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Preface

In this decade, the field of parallel processing has exploded! This conference
provides clear proof: in the early 1980's on the order of 100 to 125 papers were
submitted annually; in contrast, over 400 papers were submitted this year. Such
growth is both gratifying and challenging. On the one hand, it indicates a high and
growing level of interest in parallel processing techniques and technologies. The
resulting parallel systems are sorely needed to provide computing resources for ever
more demanding applications in science, medicine, commerce, and industry.

On the other hand, such growth also challenges the Tlogistics implicit in
organizing the conference. Consider, for example, the paper selection process: (1)
papers are submitted to the program co-chairs, (2) the co-chairs reassign some
papers to other program areas (based on the co-chairs' mutually agreed definitions
of the subject areasg, (3) at least three reviews are solicited for each paper, (4)
as the program selection date approaches, additional reviews are solicited (on a
"crash" basis) for those papers with fewer than three reviews, (5) each program co-
chair makes a tentative selection of papers and organizes them into potential
sessions, (6) the three co-chairs merge their tentative programs, coalescing
overlapping sessions, deleting orphan papers (those good papers that don't quite fit
with others to form cohesive sessions), and continue to raise the acceptance
standards to meet the conference size constraints, and finally (7) acceptance and
rejection letters are sent to the authors. The difficulty of this process increases
in proportion to the number of submissions, and in inverse proportion to the paper
acceptance rate.

For many conferences, a typical paper acceptance rate is 60% to 70%, in our
case, we were limited by the conference facilities and by the desire that the
proceedings be portable to a 45% acceptance rate. While such a low rate indicates
that the papers that comprise this proceedings are of extremely high quality, it
also indicates that many good papers had to be rejected. The impact is probably
more profound on new entrants to the field and foreign (i.e., non-native English
speaking) authors than upon experienced authors, which may give the appearance that
the field has become "in-bred". This year's program committee has tried to avoid
any such prejudice, but given our limitations, the program can only be viewed as a
best approximation to the rapidly evolving state of the art of parallel processing
in 1986.

It has been our privilege to have received support from a large and dedicated
assembly of reviewers as listed on the next page. Without their rapid assistance,
the conference could not occur. It is also a pleasure to identify the secretaries
that have handled the various filing, copying, correspondence, and countless other
chores required to develop the program. Our sincere thanks go to: Jenine
Abarbanel, Vicki Adame, Lauren Hall, Alice Harris, Shirin Mistry, and Elaine Smiles.
The continuous support and encouragement of the Conference General Chairman,
Professor Tse-yun Feng has been most gratifying. Most of all, we thank the authors
for taking the time and effort to share their work with the parallel processing
community.

Program Co-Chairs:
Kai Hwang

Steve Jacobs

Earl Swartzlander
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AN AUTOMORPHISM OF A CLASS OF
INTERCONNECTION NETWORKS

Department of Klectrical Engineering
The Pennsy/vania State University
University Park, PA 16802

ABSTRACT

A class of interconnection schemes, commonly referred to as multistage
interconnection networks, is proposed as a means, providing simuitaneous
connections among processing elements in multiprocessor systems. In this
paper, we present an automorphism, with which the logical structure of the
interconnection networks can be changed. We show that the resulting logical

structure of a network is isomorphic to its physical structure. For the purpose

of demonstration, three popular networks are examined: baseline network,

omega network and indirect n-cube network.

I. INTRODUCTION

A class of multistage interconnection networks have been proposed, and
many of them have been implemented for providing simultaneous,
reconfigurable connections among processing elements in mulitiprocessor
systems. These networks include baseline network(1]-{3], flip networki4],
omega network(5), and many others{6]-{8]. Advantages of these networks
include cost effectiveness, logarithmic communication delsy, modular
expansibility, and partitionabilit. The primary goal of this work is to show that
for each network of this class, there exist a multiplicity of logical network
structures, which are isomorphic to its physical network structure. More

specifically, we will present a one-to-one correspondence, which turns out to
be an automorphism, changing logical structures of these networks. To
illustrate this idea, three popular multistage interconnection networks are
chosen for demonstration: baseline network, indirect n-cube network and

omega network.

The rest of this work is organized as follows. In Section II, we will describe
the integration of the networks, including network components and general
network configuration. In Section III, we will present the definition of a
one-to-one correspondence. Section 1V contains the proofs, showing that this

correspondence is an automorphism with respect to the three networks.

I1. PRELIMINARIES

2.1 Configuration of Networks

The multistage interconnection networks to be examined are characterized
by three attributes: (1) switching element, (2) arrangement of switching
elements, and (3) permutation pattern between stages of switching elements.

(1)Switching element. These networks employ a 212 crossbar switch as a
buliding block, as shown in Figure 1. This 2x2 switching element has
two inputs and two output, denoted X;, X,, Y;, and Y,. It has the
capability of connecting the input Xl to either the output Y, or the
output sz depending on the value of some routing bit of the input X,. 1T
the routing bit is 0, the input is connected to the output Yl, and if the
routing bit is 1, the connection is made to the output Y,. Input X, of the
switch behaves similarly with a routing bit.

(2)Arrangement of switching element. These networks is composed of a
logarithmic number of stages of switching elements; a network of size
N=22 comprises n stages of switching elements. Furthermore, each stage
comprises N/2 switching elements, as described above. Consequently, an
interconnection network of such a configuration has N aetwork inputs
and N aetwork ouviputs and contains (N/2)log,N switching elements.

(3)Permutation pattern between stages of switching elements. In a
network, two adjacent stages of switching elements are cascaded by a
set of N communication links, from the outputs of switching elements of
the preceding stage to the inputs of switching elements of the

- 0190-3918/86/0000/0001 $01.00 © 1986 IEEE

succeeding stage. In a network of size N, there are (log;N)+1 levels of
communication links. Each level is associated with a specific
permutation pattern. It should be noted that these networks, however,
are different in the permutation patterns between stages of switching
elements. In Section 1V the permutation patterns of each individual
network will be described.

2.2 Addressing of netwvorks

To facilitate describing the configurations of these interconnection networks,
a uniform addressing scheme is presented. As shown in Figure 2, in a network
of size N=2%, the network inputs are addressed in a sequence from O to N-1,
from top to bottom. In a similar way, the network outputs are addressed [rom
0 to N-1. Recalil that an interconnection network of size N, as described in the
previous subsection, contains n=log,N stages of switching elements and n+1
levels of links. The addressing schemes of stages and switching elements are
depicted as follows. These n stages are labeled in a sequence from 0 to n-1
with 0 for the leftmost stage and n-1 for the rightmost stage. Similarly, the
levels of links are labeled in a sequence from 0 to n. In each stage, the N/2
switching elements are addressed from 0 to N/2-1, each of which can also be
represented by an (n-1)-bit binary number of the form, s -1%2-2-%;- 1n each
stage, each switching element is associated with four communication links; for
a switching element labeled by 3p-1%0-2-3¢. Lthe upper link to the input X, is
addressed by an n-bit binary number, 8$p-13n-2--$10, and the lower one to the
input X, is addressed by s -130-2--34 1. Similarly, the two links {rom outputs
Y, and Y, are addressed by $y-18n-2-%10 and 8,8, o8, 1, respectively.

From topological point of view, these interconnection networks are different
in their permutation patterns between stages of switching elements. To
describe the permutation patterns of an interconnection network, the
following notation will be adopted:

Ui(Y)-X.

For a network of size N=2%, %; specifies the permutation of communication

links of level i (from the outputs of stage i-1 to the inputs of stage i of
switching elements). However, in the case of i=0, the input domain of ¥ is the
set of network inputs. Similarly, in the case of i=n, the output domain of ¥ is

the set of network outputs. For i if the per pattern of level i is
a perfect shuffle permutation{i2}, then we have
%{(Y)=(2Y+|2Y/N]) mod N,

for ail the outputs of switching elements of stage i-1. That is, the output, Y, of
stage i-1 is connected to the input, ((2Y+{2Y/N]) mod N), of stage i.

o % % \_OYl
X, o oY, X, o oY,

Routing bitof X, is 1

Ronungmo(x‘ is0

Figure 1. A 2x2 switching element.
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network of size N=2°,



111. THE DEFINITION OF £

This is the purpose of this section to define a one-t0-one correspondence,
which turns out to be an automorphism, with respect to the multistage
interconnection networks. Also, we will present two functions, which are used
to rearrange the switching elements and the topology of the five networks.

DEFINITION. Let S be a set of n-bit binary numbers from 0 to 28-1, or
$=(0,1,..28-1). And let C be a constant, 0<C<28-1. & is a mapping from S to S,
and £ (X)=XoC, for every XeS.

With the definition above, we now present the statement of the problem to be
investigated as follows.

STATEMENT OF THE PROBLEM: If we relabel the netwock inputs and
outputs of a muitistage interconnection network by tp and ZQ respectively,
then there exists a way of rearranging the switching elements and links such
that the topology of the rearranged network is equivalent to that of the
original network. That is, both of the two topoiogies are isomorphic.

To illustrate the statement above, an example is given in Figure 3. Consider a
baseline network of size 16, whose network inputs and outputs are relabeled
through &, and I, respectively. What we intend to show is that the two
network topoiogies are isomorphic. For convenience, hereafter :Pﬂ denotes
“apply E, to the network inputs and & to the network outputs of a multistage
network.”

Before presenting the proof that {p, is an automorphism onto the
multistage interconnection network, we further introduce two functions, which
will be used to rearrange switching elements and their associated links:

(1)MOVE yi;: This is a one-to-one correspondence, Which is used to

rename the switching elements of stage i, according to some mapping

rule. \ ’

(2)TWIST <; This I8 used to interchange a pair of inputs or outputs of a

switching element of stage i. Associsted with z;, there are two control
bits ¢, and - which are used to specify the iqmchmge on the input

e o o ) ) M
. 1 1 1 1 ;
> 2 2 2 2 :
WWEISET G 57\
; 4 4 4 4 :;
. 5 5 5 5 ',’,
7 6 6 6 6 .
: S £ S ) s [ .

Figure 3. A baseline network whose network inputs and outputs are permuted by &,

side and the output side of a switching element, respectively. As
illustrated in Figure 4, there are four possible operations of T;ona
switching element:
1. No-twist. When cx-O and cy-o, no operation is performed on the
switching efement;
2.LefY-twist When ¢, =1 and cy-o. the input side of the switching
element is twisted 180° counterclockwise;
3.Right-twist. When ¢=0 and 1‘7-0, the output side of the
* switching is twisted 180° clockwise;
4. Vertical-/Zip. When c,=1 and c,-l. the switching element is flipped
vertically.

V1. THE AUTOMOPHISM OF NETWORKS

In this section, we prove that £m is an automorphism onto the three
multistage interconnection networks: baseline network, omega network, and
indirect n-cube network. (However, only the proof for the baseline network is
presented, and the other two proofs for the omega network and the indirect
n-cube network are omitted.) Throughout the discussion, we assume that
X=X, Xn.5-T is an input and Y=Y, 1¥n-2-Yo is an output of a switchig
element. For the reason of uniform notation, here we define that
Ty (j_y(Y))=Ep(Y) and T (1, (X))=Eo(X); that is, network inputs are considered
as the outputs of a virtual stage, Stage -1, and similarly network outputs are
considered as the inputs of a virtual stage, Stage n.

Left-twist
X - Y X, Y,
X, — Y, X, Y,
€0.c -0 C,"1.C -0
Right-twist Vertical-fip
X, Y, X;"r -1_\’:
X, Y, X, - _J—Yl
€,=0,C -1 ¢ =1.C 1

Figure 4. Four combinations of 11 and T on a switching
element.

4.1 Baseline Network

The permutation patterns of a baseline network of size N=22 are defined by:
(V)= 1Ta-2-Xg

1 Ya-1Y2-2-Yo i=0,
Vot YoieV¥ai-yy  1sisa-l,
' Ya-tYa-2-Yo i w

Let P and Q be two n-bit numbers, and P=p,_1Pp-2-Pp Q=q,_ 199-2-9g- The
function of J; is to move a switching element (zn-xzn-z"ll) of stage i to a new
location

r(zy. 1%0-2-21 » (Pn. 1Pa-2--Py ) i=0,
{l(z 'IZII-Z‘ZIb (qn—l"'qn-jpn.l—-pj.l) I<i<n-2,
(zn-lzn-2~-ll)° (qn.an.zmql) i=n-1.

In 'ter_ms of binary addresses of the communication links associated with
switching elements of stage i, the function of H; can be explicitly described by

2y 1Tp-2-) (Py 1Py p-P10) i=0
(X (xy1X,.2-Xp)0 (qn_l...qn_ipn‘l,.pi,lo) 1<i<n-2
T T A (9,49, 5-9,0) i=n-1
and
1Ya-1Yn-2-Yo} (Py_ 1Py p-9;0) i=0
0 (V1Yo 208 Gy 1-0g.;9g. 1Py, 0)  ISisn-2
U¥g-1Ya-2-Yo¥ (9519, p-,0) i=n-1. ()
In addition, T; is defined by
zi(x)-(xn_lxn_znxo)a (0..0p;) 0<i<n-1
and
Ti(Y)=(y,. Ya-2-Yok@ (0..0g, ;)  Osi<n-1. (3)

The equivalent function aof T; as defined above, is to left-twist all the
switching elements at stage i if p;=1 and right-twist the switching elements if
Qy.;-1=1. With 7; and p; above, we now prove that there always exists an
equivalence relationship between a baseline network and its rearranged
network by ZPQ

THEOREM 1. EP.Q 0<P,Qc2R-1, is an automorphism onto a baseline network
of size 28,

Proof: Our approach is to show that after the switching elements of stage
i-1 are rearranged by Tj.p and ji;_,, and the switching elements of stages i are
rearranged by T; and ji,, the rules of (1) still hold for all the links of leve! i
Thus we have

1(Yn-18 Py N¥ -2 Py o)-- (¥0 pg) i=0,

1(yg® a5 X¥p.18 Py g)- (v (8 £y) i=1,
LA OIS [V ARCE NN CAFRTY N LT W

| (V- Py-y)-yi@ 0;)  2sisn-1,

Uy g 18 9p (V.28 Qg p)-- (Vg ap) i
Furthermore, we have
1(p-18 Py )Xy 58 Py o). (X3 D) i=0,
xy 1@ a5 )3, 28 Py g)- (X0 py) i=1,

TG00 @y 8 g3y 5,10 g T, 0 9y )
| (Xp-;-@ Py 3P p;)  2sizn-1,
Uz, 18 4y )3, 50 0y ). (38 gp) im0
As a result, we have ¥;(z;_ (3, ,(Y))=7;(1;(X)), for all Osi<n. ]
For instance, Figure 5 illustrates a rearranged baseline network of size 16 by
&1 and T as well as j1 as defined by (2) and (3). Note that the rearranged
network is topologically equivalent to the baseline network.



Figure 5. Configuration of a rearranged baseline network.

4.2 Omega Network

The permutation patterns of an omega network of size N-2D are described
by:
AL 40 S SUPYR #)
f Ya-2Ya-3-Yo Ya-1 0<i<n-1,
LYoo 1Ya2-Yo i=n. o)
Let P and Q be two n-bit numbers, and p“’n-lpn-r-"u' Q=04.19,2-p- The
function of y; is to move a switching element (z,_,z, ,..z,) of stage i to a new
location

r(Zy-1Zp-2-21 )0 (Pn-an-rPo) i=0
e i20 228 (0 i g-Pyl-y-Gg ) 15502
Yzy 12y 520 (a5 140 5-9y) jen-1.

In terms of binary addresses of the communication links, ji; can be described
by

(g 1Xp.2-Tg)® Py 5Py 5990 i=0,
JIN0 LR 1c S SPUR 20 ) (Pg-i-Polp.1-95.0)  1<isn-2,
"(XA\-lxn-Z“'xﬂ)e (qn-lqn-Z“'qlm i=n-1.
and
1Vn-170-2-Yo® (Py 2Pp.5-200) =0,
HilT (Yo Yo 2-Yo)® (Py.icp-Pgln.-9p.0)  ISisn-2,
Uyy.1¥a-2-Yok (9540, 5--a;0) i=n-1.  (5)
In addition, we define z; by
T (X3, 1X, 529k (0..0p, ;) Osi<n-1,
and
T(V)=lYy (Vp-2-Yole (0.0g, ; ) 0O<i<n-1. (6)

The equivalent function of T;, as defined above, is to left-twist all the
switching elements at stage i if Pp-i-1=! and right-twist the switching
elements if q, ; ,=1. With z; and y; above, we now prove that there aiways
exists an equivalence relationship between an omega network and its
rearranged network by tpﬂ

THEOREM 2. tm 0P.Q28-1, is an automorphism onto an omega network
of size 21,

4.3 Indirect n-Cube Network
In an indirect n-cube network of size N=2% the permutation patterns of n
stages of links are defined by:

(D=, 13, 5Ty

Ya-1Ya-2-Yo i=0,
| Ya-1-Y2Yo¥1 i=1,

= {Vp-VitVoVir-Yayy  2€isn-2,
[YoYa-2-Y1¥a-1 in-1,

YoYa-1Ya2-1 i=n. @

Let P and Q be two n-bit numbers, and P=p,_;p, 5..Pg and Q=q,_,q,_5..d¢.
The function of j1; is to move a switching element (z, _lzn_le) of stageitoa
new location

(251252208 (Py_ 1Py 2-Py) i=0,
(212229 (Py.1-Pyo Gy -9g)  1SES0-2,
(2y 12522112 (95 505.3-99) f=n-1.

In terms of the binary addresses of communication links associated with
switching elements of stage i, we have

Xy 12520 (Py 1P 5-210) i=0,
1(X0={ (2,12, 508 (Py_y.-P;s19;.1-Gg0) 1<i<n-2,
Uz, 12p-2-Tg (g 50, 3-Gg0) i=n-1,
and
(Y 5-1¥a-2-Y0® (Py-1Py 2-P10) i=0,
W04 g (¥o.2-Y0)® (Pp.1-Pio 1 i1-g0)  15is0-2,
Uy 5. 1Yn-2-Y0'® (95205.3-9g0) i=n-1.  (8)
In addition, we define
T{X)=lx,_ 2, 5.-Xp)0 (0..0p;) 0<i<n-1
and
TY)=(Y,. Y p-2-Yo® (0..0q) osi<n-1. 9

The equivalent function of T; as defined above, is to left-twist all of the
switching elements at stage i if p;=1 and right-twist the switching elements if
q;=1. With T; and B above, we now prove that there always exists an
equivalence relationship between an indirect n-cube network and its
rearranged network by Zp.o

THEOREM 3. {5 0P.Q<20-1, is an automorphism onto an indirect n-cube
network of size 2%

V1. CONCLUSION

We have presented a one-to-one correspondence, Z,ﬂ,usedtoremme
network inputs and outputs for a class of multistage interconnection networks.
It is then proved that a renamed network is isomorphic to its parent network;
that is, {m is an automorphism. The class of multistage interconnection
networks we have shown includes baseline network, omega network and
indirect n-cube network. To illustrate that Em is an automorphism, schemes
of rearranging switching elements for each network are described and
demonstrated in detail.
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EFFECT OF ARBITRATION POLICIES ON THE
PERFORMANCE OF INTERCONNECTION NETWORKS
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ABSTRACT

In performance evaluation of interconnection net-
works it is usually assumed that in case of conflicts a
request is accepted with equal probability. This paper
illustrates that this arbitration policy is discriminatory
to remote or less frequent requests because they are
rejected most of the time. The paper considers a
favorite memory environment as an example and
examines the network performance under various arbi-
tration policies. Equal Acceptance, priority to favorite
and non favorite request policies are examined by
defining three probabilities of acceptance. The net-
works considered are crossbar, multiple-bus and mul-
tistage interconnection networks.

1. INTRODUCTION

A tightly coupled multiprocessor is usually
categorized depending on the interconnection network
IN) that is used between the processors and memories
1|. Such IN’s can be broadly divided into: (a) Crossbar
b) Multiple-bus (¢) Multistage interconnection net-
work (MIN). A crossbar interconnection allows all pos-
sible connections between the processors and memories
[2]. When two or more processors try to access the
same memory module only one of the requests is
accepted and the others are blocked or rejected. A
‘multiple-bus provides a fault-tolerant and cost effective
interconnection between the processors and memories
[3-5], but the number of simultaneous connections is
dependent on the number ofibuses. When the number
of buses is sufficient, a multiple-bus has the same per-
formance as that of a crossbar. An MIN, on the other
hand, is composed of several stages of switching ele-
ments (SE’s) [6]. A conflict occurs when two or more
requests contend for the same output of an SE. The
cost and performance of such an IN is a reasonable
balance between a shared bus and a crossbar. There is
an extensive literature on the performance evaluation
of these networks. All evaluations for synchronous
multiprocessors measure Bandwidth (BW) which is
deﬁlned as the number of memories remaining busy in a
cycle.

The BW does not give us an idea about which
requests are accepted and which are rejected. For
equally likely case when a processor generates a request
that is equiprobably directed to all the memories, it
may not be essential to know the above details because
all the processors perform similarly in the long term.
However, when the processors request different
memories with different probabilities, the equal accep-
tance (EA) rule appears discriminating because a pro-
cessor with a remote request to a memory will be
rejected most of the times. Rather, it should be given a
priority over another processor which requests that

This research is supported in part by NSF Grant
No. DMC-8513041.
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particular memory more often. Hence, the p[:evious
analytical models of the BW do not reveal this impor-
tant information that is so practical of the multipro--
cessor operation. As we know, no closed form solu-
tions can be derived for general or arbitrary memory
references. We will therefore restrict our analysis to
favorite memory cases as depicted in Fig.1. For simpli-
city, we will restrict our analyses to NxN networks
that connect N processors to N memories. Also,
because of page restrictions some final equations will
be given without derivations.

In Fig.1l, a processor P, requests its favorite
memory MM; with a probability of m provided it gen-
erates a request. The processor requests all other (N-1)
memories with a probability of 1-m. Assuming that
those requests are uniformly distributed, the probabil-
ity that a processor requests any one of those memories

is ﬁ-‘(l%l"—)‘-)-, where p, is the probability of its request
generation. When m > -1, it is called a favorite

N
memory case and by putting m = -}V-, the analysis

reduces to an equally likely case. The rate of request at
a memory MM, is then p,m due to its favorite processor

P, and 2olom) Gue to any other processor provided
there is no conflict in the IN.

2. ANALYSIS FOR CROSSBAR

The crossbar allows all processor requests to
reach the memory modules. If more than one request
reach a particular memory, one of them is accepted

and the others are rejected. Which one is accepted
depends on the arbitration policy of the controller. The
rate of request (p;) at a memory MM; in an NxXN
crossbar is [7] :
o N1

2 =1-(1-p°.m)(1-po.]iv_:l"l_) . (1)
The BW, given by N.p,, does not depend on the basis
upon which the selection is made. The probability of
favorite acceptance (p;.) at a memory due to EA policy
is given by:

pro= L - g0 22 ), )

For large values of N , limp; = " (1-¢"%") . As an
example, with po=1 and m =08 , Jim py, = 0725 The
probability of nonfavorite acceptance,

Pae =Dy — e ®3)
With po=1and m =08, Jim p,, =0.111 . Since most of

the time a memory receives requests from its favorite
processor, the requests from the other processors will
be mostly unsuccessful in an EA policy. In a practical
design a selection policy is fixed and is based on some
priority structure. It is therefore reasonable to assign a
priority to the non-favorite requests for higher values



of m. Hence, whenever there is a nonfavorite request
at MM,, any request from P, will not be granted. We
will assume that when more than one nonfavorite
requests contend for a memory module, a random
selection is made with an equal probability. A request
from P, is granted only when there is no nonfavorite
request. As a result the rate of request at a memory
module due to its favorite processor is :
N-1
prn =pom(l-po Il\,‘_"; ) (4)
The subscript » stands for priority to nonfavorite
requests. With po=1 and m =08 , lim p;, = 0655.
The rate of request at MM; due to other processors is
_ N-1

pm=p/~pom(l—po}\,_"1) : (5)
With po=1and m =08, Jim p,, = 0181 The Proba-
bility of Acceptance (PA) of a request is the ratio of
the average number of requests accepted to the
number of requests generated per cycle. Thus

PA = BW =P (6)
po *number of processors Po

We will define the Probability of Favorite Acceptance
(PFA) as the ratio of the average number of favorite
requests accepted to the number of favorite requests

generated per cycle,

pra = 2= (o7 Pre ) )

Po-m
For the same example with po=12and m =08,
n}im PFA = 0.906 for EA policy.

= 0.819 for priority to Nonfavorite requests.
Thus the Probability of Non-favorite Acceptance |,

_ Py —psa (07 95 )
PNFA = LMt —sis (8)

With po=12and m =03,
lim PNFA = 0555 for EA case.

N—co

= 0.905 for priority to nonfavorite requests.

Hence by adopting priority to nonfavorite requests
there is a remarkable improvement in PNFA compared
to the corresponding degradation in PFA . The rela-
tionship between these probabilities is given by

PA =m .PFA +(1-m).PNFA . 9)

It is noticed from the above examples that by
allowing a priority to the nonfavorite requests, the
degradation in PFA is not substantial. Since the P4
remains the same, the PNFA is increased to a large
extent and for this particular example it jumps from
0.555 to 0.905 as calculated earlier. However, if m is
low, there will be a substantial degradation in the pFa
with priority to nonfavorite requests. Then EA policy
should be adopted. If priority is assigned to the favor-
ite request, PFA is unity for all values of N and hence,
the case is not considered.

