry.
A new presentation gives him additional infor
mation. The sequence continues until the user
has all the information required to take some
action.

For display monitoring, the user does not
interact at all with the display. He is entirely
passive. The presentation made by the display
may change at a slow or rapid rate; the user
observes it and obtains the information neces
sary for action. Typical applications include:
computer - monitored tests, process control,
stock status, hospital operation, and simula
tion.

In the third application area, the display
console is used as an analytical tool to fulfill
the basic task itself. Here the man and
machine operate in conj unction. Examples
include: information retrieval, input data
screening and updating, tape file editing,
on-line programming or debugging via re
mote console, computer aided drafting, war
gaming, and teaching machines.

The foregoing applications may be analyzed
in terms of certain characteristics. First, the
number of stations required. For example,
airline reservations require many stations,
each agent having an individual set. On the
other hand, the director of a computer moni
tored test requires only one station. Next,
input and output can differ completely from
one application to another with respect to
quantity, degree of encoding, number of sym
bols, whether it is pictorial, etc. Also, the
degree of interaction between the user and his
(computer-controlled) display differs in speed
of required response and in the way that the
responsibility for analysis is divided between
the man and the computer.

Some characteristics for the applications
listed above are shown in Table 4. General
conclusions for each class of applications are
given in Table 5.

APPLICATION EXAMPLE: QUERY
One of the more important uses of the on

line console is to ask questions of the data
processing system. This process can be as
simple as pressing a key and inserting an
appropriate five character code to obtain a
bank balance, as with demand query. Or it
may be a complicated logical statement whose
rules of formulation may be as complicated as

TABLE 5

SUMMARY OF OPERATING CHARACTERISTICS FOR SELECTED APPLICATIONS

Appl ication Class Number of Stations Output Input
Man/Computer
lnteraction

Demand Query Many A/N; Hi ghl Y Slow; Analys i s
Varying Amount Encoded by Man

Monitor Few A!N & Vector; Encoded Fast; AnalySis
Mostly large by Mach ine
Quant i ty

Analysis Few A!N & Vector; Mixed; Slow; Analysis
Large Quant i ty Coded & Message d i v i ded by Man

and Machi ne

55

56

the search process which obtains the answer,
as in interrogation for information retrieval.

Consider, for example, the conventional off
line procedure for interrogation as shown in
Figure 5 . Here, the user may be as much as
nine steps removed from the solution of his
problem. Beyond this limitation the conven
tional process would require, at some stage of
operation, adherence to very formal rules. The
first of these rules is concerned with spelling
abbreviations, plurals, possessives, may be
illegal. Next is the use of special words
synonyms may be prohibited, special codes
may be required. Then there is punctuation
queries may have to be marked off and seg
mented. In short, a special syntax, dictionary

FILL OUT REQUEST

and code book may be required for use of the
system.

The on-line display console facilitates the
process of query by eliminating the interme
diaries controlling input (and hence errors)
and automates the dictionary and syntax rules.

Consider, for example, an on-line system
which permits query of a data base consisting
of information about the stock market. We
assume that a satisfactory set of variable
function keys consists of keys for: MARKETS,
INDEXES, INDUSTRY CLASSES, SUM
MARY LIST, SELECTION CRITERIA, DE
TAIL LIST, GEOGRAPHIC, PLOT, and
TIME.

FORM US ING CONSUMER APPLICATION-ORIENTED STUDY RESULTS
LANGUAGE

..
SUBMIT TO

PROC~SSING CENTER MESSENGER SUBMIT TO
CONSUMER

t
RECEIVE MESSAGE LOG OUTPUT

AND LOG DISPATCHER
AND DISPATCH

.~

,r
TRANSLATE TO

COMPUTER-ORIENTED INFORMATION
LANGUAGE AND SPEC IALI ST OUTPUT CONTROL

FORMAT

•
KEY PUNCH AND

VERIFY KEY PUNCH

RUN ON
COM'PUTER OPERATIONS

FIGURE 5

CONVENTIONAL PROCEDURE IN REQUEST FULFILLMENT

)<
INDUSTRY
CLASSES

SELECTION
CRITERIA

MARKETS

NEW YORK

AMERICAN

OVER THE COUNTER

MUTUAL FUNDS

BONDS

COMMODITIES

LOCAL AREAS

GEOGRAPHY
SUMMARY

LIST

TIME DETAIL
LIST

INDEXES PLOT

FIGURE 6
LIST DISPLAY OF MARKETS

INDUSTRY CLASSES

TRANSPORTATION

METALS

UTILITY

FOOD

COMMUNICATION

ELECTRONICS

BANKING

INSURANCE

MARKETS

SELECTION
CRITERIA

GEOGRAPHY

TIME

INDEXES

FIGURE 7

FUEL

DRUGS

PLASTICS

BUILDING

ADVERTISING

TEXTILE

SERVICES

TOBACCO

SUMMARY
LIST

DETAIL
LIST

PLOT

LIST DISPLAY OF INDUSTRY CLASSES

MARKETS

SELECTION
CRITERIA

TRANSPORTATION

AIRLINE

AUTOMOTIVE

RAILROADS

BUS LINES

TRUCKING

SHIP LINES

GEOGRAPHY SUMMARY
LIST

TIME

INDEXES

FIGURE 8

DETAIL
LIST

PLOT

LIST DISPLAY OF TRANSPORTATION

The following statement is entered through
the keyboard:

List all automobile and airline stocks
on the New York Stock Exchange
which have a yield of at least 2 % in
1964.

To start the process, the MA RKET S key is
pressed. The display shown in Figure 6 ap
pears; from this list display the item NEW
YORK is selected. Next, the INDUSTRY
CLASSES key is chosen, which results in a
display of INDUSTRY CLASSES as shown
in Figure 7. The category TRANSPORTA
TION is selected, which is automatically fol
lowed by a breakout of this item as shown in
Figure 8 . From the latter list, items A UTO
MOBILE and AIRLINE are chosen.

When the SELECTION CRITERIA key is
pressed, the format display of Figure 9 is pre
sented. This display permits the selection of
ranges for the indicated criteria, where the
left and right locations correspond to the
lower and upper bounds. The number two is
entered as a lower bound (leaving the upper
bound blank, which by convention indicates
infinity) .

The TIME key is next selected, and the
desired calendar period is entered. Finally,
the SUMMARY LIST key is chosen and the
query entry completed. The resulting output

-

-
-
-
-
-
-
-

- -
- -
- -

- -
- -

- -
- -

- -

MARKETS

INDUSTRY
CLASSES

-
-
-

-

-

-

-
-

SELECTION CRITERIA

LOW - -
HIGH - -
HIGH/LOW - -
RANGE

- -
TRADED - -
YIELD

- -
DIV. - -
PIE RT. - -

GEOGRAPHY

TIME

INDEXES

FIGURE 9

- -
- -

- -

- -

- -

- -

- -

- -

SUMMARY
LIST

DETAIL
LIST

PLOT

FORMAT DISPLAY OF EARNING RATIO

57

58

from this query, when retrieved, may appear
as shown in Figure 10.

SOFTWARE REQUIREMENTS

Hardware Environment

The extent of software depends upon the
hardware environment. Figure 11 represents
a very general system where the display sub-

YIELD OF SELECTED INDUSTRIES

GREATER THAN 2

AIRLINES

AMR

UAL 2.4

AUTOMOBILES

AMO 7.1

C 2.3

3.7

GM 5.7

FIGURE 10

FINAL QUERY OUTPUT

system functions are specifically identified. In
particular, the display subsystem controller is
shown to have the function of: message rout
ing, data buffer, display regeneration, and
character generation.

The latter two functions are generally part
of each console hardware unit. Then the dis
play regeneration is performed from a buffer
memory associated with the console.

If the display subsystem controller is a com
puter, then it may have direct access to the
data base as shown by the dotted line. The
controller is then capable of performing much
of the man/machine communication. In the
following text it is assumed that such is true.

Software Design Parameters

The interactions between man and machine
are spread over relatively long periods of
time, and are asynchronous with respect to
each of the users. Hence, if reasonable re
sponse times are to be met, access must be
provided to programs, pre-stored displays and
data on a random basis. Because of the ex
pected time sharing of the central processor
between multi-stations for intermittent serv-

COMPUTER ... _1----------,

CONSOLE
#1

DISPLAY SUBSYSTEM
CONTROLLER

MESSAGE ROUTI NG

DATA
BASE

DATA BUFFER ~
DISPLAY REGENERATION ~--------

CONSOLE
#2

CONSOLE
#3

FIGURE 11

TYPICAL ON-LINE DISPLAY CONSOLE COMPUTER SYSTEM

CONSOLE
#n

ICIng, console "history tables" reflecting user
transactions to the current time must be
maintained. In addition, since unpredictable
time lapses occur due to intermittent human
responses, the "position" of a program in a
particular procedure must also be maintained.

Effectively, the program must wait (or do
something else) whenever a display is pre
sented to the operator. As the operator enters
data (if required), the computer must momen
tarily return control and monitor each entry.
After the entries for a single display are com
pleted, an appropriate "end of message" ini
tiates the next logical step. At the end of the
final step, a complete and meaningful message
or direction is the basis for the computer's
independent determination of what is to be
done. It is thus possible to generate directions
continually and to have the computer respond
to them on an overlapping basis.

I t is possible to separate the application
oriented functions from those that are general
purpose, and to apply to most on-line display
system applications and processes. The divi
sion is made between the processes required
in generating the message and the actual pro
cedures for executing the action that may be
called. The former concerns the mechanics of
handling displays and composing messages;

. the latter is concerned with actual file han
dling, retrieval, processing, summarizing and
formating. In this discussion, attention is re
stricted to the first aspect, the general purpose
processes.

The objectives for the programming system
design are four: first, to provide general ca
pability and flexibility so that virtually all
applications can be accommodated.

Second, to standardize techniques and pro
cedures so that individual prog;r:am segments
or subroutines can be sh~red by as many func
tions as possible.

Third to maintain order among contending ,
users for the same files.

Fourth, to service each console as if its
operator is the only user making demands
on the processor.

Based on the above discussion, the program
ming system must include at least the follow
ing programs.

Display Subsystem Executive Control. This pro
gram performs the basic scanning, sequenc
ing and queue control for servicing the on-line
devices. In addition, it links to the master

executive control which may be supervising
the total processing.

Function Monitor. This program maintains the
history tables and establishes the action se
quences to be carried out as a function of the
keys that are pressed.

Utility Program Package. This is a collection of
service routines used primarily by the funo
tion monitor and executive control. The avail
ability of these general purpose programs pre
cludes the recoding of common functions-.

Implementation Language. This is a language
used by the application programmer in writ
ing his program and is operated upon by the
function monitor. The system must provide
the programmer with the ability to express
his program in both the symbolic language
of the computer where each command gen
erates one machine instruction and in higher
order languages where each command gen
erates many machine instructions. To be effec
tive, the higher order language must he
powerful enough to express the application
problem in terms of the man/machine en
vironment, usable with a modest amount of
training, and readily expandable so that new
commands and functions can be added.

A system such as this implies that applica
tion programmers must conform to certain
coding restrictions and procedures so that
all the possible programs can be accommo
dated. While this may seem a disadvantage,
it is, in fact, helpful since it simplifies the
programming (because of the existence of
service routines). It also simplifies the im
plementation of new applications, since they
must fit within the logical framework set
forth by the system.

The importance of the second point cannot
be over-emphasized. Without a well defined
organizational and procedural philosophy, the
programming design and implementation. of
the individual application can become a maJor
undertaking.

Display Subsystem Executive Control

Table 6 presents the programming and stor
age- requirements for a typical display sub
system. The real time requirements associated
with on-line displays present a problem of
priority interrupt handling and servicing.
Hence an executive system must be designed
to be ~esponsive to these requirements. Such

59

60

TABLE 6

PROGRAMMING REQUIREMENTS

FOR A DISPLAY SUBSYSTEM

Programming Requirements Requ i red Storage
24 bits/word

Core Res ident

Programs

Display Executive 250
Function Monitor 1500
Ut iIi ty Programs 500
I nput/Out put 500
Console Programs 500

Buffers and Data

Constants 100
CRT Image 400
Queues 150
Working Core 800
Input/Output 1600

Total 6300

Auxiliary Storage Resident Programs

Start-up
Serv i ce Rout i nes
Res tart

Total

Implementer Compi ler

TOTAL

100
1600

--1.QiL

1900

2009

10,200

Refresh CRT

Perform I/O
References and

Transfers

Start

Scan Input
Lines

a program is equipment dependent ,in the
sense that many hardware/software trade
offs are possible.

The basic requirement of the display sub
system is control of a great number of input/
outputs including; scanning the input lines for
messages, refreshing the CRT's, ace-essing
programs, displays and data from auxiliary
memory, communicating with other processors
that may be in the system, and maintaining
timing responses for special purpose on-line
character generating equipment.

Typical timing requirements range from re
freshing the CRT within 20-25ms periods,
to scanning of inputs from the console key
boards every 200 ms. Unless certain hardware
features are available, such as automatic in
terrupts and input/output buffering, the pro
grams have to take these into account. Assum
ing no dependence on hardware, the executive
program must maintain continuous cognizance
and control over the input/output. This is done
by the basic control loop shown by the dotted
lines in Figure 12. Each of the five indicated
functions could potentially generate a process
ing task as the cycle is traversed. For example,
the tasks associated with scanning the input
message lines is shown in Figure 13.

Maintain Timing
for Special

Purpose Devices

Task Queue
Processing

FIGURE 12

BASIC EXECUTIVE CONTROL lOOP

Scan Input No - Continue ~
Lines Message Basic Control

Loop

~ Message

Decode Signal
Source

~
Decode Signal

Type

!
Service Function Place in Queue

Validate Step -- for Funct ion r--
Response Response Monitor

t

Routine no Place I/O
in Core? - Request in - I/O Queue

Yes

Execute Program -- or - -Place in Queue

FIGURE 13

TASKS ASSOCIATED WITH SCANNING THE INPUT MESSAGE LINES

To meet real time requirements, this loop
must be passed at a rate which insures return
to the task which has the tightest timing
constraint within a specified amount of time.
This time is called the "basic cycle time."
Thus, if the CRT refreshment is the critical
task, then the basic control loop must return
to that task within a basic cycle time.

There is also the further implication that
the processing requirements for each of the
five identified functions must be completed
within a time which does not compromise
the total cycle time.

There are three ways to do this. The first
is to allow processing to proceed in increments
of the basic cycle time so that temporary re
turn to the cycle is permitted after each such
segment. This leads to difficulties of recur
sive entries into the various processing tasks.

The second way is to spot-place a particular
task in more than one position in the loop.

Thus, for example, the "refresh CRT" might
be placed in every other position in the loop
if the other functions have a period which is
very much larger than that of the CRT re
fresh cycle.

The third way is to permit only a minimum
of processing as each of the ta.sks is reached,
and to place in a queue those functions not
completed. This queue is then processed dur
ing the residual time which is left over during
every cycle. This is shown in Figure 12 by
the box which is part of the loop indicated by
the heavy lines. It is, of course, necessary that
the residual be non-zero enough of the time
if any processing is to occur.

The following comments are presented con
cerning the implementation of the executive
control with respect to the presence or ab
sence of the indicated hardware features.

If neither external interrupt nor a real time
clock is available, the tasks associated with

61

62

each of the control loop functions, and all
other calculations, must be programmed in
segments so that each segment permits return
to the control loop and maintains the timing.

If a clock is available, the executive can
preset it at the beginning of each cycle so that
it interrupts the processing of the queue at
the proper time.

If external interrupts are available, the
function of the basic control loop has been
absorbed by the hardware and a minimum
executive function is needed. Consoles are
then serviced on demand.

Function Monitor and Implementation Language

The function monitor is a specially designed
program to facilitate responses to the con
sole's variable function keys. Although not all
consoles have a set of keys of this type, a
general purpose console has such a set. * These
keys are characterized by the fact that their
labels, and also their identifying codes, can be
changed by the operator to suit the application.

The process of entering information into
the computer to make a request has been dis
cussed in detail in the previous section. Differ
ent applications require different displays and
different sequences of presentation, and it is
advantageous to design a scheme which is
not application dependent, so that the user
can design his own data entry scheme and
query language.

The function monitor operates on a very
special implementor's language oriented to
display manipulation. When one of the func
tion keys mentioned above is depressed, the
executive control recognizes this and passes
control to the function monitor. It is the ease
with which the implementor can specify and
modify this list of statements which makes
the function monitor so valuable. To illustrate
the capability of the language, some of the
possible statements are now given.

The first is: turn specified console lights on
(off)-the lights are specified in parameter
words following the instruction.

Another is : display the following characters
on the CRT-the characters along with their
location coordinates are listed following the
instruction.

* These keys can be implemented by hardware or soft
ware. For example, if keys are unavailable or limited,
they can be simulated on the CRT itself and the light
pen can be used to "press" the keys.

Others are: locate a display in auxiliary
storage and present it on the CRT -the identi
fication of the display follows the instruction;
clear a specified buffer-the buffer area may
be either pre-established or specified in the
words following the instruction; and enter the
specified characters in the buffer-the charac
ters are listed following the instruction.

Finally, there is: process the "list" display
-special codes (specified by the query lan
guage) are extracted from the list display
as dictated by the selections· of the operator
and are placed in the buffer; and process the
"format" display-the parameters entered by
the operator are extracted from the format
display and stored in the buffer.

A more sophisticated language can be de
signed to cover more applications. The above
language, however, is indicative (along with
the function monitor) of what is necessary
to service the kinds of retrieval requests
mentioned earlier.

Utility Programs

Utility or service programs extend the hard
ware so that user functions become available
to the application programmer without his
concern for programm.ing them. This soft
ware is primarily concerned with making it
easier for the entry of alphanumeric infor
mation on to the CRT, expeditiously. Also in
cluded are useful functions for data handling,
control of displays, system control, and the
detection and setting of status and error in
dicators.

CONCLUSION
In the past, on-line display devices were

primarily of interest to the military. Now,
the commercial market is becoming a serious
user. Evidence of this is shown by the increas
ing number of demand query reservation and
quotation systems and time sharing systems
such as Project MAC. These applications are
stimulated by the current trend to on-line and
real time data processing systems.

The many possible applications of display
devices suggest a need for general purpose
software to assist the programmer in design
ing and implementing man/machine proce
dures.

This paper has identified the generic fea
tures common to on-line CRT displays which
form the basis for software responsive to
these features.

Emil R. Borgers*

Priority Interrupt Characteristics for
On-Line Control

INTRODUCTION

ON-LINE CONTROL is the basis for a broad
spectrum of significant work being performed
in a wide variety of applications areas. The
"least difficult" applications have been attack
ed first-and successfully. By "least difficult"
is meant those applications requiring rela
tively slow response times (chemical proces
ses requiring 5-10 minute control cycles-1 or
2 human reactions-data logging). Conven
tional general purpose computers designed
primarily for batch-processing have been the
nuclei of these initial systems. The problems
encountered have made the phrase "program
around it" commonplace.

The "more difficult" on-line applications re
main to be done. The demands implicit in the
process, or simply the cost feasibility, require
that on-line systems, particularly the central
computer, be designed so that "programming
around" a deficiency is not necessary. This is
not for the convenience of the programm,er
since he is professionally committed to the
performance of different tasks, but because
the phrase implies the substitution of a se
quence of program steps requiring a measur
able amount of time for hardware capable of
responding in an instruction time. These
"more difficult" applications cannot tolerate
relacement of hardware by programming be
cause the required response times are so fast
that programming implementation is not feas
ible.

Basically, in all on-line control systems, the
central computer acts as a "transponder" (Le.,
the computer performs some calculations and

initiates passes on the basis of an incoming
signal). Some examples of incoming signals
are time sharing customer stations, clocks,
emergency alarms, and management inquiries.
To such incoming signals, the computer must
respond rapidly and reliably. How well the
computer is able to do this generally deter
mines the maximum capability of the on-line
system. A necessary ingredient in the respon
sive ability of the on-line system is the inclu
sion of a powerful and flexible priority inter
rupt system.

PRIORITY INTERRUPT SYSTEMS
Priority interrupt, as a concept, has been

with us for a long time. Interrupt experiments
were conducted on systems as early as the
Whirlwind 1. Subsequent command and con
trol systems have incorporated interrupt
techniques which provided the necessary capa
bility for the not too demanding "least diffi
cult" problems. In the last three years, how
ever, specific interrupt techniques have been
developed to satisfy the "more difficult" on
line applications. This development coincides
with the appearance of production line real
time computers.

To measure the effectiveness of a priority
interrupt system, certain criteria must be
established:

Reaction Time: this is the time between the
occurrence of a signal (or request) external
to the central computer and the commence
ment of execution of the first useful instruc
tion requested by the external signal.

*Director of Progra:{llming, Scientific Data Systems

63

64

Overhead: is the difference between the total
time necessary to completely process the in
coming request and the execution time of all
useful instructions.

Optimum Priority Response: is the ability of the
central computer to correctly react to incom
ing priority requests. If the "most important"
instruction is not being executed at a given
instant of time (as determined by the priority
status of the request lines), then the priority
response of the central computer is said to be
SUb-optimum.

System Saturation: occurs when the on-line sys
tem cannot respond quickly enough to all of
the requests. The system is underdesigned if
this state exists.

TYPES OF PRIORITY INTERRUPT
SYSTEMS

At least three types of priority interrupt
systems are in general use today. These are
the search ring method, the single-level indi
cator method, and the matrix control method.

Search Ring Method

The search ring method is implemented by
use of an n position electronic stepping
counter which continually scans n interrupt
lines. The highest priority lines are scanned
first so that, if two requests are received
simultaneously, the higher priority line is
recognized. The counter associated with the

large enough, either faster (and more expen
sive) components must be used or the scan
ning cycle increases, lengthening the reaction
time even further.

Single Level Indicator Method

The single level indicator method is the
lnost common (and least expensive) method
in use on existing computers. Essentially all
interrupt lines develop an "OR" output which
serves as the interrupt request signal to the
central computer. At the completion of the
current instruction, the program counter is
stored and an interrupt processing subroutine
is entered (See Figure 1). This subroutine
tests each interrupt line in sequence to deter
mine which request caused the interrupt.
Either by program or automatically, the in
terrupt line recognized is reset and program
control is transferred to the correct routine.

The response time and overhead for this
method are both very high since, after the
interrupt request line is activated, a signifi
cant number of program steps must be exe-

Store

Return Address

Process

Overflow

position of this interrupt is then transmitted Form

to the central computer to be used in forming Process

the address of the first instruction to be exe-
Process I/O

Termination

cuted. The program counter is automatically
saved and restored at the end of interrupt
processing.

This method has poor reaction time since if
any interrupt is now being processed, the
computer is "locked out" from all other inter
rupts. In the worst case, the response tim.e
can be as long as the longest interrupt serv
icing routine in the system. Overhead, how
ever, is not excessive, since the program
counter is saved and restored. True, priority
response is not present since the simple scan
ning technique prohibits a high priority inter
rupt from being recognized while one of lower
priority is being processed. This method is
thus said to be single level as opposed to true
priority. Another disadvantage of the search
ring method is its capacity. As n increases,
the time to scan all lines increases. If n is

Process

Function n

Process

Interrupt Fault

FIGURE 1

EXAMPLE OF INTERRUPT PROCESSING ROUTINE
SINGLE LEVEL INDICATOR METHOD

cuted before the central computer begins to
obey the request. While the highest priority
requests will be tested first, the high overhead
may make the lower priority interrupts in
effective. This method is also single level since
no interrupt can be recognized while one is
being processed.

The combination of slow response time and
high overhead plus the lack of true priority
response makes system saturation a possi
bility before the capacity of the central com
puter has reached an economic level. Consider
an m microsecond computer having two inter
rupts occurring every 500 m time intervals.
The overhead on each interrupt processing
would conservatively be 20 m. The non-useful
computing time just to recognize these inter
rupts would take 8 % of the computer's capac
ity. If more interrupts of lower priority are
added (with their correspondingly high over
head) system saturation is very likely to
occur.

Matrix Control Method

The third method, the matrix control
method, provides two flip-flops for each inter
rupt line to be recognized. These flip-flops

Interrupt
Request

MATRIX

Address

To Computer

provide the necessary memory to determine
the current status of the line. Three states are
used, as shown in Table 1 .

Table 1. States of Matrix Control Method

State Condition

1 No interrupt has been requested on
this line.

2 An interrupt has been requested, but
has not been recognized by the com-
puter.

3 The requested interrupt has been
recognized by the computer, but has
not been completed.

Each interrupt line (or level) is positioned
into a matrix based on the order of priority
the highest priority being closest to the out
put, while the lowest priority is the farthest
away (See Figure 2). An interrupt request
being received at a given level automatically
causes the level to shift from state 1 to state
2. If no higher priority level is present in
states 2 or 3, the matrix permits the interrupt

-

I
I
I
I
I
I
I
I
I
I
I

II

Lowest
Priority

Interrupt
Lines

Highest
Priority

FIGURE 2

MATRIX CONTROL METHOD

65

66

request line to be activated to the central com
puter. At the same time, an address unique
to the requesting level (determined by diode
selection) is supplied to the computer. At the
completion of the present instruction, the
computer transfers control to the memory
location determined by the provided address.
At this point the program counter is pre
served and a signal is sent to the priority
interrupt system to change the state of the
highest priority level in state 2 to state 3 (by
design, the requesting interrupt level). At the
completion of the desired routine, a unique
instruction returns control to the point of
departure, simultaneously signaling the prior
ity interrupt system to change the highest
priority level, at present in state 3 to state 1.

The matrix control method provides both a
short reaction time and low overhead. Every
interrupt request is obeyed immediately pro
vided no higher priority request is in execu
tion. A favorably low overhead is achieved
since no program time is used to transfer to
and return from the desired routine. The big
gest advantage of this method, however, is a
near optimum priority response. The most
important instruction is being, or is about to
be, executed at any instant of time. When the
required routine for any interrupt level is
completed, the matrix control method ensures
that the next routine to be executed will have
the highest existing priority regardless of
how many lower priority requests remain only
partially completed.

The effect of the matrix control method
Inay be achieved without the structure de
scribed here. The required elements are a)
memory for each interrupt level, b) a hard
ware priority structure, and c) central com
puter communication to inform the priority
interrupt system of a change in state. To con
serve cost, interrupt levels have been "shared"
by a number of interrupt lines in some sys
tems. Since the lines must not interact, the
on-line systems designer must take this ap
proach with caution.

CURRENT-STATUS PRESERVATION
vs. OVERHEAD

So far, the problem of preserving machine
registers (other than the program counter)
has not been mentioned. This problem is dis
crete and exists regardless of the interrupt
recognition methods mentioned previously. If

the routine executed in response to an inter
rupt request uses (or destroys) any of the
machine registers (such as the accumulator,
index registers, overflow indicator, etc.), the
contents prior to use must be preserved and
restored after completion. The problem is
likely to become more complicated since com
puters are being designed with more and
more machine registers for greater flexibility.
Approaches used so far have been: a) let the
program decide what to save and restore, b)
implement through hardware an automatic
store sequence to save registers in memory
and automatically restore after completion,
and c) maintain all registers in memory and
provide mUltiple register groups for each in
terrupt routine and the main program (when
an interrupt occurs, a pointer automatically
selects the unique register group). The first
approach is generally effective if the instruc
tion set is designed to allow many operations
to occur without affecting any (or few) regis
ters. In this way, the programmer has alter
native choices to keep the overhead low. The
second approach involves a fixed overhead no
matter what functions are performed in the
interrupt routine. The third approach gives a
very desirable flexibility to the interrupt capa
bility. If, however, the registers are accessible
at the same cycle time as instructions, the
tendency is to slow the whole computer down
just for the' sake of interrupt capability.

Future computer design, representing a de
parture from the conventional structure, must
effectively solve this problem and reduce the
overhead even further than is now done.
While this factor does not reduce the efficiency
of the computer as a transponder as much as
some of the other factors, it limits the maxi
mum efficiency obtainable in on-line systems.
Ideally, the overhead time should approach
zero.

INTERRUPT ARM/DISARM
CAPABILITY

In more complex on-line applications, the
requirement occasionally exists for inhibiting
recognition of some interrupt requests while
other functions are being performed. For ex
ample, a high speed transmission such as a
disk transfer, which may have low priority
until the instant that the request has been
initiated, must capitalize most of the compu
ter tim,e. If the priority structure is allowed
to stand, higher priority items might inter-

fere with the transfer and cause transmission
errors due to loss of information. On the other
hand, the system may require that certain
critical interrupt lines remain open at all
times so that the prevention of all interrupts
is not feasible. This situation requires the use
of an interrupt arm/disarm capability. To do
this, a flip-flop is placed on each required
interrupt line external to the interrupt control
system. Each flip-flop must be under control
of the central computer. When the flip-flop is
SET by the central computer, interrupt re
quests can be recognized and the interrupt
line is said to be armed. Correspondingly,
when RESET, interrupt requests are inhib
ited and the interrupt line is disarmed. To
conserve computer time, interrupt arm/dis
arm flip-flops are usually placed in the desired
state in mUltiple groups rather than singly.

PRIORITY INTERACTIONS
Assignment of priority interrupt levels to

particular functions in a given on-line system
is, at times, an interesting and perplexing
problem. At first, it appears that the systems
designer should order the request functions
on the basis of importance and assign levels
accordingly. This, however, produces the most
effective system performance only by acci
dent. Priorities must be assigned using the
interaction of functions with each other as a
prim.ary basis.

Priority
As signrnent Importance

1 3

2 1

Consider a simple on-line control system
with three major requirements: (1) receive
and modify input data, (2) output these data,
and (3) maintain time in milliseconds. The
estimated length of execution of these func
tions and the worst case frequency of occur
rence is shown in Figure 3.

In this hypothetical case, the maintenance
of time is for future off-line processing and
is the least important of the three functions.
Since the output of data is possible only after
data input and modification has occurred, sys
tem input is the most important function. If
priority were assigned strictly on the basis of
importance, the time function will be missed
under certain conditions. This erroneous time
measurement cannot be tolerated. If, however,
the time function is assigned the highest pri
ority (as shown), no time information will be
lost. More important, the net effect of this
assignment is to prolong either system input
or system output by a few microseconds. Since
worst case conditions are shown, no serious
problem results and system saturation is
avoided.

The on-line systems designer must ensure
that all possible interrupts in the system are
operating compatibly with each other when
worst-case conditions occur. Debugging on
line systems with incompatible priority inter
rupt assignments is, at best, a horrendous
task. These problems must be solved during

Time

System Input

3 2
__________ ~r1 _______________ ~

System Output

Time
{milliseconds}

FIGURE 3

EXAMPLE OF PRIORITY INTERACTION

67

68

the design of the system-not during program
and hardware checkout. System interactions
involving priority interrupts are often not
observable during system checkout.

Even when trouble is detectable, it presents
to the human a behavior pattern similar to an
intermittent component failure. This gener
ally leads to many false and frustrating excur
sions before a solution is found.

DYNAMIC PRIORITY REALLOCATION
Based on the occurrence of certain events, it

may be necessary to reassign the priority
levels of key interrupts dynamically under
program control. This requirement is fairly
common in military command and control sys
tems resulting from a change in the tactical
situation. This capability has been imple
mented in a number of ways on different sys
tems. Implementation has ranged from large
banks of flip-flops to core switching matrices.
Typically, a large amount of expensive hard
ware is necessary if total flexibility is re
quired.

If only a few different options of dynamic
priority reallocation are required in an on-line
system, it is usually cheaper to assign a given
interrupt request line to two or three different
priority levels in the interrupt system. Coupled
with arm/disarm capability on each line, each
request can be reassigned to a different prior
ity level as the situation changes. This method
is generally less expensive than the more
flexible approaches.

FUTURE REQUIREMENTS
At least two advances are required in the

priority interrupt area to make effective use
of the higher performance hardware being
developed for on-line systems use. They are
time related priority assignments and exter
nally weighted priority.