3. ANALYSIS OF MULTIPLE-BUS

The BW analysis of multiple-bus architecture for
the favorite memory case is given in [5]. There are B
buses in the system that connect M processors to N
memories for B< min(M, N). A bus is connected to all

the processors and memories. The arbiter (controller)
cyclically allocates a bus to a memory that has an out-
standing request. The BW of the multiple-bus struc-
ture is clearly a function of the number of buses B.
When B is equal to min(M, N), the architecture has the
same BW as that of a crossbar [5]. When the buses are
insufficient, there will be bus conflicts in addition to
the memory access conflicts. Hence, the multiple-bus
controller can be designed as a cascade of a crossbar
controller for resolving memory access conflicts and a
bus controller to allocate buses to the memories. As a
consequence, we can enumerate the following control

policies.
1) Equal Acceptance - Equal Acceptance &?}E)
2) Equal Acceptance - Nonfavorite (EN)
3) Nonfavorite - Equal Acceptance (NE)
4) Nonfavorite - Nonfavorite (NN)

For example, the EN policy states that EA rule is
adopted for solving the memory access conflicts
(crossbar controller) and Nonfavorite requests are given
priority for the bus allocations. In case there are more
than B nonfavorite requests, B of them are accepted
with an equal probability. If there are less nonfavorite
requests the extra buses are distributed to the favorite
requests on an equally likely basis. This information is
implicit in an arbiter policy and hence, is not expli-
citely mentioned in the above classification.

For simplicity, again, we will consider only N xN
multiprocessor system. When the BW Bw, of such a
crossbar is less than or equal to B, the bus controller
allows a bus to each of the selected requests and hence
the system behaves as a crossbar. So for BW,<B, the
parameters derived in section II are true. For example,
with N=16, po=1 and m =08 , 14 buses are required
for the multiple-bus architecture to have the same Bw
as that of a crossbar. When Bw, >B, the bus controller
plays a major role in deciding which of the requests
should be allocated the buses. However, the bandwidth
for the multiple-bus (BW,) will remain equal to B
because of bus deficiency. The overall probability of
acceptance is :

_ Min(B,BW,)
PoN ’
Hence, the following analyses are derived when
BW, = B.
(1) Equal Acceptance - Equal Acceptance (EE) case
The rate of request at a memory due to favorite
requests is given by p,, in eq. (2). Hence Njp,, is the
expected number of favorite requests out of N.p,

requests accepted by the crossbar controller in total.
With an EA policy at the bus controller, number of

favorite requests allocated buses is :—/‘- .B. The total

PA (10)

!
number of favorite requests generated at the processor
side is po.m.N. Hence,

P _B
PFA =% =0 (11)
And similarly
PNFA = P __ B (12)

p; po(l-m)N

where p;, p;. and p,, are given by equations 1, 2 and 3
respectively.



(2) Egqual Acceptance - Nonfavorite (EN) case

Total number of nonfavorite requests accepted by
crossbar controller is p,..N. They are all allocated buses
subject to availability. Hence, the number of successful
nonfavorite requests is min(p,..N, B). The number buses
available for favorite requests is B-min (p,..N, B)

Then

__ B - min(p,..N, B)

PFA = ——mN— (13)
_ min (p,..N, B)

and PNFA = — i (14)

(8) Nonfavorite - Equal Acceptance (NE) case

All the nonfavorite requests are accepted by the
crossbar controller. The rate of favorite request in this
case is given by p;. in equation (4). With an equal
acceptance of p,,.N favorite requests out of p,.N
requests by the bus controller,

b _B 15

PFA ey i (15)

The rate of request due to nonfavorite requests as
selected by the crossbar controller is given by p,, in
equation (5). With an EA policy by the bus controller,

— P B 16
PNFA Pyl mry (16)

(4) Nonfavorite - Nonfavorite (NN) case

Here both the crossbar as well as the bus controll-
ers give priority to nonfavorite requests while making
selection. All the nonfavorite requests are allocated
buses subject to availability and their number is given
by min(p,,.N, B). Rest of the buses are allocated to
favorite requests. Hence,

pra = 2ol t.) @)
Po- M.y
_ min(p...N, B)

The PFA and PNFA for various selection policies,
obtained for a 16x16 system, with po=1 and m =08,
are plotted against the number of buses in Fig. 2 and 3
respectively. It can be observed in Fig. 2 that degra-
dation in PFA is not substantial by giving a priority to
nonfavorite requests. Moreover, the PFA linearly
increases until it is saturated (after 14 buses) by the
memory access conflicts. For EN and NN policies, buses
are first allocated to nonfavorite requests. So the Pra
remains zero until more buses are available. In Fig. 3,
the PNFA increases linearly for EE and NE cases, but
reaches saturation values quickly for other two policies.
There is a substantial increase in PNFA from 0.555 to
0.905 when priority is given to nonfavorite requests by
the crossbar controller.

4. MULTISTAGE
NETWORKS (MIN’s)

An MIN usually connects N processors to N
memories through log.N stages of 2x2 switching ele-

ments (SE’s). Each stage contains -;i such SE’s. Exam-

ples of such networks are Banyan, Omega, Cube and
Baseline, etc. E] Although MIN’s for M xN, with
M#N, systems have been proposed [8], we would limit
our discussion to N xN systems for simplicity. We will
assume that each processor can access its favorite
memory through a straight connection of the switches

INTERCONNECTION

on its path [7]. A 2x2 SE in an MIN may have a
built-in priority structure to resolve the conflicts or it
may choose one of the contending requests based on an
EA policy. If a priority is given to straight connec-
tions, it may mean that more and more favorite
requests will go through. However, nonfavorite
requests are rejected most of the time, which should
indeed be given priority over the favorite requests. We
have analyzed the MIN performance for all the three
different cases, namely : equal acceptance policy, prior-
ity to favorite requests and priority to nonfavorite
requests. The analysis is an extension of our previous
analysis for EA policy [7] and is not given here because
of space restriction.

The BW obtained, with different priority assign-
ment in a switch, are plotted in Fig. 4 for p,=1 and
m =08 . The BW of an MV is affected by the switch
arbitration policy unlike the crossbar or multiple-bus.

en a priority is given to favorite requests, more and
more requests are accepted giving rise to an increased
BW. With a priority to nonfavorite requests more
conflicts occur in the network and the BW reduces
considerably. With decrease in the value of m the BW
is further reduced, but will be limited to an equally
likely case. In an equally likely case, the priority
assignment has no effect on the BW. The probability
of acceptance (PA), probability of favorite acceptance
éPFA) and probability of non favorite acceptance
PNFA) can be easily determined.

Unlike the crossbar or multiple-bus results, the
PA of an MIN is different for different arbitration poli-
cies. This is evident from Fig. 4 because P4 = fWA‘; .

o

The Pra and PNF4 for different policies are drawn in
Fig. 5 and 6 respectively against the size of the MIN .
As the size of the network increases, the probabilities
reduce because of more and more conflicts. One can
again observe that in a 1024x1024 metwork, with po=1
and m =08 , there is about 40 % degradation in PF4
by adopting priority to nonfavorite requests (cross con-
nection) compared to an EA4 policy. However, the
corresponding PNFA increases by about 9 times in Fig.
6. The PNFA is almost zero for large networks when
priority is given to favorite (straight) connections.

5. CONCLUSION

The paper described the effect of various selection
policies on the performance of crossbar, multiple-bus
and MIN. The BW of crossbar and multiple-bus net-
works does not depend on the selection policy, but the
probabilities of individual request acceptance do. It
was shown that by giving a priority to remote or less
frequent requests, the probability of their acceptance is
dramatically improved. Unlike the above two net-
works, the selection policy in a 2x2 switch does affect
the overall BW of an MIN. Although the BW
decreases by giving priority to nonfavorite requests, it
is an advisable policy because of the tremendous
increase in PNFA. Overall, the paper described some
interesting phenomena that were neglected before and
are so practical for IN designs.
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ABSTRACT

This paper is concerned with demonstrating the topolog-
ical equivalence between two classes of computer architectures
that support parallel computation, viz. Cube-Connected
Cycles network (CCC) and Homogeneous Circular Shuffle
Network (HCSN). The latter is based on the Perfect Shuffle
Connection. By developing a suitable and common notation
for addressing processing elements and specifying interconnec-
tions in the two networks, it is shown that these are topologi-
cally equivalent. The implications of such an equivalence are
described. Known properties and algorithms about HCSN net-
works, in respect of routing, and fault tolerance, thereby,
immediately become applicable to CCC networks. It is also
shown that a large class of algorithms that run on a CCC net-
work can also be implemented, with slight modification, on an
HCSN network.

1. INTRODUCTION

Within the context of parallel computation a number of
computer architectures have been proposed. These include
systolic arrays, associative processors, vector processors, SIMD
machines with or without shared memory, and MIMD
machines. Our interest here is with SIMD architectures that
do not share memory. An SIMD machine consists of a number
of identical Processing Elements (PEs) each with its own local

memory. The PEs communicate with each other through an

interconnection network. A variety of such networks have
been proposed, and parallel algorithms to solve various prob-
lems on them have been developed. Hypercube, Mesh-
Connected, Cube-Connected Cycles (CCC), Perfect Shuffle
Connection (PSC) networks (see Figures 1, 2) are some of the
networks that have been extensively studied (see references
[1]-[3]). More recently, a Homogeneous Circular Shuffle Net-
work (HCSN) was proposed and studied (see reference [4]).
This network has PSC as its basis (see Figure 4).

This paper demonstrates topological equivalence between
the CCC network and the HCSN network. We develop a
notation for addressing PEs in each of the networks and for
specifying interconnections between PEs (see Section 3). This
topological equivalence has a number of implications for both
HCSN networks as well as CCC networks. These relate to
routing algorithms, fault tolerance and VLSI layout (see Sec-
tion 4). It is also shown that the equivalence is more than
simply topological, in that the algorithms that run on an
HCSN network also run on a CCC network. However, algo-
rithms that run on a CCC network may require minor

modifications when implemented on an HCSN network.

2. THE CCC AND HCSN NETWORKS

A CCC is a network of identical PEs, where each PE has
three interconnection ports. Each interconnection linking two
PEs may be used for bi-directional transmission of operands.
The CCC network has N—=2¢ PEs, where 1<k <r+2", r >1,
and r is the smallest integer. Here each PE is addressed as m,
0<m<N. A PE with an address m is alternatively
represented as a tuple (!,p ), such that m ={*2"+p, 0<p <2,
0<l<2".1 and p have k-r bit and r bit representations,
respectively. The interconnection between the PEs is
described as follows: each PE has three ports, namely F, B,
and L. Thus F(I,p) is the F port of a PE numbered (/,p),
etc. The PE with address (/,p ) is connected to the three other
PEs as follows:

(B(1,p).F (I (p-1)mod 2")), 0<1 <2*~",0<p <2'  (1(a))

(L(.p)L(I+e*27,p)), (1(b))

where e =1-2%bit,(!), and bst,(l) is the p-th bit of /. The
notation used is as follows: (P,Q) indicates a bi-directional
communication link between the ports P, and @ of some
PEs, while <P ,Q > indicates a uni-directional link from port
P to port Q. (Note: The connection from F(l,p) to
B(l,(p +1)mod 27) is implied by (1(a)), above.) See Figure 2 for
an example of a CCC network where N =32, k=5, and r =2.
Preparata, et al. (see reference [2]) have proposed a VLSI lay-
out for CCC networks. See Figure 3 for the layout of a CCC
network where N =64, k=6, and r =2. Looking at the layout
it is reasonable to generalize the CCC network by dropping
the requirement that N=2*. Instead, we assume N —n logn

where n is a power of 2, and n >2. As a consequence, each PE
in a CCC is numbered (/,p), 0<!/<n, 0<p <logn, and the
interconnections are

(B(l,p),F(l,(p-1)modlogn))

(2(2))

(L (, P )71‘ (l +e*2? P )) (2(b))
where ¢ =1-2*bit, ().

The Perfect Shuffle Connection (PSC) is a network of n
PEs, where n is a power of 2 and n >2. Each PE has three
ports O, I, and L. The PEs are numbered as !, 0<I<n.
The interconnection is described as:

<O(1),I(2*% mod(n-1))>,0<I <n-1,

(3(2))
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<O (n-1),I(n-1)>

(3(b))
(3(c))

Based upon the PSC network, Tripathi and Huang (see
reference [4]) have proposed a Homogeneous Circular Shuffle
Network (HCSN). An HCSN network, parameterized by two
numbers (b,r), has r columns with 5"~ processors in each
column, with a total of r*b"~! processors. We shall restrict
b =2. Processors in an HCSN network are homogeneous with
2 input ports and 2 output ports. The interconnection pattern
is a 2-shuffle connection described below in terms of addresses
associated with input (and output) ports.

(L(1),L(I+1)), ! mod2=0,0<! <n.

For a given column, the column-wide address of an input
port (or an output port) is z, 0<z <27, and given by its
representation (z,_y,...,z9). The network-wide address of an
input port (or an output port) z in column ¢, 0<i<r, is
(@r_1y- | @i, - - ., @), Obtained by circularly left-shifting the
column-address until the last tuple, z,, is shifted into position
i. The symbol ”|” is put before g; to indicate the column of
the input port (or the output port). Since, for various values
of a;, the notation refers to the two input ports (or output
ports) of the same processor, the network-wide address of a
processor in column ¢ is given by (a,_y,...,8; 41, | ,8i_1,---,80). AS
an example, if the network-wide address of a processor S is
(0, | ,1,1), then its two input ports have addresses I(0,|0,1,1)
and I(0,|1,1,1), while its output ports are addressed
0(0,]0,1,1) and O(0,]1,1,1). See Figure 4 for an HOSN net-
work where b =2, and r =4. The interconnection in an HCSN
network may now be specified:

(O (ar—1;-~~:al'+ly | a; yai—ly"-xaO)vl(ar—ly'"vat'+lral' y | at’—ly"n“OD’(‘t)

3. TOPOLOGICAL EQUIVALENCE

Before we demonstrate the topological equivalence
between the CCC network with nlogn PEs and the HCSN

network, where r =logn , the following comments are made:

(1) All interconnection links in a CCC network are bi-
directional, while in an HCSN network the links are
uni-directional, that is data may flow along a link from
an output port of a processor to an input port of some
Processor.

(2) The notion of PEs in a CCC network and that of a pro-
cessor in an HCSN network is somewhat different. In an
HCSN network a processor may operate on two data
objects that it receives at its input ports, and upon pro-
cessing, produces two data objects at its two output
ports. On the other hand, in a CCC network two PEs
that are directly connected may communicate data with
each other, and any processing on these data objects
may be performed in either (or both) of the PEs.

To reconcile the two notions, we may take either of the
approaches given below:

(A) Split each processor in an HCSN network into two PEs,
each being associated with a pair of input port and out-
put port. Further, the two PEs are connected to each
other by a bi-directional link (see Figure 5(a)).

(B) Combine two neighboring PEs in a CCC network into
one processor capable of operating on the data objects
within the PEs (see Figure 5(b)).

We shall take the former approach. The resulting view
of the HCSN network of Figure 4 is given in Figure 6. As
such an HCSN network has r=logn columns, each contain-
ing n =2" PEs. Thus an HCSN network has a total of nlogn
PEs. Further, it is easy to see that an HCSN network is an
unfolding of a PSC network with n PEs, the unfolding is to
the extent of logn stages. The last stage is circularly con-
nected to the first. The addresses associated with the PEs
thus obtained from splitting processors in an HCSN network
may now be obtained from the network-wide address of the
corresponding input port (or output port). To show topologi-
cal equivalence between a CCC network and an HCSN net-
work, we rewrite the address of PEs in the HCSN network as
((¢y—1,---»; ,---ya0),c ), where ¢ is the column number, and is
equal to the index where the symbol ”|” appeared in the origi-
nal network-wide address. Each PE in an HCSN network has
three ports, viz. I, O, and L. I is an input port, O is an out-
put port, and L is bi-directional. With this the interconnec-
tions in the HCSN network are described as:

<O (a,c),I(a,(c-1)modlogn)>,

(5(2))

(L(a,c)L(a+e*2,c)), (5(b))

where e =1-2%bi¢, (a ).

The equivalence between the CCC network and the
HCSN network is now evident. The CCC network and the
HCSN network each have nlogn PEs. That is, in the HCSN
network there are n PEs in each of the logn columns, while
in a CCC network there is a hypercube of n cycles each con-
taining logn PEs. The processors in them are numbered as
(I,p), 0<I <n, 0<p <logn. The interconnections are identical
(see interconnections (2) and (5), above). The only difference is
that in an HCSN network the interconnection from an output
port to an input port of a PE is uni-directional.

4. IMPLICATIONS OF EQUIVALENCE

There are a number of implications of the above topolog-
ical equivalence. First, a VLSI layout for an HCSN network is
now evident. In fact, the layout of Figure 3 is a layout for the
HCSN network of Figure 6, or equivalently that of Figure 4.
The layout has an area n*(n-1), or more precisely
O (N?%/log?N). If the known layout for CCC networks is of
minimum area, then the layout for HCSN networks is also
optimal.

From the layout of Figure 3 it is evident that an HCSN
network, and similarly a CCC network, has a recursive
definition for certain values of n. Further, an HCSN network
is symmetric not only with respect to a column (because of
circular connection), but is also symmetric with respect to a
PE within a column. The latter is a consequence of the fact
that in a CCC network any cycle of PEs may be assumed to
be at the origin of the hypercube. This symmetry allows one
to make statements about the HCSN network assuming that
a PE has an address (0,0) "without loss of generality”, and
enables one to provide new and simpler proofs for known
results for HCSN networks in respect of routing algorithms
and fault-tolerance analysis.

Properties that have been developed for the HCSN net-
work now readily become applicable for CCC networks. One
set of results known for the HCSN network are in respect of
message routing using control tags (see reference [4]). A con-
trol tag, which is part of the message header, is a sequence of



control numbers. The first remaining control number is
extracted from the control tag upon receipt by a PE, and is
used to select the outgoing route or link. The rest of the con-
trol tag is used to guide the routing following this PE. When
the control tag is empty, the message is at its destination.
Algorithms can now be obtained for routing data through a
CCC network using a scheme discussed above. Further, it
can be shown that the length of a control tag is no more than
2*logn in a CCC network with nlogn PEs. Also, results in
respect of fault-tolerance of HCSN networks can be applied to
CCC networks.

In view of the topological equivalence, an HCSN network
may be treated as an implementation of a CCC network (pro-
vided bi-directional communication between B and F ports of
a CCC network is not insisted upon), or vice versa. And, since
a Perfect Shuffle Connection (PSC) network can always simu-
late an HCSN network, it is reasonable to expect that most
algorithms for CCC networks are similar to those for PSC
networks or even for Hypercube networks (see references [1],
[2], and [5]).

The equivalence between HCSN networks and CCC net-
works is more than simply topological. For sure, any algo-
rithin that runs on an HCSN network may be made to run on
a corresponding CCC network. The reverse is, however, not
true. The reason why such functional equivalence cannot be
established is that, in a CCC network, transmission of data
between PEs within a cycle is instead bi-directional. The
latter implies a capability of processing data objects contained
in neighboring PEs within a cycle.

Preparata, et al. (see reference [2]) have presented a gen-
eric DESCENT algorithm that is useful in solving a large

Figure1 The Hypercube and PSC networks.

10

class of problems, including Bitonic Merge, FFT, Sorting,
Matrix operations. This version of the algorithm for CCC net-
works is immediately applicable to HCSN networks. A
difficulty, however, does arise in implementing the operations
on data objects within PEs of a cycle, viz. LOOPOPER(.). An
alternative implementation of LOOPOPER for HCSN net-
works can be obtained. This algorithm assumes that transmis-
sion is uni-directional, but that each PE is capable of storing
logn data objects. The time complexity of the DESCENT
algorithm running on an HCSN network can be shown to be
the same as that when it runs on a CCC network. The conse-
quence of this is that many algorithms available for CCC net-
works can now be suitably recoded for implementation on
HCSN networks.
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THE DISTRIBUTION OF WAITING TIMES
IN CLOCKED MULTISTAGE INTERCONNECTION NETWORKS

Clyde P. Kruskal
Department of Computer Science
University of Maryland
College Park, Maryland 20742

ABSTRACT We analyze the random delay experienced by
a message traversing a buffered, multistage packet-switching
banyan network. We find the generating function for the dis-
tribution of waiting time at the first stage of the network for
a very general class of traffic, assuming messages have discrete
sizes. For example, traffic can be uniform or nonuniform,
messages can have different sizes, and messages can arrive in
batches. For light to moderate loads, we conjecture that
delays experienced at the various stages of the network are
nearly the same and are nearly independent. This allows us
to approximate the total delay distribution. Better approxi-
mations for the distribution of waiting times at later stages of
the network are attained by assuming that in the limit a sort

of spatial steady state is achieved. Extensive simulations
confirm the formulas and conjectures.

1. INTRODUCTION

Buffered interconnection networks are receiving increas-
ing consideration for use in parallel computers. They are
integral components of several machines currently under
development, including the Cedar machine at the University
of Illinois [7], the NYU Ultracomputer at New York Univer-
sity [9], and the RP3 machine [17] at IBM, where they are

used to interconnect processors to shared memory. In order:

to study the multitude of options available in actually build-
ing a machine, it is extremely useful to have formulas that
approximate the performance of an interconnection network.
In fact, formulas derived in a previous paper by two of the
authors [12] have been heavily used in designing both the.
NYU Ultracomputer [9] and RP3 [15]. While simulation
results are often more accurate, they are time consuming and
expensive. In this paper, we analyze the random delay experi-
enced by a message traversing a buffered, multistage packet-
switching banyan network, for a very general class of traffic.
For example, traffic can be uniform or nonuniform, messages
can have different sizes, and messages can arrive in batches.

Interconnection networks connect processing elements to
memory modules through stages of switches (Figure 1). Early
work in describing these networks was done by Goke and
Lipovski [8], Lawrie [14], and Patel [16], among others. For
more full explanations of interconnection networks see [6] or
(18], for example. There have been a number of performance
analyses of interconnection networks (e.g. [4,5,12,13)).

] The basic building block of an interconnection network
is a k-input, s-output (k Xs) buffered switch (Figure 2).
Each input port can accept one packet per clock cycle, and
route it to the appropriate output port. Each output port
has a FIFO buffer. Conflicts between messages simultane-
ously routed to the same output port are resolved by queue-
ing the messages. We idealize this structure by assuming that
the output buffers have infinite length. While this is clearly
infeasible in practice, it is well known that, for light to
moderate loads, moderate sized buffers provide approximately

Part of the work was done while the first author was at
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the same performance as infinite buffers. We also assume
that each output port buffer can accept any number of mes-
sages from the input ports in a clock cycle, and that arriving
messages do not interfere with departing messages. Each out-
put port can be viewed as a discrete queueing system.

We make the following probabilistic assumptions con-
cerning traffic at the first stage of a network:

(1) The number of messages arriving at successive cycles
to an output port are independent, identically distri-
buted random variables. These random variables may
have a different distribution at different ports, and are
clearly dependent from port to port.

(2) The service requirements (the number of cycles
required to forward a packet) for successive messages
at an output port are independent, identically distri-
buted random variables. This distribution may vary
from port to port.

Constant service time is usually the appropriate assumption
for interconnection networks realized with synchronous logic.
Assuming that the traffic is uniform (e.g. each request is
equally likely to go to each output node) and that at each
cycle a packet arrives at an input node with a fixed probabil-

ity p, the expected delay has been computed [12]. This

analysis is based on Little’s identity, and it is not obvious
that it can be extended to obtain more information about the
delay distribution, such as the variance. Such information is
quite important for two reasons: First, to obtain good perfor-
mance on a parallel machine, it is not sufficient to have a low
expected memory access time; high variance will impede per-
formance, as it is often the case that the speed of the slowest
processor dictates the system speed. Second, as we discuss in
Section 5, the variance can be used to obtain an approximate
formula for the waiting time distribution of a message
through the entire network.

Exact formulas for both the average and variance of the
‘waiting time at the first stage when all messages take a single
cycle to service were obtained in a previous paper [13]. This
was used to obtain approximate formulas for longer messages
of constant size. Using stronger methods we obtain in this
paper exact formulas for the average and variance of the wait-
ing time at the first stage for long messages of constant size;
in fact, we obtain the entire distribution of waiting times for
any discrete service time distribution. In the previous paper
[13], we also suggested a method for analyzing the waiting
time at later stages of the network, by assuming that the out-
put of a queue can be modeled by a Markov process; the
approximations were in practice hard to obtain and not very
accurate. This paper gives an alternative method for approxi-
mating the waiting time at later stages; it is easy to use and
provides extremely good approximations, as evidenced by a
comparison to simulation results.

In Section 2, we analyze the performance of the first
stage of an interconnection network, by calculating the z-
transform of the distribution of waiting times. This enables
us to compute higher moments of that distribution. In partic-
ular we present explicit formulas for the expected value and
variance. In Section 3, the formulas are used to find the
expected value and variance of the waiting time under various



standard assumptions. For light to moderate loads, we con-
jecture that waiting time experienced at the the later stages
of the network are nearly the same as for the first stage. In
Section 4, we obtain better approximations for the waiting
time at the later stages. In Section 5, we discuss how to

analyze the total delay through the network. Section 6 gives
some concluding remarks.

2. ANALYSIS

Our model for the first stage of switching comes under
the general rubric of a discrete time queueing system. We
compute in this section the z-transform for the waiting time,
and use it to derive the expectation and variance of the wait-
ing time, for general discrete service and arrival distributions.
The solution method we use was indicated by Kobayashi and
Konheim [11]. We are not, however, aware of a complete
solution to this problem in the literature. As will be seen in
the remainder of this paper, for the queueing systems we are
interested in, it is useful to carry out the calculations in their
entirety.

We start with some definitions. Let A be the average
number of arrivals at any cycle and m be the average service
time of a message. The traffic intensity is then p = m \.

Let f; be the probability that j messages arrive at any
cycle, and

R(z) = §szj .
i=0

Then

R'(1) = ).
Let 9; be the probability that a message requires j time
units to serve and

o .
U(z) = ¥ 952 7.

Jj=0
Then

U'(l1) = m .

THEOREM 1: Let w be the steady state waiting time for a
message. The z-transform of the waiting time distribution of
an output queue at the first stage is

t(z) = E(z")
_ lm)\_ 12 1-R(U(2) (1)
X\ R(U(z)z 1-U(z)

PROOF: Let s, be the unfinished work at the end of the
n th cycle, a, number of messages arriving at the n th cycle,
and ¢, be the total service time for messages arriving at the
nth cycle. Let s, a, and ¢ be the steady state variables
corresponding to s, , a, , and ¢, . Note that

E(z*) = B(z'") = R(z),

E(:*)= Y B la=i)f; = ¥ (V) f; =R(U(2),

j=0 Jj=0
and
s, = max(0,s, ;+c,-1).
Since c,, is independent of s, _; we obtain the identity
E(z") = B(z***~|s >0)P(s >0)
+ E(z°7!|s=0,c >0)P(s =0,c >0)
+ E(2°]s=0,c =0)P(s =0,c =0)

= E(2°)E(z*7!|s >0)P(s >0)
+ E(2°7!| ¢ >0)P(s =0)P(c =0)
+ P(s =0)P(c =0) .
Let
¥(z) = ozo; hjzj = E(2°).
j=0
The previous identity implies
¥e) = R(U(:) (\I'(zi—ho) +h BUE ));R (U(0)

+ hoR (U(0),
so that
ho(1-2)R (U (0
woy — holiIRWO)
R (U(z))-2
We compute, using L’Hospital’s rule,
hot (U (0)
W=1=—"m
so that
B — 1-m )\
° RU©O)’
and
q’(z) — !l—z !!l—m )\!

R(U(z))-=

Since the arrival process is memoryless, arriving batches
see the steady state unfinished work distribution s . Thus the
steady state waiting time for a message w = s + w', where
w' is the steady state service time for messages arriving at
the same cycle, but served first. We have

E(z") = E(z*)E(z"") = W=z)E(z"").
Let d be the steady state number of messages that arrive at
the same cycle with any message, but are served before it; let

#(2) = E(2%). Then, using the same derivation as before, we
get

E(z%") = $(U(2)).

We shall now compute ¢(z). The probability that any
message arrives in a batch of j messages is equal to 5 f; / \.
Thus

. x . | message arrives in a
Pld=j) = k_z}_HP(d:] I batch of k£ messages) kfe />
X1
= % LR/,
k=j+1
so that 1 ® 00 1 X k-1
¢(z)=;2 by szj"ysz RN
=0 k=j+1 E=1 j=
1 by _ RG)-1
- 1 .
ey R 2RL A A Y Y

The z-transform of the waiting time distribution is
t(z) = E(z") = ¥(z)¢(U(2))
1-m X\ 1-2 1-R(U(z)) ) 1)
N R(U(z)z 1-U(z)

a
In principle this gives the complete distribution of the waiting
time.



COROLLARY 2:
iy mRM1) +22UM(1) 2
Bw) = ') = wl-m») @
COROLLARY 3:

Var(w) = ¢"(1) + ¢ '(1)-(¢ (1))
(6m AR (1) + 4m2\R ""'(1) 4+ 6X3U (1)
+ 43U (1)) (1-m )) - 3m 2R "(1)%(1-2m X) (3)
+ U + BNR"()U (1)
122%(1-m \)?
(The derivation of ¢'/(1) used six applications of L’Hospital’s
rule, and took Macsyma all night on a minicomputer.)

3. EXAMPLES

We now apply the above formulas to derive the expected
value and the variance of the waiting time for messages in
several standard and important queueing systems. Note that
the expected value formulas only give the waiting time of a
message. To obtain the delay of a message in a queue, one
must add to these formulas the service time. For the queue-
ing systems in this section, message arrivals are independent
of queue length. Thus, the variance of the delay of a message
in a queue is simply the sum of the variance of the waiting
time and the variance of the service time.

3.1. Service Time One

Suppose that all messages take exactly one unit of time
to be serviced. Then m =1 and U(2) = z. Thus,

Ullz)=1 UMz)=U"(z)=0.
Substituting into Eq. (1), we obtain
_ wy _ 1-) 1-R(z)
t(z) = E(2") = BWIO"E
Substituting into Eq. (2) we get
_ R"(Q)
Blw) = oxa»
and substituting into Eq. (3) we get ~
2(3R (1) + 2R "(AIA1-X) — 3(1-22)(R "(1))*
12)2(1-))2

We analyze some special cases of this for k-input, s-output
(k X s ) switches.

and

(4)

Var(w) = (%)

3.1.1. Uniform Traffic, Single Arrivals

Suppose that each input port has a probability p of
receiving one message at each unit of time, and that each
incoming message has an equal chance of going to any of the
output ports. Then

s= 0 (2]

This quickly yields
k
— _ P pz
R(z) = [1 5 + A ]

Calculating R'(1), R "(1), and R''(1) and substituting into
Egs. (4) and (5) yields

1
(1=

—k (6)
2(1-N)

E(w) =

14

and

(1_%) (6 - 5>\(1+%) + 2x2(1+—1k-)] @

Var(w) 20

3.1.2. Bulk Arrivals

In many systems the size of a message exceeds the size of
a transmission packet; a message is transmitted in several
packets. These packets arrive at the first stage of the net-
work in one bulk. This can be modeled as in the previous
example, except arrivals at input ports are in batches.
Assuming a constant batch size of b messages,

b k
R(z) = [1-%+-st—] .
Using Eqgs. (4) and (5), this gives
(b-1) + (1—%»\
2(1-x)

E(w) =
and

b2-1 + (b 2+2-38) _sn21-L ) 4 an¥1-L
k k2 k2
Var(w ) =

12(1-))?
These agree with our previous formulas for the case b = 1.

3.1.3. Nonuniform Traffic

In many practical situations each input is likely to have
a distinct favorite output port (e.g. the output port connect-
ing a processor to its private memory — see [1]). We assume
that k = s. (It is not hard to generalize this for k 54 s, but
the equations become quite lengthy.) We do assume bulk
arrivals. Each input port sends arriving messages to its favor-
ite output port with probability ¢, and sends them with pro-
bability (1-¢)/k to each output port (including its favorite
output). The distribution of messages at the output ports is
the product of two terms: the first term accounts for normal
messages and is essentially the same as given in 3.1.2, with p

replaced by p(1-¢); the second term accounts for favored
messages. We get

R(z) = (1-p2t

(l-p(q+%)+p(q+%)z") :

1-q b \k-1
+p—lc 2%)

Substituting into Eq. (4),
)\(l—qz)(l~%)+b -1

2(1-X)
Note that, for ¢ =1 we get E(w) =0, and for ¢ =0 we
obtain the same formula as in 3.1.1 (with k¥ =), as it

should be. The general formula for the variance is quite
lengthy.

E(w) =

3.2. Constant Service Times

We now consider the situation when messages can have
one of several constant service times. We will only consider
uniform traffic and single arrivals. Thus, as in Section 3.1.1,

R(z) = [l—»%+—psi]k



3.2.1. Single Size

First, suppose that each message takes exactly m units
of time to transmit. This will occur, for instance, when each
message is composed of an equal number (m ) of packets, and
the constituent packets of a message are transmitted at con-
secutive cycles. Then

U(z) = z™ .
The traffic intensity is now
p — mpk
s
Substituting into Egs. (2) and (3), we obtain
1
p(m—)
k (8)
Elw) = ——
() 2(1-p)
and
(1-2) (bm - 5p(1+) + 26%(1+)
Pl ¥ (m-1) 2@2m-1) - p(m +1)] )
Var(w) = .

12 (1-p)?
These coincide, for m = 1, with the equations of 3.1.1.

3.2.2. Multiple Sizes
Now suppose there are n service times m,...,m, , and
service time m; occurs with probability g;. This will occur

when there are different kinds of requests. For example, read
requests are likely to have different sizes than write requests.

We get

Thus
k n
p = T mg
S
Substituting into Eq. (2), we obtain
L 1
A Y my(m; — )9
1

2 (1-p) -

p 213 m; (m; — I)gi

E(w)

2 (1-p) an m; g;
1

The formula for the variance could also be obtained, but it is
quite lengthy and not particularly enlightening.

4. LATER STAGES

We do not know how to analyze the later stages exactly
as the inputs at successive cycles are not independent. We
have, however, developed some very useful approximate for-
mulas for the average and variance of the waiting time.
These are based on two observations: First, as we progress
through the network, the waiting time statistics quickly
approach a limiting distribution. Second, nearly every wait-
ing time distribution in queueing theory has an average on
the order of 1/(1-p) as p tends to one; that is, if w;(p) is the
average waiting time at the 7 th stage, and w (p) is the limit
as { gets large, we expect liml (1-p)w oo (p) to exist. We calcu-

—

p
lated w,(p) exactly in Section 3, and we expect w(p) and
w o(p) to have similar qualitative properties, i.e., they should

depend on most parameters in roughly the same way. Hence,
it seems reasonable to estimate

defw (p)
rle) = w (p) '

15

It is clear that r(0) = 1. We use simulations to estimate
r(1/2), and then simply linearly interpolate to obtain to
obtain a value ¢ such that

r(p) ~ 1+ap. (10)

Then
woo(p) = (1+ ap) wy(p).

We will also generalize the formulas to take into account the
dependence of w;(p) on the stage, the switch size, and the
message size distribution. This method of interpolation was
previously applied to queueing systems by Burman and Smith
[3] using light and heavy traffic theory. The light traflic limit
is obvious in our case. We do not have a heavy traffic
analysis for our process, so we rely on simulation instead.

Using the same ideas, we can obtain an approximation
for the variance. Let v; be the variance of the waiting time
at stage 1, and v, be the variance in the limit. Since the
formulas for variance have one higher power of p, we expect a
good approximation of v (p)/v,(p) to contain (at least) one

higher power of p, i.e. we obtain a quadratic interpolation for
the variance. The variance after several stages can be
approximated by

Voo =~ (1+ap+bpdo,,
where @ and b are constants to be determined.

In the remainder of this section, we obtain our expres-
sion for the waiting time and variance in step-by-step general-
izations. We first estimate them for uniform traffic when
messages have size one, then size m, and then general size.
Finally, we consider nonuniform traffic.

4.1. Service Time One

Consider service time one, 2X2 switches, single arrivals,
and uniform traffic. For p = .5, w; = .25 (Eq. (6)), and,
from the simulations in Table I, w  seems to be about .3.
Substituting into Eq. (10) and solving for a gives a =~ 2/5.
Thus, we find r (p) = 1 + 2p /5, so the waiting time

2p p

1+ 5 ) R

Table I compares the simulation results with our formulas.
The waiting time values in the ANALYSIS row are from the
exact formula for the first stage (Egs. (6) and (7)), and the
waiting time values in the ESTIMATE row are from the
above approximation for the waiting time in the limit. Note
that the approximation seems to be slightly low for p small
and slightly high for p large. More complete simulation
results (not included for brevity) show that r(p) is actually
slightly concave. An even better estimate could be obtained
by using a quadratic approximation.

Using the same technique for 4X4 and 8X8 switches
gives a a bit less than .2 and a a bit less than .1, respec-
tively (see Eq. (6) and Table II). This suggests that the above
formula can be (crudely) extended to k Xk switches by
linearly including £ as a parameter. This gives the waiting
time

woo%

1
a4 ) (1- Z) P
5k 2(1-p) °
Table IT compares the simulation results with our formulas.
In Tables I and II it looks as if w; approaches W

geometrically. . This suggests a formula of the
ri(p) =1 + (1-a' 1)(r (p)-1) for some o<1, yielding

(11)

wo =~ (14

form



L gl (1——)p
(_ Ty 2(1-p)

as the expected waiting time at the ¢ th stage. Looking once
again at the formula for ¥ = 2 and p = .5 (Table I), gives
a=2/5 as a good approximation. It turns out that this
value of o works reasonably well for general £ and p. For
brevity, we do not explicitly compare this formula to the
simulations (although the interested reader can easily do the
calculations). It is by no means surprising that, for a given p
and k, w; approaches w_, geometrically; what is perhaps
zurprising is that a single value of a works well for all p and

w;, =~ 1+ (12)

Applying the same techniques to variance, we find that a
reasonable formula for the variance after several stages is

ve &~ (1+ L 3’;_2)
(-1 p [6-5p (14+1) + 2 °(1++ 0 (13)
12(1-p )?

(Since this is only an approximation and since the simulation
results do not give exact answers, there is quite a bit of free-
dom in choosing coefficients ¢ and b for the p and p?2 terms.
Other choices will surely work just as well or better.) We can
also estimate the variance at stage ¢ to be

v ~ lx +(2—"k+ %)(1-0/-1)]
(-2 p [6-5p (1+3) + 2 °(1+)

12(1-p )?

(14)

where o = 2/5.

4.2, Single Service Time

Consider the case when messages have a single constant
size. Our model of the first stage is not a particularly good
model for the later stages: At the first stage a source after
sending a message can send a new message on the next or any
later cycle. At later stages, since sources are outputs from
queues, once a source sends a message, that source will not
send a message for at least m cycles. This will tend to reduce
queueing delays at the later stages.

Later stages can be better modeled by assuming that
messages take one cycle to be processed, but the cycle time is
m times as long. Following [12], we use the formula for ser-
vice time one (Eq. (11)), and, for a fixed p, multiply the time
to process a message by a factor m, and also multiply the
average number of packets per cycle by m . In other words,
for a fixed traffic intensity p, the cycle time is m times as
large. This gives the average waiting time

1, 2
1-—)m
amp ( k) 2
5k 7 2(1-mp)
For m > 2, this formula is a reasonable approximation at all
stages after the first, and, of course, we have an exact formula

for the first stage. Table III compares the simulation results
with our formulas.

Let us examine the behavior of the interior stages in
light traffic. If we allow m to increase and p to decrease
with mp = p constant, then in time scaled by m, the first
stage output queues become M/D/1 queues with arrival rate p
and service time 1. (Actually, the well-known waiting time
statistics of M/D/1 queues can be obtained as limits of (8)
and (9).) Now the interior stages are not precisely M/D/1

~ (1+ (15)

Yoo
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queues in this scaling, because the packets output from previ-
ous stages must be spaced by at least m time units.
Nevertheless, it is clear that in light traffic the interior stages
will resemble M/D/1 queues, but the congestion will be lower
than at the first stage, since packets will be very unlikely to
collide with other packets from the same source. That is, the
congestion will be as if the arrival rate were (1-1/k )p. Using
the M/D/1 light traffic results

(1*?)1’
Bw) = —f—+ 0()
and
(l—%)p
Var(w) = 3 + 0.

Our approximations should have these properties, too. Eq.
(15) does satisfy this.

To obtain an approximation for the variance, we argue
as before: start with formula for the variance at the first stage
for unit size messages (Eq. (7)), multiply by m2, change p to
mp, and then use the light traffic analysis and the simula-
tions to interpolate. Our heuristic formula is (see Eq. (13))

2

[ = 0202]
Voo " | =+ — + ——
12(1 - mp )?

3 k k
1 3 1 2 1

(1-2) m3p [6 - 5mp (1+1) + 2mp (1-+-1))
where 2/3 was obtained from light traffic analysis. nght
traffic analysis is a limiting case for m large; in practice we
found that 7/10 works better than 2/3 for small and
moderate message sizes. We match the constants C'; and O,
to simulation results, giving

1 2 4(mp )?
o ~ 35 (0 T+ AT D)
(1-2) m3p (6 - 5mp (1+1) + 2(mp JA1-+-3)) (19

12(1 - mp )?
This approximation is still slightly low for m small, as can be
seen in Table III. Better approximations can be obtained for
each individual value of m ; in particular, Eq. (13) is a much
better approximation for m = 1. As with waiting times, for
m 2> 2, this formula can be used to approximate variances
for all stages after the first.

’

4.3. Multiple Service Times

As in Section 3.4.2, suppose there are m service times
my,...,m, , and service time m; occl;rs with probability g; .

The average service time is m = ), g; m;. To obtain an
i =1

approximate formula for the average waiting time, replace the

size of all messages by their average size m and use the

approximate waiting time formula from the previous section

(Eq. (15)). This gives the average waiting time
(1- %) m2p
2(1-mp)

4mp

(1+ ok

The values obtained from this formula tend to be a bit
low. The reason is that we are approximating multiple size
messages by their average size. Since we are able to calculate
everything at the first stage exactly, we know how much off
such an assumption would be at the first stage: simply the



ratio of the actual expected waiting time and the waiting
assuming all messages have their average size. Assuming this
ratio is fairly constant at the different stages, multiplying the
above formula by this ratio gives a very good approximation:

(- %)mpé m; (m; - %)gi

1=1

2(1-mp) (m - )

4mp )

wy, == (1+ ok

An approximate formula for the variance v, could be
obtained similarly, but, as with the variance formula for the
first stage, it is quite lengthy. We have, however, obtained
numerical values from both variance formulas, i.e. for v, and
v Table IV compares the simulation results with our for-
mulas.

5. TOTAL DELAY

Once we have formulas for the expected value and vari-
ance of the waiting time at a stage, these can be used to
obtain approximations for the total waiting time. The
expected value of the total waiting time is simply the sum of
the average waiting time at the different stages. In particular,
for messages of size one, summing the w; in Eq. (12) approxi-
mates the total waiting time for an n stage network as

1

1- =

S PRI O i i
5k n(l-)’ ) 2(1-p) "’

where o = 2/5. For m > 2 the average total waiting time
can be approximated as the average waiting time from the
first stage (Eq. (8)) plus n -1 times the waiting time at the
later stages (Eq. (15)), which is

(m —D)mp o (L= )M
sa_mp) T DA 5 2(1-mp)

If the waiting times from stage to stage were indepen-
dent, as is the case with Poisson arrivals and exponential ser-
vice times, the variance of the total waiting time would sim-
ply be the sum of the variances at the different stages. Simu-
lations show that waiting times at neighboring stages have
fairly low correlation, and the correlation seems to drop
geometrically as stages become further apart. Thus summing
the variances should be a good approximation.

To obtain a better approximation, note that the total
variance is actually the sum of the covariances between
stages. Let v;; be the covariance between stage ¢ and stage
7. Covariances seem to drop geometrically as stages become
further apart. In particular, the v;; can be approximated as

ij
follows: vy = v, v 41 R vy, ;4o B aby; ,
Y 43~ abzvi, Vi ipa ™ abgv,-, ey where
a=(1- 2%) 3;';:’ and b = (1 - —2;"—p)/k Now summing

all of the covariances approximates the total variance as

n n -t
14 200077 ] v;
i-z=)1 1-b '
For m =1, we use the v; from Eq. (14). For m >1, v is the
true variance for the first stage (Eq. (9)), and v;, ¢ >1, can be
approximated by the formula for v, (Eq. (16)). Tables VI
and VII compare the simulation results with our formulas.
The distribution of waiting times seems to be about the
same for all stages. If the distributions were independent,
then by the central limit theorem, the total waiting times for
a large number of stages could be approximated by a (trun-
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cated) normal distribution, whose sum is the sum of the
expected values and variance is the sum of the variances.
The central limit theorem actually holds under much weaker
hypotheses than independence (see, for example, [2]), and we
expect it essentially to apply here. Now, typically in queueing
systems, the distribution of waiting times has an exponential
or geometric tail. Thus, for few stages, we expect a gamma
distribution with the proper expected value and variance to
be even a better approximation. Figures 3 and 4 show an
incredibly good match between the gamma and the observed
distributions, especially at the tails. The gamma distributions
were formed with the means and variances given by the esti-
mates from Tables VI and VII. In practice, these moments
and the tail of the waiting time distribution are the quantities
of interest; we believe our formulas are accurate enough for all
practical purposes.

So far we have obtained formulas for the total waiting
time. In order to obtain the total delay in the network one
has to add to the total waiting time the total service time. If
service time is one, then the total service time is simply the
number of stages. In general it is the sum of service times at
the successive stages.

The waiting time at one stage may depend on service
time at a previous stage. However, the correlation is weak, so
that these random variables are stochastically nearly indepen-
dent. Thus, the variance of the total delay is approximately
the variance of the total waiting time plus the sum of the
variances of the service times. If the service times are con-
stant, then their variances are zero, so the variance of the
total delay is exactly the variance of the total waiting time.
In general, the distribution of the total delay can easily be
approximated by looking at the distributions of individual
service times and the distribution of the total waiting time.

8. CONCLUSION

We have analyzed the delay experienced by a message in
a buffered, multistage, packet-switching banyan network. For
the first stage, we were able to derive the complete distribu-
tion of the delay for a very general class of distributions,
assuming messages have discrete sizes. The result is quite
general: for example, one can use it to derive the Pollaczek-
Khinchin formulas for M/G/1 queues. The result was used to
determine exactly the average and variance of the delay for
several commonly considered distributions. Using the delay
formulas for the first stage, we developed extremely good
approximations for the average and variance of the delay at
later stages. Finally, this allowed us to obtain good approxi-
mations for the full distribution of the total delay of a mes-
sage through the entire network.

In order to approximate the delay after the first stage, it
was essential to have good formulas for the delay at the first
stage. It was only by building on them that we were able to
make educated guesses as to the delays at later stages.

One aspect of our results that is worth stressing is the
dependency of waiting time on the message size m: For a
fizred traffic intensity p, the average waiting time increases
linearly in m (see Egs. (8),(15)), and the variance increases
quadratically in m (see Eqgs. (9),(16)). Thus, while using
larger messages may save the overhead of duplicating the
same routing information over several packets, it may
dramatically increase delays in all but very lightly loaded net-
works. This point has already been made in [9,12,13], but
does not seem to be widely appreciated.

While our simulations seem to indicate clearly that aver-
age waiting time at successive stages converge, it would be
nice to be able to prove this result formally, i.e. to show that
average delay at successive stages can be bounded, indepen-
dent of the network size.
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p =02 p =05 p =038 g,=00 g,=025 g, =05 g,=075 g,=10
E Var E Var E Var go= 1.0 go = 0.75 go = 0.5 go = 0.25 9o = 0.0
ANALYSIS 0.0625 | 0.0602 || 0.2500 | 0.2500 || 1.0000 | 1.6000 p =1/16 p =1/14 p =1/12 p =1/10 p =1/8
SIMULATION E Var E Var E Var E Var E | Var
1st stage 0.0625 | 0.0602 || 0.2501 | 0.2503 || 0.9946 | 1.5824 | | ANALYSIS |[|3.750 | 33.50 |[3.464 | 29.30 |[3.083 [ 23.94 || 2.550 | 16.94 || 1.750 | 7.50
2nd stage 0.0657 | 0.0639 || 0.2809 | 0.3042 || 1.1884 | 2.3589 | | SIMULATION
3rd stage 0.0670 | 0.0656 ||0.2929 | 0.3267 || 1.2537 | 2.6956 1st stage 3.752 | 33.77 ||3.461 | 29.16 || 3.092 | 24.11 || 2.552 | 16.98 |{1.749 | 7.46
4th stage 0.0676 | 0.0663 |(0.2970 | 0.3359 || 1.2772 | 2.8459 2nd stage 2.454 | 19.53 || 2.255 | 16.64 || 2.039 | 13.72 {| 1.706 | 9.87 |{1.199 | 4.67
5th stage 0.0676 | 0.0663 || 0.2985 | 0.3391 || 1.2807 | 2.8554 3rd stage 2.417 | 18.95 || 2.235 | 16.43 || 2.010 | 13.48 |[1.691 | 9.67 || 1.197 | 4.70
6th stage 0.0675 | 0.0662 |0.2992 | 0.3409 || 1.2874 | 2.9004 4th stage 2.405 | 18.88 |[2.241 | 16.45 ||2.018 | 13.51 || 1.689 | 9.75 |{1.204 | 4.76
7th stage 0.0679 | 0.0667 | 0.2997 | 0.3428 || 1.2877 | 2.9138 5th stage 2.392 | 18.73 || 2.256 | 16.83 || 2.025 | 13.58 || 1.696 | 9.89 || 1.193 | 4.68
8th stage 0.0682 | 0.0669 || 0.2996 | 0.3410 || 1.2912 | 2.9227 6th stage 2.409 | 18.09 || 2.249 | 16.64 || 2.023 | 13.65 || 1.691 | 9.78 |[1.202 | 4.76
ESTIMATE || 0.0675 | 0.0656 || 0.3000 | 0.3438 ||1.3200 | 2.9440 7th stage 2.408 | 18.01 || 2.249 | 16.62 || 2.016 | 13.50 || 1.690 | 9.71 |/ 1.199 | 4.76
Sino t ; ) . _ _ _ 8th stage 2.396 | 18.68 || 2.238 | 16.41 || 2.023 | 13.70 |[1.695 | 9.78 ||1.196 | 4.70
Waiting times and variances: p Tv;fliullg (k=2 m =1, and ¢ =0) ESTIMATE ||2.400 | 18.67 || 2.238 | 16.58 || 2.018 | 13.84 |[1.700 | 10.08 || 1.200 | 4.67
Waiting times and variances: m ; = 4; m, = 8; and
P, 9, and g, varying with p = .5 (k =2 and ¢ = 0.0).
k=2 k =4 k=8 Table IV.
E Var E Var E Var
ANALYSIS [{0.2500 | 0.2500 || 0.3750 | 0.4375 || 0.4375 | 0.5469
1st stage 0.2501 | 0.2502 || 0.3740 | 0.4350 || 0.4371 | 0.5465 E Var E Var E Var E Var
2nd stage 0.2812 | 0.3048 |/ 0.4005 | 0.4941 || 0.4532 | 0.5848 ANALYSIS 0.2500 | 0.2500 || 0.2344 | 0.2344 || 0.1875 | 0.1875 || 0.1094 | 0.1094
3rd stage 0.2928 | 0.3258 || 0.4080 | 0.5055 || 0.4559 | 0.5934 SIMULATION
4th stage 0.2977 | 0.3372 || 0.4067 | 0.5112 || 0.4562 | 0.5934 1st stage 0.2501 | 0.2502 || 0.2341 | 0.2340 |[0.1886 | 0.1890 || 0.1093 | 0.1089
ESTIMATE [|0.3000 | 0.3438 || 0.4125 | 0.5195 || 0.4597 | 0.5982 2nd stage 0.2811 | 0.3047 ||0.2598 | 0.2771 || 0.2041 | 0.2136 ||/0.1138 | 0.1157
. ) i 3rd stage 0.2919 | 0.3240 ||0.2683 | 0.2934 || 0.2087 | 0.2218 |{0.1174 | 0.1200
Waiting times and variances: k varying (p = .5, m =1, and ¢ =0). 4th stage 0.2967 | 0.3330 |[0.2730 | 0.3036 || 0.2116 | 0.2275 [[0.1171 | 0.1200
Table II 5th stage 0.2083 | 0.3387 |[0.2741 | 0.3050 ||0.2117 | 0.2275 ||0.1172 | 0.1209
6th stage 0.2992 | 0.3399 |(0.2739 | 0.3030 || 0.2108 | 0.2265 ||0.1160 | 0.1185
7th stage 0.2998 | 0.3436 ||0.2754 | 0.3069 ||0.2100 | 0.2256 ||0.1163 | 0.1190
— p—— p— — 16 8th stage 0.3000 | 0.3426 || 0.2748 | 0.3079 |{0.2085 | 0.2228 |[0.1162 | 0.1195
p —1/4 p —1/8 p —1/16 p — 1/32 ESTIMATE [[0.3000 | 0.3438 [[0.2695 | 0.3003 [[0.2063 | 0.2227 [[0.1148 | 0.1196
E Var E Var E Var E Var Waiting times and variances: ¢ varying (p = .5, k = 2, and m = 1).
ANALYSIS [l0.750 | 1.500 [[1.750 | 7.500 {[3.750 | 33.50 || 7.750 | 141.50 Table V.
SIMULATION
1st stage 0.749 | 1.500 [[1.750 | 7.535 || 3.752 | 33.68 [[7.791 | 142.58
2nd stage 0588 | 1.158 ||1.203 | 4.708 || 2.435 | 19.23 || 4.889 | 77.35
3rd stage 0.592 | 1.186 [{1.198 | 4.710 || 2.412 | 18.81 || 4.815 74.71 ESTIMATE SIMULATION ESTIMATE SIMULATION
4th stage 0.601 | 1.217 [[1.200 | 4.718 || 2.402 | 18.77 || 4.807 | 75.27 E Var E Var E Var E Var
zth stage  110.603 | 1.230 |} 1.203 | 4.736 |} 2402 | 18.81 || 4.772 | 73.90 | o oIy 000 1 033 || 0.825 | 1.018 3 stages || 4.15 | 20.47 || 4.15 | 20.73
th stage 0.601 | 1.224 ||1.206 | 4.800 || 2.401 | 18.77 |[4.788 | 74.72 6ot 1717 | 2496 || 1723 | o377 6ot 775 | 1006 || 775 | 1142
7th stage 0.600 | 1.219 (11.200 | 4754 (12399 | 18.79 || 4778 | 7378 | | o8 o ) : : sages : - : :
8th stage 0603 | 1234 || 1204 | 4777 ||2396 | 1873 || 4778 | 7435 stages |[2.617 | 3.864 || 2.624 | 3.775 9 stages || 11.35 | 59.66 || 11.34 | 62.20
12 stages ||3.517 | 5.307 || 3.528 | 5.180 12 stages ||14.95 | 79.26 || 14.93 | 82.99
ESTIMATE |{0.600 | 1.167 [|1.200 | 4.667 || 2.400 | 18.67 |[ 4.800 | 74.67

Table III.