Time Related Priority Assignments

Existing techniques are not adequate to
handle a phenomenon which is appearing
more frequently as on-line systems become
nl0re complex-the time related priority as
signment. Consider an on-line system with a
low priority task requirement of once each
second. Immediately after this function has
been completed, it should have the lowest
priority in the system. On the other hand, if
a whole second has passed since execution its

priority should be high. What is required then
is a technique which allows this function to
"creep" upwards in priority as a function of
time. This case continually exists in time
sharing systems as a given user would like
to "wait in line" for his next turn even though
some users have a higher overall priority.
Present hardware to implement this require
ment is very complex and expensive. A soft
ware approach, while technically feasible
using push-down lists, increases overhead pro
hibitively and reduces overall efficiency.

Externally-Weighted Priority

In on-line multiprocessing environments,
separate tasks are being performed in a num,
ber of computers, the results of each having
only a partial effect on the entire system.
Priority requests between computers are more
effective if the requesting computer can
"qualify" its importance based on the situ
ation. The receiving computer can then use
this qualification as a weighting factor to
determine the ultimate priority of the request.

Certain time sharing systems involving
many users will require a similar capability.
Let us give the user a number of levels of
service, selectable at his console, for which
he will pay different usage rates. The different
service levels would provide the user with dif
ferent priority usage of the time shared com
puter, either more frequent access or longer
on-line time at each acc~ss.

To provide efficient on-line systems of the
type provided above, externally weighted pri
ority must be available without increasing
overhead.

CONCLUSION
The design of an effective priority interrupt

capability has not always been proportional to
its contribution to the overall on-line system.
A weak priority interrupt (or none at all) can
reduce the number of useful instructions exe
cuted by the central computer to as little as
one-half the total. Excessive computer power
must then be employed to compensate for the
loss of computability. As on-line requirements
become more complex, an increased burden
must be assumed by use of priority inter
rupts. Adequate solutions have not been found
to meet all foreseen requirements. Yet, we
are learning to make effective use of what is
available to make the digital computer prop
erly react to the on-line environment.

Arthur M. Rosenberg*

Group Communications In
On-Line Systems

INTRODUCTION

THE USE of a digital computer as a personal,
on-line tool is being successfully achieved on a
practical basis through the use of various tim,e
sharing techniques, and another door has been
opened to new and more interesting applica
tions of our computing technology. To achieve
this, time sharing brings ready accessibility
and suitable response time to bear upon the
human user's requirements for direct employ
ment of computer services. Thus, personalized
conversation or "on-line" interaction between
man and the power of a computing machine
offers fruitful solutions for today's complex
and dynamic problems.

Much has been said about the many advan
tages to be gained by allowing human users to
have direct contact with a computer. This is
primarily true because most computer users
previously were required to operate in a job
shop environment, very often through one
or more middlemen, programmers, computer
operators, keypunchers, etc. This may have
proved a frustrating and discouraging experi
ence to the non-program,mer, and, in many
cases, even to the programmers. The taste of
freedom and power felt by the on-line user of
a large computer system can now be realized
by many rather than a limited few, and this
sensation has caused many devotees to hail
the dialogue of man and machine.

Communications have been, and will con
tinue to be, closely allied to the fruitful use of
computers. In time sharing systems, remote
computing and multi-processing computer net
works depend heavily on various communica-

tions facilities. By the same token, however,
sophisticated communications service will also
be provided by the computers in new electronic
switching centers, and time sharing systems
have a vested interest in some of these serv
ices. Personalized or "on-line" computing is
a very powerful service; it becomes even more
powerful if it serves a group of individuals
involved with a common problem. This is, for
tunately, not only achievable within the fram,e
work of time sharing systems, but may be
done with relative ease. A time sharing sys
tem, with its communication lines extended to
a number of user consoles, is, in effect, a com
munications switching center not only be
tween the consoles (or other computers) but
also for user programs. This last feature adds
the facility of interactivity in the time shar
ing environment.

APPLICATIONS OF GROUP
COMMUNICATION TECHNIQUES

Man is a gregarious animal, and a machine,
albeit a computing machine, is still, after all,
a machine. The social environment of problem
solving has often emphasized the concept of
two heads being better than one. Now that a
personalized computer is available, which may
act as a helpful and efficient assistant, the
popular phrase might be changed to: "Two
heads and a computer are better than one
head and a computer."

There are a number of computer applica
tions in which two or more people will inter-

*Member of the Technical Staff,
Scientific Data Systems.

69

70

act in some way with each other as well as
with a computer program or programs.
Variations may occur in the manner by which
communications between participants will be
controlled and these will be discussed later in
this paper. However, at this point, let us
briefly review some of these applications.

Experimental Games

Time sharing communication techniques are
essential to computer based experimental
games with human subjects. Programs for
such experiments must be designed for mul
tiple users, must control and restrict station
input and outputs, and must allow the experi
menter or umpire to time the experiment,
observe all participants' input actions, and
intervene when necessary. At his station, the
experimenter can specify which stations par
ticipate in the game, and may alone use the
full input and output capabilities of the experi
m,ental program. Also, he alone may issue
executive commands to the time sharing sys
tem during the course of the experiment.

Group Debugging or System Testing

Since computer programs are growing in
size and complexity, it is usually necessary to
partition the development of a large "system"
among several programmers. Eventually, the
program components will require checkout as
a system, and the programmers must debug
their code together. As the group watches the
operation of the program at individual (and
remote) system consoles, and a fault is de
tected in ali area of code, the person respon
sible for the particular code can use on-line
debugging facilities to fix the trouble; if the
problem is more complicated, the group mem
bers can then discuss the situation directly in
a "conversation mode" between stations. As
a last resort, the group can call in an "expert,"
as described below.

Consultation

Many types of programming services will
be available to users of the time sharing sys
tem; some fairly complex to a neophyte. The
time sharing system executive can respond to
a call for "help" in particular types of opera
tions, providing an expert "teacher" for
language systems, the time sharing system,
itself, mathematical and statistical routines,
etc. First, the expert may communicate direct
ly with a user via a "conversation mode" to
discuss the problem; then he may find it

practical to have the user re-enact the opera
tion that caused difficulties. The user's opera
tion can be put into a "trap" mode by the
system, allowing the expert to correct the
user's inputs before processing takes place.
Alternatively, the expert can demonstrate an
operation for the user, with the latter playing
a passive, observer's role. Whichever the alter
native, the stations of the user and the expert
would be linked by the time sharing system.

Demonstrations

The on-line technique of consultation de
scribed above is also effective for educational
demonstrations to groups of users. Here the
demonstrator links his station channel to the
users' channels so that they can all see his
inputs and outputs. He may accompany his
operation by narration through a "conversa
tion mode" facility, which encompasses all the
observing stations (party line). The observers
may at any time send questions to the demon
strator's station as well as to all the other
observers. Further, during or after the initial
demonstration, the observers may use the
consultation mode to perform the operation
themselves, under the guidance of the expert.

Briefings

Communication facilities also serve for con
ferences on operational information in a
user's system. One or more individuals con
trol such briefings, calling upon the opera
tional object program to present an informa
tion display to the various stations. Normally,
only the briefing control station can have
inputs to the operational (briefing) program,
but all stations will receive display outputs.
Briefing control, however, can be dynamically
delegated to any appropriate station in the
group, when necessary.

Since much of a briefing is often "canned"
in advance, users may prepare their briefing
displays during a dry run, attaching retrieval
"labels" to specific data presentation pack
ages, and, if necessary, calling for a basic
sequence of display of such packages. The se
quence does not have to be strictly followed,
since the user can always call directly for any
labeled display, or dynamically create a new,
unlabeled display.

Common Data-Base Maintenance and Retrieval

Common to almost all large information
systems are the acquisition and retrieval of

data from many sources and users. Oper
ational communication is effectively per
formed indirectly through a common opera
tional data base, the obj ect program system
servicing a group of users by either updating
the data base or by retrieving information
from the data base. Here, a non-replicating
program design is advisable to service many
users in a parallel fashion without costly pro
gram redundancy. Operational controls over
the program system can limit input of new
data to some stations, other stations can re
trieve data, and some stations can do both.
Security and quality controls are thus imple
mentable via the program system.

Technical and Administrative Management of a
Computer System

In a large programming installation, many
computer users are engaged in developmen
tal and production activities. An outstanding
problem is often the technical supervisor's
difficulty in maintaining current awareness
of what his programmers are doing, such in
formation being necessary for scheduling,
priority assignment, technical evaluation and
guidance, etc. The time sharing system, while
serving its full complement of users, can also
permit a supervisor station to monitor in
dividual stations and provide on-line man
agerial guidance. The accounting function of
the time sharing system can provide historical
data on each user, valuable to the technical
supervisor for assigning priorities to his
programmers and directing their on-going
activity.

Computer Operator Activities

One of the more mundane communication
requirements rests with the need for com
puter operator services. Users of a time shar
ing system must be able to communicate with
the computer operators for tape handling
functions, disposition of off-line outputs, ma
chine problems, system status information,
or special communication arrangements. Like
wise, computer operators must be able to
communicate with users to notify them of
system conditions affecting their operations.
Although much of this communication can be
carried out indirectly via the time sharing
system executive and object programs, un
anticipated problems require direct commu
nication with the computer operator.

In many ways, the human elements in the
man-machine relationship derive significant

benefits from solving problems and perform
ing operational tasks as a group. The soft
ware and hardware facilities of a time shar
ing system must therefore enable the users,
including the computer operator, to commu
nicate and interact freely, under a variety of
selective controls, with each other and with
the computer programs.

ELEMENTS OF USER COMPUTER
COMMUNICATION

Many types of communications can be found
within the confines of a computer system and
this is particularly true for time sharing
systems. We might think of users (people),
programs, computers, special devices, and
systems talking to other users (people), pro
grams, etc., etc. However, if the proper foun
dation is laid for communication between
these elements, there will be no limit to which
the thread of interaction may be extended.

Communication between a computer and a
human being is not as flexible as between two
humans, but improvements are rapidly being
made in this direction (problem oriented lan
guages, etc.). The computer can now be made
more welcom.e as a powerful resource and in
troduced into the problem solving tasks of the
human world. The problem, then, is to clarify
and extend communication linkages between
the human group or organization, and the
computer programs in the on-line, time shared
environment.

Man-Machine and Man-Man Interaction

The most basic types of on-line interaction
and communication in the time sharing sys
tem are those in which the humans directly
interchange information between themselves
and those where the interaction takes place
between "man and machine." When we sp~ak
of MAN-MACHINE relationships with a dig
ital computer system, we, of course, really
mean a MAN-PROGRAM dialogue. Let us
examine the mechanisms available to the time
sharing system users for both of these basic
forms of interaction.

Figure 1 illustrates a user station, usually
remotely situated, equipped with some of the
current on-line communications hardware.
All the devices shown are not necessarily
required, but one can conceive of effective
applications for all of them.

A single channel (or unique set of chan
nels) between the man and the program per-

71

72

DISPLAY SCOPE
& LIGHT PEN

E
X
E
C
U
T
I
V
E

COMPUTER

OBJECT
PROGRAM

FIGURE 1

USER STATION COMPLEX IN THE MAN-MACHINE RELATIONSHIP

forms the basic man-machine operation, all
inputs and outputs from various input/output
devices being confined to an individual user
and not normally accessible to other users in
the time sharing system. Figure 2 shows a
system with a number of users.

S'uch arrangements are adequate for the
"lone wolf" researcher or programmer, since
maximum privacy is provided for the intimacy
between a m,an and his program. However, in
order to breach the communication gaps be
tween user groups, the system executive stands
out rather logically as being in a strategic ac
tion position.

CHANNEL 1
I 1

CHANNEL 2

2

CHANNEL 3
3 I

CHANNEL 4
4 I

COMMON I CARRIER

We cannot assume that in a time sharing
system environment the conferees are nor
mally sitting side-by-side communicating di
rectly. Thus, MAN-MAN conferencing will
proceed either by some communication facility
independent of the time sharing system (e.g.,
a telephone network, intercom, etc.) or through
the system itself (Figure 3).

MAN-MAN communication provided by the
time sharing system itself is by far the most
interesting and powerful approach, for we
can then integrate group activities with the
many applications of a digital com,puter. The
computer becomes a communication center in

OBJECT
PROGRAM

1

E
X OBJECT
E PROGRAM
C
U

2

T
I
V OBJECT
E PROGRAM

3

OBJECT
PROGRAM

4

FIGURE 2

MULTI-USER SYSTEM

USER
STATIONS

CHANNEL 1

CHANNEL 2

CHANNEL 3

E
X
E
C
U
T
I
V
E

FIGURE 3

MAN-MAN COMMUNICATION VIA TIME-SHARING SYSTEM OR EXTERNAL FACILITY

USER
ATIONS I OBJECT .1 CHANNEL 1

1 E PROGRAM

X I 1

ST

E

CHANNEL L C 1 OBJECT I
2 U PROGRAM

T I 2
I
V

CHANNEL 3 E I OBJECT .1 3 L -
PROGRAM

I 3

COMPUTER

0
COMPUTER
OPERATOR

FIGURE 4

MAN-MAN AND MAN-MACHINE COMMUNICATION LINKS IN A TIME-SHARING SYSTEM

addition to performing operational data proc
essing functions. Assuming that all MAN
MAN conferencing will normally relate to
the users' data processing tasks, it is desirable
that a generalized time sharing system should
provide selective communication service func
tions in response to various user operating
needs.

In general, users of an on-line, time sharing
system will expect the capability for both the

basic MAN-MACHINE and MAN-MAN com
munications, as shown in Figure 4. If the
latter type of communication is not provided,
-the system will be operationally constrained
and will lack a significant degree of flexibility.

Figure 4 shows the role of the time sharing
system executive in providing overall com
munications service to people and programs.
Using the system, a user can communicate
not only with his object program (and tp.e

73

74

system executive) but with any other user
station, particularly the computer operator. *

The communication flexibility thus avail
able will help resolve those many unantici
pated problems which always manage to show
up in the best of computer systems.

Although Figure 4 implies a single proces
sor to perform an operation in a time shar
ing system, in reality a multi-processor ca
pability is desirable for other than very small
systems. In particular, many of the commu
nication functions discussed in this paper
may be profitably delegated to a separate
processor which is allied with the system
executive.
Men-Machine Interaction

Going beyond the basic MAN-MACHINE
relationship described above, the time shar
ing system must permit obj ect program com
munication with more than one user station
channel, in order for it to interact with a
group of users. Such group interaction with
an object program in a time sharing system
is one of two types; the first type involves
object programs designed for many users, the
second concerns normal, single user programs.
Responsibility for the first type of group

CHANNE.l 1

CHANNEL 2

communications will rest primarily with the
object program, not with the time sharing
system executive. For the second type, the
executive of the time sharing system can
facilitate the additional group communica
tions.

Type 1. Multi-User Object Program
Two examples of multi-user programs are:

experimental games with human subjects,
and public service programs. For experi
mental games, the programs are used by a
designated set of individuals; public service
programs, on the other hand, are used by a
randomly varying number of users in a time
sharing system. The game playing type of
program, via the time sharing system execu
tive, must sequence the input-output activity
of particular user stations; the public service
function will usually accept any user station
randomly*. Both types of programs, however,
will be required to maintain proper storage
separation of inputs and outputs and con
textual data for each user station involved.
Furthermore, for both types of operations,
the time sharing executive must permit these
programs to be linked to more than one
user-communication channel (See Figure 5).

2~===============+==~

E
X
E
C
U
T
I
V
E

OBJECT
PROGRAM

CHANNEL 3

3~==========~~L-__ ~
INPUT-OUTPUT AND/OR
CONTEXT STORAGE

FIGURE 5

MULTI-USER OBJECT PROGRAM

* Hard copy communications are best suited for the
computer operator servicing many users, since he
can answer queued requests as time permits. Voice
communication requires time for listening and mak
ing notes as well as limiting the operator's attention
to one user at a time.

* Exceptions to this rule may be certain production
functions (compilations), run only by the com
puter operator's station. In such cases, only one
such job may actually be serviced at a time.

The terms "pure program", re-entrant or
transparent routine have been used to de
scribe the design of a program that can
accommodate a number of independent users
sim,ultaneously. (The general service program
is an example.)

The pure program does not modify its own
instruction code, it maintains all contextual
information in reference storage, and the
time sharing executive provides the proper
environment for each user channel to the
object program at operation time. This tech
nique permits the program to be interrupted
at any time and to process a number of user
requests nonsequentially. The pure program
approach, although primarily useful for inde
pendent users' interaction with a service type
program, can also be used for common group
operational functions, such as staff activities
involving on-line data acquisition and re
trieval. Time and storage demands on the
system will thus be reduced by the common
use of a single processor rather than by repli
cation of routines for each user.

Type 2. Programs Designed for One User
Operation

Many object programs are designed for an
individual user; if more than one user re
quires the use of such a program, it will

USER
STATIONS

CHANNEL 1
1

CHANNEL 2
2

CHANNEL 3
3

sim,ply be replicated in the time sharing sys
tem. There are, however, numerous instances
when such a program should be accessible to
more than one user channel simultaneously
without replication. For example, when the
program is complex enough to require check
out analysis and debugging by a group of re
sponsible persons (system test), or when op
erational control of a program system must
reside with a select group of limited size. In
effect, what is needed is a "party line" com
munication link to the program.

For a one-user program to operate with a
group of users, we must "patch" the station
channels of the participants. The user group
thus can confer with the object program, and,
depending upon the selectivity of the patch
ing, all individuals in the group can monitor
'each other's Inputs and all program outputs.

The executive-performed channel patching
shown in Figure 6 has distinct advantages:
it does not require manual intervention; it
does give selectivity to the user, i.e. the user's
channel can be set to receive output copies
only, receive copies of other inputs as well,
insert inputs, or exercise master control over
other channels.

Alternative to executive program patching
is the "looping" of user channels on the

E
X
E
C CHANNEL OBJECT
U PROGRAM T IIX"*
I
V
E

*Channel "X" may be
either Channel 1,2, or 3

COMPUTER

FIGURE 6

SINGLE-USER OBJECT PROGRAM PATCHED FOR SEVERAL USERS

75

76

USER
5T ATIOf'J5

CHANNEL 1 7 1 r A
T
C

CHANNEL 2
H

2 r
B
0
A

CHANNEl 3 R
3 D

I.......-

E
X
E

CHANNEL C
U

2 T
I
V
E

CHANNEL OBJECT

2 PROGRAM

FIGURE 7

"LOOPED" STATION CHANNELS
FOR SINGLE-USER PROGRAM

COMPUTER

equipment side which provides rather limited,
unsophisticated capabilities. (See Figure 7.)

A critical requirement for the Type 2 situ
ation is the provision of proper operating
procedures. In short, the users must know
how to interact in an orderly manner with
their program and between themselves, since
neither the object program nor (to a large
extent) the executive can really control the
sequence of multi-station input and outputs.
For example, organized procedures might in
voke a user round-robin order of inputs con
trolled by the executive, or direct, MAN
MAN party line communication can be
employed prior to any computer inputs. This

FIGURE 8

MAN-MACHINE-MAN
COMMUNICATION

USER
STATION

COMPUTER A

is an interesting problem area which requires
much "idiot proofing" in its solution.

Man-Machine-Machine-Man Interaction

Just as two individuals interact directly in
a problem solving task, two or more indi
viduals with "computer assistants" can also
interact profitably. Here, the human com
munication can be direct, as described earlier,
except that two or more programs provide
the communication linkage and may act as
intermediate processors of the data being
referenced by the users.

Figure 8 shows such an arrangement,
where the com,municants and their programs

COMPUTER·
COMPUTER
CHANNEl.

COMPUTER B

USER
STATION

are not resident in the same machine or
necessarily in the same system.

The obj ect programs may converse with
each other via the good services of the all
knowing executive, in much the same manner
as input/output service is provided.

Computer-to-computer communication
avails the remote user of the full input/output
capabilities of his machine, rather than re
stricting him to the particular type of pro
cessing or input/output capabilities of the
remote computer (e.g. the Teletype). This
capability is particularly necessary for dealing
with large amounts of data than can, for
example, be scanned on a display scope. If the
computers involved are similar, binary pro
grams and corrections can even be inter
changed from one to the other.

IMPLICATIONS FOR TIME SHARING
SYSTEM DESIGN

To achieve the system communication capa
bilities described, we must recognize implica
tions for the design logic of a time sharing
system. The actual design techniques will vary
with the type of computer and communication
devices being employed and with operational
programming constraints.

Communication Modes

In com,municating with the computer, the
user will address a program level or other
users. By program level we mean the pro
grams or parts of a program with which we
desire to communicate. In a general tim,e

BASIC
EXECUTIVE
COMMANDS

sharing system we normally have: executive
programs-basic control or service functions,
and object program or systems-operational
functions.
As shown in Figure 9, we may find levels on
levels of input communications.

A simple two-way switch for communica
tion modes may be provided, allowing inputs
to either the executive programs or object
programs. A third mode, immediate MAN
MAN communication, provides a useful ex
tension, for with this mechanism a user can
simply indicate the addressee station once.
Now, whenever he wishes direct communica
tion with these stations, he inputs the "con
ference" indicator and his message goes
through the system directly to the previously
referenced stations. This mode switch will fa
cilitate rapid shifting from MAN-MACHINE
to MAN-MAN communication and interaction.

Message Queuing, Control, and Addressing

As in any communication network, a time
sharing system must control the acceptance
and routing of MAN-MAN conversation mes
sages, particularly in respect to the competi
tion between such messages and MAN-MA
CHINE (program) output communications.
The system executive must store MAN-MAN
messages until the receiver's channel is free.
Depending upon the size of the buffer storage
and the traffic volume, a sender may get
a "busy" signal because buffer storage is
unavailable. Further, it is desirable to allow
the receiver to schedule the delivery of such a

OBJECT PROGRAM
SYSTEM MONITOR
(CONTROL)

FIGURE 9

PROGRAM COMMUNICATION
LEVELS SERVICE

CAll
OPERATIONAL
TASK AREA

SERVICE
FUNCTION
SUBSET

USER-DEFINED
INPUT PROCESS

77

78

message. Thus, he might tell the system that
he is "busy," and no extraneous messages
would be delivered to him directly. He would,
instead, be alerted if a message were waiting,
and could subsequently allow transmission at
his convenience.

A user's communication "address" is usu
ally the physical channel connecting his sta
tion to the time sharing system. Even though
several users share a station in the time shar
ing system, hard copy messages can be de
livered to a station for further hand delivery
to the specific individual concerned.

An established time sharing station network
can have mnemonics for "administrative" and
"technical" station addresses: "dial" 0 for
the computer operator, S for special priority
scheduling, C for complaint department, etc.
A station directory would be necessary in the
system to reflect dynamic updating of station
addresses as organizational responsibilities are
shifted.

Multiple addresses, of course, should be an
available feature for group communication.
A message can thus contain several station
numbers and all would receive copies of the
message. For the convenience of the system
supervisor or the computer operators, an
"ALL" address permits sending broadcast
notices to all users in the system.

Scheduling Considerations

Time sharing systems operate on the princi
ple of allocating computer time to various

SCHEDULING QUEUE

STATION 2 1

2

~ 3

4

STATION 6 5 CHANNEL 6
6

STATION B
7 CHANNElB_

B ~

9

10

users on some equitable basis. In the basic
MAN-MACHINE relationship, a given pro
gram would be operated for a single user.
This allows a one-to-one correspondence be
tween allocated time for a program and its
user. However, when a group of users is as
sociated with a single program, the question
arises as to how much operating time should
be given to that program. If time allocation
is really determined on a user basis, then a
program should be allowed to operate for n
times the normal "quantum" (slice of time
allocated per queue cycle), where n is the
number of user stations linked to the specific
program.

This can easily be done if the scheduling
queue is station oriented and the object pro
'gram is linked to each of the associated station
channels. (Figur~ 10 .) If a simple patching
is performed, where the stations are really
linked to one channel (Figure 11), the situa
tion is more questionable for providing addi
tional operating time to the program. Essen
tially, operating quanta are allocated on the
basis of an on-line response cycle (e.g. maxi
mum 2 seconds), wherein each program should
service its user at least once. If a program
provides "simultaneous" service, as in Figure
10, n quanta should be made available to the
program. In the case of Figure 11 , sequential
service is being offered to n users. In the
latter situation, only one quantum is necessary
per response cycle, since only one of the n
users can interact properly each time.

OBJECT
PROGRAM

FIGURE 10

MULTI-USER
PROGRAM SCHEDULING

SCHEDULING QUEUE

STATION 2 1
--- 2

STATION 6 [~
3

4

5 CHANNEL 6 OBJECT

STATIONS Ie 6 PROGRAM

7

8

9

10

FIGURE 11

SINGLE USER PROGRAM SCHEDULING

CONTROL OF GROUP
COMMUNICATION AND INTERACTION

Assuming that MAN-MACHINE, MEN
MACHINE, and MAN-MAN communications
should all be provided, we must also admit
that it is necessary to control such communica
tions in operational group activity. Since the
computer system acts as a central switching
center, any controls and restrictions over the
group operation can be supported or enforced
by the time sharing system executive in con
junction with the object program.

We must consider the following control
questions: Who can originate the activity?
Does the originator designate the participants?
Will any participants be restricted to specific
input or output media? Can the originator
(control station) dynamically change the oper
ting restrictions on individual participants?
Who m,ay terminate the entire operation? Can
an individual station terminate its own par
ticipation without disturbing the group? Can
any particular station in the group receive
priority processing of its input?

We can properly control a group computer
operation only when the executive program
links the user channels. If the participating
stations are looped by external hardware
methods, such that the obj ect program deals
with only "one" physical station channel, then

no selective control can be performed, except
possibly by very awkward means. For effective
control functions in a group operation, the
object program must be designed for multiple
user channels. The station originating the
activity can control the object program func
tions in terms of initiating and terminating
its operation in the time sharing system and
specifying participating stations with associ
ated input or output restrictions. Other types
of control can then be made possible primarily
by appropriate design of the obj ect program
and executive communication services.

EXPERIENCE WITH GROUP
INTERCOMMUNICATION

There are not many large, generalized time
sharing systems in existence, and specialized
multi-station systems (e.g. reservation sys
terns) are usually confined to either single
channel inquiry or data acquisition operations.
Therefore, much of the full potential of group
on-line interaction with computer programs
remains to be explored. However, some logical
aspects of group communication facilities have
manifested themselves, particularly in TSS,
the time sharing system created on the AN /
FSQ-32 computer by System Development
Corporation. This system has both local tele
type stations and terminals for remote users
employing common carrier facilities. In ad-

79

80

dition, a 2KC terminal is available for remote
computer utilization.

The three basic types of inter-station com
munication provided in TSS are: JOIN, DIAL,
and LINK.

JOIN
Several stations may be joined to a com

mon program only through the program itself.
Primarily a service for experimental games,
joining may be initiated by the originating
station (through the game program) to in
elude other specified stations. The executive
considers each designated station as a distinct,
valid user channel to the same common pro
gram. On the executive level of communica
tion, each joined station can operate almost
individually. "Almost", because certain ob
vious restrictions are made upon the joined
stations to prevent disruption of group opera
tion by an individual. Such restrictions in
clude preventing a change of program status
to a non-operating mode, i.e. debugging mode,
stop or quit status. Individual stations may
remove only themselves from the group by
quitting; only the originating station may
stop or terminate the program by executive
action.

Joining service primarily provides multi
user input service to an object program; out
put messages are directly addressed to specific
station numbers. This means that any object
program may be used to generate output mes
sages to any user station (one at a time).

The most obvious problem for "joined"
stations, namely the proper sequencing of the
multiple user access to the common program,
was not a very difficult one, since the schedul
ing logic was based on a fixed, channel table.
However, human errors, as usual, predominate
in an on-line system, and special precautions
on joining had to be made.

The originating station has to be prevented
from joining a stranger against his will, that
is, an independent user might suddenly find
himself joined with an experimental game that
he really has no part of. Thus, only inactive
(no programs loaded) stations may be joined.
As mentioned earlier, any individual joined
station (except the originator) must not issue
executive comm,ands which will disrupt the
remaining group. Those commands which can
affect the operating program status, such as
stop, quit, and debugging commands, are only
honored from the originating station. A joined

station can stop or quit hi,s individual partici
pation any time. An additional requirement
showed up when the wrong station became
joined accidentally, or if participation was to
be terminated for any joined station. If the
station was remotely located and if the sta
tion's user would not or could not effect ter
mination (quit), the joined status could not be
undone. For this reason, the UNJOIN com
mand was added. (The originating station,
obviously, may not be unjoined.)

The JOIN function has proved quite valu
able for various experimental exercises using
groups of live subjects. In several cases, the
game playing group involved remote user par
ticipation utilizing common carrier connec
tions. Supplementary direct conversation was
provided through the DIAL function described
below.

DIAL
The DIAL function permits station-to-sta

tion communication through an executive com
mand. One or more stations may be specified
as addressees and a message of limited size
(total length of one teletype line, including
command and addressees) will be delivered
immediately by the executive. Delivery is made
as soon as the receiving station's output buffer
is ready. All stations may be dialed simul
taneously (by the computer operator) for a
public broadcast.

The DIAL capacity was very essential to
TSS in its formative stage, since it was (and,
to some extent, still is) a tape dependent
system before the disk was installed. Station
communication with the computer operators
was quite heavy, and the DIAL command
proved to be a significant asset.

The main problems which the DIAL func
tion imposed, included interference with user
program output, restriction on message
lengths, and the necessity of formally giving
the DIAL command each tim,e. Very often,
formatted program output would suddenly be
interrupted by a DIAL message from another
station. This could be most annoying to the
on-line user, especially if it were a "wrong
number". Because of the limit on DIAL mes
sage lengths, messages had to be segm,ented,
and, frequently, some trailing characters of
the mesage were truncated. Improvements to
DIAL service were contingent on acquiring
more storage (disc) for executive services,
and such improvements are being made.

LINK
The linking capability enables two stations

to act in concert with an object program,
where the program has normal access to a
single user. Any station may LINK to another
station that is not currently linked. A LINK
notice appears at both stations, stating who
is linked to whom. Both stations are now in
communication with the object program, if
any, that was operating for the user that was
linked to ("linkee"). All inputs and outputs
to and from the system are immediately seen
at both stations, and a "conversation" mode
is provided for unlimited, direct communica
tion between the linked stations.

The LINK operation became at the same
time a most interesting function and an in
teresting problem. In its simple form, the
LINK function has been used for remote
demonstrations, monitoring of various on-line
operations, joint debugging, and for consul
tation and teaching services to new, remote
Users. Perhaps one of the most unexpected
payoffs from the LINK feature was the ability
for a user to operate several programs in
parallel. By linking to unused channels, the
user could initiate an operation, unlink, and
repeat this action on another channel. He may
then periodically check any of his linked
operations at will. Obviously, such an ap
proach is .. highly useful for production tasks
and bec~~es an aid to the computer operator
for background work.

The LINK function is a public one, avail
able to any user station. The problem of un
expected output interruption (as for DIAL)
was present and complicated by the fact that
the "intruder" was now able to lay hands on
the user's program. The linking station could
issue a termination (quit) and thereby destroy
the "linkee's" entire operation. Then too, cases
occurred where sensitive information was
being output and, by using the LINK function,
a stranger could see the restricted data. Al
though either of the linked stations could un
link, they could also interfere with and pre
vent that action from taking place. It was
no wonder then, that during a local demon
stration that was to be monitored remotely,
as soon as the LINK notice appeared on the
demonstrator's Teletype, he quickly panicked
and appealed to be unlinked because his visi
tors were arriving at any moment.

Another problem often occurred in using the

LINK facility for teaching. It became neces
sary for the neophyte to avoid interfering,
accidentally or otherwise, with the consult
ant's input actions. Since only unenforceable,
procedural rules could be provided, this was
not always possible. Something mOre positive,
that would render one of the linked stations
passive (in terms of input), was required.