Waiting times and variances: p and m varying with p = .5 (k = 2 and ¢ =0).

Table VI.

Comparison of predictions with simulations: Comparison of predictions with simulations:
k=2p=.5 m=1and ¢ =0.

k=2 p=.125 m =4,and ¢ = 0.

Table VIL
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Abstract — A new interconnection network, the Snep-
tree, is investigated. The Sneptree consists of 2® — 1 identical
nodes and each node has four links. The links are connected
to form an augmented complete binary tree where the outgo-
ing links of the leaves are connected to all the nodes in the
network. We prove that a complete binary tree with arbitrary
size can be mapped onto a Sneptree optimally. Hence, the
Sneptree is well suited for distributed computations with tree-
structured computation graph, such as divide-and-conquer and
backtracking. One type of Sneptree, which contains two dis-
joint spanning cycles and is thus called the Cyclic Sneptree, is
of particular interest since it can simulate a fully unbalanced
tree optimally, such as a left/right skewed tree.

A recursive method is given to generate the H-structure
layout of the Cyclic Sneptree. The number of crossings and
the length of the longest wires in the H-structure layout are
analyzed. A message routing algorithm between any two leaf
nodes is presented. The routing algorithm, which is of O(n)
complexity, gives a good approximation to the shortest path.
The traffic congestion in the nodes at the upper levels is also
significantly reduced compared to the binary tree case.

1. Introduction

Due to the development of VLSI technology, it is now
possible to construct powerful computers by connecting thou-
sands of small identical processors into a so-called “processor
network.” Each processor has independent control and local
memory. Hence, each processor can run its own program in-
dependently and asynchronously. Synchronization and com-
munication are done by message passing between neighboring
processors. The computation is distributed over the network.
Hence, high concurrency can be achieved.

Many different interconnection networks have been stud-
ied, such as the binary tree [1,11], the mesh, the systolic array
[4], the boolean n-cube [10], etc.. Some machines are ded-
icated to some special applications; some are designed as a
general purpose computing engine. One interesting problem
which hasn’t been investigated profoundly is the mapping of
the computation graph onto the implementation network, and
in particular the mapping of an over-sized problem onto a fixed
size network to keep the load of each processor balanced. In [7],
a double-twisted torus simulates an unbounded mesh perfectly.
The torus introduced a homogeneous processor network which
relieves the boundary problem from a regular mesh so that a
bigger mesh can be mapped onto this network automatically
and optimally.

In this paper, another homogeneous processor network is
presented. The Sneptree [12] is a class of augmented binary
trees with homogeneous nodes. Each node, including the root
node and the leaf node, has four links. The links are con-
nected such that a complete binary tree of arbitrary size can
be mapped onto the Sneptree optimally.

T This research was sponsored by the Defense Advanced Research
Projects Agency, ARPA Order No. 3771, and monitored by the
Office of Naval Research under contract number N00014-79-C-0597

¥ Present address: Ametek, Computer Research Division, 610 N.
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0190-3918/86/0000/0020 $01.00 © 1986 IEEE
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The binary tree has the property that the distance between
any two nodes is at most 2logy n, where n is the size of the
tree. Such a network is called “logarithmic.” The Sneptree is
an expanded binary tree with more links in each node. Some
connection patterns of the Sneptree are regular and symmetric
and hence well suited for VLSI implementation. Furthermore,
it can simulate an unbounded binary tree so that it is best for
divide-and-conquer type applications. There are some other
augmented binary tree networks been investigated, such as
the X-tree[2], the Hypertree[3], and the De Bruijn Network[9].
Those networks are different in their connection patterns and
applications. The comparison between the Sneptree and other
networks will be given in the conclusion.

In section 2, the definitions of the Sneptree and the Cyclic
Sneptree are given and different connection patterns are pre-
sented. The mapping of a complete binary tree onto the Snep-
tree is proven to be optimal in section 3. Like a binary tree, the
Sneptree can be laid out into an H-structure plane nicely. Sec-
tion 4 presents a recursive method to construct the H-structure
Sneptree. In section 5, a routing algorithm that routes a mes-
sage from a leaf node to another leaf node is presented. In the
conclusion, the Sneptree is compared to other networks, and
future research directions are discussed.

2. Definition of the Sneptree

Definition: An n-level Sneptree is a complete binary tree of
2™ — 1 nodes, links directed from root to leaves, augmented
with 2" additional Snep links directed out of the leaves, such
that each node has 4 incident links: 2 directed in and 2 directed
out. Each node in the tree has an incoming Sneplink, except
for the root, which has 2 incoming Sneplinks.

Notice that the Sneptree is defined to be a directed graph
here for easier understanding. In the real implementation, the
links should be bidirectional. Furthermore, we call the outgo-
ing link which points to the left descendant of a node the “left
link” and the one pointing to the right descendant the “right
link.”

There are many possible ways to connect those 2"
Sneplinks. One example of a planar connection is shown in
Figure 1. This connection is not of particular interest because
it ends up with a very unbalanced mapping for a highly unbal-
anced binary tree, such as a left skewed tree. Another type of
Sneptree whose Sneplinks are connected to form two spanning
cycles (i.e., Hamiltonian Cycles) renders an optimal mapping

Figure 1. A Three-level Sneptree



for a left(right) skewed tree of any size (i.e., a linear array).
This special type of Sneptree is called the Cyclic Sneptree.

Definition: A Cyclic Sneptree is a Sneptree containing two
link-disjoint spanning cycles. The “left cycle” contains only
left links and the “right cycle” contains only right links.

Theorem 1. There are [(2"~1 —1)!)? connection patterns for
the n-level Cyclic Sneptree.

The proof is given in [6]. Notice that many of these
[(2*~1 — 1)!)? connection patterns are isomorphic because the
left and the right links are indistinguishable in practice.

Figure 2. A Three-level Cyclic Sneptree

Figure 2 shows one connection pattern of the Cyclic Snep-
tree. The numbers attached to the nodes show the node or-
dering in the left spanning cycle. Symmetrically, the right
spanning cycle of Figure 2 can be represented by node se-
quences (1,5,7,6,2,4,3,1). Such a connection pattern is regular
and symmetric and it can be generated recursively from the
smaller structures. This connection pattern is not planar; the
two crossing Sneplinks between two adjacent subtrees make
it possible to extend one subtree to the other subtree. This
particular Cyclic Sneptree is chosen due to its regularity and
extensibility, which are crucial properties for VLSI implemen-
tation. Another connection pattern with the same properties
is compared in the conclusion. We’ll show later that the con-
nection we choose here is better than the other one.

3. Mapping of a Binary Tree onto a Sneptree

The mapping from a complete binary tree onto a Sneptree
is independent of the connection patterns of the Sneptree. In
other words, no matter how the Sneplinks are connected in
a Sneptree, the mapping of a complete binary tree is always
optimal. This is not true for an incomplete binary tree. The
performance of the mapping of an unbalanced tree is affected
by the connection pattern of the Sneptree.

Before describing the mapping performance, we shall de-
fine the computation graph and the implementation graph first.
The computation graph represents the structure of the dis-
tributed computation and the implementation graph repre-
sents the network topology of the parallel machine. Cell and
node are the names for a vertex of the computation graph and
the implementation graph, respectively. An optimal mapping
is defined as a mapping such that (1) the adjacent cells are
mapped onto the adjacent nodes, and (2) the number of cells
in a single node differs by at most one.

From now on, we assume that the computation graph is
an m-level complete binary tree, the implementation graph is
an n-level Sneptree and m > n. Again, a cell denotes a node
in the binary tree and a node denotes a node in the Sneptree.
For this particular mapping problem, we use two figures to
measure the mapping performance. The first figure is the total
number of cells mapped onto one single node, so-called the load
factor, which indicates the total work load of each node. The
second figure is the number of cells of the same height in the
binary tree mapped onto one single node, which is an useful
measure when the computation wavefront goes downward and
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upward in the tree so that only the nodes at one particular
level are active at a time. In the following, we are going to
show that both measures are minimal for the mapping of a
complete binary tree onto a Sneptree. Therefore, the mapping
is optimal.

In an n-level complete binary tree, the root is at level 0
and the leaves at level (n—1). The height of a node is defined
to be the distance of that node to the leaves. The height of a
binary tree is the distance of the root to the leaves, which is
(n-1) for a n-level complete binary tree. The above definitions
also apply to a Sneptree.

The optimal mapping from a complete binary tree onto a
Sneptree is to map the root of the binary tree onto the root of
the Sneptree and the two children of a cell onto the two direct
descendants of a node.

Theorem 2. All the nodes in the Sneptree contain the same
number of cells of one particular level, say k, except that each
node at (k mod n) level contains one more cell, when mapping
an m-level complete binary tree onto an n-level Sneptree, m>n
and 0 <k <m.

Proof: If k < n, one cell will be mapped onto one node at
the k-th level in the Sneptree. For k > n, the theorem can be
proven by observing the construction of the Sneptree. A node
at the j-th level of the Sneptree has two direct ancestors; one
is its father at (j-1)-th level, and the other is a leaf, i.e. anode
at the (n—1)-th level. Moreover, the number of cells of level
k which are mapped onto this node is the sum of the cells of
level (k-1) which are located in its direct ancestors. In other
words,

Ti(4) = Tia (G = 1) + Ti—a(n - 1), @

where T} (7) is the total number of cells at the k-th level of the
binary tree which are mapped onto one node located at the
j-th level of the Sneptree for0 < k<mand 0< j < n.

j>0

The root node, i.e., the node at the 0-th level, has no upper
level and its two direct ancestors are both from the bottom
level, i.e. the (n-1)-th level. Combine with Eq.(1), Tx(s) can
be recursively defined by

Ti(5) = Tk-1((7 - 1) mod n) + Tj,_4(n - 1) )

wheren <k <mand 0 < j<n. Fork<n,

f0<k<n0<j<nAj#k;

~_ fo
Tk(])“{1: if0<k<nO0<j<nAj=k.

By induction, we assume that the theorem holds for k,
k > n. Let k = g X n+r, then Ti(r) = Ti(5) + 1, for all 5 and
3 # r. We now prove that the theorem holds for k + 1. From
Eq.(2), when r £n — 1,
Tk+1((k + 1) mod n) = Tpeyy (r + 1) = Tp(r) + Ti(n - 1)

=2XTk(n—-1)+1, and

Ti41(4) = Te((4 — 1) mod n) + Ti(n — 1)
=2xT(n—1), 7# (k+1)modn.
fr=n-1,

Tk+1((k + 1) mod n) = Tp41(0) = Tie(n — 1) + T(n - 1)

=2xTi(f)+2, and

Te+1(5) = T((7 — 1) mod n) + T(n — 1)
=2xTk(5)+1, j# (k+1)modn.



Therefore, T1.1 ((k+1) mod n) = Ty (5)+1, 5 # (k+1) mod
n, holds for any k.

By induction, the theorem holds.

Theorem 3. All the nodes at the top (m mod n) levels of the
Sneptree contain the same number of cells, Similarly, the rest
of the nodes also contains the same number of cells and the
amount s one less than that in the top level nodes, when map-
ping an m-level complete binary tree onto an n-level Sneptree,
m2n.

Proof: Let T(5) be the total number of cells mapped onto a
node at the j-th level of the Sneptree, i.e., T(5) = 2":01 Tr(7)-
Let m = ¢ X n+r and consider a node at one particular level j.
Such a node contains one more cell at (n + 7)-th, (2n + 5)-th,
..., and (g X n + j)-th levels respectively than the nodes not
in level 7, when 5 < r. In other words, there are ¢ such levels
in the binary tree, in which one extra cell is assigned to the
nodes at level j, for § < r. For j > r, there exists only ¢ — 1
such levels. Therefore, we can conclude that all the nodes at
the top r = (m mod n) levels of the Sneptree contain the same
number of cells, Similarly, the rest of the nodes also contains
the same number of cells, and the amount of cells is one less
than that in the top level nodes. &

Corollary 4. Fork=n,n+1,...,m—1
k
2n2 il if 0<j<n-1 and
Tu(j) = J#kmodn
ok
71 +1, J=kmodn.
and
2m—1 .
sy +1, for0<j<(mmodn)
T() =
2m—1 .
1) for (mmodn) < j<n.

The above corollary can be derived immediately from The-
orem 2 and Theorem 3. We now get to the conclusion which
has been addressed at the beginning of this section.

Theorem 5. The mapping of a complete binary tree onto a
Sneptree i3 always optimal for any connection patterns of the
Sneptree.

From the above discussion, it is clear that an arbitrary size
complete binary tree can be mapped onto a Sneptree optimally
no matter how it is connected. On the contrary, the perfor-
mance of mapping an unbalanced binary tree is dependent on
the connection pattern of the Sneptree.

Theorem 6. A left or right skewed tree of any size can be
mapped onto the Cyclic Sneptree optimally.

Proof: The theorem is true from the definition of the cyclic
Sneptree. &

Remark A linear array of any length can be mapped onto
the Cyclic Sneptree optimally if we map the linear array onto
the left cycle or the right cycle of the Cyclic Sneptree.

4. Layout of a Cyclic Sneptree

In this section, we discuss how to layout a Cyclic Snep-
tree (shown in Figure 2) on a plane. From now on, we call the
Cyclic Sneptree in Figure 2 “Sneptree” since all the discussions
in Section 4 and 5 are based on this particular connection pat-
tern. The H-structure layout for a binary tree [8] is modified
to layout a Sneptree. The recursive rule to generate the layout
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is described. Also, the number of crossings and the length of
the longest wires are analyzed. Finally, we will present a way
to extend the size of the Sneptree by connecting two identical
smaller Sneptrees.

Recursive Generation of H-structure Layout

Like the binary tree, the Sneptree can be laid out into an
H-structure plane. Because of the Sneplinks in the Sneptree, it
is not that straightforward to build the H-structure Sneptree.
The major concern is to minimize the number of crossings in
the layout and keep the length of the Sneplinks as short as pos-
sible. With the two criteria in mind, a recursive construction
algorithm is designed.

Figure 8. Two basic three—level H-Sneptrees

The n-level Cyclic Sneptree can be constructed recursively
into an H-structure layout with two given basic three-level
H-Sneptrees, A3 and B3 (Figure 3). In Figure 3, the node
numbering is compatible with that of Figure 2. The dangling
arrows out of node 3 and node 7 are the two links incident into
the root in a regular 3-level Cyclic Sneptree. These two links
are dangling in order to extend to bigger structures.

Let’s define two basic operations on the layout G:
(a) mirror along x axis : G*

(b) mirror along y axis : GY

The recursive rules are as follows:

1. Construct two 3-level H-structure Sneptrees A3 and B3 as
shown in Figure 3. Ajg is the one we intend to construct
and Bj is an auxiliary layout to be used in constructing
bigger Sneptrees. Now we like to construct Ay, for alln > 3
and By, for n > 3 and n odd.

2. Given two k-level H-structure Sneptrees, Ay and By,
for k > 3 and odd, the (k+1)-level and (k+2)-level H-
structure Sneptrees can be constructed as shown in Figure
4. A (k+1)-level Sneptree, Ay, can be constructed by
two k-level subtrees, namely Ay and B;. And a (k+2)-
level Sneptree, A2, can be constructed by four k-level
Sneptrees, Ay, By, B} and A}. The auxiliary (k+2)-level
Sneptree, Bg2, can be constructed by A%, B, Az and

By.
t t _t

Ay x AL
i

£
B,

==

4 g,

@ Aket

® A2 © Bke2
Figure {. Construction of Ay, Ag4y and By
For example, a 4-level Sneptree is constructed by connect-

ing A3 and B3 to an extra node and by directing the Sneplinks
as shown in Figure 5.a. Notice that A3 is planar and B3 has



one crossing. A4 has five crossings due to the introduction of
new links, including the two links incident to the root, shown
as dotted lines in Figure 5.a. The dotted arrows into the root
node should be connected to the two dangling links coming
out of the leaf nodes to make it a complete 4-level Sneptree.
A 5-level Sneptree can be constructed as in Figure 5.b. There
are in total eleven crossings in the layout; five in the left half of
the graph, which is exactly A4 except for the two links of the
root coming out to the right; four in the right half as shown
in the figure and two from the incoming links (dotted lines) of
the root in the middle of Figure 5.b.

A3 A3

B

Ba A

Al (b) A5

(a)

Figure 5. Construction of A4, As using A3z and B3

Since the Cyclic Sneptree is not planar and the Sneplinks
are not of constant length, we would like to know the number
of crossings and the maximum length of the Sneplinks.

Theorem 7 gives the number of crossings in Ay, and By,.
By, has one more crossing than A,, and both figures are ap-
proximately 3/8 of the total number of nodes in the Sneptree.
The two crossings introduced by the incoming links of the root
noc{le] in A, are not counted. The proof of Theorem 7 is given
in [6].

Theorem 7. The number of crossings in Ap is 3x (2" ~3—1)
and the number of crossings in By is 3 x (2" 3 - 1)+ 1.

Assume that any single node in the layout is a square with
area a, i.e., each side of the node is \/a in length and the
wire width is negligible compared to \/a. The area of the
H-structure Sneptree is the function of node area a and the
height of the Sneptree n. The zero wire width assumption is
reasonable because the number of wires passing through any
two adjacent nodes in the layout is bounded by a fixed number.

Furthermore, we assume that the four links of each node
may be pulled out of any side of the node. Two or more links
may come out of the same side. The length of the wire con-
necting two nodes is the shortest distance from the center of
one side of the source node to the center of the nearest side of
the other node. The wire has to route around all the nodes in
the way.

Theorem 8 shows that the length of the longest internal
wire in an H-layout Sneptree is about 1/4 of the width of the
layout. It is only (3/2)\/a longer than the longest wire of the

H-layout binary tree of the same size. The proof of Theorem
8 is given in [6].

Theorem 8. The longest internal wires of an n-level H-
structure Sneptree are the two wires connecting the root and
two leaf nodes at the left and the right corners. The length is

n > 3 and even

Va(3 x 2n/2-3 1 1/2),
In=9a(2"=3)/2 1 1/2), n> 3 and odd
2\/a, n<3
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Extension of the Sneptree

From the above discussion, it is clear that we can layout a
Sneptree of any size onto a single chip as long as the chip capac-
ity is not exceeded. Here we present a method to extend the
Sneptree by connecting two identical H-structure Sneptrees,
which is modified from the recursive construction technique of
binary tree from a single chip proposed by [5].

4 4 4 4

vy | v

T aAVY &

VA

Figure 6. Extension of the two (m-1)-level
Sneptrees to an m-level Sneptree

Let one chip consist an (m-1)-level H-structure Sneptree
with four dangling links and a single processor with its four
links. Two of the four dangling links in the Sneptree are out
of the leftmost and the rightmost leaf nodes, respectively. The
other two are the incoming links to the root node. There are
eight connectors in a single chip as shown in the solid box in
Figure 6.

Figure 6 illustrates how to connect two such chips into
an m-level Sneptree. The resulting layout contains one m-level
Sneptree with four dangling links and a single processor, which
is now able to extend to bigger structures recursively.

5. Routing Algorithm for Leaf Nodes

In this section, a leaf node routing algorithm for the Snep-
tree is presented. It is motivated by the opportunities to map
a linear array onto the leaf nodes of the Sneptree and to utilize
the Sneplinks to shorten the communication distance between
two arbitrary leaf nodes.

The design of the routing algorithm is constrained by the
following criteria: communication distance (to find a route as
short as possible), congestion constraint (to use the extra links
to avoid traffic jam at the upper level nodes), and time con-
straint (to keep the routing time as low as possible).

The time to route a message from a node x to another
node y is the sum of the message transmission time and the
processing time at the source node and each intermediate node.
Let t; and t. be the time of one processing step and the time
of one message transmission between adjacent nodes, respec-
tively. Suppose < z = zg,z1,...,Zf—1,Zr = y > is the route
which the message is sent through and f(1) is the number of
processing steps necessary to compute the following route at
the intermediate node z;. The total routing time is

k—1
ST f)tp+kxte

=0

In an n-level binary tree, k is bounded by 2(n — 1) and f(z)
is constant for all ¢ so that the routing time is O(n). Notice
that the bitwise operations, such as detecting if one node is in
the subtree of another node, is assumed to take constant time.
In a Sneptree, it is obviously that the shortest distance of any
two nodes is not longer than that in the binary tree due to
the Sneplinks of the Sneptree. Hence, the second term, k, of
Eq.(3) for the Sneptree is smaller than that for the binary tree.
To keep the total routing time for the Sneptree in the same

®3)



order of magnitude as for the binary tree, we have to keep
f(#) constant in the intermediate nodes. As a consequence,
the algorithm can’t always find a shortest route.
route which is shorter and less congested than the one in a
pure binary tree in O(n) time.

The leaf node routing algorithm is presented in the follow-
ing subsection and the program is given in [6].

The Routing Algorithm

Before describing the algorithxh in detail, we shall first
define the breadth-first normal ordering of the nodes.

Definition. The breadth-first normal ordering is an address-
ing method for a binary tree. The nodes in an n-level binary
tree are numbered from 1 to 2" — 1. The root node has address
1, and the left descendant and the right descendant of a given
node = have addresses 2z and 2z + 1, respectively.

Suppose that each address is represented by an n-bit bi-
nary number; the addresses of the left and the right descen-
dants of a nonleaf node are derived by shifting its address one
bit to the left and adding O or 1 to it.

With such an addressing scheme, the binary address of the
lowest common ancestor of any two leaf nodes can be easily
decided, which is an n-bit binary number with leading zeros
followed by the common prefix of the binary addresses of the
two leaf nodes. Furthermore, the binary addresses of the left
and the right corner leaf nodes of a subtree with height h have
h trailing 0’s and h trailing 1’s, respectively.

In our routing algorithm, the source node computes and
selects the shortest route between the source node and the

destination node

essinasien ne

hla v o~ pare L I N
Then, a four-variable message carries all the

routing information necessary for a receiving node to determine
the next node on the route. The intermediate nodes need not
recompute the shortest routes.

S. Aaalh, &

Suppose a message is sent from a leaf node x to a leaf
node y in a Sneptree of height n. Without loss of generality,
we assume x<y; i.e., node x is to the left of y. Let A be the
lowest common ancestor of x and y, B and E be two direct
descendants of A, and triangles BCD and EFG be the two
subtrees containing x and y (see Figure 7). In the sequel, UV
denotes the shortest path between two nodes U and V, and
|UV] represents the length of this path. Four possible routes
between x and y are (xB,BAE,Ey), (xD,DE,Ey), (xB,BF,Fy)
and (xD,DEABF,Fy). The lengths of these four routes are
|xB|+ |Ey|+2, |xD|+|Ey|+1, |xB|+|Fy|+1, and |xD|+ |Fy|+4,
respectively. In order to find the shortest route among the four
candidates, we need to compute |xB| ,|Ey|, [xD|, and |Fy|. No-
tice that |xB| and |Ey| are bounded by the height of the triangle
BCD (or EFG), and |xD| and |Fy| are bounded by twice of the
height of the minimal subtree containing x and D (or y and F).
The routing algorithm takes advantage of the Sneplinks within
the triangles to find the shortest paths xB,xD,yE, and yF.

A

C— yG

Figure 7. Four Possible Routes Between x and y

The length of xB (or yE) can be computed recursively. The
shortest distance between B and a leaf node is 2 regardless of
the height of B. The leaf nodes that have distance 2 from B are
the two inner corner leaf nodes of the two subtrees of node B,

It finds a-
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and the shortest paths take one of the treelinks to a descendant
of B and then take the Sneplink to the leaf (see Figure 8.a).
Let a and b be the two direct descendants of B and let ¢ and d
be the two corner leaf nodes that have distance 2 from B. Then
the leaf nodes that are at distance 3 from B are the nodes at
distance 2 from nodes a or b, as well as the nodes at distance
1 from nodes c or d. There are six such nodes: two (al and
a2 in Figure 8.b) are at distance 2 from a, two (bl and b2)
at distance 2 from b, and cl1 and d1 are at distance 1 from
c and d, respectively. Applying this technique recursively, we
can find the shortest path between any leaf node and node B.
The shortest path xB for an arbitrary leaf node x is a path
starting from node B, following the treelinks down to a certain
level of the tree, then taking the Sneplink to a leaf node and
following the shortest route from this leaf node to node x (see
Figure 9.a).

To find xB, the algorithm finds a sequence of leaf nodes
whose binary addresses differ from x only in trailing bits, and
their trailing bits are all 1’s or all 0’s. Those leaf nodes can
be routed to node B through a Sneplink so that the distance
to B is shorter that the height of B. The length of a route
from x via one of such leaf node, say z;, to B is the sum of
the shortest distance of x to z; and the distance of z; to B.

B B
a b
c ¢ d D C alaclc ddibibz D

(a) ()
Figure 8. The Leaf Nodes with Distance 2 or 3 from Node B

D C i D

Figure 9. The Shortest Paths xB and xD

After all such routes have been computed, the shortest one
is the candidate to the shortest route of xB. If the shortest
distance is longer than the height of B, then the direct route
from x to B (going upwards through treelinks) is the shortest
route. For instance, let the binary address of x be 00111010,
where we ignore the leading bits that are the common prefix
of the binary address of x and y because they are irrelevant
in computing xB. The height of B is 7 so that the shortest
distance of x and B won’t exceed 7. The first leaf node which
can take advantage of one of the Sneplinks is z;=00111011 (z;
is derived by changing the LSB of x to 1), which is of distance
1 from x and 6 from B by taking the Sneplink. Hence, the
distance is 7 by routing through z;. The second leaf node
is 23=00111111, which happens to be node ¢ in Figure 8.a
and has distance 2 from B. The distance of x and z2 can be
computed recursively and it turns out to be 4. Therefore, the
distance of xB by routing through z2 is 6, which is shorter
than 7. Since there are no other leaf nodes which can take
advantage of the Sneplinks, we can conclude that the shortest
route of xB is from x to zg, taking the Sneplink to the right
descendant of B, and then up to B.The length of the shortest
route is 6.



The distance of xD can be derived during the computation
of xB. Let the lowest common ancestor of x and D be t, the
right descendant of t be s, and the leaf node at the other end
of the Sneplink out of s be u. Then, the route (Bs,su,ux) is one
of the candidates for the shortest path Bx. Hence, the distance
of ux is computed while computing xB and the shortest path
between x and D is (Ds,su,ux) whose distance can be derived
immediately (see Figure 9.b).

In the computation described above, we need to find the
shortest route from x to another leaf which is a corner node of
a subtree containing x. Again, this distance can be computed
recursively. For instance, to route xu in Figure 9.a, we try to
find a sequence of leaf nodes starting with x and ending with
u. Each pair of adjacent nodes in the sequence has Hamming
distance 1. We now route the message through the nodes in
the sequence. The distance from x to any intermediate node
can be computed recursively by the previous value. Let u be
a right corner leaf node of a subtree and let the node sequence
be (z = zg,z1,...,2; = u), where z; is derived from z;_,
by changing the least significant 0 of z;_; to 1, and k is the
Hamming distance of x and u. Notice that the address of u has
m trailing 1’s, where m is the height of the minimal subtree
containing x and u. The recurrence relation is

|zozi| = min(|zozi—y| + 75, 2 X ) 4
where j is the position of the bit that differs in z;_; and z;.
All the bits to the right of the j-th bit of z;_; and z; are 1’s
(Figure 10). The shortest route from z;_; to z; takes the left
Sneplink of z;_; to an ancestor node of z; and then takes the
right tree links down to z;. The distance is j, i.e., the height
of the lowest common ancestor of z;_; and z;. Furthermore,
the shortest route between zg and z; could be either the route
(zoxi—1, T;_1%;) or the route containing only treelinks and
passing through the lowest common ancestor of zg and z; (the
distance of this route is 2 x 7). In the previous example, the
shortest route from x=00111010 to z,=00111111 is taking the
Sneplink to leaf node £ =00111011, then Sneplink again to the
ancestor of z3 and taking the right treelinks down to z2. The
distance is 1(x to z1)+3(z1z2)=4.

/SO

Figure 10. The Shortest Path Between z;_; and z;

Similarly, if u is a left corner leaf node (with trailing 0’s),
|xu| can be derived by computing the distance of x and a series
of intermediate nodes whose addresses are derived by changing
the least significant nonzero bits of x to 0 until it reaches u.

Now, we can select the shortest path among the four
candidates, (xB,BAE,Ey), (xD, DE,Ey), (xB,BF,Fy) and
(xD,DEABF,Fy). So far, all the computation and decision
being made are accomplished at the source node x. To achieve
O(n) time performance, we don’t want to repeat the computa-
tion in any other intermediate nodes along the route. Hence,
the routing information should be sent to the intermediate
nodes to guide them to select the proper next node along the
route. It appears that a four-variable message is enough to
carry the route information and avoid extra computation.

When the shortest route goes through xB, two figures are
needed to guide the route. Suppose the message is routed from
x to another leaf node u, then take the Sneplink to a nonleaf
node v and send up to node B, (Figure 8.b), we first need to
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know the route information of xu. If the route xu follows the
treelinks up and down to some intermediate leaf node, (i.e.,
when 2j is the smaller one in Eq.(4).) we record the highest
point of this route, otherwise it is zero. The second figure we
need to know is the distance of B and v. Let’s call these two
figures m1 and hl. When xB contains treelinks only, ml is
zero and hl is the height of node B. Similarly, m2 and h2 are
the corresponding information needed to describe the route yE.

. Furthermore, we need a direction flag to guide the message to

either the left descendant, the right descendant or the father
node.

When route xD is in the shortest path, the only infor-
mation we need to know is the highest point that the route
reaches through the treelinks. (i.e., when 27 is the smaller one
in Eq.(4).) Let’s call it {1 and when the route contains no
upward treelinks, /1 becomes zero. Similarly, [2 is the corre-
sponding information needed to describe route yF.

Let a four-variable message be (levell, dir,level2, dest). In
general, the routing information for the route in triangle BCD
is carried in the first two variables of the message. The third
variable carries the information for the route in triangle EFG.
The last variable is always the destination. More specifically,
levell carries the value of I1 or ml depending on which route
is selected. Variable dir is usually a three-value variable used
to select the next node in the route when a leaf node or the
highest nonleaf node is reached. When xB is selected, h1 is
also carried by dir. Variable level2 carries either the value of
h2 or 12 depending on whether yE or yF is selected in triangle
EFG. The value of m2 has to be reproduced by a specific node
in route Ey when Ey is selected, since there is no room to carry
the value in a message. That specific node is the lowest nonleaf
node traveling down from E through treelinks, from where the
route takes the Sneplink to a leaf node and then takes the
shortest route to y. Such a node corresponds to node v in
route xB (see Figure 9.b). The second variable is also used to
select one of the four possible routes. When dir is used to carry
the direction information of the route in the triangle BCD, the
route information for node A,B and E is carried by the fourth
variable instead. For instance, the value of the fourth variable
is negative when yF is selected. The routing information for
triangle EFG will be resumed at node A,B or E by moving the
information carried by the third and the fourth variables back
to the first two variables.

Performance

The computation time in the source node z is O(n). When
Ey is selected, one of the intermediate nodes along route Ey
needs to reproduce the value of m2 in k steps, where k is the
height of this specific node. When xB is selected, a few nonleaf
nodes along the route need to compute the height of the lowest
common ancestor of themselves and the destination node. Such
bitwise operation is again assumed to take constant time. In
conclusion, only the source node and at most one intermediate
node need to do some computation in O(n) time. From Eq.(3),
we can conclude that the routing algorithm takes O(n) time to
route the message from the source to the destination.

The result of the routing algorithm gives a good approxi-
mation to the shortest path of xy. Furthermore, the routing al-
gorithm always find the shortest path within the triangle ACG.
This routing algorithm uses only the links local to the minimal
subtree containing the source and the destination nodes. The
Sneplinks external to this subtree are never considered. As a
consequence, the two Sneplinks of the root node are never used
for routing. Because of this restriction, the routing algorithm
does not always compute the shortest path. (For example, the
route from the left corner leaf to the right corner leaf has a
distance 2, whereas our algorithm chooses a route of length
twice the height of the tree.) However, this restriction has



many advantages. The algorithm is simple and yet computes
nearly optimal routes, and the traffic of the upper level nodes
is reduced.

In a binary tree, the nodes at the upper levels are the
most congested nodes because half of the leaf nodes have to
route through the root node to communicate with the other
half of the leaf nodes. In case any leaf node is communicating
with all the other leaf nodes, the root node has to transmit
about half of the messages and the nodes one level down the
root have to transmit 5/8 of the messages. Then, the traffic at
each node decreases level by level from 13/32, to 29/128,....
In a Sneptree, four routes may be chosen to route a message
between two arbitrary leaf nodes and only two of them pass
through the lowest common ancestor of the two leaf nodes.
Assuming the four alternatives are equally possible, the traffic
at the common ancestor is reduced to a half of the binary tree
case and the traffic at the nodes one level down the common
ancestor is reduced to three quarters since three of the four
routes pass through that node (see Figure 7). In case any leaf
node is communicating with all the other leaf nodes, the traffic
at the top level nodes become 1/4, 7/16, 19/64, 43/256,...
of the total amount of messages. The figures show that the
traffic at the top level nodes is reduced to about a half of the
binary tree case. The actual figures depend on the height of
the Sneptree. The traffic at the nodes of the same height is no
longer the same and the exact figures need more analysis.

The simulation result shows that the average routing dis-
tance of any two leaf nodes is getting closer to the optimal
average distance when the Sneptree is bigger. The simulation
also shows that for some specific communication patterns, the
routing result is almost optimal, such as shift by 2¥ operations,
i.e. routing one leaf to another leaf at 2% distance apart. Fig-
ure 11 shows the optimal results and our routing algorithm
results of the average distance of any two leaf nodes and the
average distance of a perfect shuffle operation. Figure 12 shows
the average distance of shift by 2¥ operations, the curves for
routing results and optimal results overlap in Figure 12.

6. Conclusion

The Sneptree is a versatile interconnection network for
distributed computation. The boundary problem of a binary
tree is eliminated in the Sneptree so that the mapping of an
over-sized computation tree is done automatically. Moreover,
a complete binary tree of arbitrary size can be mapped onto
a Sneptree optimally. And a left/right skewed tree can be
mapped onto a Cyclic Sneptree optimally.

The Sneptree is also suitable for VLSI implementation.
It is possible to build a Sneptree of any size in a single chip
with area proportional to the total number of processors. The
H-structure layout of the Sneptree is regular and can be re-
cursively constructed. The number of crossings due to the
extra links is proportional to the number of nodes of the Snep-
tree. The longest wire length is about the same as that in
an H-structure binary tree. Furthermore, the Sneptree can be
expanded easily by connecting two or more chips together.

The leaf node routing algorithm allows us to take advan-
tage of the extra links in the Sneptree. Hence, a shorter and
less congested route between any two leaf nodes can be found
in O(n) time. The routing algorithm gives a good approxima-
tion to the optimal solution. In some special communication
pattern, such as shifting by 2% the average routing result is
almost optimal. Besides, the traffic at the upper-level nodes is
reduced to about a half of the traffic in a pure binary tree.

Comparison with Other Networks
Like the Sneptrees, the X-tree [2] is an augmented binary
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Figure 11. The average routing distances
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Figure 12. The ave. routing dist. of shifting by 2k ops.

tree with identical nodes. Three ports per node, four ports
per node and five ports per node are considered. The degree
of each node is not fixed but the maximal degree is limited
by the number of ports per node. Besides the binary tree
connection, the extra ports can be connected arbitrarily. The
main purpose of the X-tree is to provide fault-tolerance and
uniform message traffic.

The Hypertree [3] is a binary tree with extra horizontal
links (i.e., the links connecting the nodes located at the same
level). The horizontal links provide a set of n-cube connections.
Four ports per node and five port per node are considered.
Similarly, the main concern of the Hypertree is to provide fault-
tolerance and shorten the distance between two arbitrary leaf
nodes.

De Bruijn Networks [9] are a class of fixed degree logarith-
mic networks with arbitrary number of nodes and degree. A
De Bruijn Network with (2" — 1) nodes and degree 4 happens
to be a Sneptree. Such networks are good for a communica-
tion network since the optimal routing path can be decided
with local information and fault-tolerance is easily provided.

Comparing with the other similar networks, the Sneptree
is the only network which can simulate an over-sized binary
tree. The X-tree and the Hypertree contain extra links between
sibling nodes so that it can simulate ring connection or n-cube
connection. They cannot handle the mapping of an over-sized
problem well. The de Bruijn network with degree 4 is one



type of Sneptree. The connection pattern is neither cyclic,
symmetric nor regular. There is no way to layout the network
or extend the network.

Different Connection Patterns

From Theorem 1, we know there are many different con-
nection patterns for the Cyclic Sneptree. It will be interesting
to compare the performance of different connection patterns
of the Cyclic Sneptree in terms of the communication distance
and the mapping performance of an unbalanced tree.

(a)

(b)
Figure 18. A Planer Cyclic Sneptree

Figure 13.a shows another Cyclic Sneptree. the numbers
attached to the nodes show the node ordering in the left span-
ning cycle. Symmetrically, the right spanning cycles can be
represented by node sequence (1,5,4,3,2,7,6,1). Such connec-
tion pattern also has regular structure and hence can be gen-
erated recursively. It is interesting to observe that this connec-
tion is planar if we switch the position of the leaf node pairs
(3,7) and (6,4) as shown in Figure 13.b. Comparing the Cyclic
Sneptree shown in Figure 2 with this one, the latter one (Fig-
ure 13.b) contains four duplicate links, i.e., (2,3), (4,5), (3,4)
and (6,7) while the former one (Figure 2) has only two du-
plicate links, i.e., (3,4) and (6,7). The duplicate links prevent
the Sneptree from connecting more nodes together. Hence, the
second connection pattern doesn’t perform as well as the first
one in terms of communication.

There are many other connection patterns for the Cyclic
Sneptree, some of them may perform better than the one we
chose in terms of the communication distance between arbi-
trary two nodes and the mapping performance of an unbal-
anced tree. But only the two connection patterns discussed
above can be constructed recursively from the smaller Snep-
trees without breaking the internal Sneplinks in the smaller
structures. This property is important for VLSI implementa-
tion.

Figure 14. A three-level Exchange Sneptree
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The Ezchange Sneptree is a different type of Sneptree. In a
Exchange Sneptree, the outgoing Sneplinks of the leaves in the
left half of the Sneptree are directed to the incoming Sneplinks
of the nodes in the right half plus one incoming link of the
root, and similarly for the other half of the Sneplinks.’

One example of the Exchange Sneptree is shown in Figure
14. This connection is symmetric but neither extensible nor
cyclic. This connection has a very nice property: no matter
which node the root is mapped onto, it results in a nearly opti-
mal mapping for a complete binary tree. As a consequence, we
found that mapping performance of a unbalanced binary tree
onto such a Exchange Sneptree is better than the same map-
ping onto a Cyclic Sneptree. The properties of the Exchange
Sneptree need further investigation.
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The Onset of Hot Spot Contention
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Abstract: Non-uniform traffic distributions in a multi-
stage network characterized by ‘“‘hot spots” — destina-
tions getting more than their share of traffic—can cause
dramatic reductions in the maximum throughput of the
network. In this paper we develop an analytical model
predicting how long a “hot spot” must be persist in
shuffle/exchange networks before its its full effect is felt.
The model predicts that hot spots will disrupt network
traffic severely in a very short time: 10 to 50 instruction
execution times in a shared-memory machine. This result,
verified by simulation, leads to the conclusion that if
stringent measures are not taken to ensure uniformity, the
performance of large multistage networks will be sub-
stantially worse than has been previously predicted.

1.0 Introduction

Multistage interconnection networks with distributed
routing have often been proposed as a means of connect-
ing large parallel or distributed computing systems.
However, for such networks it has been shown that sta-
tistically non-uniform traffic patterns—patterns contain-
ing a hot spot [6] that gets more than its share of the
traffic—can cause severe performance degradation for all
network traffic, not just traffic to the hot spot. For ex-
ample, as little as 0.125% imbalance in a 1000-way net-
work can limit network throughput to less than 50% of
its maximum value. This is independent of network
topology, redundant paths, or mode of use of the network
(e.g.: message passing, shared memory, circuit vs. packet
switching, etc.). This effect was discovered in the IBM
RP3 project [5,1,4], and first reported in [6]. It was also
reported there that the technique of “combining” mes-
sages in the interconnection network could solve the
problem for some cases of interest.

However, the analysis and simulation reported in [6]
does not address a crucial issue: Over what time interval
must a non-uniform pattern be sustained in order to reach
tree saturation? This is important, because it is a critical
measure of how uniform the traffic must be to avoid hot
spot problems. Statistical uniformity is much more easily
achieved when averaged over hours (for example) than
when averaged over microseconds.

0190-3918/86/0000/0028 $01.00 © 1986 IEEE
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We address that issue here by developing a model,
verified by simulation, of how long a hot spot must persist
before its effects are fully felt. This provides a lower
bound on the interval over which uniformity must be
measured.

Unfortunately, the result is that the required interval
is quite short indeed. For example, with a 1024-way net-
work of 4-way switches containing 4-element queues, a
0.125% hot spot non-uniformity will have its full effect
within (approximately) 10 to 50 times the minimum time
to traverse the switch. (See Figure 4.)

We can only derive a crude lower bound for the time
for a network to recover from a hot spot; that appears to
be a more complex process. However, both that lower

bound and our simulations demonstrate that the recovery
time is much longer than the onset time.

Before deriving these results and comparing them
with simulation, a brief overview of the hot spot effect
will be given. A discussion of possible remedies, and of
our conclusions, ends the paper.

2.0 Hot Spot Contention and Tree Satu-

ration
Here we summarize the results presented in [6], with a
slight addition.

Consider a two-sided packet-switched multistage
network, with p ports on each side, connected to message
sources on one side and message sinks on the other, such
as the Omega network [3] illustrated in Figure 1.

Suppose the traffic pattern is initially uniform, with
messages emitted from each source at a rate r
(0 € r € 1). Then, at some time after a steady state has
been achieved, the traffic pattern is altered to direct a
fraction h, 0 € h < 1, of all references are aimed at a spe-
cific sink: the hot sink. l.e., each source emits r(1 — h)
messages uniformly distributed, and rh messages to the
hot sink. 4 is the hot spot rate. As a result, the hot sink
receives two components of traffic: »(1 — h) from the
uniform background, and rhp from the hot spot.

If A is large enough, the rate into the hot sink will be
unity due to the rhp term. If this happens, the queues in



the network switch closest to that sink will fill. This
causes the preceding switches’ queues to fill; then the next
preceding; etc. Finally, a tree of switches rooted at the
sink and extending to every source is saturated. This is
called tree saturation, and is illustrated by the marked
switch queues in Figure 1.

Once tree saturation is in effect, every message from
any source to any sink must cross the saturated tree and
so is delayed. In effect, all the network traffic is gated by
the speed at which the single hot sink can dispose of its
messages. In the steady state, this occurs when the total
traffic rate into the hot sink (r(1 — k) + rhp) equals unity.
in [6] it was shown that this has a dramatic effect as the
system is scaled up in size, as noted in the examples cited
in the present paper’s introduction. In the steady state,
hot spot effects are independent of network topology, fi-
nite queue size, etc. (However, the timing analysis pre-
sented here does depend on these factors.)

Beyond what was presented in [6], we note here that
tree saturation is a finite queue effect. But in order to
eliminate it, the queues in the final stage of the network
must be large enough to accommodate the maximum hot
spot traffic of the entire system. In other words, their size
must be equal to M x the number of network ports, where
M is the maximum number of messages that can be si-
multaneously outstanding from each source. Thus if
queue sizes are taken into account, the total network size
has another factor equal to the number of network ports.

This raises the network size to O(M x N2 log N), rather
than the usually-cited O(Nlog N). The factor of N? ne-
gates any size advantage over a full crosspoint switch.

3.0 Modelled Behavior

The network behavior modelled here assumes that the
network is initially in a steady state with uniformly dis-
tributed traffic flowing through it at a rate r. At time 0,
all the sources simultaneously change their traffic patterns
to include a hot spot. r does not change, but a fraction 4
of r sufficient to cause tree saturation is now directed at
a hot sink. The throughput of the network now declines
until at a time T it reaches a steady-state minimum caused
by tree saturation. We wish to estimate T as a function
of r, h, network size, etc.

Packet switching is assumed, with one packet per
message. In the analysis, one time unit is required for a
packet to move from one switch to the next. For reasons
explained later, the results shown in the figures are scaled

to be in units equal to the minimum time to traverse the
switch.

4.0 Model of Onset

It is convenient to imagine the messages sent to the hot
sink after time O as being colored red, and all other mes-
sages colored white. The total rate at which each source
emits red messages is
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r(1 —h)
p

R=rh+

R is not simply rk because 1/p of the messages from the
uniform background are sent to the hot sink, where p is
the number of network ports.

Rather than dealing directly with the complex dy-
namics of message flow through the network, we will
count the red messages in the network. On the one hand,
the number N of red messages is a function of time and of
their total arrival and departure rates from the network
as a whole. On the other hand, when tree saturation is
reached there is a steady-state number N of red messages
in the network that is a function of the input traffic and
the amount of buffering available. So equating N in both
formulations can tell us how long it takes to reach satu-
ration.

4.1 Arrival and Departure

To estimate the arrival and departure rates, we make a set
of assumptions that, overall, amount to the general as-
sumption that the onset of trec saturation happens fast
and suddenly — too fast and suddenly for the internal
dynamics of the network to have much effect on arrival
and departure rates until the point of saturation is
reached.

We assume that the total arrival rate of red messages
is constant (i.e., is Rp) until tree saturation is reached; and

then it drops instantly to the tree saturation value. Under
this assumption, the number of red messages generated by
time T is simply RpT. Our simulations do not verify a
constant arrival rate: the input rate does decline with
time. Nevertheless the final results are adequate.

For the departure rate, we assume the following:

At T, the first red messages enter the first switch
stage. They make their way through the tree of switches
that will be saturated, gradually becoming more and more
concentrated, until they reach the hot sink. Then:

1. Until the hot sink is reached, there is no effect on the
rate at which messages are transported. The first red
messages reach the hot sink at a time D(r) that equals
the average delay through the network at a total input
rate of r.

At D(r), the concentration of red messages is imme-
diately sufficient to saturate the hot output port; i.e.,
after D(r) that port emits messages at a rate of unity.
After D(r), all the messages emitted by the hot output
port are red.

While somewhat unrealistic, these assumptions are
conservative. They overestimate the departure rate, and
thus indicate that the saturated tree fills with red mes-
sages sooner than it actually will.

With those assumptions, the number of messages
that have left the network at time T is simply T — D(r).
Then, since the number of red messages arriving by time
Tis RpT, N = RpT + T — D(r). Solving this for T yields



K is the size of each individual switch, i.e., number of in-
put and output ports, so XK' is the number of switches at
each stage that lie within the saturated tree. g is the size
of each queue; (K + q) is the total storage available for
messages aimed at the hot spot in each switch stage. (The
additional K is due an additional buffer on each input port
used in the simulation; this is discussed later).

For each switch at stage i in the saturated tree, mix;
is the fraction of red messages in its queue during steady-
state tree saturation:

AR;

. 1
mix; = ————

' AR, + AW,
AR, and AW, are respectively the arrival rates of red and
white messages at stage i:

p

AR,» =R x —_—

Kl

because p/K' is the number of sources in the subtree
leading to each switch in stage i.

i
AW,»=r(l—h)x£_i—1
K

Recall that r(1 — %) is the total rate of uniform back-
ground traffic, part of which is directed at the hot sink.
Since there are K’ possible destinations for the cool traffic
N-D
rN-P0
Rp-1

The denominator becomes zero as the combinations of R
and p reaches a point inadequate to sustain an output rate
of unity. I.e., as that point is approached the time to sat-
uration approaches infinity, which is expected.

To estimate D(r) we use the well-known formula for
the average queue length in a switch stage [2]:

r 1
B(r)=———1-—

@ 2(1-7) ( X )
Where r is the steady state rate and K is the number of
ports of each switch in the network. Then
D(r) = S(1 + B(r)). Because it assumes infinite queues,
B(r) will again produce conservative results (faster trans-
portation than reality) for high total rates r.

4.2 Steady-State Population

In the steady state of tree saturation, N is the sum of the
number of red messages n, at each network stage (we
count stages from 0, starting at the stage closest to the
sinks):

S-1
N= ZK' x (K + q) x mix;
i=0
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at stage i, and one of them is the hot sink, the fraction
above follows.

If we substitute back into the expression for mix,
substitute the original expression for R, and simplify, we
obtain

. Hp +1
mix; = ——————
Hp + K

where H = h/(1 — h), the ratio of hot to cool packet
generation.