As a result of these various problems with
linking, variations were designed for this
function. For simple monitoring (watching)
of another station's operation, a "secret" link
(SLINK) would be used. This did not cause
any disruptive printout on the monitored
station's teletype. Furthermore, no inputs
from the monitoring station could be directed
to the monitored program or seen at the
monitored teletype. In effect, this form of
linking involved only output monitoring. .

To cope with the problem of disarming any
interference from a linked station, a "passive"
link (PLINK) could be employed. This feature
prohibited all program or system inputs from
the monitored station from being honored,
although all inputs (and outputs) from the
monitoring station could be seen. This form
of control would be enabled and disabled at
will by the monitor station.

Finally, a STOP LINK command to the
system would prohibit any station from being
able to link to a user's station in any fashion.
This defense would be required in the face
of a potential invasion of privacy by linking.

All of the above three functions require
administrative approval before being activated
by the time saving executive, and thus such
commands would be forwarded to an adminis
trative channel (i.e. the computer operator)
for permission.

A remaining LINK feature which may be
implemented in the future, is to link more
than two stations together and impose a cer
tain amount of procedural control over such
group activity. Programs may behave (Le. be
debugged) but the human operators may not.
In the real world of human fallibility, it is
essential to provide proper controls, idiot
proofing, escape hatches, etc., for the effective
employment of on-line computer systems.

CONCLUSION
The on-line approach provided by time shar

ing will accelerate the usefulness of computers
many fold. Direct MAN -MACHINE inter-

81

82

action and pooling of software services will
make a computer much more flexible and re
sponsive to the needs of individual users. How
ever, it is important to consider the com
munication and interaction needs of groups
of users with computer programs, to realize
more fully the benefits of computer assistance.
By making provisions for interaction of MAN
MAN, MEN-MACHINE, etc., the human
relationship with computers will not be un
naturally restricted and greater rapport be
tween man and machine elements in computer
based systems will ensue.

REFERENCES
lCharles W. Adams, "Cottage Computing", Datama
tion, Vol. 7, Number 10, October 1961.

2Fernando J. Corbato, Marjorie Merwin-Daggett, and
Robert C. Daley, "An Experimental Time Sharing
System", Computer Center, MIT, APTPS SJCC,
1962, pp. 334-335.
3D. C. Engelbart, "Augmenting Human Intellect: A
Conceptual Framework," Stanford Research Insti
tute, Report AFOSR-3223, October 1962.
4 E. Fredkin, "The Time Sharing of Computers",
Computers and Automation, Vol. 12, November 1963,
pp. 12-20.

5J. C. R. Licklider, and Welden E. Clark, "On-Line
Man-Computer Communication", Proceedings SJCC,
1962.

6Calvin N. Mooers, "The Reactive Typewriter Pro
gram", Communications of the ACM, Vol. 6, Num
ber 1, January 1963.
7Arthur M. Rosenberg, (ed.), "Command Research
Laboratory User's Guide", System Development
Corporation, TM-1354, 1963.

aD. T. Ross, and J. E. Ward, "Picture and Push
button Languages", MIT Electronic Systems Labo
ratory, Interim Report 8436-IR-1, January 1961.

91. E. Sutherland "Sketchpad" A Man-Machine
Graphical Communication System", Proceedings
SJCC 1963.

10J. I. Schwartz, E. Coffman, C. Weissman, "A Gen
eral-Purpose Time-Sharing System", System De
velopment Corporation, SP-1499, 29 April 1964.

llHerbert M. Teager, "The Marriage of On-Line
Human Decision with' Computer Programs", MIT,
Naval Res. Logist, Quart., December 1960, pp. 379-
383.

Massachusetts Institute of Technology
Project MAC Summer Study Memoranda

lD. C. Engelbart, "A Form of Group Interaction
Easily Available on CTSS", MAC-M-96 (S63), Aug
ust 16, 1963.
2D. C. Engelbart, "Results of an Experiment in Man
Machine Interaction", MAC-M-94 (S63), August 16,
1963.

3U. Neisser, "Parallel Consoles", MAC-M-67 (S63),
August 6, 1963.
4Arthur M. Rosenberg, "Group Interaction Conferenc
ing and Consulting in the Time Sharing System",
MAC':M-45 (S63), July 29, 1963.

METHODS
MESSAGE SWITCHING PLus-Dr. Herbert F. Mitchell, Jr.. .. 84

GRAPHICAL COMMUNICATION IN AN ON-LINE SYSTEM-Donn B. Parker. 89

84

Dr. Herbert F. Mitchell, Jr.*

Message Switching Plus

INTRODUCTION

THE TERM "message switching", when refer
ring to an application of a digital computer,
has been almost exclusively related to the
switching (and related functions) of telegraph
messages. The message switching function has
crept into many fields of computer usage-in
fact, wherever communications circuits are
terminated at a digital computer. This fact
makes it mandatory that we enlarge our con
cept of message switching to include these
other applications. In particular, we need to
see what implications on hardware and soft
ware design and standards this enlarged view
may have.

The marriage of communications and com
puters is taking many forms. Among the more
easily recognizable are: (1) query networks
(reservations, stock market statistics, credit,
library reference, any inventory situation);
(2) data collection networks (personnel "time"
data, move station data on assembly lines,
instrumentation data in a process control en
vironment, location of shipments in transpor
tation systems); (3) time sharing of com
puters among remote users (Project-MAC
type); (4) man-console-computer association
in the solution of unstructured problems (the
so-called on-line computing technique); (5)
computer-to-computer hook,.ups for sharing
load or dividing processing functions; (6) re
mote distribution of the results of automatic
data processing; and (7) the switching of
telegraph messages.

Each of these many forms of communica-

*Vice President, Advance Systems Development
The Bunker-Ramo Corporation.

tions involving computers has its own pecu
liarities, and yet there are many functions and
features which are common to several or to
all. It would appear timely to assess these
features for their commonality and their pecu
liarities in order to guide those responsible for
the development of new hardware, new soft
ware, and new techniques in their search for
efficient and compatible solutions.

This paper describes a computer controlled
communications network which contains all
elements necessary to serve the common on
line applications involving computers and com
munications, and can time share its facilities
among any combination of such applications.

"UNIVERSAL" COMPUTER
CONTROLLED COMMUNICATIONS

NETWORK
The parent network from which any of the

above enumerated systems may be derived is
simple to describe. A digital computer is pro
vided with a multiplicity of input/output data
channels, some of which terminate in commu
nications lines. Other terminations include a
data bank, direct input devices, direct output
devices, consoles, and other computers. The
communications lines, in turn, may terminate
at input devices,·· output devices, (consoles,
telegraph stations), another computer's com
munications terminal, or another telegraph
central. See Figure 1.

To the best of the author's knowledge, no
single computer installation to date involves
all elements of this parent network. Each
application enumerated above is satisfied with
a subset of these elements. The question may
properly be asked if there. is any need to con-

Consoles Data Satellite

Bank Computers

~~

~"

Direct Input ... ---.. DIGITAL Direct Output
Devices

....
Devices COMPUTER

o.

~,

Consoles ~ COMMUNI- h0 Input / Output
CATIONS Devices

TERMINAL

Telegraph Communications Telegraph
Stations Terminal of Centrals

Another Digital
Computer

FIGURE 1

"UNIVERSAL" COMPUTER-CONTROLLED COMMUNICATIONS NETWORK

sider the parent network as one for which a
demand will arise.

As the techniques and hardware for utiliz
ing a digital computer from a remote location
become more capable and less costly-and both
trends are strong today-the pressure to use
existing facilities more efficiently will grow.
For example, much of the telegraph traffic
handled by the common carriers is carried
over voice-grade lines, but at telegraph speeds.
Yet in many systems, the line costs are the
largest single element in the user's budget. If
the user could terminate these long lines in a
computer already present for the other neces
sary functions, the traffic rate over the high
cost lines could be increased 30 fold with only
a three times increase in tariff. Users employ
ing multi-circuit facilities at reduced tariffs
(such as Telpak) could realize such increase
in traffic carrying capacity at no increase in
cost.

The need to time share the communications
lines among several functions within an or
ganization is developing rapidly-not only for
economic reasons, but to capture vital infor-

mation for use in several application areas.
Such time sharing becomes feasible only if
the full network of Figure 1 can be implemen
ted. The problems to be solved before these
goals can be reached are many, but not insur
mountable.

MESSAGE SWITCHING IN THE
"UNIVERSAL" NETWORK

Messages may originate from many types
of input devices-instruments, radio receivers,
A-D converters, keyboard, paper-tape readers,
card readers,. magnetic tape readers, and com
puters. The network must control the initiation
of the message, or be able to respond to an
arbitrary initiation. The connecting commu
nications line may be simplex, half-duplex, or
full-duplex. The simplex line permits trans-'
mission in one direction only-out-station to
computer or computer to out-station. The fuIl
duplex line contains two independent simplex
circuits, one for each direction of transmis
sion. The half-duplex line contains only one
circuit, but the direction of transmission is
reversible. Since both tr.ansmitting and receiv-

85

86

ing stations must reverse direction simulta
neously, some means of controlling the rever
sals must be provided in either out-station or
computer.

In one type of controlled operation (such as
telegraph out-stations on a "party" line), the
computer is idle in the transmit mode, where
as the out-station is idle in the receive mode.
Periodically, the computer sends a polling
symbol unique to the out-station and reverses
its mode. Upon recognizing its "name" symbol,
the out-station reverses its mode, if opera
tional, and responds within a given period of
time. If the out-station is operational but has
no traffic to transmit, it must respond to the
polling symbol with a unique no-traffic symbol.
If the response is a message, the first message
character or start-of-message symbol must be
different from the no-traffic symbol. There
must be a unique end-of-message symbol. The
line is held by the polled out-station until (a)
it generates a no-traffic symbol, (b) it gen
erates an end-of-message symbol, or (c) it
generates no symbol during the allowed re
sponding time. The line reverts to the control
of the computer upon the occurrence of one
of the situations (a), (b), or (c), and remains
under computer control until the computer
transmits another polling symbol. Many out
stations may share the same line, but only one
may transmit at a time.

In a second type of controlled operation
(such as query networks using "party" lines),
the computer is idle in the receive mode and
the out-station is idle in the transmit mode. A
local controller performs the function analo
gous to polling, which permits each connected
out-station, in turn, to gain access to the line
when it is seeking to transmit. Once the access
has been granted, the controller locks on to
the selected out-station until the return mes
sage from the computer to that out-station has
been completed, whereupon both computer
and out-station revert to their respective idle
modes.

In the uncontrolled mode, the input station
may initiate a message at any time. Opera
tionally, this mode is equivalent to that state
of the controlled mode between transmission
of a polling symbol and the occurrence of a
terminating situation (a) , (b), or (c). It is
obvious that only one out-station may b~
allowed this mode of operation on any line,
and the computer has no control (on this line)
of the input station.

Where traffic requirements exceed the ca
pacity of one line, or where message lengths
allow one input station to eclipse another of
higher priority, it may be advantageous to
route polling symbols over one line connected
to many out-stations, whereas the traffic to or
from these stations is routed over several lines.

To prevent undue periods of idleness for a
line, it is desirable for the computer to re
spond to a transmission (other than the no
traffic symbol) soon after termination of that
transmission. If the response is a return mes
sage, it m.ay be desirable to hold the line open
until the return message is ready. In other
cases, the computer response is simply a
"received OK" or "not received OK" symbol.
In the latter situation, the computer does
nothing with the message, expecting a re
transmission.

If the connecting communications line is a
single circuit (simplex or half-duplex), the in
put station can pre-empt the line for indeterm
inate periods, as far as computer control is
concerned. During such periods, traffic may be
entered by the station which has to be received,
recognized, and appropriately dealt with by
the computer. The computer must be able, in
general, to ascertain: (a) the identity of the
originator, (b) the start of the message, (c)
the end of them.essage, and (d) that portion
of the message which will determine the na
ture of the computer's handling of the message.

In establishing identity of the originator,
the line connection at the computer will suf
fice if only one originator is possible on this
line. Otherwise, an originator identity symbol
must be present in a recognizable place in
the message. As far as possible, out-station
identifying symbols should be automatically
generated and always present. Thus responses
and return messages can be assured of return
to the originating input station.

A start-of-message symbol is not mandatory,
since the first character to follow an end-of
message symbol, a polling symbol, or a start
up condition can be assumed to be the first
character of a new message (except for the
unique no-traffic symbol, if used). Such a
symbol is useful, however, to guard against
accidental or unintentional transmissions, and
to expedite synchronization following a line
outage.

The end-of-message symbol is mandatory in
controlled-mode operation, and highly desir
able, if not mandatory, in the uncontrolled

mode. An exception is permitted if all mes
sage traffic has the same length of message,
in which case the end of message is implicit.

From the message-switching standpoint, the
most vital part of the message is that which
contains the characters which determine the
computer's handling. These may be identified
by position, such as the first characters of the
message, or be a set delineated by special start
of-address and/or end-of-address symbols. If
explicitly addressed messages are combined
with implicitly addressed messages, distinc
tive start-of-message symbols are normally
required. A simple directory reference should
suffice to categorize the message and initiate
the appropriate action on the part of the com,
puter. This action may take many forms, of
which the following are illustrative:

1. Dispatch the message to one or more out
going lines, taking cognizance of indicated
priority and executing all required mes
sage edit, audit, and statistical recording
operations.

2. Store the message for later treatment.
3. Acknowledge receipt of the message to the

originator.
4. Send rej ection message to the originator.
5. Perform reference to data bank, using

key compiled from "address" characters
and/or directory entry.

6. Establish a status, depending upon the
content of the message, the directory,
and/or the data bank entry.

7. Generate one or more messages to known
addresses and/or originator depending
upon the resulting status determination
and/ or including the content of the data
bank entry.

8. Initiate a compiler, assembler, or correc
tion procedure upon designated program
elements.

9. Retrieve and initiate a computation with
a designated program.

10. Update a status record for all actions
taken on this message.

At the destination end of the communica
tions line, the receiving out-station may be the
counterpart of some input station, or may be
a "read only" station. If the latter, there must
be a way for the computer to determine if the
device is operational, such as its response to
the receipt of the message. If the connected
line is half-duplex under controlled operation,

the out-station is normally in the receive mode
when idle. However, in the idle state it is
responsive only to its unique "name" symbol.
Upon recognizing this, it prepares itself to
receive and record the message, monitoring
the character stream for the end-of-message
symbol. When the end-of-message is recog
nized, the station places itself in the transmit
mode, returns a "received OK" or "received
not OK" symbol, and then reverts to the
receive-idle mode. The computer, upon send
ing the end-of-message symbol, places itself
in the receive mode until the station response
is recognized, or until a time-out occurs. If
the response is "received not OK", the corn
puter is normally programmed to repeat the
message transmission at least once, before
indicating trouble.

If the out-station permits both input and
output, the line must be either half or full
duplex. If half-duplex, one of the two types
of controlled modes must be used. If the com
puter controls the idle line, it may transmit
either a polling symbol to a particular out
station in turn, or a directed message to a
particular out-station. The out-station be
haves as an input device if it recognizes its
polling code, or as an output device if it recog
nizes its directed code. If the local controller
controls the idle line, the line must be held
for the selected device. until the computer
returns its answer message.

CONCLUSIONS
I t should be apparent from the foregoing

that there needs to be a fairly high degree of
compatibility in the hardware, software, and
techniques of operating a "universal" compu
ter-controlled communications network. Cer
tain restrictions are immediately apparent. A
given communications line must operate in a
specific mode at a specific speed, and use a
homogeneous character set. If the line is to be
shared by stations of several kinds, the re
sponse characteristics of all connected stations
to a given symbol must be identical or mu
tually exclusive.

The computer program can easily be made
to be "line sensitive". That is, it may expect
telegraph message traffic over one line, special
key-set messages over another, and arbitrary
bit patterns over still another. However, if
full advantage is to be taken of leased line
sharing, and particularly if several kinds of

87

88

message traffic are to be routed over public
lines, it becomes important to standardize on
character set, control symbols, and operational
mode. When a message has been received by
the computer, it must contain all features
which will enable it to be processed, dis
patched, and the appropriate response made
to the originator, depending upon its content
alone. Input line identification should be re
placed by identification symbols generated at
point of origin, or en route. The handling of
the message should be independent of the
manner in which the message reaches the
computer.

While the computer is capable of translating
one character set into another, and respond
ing to several sets of symbols with the same
meaning, such requirements lead to more com
plex programs, longer throughput time, larger
memory requirements, and greater chances of

error, both programming and operational. The
system should be designed to operate on a
given character set (ASCII is the official
standard), one set of internally generated con
trol symbols, and lines of as few speeds and
mode s as possible. Where terminal devices
are incompatible with the above, translation
hardware should be prov.ided at the interface
to the system. In the interests of system main
tainability, record keeping, and updating, all
anomolous conditions unavoidably present at
the outset should be considered temporary,
and system design should be such that stand
ards will eventually be observed in all areas
of the system-hardware, software, and oper
ational techniques. The increase in system
performance, ease of updating, and smooth
ness of operation that can result from such
observance of standards will more than repay
the investment.

Donn B. Parker*

Graphical Communication in an
On-Line System

INTRODUCTION

PROCESSING GRAPHICAL data is a major appli
cation of digital computers. This data is usu
ally treated in a highly stylized fashion inte
grated into specific problem solutions. Treating
this data in a digitized "picture" type repre
sentation and making it the subject of com
munication between a man and a computer in
the man's own real-time frame opens a new
dimension of applying computers in solving
design problems. Presented here are the sig
nificant parts of an idealized graphic system
which, if implemented, should make this
possible in an economical, sophisticated, and
practical way. This system should prove to be
a useful design and problem solving tool. The
basic hardware and software provides a basic
drawing capability but only as a means to
achieve real design objectives. An interface
with application programs and the capability
to label an? treat the data as "things", not
merely as hne segments, provides the design
and problem-solving capabilities.

OTHER SYSTEMS AND BACKGROUND
Already implemented graphic systems exist

which meet some of the goals and purposes
of this proposed system in various degrees.
Such systems as the General Motors Research
DACl Systeml and the RAND Table2 are used
for research and development with very basic
and general software. The MIT Sketchpad3

has taken· an interesting approach for making
drawings and doing design.

The proposed system described here has
been influenced by the above systems and also

by systems developed by ITEK Corporation
and Charles Adams Associates4

•

GOALS AND EXAMPLE OF USE
The goals of this graphic system in provid

ing a practical and powerful tool for general
design activity are economy, ease of use and
availability. The console must be comfo;table
to use, an obvious advantage over other meth
ods and tools, and minimize human stress. The
basic features, besides interfacing with design
application programs, must provide powerful
and flexible drawing capability in the sense of
formal engineering drawing, revising draw
ings, engineering sketching, and a variety of
other graphic uses some of which are as yet
not conceived.

An example of its use might consist of the
following. One of several consoles, connected
to a central computer, is installed in an office
shared by four design engineers. Information
from a master file relative to their project is
available for display by console request. Each
engineer could make his own formal engineer
ing drawings directly on the console. He
rarely needs a drawing on paper, and when he
does, discards it after use. He still makes
sketches at his desk with paper and pencil
but quickly redraws the useful ones on the
console cathode ray tube (CRT) during the
design process and saves information in his
own working file in the mass storage of the
computer. He confers with an engineer at
another console by telephone while they are
both viewing a drawing and making design

*Staff Specialist, Control Data Corporation.

89

90

changes. Many computer programs requested
from the consoles aid them in their design
and analysis.

HARDWARE AND SOFTWARE
ORGANIZATION

The console for this system consists of three
principal elements-a large cathode ray tube
(CRT), a keyboard, and a light pen. A large,
relatively flat faced, circular CRT, with reso
lution for one million discrete beam positions,
is set into a console in a hinged frame so that
it may be positioned at a variety of angles in
the manner of a drawing board. The CRT is
protected by a plate of glass. The console is
convertible to desk or drafting table heights.

A light pen of normal pen size, with a
microswitch on its shank to turn it on and off,
is connected to a photomultiplier tube with a
fiber optics cable. The concept of the light pen
and its operation are well knowns, 6.

The keyboard is movable and has a mag
netic backing. It may be set on.a table surface
to the left or the right of the user or adj acent
to the CRT. The objective of its design is to
keep the mechanical features to a minimum
thereby reducing the cost and increasing the
potential reliability of the system. Two of the
buttons on the keyboard operate in parallel;
one on each side of the keyboard, for symmetric
availability of a major function. One button
operates in parallel with the light pen micro
switch. The number of buttons is minimized
to keep operation of the console simple. Each
button activates an interrupt line to the com
puter. Each is spring-loaded and non-latching.
Assignment of button functions is software
controlled, and removable tabs explain their
use.

Other possible mechanical features such as
foot pedals, alphameric keyboard or other
keys are not included since they complicate
console operation and increase console costs.
Also, adequate features are easily introduced
by software on the CRT. Reversal of these
decisions could result from future experience.

Several consoles are driven by a controller
which contains a display memory, light pen
interrupt circuitry, and optional character
generation circuitry. The display memory
stores the CRT beam driving instructions,
sequencing instructions, and console designa
tion instructions. The beam instructions are
incremental in X and Y from the last beam
position, or they instruct beam movement to

an absolute position. The amount of display
memory is assigned to each console as needed.
The rate of generation is 30 to 40 frames per
second to produce a relatively flicker free pic
ture. The amount of beam travel per frame
need not be excessive because of the limited
capability of the user to assimilate and make
use of detailed visual information and because
of flexibility of software to compensate for
this limitation. The display memory has its
most important function as a buffer to give
the consoles a complete off-line status except
when an external interrupt initiates changes
in the display. Capability to display from com
puter memory is also required for high speed
display changes, such as light pen tracking.

One or more controllers may be used in a
computer configuration, depending on the ca
pacity and speed. The entire computer capa
bility may be used to serve consoles, or the
computer graphics capability may be time
shared with other peripheral devices and batch
mode operation. The computer requirements
in speed, memory capacity, and secondary
random access storage capacity are consider
able in view of the storage needed for com
plex digitized drawings and the major pro
grammed features to be described.

The graphics software consists of the resi
dent executive to process the console inter
rupts, basic subroutine execution, display
generating routines, application interface,
applications programs, and library sub-rou
tines. The maj or aspects of the software will
be presented from the functional point of view
in terms of console features and capabilities.

The graphic console features, when speci
fied in all detail, constitute a language which
could be presented in a formal way. This is
a manual language in contrast to spoken or
programming languages. As graphics systems
are developed and used, several such manual
languages will emerge along with familiar
problems of attempts at standardization. It is
hoped that experience and insight already
gained in language standardization will mini
mize this problem. Formation of users' groups,
communication of graphic construction algo
rithms, and an Association for Computing
Machinery special interest group are already
foreseen for the near future.

BASIC FEATURES
A concept of precise, literal drawing is

employed. Graphics are described in an analy-

tic geometry representation, and topological
freedoms are not allowed, with one exception.
When the pen is pointing close to a graphic
element or to one of its parameters, it is
assumed that it is pointing at that element
or parameter in an exact analytic geometric
sense. If the pen is pointing close to the end
of a line segment, the computer assumes it is
not pointing at the line but at the exact end
point represented in the computer by coordi
nate values to the full precision capability of
the computer. This is one of the most signif
icant features of the system. Although the
construction of graphics is instigated and
viewed by a man at very low precision, the
computer completes the construction and saves
it at a precision far beyond that of the man's
and the console equipment's capabilities.

The basic units of data are X and Y coordi
nate values, lengths, radii, angles, address
pointers, and alphameric characters. These
are combined with geometric, text, logical,
and display codes to form entities such as
straight line segment, circle, text, and group
(see Table 1 L A distinction is made between
a point entity which is a temporary parameter
for graphic construction and the dot entity
which is a point entity formally introduced as
part of the drawing.

The CRT display surface is divided into two
types of regions under control of the basic
software, but it can be changed by application
programs. The working region is a central
rectangular or circular area outlined by a dis
played frame entity. Graphic construction is
carried out only in this region. The second is
called the control region and it constitutes the
remainder of the display surface. It is used
to display light button and light register en
tities also under control of the basic software
and changeable by application programs.

TABLE 1

LIGHT REGISTERS

Xl TemporarYl Label Display
Yl TemporarY2 Label Input
X2 Base Angle Message Register
Y2 Angle l X Frame Location

Lengthl Angle2 Y Frame Location
Length2 Zoom Index

A light button is a displayed group of al
phameric and/or geometric entities which
when selected, by pointing the light pen at
any part of it, causes an ON condition. For
example, the type of geometric entity desired
for construction is indicated by selecting the
appropriate line or dot representing a conic
section displayed in a two-dimensional pro
j ection of a cone. (See Figure 1 L

E

L

0 Dot
L Straight Line Segment
C Circle
E Ellipse
p Parabola

H Hyperbola

FIGURE

GEOMETRIC LIGHT BUTTON AND CODE MEANINGS

A light register entity is a blank space for
display of a number, label, or message with
its name displayed to the left. The light pen
is used to pick a register for use by pointing
at any part of its displayed name. Information
may be placed in a light register by either the
user or the computer. Light buttons control
inter-register transfers, filling, clearing, and
locking. Message registers contain alphameric
information for man-computer communica
tion. Light registers may be added, deleted,
modified, or moved by application programs,
since they and their contents are part of the
data list in the computer. Table 1 lists the
light registers provided by the basic software
and shows the extensiveness of register use
and insight into console features.

LIGHT PEN PICKING
The selection of displayed entities as para

meters for use in further construction is the
most frequently performed function and
should be the simplest to perform. The light

91

92

pen is pointed at an entity, the microswitch is
turned on and then off, and the entity is
picked. Entities in the working region and
light registers in the control region may be
picked. A successful pick is indicated by
momentary light intensification of the entity
picked followed by the display of a character
next to it or surrounding it (in the case of a
dot). A light button is selected (as opposed
to picked) by the light pen to cause an action
to take place. Momentary light intensification
of the light button shows computer acknowl
edgement of the selection. When an entity is
picked, displayable parameters of the entity
such as the center of a circle or the focus of
a parabolic arc are also displayed as small,
low intensity crosses.

A large number of entities may be picked
before they are used in a last-in-first-used
order. Higher levels of picking are performed
by subsequent picking of already picked items.
Picking a circle which has already been picked
causes the group of entities which contains
the circle to be picked as a group (not as in
dividual entities). The circle remains sepa
rately picked. The erase and other functions
will change the status of items. (See Table 21.

ENTITY TYPES
An entity may be created in many ways,

but only the basic parameters are used to
store and define the entity. These parameters
are chosen on the basis of minimizing storage
requirements and making equation represen
tations easy to derive. The entity types avail
able in the system and the basic parameters
which describe them are listed in Table 3.

TABLE 2

TABLE 3

ENTITY TYPES

Geometric

D~ ~ ~

Straight Line Segment X I, Y I; X2 , Y 2'

Horizontal Line Segment XI, YI; X2 •

Vertical Line Segment X I, Y I; Y 2.

Circle X, Y (center); R (radius).

Circle Arc

Ellipse

Ellipse Arc

Parabolic Arc

Hyperbolic Arc

Straight Line Segment
String

Text

Group

Control Region
Register
Light Button
Frame
Application

Circle parameters; XI, YI.
(beginning point, counter
clockwise); X2 , Y 2 (end point).
X, Y (center); A (semi-major axis
length); B (semi-minor axis
length); L (angle of major axis).

Ellipse Parameters; XI, YI; X2 ,

Y 2 (circle arc sense).
X, Y (vertex); L (axis angle); F
(focal distance); XI, YI, X2 , Y2

(circle arc sense).
X, Y (center point); A
transverse radius); B (conjugate
radius); L (angle of major axis);
X I, Y I, X2 , Y 2 (ci rcle arc sense).

Xc, Yo, XI, YI, ..• Xn, Yn.

X, Y (lower left corner of first
character); string of BCD
characters.
List of pOinter addresses of
group members.
Control Region location.
Register name; contents.
Light button name.
X, Y (center point).
Parameters assigned by
application programs.

STATES OF ENTITIES

Erased
Non-Displayable
Displayable

Parameter-Picked
Picked
Group Picked

No longer exists.

Exists in the computer data list but is not displayable.
Exists and is available for display.
Is currently displayed, and one of its parameters is in picked status.
Is currently displayed as picked and is in picked status.
Is currently displayed as picked, is not itself necessarily picked, but the group
or higher level group of which it is a member is picked.

The geometric entities are limited to planar
conics. Higher degree curves may be described
by fitted conic arcs or by the straight line
segment string. Three-dimensional graphics
may be described by their two - dimensional
proj ections.

Several line intensities and standard line
types may be selected by light buttons. Several
extra line type buttons are left unassigned
to provide line types for the user or applica
tion program designation. Other light buttons
provide for nondisplay and redisplay by line
type or line intensity. For example, a drawing
may be studied with all center lines or all
dimension lines temporarily non-displayed.

DATA FORMAT
The data format of graphics in the com

puter is organized to optimize the compromise
between data compactness, ease of use, and
flexibility. Some of the n-Element Component
and Plex ideas of Ross and Rodriguez7 are
used. The active data list for a single console
is stored in a combination of high speed mem
ory and secondary storage in a relative ad
dressing, blocked structure.

An entity is headed by a key field identify
ing the type of entity, line type, line intensity
and other parameters defining its current

..

-" Group

Label

Pointer -.--- Pointer

r-- Pointer ~

....--

--.. Group

Label

Pointer ~

....- Pointer

~ Pointer

~

-4--

04---

status. The next field is a label with contents
specified by the console user or application
program. Its many uses include attaching
design significance to the entity or superim
posing a secondary list structure. The third
field is a pointer which contains' the relative
address of the parent entity if one exists (See
Figure 2), The remaining fields contain the
parameters listed in Table 4.

The data structure rna.kes it possible to
locate a group in a tree structure from know
ing a member of the group or from knowing
the label attached to a group entity. Entities
may be grouped by the user at the console
or by application programs. There are three
methods of grouping entities for various uses:
assigning common line types or intensities,
picking entities for a group entity, and attach
ing labels to entities. Picking groups is facili
tated by a set of light buttons providing for
top group picking or picking in incremental
steps.

A further breakdown of the data structure
is possible by separating the X and Y values
in a point table and providing pointers in an
entity array to locate its point parameters.
There seems to be no advantage in doing this
in a two-dimensional system either in storage
savings or program simplification.

Group

Label

Pointer

Pointer , Dot

Pointer Label

Pointer -
Group ~ X

Label y

Pointer

Pointer

Pointer ... Circle

Label

Group Pointer -
Label X

Pointer y

Pointer R

Pointer

Pointer

FIGURE 2 TREE STRUCTURE OF GROUPS

93

94

ORDER DEPENDENCE
The console features, especially order de

pendence to be described here, are sophistica
ted and require a significant amount of learn
ing and experience for optimum use. The
effort required to identify and correct errors
is minimized. A programmed instruction ap
plication program is specified to teach new
users and is available at any time for review
instruction during console use. The graphic
capability and software controlled buttons
and registers render the system ideal for this
technique.

A concept of order dependent parameter
specification is employed in ambiguous cases
to impart necessary meanings. The order in
which parameters are picked determines how
they are to be used when more than one way
is possible. If two points are picked and the
construction of a circle is requested, the first
is the center and the second is a locus point.
If the user forgets the order imposed mean
ing, he guesses and if wrong, erases and
starts again. This avoids the necessity for
parameter descriptor buttons for center, locus,
end point, focus, vertex, radius, and axis.
Table 4 shows all the allowed combinations
and ordering of parameters to construct a
circle. The numbers indicate order depen
dence, and X's indicate order independence.
Combinations are read vertically.