Finally substituting back into T, with slight simplifi-
cation, we get

5-1 .
((K +q) ZK"mix,.) - S(1 + B(r)
i=0
T= Rp — 1

5.0 Simulation

To verify the above model, we ran simulations of the sit-
uation described above for a number of cases. These re-
sults are plotted with the analytical predictions in
Figure 2 through Figure 4.

The switches simulated had two non-standard char-
acteristics that match those of [6], and serve to make the
simulated network act more like the ideal network mod-
elled:

1. Each output queue can simultaneously accept K mes-
sages in one time unit. While fairly realistic for
K =2, this is undoubtedly unrealistic for larger
switches.

2. Each input port to a switch has an additional one-
message lookaside buffer that is not counted in the
queue size. This allows the queues to be more fully
utilized, since without it there must be X empty posi-
tions in every queue of a switch for any of the switch’s
predecessors to be enabled to send messages. This is
the source of the additional K buffers per switch that
was included in the prior analysis.

A complication arose in deciding what to measure as
the time at which the switch reaches saturation. Our for-
mula effectively assumes that all the queues in the satu-
rated tree fill up simultaneously, and this is clearly not the
case. What we did was find, from the simulations, the
average red message occupancy of the queues in steady-
state tree saturation. Then the time to saturate was taken
to be the time at which 80% of that steady-state value
was reached. 80% was chosen because at approximately
that value there is a single message slot unused in each
queue.

All plotted points are the means of 200 simulation
runs each.

6.0 Results



A surprisingly short amount of time is required to reach
tree saturation. -

Figure 2 shows the time to tree saturation as a
function of the initial uniform background rate r for val-
ues of k ranging from 0.125% to 16% in factors of two.
It assumes a 64-way Omega network where each 2-way
switch has queues of size 4. The time unit is not T as de-
rived above, but rather 7/, the minimum time required
for a message to traverse the switch in one direction; in
our formulation, that equals the the depth of the network.
This unit was chosen for two reasons: First, it allows
meaningful comparison across different network and
switch sizes; it turns out that, when expressed in this unit,
the time to saturate is relatively constant across network
and switch sizes (10-50, for 4 element queues). Second,
in a shared memory system, it is typically comparable to
the time required to execute a single instruction in a
processor. (It is not identical to the time required to per-
form a complete memory reference; that time includes
two trips across the network—request and reply—as well
as memory access time and other delays.)

The dotted lines at the top of the figure mark the
minimum background rate below which each plotted hot
spot rate will not cause tree saturation; this is equivalent
to the maximum rate sustainable with the associated hot
spot rate. Thus the graphs can be interpreted as follows:
Pick a given initial background rate (point on the lower
axis). Proceed vertically to the curve corresponding to
the hot spot rate of interest. The time that curve indicates
(shown on the vertical axis) is the amount of time re-
quired for that hot spot rate to drive the network
throughput from the initial rate to the asymptote associ-
ated with the hot spot rate (dotted line).

Figure 3 shows the same information, but in this
case for a 256-port network with 4-way switches.
Figure 4 shows the predicted results for a large (1024
port) network; this was not simulated. As can be seen, the
onset time is very short.

As can be seen, our predicted results match the sim-
ulated results reasonably well except for two situations:

- very high r in the 256-port network; and very low r in the
64-port network. At high r in the 256-port network we
are pushing the actual maximum capacity of the network
and would expect all the approximations we are using to
break down. At low rin the 64-port network, there is a
breakdown in our assumptions about total arrival and de-
parture rates: Onset is a more diffuse process with more
time for complex internal feedback effects. However, in
this case our estimates are on the optimistic side.

7.0 Recovery Time

Figure S shows the throughput of a 64-way network as a
hot spot of 16% is applied and then removed within a
total background rate of 0.4. As can be seen, the recovery
time is substantially longer than the onset time. A ra-
tionale for this follows.
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Intuitively, many sources ‘‘cooperate” to saturate
the tree; but only one sink (the hot one) operates to elim-
inate saturation. The time to recover ‘“normal” traffic
flow should be related to the time to remove all red mes-
sages from the switch after the sources stop generating
them. If the hot output port runs at the maximum rate
(unity), this time is simply equal to the steady-state count
of red messages N during tree saturation, derived previ-
ously. This is longer than the time to saturation, since the
onset time T'is (N — D(r))/(Rp — 1). One might imagine
that after a time 2mix;_,N/K, for K-way switches, all the
switches closest to the sources would be clear; so after
that time, 1 — 1/K of the traffic would resume its normal
rate. Then after an additional time equal to 2mix;_,N/K,
1 — 1/K? of the traffic will resume its normal rate; etc.
The slow rise of throughput shown in Figure 5 tends to
indicate that something like this is occurring. However,
we have not yet compared this to simulation results, and
consider it unlikely to be correct, for the following reason:
Until all the red packets are gone, they should tend to de-
lay uniformly distributed messages that happen to be di-
rected to the hot sink; and by filling queues, this will
affect other messages. This may cause continued con-
gestion even after all the red messages have left the net-
work.

8.0 Discussion

The time required to reach tree saturation is distressingly
short. What points of leverage can be used to improve the
situation?

Increasing the switch size (K) actually makes the
situation worse: Even when, as we have done, the units
are the depth of the network—giving larger switches a
large advantage—smaller switches saturate more slowly.

Increasing the queue size also helps. But the queue
size is a linear factor in the total saturation time, so very
large queues are necessary to make a substantial differ-
ence. E.g., to get saturation time up to the range of 100
switch traversals, queues on the order of 40 elements are
needed. This is unreasonable with present technology.

The addition of redundant paths will also help, but
only because the total queue storage available rises with
the number of paths. So this decrease is also linear.

One thing that certainly can help is over-design, in
the sense of using the network only at at traffic rates less
than the rates where the expected hot spot activity will
cause tree saturation. This adds significantly to the ex-
pense of the network. Furthermore, at present there is
little experience available to define exactly what degree
of non-uniformity to expect in general.

As discussed in [6], “combining” of identical mes-
sages within the switch nodes themselves can eliminate
the problem completely. However, combining only works
when the the hot spot is caused by references to identical
entities at the sinks (e.g., identical memory locations).



When the hot spot occurs because many sources are ac-
cessing many different entities that happen to occupy the
same sink, combining cannot help. What may help in that
case are techniques to ensure that non-identical references
are scattered uniformly among the destinations, such as
the combination of interleaving and randomization used
by RP3 [5]. How well this will work in practice is not yet
known; if it does, simultaneously using both this tech-
nique and “combining” (also present in RP3) may solve
the problem, at least for shared memory systems. It is not
obvious at this time how to solve the problem for systems
based on other computational models.

Global control over routing can avoid the problem
completely, of course, as discussed in [6].

To summarize:

1. Very little perturbation, over a very short time, can
drastically reduce network throughput.

2. Recovery after the perturbation takes much longer
than than the onset of the problem.

This leads to the conclusion that multistage networks
with distributed routing are unstable under non-uniform
traffic loads, in the sense that they tend to “fall into” tree
saturation easily. For large networks in particular, e.g.,
networks of size 512 or greater, if stringent measures are
not taken to maintain a uniform traffic pattern, swift on-
set and slow recovery makes it very probable that at least
partial tree saturation will always be present; and thus

large multistage networks may not perform anywhere near
as well as has previously been predicted.

Figure 1 : An 8x8 shuffle-exchange network, depecting
the saturation caused by o hot sink.

Figure t.
the text.
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Figure 2. Time required to saturate a 64-port Omega network: The switches have
queue size 4, and 2 inputs and outputs. The solid curves are the predicted
values for h ranging from 0.125% to 16% by factors of 2. the dots connected
by dashed lines show simulation results. The dotted lines show the sustainable
throughput after tree saturation for the values of 4 used.
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Figure 3.  Time to saturate a 256-port Delta network: The switches have queue size 4;
other elements are the same as Figure 2.
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Figure 4.  Time to saturate a 1024-port Omega network: Information and are the same

as Figure 2.
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Figure 5. Onset and Recovery from a Hot Spot: Hot spot percentage, throughput, and
delay as a function of time. The network is the same as Figure 2’s, and the hot
spot is 16%. The arrows indicate the time for onset and recovery.
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Abstract

Concurrent requests to a shared variable by many processors
on a shared memory machine can create contention that will
be serious enough to stall large machines. This idea has been
formalized in the “hot spot” traffic model [PfNo85], where a
fixed fraction of memory requests is for a single shared vari-
able. “Combining,” in which several requests for the same
variable can be combined into a single request, has been sug-
gested as an effective method of alleviating this contention.
The NYU Ultracomputer [GGKMS83] and the IBM RP3
[PBGHS85] machine use ‘“pairwise” combining, in which only
two requests for the same variable can be combined at a
switch. We study the effectiveness of combining. In particu-
lar, it turns out that pairwise combining cannot handle hot
spots if the machine size is large enough. We suggest ways
to overcome this weakness.

1. Introduction

The popularity of shared memory parallel computers,
where processors and memory modules are interconnected
through a multistage network, can be seen in several current
projects, including the University of Illinois Cedar machine
[GKLS83] [KDLS86], the NYU Ultracomputer [GGKMS83]
[EGKMS85], and the IBM RP3 machine [PBGHS85|. Sharing
the memory in a parallel computer suggests that there is a
possibility of many processors requesting the same variable
at the same time (concurrent requests). This can create
congestion in a machine, and the congestion becomes more
serious as the number of processors in the machine (machine
size) increases. To reduce congestion, when several requests
directed at the same shared variable meet at a switch, they
can be combined into a single request, which is forwarded
toward the shared memory. When the response from the
memory returns, the switch satisfies all of the requests, one
at a time. The idea of reducing the congestion in this way,
known as ‘‘combining,” has been suggested as an effective
way of allowing concurrent requests to a common location;
combining can be found in the Columbia CHoPP [SuBK77],
the NYU Ultracomputer, and most recently the IBM RP3
machine. (See [KrRS86] for a general discussion of what
types of memory requests can be combined.)
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Pfister and Norton [PfNo85] suggested that the
effectiveness of combining could be studied with the ‘“hot
spot”’ traffic model: a fixed fraction of the total memory
traffic is concurrent requests to a single shared variable. Hot
spots capture the effect of all of the processors continually
accessing a common variable. Pfister and Norton argue that
hot spots will seriously degrade the performance of any
machine that lacks combining, and that this effect is quite
general. They also discuss how well the hot spot model cap-
tures reality.

In this paper, we study the effectiveness of several
different combining schemes. In particular, we will see that
the pairwise combining scheme used in the NYU Ultracom-
puter and in the IBM RP3 machine is not powerful enough
to handle hot spots. We suggest ways to modify their
designs in order to overcome this weakness.

2. The Model

There have been many studies on the performance of
multistage interconnection networks for processor-memory
connection (see [Sieg85] and the references therein). One
common traffic model for these studies is: A stream of
memory requests from each processor is an independent,

identically distributed random process; each processor’s
requests are uniformly distributed to all of the memory
modules. This uniform traffic model does not capture the
effect of traffic with requests to a single shared variable. To
represent such traffic patterns, we use the hot spot model
[PfNo85): each request has a (finite) probability ¢ of being
headed to the same shared variable. The hot spot model is
nonuniform in the sense that the requests are not uniformly
distributed onto the memory modules. There are two types
of request streams: the noncombinables, which are uniformly
distributed to the memory modules as in the (usual) uniform
model, and the combinables, which are headed to the same
shared variable (and hence the same memory module).

We consider a buffered square banyan network [GoLi73|
as the multistage network for interconnecting the processors
and the memory modules. Square banyan networks include
Omega networks [Lawr75] and Delta networks [Pate8l].
(For details and general characteristics of multistage net-
works, see, for example, [Feng81], [KrSn82], [Sieg85].)

A network is composed of n stages of 2X2 (crossbar)
switches with FIFO queues (i.e. buffers) at each output port.
We assume that the network is packet-switched and synchro-
nous, so that packets can be sent only at times ¢ , 2¢,,---,
where ¢, is the network cycle time. Without loss of general-
ity, we assume t, =1. We make the following further



assumptions:
e  Each request is a single packet.

o  Each queue can accept at each cycle up to two distinct
requests, one from each input port. If at some cycle a
queue has only one free location and two requests are
directed to it, the queue randomly accepts one of the
two (the other request remains on the queue of the pre-
vious stage).

e  The enqueuing process of a request and the dequeuing
process are overlapped (i.e. while the request in front of
the queue, if there is one, is being removed, other
requests can be inserted onto the queue).

e  The service time of a request in a queue is the same as
the cycle time. So, the delay of a request at a switch is
the number of requests ahead of it in the queue.

e  Each processor has an infinite queue for requests. If a
request is blocked from entering the first stage it is
placed on the queue, and the processor continues issuing
requests.

A square banyan network has a complete tree leading
from the processors to each memory module (Figure 1). The
tree that combinable requests traverse will be called the fan-
in tree. Our main concern is with the average queuing delay
in the fan-in tree.

Combining works as follows: When several combinable
requests meet at a switch they are combined into a single
request, which is forwarded toward the shared memory. A
record of this is kept at the wait buffer. When the response
from the memory returns, the switch satisfies all of the
requests, one at a time (and the record is removed from the
wait buffer). To concentrate our attention on queuing
delays, we assume in Sections 2-6 that wait buffers have
infinite size. Also, we will consider the delay of a request
only from the processors to the memory modules, tem-
perarily ignoring the delay on the return trip. Section 7 con-
siders finite wait buffers, and their effect on the delay of a
request in both directions of the network.

We will distinguish queue size and queue length. Queue
size is the number of requests a queue can store at one time.
We use infinite queue to mean that the queue size is infinite,
and finite queue to mean that the queue size is finite.
Queue length is the number of requests stored on a queue at
some particular time. We will use equivalent definitions for
wait buffer size and wait buffer length.

We consider several different combining schemes. In
each case, we will consider what happens both with finite
queues and with infinite queues. Infinite queues provide a
nice yardstick to compare the more practical finite queue
schemes. For finite queues, unless otherwise specified, we
will always consider queue size four. This is large enough so
that for the traffic loads considered, the performance under
uniform traffic is almost as good as with infinite queues.

A network is stable if in steady state average delays in
the network are uniformly bounded. This is an important
property of a network. Under the uniform traffic model,
buffered multistage interconnection networks are generally
believed to be stable for “light” traffic (see
[KrSn83],[KrSW86)).

We assume that at each cycle each processor issues a
request with probability r, i.e. r is the rate of requests.
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Each request has probability ¢ of being a combinable
request. Let r, be the rate of combinables (i.e. hot spot
requests), and r, be the rate of noncombinables. Then

and r, =(1-q)r .

Let r* be the rate of requests at the stage ¢ of the fan-in tree
(r’=r). Let r. and r, be the rate of combinable requests
and noncombinable requests, respectively, at the stage i of

r, =gqr

. 0
the fan-in tree (r, =r, and rno =r,).

3. No Combining

In this section we will consider the performance of sys-
tems without combining. It is obvious that the combinables
will create congestion in the network. The question is, how
much will this degrade performance?

3.1. Infinite Queues

Assume the queues have infinite size and there is no
combining. Recall that the rate of requests at the first stage
is r, =r(1-¢) and r, =rq. Since there is no combining, the
rate of combinable requests keeps doubling at each stage
approaching the root of the fan-in tree. In particular, the
rate of requests at stage ¢ will be

1]

i
ro=r, +2r, .

For any finite value of r_, after several stages, the requests
will be arriving at each queue at a greater rate than the
queue can forward them. Networks large enough to see this
effect will be unstable. For example, consider the case of
r =0.25 and ¢ =0.01. Even with ¢ so small, by the ninth
stage the arrival rate of the combinables alone will be
r, =1.28, so the queuing delay will be unbounded.

In practice one expects short intensive periods of ‘hot
spot” contention. If there are not too many stages of the
fan-in tree in which the rate of requests is greater than one,
the system may still provide acceptable performance. Only
the combinable requests will suffer extraordinary delays,
along with the relatively few noncombinable requests travers-
ing the fan-in tree near its root.

3.2. Finite Queues

With finite queues the situation is worse. Pfister and
Norton [PfNo85] noticed a very interesting phenomenon they
call tree saturation. When the queue at the root of fan-in
tree becomes full, the two queues feeding it can no longer
send requests to it. They too will become full and stop the
four queues feeding them from sending requests. Eventually
the entire fan-in tree will consist of full queues. All of the
queues at the same level of the fan-in tree can together
satisfy combinables only at the same rate as the root satisfies
them. In other words, at the ith level from the root, each
queue can satisfy combinables only at a rate 1/2" as fast as
the root does. So, although each queue at this level has on
average only 1/2' as many combinables as the root, with
respect to combinables the queues are not progressing any
faster. Thus, progress of the whole system is governed by
the service rate at the “hot spot’’; noncombinables will suffer
delay proportional to the queue size on each stage of the
fan-in tree traversed.

Kumar and Pfister [KuP{86] have observed that a rela-
tively short period of hot spot contention will produce tree



saturation. Furthermore, after the processors stop issuing
hot spot requests, the network takes a long time to return to
normal.

4. Pairwise Combining

Ideally, one would like to combine all of the combin-
ables that reside concurrently on a queue. This, however,
makes the combining process complicated, and also creates
congestion at a wait buffer when the response returns from
memory. To simplify the combining process and to avoid
contention at the wait buffer, the NYU Ultracomputer and
IBM’s RP3 machine support combining only a pair of
requests at a switch. This section studies the effectiveness of
such pairwise (or two-way) combining.

4.1. Infinite Queues

We did simulations to check the effectiveness of pair-
wise combining with infinite queues. Our concern is whether
congestion at the hot spot still occurs. (Recall that rc' is the
traffic load of combinables from each input port of a switch
at stage ¢ of the fan-in tree.) In our experiments, r:
increased rapidly until r_ +r; reached 1.0 (see Figure 2).
This shows that with pairwise combining and infinite queues
large networks are unstable.

The reason for congestion even with combining is that a
combinable request does not always encounter another com-
binable request to combine with. Whenever a combinable
request does not combine, it will be added to the traffic of
the combinables coming out of the queue. Thus, the rate of
combinables will necessarily increase towards the root of the
fan-in tree. It is conceivable that this rate approaches some
limit less than 1-r,, in which case the network would be
stable. However, our experiments show this simply does not
happen: the rate of combinables increases without bound.

4.2. Finite Queues

It may seem a priori that finite queues will always pro-
vide worse performance than infinite queues, since infinite
queues have more storage capacity. However, this is not
necessarily so: Suppose at stage ¢ of the fan-in tree, a queue
becomes full. Then, the two queues at stage 1-1 of the fan-
in tree feeding this queue will become blocked (at least for
requests destined to the full queue). This will increase the
chances of these two queues becoming full, thereby blocking
the queues at stage ¢-2 that feed them, and so on. Thus, if
the rate of requests is large enough to create congestion at
the root of the fan-in tree, the whole fan-in tree will tend to
become congested. The overall affect on a message travers-
ing the fan-in tree will be that its total delay will be fairly
large at every stage, which contrasts with infinite queues
where the delay is large only near the root. This means that
combinables will spend more time near the leaves of the fan-
in tree, and therefore have more chance of combining near
the leaves. This will reduce the traffic rate of combinables
which in turn will improve the overall performance of the
network. (Recall that with pairwise combining, if a combin-
able traverses a stage without combining, it increases the
rate of combinables for all later stages.)

We performed simulations on networks of nine stages
with finite queues and pairwise combining. The queue size
was assumed to be four. For the traffic of r =0.6 and
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¢ =0.1, we observed tree saturation: the average waiting
times at each stage of the fan-in tree was approximately
equal to the queue size. Waiting times of requests at each
processor’s queue seem to increase without bound as the
number of network cycles simulated increased. Although we
did not observe tree saturation for lower traffic loads, we

expect that it would occur in larger machines. (See Figure
3)

Since the probability of combining increases as a com-
binable request stays in a queue longer, larger sized queues
should help combining, which in turn can help avoid tree
saturation. One might think that the tree saturation
reported here conflicts with the results of Pfister and Norton
[PfNo85], where pairwise combining was effective in handling
hot spots with queue sizes of only four. Although there were
some minor differences in our two models, which could
account for the different results, the main difference was that
they were simulating a network with only six stages. We
believe that adding a few more stages to their network would
produce tree saturation and make their network unstable.
Minor changes in switch design cannot overcome the inherent
weakness of pairwise combining, at least not without making
the delays at each stage of the fan-in tree unacceptably long.

5. Unbounded Combining

Unbounded combining allows any number of combin-
ables to be combined into a single request at a queue.

Although the combining of the Columbia CHoPP is very
similar to unbounded combining, our study is not directly
applicable CHoPP because of its ‘“‘repetition filter memory’’,
which allows the combining of incoming requests with
requests already in the wait buffer.

We have done extensive simulations of networks with
infinite queues and unbounded combining. The networks
seem to be stable and provide reasonable delay irrespective
of the machine size and the traffic load. The traffic of the
combinables adds only slightly to the average queuing delay
of the noncombinables alone. It seems that unbounded com-
bining eliminates the contention on the fan-in tree because
there can be at most only a single combinable request wait-
ing in a queue at any given time.

Simulations show that with unbounded combining,
finite queues provide only slightly larger delay than do
infinite queues. When compared to infinite queues, delays
are just about the same at the first few stages and slightly
larger at all the later stages.

6. Bounded Combining

We have so far considered two extreme combining
schemes: unbounded combining and pairwise combining.
Unbounded combining provides good performance, but seems
to be expensive (even to approximate); pairwise combining
suffers from tree saturation, but is relatively easy to imple-
ment. We suggest a compromise scheme, bounded combin-
ing, where more than two, but at most a predetermined con-
stant number of, combinables can be combined into a single
request at a queue; in k-way combining the bound is k.
Bounded combining is easier to implement than unbounded
combining; the hope is that it will provide approximately the
same performance. The question is, how large does k have
to be?



In the experiments with unbounded combining, we
observed that a combinable request coming out of the
switches at the later stages represents on average only
slightly more than two combinables. This suggests that
three-way combining, i.e. at most three combinables can be
combined into a single request at a queue, will be effective.
Simulations show that three-way combining performs almost
as well as unbounded combining for both finite and infinite
queues (see Figure 4). This indicates that pairwise combin-
ing may be slightly too restrictive with respect to the
number of combinables it supports.

7. Wait Buffers and Return Queues

Up until now we have considered the delay of a request
only from the processors to the memory modules. For the
return trip, there must be two return queues exiting each
switch passing responses from the memory modules towards
the processors. The performance of a network will be sensi-
tive to the size of these return queues. We have assumed
that the size of wait buffers is infinite. This is unrealistic in
practice. The wait buffer size is an important factor for
good performance, because combining cannot take place if
the wait buffer is full.

A combining of k requests is represented as k-1 pair-
wise combinings, i.e. it uses k-1 wait buffer locations. When
the response returns from memory, all k-1 locations are
immediately freed and the k response messages are placed on
the return queue.

This section considers the effect of wait buffer size and
return queue size on queuing delay. Our main concern is to
determine the proper size of wait buffers and return queues
for three-way combining to obtain performance close to that
of unbounded combining with infinite return queues and
infinite wait buffers.

7.1. Infinite Queues, Returns Queues, and Wait
Buffers

To get an idea of the appropriate size of wait buffers,
we measured the average length of the buffers assuming
infinite queues, return queues, and wait buffers. Although
the unbounded and three-way combining schemes avoid
congestion by inserting more combinables into the buffer at a
time than pairwise combining, our simulations show that the
average length of the buffers with pairwise combining is
actually unbounded while it is quite moderate with three-
way combining (see Figure 5). The reason for this is that the
average length of the buffers is proportional to queuing
delays.

Suppose combining takes place in a switch at stage ¢ of
an n-stage network. Then, a record of the combining will
remain in the wait buffer until a response from the memory
arrives at the switch some time later. So, the average length
of the wait buffer is determined by the average number of
combinings and the average number of cycles until the
memory responds. Let ¢; be the average number of combin-
ings per cycle at the switch and #; be the average response
time from memory (to the switch) for a combinable request.
Then, the wait buffer is a queuing system with arrival rate c;
and service rate 1/t,. The arrival rate ¢; is determined by
the traffic load and the position (¢) of the switch in the net-
work. The service rate is determined by the queuing delays
at stage ¢ and later stages. Given fixed traffic load and fixed
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network size, the average length of the wait buffer will be
unbounded if there is severe enough congestion at later
stages for ¢; >1/1;.

Since the service rate 1/¢; is smaller for switches closer
to processors, one may worry about the average length of the
wait buffers at earlier stages. However, this is counterbal-
anced to some extent by the fact that there is less contention
in the earlier stages so that fewer combinings take place.
Notice that the wait buffer lengths become unbounded as the
network size increases, for any fixed arrival rate c; at the
wait buffer, irrespective of the combining scheme. The wait
buffer size needs to grow with the network size.

7.2. Finite Queues,
Buffers

To see the effect of small wait buffer sizes, we did simu-
lations with queues of size four, infinite return queues, and
wait buffers of size six. As can be seen in Figure 6, three-
way combining with “small” wait buffers performs as badly
as pairwise combining does. The reason is that the buffers at
the later stages are almost always nearly full, and three-way
combining effectively changes to pairwise combining.

Return Queues, and Wait

To see the effect of small return queue sizes, we did
simulations with queues of size four and infinite wait buffers.
It turns out that, for three-way combining, return queues of
size. four are not large enough to provide good performance.
This may seem surprising, since (forward) queues of size four
are sufficient, and the responses are just returning along the
same path that the original request traversed. The reason is
that on the return path combinables are returning in bursts,
since a combinable response can split into two or three
responses. Thus, each return queue in a switch is effectively
a queuing system with the same traffic intensity as the (for-
ward) queue in the same switch, but with fewer, larger-sized
packets. The former system will provide worse performance
and require larger queue sizes (see [KrSW86]). With three-
way combining, return queues of size of ten obtained approx-
imately the same performance as infinite return queues.

In our experiments for moderate traffic loads, return
queues of size ten and wait buffers of size fifteen seem to be
large enough to obtain performance close to that of
unbounded combining with infinite sized queues and wait
buffers (see Figure 7). Neither return queues of size eight
and wait buffers of size fifteen nor return queues of size ten

and wait buffers of size ten produced good performance.

8. Conclusion

Shared memory machines have the potential of conges-
tion due to concurrent requests to a shared variable. Since
hot spot contention becomes more serious as the machine
size grows, congestion can severely degrade the performance
of “large” machines. To avoid potentially serious conges-
tion, pairwise combining was suggested in the NYU Ultra-
computer and IBM RP3 machine as an effective way of elim-
inating congestion.

We studied the hot spot traffic model, where a fixed
fraction of the total memory traffic is for a single shared
variable. As observed by Pfister and Norton [PfNo85], large
networks with finite queues and no combining suffer from
tree saturation. With finite queues, even pairwise combining
has the potential of tree saturation creating unbounded delay



no matter how “light” the traffic load is, for large enough
machines. If hot spots are a real-life phenomenon, pairwise
combining as suggested for the NYU Ultracomputer and the
IBM RP3 machine is too restrictive. Three-way combining
resolves the congestion. It remains to be seen whether
three-way combining can be realized efficiently in hardware.

A combining network must be carefully balanced.
There are many parameters: the network size, the bounded-
ness of the combining, the queue size, the wait buffer size,
the queue size on the return path, etc. It is not obvious how
any particular choice of these parameters will behave. For
example, we have seen that changing finite queues to infinite
queues, which one might expect would improve performance,
can actually degrade performance.

One must be very careful in interpreting our results.
We do not believe that processors are likely to concurrently
access the same shared (synchronization) variable for
extended periods of time. If hot spots are only transient, i.e.
if there are short, intensive periods of hnt spot contention,
pairwise combining may very well combine enough to pro-
vide acceptable performance. One might consider the
(steady state) hot spot model suggested by Pflister and Nor-
ton to be a conservative worst case scenario.

We have restricted our attention to square banyan net-
works composed of 2 X2 switches, and to ressages of length
one. We believe our results generalize to other network
topologies, other switch sizes, and other message size distri-
butions. Any interconnection network will have to have a
tree, maybe implicitly, leading from every processor to any
given memory module. This will create the possibility of
tree saturation when there are hot spots, but also the oppor-
tunity for combining. With k Xk switches, it seems that k-
way combining is not enough; some fraction slightly higher
than that will be necessary. Longer messages seem to
increase the amount of combining, but not enough to avoid
tree saturation with only pairwise combining.
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Abstract

This paper examines the issue of shared memory emulation for
performance prediction of applications running on multiproces-
sors. It emulates memory contentions of different target mul-
tiprocessors on a given multiprocessor. This approach provides
not only the average performance measures, but also the instan-
taneous values of memory contentions which are essential to
find bottlenecks of user’s application programs.

An algorithm producing an exact emulation result is presented
and its implementation trade-off is discussed. To solve these
problems, a heuristic approximation approach is introduced.
Experimental results on a uniprocessor system show the ap-
proach gives a reasonable accuracy. In order to alleviate the
emulation overhead, parallel implementation of the algorithms is
investigated.

1. Introduction

With the advent of commercial parallel' processors we enter a
new era of proliferation of parallel computation models for
problem solving. One of the known characteristics of such en-
deavors deals with the nonlinear performance behavior of paral-
lel programs with respect to the speed-up ratio as a function of
the number of processors. As it is practically and economically
not attractive to build a new parallel processor each time we
may want to evaluate a parallel application on a new architec-
ture with a different number of processors, emulation tech-
niques are employed. Such techniques are likely to generate a
ratio of 50,000 to 100,000 per one multiprocessor instruction
step. Hence, the emulation process itself has to be executed in
parallel on a multiprocessor.

As we look closer at the nature of this emulation, one can see
that multiprocessor systems share some of their resources such
as memories, buses and 170 devices to facilitate parallel access.
Sometimes, an access to a shared resource has to be serialized
because the shared resource may be occupied by another ac-
cess. This situation is called contention and is related to all of
the shared resources. The more processors a multiprocessor
system has, the more accesses it requires in unit time, so the
probability of contentions is increased accordingly. In general,
due to the contention phenomenon mentioned above, the per-
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formance of an application will not be.improved linearly with the
number of the processors.

A practical approach to this issue is an emulation facility run-
ning on a host multiprocessor and emulating bus and memory
contention of another multiprocessor. When contrasted with
the performance modeling methods, the emulation method
provides, aside from better accuracy, instantaneous perfor-
mance profiles. The performance modeling provides, in
general, statistical average performance profiles which are in-
sufficient to accurately indicate detailed user application perfor-
mance bottlenecks.

In this paper we are exploring the problem of emulating shared
memory multiprocessors on shared memory muitiprocessors, as’
well as indicating and evaluating algorithms for achieving this
proposed goal.

2. Basic Structures

2.1. Memory Access Model

First, we define the memory access mechanism of the target
multiprocessor. The multiprocessors we want to emulate are
shared memory multiprocessors. In this system, global
memories and processors are connected by a shared bus.
These memories are divided into several banks, called memory
modules. Access requests are transmitted from each processor
to the destination memory module through the shared bus.
Then, read/write operation is taking place with results returned
from/to the memory module.

Because there are more than one .processor and each
bus/memory can accept only one request at each cycle, an ac-
cess request may have to wait if bus or destination memory is
servicing another request. )

2.2. The Emulation Problem

Suppose we have a host multiprocessor system with P proces-
sors. An user of this system may want to know how much per-
formance improvement of the user’s program will be gained if
there are more processors in this multiprocessor system. The
purpose of the emulation facility is to provide such a virtual mul-
tiprocessor system within the host multiprocessor system. More
specifically the goal and the problem can be defined as follows;

The goal:

Performance prediction for applications running
on a target multiprocessor when the number of
processors are larger than that of the host mul-
tiprocessor. We are interested in the instantaneous



values for the performance vector.
The problem:

1. Emulation of bus and memory contention for a
shared-memory shared-bus multiprocessor.

2. Do step 1 using a multiprocessor with a fixed num-
ber of processors.

If we consider N processes (N > P), each of which is to be
assigned to each of N processors of the target multiprocessor
system, they can not be executed at once on the P processor
multiprocessor system. Therefore we adopt a divide-composite
approach to this problem. The emulation algorithm proposed
here consists of the following three steps;

1. Divide N processes PROC, s PROCN, which are
to be assigned to N processors of emulated mul-
tiprocessor, into K groups Q, - - - Q,, each group
has P processes. That is:

PROC1 vee PROCP — C)1
PROC, ,---PROC,, =+ Q,

PROC, -+ PROCy — Qy

K-1)P+1"

2. Execute P processes in each group on the P
processors for a certain fixed time span 7. During
execution construct the memory access profile con-
sisting of time stamp, process id and memory
module id. (See Fig. A) The ‘data collection
mechanism will be disussed in Section 3.

3. Composite memory access profile for multiproces-
sor of N processors from K individual profiles of
Q,:--Q, (Also see Fig. A) This is done by
eliminating bus/memory contentions among
groups. Details of this part will be explained in Sec-
tion 4.

Step 2 and 3 are iterated until all processes are terminated.

2.3. Related Works

Several performance prediction methods based on statistical
models have been discussed elsewhere.[1]-[3] In these
methods, distribution of memory requests is assumed to be a
statistical distribution and fixed all over the period. Statistical
models are quite useful for general case analysis of multiproces-
sor systems and when performance averages are sufficient,
however application programmers may want to know the perfor-
mance of their own programs rather than of the generalized
program, as well as the instantaneous values of the perfor-
mance measures in order to deal with performance bottlenecks.

The purpose of our research is to provide application
programmers a way of performance prediction for their
programs. Memory access distribution of such programs will
vary time to time and process to process, and these irregularities
will cause adaptability problems for statistical models. Alter-
nately, we present an emulation mechanism for memory conten-
tion. The novelty of this work is related to the availability of
instantaneous values for contentions for a specific user applica-
tion, as well as the use of a multiprocessor for emuiating a mul-
tiprocessor.
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3. Data Collection Mechanism

Since the memory access profiles have to be constructed in
parallel with the execution of a user's application program, the
data collection procedure should be performed without affect-
ing the application program. Toward this end, a hardware sen-
sor which is transparent from the user's program is preferable to
its software counterpart. If memory access data is collected by a
software sensor, the overhead time for the sensor may disturb
the execution of the application program and the emulation
result will be different from the exact solution.

4. The Composition Algorithm

In this section we will present two versions of algorithms, the
first is simple and produces an exact emulation, however it re-
quires an infinite memory space. The second one is a modified
version of the first algorithm which can be implemented within a
bounded memory space. However, it provides an approximation
of the problem.

4.1. The First Algorithm

Compared with the bus and the memory access, the bus cycle
is the shortest of the two. Accordingly, we will consider the bus
cycle as the unit of time; we call it time s/ot. Intuitively, the algo-
rithm goes on as follows (see also Fig. B as an example):

At first, read K profiles into memory. These profiles are con-
structed during execution phase and stored somewhere.

At time slot 1:

IOAccesses of time 1 (in Fig. B, "a","e" and "i") in
those profiles are considered as candidates.

o Select one ("a") from the candidates and have un-
selected accesses ("e" and "i") wait for the next
slot.

In general at time slot t:

o Accesses which are not selected in the previous
stages and accesses which have time stamp t are
considered as candidates (for example, at time 3
"i","f","b" and "j" are candidates).

o For each candidate, check whether it is ready to be
requested by the process. This check is done by
seeing the time slot when the latest access of the
process was accepted.

e Also check whether the destination memory module
is ready to accept it by comparing memory cycle
and the access interval.

e Select one from the candidates which passes the
above feasibility check and have others wait for the
next time slot.

e Each candidate has priority for selection. Priority is
based on the group to which it belongs and the
original access time stamp. Priority on groups is
dynamically changed to emulate round robin
strategy of multiprocessor system.



After the time slot T (end of cycle):

o We have a composite profile of length T and a set of
accesses which are not yet selected, called
overflows. To proceed to the next time slot (T + 1),
memory access profiles for the next cycle are
needed because some accesses in the next cycle
can be performed in the next time slot. So,
overflows are combined with the memory access
profiles of the next cycle and considered as the in-
put for the next cycle. In Fig. B, access "I" and "m"
“are overflow accesses of the first cycle (t=7---T)
and should be considered as candidate accesses at
the top of the next cycle (t=T+ 7).

Continue the above procedure for the next cycle
(t=T+1.--2T)and so on.

4.2. The Second Algorithm

Although the algorithm described in the previous section is
straightforward and produces exact emulation result, we should
do some modifications when its computer implementation is
considered.

At the end of every cycle(t=T7,2T---), we have a set of
overflows. The amount of overflows can be estimated by the
difference between the number of access requests (Reg) and the
capacity of the shared bus (Cap) when Req > Cap. The over-
flows should be added to the requests for the next cycle. When
Reg and Cap are constant over cycles and Req > Cap, we have
the following relation:

|0veronij = IOverﬂowj_ll + Reg— Cap

where |0verﬂou3| denotes the amount of overflows after j-th
cycle. Thus,

|0verfloij = j(Req — Cap).

Since the above relation shows the amount of overflows grows
monotonically and infinitely, the overflows will eventually be-
come too large to keep them in memory.

To overcome this problem, we modified the algorithm so that it
suspends reading the next profiles until the amount of overflows
becomes smaller than the limit instead of reading them at the
end of each cycle.

The modified version of the algorithm may overlook access
requests because some of the access requests are not read into
memory. This will cause overestimation. However, the degree
of overestimation is considered to be fairly small for the follow-
ing reason. At first, overflow accesses have higher priorities
than accesses in the next profiles because of the first-in first-out
nature of the selection strategy. And, the greater overflows be-
come, the less likely it is that the next access can not be
selected from overflows. This means that if we have moderate
amounts of overflows, composition procedures can produce
good approximation results without reading the next profiles.

5. Experimental Results
In order to evaluate both versions of the algorithm, we have
experimented with the proposed algorithms. Since the mul-
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tiprocessor system on which the emulator will run is currently
under construction [4], we implemented the algorithms on a
VAX 11/780 and simulated the behavior of the emulation using
various simulated access profiles at different request rates
generated from random distribution. The access rates of
profiles are arranged to vary from time to time.

Experiment results for the case of P=100 and N =200 (i.e.,
emulating 200 processors on a multiprocessor system with 100
processors) are shown in Fig. C. In this figure, the results of the
first (exact) version and modified (approximated) algorithm are
indicated by circle and box, respectively. In the approximated
version of the algorithm, the limit of overflows is set to 2T (T:time
span).

Fig. C shows the relation between required bus access fre-
quency, which is the total of frequencies of all groups, and
resulted (composed) bus access frequency. In the ideal case,
the relation between them follows the dashed line in Fig. C.
However, in general, the actual relation is the dotted line below
the ideal line. The maximum difference of composed access
frequency between the first and modified algorithm is about
1.5%. This shows that the modified (approximated) algorithm
gives a good approximation of the first (exact) algorithm.

6. Outline of Parallel Implementation

In this section, we discuss the implementation of the emulation
algorithm in a multiprocessor. In Fig. D, the algorithm is
described in a pseudo programming language. It has a triple
nested loop for time slots, groups and candidate accesses in
each group. Within the inner double loop each candidate ac-
cess is examined as to whether processor and memory are
ready for access. If more than one access are feasible at a time
slot t, one access is selected based on the priority meniioned
earlier.

Notice that feasibility check procedures for candidate ac-
cesses are mutually independent, allowing these procedures to
be invoked simultaneously. The number of accesses to be
checked (= the number of procedures invoked) becomes large
and increases in proportion to the number of -emulated proces-
sors. However, if candidates are allocated to the processors in
the descending order of their priorities, unnecessary check
procedures can be suppressed. Simultaneous feasibility check
and priority-based processor allocation will make the check pro-
cedure work within a small number of iterations and also will
make the algorithm work nearly in proportion to the length of
time regardless of the number of emulated processors.

The experimental program on a uniprocessor (VAX 11/780)
takes about 20sec. to compose two memory access profiles of 1
ms; that is, emulation time / execution time ratio is 20 sec. / 2x1
ms = 10,000. But, from the above discussion, we can expect
high performance gain when the algorithm is finally imple-
mented on a multiprocessor. Basically, search processes can
run concurrently if they belong to the same time slot, and, even
if they belong to a different time slot, they can run in parallel
under the control of shared variables. If, for example, we imple-
ment the algorithm on a multiprocessor with 100 processors and
gain 50 times performance gain, then the emulation overhead
will be alleviated to 10,000 /50 = 200.



7. Conclusion

In this paper, we have presented two versions of a shared
memory emulation algorithm for multiprocessor systems. The
first algorithm can emulate exactly but requires an infinite
amount of memory. Then, we modified this algorithm to
eliminate this implementation problem. The modified version re-
quires a finite amount of memory and experiment results show
that the modified algorithm can be a good approximation for the
the first algorithm. Also, the algorithm proposed here is suitable
for parallel processing.
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/* composition for one cycle */
procedure composition
if bufferspace is enough then read nextprofile;
/* loop for time slots */
fort:= 1to T do begin
/* loop for groups */
for all groups i do begin
/* loop for candidate accesses */
for all candidate access j do begin
/* check process and memory */
/* access intervals */
feasiblecheck(accesslijl);
end
end
if more than one feasible accesses found
then selectone based on priority,
remove the selected access from the buffer;
if bufferspace becomes enough
/* perform suspended read */
then read nextprofile;
end
end composition;
Figure D: Description of the Composition Algorithm
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Abstract — — This paper describes a set of
experiments designed to measure the behavior of the
Butterfly Parallel Processor in the presence of memory
"hot spots”. The experiments were motivated by a
paper by Pfister and Norton [3] that reported results
from simulation studies on multistage switching
networks for shared memory parallel processors.
results indicated that, for machines with a large
number of processors, very slight non—uniformities in
memory reference patterns can lead to severely
degraded performance for the entire machine, including
processors that avoid referencing the hot memories.
The results were explained in terms of a phenomenon
called "tree saturation” where traffic to the hot
memories backs up into the switch and interferes with
other switch traffic. The experiments reported here
show that those results do not generalize to the
Butterfly Parallel Processor. The access time for a
memory that contains a hot spot is degraded, but the
presence of the hot spot has little effect on the
performance of programs that avoid the hot memory.
Furthermore, tree saturation does not occur in the
Butterfly Switch.

Their

INTRODUCTION

This paper describes a set of experiments that
measure the behavior of the Butterfly Parallel
Processor [2] in the presence of memory "hot spots”.
The experiments were motivated by a paper on memory
hot spots by Pfister and Norton [3] that presented
results of simulation studies of the switching network
for RP3, a research parallel processor being developed
at IBM Yorktown Heights.

The simulation results showed that non-
uniformities in memory reference patterns, which make
certain memories "hot”, can have a devastating effect
on the performance of an entire machine, including
processors that avoid referencing the hot memories.
Pfister and Norton explained their results in terms of a
phenomenon called "tree saturation”, where traffic to
the hot memories backs up into the switch and
interferes with other traffic, including that to non-hot
memories. Their results indicated that for machines
with a large number of processors (>=100) even slight
non-uniformities in reference patterns can lead to
tree saturation and severely degraded performance for
the entire machine.

Pfister and Norton claim generality for their
results, stating that they apply to all multistage
blocking networks. Furthermore, their paper claims
that attempts to avoid the problem, such as providing
multiple paths through the network, do not really help.
Finally, the results are used to motivate the use of a
second, combining switch in the RP3 architecture.

The switching networks studied by Pfister and
Norton were multistage shuffle exchange switches
similar in topology to the switch used in the Butterfly
Parallel Processor. However, there is one key
difference in switch operation: the switches studied
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were "blocking’, whereas the Butterfly Switch is not.
In a blocking switch, when contention for an output
port of a switching element occurs, the path from the
source to that switching element is held until the
desired output port can be obtained. When contention
for an output port occurs in a non-blocking switch,
the message encountering the contention is rejected
(to be retransmitted later) and switch resources
associated with it (i.e., the path to the point of
contention) are released. When the message is
retransmitted, it again competes with other messages
for switch resources.

Thus, like the switches studied by Pfister and
Norton, the Butterfly Switch is multistage. However,
unlike them, it is non—blocking. Because the Butterfly
Switch is non-blocking, the behavior of a program on a
Butterfly system can be expected to be less severely
affected by non—uniformities in memory reference
patterns (caused either by the program itself or by
other programs on the machine).

Nonetheless, obvious questions to ask are: how
does the Butterfly Parallel Processor perform in the
presence of memory hot spots? Does it exhibit tree
saturation? Does the architecture break down in large
configuration for programs whose memory reference
patterns exhibit moderate or even very slight non-—
uniformities? ’

The experiments described below show that the
results presented by Norton and Pfister do not
generealize to the Butterfly Parallel Processor. The
access time for a memory that contains a hot spot is
degraded, but the effect of switch contention is very
small, even when severe non-—uniformities in memory
reference patterns are present. The experiments
indicate that tree saturation does not occur in the
Butterfly Switch.

THE BUTTERFLY PARALLEL PROCESSOR

This section presents enough information about
the Butterfly Parallel Processor to understand the
experiments described in this paper. More information
about the Butterfly machine can be found in [2].

The Butterfly Parallel Processor is composed of
processors with memory and a multistage switch that
interconnects the processors. A Butterfly system can
be configured with from 1 to 256 processors. One
processor and memory are located on a single board
called a Processor Node. All Butterfly Processor Nodes
are identical. Collectively, the memory of the
Processor Nodes forms the shared memory of the
machine. All memory is local to some Processor Node;
however each processor can access any of the memory
in the machine, using the Butterfly Switch to make
remote references. From the point of view of an
application program, the only difference between
references to memory on its local Processor Node and
memory on other Processor Nodes is that remote



references take a little longer to complete. (The
typical memory referencing instruction takes about 6
microseconds when the data referenced is remote and
about 2 microseconds when it is local.) The speeds of
the processors, memories, and switch are balanced to
permit the system to work efficiently in a wide range
of configurations.

Each Butterfly Processor Node contains a
Motorola MC68000 microprocessor (or a MC68020 with a
MC68881 floating point co—processor), at least 1 MByte
of main memory, a co—processor called the Processor
Node Controller, memory management hardware, an 1/0
bus, and an interface to the Butterfly Switch. I1/0
connections can be made to each Processor Node,
making 1/0 configuration very flexible.

The Butterfly machine supports a very efficient
operation for transferring blocks of data from one
Processor Node to another. The block transfer
operation is implemented by Processor Node Controller
microcode. Once initiated, a block transfer occurs at
the full 32 MBit/second bandwidth of a path through
the Butterfly Switch.

THE EXPERIMENTS

Two experiments were conducted to measure the
performance of the Butterfly Parallel Processor in the
presence of hot spots. The objective of the first
experiment was to time execution of a typical program,
first in an environment without any hot spots, and
then in one where N processors were used to generate
a hot spot. A matrix multiplication benchmark program

[1] was chosen. The objective of the second
experiment was to determine the effect hot spots have
on typical memory references by systematically
measuring the behavior of the machine under non-
uniform memory reference patterns. This was done by
timing remote read, write, and block transfer
operations for various memories, first in an
environment without any hot spots, and then in an
environment where N processors were used to generate
a hot spot.

Hot spots were generated in two different ways:

1. Via read and write references. N processors
were used to make a given memory hot by
reading and writing the same location in that
memory. This was accomplished by having
each processor execute the tight loop:

for (i = @; i < count; i+)
* hotmemp = * hotmemp;

where hotmemp is a pointer (short *) to a
location in the hot memory.

2. Via block transfer. N processors were used
to make a given memory hot by using the
block transfer operation to copy data from
that memory to their local memories. This
was accomplished by having each processor
execute the tight-loop:

for (i = @; i < count; i++)
Do_bt (hotmemp, localp, numbytes);

where Do_bt initiates a block transfer that
moves numbytes bytes from the location
beginning at hotmemp in the hot memory to

the location beginning at localp in the
processor’s local memory.

The difference between these two methods is in the
duration of the switch messages they generate. Simple
read and write references use the switch in 2
microsecond bursts. Each iteration of the loop
generates 3 messages, 2 for the read and 1 for the
write. Block transfers are broken into 256 byte
packets, each of which uses the switch in 64
microsecond bursts. Each iteration of the block
transfer loop generates 2 messages for each packet, a
short request message and a 64 microsecond response
message.

Although all Processor Nodes in a Butterfly
system are functionally equivalent, there is a
distinguished King Node that is special in two ways: it
is the node to which the console terminel is connected;
and it controls the machine while the operating system
is being booted. Because a terminal handler and
window manager run on the King Node, it appears
about 8%—-10% slower than the other nodes to
application programs. To ensure that the
measurements were not affected by the processing
requirements of the terminal handler and window
manager, the King Node was avoided in both
experiments.

The experiments were run on a 128 processor
Butterfly system. When the experiments were run, 16
processors had been temporarily removed to configure
several smaller systems, leaving 112 processors in the
system. Since the King Node was not used, 111
processors were available for the experiments. The
switch for this system has 4 columns (stages) of 4—
input 4—output switching elements, and is configured
to contain 2 paths between each pair of Processor
Nodes.

EXPERIMENT #1: MATRIX MULTIPLICATION

The matrix multiplication program was timed in a
number of environments:

1. Without any hot spots.

2. VWith a hot spot generated by read and write
references, using only cool memories for the
matrices. That is, both the hot memory and
the memories of processors used to generate
the hot spot were avoided.

3. With a hot spot generated by read and write
references, using both the hot memory and
the cool memories for the matrices.

4. With a hot spot generated by block transfers,
using only cool memories for the matrices.
As in (2) above, both the hot memory and the
memories of processors used to generate the
hot spot were avoided.

5. With a hot spot generated by block transfers,
using both the hot memory and the cool
memories for the matrices.

Date

For runs involving & hot spot, 100 processors
were used to generate the hot spot. This left 11
processors with cool memories.



Matrix Size = 192x192

No hot memory

Hot memory — 100 processors doing

simple read/write references
Avoid hot memory
(11 cool memories)
Use hot memory

(11 cool memories + 1 hot memory)

Hot memory — 10@ processors doing

768 byte block transfers
Avoid hot memory
(11 cool memories)
Use hot memory

(11 cool memories + 1 hot memory)

Table 1:

Time (seconds)
Number processors.

2 4 8 1
65.73 32.73 16.37 8.22 -
66.02 32.97 16.67 8.47 6.27
67.55 33.72 17.1@ 8.67 6.39
66.07 33.13 16.62 8.50 6.25
92.01 46.51 23.42 12.05 8.90

Date from matrix multiplication benchmark program.

All runs used square matrices of size 192x192.
This size was chosen because:

1. The run time for the matrix multiplication is
long enough to give statistically interesting
results, and short enough to run a series of
experiments.

2. The matrix multiplication benchmerk is
written in a way that makes analysis of the
results simpler when the matrix dimensions
are multiples of 6 (see below).

The date obteined by timing the matrix
multiplication benchmark on successively larger
processor configurations for each set of experimental
conditions is shown in Teble 1.

Discussion

When the matrix multiplication program avoids the
hot memory, the presence of the hot spot has
negligible impact on the program’s performance: there
is less than 1% increase in execution time. When the
program uses the hot memory, the impact depends
upon the way the hot spot is generated. There is a
small increase in run time when the hot spot is
generated by read and write references (2.76% in the
single processor case) and & substantial increase when
the hot spot is generated by block transfers (40% in
the single processor case). Since block transfer
operations keep the memory busy longer than single

read and write references, this result is not surprising.

Switches for larger Butterfly machines are
typicelly configured with alternate paths to make the
machine resilient to failures in switching elements
(which almost never occur) and to reduce contention
within the switch. For example, as mentioned in the
previous section, the switch for the 128 processor
machine used in these experiments has one alternate
path (for a total of two paths) between each pair of
nodes. The data presented ebove was collected with
the alternate switch paths enabled. Measurements
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were also made to determine the sensitivity of the
timing data to alternate paths by repeating the
experiment with the alternate paths disabled.