TABLE 4

CIRCLE CONSTRUCTION PARAMETERS

Point or X, Y Registers X X X
Point or X, Y Registers 2 X
Point or X, Y Registers X
Length Register X X
Straight Line Segment X X X
Straight Line Segment X X

Straight Line Segment X

It is impossible to specify too many param
eters for a construction because only the first
set of meaningful parameters encountered are
used in a last-in-first-used basis. Based on the
first acceptable parameter encountered in this
order, all other non-meaningful parameters
are ignored. Table 5 shows several push-down-

TABLE 5

PUSH DOWN PARAMETER LISTS FOR
CIRCLE CONSTRUCTION

*Point (2)*Point *Point *Line
*Point (l)*Point *Line *Point

*Point Line Point Point
*Line *Line *Point *Line

Line *Point *Line *Line
*Point Line Line *Line

*Point * L. Register *Line *L. Register

* L. Register *Point L. Register Line

---- * Point * Point

from-the-top lists for the circle construction.
An asterisk indicates the chosen parameters.

If there are not enough meaningful param
eters given when the construction is specified
by a light button, "MORE" appears in the
message register. Construction proceeds when
enough parameters have been picked. Thus, it
does not matter when the construction button
is selected relative to the parameter picking
in this case.

Entities are constructed independently of
the limiting frame of the working region.
Thus, an entity can be constructed without
appearing in the working region or it may
only partially appear. An exception is, for
open conics (hyperbola and parabola) only the
arcs which lie inside the working region are
created. Generally, arcs are constructed by
creating the whole conic (in the working re
gion) and then picking the conic and end
points as parameters to the arc construction.

When three intersecting lines are used as
parameters to construct a circle, several
choices are possible: the inscribed circle tan
gent to the lines, the three exterior circles
tangent to the lines, and the circle with the
three line intersections on its locus. When a
construction has been requested, one of the
possible cases is displayed. The user must
press the accept button to make the entity
permanent, press the reject button to make
it disappear, or press the alternate button to
display another case for acceptance or rej ec
tion. Only one case may be accepted for any
one construction procedure.

TRANSFORMATIONS
AND CONSTRAINTS

Transformations provided by the basic soft
ware and directly available to the console user ..

and application programs are: similitude (uni
form compression or expansion on a given
point), translation, and the linear, orthogonal
transformations rotate and reflect. This pro
vides the user with the facility to change the
scale of drawings or parts of drawings. Enti
ties and groups of entities may be moved, ro
tated, and reflected. Only one half of a sym
metric drawing need be drawn; and with the
selection of a button, it may be reflected to
produce the completed drawing.

Semi-precision drawing can be done by im
posing constraints on freehand light pen
usage. With the horizontal hold button de
pressed, the user can pick the tracking cross
in the working region, and the drawing point
normally traveling with the cross is con
strained to move in a straight line as the pen
is moved at the angle specified in the base
angle register. The vertical hold button and
angle hold button work similarly, one normal
to the base angle and the other at an angle
specified by an angle register. The actual cre
ation of the straight line is accomplished by
selecting a second button and accepting or
rejecting that which is displayed.

Animation is to be avoided when possible
because of the computer time required to dis
play the intermediate positions of entities as
they are transformed. A transform causes an
original form to disappear and reappear in its
final state. A transform-a-copy operation re
tains the original form and the new one
appears. Animation may be valuable in cer
tain applications of dynamic design analysis
such as mechanical linkage clearance study.
This may be accomplished with application
programs.

DRAWING SURFACE
While considering the transformations and

data structure, it is logical to introduce the
concept of the drawing surface. This is the
two-dimensional, imaginary surface on which
all graphics are described. It is limited in size
and detail by the range of the number repre
sentation and precision of the computer. In
engineering design applications involving the
drawing of objects, the drawing surface is
virtually unlimited in size and precision when
the computer has a 48 bit word, floating point
number representation. The working region
of the CRT is used to view parts or all of the
graphics on the drawing surface just as a
variable magnification glass might be moved

over a map to view parts of it in detail. The
zoom register, frame location registers, frame
picking, and the translate transformation are
used for this purpose.

The drawing surface can be looked upon as
an imaginary two-dimensional computer stor
age where the contents of specified X, Y loca
tions are points. The concept of drawing or
subdrawing (groups of entities) relocatability
is useful. Relocatability is simply defined by
the translate transformation. A drawing may
be stored in secondary storage such as mag
netic tape and located anywhere on the draw
ing surface. After it is brought into computer
memory, it may be moved to a convenient
location. A drawing overlapping another is
not prohibited. It is important to keep in mind
the distinct difference between moving graph
ics on the drawing sUFface and moving the
working surface frame of view on the draw
ing surface. Both actions are performed using
the translate transformation, but the graphics
to be moved are picked in the former case, and
the working surface frame is picked in the
latter case.

There is danger in loss of accuracy due to
relocation. A drawing could be moved to a
region of very high X and Y values and then
returned to a region closer to the origin with
complete loss of accuracy. Scaling could be of
assistance, but it adds unnecessary complexity
in most cases which can be kept under control
by working close enough to the origin to main ..
tain required accuracy. A non-linear drawing
surface might solve this problem without sig
nificant additional complexity, but it is not
considered in this paper. Overflowing the
range of the number representation is indi
cated as an error in the message register.
However, modulo treatment of the number
range makes the drawing surface cylindrical
in X and independently cylindrical in Y.

DRAWING SCALE
Drawing scale is normally an unnecessary

consideration except when hard copy output
is being prepared. Drawings are usually made
in actual dimensions without any difficulty
because of the vast range of the drawing sur
face as compared to the real world of objects
to be drawn. The zoom function changes the
scale of drawings, but only for visual purposes
on a temporary basis which does not affect
the data list. When a drawing is to be output
in hard copy form., the user must change the

95

96

scale of auxiliary views with the similitude
transformation as needed, add scaling notes
to the drawing, and indicate the scale to be
used by the output program.

PRINTING
Alphameric printing capability deserves an

important place in a graphical system. Engi
neering drawings can contain very large vol
umes of notes, labels, and dimensions. Print
ing capability is provided in the form of a
raster of alphamerics displayed in the control
region. The. procedure consists of picking a
starting point, picking an angle if other than
the base angle, and then employing a hunt
and-pick mode of character selection, all done
with the light pen. Associated light buttons
are also needed for margin control, font selec
tion, and roll-up or roll-down carriage return.
All characters are placed in a single text en
tity until an end text light button is selected.
The alphameric raster is displayed in the con
trol region only when selected by a keyboard
button, and it disappears when the end text
light button is selected. Erasure is done at
the character level by the erase function. N u
meric information is put into a picked light
register from the right end and shifted left
for each new digit or decimal point selected.
The sign is entered independently in a fixed
location.

There are several advantages to this type
of software provided printing feature in con
trast to a hardware keyboard. Advantages
include economic savings in hardware, re
duced maintenance problems, and increased
console reliability. There is also an advantage
in its use. All of the user's attention remains
on the CRT and light pen. He does not have
to put the pen down and turn to a keyboard.
Printing and drawing graphics are highly
intermixed in design making it an advantage
for the two types of operations to be com
patible.

DRAWING AIDS
Additional drawing aids are available in

a separately maintained subroutine library.
Light buttons are provided by the basic soft
ware to select them.

1. Display the intersection(s) of two entities.
2. Create a general conic arc given one of the

following sets of five parameters: five
points; four points and a tangent angle at

one of the points; and three points and tan
gent angles at two of the points.

3. Create a curve of one or more conic arcs
which is approximately parallel to a given
conic and a distance + D from it. The maxi
mum error is displayed.

4. Compute the length of a conic or conic arc.
5. Display a point on a conic a given distance

from a given point.
6. Compute the tangent angle at a point on

a conic.
7. Display a straight line segment from a

point to a conic and tangent to the conic.
S. Display a straight line segment tangent to

two circles.
9. Construct a circular fillet given a radius

and two line segments sharing a common
end point~
Numeric results are also put into light

registers. Order dependence is used exten
sively. When multiple results are possible, the
user may select any or all by button control.
Errors, input deficiencies, non-existence of
results, and results off the working region or
drawing surface are indicated in the message
register.

CALCULATOR
An additional basic software feature is desk

calculator-type capability. The basic oper
ations including square root, multiply-add,
and multiply-subtract, are handled by light
buttons. The operand registers and result
register are picked in an order-dependent se
quence followed by selecting the operation
which causes the action to be performed, all
done with the light pen.

Additional functions including logarithmic,
exponential powers, trigonometric, and fre
quently used constants are also easy to supply
in light button form. The calculator set of
light buttons is a good example of a control
region feature which is not needed at all
times, but can be displayed under control of
a keyboard button when needed; thus con
serving both control region space and CRT
beam control instructions.

MACRO
One of the more annoying console oper

ations is performing the same sequence of
operations very frequently. The normal con
sole features are micro in nature to provide
flexibility. Application programs can be writ-

ten to provide automatic execution of sets of
operations, but not as easily and quickly as
sometimes needed. A drawing aid subroutine
is provided with which the user may define
macro console operations as he needs them
from sequences of basic operations.

The sequence of operations to define and
use a macro follows:

1 • Pick the input parameters.
2. Select the macro definition button.
3. Select two characters and place in a box to

be used as the macro button.
4. Step through the sequence of operations to

be defined.
s. Select the macro definition button to termi

nate the definition. The box disappears leav
ing the macro button displayed.

6. The macro may now be used by picking the
appropriate parameters and selecting the
macro button.

Note tha t no parameters may be picked
intermediate to the macro operation. When
this is required, several macros must be de
fined and used in sequence and separated by
parameter picking.

An example shows the usefulness of this
feature. A copy of a template pattern such as
a standard screw (represented by a group of
entities in a standard template drawing on
the drawing surface) is to be placed at the
proper angle into the drawing under construc
tion. A point at the base of a screw head is
picked, the point of final position in the draw
ing is picked, and another point is picked such
that the angle defined by the last two points
is the desired angle for the screw centerline.
The macro define button is selected, and the
letters SC are placed in the macro button box
in the control region. The operations perform
ing the translate-a-copy are now performed.
The first picked point is picked again to cause
the whole group defining the screw to be
picked, the X, Y registers containing the
coordinate values of the second point are
picked, the copy of the screw is moved to over
lay the translate parameter points, 'the copy of
the screw and the last two points are repicked,
and the screw is rotated through the required
angle. The macro define button is selected to
complete the definition. A copy of any group
of entities may now be moved and rotated by
picking the three prescribed points in order.

INPUT AND OUTPUT
Input and output between secondary mass

storage and the computer memory (drawing
surface) for temporary and permanent stor
age is accomplished in the basic software by
using a two file system. A permanent file of
drawings is available to the user based on
drawing titles. The file is updated only by an
editing program from the second file called
the working file. Each console user has his
own working file in which are stored refer
ence drawings, partially completed drawings
and, possibly, drawings awaiting approval for
transfer to the permanent file. A region of
the drawing surface is reserved for a list of
the names of the drawings in the work file.
An arrow points to the name of the first or
last selected drawing. The arrow may be
moved by the light pen to a name of a draw
ing, selection of a light button causes the
drawing to be deleted or placed in the com
puter (on the drawing surface). New names
are added automatically as drawings are filed
by the user. Hard copy of drawings may be
produced on paper, microfilm, or other media
by one of many available plotter or microfilm
systems now on the market. Configurations
may include systems on-line, off-line, and re
mote or adjacent to a console. One objective
of the system is to minimize the desire and
need for hard copy by making the consoles
inexpensive, easy to use, and readily available.

APPLICATIONS INTERFACE
The most important software feature is the

applications interface which makes the sys
tem a design tool and problem solver, not just
a drafting machine. It consists of an execu
tive application call routine and a set of
FORTRAN subroutines. The purpose is to
provide the data list and all the system fea
tures, except light pen tracking, in a form
easy to use in FORTRAN application pro
grams. All application program activity is
carried out through the interface in a rela
tively non-changing environment to minimize
the need for recoding programs when basic
software changes are made. There are two
distinct interface functions. One allows an
application program to perform all functions
available to a user, in the same way, except
pen tracking which has no meaning to a pro
gram. A program may pick parameters, fill
registers, select light buttons and, effectively,

97

98

push keyboard buttons. In addition, the program
may inhibit the use of most console features,
change their meanings or, in the case of con
trol region features, change their positions
and add new ones. Finally, a pause-until
console-action function provides an interrupt
before or after action making the application
program operable in the console user's real
time. These features combine to provide a

. close working relationship between the user
and computer, allowing the best characteris
tics of both to be brought to bear on problems.
A master switch allows the user to turn off
the application and return control to the con
sole. This capability is unalterable by an
application program.

A practical application program using this
first function of the interface is one which
records every action taken by the user in a
time history. It produces a printed list nam
ing each action and the time taken by it. This
is most valuable in studying the man-machine
interaction to make improvements in the sys
tem and to evaluate the skill and difficulties
of the user.

The second interface function provides fea
tures more suitable to programming. These
include routines to translate and include
program-generated entities into the data list,
to search the data list for entities based on
any combination of characteristics, and to use
the entity construction and manipulation fa
cilities without going through the external
console. For example, a call to the intersection
subroutine with two entity relative addresses
as parameters would return the intersection
points as values assumed by a second pair of
parameter names in the calling statement.

The system becomes a versatile tool with
this capability. Many existing programs run
in a batch mode computer operation can be
fitted with preprocessors and postprocessors,
thus, adapting them for on-line graphics capa
bilities.

Another important program executed out
side the system provides a data structure and
language translation for input of graphics to
work files from handwritten coded sheets via
punched cards.

Application programs are brought into
memory from secondary storage by the execu
tive application call routine at the request of
the console user. An application program is
executed until ended, until an interrupt for a

high priority console request is received, until
a pause statement is executed, or until a time
limit expires. If control is to be returned to
the application at a later time, it is kept in
memory, or it is temporarily dumped into
secondary storage, preserving its current state
when memory space is needed.

APPLICATION EXAMPLE
A concise application demonstrating many

of the system capabilities is the calculation of
the area and centroid of a closed polyconic
forming a simply or multiply connected do
main andlor a system of dot-area centroids.
The program steps and algorithm are as fol
lows:
1. The randomly ordered, user picked entities

describing the simply or multiply connected
domain and lor the dots each followed by
its associated area value are accepted.

2. A closure check is made. If lack of closure
is discovered, the unconnected end points
are displayed in small triangles and
"MORE" appears in the message register.
The user may press the reject button, in
which case, the displayed triangles and
message disappear and the program termi
nates. The user may also pick one or more
entities which complete the closure, in
which case, the triangles and message dis
appear and step 2 is repeated. If only a
single closed conic has been chosen, the
centroid is set to be the center point, and
the area is calculated by standard formula.
Go to step 8. Step 2 is ignored if all param
eters are dot-area centroids.

3. Divide each double valued entity in X into
two single valued entities. Discard vertical
straight line segment entities, and divide
straight line segment string entities into
straight line segment entities.

Y=FdG,X,XY,S), Xl ~ X ~ X 2 ,

j=1,2, ... p

are the p remaining entities where G is the
geometric descriptor taking on one of the
values: straight line segment, horizontal
straight line segment, circle arc, ellipse arc,
parabola arc, or hyperbola arc. XY is a set
of fixed coordinate points, S is a set of
scalars, and Xl and X2 the X coordinates
of the end points. Thus a circular arc with
center at h, k, radius R, and end points

at X l1 Y 1 and X2 , Y 2 (Xl < X2) would be
represented by the equation

- l 2 2 Y - k - R -(X-h) ,Xl ~ X~X2

where the sign of the radical was chosen
negative because Xl < X2 and Xl1 Y 1 is
the beginning point of the arc in a counter
clockwise direction.

{ Xc, Yc , Ac} i, i = 1, 2, ... , L

are the dot-area centroids.
4. Divide the range of X, from smallest to

largest encountered, among the end points
of the p entities into subranges of X so that
all end points of entities lie on subrange
boundaries.

Xl < X 2 '< X3 <., .. < Xn,.

Xi, i=l, 2, ... , n are all the distinct co
ordinate values of end points of the p enti
ties.

S. In each subrange, order, from the highest
to lowest Y values, the entities included in
that sub range by highest Y value each en
tity assumes in that subrange.

{Fjl' Fj2' ... , Fjm} i ,

Max (Xi, Xi+dFjk>Max(Xi, Xi+l)Fjk+l

for the m entities in the subrange Xi, Xi +'1
and for each i, i=l, 2, ... ,n-l. Note that if

Max (Xj, Xi+1)Fj =Max (Xi, Xi+l)Fjk+1,

it must be at Xi or Xi +1 for p > 2. If this
is the case, say at Xi, then the ordering is
based on Fjk(Xi+1) > Fjk+1(Xi+d.
For p=2, it is based on

6. Working from smallest to largest values of
Xi and largest to smallest values of Y, com
pute contributions to the total area and
first moment using the appropriate alge
braic expressions which are based on the
geometric property of each entity. Area
contributions come only from alternate
regions bounded by the X subrange bound
aries and ordered entities in pairs. This
correctly chooses the inside area contribu
tions. The area and moment equations are

derived analytically from the definite in
tegral equations. (This is a tedious but
straightforward task.)

n-1 xi +1

Area = L f [Fh -Fj2+Fj3-' •• +Fj .. _1-Fj ..] dX

i=l Xi

L

+L ACi

i=l

n-1 X

Moment= L J 1+1 X [Fh-Fj2+Fj3 - ••• +FJ,._I-FJ,.] dX

i=l Xi

L

+ L Xc iAc i

i=1

Xc=Moment/ Area
where Xc is the X coordinate of the
centroid.

7. Step 3 through Step 6 are repeated inter
changing X and Y.

8. The centroid point is displayed contained in
a small box, the X, Y values of the point
are placed in the X, Y registers and the
properly scaled X-calculated area and Y
calculated area are stored in the second set
of X, Y registers. "Rej ect/ Accept" is put
in the message register.

9. The user may push the accept button, the
point is made a dot, the box and message
disappear, and the program terminates. If
the user presses the rej ect button instead,
the point, box and message disappear, but
the contents of the X, Y registers are not
changed, and the program terminates.
During steps 1 through 7 the message regis-

ter contains "Computation Proceeding". If the
parameters chosen are limited to point-area
centroids instead of closed polyconics, then
the program computes the centroid of the sys
tem of these centroid points.

CONCLUSIONS
The major limitation of the graphic system

is that the software would be highly complex
and extensive which, like APT Systems, is
costly to produce. Use of standard program-

99

100

ming languages and isolation of required basic
machine language subroutines will minimize
this problem.

The volume of data required to represent
graphics in visual form is very high requiring
large, cheap storage systems. This is especially
true when mathematical capabilities are im
plemented for processing of higher degree
curves and three-dimensional curve and sur
face perspective projections into two dimen
sions in a general way. There is expected to
be an extensive evolution of console and appli
cation program features as graphic systems
come into general use. For this reason, modu
larity in software implementation and large
amounts of financial resources will be needed.
It is expected that the potential revolutionary
effect of graphic systems on design activities
will justify such expenditures.

Although this system as partially described
here is idealized and not implemented, many
of the features will be realized in systems
being planned and in development at the Digi
graphic Laboratories and other facilities of
Control Data Corporation.

It is believed that the goals of this graphic
system are met to a great degree by the fea
tures described. I t is a practical system in
that all the features can be implemented
within the current technological state. Power
ful features are found in the macro capability,
the data structure and grouping capabilities,
and in the potential power of the application
interface. Economy is found in the relatively
simple console hardware and in emphasis on

minimization of the computer time required.
Sophistication is found in the use of order
dependent operations, macro availability and
potentially in applications which can be easily
included in the system. These last mentioned
features make the system easy to use on its
simplest level, but a challenge to the imagina
tive and strongly motivated person.

ACKNOWLEDGMENT
The ideas and basis for this system have come from

many sources. Besides the authors in the Bibliography,
the following people have significantly contributed: Thur
ber J. Moffett, Jack Antchagno, Joe Koenig, Robert
Cushman, Henry Haig, Russel Peterson, James Thebodeau,
Chester Small, Paul Downey, John T. Gilmore, Kenneth
Gielow, Frank Greatorex, Edward Fitzgerald, Phillip
Peterson, Richard Stewart, and Dan Paymer.

REFERENCES
IE. L. Jacks, "A Laboratory for the Study of Graphi
cal Man-Machine Communication", Fall Joint Com
puter Conference Proceedings, Oct. 1964.

2M. R. David and T. O. Ellis, "The RAND Tablet: a
Man-Machine Graphical Communication Device", Fall
Joint Computer Conference Proceedings, Oct. 1964.

31. E. Sutherland, "Sketchpad, a Man-Machine Com
munication System", Spring Joint Computer Confer-
ence Proceedings, May 1963.

4Norman H. Taylor, "A Fully Integrated Digital
graphic Processor", IRE Professional Journal on
Instrumentation, Page 377, 1962 and private corre
spondence to Donn B. Parker.

sR. Stotz, "Man-Machine Console Facilities for Com
puter-Aided Design", Spring Joint Computer Confer
ence Proceedings, 1963.

6B. M. Gurley and C. E. Woodward, "Light-Pen Links
Computer to Operator", Electronics, Vol. 32, No. 47,
November 20, 1959.

7D. T. Ross and J. E. Rodriguez, "Theoretical Foun
dations for the Computer - Aided Design System",
Spring Joint Computer Conference Proceedings, 1963.

APPLICATIONS
ON-LINE SCIENTIFIC ApPLICATION-Dr. David A. Pope. .. 102

STRUCTURING COMPILERS FOR ON-LINE SYSTEMS-Dr. R. B. Talmadge. : 105

THE QUIKTRAN SYSTEM-John H. Morrissey 116

102

Dr. David A. Pope*

On-Line Scientific Applications

CONCEPTS OF ON-LINE COMPUTING

ONE OF THE MOST INTERESTING recent develop
ments in computing is the on-line concept of
rapid interaction between the digital com
puter and the user. This development has im
mediate application in the area of scientific
computing, particularly in those problems
which might be characterized as research
computations, rather than production comput
ing. In the former type or problem, very often
the specific algorithms to be used in the nu
merical solution are unknown, and a major
part of the problem is to find a reasonable set
of such algorithms and to demonstrate that
they do, indeed, work for the specific problem.
In this effort, the possibility of a dialogue
between the user and the computer presents
some real advantages.

An on-line computing system in this context
might be characterized in the following way.
Access to the computer should be immediate,
at least on the user's time scale. In practice,
this means a delay never exceeding a few
seconds, and usually less than 0.1 second. The
results of a computation should be available
immediately, and in a form easy for a human
user to comprehend. Finally, the program
ming should be easily modifiable so that
changes in the algorithms can be made quickly,
on the basis of intermediate results.

The computational requirements both for
the problem being investigated and for the
software package necessary to implement the
on-line system mean that a digital computer
of moderate to large size is involved in the
system. This means that, for economic reasons,

*Chief of Programming, UCLA Computing Facility

most on-line computing systems will need to
have the large central computer shared by
several users; thus some kind of time sharing
scheme must be provided which does not con
flict with the immediate availability require
ment above. Therefore we are led to· the con
cept of a central computer provided with a
number of time shared user consoles, each
console provided with convenient input-output
devices.

THE CULLER-FRIED APPROACH
TO ON-LINE COMPUTING

One such approach is the on-line system
developed by G. J. Culler and B. D. Friedl. In
this system the user is provided with two type
writer keyboards for input, and a storage CRT
for output. The data is presented to the user
and computed functionally. That is, the basic
unit which the user manipulates is a single
real or complex valued function, which is rep
resented in the computer by a pair of vectors
of up to 125 points each. The output CRT dis
plays a pair of vectors as a set of point pairs
(Xj, Yj), j=l, 2, ... 125, with the adjacent
points (Xj, Yj) and (Xj+b Yj+l) connected
by a straight line. This gives the appearance
on the CRT of a smooth curve, which may be
interpreted as a real valued function, or as a
curve in the complex plane. One typewriter
keyboard is used for the designation of storage
addresses, each address being given by a
number and a letter, such as lA, 3F, etc. This
keyboard is also used for typing alphanumeric
information on the display CRT.

The other keyboard is used to designate
operations on the functions. On the basic
levels, the computer can be operated as a glori-

fied desk calculator. The arithmetic operations
add, subtract, multiply and divide are supple
mented by the commoner mathematical func
tions such as square root, sine, cosine, log
arithm, exponential, forward difference, and
sum. Each operation key, when depressed,
initiates a subroutine in the computer which
performs the operation on the entire function.
To supplement these, there are also operations
to load and store functions, and to display one
or more functions on the CRT. Thus the user
can manipulate functions, displaying the re
sults instantly whenever a display is wanted.
As an example of this, we may take the gen
eration and display of the function

x 2/ y = e- /2'

for -1 ~ x ~ + 1. The operation keys to be
depressed would be: J -generate, square, divide,
-2, exponential, store, 1, E, display, 1, A. The
J-generate is an operation which generates the
standard linear function y=x, for
-1 ~ x ~ + 1. This function is then squared,
divided by the constant function -2 (entered
by numerical keys on the operation keyboard),
exponentiated, stored in location IE, and then
displayed on the CRT.

However, this system would be of limite?
usefulness without some method of convenI
ently building up more complex algorithms
from the simple ones provided. This is done by
using the concept of console programming. A
special program key is provided which, when
depressed, puts the computer in a program
writing mode. While it is in this mode, a list
is formed of any keys depressed, and this list
is assigned to a chosen vacant key. Thereafter,
whenever the chosen key is pushed, the com
puter automatically pushes the entire list of
h:eys which was assigned to it. Furthermore,
one key on the list may itself be a programmed
key and call on a sublist of operations. This
is done, of course, by automatically providing
appropriate linkages between the basic sub
routines.

Thus, by nesting subprograms, a singl~ key
may be constructed to perform an algorIthm
of almost any complexity, involving perhaps
thousands of operations. In this way, the full
power of the digital computer can be utilized,
and yet controlled and monitored in detail by
the user. This idea also simplifies the modifi
cation of programs by the user, since any pro
grammed key, being a subroutine, can be
changed without modifying the program of

which it is a part, and without influencing
programmed keys which went to make it up.
In this way, a user can explore his problem,
making up and discarding programs, while
watching the results of his computation on
the CRT. A computing algorithm will thus
evolve which will solve his problem, or else
perhaps enough will have been learned about
his behavior so that it can be reformulated
and a fresh attempt made.

EXISTING CULLER-FRIED
ON-LINE SYSTEMS

The Culler-Fried system, as described above,
was first developed at the TRW Canoga Park
facility, and a two station prototype system is
now there, using one RW 400 computer for
each console, with no time sharing. An ad
vanced model is currently being delivered to
TRW jSTL in Redondo Beach, which will have
four consoles, time sharing one RW 340 com
puter. Also a Culler-Fried system similar to
the prototype system is being developed at the
UCLA Computing Facility, which uses the
IBM 7094. At present the UCLA system has
one console and ties up the 7094 completely,
but in a few months it is planned that the
Culler-Fried system, along with other on-line
systems such as the PAT language will share
the 7094 memory together with standby 7094
problems, and the on-line computation will be
done on an interrupt basis, but without the
necessity of exchanging memory.

KINDS OF PROBLEMS AMENABLE TO
THE CULLER-FRIED APPROACH

Various problems have been tried on the
prototype system in Canoga Park for approxi
mately two years. The problems for which this
computing system is particularly suited may
be characterized as "fixed point" problems in
a function space. That is, a function f is
thought of as an element or "point" in a set of
functions, or function space. There is, in this
type of problem, an operator T on the space,
which maps the function space into itself, and
the problem is to find a function f which is
"fixed" under T; that is, f satisfies the equa
tion T [fJ =f. A simple example of this kind of
problem is the solution of an ordinary differen
tial equation y'=f(x, y) with initial condition
y(a) =b. If this is written in integral form,

we have IX
y (x)=b + a f (t, y (t» d t

103

104

We identify the integral operator T as

T[YJ=b+lxf (t,y (t» dt

and we have the problem expressed in the
fixed point form T [y] = y. The Picard iteration
for the solution can then be written

Yn+1 =T[Yn]'

yielding successive guesses Y b Y 2, • • • from
an initial guess yo. Other problems with essen
tially this same structure are found in partial
differential equations, calculus of' variations,
integral equations, control theory, and other
mathematical and physical problem areas.

Given such a formulation of a problem, the
problem analyst uses his experience to set
up algorithms for solving the fixed point prob
lem, usually with some iterative scheme. It
becomes immediately apparent during the
computation whether or not the algorithm is

converging and, if it is not, just where the
difficulty lies. This information is then used
by the analyst to revise the algorithm and try
again. In practice it is found that a great deal
of insight into his problem can be obtained by
a skilled user.

One of the most significant advantages of
this type of on-line system, in fact, seems to
be that the human user of the computer does
not need to be a computer expert, or indeed to
know very much about computers. What he
does need to know is that area of mathematics
and numerical analysis which is involved in
his problem. The role of the computer is to do
the tedious work, including the tedious pro
gramming bookkeeping, and free the problem
originator to think about his problem.

REFERENCE
lG. J. Culler, B. D. Fried, and D. A. Pope "The TRW
Two-Station, On-Line Scientific Computer", TRW /
STL Physical Research Division Report 8587-6002-
RU-OOO, Vols. II, III, IV, July 1964.

Dr. R. B. Talmadge*

Structuring Compilers
for On-Line Systems

INTRODUCTION

RECENTLY a number of systemst have been
produced for on-line operation of a computer
job shop which have aimed at improving user
productivity by allowing continuous man
machine interaction, while at the same time
preserving compatibility with previous sys
tems. Most of these have employed modified
versions of compilers written for a batch
processing environment. As might be ex
pected, the internal techniques used for
handling multiple input strings, especially re
source sharing techniques such as multipro
gramming and program commutation (time
sharing), conflict with the single string orien
tation of the original implementation. In par
ticular, the program segments themselves, and
the intermediate data retained, are much too
large; so that system response is degraded
because of wasted blocks of core and excessive
swap times.

Most of the proposed remedies, such as in
core compilers, and the use of read-only code,
while salutary, apply equally well to any pro
gram operating within that envoronment. The
oquestion naturally arises as to whether dis
tinctly different principles of organization, as
contrasted to techniques of mechanization are ,
desirable. This in turn leads to consideration
of the compiler as a system component, to its
role in the relation between system and user,
and to the question of how much compiler
design is influenced by the process one wishes

tThree well-known examples are discussed in refer
ences 1, 5 and 8.

to optimize (in whatever sense that word is
being used).

I t is the purpose of this paper to suggest
that a critical examination of the overall
objective of the compilation process leads to
an organization founded on the requirements
of providing optimal user! system interaction;
that this structure is, to a large extent, inde
pendent of internal techniques; and that past
experience will therefore prove a valuable
guide to future development.

USER/SYSTEM INTERACTION
The basic starting point in this exploration

is the functional relationship between user
and system. This is outlined in Figure 1, which
illustrates the paths of information flow and ,
the functions involved. For the system, these
functions are compilation and execution; for
the user, formulation, mod1:fication, and check
out. Interaction then occurs in the following
way.
1. The user's original formulation of his prob

lem in some source language, or combina
tion of source languages, is entered into the
system through the compiler.

2. At some point in the course of the compila
tion, misuse of the language is detected.
Information is returned to the user which
causes him to modify the original formu
lation.

3. When the modified formulation seems sat
isfactory to both user and system, the prob-

* Manager, Experimental Systems Group, Los Angeles
System R&D Department, IBM.

105

106

USER

SYSTEM

CHECKOUT ..
_\ 3 y

EXECUTION

...

<?
....

MODIFICA TION ...
~

COMPILA TION

FORMULATION

<0 .. ~

FIGURE 1

USER/SYSTEM INTERACTION

lem proceeds to execution. As a result, in
formation is generated which leads the user
to produce further modifications, and
statements intended to help check out the
program.

4. Eventually (it is hoped) execution is suc
cessful, and the program is considered op
erational.
It is important to realize that this process

is essentially the same irrespective of the
number and timing of the interactions, and
the rate of information flow in the data paths.
The picture is not affected, for example,
whether or not compilation proceeds to a
nominal end before messages are conveyed to
the user, or whether execution is interruptable
immediately upon the occurrence of some
unforeseen condition. Thus, although an opti
mal system involves some compromise between
minimizing the number of iterations of the
process, the time per iteration, and the cost of

the equipment, there is firm reason to believe
that certain structural principles remain in
variant to any adjustment.

This discussion, of course, covers only a
portion of the actual system. To the user,
however, it is the most important part; indeed,
it is virtually the only part. For the term
compilation, as used here, represents the
entire program preparation activity. So that
a compiler is a system processor, primarily a
language processor, whose function is to turn
the user prepared formulation of his problem
into a form suitable for use within the hard
ware-software complex. This is an enlarge
ment, perhaps, of the traditional notion of
compiler, but it is pertinent to the course of
the discussion. As a complement to this, the
term execution is used to represent the carry
ing out of the intent of the formulation; that
is, the actual performance of the stated algo
rithms.

Thus the interface between compilation and
user is fixed, as determined by external con ..
siderations; the interface between compilation
and execution is variable. As will be seen later,
adjustment of this interface can be used to
improve the overall operating efficiency. To
see how this is possible, to get an idea of the
minimum point to which compilation should
go and the maximum beyond which it should
not proceed, it is necessary to make a closer
examination of the user functions (Figure 1)'

Formulation. Although the mechanics of formu
lation may be rather complicated, interface
with the system reduces to expressing the
problem in processing languages. For this dis
cussion interest centers not in the details of
a particular language, but in characteristics
observable of programming language usage in
general. The important point is that the num
ber of problem oriented languages in use today
is large, and the number of dialects within
these languages is even larger. This trend is
not likely to be reversed however much one
might wish to the contrary. Linguistic expres
sion is rather personal, so that users tend to
specialize in forms which suit their tempera
ment as well as their particular class of prob
lems. Furthermore, even if one were to pro
duce a language capable of expressing all data
processing activity, balkanization would occur;
not especially out of pertinacity, but because
user efficiency is enhanced by languages which
permit simple and clear expressions of the
problem. Therefore, it is really the responsi
bility of the compiling portion of the system
to handle a variety of languages; and to do so
in such a way as to permit easy intercourse
between them.

At the same time, it remains a fact that
processing requirements are much the same
for large classes of problems. Hence, under
neath their obvious differences, problem ori
ented languages fall naturally into families
whose members express virtually the same
functional capability. An outstanding example
of this is that class whose most well known
members are FORTRAN, COBOL, and AL
GOL.

Modification. There are two ways that modifi
cations to existing programs are done in
current systems, depending upon the facilities
provided, and the preference of the individual
user. First, changes may be expressed in mod
ification units which are independent of the

content of the program. A common method,
for example, is the ALTER mechanism for
replacement, insertion, or deletion in card
record files. Second, changes may be expressed
in terms of the content of the program.; that
is, in units depending upon the formal syntax
of the source language. For instance, a par
ticular symbol in the program might be re
placed, or a string of characters inserted at
some arbitrary point. For maximum use and
flexibility, the compiler must find a simple
way of reconciling these two distinct types of
procedure.

Checkout. Checkout embraces all activity re
quired to obtain a correct program statement,
from detection of misuse of the language to
debugging the logic of the problem. The
former is clearly the province of the compiler.
As for the latter there are two points of view.
Some users regard debugging as a general
problem which should be handled in a general
way. If this principle is adopted, it leads to
the formulation of a separate debugging lan
guage, and so to another language responsi
bility for the compiler. On the other hand,
some prefer to use statements in the original
source language; and hence to use one of the
two modification methods to insert the debug
ging requests. In either case, the volatile
nature of these changes requires that they be
inserted at a point which is effectively beyond
the permanent information retained by the
system.

Most important, however, is that changes,
whether permanent modifications or tempo
rary debugging statements, should be on an
incremental basis; that is, should not require
the entire resubmittal of the program. Reduc
tion in the amount of superfluous data trans
mitted between elements of the complex is
the biggest single factor in obtaining superior
performance from both user and system.

FIRST PHASE OF COMPILATION
These considerations, which obviously apply

to any system, lead naturally to the expecta
tion that the convergence of function for a
related family of languages can be profitably
paralleled by a similar convergence in the
compilation process; and hence, that the first
phase of compilation should be the production
of a standard program representation, free of
external irregularities, and permitting easy
incremental modification. This is, in fact, the

107

108

ERROR

MESSAGES ----~ -~ -,

SOURCE
LANGUAGEl

SOURCE

LANGUAGE 2

•
•
•

SOURCE

LANGUAGE n

CONVERSION
PROCESSORl

CONVERSION

PROCESSOR 2

•
•
•

CONVERSION

PROCESSOR n

PRIMARY
REPRESEN
T~TION

MODIF

PROCESSOR

DEBUG

PROCESSOR

MODIF
STATEMENTS

DEBUG

STATEMENTS

I
I
I
I
I
I

FIGURE 2

FIRST PHASE OF COMPILATION (Family of Languages)

method adopted in most recent compilers~ It
results in a functional organization like that
illustrated in Figure 2.

1. The source languages of the family are
treated by individual conversion processors
to produce a primary (internal) represen
tation of the program.

2. Errors detected by these processors are
sent to the user by whatever means are
natural for the system. In an off-line sys
tem, for example, they would be collected
and dispatched as a group. In an on-line
system, with the user at a responsive input
device, they would be sent immediately, as
individual messages leading to possible in
tervention.

3. In either case, the resulting modifications
are handled by a modification processor
which replaces individual statements in the
primary representation.

*Such as 7090/94 IBCBC (IBM), 1107 FORTRAN
(Computer Sciences Corporation), and QUIKTRAN
(IBM). For an excellent discussion of the primary
representation used in the last of these, see refer
ence 4.

4. Similarly, debugging statements which the
user generates as a result of execution are
passed through the debugging processor.

Of course, the modifications and debugging
processors, which are shown in the diagram
as separate from the conversion processors
because they represent separate functions,
would, in practice, be entirely absorbed in
them.

As for the conversion processors them
selves, their functional capability is delimited
by the properties and information desirable
in the primary representation. Some of these
can be fairly clearly established at this time.
First, since the representation is to be free of
language errors, conversion must, at least, ac
complish a complete lexical and syntactical
analysis of the program. Second, as the repre
sentation contains all the symbolic informa
tion of the original, and serves as the basis for
modifications, it must contain explicit markers
for modification units and be structured so as
to facilitate these changes. This puts an upper
limit to the amount of processing which can
be done in conversion. For, since even the
simplest external change can have profound
effects on the meaning of a program, it is ex-

ceedingly wasteful to attempt any instruction
generation, or even to make tentative attempts
at optimizing execution efficiency. At the same
time, good practice dictates that as much in
formation as will be useful should be col
lected from the program string as it is con
verted, and placed in a form most suitable for
later processing. Hence the representation will
consist of, and the conversion processors must
produce, some combination of lists tables and ,
formal expressions which display the explicit
structure of the program (particularly loops
and transfers), the usage of symbols, and the
characteristics of the data; and facilitate the
functions of optimization, instruction genera
tion, and (as will be seen) direct execution.
Of the many advantages of this organization,
the following are probably the most note
worthy.

1. Production of the primary representation
effectively isolates the external world from
the interior of the complex. This makes a
substantial part of the system immune to
language changes, emendations, and ad
ditions. It also permits the introduction of
a new language into the family by simply
constructing another conversion processor,
most of whose pieces are already available.

2. Retention of the primary representation
within the system as the permanent sym
bolic form of the user's program permits
additional useful services to be supplied,
as well as providing the user with the oper
ational convenience of handling small vol
umes of data. Special system processors
can be easily designed to exploit the precise,
explicit information available. A natural
one, for example, would be a flow charting
program.

3. Data flow is, of course, drastically reduced.
Further efficiency is obtained because re
compilation starts from an advanced base:
an appreciable fraction of the work of
compilation is expended in the data gather
ing and syntactic analysis of conversion.
This, in effect, gives a specific meaning to
the somewhat loose term incremental com
piling (and probably the only sensible one).

There are thus persuasive reasons dictated ,
by general considerations of user convenience
and overall efficiency, for adhering to the
structure so far described. It is, therefore, of
some interest to turn to the systems functions
to see if these reasons are reinforced· and if , ,

so, to determine how much can be deduced
about the structure of the rest of the compiler.

DIRECT EXECUTION
With the basic statements of the program

resident in the system in internal form the ,
next step is to consider the boundary separat
ing compilation and execution. The primary
factor influencing adjustment of this bound
ary is the desire to attain a favorable resolu
tion of the inevitable conflict between service
to the individual user and service to an entire
group of users. Here, for the first time, a dis
tinct difference becomes apparent between an
off-line system and a responsive on-line
system.

In the latter case, there are a substantial
number of programs for which the overall
efficiency will be markedly improved by direct
(interpretive) execution from the primary in
ternal representation. This arises for the fol
lowing reasons:
1. There are a number of jobs in any instal

lation which are processed repeatedly by
the compiler, and (partially) executed
many times solely for the purpose of exe
cuting correctly once. Examples abound,
but the most obvious ones are student prob
lems at universities, and the desk calcu
lator type so common in the open shop
installations of the aerospace industry. On
line systems are, of course, aimed directly
at this class of personal computing:'< Direct
execution can significantly reduce the total
effort by bypassing much work that is ordi
narily wasted in compiling, re-compiling,
and executing incorrect instructions. For
in this mode of operation, the immediate
availability of debugging information, in
fact the absolute necessity of supplying
error information which the user could not
have anticipated he would need, together .
with his presence on-line, cuts short the
execution of most unwanted sequences.

2. One of the touted advantages of an on-line
system is the use of the computer as an
intelligence amplifier. In this form of oper
ation the user designs his program as he
goes along, presumably building on the re
sults of previous (partial) executions to
decide what to do next. Direct execution
supplies a convenient, readily available tool

*To use the apt classification of R. L. Patrick7•

109

110

for conversational interaction between pro
gram and user. Furthermore, even though
such programs are undebugged almost all
the time, the interpreter is in full control
and so supplies automatic protection for
other programs concurrent in the system.
Errors which occur result in messages to
the individual user without requiring sys
tem interruption. The resultant reduction
in overhead tends to improve overall effi
ciency and maintain satisfactory response
times.
N one of this applies to a batch processing

system because the real advantages of the
direct method (which still exist) are nullified
by the temporal length of the communication
paths, and the right granted every program
to exclusive use of the machine.

Nevertheless, however well suited direct
execution is for some problems, there are
others, more numerous in most installations,
for which the necessity of repeated high level
interpretation is a serious drawback. Even
the least experienced user can, and will, write
programs for which this would become a
problem for him: programs, for example, with
loops traversed many times, programs which
once checked out are to be used repeatedly; or
programs so large as to overstep reasonable
limits for interpretation.

These considerations are reflected in current
responsive on-line systems, which exhibit a
complete dichotomy of attitude. On the one
hand, systems which encourage the user to
build his programs on a piecemeal basis are
dedicated to a particular language and are
fully interpretive. * On the other hand, com
patible systems provide for interpretation only
as a user program, thereby severing any
direct connection between this mode of oper
ation and the system processors. The result
is an appreciable drop in effectiveness, and
hence an overall diminution of system utility.
Therefore a system which is to be seriously
regarded as general purpose must find a way
to integrate both modes easily into a common
framework.

Figure 3 illustrates how this can be done.
Starting from the primary representation,
processing follows one of two paths: either
to direct execution, or to compilation in the

*Of these, JOSS9 and QUIKTRAN3 are perhaps
best known.

more traditional sense. The decision as to
which path to follow might be left entirely
to the user. More likely the total interest
would be better served by having system con
trol make the choice subject to general rules
laid down by installation management. A
simple rule, for example, which would serve
many installations well, would be to go to
direct execution with (pieces of) programs
which are yet undebugged. More sophisticated
rules depend upon how much the installation
is willing to acknowledge direct execution as
an important option in any well designed on
line system.

An interesting observation on this point is
that since many currently announced compu
ters use read only memory for control and
instruction interpretation, a little care in the
design of the primary representation would
make it possible to do most, perhaps all, of
the interpretation in the hardware. This is
tantamount to direct execution of a symbolic
program (hence the choice of a name), a sub
ject of some interest today6). The gain in
efficiency would greatly enlarge the class of
programs for which direct execution is a dis
tinct advantage.

SECOND PHASE OF COMPILATION
If the choice is to proceed to hardware exe

cution, the second phase of compilation is
entered. The object of this phase is to convert
the primary representation to program text
which is the interface to system execution
control, and hence to execution proper. Pro
duction of this text, the analogue of the relo
eatable code used in most current systems, is
carried out in the following manner, by a
process which separates naturally into the
functions of optimization, instruction genera
tion, and ,assembly (see Figure 31.

Optimization. The first step is to apply an opti
mization procedure to the primary represen
tation, in order to improve the execution
performance of the program. This involves
such activities as flow analysis; noting where
auxiliary calculations may be better per
formed, and where they may be suppressed;
analysis of loop structure to determine posi
tional indicator usage, common expression
pre-calculation, and the possibility of loop col
lapse; all of which are done now in most
compilers, though not, perhaps, at quite the
same place. That this is the proper place for

PRIMARY

REPRESEN
TATION

I ~ ~ (WEAK)
~ OPTIMIZATIONt---..

DIRECT
EXECUTION

INSTRUCTION GENERATION

OPTIMIZA TIOl" VERBl FIRST
~

FINAL

ASSEMBLY ASSEMBLY

i
PREVIOUS

~ VERB 2 PROGRAM PROGRAM
I-

TEXT TEXT

• J I
• I'
•

EXECUTION
!--. CONTROL EXECUTION

4 VERB n I-

FIGURE 3

SECOND PHASE OF COMPILATION

such action is not hard to justify. It must
occur following all modifications, since it is
meaningless to optimize without knowledge of
the entire context of the program; and it
should precede any instruction generation,
since preventive measures are always better
than remedial ones.

There is a further advantage in that it per
mits the easy mechanization of considerable
latitude in the amount and type of optimiza
tion applied to any given program. A user,
for example, might choose to skip all, or part,
of the procedure if he has good reason to
believe it will not notably improve his pro
gram. In this connection, the box marked
"(weak) optimization" in Figure 3 merely
signifies that some type of gross optimization,
for example the loop collapsing analysis,
might well be useful prior to direct execution.

It should also be noticed that this step com
pletes the catalogue of information desirable
in the primary representation, and so serves
in implementation for the final determination
of the functions undertaken by the conver
sion processors.

Instruction Generation. The function of instruc
tion generators is to interpret statements
within the (optimized) context of the pro
gram, and the hardware to be used for execu
tion, to decide which instructions are to be
used. At this stage, the verbs of most proce
dural languages can be handled by autono
mous processors. Within these processors most
remaining decisions can be made by selecting
one of several pre-planned possibilities, ac
cording to the descriptions of operands within
the scope of individual operators. For exam
ple, if the expression A + B is to be calculated,
the addition generator would examine the
data descriptions of A and B: if they were
floating point numbers, a simple floating addi
tion sequence would be used; if fixed point,
some preliminary scaling Il1ight be required,
as well as the use of fixed point hardware
operations. Thus the organization favors a
high degree of modularity in the compiler; it
also localizes treatment of most changes in the
interpretation of a statement to an easily
accessible place.

It must be clearly understood that the gen-

111

112

erators, in spite of their name, are confined
to making decisions about what instructions
to use, but do not themselves act to issue the
instructions. This takes on added significance
in view of the fact that these decisions are
the same as those made in the implementation
of direct execution, for it means that the same
routines can serve this function in both paths
of the compilation process.

First Assembly is the name given to a small set
of routines which operate concurrently with
instruction generation to implement the deci
sions made by the generators. Hence, the main
functions undertaken by these routines are to
substitute particular instances of operands
into lists of instruction forms, to (logically)
separate and count the independent streams
of instructions, and to record usages of sym
bols which will result in interprogram refer
ences. In this effort considerable use is made
of advanced assembly techniques such as mul
tiple location counters and deferred symbol
definition. First assembly, however, should
not be confused with the first pass of a typical
assembler, most of whose work is expended in
conversion.

In the direct mode this function is replaced
by execution. More precisely, first assembly is
supplanted by a routine which carries out, or
attempts to carry out, the intent of the in
structions produced after the operand substi
tutions are made.

Final Assembly embraces preparation of the
form required by execution control; and, per
haps, production of supplementary informa
tion for the user (such as a listing). Little can
be said about the implementation of either of
these functions since the processing is very
much dependent on the form adopted for the
program text, and the sophistication of the
techniques used to take advantage of the
available hardware. It should be noted, though,
that the supplementary information, so com
mon in off-line systems, is of no practical
utility to an on-line user and might well be
eliminated.

RELATION TO ON-LINE SYSTEMS
The organization thus described embraces

all the functions assigned to the compilation
process, so that the picture of compiler struc
ture is essentially complete. Furthermore, the
discussion has emphasized that the consider
ations used in developing this picture apply

to most systems, being based on overall opti
mization of the user/system relation. But in
actual practice the compiler must operate, and
produce code which operates, consistently well
within the internal conventions and tech
niques of a particular environment. There
fore, to verify that the description is sound,
that the structure is not just suitable but
desirable, it is necessary to consider require
ments which are peculiar to dynamic environ
ments, particularly on-line systems.

The salient feature of such systems is that
they attempt to amplify the effective com
puting power of the hardware by the use of
techniques which permit mUltiple concurrent
users. Multiprogramming and multiprocess
ing, for example, exploit the possibilities of
parallelism, while time sharing exploits the
disparity in human and computer speeds.
Much of the advantage gained by these tech
niques would be dissipated without effective
resource allocation and minimization of sys
tem overhead. Segmentation of programs into
fairly small pieces is by far the most signifi
cant factor in this effort, on both counts.
First, it improves core utilization by reducing
the occurrence of unused blocks. Second, it
reduces system overhead because the presence
of pieces of many programs in core at the
same time has a double effect in diminishing
the number of words swapped between core
and backup storage.

Now, it has already been observed that the
organization presented is favorable to frag
mentation of the compiler itself. Moreover,
the functional division simplifies use of tech
niques for dynamic reduction of the operating
size. For example, the independence of indi
vidual instruction generators permits imple
mentation in which only those generators
actually in use by any program need be
brought into core, where they can remain un
til not needed. Further improvement can be
obtained by designing the primary represen
tation to separate the global information from
the local, which reduces the· amount of data
that has to be swapped in compilation; and by
limiting the size of any segment which is com
piled down to program text, thus limiting the
space needed for such data.

Limitation of the size of segments is a tech
nique practiced in many current systems. Its
success depends upon having an execution
control which can readily build, and efficiently

operate, a program composed of smaller seg
ments. In attempting to do this for on-line
systems, there is much to be learned from
software solutions already in use. That sub
j ect, however, would need a lengthy discourse
to do it justice. In this discussion, it is pos
sible only to touch briefly upon a few topics
of general interest.

First of all, program segmentation has its
darker side. It increases the core management
problem because of the appearance of frag
ments: small pieces left over in allocation
which must somehow be collected into useful
sizes. Similarly, program protection is more
difficult, for occasions arise when non-contig
uous segments of the same program must
reside in core simUltaneously. The difficulties
of interprogram communicatipn are also mag
nified: the smaller the pieces, the more likely
references will be external to a given segment.
The first two of these problems occur only in
dynamic systems, while the last has been
around for some time. In attacking it, current
systems have developed program text and
loading techniques which could be quite useful
if properly converted to a dynamic environ
ment.

In those systems, program text consists of
instruction strings in which the addresses are
supplemented by relocation bits whose normal
function is to indicate whether the address
is constant or relative. For interprogram ref
erences, however, the encoding refers toa
dictionary in which enough symbolic infor
mation is retained to identify the desired ref
erence. It is the function of that portion of
execution control called the loader to combine
various segments into a single operating pro
gram, as desired by the user. In this process,
the text is translated to specific core locations
by interpretation of the relocation bits in con
junction with the combined dictionaries. In
addition, for programs too large to fit into
core, the user indicates how the program is
to be prepared for retrieval of specified parts,
(called overlays) by execution control.

N ow in on-line systems this pre-planned
retrieval and pre-calculated translation is
better· done dynamically. Not only would this
improve efficiency by fetching only those por
tions of a program actually needed during a
particular execution, but also it would provide
relief from the fragmentation problem by
severing the ties to specific locations. But

implementation of such dynamic control en
tirely by software involves considerable over
head during swaps, and in execution, so that
some hardware assistance is required. Two
approaches are currently in vogue. First,
there are page schemes in which segmentation
and retrieval are tied to core blocks of hard
ware determined size and location. Second,
there are address translation schemes in
which the illusion of a contiguous program is
obtained by comparing all effective addresses
generated during execution with a translation
dictionary to obtain a true address. Again
the page concept is in evidence, since the
translation shifts the low order bits of the
address.

Neither of these methods really eliminates
much pre-planned effort on the part of the
user or the system. Therefore it is surprising
that there have been no serious attempts to
embed the loading function into the hard
ware; that is, to design the CPU to execute
program text directly, relocation bits, diction
ary, and all. Such an approach, which requires
no more hardware than others proposeo, has
several distinct advantages.

1. It is quite conservative of space. The relo
cation bits can be absorbed into the address
without any practical limitation on seg
ment size. Furthermore, the dictionary is
only as large as required by the given
program.

2. It is efficient in execution. Address com
parison occurs only for instructions which
specifically request it.

3. Segmentation is performed according to
the natural division of the user. The elimi
nation of artificial fences in core relieves
system processors, for one, of the problem
of adjusting recalcitrant segments to pre
specified block sizes2 •

4. Apart from the dictionary, the programs
are absolutely location independent. If read
only code is used, very little additional soft
ware is needed to implement a scheme in
which segments of operating programs are
swapped in, but need never be swapped
out.

S. Flags in the dictionary can be used to pro
vide program protection on an individual
basis, not tied to any particular core loca
tions, and for any number of independent
programs. Similarly, dictionary flags can

113

114

be used to trigger a segment retrieval
mechanism.
For these reasons, design of a program text

in conjunction with hardware merits serious
consideration. In this design, it is, of course,
desirable to make use of negative as well as
positive information gained from. previous
software experience. For example, the pro
gram text of several current systems, contains
a dictionary for debugging as well as a dic
tionary for interprogram reference. Because
of the reduction in symbolic content, and be
c~use the nature of undebugged programs is
such that one cannot anticipate what infor
mation will be needed, or when it should be
obtained, considerable skill is required of the
user to keep this dictionary of manageable
size and still have it fulfill its purpose. More
over, loading is complicated by having to

FIRST PASS

;
MACRO FIRST -PROCESSOR ASSEMBLY

SOURCE
LANGUAGE CONVERSIO!'

t

..

undertake the additional functions of inter
pretation and insertion of debugging requests
into the program prior to execution. It is oper-

. ationally superior in all respects to eliminate
the debugging dictionary and rely upon inser
tion of requests into the primary represen
tation.

Objection might be raised that this is not
suitable for code produced by assemblers.
Such, however, is not the case. With the
previous discussion as background, it is not
difficult to quickly arrive at the functional
organization of a processor for an assembly
language family. Figure 4, for example, shows
the plan of a macro assembler which would
take source language through conversion and
first assembly to a primary representation,
and from there through final assembly to pro
gram text identical in form to that produced

PROGRAM
TEXT

FINAL ASSEMBLY

SECOND
PASS

PRIMARY

REPRESEN-
TATION

DEFINITION

t

FIGURE 4

ASSEMBLY LANGUAGE PROCESSOR

by any other . system language processor. The
primary representation, which is naturally
quite different from that of a problem ori
ented language family, again serves as the
resident symbolic form of the program, and
as the point for incremental modifications. A
significant feature of~ this structure is that
instruction generation and first assembly oc
cur prior to output of the preliminary repre
sentation. Hence the processing time from it
to program text is substantially less than that
of other families. Thus, user convenience, uni
formity of procedure, and overall operating
efficiency combine to form a powerful induce
ment for a return to completely symbolic
debugging.

SUMMARY
But to pursue these ideas farther would

necessitate a depth of detail far beyond the
scope of this paper. So, in conclusion, it is
perhaps in order to summarize the main
points of this discussion. First, consideration
of the basic relationship between user and
system, of the existence of many languages
and the need for incremental changes, leads
to a compiler whose first phase is dedicated
to the production of a primary, internal,
representation intended for residence in the
system. This step is independent of any inter
nal considerations. Second, because of rapid
intercommunications, on-line systems are par
ticularly suitable for direct, interpretative,
program execution. The primary representa
tion then provi<les a means of unifying two

distinct modes, interpretation. and conven
tional compilation, at the same operational
level. Third, a functional organization for the
second phase of compilation based on current
practice fits nicely with the special require
ments of the internal dynamics of on-line sys
tems. Finally, past experience indicates how
compiler output might be designed, in con
junction with hardware, to alleviate some of
the problems of segmentation, core allocation,
and program protection.

REFERENCES
IF. J. Corbato, et al., The Compatible Time Sharing
System - A Programmer's Guide, The MIT Press,
May 1963.

2F. H. Dearnley and G. B. Newell, "Automatic Seg
mentation of Programs for a Two-level Store Com
puter", The Computer Journal, Vol. 7, No.3. Oct.
1964 (185-187).

3T. M. Dunn and J. H. Morrissey, "Remote Computing
-An Experimental System, Part 1: External Specifi
cations", Proceedings of the Spring Joint Computer
Conference, 1964 (413-423).

4J. M. Keller, E. C. Strum, and G. H. Yang, "Remote
Computing-An Experimental System, Part 2: Inter
nal Design", Proceedings of the Spring Joint Compu
terConference, 1964 (425-443).

5H. A. Kinslow, "The Time-Sharing Monitor System",
Proceedings of the Fall Joint Computer Conference,
1964 (443-454).

6J. E. Meggitt, "A Character Computer for High
Level Language Interpretation", IBM Systems J our
nal 3, No.1, 1964 (68-78).

7R. L. Patrick, "Measuring Performance", Datama
tion, July 1964 (24-27).

BJ. I. Schwartz, E. G. Coffman, and Clark Weissman,
"A General Purpose Time-Sharing System", Proceed
ings of the Spring Joint Computer Conference, 1964
(397-411).

9J. C. Shaw, "JOSS: A Designer's View of an Experi
mental On-Line Computing System", Proceedings of
the Fall Joint Computer Conference, 1964 (455-464).

This paper reflects the author's personal experience and beliefs. It does not
necessarily reflect current product compiler development by the IBM Corporation.

115

116

John H. Morrissey*

The Quiktran System

INTRODUCTION

SYSTEMS involving access to a central com
puter by geographically distant users have
been employed experimentally since the very
earliest application of computers themselves1•

During the early 1950's, these systems were
commonly oriented towards the substitution of
data transmission for the physical transporta
tion of the user or his data between remote
locations and a central computer site. This en
abled some people to gain computer access and
provided others with increased convenience
and improved job turn-around times.

During the second half of the last decade,
military command and control systems (e.g.
SAGE) involving concurrent access to a large
computer from numerous consoles, provided
a first indication of the potential advantage
of coupling man and machine in processing
complex problems.

These early military systems stimulated the
commerci~l application of the man-machine
concept in the airline, brokerage, and banking
industries. These systems are often character
ized by special purpose equipment and tailored
software which are oriented towards a specific
commercial application with emphasis on the
maintenance and retrieval of data files.

At the present time such customized tele
processing systems are being generalized as
general purpose equipment and comprehensive
on-line operating systems which are oriented
towards a wide spectrum of scientific applica
tions with emphasis on both the processing of
programs and manipUlation of data files.

*Il3M System Research and Development Department

SYSTEM CONCEPTS

There are several feasible system approaches
to provide remote scientists and engineers
with many of the computing services long
available to users located close to a digital
computer installation.

Batch Processing

One is to envision the remote terminals as
merely another type of 110 device. The
simplest form of this approach is to limit
these terminals to operating system input!
output (e.g. SYSIN and SYSOUT) and ex
clude their assignment to user problem pro
grams. Programs, data, and associated control
information are entered and stored awaiting
computer availability. This can be scheduled
in several ways: the simplest is to await com
pletion of the current job, and then inter
sperse the stacked remote job into the input
stream. Following conventional processing, re
sults are stored awaiting later transmission
to the remote output unit. If no other remote
jobs are ready for processing, the operating
system selects the next job from its regular
input source. Concurrently, results are trans
mitted (under control of either the main
processor itself or else an -associated I/O
processor) back to the remote sites.

This remote batch approach has several ad
vantages
1. It requires a minimum of extra equipment

and little additional software development.
2. It is a logical extension of conventional

batch processing procedures.
3. Processing efficiency is high.
4. Turnaround time is improved.

5. It is particularly suitable for "express jobs"
(e.g. those involving small I/O volumes, no
operator set up, and limited execution
times.).

But it has the following limitations:
1. Output print volume often (especially dur

ing program testing) overwhelms the ca
pacity of the communications terminal
equipment.

2. Although turnaround is improved, there is
no opportunity for direct, sustained man
machine communication.

Shared Processing

A second, and currently more popular, ap
proach is to envision the remote terminals as
computer consoles. This implies that the re
mote user should have immediate and sus
tained control over the central computer.
Since it is economically unfeasible to have one
user dominate the computer, its facilities
(time and storage) are dynamically shared
among a number of users. This form of multi
programming is often called time sharing,
although another term such as "facility shar
ing" or "resource sharing" would be more
appropriate since much more than the sharing
of computer time is involved.

SYSTEM REQUIREMENTS
In the design of any computer system the

following major considerations must be an
alyzed and evaluated: Who is the user, what
functions are needed, at what cost, and for
what purpose? More specifically, what size
computer, how many users, what functional
capability, and at what cost per user?

The first factor can be recast into a ques
tion of extending an established market by
enabling conventional computer applications
to be performed in a new or improved manner
and creating a new market by providing new
capabilities not previously available.

Capability must be structured in terms of
price and function. In 1960-1961, when the
first generation of time sharing systems were
being designed, analysis of existing computers
indicated the following:
1. A comprehensive service could be made

available to 20-30 terminals time sharing a
large-scale computer. Quantitatively this led
to the approximation of $4,000 per user per
month; ($100K system) / (25 users).

2. A limited service could be made available

to 30-50 terminals time sharing a medium
scale computer. Quantitatively this led to
the approximation of $1,000 per user per
month; ($40K system)/(40 users).
$4,000/month computers were widely avail-

able and undergoing rapid improvement;
$1,OOO/month computers were not commonly
available. Two markets were considered: in
stall computers on large customer premises
for shared usage by his employees, and service
small users by leasing time from central IBM
Data Center installations. The basic system
goal was to realize new marketing and techni
cal innovations; consequently, it was the med
ium scale system with limited capability ap
proach that was selected.

The next consideration was to determine
what functions should be provided. This can
be subdivided into two areas: qualitatively,
what does the market need; and quantita
tively, what performance is possible.

The qualitative factor can be recast into an
evaluation of the relative merits of a commer
cial or of a scientific orientation. The follow
ing factors were analyzed:

1. Amount of program development vs. pro
duction work

2. Importance of job turnaround vs. com-
puter throughput

3. Amount of I/O vs. computing
4. Amount of retrieval vs. computing
5. Programming languages in use
6. Conversion and transition problems
7. Amount of application support required
8. Random storage requirements (space,

speed, and price)
9. Density of potential users

10. Reliability requirements
11. System load-up rate
12. Sales expense
13. Customer training requirements.

It was concluded that, although the com
mercial market was undoubtedly much larger,
there was substantially greater immediate
revenue potential and lower technological ex
posure associated with a scientific oriented sys
tem.