Use of alternate paths within the switch makes a
small difference. When the hot spot is generated by
read and write references and the hot memory is used,
the program runs about 1% slower when the alternate
paths are disabled. When the hot spot is generated by
block transfers and the hot memory is used, the
program runs about 2 1/2% slower when the alterrate
paths are disabled.

The following is en analysis of the program's
behavior when running on e single processor in the
presence of a hot spot generated by block transfers.
It shows that the increase in execution time is due
almost entirely to the increase in time required to
access data in the hot memory.

The matrix multiplication program uses the
block transfer operation to make local copies
of matrix rows and columns before accessing
the individual elements to multiply and add.

To multiply matrices of size 192x192, 36864
dot products must be computed. The program
is written to compute dot products in groups
of 36. This involves 12 block transfer
operations to obtain 6 rows and 6 columns.
Thus, 12 block transfers yield 36 results, each
result requiring 1/3 block transfer.

Therefore, the program performs 12288 block
transfer operations.

Twelve memories were used to hold the
matrices, one of which was hot. Therefore,
1/12 of the block transfers can be expected
to be delayed due to the hot spot. The block
transfer delay from a hot memory was
measured separately by timing a 768 byte
block transfer from a cool memory, and then
timing it again when the memory was made hot
by 100 processors doing block transfers from
it:



Reference times (microseconds)

read write bt—from bt-to
256 768 256 768
bytes bytes bytes bytes
No hot memory
remote 15.41 7.87 111.38 317.17 112.00 339.26
Hot memory — 100 processors doing simple read/write references
cool memory 16.70 B8.75 112.35 316.20 113.94 340.19
hot memory 701.93  306.80 473.99 1393.59 276.61 -470.09
Hot memory — 100 processors doing 768 byte block transfers
cool memory 15.95 9.02 112.88 315.97 113.26 335.85
hot memory 17410.04  153.30 8178.84 25820.95 254.55 827.14
Table 2: Date from remote reference experiment.

Time to block transfer
768 bytes (microseconds)

No hot memory 322.18

Hot memory 25885.81
10@ processors doing

768 byte block transfers.

Therefore, the additional time for the matrix
multiplication program to perform block
transfers from the hot memory should be
about:

(1/12) » 12888 » (25885.81-322.18) = 26.18 seconds

The measured increase in the execution time
for the matrix multiplication program for a
single processor was

92.01 — 65.73 = 26.28 seconds

Thus, the performance degradation resulting from the
hot memory is due almost entirely to contention at
that memory. The effect of switch contention on
program performance is negligible, even with severely
non-uniform memory reference patterns.

Note that communication (accessing remote

memory) accounts for about 6%! of the execution time
of the matrix multiplication program. Our experience
with the Butterfly Parallel Processor is that
communication typically accounts for 4%—-10% of the
execution time for an application. Because a relatively
small part of total program execution time is due to
communication, remote memory reference times must be
severely degraded before memory hot spots can have a
signficant effect on overall program performance. The
purpose of the second experiment was to measure the
effect memory hot spots have on remote memory
references as opposed to overall program performance.

EXPERIMENT #2: REMOTE REFERENCES

The second experiment timed references made
from a given processor node to memory on every other
processor node. Four types of references were timed:

1. Single word (4 byte) read references;
t = e p:

where ¢ is a variable in local memory and »
is a pointer (int *) to the word to be read.

2. Single word (4 byte) write references;
* pm t;

where ¢ is a variable in local memory and p
is a pointer (int *) to the word to be
written.

3. Block transfer of data from the remote
memory;

Do_bt (remotep, localp, numbytes)

where remotep is a pointer to a block of data
on a remote node to be copied, localp is a
pointer to an area in local memory, and
numbytes is the number of bytes to be copied
to local memory.

4. Block transfer of data to the remote memory;
Do_bt (localp, remotep, numbytes)

where localp is a pointer to a block of data
in local memory to be copied, remotep is a
pointer to an area on a remote node, and
numbyles is the number of bytes to be copied
from local to remote memory.

The measurements for a given reference type were
made by timing a tight loop that included the memory
reference:

Start_timer;

for (i = ©; i < loopcount: i++)
Moke_reference;

Stop_timer;

In addition, the empty loop was timed to measure loop
overhead:

1
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= 10@% + (12288 blk xfers *+ 322.18 microsec/blk xfer) / (66.02 sec).



Start_timer;
for (i = ©; i < loopcount: i++) ;
Stop_timer;

Date

Runs that involved hot spots used 100 processors
to generate the hot spot. Therefore, in those runs
there was 1 (remote) hot memory, 10 (remote) cool
memories, 1 (local) cool memory, and 99 (remote)
memories for processors generating the hot spot.

The timing data in Table 2 shows average times
for one iteration of the memory referencing loop for
the various memory reference types under the
conditions indicated. For the first set of data, which
was collected without any hot spots, the "remote”
reference times were computed by averaging the loop

“times measured for each of the 110 remote memories
and dividing by loopcount. Data from the hot memory
measurements was treated similarly. For example, the
“hot memory"” reference times were computed by
dividing the measured times through the reference loop
by loopcount; and the "cool memory"” reference times
were computed by averaging the loop times for the 10
cool memories and dividing by loopcount. Loopcount
for this data was 10000. The loop overheads for each
of the conditions were measured as described above,
and factored out of the data. That is, the times
presented exclude the measured loop overheads.

Discussion

When there is a hot memory, references to cool
memory are slowed down slightly. This is probably due
to contention within the switch; switch messages used
to reference cool memory collide with the switch
messages used to make the memory hot.

When there is a hot memory, simple references to
cool memory are slowed down about the same amount
as block transfer references to cool memory. For
example, remote reads from a cool memory when the
bot spot is generated by read and write references are
slowed by 1.29 microseconds (16.70 versus 15.41), and
256 byte block transfers from a cool remote memory

are slowed by .97 microseconds (112.35 versus 111.38)2.
This is not surprising since the slow down is due to
the increased time for initiating successful message
transmission through the switch, and the increase is
independent of message size.

References to the hot memory are substantially
slower. For most types of references a memory made
hot by block transfers is slower than one made hot by
read and write references. The major exception is that
simple writes are slower when the memory is made hot
by read and write references than when it is made hot
by block transfers (306.80 versus 153.30). This is due -
to the buffering strategy in the Processor Node switch
interface which, in effect, gives preference to simple
writes: when the memory is hot due to read and write
references, the write being timed must compete with
the writes maeking the memory hot; whereas when the
memory is hot due to block transfers, there are no
other writes to compete with.

CONCLUSIONS

The principal conclusion to be drawn from these
experiments is that the results reported by Pfister and
Norton do not generalize to the Butterfly Parallel
Processor. While memory contention has an important
effect on program performance in a Butterfly system,
switch contention does not.

The matrix multiplication experiment showed that
non—uniformities in memory reference patterns have
very little effect on the behavior of a program that
avoids the hot memory. When the hot memory is
avoided, its presence has virtually no effect on a
program’s performance, even if the non—uniformities
are large.

If a program uses a hot memory, the performance
degradation due to the hot memory depends on the
extent to which the hot memory is used by the
program. That is, the program is appreciably slowed
only when it references the hot memory. Although the
memory reference experiment showed slight slow down
in references to the cool memories, the matrix
multiplication experiment showed that the slight slow
down has negligible impact on overall program
performance.

There is no evidence that the tree saturation
prhenomenon described by Pfister and Norton occurs in
the Butterfly Switch. Severe non-uniformities can lead
to a small increase in contention within the switch, but
the saturation effect simply does not occur.
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ABSTRACT

When a large number of processors try to access a
common variable, referred to as hot-spot accesses in [6],
not only can the resulting memory contention seriously
degrade performance, but it may also cause tree satura-
tion in the interconnection network which blocks both
hot-spot and regular requests alike. It is shown in [6]
that even if only a small percentage of all requests are to
a hot-spot location, these requests can cause very serious
performance problems, and networks that do the neces-
sary combining of requests are suggested to keep the
interconnection network and memory contention from
becoming a bottleneck.

Instead we propose a software combining tree con-
cept and show that it is effective in decreasing memory
.contention and preventing tree saturation because it dis-
‘tributes hot-spot accesses over a software tree whose
nodes can be dispersed among many memory modules.
Thus it is an inexpensive alternative to expensive com-
bining networks.

1. INTRODUCTION

A large, shared-memory multiprocessor system like
Cedar [1], the Ultracomputer of NYU [2], or the RP3 of
IBM (3], may contain hundreds or even thousands of pro-
cessors and memory modules. Multistage interconnection
networks such as the Omega network [4] or its variations
[5] are usually employed to provide communication
between these processors and memory modules.

In these systems, any variable shared by these pro-
cessors will create memory contention at some memory
modules. Those shared variables could be locks for pro-
cess synchronization [15], loop index variables for parallel
loops [12], etc. Even though accesses to these shared
variables (called hot-spot accesses in [3,6]) may account
for a very small percentage of the total data accesses to
the shared memory (typically less than 10% are observed

This work was supported in part by the National Science Foun-
dation under Grants No. US NSF DCR84-06916 and
US NSF DCR84-10110 and by the US Department of Energy
under Grant No. US DOE DE FG02-85ER25001.
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in most applications), this memory contention can creaté
a phenomenon called tree saturation [6], and can cause
severe congestion in the interconnection network. It is
shown [6,14] that tree saturation due to hot-spot conten-
tion can seriously degrade the effective bandwidth of the
shared memory system.

Various schemes like combining networks used in
the IBM RP3 [3] and NYU Ultracomputer [2], or the
repetition filter memory in the Columbia CHoPP (7] has
been proposed to eliminate such memory contention.
The basic idea of these schemes is to incorporate some
hardware in the interconnection networks to trap and
combine data accesses when they are fanning in to the
particular memory module that contains the shared vari-
able. Because data accesses can be combined in the
interconnection network, it is hoped that memory con-
tention at that memory module can be eliminated.

However, the hardware required for such schemes is
extremely expensive. It is estimated [6] that the extra
hardware increases the switch size and/or cost by a fac-
tor between 6 and 32, and this is only for combining net-
works consisting of 2X2 switches. With kXk switches (k
> 2), the hardware cost will be even greater. The extra
hardware also tends to add extra network delay which
will penalize most of the regular data accesses that do
not need these facilities, unless the combining network is
built separately as in RP3 [6].

Furthermore, the effectiveness of the combining net-
work depends very much on the extent to which such
combining can be done. If such combining is restricted
as described in [8], i.e., if the number of requests that can
be combined is restricted to k in a kXk switch, then the
effectiveness of the combining network can be limited.
Unless this combining is unrestricted, tree saturation can
still occur even in a combining network [8].

In this paper, we are studying this problem from a
different perspective. We assume a shared memory mul-
tiprocessor system like Cedar [1] with a standard,
buffered Omega network providing interconnection [9],
and without expensive combining hardware. In addition
we use a hardware facility in the shared memory modules
to handle necessary indivisible synchronization opera-
tions for the shared variables [10]. Regular memory



accesses bypass this hardware without delay and, hence,
will not be penalized. Each memory module will handle
memory accesses, including those memory accesses to
shared variables, one at a time.

To eliminate memory contention due to the hot-spot
variable, a software tree is used to do the combining.
This idea is similar to the concept of a combining net-
work, but it is implemented in software instead of
hardware. We will show that this scheme can achieve
quite satisfactory results as compared to more expensive
hardware combining.

2. HOT-SPOTS AND TREE SATURATION

The phenomenon of how hot-spot accesses can cause
tree saturation is briefly described here. For a more
detailed analysis and discussion, please refer to [6].

Assume N is the number of processors in the sys-
tem, and there are also N memory modules in the shared
memory system. Each processor issues r requests to the
shared memory per network cycle (0 <r <1). Among
those requests, & percent of the requests are hot-spot
requests. Thus, in each network cycle, there are Nrh
hot-spot requests and r(1-4) normal requests directed to
the "hot" memory module for a total of Nrh +r(1-h). If
each memory module can accept 1 request per network
cycle (i.e., the maximum rate), the maximum network
throughput per processor is

H=1/(1+h(N-1)) 1)

.and the total effective memory bandwidth for the shared
memory system is

B=N/(1+h(N-1)). @)

Fig. 1 shows B as a function of N for various h.
This clearly shows that in a system with 1000 processors,
hot-spot traffic of only 19 can limit the total memory
bandwidth B to less than 10%.

Notice that this discussion assumes that hot-spot
requests can continue to be issued from a processor even
if that processor still has an unsatisfied hot-spot request
pending in the network. In many applications this is not
true, because hot-spot requests are usually related to
some kind of synchronization operation: A processor usu-
ally has to wait for the outcome of the synchronization
operation before it can issue another request to the syn-
chronization variable. So, the issuing rate from a proces-
sor is inherently limited. We will address these issues in
more detail in later sections.

3. SOFTWARE COMBINING TREES

To illustrate the principle of a software combining
tree, let us assume that we have a variable whose value is
N and that we want each processor to decrement this
variable so that when all processors are finished, the
value will be zero. This is a common way of making sure
all processors are finished with a given task before
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proceeding with a new task, for example, and is one
cause of hot-spot accesses. Now suppose that instead of
one single variable, we build a tree of variables, assigning
each to a different memory module, as shown in Fig. 2.
If N = 1000 and assuming a fan-in of 10, we have 111
variables each with value 10. We partition the proces-
sors into 100 groups of ten, with each group sharing one
of the variables at the bottom of the tree. When the last
processor in each group decrements its variable to zero, it
then decrements the value in the parent node. Thus, we
have increased the total number of accesses from 1000 to
1110, but instead of having one hot spot with 1000
accesses, we have 111 hot spots with only 10 accesses
each. It should be clear that this will result in a
significant improvement in throughput rate and
bandwidth, and the simulations we describe later verify
that éven if we account for the increase in total accesses,
the improvement is still quite significant. It should also
be clear that a three-level tree with fan-in equal to 10 is
not necessarily optimal, but that the optimal point
depends on access times and on other factors.



Another basic operation that can be implemented
with a software combining tree is busy-wast. Here it is
assumed that processors are waiting for a shared variable
to change in some way. Presumably some other proces-
sor will cause this change. We build a combining tree as
before, this time assigning one processor to each node in
the tree. Each processor monitors the state of its node
by continually reading the node. When the processor
‘monitoring the root node detects the change in its node,
it in turn changes the state of its children’s nodes, and so
on until all processors have detected the change and are
able to proceed with the next task.

This idea, in a sense, is not very different from a
hardware combining tree built from 10X10 switches,
except that the combining buffer that would be inside
each switch now resides in a shared memory module in a
software combining tree. One distinct advantage for a
software combining tree is that we can tune our perfor-
mance by changing the fan-in of each node without
incurring any hardware cost.

3.1. Modeling of Software Combining Tree

We will classify hot-spot accessing in two ways.
First, accesses will be limited or unlimited depending on
whether a given processor can have only one or more
than one hot spot request outstanding. We let 7 denote
the number of outstanding hot-spot requests. Second,
the number of accesses will be fized or variable depending
on whether the total number of accesses is fixed, or
whether the total number varies depending on the
number of conflicts or some other factor. For example,
assume we are adding a vector of numbers to form a
sum. Then each processor can have more than one out-
standing request to add an element to the shared sum,
but since we assume the addition is done indivisibly by
logic in the memory, the total number of requests gen-
erated by all the processors is fixed. This case is
unlimited-fized. A case like that described earlier where
processors are decrementing a counter to see who is the
last processor is limited-fized. A third example is illus-
trated by busy waiting where the processors may all be
waiting for one processor to complete some task. Each
processor continually reads the value of a shared variable
until the value changes, for example from zero to one.
Thus the number of requests to the hot spot depends on
how soon the variable gets reset, and this case is limited-
‘variable. Notice that a barrier synchronization [11] can
be implemented by a counter decrement (limited-fized),
followed by a busy wait (limited-variable) triggered by
the final processor which decrements the counter.

When we implement combining trees for hot-spot
accesses, it is important to minimize the possible memory
contention, and so it is preferable that all shared vari-
ables in a software combining tree (i.e., the nodes of the
tree) reside in separate memory modules. The largest
combining tree we can construct for a hot spot is a tree
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with minimum fan-in, i.e., a fan-in of 2. The total
number of nodes in a combining tree with N leaves is
N/2 + N/4+ - - 4+ 2+ 1= N-1. Hence, it is always
possible to spread those nodes across N separate memory
modules. Our simulations in this study assume all of the
nodes in a software tree to be in separate memory
modules.

We also assume the following system configuration:

(1) There are two identical, back-to-back, uni-directional
Omega networks: one is for traffic from processors to the
shared memory; the other is for traffic from memory
returning to the processors. Both networks are packet-
switching, pipelined networks.

(2) Each network consists of 2X2 switching elements with
an output buffer of finite size at each output port of a
switching element. The fan-in capability of each output
port is 2, i.e., it can accept two simultaneous requests

_from its two input ports. One request is forwarded to

the next stage and the other is stored in the output
buffer. If the output buffer is full, no more requests are
accepted by the output port. In our simulations, we
assume the size of the output buffer to be 4.

(3) When a software combining tree is used, accesses to a
shared variable are distributed over the nodes of a tree
instead of a single shared variable, and additional
memory accesses are needed to access these nodes in the
tree. This occurs both in a counting operation where the
last processor to decrement a node must also decrement
the parent node, and in the busy-waiting case where each
processor except at the leaves must propagate the state
change to the node’s children. These extra accesses are
accounted for in our simulations.

(4) All requests are of the same length. In our simula-
tions, we assume each request consists of only one packet.
(5) The access time of a memory module is 1 network
cycle, i.e., the time for a request to go through a switch-
ing element when no conflict exists.
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3.2. Possible Overhead in a Software Combining
Tree

As mentioned earlier, constructing a software com-
bining tree creates many shared variables. Therefore,
more hot-spot traffic is created even though that traffic
generates less memory contention.

As before, let us assume that the hot-spot rate from
a processor is r X h, and the software combining tree has
a fan-in of k for each node. For fized-type access pat-
terns, the fractional increase in hot-spot traffic will be
log,N-1
1-(k/N
Y, e L

=1

When & 2, the increased hot-spot traffic is
rh(1-2/N), which approximates the original hot-spot
traffic for large N. This means that the hot-spot traffic
can not be more than doubled after all of the extra hot-
spot traffic is included. As we will see later in our simu-
lations, the decreased memory contention will more than
offset the increased hot-spot traffic if & is less than 30%.

For variable access patterns, the additional accesses
caused by the combining tree are difficult to quantify
because the number of accesses is not fixed to begin with.
In practice, since busy-waiting is often the cause of vari-
able access patterns (with # = 1), and the number of
accesses for a busy-wait operation depends on how
quickly the state change is propagated to the children in
the tree, the total number of accesses could even be less
than that required by a single shared variable because
the state change can be propagated more quickly by the
combining tree than by N accesses to a single shared
variable.
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Fig. 5. Average delay versus bandwidth for a size 256 network.
(k varies from 0 to 32%)

4. BOUNDS ON BANDWIDTH

4.1. Unlimited Hot-Spot Requests per Processor.

In a packet-switching Omega network, with finite
buffers in each switching element and with hot-spot rate
= 0, we still cannot achieve 100% memory bandwidth
because of conflicts in the network [9]. These conflicts
are also possible if a crossbar switch is used. If we
assume R to be the maximum request rate reaching a
memory module when no hot-spot exists, then in a steady
state, R is also the maximum request rate allowed for a
processor. Therefore, we can consider R to be an abso-
lute upper bound on the bandwidth per processor.

The value of R depends on the network buffer size,
the length of a request, and the network switch size, etc.



[13]. However, as h increases, the request rate to the hot
memory module, i.e., r(1-h) + rhk, will increase from R
to 1. Tree saturation will occur when the request rate to
the hot memory module approaches 1, and the maximum
processor request rate r will decrease. Hence, we have

R <r(1-h) +rhk <1.

By rearranging the above equation, we have the follow-
ing:

R/14k(k-1)) <r <1/(1+h(k-1))

1/1+4h(k-1)) is equal to 1 when k is 0. Since the
absolute upper bound is R (R <1) as discussed before,
we can have a tighter upper bound by using R, i.e.,

R/(1+h(k-1)) <r <R. 3)

Notice that Eq. (3) also shows a lower bound for the
maximum processor request rate r when a software com-
bining tree is used with a fan-in of k£, and n is unlimited,
i.e., even when 7 is unlimited, the maximum bandwidth
cannot be worse than NR /(1+h(k-1)).

We obtained R from simulations, and in Fig. 3 we
plot lower bounds for various system sizes with h varying
from 0% to 32%. Notice that those curves are in a very
narrow range, i.e., the lower bound in Eq. (3) seems to be
tight at least for systems up to size 1024. The top dotted
line in Fig. 3 shows R, the maximum bandwidth we can
get when there are no hot-spot requests.

The degradation factor in Eq. (3) is 14+h(k-1). This
degradation factor is independent of the system size and
reaches a minimum when ¥ = 2. Given unlimited hot-
spot requests, i.e., 7 >1, the optimal software combining
tree for maximum memory bandwidth has a minimum
fan-in of 2.

4.2. Single Hot-Spot Request per Processor

If the hot-spot request rate is limited (7 = 1), then
there cannot be more than N hot-spot requests in the
system at any time. For systems with instruction look-
ahead or with data prefetching capability, regular
requests still may be issued while a hot-spot request is
pending. However, this case is not different from that of
unlimited hot spot requests with a very small h: when A
is very small, it is unlikely that there will be more than
one hot-spot request pending at any time.

Hence, when # = 1, we will only consider the case
where no additional requests, hot or regular, are issued
by the processor when there is a pending hot-spot
request. Thus, the bandwidth depends on the delay of
the hot-spot requests. The request rate from the proces-
sor is further restricted by any increased delay. If a
software combining tree is used to eliminate the memory

contention caused by the hot-spot requests, the limiting

factor for the memory bandwidth will only be #; the
inherent nature of the hot spot that prohibits further
processor requests.
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During a long period of time T, there will be rT
requests generated from a processor, among which rAT
requests are hot-spot requests. The processor will be
barred from issuing any request for a total period of
rhTC, where C is the average round-trip delay for a
hot-spot request. The processor can issue a request only
for a total period of T-rhTC. Within that period,
r(1-h)T regular requests are issued. Hence, the real
issuing rate for regular requests is r(1-A)T /(T -rhTC).
This rate can not be greater than 1, i.e.,

r(1-h)T /(T-rhTC) <1.

This equation can be rearranged to obtain an upper
bound for r:

r <1/(1- h+hC) (4)

As expected, the maximum rate of r is greatly
dependent on the hot-spot delay C. This bound gets
tighter as the hot-spot rate h gets larger. When A = 1,
the equality in Eq. (4) will hold. Fig. 4 shows this upper
bound for various hot-spot rates h with minimum hot-
spot delay of C = 2log,N. For N = 1000 and h = 8%,
the upper bound will be around 40% of the total
bandwidth. Notice that the upper bound in Eq. (4) is
valid even for a hardware combining network because it is
a bound imposed by the inherent nature of the hot-spot
request (i.e., n =1).

5. SIMULATION RESULTS

To study the effectiveness of a software combining
tree, we performed several simulations for N = 256, with
h varying from 0% to 32%. Fig. 5 shows the delay and
maximum bandwidth when neither a software combining
tree nor a hardware combining network is used. Follow-
ing each curve from left to right, each point represents a
larger value of r. As shown in [6], while r increases,
bandwidth increases while delay stays relatively constant
up to a point of saturation. After the saturation point,
bandwidth ceases to increase while delay gets worse.
This clearly shows low bandwidth and increased average
network delay results. The maximum bandwidth of
0.63N is achieved when & = 0.

Fig. 6 represents fized-type access patterns with
unlimited 7, and shows the use of a software combining
tree to reduce hot-spot contention. The fan-in’s for the
software combining trees are varied from k¥ = 16 to 2.
The improvement is quite significant compared to the
result in Fig. 5(a). According to Eq. (3), the minimum
degradation factor for the bandwidth can be obtained
when the software combining tree has the minimum fan-
in. In Fig. 6 we can see that when k = 2, the degrada-
tion is indeed the smallest.

As presented in section 3.2, the hot-spot traffic can
be nearly doubled by the extra hot-spot traffic created by
the software combining tree with the minimum fan-in £
= 2. In Fig. 6 A is indicated as the original hot-spot
request rate; the results shown there already include all
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extra hot-spot traffic. This shows that with an original
hot-spot request rate of 16%, the degradation remains
small. The elimination of the hot-spot contention,
indeed, more than offsets the results of increased traffic.

Fig. 8 represents limited-variable access patterns,
wherein no additional requests are issued by a processor
while it has a hot-spot request pending, but the total
number of requests allowed over time is not fixed. The
upper bound on the bandwidth given in Eq. (4) will
depend on C, the average delay of the hot-spot requests.
The value of delay C includes the overhead from travers-
ing the software tree, busy waiting in the intermediate
nodes, and the possible memory contention. From these
figures, we can see that the optimal fan-in k for the
software tree is no longer k = 2, but rather at around &
= 4. The increased fan-in &k allows for a lesser number
of levels of nodes in the tree, thus reducing the time
required for requests to traverse the tree.

Furthermore, when h increases, the upper bound in
Eq. (4) becomes tighter. There is less traffic in the net-
work due to the restriction that no more requests will be
issued when a hot-spot request is pending. In this case,
the turnaround time for a request can actually be
improved as Fig. 9 shows.

We also simulate some cases for fixed-type access
patterns with n = 1 (Fig. 7). If we take into account the
fact that busy waiting is not required in this kind of
access pattern, we can see that the results are quite simi-
lar to those from our simulations of variable-type access
patterns discussed above. In fact, the average hot-spot
request delay, i.e., C in Eq. (4), is smaller in this case.
Also, as shown in Eq. (4), we can expect an im<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>