The quantitative factor can be recast into
how computer performance is considered.
First, the computer engineer is concerned
with throughput, that is, the raw processing
power of the system (often expressed in micro-

117

118

second units). Next, the computer center man
ager is concerned with turnaround time; that
is, the interval between submission of a job
and the return of output (often expressed in
hourly units). Finally, the computer user is
concerned with solution time; that is, the time
interval between the decision to utilize a com
puter and the receipt of correct results (often
expressed in weekly or monthly units).

It was decided to place primary emphasis on
the last factor since it is of paramount impor
tance to the new user and is a main source of
dissatisfaction with many current users.

SYSTEM DESIGN

Obiectives

These system requirements were then trans
lated into the following design objectives. First
the price, a $40,000 per month central com
puter configuration would be shared by 40 re
mote terminals. 'Next, performance; speed
would be extrapolated downward from exist
ing small scientific computers. Relative to this
class of computer: response rate would be
under 10 seconds; execution speed would be
in the range of 0.1-1; and compilation speed
would be in the range of 10-100. Space would
be equivalent to that available in small com
puters; that is 3,000-4,000 words. Finally,
language; a source language would be con
sistently used for program statement, prob
lem debugging, and terminal operation.

TERMINALS EXCHANGE

Approach

It was immediately realized that the com
puter price objective would be exceeded if
special device design or equipment modifica
tions were undertaken. Hence, a design con
straint to use only standard computer prod
ucts was imposed.

It was also soon apparent that the perform
ance objective could not be realized merely
by tailoring existing compilers for operation
in a time shared environment because they:
1. Were too large for either in-core residence

or for segmented swapping
2. Strongly emphasized object performance

at the expense of compiling speed
3. Were not well designed for efficient re

compilation
4. Were not effective for source language de

bugging
s. Generated far too much output data for

terminal operation.
It was conciuded that a new program de

sign was necessary. Two influences were para
mount in deciding on the approach. First, pre
vious experience in using the 701 Speedcode2 ,

705 Print3 , 705 Sale4 , and G-15 Intercom5 sys
tems had demonstrated the power of interpre
tive execution in the formulation and debug
ging of small to medium scale scientific pro
grams.
Second, previous exposure to list processing
concepts in IPL-V6 had indicated that list

CPU

CARD
EQPT

STORAGE
DEVICES

1050
7740
(16K)

7040/7044
(32K)

FIGURE 1

EQUIPMENT CONFIGURATION

techniques should be particularly applicable to
the design of incremental language transla
tors.

It was relatively simple to settle on the best
approach to meet the language objective. Be
cause of the importance of language compati
bility, extent of usage, and ease of learning,
it was decided to base the language on a sub
set of FORTRAN equivalent to that available
on small computers.

EXTERNAL SPECIFICATIONS
Since detailed information on QUIKTRAN's

external design is available7, only a brief
outline is presented.

Equipment Configuration (Figure 1)

1050 terminal for user console
7740 exchange for communications control
7040 computer for all processing
7320 drum for program swapping
1301 disk for user program libraries

Language Specifications

1. Program statements, a FORTRAN subset,
are used to write programs.

2. Console statements are used to load pro
grams, to start and stop execution, and to
enter and display data.

3. Alteration statements are used to insert,
change, and delete program statements.

4. Display statements are used to display
source program listings and storage dumps,
pre-execution cross reference listings, in
execution data and flow tracing; and post
execution history of data usage and control
flow.

Operating Modes

1. Batch: for the remote entry of a complete
job for conventional execution.

2. Command: for use of the remote terminal
as a symbolic desk calculator.

3. Program: for the conversational entry and
execution of FORTRAN programs.

Operation

Use of the system can be best illustrated by
seeing it in actual operation. *

The terminals shown in Figure 2 are con
nected on a typical operation.

Equipment components are shown in Figure 1 .

* A 20-minute motion picture was shown at the Sym
posium.

QUICKTRANI'

Line No. Yw:... Location ~

1 University S;:n Fr~cisco, Ca.;if. 3,0,~0
2 Aero,~pa.ce
3. L~s An~~les, Ca.;if.
4
5
6 Chemical Charlestown, W. V. 500
7 Petroleum N~W Yor:, N. I;' 1
8 Education 1
9 ~,M En~eering Poughkeepsie, N. Y. 75

10 Endicott, N. Y. 150
11 ~f'1 Sys~ms RE;~. San Francisco, Calif. 3,000
12 Boston, Mass. 150
13 N;w Yo,;k C~?' 1
14 1
15 Demonstration a

(MOIie)

*Users on system when filming movie (9/24/64).

101. -READY

101. •

101. -REMY

101. ..

101. -REAnY

101. -REA,)Y

101. ..

101. -REMY

101 ...

101. -'lEAnY

101 ...

101. -READY

101 ...

101. -READY

101 ...

101. -REA')Y

101. -

101. -READY

FIGURE 2

TERMINAL LOCATIONS

COMMANO

Z-1,+10.+100.

7.- 0.11099999E 03

E01TCF15.8)

Z-1.-2.*~./4.**5.

z.. 0.52539063

Z"1.2345678*S.7654321

z· 10.82151997

Z-1.234E01*4.321E-02

Z= 0.53321139

Z-SQRTC1024.)

z· 32.00000000

Z-LOGFCSIN(1.23)**2+COSF(1.234)**2)

Z· -0.00251082

FIGU.RE 3

SYMBOLIC CALCULATOR

When the terminal is in use as a symbolic
desk calculator (Figure 3) each user action
elicits a computer response and vice versa.
Each entry is used to introduce a new concept:
integer values, floating point values, output
formatting, arithmetic operation: +, -, *, /,
* *, use of parenthesis, high precision, scaling,
function evaluation, and expressi.?nevaluation.

119

120

102. +IlEAOY

103. +REAOY

PROGRAM ROOT

1 Z-0.5*(Z+X/Z)

no TO 1

104. +READY CC X-25

104. - X· 0.25000000E 02

105. +REAOY CC Z-X

105. -

106. +REMY

Z- 0.2S000000E 02

START 0

HALT

103. -BREAK EXECUTION INTEqRUPTEO BY TERMINAL USER-LAST

EXECUTEO 102.

107. +REAI)Y CC Z-Z

107. • z. 0.49999999E 01

FIGURE 4

CONSOLE OPERATIONS

In the program mode (Figure 4) (e.g., entry
of a program) some of the console commands
are start, stop, entry, and display. The user in
dicates his intention to enter a program (by
typing PROGRAM) and gives it a name (e.g.
ROOT) so that he can later retrieve it from his
library. The program consists of only two
statements: the first to evaluate Newton's (or
Heron's) formula for the square root; the
next to set up an infinite loop. The user in
dicates the number whose root he desires
(X = 25) and initializes the iteration variable
(Z). Then he begins execution (via START 0),
lets it run a few seconds, and then stops execu
tion (via HALT). The system indicates the
location of the last statement executed (anal
ogous to a console's instruction counter lights).
The user then displays the current value of
the square root and it is seen to be very close
to the exact answer.

Entering a program to solve the differential
equation dy/dx=X*Y, Xo=O, Yo=1, is an
example (Figure 5) which illustrates many of
the common clerical and syntactical errors
usually committed in writing a FORTRAN
program. The system immediately responds
with a diagnostic message and the user can
then easily correct the error. Such 'mistakes
although trivial, often use up several machine
runs, each involving several hours delay in
advancing towards a checked out program.
Notice also that the user may execute sections
of the program as they are entered and verify
results as he proceeds.

102. +RF.AOY

PROGRAM 0 I FF.Q1

OF.LX-0.2

103. +REAOY 1 X-O

104. +REAOY v-·.) -
104. +ERIlO~ INPUT r.ANCELLED

104. +REA~V Ya1

105. +REAI)V PRlNT 2

107. +REAnY PRINT 1

107. +ERROR STATEMENT 1 PREVIOUSLY DEFINED OR REFERRED

TO AS EXECUTABLE

108. +READY PR I NT 2

109. +REAOY FORMAT(5X)

109. +ERROR THIS STATEMENT MUST BE NUMBE~EO

110. +REAOY

111. +REAnY

112. +REAOY

113. +REA')Y

108. -0 02

111. -0 04

2 FOR""I\T(5X, 1HX, 5X, 1HY)

PRINT 4,X,Y

4 FORrlATCF7.2,F8.5)

STMT 0

O.

Y

1.00000

112. -CYCLE END OF PROr,qAM ENCOUNTERED DURING EXECUTION

114. +REAnY

115. +READY

116. +REAOY

116. + ERROR

117. +READY

117. +ERROIl

118. +REAOY

119. +REAOY

119. +EI1ROIl

120. +IlEA"Y

121. +REAOY

121. +ERROR

122. +REAOY

OELY-X*Y*DELY

Y-Y+OEL Y

IF(X-IH,3,5

~IXED MOnE

I F(X-l. 3,3,5

PARENTHESES NOT, I N BALANCE

IF(X-1.H,3,5

PAUSF. 1

C;TATE'IE'IT AFTER IF, GI) TO, STOP,

'lUST BE ~IUMf\EIlE!)

5 PAUSE 1

GO TO 2

STATEMENT 2 PREVIOUSLY DEFINEn
OR IlEFF.I!REO TO AS FORMAT

GO TO 1

FIGURE 5

PROGRAM ENTRY

Oil I!ETlJRN

Figure 6 illustrates program testing. The user
has pursued his completed program. He initi
ates execution (via START 0) and an alpha
betical heading and a line of numerical values
print correctly. Then the system indicates that
at line 114 an attempt has been made to use
a variable before it has received a value. The
user detects his error, deletes line 114 and re
places it with the corrected formula. He then
indicates the end of alteration (so that the
system can run a check to insure that he
did not introduce new errors while making the
change) and starts execution again.

108. -0 02

111. -0 04

START a

O. 1.00000

114. -EI1RnR VAlIlE nF VAIl I ARLE IIAY NOT BE USEn

IINTI LIT liAS BEEN SET

125. +REAnY

114. +ALTEI1

114.1+AL TER

126. +REArlY

108. -0 02

111. -0 04

ALTF.R 114./114.

ALTER*

START a

Y

O. 1. 00000

118. -ERROR TRANSFER POINT N DOES NOT EXIST

127. +REMY

111. +ALTER

lll.1+ALTER

128. +READY

108. -0 02

111. -0 0 ..

111. -0 04

111. -0 04

111. -0 04

111. -0 04

ALTFR 111./111.

3 PRINT ",X,Y

ALTER*

START a

Y

O. 1.00000

O. 1. 00000

O. 1.00000

O. 1.00000

O. 1.00000

HALT

112. -BREAK EXECUTION INTERRUPTED BY TERMINAL USEq-LAST

F. XECUTEO 111.

FIGURE 6

PROGRAM TESTING- 1

Another error shows up at line 118 where
an attempt is made to transfer to a non
existent statement (note: in later versions of
the system this error is detected before execu
tion). The user corrects this error by n umber
ing the statement at line 111 with a label of 3.
He starts execution again. Everything looks
fine except that nothing is happening! The
user performs a HALT, quickly begins to
make a correction (Figure 7), cancels it, and
then inserts, after line 113, a statement to
increment the independent variable X. Once
again, he _ starts execution and (finally) the
program runs to completion (P1 at line 120).

Being curious about the effect of step size
on precision, the user then changes the step
(DELX=0.25), and executes again (being

129. +REAny ALTEq 113./113.XXXX-

129. + Eq[lOR INPUT CMJ(~F.LlED

129. +REAnY ALTER 113.

113.1+AlTEIl X=x+nELX

113. 2+AL TEll AL TF.:q.

130. +REAnY START 0

108. -0 02 X Y

111. "0 04 O. 1. 00000

111. .. 0 04 0.20 1. 04000

111. =0 04 0.40 1.12320

111. .. 0 04 0.60 1.25798

111. =0 04 0.80 1.45926

111. =0 04 1.00 1. 75111

120. ..p 1

131. +REAnY CC OElX"0.25

131. .. DElX- 0.25000000E-00

132. +REI\OV START 1

108. .. 0 02 X y

111. -0 04 O. 1.00000

111. -0 04 0.25 1.06250

111. "0 04 0.50 1.19531

Ill. -0 04 0.75 1. 41943

111. .. 0 04 1.00 1.77429

120. -p 1

133. +REAnY

FIGURE 7

PROGRAM TESTING-2

careful not to execute the program statement
that initializes DELX). The program runs
to completion and he notes that an increase
in step size (DELX=0.25 instead of 0.20)
caused a difference (Y=1.77429 instead of
1.75111) in the value of Y. This illustrates
some of the potential of close man-machine
interaction in the area of numerical analysis.

The next example (Figure 8) illustrates use
of some of the source language debugging
features. First, there is a DUMP of memory

121

122

134. +REAf)Y

135. +READY

136. +READY

INDEX

INnEX

IN,)EX

INDEX

IN,)EX

INDEX DELX

INDEX DELY

DUMP

DELX- 0.25000000E-00

DELY- 0.55446625F. 00

X- 0.12499999E 01

y. O.23287582E 01

EnITCF15.8)

DUMP

DELX- 0.25000000

DELY- 0.55446625

X- 1.25000000

Y- 2.32875824

INDEX

+103. -122.

+110. -108.

+111. -118.

+112. -111.

+120. -118.

+102. -113.1 -114.

+114. -115.

INDEX *OIFE'll

INDEX X +103. -111. +113.1 -114.

137.

138.

139.

INDEX Y +104. -111. -114. +115.

+REAIW INDEXCX)

INDEX X +103. -Ill. +113.1 -114.

+REArW CHECK

CHECK *OIFEQ1

+REA'>Y AUI)IT

AUDIT 122. /123. NOT XEO

AUDIT OlFEQ1 NOT SF.T

FIGURE 8

DISPLAY STATEMENTS

-118.

-118.

under control of two different output formats.
Next there is an INDEX cross reference list
ing of control flow and data usage. Finally,
there is a CHECK for potential errors,
followed by an AUDIT, a post-execution his
tory of actual control flow and data usage.

In the next example (Figure 9) the user per
forms a LIST of the program he just finished
testing. A variation of this would enable him
to punch a card deck ready for processing by
any other FORTRAN compiler.

101. •

102. •

103. •

104. •

105 ••

108 ••

110. •

Ill. •

112. •

113.1-

114. •

115. •

118. •

120. •

122. =

123. •

141. +REAOY

CF

LI ST

PROGRAM DIFEQ1

DELX·0.2

1 x-o

PRlf4T !

PRINT 2

2 FORMATCsX,lHX,sX,lHY)

3 PRINT 4,X,Y

" FORMATCF7.2,F8.S)

X=X+DELX

OELY=X*Y*OElX

Y=Y+OELY

IFCX-1.>3,3,5

5 PAUSE 1

GO TO 1

END

FIGURE 9

PROGRAM LISTING

INTERNAL DESIGN
Introduction

Since detailed information on QUIKTRAN's
internal design is available8 , only a brief
outline is given here. The system is structured
into two major sections (Figure 10), The proc
ess subsystem translates source statements to
an equivalent intermediate representation that
is then interpretively executed. The I/O sub
system controls the communications network
and the swapping of programs between pri
mary (e.g. core) and secondary (e.g. drum
and disk) storage.

Records (Figure 11)

The processor translates all source state
ments into two types of internal records. The
fixed length element records, corresponding
to source data and procedural elements, con-

SUPERVISOR
,- - - - - .. -- -- -- - ---- - -- --,
I I

--- LOGIC FLOW

- - - OATA FLOW

~ =m
tJ

A

PROGRAM
AREA

PROGRAM
AREA

r-----'
I
I
I
I
I
I

I

cc
o SCAN
~
~I------l
z
~
cc
I-

LINK

I -----'

~+-----

I
I
I
I
I

ffi MASTER
t;j INTERPRETER
g: 1----...-...,
ffi LIBRARY
~ SUBPROGRAMS

L ____

FIGURE 10

INTERNAL ORGANIZATION

Element Id 11I~: I Size

I
I

U

Next Address tain the usual information collected in the
early phases of all compilers (e.g., symbolic
name, value attributes, and addresses). In
addition, these records contain the value it
self and list control information. The variable
length statement records, in one-to-one corre
spondence with source statements, contain the
source data in a form that is more compact
(to save space) and more suitable for execu
tion (to save time).

Indicators Dim/Com/Equ Address

Lists

All records are organized by lists. Element
records are chained on to one of 26 lists each
containing all elements with the same initial
letter. This not only reduces symbol search
time but also facilitates the generation of
alphabetized memory dumps and cross refer
ence listings. All statement records are chained
onto two lists: one organizing the statements
in entry order; the other classifying state-

Symbolic Name

Numeric Value

Element Record

Statement Id Size Next Entry Address

Indicators

R(C)

*
R(D)

R(C)

Code Label Next Class Address

Null Null

R(A) R(B)

FUNOP R(SQRT)

+ TT +-

Statement Record

C = A * B + C/SQRT (D)

FIGURE 11

RECORD FORMATS

Null

PAROP

/

T R(C)

T

123

124

ments by type. The former is used to deter
mine proper ordering when reconstructing the
source program and when executing the inter
mediate text; the latter facilitates interstate
ment error checking.

Addressing

Essentially three distinct types of address
ing are employed; associative list searching
for symbol matching, look at addressing for
mapping internal identifiers to relative loca
tions, and implicit addressing (e.g., push
downs) for storage of intermediate arithmetic
values and for control of DO nesting.

Blocks (Figure 12)

Each user program block consists of two
parts; the header contains the control, re
location, and addressing data; the body con
tains the intermixed element and statement
records. Each time a program block is
swapped into primary storage, parts of the
header are processed to reflect storage re
location and to accumulate usage statistics.

Checking

Checking is performed at four levels. First,
composition checking for correct syntax with
in a statement (e.g. parenthesis imbalance).
Second, consistency checking for proper as
sociation between statements (e.g., GO TO A
FORMAT). Third, completeness checking for

~/

Process Control Data

Element Control Table

Statement Control Table

Element Address Index

Statement Addre s s Index

Parameter Stack

Temporary Stack

Program List
of

Element & Statement
Records

Common Area

FIGURE 12

PROGRAM BLOC K

'.
\

V

\
\

\
\

\
\

Header)

/
/

/

/

/
/

~
\

:::v

II

\
\
\

\
\

Body I
I

/
/

/
I

/
I

proper DO nesting, label referencing, and
control flow. Fourth, limit checking for arith
metic spills, proper subscript values, and valid
control branching.

Control

A 7740, a separate communications com
puter, controls the network of remote termi
nals performing such functions as terminal
polling, code conversion, error checking, and
buffering of messages awaiting computer at
tention.

Scheduling (Figure 13)

A section of the 7040 program continually
samples a small in-core terminal status table
to determine which user program will next
receive service.

Logging (Figure 14)

Another 7040 control routine continually
records usage statistics on magnetic tape for
later off-line analysis and summarization.

EXPERIENCE
The system has been in experimental oper

ation since mid-1963. Early human factor
analyses led to some revision in system func
tion and operating procedures9 • Preliminary
evaluation led to the decision in August 1964
to announce the system as a standard IBM pro
gram product to be available for customer use

Id Circuit Type

User
Id Priority Quantum

Terminal
Components Id Formats

Id Job Time In

Time Job Space

System Indicators Program

Program
Name

Size
Program

Location

Program
Calling Program Name

Circuit Index

Program is evicted when:
1) allotted time interval has expired

and successor program has arrived
2) input data is requested
3) output buffer is filled
4) external subprogram is called

FIGURE 13

SCHEDULING

DATA

History

Performance

Device

Function

Language

Procedure

User

Response Rate

Error Frequency

Productivity

USE

System Recovery

Simulation 8. Billing

Hardware/Software tradeoffs

Specification Changes

+

Revised Training Methods

User Evaluation

FIGURE 14

LOGGING

in April, 1965. Further evaluation led to the
December, 1964 announcement of Datacenter
access to be available by mid-1965 from ter
minals installed on client premises.

Initial operating experiences can be partly
summarized by the following observations.

The remote user must have the ability not
only to state his program but also to control
its execution. Thus, many functions conven
tionally performed by the console operator or
by monitor control cards must be identified,
structured, and defined by simple, yet com
prehensive, language commands.

The remote user is, more often than not, an
engineer or scientist, not a professional pro
grammer. Unnecessary sophistication (no
matter how elegant) in the system language
and operating procedures must be avoided.
Remember too, the remote user does not
usually have ready access to expert helpers
and consultants.

The remote user must be given the impres
sion that he is the only user. All possibility of
interference by others must be prevented. The
response rate should be reasonably uniform;
uneven response fluctuations are particularly
disturbing. In addition, some periodic terminal
indication of action (e.g., console "blink")
helps reassure the user that his program is
running. Finally, there must be ways for the
user and central operating personnel to com
municate both by transmitted messages and
also by verbal exchanges.

The terminal itself is a potent training tool.
The ability to proceed at one's own pace,

coupled with the immediate detection of most
programming errors, enables most people to
start using a' terminal with very little formal
training.

Conversational, source language techniques
benefit amateur users relatively more than
professional programmers who already under
stand machine language and know how to
debug effectively. Experienced programmers
are strongly conditioned to traditional batch
computing techniques and have considerable
trouble in adapting to the conversational ap
proach.

The types of problems run from remote
stations differ from those entered at a con
ventional computer installation. There are
many more relatively simple problems pre
viously processed on desk calculators, slide
rules, or small computers. Problems with large
input/ output volumes are obviously not suit
able for remote operation. This is also true
of many production type problems where ob
ject efficiency is important and there is little
need for the injection of human insight, judg
ment, or experience. Conversely, the debugg
ing of complex programs is greatly facilitated
not only in terms of elapsed time and expense,
but also in terms of the user skill level.

Time .sharing systems are very complex,
difficult to develop, and challenging to debug.
The system must be designed with these
factors in mind. In particular, it is essential
to provide means of measuring such factors
as user and system response rates, use of
language features, causes of errors, and equip
ment utilization factors. This data can be used
to simulate alternative system configurations
and scheduling algorithms and thereby lead to
improv~~d system performance. Analysis of
this data is also essential to designing im
provements in the language specifications,
operating procedures, and training methods.
Finally, the data provides a means of equitably
allocating overall system expenses among the
individual users.

Man-machine systems are no magical pana
cea. Properly applied they can be very effec
tive; improperly used, they prove to be a very
expensive novelty.

EXTENSIONS
Although the QUIKTRAN system uses type

writer oriented consoles, other terminal equip
ment could be employed: dictation to a remote
terminal operator, dialed input with audio

125

126

response 1 0, or graphic input with visual dis
playsll.

System performance could be greatly en
hanced by computer organizations that pro
vide improved interrupt capability, object time
address protection and relocation, larger pri
mary storage, and secondary storage equip
ment with faster access times and data rates.

System performance could also be improved
by a program design that permits the inter
mixed generation of object code along with
the interpretive intermediate representation.
Execution efficiency of the intermediate code
could be improved by incorporating some of
the frequently used interpretive functions into
micro-programmed logic contained in a read
only storage12•

I t is also profitable to explore the transla
tion of several different source languages into
the same intermediate form. This would not
only reduce implementation time and expense
but would also serve as a useful vehicle for
translation between related source languages13 •

From a marketing viewpoint, small systems
14. 15 like QUIKTRAN will undoubtedly be
absorbed as subsets of larger time sharing sys
tems16• 17. 18. However, it is also probable that
the stand alone, shared system will continue to
provide functional capabilities in the range
between the desk calculator and the small
computer. Initial use will include the areas
of scientific computing, text editing, computer
assisted instruction, and certain commercial
applications.

CONCLUSIONS
The QUIKTRAN system demonstrates that

a standard medium scale computer can be
time shared to provide an economical, but not
fully general, form of computer service. It is
also indicative that effective remote comput
ing requires not only different real time oper
ating systems but also new approaches to
translation (e.g., incremental) and debugging
(e.g., source language) techniques.

It appears that the system offers little, if
any, economic improvement over conventional
small computers if measured in established
throughputl 9 • 20 units. However, there are sig
nificant advantages in terms of improved con
venience, faster turnaround, higher manpower
productivity, low'er personnel skill levels, and
greatly reduced total solution time and expense.

Most importantly, such systems not only per
mit old problems to be solved in new ways, but
also enable new users to solve new problems in
ways not hitherto possible. It is this factor that
will lead to wide utilization of similar man
machine systems in a wide spectrum of ap
plications.

ACKNOWLEDGMENTS
Many individuals contributed to the QUIKTRAN

system. The following people made major contribu
tions to its design and development: T. M. Dunn,
J. M. Keller, E. C. Strum, and G. H. Yang.

REFERENCES
lE. G. Andrews, "Telephone Switching and the Early
Bell Lab Computers", Bell System Technical Jour
nal, March 1963.

2IBM 701 Speedcoding System, IBM Form Number
24-6059, 1953.

3IBM 705 Print System, IBM Form Number 32-7855,
1957.

4W. R. Brittenhan, et al., "SALE-Simple Algebraic
Language for Engineers", ACM Communications,
October 1959.

5Bendix Intercom 1000 System, Bendix Manual CB-
029, 1958.

6A. Newell (Ed.), "Information Processing Language
.-V Manual", Prentice Hall, 1961.
7IBM 7040/7044 Remote Computing System, IBM
Form Number C28-6800, 1964.

8J. M. Keller, E. C. Strum, and G. H. Yang, "Remote
Computing-An Experimental System. Part 2: Inter
nal Design", Proceedings of the Spring Joint Com
puter Conference, 1964.

9T. M. Dunn, and J. H. Morrissey, "Remote Com
puting-An Experimental System. Part 1: External
Specifications", Proceedings of the Spring Joint Com
puter Conference, 1964.

lOT. Marill, D. Edwards, and W. Feurzeig, "DATA
DIAL. Two-Way Communications with Computers
from Ordinary Dial Telephones", ACM Communica
tions, October 1963.

llG. J. Culler, and R. W. Huff, "Solution of Non
Linear Integral Equations Using On-Line Computer
Control", Proceedings of the Western Joint Computer
Conference, 1962.

12J. Anderson, "A Computer for Direct Execution of
Algorithmic Languages", Proceedings of the Eastern
Joint Computer Conference, 1961.

13J. J. Allen, D. P. Moore, and H. P. Rogoway, "SHARE
Internal Fortran Translator (SIFT) ", Datamation,
March 1963.

14S. Boilen, E. Fredkin, J. C. R. Licklider, and J. Mc
Carthy, "A Time Sharing Debugging System for a
Small Computer", Proceedings of the Spring Joint
Computer Conference, 1963.

15J. C. Shaw, "JOSS, A Designer's View of an Experi
mental On-Line Computing System", Proceedings of
the Fall Joint Computer Conference, 1964.

16F. J. Corbato, M. Merwin-Daggett, and R. C. Daley,
"An Experimental Time Sharing System", Proceed
ings of the Spring Joint Computer Conference, 1962.

17E. G. Coffman, J. I. Schwartz, and C. Weissman, "A
General-Purpose Time Sharing System", Proceedings
of the Spring Joint Computer Conference, 1963.

18H. A. Kinslow, "The Time Sharing Monitor System",
Proceedings of the Fall Joint Computer Conference,
1964.

19R. L. Patrick, "So You Want To Go On-Line", Data
mation, October 1963.

20" A Panel Discussion on Time Sharing", Datamation,
November 1964.

EXAMPLES AND SUMMARY
THE PAT LANGUAGE-Glen D. Johnson 129

AN EXAMPLE OF MULTI-PROCESSOR ORGANIZATION-David V. Savidge. 131

ON-LINE COMPUTING SYSTEMS: A SUMMARy-Dr. Harry D. Huskey 139

List of Attendees (SYMPOSIUM ON ON-LINE COMPUTING SYSTEMS). 145

Glen D. Johnson*

THE PAT LANGUAGE

THE SYSTEM to be described is an on-line
interpreter for a structured, algebraic lan
guage. This interpreter is operating on the
UCLA Computing Facility 7094 with the
SW AC computer used to maintain a type
writer console. There is also a similar inter
preter for the IBM 1620. The 1620 version
was produced by Dr. H. Hellerman of the IBM
Advanced Systems Development Division in
Yorktown Heights, New York, where it has
had several hundred hours of productive use.

The language is called the Personalized
Array Translator-just PAT for short. The
PAT language is a subset of the IVERSON
language which was designed by Dr. Kenneth
Iverson of IBM as a mathematical description
tool. The character set used by Iverson has
been reduced to a manageable size in the PAT
implementation.

A program in the PAT language operates
on data which is highly structured. The basic
data structure is considered to be a vector.
Each symbolic name is specified by the sys
tem's operator to be either a scalar, a vector,
or a matrix. Data names specified to be mat
rices or vectors also must have their maxi
mum sizes specified. There are statements in
the language to access and modify the sizes
of variables.

Each variable is stored by the system as a
vector with matrices represented as a series
of column vectors stored in the computer.
Scalar data items are represented as vectors
of unit length.

Currently, the 7094 system allows Boolean
and floating point data items. Floating point
constants are represented as numbers with or
without a decimal point. False is represented

by 0, true by 1. A constant may appear any
where that a variable is allowed.

P AT allows portions of data items to be
operated on using a subscripting rule. All
subscripting is zero-origin with Xo as the first
element of X. A single element may be selected
from a vector by using one subscript or from
a matrix by using two subscripts. A vector,
either row-wise or columnwise, may be
selected from a matrix by giving one subscript
with an indication that the other subscript is
empty.

For example, let S be scalar, V be a vector,
and M be a matrix. Then:

VS is a scalar
M SI S2 is a scalar
M S is a row vector
M . S is a column vector
A . indicates an empty position

Most statements are of the form:
Variable = Expression

They have the conventional meaning: the
value of the expression is computed and stored
in the variable on the left.

This meaning is extended by allowing vari
ables to have more than one element. An ex
pression is evaluated using the first element
of every variable contained in it to form
the first element of the resulting variable. The
expression is then evaluated using the next
element of each argument to form the next
element of the result, and so on until the
resulting variable is filled.

For example, if
X=l, 2, 3, 5

and
Y=7, 11, 13, 17

*UCLA Computing Facility

129

130

and the current size of Z is 4, after execution
of

Z=X+Y
the value of Z is

8, 13, 16, 22
If the end of any variable in an expression

is reached before the left part of the statement
is filled, indexing on this variable is restarted
at its first element.

This may be formalized by considering each
operand, having a length L to be periodic of
period L. The interpreter stores the first cycle
of each variable and generates later cycles
as copies of the first cycle.

There are three types of data combination
operations allowed by the PAT system. They
are binary operations, unary operations, and
reduction operations. Binary operations are
represented in infix form as an operator be
tween two variables and include addition,
subtraction, multiplication, division, and maxi
mum, minimum, and, or, and relational opera
tors.

BINARY STATEMENTS
X=Y+Z
X=Y-Z
X=Y*Z
X=Y@DIV Z
X=Y@MIN Z
X=Y@MAX Z
X=Y@EXP Z

Note: Operation names are preceded by "@",
and only the first character of name is
used.

Unary operations include trigonometric and
logarithmetic operations.

UNARY STATEMENTS
X=@SINE Y
X=@COS Y
X=@ABS Y
X=@LN Y

Reduction operations are binary operations
across data structures. Summation is a spe
cific case of reduction. In general, any binary
operation is applied to a vector or a matrix
as:

+ / Vector Summation
o / V Generalized

V0 0V1 0V2 ••• Vn

o / Matrix Row Reduct~on
o / / Matrix Column Reduction

For example, to compute:
n n

L:x. L: (X_X)2
o 1 s=, 0

x=
n

we write:

XB=+ / X
XB=XB @DIV N
T =X-XB
T =T * T
S =+ / T
S =S@DIV N

n

sum X
over N
differences
squared
summed
over N

To read and print data for this, we write:

@GET N
@DIM X,N
@D T,N
@G X

{ }
@TYPE XB
@T S

A statement line may be labelled. If a line
is given a name, the name starts in the first
position of the line. Otherwise, the first posi
tion is blank.

Normal sequencing of a program is from
top to bottom, left to right. Sequencing may be
changed and explicit looping effected with a
compare statement.

1=0
L ZI. = X . I

I = 1+1
I @CMPN, L, L, 0

The console has a series of commands used
to communicate with the program. These have
a * in the first typed column of a line. They
are:

*R
**

Reset system
Define symbols, followed by

(name j ~:~~~: t ~BFloalting t [dim1] [dim2]) 1 Matrix ~ ~ 00 ean ~
*E [name] Enter program statements

(program statements)
*X [name] Execute program
* D name Display

David V. Savidge*

An Example of
M ul ti -Processor Organization

INTRODUCTION

As the purpose of this meeting is the free
exchange of ideas, it is necessary to estaplish
the means of communication by defining the
terms in this title. We hope to continue on
line throughout this discourse.

The justification for the inclusion of this
subject in this symposium is the fact that at
some point in time someone will put together
a system to handle a multiplicity of problems
on-line. Before programs can be run on such
a system they must be organized in such a
manner as to facilitate their execution. By
exploring ways to organize programs now we
will be better able to utilize the hardware
when it becomes available.

DEFINITIONS
The kind of example we will show is that

of a method. References to hardware will only
be used to demonstrate feasibility and the
fact that the ideas discussed are not novel.
The intent of this paper is to show a method
which presents some interesting possibilities
for further exploration.

Before defining multi-processor it is neces
sary to accept a definition of a processor. We
consider a processor to be an assembly of
hardware which is capable of performing one
or more arithmetic or logical functions in a
specified manner. By this definition the word
processor could describe a device which only
performs addition. It could also be applied
to the computing unit of the LARC. This leads
to a definition of a multi-processor as being
any mixture of processors which share one

or more components such as memories, input
devices or output devices. This permits us to
include the MARK III and the Bell Labs MOD
V2 in the category of multi-processors as well
as the LARC itself. Each of the above contains
two processors by our definition. A more com
plex array is pres'ented by the ENIAC as de
scribed in Patent Number 3,120,606, granted
Feb. 4, 1964. The ENIAC contained twenty
accumulators. In addition to operating on two
problems concurrently, the ENIAC could per
form several operations at the same time
on one problem. All of these systems are con
sidered, in this paper, to be multi-processors.

Whenever two or more pieces of anything
are put together they must be organized.
Certain customs or environmental conditions
often impose constraints on the organization.
Even though the engine can be found in either
the front or the back of an automobile, the
driver's seat remains in the front. A horse
is generally placed in front of the cart it is
intended to pull. The element of direction or
control is integral to any organization of
pieces required to do work. This paper will
describe how the control of a multi-processor
can be set up to provide the response times
needed in closed loop applications as well as
the generalized treatment required in time
sharing systems. Weare not concerned with
the capability of the individual processors but
rather with the broad question of the organi
zation of work to be performed by a multi
plicity of processors. We do not consider that

*Manager, Product Line Planning, UNIVAC.

131

132

the assignment of one procedure to one proc
essor while other processors remain idle rep
resents efficient utilization of the hardware.

The idea of a system comprising a multi
plicity of processors seems to be a natural
extension of the time sharing concept. Time
sharing was the outgrowth of the imbalance
between CPU and 1/0 device speeds. If the
CPU was loafing, it was given more work to
do. We now have the line capability to over
load one CPU within an installation. The
logical extension is to provide more than one
CPU. The question immediately arises-what
does one do if there .is only one problem to
be run at this time? Is it satisfactory to use
only one of the CPU's which are in the system.?

Various schemes have been proposed for the
design of multi-processors of varying capa
bilities-the Holland system3 and the Solo
mon computer4 are examples of this. Con
cepts of control are being explored by many
research groups. The application of NDRO
memories is increasing. A similarity is noted
between the use made of NDRO memories and
the utilization of the function tables of the
ENIAC5. The organization of the ENIAC
permitted the programmer to organize the
solution of a problem so that more than one
arithmetic operation was being performed at

one time. This was difficult, but was one way
to shorten the execution time for a problem.
We are faced, today, with the same logical
problem as faced ENIAC programmers. The
difference lies in the fact that we now have
a variety of gear and a multiplicity of prob
lems brought together in a multi-dimensional
array. It is our thesis that it is possible to
automate the organization of a single pro
cedure to maximize the utilization of multiple
processors.

Unless the organization of the procedure
is performed according to a very rigid set
of rules it will provide another source of
subtle errors. While it is assumed that all
parts of a stated procedure are interrelated
within the total network, it does not follow
that all steps must be performed in series.
One of the ways in which processors gain
speed is to overlap input, processing and out
put. We now want to extend this philosophy
to the internal parts and determine the extent
to which overlaps can occur within the proc
ess. Some equipment provides "look ahead"
which permits the overlapping of the time
of instructions which occur in series. This is
accomplished within a single processor. When
dealing with a multiplicity of processors simi
lar functions could be performed in parallel.

FIGURE 1

PERT NETWORK

FIGURE 2

PERT NETWORK ARRANGED BY TIME PERIOD

This can be achieved at the software level by
what we choose to call "plan ahead". The
organization can be accomplished by the com
pilers and the executive routines.

We must make several basic assumptions
and accept certain definitions in order to de
velop a set of rules:
1. A procedure is defined as the collection of

operations required to produce specified
output data from specified input data.

2. A procedure generally consists of a set of
subprocedures which are linked together
in the form of a network.

3. An individual subprocedure can be defined
as a completely seif contained process with
a prescribed set of inputs and outputs.

4. The communication between one subpro
cedure and any others occurs only at the
beginning and at the end of the subpro
cedure.

5. It is possible to depict the flow of da:ta by
means of a diagram which shows the inter
relationship of all subprocedures within the
procedure.

6. The flow diagram can indicate those sub
procedures which could be executed in par
allel.

PROCEDURES
Figure 1 and Figure 2 demonstrate an ap

plication of these definitions. Figure 1 is a
PERT chart of a procedure6 • Each of the

33 numbers represents a subprocedure. Figure
2 shows the same flow diagram arranged to
indicate the parallelism possible. In Figure 2,
the lines connecting the subprocedures have
been identified with letters which we will use
to denote the data (operands) flowing between
the subprocedures. Twelve of the subpro
cedures fall into time periods by themselves
(1, 2, 8, 19, 20, 21, 23, 26, 29, 30, 32, 33).
Eighteen can be paired:
6,7 9,12 10,13 11,14
15,17 16,18 22,31 24,25 27,28

One group could contain three (3, 4,5). If
we shifted either 3 or 4 to occur in the same
time period as 8, a two processor system could
accomplish the entire procedure in twenty-two
time periods. The reduction in time over a
serial operation would be the sum of the times
for the shorter of each of the eleven pairs of
subprocedures. One of the processors would be
available for the execution of another pro
cedure during the eleven time periods when
the illustrated procedure does not permit par
allel execution of its subprocedures.

This example is used to indicate the method
by which a reduction in elapsed time could be
achieved. The evaluation of any saving re
quires additional specifications such as the
time for each subprocedure. This is related to
the problem and the hardware. The method is
independent of the specifications of either the
problem or the hardware. The first question to

133

134

be resolved is whether the problem lends itself
to parallel operation. The second is to measure
the savings which could be achieved.

An improvement in running time can be
achieved by proper pairing (in a two proces
sor system). Depending on how nearly the
time requirements match, the pairing of 5
with 4 and 3 with 8 might be better than pair
ing 5 with 3 and 4 with 8. Similarly, 31 should
be paired with an operation which requires
more time than it does. This could be 22, 23,
26, 29, or 30. The rule is that a subprocedure
which could be performed in one of several
periods should be paired where possible with a
subprocedure which required more time than
it does . If not possible, the longest fixed posi
tion subprocedure should be used.

A further consideration in selecting time
periods in a complete procedure is the storage

of intermediate results. To shorten the period
for storing intermediate results it might be
better to perform subprocedure 3 in parallel
with subprocedure 8, even though 3 is shorter
than 5 and longer than 8. Such considerations
are of value only where there are alternatives.
The fact that alternatives do exist is evident
from a visual examination of Figure 2.

If the procedure were large, of several thou
sand subprocedures, a visual representation of
the entire net would be very difficult to pre
pare. It would also be difficult to examine and
analyze. It is possible to represent the intelli
gence represented by Figure 2 in a form which
can be used for processing by a computer.
Table 1 contains this information. List I shows
one entry for each operand result relationship
arranged in order by subprocedure identifica
tion. List II is the same data arranged in order

TABLE 1

SUB PROCEDURE ENTRIES FOR ANALYSIS

List I List II List III List I List II List III

SP Q R Q R SP R Q SP SP Q R Q R SP R Q SP

2 A B A B 2 AAP 20 17 T W D H 5 F B 3
2 A C A C 2 AAZ 20 18 W Y D I 5 G C 4
2 A D A D 2 AB AA 21 19 X Z E V 15 H D 5

3 B E AA AB 21 AC AA 21 19 Y Z F S 11 I D 5
3 B F AA AC 21 AD AB 31 20 P AA F T 11 J H 6
4 C G AB AD 31 AE AC 22 20 Z AA G S 11 K I 7

5 D H AC AE 22 AF AC 22 21 AA AB .G T 11 L J 8
5 D I AC AF 22 AG AF 23 21 AA AC H J 6 L K 8
6 H J AD AR 32 AH AF 23 22 AC AE I K 7 M J 8

7 I 1< AE AI 25 AI AE 25 22 AC AF J L 8 M K 8
8 J L AE AJ 25 AI AG 25 23 AF AG J M 8 N L 9
8 J M AF AG 23 AJ AE 25 23 AF AH K L 8 0 M 12

8 K L AF AH 23 AJ AG 25 24 AH AK K M 8 P M 12
8 K M AG AI 25 AK AH 24 25 AE AI L N 9 Q N 10
9 L N AG AJ 25 AL AJ 26 25 AE AJ M 0 12 R 0 13

10 N Q AH AK 24 AL AK 26 25 AG AI M P 12 S F 11
11F S AI AN 28 AM AJ 26 25 AG AJ N Q 10 S G 11
11F T AJ AL 26 AM AK 26 26 AJ AL 0 R 13 S Q 11

11G S AJ AM 26 AN AI 28 26 AJ AM P AA 20 T F 11
11G T AK AL 26 AN AL 28 26 AK AL Q S 11 T G 11
11Q s AK AM 26 AO AM 27 26 AK AM Q T 11 T Q 11

11Q T AL AN 28 AP AN 29 27 AM AO R U 14 U R 14
12 M 0 AM AO 27 AP AO 29 28 AI AN S V 15 V E 15
12 M P AN AP 29 AQ AP 30 28 AL AN T W 17 V S 15

13 0 R AO AP 29 AR AD 32 29 AN AP U V 15 V U 15
14 R U AP AQ 30 AR AQ 32 29 AO AP V X 16 W T 17
15 E V AQ AR 32 B A 2 30 AP AQ W Y 18 X V 16

15 S V B E 3 C A 2 31 AB AD X Z 19 y W 18
15 U V B F 3 D A 2 32 AD AR Y Z 19 Z X 19
16 V X C G 4 E B 3 32 AQ AR Z AA 20 Z Y 19

Legend
SP -S ubproced ure

O-Operand
R-Result

by operand identifier. List III is the same data
arranged in order by result identifier. As sub
procedure 1 and subprocedure 33 do not each
have an input and an output, they are not in
cluded in the lists. By truncating List I at
different points and rearranging the re
mainder into Lists II and III, a variety of
combinations can be produced.

Subprocedure 2 generates three table en
tries. Subprocedure 11 generates six entries,
while subprocedure 16 generates only one
entry. The rule is that each subprocedure
generates a number of table entries equal to
the product of the number of inputs times the
number of outputs. Each entry must appear
in each of the three tables. To facilitate sched
uling, each entry should carry additional data
concerning the facilities used by the sub
procedure, the input and output volumes in
volved and the time required. If this is done
the complete network can be timed out, sched
uled, and controlled for any combination of
processors.

Before describing the techniques to be ap
plied to the three lists and the results which
can be secured!L it is necessary to delimit the
terms further.
1. An operand is all of the data which flows

from one subprocedure, or an input, to an
other subprocedure, or an output, in one
movement as one record or piece of intel
ligence. Thus it can be an element of data,
as a quantity to be added, or a set of data as
a stock record. It must be received from
some point outside the subprocedure which
operates on it.

2. Parameters which are used by a subpro
cedure are not considered to be operands
within this definition. This does not pre
clude their use in arithmetic or logical
operations within a subprocedure.

3. The definitions of individual subprocedures,
operands and parameters are always unique
within a given environment consisting of
problems and hardware.

The treatment of necessary prior conditions
will be discussed later. We seldom go through
all paths in all' subprocedures for one record
or piece of intelligence. Conditions which must
be met before executing an individual path
represent intelligence which is derived from
the data processed. There are options in the
way such conditions are treated, depending on

the problem and the hardware. For this reason
a discussion of their treatment is deferred.

ORGANIZING PROCEDURES
The technique outlined below (Steps 1

through 6) produces a list which represents
the same time series as shown in Figure 2. If
the operation is started with the final results
(Steps 1 through 6A), a list is produced which
shows the last possible time period by which
subprocedures must be executed.
Step l-Compare the Operand Fields in List II

with the Result Fields in List III. Note
four conditions:
a. 0 Field in List II does not match an

R Field in List III-
Record items on a list of Unmatched
Operands-

o R SP
A B 2
A C 2
A D 2

This condition must be noted for each
relative time period when analyzing the
'subprocequres for first possible time
period. It will be ignored when analyz
ing for the last possible time period.
b. 0 Field in List II does match an R

Field in List III-
Record items on a list of Matched
Operands. This is a reduced List II.

c. R Field in List III does match an 0
Field in List II-
Record on a list of Matched Results.
This is a reduced List III.

d. R Field in List III does not match
an 0 Field in List II-
Record on a List of Unmatched Re
sults.

R 0 SP
AR AD 32
AR AQ 32

This condition will be ignored when
analyzing for the first possible time
period. It must be noted for each rela
tive time period when analyzing for
the last possible time period.

Series for first possible time period-
Step 2-Rearrange the data from Step la to

read-
R 0 SP
B A 2
C A 2
D A 2

Sort on the R Field.

135

136

Step 3-Delete the items from the List of
Matched Results (Step 1c) which are
identical to those from Step 2. If this
deletion removes all references to the
result identifiers we state that these
results can pe secured in the first rela
tive time period.

Step 4-Rearrange the data from Step 2 to
read-

SP , 0 R
"

2 ;'\'

A B
2 A C
2 A D

Sort on the SP Field.
Step S-Delete the items from List I which are

identical to those from Step 4. If this
deletion removes all references to the
subprocedure identifiers we state that
these subprocedures can be accom
plished in the first relative time period.

Step 6 and continuing-Repeat Steps 1 through
5 for successive time periods until Lists
I, II and III are exhausted.

Series for last possible time period.
Step 2A-Rearrange the data from Step 1d to

read-
o R SP

AD AR 32
AQ AR 32

Sort on the 0 Field.
Step 3A-Delete the items from the List of

Matched Operands (Step 1b) which
are identical to those from Step 2A.
If this deletion removes all references
to the Operand identifiers we state
that these operands must be used by
the last relative time period.

Step 4A-Rearrange the data from Step 2A to
read-

SP 0 R
32 AD AR
32 AQ AR

Sort on the SP Field.
Step SA-Delete the items from List I which

are identical to those from Step 4A.
If this deletion removes all references
to the subprocedure identifiers we
state that these subprocedures must
be accomplished by the last relative
time period.

Step 6A and continuing-Repeat Steps 1, 2A
through 5A for preceding time peri
ods until Lists I, II and III are ex
hausted.

Unusual conditions can be detected by this
technique. The operands which are initial in
puts, and the results which are final outputs,
are identified as the lists secured in Step 1a
and 1d the first time. Any errors in their
identification are corrected before performing
the other steps. In addition, if items remain
in Lists I, II and III and no items fall out in
step 1a or 1d as the case may be, a closed loop
exists which must be corrected.

Table 2 shows the results of this analysis by
relative time period. The fact that subpro
cedures 3, 4 and 31 can each be scheduled in
one of several relative time periods is evident.
The selection of the best fit can be accom
plished on a computer by applying the rules
stated previously. One of the advantages which
can be gained by using a multiprocessor is the
reduction in the time and effort required to
store and retrieve intermediate results.

The above technique organizes the sub
procedures which produce results. For each
relative time period, that subprocedure which
requires the greatest amount of time can be
identified. The complete chains of subpro
cedures which can be assigned in series to one
processor can be identified. The exchange of
data between processors can be scheduled to
minimize memory requirements. These are
positive benefits which can be achieved with
this technique. It applies a modification of
PERT and CPM to the organization of work
for a computer.

CONDITIONS
The treatment of necessary prior conditions

can be accomplished with the same technique.
We need only to regard a comparison, which
determines the path to be followed between
subprocedures, as generating data. For our
purpose we treat intelligence about data in the
same way we treat the data itself. It is only
necessary to identify this intelligence in the
same way we identify data and then proceed
through the same steps. We can identify in
telligence about data with the form:

Operand 1, Operand 2, Value.
Operand 1 and Operand 2 can be data fields

or can be literals. Any data fields must be
shown as an input to the subprocedure per
forming the comparison. The value field is
considered necessary because we can never
have only one such result coming from a sub
procedure. The value field permits a verifica
tion that all conditions have been considered.

TABLE 2

ALLOCATION OF SUBPROCEDURES

Relative Time First possible execution Last possible execution
Period of Sub-Procedure of Sub-Procedure

1 2
2 3,4,5
3 6,7

4 8
5 9,12
6 10,13

7 11,14
8 15,17
9 16,18

10 19
11 20
12 21

13 22,31
14 23
15 24,25

16 26
17 27,28
18 29

19 30
20 32

The sum of all value fields must equal seven
for each comparison.

TABLE 3

CONDITION VALUES ON COMPARISONS

Condition Value
1

< 2
> 4
~ 6
£:: 3
~ 5

2
5
6,7

8
9,12

3,4,10,13

11,14
15,17
16,18

19
20
21

22
23
24,25

26
27,28
29

30,31
32

From the foregoing it is obvious that the
simplest technique to use for comparisons
which affect branching between subproce
dures, is to treat the comparisons as sub
proced ures by themselves. Each decision af
fecting branching would be a subprocedure.
This leads us to an alternative method. The
main flows of data in a multi-processor could
be executed without regard to data dependent
branching. All data dependent decisions could
be made by a separate processor and the
proper final results selected. By this method
some operations would be performed which
would prove useless. Depending on the envi
ronment this alternative might save consider
able elaped time.

137

138

COMPILING AND EXECUTING
We assume that the organization of the

procedure will take place prior to the com
pilation of an object program. The compiler
should be able to provide, with the loadahle
program, all of the intelligence concerning the
network, the time periods and the execution
times for each subprocedure. In turn the ex
ecutive or monitor routine must be able to
treat each scheduled subprocedure in the same
manner as it treats any interrupt from an out
side source. A subproced ure would take on the
priority of its governing procedure. In effect
we are subdividing every piece of work to be
done into the smallest practical unit. A sub
procedure could be the inversion of a matrix
or the comparison of two data fields. The
compiler determines how the work can be sub
divided and over-lapped. The executive routine
determines which component shall execute it
and when.

HARDWARE
To provide complete flexibility in the hard

ware associated with the central memory, a
binary addressing scheme seems to be the
logical choice. It also seems desirable to pro
vide one static register per processor with a
bit size equal to the memory width. Each pro
gram would be assigned a base register which
would contain a binary number, the starting
bit address. Each processor can contain a one,
two, or three bit multiplier (hardware) which

would operate on the address portion or por
tions of an instruction before incrementing
with the base register. If a processor contains
only two static registers and a plugboard, all
intelligence as to sequence must be within an
other processor, possibly the one which con
tains the executive routine.

CONCLUSION
We have described a technique to break

down the solutions of problems to permit
maximum parallel operation within one prob
lem. We have not described in detail the hard
ware needed to execute programs in this
manner. We consider that the hardware will
be developed.

REFERENCES
'Staff of Engin~ering R~search Associates, Inc., High
Speed Comput~ng Devwes, McGraw Hill Book Co.,
Inc., New York, 1959, p 185.

2Ibid, P 188.
3J. H. Holland, "A Universal Computer Capable of
Executing an Arbitrary Number of Sub-Programs
Simultaneously", Proc. Eastern Joint Computer Con
ference, (1959).

4D. L. Slotnick, W. C. Borck, and McReynolds "The
Solomon Computer", Proc. Fall Joint Compute~ Con
ference, (1962).

SMartin H. Weik, "The ENIAC Story", Ordnance
American Ordnance Association, Washington, D. C.:
January-February 1961, p 571-575, also Ref. 1 p 194-
197. '

6Reston M. Aras, ASCE, and Julius Surkis "PERT
and CPM Techniques in Project Manageme~t" Jour
nal of the Construction Division, Proceedings' of the
American Society of Civil Engineers, Vol. 90, No.
COl, March 1964, reproduced in UNIVAC publication
UP3952.

Dr. Harry D. Huskey*

On-Line Computing Systems:
A Summary

ON-LINE COMPUTING was defined by Walter
Bauer as the efficient use of a computer in a
system in which the computer interfaces with
man or other machines, to which it reacts in
receiving and supplying information. Review
ing the six kinds of on-line systems described
by Ivan Sutherland, I would propose the
following revision of the definition:

"On-line computing is the use of a
computer interfaced with man or
machines, to which it reacts in re
ceiving, processing, and transmit
ting information."

I am most interested in the interface with
man, and here the computer is on-line if the
man awaits the computer's response, not hav
ing turned his attention to other matters.

It is clear that during the era 1949 until,
perhaps, 1954, all automatic computers were
essentially used in an on-line manner. In other
words the customer sat at the console, pushed
buttons, and tried to interpret the displays
(binary neon indicators) in terms of the ex
pected progress of the problem.

In 1954 with the delivery of large com
mercial computers (with more attention to
actual dollar costs) it was no longer sensible
to let a user flounder through a problem by
pushing buttons and "thinking" at a console.
Thus we have the era of BATCH PROCESS-,
ING.

Now in 1965, using the experience gained in
developing military systems, many efforts are
underway to improve the communication be
tween man and the computer. Obviously the
man will make maximum progress on his

problem if he can work on it with sustained
attention. This implies the use of a personal
console available to the man for relatively long
periods of time. In most situations his opti
mum progress on his problem requires com
puting over very short intervals of time. Con
sequently, a well organized central computer
capable of servicing many low cost stations
is required.

ECONOMICS OF ON-LINE COMPUTING
At the University of California in Berkeley

16,000 problem passes were made in the month
of January, 1965, on the DCS (7040-7094)
system utilizing 57 percent of the available
computer time. The average problem time was
1.56 minutes and the average equipment cost
per problem-pass was $3.00. The cost of ex
pendable supplies per problem-pass was about
$0.30.

The capital cost of a teletype style station
ranges from $400 to $2,000, and communica
tion costs range from $2.00 per month (for
direct lines on the Berkeley campus) up to
$4,300 per month for a leased private voice
grade line across the United States.

Since the teletype user can see the imme
diate effect of his editing of his program he
will use substantially more central computer
time. I estimate three times as much which
I think is a conservative figure.

Certainly the use of the on-line stations
reduces th€ use of cards and high speed printer
supplies. Let us assume that this goes to zero

*Professor of Electrical Engineering, University of
California, Berkeley.

139

140

and that the cost of paper and ribbons for
teletypes can be ignored. If a teletype station
is used 300 hours per month (14 hours per
day for a five day week) and costs $150 per
month (the price of a Q UIKTRAN station
note that Morrissey quotes $1,000 per month
per station as total cost), then the remote
station hardware cost per problem is $0.50
on the basis of one hour use. Central computer
use per problem is probably up by a factor
of three, e.g. instead of three compilations to
debug a ten statement problem there is per
haps eight to ten passes.

Therefore, the actual cost of doing a prob
lem using remote stations on the basis de
scribed above is perhaps three times the cost
by batch processing methods, primarily be
cause of the extra problem-passes which can
be easily taken from the console.

Certainly reduction in cost of in-output
equipment at the central computer, improved
methods such as incremental compiling (state
ment by statement), incentives to encourage
non-wasteful use, can improve the cost ratio.
However, even under optimum arrangements
the total problem cost for remote station com
puting appears to be perhaps twice that for
batch processing.

Those who argue that remote station com
puting will be cheaper, do so on the basis that
(1) incremental compiling will permit clearing
syntax errors in one pass (most current batch
processing compilers could be much better
designed from this point of view), and (2)

that fewer results will be printed since the
person with the problem knows he can easily
get other results if needed. I am willing to
admit that there will be a reduction in the
printing of wrong results, but at reasonable
traffic levels the person with a problem to be
solved does not 'easily get other results. Con
sequently, when he thinks his program is cor
rect (and he is an eternal optimist) he will
ask (curbed only by hard cash economics) for
extensive print-outs at the central computer
facilities.

It is unfortunate that the problems of satu
ration of the on-line console system were not
discussed.

Whatever the true picture relative to the
costs of batch processing versus console com
puting, there is no doubt whatsoever that from
the point of view of elapsed time the console is
far superior. As Weizenbaum says: Man is
conserved, not the machine.

On the other hand, the system designer has
a tremendous task in discouraging the user
from experimenting trivially just to see what
wonderful things will be done for him.

It is exactly this last point and the eco
nomics discussed above that leads us at
Berkeley not to plan for consoles for under
graduate teaching purposes. In fact, these
students do not even get normal turn around.
If their problems are left by a fixed time in
the evening the results will be back the next
morning. This system permits the assignment
of a substantial problem once a week due one
week later.

At the same time we are installing remote
consoles (1050's) which, during scheduled
periods provides Q UIKTRAN, and at all other
times permits communication with problems
in process in the DCS system (problems run
ning under IBSYS, FORTRAN II monitor,
and numerous special languages such as
COBOL, COMIT, SNOBOL, IPL, NELIAC,
etc.). Such facilities will be available to gradu
ate students and staff but not in undergradu
ate teaching.

FUTURE OF ON-LINE COMPUTING
Walter Bauer has estimated that by 1975,

90 percent of computing will be done ON
LINE. I would like to examine this for a
moment. Following I van Sutherland we can
divide computing into the following cate
gories:

1. Process control
2. Inquiry Stations
3. Process control

Specialized Systems (Engineering
Design)

4. Instrumentation of on-line systems
S. Programming Systems
6. Problem Solving Systems

Categories one through four are intrinsically
on-line. The tasks associated with five and six
can be accomplished by batch processing or
on-line techniques. My opinion is that (because
of economics and, in line with the discussion
of the preceding section) program debugging
and problem solving will always be done both
on-line and by batch processing. In these two
areas the balance is anyone's guess-it depends
strongly upon the relative accomplishments in
the improvement of batch processing tech
niques and in the improvement of on-line tech
niques. My guess is that the division will be

about 50%-50%. It is possible that in 1975
process control, inquiry stations, and on-line
instrumentation will represent 80 percent of
the total computing done, in which case Walter
Bauer's estimate would be right. However, I
believe that more than 10 percent of the total
computing will still be batch processing.

INSTRUMENTATION
The evidence of the lack of precise informa

tion in the two preceeding sections supports
the contention of Sutherland and Amdahl that
much more instrumentation of on-line systems
is needed so that we know what is going on,
what the typical user does, and what the vari
ations are from the norms. It is only with this
information that systems can be "trimmed"
so as to optimize usefulness to the customer
array.

TYPES OF COMPUTER USERS
Computer users can be classified into two

groups: Those who require hardware response
before loss of attention occurs or frustration
cancels any advantage, and those who only
need results some time later (minutes, hours,
or days) as they can, without ultimate loss,
turn their attention to other tasks in the inter
vening period. The on-line user is thus dis
tinguished from the batch processing user.

I t is also possible to classify users on an
other scale as follows:

1. The query user, who asks the machine
(hardware and software) questions and
expects answers in real-time (he awaits
the answer without transferring atten
tion to other matters) .

2. The reaction user, who submits himself
to the control of the machine. Usually
the decisions involved depend upon an
environment too complex and too quickly
changing for a man (or team of men) to
make the decisions. The answers to all
questions are programmed a priori. An
example is the abortion program of pro
ject Mercury.

3. The heuristic user. A complex problem
is under consideration, and the complete
exploration of the solution tree is beyond
the capability of the system (probably
time-wise). Therefore, on some basis the
solution tree is pruned by the man and
the machine moves him through the re
duced tree.

4. The partnership. The partnership be
tween man and the machine can range
from a limited partnership as repre
sented by Morrissey's QUIKTRAN to a
more general partnership represented by
project MAC at MIT, or the time sharing
system at SDC. The work on self-organ
izing systems is looking forward to even
more interesting part:Q,erships.

FAIL SAFE
On-line systems are still in their early de

velopment stage, but now that systems are
beginning to work, I think that it is obvious
that more attention should be paid to the fail
safe aspects of the problem. Topics to be con
sidered here are memory protection or assign
ment, system controlled input and output, and
well designed user language features. The
merits of simpler systems, like JOSS, should
not be discounted. Walter Bauer made a sig
nificant point in this respect: the user should
be led down a procedural path.

THE CULLER-FRIED APPROACH
The use of a storage tube simplifies the

remote station device, placing it in the same
cost area as sophisticated teletype-style sta
tions. Although such stations are not as ver
satile as the dynamic or memory buffered
types, they nonetheless accomplish the most
significant improvements in communication
that display scopes represent. In fact, the
comments of Pope and Tomkins support the
old adage: a picture is better than a thousand
words.

As indicated by Pope, perhaps the most im
portant aspect of such station systems is their
aid in the development of the solution algor
ithm. In comparison, teletypewriter methods
might be like trying to appreciate the art in
the National Gallery by exploring it at night
with a pencil size flashlight.

ENGINEERING DESIGN
WITH DISPLAYS

The use of display consoles in engineering
design seems to me (an outsider) to be push
ing the state of the art a bit. My feeling is
that here is a powerful technique with almost
unlimited potentialities and, therefore, I
strongly support all the work in the field.
However, at this early stage in the develop-

141

142

ment I feel that at best it is a clumsy tool.
Therefore, we should be extremely careful
about raising false hopes.

On the other hand, the very complete pre
sentation of Donn Parker shows a tremendous
effort in this direction. And whatever the
relative efficiencies of this tool, I "drool" when
thinking about the possibility of using the
system. In fact, I wonder about incentives
to minimize the "playing around" of the
operator?

LANGUAGES
As illustrated in the MAC system and in

Donn Parker's system, we are going to see
many problem oriented language systems for
use with remote stations. So far, many of these
are adaptations of batch processing languages,
but time will see the development of systems
optimized for remote-on-line use.

In the area of procedure oriented languages
QUIKTRAN is an adaptation of the batch
processing language FORTRAN. In review
ing Johnson's PAT language one wonders if
it could not have been developed with a much .

closer relationship to either ALGOL or NPL.
For language exploration this is not too im
portant. However, if anyone is developing a
language which he expects to be widely used,
then he should base it on either ALGOL or
NPL if possible.

SUMMARY
I am impressed by the large show of interest

in the subject, and I hope this is symptomatic
of a hard look at the problems of improving
batch processing systems and, more impor
tantly, at the greater variety of tools available
by improved man-machine interface equip
ment (hardware and software). I feel that
the culmination of the developments described
in this set of papers marks the first real step
in improving the use of the computer as a
research and development tool. In other words,
making the computer available to an indivi
dual on a more or less continuous basis is the
first significant step in improved use of com
puting equipment since the first automatic
computer was put into operation in 1949.

List of Attendees
Symposium on On-Line Computing Systems

NAME

Robert Abbott

Milton B. Adams

Gale R. Aguilar

K. D. Allen

Robert H. Allen

James R. Ameling

Jeffry Amsbaugh

Martin Anderson

Sypko Andreae

Frank B. Andrews, Jr.

G. W. Armerding

W. D. Armour

Wendell Arntzen

Lester G. Arnold

James Ashbaugh

J. R. Ashcraft

H. L. Asser

Marc Auslander

Herbert F. Ayres

C. L. Baker

Frank R. Baldwin

Berton E. Barker

Hugo H. Barlow, Jr.

Sheridan F. Barre

A. Lewis Bastian, Jr.

K. E. Batcher

Edgar A. Bates

Robert S. Bauder

Fred W. Bauer

Bob Bearden

George C. Beason

T. J. Beatson

Dr. D. C. Beaumariage

Theodore S. Beck

John D. Beierle

Alan Bell

Robert W. Bemer

J. Philip Benkard

J. Russ Bennett

AFFILIATION

Lawrence Rad. Lab.

Stanford Res. Inst.

Beckman Instruments

Moore Business Forms

Technical Operations

Sun Oil

Lawrence Rad. Lab.

NCR Company

RAND Corp.

IBM

Boeing Company

Eastman Kodak Co.

UNIVAC

Sandia Corp.

IBM

IBM-Boston

Morgan Guaranty Trust

RAND Corp.

IBM

Sandia Corp.

Aerojet-General Corp.

Natl. Cash Register Co.

IBM

Goodyear Aerospace Corp.

Stromberg Carlson Corp.

Security 1 st Natl. Bank

Burroughs Corp.

Natl. Cash Register Co.

General Electric Co.

Bunker-Ramo Corp.

UNIVAC

UNIVAC

IBM

Burroughs Corp.

NAME

James Bennett

John R. Bennett

Evelyn Berezin

James O. Berish

Marvin Berlin

Martin F. Berman

U. Berman

Robert Bernard

P. Berning

Marvin N. Bernstein

Mort Bernstein

Hilmer W. Besel

L. P. Best

Thomas P. Bianco

Lyle P. Bickley

Eugene P. Binnall

Dr. Garrit A. Blaauw

Max Blakely

Hawley Blanchard

R. J. Blanken

Martha Bleier

R. E. Bleier

Melvin H. Blitz

Joseph Blum

Brooke W. Boering

Joe Bogar

Robert G. Bolman

Robert Bomeisler

Elaine R. Bond

Richard C. Bond

R. U. Bonnar

J. M. Bookston

J. C. Borgstrom

A. A. Borsei

J. F. Bost

Edward C. Boycks

Douglas N. Brainard

Daniel Brayton

W. J. Brian

AFFILIATION

IBM

Digitronics Corp.

IBM

Gen. Instrument Corp.

Natl. Cash Register Co.

IBM

Perkin-Elmer Corp.

TRW Space Tech. Lab.

Litton Industries

La Sierra College

Lockheed Calif. Co.

IBM

IBM

Lawrence Rad. Lab.

IBM Data Systems Div.

Boeing Co.

Planning Res. Corp.

Bunker-Ramo Corp.

System Dev. Corp.

System Dev. Corp.

Sylvania Elec. Systems

Talman Federal Savings

Friden, Inc.

Bunker-Ramo Corp.

IBM-Boston

Shell Development

General Motors

UNIVAC

Beckman Instruments, Inc.

Electro-Mech. Res., Inc.

Raytheon Computer

Lawrence Rad. Lab.

Sanders Assoc., Inc.

Control Data Corp.

145

146

Harold L. Brint

Wm. Broderick

Charles Brodnax

Robert J. Broen

Charles Broman

J. H. Brown

J. Reese Brown, Jr.

Robert J. Brown

Ross H. Brown

Amcel Buchanan

Capt. Thomas K. Burgess

David L. Bussard

E. Daniel Butler

E. D. Callender

Carlo Paul Calo

S. H. Cameron

Richard G. Canning

F. C. Carlin

Charles E. Carlson

Charles H. Carman

J. E. Carrico

Keith Carter

Arthur F. Casey

C. T. Casale

Perry Cassimus

David Caulkins

James V. Cellini

Herb Chalmers

Carl Chamberlin

S. H. Chasen

Tien Chi Chen

Leonard G. Chesler

Clayton Chisum

Duane M. Christ

Lloyd Christianson

George J. Christy

D. L. Clark

Charles A. Clark

David L. Clark

Donald J. Clark

Dorothea S. Clarke

Donald M. Clarry

Daniel P. Clayton

Richard Cleaveland

Wm. Clelland III

C. T. Clingen

Richard Clippinger

W. R. Coates

E. G. Coffman

Victor Colburn

R. Wade Cole

Sandia Corp.

General Electric Co.

Texas Instruments, Inc.

White Sands Mis. Range

Mitre Corp.

Burroughs Corp.

Natl. Cash Register Co.

Univ. of Calif.

Tinker AFB

USAF Office of Sci. Res.

Hughes-Fullerton

Ernst and Ernst

Aerospace Corp.

USN Sta., BI. 796, Washington

I. I. T.

Canning Publications, Inc.

Lockheed Calif. Co.

N. Y. St. Dept. Public Works

U. S. Dept. of Interior

Union Bk. Compo & Servo Ctr.

USAF

Stromberg Carlson

Control Data Corp.

Natl. Cash Register Co.

Caulkins Assoc.

USAF

ITT-DISD

IBM

Lockheed Georgia Co.

IBM

RAND Corp.

IBM

State of Calif.-DWR

IBM

MIT Lincoln Lab.

Bell Telephone

United Res. Servo Corp.

General Electric Co.

Technical Operations

Bell Telephone Labs.

U.S. Govt.

USN Ord. Test Sta.

General Electric Co.

Honeywell Inc.

AT&T Co.

System Dev. Corp.

Stanford University

B. D. Collins

Donald Colvin

Boyd F. Connell

Jack Connolly

Herbert F. Congram

George E. Comstock

Carl J. Conti

Robert P. Cook

Charles Corderman

E. A. Corl

Charles F. Corley

W. L. Coultas

Daniel L. Covill

Daniel E. Cowgill

E. C. Craddock

UICol. Albert Crawford

Charles Crawshaw

James J. Crockett

Timothy Cronin

F. C. Cunningham

Wm. S. Currie

D. J. Dantine

Howard Davis

George W. Dawson

R. L. Day

George DeFlorio

James W. Dening

Donald E. Denk

R. P. D'Evelyn

Richard Devereaux

Robert J. Dolan

John P. Dolch

Fletcher Donaldson

Terence P. Donohue

Richard Dooley

Richard Dorrance

Roger R. Dougan

James O. Drake

Walter F. Dudziak

Douglas M. Duffy

Theodore M. Dunn

D. B. Earl

Tom S. Eason

Patricia Eddy

H. P. Edmundson

Charles M. Edwards

R. E. Edwards

John B. Eichler

Vernon Eisenbraun

J. Eliades

B. Elliot

McDonnell Automation Ctr.

Owens-Illinois

Holiday Inns of America

General Electric Co.

Friden, Inc.

IBM Dev. Lab.

US Army Eng. Div., So. Pac.

Scientific Eng. Inst.

R.C.A.

IBM

Shell Oil Co.

Burroughs Corp.

Research Analysis Corp.

Aerojet-General Corp.

General Electric Co.

USN

USMC

Texaco, Inc.

Clark Equipment Co.

USAF

IBM

Natl. Cash Register Co.

System Dev. Corp.

Dept. Hlth. Educ. & Welfare

Pacific Missile Range

Autonetics, Div. N. Am. Av.

IBM

Clerk, Bd. Supervisors

University of Iowa

Control Data Corp.

7 st Natl. Bk. of Chicago

United Res. Servo Corp.

Westinghouse Elec. Corp.

Arthur D. Little, Inc.

General Electric Co.

C. I. A.

Control Data Corp.

Mesa Scientific Corp.

System Dev. Corp.

Bendix Corp.

General Electric Co.

ITT Research Inst.

Aerospace Corp.

TRW Space Tech. Lab.

R. Ellison U. S. Steel R. Gillespie Control Data Corp.

Herman Englander US Navy Electronics Lab. John T. Gilmore

William English Robert Gilmour Stanford Research Inst.

Barry Epstein R. G. Glaser McKinsey & Co., Inc.

Fred Erman Edward Golden

Nathan Estersohn Bendix-Pacific Div. Phillip Goldstein Rexall Drug Co.

R. E. Etheridge General Electric Co. D. R. Goodchild Imperial Chem. Ind., Ltd.

Bob O. Evans IBM Harry S. Goples Control Data Corp.

George F. Fagan The MITRE Corp. Harold Gottheim N. Y. St. Dept. Public Works

H. M. Farmer Aerospace Corp. Andrew M. Gould Friden, Inc.

Wm. A. Farrand Autonetics Kent Gould Douglas Aircraft MSSD

C. C. Farrington TRW Space Tech. Labs. Charles Grayson Tulane University

Alex G. Fedoroff Grumman & Assoc., Inc. P. A. Greco Kellogg Company

C. Nick Felfe Bonner & Moore Assoc. Dale Green Electro-Optical Systems

B. Fenton I. C. I. (New York) Inc. T. H. Green, Jr. Shell Oil Co.

Harold D. Feldman UNIVAC Leonard Greenberg

Marion L. Fickett Inst. for Def. Analyses T. S. Greenwood Bell Telephone Labs.

Boris Field NCR-ED E. Griesheimer Douglas Aircraft Co.

Robert C. Fife UNIVAC Harold Paul Gross

Sidney I. Firstman RAND Corp. Herbert L. Gross Natt. Cash Register Co.

Donald D. Fisher Stanford University Harry Grossman Security 1 st Natl. Bank

F. P. Fisher IBM Robert Grummett Natl. Cash Register Co.

A. M. Fleishman R. C. A. James R. Guard Applied Logic Corp.

George W. Fleming Eastman Kodak Co. Robert Gunderson Natl. Cash Register Co.

Merrill M. Flood Univ. of Michigan Frank Gummersall

Walter W. Flood Matrix Corp. Lothar F. Haas, Jr. Natl. Cash Register Co.

Larry Forrest White Sands Mis. Range Wm. Hagerbaumer Electronic Assoc. Inc.

Ed Forsberg Continental Oil Co. Vern E. Hakola Touche, Ross, Bailey, Smart

Wm. Fortenberry NASA-Marshall Norton P. Halber

Carl Forth Lockheed Calif. Co. A. Halenbeck Aerospace Corp.

K. Scott Foster Honeywell L. B. Hamilton, Jr.

R. S. Fox General Electric Co. Iver C. Hansen Burroughs Electro-Data

S. J. Fox Warren B. Harding IBM

James W. Fraher United Air Lines D. L. Harmer Autonetics, Div. N. Amer. Av.

Walter Fredrickson Radiation, Inc. J. Harrington City & County, San Francisco

J. A. French Natl. Cash Register Co. Dr. J. Harriman General Electric Co.

W. Fred Frey Don F. Harroff Research Labs, GMC

Dr. H. Friedman H. P. Hart Hughes Aircraft

W. H. Frye US Navy Electronics Lab. A. H. Hassan Natl. Cash Register Co.

W. H. Fuhr Melpac Inc. Thomas E. Hassing

Heinz Gabloffsky No. Amer. Avia. S&ID Dean A. Hatfield

L. E. Gallaher MTS Bell Tel. Labs. Erwin A. Hauck Burroughs Electro-Data

Lewis Gallenson System Dev. Corp. J. D. Hawkins Lockheed Calif. Co.

Richard J. Garcia Rexall Drug Co. Clark Hayes

J. E. Garvin UNIVAC Robert F. Hays Bunker-Ramo Corp.

Alan E. Geiger Space Tech. Lab. Halroyd Haywood Security 1 st Natt. Bank

H. Gelernter IBM Research Stanley Hawkinson

C. L. Gerberich General Electric Co. George Hazelworth

Herbert Getreu James L. Heard No. Amer. Aviation

William B. Gibson IBM Frank R. Heath Westinghouse Elec. Corp.

Kenneth R. Gielow Lockheed R. C. Heath IBM

147

148

W. J. Heffner

L. B. Heggie

Armin W. Helz

Prof. Hetherington

Bill Herr

E. D. Hildreth

Munson Hinman

Verlin Hoberecht

Donald Hodges

G. E. Hoernes

D. J. Hallinger

Robert R. Hohl

Dean A. Holdiman

Thomas Holloran

Fred Holloway

John Holloway

Robert Hollitch

Samuel Hoover

Wm. J. Hoskins

Donald Houck

Richard Hovey

R. C. Howard

Robert Hsu

Arnold H. Hubert

Willis Hudson

Larry D. Hughes

D. Hull

G. O. Hummel

Roger L. Hummel

Frank J. Hundt

Norman L. Hunt

Bernard Hurley

Daniel T. Hurley

Pauline Hutter

Jack G. lanotti

F.lvie

Thomas Jackson

S. L. Jamison

LtJCol. W. Jarrell

E. A. Jennings

M. K. John

N. E. Johnson

Isabel F. Johnston

Robert Johnston

Gary W. Jones

Glyn H. Jones

Frank G. Jordan

Earl C. Joseph

K. R. Joseph

Theodore Kallner

Stanley L. Kameny

General Electric Co.

US Geological Survey

University of Kansas

NASA

IBM

Argonne Natl. Lab.

IBM

Stromberg-Carlson

Naval Res. Lab.

Natl. Cash Register Co.

Lawrence Rod. Lab.

Douglas Aircraft Co.

liT Research Inst.

IBM

Douglas Aircraft Co.

United Res. Servo Corp.

Booz-Atlan Applied Res.

Giannini Controls Corp.

Natl. Bureau of Stdrds.

Computer Usage Co.

Control Data Corp.

Computer Applications

Chrysler Corp.

No. Amer. Aviation

Rexatl Drug Co.

Natl. Cash Register Co.

IBM

RCA

TRW Space Tech. Lab.

Southwest Res. Inst.

USAF Academy

UNIVAC

U. S. Steel Corporation

Lockheed Calif. Co.

Burroughs Corp.

Burroughs Corp.

IBM

UNIVAC

NASA

IBM

System Dev. Corp.

H. Kanner

J. D. Kassan

David Katch

Dr. Julian Kately

Lt. H. Kaufman

Arthur Kaupe, Jr.

Bob Kawaguchi

C. S. Kazek, Jr.

Roy Keir

J. P. Kelly

Mary Anne Kelley

Neal M. Kendall

S. V. Khoury

Douglas T. Kielty

Daniel B. Killeen

F. J. Killian

G. W. Kimble

Paul D. King

H. A. Kinslow

Elliot B. Kleiman

John R. Knight

Fred Koepping

George M. Kohn

Alexander Korwek

W. J. Kosinski

Roger P. Kovach

Dr. M. Krichevsky

Dean C. Kriebel

Norman L. Krueder

Gene Kucinkas

Akio Kumamoto

Francis Kurriss

J. M. Kusmiss

Wm. J. LaBelle

R. P~ Lagerstrom

John A. Lamkin

Charles Lander

Gerald Landsman

G. L. Lane

Robert E. Laws

Bennett S. Lebow

Sidney Lechter

David Legge

Ronald P. Leinius

Leon Leskowitz

Paul Leslie

Donald L. Lewis

Frank J. Lewis

Neil Lewis

S. H. Lewis

Control Data Corp.

Western Union Tel. Co.

No. Amer. Aviation

Michigan State Univ.

USAF

Westinghouse Res. Lab.

L.A. Dept. W & P

Los Alamos Scien. Lab.

Beckman Instruments

IBM

Brookhaven Natl. Lab.

Natl. Cash Register Co.

MTS-Bell Labs.

Burroughs Electro-Data

Tulane University

Northrop Corp.

TRW Space Tech. Labs.

UNIVAC

IBM

Martin

IBM

UNIVAC

IBM

Bacchus Works

General Electric

Naval Supply Center

NIDR, NIH

Sun Oil

Burroughs Electro-Data

Foxboro Co.

Data Processing

Douglas Aircraft MSSD

IBM

Security 1 st Natl. Bank

Stanford University

Datatrol Corp.

NASA

Motorola

Sandia Corp.

U.S. Steel Corp.

DA, DCSLOG Data Proc. Div.

NASA

IBM

Union Carbide

U.S. Army Elec. Labs.

Westinghouse Electric

IBM

Radiation, Inc.

Aerospace Corp.

Arlyn G. Liddell

D. C. Lincicome

Neil Lincoln

Andrew T. Ling

Peter Linz

G. J. Liviakis

Richard Loewe

Edward Loges

David H. Long

Paul J. Long

E. B. Loop

Floyd Looschen

Jack A. Lord

John F. Lubin

V. H. Lucke

Donald Lumbard

Dr. R. F. Lyjak

H. Lykken

Hugh J. Lynch

John C. Lynn

J. D. Lyon

Alan C. MacDonald

Roger A. MacGowan

A. Maclean

Wellen B. MacLean

John B. MacLeod

Patrick McGovern

Thos. McKinney

Harold Malliot

Donald Machen

Charles Mackenzie

F. B. Mackenzie

Dr. Dale Madden

J. L. Maddox

R. J. Maguire

R. A. Ma"et

Allan Mandelin

E. L. Manderfield

Wilbur Mann

John J. Manyak

R. B. Mapes

Wm. Marchman

John Marez

Lowell G. Market

N. A. Marte"otto

Milton Martenson

Norman Marshall

Maj. Wm. Marsland

Samuel Matsa

Jesse Maury

Justin N. Mead

Boeing Co.

Stanford Research Services

United Research Services

IBM

Beckman Instruments, Inc.

Aeronutronic Div.

Booz-Allan Applied Res.

USAF

Holiday Inns of America

Union Oil Co. of Calif.

Burroughs Electro-Data

Gen. Tel. Co. of Calif.

University of Po.

General Electric Co.

Natl. Cash Register Co.

University of Michigan

Minn.-Honeywell Reg. Co.

Natl. Cash Register Co.

NASA

Sandia Corp.

IBM

Minn.-Honeywell Reg. Co.

Union Carbide Corp.

NASA

USN

USNOTS

Stanford Research Inst.

Lawrence Rod. Lab.

IBM

Burroughs Corp.

IBM

Automatic Elec. Co.

Autonetics, No. Amer. Av.

United Aircraft Corp.

Douglas Aircraft Co.

IBM

U.S. Navy Electronics Lab.

UNIVAC

Bell Telephone Co.

Dept. of Defense

Bendix-Pacific Div.

Seiler Research Lab.

IBM

NASA-Greenbelt

Dow Chemical

M. D. Mayer

David F. McAvinn

J. S. McBirney

Patrick McClung

C. C. McClurkin

George McCormick

Gerald McFadden

L. E. McHenry

C. R. McKelvey

John B. McLean

Harvey McMains

Claude McMillan

Torben Meisling

David Meldrum

W. R. Melton

Si r J. S. Menteth

Don W. Mercer

John F. Meyer

Karl Meyer

Bart Michielsen

Wren Middlebrook

Barrett Miller

John F. Miller

Stephen Miller

Warren Milroy

Lester Mintzer

Ronald Miranda

James Misho

Charles Missler

Don E. Mitche"

John Mitchell

Rick M. Moore

John C. Morgan

Maynard Morris

J. P. Morrison

Arthur Moskin

Kern A. Moulton

J. R. Mue"er

George Mulho"and

Joseph P. Murphy

Wm. Murray

Henry F. Nanjo

S. A. Nastt'o

Michael R. Nekara

J. O. Neuhaus

R. A. Nichols

Ralph Niemi

W. E. Niemond

Albert Noble, Jr.

Jerre D. Noe

R. V. Norvill

Douglas Aircraft Co.

Foxboro Co.

Shell Oil

Bonner and Moore Assoc.

Aerojet-General Corp.

IBM

Sandia Corp.

Rome Air Dev. Center

Amer. Tel. & Tel. Co.

Michigan State University

Stanford Research Inst.

United Res. Serv. Corp.

Inland Steel Co.

Imperial Chem. Ind., Ltd.

Douglas Aircraft Co.

University of Michigan

No. Amer. Aviation

Natl. Cash Register Co.

Naval Supply Center

IBM

Stanford Research Inst.

U.S. Navy Electronics Lab.

Interstate Elec. Corp.

Tech. Operations Res.

Ford Motor

AT&T

Stanford Research Inst.

United Res. Servo Corp.

Bunker-Ramo Corp.

IBM

IBM

U.S. Navy Dept.

J. P. Stevens & Co., Inc.

IBM

Assoc. Universities, Inc.

IBM

Tech. Operations, Inc.

IBM

IBM

Control Data Corp.

Autonetics, N. Amer. Av.

U.S. Navy Elec. Lab.

General Precision

Stanford Research

Sandia Corp.

149

150

R. W. Notto

Thomas Nourse

Wm. H. Ninke

Clark Oliphint

Glenn A. Oliver

Ron Olsen

Joseph Olsztyn

James J. O'Neill

H. N. Oppenheimer

Robert C. Oram

James O'Reilly

Dr. R. Orensteen

Vance E. Page

D. J. Pagelkopf

Maxwell O. Paley

Oscar M. Palos

Alexander Papp

Gabriel A. Pall

N. C. Panella

R. A. Paris

Wm. W. Parker

R. Pash

Frank Patton

P. F. Paul, Jr.

C. R. Pearson

Ray S. Peck

Gordon Pelton

John Pendleton

James W. Perry

W. M. Perry

Eugene A. Peters

Kenneth Pergande

Bernard Peters

Walter N. Phillips

Wm. S. Pickrell

P. E. Piechocki

Charles L. Pierce

M. A. Pilla

Thomas G. Pine

Elliot Pinson

B. W. Pogorelsky

Steven T. Polyak

A. G. Pontius

Ted Poole

Ivan J. Popeioy

Fred Pradko

L. I. Press

Eugene R. Puckett

Thomas M. Putnam

P. H. Pyle

F. I. Quinlan

UNIVAC

Foxboro Co.

Bell Telephone Labs.

Burroughs Electro-Data

United Research Services

General Motors

CBS Labs.

IBM

Assoc. Universities, Inc.

IBM

Pacific Tel. and Tel.

Control Data Corp.

IBM

Taylor Township

IBM

Lockheed

Burroughs Corp.

Minneapolis-Honeywell

Lawrence Radiation Lab.

Autonetics, N. Amer. Avia.

1. P. Stevens & Co., Inc.

IBM

Lockheed Missiles

Douglas Aircraft MSSD

University of Arizona

IBM

No. Amer. Aviation

Natl. Cash Register Co.

Bunker-Ramo Corp.

Mandrel Ind. Inc.

Richfield Oil Corp.

Stanford Research Inst.

Bell Telephone

Digital Dev. Corp.

Bell Telephone Lab.

Natl. Cash Register Co.

Inst. for Def. Analyses

IBM

Scantlin Elec., Inc.

General Electric Co.

U.S. Army

University of Calif.

Tide.water Oil Co.

Douglas Aircraft Co.

Peter M. Rakich

R. W. Ralston

Walter Ramshaw

Russell W. Ranshaw

Wayne F. Rayfield

Donald E. Rea

Daryl Reagan

Ottis W. Rechard

Samuel C. Reese

Otto Reichardt

A. Reichenthal

Roger L. Reifel

Harry Reinstein

Dr. W. Rheinboldt

V. Thomas Rhyne

Dr. C. N. Rice

John E. Rideout

A. O. Ridgway

Thomas L. Ringer

John F. Riordan

Dan Robbins

Lt. K. Robbins

C. R. Roberts

W. C. Rockefeller

C. E. Rodemann

LeRoy J. Rodgers

George F. Roe

C. N. Rollinger

W. E. Rood

Henrik M. Roos

Herb Rosenheck

Arthur V. Rubino

Harvey Rubinstein

Joseph Rue

Linus F. Ruffing

Arno.ldRuskin

Richard Russell

R. J. Ruud

Joseph Ryan

J. J. Salyers

Harold Sackman

E. J. Samuelli

Lt. Col. H. Sanders

Margo A. Sass

Dr. H. Sassenfeld

Kirk Sattley

Marshall Savage

Don Savitt

David Saylor

Ronald Schauer

Jerold Schleicher

So. Permanente Serv., Inc.

Amer. Tel. and Tel. Co.

United Aircraft Corp.

University of Pittsburgh

University of Wisconsin

General Dynamics

Stanford University

N.S.F.

Honeywell, Inc.

Raytheon Computer

Hughes Aircraft

General Dynamics/ Astro.

IBM

University of Maryland

NASA-Langley

Eli Lilly & Co.

IBM

IBM

IBM

University of Michigan

Benson Lehner

No. Amer. Aviation

IBM

No. Amer. Aviation

The Boeing Co.

Whirlpool Res. Labs.

U.S. Steel

Naval Supply Center

Hoffman Electronics

Advanced Scientific Inst.

No. Amer. Avia.

C.I.A.

Harvey Mudd College

IBM

IBM

USAF

Natl. Cash Register Co.

System Dev. Corp.

Kennecott Copper Corp.

USAF

Off. of Naval Res.

General Electric Co.

Computer Associates, Inc.

Universal City Studios

Hughes Aircraft

Automatic Electric Labs.

Union Bank

R. G. Schluter

George Schmidt

L. A. Schmittroth

Robert Schnuck

Vernon D. Schrag

Donald P. Schultze

Dave Schumacher

G. P. Schumacher

Betsy Schumacker

M. H. Schwartz

Robert Schwartz

Walter Schwartz

V. J. Scimone

Sheldon Simmons

Harry Schwartz

Dan W. Scott

Richard B. Scott

J. Sedgewick

Wm. S. Selers

Wm. A. Sensiba

Lt. E. A. Schmidt

A. M. Shalloway

Wm. C. Shannon

Theodore Shapin

Richard S. S'harp

Christopher Shaw

J. C. Shaw

Regis Shinger

James L. Shira

H. L. Shoemaker

Glenn W. Shook

AI Shore

W. L. Sibley

H. W. Siegmann

Lt. R. Singleton

C. E. Skidmore

N. J. Skoner

Robert Skoog

Derrel L. Siais

CarlO. Smarling

Blanchard Smith

Earle Smith

R. J. Smith

R. D. Smith

Robert W. Smith

R. L. Snyder

Glenn D. Sorensen

Branko Soucek

Arthur Speckhard

Monroe Spierer

Robert J. Spinrad

Space Technology Labs.

USAF

MA & MC PPCO

IBM

IBM

N.S. Navy Dept.

USAF

U.S. Navy Elec. Lab.

IBM

Federal Reserve System

Raytheon Company

MITRE Corp.

IBM

Electronic Specialty Co.

General Electric Co.

General Electric Co.

Sears Roebuck

Western Electric Co.

USAF

Natl. Radio Astr. Obs.

Crocker-Citizens Natl. Bk.

Beckman Instruments

Burroughs Electro-Data

System Dev. Corp.

RAND Corp.

United Aircraft Corp.

Bunker-Ramo Corp.

Dept. of Defense

Burroughs Corp.

RAND Corp.

Westinghouse Electric

Clark Equipment Co.

Lawrence Radiation Lab.

Control Data Corp.

IBM

Melpar, Inc.

Natl. Cash Register Co.

Control Data Corp.

R.C.A.

IBM

Western Union Tel. Co.

Honeywell E.D.P.

Brookhaven Nat/. Lab.

Bellcomm, Inc.

Technical Operations, Inc.

Brookhaven Nat/. Lab.

James Spitze

Donald R. Spivey

Conrad R. Springer

Jon S. Squire

Howard R. Stagner

Richard H. Stark

Earl Stearns

Lee Stephens

F. G. Stockton

David R. Stolz

D. R. Strickland

Donald M. Styer

George R. Sugar

R. J. Sullivan

Audrey Summers

John Sutherland

Dr. G. H. Swift

Bruce Sypkens

Jeffrey Tai

G. Platt Talcott

Robert G. Tantzen

Mary Tate

Joseph E. Taylor

Norman H. Taylor

Richard Tedrick

Kas Terhorst

Thomas Theberge

William Thelsner

Don Thiede

David J. Thomas

G. A. Thompson

K. L. Thompson

R. Tink

N. Ralph Tipaldi

Dale Tolin

Dolan H. Toth

R. E. Trainer

A. J. Trangle

N. E. Truitt

H. S. Tsou

J. C. Tu

S. T. Tuttle

Donald L. Trask

Fred Tremaine

Rein Turn

H. F. Tweeden

Gordon T. Uber

B. A. Udovin

R. H. Udy

L. L. Van Oosten

R. Van Buelow

Friden Inc.

IBM

IBM

Westinghouse Elec. Corp.

Washington State Univ.

Friden, Inc.

Shell Dev. Co.

American Tel. and Tel.

Union Carbide Corp.

Natl. Bureau of Stdrds.

General Motors Res. Lab.

NASA

IBM

IBM

Dept. of Defense

Natl. Cash Register Co.

Raytheon Co.

USAEL, Ft. Monmouth, N. J.

Honeywell, Inc.

Control Data Corp.

NASA

Burroughs Corp.

Douglas Aircraft Co.

Control Data Corp.

IBM

MITRE

Honeywell, Inc.

State Govt.

Nat/. Cash Register Co.

Perkin-Elmer Corp.

Phillips Petroleum Co.

Control Data

Nortronics

UNIV AC-Div. Sperry Rand

Shell Dev. Co.

General Precision, Inc.

Kellogg Co.

Lockheed Mis. & Space Co.

County of Sacramento

RAND Corp.

IBM

Lockheed

Bunker-Ramo Corp.

Aero;et-General Corp.

Allstate Ins. Co.

System Dev. Corp.

151

T. A. Van Wormer Univ. of Pittsburgh W. Wilkinson Bunker-Ramo Corp.

E. R. Vance General Electric Co. C. A. Williams Collins Radio Co.

Howard Vann USAF E. R. Williams IBM

R. S. Vatilla Goodyear Aerospace Corp. Mary Williamson General Electric Co.

A. H. Vorhaus System Dev. Corp. Robert Williams

Paul L. Voss Navy Electronics Lab. Raymond Wilser IBM

J. W. Wager Hughes Aircraft Co. R. C. Wilson University of Michigan

R. A. Wagner RAND Corp. William Wilson Cutter Lab.

F. W. Wallace Citrus College James E. Wollum Burroughs Electro-Data

John Walley Hughes-Fullerton Vincent Wollum Archer-Daniels-Midland Co.

W. C. Walter Northrop Corp. Pearson L. Wood IBM

B. P. Warner Edgerton, Germeshausen & Grier H. D. Woods H. D. Woods & Associates

E. Wasserman IBM Thomas F. Woods NASA -H ouston

Gordon M. Watson Computer Usage Co. W. E. Woods Computer Control Co.

Paul V. Webb Phillips Petroleum Co. L. H. Woodward

Harlan Webster Douglas Aircraft Co. Stanley H. Woster Space Tech. Labs.

Gary L. Weeks Kennecott Cooper Corp. William Wright General Electric Co.

J. H. Wegstein Natl. Bureau of Stds. H. Wyle Autonetics, Div. N. Am. Avia.

Dr. B. Weiss Johns Hopkins University Tak Yamashita Bunker-Ramo Corp.

Eric A. Weiss Sun Oil Co. Georgiana Yang IBM

R. C. Wheeler Airborne Instr. Lab. Norman Yarosh

William Whitacre Thomas L. Yates Oregon State Univ.

Dr. Oliver Whitby Stanford Research Inst. Robert C. Yens MITRE

Carl L. White Natl. Inst. of Health A. W. Yonda RCA

Richard A. White Inst. for Def. Analyses M. G. Young Shell Dev. Co.

W. Y. Whittemore General Electric Co. V. J. Zapotocky General Electric Co.

H. R. Widmann General Tel. Co. D. C. Zatyko SPO

J. B. Wiener General Electric Co. James R. Ziegler Natl. Cash Register Co.

Richard B. Wilke IBM Charles A. Zuroff Brookhaven Natl. Lab.

152

